
www.allitebooks.com

http://www.allitebooks.org

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM
Blind Folio i

Web Scalability for
Startup Engineers

00-FM.indd 1 06/05/15 4:34 PM

www.allitebooks.com

http://www.allitebooks.org

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM
Blind Folio ii

About the Author
Artur Ejsmont is a passionate software engineer and agile leader, currently working for
Yahoo! in Sydney. Artur has been working with web applications for over 10 years with a
lot of focus on agile, startup-like environments; he loves the Lean Startup model. Artur
has worked on websites serving 1M+ pages per hour, both in Europe and Australia. He
has also served as a university lecturer and is passionate about sharing his knowledge with
others. Artur actively contributes to the tech community as a technical writer, blogger,
and public speaker.

About the Technical Editors
Bill Wilder is CTO at Finomial Corporation, an occasional conference speaker, an
inconsistent blogger, and leader (since 2009) of Boston Azure. He is recognized by
Microsoft as an Azure MVP and is the author of the book Cloud Architecture Patterns
(O’Reilly Media, 2012). He can be found on Twitter @codingoutloud.

TJ Wilder is a college student in his junior year at the University of Massachusetts
at Amherst, majoring in computer science with a minor in mathematics. He has been
programming since he was 12 but has taken occasional breaks since then to eat, sleep,
and sing. Having interned at DraftKings.com when it was a startup, he looks forward to
putting the book’s advice to work in more startups in the future.

Dr. Danny Coward is a chief architect and web architect at Oracle. Coward is the sole
spec lead for the Java API for Web Sockets for Java EE and Java SE/JavaFX and sole author
of the WebSocket technical documentation at Oracle. Coward’s work leading WebSocket
at Oracle make him the leading expert on Java WebSocket programming. Coward has
a decade of experience as a Java developer, where he now seeks to direct and simplify
complex technologies to fulfill business objectives. Coward has specialized experience
in all aspects of Java software—from Java ME to Java EE to the founding of the JavaFX
technology.

00-FM.indd 2 06/05/15 4:34 PM

www.allitebooks.com

http://www.allitebooks.org

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM
Blind Folio iii

Web Scalability for
Startup Engineers

Tips & Techniques for Scaling
Your Web Application

Artur Ejsmont

New York Chicago San Francisco
Athens London Madrid Mexico City

Milan New Delhi Singapore Sydney Toronto

00-FM.indd 3 06/05/15 4:34 PM

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2015 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they may not
be reproduced for publication.

ISBN: 978-0-07-184366-9

MHID: 0-07-184366-3

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-184365-2,
MHID: 0-07-184365-5.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not guarantee the accuracy, adequacy, or
completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms.
Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will
meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education
has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its
licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work,
even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether
such claim or cause arises in contract, tort or otherwise.

www.allitebooks.com

http://www.allitebooks.org

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM
Blind Folio v

I dedicate this book to all of you passionate geeks.
The future of mankind is truly in your hands now.

00-FM.indd 5 06/05/15 4:34 PM

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

vii

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

Contents at a Glance

 Chapter 1 Core Concepts . 1

 Chapter 2 Principles of Good Software Design . 37

 Chapter 3 Building the Front-End Layer . 83

 Chapter 4 Web Services . 123

 Chapter 5 Data Layer . 155

 Chapter 6 Caching . 207

 Chapter 7 Asynchronous Processing . 245

 Chapter 8 Searching for Data . 303

 Chapter 9 Other Dimensions of Scalability . 331

 Appendix References . 363

Index . 379

00-FM.indd 7 06/05/15 4:34 PM

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ix

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

Contents

Acknowledgments . xv
Introduction . xvii

 Chapter 1 Core Concepts . 1

What Is Scalability? . 2
Evolution from a Single Server to a Global Audience . 5

Single-Server Configuration . 5
Making the Server Stronger: Scaling Vertically . 7
Isolation of Services . 11
Content Delivery Network: Scalability for Static Content 13
Distributing the Traffic: Horizontal Scalability . 16
Scalability for a Global Audience . 19

Overview of a Data Center Infrastructure . 22
The Front Line . 22
Web Application Layer . 24
Web Services Layer . 24
Additional Components . 25
Data Persistence Layer . 25
Data Center Infrastructure . 26

Overview of the Application Architecture . 27
Front End . 28
Web Services . 30
Supporting Technologies . 34

Summary . 35

 Chapter 2 Principles of Good Software Design . 37

Simplicity . 38
Hide Complexity and Build Abstractions . 38
Avoid Overengineering . 40

00-FM.indd 9 06/05/15 4:34 PM

www.allitebooks.com

http://www.allitebooks.org

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

 x Web Scalability for Startup Engineers

Try Test-Driven Development . 41
Learn from Models of Simplicity in Software Design 42

Loose Coupling . 43
Promoting Loose Coupling . 44
Avoiding Unnecessary Coupling . 47
Models of Loose Coupling . 47

Don’t Repeat Yourself (DRY) . 48
Copy and Paste Programming . 50

Coding to Contract . 51
Draw Diagrams . 54

Use Case Diagrams . 57
Class Diagrams . 59
Module Diagrams . 60

Single Responsibility . 61
Promoting Single Responsibility . 62
Examples of Single Responsibility . 62

Open-Closed Principle . 63
Dependency Injection . 65
Inversion of Control (IOC) . 68
Designing for Scale . 71

Adding More Clones . 72
Functional Partitioning . 74
Data Partitioning . 75

Design for Self-Healing . 77
Summary . 81

 Chapter 3 Building the Front-End Layer . 83

Managing State . 85
Managing HTTP Sessions . 88
Managing Files . 93
Managing Other Types of State . 97

Components of the Scalable Front End . 101
DNS . 102
Load Balancers . 103
Web Servers . 111

00-FM.indd 10 06/05/15 4:34 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

 Contents xi

Caching . 113
Auto-Scaling . 114

Deployment Examples . 117
AWS Scenario . 117
Private Data Center . 119

Summary . 121

 Chapter 4 Web Services . 123

Designing Web Services . 124
Web Services as an Alternative Presentation Layer 124
API-First Approach . 127
Pragmatic Approach . 130

Types of Web Services . 131
Function-Centric Services . 131
Resource-Centric Services . 134

Scaling REST Web Services . 138
Keeping Service Machines Stateless . 139
Caching Service Responses . 146
Functional Partitioning . 150

Summary . 153

 Chapter 5 Data Layer . 155

Scaling with MySQL . 156
Replication . 156
Data Partitioning (Sharding) . 170

Scaling with NoSQL . 189
The Rise of Eventual Consistency . 192
Faster Recovery to Increase Availability . 197
Cassandra Topology . 199

Summary . 204

 Chapter 6 Caching . 207

Cache Hit Ratio . 208
Caching Based on HTTP . 210

HTTP Caching Headers . 211
Types of HTTP Cache Technologies . 217
Scaling HTTP Caches . 223

00-FM.indd 11 06/05/15 4:34 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

 xii Web Scalability for Startup Engineers

Caching Application Objects . 227
Common Types of Object Caches . 228
Scaling Object Caches . 234

Caching Rules of Thumb . 239
Cache High Up the Call Stack . 239
Reuse Cache Among Users . 240
Where to Start Caching? . 242
Cache Invalidation Is Difficult . 243

Summary . 244

 Chapter 7 Asynchronous Processing . 245

Core Concepts . 246
Synchronous Example . 247
Asynchronous Example . 249
Shopping Analogy . 254

Message Queues . 256
Message Producers . 258
Message Broker . 259
Message Consumers . 260
Messaging Protocols . 265
Messaging Infrastructure . 266

Benefits of Message Queues . 270
Enabling Asynchronous Processing . 270
Easier Scalability . 272
Evening Out Traffic Spikes . 273
Isolating Failures and Self-Healing . 274
Decoupling . 275

Message Queue–Related Challenges . 276
No Message Ordering . 276
Message Requeueing . 280
Race Conditions Become More Likely . 281
Risk of Increased Complexity . 282

Message Queue–Related Anti-Patterns . 282
Treating the Message Queue as a TCP Socket . 282
Treating Message Queue as a Database . 283

00-FM.indd 12 06/05/15 4:34 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

 Contents xiii

Coupling Message Producers with Consumers . 283
Lack of Poison Message Handling . 284

Quick Comparison of Selected Messaging Platforms . 284
Amazon Simple Queue Service . 285
RabbitMQ . 288
ActiveMQ . 291
Final Comparison Notes . 292

Introduction to Event-Driven Architecture . 295
Request/Response Interaction . 296
Direct Worker Queue Interaction . 296
Event-Based Interaction . 297

Summary . 301

 Chapter 8 Searching for Data . 303

Introduction to Indexing . 304
Modeling Data . 313

NoSQL Data Modeling . 313
Wide Column Storage Example . 318

Search Engines . 326
Introduction to Search Engines . 326
Using a Dedicated Search Engine . 328

Summary . 330

 Chapter 9 Other Dimensions of Scalability . 331

Scaling Productivity through Automation . 332
Testing . 333
Build and Deployment . 335
Monitoring and Alerting . 340
Log Aggregation . 345

Scaling Yourself . 347
Overtime Is Not a Way to Scale . 347
Managing Yourself . 349

Scaling Agile Teams . 357
Adding More People . 357
Procedures and Innovation . 359
Culture of Alignment . 360

Summary . 361

00-FM.indd 13 06/05/15 4:34 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

 xiv Web Scalability for Startup Engineers

 Appendix References . 363

Books . 364
White Papers . 366
Talks . 373
Links . 374

Index . 379

00-FM.indd 14 06/05/15 4:34 PM

xv

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

Acknowledgments

I would like to thank Bill Wilder, TJ Wilder, Danny Coward, and Brandi Shailer
for all of their feedback and help when working on this book. I would also like to
thank Dion Beetson, Craig Penfold, Jackie Reses, Venkatesh Kanchan, Marcelo
Maidana, Kristian Kauper, Christof Mueller, Ścibór Sobieski, Mariusz Jarocki,
Andrzej Nowakowski, my friends, and my family for supporting and inspiring me
over the last 35 years. I would not be who I am today without them.

00-FM.indd 15 06/05/15 4:34 PM

This page intentionally left blank

xvii

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

Introduction

In the coming years, businesses will need to store, transfer, and process increasingly
large amounts of data. This will happen mainly due to the exponential growth of
technology and our increasing dependency on it. As a result of this wave, the demand
for engineers who are able to build scalable systems is going to increase as well.

The initial idea for the book came to me when I realized that most engineers
either know a lot about scalability or nothing at all. I realized that there is not
enough literature on the subject and that there is no easy way for engineers working
in smaller companies to “get to the next level” in terms of understanding scalability.
With this in mind, I set out a goal of writing a book that would help people
understand the bigger picture and create awareness of how software architecture
and the infrastructure work together to promote scalability.

I think of this book as a roadmap for readers to use in their journey to web
application scalability. I present both a high-level perspective and a deep dive into
important aspects to give real-world advice. There are too many technologies to
go through everything in detail, but it is possible to explain concepts and basic
rules and showcase selected platforms.

Chapter 1: Core Concepts
The first chapter of this book provides an introduction to the concepts of scalability
and a very high-level overview of the book. In this chapter, I propose different
stages of web application evolution in terms of scalability as a way to gradually
introduce various concepts. I also present an overview of the infrastructure and
architecture of a scalable web application.

Chapter 2: Principles of Good Software Design
In this chapter, I discuss different design principles and considerations that are
necessary to build flexible and scalable systems. I start with the broadest concepts,
like simplicity and coupling, and then discuss some object-oriented design
principles, like single responsibility and dependency injection. Finally, I move

00-FM.indd 17 06/05/15 4:34 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

 xviii Web Scalability for Startup Engineers

to design concepts directly related to scalability, like functional partitioning, data
partitioning, and self-healing.

Chapter 3: Building the Front-End Layer
In this chapter, I focus on parts of the infrastructure that are directly interacting
with the client’s software, like web browsers or mobile apps. I explain in-depth
ways of handling state in the front-end layer. Then I discuss different components
of a scalable front end, like load balancers, proxies, and content delivery networks.
Finally, I discuss auto-scaling and different deployment scenarios.

Chapter 4: Web Services
In this chapter, I discuss the benefits and drawbacks of different web service
architectures. I explain design principles and go into details of scalability techniques
in the context of REST-ful APIs.

Chapter 5: Data Layer
In this chapter, I explain core scalability techniques. I discuss techniques relevant
to relational databases like MySQL, but also spend a lot of time discussing NoSQL
data stores like Cassandra. Throughout the chapter I explain in detail concepts
such as data partitioning (aka sharding), replication, and eventual consistency.
I also compare different data layer topologies and challenges related to each of
the techniques.

Chapter 6: Caching
In this chapter, I focus on caching, which is one of the key strategies of scalability
and high performance. Throughout the chapter I explain in detail HTTP-based
caching, different types of HTTP caches, and techniques of scaling HTTP caches.
I then describe object caches and common ways of scaling them out. Finally, I spend
some time explaining caching best practices, which should help you make better
decisions and prioritize your efforts more efficiently when implementing caching.

Chapter 7: Asynchronous Processing
In this chapter, I explain the increasingly popular subjects of messaging and
event-driven architecture. I begin by explaining the concepts and benefits of

00-FM.indd 18 06/05/15 4:34 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / FM

 Introduction xix

asynchronous processing and how to leverage message brokers to scale web
applications. Then, I highlight some of the challenges and pitfalls you may expect
when working with asynchronous systems. Finally, I briefly compare some of the
most popular messaging platforms to help you choose the best tool for the job.

Chapter 8: Searching for Data
In this chapter, I focus on the wider problem of searching for data. Searching
for data is closely related to data stores, and as your data sets grow, it becomes
increasingly important to optimize the way you search for and access data.
I begin by explaining how different types of indexes work. I then spend some time
discussing data modeling, which helps scalability, and how you can think of data
modeling in NoSQL data stores like Cassandra. Finally, I provide an introduction
to search engines and how they can be used in the context of a web application.

Chapter 9: Other Dimensions of Scalability
In the final chapter of this book, I describe other concepts necessary to scale
your throughput, managing yourself better and growing your team. I begin
by emphasizing the role of automation as the key technique of increasing
engineering efficiency. I discuss topics such as automated testing, deployments,
monitoring, and alerting. I then share my own experiences and observations
related to project management, which should help you survive in a startup.
Finally, I reflect on the challenges of growing agile teams.

Intended Audience
I wrote this book with software engineers, engineering managers, DevOps, and
system engineers in mind. The book may be challenging for university students,
but it should be understandable for any mid-level and even junior engineer.

I assume readers have a basic understanding of how web applications are built
and how related technologies work together. Reading this book does not require
you to have knowledge of any particular technology stack like Java, PHP, JavaScript,
C#, or Ruby because scalability is a universal challenge in web development.
I do assume that readers understand how the HTTP protocol works and that
they have basic knowledge of IP networking, HTML, and client-server software
development concepts.

00-FM.indd 19 06/05/15 4:34 PM

This page intentionally left blank

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

1

CHAPTER

1
Core Concepts

01-ch01.indd 1 06/05/15 12:10 PM

 2 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Startups face extreme amounts of uncertainty. To build a successful startup,
you must be as flexible as possible. You also need to be resourceful and
adapt quickly to changing conditions. These extreme requirements put on

the software teams make scalability even more important and challenging than
in slowly changing businesses. Things that can take an entire year in a corporate
environment may need to happen in just a matter of weeks in a startup. If you are
successful and lucky, you may need to scale your capacity up tenfold in a matter of
weeks, just to have to scale back down a few months later.

Scalability is a difficult matter for any engineer, and it presents special
challenges in the startup environment. As such, leveraging the work done by
major players in this space, including Amazon, Azure, and Google clouds, can
reduce the overall scope of your work and allow you to focus on addressing your
specific needs. As we discuss scalability concepts in the book, we’ll also look at
some of the services you can apply to address each challenge. Understanding
scalability is best approached gradually, and to that end, I’ll keep things simple
to begin with by focusing on the core concepts from a high level. Anyone with
a basic understanding of web application development should feel comfortable
diving into the book. As we move forward, I’ll take a deeper dive into details of
each concept. For now, it’s important to establish three main pillars of scalability:
what it is and how it evolves, what it looks like in a large-scale application, and
what its application architecture looks like.

To fully grasp the concepts in this chapter, it may be worth revisiting it after
you’ve read the entire book. At first, some concepts may seem quite abstract, but
you’ll find everything comes together nicely as you more fully understand the
big picture. This chapter contains a number of diagrams as well. These diagrams
often carry much more information than you may notice at first glance. Getting
comfortable with drawing infrastructure and architecture diagrams will not only
help you get the most out of this book, but may also help you during your next job
interview.

What Is Scalability?
Before we dive into the core concepts, let’s make sure we are approaching
scalability with a unified definition. You’re likely reading this book because you
want to enable your web applications to scale—or to scale more efficiently. But
what does it mean to scale?

01-ch01.indd 2 06/05/15 12:10 PM

 Chapter 1: Core Concepts 3

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Scalability is an ability to adjust the capacity of the system to cost-
efficiently fulfill the demands. Scalability usually means an ability to
handle more users, clients, data, transactions, or requests without
affecting the user experience. It is important to remember that scalability
should allow us to scale down as much as scale up and that scaling
should be relatively cheap and quick to do.

The ability to scale is measured in different dimensions, as we may need to
scale in different ways. Most scalability issues can be boiled down to just a few
measurements:

 ▶ Handling more data This is one of the most common challenges. As
your business grows and becomes more popular, you will be handling more
and more data. You will have to efficiently handle more user accounts,
more products, more location data, and more pieces of digital content.
Processing more data puts pressure on your system, as data needs to be
sorted, searched through, read from disks, written to disks, and sent over the
network. Especially today, with the growing popularity of big data analytics,
companies become greedier and greedier about storing ever-growing
amounts of data without ever deleting it.

 ▶ Handling higher concurrency levels Concurrency measures how
many clients your system can serve at the same time. If you are building
a web-based application, concurrency means how many users can use
your application at the same time without affecting their user experience.
Concurrency is difficult, as your servers have a limited amount of central
processing units (CPUs) and execution threads. It is even more difficult,
as you may need to synchronize parallel execution of your code to
ensure consistency of your data. Higher concurrency means more open
connections, more active threads, more messages being processed at the
same time, and more CPU context switches.

 ▶ Handling higher interaction rates The third dimension of scalability is
the rate of interactions between your system and your clients. It is related
to concurrency, but is a slightly different dimension. The rate of interactions
measures how often your clients exchange information with your servers.
For example, if you are building a website, your clients would navigate from

01-ch01.indd 3 06/05/15 12:10 PM

 4 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

page to page every 15 to 120 seconds. If you are building a multiplayer
mobile game, however, you may need to exchange messages multiple times
per second. The rate of interactions can be higher or lower independently
of the amount of concurrent users, and it depends more on the type of the
application you are building. The main challenge related to the interaction
rate is latency. As your interactions rate grows, you need to be able to serve
responses quicker, which requires faster reads/writes and often drives
requirements for higher concurrency levels.

The scalability of your system will usually be defined by the combination
of these three requirements. Scaling down is usually less important than the
ability to scale up, but reducing waste and inefficiencies is an important factor
nonetheless, especially so for startups, where every investment may become a
waste as business requirements change.

As you have probably noticed, scalability is related to performance, but it is not
the same thing. Performance measures how long it takes to process a request or
to perform a certain task, whereas scalability measures how much we can grow
(or shrink).

For example, if you had 100 concurrent users, with each user sending a
request, on average, once every 5 seconds, you would end up with a throughput
requirement of 20 requests per second. Performance would decide how much
time you need to serve these 20 requests per second, and scalability would decide
how many more users you can handle and how many more requests they can send
without degrading the user experience.

Finally, scalability of a software product may be constrained by how many
engineers can be working on the system. As your system grows, you will need to
consider organizational scalability as well; otherwise, you will not be able to make
changes or adapt quickly enough. Even though organizational scalability may seem
unrelated to technology, it actually may be limited by the architecture and design
of your system. If your system is very tightly interconnected, you may struggle
to scale your engineering team, as everyone will work on the same codebase.
Growing a single engineering team above 8 to 15 people becomes inefficient, as
the communication overhead grows exponentially as the team size grows.40

HINT
To fully appreciate how scalability affects startups, try to assume a more business-oriented
perspective. Ask yourself, “What are the constraints that could prevent our business from
growing?” It is not just about raw throughput; it involves development processes, teams, and code
structure. I will explore these aspects of scalability in more detail in Chapter 9 of this book.

01-ch01.indd 4 06/05/15 12:10 PM

 Chapter 1: Core Concepts 5

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Evolution from a Single Server to a Global Audience
As a young engineer I used to build web applications that were hosted on a single
server, and this is probably how most of us get started. During my career I have
worked for different companies and I have witnessed applications in different
scalability evolution stages. Before we go deeper into scalability, I would like to
present some of these evolution stages to better explain how you go from a single
server sitting under your desk to thousands of servers spread all over the world.

I will keep it at a very high level here, as I will go into more detail in later
chapters. Discussing evolution stages will also allow me to introduce different
concepts and gradually move toward more complex topics. Keep in mind that
many of the scalability evolution stages presented here can only work if you
plan for them from the beginning. In most cases, a real-world system would not
evolve exactly in this way, as it would likely need to be rewritten a couple of times.
Most of the time, a system is designed and born in a particular evolution stage
and remains in it for its lifetime, or manages to move up one or two steps on the
ladder before reaching its architectural limits.

HINT
Avoid full application rewrites at all costs,45 especially if you work in a startup. Rewrites always
take much longer than you initially expect and are much more difficult than initially anticipated.
Based on my experience, you end up with a similar mess just two years later.

Single-Server Configuration
Let’s begin with a single-server setup, as it is the simplest configuration possible
and this is how many small projects get started. In this scenario, I assume that
your entire application runs on a single machine. Figure 1-1 shows how all the
traffic for every user request is handled by the same server. Usually, the Domain
Name System (DNS) server is used as a paid service provided by the hosting
company and is not running on your own server. In this scenario, users connect
to the DNS to obtain the Internet Protocol (IP) address of the server where your
website is hosted. Once the IP address is obtained, they send Hypertext Transfer
Protocol (HTTP) requests directly to your web server.

Since your setup consists of only one machine, it needs to perform all the duties
necessary to make your application run. It may have a database management
system running (like MySQL or Postgres), as well as serving images and dynamic
content from within your application.

01-ch01.indd 5 06/05/15 12:10 PM

 6 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Figure 1-1 shows the distribution of traffic in a single-server configuration.
Clients would first connect to the DNS server to resolve the IP address of your
domain, and then they would start requesting multiple resources from your web
server. Any web pages, images, Cascading Style Sheet (CSS) files, and videos have
to be generated or served by your server, and all of the traffic and processing will
have to be handled by your single machine. I use different weights of arrows on
the diagram to indicate the proportion of traffic coming to each component.

An application like this would be typical of a simple company website with a
product catalog, a blog, a forum, or a self-service web application. Small websites
may not even need a dedicated server and can often be hosted on a virtual private
server (VPS) or on shared hosting.

Figure 1-1 Single-server configuration

Customers 1

Customers Customers

Customers Customers

DNS 2

Single Server 3

Traf�c Volumes

Very heavy

Light, UDP

01-ch01.indd 6 06/05/15 12:10 PM

 Chapter 1: Core Concepts 7

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Virtual private server is a term used by hosting providers to describe
a virtual machine for rent. When you purchase a VPS instance, it is
hosted together with other VPS instances on a shared host machine.
VPS behaves as a regular server—you have your own operating system
and full privileges. VPS is cheaper than a dedicated server, as multiple
instances can exist at the same time on the same physical machine. VPS
is a good starting point, as it is cheap and can usually be upgraded
instantly (you can add more random access memory [RAM] and CPU
power with a click of a button).

Shared hosting is the cheapest hosting solution, where you purchase a
user account without administrative privileges. Your account is installed
on a server together with many other customers’ accounts. It is a good
starting point for the smallest websites or landing pages, but it is too
limiting so it is not a recommended option.

For sites with low traffic, a single-server configuration may be enough to
handle the requests made by clients. There are many reasons, though, why this
configuration is not going to take you far scalability-wise:

 ▶ Your user base grows, thereby increasing traffic. Each user creates additional
load on the servers, and serving each user consumes more resources,
including memory, CPU time, and disk input/output (I/O).

 ▶ Your database grows as you continue to add more data. As this happens,
your database queries begin to slow down due to the extra CPU, memory,
and I/O requirements.

 ▶ You extend your system by adding new functionality, which makes user
interactions require more system resources.

 ▶ You experience any combination of these factors.

Making the Server Stronger: Scaling Vertically
Once your application reaches the limits of your server (due to increase in traffic,
amount of data processed, or concurrency levels), you must decide how to scale.
There are two different types of scaling: vertical and horizontal. I will be covering

01-ch01.indd 7 06/05/15 12:10 PM

 8 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

both techniques in this book, but since vertical scalability is conceptually simpler
and it is more common in this evolution stage, let’s look at it first.

Vertical scalability is accomplished by upgrading the hardware
and/or network throughput. It is often the simplest solution for short-
term scalability, as it does not require architectural changes to your
application. If you are running your server with 8GB of memory, it
is easy to upgrade to 32GB or even 128GB by just replacing the
hardware. You do not have to modify the way your application works
or add any abstraction layers to support this way of scaling. If you are
hosting your application on virtual servers, scaling vertically may be as
easy as a few clicks to order an upgrade of your virtual server instance
to a more powerful one.

There are a number of ways to scale vertically:

 ▶ Adding more I/O capacity by adding more hard drives in Redundant Array
of Independent Disks (RAID) arrays. I/O throughput and disk saturation are
the main bottlenecks in database servers. Adding more drives and setting up
a RAID array can help to distribute reads and writes across more devices.
In recent years, RAID 10 has become especially popular, as it gives both
redundancy and increased throughput. From an application perspective,
a RAID array looks like a single volume, but underneath it is a collection of
drives sharing the reads and writes.

 ▶ Improving I/O access times by switching to solid-state drives (SSDs).
Solid-state drives are becoming more and more popular as the technology
matures and prices continue to fall. Random reads and writes using SSDs are
between 10 and 100 times faster, depending on benchmark methodology.
By replacing disks you can decrease I/O wait times in your application.
Unfortunately, sequential reads and writes are not much faster and you will
not see such a massive performance increase in real-world applications. In
fact, most open-source databases (like MySQL) optimize data structures and
algorithms to allow more sequential disk operations rather than depending
on random access I/O. Some data stores, such as Cassandra, go even further,
using solely sequential I/O for all writes and most reads, making SSD even
less attractive.

01-ch01.indd 8 06/05/15 12:10 PM

 Chapter 1: Core Concepts 9

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

 ▶ Reducing I/O operations by increasing RAM. (Even 128GB RAM is
affordable nowadays if you are hosting your application on your own
dedicated hardware.) Adding more memory means more space for the file
system cache and more working memory for the applications. Memory size
is especially important for efficiency of database servers.

 ▶ Improving network throughput by upgrading network interfaces or
installing additional ones. If your server is streaming a lot of video/media
content, you may need to upgrade your network provider’s connection or
even upgrade your network adapters to allow greater throughput.

 ▶ Switching to servers with more processors or more virtual cores. Servers
with 12 and even 24 threads (virtual cores) are affordable enough to be
a reasonable scaling option. The more CPUs and virtual cores, the more
processes that can be executing at the same time. Your system becomes
faster, not only because processes do not have to share the CPU, but also
because the operating system will have to perform fewer context switches to
execute multiple processes on the same core.

Vertical scalability is a great option, especially for very small applications or if
you can afford the hardware upgrades. The practical simplicity of vertical scaling
is its main advantage, as you do not have to rearchitect anything. Unfortunately,
vertical scaling comes with some serious limitations, the main one being cost.
Vertical scalability becomes extremely expensive beyond a certain point.43

Figure 1-2 shows the approximate relationship of price per capacity unit and
the total capacity needed. It shows that you can scale up relatively cheaply first,
but beyond a certain point, adding more capacity becomes extremely expensive.
For example, getting 128GB of RAM (as of this writing) could cost you $3,000, but
doubling that to 256GB could cost you $18,000, which is much more than double
the 128GB price.

The second biggest issue with vertical scalability is that it actually has hard
limits. No matter how much money you may be willing to spend, it is not possible
to continually add memory. Similar limits apply to CPU speed, number of cores
per server, and hard drive speed. Simply put, at a certain point, no hardware is
available that could support further growth.

Finally, operating system design or the application itself may prevent you from
scaling vertically beyond a certain point. For example, you will not be able to keep
adding CPUs to keep scaling MySQL infinitely, due to increasing lock contention
(especially if you use an older MySQL storage engine called MyISAM).

01-ch01.indd 9 06/05/15 12:10 PM

www.allitebooks.com

http://www.allitebooks.org

 10 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Locks are used to synchronize access between execution threads to
shared resources like memory or files. Lock contention is a performance
bottleneck caused by inefficient lock management. Operations
performed very often should have fine-grained locks; otherwise, your
application may spend most of its time waiting for locks to be released.
Once you hit a lock contention bottleneck, adding more CPU cores does
not increase the overall throughput.

High-performance open-source and commercial applications should scale onto
dozens of cores; however, it is worth checking the limitations of your application
before purchasing the hardware. Homegrown applications are usually much
more vulnerable to lock contention, as efficient lock management is a complex
task requiring a lot of experience and fine-tuning. In extreme cases, adding more
cores may yield no benefits at all if the application was not designed with high
concurrency in mind.

As you can see in Figure 1-3, vertical scalability does not affect system architecture
in any way. You can scale vertically each of our servers, network connections, or

Figure 1-2 Cost of scalability unit

Pr
ic

e
pe

r
ca

pa
ci

ty
 u

ni
t

Extra capacity needed

Price grows linearly at start,
double capacity = double price

Then price per unit begins to
grow very rapidly

Sweet spot

01-ch01.indd 10 06/05/15 12:10 PM

 Chapter 1: Core Concepts 11

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

routers without needing to modify your code or rearchitecting anything. All you
need to do is replace a piece of hardware with a stronger or faster piece of hardware.

Isolation of Services
Vertical scalability is not the only option at this early stage of evolution. Another
simple solution is moving different parts of the system to separate physical servers
by installing each type of service on a separate physical machine. In this context,
a service is an application like a web server (for example, Apache) or a database
engine (for example, MySQL). This gives your web server and your database a
separate, dedicated machine. In the same manner, you can deploy other services
like File Transfer Protocol (FTP), DNS, cache, and others, each on a dedicated
physical machine. Isolating services to separate servers is just a slight evolution

Figure 1-3 Single server, but stronger

Customers 1

Customers Customers

Customers Customers

DNS 2

Single Server

Stronger Server

3

Traf�c Volumes

Very heavy

Light, UDP

01-ch01.indd 11 06/05/15 12:10 PM

 12 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

from a single-server setup. It does not take you very far, however, as once you
deploy each service type on a separate machine, you have no room to grow.

Cache is a server/service focused on reducing the latency and resources
needed to generate the result by serving previously generated content.
Caching is a very important technique for scalability. I will discuss
caching in detail in Chapter 6.

Figure 1-4 shows a high-level infrastructure view with each service deployed to
a separate machine. This still looks similar to a single-server setup, but it slowly

Figure 1-4 Configuration with separate services residing on different servers

Customers 1

Customers Customers

Customers Customers

DNS 2

Traf�c Volumes

Very heavy

Light, UDP

Data Center 3

01-ch01.indd 12 06/05/15 12:10 PM

 Chapter 1: Core Concepts 13

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

increases the number of servers that can share the load. Servers are usually hosted
in a third-party data center. They are often VPS, rented hardware, or collocated
servers. I represent the data center here as a set of servers dedicated to different
functions. Each server has a certain role, such as web server, database server, FTP,
or cache. I will discuss the details of data center layout later in this chapter.

Isolation of services is a great next step for a single-server setup, as you can
distribute the load among more machines than before and scale each of them
vertically as needed. This is a common configuration among small websites
and web development agencies. Agencies will often host many tiny websites
for different clients on shared web servers. A bigger client with a more popular
website would move to a separate web server and a separate database. This
allows an agency to balance the load between applications of their clients and
better utilize resources, keeping each of the web applications simple and fairly
monolithic.

In a similar way to agencies hosting customers’ websites on separate machines,
you can divide your web application into smaller independent pieces and host
them on separate machines. For example, if you had an administrative console
where customers can manage their accounts, you could isolate it into a separate
web application and then host it on a separate machine.

HINT
The core concept behind isolation of services is that you should try to split your monolithic web
application into a set of distinct functional parts and host them independently. The process of
dividing a system based on functionality to scale it independently is called functional partitioning.

Figure 1-5 shows a scenario in which a web application uses functional
partitioning to distribute the load among even more servers. Each part of the
application would typically use a different subdomain so that traffic would be
directed to it based simply on the IP address of the web server. Note that different
partitions may have different servers installed, and they may also have different
vertical scalability needs. The more flexibility we have in scaling each part of the
system, the better.

Content Delivery Network: Scalability for Static Content
As applications grow and get more customers, it becomes beneficial to offload
some of the traffic to a third-party content delivery network (CDN) service.

01-ch01.indd 13 06/05/15 12:10 PM

 14 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

A content delivery network is a hosted service that takes care of global
distribution of static files like images, JavaScript, CSS, and videos.
It works as an HTTP proxy. Clients that need to download images,
JavaScript, CSS, or videos connect to one of the servers owned by the
CDN provider instead of your servers. If the CDN server does not have
the requested content yet, it asks your server for it and caches it from
then on. Once the file is cached by the CDN, subsequent clients are
served without contacting your servers at all.

Figure 1-5 Configuration showing functional partitioning of the application

Customers 1

Customers Customers

Customers Customers

DNS 2

Traf�c Volumes

Very heavy

Light, UDP

Data Center 3

DNS lookups for
www.sample.site.com
or
account.admin.sample.site.com

Functional partition A
www.sample.site.com

Functional partition B
account.admin.sample.site.com

More functional partitions
each having its own
dedicated server pool

01-ch01.indd 14 06/05/15 12:10 PM

 Chapter 1: Core Concepts 15

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

By integrating your web application with a CDN provider, you can significantly
reduce the amount of bandwidth your servers need. You will also need fewer
web servers to serve your web application’s static content. Finally, your clients
may benefit from better resource locality, as CDN providers are usually global
companies with data centers located all around the world. If your data center is
located in North America, clients connecting from Europe would experience
higher latencies. In such case, using CDN would also speed up page load times for
these customers, as CDN would serve static content from the closest data center.

Figure 1-6 shows a web application integrated with a CDN provider. Clients
first connect to the DNS server. Then, they request pages from your servers and
load additional resources, such as images, CSS, and videos, from your CDN
provider. As a result, your servers and networks have to deal with reduced traffic,
and since CDNs solve a specific problem, they can optimize the way they serve
the content cheaper than you could. I will explain CDN in more detail in Chapter 6.

Figure 1-6 Integration with a content delivery network provider

Customers 1

Customers Customers

Customers Customers

Content Delivery Network4

DNS 2

Traf�c Volumes

Very heavy

Light, UDP

Data Center 3

01-ch01.indd 15 06/05/15 12:10 PM

 16 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

The important thing to note here is that this is the first time I mentioned
scaling using a third-party service. We did not have to add more servers or learn
how to scale HTTP proxies. We simply used the third-party service and relied
on its ability to scale. Even though it may seem like “cheating in the scalability
game,” it is a powerful strategy, especially for startups in their early stages of
development, who cannot afford significant time or money investments.

Distributing the Traffic: Horizontal Scalability
All of the evolution stages discussed so far were rather simple modifications
to the single-server configuration. Horizontal scalability, on the other hand, is
much harder to achieve and in most cases it has to be considered before the
application is built. In some rare cases, it can be “added” later on by modifying
the architecture of the application, but it usually requires significant development
effort. I will describe different horizontal scalability techniques throughout this
book, but for now, let’s think of it as running each component on multiple servers
and being able to add more servers whenever necessary. Systems that are truly
horizontally scalable do not need strong servers—quite the opposite; they usually
run on lots and lots of cheap “commodity” servers rather than a few powerful
machines.

Horizontal scalability is accomplished by a number of methods to allow
increased capacity by adding more servers. Horizontal scalability is
considered the holy grail of scalability, as it overcomes the increasing
cost of capacity unit associated with scaling by buying ever-stronger
hardware. In addition, when scaling horizontally you can always add
more servers—you never reach a hard limit, as is the case with vertical
scalability.

Figure 1-7 shows a simplified comparison of costs related to horizontal and
vertical scalability. The dashed line represents costs of vertical scalability, and the
solid line represents horizontal scalability.

Horizontal scalability technologies often pay off at the later stage. Initially
they tend to cost more because they are more complex and require more work.
Sometimes they cost more because you need more servers for the most basic

01-ch01.indd 16 06/05/15 12:10 PM

 Chapter 1: Core Concepts 17

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

setup, and other times it is because you need more experienced engineers to build
and operate them. The important thing to note is that once you pass a certain
point of necessary capacity, horizontal scalability becomes a better strategy. Using
horizontal scalability, you avoid the high prices of top-tier hardware and you
also avoid hitting the vertical scalability ceiling (where there is no more powerful
hardware).

It is also worth noting that scaling horizontally using third-party services like
CDN is not only cost effective, but often pretty much transparent. The more
traffic you generate, the more you are charged by the provider, but the cost per
capacity unit remains constant. That means that doubling your request rate will
just cost you twice as much. It gets even better, as for some services, price per unit
decreases as you scale up. For example, Amazon CloudFront charges $0.12 per GB
for the first 10TB of transferred data, but then decreases the price to $0.08 per GB.

HINT
Cloud service providers are able to charge lower rates for higher-traffic clients because their
overheads of maintenance, integration, and customer care are lower per capacity unit when
dealing with high-traffic sites.

Figure 1-7 Comparison of vertical and horizontal scaling costs

Pr
ic

e
pe

r
ca

pa
ci

ty
 u

ni
t

Extra capacity needed

Initial costs associated
with horizontal scalability
tend to be higher.

Vertical scalability costs rise
sharply after a certain point.

Horizontal scalability
becomes much more
ef�cient after a certain
point.

01-ch01.indd 17 06/05/15 12:10 PM

 18 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Let’s quickly review the high-level infrastructure overview of the evolution so far.
Once we start deploying different parts of the system onto different servers and
adding some horizontal scalability, our high-level diagram may look something like
Figure 1-8.

The thing that distinguishes horizontally scalable systems from the previous
evolution stages is that each server role in our data center can be scaled by adding
more servers. That can usually be implemented in stages of partially horizontal
scalability, where some services scale horizontally and others do not. As I mentioned
before, achieving true horizontal scalability is usually difficult and expensive.
Therefore, systems should start by scaling horizontally in areas where it is the
easiest to achieve, like web servers and caches, and then tackle the more difficult
areas, like databases or other persistence stores.

At this stage of evolution, some applications would also use a round-robin DNS
service to distribute traffic among web servers. Round-robin DNS is not the only
way to distribute traffic among multiple web servers; we will consider different
alternatives in detail in Chapter 3.

Figure 1-8 Multiple servers dedicated to each role

Customers 1

Customers Customers

Customers
Components within your

data center scale
horizontally

Customers

Content Delivery Network4

DNS 2

Traf�c Volumes

Very heavy

Light, UDP

Data Center 3

01-ch01.indd 18 06/05/15 12:10 PM

 Chapter 1: Core Concepts 19

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Round-robin DNS is a DNS server feature allowing you to resolve a
single domain name to one of many IP addresses. The regular DNS
server takes a domain name, like ejsmont.org, and resolves it to a single
IP address, like 173.236.152.169. Thus, round-robin DNS allows you
to map the domain name to multiple IP addresses, each IP pointing to a
different machine. Then, each time a client asks for the name resolution,
DNS responds with one of the IP addresses. The goal is to direct traffic
from each client to one of the web servers—different clients may be
connected to different servers without realizing it. Once a client receives
an IP address, it will only communicate with the selected server.

Scalability for a Global Audience
The largest of websites reach the final evolution stage, which is scalability for a
global audience. Once you serve millions of users spread across the globe, you
will require more than a single data center. A single data center can host plenty
of servers, but it causes clients located on other continents to receive a degraded
user experience. Having more than one data center will also allow you to plan for
rare outage events (for example, caused by a storm, flood, or fire).

Scaling for a global audience requires a few more tricks and poses a few more
challenges. One of the additions to our configuration is the use of geoDNS
service.

GeoDNS is a DNS service that allows domain names to be resolved
to IP addresses based on the location of the customer. Regular DNS
servers receive a domain name, like yahoo.com, and resolve it to an IP
address, like 206.190.36.45. GeoDNS behaves the same way from the
client’s perspective. However, it may serve different IP addresses based
on the location of the client. A client connecting from Europe may get
a different IP address than the client connecting from Australia. As a
result, clients from both Europe and Australia could connect to the web
servers hosted closer to their location. In short, the goal is to direct the
customer to the closest data center to minimize network latency.

01-ch01.indd 19 06/05/15 12:10 PM

 20 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Another extension of the infrastructure is to host multiple edge-cache servers
located around the world to reduce the network latency even further. The use of
edge-cache servers depends on the nature of your application. Edge-cache servers
are most efficient when they act as simple reverse proxy servers caching entire
pages, but they can be extended to provide other services as well.

Edge cache is a HTTP cache server located near the customer, allowing
the customer to partially cache the HTTP traffic. Requests from the
customer’s browser go to the edge-cache server. The server can then
decide to serve the page from the cache, or it can decide to assemble
the missing pieces of the page by sending background requests to
your web servers. It can also decide that the page is uncacheable and
delegate fully to your web servers. Edge-cache servers can serve entire
pages or cache fragments of HTTP responses.

Figure 1-9 shows a high-level diagram with multiple data centers serving
requests from clients located in different parts of the world. In this scenario, users
located in Europe would resolve your domain name to an IP address of one of
your European edge servers. They would then be served results from the cache
or from one of your application servers. They would also load static files, such as
CSS or JavaScript files, using your CDN provider, and since most CDN providers
have data centers located in multiple countries, these files would be served from
the closest data center as well. In a similar way, users from North America would
be directed to American edge-cache servers and their static files would be served
from the American CDN data center. As your application grows even further,
you may want to divide your main data center into multiple data centers and
host each of them closer to your audience. By having your data stores and all
of your application components closer to your users, you save on latency and
network costs.

Now that we have discussed the wider application ecosystem and the
infrastructure at a very high level, let’s look at how a single data center might
support scalability.

01-ch01.indd 20 06/05/15 12:10 PM

 Chapter 1: Core Concepts 21

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Figure 1-9 Customers from different locations are served via local edge caches.

European Customers 1

Customers Customers

Customers Customers

Content Delivery Network5

geoDNS 24

Traf�c Volumes

Very heavy

Medium

Light, UDP

European Edge Cache 3

Main Data Center

American Customers

Customers Customers

Customers Customers

Content Delivery NetworkAmerican Edge Cache

01-ch01.indd 21 06/05/15 12:10 PM

 22 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Overview of a Data Center Infrastructure
Let’s now turn to the different technologies used in modern web applications. As
with the previous section, we’ll take a deeper dive into these topics throughout
the book, but I first want to lay out the overall communication flow and functions
of each technology type.

Figure 1-10 shows a high-level overview of the communication flow starting
from the user’s machine and continuing all the way throughout different layers
of the infrastructure. It is one of the most important diagrams in this book, as it
shows you all of the key components that you need to be familiar with to design
and implement scalable web applications. You can think of it as a reference
diagram, as we will come back to different parts of it in different chapters. In fact,
the structure of this book was designed to align closely to the structure of a data
center, with each area of responsibility being covered by different chapters of
the book.

Many of the components shown serve a specialized function and can be added
or removed independently. However, it is common to see all of the components
working together in large-scale applications. Let’s take a closer look at each
component.

The Front Line
The front line is the first part of our web stack. It is a set of components that
users’ devices interact with directly. Parts of the front line may reside inside of
our data center or outside of it, depending on the details of the configuration and
third-party services used. These components do not have any business logic, and
their main purpose is to increase the capacity and allow scalability.

Going from the top, clients’ requests go to the geoDNS server to resolve the
domain names. DNS decides which data center is the closest to the client and
responds with an IP address of a corresponding load balancer (2).

A load balancer is a software or hardware component that distributes
traffic coming to a single IP address over multiple servers, which are
hidden behind the load balancer. Load balancers are used to share the
load evenly among multiple servers and to allow dynamic addition and
removal of machines. Since clients can only see the load balancer, web
servers can be added at any time without service disruption.

01-ch01.indd 22 06/05/15 12:10 PM

 Chapter 1: Core Concepts 23

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Figure 1-10 High-level overview of the data center infrastructure

3

2

Traf�c Volumes

Very heavy

Heavy

Medium

Light, UDP

Light

User’s network

Load Balancer

Front Cache 1

Your Data Center

Front Cache N

Customers DNS/geoDNS

Content Delivery Network

Internet

4

10

1

Front App. Server 1

Cache Servers

Batch/Queue Workers

Message Queue Servers

Front App. Server M

7

5

8

11

6

9

Web Services Server 1

Search Servers Data Store Servers

Web Services Server K

01-ch01.indd 23 06/05/15 12:10 PM

 24 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Web traffic from the Internet is usually directed to a single IP address of a
strong hardware load balancer. It then gets distributed evenly over to front cache
servers (3) or directly over front-end web application servers (4). Front cache
servers are optional; they can be deployed in remote locations outside of the data
center or skipped altogether. In some cases it may be beneficial to have a layer
of front-end cache servers to reduce the amount of load put on the rest of the
infrastructure.

It is common to use third-party services as load balancers, CDN, and reverse
proxy servers; in such cases this layer may be hosted entirely by third-party
providers. We’ll take a closer look at the benefits and drawbacks of scaling them
using third parties in Chapter 3.

Web Application Layer
The second layer of our stack is the web application layer. It consists of web
application servers (4) responsible for generating the actual HTML of our web
application and handling clients’ HTTP requests. These machines would often
use a lightweight (PHP, Java, Ruby, Groovy, etc.) web framework with a minimal
amount of business logic, since the main responsibility of these servers is to
render the user interface. All the web application layer is supposed to do is handle
the user interactions and translate them to internal web services calls. The simpler
and “dumber” the web application layer, the better. By pushing most of your
business logic to web services, you allow more reuse and reduce the number of
changes needed, since the presentation layer is the one that changes most often.

Web application servers are usually easy to scale since they should be
completely stateless. If developed in a stateless manner, adding more capacity is
as simple as adding more servers to the load balancer pool. I will discuss the web
application layer together with the frontline layer in Chapter 3.

Web Services Layer
The third layer of our stack consists of web services (7). It is a critical layer, as
it contains most of our application logic. We keep front-end servers simple
and free of business logic since we want to decouple the presentation layer
from the business logic. By creating web services, we also make it easier to
create functional partitions. We can create web services specializing in certain
functionality and scale them independently. For example, in an e-commerce web
application, you could have a product catalog service and a user profile service,
each providing very different types of functionality and each having very different
scalability needs.

01-ch01.indd 24 06/05/15 12:10 PM

 Chapter 1: Core Concepts 25

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

The communication protocol used between front-end applications and web
services is usually Representational State Transfer (REST) or Simple Object
Access Protocol (SOAP) over HTTP. Depending on the implementation, web
services should be relatively simple to scale. As long as we keep them stateless,
scaling horizontally is as easy as adding more machines to the pool, as it is the
deeper data layers that are more challenging to scale.

In recent years, integration between web applications has become much more
popular, and it is a common practice to expose web services to third parties and
directly to customers. That is why web services are often deployed in parallel
to front-end application servers rather than hidden behind them, as shown in
Figure 1-10.

I will discuss the web services layer in detail in Chapter 4. For now, let’s think of
web services as the core of our application and a way to isolate functionality into
separate subsystems to allow independent development and scalability.

Additional Components
Since both front-end servers (4) and web services (7) should be stateless, web
applications often deploy additional components, such as object caches (5) and
message queues (6).

Object cache servers are used by both front-end application servers and web
services to reduce the load put on the data stores and speed up responses by storing
partially precomputed results. Cache servers will be covered in detail in Chapter 6.

Message queues are used to postpone some of the processing to a later stage
and to delegate work to queue worker machines (11). Messages are often sent
to message queues from both front-end applications and web service machines,
and they are processed by dedicated queue worker machines. Sometimes web
applications also have clusters of batch-processing servers or jobs running on
schedule (controlled by cron). These machines (11) are not involved in generating
responses to users’ requests; they are offline job-processing servers providing
features like asynchronous notifications, order fulfillment, and other high-latency
functions. Message queues and queue workers are covered further in Chapter 7.

Data Persistence Layer
Finally, we come to the data persistence layer (8) and (9). This is usually the most
difficult layer to scale horizontally, so we’ll spend a lot of time discussing different
scaling strategies and horizontal scalability options in that layer. This is also an
area of rapid development of new technologies labeled as big data and NoSQL,

01-ch01.indd 25 06/05/15 12:10 PM

 26 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

as increasing amounts of data need to be stored and processed, regardless of their
source and form.

The data layer has become increasingly more exciting in the past ten years, and
the days of a single monolithic SQL database are gone. As Martin Fowler says, it
is an era of polyglot persistence, where multiple data stores are used by the same
company to leverage their unique benefits and to allow better scalability. We’ll
look further at these technologies in Chapters 5 and 8.

In the last five years, search engines became popular due to their rich feature
set and existence of good open-source projects. I present them as a separate
type of component, as they have different characteristics than the rest of the
persistence stores, and I believe it is important to be familiar with them.

Data Center Infrastructure
By having so many different platforms in our infrastructure, we have increased
the complexity multiple times since our single-server setup. What we have
achieved is the ability to share the load among multiple servers. Each component
in Figure 1-10 has a certain function and should help to scale your application for
millions of users.

The layered structure of the components is deliberate and helps to reduce
the load on the slower components. You can see that traffic coming to the load
balancer is split equally over all front-end cache servers. Since some requests are
“cache hits,” traffic is reduced and only part of it reaches front-end servers (4).
Here, application-level cache (5) and message queues (6) help reduce the traffic
even further so that even fewer requests reach back-end web services (7). The
web service can use message queues and cache servers as well. Finally, only if
necessary, the web services layer contacts search engines and the main data store
to read/write the necessary information. By adding easily scalable layers on top of
the data layer, we can scale the overall system in a more cost-effective way.

It is very important to remember that it is not necessary to have all of these
components present in order to be able to scale. Instead, use as few technologies
as possible, because adding each new technology adds complexity and increases
maintenance costs. Having more components may be more exciting, but it makes
releases, maintenance, and recovery procedures much more difficult. If all your
application needs is a simple search functionality page, maybe having front-end
servers and a search engine cluster is all you need to scale. If you can scale each
layer by adding more servers and you get all of the business features working,
then why bother using all of the extra components? We’ll continue to look back
to Figure 1-10 as we cover the components in further detail.

01-ch01.indd 26 06/05/15 12:10 PM

 Chapter 1: Core Concepts 27

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Overview of the Application Architecture
So far, we’ve looked at the infrastructure and scalability evolution stages. Let’s
now take a high-level look at the application itself.

The application architecture should not revolve around a framework or any
particular technology. Architecture is not about Java, PHP, PostgreSQL, or
even database schema. Architecture should evolve around the business model.
There are some great books written on domain-driven design and software
architecture1–3 that can help you get familiar with best practices of software
design. To follow these best practices, we put business logic in the center of our
architecture. It is the business requirements that drive every other decision.
Without the right model and the right business logic, our databases, message
queues, and web frameworks are useless.

Moreover, it is irrelevant if the application is a social networking website, a
pharmaceutical service, or a gambling app—it will always have some business
needs and a domain model. By putting that model in the center of our
architecture, we make sure that other components surrounding it serve the
business, not the other way around. By placing technology first, we may get a
great Rails application, but it may not be a great pharmaceutical application.t1

A domain model is created to represent the core functionality of the
application in the words of business people, not technical people. The
domain model explains key terms, actors, and operations, without
caring about technical implementation. The domain model of an
automated teller machine (ATM) would mention things like cash,
account, debit, credit, authentication, security policies, etc. At the same
time, the domain model would be oblivious to hardware and software
implementation of the problem. The domain model is a tool to create our
mental picture of the business problems that our application is supposed
to solve.

Figure 1-11 shows a simplified representation of how application components
can be laid out. This already assumes that users use our system as a single
application, but internally, our application is broken down into multiple (highly
autonomous) web services.

01-ch01.indd 27 06/05/15 12:10 PM

 28 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Let’s discuss each area of the diagram presented on Figure 1-11 in more detail
in the following sections.

Front End
Similar to the way we discussed the infrastructure diagrams, let’s take it from the
top and look at Figure 1-11 from the point of the client’s request. Keep in mind
that the center of the architecture lives in the main business logic, but for the sake
of simplicity, let’s start with the front-end components.

Figure 1-11 High-level view of an application architecture

Front End

Components coupled to the MVC

Your System Boundary

Internal Web
Service Clients Templating

Tiny bits of
Business Logic

Message Queue
Cache

Web Services

Third-Party Services

Message Queue

Main Data Store Search Engine

Application Cache
Main Business Logic

Common Components

PayPal, Brightcove, Google, LinkedIn, Facebook,
CDN, VM Provisioning, SalesForce, eBay, Amazon...

Message Queue
Cache

3rd-Party Web
Service Clients

Data Access
Components

Search
Components

01-ch01.indd 28 06/05/15 12:10 PM

 Chapter 1: Core Concepts 29

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

The front end should have a single responsibility of becoming the user
interface. The user can be interacting with the application via web pages, mobile
applications, or web service calls. No matter what the actual delivery mechanism
is, the front-end application should be the layer translating between the public
interface and internal service calls. The front end should be considered as “skin,”
or a plugin of the application, and as something used to present the functionality
of the system to customers. It should not be considered a heart or the center of
the system. In general, the front end should stay as “dumb” as possible.

By keeping the front end “dumb,” we will be able to reuse more of the business
logic. Since the logic will live only in the web services layer, we avoid the risk of
coupling it with our presentation logic. We will also be able to scale front-end
servers independently, as they will not need to perform complex processing or
share much state, but may be exposed to high concurrency challenges.

Front-end code will be closely coupled to templates and the web framework of
our choice (for example, Spring, Rails, Symfony). It will be constrained by the user
interface, user experience requirements, and the web technologies used. Front-
end applications will have to be developed in a way that will allow communication
over HTTP, including AJAX and web sessions. By hiding that within the front-end
layer, we can keep our services layer simpler and focused solely on the business
logic, not on the presentation and web-specific technologies.

Templating, web flows, and AJAX are all specific problems. Keeping them
separated from your main business logic allows for fast and independent changes.
Having the front end developed as a separate application within our system gives
us another advantage: we can use a different technology stack to develop it. It is
not unreasonable to use one technology to develop web services and a different
one to develop the front-end application. As an example, you could develop the
front end using Groovy, PHP, or Ruby, and web services could be developed in
pure Java.

HINT
You can think of a front-end application as a plugin that can be removed, rewritten in a different
programming language, and plugged back in. You should also be able to remove the “HTTP”-
based front-end and plug in a “mobile application” front end or a “command line” front end. This
attitude allows you to keep more options open and to make sure you decouple the front end from
the core of the business logic.

The front end should not be aware of any databases or third-party services.
Projects that allow business logic in the front-end code suffer from low code reuse
and high complexity.

01-ch01.indd 29 06/05/15 12:10 PM

www.allitebooks.com

http://www.allitebooks.org

 30 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Finally, allow front-end components to send events to message queues and
use cache back ends, as they are both important tools in increasing the speed
and scaling out. Whenever we can cache an entire HTML page or an HTML
fragment, we save much more processing time than caching just the database
query that was used to render this HTML.

Web Services
“SOAs are like snowflakes—no two are alike.” –David Linthicum

Web services are where most of the processing has to happen, and also the place
where most of the business logic should live. Figure 1-11 shows a stack of web services
in a central part of the application architecture. This approach is often called a service-
oriented architecture (SOA). Unfortunately, SOA is a fairly overloaded term, so you
may get a different definition, depending on who you speak with about it.

Service-oriented architecture (SOA) is architecture centered on loosely
coupled and highly autonomous services focused on solving business
needs. In SOA, it is preferred that all the services have clearly defined
contracts and use the same communication protocols. I don’t consider
SOAP, REST, JSON, or XML in the definition of SOA, as they are
implementation details. It does not matter what technology you use or
what protocols are involved as long as your services are loosely coupled
and specialized in solving a narrow set of business needs. I will explain
coupling and best design principles in the next chapter.

HINT
Watch out for similar acronyms: SOA (service-oriented architecture) and SOAP (which originally
was an acronym of Simple Object Access Protocol). Although these two can be seen together, SOA
is an architecture style and SOAP is a set of technologies used to define, discover, and use web
services. You can have SOA without SOAP, and you can also use SOAP in other architecture styles.

I encourage you to learn more about SOA by reading some of the recommended
texts,31,33,20 but remember that SOA is not an answer to all problems and other
architecture styles exist, including layered architecture, hexagonal architecture,
and event-driven architecture. You may see these applied in different systems.

01-ch01.indd 30 06/05/15 12:10 PM

 Chapter 1: Core Concepts 31

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

A multilayer architecture is a way to divide functionality into a set
of layers. Components in the lower layers expose an application
programming interface (API) that can be consumed by clients residing in
the layers above, but you can never allow lower layers to depend on the
functionality provided by the upper layers. A good example of layered
architecture is an operating system and its components, as shown in
Figure 1-12. Here, you have hardware, device drivers, operating system
kernel, operating system libraries, third-party libraries, and third-party
applications. Each layer is consuming services provided by the layers
below, but never vice versa. Another good example is the TCP/IP
programming stack, where each layer adds functionality and depends
on the contract provided by the layer below.

Layers enforce structure and reduce coupling as components in the lower
layers become simpler and less coupled with the rest of the system. It also allows
us to replace components in lower layers as long as they fulfill the same API. An
important side effect of layered architecture is increased stability as you go deeper

Figure 1-12 Example of a multilayered architecture

Richer features, more unstable API Your application code

Additional Libraries:
Spring, Log4J,

Rails, Symfony, SDL, etc.

Common System Libraries:
stdlibc, libssl, directx, etc.

Operating System:
Memory manager, File system,

Process scheduler, etc.

Device Drivers:
Network adapter driver,
Video card driver, etc.

Direction of dependencies

Simpler features, more stable API

01-ch01.indd 31 06/05/15 12:10 PM

 32 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

into the layers. You can change the API of upper layers freely since few things
depend on them. On the other hand, changing the API of lower layers may be
expensive because there may be a lot of code that depends on the existing API.

Hexagonal architecture assumes that the business logic is in the center
of the architecture and all the interactions with the data stores, clients,
and other systems are equal. There is a contract between the business
logic and every nonbusiness logic component, but there is no distinction
between the layers above and below.

In hexagonal architecture, users interacting with the application are no
different from the database system that the application interacts with. They both
reside outside of the application business logic and both deserve a strict contract.
By defining these boundaries, you can then replace the person with an automated
test driver or replace the database with a different storage engine without
affecting the core of the system.

Event-driven architecture (EDA) is, simply put, a different way of thinking
about actions. Event-driven architecture, as the name implies, is about
reacting to events that have already happened. Traditional architecture
is about responding to requests and requesting work to be done. In
a traditional programming model we think of ourselves as a person
requesting something to be done, for example, createUserAccount(). We
typically expect this operation to be performed while we are waiting
for a result, and once we get the result, we continue our processing. In
the event-driven model, we don’t wait for things to be done. Whenever
we have to interact with other components, we announce things
that have already happened and proceed with our own processing.
Analogous to the previous example, we could announce an event
UserAccountFormSubmitted. This mental shift leads to many interesting
implications. Figure 1-13 shows the difference in interaction models.
We’ll look more closely at EDA in more detail in Chapter 7.

01-ch01.indd 32 06/05/15 12:10 PM

 Chapter 1: Core Concepts 33

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

No matter the actual architecture style of the system, all architectures will
provide a benefit from being divided into smaller independent functional
units. The purpose is to build higher abstractions that hide complexity, limit
dependencies, allow you to scale each part independently, and make parallel
development of each part practical.

HINT
Think of the web services layer as a set of highly autonomous applications, where each web service
becomes an application itself. Web services may depend on each other, but the less they depend
on each other, the better. A higher level of abstraction provided by services allows you to see
the entire system and still understand it. Each service hides the details of its implementation and
presents a simplified, high-level API.

Ideally, each web service would be fully independent. Figure 1-14 shows a
hypothetical portfolio of web services belonging to an e-commerce platform. In
this example, the text analysis service could be an independent service able to detect
the meaning of articles based solely on their content. Such a service would not require
user data or assistance from any other services; it would be fully independent.

Figure 1-13 Comparison of traditional and event-driven interactions

Client/Client Code

request: createUserAccount()

response

Other Component or
Other Application or

Other System

Traditional Programming Model

Client/Client Code

announce: UserAccountFromSubmitted Other Component or
Other Application or

Other System

Event-Driven Programming Model

01-ch01.indd 33 06/05/15 12:10 PM

 34 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

Unfortunately, it is usually impossible to isolate all services like this. Most
times, there will be some dependencies between different services. For example,
a customer segmentation service could be a service based on user activity, and
social network data produces a customer profile. To assign users to different
customer segments, we may need to integrate this service with main user data,
activity history, and third-party services. The customer segmentation service
would most likely be coupled to services other than the text analysis service.

No matter what the implementation of your web services, don’t forget their
main purpose: to solve business needs.

Supporting Technologies
Figure 1-11 shows web services surrounded by a few smaller boxes labeled message
queue, application cache, main data store, and search engine. These are isolated
since they are usually implemented in different technologies, and most often they
are third-party software products configured to work with our system. Because
they are third-party technologies, they can be treated as black boxes in the context
of architecture.

Notice that the database (main data store) is simply a little box in the corner
of the diagram. This is because the data store is just a piece of technology; it is an
implementation detail. From the application architecture point of view, the data
store is something that lets us write and read data. We do not care how many
servers it needs; how it deals with scalability, replication, or fault tolerance; or
even how it persists data.

Figure 1-14 Conceptual view of services in the web services layer

Web Services

Customer
Segmentation

Service

Direct Email
Marketing Service

Text Analysis
Service

Recommendation
Service

Fraud Detection
Service

Recommendation
Service

Product Catalogue
Service

Payment Processing
Service

01-ch01.indd 34 06/05/15 12:10 PM

 Chapter 1: Core Concepts 35

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 1

HINT
Think of the data store as you think of caches, search engines, and message queues—as plug-
and-play extensions. If you decide to switch to a different persistence store or to exchange your
caching back ends, you should be able to do it by replacing the connectivity components, leaving
the overall architecture intact.

By abstracting the data store, you also free your mind from using MySQL
or another database engine. If the application logic has different requirements,
consider a NoSQL data store or an in-memory solution. Remember, the data store
is not the central piece of the architecture, and it should not dictate the way your
system evolves.

Finally, I decided to include third-party services in the architecture diagram
to highlight their importance. Nowadays computer systems do not operate in a
vacuum; large systems often have integrations with literally dozens of external
systems and often critically depend on their functionality. Third-party services are
outside of our control, so they are put outside of our system boundary. Since we
do not have control over them, we cannot expect them to function well, not have
bugs, or scale as fast as we would wish. Isolating third-party services by providing
a layer of indirection is a good way to minimize the risk and our dependency on
their availability.

Summary
Architecture is the perspective of the software designer; infrastructure is the
perspective of the system engineer. Each perspective shows a different view of the
same problem—building scalable software. After reading this chapter, you should
be able to draw a high-level picture of how the architecture and the infrastructure
come together to support the scalability of a web application. This high-level view
will be important as we begin to drill into the details of each component.

As you can see, scalability is not an easy topic. It touches on many aspects
of software design and architecture, and it requires broad knowledge of many
different technologies. Scalability can only be tamed once you understand how all
the pieces come together, what their roles are, and what their strong points and
weak points are. To design scalable web applications is to understand the impact
of the architecture, infrastructure, technologies, algorithms, and true business
needs. Let’s now move forward to principles of good software design, as this is a
prerequisite to building scalable web applications.

01-ch01.indd 35 06/05/15 12:10 PM

This page intentionally left blank

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

37

CHAPTER

2
Principles of Good

Software Design

02-ch02.indd 37 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 38 Web Scalability for Startup Engineers

Many of the scalability issues encountered in real-world projects can be
boiled down to violations of core design principles. Software design
principles are more abstract and more general than scalability itself,

but they lay down a solid foundation for building scalable software.
Some of the principles presented in this chapter are related to object-oriented

design and others related directly to scalability, but most of them are more
abstract and universal, allowing you to apply them in different ways. A skilled
software craftsperson should understand both good and bad software design
practices, starting with what drives the reasoning behind design decisions. Let’s
get started with understanding some of those decisions now.

Simplicity
“Make things as simple as possible, but no simpler.” –Albert Einstein

The most important principle is keeping things simple. Simplicity should
be your northern star, your compass, and your long-term commitment.
Keeping software simple is difficult because it is inherently relative. There is no
standardized measurement of simplicity, so when you judge what is simpler, you
need to first ask yourself for whom and when. For example, is it simpler for you or
for your clients? Is it simpler for you to do now or maintain in the future?

Simplicity is not about using shortcuts and creating the quickest solution
to the problem at hand. It is about what would be the easiest way for another
software engineer to use your solution in the future. It is also about being able
to comprehend the system as it grows larger and more complex. The lessons
of simplicity often come from experience with different applications, using
different frameworks and languages. Revisiting code you have written, identifying
complexity, and looking for solutions to simplify is the first step to learn from
your own mistakes. Over time you develop sensitivity and an ability to quickly
judge which solution is simpler in the long run. If you have an opportunity to
find a mentor or work closely with people who value simplicity, you will make
much faster progress in this area. There are four basic steps to start promoting
simplicity within your products. Let’s take a look at each in more detail.

Hide Complexity and Build Abstractions
Hiding complexity and building abstractions is one of the best ways to promote
simplicity. As your system grows, you will not be able to build a mental picture of
the entire system because it will have too many details. Human working memory

02-ch02.indd 38 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 39

has limited space—either you see the whole system without much detail or you
see all the details of a very narrow part of the system. To make software simple is
to allow this mental zoom in and zoom out. As your system grows, it cannot and
will not all be simple, so you have to strive for local simplicity.

Local simplicity is achieved by ensuring that you can look at any single
class, module, or application and quickly understand what its purpose
is and how it works. When you look at a class, you should be able
to quickly understand how it works without knowing all the details of
how other remote parts of the system work. You should only have to
comprehend the class at hand to fully understand its behavior. When
you look at a module, you should be able to disregard the methods
and think of the module as a set of classes. Zooming out even more,
when you look at the application, you should be able to identify key
modules and their higher-level functions, but without the need to know
the classes’ details. Finally, when you look at the entire system, you
should be able to see only your top-level applications and identify their
responsibilities without having to care about how they fulfill them.

Let’s consider an abstract example as shown in Figure 2-1, where circles
represent classes/interfaces. When you work on a class or an interface, you look

Figure 2-1 Levels of abstraction

Service 1

Class

Methods

Module A Module B

02-ch02.indd 39 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 40 Web Scalability for Startup Engineers

at the circle and its contents. You may also need to look at its neighbors since
each edge represents dependencies on another class or interface. In this way,
complexity is not about how many nodes you have in your network, but how
many edges you have between your nodes, with nodes being classes and edges
being dependencies on one another. A good general rule is that no class should
depend on more than a few other interfaces or classes.

To build local simplicity, you also need to separate functionality into modules,
so once you look at the higher level of abstraction, you need not be worried about
how modules perform their duties, but how they interact. If you look at Figure
2-1 on the higher level, you can disregard details of each module and focus on its
interactions. In this case, the interactions between Module A and Module B are
reduced to a single public interface that is visible to both modules.

In large and complex systems you will need to add another layer of abstraction
where you create separate services. Each service becomes responsible for a subset of
functionality hiding its complexity and exposing an even higher level of abstraction.

Avoid Overengineering
The second practice promoting simplicity is to deliberately avoid the urge to
overengineer. Engineers love challenges and puzzles, and they love the challenge
of building complex software. When you try to predict every possible use case
and every edge case, you lose focus on the most common use cases. In such a
situation you can easily follow the urge of solving every problem imaginable and
end up overengineering, which is building a solution that is much more complex
than is really necessary.

Good design allows you to add more details and features later on, but does not
require you to build a massive solution up front. Beginning with a reasonable level
of abstraction and iterating over it gives better results than trying to predict the
future and build everything that might be needed later on.

The Java community used to be notorious for their overengineering of the
simplest things. Fortunately in recent years, frameworks like Spring and dynamic
languages built on top of the Java Virtual Machine (e.g., Groovy) show the right
vision. Engineers have to care about simplicity and the most common scenarios,
not building imaginary systems that no one can ever use or understand.

HINT
If you like to solve puzzles, ask yourself this question each time you design a piece of software:
“Can this be any simpler and still allow flexibility in the future?” Building software that is simple to
understand and proves to be extensible can give a great deal of satisfaction.

02-ch02.indd 40 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 41

Overengineering usually happens when people try to do the right thing, but
choose the wrong perspective or assume too much about future needs. I encourage
you to ask yourself “What tradeoffs am I making here?” or “Will I really need this?”
and work closely with the business stakeholders to better understand the biggest
risks and unknowns. Otherwise, you may spend a lot of time following dogmas
and building solutions that no one will ever need. Most of the principles covered
in this chapter come with some cost, and it is your responsibility to define the line
between the right amount of complexity and overengineering. It is a difficult role
and there is almost no black and white—it is a game of tradeoffs played entirely in
shades of gray.

Try Test-Driven Development
Adopting a test-driven development (TDD) methodology will also promote
simplicity. You do not have to follow it all the time—practicing TDD for just a few
months should be long enough to give you a new perspective.

Test-driven development is a set of practices where engineers write tests
first and then implement the actual functionality. It is a radical approach,
but worth experiencing. The main benefits are that there is no code
without unit tests and there is no “spare” code. Since developers write
tests first, they would not add unnecessary functionality, as it would
require them to write tests for it as well. In addition, tests can be used as
a type of documentation, as they show you how the code was meant to
be used and what the expected behavior was.

As a side effect of experiencing the test-first methodology, engineers go
through an important mental shift. It forces them to assume the client’s point
of view first, which helps them to create much cleaner and simpler interfaces.
Since you have to write your test first, you have to imagine how would you use
the component you are about to build. To write tests, you assume the viewpoint
of the client code using your component, rather than focusing on the internal
implementation of it. This slight difference in approach results in greatly improved
code design and application programming interface (API) simplicity.

02-ch02.indd 41 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 42 Web Scalability for Startup Engineers

HINT
When you design code, whether using TDD or not, think about it from the perspective of your
client. Put yourself in the shoes of a new developer who joined your team and started using your
interface. What methods would they want to call, what parameters would they want to pass, and
what response would they expect to be returned? When you think about it from this perspective,
you ensure that clients can interact easily with your code.

Learn from Models of Simplicity in Software Design
Simplicity can sometimes go unnoticed or be misinterpreted as a lack of
complexity. When things fall into place naturally, when there is no difficulty
in adapting the system or understanding it, you have probably witnessed well-
crafted simplicity. It is a great experience to realize that a system you are working
on is well designed. Whenever you find this quality, analyze it and look for
patterns. Grails, Hadoop, and the Google Maps API are a few models of simplicity
and great places for further study. Try analyzing these frameworks:

 ▶ Grails Grails is a web framework for the Groovy language modeled on
Rails (a Ruby web framework). Grails is a great example of how simplicity
can become transparent. As you study the framework and begin using it, you
realize that everything has been taken care of. You see how things work as
expected and how extending functionality seems effortless. You also realize
that you cannot imagine it being much simpler. Grails is a masterpiece of
making a developer’s life easy. Read Grails in Action22 and Spring Recipes14 to
learn more.

 ▶ Hadoop Get familiar with the MapReduce paradigm and the Hadoop
platform. Hadoop is a great piece of open-source technology helping to
process petabytes of data. It is a large and very complex platform, but it
hides most of its complexity from developers. All that developers have to
learn is an incredibly simple programming API. When you get to know
Hadoop better, you realize how many difficult problems it solves and how
simple it makes it for developers to process almost infinite amounts of data.
To get a basic understanding of MapReduce and Hadoop, I recommend
reading the original MapReduce white paperw1 and Hadoop in Action.23

 ▶ Google Maps API Explore the Google Maps API. There are few APIs that
I admire as much as Google Maps. Over the years the API has changed, but
it is still a great example of a flexible API that solves complex problems in

02-ch02.indd 42 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 43

extremely simple ways. If all you need is a map with a single marker, you
can get it done in an hour, including the time for creating API keys. As you
dig deeper you find more and more amazing features, like overlays, user
interface (UI) customizations, and map styles, all fitting perfectly into place.

As you read through this chapter, you will see more design principles promoting
simplicity. Simplicity is the underlying value that helps you scale your systems.
Without simplicity, engineers will not be able to comprehend the code, and without
understanding your software, you cannot sustain growth. Remember, especially
at scale, it is always better to design something that is simple and works than
something sophisticated and broken.

Loose Coupling
The second most important design principle is to keep coupling between parts of
your system as low as necessary.

Coupling is a measure of how much two components know about
and depend on one another. The higher the coupling, the stronger
the dependency. Loose coupling refers to a situation where different
components know as little as necessary about each other, whereas no
coupling between components means that they are completely unaware
of each other’s existence.

Keeping coupling low in your system is important for the health of the system
and ability to scale, as well as your team morale. Let’s go through some of the
effects of low and high coupling:

 ▶ High coupling means that changing a single piece of code requires you to
inspect in detail multiple parts of the system. The higher the overall coupling,
the more unexpected the dependencies and higher chance of introducing
bugs. Suppose you introduce a change to the user authentication process and
you realize that you need to refactor five different modules because they all
depend on the internal implementation of the authentication process. Sound
familiar? Low coupling would allow you to introduce these changes without
the risk of breaking other parts of the system.

02-ch02.indd 43 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 44 Web Scalability for Startup Engineers

 ▶ Low coupling promotes keeping complexity localized. By having parts of
your system decoupled, multiple engineers can work on them independently.
As a result, you will be able to scale your company by hiring more engineers,
since no one has to know the entire system in full detail to make “local” changes.

 ▶ Decoupling on a higher level can mean having multiple applications, with each
one focused on a narrow functionality. You can then scale each application
separately depending on its needs. Some applications need more central
processing units (CPU), whereas others need input/output (I/O) throughput
or memory. By decoupling parts of your system, you can provide them with
more adequate hardware and better scalability.

Promoting Loose Coupling
The single most important practice promoting loose coupling is to carefully manage
your dependencies. This general guideline applies to dependencies between classes,
modules, and applications.

Figure 2-2 shows how classes, modules, and applications are laid out within
a system. A system is the whole—it contains everything: all of the applications
you develop and all the software you use in your environments. Applications are
the highest level of abstraction within the system, and they serve highest-level
functions. You might use an application for accounting, asset management, or file
storage.

Within an application you have one or more modules that implement finer,
more granular features. Since applications are often developed and deployed
by different teams, modules (like credit card processing, Portable Document
File [PDF] rendering, or File Transfer Protocol [FTP] interfacing) should be
independent enough for multiple teams to work on them in parallel. If you do not
feel confident in another team taking ownership of a certain module, it is likely
too tightly coupled with the rest of the application.

Finally, your modules consist of classes, which are the smallest units of
abstraction. A class should have a single purpose and no more than a few screens
of code. I will talk more about single responsibility later in this chapter.

In object-oriented languages like Java, C#, or PHP you can promote low
coupling by correct use of public, protected, and private keywords. You want to
declare as many methods as private/protected as possible. The reason for this
approach is that the more methods you make private, the more logic remains
hidden from the outside world. Hiding details is a great way to reduce coupling
and promote simplicity. The less access other classes have to your class, the less
aware they are of how the class does its job. Private methods can be refactored

02-ch02.indd 44 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 45

and modified easily, as you know that they can only be called by the same class.
This way, the complexity is localized and you do not have to search far to find out
what could potentially break. Exposing many public methods, on the other hand,
increases a chance of external code using them. Once a method is public, you
cannot assume that no one is using it anymore and you have to search carefully
throughout the application.

HINT
When writing code, be stingy. Share only the absolute minimum of information and functionality
that satisfies the requirements. Sharing too much too early increases coupling and makes changes
more difficult in the future. This applies to every level of abstraction, whether class, module, or
application.

To reduce coupling on the higher levels of abstraction, you want to reduce the
contact surface area between parts of your system. Loose coupling should let you
replace or refactor each element of the system without major work on the rest of
the system. Finding the balance between decoupling and overengineering is a fine
art, and engineers often disagree on the necessary level of abstraction. You can use
diagrams to help you make these decisions (tradeoffs) more easily. When you draw
a diagram of your application, the contact surface area is determined by the number
of dependencies that cross boundaries of two elements of your diagram. Figure 2-3
shows two examples: a highly coupled application and a loosely coupled one.

Figure 2-2 Parts of the system

Your System

Application 1

Classes ClassesClasses

Module A Module B

Application 2

Module C

02-ch02.indd 45 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 46 Web Scalability for Startup Engineers

As you can see in Figure 2-3, a highly coupled application can make it difficult
to modify or refactor its parts without affecting remaining modules. In addition,
modules know about each other’s structure and access their parts directly. The
second example shows modules that have more privacy. To reduce the contact
surface area, public functionality of module B was isolated to a small subset and
explicitly made public. Another important thing to notice is that the second
application does not have circular dependency between modules. Module A
can be removed or refactored without affecting module B, as module B does not
depend on module A at all.

Figure 2-3 Comparison of high and low coupling

Application with highly coupled modules

Classes/Components

Module A

Classes/Components

Module B

Application with loosely coupled modules

Classes/Components

Module A

Classes/Components

Module B

02-ch02.indd 46 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 47

Avoiding Unnecessary Coupling
On the other side of the spectrum, there are practices that increase coupling. A
great example of unnecessary coupling is the practice of exposing all the private
properties using public getters and setters. It is a trend that originated many
years ago around Java Beans. The idea of providing getters and setters came from
the need to build generic code manipulation tools and integrated development
environments (IDEs). Unfortunately, this practice was completely misunderstood
by the wider community. Something that was meant to allow IDE integration
became a bad habit replicated across other platforms and languages.

When you work with object-oriented languages like Java or PHP, creating a
new class should not begin by adding public getters and setters for all of your class
members. This breaks encapsulation and invites coupling. It is a much better approach
to start with private methods and make them protected or public only when really
necessary. Different languages give you different ways of achieving the same goals—
the point to remember is to hide as much as you can and expose as little as possible.

Another common example of unnecessary coupling is when clients of a module
or class need to invoke methods in a particular order for the work to be done
correctly. Sometimes there are valid reasons for it, but more often it is caused by
bad API design, such as the existence of initialization functions. Clients of your
class/module should not have to know how you expect them to use your code.
They should be able to use the public interface in any way they want. If you force
your clients to know how the API is supposed to be used, you are increasing the
coupling, because now not only are the method signatures part of the contact
surface area, but also the order in which they should be used.

Finally, allowing circular dependencies between layers of your application,
modules, or classes is a bad coupling practice. It is quite easy to notice and relatively
easy to avoid once you are aware of the danger of circular dependencies. Usually,
drawing a diagram of your system is enough to expose circular dependencies, which
is a key reason I recommend using diagrams in your design process. A diagram
of a well-designed module should look more like a tree (directed acyclic graph)
rather than a social network graph.

Models of Loose Coupling
Understanding loose coupling takes a lot of practice. Fortunately, as with simplicity,
you can gain a lot of experience by reading code and analyzing systems built by
other people.

A good example of loose coupling is the design of Unix command-line programs
and their use of pipes. Whenever a process is created in a Unix system, it automatically

02-ch02.indd 47 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 48 Web Scalability for Startup Engineers

gets three open files that it can read from and/or write to (called standard output,
standard input, and standard error). The files are not necessarily actual files; they
can be virtual file handlers pointing to a terminal, a network socket, a file on a
hard drive, or a pipe connecting to another process. The Unix system exposes a
very simple API to read from and write to files. All you get is just a few simple
functions. The operating system hides from the program the real nature of the file
handler. Whether it is a real file or a network socket, the program can read and
write to it in the same way. That allows Unix command-line programs like grep,
sed, awk, and sort to perform a specific function and be connected using pipes to
perform much more complex tasks. I personally believe that Unix file handling is
a genius solution and a great example of a “framework” promoting loose coupling
between programs.

Another good example of loose coupling is Simple Logging Facade for Java
(SLF4J). I strongly encourage you to have a look at its structure and compare
it to Log4J and Java Logging API. SLF4J acts as a layer of indirection, isolating
complexity of implementation from the users of the logging interface. It also
exposes a much simpler and cleaner API that can be understood within minutes.

Loose coupling is one of the most fundamental principles of building flexible
software. I highly encourage you to prioritize creating loosely coupled modules.
I also encourage reading some of the books discussing coupling from different
perspectives.1,2,5,10,12,14,22,27,31

Don’t Repeat Yourself (DRY)
“I think one of the most valuable rules is avoid duplication. Once and only once, is
the Extreme Programming phrase.” –Martin Fowler

Repeating yourself implies that you are undertaking the same activity multiple
times. There are many areas in your software engineering life where this can be
applied, from the code you write in your applications, to repetitive testing before
each code release, to your company operations as a whole.

HINT
If you are doing the same thing over and over again, chances are that you are wasting your life
away. Instead of doing the same thing multiple times, you could be doing something cool like
building new features or thinking of better solutions for your customers’ needs. Try to agree
with your team and your boss on some basic rules to avoid repetitiveness—for example, that
duplicated code fails code review and every new class needs to come with automated tests.

02-ch02.indd 48 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 49

There are a number of reasons developers repeatedly waste time:

 ▶ Following an inefficient process This can occur in the release cycle,
the way new features are designed, sign-offs, or meetings and it is where
continuous improvement can bring you great benefits. Use feedback,
introduce incremental change, and repeat. It is common for teams to be
aware of wasted time but still fail to do anything about it. Whenever you
hear, “This is just how we do it” or “We have always done it this way,” it is
most likely an inefficient process and an opportunity for change.

 ▶ Lack of automation You waste time deploying manually, compiling,
testing, building, configuring development machines, provisioning servers,
and documenting APIs. At first it feels like a simple task, but with time it
gets more and more complex and time consuming. Before you know it, your
entire day is spent deploying code and testing releases, with virtually no time
devoted to building new features. The burden of increased manual work
is very easily missed, as it builds up in tiny increments. Try to automate
your builds and deployments from day one, as they will only get more
complicated as you go along.

 ▶ Not invented here, also known as reinventing the wheel This is
often a problem arising from writing code before considering the reuse of
existing code. It is a pattern of behavior especially common among younger
engineers, who enjoy implementing things that are easily available (in-
house or in open-source world). Good examples are implementing hashing
functions, sorting, b-trees, Model View Controller (MVC) frameworks,
or database abstraction layers. Even though you are not literally repeating
yourself, you are still wasting time because you could use tools and libraries
that others have built before you. Any time I am about to write a generic
library I search online first and usually there are a few good open-source
alternatives available.

 ▶ Copy/paste programming Imagine that you have existing code that
does a similar thing to what you are about to develop. To save some time,
you copy and paste a large chunk of code and then modify it just a little bit.
Now you have two copies of similar code to maintain and apply changes to.
After some time, you realize that every change you make has to be applied
in multiple parts of the system and that bugs often recur as fixes are not
applied to all copies of the affected code. Try to get your team to commit
to some rules, such as “we never copy and paste code.” That should give
everyone authority to point out duplication during code reviews and create
some positive peer pressure.

02-ch02.indd 49 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 50 Web Scalability for Startup Engineers

 ▶ “I won’t need it again so let’s just hack it quickly” solutions You will
sometimes approach a problem that seems isolated in nature. You think, “I
will never need this code again; I’ll just hack it.” In time, the problem occurs
again and you have to work with the code that was hacked together as a one-
off script. The problem now is that the code is not documented, unit tested,
or properly designed. Even worse, other engineers can come along and copy/
paste the hacked-together solution as a base for their own one-off scripts.

Copy and Paste Programming
Copy and paste programming is such a common problem that I believe it needs
a few more words. Applications face this issue because developers usually do
not realize that the more code you write, the more expensive it becomes to
support and maintain the application. Copying and pasting results in more code
within your application. More code results in higher maintenance costs—an
exponentially growing technical backlog. Changes to applications with code
duplication require modifications to all copies, tracking differences between
copies, and regression testing all of the copy-pasted code. Since complexity rises
exponentially with the number of lines of code, copy and pasting is actually an
expensive strategy. In fact, copy-paste programming is such a serious problem
that people spend their careers researching ways to deal with it. White papersw2–w5
published by the National Aeronautics and Space Administration (NASA) show
that 10 percent to 25 percent of large systems’ codebase is a result of copy-paste
programming.

Dealing with code duplication can be frustrating, but there is nothing that
patient refactoring can’t fix. A good first step is to search through the codebase
and document every occurrence of the duplicated functionality. Once you
have done this, you should have a better understanding of what components
are affected and how to refactor them. Think about creating abstract classes or
extracting repetitive pieces of code into separate, more generic components. Both
composition and inheritance are your friends in battling repetitive code.

Another good way to deal with copy-paste programming is the use of design
patterns and shared libraries. A design pattern is an abstract way of solving a
common problem. Design patterns are solutions on a software design level.
They can be applied to different systems and different subject matters. They are
concerned with structuring object-oriented code, dependencies, and interactions,
not with particular business problems. A design pattern could suggest how to
structure objects in a module, but it would not dictate what algorithms to use or
how business features should work. Design patterns are out of the scope of this

02-ch02.indd 50 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 51

book, but you can learn more through a number of books1,7,10,36,18 to get more
familiar with most common patterns.

You can also employ web services to combat duplication on higher levels of
abstraction. Instead of building the same functionality into each application you
develop, it is often a good idea to create a service and reuse it across the company.
I will talk more about benefits of web services in Chapter 4.

HINT
Prevent future repetition by making the most common use cases the easiest. For example, if your
library provides 20 functions, only 5 of which will be used 80 percent of the time, keep these 5
operations as easy to use as possible. Things that are easy to use tend to be reused. If using your
library is the easiest way to get things done, everyone will use your library. If using your library is
difficult, you will end up with duplication or hacks.

Coding to Contract
Coding to contract, or coding to interface, is another great design principle.
Coding to contract is primarily about decoupling clients from providers. By
creating explicit contracts, you extract the things that clients are allowed to see
and depend upon. Decoupling parts of your system and isolating changes is a key
benefit discussed earlier in the chapter.

A contract is a set of rules that the provider of the functionality agrees to
fulfill. It defines a set of things that clients of the code may assume and
depend upon. It dictates how a piece of software can be used and what
functionality is available, but does not require clients to know how this
functionality is implemented.

The term “contract” means different things in different contexts. When I talk
about methods in object-oriented programming, the contract is the signature of
the method. It defines what the expected parameters are and what the expected
result is. A contract does not specify how the result is produced, as this is an
implementation detail that you should not worry about when you look at the
contract. When I talk about classes, a contract is the public interface of the class.

02-ch02.indd 51 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 52 Web Scalability for Startup Engineers

It consists of all the accessible methods and their signatures. Going further up
the abstraction layers, the contract of a module includes all the publicly available
classes/interfaces and their public method signatures. As you can see, the higher
the level of abstraction, the more complex and broader a contract may get. Finally,
in the context of an application, contract usually means some form of a web service
API specification.

As I already mentioned, the contract helps in decoupling clients from
providers. As long as you keep the contract intact, clients and providers can be
modified independently. This in turn makes your code changes more isolated
and thus simpler. When designing your code, create explicit contracts whenever
possible. You should also depend on the contracts instead of implementations
whenever you can.

Figure 2-4 shows how a contract separates clients from the providers. Provider
1 and Provider 2 could be two alternative implementations of the same contract.
Each provider could be a separate module, and since they both fulfill the same

Figure 2-4 Clients decoupled from providers

Contract

Depends on

Client 1

Client 2

Client 3

Provider 1

Provider 2

Depends on

Depends on

Ful�lled by

Ful�lled by

02-ch02.indd 52 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 53

contract, clients can use either without needing direct knowledge of which
implementation is being used. Any code that fulfills the contract is equally good
in the eyes of the client, making refactoring, unit testing, and changes to the
implementation much simpler.

HINT
To make coding to contract easier, think of the contract as an actual legal document. When
people agree to do something in a legally binding document, they become much more sensitive
to details, as they may be liable if specific stipulations are not met. A similar situation happens in
software design. Every part of the contract that is loose increases future liability. As a provider,
exposing more than necessary increases your future costs because any time you want to make a
change, you will need to renegotiate the contract with all of your clients (propagating the change
throughout the system).

When designing a class, first consider what functionality your clients really
need and then define the minimal interface as the contract. Finally, implement the
code fulfilling the contract. Deal with libraries and web services in the same way.
Whenever you expose a web service API, be explicit and careful about what you
expose to your clients. Make it easy to add features and publish more data when
needed, but start with as simple a contract as possible.

To illustrate the power of coding to contract, let’s have a look at the Hypertext
Transfer Protocol (HTTP) protocols. HTTP is implemented by different
applications using different programming languages on different platforms,
and yet, it is one of the most popular protocols ever developed. Some of the
clients of the HTTP contract are web browsers like Firefox and Chrome. Their
implementations vary and their updates are released on different schedules by
different organizations. Providers, on the other hand, are mainly web servers
like Apache, Internet Information Services (IIS), or Tomcat. Their code is also
implemented in different technologies by different organizations and deployed
independently all around the world. What is even more exciting is that there
are other technologies implementing the HTTP contract that many people have
never even heard of. For example, web cache servers like Varnish and Squid
implement the HTTP protocol as both clients and providers. Figure 2-5 shows
how clients and providers become decoupled by the HTTP contract.

Despite the complexity of the ecosystem and all the applications involved,
HTTP provides flexibility of independent implementation changes and transparent
provider replacement. HTTP is a beautiful example of decoupling by contract,
as all that these applications have in common is that they implement or depend
upon the same contract.

02-ch02.indd 53 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 54 Web Scalability for Startup Engineers

Draw Diagrams
“You know what architecture really is? It is an art of drawing lines. With an
interesting rule that once you have drawn a line all the dependencies that cross
that line point in the same direction.” –Robert C. Martin

Drawing diagrams is a must-have skill for every architect and technical leader.
Diagrams summarize knowledge, and they truly are worth a thousand words.
With diagrams, you document the system, share knowledge, and help yourself
fully understand your own designs. Many engineers do not design their code up
front and skip diagrams in favor of getting straight into the code. I have watched
people do it, and I was doing the very same thing myself. Especially with the
adoption of agile practices and lean startup methodologies, there is not much
time for up-front designs, but that does not mean there should be none at all.

Figure 2-5 HTTP contract decouples implementations

Firefox

Browser

Chrome

Browser

GoogleBot

Crawler

Netscape

Browser

Apache

Web server

Tomcat

Web server

IIS

Web server

Varnish

Reverse proxy

Depends on
Ful�lled by

Ful�lled by

Ful�lled by

Ful�lled by

Depends on

Depends on

Depends on

Depends on

HTTP
Contract

Independent
changes

Independent
changes

Independent
changes

Independent
changes

Independent
changes

Independent
changes

Independent
changes

Extinction

02-ch02.indd 54 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 55

HINT
If you find it difficult to draw diagrams, you can start by drawing diagrams to document what
you have already built. It is easier to draw diagrams of applications and features that you have
already built and that you understand well. Once you get more comfortable with different diagram
types, try to draw as you code. Flesh out class interfaces by looking at them from the client’s point
of view, attempt to write high-level unit tests for these interfaces, and draw some simple diagram
sketches. By assuming the client’s point of view and drawing simple diagrams at the same time,
you will validate your own design and discover flaws before the code is even written. Once you’re
more comfortable with diagrams, attempt to do more up-front design. Don’t get discouraged if
you find it difficult to design up front. It is not an easy task to switch from code first to design first,
so be prepared that it may take months or years before you get completely comfortable with the
process.

Imagine you want to design a circuit breaker component. A circuit breaker is a
design pattern that can be used to increase robustness of your system and protect
it from failures of other components (or third-party systems). It allows your code
to check if an external component is available before attempting to perform an
action. Listings 2-1 and 2-2 and Figures 2-6 and 2-7 show how the component
could be designed. You begin with a draft of the main interface (Listing 2-1) and
then validate the interface by drafting some client code (Listing 2-2). This could
be a unit test or just a draft of code that doesn’t have to compile. At this stage, just
make sure that the interface you create is clear and easy to use. Once you flesh
out the main use cases, support the design with a sequence diagram showing how
clients interact with the circuit breaker, as seen in Figure 2-6. Finally, sketch out
the class diagram, as in Figure 2-7, to ensure you did not break design principles
and that the structure is sound.

Listing 2-1 Quick draft of the interface you are designing

interface Zend_CircuitBreaker_Interface
{
 public function isAvailable($serviceName);
 public function reportFailure($serviceName);
 public function reportSuccess($serviceName);
}

02-ch02.indd 55 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 56 Web Scalability for Startup Engineers

Listing 2-2 Draft of the client code

$userProfile = null;
if($cb->isAvailable("UserProfileService")){
 try{
 $userProfile = $userProfileService->loadProfileOrWhatever();
 $cb->reportSuccess("UserProfileService");
 }catch(UserProfileServiceConnectionException $e){
 $cb->reportFailure("UserProfileService");
 }catch(Exception $e){
 // service is available, but error occurred
 }
}
if($profile === null){
 // handle the error in some graceful way
 // display 'System maintenance, you can’t login right now.' message
}

Figure 2-6 Draft of the sequence diagram drawn while designing the interface

/ClientObject

isAvailable(name)

True

reportFailure(name)

Failure

Connect to service/execute remote call

/CircuitBreaker /ExternalService

02-ch02.indd 56 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 57

I believe that following this simple design process is like taking the up-front
design into the startup world. You benefit from the diagrams because you can see
the design from different angles. At the same time, you reduce the risk of creating
an unrealistic design and getting very far into it before having a chance to validate it.

Three types of diagrams are especially useful in documenting and understanding
large-scale systems: use case, class, and module diagrams. The more your company
scales up and the bigger your teams get, the more you benefit from having these
diagrams. Let’s have a look at each diagram type in more detail.

Use Case Diagrams
A use case diagram is a simplified map defining who the users of the system are
and what operations they need to perform. Use case diagrams are not concerned
with technical solutions, but with business requirements and are a great way to
distill key facts about both new features and those business requirements. When
you document a new feature, support it with a simple use case diagram. Use
case diagrams contain actors represented by humanoid icons, actions that actors
perform, and a high-level structure of how different operations relate to each
other. Use case diagrams may also show communication with external systems,
such as a remote web service API or a task scheduler. Do not include too many
details about requirements. Keep it simple so the diagram maintains readability
and clarity. By leaving use case diagrams at a high level, you can distill key
operations and business processes without drowning in an ocean of details.

Figure 2-7 Draft of the class diagram drawn while designing the interface

<<interface>>
Zend_CircuitBreaker_Interface

<<realize>>

isAvailable($serviceName : string) : bool
reportFailure ($serviceName : string) : void
reportSuccess($serviceName : string) : void

<<interface>>
Zend_CircuitBreaker_Storage_Interface

loadStatus($serviceName : string,$attributeName : string) : string
saveStatus($serviceName : string,$attributeName : string,$value : string,$�ush : bool) : void

<<interface>>
Zend_Cache_Backend_Interface

load($key : string) : string
save($value : string,$key : string,$options : array,$ttl : int) : string

Zend_CircuitBreaker

factory($storage : mixed,$con�g : mixed) : Zend_CircuitBreaker

<<realize>>

1

<<realize>> 1

<<realize>>Zend_CircuitBreaker_Storage_Adapter_Apc Zend_CircuitBreaker_Storage_Decorator_Array

1 Zend_CircuitBreaker_Storage_Adapter_ZendCacheBackend

02-ch02.indd 57 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 58 Web Scalability for Startup Engineers

Figure 2-8 shows an example of a simple use case diagram with a hypothetical
automated teller machine (ATM) application. Even though an ATM machine
involves many details related to authentication, security, and transaction processing,
you focus only on what users of the ATM should be able to accomplish. From this
perspective, it is not important to know the ordering of the buttons on the screen
or what the ATM does to implement each feature. You only see a high-level
overview of the requirements that will help to define the final contract and show
the intent of the ATM system.

Figure 2-8 Simple ATM use case diagram

Money Transaction

Deposit Money

Withdraw Money

Transfer Money

Check Balance

Change PIN

Access Cash Store

ATM machine

Account Operation

Bank API

ATM User

Engineer

02-ch02.indd 58 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 59

Class Diagrams
Class diagrams present the structure of individual modules. A class diagram
typically includes interfaces, classes, key method names, and relationships between
different elements. Class diagrams are good for visualizing coupling, as each class
becomes a node of the diagram and each dependency becomes a line. By drawing
a class diagram, you see immediately which classes are highly coupled with the
rest of the module and which are more independent. Simply watch how many lines
are connected to each node to judge how many dependencies the node includes.
Class diagrams are the best tools to visualize a module’s structure with its classes,
interfaces, and their interdependencies.

Figure 2-9 shows a simple example of a class diagram. The key elements here
are interfaces and classes, with their most important methods and dependencies
represented by different types of lines. In this case, you have two implementations
of the EmailService. The first one delivers e-mails instantly, using a Simple Mail

Figure 2-9 Simple e-mail module class diagram

<<Interface>>
EmailAddress

+ getEmail(): String
+ getAlias(): String

<<Interface>>
EmailService

+ send(EmailMessage): null

SomeCommonParentClass

+ �eld: Type

+ method(): Type

<<Interface>>
EmailMessage

+ getSubject(): String
+ getTextBody(): String
+ getHtmlBody(): String
+ getFrom(): EmailAddress
+ getTo(): EmailAddress
+ getReply(): EmailAddress

SimpleEmailMessage

+ subject: String
+ text: String
+ html: String
+ from: EmailAddress
+ to: EmailAddress
+ reply: EmailAddress

SimpleEmailAddress

+ email: String
+ alias: String

This is a comment.
Diamond indicates that
SimpleEmailMessage contains
instances of EmailAddress.

Implements

Use

Implements

Implements

Extends Extends

Use

These two implementations
could have a common parent
class, but they might equally well
implement EmailService independently.

QueueEmailService

+ queue: QueueAdapter

SmtpEmailService

+ smtpClient: SmtpAdapter

02-ch02.indd 59 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 60 Web Scalability for Startup Engineers

Transport Protocol (SMTP) protocol adapter, and the second one adds e-mails to
an e-mail queue for delayed delivery.

The EmailService interface is also a good example of the benefits of coding to
contract. Whoever depends on the EmailService interface could send e-mails
using either SMTP or queue-based implementations without having to know
how the e-mails are actually delivered.

Interfaces should only depend on other interfaces and never on concrete classes.
Classes, on the other hand, should depend on interfaces as much as possible.

Module Diagrams
The module diagram is similar to a class diagram because it displays structure
and dependencies. The only difference between module and class diagrams is
that module diagrams focus on the higher level of abstraction. Module diagrams
represent the zoom-out view of the code, with less depth but more surface
area. Instead of looking at classes and interfaces, module diagrams focus on
relationships between larger parts of the system. You use module diagrams to
show high-level dependencies and interactions between a module and its direct
neighbors of the dependency graph. A module can be a package or any logical
part of the application responsible for a certain functionality.

Figure 2-10 shows an example of a module diagram focusing on a hypothetical
PaymentService with its relations to other parts of the application that may be
relevant to the payment functionality. Module diagrams usually focus on parts
of the application that are relevant to the functionality being documented while
ignoring other irrelevant pieces. As your system grows larger, it is better to create
a few module diagrams, each focusing around certain functionality, rather than
including everything on a single diagram. Ideally, each diagram should be simple
enough so you could remember and re-create it in your mind.

Be creative and don’t worry whether you “draw it correctly” or not. Practice
in making your diagrams understandable is more important than perfection and
following notation standards. Learn more about Unified Modeling Language
(UML) and design patterns by consulting sources.1,7,10 I also recommend
ArgoUML as a desktop UML diagram drawing tool. It is an open-source Java
application that can be used across your company without uploading your
software designs into the cloud. If you prefer cloud-based solutions and online
collaboration, try draw.io, a free and easy-to-use online service integrated with
Google Drive. Draw.io is my preferred tool, and almost all of the diagrams in this
book were created using it.

02-ch02.indd 60 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 61

Single Responsibility
Single responsibility is a powerful way to reduce the complexity of your code.
At its core, the single-responsibility principle states that your classes should have
one single responsibility and no more. Single responsibility reduces coupling;
increases simplicity; and makes it easier to refactor, reuse, and unit test your
code—all core principles discussed so far. Following this principle will result in
producing small and simple classes that can be easily refactored and reused.

In the short term, it may be easier to simply keep adding methods to an
existing class, regardless if the new functionality is within the responsibility of
the class or not. However, after months of work, you will notice that your classes
become large and closely coupled with each other. You will see them interacting
with each other in unexpected ways and doing many unrelated things. At the
same time, the size of each class will make it hard to fully understand its behavior
and its role. This is when complexity rises sharply with every new line of code.

Figure 2-10 Module diagram focused on PaymentService

MVC Components

ProductCatalogue

Cache

EmailServicePaymentService

DataAccess

RecommendationEngine StockManagementService

02-ch02.indd 61 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 62 Web Scalability for Startup Engineers

Promoting Single Responsibility
There are no hard-and-fast metrics that define whether your class is following the
single-responsibility principle, but there are some guidelines that can help:

 ▶ Keep class length below two to four screens of code.
 ▶ Ensure that a class depends on no more than five other interfaces/classes.
 ▶ Ensure that a class has a specific goal/purpose.
 ▶ Summarize the responsibility of the class in a single sentence and put it in a

comment on top of the class name. If you find it hard to summarize the class
responsibility, it usually means that your class does more than one thing.

If your class breaks any of these guidelines, it is a good indicator that you may
need to revisit and potentially refactor it.

On the higher level of abstraction, you should partition your functionality
across modules to avoid overlaps. You would do it in a similar way as with
classes—try to summarize responsibility of a module or an application in one
or two sentences, just on a higher level. For example, you could say, “File Store
is an application allowing clients to upload files and manage their metadata,
and it also allows clients to find files based on complex searches.” This makes
the application’s purpose clear. Limit its scope and isolate it from the rest of the
system using an explicit interface (for example, a web service definition).

Examples of Single Responsibility
To keep things simple, let’s take validation of an e-mail address as an example. If
you place your validation logic directly in the code that creates user accounts, you
will not be able to reuse it in a different context. You will have to either copy-paste
the validation code or create an awkward dependency between classes that should
not know about each other, both of which break core principles of good software
design. Having validation logic separated into a distinct class would let you reuse
it in multiple places and have only a single implementation. If you need to modify
the validation logic at a later date, you will only need to refactor a single class. For
example, you may need to add support for UTF-8 encoded Unicode characters
in domain names. Having a single class responsible for e-mail validation should
make the change isolated and much simpler than if validation logic was spread
across different classes. As a side effect of the single-responsibility principle, you
will likely end up with much more testable code. Since classes have less logic

02-ch02.indd 62 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 63

and fewer dependencies, it will be easier to test them in isolation. A good way to
explore single responsibility further is to research some of the design patterns
such as strategy, iterator, proxy, and adapter.5,7 It can also help to read more about
domain-driven design2 and good software design.1,37

Open-Closed Principle
“Good architecture maximizes the number of decisions not made.” –Robert C. Martin

The open-closed principle is about creating code that does not have to be
modified when requirements change or when new use cases arise. Open-closed
stands for “open for extension and closed for modification.” Any time we create
code with the intent to extend it in the future without the need to modify it, we
say we apply the open-closed principle. As Robert C. Martin advocates, the open-
closed principle allows us to leave more options available and delay decisions
about the details; it also reduces the need to change existing code. The prime
objective of this principle is to increase flexibility of your software and make
future changes cheaper.

This is best explained with an example. Consider a sorting algorithm where
you need to sort an array of Employee objects based on employee names. In the
most basic implementation, you could include the sorting algorithm itself and all
necessary code in a single class, EmployeeArraySorter, as shown in Figure 2-11.
You would expose just a single method, allowing the sort of an array of Employee
objects, and announce that the feature is complete. Even though it solves the
problem, it is not very flexible; it is actually a very fixed implementation. Since
all of the code lives together in a single class, you have very little ability to
extend it or add new features without changing the existing code. If you had a
new requirement to sort an array of City objects based on their population, you
may not be able to reuse the existing sorting class. You would be faced with a
dilemma—do you extend the EmployeeArraySorter to do something completely
unrelated to its original design, or do you copy-paste the class and add the
necessary modifications? Luckily you have a third option, which is to refactor the
solution and make it open-closed compliant.

The open-closed solution requires you to break down the sorting problem
into a set of smaller problems. Each of these tasks can then vary independently
without affecting the reusability of remaining components. You can have a single
interface that compares two objects called Comparator and another interface that
performs a sorting algorithm called Sorter. Sorter would then use instances of

02-ch02.indd 63 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 64 Web Scalability for Startup Engineers

Comparator and an array to do the actual sorting. Figure 2-12 shows how it might
look. Note that this implementation is similar to the Java Comparator API.

Using this approach makes reusing existing code easier. For example, to
change sorting fields or types of sorted objects, you just add a new Comparator
implementation that would have almost no code in it. You do not need to

Figure 2-11 Fixed implementation

Fixed Implementation

EmployeeArraySorterArray of Employee

Array of City

Figure 2-12 Open-closed implementation

Open-Closed Implementation

Array of
Employee

Array of
City

EmployeeComparator

Comparator Sorter

QuickSorter

BucketSorterCityComparator

02-ch02.indd 64 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 65

change any code that lives in “the dotted box” in Figure 2-12. If you wanted to
change the sorting algorithm itself, you would not have to modify Comparators
or other clients of the Sorter implementation. You would only need to create a
new implementation of the Sorter interface. By allowing parts of the solution to
change independently, you reduce the scope of changes necessary. You also allow
extensions that do not require modification of the existing code.

Other good examples of the open-closed principle are MVC frameworks.
These frameworks have dominated web development partially due to their simple
and extensible nature. If you think about it, how often have you needed to modify
the MVC component within a framework? If the framework is well architected,
the answer should be “never.” However, you have the ability to extend the MVC
components by adding new routes, intercepting requests, returning different
responses, and overriding default behaviors. You do not have to modify the existing
framework code to be able to extend its original functionality, and that is the
open-closed principle in action.

As with other design principles, begin by familiarizing and exposing yourself
to various frameworks that promote the open-closed principle. Experiencing
different approaches is an effective way to get started and will help you see
differences and recurring patterns. For example, open-closed is beautifully done
in the Spring MVC framework for the Java language. Users have great flexibility
to modify the default behavior without ever modifying the framework, yet the
client code does not have to be coupled to the framework. By using annotations
and conventions, most of your classes do not even have to know about the existence
of the Spring framework at all!

Dependency Injection
We have already discussed dependencies in this chapter, as it is one of the most
important topics when it comes to coupling and complexity. Dependency injection
is a simple technique that reduces coupling and promotes the open-closed principle.
Dependency injection provides references to objects that the class depends
on, instead of allowing the class to gather the dependencies itself. At its core,
dependency injection is about knowing as little as possible. It allows classes to
“not know” how their dependencies are assembled, where they come from, or what
actual implementations are fulfilling their contracts. It seems like a subtle change
from pull to push, but it has a great impact on the flexibility of software design.

Let’s consider an analogy comparing a class implementing dependency injection
to a CD player.L34 All that a CD player knows is the interface of a compact disc.

02-ch02.indd 65 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 66 Web Scalability for Startup Engineers

It knows how to read the tracks, how music is encoded, and what optical
parameters of the laser are necessary to read the contents of the CD. The compact
disc inserted into the CD player is a dependency, and without it a CD player is
unable to work correctly. By pushing the responsibility of finding dependencies
onto its users, a CD player can remain “dumb.” At the same time, a CD player is
more reusable, as it does not have to know every title ever burned on CD or every
combination of songs in all the compilation albums ever made. Instead of knowing
all possible CDs or assembling them magically itself, the CD player depends on
you (the client) to provide a readable instance of a CD. As soon as you satisfy the
dependency with an instance of a compact disc, the CD player can operate.

As an additional benefit, the CD player can be used with different nonstandard
implementations of a compact disc. You can insert a cleaning disc or a testing disc
with specially crafted malformed tracks, allowing you to test different failure scenarios.

Figure 2-13 shows how an overburdened CD player might look. It could have
a hardcoded list of known CDs, and any time you wanted to play a new disc you
would need to make changes to its code.

Now let’s look at the implementation of the same CD player using dependency
injection. Figure 2-14 shows how a typical CD player operates. It does not know

Figure 2-13 CD player without dependency injection

CompactDiscInterface

HenryRollinsTheWeightDisc

+ getMetadata(): TrackMetadata
+ getTrack(int): TrackData

CompactDiscPlayer

– currentDisc: CompactDiscInterface

+ selectDisc(string title): Void
+ play(): Void
+ pause(): Void
+ stop(): Void

CompactDiscPlayer can create and
play only albums that were hardcoded
in its body. This particular CD player
knows some Henry Rollins albums.

ImplementsImplements

Implements

Creates and uses
Creates and uses

More hardcoded
album classes

Creates and uses

HenryRollinsNiceDisc HenryRollinsDoltDisc

02-ch02.indd 66 12/05/15 11:45 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 67

anything about discs themselves; it depends on its clients to provide it with a
functional instance of a compact disc. This way, you keep the implementation
opened for changes (allow new discs) but closed for modification (CD player
never has to change).

In practice, dependency injection can be summarized as not using the “new”
keyword in your classes and demanding instances of your dependencies to be
provided to your class by its clients. Listing 2-3 shows an example of a constructor-
based dependency injection in Java. Using this approach, as soon as the instance
is created, it is fully functional; there are no additional expectations on what has
to happen for the CD player instance to work. The responsibility of gathering all
the dependencies can be pushed out of the class itself, making it simpler, more
reusable, and testable.

Listing 2-3 Example of constructor-based dependency injection

class CompactDiscPlayer {
 private CompactDisc cd;
 public function CompactDiscPlayer(CompactDisc cd){
 this.cd = cd;
 }
 // other methods and business logic
}

Figure 2-14 CD player using dependency injection

CompactDiscPlayer CompactDiscInterface

+ CompactDiscPlayer(CompactDiscInterface)
+ play(): Void
+ pause(): Void
+ stop(): Void

CD player does not have to know
any CompactDisclnterface implementations

directly. They can be added at any time.

HenryRollinsDoltDiscHenryRollinsTheWeightDisc

+ getMetadata(): TrackMetadata
+ getTrack(int): TrackDataUses

Implements Implements

More albums

02-ch02.indd 67 12/05/15 11:46 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 68 Web Scalability for Startup Engineers

When used well, dependency injection reduces local complexity of the class
and makes it dumber, which is a good thing. Without knowing who the provider
of the contract is or how to get an instance of it, our class can focus on its
single responsibility. The code of the class becomes simpler, and it requires less
understanding of the rest of the system to modify and unit test the class. It may
seem like you will end up with the same code, just in a different place, but this
is exactly the purpose. By removing the assembly code from your classes, you
make them more independent, reusable, and testable. Dependency injection is
a practice that has been promoted for many years within the object-oriented
programming (OOP) community. Given that dependency injection does not
require use of any framework, I recommend getting familiar with the Spring
framework or Grails framework as great examples of dependency injection in
practice.w76,1,14,22,7

Inversion of Control (IOC)
Dependency injection is an important principle and a subclass of a broader
principle called inversion of control. Dependency injection is limited to object
creation and assembly of its dependencies. Inversion of control, on the other
hand, is a more generic idea and can be applied to different problems on different
levels of abstraction.

Inversion of control (IOC) is a method of removing responsibilities from
a class to make it simpler and less coupled to the rest of the system. At
its core, inversion of control is not having to know who will create and
use your objects, how, or when. It is about being as dumb and oblivious
as possible, as having to know less is a good thing for software design.

IOC is heavily used by several frameworks, including Spring, Symfony, Rails,
and even Java EE containers. Instead of you being in control of creating instances
of your objects and invoking methods, you become the creator of plugins or
extensions to the framework. The IOC framework will look at the web request
and figure out which classes should be instantiated and which components should
be delegated to.

02-ch02.indd 68 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 69

IOC is also referred to as “the Hollywood principle” because the subject of IOC
is being told, “Don’t call us, we will call you.” In practice, this means your classes
do not have to know when their instances are created, who is using them, or how
their dependencies are put together. Your classes are plugins, and some external
force will decide how and when they should be used.

Imagine you wanted to build an entire web application in pure Java without any
web framework. No web server, no frameworks, no API. Just Java. To accomplish
such a complex task, you would need to write a lot of code yourself. Even if you
decided to use some third-party libraries, you need to control the entire application
flow. By using a web framework, you reduce the complexity of your own code.
Not only do you reduce the amount of code that has to be written, but you also
reduce the amount of things that developers have to know. All you have to learn is
how to hook into the framework, which will create instances of your classes. The
framework will call your methods when requests arrive and handle default behavior
and control the execution flow from extension point to extension point.

Figure 2-15 illustrates a web application written in pure Java (no frameworks).
In this case, a large chunk of the application would focus on talking to the external
world. The application would have to be responsible for things like opening
network sockets, logging to files, connecting to external systems, managing threads,
and parsing messages. Your application has to control almost everything, which
implies that you will have to be aware of most of these things.

Figure 2-15 Web application written in pure Java, no IOC framework

Your application reaches outside
to get things done, for example

to open up a TCP/IP socket
and begin listening for connections.Your application management code

Your business logic

Third-party library Third-party library

Your business logic

02-ch02.indd 69 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 70 Web Scalability for Startup Engineers

If you used an IOC framework, your application might look more like Figure 2-16.
Not only can the framework take away a lot of responsibilities, but now our
application does not even have to know about most of these things that happen.
Even though all the same things need to happen, they can happen outside of our
application code. This does not change the overall complexity of the system, but it
does reduce the local complexity of your application.

Inversion of control is a universal concept. You can create an inversion of control
framework for any type of application, and it does not have to be related to MVC
or web requests. Components of a good IOC framework include the following:

 ▶ You can create plugins for your framework.
 ▶ Each plugin is independent and can be added or removed at any point in time.
 ▶ Your framework can auto-detect these plugins, or there is a way of configuring

which plugin should be used and how.
 ▶ Your framework defines the interface for each plugin type and it is not coupled

to plugins themselves.

Figure 2-16 The same web application within an IOC container

Contract de�ned by the IOC container, allowing to extend its functionality

Third-party library

Third-party library

Your application management code

Your business logic Your business logic

Inversion of Control Container

Your Application (implements contract of the IOC extension)

Common application control Modular extensions framework (contract)

02-ch02.indd 70 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 71

HINT
Writing code for an IOC framework is like keeping fish in a fish tank. You can have many fish in a
tank and they can have some autonomy, but they live in a larger world that is out of their control.
You decide what the environment in the tank is and when fish get fed. You are the IOC framework,
and your fish are your plugins, living in a protective bubble of not knowing.

Designing for Scale
Designing for scale is a difficult art, and each technique described in this section
comes with some costs. As an engineer, you need to make careful tradeoffs
between endless scalability and the practicality of each solution. To make sure you
do not overengineer by preparing for scale that you will never need, you should
first carefully estimate the most realistic scalability needs of your system and
design accordingly.

HINT
To put it into perspective, many startups fail and thus never need to design for scale at all.
(Depending on the source of statistics, you could say that up to 90 percent of all startups fail.)
Most startups that succeed moderately have limited scalability needs (the following 9 percent of all
startups). Only a very limited number of companies ever grow to the size that requires horizontal
scalability (the remaining 1 percent).

In a similar way to the design principles discussed so far, tackling complexity
and coupling, there are a few principles that help design scalable systems. As you
learn more about scalability, you may realize that many of the scalability solutions
can be boiled down to three basic design techniques:

 ▶ Adding more clones Adding indistinguishable components
 ▶ Functional partitioning Dividing the system into smaller subsystems

based on functionality
 ▶ Data partitioning Keeping a subset of the data on each machine

Each of these techniques offers different benefits and introduces different costs.
It is worth becoming more familiar with each of them to be able to design scalable
systems efficiently. Let’s discuss each of these techniques in more detail using
an example. Imagine you are building a web application that would let people

02-ch02.indd 71 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 72 Web Scalability for Startup Engineers

manage their eBay auction bids. Users would create accounts and allow your
application to bid on their behalf. Nice and simple.

Adding More Clones
If you are building a system from scratch, the easiest and most common scaling
strategy is to design it in a way that would allow you to scale it out by simply
adding more clones. A clone here is an exact copy of a component or a server.
Any time you look at two clones, they have to be interchangeable and each of
them needs to be equally qualified to serve an incoming request. In other words,
you should be able to send each request to a random clone and get a correct result.

Using our example of an eBay bidding application, as your application grows
in popularity, you will need to scale all of the components of your application.
As mentioned in Chapter 1, you can either upgrade your existing servers
(scale vertically) or add more servers to your setup to distribute the load (scale
horizontally). Scaling by adding clones works great in the case of web servers, so
let’s consider it first. Figure 2-17 shows a single web server setup with the eBay
bidding application deployed on it.

To scale by adding clones, your goal is to have a set of perfectly interchangeable
web servers and distribute the load equally among them all. In this setup, the load
(web requests) is usually distributed among clones using a load balancer. Ideally,
whenever the load balancer receives a request, it should be able to send it to any of
the servers without needing to know where the previous request went. Figure 2-18
shows the same application scaled by adding clones.

Figure 2-17 Single-server setup

Single Server Setup

Web Traf�c

eBay Application

Single Server

02-ch02.indd 72 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 73

To scale by adding clones, you need to pay close attention to where you keep
the application state and how you propagate state changes among your clones.
Scaling by adding clones works best for stateless services, as there is no state
to synchronize. If your web services are stateless, then a brand-new server is
exactly the same as a server that is already serving requests. In such a case, you
can increase capacity by simply adding more servers to the load balancer pool.
(Stateless service is a term used to indicate that a service does not depend on the
local state, so processing requests does not affect the way the service behaves.
No particular instance needs to be used to get the correct result. I will discuss
stateless services in more detail in Chapter 3 and Chapter 4.) Note that scaling
by adding clones of the same thing is not reserved for stateless services. In fact,
databases have been scaling out using this technique for years through the use of
replication. I will explain replication and scaling by adding clones in the context
of databases in Chapter 5.

Scaling via adding clones is like a hospital’s emergency room unit. If you
had the budget to hire numerous equally trained doctors and purchase more
operating room space and equipment, you could easily increase the overall
number of emergency patients processed. Equally skilled doctors are equally well
suited for treating any patient who is unlucky enough to have an emergency.

Figure 2-18 Scaling out by adding clones

Scaling via Cloning

Server 1

eBay Application

Server N

eBay Application

Keep adding server clones

Web Traf�c

02-ch02.indd 73 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 74 Web Scalability for Startup Engineers

Scaling by adding clones is the easiest and cheapest technique to implement
in your web layer. If you follow front-end and web services layer best practices
presented later in Chapters 3 and 4, you will be able to scale most of your stack
using this technique. The main challenge with scaling by adding clones is that it is
difficult to scale stateful servers this way, as you need to find ways to synchronize
their state to make them interchangeable.

Functional Partitioning
The second primary scalability strategy is functional partitioning. It is fairly
universal and applicable across different levels of abstraction. The main thought
behind the functional partitioning technique is to look for parts of the system
focused on a specific functionality and create independent subsystems out of them.

In the context of infrastructure, functional partitioning is the isolation of
different server roles. You divide your data centers into different server types.
You have your object cache servers, message queue servers, queue workers, web
servers, data store engines, and load balancers. Each of these components could
be built into the main application, but over the years, engineers realized that
a better solution is to isolate different functions into independent subsystems.
Think of functional partitioning as a different way to scale your hospital. Instead
of hiring more and more generic doctors, you can start hiring specialists in each
area and providing specialized equipment for different types of operating rooms.
Emergencies of different types may require different tools, different techniques,
and different experience on behalf of the doctor.

In a more advanced form, functional partitioning is dividing a system into
self-sufficient applications. It is applied most often in the web services layer, and
it is one of the key practices of service-oriented architecture (SOA). Going back
to the example of the eBay bidding application, if you had a web services layer,
you could create a set of highly decoupled web services handling different parts
of functionality. These services could then have their logical resources like data
stores, queues, and caches. Figure 2-19 shows such a scenario where functionality
was split into a profile service and a scheduling service. Depending on specific
needs, these services could share underlying infrastructure like data store servers
or they could be hosted separately. By giving your services more autonomy, you
promote coding to contract and allow each service to make independent decisions
as to what components are required and what the best way to scale them out is.

Functional partitioning is most often applied on a low level, where you break
your application down into modules and deploy different types of software to
different servers (for example, databases on different servers than web services).

02-ch02.indd 74 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 75

In larger companies, it is also common to use functional partitioning on a higher
level of abstraction by creating independent services. In such cases, you can split
your monolithic application into a set of smaller functional services. Additional
benefits of such division is the ability to have multiple teams working in parallel
on independent codebases and gaining more flexibility in scaling each service, as
different services have different scalability needs.

There are numerous benefits of functional partitioning, but there are also a
few drawbacks. Functional partitions are independent and usually require more
management and effort to start with. There is also a limited number of functional
partitions that you can come up with, limiting your ability to scale using this
technique. After all, you can’t keep rewriting your application and keep dividing
it into smaller and smaller web services to scale endlessly.

Data Partitioning
The third main scaling strategy is to partition the data to keep subsets of it on each
machine instead of cloning the entire data set onto each machine. This is also a

Figure 2-19 Functional partitioning

Object Cache

Functional Partitioning of Services

Pro�le Web Service

Data Store

Requests from web servers layer and other services

Scheduling Web Service

Data Store
Message
Queue

Queue
Workers

Web Services
Server 1

Web Services
Server K

Web Services
Server 1

Web Services
Server N

02-ch02.indd 75 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 76 Web Scalability for Startup Engineers

manifestation of the share-nothing principle, as each server has its own subset
of data, which it can control independently. Share nothing is an architectural
principle where each node is fully autonomous. As a result, each node can make
its own decisions about its state without the need to propagate state changes to
its peers. Not sharing state means there is no data synchronization, no need for
locking, and that failures can be isolated because nodes do not depend on one
another.

To illustrate further, let’s again look at the eBay bidding application. To recap, I
scaled it in one way by adding more web servers (adding clones) and then I scaled
it in a different way by splitting the web services layer into two independent
services. This gave me two different types of scalability. But there is one more way
I can scale it out: by distributing the load based on the data itself. A good example
of such partitioning is splitting the data stored in the object cache of the profile
web service from Figure 2-19.

To scale the object cache, I could add more clones, but then I would need
to synchronize all of the state changes between all of my servers. Alternatively,
I could look for further functional partitioning opportunities. I could try to
cache web service responses on one cache server and database query results on
another server. Neither of these approaches seems very attractive in this case,
though, as they would not let me scale very far. A better way out would be to
create a mapping between the cache key of the cached object and the cache
server responsible for that key. Figure 2-20 shows how such mapping could be
implemented.

Figure 2-20 Data partitioning

Object Cache

Cache Server 1

A - E

Cache Server 2

F - J

Requests for cache items
data partitioned by the cache key Cache clients

Logical
mapping
layer

Actual servers

Cache Server 3

K - O

Cache Server 4

P - T

Cache Server 5

U - Z

02-ch02.indd 76 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 77

Figure 2-20 shows a simplistic approach where I distribute cached objects
among cache servers based on the first letter of the cache key. In practice,
applications use more sophisticated ways of partitioning the data, but the concept
remains the same. Each server gets a subset of the data for which it is solely
responsible. By having less data on each server, I can process it faster and store
more of it in memory. Finally, if I had to increase the capacity even further, I could
add more servers and modify the mapping to redistribute the data.

Think back to the hospital analogy. If your hospital was providing scheduled
visits to see your specialists, you would probably have to scale your specialists
by using data partitioning. After all, you can’t have your patients see a different
doctor every time they come for a visit. You could get around the problem by
logging the doctor’s name on each patient’s card. By using a registry of which
patient is treated by which doctor, your front desk staff could easily schedule
appointments with the correct doctors.

Data partitioning, applied correctly with scaling by adding clones, effectively
allows for endless scalability. If you partition your data correctly, you can always
add more users, handle more parallel connections, collect more data, and deploy
your system onto more servers. Unfortunately, data partitioning is also the most
complex and expensive technique. The biggest challenge that data partitioning
introduces is the fact that you need to be able to locate the partition on which the
data lives before sending queries to the servers and that queries spanning multiple
partitions may become very inefficient and difficult to implement.

I will discuss data partitioning in more detail in Chapter 5, as it is one of the
key scaling techniques in modern data stores. You can also read more about
adding clones, functional partitioning and data partitioning.27,41,w34,w35

Design for Self-Healing
“Any sufficiently large system is in a constant state of partial failure.” –Justin Sheehy

The final design principle in this chapter is designing software for high availability
and self-healing. A system is considered to be available as long as it performs its
functions as expected from the client’s perspective. It does not matter if the system
is experiencing internal partial failure as long as it does not affect the behavior that
clients depend on. In other words, you want to make your system appear as if all
of its components were functioning perfectly even when things break and during
maintenance times.

02-ch02.indd 77 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 78 Web Scalability for Startup Engineers

A highly available system is a system that is expected to be available
to its clients most of the time. There is no absolute measurement of high
availability, as different systems have different business requirements.
Instead of defining an absolute measure of high availability, systems
are measured in the “number of nines.” We say a system with 2 nines
is available 99 percent of the time, translating to roughly 3.5 days
of outage per year (365 days * 0.01 = 3.65 days). In comparison, a
system with availability of 5 nines would be available 99.999 percent of
the time, which makes it unavailable only five minutes per year.

As you can imagine, different business scenarios will have different outage
tolerances. The main point to remember is that the larger your system gets, the
higher the chance of failure. If you need to contact five web services and each
of them connects to three data stores, you are depending on 15 components.
Whenever any of these components fails, you may become unavailable, unless
you can handle failures gracefully or fail over transparently.

As you scale out, failures become a much more frequent occurrence. Running
1,000 servers can easily give you a few failing servers every single day.w58 To make
matters even worse, there are other reasons for failures, such as power outages,
network failures, and human errors. Operating at scale magnifies these issues so
that failure must be considered a norm, not a special condition. When designing
for high availability, you need to hope for the best but prepare for the worst,
always thinking about what else can fail and in what order.

One of the most exciting examples of such a high-availability mindset is a
system developed at Netflix called Chaos Monkey. Netflix reliability engineers
decided that the best way to prove that the system can handle failures is to
actually cause them on an ongoing basis and observe how the system responds.
Chaos Monkey is a service that runs during office hours and kills random
components of the Netflix infrastructure. It may seem like a completely absurd
idea that a company would risk outages this way, but what it really does is prove
that their system is able to handle any type of failure.

Another similar example of the high-availability mindset is a concept called
Crash-Only.w57 Advocates of the Crash-Only approach say that the system should
always be ready to crash, and whenever it reboots, it should be able to continue to
work without human interaction. This means that the system needs to be able
to detect its failure, fix the broken data if necessary, and start work as normal,

02-ch02.indd 78 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 79

whether it is serving requests, processing queue messages, or doing any other
type of work. Following this practice, CouchDB, a popular open-source data store,
does not even provide any shutdown functionality. If you want to stop a CouchDB
instance, you just have to terminate it.

What better way to prove that your system can handle failures than make it fail
every day? I have witnessed many outages caused by the fact that there was some
component that kept local server state or could not handle network timeouts
properly. Continuously testing different failure scenarios is a great way to improve
the resilience of your system and promote high availability. In practice, ensuring
high availability is mainly about removing single points of failure and graceful
failover.

Single point of failure is any piece of infrastructure that is necessary for
the system to work properly. An example of a single point of failure can
be a Domain Name System (DNS) server, if you have only one. It can
also be a database master server or a file storage server.

A simple way to identify single points of failure is to draw your data center
diagram with every single device (routers, servers, switches, etc.) and ask yourself
what would happen if you shut them down one at a time. Once you identify your
single points of failure, you need to decide with your business team whether it
is a good investment to put redundancy in place. In some cases, it will be easy
and cheap; in other cases, it may be very difficult or expensive. Especially if the
system was not designed with high availability in mind, you may need to carefully
consider your tradeoffs.

Redundancy is having more than one copy of each piece of data or each
component of the infrastructure. Should one of the copies fail, your system
can use the remaining clones to serve clients’ requests. Systems that are not
redundant need special attention, and it is a best practice to prepare a disaster
recovery plan (sometimes called a business continuity plan) with recovery
procedures for all critical pieces of infrastructure.

Finally, if you had a system that was highly available and fully fault tolerant,
you may want to implement self-healing. Self-healing is a property going beyond
graceful failure handling; it is the ability to detect and fix problems automatically
without human intervention. Self-healing systems are a holy grail of web
operations, but they are much more difficult and expensive to build than it sounds.

02-ch02.indd 79 09/05/15 10:44 AM

www.allitebooks.com

http://www.allitebooks.org

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 80 Web Scalability for Startup Engineers

To give you an example of self-healing, consider failure handling in Cassandra,
which is an open-source data store. In Cassandra, a data node failure is handled
transparently by the system. Once the cluster recognizes node failure, it stops any
new requests from being routed to the failed node. The only time when clients
may be failing is during the failure recognition phase. Once the node is blacklisted
as failed, clients can still read and write data as usual, as remaining nodes in
the cluster provide redundancy for all of the data stored on the failed node.
Whenever the failed node comes back online, it is brought up to speed with the
data it missed and the system continues as if nothing happened.

In the same way, replacing a dead node with a brand-new, blank node does not
require system administrators to reconstruct the data from backup, as is often
necessary in relational database engines. Adding a new empty data node causes
the Cassandra cluster to synchronize the data so that over time the newly added
machine is fully up to date. When a system can detect its own partial failure,
prevent unavailability, and fully fix itself as soon as possible, you have a self-
healing system. Minimizing the mean time to recovery and automating the repair
process is what self-healing is all about.

Mean time to recovery is one of the key components of the availability
equation. The faster you can detect, react to, and repair, the higher your
availability becomes. Availability is actually measured as mean time to
failure / (mean time to failure + mean time to recovery). By reducing
the time to recovery, you can increase your availability, even if the
failure rate is out of your control. This may be the case when using cloud
hosting services like Amazon Web Services (AWS), as cloud providers
use cheaper hardware, trading low failure rates for low price. In such
an environment, you need to focus on mean time to recovery, as mean
time to failure is something you cannot control.

I highly recommend learning more about high availability, monitoring, and
self-healing systems as your scalability experience advances. A number of great
sources exist for further study.w35,w4,w7,w1,w15,w18,w27,w36,w39,w42 In Chapter 5, we’ll return
to high availability to describe different storage engines and their properties.

02-ch02.indd 80 09/05/15 10:44 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 2

 Chapter 2: Principles of Good Software Design 81

Summary
Whether you are a software engineer, architect, team lead, or an engineering
manager, it is important to understand design principles. Software engineering
is all about making informed decisions, creating value for the business, and
preparing for the future. Remember: design principles are your northern star,
your compass. They give you direction and they increase your chances of being
successful, but ultimately, you have to decide which approach is best for your system.

As a software engineer or architect, your job is to provide solutions that are the
best fit for your business under constraints of limited money, time, and knowledge
about the future. If you take your role seriously, you need to keep an open mind
and try to consider different points of view. The “cleanest” solution is not always the
best if it takes more time to develop or if it introduces unnecessary management
costs. For example, the line between decoupling and overengineering is very fine.
It is your job to watch out for these temptations and not become biased toward
the coolest solution imaginable. Your business needs to make informed tradeoffs
between scalability, flexibility, high availability, costs, and time to market. I will
discuss tradeoffs that you need to learn to make more often in the last chapter of
this book.

Remain pragmatic. Don’t be afraid to break the rules, if you really believe it
is the best thing for your business or for your software. Every system is different
and every company has different needs, and you may find yourself working in a
very different context than other engineers. There is no single good way to build
scalable software, but first learn your craft, learn your tools, and look for reasons
to drive your decisions. The principles laid out in this chapter are a good start on
your path to quality software design.

02-ch02.indd 81 09/05/15 10:44 AM

This page intentionally left blank

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

83

CHAPTER

3
Building the Front-End Layer

03-ch03.indd 83 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 84 Web Scalability for Startup Engineers

The front-end layer spans multiple components. It includes the client
(usually a web browser), network components between the client and your
data center, and parts of your data center that respond directly to clients’

connections. The front end is your first line of defense, and its components are
the ones receiving the most traffic. Every user interaction, every connection, and
every response has to go through the front-end layer in one form or another.
This in turn causes the front-end layer to have the highest throughput and
concurrency rate demands, making its scalability critical. Luckily, a well-designed
front end scales relatively easily, and it is also where caching can give you the
highest returns.

Front-end applications built with scale in mind are mostly stateless; they
depend heavily on caching; and, most importantly, they allow horizontal scalability
by simply adding more hardware.

Before we dive in, it’s important to understand the different approaches
to building web applications. Most of today’s websites are built as traditional
multipage web applications, single-page applications (SPAs), or hybrids of these
two approaches.

 ▶ Traditional multipage web applications These are websites where
clicking a link or a button initiates a new web request and results in the
browser reloading an entire page with the response received from the server.
This was the model used when the World Wide Web was created and when
there was no JavaScript, no AJAX, and no HTML5. Despite the fact that this
model is two decades old, you could still build scalable websites using it
(mainly for its simplicity).

 ▶ Single-page applications (SPAs) These execute the most business logic
in the browser, more so than either hybrid or traditional applications. These
applications are built mainly in JavaScript, with web servers often reduced
to providing a data application programming interface (API) and a security
layer. In this model, any time you perform an action in the user interface
(like clicking a link or typing some text), JavaScript code may initiate
asynchronous calls to the server to load/save data. Based on the response
received, JavaScript code replaces parts of the user interface. The SPA model
has become more popular in recent years with frameworks like AngularJS
and mobile app frameworks like Sencha Touch and Ionic, but it is still much
less popular than the hybrid model. The main benefit of SPAs is a richer user
interface, but users may also benefit from a smaller network footprint and
lower latencies between user interactions.

03-ch03.indd 84 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 85

 ▶ Hybrid applications This is the way most of the modern web applications
are built. As the name implies, these applications are a hybrid of traditional
multipage web applications and SPAs. Some interactions cause a full page
load, and others initiate only partial view updates using AJAX. Adopting
AJAX and keeping the overarching multipage structure give developers a lot
of flexibility. This allows building a rich user interface, but at the same time
provides search engine optimization (SEO) friendliness, deep linking, and
relative simplicity.

Most of the recommendations and components presented in this chapter are
applicable to all three models, but we’ll focus primarily on the common hybrid
and traditional models. If you decide to develop a pure SPA, you may have
significantly different deployment and caching needs, which are beyond the scope
of this book.

Managing State
“The key to efficiently utilizing resources is stateless autonomous compute nodes.”

–Bill Wilder

Carefully managing state is the most important aspect of scaling the front
end of your web application. If you lay a good foundation by removing all of the
state from your front-end servers, you will be able to scale your front-end layer
by simply adding more clones. We’ll first look at the differences between stateless
and stateful services and then briefly discuss how to deal with different types of
state.

Statelessness is a property of a service, server, or object indicating that
it does not hold any data (state). As a consequence, statelessness makes
instances of the same type interchangeable, allowing better scalability.
By not having any data, service instances are identical from the client’s
point of view. Instead of holding data themselves, stateless services
delegate to external services any time that client’s state needs to be
accessed.

03-ch03.indd 85 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 86 Web Scalability for Startup Engineers

Figure 3-1 shows an abstract diagram of a stateful web application server.
Server instance A holds information that other instances (B and C) cannot access.
It could be user session data, local files, local memory state, or even locks. In the
context of stateful vs. stateless, state is any information that would have to be
synchronized between servers to make them identical. Let’s consider Figure 3-2
to see how a stateless server could handle a client’s state. In this case, servers A,
B, and C are identical, and all of the state is kept outside of their boundaries. They
are interchangeable because they are all capable of reaching the client’s data.

To better understand the difference between stateful and stateless service, let’s
consider an analogy to different ways you can order drinks in a pub. When you
go to a large pub, it is common to see multiple bars located on different floors or
in different corners of the pub. In this analogy, a pub is a website, a bar is a server,
and an act of ordering a drink is a web request.

If you pay with cash, you can walk up to any of the bars, order a drink, pay, and
simply walk away. There are no additional steps necessary to perform this transaction.
The bartender does not need to know who you are, and you can enjoy the services of
any bartender at any one of the bars. From the bartender’s point of view, it also does
not matter how many people are in the pub at the same time, as it does not affect the
process of serving drinks. He or she may get more orders, but orders do not affect
each other. This is how you would interact with a stateless service.

Figure 3-1 Stateful server

Server A

User A

Sends HTTP requests

Session data for user A

Uploaded images for user A

Session data for user D

Server B

User B

Sends HTTP requests

Session data for user B

Uploaded images for user B

Server C

User C

Sends HTTP requests

Session data for user C

Uploaded images for user C

03-ch03.indd 86 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 87

If you decide to put your drinks on a tab, your transactions look very different.
First, you need to initiate your tab by giving a bartender your credit card. Then,
any time you want to order a drink, you need to go to the bar where your credit
card is and ask for the drink to be put on your tab. You do not have the freedom
of moving around the pub and using other bars, as they do not know who you are.
You also need to remember to collect your card at the end of the night. From a
bartender’s point of view, putting drinks on a tab is also more challenging, as the
bartender needs to locate the correct tab for each order. The more open tabs he or
she has, the more challenging it becomes to find the right tab for each order. This
is how you interact with a stateful service.

Figure 3-2 Stateless server

Server A

User A

Sends HTTP requests

No state between HTTP requests

Server B

User B

Sends HTTP requests

No state between HTTP requests

Server C

User C

Sends HTTP requests

No state between HTTP requests

Shared Storages

Shared Session Storage

Session data for user A

Session data for user C

Session data for user B

Session data for user D

Shared File Storage

Uploaded images for user A

Uploaded images for user C

Uploaded images for user B

Fetches state Fetches state Fetches state

03-ch03.indd 87 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 88 Web Scalability for Startup Engineers

The key difference between stateful and stateless services is that instances of a
stateless service are fully interchangeable and clients can use any of the instances
without seeing any difference in behavior. Stateful services, on the other hand,
keep some “knowledge” between requests, which is not available to every instance
of the service. Whenever clients want to use a stateful service, they need to stick
to the selected instance to prevent any side effects.

Let’s now have a look at the most common types of state stored in the front-
end layer and how to deal with them.

Managing HTTP Sessions
Hypertext Transfer Protocol (HTTP) sessions are used all over the Web. In fact,
when you visit a website, your requests will typically be part of an HTTP session.
Since the HTTP protocol is stateless itself, web applications developed techniques
to create a concept of a session on top of HTTP so that servers could recognize
multiple requests from the same user as parts of a more complex and longer
lasting sequence (the user session).

From a technical point of view, sessions are implemented using cookies.
Figure 3-3 shows a simplified sequence of events. When a user sends a request

Figure 3-3 Establishing an HTTP session

Web Server Machine

Web ServerClient

Initial request does
not have any cookies Returns HTML with

session cookie
Set-Cookie:SID=XYZ...

Save data for SID=XYZ...

success

Returns HTML
no new cookies sent

GET /pro�le.html
Cookie: SID=XYZ...

GET /index.html

Following requests
include session cookie

Session Storage

Fetch data for SID=XYZ...

data

Save data for SID=XYZ...

success

03-ch03.indd 88 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 89

to the web server without a session cookie, the server can decide to start a new
session by sending a response with a new session cookie header. The HTTP contract
says that all cookies that are still active need to be included in all consecutive calls.

By using cookies, the server can now recognize which requests are part of
the same sequence of events. Even if multiple browsers connected to the web
server from the same IP address, cookies allow the web server to figure out which
requests belong to a particular user. This in turn allows implementation of user
login functionality and other similar features.

When you log in to a website, a web application would usually store your user
identifier and additional data in the web session scope. The web framework or the
application container would then be responsible for storing the web session scope
“somewhere” so that data stored in the web session scope would be available to
the web application on each HTTP request. In the case of Java, a web session
scope would usually be stored in the memory of the web application container;
in the case of PHP, it would use files stored on the web server by default. The key
thing to observe here is that any data you put into the session should be stored
outside of the web server itself to be available from any web server. There are
three common ways to solve this problem:

 ▶ Store session state in cookies
 ▶ Delegate the session storage to an external data store
 ▶ Use a load balancer that supports sticky sessions

If you decide to store session data in cookies, the situation is fairly simple. In
your application, use session scope as normal; then just before sending a response
to the client, your framework serializes the session data, encrypts it, and includes
it in the response headers as a new value of the session data cookie. The main
advantage in this approach is that you do not have to store the session state
anywhere in your data center. The entire session state is being handed to your
web servers with every web request, thus making your application stateless in the
context of the HTTP session. Figure 3-4 shows how session data is passed around
in this case.

The only practical challenge that you face when using cookies for session
storage is that session storage becomes expensive. Cookies are sent by the
browser with every single request, regardless of the type of resource being
requested. As a result, all requests within the same cookie domain will have
session storage appended as part of the request. Browsers will have to include
entire session data, even when downloading images or Cascading Style Sheet
(CSS) files, or sending AJAX requests.

03-ch03.indd 89 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 90 Web Scalability for Startup Engineers

Using cookies for session data storage works very well as long as you can keep
your data minimal. If all you need to keep in session scope is user ID or some
security token, you will benefit from the simplicity and speed of this solution.
Unfortunately, if you are not careful, adding more data to the session scope can
quickly grow into kilobytes, making web requests much slower, especially on
mobile devices. The cost of cookie-based session storage is also amplified by
the fact that encrypting serialized data and then Base64 encoding increases the
overall byte count by one third, so that 1KB of session scope data becomes 1.3KB
of additional data transferred with each web request and each web response.

The second alternative approach is to store session data in a dedicated data
store. In this case, your web application would take the session identifier from
the web request and then load session data from an external data store. At the
end of the web request life cycle, just before a response is sent back to the user,
the application would serialize the session data and save it back in the data store.
In this model, the web server does not hold any of the session data between web
requests, which makes it stateless in the context of an HTTP session. Figure 3-5
shows how session data is stored in this scenario.

Figure 3-4 Session data stored in cookies

Web Server Machine

Web ServerClient

Initial request does
not have any cookies Returns HTML with

session data cookie
Set-Cookie:SDATA=T7ONGE...

Returns HTML with
new session data cookie value
Set-Cookie:SDATA=YRWYMS

GET /pro�le.html
Cookie:SDATA=T7ONGE...

GET /index.html

Following requests include
session data cookie

Session data cookie
changes any time
server changes the
session data

Session Storage

03-ch03.indd 90 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 91

Many data stores are suitable for this use case, for example, Memcached, Redis,
DynamoDB, or Cassandra. The only requirement here is to have very low latency
on get-by-key and put-by-key operations. It is best if your data store provides
automatic scalability, but even if you had to do data partitioning yourself in the
application layer, it is not a problem, as sessions can be partitioned by the session
ID itself. We’ll look further at data partitioning in Chapter 5, but for now, let’s
assume that the horizontal scalability of session storage is not a difficult problem,
and it can be solved by the data store itself or by simple data partitioning.

If you are developing your front-end web application in Java JVM–based
languages (Groovy, Scala, Java), you also have the alternative of using object-
clustering technologies like Teracotta for your session storage. Terracotta
allows for transparent object access from multiple machines by introducing
synchronization, distributed locking, and consistency guarantees. From the front-
end scalability point of view, it is just another means to the same end—you need
to make all of your web servers identical to allow auto-scaling and horizontal
scalability by adding clones.

Figure 3-5 Session data stored in distributed data store

Web Server
Machine

Session
Storage
Machine

Web ServerClient

Initial request
does not have
any cookies

Returns HTML with
session cookie
Set-Cookie:SID=XYZ...

Save data for SID=XYZ...

success

Returns HTML
no new cookies sent

GET /pro�le.html
Cookie: SID=XYZ...

GET /index.html

Following
requests include
session cookie

Session Storage

Fetch data for SID=XYZ...

data

Save data for SID=XYZ...

success

03-ch03.indd 91 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 92 Web Scalability for Startup Engineers

Finally, you can handle session state by doing nothing in the application layer
and pushing the responsibility onto the load balancer. In this model, the load
balancer needs to be able to inspect the headers of the request to make sure that
requests with the same session cookie always go to the server that initially issued
the cookie. Figure 3-6 shows one possible implementation of sticky session.L18–L19
In this case, any time a new client sends a request, the load balancer assigns the
client to a particular web server and injects a new load balancer cookie into the
response, allowing the load balancer to keep track of which user is assigned to
which server.

Even if it may seem like a good solution, sticky sessions break the fundamental
principle of statelessness, and I recommend avoiding them. Once you allow your

Figure 3-6 Sticky session based on an additional cookie

User A

Load Balancer

Load Balancer issues addition cookie: LBCOOKIE
which maps users to particular servers

Local state allowed between HTTP requests.
Issues session cookies, for example: SID.

Server A

User B

Local state allowed between HTTP requests.
Issues session cookies, for example: SID.

Server B

LBCOOKIE: ABCABC Server A

LBCOOKIE: XYZXYZ Server B

… …

Requests contain application cookies
and Load Balancer cookie

Requests contain application cookies
and Load Balancer cookie

Requests from users
mapped to Server A

Requests from users
mapped to Server A

03-ch03.indd 92 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 93

web servers to be unique, by storing any local state, you lose flexibility. You will
not be able to restart, decommission, or safely auto-scale web servers without
braking users’ sessions because their session data will be bound to a single
physical machine. In addition, you create a dangerous precedence with sticky
sessions. If it is okay to store session data on web servers, maybe it is also okay
to store some other state there? If you can do one, you can do the other. Sticky
session support of a load balancer can then hide underlying design issues rather
than helping you scale your application. Instead, keep all session scope data in
cookies or store session data in a shared object store accessible from all web
server instances.

Managing Files
The second most common type of state in web applications for front-end servers
is file storage. There are two types of files to pay attention to:

 ▶ User-generated content being uploaded to your servers
 ▶ Files generated by your system that need to be downloaded by the user

The most common use case is to allow users to upload files and then share or
access them. A decade ago, websites rarely allowed users to upload images, but
the norm has shifted as people share more images and videos and engage with
media-rich social profiles, forcing more and more web applications to manage
user-generated files without sacrificing scalability. The flip side of this use case is
letting users download files generated by your system. Whether reports, invoices,
videos, or images, your system may need to create files for your users and generate
uniform resource locators (URLs) to download them. In some cases, you can get
away with generating files on the fly and avoid storing them, but in many cases,
you will need to store the files in their exact form to ensure they will never change.
For example, you don’t want the contents of an invoice to change once you release
a new version of your code.

Each of these use cases may require files to be available publicly or privately by
selected users. Public files are like photos on social media—anyone can download
them. Private files, on the other hand, are like invoices, reports, or private
messages—they should be accessible only by selected users.

Whether you are hosting your application on Amazon or not, you can consider
using Simple Storage Service (S3) or Azure Blob Storage as the distributed file
storage for your files. They are relatively cheap and a good fit in the early stages
of development, when it may not make sense to store all files internally on your

03-ch03.indd 93 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 94 Web Scalability for Startup Engineers

own infrastructure. No matter how you store your files, you should always try to
use a content delivery network (CDN) provider to deliver public files to your end
users. By setting a long expiration policy on public files, you will allow CDN to
cache them effectively forever. This way, the original servers hosting these files
will receive less traffic, thereby making them easier to scale. Figure 3-7 shows how
public files can be stored and accessed via CDN.

If your user-uploaded content is not meant to be publicly available, all file
download requests will have to go to your front-end web application servers
rather than being served directly by CDN. Figure 3-8 shows an example of
such configuration. A web request for a file is sent to one of the front-end web
application servers; the application checks a user’s permissions and either allows
or denies access to the file. If access is granted, the application downloads the file
from the shared file storage and sends it to the client.

If you are hosting your application on the Amazon infrastructure, there is
no better solution than uploading files to Amazon S3. Whether you are serving
public or private files, you can store them in S3 to make sure your front-end
servers are stateless. S3 supports the concept of private and public buckets so that
files may be accessible publicly or they may be available only to your application
servers.

When you need to serve public files, you simply put them into a public S3
bucket. In such case, S3 provides transparent high availability and scalability, and
you do not have to worry about anything; it scales for you. You simply have to
upload user files to S3 and keep reference to the public URL and file location in
your database in case you needed to delete or update it in the future.

Figure 3-7 Distributed storage and delivery of public files

User

CDN

1. Uploads �les

3. Requests public �les

2. Pushes �les to
shared �le storage

4. Requests �les not
present in CDN yet

Web Application Server Public Files Storage

Amazon S3 or public web serversFiles are not stored locally

03-ch03.indd 94 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 95

When you need to serve private files, you still store them in S3, but you use
a private bucket. A private bucket has the same high-availability and high-
scalability capabilities, but it is not open to public access. If you want to serve a
private file, you will need to download it to your front-end web application server,
as in Figure 3-8.

If you are unable to use cloud-based file storage like S3 or Azure Blob Storage,
you will have to build your own file storage and delivery solution. You could look
for open-source components, but you will most likely need to build and integrate
the system yourself, which can be a considerable amount of work. If you need to
store a lot of files but you do not need a lot of throughput, you can use regular
file servers with Redundant Array of Independent Disks (RAID) controllers used
for redundancy and distribute files among your file servers. Depending on the
configuration, each of your file servers may have from a few terabytes to as much
as a few dozen terabytes of storage space. You will then also need to think about
high-availability issues, as redundancy on a drive level may not satisfy your needs
(to achieve true high availability, you need to store each file on multiple physical
servers to be able to survive certain types of server failures). The situation

Figure 3-8 Storage and delivery of private files

User

Authentication and Authorization performed by web server

private bucket on Amazon S3 or private �le servers

Web Application Server

Private Files Storage

2. Pushes �les to
shared storage

User

4. Fetches private �les
from shared storage

1. Uploads
private �les

3. Downloads
private �les

03-ch03.indd 95 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 96 Web Scalability for Startup Engineers

becomes even more complex if you need to perform a lot of concurrent reads
and writes on the same files. Then you may need to partition a larger number of
smaller file servers or use solid-state disks (SSDs) to provide higher throughput
and lower random access times.

If you need to scale the file storage yourself, consider partitioning your files
by uploading them to a randomly selected server and then storing the location
of the file in the metadata database. As you need more servers, you can then use
weighted random server selection, which allows you to specify the percentage
of new files written to each node. High availability can be achieved by hardware
RAID controllers, or if you need higher redundancy levels, by simple file
replication. You can either make your application copy each file to two servers at
the same time or use something as simple as rsync to keep each of your “master”
file servers in sync with the slave.

Building simple file storage is relatively easy, but making it truly scalable and
highly available is a much more complex task requiring both time and money.
Instead of doing it all by yourself, try to opt for an “out of the box,” open-source
data store to store your files. For example, MongoDB allows you to store files
within a MongoDB cluster by using GridFS. GridFS is an extension built into
MongoDB that splits files into smaller chunks and stores them inside MongoDB
collections as if they were regular documents. The benefit of such an approach
is that you only need to scale one system, and you can leverage partitioning and
replication provided by MongoDB instead of implementing your own. You can
find similar solutions for other NoSQL data stores, like Astyanax Chunked Object
Store released as open source by Netflix. It uses Cassandra as the underlying data
store, which allows you to leverage Cassandra’s core features like transparent
partitioning, redundancy, and failover. It then adds file storage–specific features on
top of Cassandra’s data model. For example, it optimizes access by randomizing
the download order of chunks to avoid hotspots within your cluster.

HINT
Remember that distributed file storage is a complex problem. Where possible, stick with a third-
party provider like S3 first. When cloud-based storage is not an option, opt for a data store as a
relatively cheap alternative. It may add some performance overhead, but it allows you to build
your application faster and reduce the maintenance cost. Only when none of these options work
should you consider building a file service from scratch. If you decide to build, be sure to learn
more about distributed file systems like Google File System (GFS),w44 Hadoop Distributed File
System (HDFS),w58 ClusterFS,w61,L15 and fully distributed and fault-tolerant design.

03-ch03.indd 96 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 97

Managing Other Types of State
A few more types of state can sneak into your application and prevent you from
scaling, including local server cache, application in-memory state, and resource
locks. Front-end applications often need to cache data to increase performance and
reduce load on web services and the data layer. I will discuss caching in more
detail in Chapter 6.

A good example of an application that could be sensitive to cache inconsistencies
is a real-time bidding application. If you were building an e-commerce website
showing auctions in real time and you wanted to cache auction data to improve
performance, you could be required to invalidate all of the copies of the cached
auction object any time the price changes. If you stored these cache objects in the
memory of your web servers, it could become extremely difficult to coordinate
such cache invalidation. In such cases, you should cache objects using a shared
object cache so there is only one copy of each object and it could be invalidated
more easily.

Figure 3-9 shows a scenario where multiple servers end up having different
versions of the same object, leading to dangerous pricing inconsistencies. Luckily,
not all use cases are sensitive to cache inconsistency. For example, if you were
building an online blogging platform like tumblr.com, you could cache user

Figure 3-9 Multiple copies of the same cached object

User A

Server A

Cache

Item 79 –> price:$450

Item 88 –> price:$695

Server C

Cache

Item 79 –> price:$450

Item 88 –> price:$732

Server B

Cache

Item 79 –> price:$457

03-ch03.indd 97 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 98 Web Scalability for Startup Engineers

names and their follower counts on web servers to speed up the rendering time
of their posts. In such a case, users might see different follower counts based on
which web server they access, but it would not be a problem if your business was
happy to accept such a minor data inconsistency.

The last common example of server state is resource locks. Locks are used to
prevent race conditions and to synchronize access to shared resources. In some
cases, people would use locks in the front-end layer to guarantee exclusive access
to some resources. Unfortunately, for this to work you need to use a distributed
locks system. Throughout the years I have seen a few applications that were
supposed to be horizontally scalable, but used local locks to synchronize access to
shared resources. Unfortunately, this could never work correctly, as locks would
be locked independently on each web server without any synchronization. Instead
of trying to share locks on web servers, you should “push” the state out of the
application servers similar to the way you did it for HTTP session data and file
storage.

To show how local locks could prevent you from scaling out, let’s consider a
web application that manages users’ eBay bids. If you developed it to run on a
single web server, you could use local locks to synchronize the bidding of each
auction. This way, only one thread/process would ever work on a single auction at
the same time. Figure 3-10 shows how such a deployment might look.

If you then tried to clone your server and run two independent instances,
you would end up with a deployment similar to that shown in Figure 3-11. In
this case, locks would not work as expected, as you could have two concurrently
running threads, one on Server A and another on Server B, both modifying the
same eBay auction without ever realizing that there was another process working
on the same data.

Figure 3-10 Single server using local resource locks

Single Application Server Setup

Server

Updates auctionsHolds a lockLocks for
eBay auctions

eBay auction editor eBay

03-ch03.indd 98 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 99

To avoid this issue you can use a combination of functional partitioning
and scaling out using clones. First, you remove locking functionality from the
application code and create an independent service from it. Then, use your new
shared lock service on all of your web application servers to share locks globally.
This way, your web servers do not hold local state (in the context of locks) and can
be cloned, replaced, or shut down independently. Figure 3-12 shows how such a
deployment might look.

This is actually a common way of scaling out. You isolate a piece of functionality
that requires a globally available state, remove it from the application, and create a
new independent service encapsulating this functionality. Since the functionality
is much more narrow and specialized, it is usually easier to scale out, and it also
hides the shared state behind a layer of abstraction from the rest of the system.

The potential downside of this approach is increased latency, as the application
needs to perform remote calls to accomplish what used to be a local operation.
It can also lead to increased complexity as you end up with more components to
manage, scale, and maintain.

The way you implement distributed locking depends mainly on the programming
language you choose. If you are developing in Java, I would recommend using
Zookeeper with Curator library developed by Netflix.47,L16–L17 Zookeeper is often

Figure 3-11 Two clones using local/independent locks

Incorrect Multi-Server Setup

Server A

Updates auctions
Holds a lockLocks for

eBay auctions
eBay auction editor

Server B

Updates auctionsHolds a lockLocks for
eBay auctions

eBay auction editor

eBay

03-ch03.indd 99 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 100 Web Scalability for Startup Engineers

used for distributed locking, application configuration management, leader
election, and run-time cluster membership information.

If you are using scripting languages like PHP or Ruby, you may want to use
a simpler lock implementation based on atomic operations of NoSQL data
stores. For example, locks can be easily implemented using an add operation
in Memcached (an in-memory cache engine). Listing 3-1 shows a draft of such
simple distributed locking logic. It is not as sophisticated as Zookeeper, as you
can’t get notifications when a lock gets released, but it is often a good enough
solution that can be scaled with ease. Other storage engines usually provide
similar atomic primitives, and I have seen locks implemented using Redis,
Memcached, and SQL databases like MySQL and PostgreSQL.

Listing 3-1 Draft of a simple distributed lock implementation using Memcached

$cache->add('lockName', '1', $timeoutInSeconds);
if ($cache->getResultCode() == Memcached::RES_NOTSTORED) {
 // some other process has the lock
}else{
 // I got the lock
}

Figure 3-12 All clones using shared lock management service

Alternative Multi-Server Setup

Server A

Shared Lock Service Updates auctionsHolds a lock

eBay auction editor

Locks for
eBay auctions Server B

Updates auctionsHolds a lock
eBay auction editor

eBay

03-ch03.indd 100 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 101

In short, keep all your web servers stateless, both front-end web and web
service servers. Keeping servers stateless will let you scale them easily by adding
more clones. In the next section, we will explore each front-end component in
detail, see their impact on scalability, and discuss how to leverage statelessness of
front-end servers to scale them automatically.

Components of the Scalable Front End
Let’s now look at the scalability impact of each component on the front-end
infrastructure and see what technologies can be used in each area. Figure 3-13
shows a high-level overview of the key components most commonly found in the
front-end layer.

As seen in Figure 3-13, the front-end layer includes components like web
servers, load balancers, Domain Name System (DNS), reverse proxies, and CDN.

Figure 3-13 Detailed front-end infrastructure

CDNDNS

Client

Load balancer/reverse proxy

Distributes
requests

Front end

Back end

Web server

Web services / Object caches / Queues / Batch processing servers / Lock servers / File servers

Web server

Your Front-End Web Servers Cluster

Back-End Layers of Our System

03-ch03.indd 101 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 102 Web Scalability for Startup Engineers

Components in the front-end layer are mainly responsible for rendering the user
interface and handling connections initiated directly by the user. Let’s discuss
each component in more detail.

DNS
Domain Name System (DNS) is the first component that your clients talk to when
they want to visit your website. No matter if you are hosting a website or a web
service (for example, for your mobile app), your clients need to find your server’s
IP address before they can connect to it. In essence, DNS is used to resolve domain
names like ejsmont.org to IP addresses like 173.236.152.169.

In almost all cases, I would recommend using a third-party hosted service
instead of deploying your own DNS infrastructure. I would consider hosting
my own DNS servers only if I had extremely specialized needs. For example, if
I worked for a web hosting company and I needed to support DNS entries for
thousands of domains, I might consider hosting my own DNS servers to gain
flexibility and save money on the hosted service itself. There are dozens of large
DNS hosting companies, which are cheap, reliable, and scale well, so finding a
good provider should not be a problem.

If you are hosting your system on Amazon, the best choice is to use Amazon
Route 53 service, which is a hosted DNS service integrated closely with other
Amazon services. The main advantage of using Route 53 is that it is seamlessly
integrated with the Amazon ecosystem. You can easily configure it using the same
user interface that you use for other Amazon services. It integrates with other key
components, such as an Elastic Load Balancer, and you can configure it entirely
using a remote web service API.

If your startup grows much larger, you can also use latency-based routing of
Route 53 to direct your clients to the “closest” data center. If you were hosting
your servers in multiple Amazon regions (multiple data centers), your clients would
actually benefit from establishing a connection to a region that is closer to their
location. Route 53 allows you to do that easily using latency-based routing.L20–L21
It works similar to geoDNS mentioned in Chapter 1, but the data center is selected
based on the latency measurement rather than location of the client. When you think
about it, this technique is even more robust than geoDNS, as measurements can
change over time depending on network congestion, outages, and routing patterns.

Any time a client tries to resolve a domain name to an IP address, it connects
to a Route 53 DNS server near its location (Amazon has over 50 edge locations all
over the worldL22). Then, based on the lowest network latency, the Route 53 server
responds with an IP address of one of your load balancers (depending on which
region is “closer” to the user). Figure 3-14 shows how such routing is performed.

03-ch03.indd 102 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 103

You can see in this diagram that the application has been deployed in two Amazon
regions: one in Europe and another in North America. In such a setup, clients
connecting from Cuba would get the IP address of either the European region or
North American region, depending on the network latency to each of them.

If you are not hosting your servers on Amazon, there are plenty of providers
from which to choose, including easydns.com, dnsmadeeasy.com, dnsimple.
com, and dyn.com. Each offers a similar level of service, latencies, and uptime
guarantees,L23–L24 and switching to a different provider is usually an easy task,
so selecting a DNS provider should not be a major concern.

Load Balancers
Once your clients resolve your domain name to an IP address using a DNS service,
they will need to connect to that IP to request the page or web service endpoint.
I strongly recommend using load balancers as the entry point to your data center,
as they will allow you to scale more easily and make changes to your infrastructure
without negatively affecting your customers.

In the old days, when load balancers were less common and more expensive,
DNS was sometimes used to distribute traffic over more than one web server.
Figure 3-15 shows how such a round-robin DNS setup might look like.

Figure 3-14 Route 53 latency-based routing

Client (Cuba)

Nearest Route 53
edge location

(Miami)

Los Angeles Region

Your servers

Elastic Load Balancer
<....50 ms100 ms>

HTTP
requests

Dublin Region

Your servers

Elastic Load Balancer

DNS lookup

03-ch03.indd 103 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 104 Web Scalability for Startup Engineers

There are a few problems with the round-robin DNS approach, with the biggest
issue being that it is not transparent to the clients. You cannot remove a server
out of rotation because clients might have its IP address cached. You cannot add
a server to increase capacity either, because clients who already have resolved the
domain name will keep connecting to the same server (they can cache your DNS
records for as long as the Time to Live policy allows). Using round-robin DNS to
distribute traffic directly to your web servers makes server management and
failure recovery much more complicated, and I would advise against using this
strategy in production.

Instead, put a load balancer between your web servers and their clients, as
shown in Figure 3-16. In this configuration, all the traffic between web servers and
their clients is routed through the load balancer. By doing so, the structure of your
data center and current server responsibilities are hidden from your clients.

There are some important benefits to using a load balancer:

 ▶ Hidden server maintenance You can take a web server out or the load
balancer pool, wait for all active connections to “drain,” and then safely shut
down the web server without affecting even a single client. You can use this
method to perform “rolling updates” and deploy new software across the
cluster without any downtime.

Figure 3-15 DNS round-robin–based load balancing

Client asks DNS for example.com
and gets one of the IP addresses

Domain IP Addresses
example.com 66.66.66.1

example.com 66.66.66.N

... ...
Client connects

directly to one of the
web servers based

on the DNS response

IP: 66.66.66.1 IP: 66.66.66.N

DNS has IP addresses of
all of your web servers.

Adding/removing a server
requires DNS change.

Your web servers
are reachable directly

by the client.

Add more clones

Round-Robin DNS

Client

Web Servers

Server 1 Server N

03-ch03.indd 104 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 105

 ▶ Seamlessly increase capacity You can add more web servers at any time
without your clients ever realizing it. As soon as you add a new server, it can
start receiving connections; there is no propagation delay as when you use
DNS-based load balancing.

 ▶ Efficient failure management Web server failures can be handled quickly
by simply taking a faulty web server out of the load balancer pool. Even if
provisioning a new web server takes time, you can quickly remove a broken
instance out of the load balancer pool, so that new connections would not be
distributed to that faulty machine.

 ▶ Automated scaling If you are on cloud-based hosting with the ability to
configure auto-scaling (like Amazon, Open Stack, or Rackspace), you can
add and remove web servers throughout the day to best adapt to the traffic.
By having a load balancer, you can do it automatically, without causing
any downtime or negatively impacting your customers. I will explain auto-
scaling later in this chapter.

 ▶ Effective resource management You can use Secure Sockets Layer (SSL)
offloading to reduce the resources your web servers need. SSL offloading,

Figure 3-16 Deployment with a load balancer

Client asks DNS for example.com
and gets IP addresses of the load balancer

Domain IP Addreses
example.com 66.66.66.1

Load balancer

Always connects to
the load balancer IP

Distributes traf�c
anong web servers

IP: 10.0.0.1 IP: 10.0.0.N

DNS has only IP address
of your load balancer server.

Adding/removing web
servers requires load

balancer con�guration
changes, but no DNS change.

Your web servers are
not reachable directly
by the client any more.

Add more clones

rr
Regular DNS

Web Servers

Server 1 Server N

IP:66.66.66.1

Client

03-ch03.indd 105 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 106 Web Scalability for Startup Engineers

sometimes also called SSL termination, is a load balancer feature allowing
you to handle all SSL encryption/decryption work on the load balancer and
use unencrypted connections internally. I recommend using SSL offloading
any time you can get away with it from a security compliance point of view.

As you can see, using a load balancer as the entry point to your data center has
a lot of benefits. Load balancers are popular, and there are many good options
from which to choose. Because every system is different, it is hard to recommend
a particular technology without knowing the details of the application, but there
are three broad solution types that fit most of today’s systems. Let’s quickly go
through each of these options and discuss available technologies.

Load Balancer as a Hosted Service
If, as with many startups, you are hosting your application on Amazon EC2 or
Azure, I strongly recommend using their hosted load balancer services rather
than deploying your own load balancers. One example of such a service is Elastic
Load Balancer (ELB) offered by Amazon. ELB is a “load balancer as a service,”
which is hosted, scaled, and managed by Amazon. All you have to do to start
using it is to configure it via the web console and point it to a group of EC2 instances.
Some benefits of ELB include the following:

 ▶ ELB is the cheapest and simplest solution to start with, as you have one fewer
component to manage and scale.

 ▶ ELB scales transparently, so you do not have to worry about the load balancer
becoming the bottleneck.

 ▶ ELB has built-in high availability, so you do not have to worry about ELB
becoming a single point of failure. If you decide to install your own load
balancers, make sure that you have automatic failover and a hot standby
load balancer ready to pick up the load in case the primary load balancer fails.

 ▶ ELB is cost effective with minimal up-front costs. You pay for what you use,
and there is no initial charge for setting up an ELB instance.

 ▶ ELB integrates with auto-scaling and allows for automatic EC2 instance
replacement in case of web server failures. I will describe auto-scaling groups
later in this section.

 ▶ ELB can perform SSL termination, so connections coming from ELB to your
web servers are HTTP, not HTTPS (Hypertext Transfer Protocol over SSL).
This can significantly reduce the resources needed by your EC2 instances,
as you would not need to run the SSL web server at all.

03-ch03.indd 106 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 107

 ▶ ELB supports graceful back-end server termination by use of the connection
draining feature. This lets you take a web server out of the load balancer
pool without terminating existing connections. You can take the server out
of the pool, wait for existing clients to disconnect, and safely shut down the
instance without ever affecting any of the clients.

 ▶ ELB can be fully managed using Amazon SDK so that you can automate
load balancer configuration changes any way you wish. For example, you
can automate deployments across multiple machines so that instances are
automatically taken out of the load balancer pool during code deployment.

As you can see, ELB is a strong candidate. Amazon managed to build a lot of
features into ELB over the years, making it even more attractive than it used to be.
There is only one significant reason why ELB may not be suitable for your application:

 ▶ ELB needs some time to “warm up” and scale out. If you get sudden spikes in
traffic that require doubling capacity in a matter of seconds or minutes, ELB
may be too slow for you. ELB is great at auto-scaling itself, but if your traffic
spikes are sudden, it may not be able to scale fast enough. In such cases,
some of your clients may receive HTTP 503 error responses until ELB scales
out to be able to handle the incoming traffic.

In addition to publicly facing load balancers, some cloud providers, like Amazon
and Azure, allow you to configure their load balancers internally as well. Figure 3-17
shows an example of an internal load balancer. In this deployment scenario you
put a load balancer between your front-end servers and your internal services.
If all web service requests sent from front-end servers go through an internal
load balancer, you gain all the benefits of a load balancer deeper in your stack. You
can easily add servers to increase capacity, you can remove machines from the load
balancer during maintenance, you can distribute requests among multiple machines,
and you can provide automatic failure recovery because the load balancer can remove
broken hosts from the pool automatically.

Self-Managed Software-Based Load Balancer
If you are hosted on a cloud provider that does not have a load balancer service
or does not meet your requirements, you may want to use one of the open-source
(software-based) load balancers. You can use either a reverse proxy like Nginx or
a specialized open-source load balancer product like HAProxy. More options are
available on the market, but these two are by far the most popular.

03-ch03.indd 107 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 108 Web Scalability for Startup Engineers

The main advantage of Nginx is that it is also a reverse HTTP proxy, so it can
cache HTTP responses from your servers. This quality makes it a great candidate
for an internal web service load balancer, as shown in Figure 3-17. Not only
can you scale out your web service layer by adding more servers to the Nginx
pool, but you can also benefit greatly from its caching capabilities, reducing the
resources needed on the web services layer. I will talk more about these benefits in
Chapter 4 and Chapter 6. For now, just know that Nginx is a very good candidate
for a reverse proxy/load balancer.

HAProxy, on the other hand, is simpler in design than Nginx, as it is just a load
balancer. It can be configured as either a layer 4 or layer 7 load balancer. When
HAProxy is set up to be a layer 4 proxy, it does not inspect higher-level protocols
and it depends solely on TCP/IP headers to distribute the traffic. This, in turn,
allows HAProxy to be a load balancer for any protocol, not just HTTP/HTTPS.

Figure 3-17 Internal load balancer

HTTP requests

Elastic Load Balancer

Distributes requests

Distributes requests

Internal load balancer

Front-End Web Servers

EC2 instance EC2 instance

Web Services

EC2 instance EC2 instance

Add more clones

Add more clones

03-ch03.indd 108 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 109

You can use HAProxy to distribute traffic for services like cache servers, message
queues, or databases. HAProxy can also be configured as a layer 7 proxy, in which
case it supports sticky sessions and SSL termination, but needs more resources to
be able to inspect and track HTTP-specific information. The fact that HAProxy
is simpler in design makes it perform slightly better than Nginx, especially when
configured as a layer 4 load balancer. Finally, HAProxy has built-in high-availability
support (HAProxy stands for High Availability Proxy), which makes it more
resilient to failures and simplifies failure recovery.

In both cases, whether you use Nginx or HAProxy, you will need to scale the
load balancer yourself. You are most likely going to reach the capacity limit by
having too many concurrent connections or by having too many requests per
second being sent to the load balancer. Luckily, both Nginx and HAProxy can
forward thousands of requests per second for thousands of concurrent clients
before reaching the capacity limit. This should be enough for most applications,
so you should be able to run your web application on a single load balancer (with
a hot standby) for a long time.

When you do reach the limits of your load balancer capacity, you can scale
out by deploying multiple load balancers under distinct public IP addresses and
distributing traffic among them via a round-robin DNS. Figure 3-18 shows how
you could scale software-based load balancers beyond a single machine using this
technique.

As you can see, there is nothing complicated about this approach. As long as
your load balancers are interchangeable and your web servers are stateless, you
can keep adding more load balancers to scale horizontally. Having multiple load
balancers is more complex to manage, as deployments and configuration changes
may need to span multiple load balancers, but it is still a relatively simple way to
scale out.

It is acceptable to use round-robin DNS pointing to multiple load balancers
(rather than web servers) because you will never have any business logic on your
load balancers. You will not have to redeploy or upgrade your load balancers as
often as you would with your web servers, and load balancers are much less likely
to fail due to a bug.

Hardware Load Balancer
Finally, on the high end of the scale, you have hardware load balancers. If you
are hosting a high-traffic website in your own physical data center, you should
consider a dedicated hardware load balancer. Devices like Big-IP from F5 or
Netscaler from Citrix support very rich feature sets and provide much higher

03-ch03.indd 109 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 110 Web Scalability for Startup Engineers

capacity than software-based load balancers. By having hardware load balancers,
you mainly benefit from high throughput, extremely low latencies, and consistent
performance. Hardware load balancers are highly optimized to do their job, and
having them installed over a low-latency network makes a big difference. They
can often handle hundreds of thousands or even millions of concurrent clients,
making it much easier to scale vertically.L25–L26

The obvious downside of hardware load balancers is their high purchase cost.
Hardware load balancer prices start from a few thousand dollars (for a very low-
end device) and go as high as over 100,000 dollars per device. Another challenge
with hardware load balancers is that they usually require specialized training, and
it is harder to find people with the work experience necessary to operate them.
Nonetheless, if you are hosting a high-traffic website on your own hardware and
you can afford it, a hardware load balancer is the best way to go.

Figure 3-18 Multiple load balancers

IP:66.66.66.1

Client

IP:66.66.66.2

Third-party
round-robin

DNS

Asks DNS for example.com
gets one of the IP addresses

Connects to
one of the load

balancers

Add more
load balancers

Distribute requests

Domain

example.com

IP Addresses

66.66.66.1

example.com 66.66.66.2

Add more clones

Web Servers

Server NServer 1

03-ch03.indd 110 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 111

I believe that load balancer as a service will become more popular in the coming
years. It is a fairly generic solution, and it is needed by most web infrastructures,
so cloud hosting platforms will not be complete without offering a load balancing
service anymore. In fact, hosting providers other than Amazon already offer load
balancing as a service; you have Azure Load Balancer with support of both internal
and external load balancing, Cloud Load Balancers at Rackspace, and LbaaS at
Open Stack. So even if you are not hosting your infrastructure on Amazon, it is
worth checking whether your hosting provider has a load balancer as a service
solution. Scaling through their service might be cheaper and simpler to start with.
As your company grows, or when you have specialized use cases, you can switch to
your own solution.

Web Servers
As I mentioned before, front-end servers should not have much business logic
and they should be treated as a presentation and web service results aggregation
layer rather than the core of your system. I will talk more about the benefits of
having web services in Chapter 4, but for now let’s assume that front-end web
servers should not contain business logic, but delegate to web services to perform
the actual work.

Because the front end is mainly about handling user interactions, rendering
views, and processing user input, it makes sense to use technologies that are good
at these tasks. I would recommend dynamic languages like PHP, Python, Groovy,
Ruby, or even JavaScript (Node.js) for the front-end web application development,
rather than using pure Java or C or a constraining framework like Java EE, JSF,
or CGI. You want your technology stack to make common front-end problems
simple to solve. For example, you need to make it cheap and easy to take care of
SEO, AJAX, internationalization, and daily template changes. It is beneficial to
have the same technology stack across all of your layers, as it allows for easier
code reuse and requires your team to master fewer technologies. Having said that,
it is not uncommon to see different technologies used on the front-end servers
and back-end servers of the same system, as different layers may face different
challenges and may benefit from a different architectural style.

Once you select your language and framework, you will need to select the
actual web server on which to run your application. Luckily, from the scalability
point of view, it does not matter much which language you choose and which
web server are you running on. As long as your front-end web servers are truly
stateless, you can always scale out horizontally by simply adding more servers.

03-ch03.indd 111 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 112 Web Scalability for Startup Engineers

Node.js is a run-time environment and a set of components allowing
developers to use JavaScript on the web server side. It is a fairly new
technology (development began in 2009) and it is surrounded by a
lot of buzz due to some exciting concepts used in Node.js that help
maximize throughout. It performs exceptionally well in use cases
where the web application needs to maintain open connections with
tens or hundreds of thousands of concurrent clients without much
communication happening for long periods of time, or with small
packets of data exchanged between the client and server. In such
applications, a single machine running a Node.js server may support
orders of magnitude more clients than other technologies might be
able to.

Some will argue that web server choice makes a big difference and that Node.js
can handle hundreds of thousands of concurrent connections, whereas Apache
will crash and burn on a couple thousand. My answer to that is yes and no. Yes,
it is true that for some use cases one technology may scale much better than
another, but on the other hand, it does not matter in the end, as I am talking
about horizontal scalability of the entire cluster rather than vertical scalability of
a single machine. Worry more about big-picture horizontal scaling from day one
rather than focusing on specialized use cases. For some applications, like a chat
room, instant notification feature, or a back end for an interactive multiplayer
game, it makes more sense to use Node.js rather than Apache or Tomcat, but for
the other 98 percent of the use cases, it may be simpler and cheaper to develop
in Groovy, Python, PHP, or Ruby, as they have much larger and more mature
ecosystems built around them.

There are simply too many choices on the market to fully recommend a
particular web server or development stack. It all comes down to the experience
you have within the team and personal preferences. Do some research before
committing to a particular stack and a web server, but as I mentioned before, no
matter what web server you choose, the most important thing for your scalability
is to keep your front-end machines stateless.

03-ch03.indd 112 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 113

HINT
When doing research before choosing your stack, steer away from assumptions and take all
benchmarks with a grain of salt. Benchmarks are like political polls; their results always depend
on who prepared them. Always assume that there was some agenda behind a benchmark. To
gain value from a benchmark, understand what was measured, how was it done, and under what
conditions. Finally, pay attention to the graphs, as there are surprisingly many ways in which we
may be deceived.L27–L28

Caching
Caching is one of the most important techniques when it comes to scaling the
front end of your web application. Instead of trying to add more servers or make
them respond faster to clients’ requests, use caching to avoid having to serve
these requests in the first place. In fact, caching is so critical to the scalability of
web applications that Chapter 6 is dedicated to it. To avoid repeating parts of that
deeper dive, let’s just highlight a few components relevant to the front-end layer
of your application here.

One of the first things you should do is integrate a CDN. We’ll cover the details
of setup in Chapter 6. On a high level, you can use a CDN to proxy all of the web
requests coming to your web servers, or you can use it solely for static files like
images, CSS, and JavaScript files.

If you decide to serve all of your traffic via the CDN, you may be able to
leverage it to cache entire pages and even AJAX responses. For some web
application types, you can serve most of your traffic from the CDN cache,
resulting in less load on your servers and better response times.

Unfortunately, not all web applications can use CDN to effectively cache entire
pages. The more personalized your content is and the more dynamic the nature
of your web application, the harder it becomes to cache entire HTTP responses.
In such cases, you may be better off deploying your own reverse proxy servers
to gain more control over what is cached and for how long. Most common
alternatives for it are reverse proxies like Varnish and Nginx, which we’ll cover in
Chapter 6.

Another way to use caching in the front-end layer is to store data directly in
the browser. Modern browsers supporting the web storage specification let you
store significant amounts of data (megabytes). This is especially useful when
developing web applications for mobile clients or SPAs, as you want to minimize
the number of web requests necessary to update the user interface. By using local

03-ch03.indd 113 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 114 Web Scalability for Startup Engineers

browser storage from your JavaScript code, you can provide a much smoother user
experience, reducing the load on your web servers at the same time.

Finally, if requests cannot be satisfied from the browser caches or reverse proxies,
your web servers will need to serve them and generate the responses. In such
cases, you may still be able to cache fragments of your responses in an object
cache. Most web applications can benefit from a shared object cache like Redis or
Memcached. In fact, many startups managed to scale to millions of daily users by
beefing up their Memcached clusters. Some of the best examples of scaling using
Memcached are Facebook,w62 Pinterest,L31 Reddit,L32 and Tumblr.L33

Auto-Scaling
Auto-scaling is a technique of automating your infrastructure so that new virtual
servers would be added or removed from your clusters depending on the volume
of traffic and server load. Scalability is not just about scaling out; it is also about
the ability to scale down, mainly to save cost. Auto-scaling is a technique rather
than a component of your front-end infrastructure, but it brings great benefits
and is especially easy to implement in the front-end layer of a web stack.

To better understand why it is important to automate scaling of your stack,
look at Figure 3-19. It is not important here what metric is shown in the graph, but
what the weekly pattern of the load put on the infrastructure is (the graph shows
data from a free ISP monitoring tool). The key feature is that traffic changes
significantly throughout the day, and it may also be significantly different on the
weekends. Rather than having to add and remove virtual machines manually,

Figure 3-19 Common infrastructure utilization pattern

03-ch03.indd 114 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 115

it is better to automate the process so that your system “knows” how to monitor
its own condition and scale up or down respectively. Depending on your traffic
patterns, using auto-scaling can save you as much as 25 percent or even 50
percent of your overall web server hosting costs. It can also help you handle
unexpected spikes in traffic without any human interaction.

The easiest way to implement auto-scaling is to use the hosting provider’s
auto-scaling tools. Check whether your hosting provider offers auto-scaling
functionality before trying to implement your own. Amazon was the first cloud
hosting company that implemented auto-scaling as a service, and they are still
the leader in that area, but other providers like Rackspace and Azure now provide
auto-scaling functionality as part of their cloud hosting suite as well. To better
understand how auto-scaling works and what components are involved, let’s have
a look at an example using Amazon.

First, to be able to configure auto-scaling, you will need to use Amazon EC2
(Elastic Compute Cloud) instances for your web servers. When you use auto-
scaling, servers may be added or removed at any time of the day. Auto-scaling
can take out any instance at any point in time, so you cannot store any data on
your web servers, or at least make sure that any data stored on web servers is
disposable (like a cache). Shutting down a web server should not cause any users
to be logged out or receive a broken user experience.

Before you can create EC2 instances automatically, you will have to create a
web server image (Amazon Machine Image [AMI]) and configure it to be able
to bootstrap itself and join the cluster automatically. To do so, everything that
is needed for a new EC2 instance to become a fully functional web server must
be in the AMI file itself, passed in by AMI launch parameters, or fetched from
a remote data store. Amazon allows server images to take bootstrap parameters
so you can create a new instance and tell it what cluster it belongs to or what the
role of the server is. You can also use Amazon storage services, like SimpleDB, to
store bootstrap configuration for EC2 instances, so any time a new EC2 instance
is started using a particular AMI image, it will be able to load the necessary
configuration from the shared data store and configure itself to become a fully
functional web server.

Next, you can create an auto-scaling group to define scaling policies. An auto-
scaling group is the logical representation of your web server cluster and it can
have policies like “add 2 servers when CPU utilization is over 80 percent” or “set
minimum server count to 4 every day at 9 a.m.” Amazon has a powerful policy
framework, allowing you to schedule scaling events and set multiple thresholds
for different system metrics collected by Cloud Watch (a hosted service used to
gather system-level metrics).

03-ch03.indd 115 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 116 Web Scalability for Startup Engineers

When you create an auto-scaling group, you can also decide to use Amazon
ELB. If you decide to do that, new instances added to the auto-scaling group
will be automatically added to the load balancer pool as soon as they complete
bootstrapping. This way, Amazon auto-scaling can launch new instances, add
them to the load balancer, monitor cluster metrics coming from Cloud Watch,
and based on the policies, add or remove further server instances. Figure 3-20
shows how Amazon auto-scaling works. Auto-scaling controls all of the instances
within the auto-scaling group and updates ELB any time servers are added or
removed from the cluster.

Auto-scaling is in some ways similar to self-healing, explained in Chapter 2, as
you make your system handle difficulties without human interaction. No matter
how many servers you have or when traffic spikes occur, your network engineers
will not have to monitor the load or react to changing conditions. Your system
will able to adjust its infrastructure depending on the current conditions and
provide a good user experience (peak) in a cost-effective manner (trough).

Figure 3-20 Amazon auto-scaling

HTTP requests

Elastic Load Balancer

Updates Elastic Load Balancer
any time instances are added or removed

Adds/removes
EC2 instances

AMI

Uses selected
AMI image

Amazon Auto
Scaling

Amazon
CloudWatch

service

Collects system metrics from each
EC2 instance in the group

Monitoring
alerts

Distributes requests

Auto-Scaling Group

Your Front-End Web Servers Cluster

Automatic horizontal scaling

EC2 instance 1 EC2 instance N

03-ch03.indd 116 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 117

Deployment Examples
Finally, let’s put it all together and see two different deployment scenarios: a web
application hosted entirely on Amazon and one hosted in a private data center
on dedicated hardware. Naturally, these are just blueprints and many of the
components included here are optional and may be scaled down depending on
your particular system needs.

AWS Scenario
There is a lot of value in additional services provided by Amazon. If your company
is a young startup, you really need to be able to get up and running fast. For young
startups, every day may be the difference between success and failure, as uncertainty
is colossal and resources are sparse. Figure 3-21 shows a blueprint of a typical Amazon
web application deployment with web services and data storage layers removed for
simplicity.

Just by looking at the diagram, you can see that Amazon is a full stack-hosting
company. They thought of pretty much everything a scalable web application
might need. As a result, the only components that you are responsible for in
Figure 3-21 are your EC2 instances. Even there, however, Amazon can detect EC2
instance failures, shut down the broken servers, and create a new one based on
the auto-scaling needs.

In the example in Figure 3-21, the application uses Route 53 as the DNS. Since
Route 53 provides high availability and scalability out of the box, you will not
need to worry about managing or scaling the DNS. Further down the stack, web
requests hit the ELB, where you can implement SSL offloading and round-robin
traffic distribution to your auto-scaling group. In this case, you do not have to
worry about scalability or high availability of the load balancer either, as ELB
provides them out of the box.

When requests finally hit your web servers (EC2 instances), web servers use the
web services layer, caches, queues, and shared data stores to render the response.
To avoid storing any local state, all files (public and private) are stored in S3.
Public files are served directly from S3, and private files are returned by your
web servers, but they are still stored on S3 for scalability and high availability.

On its way back to the client, responses may be cached in CloudFront. Since not
every application would benefit from CloudFront, this component is optional. You
could deliver public content directly from S3 without going through CloudFront
with a similar effect. S3 and CloudFront both provide high scalability and high
availability as part of the service. In addition, they also speed up your response
times by having edge servers hosted all around the world.

03-ch03.indd 117 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 118 Web Scalability for Startup Engineers

As you can see, there are a lot of components in this deployment, but most of
them are hosted services. When you think of it, that is a huge amount of features
and a load off your mind. Just ten years ago, I wouldn’t have dreamed of being able
to scale, deploy, and develop so quickly simply by using third-party platforms.

If you are a small startup on its way up, consider leveraging Amazon to help
you scale. You should be able to use it at least until you get your product right
and enough cash in the bank to be able to afford building custom solutions for all

Figure 3-21 Amazon deployment example

Your Front-End Web Servers Cluster

Auto-Scaling Group

Back-End Layers of Your System

Web services/Object caches/Queues/Batch processing servers/Lock servers

DNS lookup

Route 53 DNS
User sends all
HTTP requests
to Amazon CloudFront

Static �les are delivered
directly from S3 buckets

Dynamic content
served from your
cluster via ELB

Distributes requests

Elastic Load Balancer

Updates Elastic Load Balancer
any time instances are added or removed

Adds/removes
EC2 instances

Collects metrics
Alerts

Amazon Auto
Scaling

Amazon
CloudWatch
service

Private S3 buckets

Protected �les accessed
from EC2 instances

Public S3 buckets
CloudFront CDN
caching and
edge servers

EC2 instance 1 EC2 instance N

Client

Automatic horizontal scaling

03-ch03.indd 118 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 119

these problems. Amazon is very cost efficient for small companies that need to
deal with a lot of uncertainty, as there is virtually no up-front cost. As you become
larger and richer, priorities often change and it may become much more attractive
to host your systems on your own hardware.

Private Data Center
The second deployment scenario is based on dedicated hardware in a physical
data center. In this configuration, the only services that you could easily offload to
third parties are DNS and CDN. Some people use Amazon S3 for file storage even
when hosting on their own infrastructure, but it is not a very common practice.

Even though hosting on bare metal forces you to manage much more yourself,
there are considerable benefits of dedicated hardware. The most significant reasons
for hosting on your own hardware are

 ▶ You may require more predictable latencies and throughput. Hosting on your
own hardware lets you achieve submillisecond server-to-server round trips.

 ▶ Hardware servers are much more powerful than virtual servers. You will need
many fewer machines when migrating from the cloud to bare hardware.

 ▶ Buying servers up front is expensive when you are a small company, but once
your network engineering team grows and you are managing over a hundred
servers, it may become cheaper to have your own servers rather than renting
“compute units.” Some things, like random access memory (RAM), input-
output (I/O) operation, and SSD drives, are still very expensive in the cloud
when compared to regular servers. In general, vertical scaling is more
effective when done using your own hardware.

 ▶ Some companies need to conform to strict security or legal requirements.
For example, some gambling jurisdictions require companies to host all
of their servers within a particular location—in such a case, hardware is a
necessity, not an option.

Figure 3-22 shows an example of a private data center deployment. I would still
recommend using third-party DNS and CND providers, but the rest of the stack
would have to be managed by your own team.

In similar fashion to Amazon deployment, requests first hit the load balancer;
in this case it would be a hardware device: HAProxy or Nginx. If you decide that
you need another layer of caching, you may use Nginx as the load balancer or
put a layer of reverse proxy servers between your load balancer and your web

03-ch03.indd 119 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 120 Web Scalability for Startup Engineers

servers. This way, you can cache entire HTTP responses. The only thing inhibiting
vertical scaling for your load balancer is the price per device. In such a case, you
may implement the round-robin solution to distribute traffic over multiple load
balancers.

Since you cannot provision hardware servers on demand, you would not be
able to implement auto-scaling and you would need to coordinate and plan

Figure 3-22 Private data center deployment

DNS lookup

Requests for static content
static.example.com

Requests for
dynamic content
www.example.com

Load balancers HAProxy/Nginx or hardware

Your Front-End Web Servers Cluster Static Files Delivery Servers

Back-End Layers of Your System

Distributes
requests

.example.com

DNS

Client

CDN
eg. Akamai/CloudFlare

Fetch static content
from origin server

Distributes
requests

Fetch static files
from file servers

Web services/Object caches/Queues/Batch processing servers/Lock servers/File servers

03-ch03.indd 120 06/05/15 12:04 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 3

 Chapter 3: Building the Front-End Layer 121

scale-out events more carefully. Adding hardware can take weeks, or in some
bureaucratic companies even months, so plan your capacity carefully, as you
will not be able to handle traffic spikes by adding new machines with the click
of a button. Even when you host on your own hardware, I would still strongly
recommend building your web applications in a stateless fashion. This way, even
if you cannot automate the scaling process, you can still perform it quickly and
avoid horizontal scalability roadblocks.

When hosting on your own hardware, you will also need to choose how to
deploy your shared file storage. The file store solution depends mainly on the
throughput and data size, and I already presented a few options earlier in this
chapter. I prefer solutions where the application does not have to know how
files are stored and replicated. Depending on the budget and requirements, you
can use anything from a simple File Transfer Protocol (FTP) server to a more
sophisticated solution like Storage Area Network (SAN) or NoSQL data stores.

No matter which file storage solution you choose, you will need to be able
to serve these files via a CDN. When hosting on S3, public buckets become
automatically available over HTTP, so you can just point the CDN to them. In
case of a private data center, you will need to put a layer of web servers in front of
your file storage to allow public access to your files via the CDN.

As you can see, the components of the infrastructure and underlying principles
of the architecture remain the same—the only pieces that change are the
technologies used to achieve the same goals. I believe that it is much cheaper
and quicker to get started by hosting on the cloud, and then once you grow large
enough you can consider moving to a private data center.

Summary
The front end is usually one of the key areas requiring high scalability, as it needs
to sustain the highest levels of concurrency and request rates. Luckily, if designed
well, it can be a relatively easy area to scale, as it has the least amount of state that
needs to be managed (replicated or synchronized).

I would strongly recommend reading some more books and articles focusing
on the technologies mentioned in this chapter. There are some great books on
caching, load balancers, and general front-end optimization techniques.8,48–49
I would also recommend reading a little bit on modern web frameworks like
Spring14 or Grails,22,34 as they promote good web application architecture. Finally,
I would recommend getting more familiar with cloud hosting.29,w34–w36,w38

03-ch03.indd 121 06/05/15 12:04 PM

This page intentionally left blank

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

123

CHAPTER

4
Web Services

04-ch04.indd 123 09/05/15 1:20 PM

 124 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

Careful design of the web services layer is critical because if you decide
to use web services, this is where most of your business logic will live.
Before you jump into implementation of your web services, it is important

to consider whether you need them in the first place and what tradeoffs you
are willing to make. There are many benefits that come with web services, such
as promoting reuse and higher levels of abstraction, but there are also some
drawbacks associated with them, such as higher up-front development costs and
increased complexity.

To help you make these decisions, I will discuss different approaches to
designing and developing web services together with some of their benefits
and costs. I will also cover scalability considerations and some best practices of
building scalable web services. Before we get into details of how to scale web
services, let’s first have a look at different design approaches.

Designing Web Services
Initially, web applications were built using simple, monolithic architecture. At
this time, all of the interactions were done using Hypertext Markup Language
(HTML) and JavaScript over Hypertext Transfer Protocol (HTTP). Beginning
in the mid-2000s, it became increasingly popular to expose alternative ways
to interact with web applications by providing different types of application
programming interfaces (APIs). This allowed companies to integrate their systems
and collaborate on the Web. As the Web got bigger, the need for integration
and reuse grew with it, making APIs even more popular. The most recent
significant driver for API adoption came in the late 2000s with a massive mobile
development wave. Suddenly, everybody wanted a mobile app and it became clear
that in many cases, a mobile app was just another user interface to the same data
and to the same functions that the existing web applications already had. The
popularity of mobile applications helped APIs become a first-class citizen of web
development. Let’s now have a look at different ways of designing APIs.

Web Services as an Alternative Presentation Layer
Arguably the oldest approach to developing web services in the context of web
applications is to build the web application first and then add web services as
an alternative interface to it. In this model, your web application is a single unit
with extensions built on top of it to allow programmatic access to your data and
functionality without the need to process HTML and JavaScript.

04-ch04.indd 124 09/05/15 1:20 PM

 Chapter 4: Web Services 125

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

To explain it better, let’s consider an example. If you were building a hotel-
booking website, you would first implement the front end (HTML views with
some AJAX and Cascading Style Sheets [CSS]) and your business logic (usually
back-end code running within some Model View Controller framework). Your
website would then allow users to do the usual things like searching for hotels,
checking availability, and booking hotel rooms.

After the core functionality was complete, you would then add web services
to your web application when a particular need arose. For example, a few
months after your product was live, you wanted to integrate with a partner
company and allow them to promote your hotels. Then as part of the integration
effort you would design and implement web services, allowing your partner to
perform certain operations, for example, searching for hotels based on price and
availability. Figure 4-1 shows how such a system might look.

As you can see in Figure 4-1, your web application is developed, deployed,
and executed as a single unit. It does not mean that you cannot have multiple
servers running the exact same copy of the application. It just means that they

Figure 4-1 Monolithic application with a web service extension

Web clients Mobile application

Web Application
Controllers

Partner system

MVC Web App

AJAX
Controllers

Mobile Service
Controllers

Shared Business Logic

HTML/AJAX
Web Services
Business Logic
Data Access

Third-Party
Integration Service

Controllers

Data
Stores

04-ch04.indd 125 09/05/15 1:20 PM

 126 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

all run the same codebase in its entirety and that there is no distinction between
presentation and service layers. In fact, there is no distinct web services layer in
this approach, as web services are part of a single monolithic application.

Web applications like this would usually be developed using a Model View
Controller framework (like Symfony, Rails, or SpringMVC), and web services
would be implemented as a set of additional controllers and views, allowing
clients to interact with your system without having to go through the complexity
of HTML/AJAX interactions.

Although you could argue that this approach is immature or even obsolete, I
believe that there are still valid reasons for using it in some situations. The main
benefit of this approach is that you can add features and make changes to your
code at very high speed, especially in early phases of development. Not having
APIs reduces the number of components, layers, and the overall complexity of the
system, which makes it easier to work with. If you do not have any customers yet,
you do not know whether your business model will work, and if you are trying
to get the early minimum viable product out the door, you may benefit from a
lightweight approach like this.

The second important benefit of this approach is that you defer implementation
of any web service code until you have proven that your product works and that it is
worth further development. Although you can develop web services very efficiently
nowadays, they still add to the up-front cost. For example, when using a monolithic
approach, you can simply use your native objects anywhere in your code by passing
them around rather than having to add new web service functionality. Managing
web service contracts and debugging issues can be very time consuming, making
the difference between success and failure of your early project.

Finally, not every web application needs an API, and designing every
web application with a distinct web services layer may be just unnecessary
overengineering.

On the other hand, for all but the simplest of systems, the monolithic approach
is the worst option from a scalability and long-term maintenance point of view.
By having all of the code in a single application, you now have to develop and host
it all together. It may not be a problem when you have a team of four engineers all
working together in a single room, but it becomes very difficult to keep growing
such a system past a single engineering team, as everyone needs to understand
the whole system and make changes to the same codebase.

As your application grows in size and goes through more and more changes,
the flexibility of making quick, ad hoc changes becomes less important. In turn,
the separation of concerns and building higher levels of abstraction become much
more important. You need to use your judgment and make tradeoffs between the
two depending on your situation.

04-ch04.indd 126 09/05/15 1:20 PM

 Chapter 4: Web Services 127

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

If you decide to use the monolithic approach, you need to be cautious of its
potential future costs, like the need for major refactoring or rewrites. As I explained
in Chapter 2, keeping coupling under control and functional partitioning are
important things to consider when designing for scale. Luckily, the monolithic
approach is not the only way to design your applications. Let’s have a look at the
opposite end of the spectrum now: the API-first approach.

API-First Approach
The term API-first design is relatively new, and different people may define it
slightly differently. I would argue that API-first implies designing and building
your API contract first and then building clients consuming that API and the
actual implementation of the web service. I would say it does not matter whether
you develop clients first or the API implementation first as long as you have the
API contract defined beforehand.

The concept of API-first came about as a solution to the problem of multiple
user interfaces. It is common nowadays for a company to have a mobile application,
a desktop website, a mobile website, and a need to integrate with third parties by
giving them programmatic access to the functionality and data of their system.

Figure 4-2 shows how your system might look if you decided to implement
each of these use cases separately. You would likely end up with multiple
implementations of the same logic spread across different parts of your system.
Since your web application, mobile client, and your partners each have slightly
different needs, it feels natural to satisfy each of the use cases by providing slightly
different interfaces. Before you realize it, you will have duplicate code spread
across all of your controllers. You then face the challenge of supporting all of
these implementations and applying changes and fixes to each of them separately.
An alternative approach to that problem is to create a layer of web services that
encapsulates most of the business logic and hides complexity behind a single API
contract. Figure 4-3 shows how your application might look when using an API-
first approach.

In this scenario, all of your clients use the same API interface when talking
to your web application. There are a few important benefits to this approach.
By having a single web service with all of the business logic, you only need to
maintain one copy of that code. That in turn means that you need to modify less
code when making changes, since you can make changes to the web service alone
rather than having to apply these changes to all of the clients.

It is also important to note that most of the complexity and business logic have
been pushed away from the client code and into the web services layer. This, in turn,

04-ch04.indd 127 09/05/15 1:20 PM

 128 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

makes developing and changing clients much easier, as they do not have to be
concerned with business rules or databases—all they need to do is know how to
use a simplified interface of the API.

Having an API can also make it easier to scale your system, as you can use
functional partitioning and divide your web services layer into a set of smaller
independent web services. By having a higher layer of abstraction, you can
decouple your clients from the internals of your web services. This decoupling
helps make the system easier to understand, as you can work on the client
without the need to understand how the service is implemented, and vice versa—
you can work on the web service without worrying how clients are implemented
or what do they do with the features your API exposes.

From a scalability point of view, having a separation of concerns helps in
scaling clients and services independently. It also allows you to share the load
among more servers, as different services can then use different technologies and
be hosted independently to better fit their needs.

Unfortunately, the API-first approach is usually much more difficult in practice
than it might sound. To make sure you do not overengineer and still provide all

Figure 4-2 Application with multiple clients and code duplication

Web clients Mobile application

Web Application
Controllers

Partner 2

MVC Web App

Mobile Web
Service Controllers

Third-Party
Integration Service 1

Shared Business Logic

HTML/AJAX
Web Services
Business Logic
Data Access

Third-Party
Integration Service 2

Partner 1

Code duplication with slight interface differences

Data
Stores

04-ch04.indd 128 09/05/15 1:20 PM

 Chapter 4: Web Services 129

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

of the functionality needed by your clients, you may need to spend much more
time designing and researching your future use cases. No matter how much you
try, you still take a risk of implementing too much or designing too restrictively.
That is mainly because when you are designing your API first, you may not have
enough information about the future clients’ needs.

API-first should not be a mantra. Some applications will benefit from it;
others will not. I believe one could generalize and say that API-first is better
suited for more mature systems and more stable companies than it is for early-
phase startups. Developing in this way may be a cleaner way to build software,
but it requires more planning, knowledge about your final requirements, and
engineering resources, as it takes more experience to design a scalable web
service and make it flexible at the same time.

Figure 4-3 API-first application with multiple clients

Front-end MVC App

Web Applications
HTML/AJAX

no business logic

Web clients Mobile application Partner 2Partner 1

Web Service MVC App

Web Service Controllers

Shared Business Logic

Web Services
Business Logic
Data Access

Data
Stores

04-ch04.indd 129 09/05/15 1:20 PM

 130 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

Pragmatic Approach
Rather than following one strategy to build every application you see, I would
recommend a more pragmatic approach that is a combination of the two others.
I would recommend thinking of the web services layer and service-oriented
architecture from day one, but implementing it only when you see that it is truly
necessary.

That means that when you see a use case that can be easily isolated into a
separate web service and that will most likely require multiple clients performing
the same type of functionality, then you should consider building a web service
for it. On the other hand, when you are just testing the waters with very loosely
defined requirements, you may be better off by starting small and learning quickly
rather than investing too much upfront.

To give you an example of how you could judge that, let’s consider an example.
If I were to implement a web app for a brand-new startup—let’s say I was building
yet another improved selfie-editing website—I would prefer to get a prototype in
front of my users as soon as possible. I would prefer to start testing the concept
in a matter of weeks rather than going through detailed design, modeling, and
implementation of my web services and clients. The reason is that most of these
brilliant startup ideas are illusions. Once you put your product in front of the
user, you realize that they don’t need it at all or, in the best-case scenario, they
need something slightly different, which now you need to cater to. Until you have
proven that people are willing to pay their hard-earned cash for what you are
about to build, you are taking a risk of wasting time and overengineering.

On the other hand, if I was working in a startup with a few million dollars in
funding or a product with a strong paying user base and I had to implement a new
supporting product, I might go for the API-first approach. For example, if I was
working on an e-commerce website and I had to build a product recommendation
engine for an existing shopping cart website, it might be a better choice to hide
that complexity behind a web service and start with an API-first approach. By
having more stability and faith in my business’s decisions, it would be more
important for me to make sure I can maintain and scale my products rather than
learn and fail fast. By having recommendation logic encapsulated in the web
service, I could provide a simple API and easily integrate these features into my
existing website. In addition, it would not matter whether my original website was
built with an API-first approach or not, as it would be a client of my service. As
long as I can build a fairly decoupled recommendation web service, I do not care
how my clients are structured.

04-ch04.indd 130 09/05/15 1:20 PM

 Chapter 4: Web Services 131

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

Unfortunately, if you go for that hybrid approach, you are in for a game of
tradeoffs and self-doubt—either you risk overengineering or you make a mess. As
a result of that mixed approach, you are likely going to end up with a combination
of tightly coupled small web applications of little business value and a set of web
services fulfilling more significant and well-defined needs. Ideally, over time as
your company becomes more mature, you can phase out all of the little “messy”
prototypes and gradually move toward service-oriented architecture. It may work
out well, but it may also become a bit of a mess as you go along. I know that it
might sound strange, but trying to take constraints into consideration and making
the best decision based on your current knowledge seems like the winning
strategy for startups rather than following a single strict rule.

When designing web services, you will also need to choose your architectural
style by choosing a type of web service that you want to implement. Let’s have a
look at the options available to you.

Types of Web Services
Design and some of the implementation details of web services tend to be a
topic of heated debate. I would like to encourage you to keep an open mind to
alternatives and reject dogmas as much as it is possible. In that spirit, I would like
to discuss two main architectural styles of web services. As we discuss each of
the types, I will go into some benefits and drawbacks when it comes to scalability
and speed of development, but I would prefer if you made your own judgment as
to which style is more suitable for your web application. Let’s have a look at the
function-centric architectural style first.

Function-Centric Services
Function-centric web services originated a long time ago—in fact, they go as far
back as the early 1980s. The concept of the function-centric approach is to be able
to call functions’ or objects’ methods on remote machines without the need to
know how these functions or objects are implemented, in what languages are they
written, or what architecture are they running on.

A simple way of thinking about function-centric web services is to imagine that
anywhere in your code you could call a function (any function). As a result of that
function call, your arguments and all the data needed to execute that function
would be serialized and sent over the network to a machine that is supposed to
execute it. After reaching the remote server, the data would be converted back

04-ch04.indd 131 09/05/15 1:20 PM

 132 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

to the native formats used by that machine, the function would be invoked, and
then results would be serialized back to the network abstraction format. Then
the result would be sent to your server and unserialized to your native machine
formats so that your code could continue working without ever knowing that the
function was executed on a remote machine.

In theory, that sounds fantastic; in practice, that was much more difficult
to implement across programming languages, central processing unit (CPU)
architectures, and run-time environments, as everyone had to agree on a strict
and precise way of passing arguments, converting values, and handling errors. In
addition, you had to deal with all sorts of new challenges, like resource locking,
security, network latencies, concurrency, and contracts upgrades.

There were a few types of function-centric technologies, like Common Object
Request Broker Architecture (CORBA), Extensible Markup Language – Remote
Procedure Call (XML-RPC), Distributed Component Object Model (DCOM),
and Simple Object Access Protocol (SOAP), all focusing on client code being
able to invoke a function implemented on a remote machine, but after years
of development and standardization processes, SOAP became the dominant
technology. It was partially due to its extensibility and partially due to the fact that
it was backed by some of the biggest technology companies at the time like IBM,
Oracle, Sun, BEA, and Microsoft.

The most common implementation of SOAP is to use XML to describe and
encode messages and the HTTP protocol to transport requests and responses
between clients and servers. One of most important features of SOAP was that it
allowed web services to be discovered and the integration code to be generated
based on contract descriptors themselves.

Figure 4-4 shows how integration using SOAP might look. First, the web
service provider exposes a set of XML resources, such as Web Service Definition
Language (WSDL) files describing methods and endpoints available and
definition of data structures being exchanged using XML Schema Definition
(XSD) files. These resources become the contract of the web service, and they
contain all the information necessary to be able to generate the client code and
use the web service. For example, if you developed in Java, you would use special
tools and libraries to download the contract and produce the native Java client
library. The output would be a set of Java classes, which could then be compiled
and used within your application. Behind the scenes, these classes would delegate
to SOAP libraries encapsulating all of the data serialization, authentication,
routing, and error handling. Your client code would not have to know that it uses
a remote web service; it would simply use the Java library that was generated
based on the web service contract (WSDL and XSD files).

04-ch04.indd 132 09/05/15 1:20 PM

 Chapter 4: Web Services 133

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

Another important feature of the initial SOAP design was its extensibility.
Over the years, literally dozens of additional specifications were created, allowing
for integration of higher-level features like transactions, support for multiphase
commits, and different forms of authentication and encryption. In fact, there
were so many of these specifications that people began referring to them as ws-*
specifications (from their names like ws-context, ws-coordination, ws-federation,
ws-trust, and ws-security). Unfortunately, that richness of features came at a cost
of reduced interoperability. Integration between different development stacks
became more difficult, as different providers had different levels of support for
different versions of ws-* specifications.

In particular, people who worked in the web development space and used
dynamic languages like PHP, Ruby, Perl, or even Python found it difficult to
integrate with SOAP web services. Developing client code in these technologies
was usually possible, but often ran into integration issues. Developing SOAP web
services using these technologies was simply not practical, as they did not get the
support or funding necessary to develop needed tooling and libraries. Arguably,
web technologies were excluded from the SOAP world because none of the giants
would implement or support it. As a result, the Web needed an alternative to
SOAP to allow integration that was easier and cheaper to implement. This, in
turn, led to JavaScript Object Notation (JSON)–based Representational State
Transfer (REST) services gaining popularity.

Figure 4-4 SOAP integration flow

SOAP Server

Web Service
De�nition

WSDL + XSD

Web Service
Implementation

Service
Developers

1. Create

2. Deploy

Client
Developers

3. Generate client stubs
based on the WSDL + XSD

4. Compile and deploy
the client app together
with generated stubs

Client Server

Client application with
web service client code

compiled into it.

5. Depends on the service

04-ch04.indd 133 09/05/15 1:20 PM

 134 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

HINT
Being able to discover services and define explicit contracts are great parts of SOAP, and I wish
I could easily build SOAP services. Unfortunately, the lack of tooling and libraries for dynamic
languages makes it impractical to build SOAP services in these technologies. I worked with SOAP
using Java and it was fine, but I also worked with it in PHP, and I believe it is not worth the effort.

The interoperability and usability of SOAP can be a concern in some situations,
but something even more important to consider in the context of scalability is
the fact that you cannot use HTTP-level caching with SOAP. SOAP requests are
issued by sending XML documents, where request parameters and method names
are contained in the XML document itself. Since the uniform resource locator
(URL) does not contain all of the information needed to perform the remote
procedure call, the response cannot be cached on the HTTP layer based on the
URL alone. This in turn makes SOAP much less scalable in applications where the
web service response could be cached by a reverse proxy.

Another serious issue with SOAP when it comes to scalability is that some of
the additional ws-* specifications introduce state into the web service protocol,
making it stateful. In theory, you could implement a stateless SOAP web service
using just the bare minimum of SOAP-related specifications, but in practice,
companies often want to use more than that. As soon as you begin supporting
things like transactions or secure conversation, you forfeit the ability to treat your
web service machines as stateless clones and distribute requests among them.

Although SOAP comes with high complexity and some scalability drawbacks,
I learned to respect and like it to some degree. I believe that having a strict
contract and ability to discover data types and functions adds significant value
in corporate enthronements. If you had to integrate closely with enterprises like
banks or insurance companies, you might benefit from SOAP’s advanced security
and distributed computing features. On the other hand, I do not think that SOAP
is a good technology to develop scalable web services, especially if you work for a
startup. SOAP is no longer dominant, and if you are not forced into using it, you
probably have little reason to do so, as its complexity and development overhead
will slow you down significantly.

Luckily there is an alternative to SOAP. Let’s have a closer look at it now.

Resource-Centric Services
An alternative approach to developing web services focuses around the concept of
a resource rather than a function. In function-centric web services, each function
can take arbitrary arguments and produce arbitrary values; in resource-centric

04-ch04.indd 134 09/05/15 1:20 PM

 Chapter 4: Web Services 135

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

web services, each resource can be treated as a type of object, and there are only
a few operations that can be performed on these objects (you can create, delete,
update, and fetch them). You model your resources in any way you wish, but you
interact with them in more standardized ways.

REST is an example of a resource-oriented architectural style that was
developed in the early 2000s. Since then, it became the de facto standard of web
application integration due to its simplicity and lightweight development model.

To understand better how you can model resources using REST, let’s consider
an example of an online music website where users can search for music and
create public playlists to listen to their favorite songs and share them with their
friends. If you were to host such a service, you might want to expose a REST API
to allow clients to search for songs and manage playlists. You could then create a
“playlists” resource to allow users to create, fetch, and update their lists and a set
of additional resources for each list and each song within a list.

It is important to note that REST services use URLs to uniquely identify
resources. Once you know the URL of a resource, you need to decide which of
the HTTP methods you want to use. Table 4-1 shows the meaning of each HTTP
method when applied to the “playlists” resource of a particular user. In general,
the GET method is used to fetch information about a resource or its children,
the PUT method is used to replace an entire resource or a list by providing a
replacement, POST is used to update a resource or add an entry, and DELETE is
used to remove objects.

Whenever you create a new playlist using the POST request to /playlists/324
resource, you create a new playlist for user 324. The newly created list also becomes
available via GET requests sent to the same resource as /playlists/324 is a parent
resource for user’s playlists. Table 4-2 shows how you could interact with the

Example URL: http://example.org/playlists/324

HTTP Method Resulting Behavior
GET Fetch list of URLs of playlists created by the user 324
PUT Replace entire collection of playlists for that user

(you submit a collection of lists)
POST Create a new list by posting the name of the list
DELETE Delete all lists of user 324

Table 4-1 HTTP Methods Available for the Playlists Resource

04-ch04.indd 135 09/05/15 1:20 PM

 136 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

/playlists/324/my-favs resource representing a custom music playlist called “my-favs”
created by the user 324.

The API could also expose additional resources—each representing a song, an
album, or an artist—to allow clients to fetch additional metadata. As you can see
in Table 4-3, not all methods have to be supported by each resource, as in some
cases there may be no way to perform a certain operation. Table 4-3 shows how
you could manage individual songs in users’ playlists.

REST services do not have to use JSON, but it is a de facto standard on the
Web. It became popular due to its simplicity, compact form, and better readability
than XML. Listing 4-1 shows how a web service response might look when you
requested a playlist entry using a GET method.

Example URL: http://example.org/playlists/324 /my-favs/41121

HTTP Method Resulting Behavior
GET Fetch metadata of a playlist entry

(that could be author, streaming URL, length, or genre)
PUT Add song 41121 to the “my-favs” list if not present yet
POST Not supported for this endpoint
DELETE Remove song 41121 from the playlist

Table 4-3 HTTP Methods Available for Playlist Member Resource

Example URL: http://example.org/playlists/324/my-favs

HTTP Method Resulting Behavior
GET Fetch list of URLs of all the songs that were added

to “my-favs” list by user 324
PUT Replace entire “my-favs” playlist

(you submit a collection of song URLs)
POST Add a song to the playlist

(you submit the URL of the song to be added to “my-favs”)
DELETE Delete an entire “my-favs” playlist

Table 4-2 HTTP Methods Available for the Selected Playlist Resource

04-ch04.indd 136 09/05/15 1:20 PM

 Chapter 4: Web Services 137

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

Listing 4-1 Response to GET http://example.org/playlists/324/my-favs/678632

{
 "SongID": "678632",
 "Name": "James Arthur - Young",
 "AlbumURL": "http://example.org/albums/53944",
 "AlbumName": "Unknown",
 "ArtistURL": "http://example.org/artists/1176",
 "ArtistName": "James Arthur",
 "Duration": "165"
}

If you wanted to compare REST to SOAP, there are a few important things
that stand out. First of all, since you only have four HTTP methods to work with,
the structure of REST web services is usually predictable, which also makes it
easy to work with. Once you have seen a few REST services, learning to use a
new REST API becomes a quick and simple task. If you compare it to SOAP
service development, you will find that every web service uses a different set of
conventions, standards, and ws-* specifications, making it more challenging to
integrate.

From the web service publishers’ perspective, REST is more lightweight
than SOAP because all you need to do is create an online wiki with definitions
of resources, HTTP methods applicable to each resource, and some request/
response examples showing the data model. You can implement the actual REST
resources using any web stack, as very little functionality needs to be supported
by the REST framework (or a container). It’s basically just an HTTP server with
a routing mechanism to map URL patterns to your code. An additional benefit of
REST over SOAP is that you will not have to manage the ever-more-complex API
contract artifacts like WSDL and XSD files.

From a client point of view, integration with REST service has both drawbacks
and benefits. Clients will not be able to auto-generate the client code or discover
the web service behavior, which is a drawback. But at the same time, REST
services are much less strict, allowing nonbreaking changes to be released to
the server side without the need to recompile and redeploy the clients. Another
common way to go around the problem of discoverability is for the service
provider to build and share client libraries for common languages. This way,
client code needs to be written only once and then can be reused by multiple
customers/partners. Obviously, this approach puts more burden on the service
provider, but allows you to reduce onboarding friction and create even better
abstraction than auto-generated code would.

04-ch04.indd 137 09/05/15 1:20 PM

 138 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

From a security point of view, REST services are much less sophisticated
than SOAP. To allow authorized access to REST resources, web services usually
require authentication to be performed before using the API. The client would
first authenticate (often using OAuth 2) and then provide the authentication
token in HTTP headers of each consecutive request. REST services also depend
on transport layer security provided by HTTPS (HTTP over TLS Transport Layer
Security) rather than implementing their own message encryption mechanisms.
These tradeoffs make REST simpler to implement across web development
platforms, but it also makes it harder to integrate with enterprises where you need
advanced features like exactly-once delivery semantics.

From a scalability point of view, an important benefit of REST web services like
the example discussed earlier in this section is that it is stateless and all public
operations performed using the GET method can be cached transparently by
HTTP caches. The URL of the REST request is all that is needed to route the
request, so GET requests can be cached by any HTTP cache between the client
and the service. That allows traffic for the most popular resources to be offloaded
onto reverse proxies, significantly reducing the load put on your web services and
data stores.

As you can probably see, REST is not clearly better than SOAP; it does not
replace or deprecate SOAP either—it is just an alternative. From an enterprise
perspective, REST may not be mature, strict, and feature rich enough. From a
startup perspective, SOAP may be too difficult, strict, and cumbersome to work
with. It really depends on the details of your application and your integration
needs. Having said that, if all you need is to expose a web service to your mobile
clients and some third-party websites, REST is probably a better way to go if you
are a web startup, as it is much easier to get started with and it integrates better
with web technologies no matter what stack you and your clients are developing on.

Since we have discussed types of web services and different approaches to
designing them, let’s now spend some time looking at how to scale them.

Scaling REST Web Services
To be able to scale your web services layer, you will most often depend on two
scalability techniques described in Chapter 2. You will want to slice your web
services layer into smaller functional pieces, and you will also want to scale by
adding clones. Well-designed REST web services will allow you to use both of
these techniques.

04-ch04.indd 138 09/05/15 1:20 PM

 Chapter 4: Web Services 139

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

Keeping Service Machines Stateless
Similar to the front-end layer of your application, you need to carefully deal with
application state in your web services. The most scalable approach is to make all
of your web service machines stateless. That means you need to push all of the
shared state out of your web service machines onto shared data stores like object
caches, databases, and message queues. Making web service machines stateless
gives you a few important advantages:

 ▶ You can distribute traffic among your web service machines on a per-request
basis. You can deploy a load balancer between your web services and their
clients, and each request can be sent to any of the available web service
machines. Being able to distribute requests in a round-robin fashion allows
for better load distribution and more flexibility.

 ▶ Since each web service request can be served by any of the web service
machines, you can take service machines out of the load balancer pool as
soon as they crash. Most of the modern load balancers support heartbeat
checks to make sure that web service machines serving the traffic are
available. As soon as a machine crashes or experiences some other type of
failure, the load balancer will remove that host from the load-balancing pool,
reducing the capacity of the cluster, but preventing clients from timing out
or failing to get responses.

 ▶ By having stateless web service machines, you can restart and decommission
servers at any point in time without worrying about affecting your clients.
For example, if you want to shut down a server for maintenance, you need
to take that machine out of the load balancer pool. Most load balancers
support graceful removal of hosts, so new connections from clients are not
sent to that server any more, but existing connections are not terminated to
prevent client-side errors. After removing the host from the pool, you need
to wait for all of your open connections to be closed by your clients, which
can take a minute or two, and then you can safely shut down the machine
without affecting even a single web service request.

 ▶ Similar to decommissioning, you will be able to perform zero-downtime
updates of your web services. You can roll out your changes to one server at
a time by taking it out of rotation, upgrading, and then putting it back into
rotation. If your software does not allow you to run two different versions
at the same time, you can deploy to an alternative stack and switch all of the
traffic at once on the load balancer level. No matter what way you choose,
stateless web services mean easy maintenance.

04-ch04.indd 139 09/05/15 1:20 PM

 140 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

 ▶ By removing all of the application state from your web services, you will
be able to scale your web services layer by simply adding more clones. All
you need to do is add more machines to the load balancer pool to be able
to support more concurrent connections, perform more network I/O, and
compute more responses (CPU time). The only assumption here is that your
data persistence layer needs to be able to scale horizontally, but we will cover
that in Chapter 5.

 ▶ If you are using a cloud hosting service that supports auto-scaling load
balancers like Amazon Elastic Load Balancer or Azure Load Balancer,
you can implement auto-scaling of your web services cluster in the same
way that you did for your front end. Any time a machine crashes, the load
balancer will replace it with a new instance, and any time your servers
become too busy, it will spin up additional instances to help with the load.

As you can see, keeping web service machines stateless provides a lot of
benefits in terms of both scalability and high availability of your system. The only
type of state that is safe to keep on your web service machines are cached objects,
which do not need to be synchronized or invalidated in any way. By definition,
cache is disposable and can be rebuilt at any point in time, so server failure does
not cause any data loss. I will discuss caching in more detail in Chapter 6. Any
solution that requires consistency to be propagated across your web service
machines will increase your latencies or lead to availability issues. To be sure you
don’t run into these issues, it is safest to allow your web service machines to store
only cached objects that expire based on their absolute Time to Live property.
Such objects can be stored in isolation until they expire without the need for your
web services to talk to each other.

Any time you need to store any user state on web services, you should look for
alternative ways of persisting or distributing that information. Figure 4-5 shows
how a stateless service communicates with external data stores, caches, and
message queues to get access to persistent data. It is an implementation detail
of each of the state-handling components to decide where the state should be
persisted. Each of these external persistence stores can be implemented using
different technologies suitable for a particular use case, or they could all be
satisfied by a single data store.

When building stateless web services, you are going to meet a few common use
cases where you will need to share some state between your web service machines.

The first use case is related to security, as your web service is likely going to
require clients to pass some authentication token with each web service request.

04-ch04.indd 140 09/05/15 1:20 PM

 Chapter 4: Web Services 141

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

That token will have to be validated on the web service side, and client permissions
will have to be evaluated in some way to make sure that the user has access to
the operation they are attempting to perform. You could cache authentication
and authorization details directly on your web service machines, but that could
cause problems when changing permissions or blocking accounts, as these
objects would need to expire before new permissions could take effect. A better
approach is to use a shared in-memory object cache and have each web service
machine reach out for the data needed at request time. If not present, data could
be fetched from the original data store and placed in the object cache. By having
a single central copy of each cached object, you will be able to easily invalidate it
when users’ permissions change. Figure 4-6 shows how authorization information
is being fetched from a shared in-memory object cache. I will discuss object
caches in more detail in Chapter 6; for now, let’s just say that object cache allows
you to map any key (like an authentication token) to an object (like a serialized
permissions array).

Another common problem when dealing with stateless web services is how to
support resource locking. As I mentioned in Chapter 3, you can use distributed

Figure 4-5 Application state pushed out of web service machines

Client

Web Service Machine

No state held between HTTP requests
other than auto-expiring caches.

Web service requests

Fetches user
authentication

Fetches
shared �les

Data Store B Data Store CData Store A

Fetches
application
data

Data Store D

Fetches
cached
objects

Message Queue

Enqueue
jobs

Data stores A, B, C, D and the message queue are logical representations here;
they could be a single data store supporting all use cases.

More identical
web service machines

04-ch04.indd 141 09/05/15 1:20 PM

 142 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

lock systems like Zookeeper or even build your own simple lock service using a
data store of your choice. To make sure your web services scale well, you should
avoid resource locks for as long as possible and look for alternative ways to
synchronize parallel processes.

Distributed locking is challenging, as each lock requires a remote call and
creates an opportunity for your service to stall or fail. This, in turn, increases your
latency and reduces the number of parallel clients that your web service can serve.
Instead of resource locks, you can sometimes use optimistic concurrency control
where you check the state before the final update rather than acquiring locks.
You can also consider message queues as a way to decouple components and
remove the need for resource locking in the first place (I will discuss queues and
asynchronous processing in more detail in Chapter 7).

HINT
If you decide to use locks, it is important to acquire them in a consistent order to prevent
deadlocks. For example, if you are locking two user accounts to transfer funds between them,
make sure you always lock them in the same order, such as the account with an alphanumerically
lower account number gets locked first. By using that simple trick, you can prevent deadlocks from
happening and thus increase availability of your service.

Figure 4-6 Authorization information fetched from shared object cache

Client

Web Service Machine

No state held between HTTP requests
other than auto-expiring caches.

1. Web service request with an authorization token
token: aed187da3ed1d0fd19f0ce8c6f16bbb5

2. Try to load user authorization information
by fetching cached object named:
"auth" + token passed by the client

get("auth:aed187da3ed1d0fd19f0ce8c6f16bbb5")

Shared object cache Primary user data store

3. If not present in cache,
build authorization object from
original data store and then
store it in cache to speed up
future requests.

04-ch04.indd 142 09/05/15 1:20 PM

 Chapter 4: Web Services 143

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

If none of these techniques work for you and you need to use resource locks,
it is important to strike a balance between having to acquire a lot of fine-grained
locks and having coarse locks that block access to large sets of data. When you
acquire a lot of fine-grained locks, you increase latency, as you keep sending
requests to the distributed locks service. By having many fine-grained locks, you
also risk increasing the complexity and losing clarity as to how locks are being
acquired and from where. Different parts of the code acquiring many different
locks is a recipe for deadlocks. On the other hand, if you use few coarse locks, you
may reduce the latency and risk of deadlocks, but you can hurt your concurrency
at the same time, as multiple web service threads can be blocked waiting on the
same resource lock. There is no clear rule of thumb here—it is just important to
keep the tradeoffs in mind.

HINT
The key to scalability and efficient resource utilization is to allow each machine to work as
independently as possible. For a machine to be able to make progress (perform computation or
serve requests), it should depend on as few other machines as possible. Locks are clearly against
that concept, as they require machines to talk to each other or to an external system. By using
locks, all of your machines become interdependent. If one process becomes slow, anyone else
waiting for their locks becomes slow. When one feature breaks, all other features may break. You
can use locks in your scheduled batch jobs, crons, and queue workers, but it is best to avoid locks
in the request–response life cycle of your web services to prevent availability issues and increase
concurrency.

The last challenge that you can face when building a scalable stateless web
service is application-level transactions. Transactions can become difficult to
implement, especially if you want to expose transactional guarantees in your web
service contract and then coordinate higher-level distributed transactions on top
of these services.

A distributed transaction is a set of internal service steps and external web
service calls that either complete together or fail entirely. It is similar to database
transactions, and it has the same motivation—either all of the changes are applied
together to create a consistent view of the world, or all of the modifications
need to be rolled back to pretend that transaction was never initiated. Distributed
transactions have been a subject of study for many decades, and in simple
words they are very difficult to scale and coordinate without sacrificing high
availability. The most common method of implementing distributed transactions
is the 2 Phase Commit (2PC) algorithm.

04-ch04.indd 143 09/05/15 1:20 PM

 144 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

An example of a distributed transaction would be a web service that creates an
order within an online shop. Figure 4-7 shows how such a distributed transaction
could be executed. In this example, the OrderService endpoint depends on
PaymentService and FulfillmentService. Failure of any of these web services
causes OrderService to become unavailable; in addition, all of the collaborating
services must maintain persistent connections and application resources for the
duration of the transaction to allow rollback in case any components refuse to
commit the transaction.

Distributed transactions using 2PCs are notorious for scalability and availability
issues. They become increasingly difficult to perform as the number of services
involved increases and more resources need to be available throughout the time
of the transaction; in addition, the chance of failure increases with each new
service. As a simple rule of thumb, I recommend staying away from distributed
transactions and consider alternatives instead.

The first alternative to distributed transactions is to not support them at all.
It may sound silly, but most startups can live with this type of tradeoff in favor of
development speed, availability, and scalability benefits. For example, in a social
media website, if you liked someone’s update and a part of your action did not
propagate to the search index, users would not be able to search for that specific

Figure 4-7 Distributed transaction failure

:PaymentService:Client

Order creation
web service call

:OrderService :Ful�llmentService

Prepare to charge money

Prepare for shipping

Response

Abort

OK

Rollback

OK

Resources
allocated

Resources
released

04-ch04.indd 144 09/05/15 1:20 PM

 Chapter 4: Web Services 145

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

update in your event stream. Since the core of your system functionality is not
compromised, your company may be fine with such a minor inconsistency in
return for the time saved developing it and the costs incurred while trying to scale
and maintain the solution.

The second alternative to distributed transactions is to provide a mechanism
of compensating transaction. A compensating transaction can be used to revert
the result of an operation that was issued as part of a larger logical transaction
that has failed. Going back to the online store example, your OrderService
could issue a request to a PaymentService and then another request to
FulfillmentService. Each of these requests would be independent (without
underlying transactional support). In case of success, nothing special needs to
happen. In case of PaymentService failure, the OrderServcice would simply abort
so that FulfillmentService would not receive any requests. Only in the case of
PaymentService returning successfully and then FulfillmentService failing would
OrderService need to issue an additional PaymentService call to ensure a refund
for the previously processed payment. Figure 4-8 shows how such an optimistic
approach could be executed.

The benefit of this approach is that web services do not need to wait for one
another; they do not need to maintain any state or resources for the duration of
the overarching transaction either. Each of the services responds to a single call

Figure 4-8 Compensating transaction to correct partial execution

:PaymentService:Client

Order creation
web service call

:OrderService :Ful�llmentService

Charge money

Initiate shipping

Response

Error

OK

Refund money

OK

Resources
allocated

Resources
freed

04-ch04.indd 145 09/05/15 1:20 PM

 146 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

in isolation. Only the coordinating web service (here the OrderService) becomes
responsible for ensuring data consistency among web services. In addition, the
compensating transaction can often be processed asynchronously by adding a
message into a queue without blocking the client code.

In all cases, I would first question whether transactions or even locking is
necessary. In a startup environment, any complexity like this adds to the overall
development and support time. If you can get away with something simpler, like
making your application handle failures gracefully rather than preventing them
at all cost, it is usually a better choice. You should also try to lean back on your
data store as much as possible using its transactional support. Most data stores
support atomic operations to some degree, which can be used to implement
simple “transactions” or exclusive resource access. I will discuss data stores and
transactional support in more detail in Chapter 5.

Caching Service Responses
Another important technique of scaling REST web services is to utilize the power
of HTTP protocol caching. HTTP caching is a powerful scalability technique for
web applications. Being able to apply the same knowledge, skills, and technologies
to scale your web services makes HTTP caching so much more valuable. I will
discuss HTTP caching in much more detail in Chapter 6, but let’s quickly discuss
how you can leverage it when building REST web services.

As I mentioned before, REST services utilize all of the HTTP methods (like
GET and POST) and when implemented correctly, they should respect the
semantics of each of these methods. From a caching perspective, the GET method
is the most important one, as GET responses can be cached.

The HTTP protocol requires all GET method calls to be read-only. If a web
service request was read-only, then it would not leave anything behind. That in
turn would imply that issuing a GET request to a web service or not issuing one
would leave the web service in the same state. Since there is no difference between
sending a request to a web service or not sending one, responses can be cached by
proxies or clients and web service calls can be “skipped” by returning a response
from the cache rather than asking the web service for the response.

To take advantage of HTTP caching, you need to make sure that all of your
GET method handlers are truly read-only. A GET request to any resource should
not cause any state changes or data updates.

A good example of how web applications used to notoriously break this
property of the GET method was by using the GET method for state changes.
In the early 2000s, it was common to see web applications make changes to

04-ch04.indd 146 09/05/15 1:20 PM

 Chapter 4: Web Services 147

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

the database as a result of a GET request. For example, you would be able to
unsubscribe from a mailing list by issuing a GET request to a URL like http://
example.com/subscribe?email=artur@ejsmont.org. It might be convenient for the
developers, but it would obviously change the state of the application, and there
would be a clear difference between sending such a request and not sending it
at all.

Nowadays it is rare to see REST web services that would break this rule in
such an obvious way; unfortunately, there are other, more subtle ways to get in
trouble. For example, in one of the companies I used to work for, we were unable
to leverage HTTP caching on our front-end web applications because business
intelligence and advertising teams depended on the web server logs to generate
their reports and calculate revenue sharing. That meant that even if our web
applications were implementing GET methods correctly and all of our GET
handlers were read-only, we could not add a layer of caching proxies in front of
our web cluster, as it would remove a large part of the incoming traffic, reducing
the log entries and skewing the reports.

Another subtle way in which you can break the semantics of GET requests
is by using local object caches on your web service machines. For example, in
an e-commerce web application you might call a web service to fetch details of
a particular product. Your client would issue a GET request to fetch the data.
This request would then be routed via a load balancer to one of the web service
machines. That machine would load data from the data store, populate its local
object cache with the result, and then return a response to the client. If product
details were updated soon after the cached object was created, another web
service machine might end up with a different version of the product data in its
cache. Although both GET handlers were read-only, they did affect the behavior
of the web service as a whole, since now, depending on which web service
machine you connect to, you might see the old or the new product details as each
GET request created a snapshot of the data.

Another important aspect to consider when designing a REST API is which
resources require authentication and which do not. REST services usually pass
authentication details in request headers. These headers can then be used by
the web service to verify permissions and restrict access. The problem with
authenticated REST endpoints is that each user might see different data based on
their permissions. That means the URL is not enough to produce the response
for the particular user. Instead, the HTTP cache would need to include the
authentication headers when building the caching key. This cache separation
is good if your users should see different data, but it is wasteful if they should
actually see the same thing.

04-ch04.indd 147 09/05/15 1:20 PM

 148 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

HINT
You can implement caching of authenticated REST resources by using HTTP headers like Vary:
Authorization in your web service responses. Responses with such headers instruct HTTP caches
to store a separate response for each value of the Authorization header (a separate cache for
each user).

To truly leverage HTTP caching, you want to make as many of your resources
public as possible. Making resources public allows you to have a single cached
object for each URL, significantly increasing your cache efficiency and reducing
the web service load.

For example, if you were building a social music website (like www.grooveshark
.com) where users can listen to music and share their playlists, you could make
most of your GET handlers public. Would you need to restrict which users can
get details of which album, song, artist, or even playlist? Probably not. By making
GET methods public, you could ignore user information in your caching layer,
thereby reusing objects much more efficiently.

In the early stages of your startup development, you may not need HTTP
caching in your web services layer, but it is worth thinking about. HTTP caching
is usually implemented in the web services layer in a similar way to how it is done
in the front-end layer. To be able to scale using cache, you would usually deploy
reverse proxies between your clients and your web service. That can mean a few
different things depending on how your web services are structured and how they
are used. Figure 4-9 shows how web services are usually deployed with a reverse
proxy between web services and the front-end application.

As your web services layer grows, you may end up with a more complex
deployment where each of your web services has a reverse proxy dedicated to
cache its results. Depending on the reverse proxy used, you may also have load
balancers deployed between reverse proxies and web services to distribute the
underlying network traffic and provide quick failure recovery. Figure 4-10 shows
how such a deployment might look.

The benefit of such configuration is that now every request passes via a reverse
proxy, no matter where it originated from. As your web services layer grows and
your system evolves towards a service-oriented architecture, you will benefit
more from this mindset. Treating each web service independently and all of its
clients in the same way no matter if they live in the web services layer or not
promotes decoupling and higher levels of abstraction. Let’s now discuss in more
detail how web service independence and isolation help scalability.

04-ch04.indd 148 09/05/15 1:20 PM

 Chapter 4: Web Services 149

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

Figure 4-9 Reverse proxy between clients and services

Web Service

Server 1 Server N

Reverse Proxy HTTP Cache
capable of distributing requests
among multiple servers

Web service clients
like front-end servers

Figure 4-10 Reverse proxy in front of each web service

Web Service A

Server Server

Reverse Proxy
HTTP Cache
for service A

Web service clients
like front-end servers

Uses functionality
of service A

Uses functionality
of service B

Load Balancer

Web Service B

Server Server

Load Balancer

Reverse Proxy
HTTP Cache
for service B

04-ch04.indd 149 09/05/15 1:20 PM

 150 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

Functional Partitioning
I already mentioned functional partitioning in Chapter 2 as one of the key scalability
techniques. At its core, functional partitioning can be thought of as a way to
split a large system into a set of smaller, loosely coupled parts so that they can
run across more machines rather than having to run on a single, more powerful
server. In different areas, functional partitioning may refer to different things. In
the context of web services, functional partitioning is a way to split a service into
a set of smaller, fairly independent web services, where each web service focuses
on a subset of functionality of the overall system.

To explain it better, let’s consider an example. If you were to build an e-commerce
website, you could build all of the features into a single web service, which would
then handle all of the requests. Figure 4-11 shows how your system might look.

Alternatively, you could split the system into smaller, loosely coupled web services,
with each one focusing on a narrow area of responsibility. An example of how you
could perform such a split is to extract all of the product catalog–related functionality

Figure 4-11 Single service

E-commerce Web Service

Server 1 Server N

Web service clients
like front-end servers

Via reverse proxy
and/or

load balancer

Single codebase

Data Store

04-ch04.indd 150 09/05/15 1:20 PM

 Chapter 4: Web Services 151

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

and create a separate web service for it called ProductCatalogService. Such a
service could allow creation, management, and searching for products; their
descriptions; prices; and classifications. In a similar way, you could then extract
all of the functionality related to the users, such as managing their accounts,
updating credit card details, and printing details of past orders, and create a
separate UserProfileService.

Rather than having a single large and potentially closely coupled web service,
you would end up with two smaller, more focused, and more independent web
services: ProductCatalogService and UserProfileService. This would usually
lead to decoupling their infrastructures, their databases, and potentially their
engineering teams. In a nutshell, this is what functional partitioning is all about:
looking at a system, isolating subsets of functionality that are closely related, and
extracting that subset into an independent subsystem.

Figure 4-12 shows how these web services might look. The benefit of functional
partitioning is that by having two independent subsystems, you could give them
at least twice as much hardware, which can be helpful, especially in the data

Figure 4-12 Functional partitioning of services

ProductCatalogService

Server 1 Server N

Web service clients
like front-end servers

Access via reverse proxies and/or load balancers

UserPro�leService

Server 1 Server N

Independent
codebase

Independent
codebase

Functional split

Access features of
ProductCatalogService

Access features of
UserPro�leService

Data Store A
(e.g. MySQL)

Data Store B
(e.g. Cassandra)

04-ch04.indd 151 09/05/15 1:20 PM

 152 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

layer and especially when you use classical relational database engines, which are
difficult to scale.

Since you perform functional partitioning by grouping closely related
functionality, there are few dependencies between newly created web services.
It may happen that a user-related service refers to some products in the product
catalog or that some statistics in a product catalog are derived from the user
service data, but most of the time, development and changes can be made in
isolation, affecting only one of the services. That allows your technology team
to grow, as no one needs to know the entire system any more to be able to make
changes, and teams can take ownership of one or more web services but do not
need to work on the entire codebase.

Another important effect of functional partitioning is that each of these
web services can now be scaled independently. When we think about the
ProductCatalogService, it will probably receive substantially more read requests
than data updates, as every search and every page view will need to load the data
about some products. The UserProfileService, on the other hand, will most likely
have a completely different access pattern. Users will only ever want to access
their own data (which can help in indexing and distributing the data efficiently),
and there may be more writes, as you may want to keep track of which users
viewed which products. Finally, your data set may be orders of magnitude larger,
as the number of users usually grows faster than the number of products in an
online store.

All of these differences in access patterns result in different scalability needs
and very different design constraints that apply to each of the services. Does
it make sense to use the same caching for both of the services? Does it make
sense to use the same type of data store? Are both services equally critical to
the business, and is the nature of the data they store the same? Do you need to
implement both of these vastly different web services using the same technology
stack? It would be best if you could answer “no” to these questions. By having
separate web services, you keep more options open; you allow yourself to use the
best tool for the job and scale according to the needs of each web service rather
than being forced to apply the same pattern across the board.

It may not be necessary in small early-phase startups, but as your system grows
and you begin to functionally partition your web services layer, you move closer
to the service-oriented architecture, where web services are first-class citizens
and where single responsibility, encapsulation, and decoupling are applied on a
higher level of abstraction. Rather than on a class or component level, you apply
the same design principles on the web service level to allow flexibility, reuse, and
maintainability of the overall system.

04-ch04.indd 152 09/05/15 1:20 PM

 Chapter 4: Web Services 153

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 4

The main challenge that may be an outcome of performing functional
partitioning too early or of creating too many partitions is when new use cases
arise that require a combination of data and features present in multiple web
services. Going back to our e-commerce example, if you had to create a new
RecommendationService, you might realize that it depends on the majority of
product catalog data and user profile data to build user-specific recommendation
models. In such a case, you may end up having much more work than if both
of these services shared a single data store and a single codebase because now
RecommendationService will need to integrate with two other web services
and treat them as independent entities. Although service integrations may be
challenging, functional partitioning is a very important scalability technique.

Summary
Well-designed and well-structured web services can help you in many ways. They
can have a positive impact on scalability, on the cost of long-term maintenance,
and on the local simplicity of your system, but it would be irresponsible to
say that they are a must-have or even that every application can benefit from
having a web services layer. Young startups work under great uncertainty and
tremendous time pressure, so you need to be more careful not to overengineer
and not to waste precious time developing too much upfront. If you need services
to integrate with third parties or to support mobile clients, build them from the
start, but service-oriented architecture and web services begin to truly shine once
your tech team grows above the size of one or two agile teams (more than 10 to
20 engineers).

I encourage you to study more on web services46,51 on REST and modern
approaches to building web services,20 as well as on SOAP31 and on service-oriented
architecture patterns.

Building scalable web services can be done relatively simply by pushing all of
the application state out of the web service machines and caching aggressively.
I am sure you are already thinking, “So where do we store all of this state?” or
“How do we ensure that we can scale these components as much as we scaled
front-end and web services layers? These are both great questions, and we are
about to begin answering them as we approach the most exciting and most
challenging area for scalability, which is scalability of the data layer.

04-ch04.indd 153 09/05/15 1:20 PM

This page intentionally left blank

155

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

CHAPTER

5
Data Layer

05-ch05.indd 155 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 156 Web Scalability for Startup Engineers

Traditionally, companies scaled their databases vertically by buying stronger
servers, adding random access memory (RAM), installing more hard
drives, and hoping that the database engine they used would be able to

utilize these resources and scale to their needs. This worked in most cases, and
only the largest and most successful companies needed horizontal scalability.
All of that changed with the rise of the Internet, social networks, and the
globalization of the software industry, as the amounts of data and concurrent
users that systems need to support have skyrocketed. Nowadays systems with
millions of users and billions of database records are the norm, and software
engineers need to have a better understanding of the techniques and tools
available to solve these scalability challenges.

In previous chapters we scaled the front-end and web services layers by pushing
the state out of our servers so that we could treat them as stateless clones and
simply add more servers whenever we needed to scale. Now it is time to tackle the
problem of scaling the data layer so that it will be horizontally scalable and so that
it will not create a system bottleneck.

Depending on your business needs, required scalability of your application, and
your data model, you can use either a traditional relational database engine like
MySQL or a more cutting-edge nonrelational data store. Both of these approaches
have benefits and drawbacks, and I will try to objectively present both of these
as complementary solutions to different application needs. Let’s first look at the
scalability of relational database engines using the example of a MySQL database.

Scaling with MySQL
MySQL is still the most popular database, and it will take a long time before it
becomes irrelevant. Relational databases have been around for decades, and the
performance and scalability that can be achieved with MySQL is more than most
web startups would ever need. Even though scaling MySQL can be difficult at
times and you may need to plan for it from day one, it can be done and dozens
of the world’s biggest startups are successfully doing it, for example, Facebook,L35
Tumblr,L33 and Pintrest.L31 Let’s get started by looking at replication as one of the
primary means of scaling MySQL.

Replication
Replication usually refers to a mechanism that allows you to have multiple copies
of the same data stored on different machines. Different data stores implement

05-ch05.indd 156 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 157

replication in different ways. In the case of MySQL, replication allows you to
synchronize the state of two servers, where one of the servers is called a master
and the other one is called a slave. I will discuss different topologies that allow you
to synchronize the state of more than two MySQL servers later in this chapter, but
the core concept focuses on replicating content between a master and a slave.

When using MySQL replication, your application can connect to a slave to
read data from it, but it can modify data only through the master server. All
of the data-modifying commands like updates, inserts, deletes, or create table
statements must be sent to the master. The master server records all of these
statements in a log file called a binlog, together with a timestamp, and it also
assigns a sequence number to each statement. Once a statement is written to a
binlog, it can then be sent to slave servers.

Figure 5-1 illustrates how statement replication works. First the client connects
to the master server and executes a data modification statement. That statement
is executed and written to a binlog file. At this stage the master server returns

Figure 5-1 MySQL replication

Client 1

Master

Local data set

Binlog
Sequence

1
2
3
4

Command
update ...
delete
insert ...
insert ...

Relay Log
Sequence

1
2

Command

update ...
delete

Update
data

Log statement for replication

Fetch
statements

Client thread

Client thread

Sends
update

statement

Slave

Update
data Append

to log

Observe log,
read new statements

SQL executing thread Log fetching thread

Begin streaming
statements from
master starting
from sequence

number 2

Local data set

05-ch05.indd 157 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 158 Web Scalability for Startup Engineers

a response to the client and continues processing other transactions. At any
point in time the slave server can connect to the master server and ask for an
incremental update of the master’s binlog file. In its request, the slave server
provides the sequence number of the last command that it saw. Since all of the
commands stored in the binlog file are sorted by sequence number, the master
server can quickly locate the right place and begin streaming the binlog file back
to the slave server. The slave server then writes all of these statements to its own
copy of the master’s binlog file, called a relay log. Once a statement is written
to the relay log, it is executed on the slave data set, and the offset of the most
recently seen command is increased.

An important thing to note here is that MySQL replication is asynchronous.
That means that the master server does not wait for slave to get the statements
replicated. The master server writes commands to its own binlog, regardless if any
slave servers are connected or not. The slave server knows where it left off and
makes sure to get the right updates, but the master server does not have to worry
about its slaves at all. As soon as a slave server disconnects from the master, the
master forgets all about it. The fact that MySQL replication is asynchronous
allows for decoupling of the master from its slaves—you can always connect a
new slave or disconnect slaves at any point in time without affecting the master.

Because replication is asynchronous and the master does not need to keep
track of its slaves, this allows for some interesting topologies. For example, rather
than having just a single slave server, you can create multiple slave replicas and
distribute read queries among them. In fact, it is a common practice to have two
or more slaves for each master server.

Figure 5-2 shows a master server with multiple slave machines. Each of the
slave servers keeps track of the last statement that was replicated. They all
connect to the master and keep waiting for new events, but they do not interact
with each other. Any slave server can be disconnected or connected at any point
in time without affecting any other servers.

Having more than one slave machine can be useful for a number of reasons:

 ▶ You can distribute read-only statements among more servers, thus sharing
the load among more machines. This is scaling by adding clones (explained
in Chapter 2) applied to database engines, as you add more copies of the
same data to increase your read capacity.

 ▶ You can use different slaves for different types of queries. For example, you
could use one slave for regular application queries and another slave for
slow, long-running reports. By having a separate slave for slow-running
queries, you can insulate your application from input/output (I/O)–intensive
queries, improving the overall user experience.

05-ch05.indd 158 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 159

 ▶ You can use the asynchronous nature of MySQL replication to perform
zero-downtime backups. Performing a consistent backup of a slave machine
is simple—all you need to do is shut down the MySQL process, copy the data
files to your archive location, and start MySQL again. As soon as MySQL
starts, it connects to its master and begins catching up on any statements
that it might have missed.

 ▶ If one of your slaves dies, you can simply stop sending requests to that server
(taking it out of rotation) until it is rebuilt. Losing a slave is a nonevent, as
slaves do not have any information that would not be available via the master
or other slaves. MySQL servers do not keep track of each other’s availability,
so detection of server failure must be performed on the database client side.
You can either implement it in your application logic or use a smart proxy/
load balancer that can detect slave failures.

One of the main reasons why people use replication in MySQL and other data
stores is to increase availability by reducing the time needed to replace the broken
database. When using MySQL replication, you have two main failure scenarios
that you need to be ready to recover from: failure of a slave and failure of a master.

Figure 5-2 MySQL replication with multiple slaves

Master

Slave Slave Slave

Connect and
start replicating

Connect and
start replicating

Connect and
start replicating

Writes

Reads Reads Reads

Clients

05-ch05.indd 159 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 160 Web Scalability for Startup Engineers

Slave failures are usually not a big concern, as they can be handled quickly. All
you need to do is stop sending queries to the broken slave to end the outage. You
may still have reduced capacity, but the availability of the system is restored as
soon as you take the slave server out of rotation. At a later point in time you can
rebuild the slave server and add it back into rotation.

HINT
It is important to remember that rebuilding a MySQL slave is a manual process, and it requires a
full backup of the database to be taken from the master or one of the remaining slaves. MySQL
does not allow you to bootstrap a slave from an empty database. To be able to start a slave and
continue replicating statements from the master, you need a consistent backup of all the data
and a sequence number of the last statement that was executed on the database before taking
the backup. Once you have a backup and a sequence number, you can start the slave and it will
begin catching up with the replication backlog. The older the backup and the busier the database,
the longer it will take for the new slave to catch up. In busy databases, it can take hours before a
slave manages to replicate all data updates and can be added back into rotation.

Rebuilding slaves can seem like a lot of trouble, but a scenario that is even more
complex to recover from is master failure. MySQL does not support automatic
failover or any mechanism of automated promotion of slave to a master. If your
master fails, you have a lot of work ahead of you. First, you need to find out which
of your slaves is most up to date (which slave has the highest statement sequence
number). Then you need to reconfigure it to become a master. If you have more
than one slave, you need to make sure that they are identical to your new master
by either rebuilding them all from the backup of the new master or by manually
tweaking binlog and relay log files to align all servers to the exact same state.
Finally, you need to reconfigure all remaining slaves to replicate from the new
master. Depending on the details of your configuration, this process may be a bit
simpler or a bit more complicated, but it is still a nightmare scenario for most
engineers.

The difficulty of recovering from master failure brings us to another interesting
replication deployment topology called master-master. In this case you have two
servers that could accept writes, as Master A replicates from Master B and Master
B replicates from Master A. MySQL replication allows for that type of circular
replication, as each statement written to a master’s binlog includes the name
of the server it was originally written to. This way, any statement that is sent to
Server A is replicated to Server B, but then it does not replicate back to Server A,
as Server A knows that it already executed that statement.

05-ch05.indd 160 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 161

Figure 5-3 shows what master-master deployment looks like. All writes sent
to Master A are recorded in its binlog. Master B replicates these writes to its
relay log and executes them on its own copy of the data. Master B writes these
statements to its own binlog as well in case other slaves want to replicate them.
In a similar way, Master A replicates statements from Master B’s binlog by
appending them to its own relay log, executing all new statements, and then
logging them to its own binlog.

This topology is more complicated, but it can be used for faster master failover
and more transparent maintenance. In case of Master A failure, or any time
you need to perform long-lasting maintenance, your application can be quickly
reconfigured to direct all writes to Master B.

Figure 5-4 shows how you can create two identical server groups with Master A
and Master B each having an equal number of slaves. By having the same number
of slaves, your application can be running with equal capacity using either of the
groups. That, in turn, means that in case of Master A failure, you can quickly fail
over to use Master B and its slaves instead.

Figure 5-3 MySQL master-master replication

Clients

Writes

Master A replicates from Master B and Master B replicates from Master A.

Master A

Append to log

Observe log

SQL executing thread Log fetching thread

Relay
log

Binlog

Binlog

Local data set

Client thread

Update data Update data

Append to binlog

Client thread
Fetch statements

Append to binlog

Master B

Append to log

Observe log

SQL executing thread Log fetching thread

Relay
log

Client thread

Update data Update data

Append to binlog

Client thread
Fetch statements

Append to binlog
Local data set

05-ch05.indd 161 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 162 Web Scalability for Startup Engineers

Having identical groups of servers in a master-master configuration allows you
to switch between groups with minimal downtime. For example, if you need to
upgrade your software or hardware on your master databases, you may need to
shut down each server for an hour at a time to do the work, but you may be able
to do it with just a few seconds of application downtime. To achieve that, you
would upgrade one server group at a time. First, you upgrade the standby Master
B and its slaves. Then, you stop all the writes coming into the Master A database,
which begins the downtime. Then you wait just long enough for all the writes
to replicate from Master A to Master B. You can then safely reconfigure your
application to direct all writes to Master B, as it has already replicated all previous
commands and there is no risk of conflicts or update collisions. By reconfiguring
the application, you end the downtime, since reads and writes are accepted again.
Finally, you can perform maintenance on Master A and its slaves. Figure 5-5
shows the timing of each of the steps and the total downtime.

Although in theory, it is also possible to write to both servers at the same
time, I would advise against it due to a much higher complexity and risk of data
inconsistency. It is not safe to simply start sending writes to either of the masters
without additional configuration and use case analysis. For example, if you
wanted to send writes to both masters at the same time, you would need to use

Figure 5-4 MySQL master-master failover

Clients

Master A Replicates from ADuring normal operations
writes go to master A

Replicates from B

When master A fails writes are
sent to the second "standby" master B

During normal
operations reads

go to slaves
of master A

When master A fails
all reads need to go to

slaves of master B

Master B

Slave Slave Slave Slave

05-ch05.indd 162 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 163

auto-increment and UUID() in a specific way to make sure you never end up with
the same sequence number being generated on both masters at the same time.
You can also run into trouble with data inconsistency. For example, updating the
same row on both masters at the same time is a classic race condition leading to
data becoming inconsistent between masters. Figure 5-6 shows a sequence of
events leading to both master servers having inconsistent data.

Although master-master replication can be useful in increasing the availability
of your system, it is not a scalability tool. Even if you took all the precautions and
managed to write to both masters at the same time, you would not be able to scale
using this technique. There are two main reasons why master-master replication
is not a viable scalability technique:

 ▶ Both masters have to perform all the writes. The fact that you distribute
writes to both master servers from your application layer does not mean that
each of them has less to do. In fact, each of the masters will have to execute
every single write statement either coming from your application or coming
via the replication. To make it even worse, each master will need to perform

Figure 5-5 Maintenance failover timeline

Both master servers are functioning correctly.

Primary master (Master A) fails.
Outage begins.

Failure is detected.
(seconds or minutes from failure)

Failover, direct writes to secondary master (Master B) and reads to its slaves.
(seconds or minutes from failure)
Outage ends.

Sequence of events over tim
e

Begin rebuilding the failed master (Master A) and its slaves.
(this can easily take hours)

Full recovery.
Both masters are running correctly again.
Application keeps writing to Master B and Master A is treated as a hot standby.

05-ch05.indd 163 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 164 Web Scalability for Startup Engineers

additional I/O to write replicated statements into the relay log. Since each
master is also a slave, it writes replicated statements to a separate relay log
first and then executes the statement, causing additional disk I/O.

 ▶ Both masters have the same data set size. Since both masters have the exact
same data set, both of them will need more memory to hold ever-growing
indexes and to keep enough of the data set in cache. As your data set grows,
each of your masters needs to grow with it (by being scaled vertically).

In addition to master-master replication, you can use MySQL ring replication,
where instead of two master servers, you chain three or more masters together
to create a ring. Although that might seem like a great idea, in practice, it is the
worst of the replication variants discussed so far. Figure 5-7 shows what that
topology looks like.

Not only does ring replication not help you scale writes, as all masters need to
execute all the write statements, but it also reduces your availability and makes
failure recovery much more difficult. By having more masters, statistically, you

Figure 5-6 Update collision

Client 1 executes query on Master A
Client 2 executes query on Master B

A
rrow

 of tim
e

Master A persists data

Master B persists data

Quantity = 3 replicates to Master B

Quantity = 5 replicates to Master A

Replicates

Replicates

Update items
set quantity = 3
where id = 123;

Update items
set quantity = 5
where id = 123;

Both servers end up with different data

Client 1 Client 2
Master A Master B

05-ch05.indd 164 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 165

have a higher chance of one of them failing; at the same time, ring topology makes
it more difficult to replace servers and recover from failures correctly.L36

Replication lag is a measurement of how far behind a particular slave is
from its master. Any time you execute a write on the master, your change
becomes visible as soon as the transaction commits. Although data is
already updated on the master and can be read from there, it cannot
be seen on the slave until the statement is replicated and executed there
as well. When hosting your system on a decent network (or cloud), your
replication lag should be less than a second. That means that any time
you write to the master, you should expect your read replicas to have the
same change less than a second later.

Another interesting fact is that ring replication significantly increases your
replication lag, as each write needs to jump from master to master until it makes
a full circle. For example, if the replication lag of each of your servers was 500
ms, your total lag would be 1.5 s in a four-node configuration, as each statement
needs to be replicated three times before being visible to all of the servers.

Figure 5-7 MySQL ring replication

Master A

Replicates

Replicates

Replicates Replicates

Master D

Master B Master C

05-ch05.indd 165 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 166 Web Scalability for Startup Engineers

HINT
It is worth pointing out that any master-master or ring topology makes your system much more
difficult to reason about, as you lose a single source of truth semantics. In regular master-slave
replication, you can always query the master to get the most recent data. There is no way that
the master would be behind or that you would read some stale data, with writes being in flight
between servers, as all the writes are sent by the application to the same machine. That allows you
to be sure that any time you ask the master for data, you will get the most recent version of it.
By allowing writes to be sent to multiple masters at the same time, with asynchronous replication
in between them, you lose this kind of consistency guarantee. There is no way for you to query
the database for the most recent data, as writes propagate asynchronously from each server. No
matter which server you ask, there may be an update on its way from the master that cannot be
seen yet. That, in turn, prevents the overall consistency of your system. I will discuss the nature
and challenges of this type of consistency (called eventual consistency) later in this chapter.

Replication Challenges
The most important thing to remember when scaling using replication is that
it is only applicable to scaling reads. When using replication, you will not be
able to scale writes of your MySQL database. No matter what topology you use,
replication is not the way to scale writes, as all of your writes need to go through
a single machine (or through each machine in case of multimaster deployments).
Depending on your deployment, it may still make sense to use replication for
high availability and other purposes, but it will not help you scale write-heavy
applications.

On the other hand, replication is an excellent way of scaling read-heavy
applications. If your application does many more reads than writes, replication is
a good way to scale. Instead of a single server having to respond to all the queries,
you can have many clones sharing the load. You can keep scaling read capacity by
simply adding more slaves, and if you ever hit the limit of how many slaves your
master can handle, you can use multilevel replication to further distribute the
load and keep adding even more slaves. By adding multiple levels of replication,
your replication lag increases, as changes need to propagate through more
servers, but you can increase read capacity, which may be a reasonable tradeoff.
Figure 5-8 shows how you can deploy multiple levels of slaves to further scale the
read capacity.

Another thing worth knowing is that replication is a great way to scale the
number of concurrently reading clients and the number of read queries per
second, but it is not a way to scale the overall data set size. For example, if you
wanted to scale your database to support 5,000 concurrent read connections,

05-ch05.indd 166 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 167

then adding more slaves or caching more aggressively could be a good way to go.
On the other hand, if you wanted to scale your active data set to 5TB, replication
would not help you get there. The reason why replication does not help in scaling
the data set size is that all of the data must be present on each of the machines.
The master and each of its slaves need to have all of the data. That, in turn, means
that a single server needs to write, read, index, and search through all of the data
contained in your database.

Active data set is all of the data that must be accessed frequently by
your application. It is usually difficult to measure the size of the active
data set precisely because data stores do not report this type of metric
directly. A simple way of thinking about the active data set is to imagine
all of the data that your database needs to read from or write to disk
within a time window, like an hour, a day, or a week.

It is important to think about your data access patterns and the active data set
size, because having too much active data is a common source of scalability issues.

Figure 5-8 Multilevel MySQL replication

Replicates

Replicates Replicates Replicates Replicates

Replicates
Master

More servers

More servers

More servers

Level 1
slave

Level 1
slave

Level 2
slave

Level 2
slave

Level 2
slave

Level 2
slave

05-ch05.indd 167 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 168 Web Scalability for Startup Engineers

Having a lot of inactive data may increase the size of your database indexes, but
if you do not need to access that data repeatedly, it does not put much pressure
on your database. Active data, on the other hand, needs to be accessed, so your
database can either buffer it in memory or fetch it from disk, which is usually
where the bottleneck is. When the active data set is small, the database can buffer
most of it (or all of it) in memory. As your active data set grows, your database
needs to load more disk blocks because your in-memory buffers are not large
enough to contain enough of the active disk blocks. At a certain point, buffers
become useless and all that database ends up doing is performing random disk
I/O, trying to fetch the disk blocks necessary to complete application requests.

To explain better how an active data set works, let’s consider an example. If you
had an e-commerce website, you might use tables to store information about each
purchase. This type of data is usually accessed frequently right after the purchase
and then it becomes less and less relevant as time goes by. Sometimes you may
still access older transactions after a few days or weeks to update shipping details
or to perform a refund, but after that, the data is pretty much dead except for an
occasional report query accessing it. This type of active data set behaves like a
time window. It moves with time, but it does not grow aggressively as long as the
number of purchases per day does not grow. Figure 5-9 illustrates transactions by
their creation time, with data being accessed in the last 48 hours highlighted.

Let’s now consider a different example showing an access pattern that could
result in an unlimited active data set growth. If you built a website that allowed
users to listen to music online, your users would likely come back every day or
every week to listen to their music. In such case, no matter how old an account is,
the user is still likely to log in and request her playlists on a weekly or daily basis.
As the user base grows, the active data set grows, and since there is no natural
way of deactivating the data over time, your system needs to be able to sustain the
growth of the active data set. I will discuss how to deal with active data set growth
later in this chapter, but for now let’s remember that replication is not a way to
solve this problem.

Figure 5-9 Active and inactive data

Recent transactionsOlder

Transaction data set

Accessed in last 48 hours Not accessed in last 48 hours

05-ch05.indd 168 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 169

Another thing to remember when working with MySQL replication is that
slaves can return stale data. MySQL replication is asynchronous, and any change
made on the master needs some time to replicate to its slaves. It is critical to
remember that, as you can easily run into timing issues where your code writes to
the master and then it performs a read on a slave to fetch the same data. In such
a scenario, depending on the replication lag, the delay between requests, and the
speed of each server, you may get the freshest data or you may get stale data, as
your write may still be replicating to the slave.

During normal operations, the replication lag can be as low as half a second,
but it does not mean that you can depend on it to be that low all the time. The
reason why replication lag can suddenly increase is that MySQL replication runs
as a single thread on slaves. Although the master can process multiple updates in
parallel, on slaves, all these statements are executed one at a time. That “gotcha”
in MySQL replication is often a source of bugs and outages during database
maintenance because a long-running update like an alter table statement blocks
replication of all the tables for as long as the statement takes to execute, which
can be seconds, minutes, or even hours.

To prevent these timing issues, one approach is to cache the data that has been
written on the client side so that you would not need to read the data that you
have just written. Alternatively, you can send critical read requests to the master
so that they would always result in the most up-to-date data. Finally, you can
try to minimize the replication lag to reduce the chance of stale data being read
from slaves. For example, to make sure your alter table statements do not block
replication, you can issue them on the master with binlog disabled and manually
execute them on each slave as well. This way, altering a large table would not
block writes to other tables and all servers would end up with the same schema.

It is critical not to underestimate the complexity and cost of MySQL replication,
as it can be a serious challenge for less experienced administrators and you need
to have a much deeper understanding of MySQL replication and MySQL itself to
manage and use replication in a safe manner.

There are many ways in which you can break MySQL replication or end up
with inconsistent data. For example, using functions that generate random
numbers or executing an update statement with a limit clause may result in a
different value written on the master and on its slaves, breaking the consistency
of your data. Once your master and your slaves get out of sync, you are in serious
trouble, as all of the following update/insert/delete statements may also behave
differently on each of the servers because they may be affected by the difference in
state. This can result in hard-to-debug problems, ghostlike bugs, and replication
repeatedly breaking, as statements execute successfully on the master but then
throw errors on the slave, stopping the replication process.

05-ch05.indd 169 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 170 Web Scalability for Startup Engineers

Although some open-source tools like pt-table-checksum or pt-table-sync can
help you discover and fix such problems, there is no high-availability autopilot
built into MySQL replication. If things break, you are the one who will have to fix
them, and it may require a great deal of knowledge, experience, and time to get
there.

Considering that managing MySQL replication is fairly involved, it can be
a good strategy to use a hosted MySQL solution like Amazon RDS (Amazon
Relational Database Service) or Rackspace Cloud Database to reduce the burden.
Especially if you work for a young startup and you need to get to market as fast
as possible, you may be better off using hosted MySQL rather than learning
and doing everything by yourself. Hosted MySQL usually comes with a lot of
useful features, such as setting up replication, automated backups, and slave
bootstrapping with a click of a button. Some of the providers support more
advanced features, such as automated failover to another availability zone, but
you may still get into trouble if your replicas get out of sync, so learning more
about MySQL would still be needed.

Even though I focused on MySQL replication in this section, a lot of the
information covered here applies to other data stores as well. Replication is
usually implemented as asynchronous propagation of changes from a single
master to one or many slaves. Details of the implementation are usually different,
making some of the challenges easier and others harder to overcome, but they
all carry the same scalability benefits of distributing read queries among more
machines and allowing you to offload slow queries and backups to separate
servers. Whether you use replication in MySQL, Redis, MongoDB, or Postgres,
you will not be able to scale writes or your data set size using it. Let’s now have
a look at the second main scalability technique, which is data partitioning, also
known as sharding.

Data Partitioning (Sharding)
Data partitioning is one of the three most basic scalability techniques listed in
Chapter 2 (next to functional partitioning and scaling by adding clones). The core
motivation behind data partitioning is to divide the data set into smaller pieces
so that it could be distributed across multiple machines and so that none of the
servers would need to deal with the entire data set. By dividing the data set into
smaller buckets and assigning each bucket to a single server, servers become
independent from one another, as they share nothing (at least in the simple
sharding scenario). Without data overlap, each server can make authoritative
decisions about data modifications without communication overhead and
without affecting availability during partial system failures.

05-ch05.indd 170 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 171

People often refer to data partitioning as sharding, and although the exact
origin of this term is not clear, some people believe that it originated in the
1990s from Ultima Online. Ultima Online was the first massively multiplayer
online role-playing game, and it required so many resources that developers
decided to divide the world of the game into isolated, independent servers (also
called shards). In the world of the game, they explained the existence of these
independent parallel worlds using a compelling storyline of a world crystal
being shattered, creating alternative realities. Each world was independent, and
characters were bound to exist within a single shard without the ability to interact
across shards.

Regardless of its origin, sharding can be explained using a metaphor of
transporting a sheet of glass. The larger the sheet, the more difficult it is to handle
and transport due to its size and weight. As soon as you shatter the glass into
small pieces, however, you can transport it more easily. No matter how large the
original sheet, you can fill buckets, trucks, or other containers of any size and
transport it bit by bit rather than having to deal with it all at once. If the sheet of
glass was your data set, then your buckets are servers running your data store,
and sharding is the act of breaking the monolithic piece of data into tiny portions
so that they can be poured into containers of any size.

Choosing the Sharding Key
The core idea of sharding is to divide the data in some way so that each server
would get only a subset of it. At the same time, when you need to access the
data to read or write it, you should be able to ask only the server who has the
information you need rather than talking to all the servers and trying to figure out
who has the data you are interested in. Being able to locate the shard on which the
data lives without having to ask all the servers is what sharding keys are used for.

A Sharding key is the information that is used to decide which server is
responsible for the data that you are looking for. The way a sharding
key is used is similar to the way you interact with object caches. To get
data out of the cache, you need to know the caching key, as that is the
only way to locate the data. A sharding key is similar—to access the
data, you need to have the sharding key to find out which server has the
data. Once you know which server has the data, you can connect to it
and issue your queries.

05-ch05.indd 171 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 172 Web Scalability for Startup Engineers

To illustrate it better, let’s consider an example of an e-commerce website again.
If you were building a large-scale e-commerce website, you could put all of the user
data into a single MySQL database and then host it on a single machine. Figure 5-10
shows how that might look. In this configuration, you do not need to decide which
server to talk to, as there is only one server and it contains all of the data.

If you wanted to scale the data size beyond a single server, you could use
sharding to distribute it among multiple MySQL database servers. Any time
you want to use sharding, you need to find a way to split your data set into
independent buckets. For example, since in traditional online stores, users do not
need to interact with each other, you could assign each user to one of the shards
without sacrificing functionality. By doing this, you can easily distribute your
users among many servers, and any time you want to read or write data related to
a particular user, you would only need to talk to one of the servers.

Once you decide how to split the data, you then need to select the sharding
key. If you shard based on the user, your sharding key would be something that
identifies the user, for example, an account ID (also known as a user ID). Once
you decide upon the sharding key, you also need to choose an algorithm, which
will allow you to map the sharding key value to the actual server number. For the
sake of simplicity, let’s say that you wanted to have only two shards; in this case,
you could allocate all of the users with even user IDs to shard 1 and all of the
users with odd user IDs to shard 2. Figure 5-11 shows the process of mapping the
user data to the server number.

By performing a split and then selecting the sharding key and a mapping method,
your data does not have to live on a single machine any more. Each machine ends
up with roughly the same amount of data, as you assign new users to one of the

Figure 5-10 User database without sharding

Users Orders
ID
1
2
3
4
5
6
…

1
2
3
4
5
6
…

1
1
2
3
3
3
…

Single database
with all user related data

… …ID user_id

05-ch05.indd 172 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 173

servers based on the user ID. In addition, each piece of data lives on one machine
only, making your database servers share nothing and giving them authority over
the data that they have.

Figure 5-12 shows how a sharded MySQL database could look. Each user is
allocated to a single database server based on the user ID. Any time you want to
access a user’s data, you would take the user ID and check whether it is odd or
even to find out which database server this user belongs to. Once you know the
server number, you simply connect to it and perform your database queries as if it
was a regular database. In fact, MySQL does not need any special configuration, as
it does not know that sharding is applied to the data set. All of the sharding logic
lives in your application and the database schema is identical on all of the shards.

Figure 5-11 Mapping the sharding key to the server number

Hardcoded logic
33 is odd

Hardcoded logic
94 is even

Server 2

User id = 94 Server 1

Request from
user id = 33

Request from
user id = 33

Application code that maps a sharding key to a server number

Connect to server 2

Connect to server 1

Input Output

Figure 5-12 User database with sharding

Users Orders
ID ID user_id

Shard 1 Shard 2

1
3
5
7
9
…

1
2
3
4
5
6
…

1
1
3
3
3
5
…

… …
Users Orders

ID ID user_id

2
4
6
8

10
…

1
2
3
4
5
6
…

2
4
4
4
6
8
…

… …

05-ch05.indd 173 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 174 Web Scalability for Startup Engineers

If you look more closely at Figure 5-12 you may notice that order IDs are
not unique across shards. Since IDs are generated using auto_increment and
databases do not know anything about one another, you get the same IDs
generated on each of the servers. In some cases, this may be acceptable, but if you
wanted to have globally unique IDs, you could use auto_increment_increment
and auto_increment_offset to make sure that each shard generates different
primary keys.

HINT
Sharding can be implemented in your application layer on top of any data store. All you need
to do is find a way to split the data so it could live in separate databases and then find a way to
route all of your queries to the right database server. The data store does not need to support
sharding for your application to use it, but some data stores provide automatic sharding and data
distribution out of the box. I will discuss automatic sharding in more detail later in this chapter.

I used user ID as the sharding key in this example, as it usually allows you
to create many tiny buckets rather than a few large ones. Sharding into a small
number of large buckets may not let you distribute the data evenly among
multiple machines. For example, if you sharded the data based on the user’s
country of origin, you would use country_code as your sharding key and then
map country_code to a server number. This might look like it gives you the same
result, but it does not. If you shard by the country of origin, you are likely to
have an uneven distribution of data. Some countries will have a majority of your
users and others will have very few, making it harder to ensure equal distribution
and load. By splitting your data into large buckets, you can also end up in a
situation where one bucket becomes so large that it cannot be handled by a single
machine any more. For example, the number of users from the United States can
grow beyond the capacity of a single server, defeating the purpose of sharding
altogether. Figure 5-13 shows how sharding by country code can cause some
servers to be overloaded and others to be underutilized. Although the number of
countries is equal, the amount of data is not.

When you perform sharding, you should try to split your data set into buckets
of similar size, as this helps to distribute the data evenly among your servers. It is
usually not possible to ensure equal size of your data buckets, but as long as your
buckets are small and you have a lot of them, your servers will still end up with a
pretty good overall data distribution.

05-ch05.indd 174 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 175

Advantages of Sharding
As you can probably already see, the most important advantage of sharding is that
when applied correctly, it allows you to scale your database servers horizontally to
almost any size.

To have a truly horizontally scalable system, all of your components need to
scale horizontally. Without sharding, you are most likely going to hit MySQL
scalability limits no matter what you do. Sooner or later, your data size will be
too large for a single server to manage or you will get too many concurrent
connections for a single server to handle. You are also likely to reach your I/O
throughput capacity as you keep reading and writing more data (there is always a
limit to how many hard drives you can connect to a single database server).

By using application-level sharding, none of the servers need to have all of the
data. This allows you to have multiple MySQL servers, each with a reasonable
amount of RAM, hard drives, and central processing units (CPUs) and each of
them being responsible for a small subset of the overall data, queries, and read/
write throughput. By having multiple servers, you can scale the overall capacity
by adding more servers rather than by making each of your servers stronger.

Since sharding splits data into disjointed subsets, you end up with a share-
nothing architecture. There is no overhead of communication between servers,
and there is no need for cluster-wide synchronization or blocking. Each database

Figure 5-13 Uneven distribution of data

Shard 1 Shard 2

Canada

USA

China

UK

Each circle
represents data set
size for a selected

country.

05-ch05.indd 175 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 176 Web Scalability for Startup Engineers

server is independent as if it was a regular MySQL instance and it can be
managed, optimized, and scaled as a regular MySQL server would be.

Another advantage of sharding is that you can implement it in the application
layer and then apply it to any data store, regardless of whether it supports
sharding out of the box or not. You can apply sharding to object caches, message
queues, nonstructured data stores, or even file systems. Any place that requires
lots of data to be persisted, managed, and searched through could benefit from
data partitioning to enable scalability.

Challenges of Sharding
Unfortunately, sharding does not come without its costs and challenges.
Implementing sharding in your application layer allows you to scale more easily, but
it adds a significant amount of work and complexity. Although it might sound like
adding a sharding key and routing queries among more machines should be easy to
do, in reality, it requires a lot of extra code and makes things much more complex.

One of the most significant limitations that come with application-level
sharding is that you cannot execute queries spanning multiple shards. Any time
you want to run such a query, you need to execute parts of it on each shard and
then somehow merge the results in the application layer. In some cases, that
might be easy to do, but in others, it might be prohibitively difficult.

To illustrate it better, let’s consider an example. If you had an e-commerce
website and you sharded the data across multiple database servers based on the
user ID (like we did in previous examples in this chapter), you could easily access
data of a particular user, but you would not be able to run queries that span
multiple users. If you wanted to find the most popular item in the last seven days,
you would need to run your query on each of the shards and then compute the
correct result in the application. Even in such a simple scenario, it is very easy to
make wrong assumptions and write invalid code, as most of us are not used to
working with sharding and disjointed data sets. If all of the data was hosted on a
single machine, all you would need to do to get the item with the highest number
of sales is run a query similar to Listing 5-1.

Listing 5-1 Example of a simple GET request

SELECT item_id, SUM(amount) total
FROM orders WHERE order_date > '2014-11-01'
ORDER BY total LIMIT limit 1;

05-ch05.indd 176 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 177

With that mind-set, you might assume that all you need to do is run the same
query on each of your servers and pick the highest of the values. Unfortunately,
that would not guarantee a correct result. If you had two servers and each of them
had top sales data, as is shown in Table 5-1, your code would return an incorrect
value. Running the query on each of the servers and picking the highest value
would result in returning item_id=2, as it had 16 sales on shard B. If you looked
at the data more closely, though, you would realize that item_id=5 had a higher
overall sales number of 23.

As you can see, dealing with disjointed data sets and trying to execute queries
across shards can be tricky. Although Listing 5-1 shows one of the simplest
examples imaginable, you may need to fetch a much larger data set from each
of the servers and compute the final result in the application layer to guarantee
correctness. As your queries become more complex, that can become increasingly
difficult, making complex reports a serious challenge.

The term ACID transaction refers to a set of transaction properties
supported by most relational database engines. A stands for Atomicity,
C for Consistency, I for Isolation, and D for Durability. An atomic
transaction is executed in its entirety. It either completes or is rejected
and reverted. Consistency guarantees that every transaction transforms
the data set from one consistent state to another and that once the
transaction is complete, the data conforms to all of the constraints
enforced by the data schema. Isolation guarantees that transactions can
run in parallel without affecting each other. Finally, durability guarantees
that data is persisted before returning to the client, so that once a
transaction is completed it can never be lost, even due to server failure.
When people say that a certain data store supports ACID transactions,
they mean that each transaction executed by that data store provides all
of the ACID guarantees.

Top Sales from Shard A Top Sales from Shard B

item_id Total Sales
4 13
5 12
1 10
…

item_id Total Sales
2 16
3 14
5 11
…

Table 5-1 Summarized Data from Each of the Shards

05-ch05.indd 177 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 178 Web Scalability for Startup Engineers

Another interesting side effect of distributing data across multiple machines
is that you lose the ACID properties of your database as a whole. You can still
depend on ACID transactions on each of the shards, but if you needed to make
changes across shards, you would lose the ACID properties. Maintaining ACID
properties across shards requires you to use distributed transactions, which
are complex and expensive to execute (most open-source database engines like
MySQL do not even support distributed transactions). For example, if you had to
update all of the orders of a particular user, you could do it within the boundaries
of a single server, thus taking advantage of ACID transactions. However, if you
needed to update all of the orders of a particular item, you would need to send
your queries to multiple servers. In such a case, there would be no guarantee that
all of them would succeed or all of them would fail. You could successfully execute
all of the queries on Shard A, committing the transaction, and then fail to commit
your transaction on Shard B. In such a case, you would have no way to roll back
queries executed on Shard A, as your transaction had already completed.

Another challenge with sharding in your application layer is that as your data
grows, you may need to add more servers (shards). Depending on how you map
from sharding key to the server number, it might be surprisingly difficult to add
more servers to your sharded deployment.

At the beginning of this section, I explained that the sharding key is used to
map to a server number. The simplest way to map the sharding key to the server
number is by using a modulo operator. In the first example of this section, I had
two shards and I decided to direct users with odd user IDs to Shard A and users
with even user IDs to Shard B, which is a modulo 2 mapping.

Modulo(n,x) is the remainder of the division of x by n. It allows you to
map any integer number to one of the numbers in range from 0 to n–1.
For example, if you had six servers, you would use modulo(6, userId) to
calculate the server number based on the user ID.

The problem with modulo-based mapping is that each user is assigned to a
particular server based on the total number of servers. As the total number of
servers changes, most of the user–server mappings change. For example, if you
had three servers, numbered 0, 1, and 2, then user_id=8 would be mapped to the
last server as modulo(3,8)=2. If you now added a fourth server, you would have
four servers numbered 0, 1, 2, and 3. Executing the same mapping code for the
same user_id=8 would return a different result: modulo(4,8)=0.

05-ch05.indd 178 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 179

As you can see, adding a server could become a huge challenge, as you would
need to migrate large amounts of data between servers. You would also need to
do it without losing track of which user’s data should be migrated to which server.
When scaling your system horizontally, scaling events should be much cheaper
and simpler than that; that is why we need to look for alternatives.

One way to avoid the need to migrate user data and reshard every time you add a
server is to keep all of the mappings in a separate database. Rather than computing
server number based on an algorithm, we could look up the server number based on
the sharding key value. In our e-commerce example, we would need a separate data
store with mappings of user_id to server number. Figure 5-14 shows how mappings
could be stored in a data store and looked up by the application (mappings could
be cached in the application to speed up the mapping code).

The benefit of keeping mapping data in a database is that you can migrate users
between shards much more easily. You do not need to migrate all of the data in

Figure 5-14 External mapping data store

Lookup requests

Mappings
user_id server_no

1
2
3
...
33
...
94
...

1
2
1
...
2
...
2
...

External Data Store

Lookup

Lookup

Server 2

User id = 94 Server 2

Request from
user id = 33

Request from
user id = 94

Application code that maps a sharding key to a server number

Connect to server 2

Connect to server 2

Input Output

05-ch05.indd 179 11/05/15 3:44 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 180 Web Scalability for Startup Engineers

one shot, but you can do it incrementally, one account at a time. To migrate a
user, you need to lock its account, migrate the data, and then unlock it. You could
usually do these migrations at night to reduce the impact on the system, and you
could also migrate multiple accounts at the same time, as there is no data overlap.

By keeping mappings in a database, you also benefit from additional flexibility,
as you can cherry-pick users and migrate them to the shards of your choice.
Depending on the application requirements, you could migrate your largest
or busiest clients to separate dedicated database instances to give them more
capacity. Conversely, if high activity was not a good thing, you could punish users
for consuming too many resources by hosting them together with other noisy
users.

Since mapping data needs to be stored somewhere, you could either use
MySQL itself to store that data or use an alternative data store. If you wanted to
keep mapping data in MySQL, you could deploy a MySQL master server that
would be the source of truth for the mapping table and then replicate that data
to all of the shards. In this scenario, any time you create a new user, you need to
write to the global master. Then the user entry replicates to all of the shards, and
you can perform read-only lookups on any of the shards. Figure 5-15 shows how
that could be done.

Figure 5-15 Master of all the shards

Shard 1

Replicates

Global Master

Replicates
sharding key mappings
and database schema

Shard 1 slave Shard 1 slave

Replicates

Shard 2 slave Shard 2 slave

Shard 2

Master for the sharding key
mappings and the database
schema. Sharded tables are

empty here.

Contains data related to
the subset of the

sharding key values

05-ch05.indd 180 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 181

This is a relatively simple approach, as you add one more MySQL instance
without introducing any new technologies. Since the mapping data set is small,
it should not be a serious challenge to cache most of it in memory and replicate
it quickly to all of the shards, but that is assuming you do not create thousands of
mappings per second.

Depending on your infrastructure, adding another MySQL instance could be
a good idea, but if you already used another highly scalable data store (I will talk
about these later in this chapter), you may also consider keeping the mapping data
there rather than writing it to all of the shards. Keeping mappings in a separate
data store increases the complexity of your system as you need to deploy, manage,
and scale yet another data store instance, but if you were already using one, it
could be a relatively easy way out.

Luckily, there is one more solution to sharding that reduces the risk of resharding
at relatively low cost and with minimal increase of complexity. In this scenario,
you use the modulo function to map from the sharding key value to the database
number, but each database is just a logical MySQL database rather than a physical
machine. First, you decide how many machines you want to start with. Then you
forecast how many machines you may realistically need down the road.

For example, you estimate that you will need two servers to start with and you
will never need more than 32 machines in total (32 shards). In such a situation,
you create 16 databases on each of the physical servers. On Server A you name
them db-00 … db-15 and on Server B you name them db-16 … db-31. You then
deploy the exact same schema to each of these databases so that they are identical.
Figure 5-16 shows how such a deployment might look.

Figure 5-16 Initial deployment of multidatabase sharded solution

Server A

db-00 db-01 db-02 db-03

db-04 db-05 db-06 db-07

Server B

db-16 db-17 db-18 db-19

db-20 db-21 db-22 db-23

db-08 db-09 db-10 db-11

db-12 db-13 db-14 db-15

db-24 db-25 db-26 db-27

db-28 db-29 db-30 db-31

Schema is exactly the same in
all 32 databases.We have 32
logical shards deployed on

two physical machines.

05-ch05.indd 181 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 182 Web Scalability for Startup Engineers

At the same time, you implement mapping functions in your code that allow
you to find the database number and the physical server number based on the
sharding key value. You implement a getDbNumber function that maps the
sharding key value (like a user ID) to the database number (in this case, 32 of
them) and getServerNumber, which maps the database number to a physical
server number (in this case, we have two). Listing 5-2 shows how all of the
mapping code would look initially.

Listing 5-2 Mapping functions

/**
 * Returns a logical database number based on the value of
 * the sharding key.
 * @param int $shardingKey
 * @return int database number
 */
function getDbNumber($shardingKey){
 return $shardingKey % 32;
}
/**
 * Returns a physical server number based on the db number.
 * @param int $dbNumber
 * @return int physical server number
 */
function getServerNumber($dbNumber){
 return $dbNumber < 16 ? 0 : 1;
}

You can then deploy your application and begin operation. As your database
grows and you need to scale out, you simply split your physical servers in two.
You take half of the logical database and move it to new hardware. At the same
time, you modify your mapping code so that getServerNumber would return
the correct server number for each logical database number. Figure 5-17 shows
how your deployment might look after scaling out to four physical servers.

Although adding multiple databases on each machine is slightly more
complicated than a simple sharded deployment, it gives you much more flexibility
when it comes to scaling out. Being able to double your capacity by simply
copying binary database backups and updating a few lines of code is a huge time
saver. It is also much easier and safer to perform, as you do not need to update,
insert, or delete any data for the migration to be completed. All you do is move
the entire MySQL database from one server to another.

05-ch05.indd 182 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 183

Another benefit of this approach is that you can scale out relatively quickly
with minimal amount of downtime. With good planning, you should be able to
complete such a scaling-out event in less than a couple of minutes downtime. The
actual scaling-out procedure might look as follows:

 ▶ First, you set up your new servers as replicas of your current shards.
 ▶ Then you need to stop all writes for a brief moment to allow any in-flight

updates to replicate.
 ▶ Once slaves catch up with masters, you disable replication to new servers,

as you do not want them to continue replicating the data that they will not be
responsible for.

 ▶ You can then change the configuration of your application to use new servers
and allow all traffic.

A challenge that you may face when working with application-level sharding is
that it may be harder to generate an identifier that would be unique across all of
the shards. Some data stores allow you to generate globally unique IDs, but since
MySQL does not natively support sharding, your application may need to enforce
these rules as well.

Figure 5-17 Multidatabase sharded solution after scaling-out event

Server A

db-00 db-01 db-02 db-03

db-04 db-05 db-06 db-07

Server B

db-16 db-17 db-18 db-19

db-20 db-21 db-22 db-23

Server C

db-08 db-09 db-10 db-11

db-12 db-13 db-14 db-15

Server D

db-24 db-25 db-26 db-27

db-28 db-29 db-30 db-31

We move half of the logical
databases to scale out to four
physical servers. Databases

remain unchanged.

05-ch05.indd 183 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 184 Web Scalability for Startup Engineers

If you do not care how your unique identifiers look, you can use MySQL auto-
increment with an offset to ensure that each shard generates different numbers. To
do that on a system with two shards, you would set auto_increment_increment=2
and auto_increment_offset=1 on one of them and auto_increment_increment=2 and
auto_increment_offset=2 on the other. This way, each time auto-increment is
used to generate a new value, it would generate even numbers on one server and
odd numbers on the other. By using that trick, you would not be able to ensure
that IDs are always increasing across shards, since each server could have a different
number of rows, but usually that is not be a serious issue.

Another simple alternative to generating globally unique IDs is to use atomic
counters provided by some data stores. For example, if you already use Redis, you
could create a counter for each unique identifier. You would then use Redis’ INCR
command to increase the value of a selected counter and return it in an atomic
fashion. This way, you could have multiple clients requesting a new identifier
in parallel and each of them would end up with a different value, guaranteeing
global uniqueness. You would also ensure that there are no gaps and that each
consecutive identifier is bigger than the previous ones.

HINT
An interesting way of overcoming the complexity of application-level sharding is to push most
of its challenges onto the cloud hosting provider. A good example of how sharding can be made
easier for developers is by using Azure SQL Database Elastic Scale. Azure SQL Database Elastic
Scale is a set of libraries and supporting services that take responsibility for sharding, shard
management, data migration, mapping, and even cross-shard query execution. Rather than
having to implement all of this code and supporting tools yourself, you can use the provided
libraries and services to speed up your development and avoid painful surprises. Although the
Azure SQL Database is using a custom version of SQL Server (not MySQL), it is worth mentioning it
here, as it is a great example of how cloud-hosting providers expand their support for scalability.L13

As you can see, a lot of challenges come with application-level sharding. Let’s
now have a quick look at how you could combine replication, sharding, and
functional partitioning to enable a MySQL-based system to scale efficiently.

Putting It All Together
As I mentioned earlier, scalability can be boiled down to three underlying techniques:
scaling by adding copies of the same thing, functional partitioning, and data
partitioning. All of these techniques could be applied to a MySQL-based system
to allow it to scale. Imagine again that you are hosting an e-commerce website.

05-ch05.indd 184 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 185

This time, we will look at the bigger picture and we will discuss how different
scalability techniques complement each other.

If you were to build an e-commerce system, you could design it in a simple way
where you only have one web service containing all of the functionality of the
application. You could also have that web service talk to a single MySQL database
for all of its persistence needs. In such a simple scenario, your system might look
similar to Figure 5-18.

Assuming that your web service was stateless, you could scale the web service
machines, but you would not be able to scale your database past a single server.
If your application was performing many more reads than writes, you could scale
reads by adding read replica servers. These servers would have an exact copy of
the data that the master database has, thus allowing you to scale by adding more
copies of the same thing. In this configuration, your system might look like
Figure 5-19.

Now, if that was not enough to scale your system, you might decide to split it into
two functional components by performing functional partitioning. For example,

Figure 5-18 Single service and single database

Web service clients
like front-end servers

Access via reverse proxies and/or load balancers

Access product catalog

Monolithic Service

Monolithic Database

Access user data

Server 1 Server N

Single server

05-ch05.indd 185 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 186 Web Scalability for Startup Engineers

you could decide to store all of the user-centric data on one database and the
rest of the data in a separate database. At the same time, you would split the
functionality of your web services layer into two independent web services:
ProductCatalogService and CustomerService. ProductCatalogService would be
responsible for managing and accessing information about products, categories,
and promotions and CustomerService would be responsible for user accounts,
orders, invoices, and purchase history. After performing functional partitioning,
your system might look like Figure 5-20.

By dividing your web service into two highly decoupled services, you could
now scale them independently. You could use MySQL replication to scale reads of
the ProductCatalogService since the product catalog would be used mainly as a
read-only service. Users would search through the data, retrieve product details,

Figure 5-19 Scaling catalog by adding replicas

Web service clients
like front-end servers

Access via reverse proxies and/or load balancers

Access product catalog

Monolithic Service

Monolithic Database

Access user data

Server 1 Server N

Replicates from

Master

Slave Slave

05-ch05.indd 186 09/05/15 11:57 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 187

or list products in different categories, but they would not be allowed to modify
any data in the ProductCatalogService. The only people allowed to modify data
in the catalog would be your merchants, and these modifications would happen
relatively rarely in comparison to all other types of queries.

On the other hand, CustomerService would require much higher write
throughput, as most operations related to user data require writes to persist
results of user actions. Each operation, such as adding an item to cart, processing
a payment, or requesting a refund, would require writes to the database.

Since your product catalog is mainly read-only and the size is relatively small,
you might choose to scale it by adding more read replicas (scaling by adding
clones). By keeping all of the products in a single database, you would make your
search queries simpler, as you would not need to merge query results across

Figure 5-20 Two web services and two databases

Web service clients
like front-end servers

Access via reverse proxies and/or load balancers

Functional split

Access features of
ProductCatalogService

ProductCatalogService CustomerService

Catalog DB

Access features of
CustomerService

Server 1 Server MServer 1 Server N

Replicates from

Master

Slave Slave

Customer DB

Replicates from

Master

Slave Slave

05-ch05.indd 187 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 188 Web Scalability for Startup Engineers

shards. On the other hand, since your user data set was much larger and required
many more writes, you could scale it by applying sharding (scaling by data
partitioning). You would not depend on replication to scale CustomerService,
but you might still want to keep one read replica of each shard just for high-
availability and backup purposes. Figure 5-21 shows how your system might look.

In this scenario, replication would be implemented using MySQL replication
and sharding would be implemented in the application layer. The application
would need to store user IDs in cookies or sessions so that every request sent to
CustomerService could have the user ID (used as the sharding key). Based on the

Figure 5-21 All three techniques applied

Web service clients
like front-end servers

Access via reverse proxies and/or load balancers

Functional split

Access features of
ProductCatalogService

ProductCatalogService CustomerService

Catalog DB

Access features of
CustomerService

Customer DB

Server 1 Server MServer 1 Server N

Shard A
master

Failover
slave

Shard B
master

Failover
slave

Shard C
master

Failover
slave

Replicates from

Master

Slave Slave

05-ch05.indd 188 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 189

sharding key, the web service could then connect to the correct shard (which is
just a regular MySQL database instance) and execute the necessary queries. As
you can see, you can mix and match different scalability techniques to help your
MySQL-based system grow.

Although application-level sharding is a great way to increase your I/O capacity
and allow your application to handle more data, a lot of challenges come with it.
Your code becomes much more complex, cross-shard queries are a pain point,
and you need to carefully select your sharding key—even then, adding hardware
and migrating data can be a challenge.

Replication helps with read throughput and enables higher availability, but
it also comes with its own difficulties, especially in terms of ensuring data
consistency and recovering from failures. It also forces your application to be
aware of replication so that it can handle replication lag correctly and direct queries
to the right servers.

Luckily, MySQL and other relational databases are no longer the only way to go
when it comes to storing data. Let’s now have a look at alternative technologies
that can be used as data stores allowing scalability and high availability.

Scaling with NoSQL
Traditionally, scaling relational databases was the main pain point when scaling
web applications. As graduates of computer science courses, we were taught
for decades that data should be normalized and transactions should be used
to enforce data consistency. Some people would go even further, pushing huge
parts of their business logic into the database layer so it would execute as
stored procedures or triggers directly on the database servers rather than in the
application layer. There was a conviction that relational databases were all there
was and all there was ever going to be. If you needed a large-scale database, you
needed stronger servers and a bunch of costly software licenses, as there were no
alternatives.

Data normalization is a process of structuring data so that it is broken
into separate tables. As part of the normalization process, people would
usually break data down into separate fields, make sure that each row
could be identified by a primary key, and that rows in different tables
would reference each other rather than having copies of the same

05-ch05.indd 189 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 190 Web Scalability for Startup Engineers

information. Having data in such a form reduces the data size, as there
is less redundancy. It also allows for better indexing and searching
because data is segregated and smaller in size. Normalization also
increases data integrity, as anytime an application needs to update
existing data, it only needs to update it in one place (other rows can
reference this data, but they would not contain copies of it).

The mind-set that relational database engines were the only way to go began
to change in the 2000s with a publication of a few ground-breaking white papers
and the increasing popularity of online businesses. Because companies needed
to break new scalability records, they needed to look for new, innovative ways to
manage the data. Rather than demanding full ACID compliance and expecting
databases to run distributed transactions, companies like Amazon, Google, and
Facebook decided to build their own simplified data stores. These data stores
would not support SQL language, complex stored procedures, or triggers, but
what they gave in return was true horizontal scalability and high availability
beyond what relational databases could ever offer.

As their platforms proved successful, the world’s largest web startups
began publishing computer science white papers describing their innovative
technologies. A few famous white papers from Google were Google File System,w44
MapReduce,w1 and BigTable,w28 published in early 2000s. These publications were
followed by one of the most famous data store publications, Dynamo, which was a
data store designed solely to support the amazon.com checkout process.w39 By 2010,
principles and design decisions made by these early pioneers made their way into
open-source data stores like Cassandra, Redis, MongoDB, Riak, and CouchDB, and
the era of NoSQL began.

NoSQL is a broad term used to label many types of data stores that
diverge from the traditional relational database model. These data
stores usually do not support the SQL language, thus the term NoSQL.

The reason why these new technologies were so successful at handling
ever-growing amounts of data was that they were built with scalability in mind
and they were making significant tradeoffs to support this scalability.

05-ch05.indd 190 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 191

The mind shift of the NoSQL era is that when you set out to design a data store,
you need to first decide what features are most important to you (for example
availability, latency, consistency, ease of use, transactional guarantees, or other
dimensions of scalability). Once you decide on your priorities you can then make
tradeoffs aligned with what is most important. In the same way, when you are
choosing an open-source NoSQL data store, you need to first define the priority
order of features that you need and then choose a data store that can satisfy
most of them rather than hoping to get everything. If you are hoping to find a
“better SQL” in NoSQL, you will be disappointed, as all of the NoSQL data stores
make significant sacrifices to support their top-priority features and you need
to prepare to make these sacrifices yourself if you want to build a horizontally
scalable data layer.

Traditionally, making tradeoffs and sacrifices was not really in the nature of
database designers until Eric Brewer’s famous CAP theorem,w23–w25 which stated
that it was impossible to build a distributed system that would simultaneously
guarantee consistency, availability, and partition tolerance. In this theorem, a
distributed system consists of nodes (servers) and network connections allowing
nodes to talk to each other. Consistency ensures that all of the nodes see the same
data at the same time. Availability guarantees that any available node can serve
client requests even when other nodes fail. Finally, partition tolerance ensures that
the system can operate even in the face of network failures where communication
between nodes is impossible.

HINT
CAP is even more difficult to understand, as the way consistency is defined in CAP is different
from the way it was traditionally defined in ACID. In CAP, consistency ensures that the same data
becomes visible to all of the nodes at the same time, which means that all of the state changes
need to be serializable, as if they happened one after another rather than in parallel. That, in
turn, requires ways of coordinating across CPUs and servers to make sure that the latest data is
returned. In ACID, on the other hand, consistency is more focused on relationships within the data,
like foreign keys and uniqueness.

Since all available nodes need to process all incoming requests (availability) and
at the same time they all need to respond with the same data (consistency), there is
no way for data to propagate among servers in case of network failure. Figure 5-22
shows a hypothetical data store cluster that conflicts with the CAP theorem. In
this example, you can see a network failure separating nodes A and B. You can
also see that node C has failed and that multiple clients are reading and writing
the same data using different nodes.

05-ch05.indd 191 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 192 Web Scalability for Startup Engineers

The CAP theorem quickly became popular, as it was used as a justification
for tradeoffs made by the new NoSQL data store designers. It was popularized
under a simplified label, “Consistency, availability, or partition tolerance: pick
two,” which is not entirely correct, but it opened engineers’ eyes to the fact that
relational databases with all of their guarantees and features may simply not
be able to scale in the way people expected them to. In 2012, Brewer published
a white paper titled “CAP 12 Years Later” in which he explained some of the
misconceptions about CAP and that tradeoffs are usually made in more subtle
ways than sacrificing consistency or high availability altogether. Regardless of
its accuracy, the phrase “pick two” became the catchphrase of NoSQL, as it is a
powerful way to drive a message that scalable data stores require tradeoffs.

The Rise of Eventual Consistency
As the simplified version of the CAP theorem suggests (pick two), building a
distributed data store requires us to relax the guarantees around availability,
consistency, or partition tolerance. Some of the NoSQL data stores choose to
sacrifice some of the consistency guarantees to make scalability easier. For example,
this is what Amazon did with its Dynamo data store.w39 Rather than enforcing full
consistency or trying to aim for distributed transactions, Amazon decided that high
availability was the most important thing for their online business. Amazon wanted
to make sure that you would never get a blank page in the middle of your browsing
session and that your shopping cart would never get lost.

Figure 5-22 Data store conflicting with the CAP theorem

Client 1

Client 2

Client 2

Client 4

Update items set
price=99.00
where id=55;

Data Store

Node C

Node BNode A Update items set
price=75.00
where id=55;

Communication
failure

Node
Select * from items

where id=55;
Select * from items

where id=55;

05-ch05.indd 192 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 193

Based on these priorities, Amazon then made a series of sacrifices to support
their high-availability and scalability needs. They sacrificed complex queries,
simplified the data model, and introduced a concept of eventual consistency
instead of trying to implement a globally consistent system.

Eventual consistency is a property of a system where different nodes
may have different versions of the data, but where state changes
eventually propagate to all of the servers. If you asked a single server
for data, you would not be able to tell whether you got the latest data or
some older version of it because the server you choose might be lagging
behind.

If you asked two servers for the exact same data at the exact same time in a
globally consistent system, you would be guaranteed to get the same response. In
an eventually consistent system, you cannot make such assumptions. Eventually,
consistent systems allow each of the servers to return whatever data they have,
even if it is some previous stale version of the data the client is asking for. If you
waited long enough, though, each server would eventually catch up and return
the latest data.

Figure 5-23 shows a scenario where Client A sends an update to Server 1
of an eventually consistent data store. Immediately after that, Clients B and C

Figure 5-23 Eventual consistency

Client A

Client B

Client C

Update items set
price=99.00
where id=55;

Select price from
items where id=55;
RESPONSE: 99.00

Select price from items
where id=55;

RESPONSE: 105.00

Changes propagate
asynchronously

Price of product id=55 was 105.00
before client A issued her

update command.

Server 1

Eventually Consistent Data Store

Server 2

05-ch05.indd 193 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 194 Web Scalability for Startup Engineers

send queries for that data to Servers 1 and 2. Since the data store is eventually
consistent, they cannot be sure if they got the latest data. They know that they got
data that was valid at some point in time, but there is no way to know whether
the data they got was the freshest or not. In this case, Client B got the latest data,
but Client C got a stale response because changes made by Client A have not
propagated to Server 2 yet. If Client C waited long enough before sending the
request to Server 2, it would receive the same data that Client A has written.

Some data stores use eventual consistency as a way to increase high availability.
Clients do not have to wait for the entire system to be ready for them to be able
to read or write. Servers accept reads and writes at all times, hoping that they will
be able to replicate incoming state changes to their peers later on. The downside
of such an optimistic write policy is that it can lead to conflicts, since multiple
clients can update the same data at the exact same time using different servers.
Figure 5-24 shows such a conflict scenario. By the time nodes A and B notice the
conflict, clients are already gone. Data store nodes need to reach a consensus on
what should happen with the price of item id=55.

There are different ways in which conflicts like this can be resolved. The simplest
policy is to accept the most recent write and discard earlier writes. This is usually
called “the most recent write wins” and it is appealing due to its simplicity, but it
may lead to some data being lost.

Figure 5-24 Eventual consistency write conflict

Eventually Consistent Data Store

Client 1 Client 2

Replicates 75.00
Update items set

price=99.00
where id=55;

Update items set
price=75.00
where id=55;

Replicates 99.00

Node A Node B

05-ch05.indd 194 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 195

Alternatively, some data stores like Dynamo push the responsibility for conflict
resolution onto its clients. They detect conflicts and keep all of the conflicting
values. Any time a client asks for that data, they would then return all of the
conflicted versions of the data, letting the client decide how to resolve the
conflict. The client can then apply different business rules to resolve each type
of conflict in the most graceful way. For example, with the Amazon shopping
cart, even if some servers were down, people would be able to keep adding items
to their shopping carts. These writes would then be sent to different servers,
potentially resulting in multiple versions of each shopping cart. Whenever
multiple versions of a shopping cart are discovered by the client code, they are
merged by adding all the items from all of the shopping carts rather than having
to choose one winning version of the cart. This way, users will never lose an item
that was added to a cart, making it easier to buy.

Figure 5-25 shows how client-side conflict resolution might look. The client
created a shopping cart using Server A. Because of a temporary network failure,
the client could not write to Server A, so it created a new shopping cart for the same
user on Server B. After network failure recovery, both nodes A and B ended up with
two conflicting versions of the same shopping cart. To cope with the conflict, they
each keep both of the versions and return them to the client in consecutive calls.
Then it is up to the client code to decide how to resolve the conflict. In this case, the
client decided to merge carts by adding both items and saving the updated cart so
that there would be no conflicting versions in the data store.

Figure 5-25 Client-side conflict resolution

Eventually Consistent Data Store

Client

Client

Client

Propagates
1. Save shopping
cart of user 123

with item 55

2. Save shopping
cart of user 123

with item 70

3. Get shopping
cart for user 123.

RESPONSE: both carts.

4. Save shopping cart
for user 123 with
items 70 and 55

Propagates

Node A Node B

05-ch05.indd 195 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 196 Web Scalability for Startup Engineers

In addition to the conflict resolution mechanisms mentioned earlier, eventually
consistent data stores often support ongoing data synchronization to ensure data
convergence. Even when you think of a simple example of an eventually consistent
system like MySQL replication, where only one server can accept writes, it can be
a challenge to keep all of the copies of the data in sync. Even the smallest human
error, application bug, or hardware issue could result in the slave having different
data from the master. To deal with edge-case scenarios where different servers
end up with different data, some NoSQL data stores, like Cassandra, employ
additional self-healing strategies.

For example, 10 percent of reads sent to Cassandra nodes trigger a background
read repair mechanism. As part of this process, after a response is sent to the
client, the Cassandra node fetches the requested data from all of the replicas,
compares their values, and sends updates back to any node with inconsistent
or stale data. Although it might seem like overkill to keep comparing all of the
data 10 percent of the time, since each of the replicas can accept writes, it is very
easy for data to diverge during any maintenance or network issues. Having a fast
way of repairing data adds overhead, but it makes the overall system much more
resilient to failures, as clients can read and write data using any of the servers
rather than having to wait for a single server to become available.

Eventual consistency is a tradeoff and it is usually much more difficult to
reason about an eventually consistent system than a globally consistent one.
Whatever you read could be some stale version of the data; whatever you write
might overwrite data that you did not expect to be there because you read from a
stale copy.

Using an eventually consistent data store does not mean that you can never
enforce read-after-write semantics. Some of the eventually consistent systems,
like Cassandra, allow clients to fine-tune the guarantees and tradeoffs made by
specifying the consistency level of each query independently. Rather than having
a global tradeoff affecting all of your queries, you can choose which queries
require more consistency and which ones can deal with stale data, gaining more
availability and reducing latency of your responses.

Quorum consistency means the majority of the replicas agree on the
result. When you write using quorum consistency, the majority of the
servers need to confirm that they have persisted your change. Reading
using a quorum, on the other hand, means that the majority of the
replicas need to respond so that the most up-to-date copy of the data
can be found and returned to the client.

05-ch05.indd 196 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 197

A quorum is a good way to trade latency for consistency in eventually consistent
stores. You need to wait longer for the majority of the servers to respond, but you
get the freshest data. If you write certain data using quorum consistency and then
you always read it using quorum consistency, you are guaranteed to always get the
most up-to-date data and thus regain the read-after-write semantics.

To explain better how quorum consistency works, let’s consider Figure 5-26.
In this example, your data is replicated across three nodes. When you write data,
you write to at least two nodes (at least two nodes need to confirm persisting
your changes before returning the response). That means the failure of Server 2
does not prevent the data store from accepting writes. Later on, when Server 2
recovers and comes back online with stale data, clients would still get the most
up-to-date information because their quorum reads would include at least one of
the remaining servers, which has the most up-to-date data.

Faster Recovery to Increase Availability
In a similar way in which Dynamo and Cassandra traded some of their consistency
guarantees in favor of high availability, other data stores trade some of their high
availability for consistency. Rather than guaranteeing that all the clients can read
and write all of the time, some data store designers decided to focus more on quick
failure recovery rather than sacrificing global consistency.

A good example of such a tradeoff is MongoDB, another popular NoSQL data
store. In MongoDB, data is automatically sharded and distributed among multiple

Figure 5-26 Quorum operations during failure

Eventually Consistent Data Store

Client A Client B

Node 1

Propagates Propagates

Node
failure

Propagates

Attempt to write to
all three nodes.

Wait for at least two
out of three to consider
the update successful.

Attempt reading from
all three nodes. Wait

for at least two to come back.
Pick version with latest time.

Node 2

Node 3

05-ch05.indd 197 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 198 Web Scalability for Startup Engineers

servers. Each piece of data belongs to a single server, and anyone who wants to
update data needs to talk to the server responsible for that data. That means any
time a server becomes unavailable, MongoDB rejects all writes to the data that
the failed server was responsible for.

The obvious downside of having a single server responsible for each piece of
data is that any time a server fails, some of your client operations begin to fail. To
add data redundancy and increase high availability, MongoDB supports replica
sets, and it is recommended to set up each of the shards as a replica set. In replica
sets, multiple servers share the same data, with a single server being elected as
a primary. Whenever the primary node fails, an election process is initiated to
decide which of the remaining nodes should take over the primary role. Once
the new primary node is elected, replication within the replica set resumes and
the new primary node’s data is replicated to the remaining nodes. This way, the
window of unavailability can be minimized by automatic and prompt failover.

You could now think that things are great—you have a consistent data store
and you only risk a minute of downtime when one of your primary nodes fails.
The problem with NoSQL data stores is that they are littered with “gotchas” and
you cannot assume anything about them without risking painful surprises. It is
not because data store designers are evil, but because they have to make tradeoffs
that affect all sorts of things in ways you might not expect.

With regard to consistency in MongoDB, things are also more complicated
than you might expect. You might have read that MongoDB is a CP data store
(favoring consistency and partition tolerance over availability), but the way in
which consistency is defined is not what you might expect. Since MongoDB
replica sets use asynchronous replication, your writes reach primary nodes and
then they replicate asynchronously to secondary nodes. This means that if the
primary node failed before your changes got replicated to secondary nodes, your
changes would be permanently lost.

Figure 5-27 shows how a primary node failure causes some writes to be lost.
In a similar way to how Cassandra allowed you to increase consistency, you can
also tell MongoDB to enforce secondary node consistency when you perform
a write. But would you not expect that to be the default in a CP system? In
practice, enforcing writes to be synchronously replicated to secondary nodes is
expensive in MongoDB, as writes are not propagated one by one; rather, the entire
replication backlog needs to be flushed and processed by the secondary node for a
write to be acknowledged.

Many of the modern NoSQL data stores support automatic failover or failure
recovery in one form or another. No matter which NoSQL data store you choose,
you need to study it deeply and resist any assumptions, as practice is usually more
complicated than the documentation makes it look.

05-ch05.indd 198 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 199

Cassandra Topology
NoSQL data stores vary significantly, but they use some common patterns to
distribute data among multiple servers, replicate information, and handle failures.
Let’s have a closer look at Cassandra, which is one of the most popular NoSQL
data stores, to see some of these key features.

Cassandra is a data store that was originally built at Facebook and could
be seen as a merger of design patterns borrowed from BigTable (developed at
Google) and Dynamo (built by Amazon).

The first thing that stands out in the Cassandra architecture is that all of its
nodes are functionally equal. Cassandra does not have a single point of failure,
and all of its nodes perform the exact same functions. Clients can connect to

Figure 5-27 Update lost due to primary node failure

Client writes to primary node (A).

A
rrow

 of tim
e

Primary persists change to disk.
Primary acknowledges operation to the client. Client thinks that change has
been applied.
Primary reboots (temporary node A failure).

Secondary nodes (B and C) decide which of them should becomes the new primary.
They pick node B.
Node A comes back online. Nodes B and C agree that node B is the primary now.
Node A has no choice but to roll back its changes to align with the state of
the current primary node (B). Change is lost although client was informed that
it was persisted.

Nodes use a
consensus protocol
to agree who is the

primary.

Node C

Node B

MongoDB Replica Set

Client writes to
node A as it

is currently the
primary node.

B becomes the primary
after node A reboots.

Client
Node A

(original primary)

05-ch05.indd 199 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 200 Web Scalability for Startup Engineers

any of Cassandra’s nodes and when they connect to one, that node becomes the
client’s session coordinator. Clients do not need to know which nodes have what
data, nor do they have to be aware of outages, repairing data, or replication.
Clients send all of their requests to the session coordinator and the coordinator
takes responsibility for all of the internal cluster activities like replication or
sharding.

Figure 5-28 shows the topology of a Cassandra cluster. Clients can connect to
any of the servers no matter what data they intend to read or write. Clients then
issue their queries to the coordinator node they chose without any knowledge
about the topology or state of the cluster. Since each of the Cassandra nodes
knows the status of all of the other nodes and what data they are responsible
for, they can delegate queries to the correct servers. The fact that clients know
very little about the topology of the cluster is a great example of decoupling and
significantly reduces complexity on the application side.

Although all of the Cassandra nodes have the same function in the cluster,
they are not identical. The thing that makes each of the Cassandra nodes unique
is the data set that they are responsible for. Cassandra performs data partitioning

Figure 5-28 Topology of a Cassandra cluster

Node 6 delegates to three
nodes that have row 1234.

Nodes communicate among
each other to share the same
view of the cluster. Each node

knows where data lives
and which nodes are of�ine.

Node 6 is the session
coordinator of client A. It

issues queries to nodes that
have the data.

It reconciles con�icts,
deals with failure, and
propagates updates.

Client connects to
any of the nodes.
Get row 1234.

Client A

Cassandra Cluster

Node 4

Node 3Node 5

Node 6 Node 2

Node 1

05-ch05.indd 200 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 201

automatically so that each of the nodes gets a subset of the overall data set. None
of the servers needs to have all of the data, and Cassandra nodes communicate
among one other to make sure they all know where parts of the data live.

Another interesting feature of Cassandra is its data model, which is very
different from the relational data model used in databases like MySQL. The
Cassandra data model is based on a wide column, similar to Google’s BigTable.w28 In
a wide column model, you create tables and then each table can have an unlimited
number of rows. Unlike the relational model, tables are not connected, each table
lives independently, and Cassandra does not enforce any relationships between
tables or rows.

Cassandra tables are also defined in a different way than in relational databases.
Different rows may have different columns (fields), and they may live on different
servers in the cluster. Rather than defining the schema up front, you dynamically
create fields as they are required. This lack of upfront schema design can be a
significant advantage, as you can make application changes more rapidly without
the need to execute expensive alter table commands any time you want to persist
a new type of information.

The flip side of Cassandra’s data model simplicity is that you have fewer tools
at your disposal when it comes to searching for data. To access data in any of
the columns, you need to know which row are you looking for, and to locate the
row, you need to know its row key (something like a primary key in a relational
database).

Cassandra partitions data based on a row key in a similar way to what we did
with MySQL sharding earlier in this chapter. When you send your query to your
session coordinator, it hashes the row key (which you provided) to a number.
Then, based on the number, it can find the partition range that your row key
belongs to (the correct shard). Finally, the coordinator looks up which Cassandra
server is responsible for that particular partition range and delegates the query to
the correct server.

In addition to automatic data partitioning, Cassandra supports a form of
replication. It is important to note, though, that in Cassandra, replication is
not like we have seen in MySQL. In Cassandra, each copy of the data is equally
important and there is no master–slave relationship between servers. In
Cassandra, you can specify how many copies of each piece of data you want to
keep across the cluster, and session coordinators are responsible for ensuring the
correct number of replicas.

Anytime you write data, the coordinator node forwards your query to all of the
servers responsible for the corresponding partition range. This way, if any of the
servers was down, the remaining servers can still process the query. Queries for

05-ch05.indd 201 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 202 Web Scalability for Startup Engineers

failed nodes are buffered and then replayed when servers become available again
(that buffering is also called hinted handoff). So although the client connects to a
single server and issues a single write request, that request translates to multiple
write requests, one for each of the replica holders.

Figure 5-29 shows how a write request might be coordinated in a cluster
with the replication factor equal to three when a quorum consistency level was
requested. In such a scenario, the coordinator has to wait for at least two nodes
to confirm that they have persisted the change before it can return to the client.
In this case, it does not matter to the client whether one of the nodes is broken
or down for maintenance, because node 6 returns as soon as two of the nodes
acknowledge that they have persisted the change (two out of three is the majority
of the nodes, which is enough to guarantee quorum-level consistency).

Another extremely valuable feature of Cassandra is how well automated it is
and how little administration it requires. For example, replacing a failed node
does not require complex backup recovery and replication offset tweaking, as
often happens in MySQL. All you need to do to replace a broken server is add a
new (blank) one and tell Cassandra which IP address this new node is replacing.

Figure 5-29 Writing to Cassandra

Cassandra Cluster

Node 6 calculates partition range
of row 1234 and issues the query to

three nodes that have the data.

Client connects
to any of the nodes.
Writes row 1234

with quorum
consistency level.

Client A

Node 3

Node 4

Node 1

Node 5

Node 6 Node 2

05-ch05.indd 202 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 203

All of the data transferring and consistency checking happens automatically in the
background. Since each piece of data is stored on multiple servers, the cluster is
fully operational throughout the server replacement procedure. Clients can read
and write any data they wish even when one server is broken or being replaced.
As soon as node recovery is finished, the new node begins processing requests
and the cluster goes back to its original capacity.

From a scalability point of view, Cassandra is a truly horizontally scalable data
store. The more servers you add, the more read and write capacity you get, and
you can easily scale in and out depending on your needs. Since data is sliced into a
high number of small partition ranges, Cassandra can distribute data more evenly
across the cluster. In addition, since all of the topology is hidden from the clients,
Cassandra is free to move data around. As a result, adding new servers is as easy
as starting up a new node and telling it to join the cluster. Again, Cassandra takes
care of rebalancing the cluster and making sure that the new server gets a fair
share of the data.

As of this writing, Cassandra is one of the clear leaders when it comes to ease
of management, scalability, and self-healing, but it is important to remember that
everything has its price. The main challenges that come with operating Cassandra
are that it is heavily specialized, it has a very particular data model, and it is an
eventually consistent data store.

You can work around eventual consistency by using quorum reads and writes,
but the data model and tradeoffs made by the designers can often come as a
surprise. Anything that you might have learned about relational databases is
pretty much invalid when you work with NoSQL data stores like Cassandra. It is
easy to get started with most NoSQL data stores, but to be able to operate them at
scale takes much more experience and understanding of their internal structure
than you might expect.

For example, even though you can read in the open-source community that
“Cassandra loves writes”, deletes are the most expensive type of operation you
can perform in Cassandra, which can come as a big surprise. Most people would
not expect that deletes would be expensive, but it is a consequence of the design
tradeoffs made by Cassandra developers. Cassandra uses append-only data
structures, which allows it to write inserts with astonishing efficiency. Data is
never overwritten in place and hard disks never have to perform random write
operations, greatly increasing write throughput. But that feature, together with
the fact that Cassandra is an eventually consistent data store, forces deletes and
updates to be internally persisted as inserts as well. As a result, some use cases
that add and delete a lot of data can become inefficient because deletes increase
the data size rather than reducing it (until the compaction process cleans them up).

05-ch05.indd 203 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 204 Web Scalability for Startup Engineers

A great example of how that can come as a surprise is a common Cassandra anti-
pattern of a queue. You could model a simple first-in-first-out queue in Cassandra
by using its dynamic columns. You add new entries to the queue by appending new
columns, and you remove jobs from the queue by deleting columns. With a small
scale and low volume of writes, this solution would seem to work perfectly, but as
you keep adding and deleting columns, your performance will begin to degrade
dramatically. Although both inserts and deletes are perfectly fine and Cassandra
purges old deleted data using its background compaction mechanism, it does not
particularly like workloads with such a high rate of deletes (in this case, 50 percent
of the operations are deletes).

Without deep knowledge of the strengths, weaknesses, and internals of NoSQL
data stores, you can easily paint yourself into a corner. This is not to say that
NoSQL is not a good way to go or that Cassandra is not a good data store. Quite
the opposite—for some use cases, NoSQL is the best way to go, and Cassandra
is one of my favorite NoSQL data stores. The point here is that although NoSQL
data stores offer horizontal scalability and great optimizations of certain operations,
they are not a silver bullet and they always do it at some cost.

Summary
Scaling the data layer is usually the most challenging area of a web application.
You can usually achieve horizontal scalability by carefully designing your application,
choosing the right data store, and applying three basic scalability techniques: functional
partitioning, replication, and sharding.

No matter which data store you choose or which particular techniques you apply,
the critical thing to remember is that data store design is all about tradeoffs. There
are no silver bullets, and each application may be better suited for a different
data store and a different way of scaling. That is why I would strongly suggest you
keep an open mind and try to avoid looking for a golden hammer. Rather than
shoehorning every application into a single data store, it is better to realize that all
of the data stores have pros and cons and mix and match different technologies
based on the use case. Functional partitioning of the web services layer and using
different data stores based on the business needs is often referred to as polyglot
persistence,L37 and it is a growing trend among web applications. Although having
multiple data store types adds more complexity and increases maintenance costs,
it gives more flexibility and allows you to make tradeoffs independently within
each of the web services rather than committing to a single data store.

05-ch05.indd 204 09/05/15 11:58 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 5

 Chapter 5: Data Layer 205

Before you decide to use any of the NoSQL data stores, I suggest reading at
least one book about the selected data store and then explicitly search for gotchas,
pitfalls, and common problems that people run into when using that technology.
To gain more knowledge on data store scalability techniques, I also recommend
reading excellent books on MySQL16 and MongoDB44 and some of the most
famous white papers describing different NoSQL data stores.w28,w29,w27,w20,w18,w72,w55

No matter how good our data stores and application designs are, I/O is still a
major bottleneck in most systems. Let’s move on to caching in the next chapter,
as it is one of the easiest strategies to reduce the load put on the data layer.

05-ch05.indd 205 09/05/15 11:58 AM

This page intentionally left blank

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

207

CHAPTER

6
Caching

06-ch06.indd 207 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 208 Web Scalability for Startup Engineers

“The supreme art of war is to subdue the enemy without fighting.” –Sun Tzu

Caching, one of the key techniques used to scale web applications, is a critical
factor for increasing both performance and scalability at relatively low cost.
Caching is fairly simple and can usually be added to an existing application
without expensive rearchitecture. In many ways, caching is winning the battle
without the fight. It allows you to serve requests without computing responses,
enabling you to scale much easier. Its ease makes it a very popular technique,
as evidenced by its use in numerous technologies, including central processing
unit (CPU) memory caches, hard drive caches, Linux operating system file
caches, database query caches, Domain Name System (DNS) client caches,
Hypertext Transfer Protocol (HTTP) browser caches, HTTP proxies and reverse
proxies, and different types of application object caches. In each case, caching is
introduced to reduce the time and resources needed to generate a result. Instead
of fetching data from its source or generating a response each time it is requested,
caching builds the result once and stores it in cache. Subsequent requests are
satisfied by returning the cached result until it expires or is explicitly deleted.
Since all cached objects can be rebuilt from the source, they can be purged or lost
at any point in time without any consequences. If a cached object is not found, it
is simply rebuilt.

Cache Hit Ratio
Cache hit ratio is the single most important metric when it comes to caching. At
its core, cache effectiveness depends on how many times you can reuse the same
cached response, which is measured as cache hit ratio. If you can serve the same
cached result to satisfy ten requests on average, your cache hit ratio is 90 percent,
because you need to generate each object once instead of ten times. Three main
factors affect your cache hit ratio: data set size, space and longevity. Let’s take a
closer look at each one.

The first force acting on cache hit ratio is the size of your cache key space.
Each object in the cache is identified by its cache key, and the only way to locate
an object is by performing an exact match on the cache key. For example, if you
wanted to cache online store product information for each item, you could use a
product ID as the cache key. In other words, the cache key space is the number of
all possible cache keys that your application could generate. Statistically, the more
unique cache keys your application generates, the less chance you have to reuse

06-ch06.indd 208 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 209

any one of them. For example, if you wanted to cache weather forecast data based
on a client’s Internet Protocol (IP) address, you would have up to 4 billion cache
keys possible (this is the number of all possible IP addresses). If you decided to
cache the same weather forecast data based on the country of origin of that client,
you would end up with just a few hundred possible cache keys (this is the number
of countries in the world). Always consider ways to reduce the number of possible
cache keys. The fewer cache keys possible, the better for your cache efficiency.

The second factor affecting cache hit ratio is the number of items that you can
store in your cache before running out of space. This depends directly on the
average size of your objects and the size of your cache. Because caches are usually
stored in memory, the space available for cached objects is strictly limited and
relatively expensive. If you try to cache more objects than can fit in your cache,
you will need to remove older objects before you can add new ones. Replacing
(evicting) objects reduces your cache hit ratio, because objects are removed even
when they might be able to satisfy future requests. The more objects you can
physically fit into your cache, the better your cache hit ratio.

The third factor affecting cache hit ratio is how long, on average, each object
can be stored in cache before expiring or being invalidated. In some scenarios,
you can cache objects for a predefined amount of time called Time to Live
(TTL). For example, caching weather forecast data for 15 minutes should not be
a problem. In such a case, you would cache objects with a predefined TTL of 15
minutes. In other use cases, however, you may not be able to risk serving stale
data. For example, in an e-commerce system, shop administrators can change
product prices at any time and these prices may need to be accurately displayed
throughout the site. In such a case, you would need to invalidate cached objects
each time the product price changes. Simply put, the longer you can cache your
objects for, the higher the chance of reusing each cached object.

Understanding these three basic forces is the key to applying caching efficiently
and identifying use cases where caching might be a good idea. Use cases with a
high ratio of reads to writes are usually good candidates for caching, as cached
objects can be created once and stored for longer periods of time before expiring
or becoming invalidated, whereas use cases with data updating very often may
render cache useless, as objects in cache may become invalid before they are
used again.

In the following sections, I will discuss two main types of caches relevant to
web applications: HTTP-based caches and custom object caches. I will then
introduce some technologies applicable in each area and some general rules to
help you leverage cache more effectively.

06-ch06.indd 209 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 210 Web Scalability for Startup Engineers

Caching Based on HTTP
The HTTP protocol has been around for a long time, and throughout the
years a few extensions have been added to the HTTP specification, allowing
different parts of the web infrastructure to cache HTTP responses. This makes
understanding HTTP caching a bit more difficult, as you can find many different
HTTP headers related to caching, and even some Hypertext Markup Language
(HTML) metatags. I will describe the key HTTP caching headers later in this
section, but before we dive into these details, it is important to note that all of the
caching technologies working in the HTTP layer work as read-through caches.

Read-through cache is a caching component that can return cached
resources or fetch the data for the client, if the request cannot be
satisfied from cache (for example, when cache does not contain the
object being requested). That means that the client connects to the read-
through cache rather than to the origin server that generates the actual
response.

Figure 6-1 shows the interactions between the client, the read-through
cache, and the origin server. The cache is always meant to be the intermediate
(also known as the proxy), transparently adding caching functionality to HTTP
connections. In Figure 6-1, Client 1 connects to the cache and requests a
particular web resource (a page or a Cascading Style Sheet [CSS] file). Then the
cache has a chance to “intercept” that request and respond to it using a cached
object. Only if the cache does not have a valid cached response, will it connect
to the origin server itself and forward the client’s request. Since the interface of
the service and the read-through cache are the same, clients can connect to the
service directly (as Client 2 did), bypassing the cache, as read-through cache only
works when you connect through it.

Read-through caches are especially attractive because they are transparent
to the client. Clients are not able to distinguish whether they received a cached
object or not. If a client was able to connect to the origin server directly, it would
bypass the cache and get an equally valid response. This pluggable architecture
gives a lot of flexibility, allowing you to add layers of caching to the HTTP stack

06-ch06.indd 210 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 211

without needing to modify any of the clients. In fact, it is common to see multiple
HTTP read-through caches chained to one another in a single web request
without the client ever being aware of it.

Figure 6-2 shows how chaining HTTP read-through caches might look. I will
discuss these caches in more detail later in this chapter, but for now just note
that the connection from the client can be intercepted by multiple read-through
caches without the client even realizing it. In each step, a proxy can respond to a
request using a cached response, or it can forward the request to its source on a
cache miss. Let’s now have a closer look at how caching can be controlled using
HTTP protocol headers.

HTTP Caching Headers
HTTP is a text-based protocol. When your browser requests a page or any other
HTTP resource (image, CSS file, or AJAX call), it connects to the HTTP server
and sends an HTTP command, like GET, POST, PUT, DELETE, or HEAD, with
a set of additional HTTP headers. Most of the HTTP headers are optional, and
they can be used to negotiate expected behaviors. For example, a browser can
announce that it supports gzip compressed responses, which lets the server
decide whether it sends a response in compressed encoding or not. Listing 6-1
shows an example of a simple GET request that a web browser might issue when
requesting the uniform resource locator (URL) http://www.example.org/. I have
removed unnecessary headers like cookies and user-agent to simplify the example.

Figure 6-1 Client interacting with the read-through cache

Service

Read-Through Cache

Direct connection to the service,
bypasses caching

Connects to cache
Proxies connection to the service,

but only on cache miss

Client 1

Client 2

06-ch06.indd 211 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 212 Web Scalability for Startup Engineers

Listing 6-1 Example of a simple GET request

GET / HTTP/1.1
Host: www.example.org
Accept-Encoding: gzip,deflate
Connection: keep-alive

In this example, the browser declares that it supports version 1.1 of the
HTTP protocol and compressed data encodings. It also tells the web server
what host and what URL it is looking for. Finally, it asks the web server to keep
the underlying Transmission Control Protocol/Internet Protocol (TCP/IP)
connection open, as it intends to issue more HTTP requests to download further
assets like images, CSS files, and JavaScript files.

In response to that request, the web server could reply with something similar
to Listing 6-2. Note that the server decided to return a response in compressed
encoding using the gzip algorithm, as the client has suggested, but it rejected the
request to keep the network connection open (keep-alive header), responding with
a (connection: close) response header and closing the connection immediately.

Figure 6-2 Chain of HTTP read-through caches

Internet

HTTP proxy server
in the corporate network

Of�ce Building Data Center of
example.com

Reverse HTTP proxy
intercepts all traf�c

Web server
Connects to
local proxy

Forwards on
cache miss

Forwards on
cache miss

Client

06-ch06.indd 212 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 213

Listing 6-2 Ex ample of a simple HTTP response

HTTP/1.1 200 OK
Content-Encoding: gzip
Content-Type: text/html; charset=UTF-8
Content-Length: 9381
Connection: close

... response body with contents of the page ...

There are dozens of different request headers and corresponding response
headers that clients and servers may use, but I will focus only on headers relevant
to caching. Caching headers are actually quite difficult to get right, because many
different options can be set. To add further complication, some older headers like
“Pragma: no-cache” can be interpreted differently by different implementations.

HINT
You can use the same HTTP headers to control caching of your web pages, static resources like
images, and web service responses. The ability to cache web service responses is, in fact, one of
the key scalability benefits of REST-ful services. You can always put an HTTP cache between your
web service and your clients and leverage the same caching mechanisms that you use for your
web pages.

The first header you need to become familiar with is Cache-Control. Cache-
Control was added to the HTTP 1.1 specification and is now supported by most
browsers and caching packages. Cache-Control allows you to specify multiple
options, as you can see in Listing 6-3.

Listing 6-3 Example of Cache-Control HTTP header

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

The most important Cache-Control options that web servers may include in
their responses include

 ▶ private Indicates the result is specific to the user who requested it and
the response cannot be served to any other user. In practice, this means
that only browsers will be able to cache this response because intermediate
caches would not have the knowledge of what identifies a user.

06-ch06.indd 213 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 214 Web Scalability for Startup Engineers

 ▶ public Indicates the response can be shared between users as long as it
has not expired. Note that you cannot specify private and public options
together; the response is either public or private.

 ▶ no-store Indicates the response should not be stored on disks by any of
the intermediate caches. In other words, the response can be cached in
memory, but it will not be persisted to disk. You should include this option
any time your response contains sensitive user information so that neither
the browser nor other intermediate caches store this data on disk.

 ▶ no-cache Indicates the response should not be cached. To be accurate,
it states that the cache needs to ask the server whether this response is still
valid every time users request the same resource.

 ▶ max-age Indicates how many seconds this response can be served from
the cache before becoming stale (it defines the TTL of the response). This
information can be expressed in a few ways, causing potential inconsistency.
I recommend not using max-age (it is less backwards compatible) and
depend on the Expires HTTP header instead.

 ▶ no-transform Indicates the response should be served without any
modifications. For example, a content delivery network (CDN) provider
might transcode images to reduce their size, lowering the quality or
changing the compression algorithm.

 ▶ must-revalidate Indicates that once the response becomes stale, it cannot
be returned to clients without revalidation. Although it may seem odd,
caches may return stale objects under certain conditions, for example, if the
client explicitly allows it or if the cache loses connection to the origin server.
By using must-revalidate, you tell caches to stop serving stale responses no
matter what. Any time a client asks for a stale object, the cache will then be
forced to request it from the origin server.

Note that a cached object is considered fresh as long as its expiration time has
not passed. Once the expiration time passes, the object becomes stale, but it can
still be returned to clients if they explicitly allow stale responses. If you want to
forbid stale objects from ever being returned to the clients, include the must-
revalidate option in the Cache-Control response header. Clients can also include
the Cache-Control header in their requests. The Cache-Control header is rarely
used by the clients and it has slightly different semantics when included in the
request. For example, the max-age option included in the requests tells caches
that the client cannot accept objects that are older than max-age seconds, even if
these objects were still considered fresh by the cache.

06-ch06.indd 214 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 215

Another HTTP header that is relevant to caching is the Expires header, which
allows you to specify an absolute point in time when the object becomes stale.
Listing 6-4 shows an example of how it can be used.

Listing 6-4 Example of Expires HTTP header

Expires: Sat, 23 Jul 2015 13:14:28 GMT

Unfortunately, as you can already see, some of the functionality controlled by
the Cache-Control header overlaps that of other HTTP headers. Expiration time
of the web response can be defined either by Cache-Control: max-age=600 or by
setting an absolute expiration time using the Expires header. Including both of
these headers in the response is redundant and leads to confusion and potentially
inconsistent behavior. For that reason, I recommend deciding which headers you
want to use and sticking to them, rather than including all possible headers in
your responses.

Another important header is Vary. The purpose of that header is to tell caches
that you may need to generate multiple variations of the response based on
some HTTP request headers. Listing 6-5 shows the most common Vary header
indicating that you may return responses encoded in different ways depending on
the Accept-Encoding header that the client sends to your web server. Some clients
who accept gzip encoding will get a compressed response, whereas others who
cannot support gzip will get an uncompressed response.

Listing 6-5 Example of Vary HTTP header

Vary: Accept-Encoding

There are a few more HTTP headers related to caching that allow for conditional
download of resources and revalidation, but they are beyond the scope of this
book. Those headers include Age, Last-Modified, If-Modified-Since, and Etag
and they may be studied separately. Let’s now turn to a few examples of common
caching scenarios.

The first and best scenario is allowing your clients to cache a response forever.
This is a very important technique, and you want to apply it for all of your static
content (like images, CSS, or JavaScript files). Static content files should be
considered immutable, and whenever you need to make a change to the contents
of such a file, you should publish it under a new URL. For example, when you

06-ch06.indd 215 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 216 Web Scalability for Startup Engineers

deploy a new version of your web application, you can bundle and minify all of your
CSS files and include a timestamp or a hash of the contents of the file in the URL,
as in http://example.org/files/css/css_a8dbcf212c59dad68dd5e9786d6f6b8a.css.

HINT
Bundling CSS and JS files and publishing them under unique URLs gives you two important
benefits: your static files can be cached forever by any caches (browsers, proxies, and CDN
servers), and you can have multiple versions of the same file available to your clients at any
point in time. This allows you to maximize your cache hit ratio and makes deploying new code
much easier. If you deployed a new version of the JavaScript file by replacing an existing URL,
some clients who have an old version of the HTML page might load the new JavaScript file and
get errors. By releasing new versions of static files under new URLs, you guarantee that users can
always download compatible versions of HTML, CSS, and JavaScript files.

Even though you could cache static files forever, you should not set the Expires
header more than one year into the future (the HTTP specification does not
permit setting beyond that). Listing 6-6 shows an example of HTTP headers for
a static file allowing for it to be cached for up to one year (counting from July 23,
2015). This example also allows caches to reuse the same cached object between
different users, and it makes sure that compressed and uncompressed objects are
cached independently, preventing any encoding errors.

Listing 6-6 Example of HTTP headers for static files

Cache-Control: public, no-transform
Expires: Sat, 23 Jul 2015 13:14:28 GMT
Vary: Accept-Encoding

The second most common scenario is the worst case—when you want to make
sure that the HTTP response is never stored, cached, or reused for any users.
To do this, you can use response headers as shown in Listing 6-7. Note that I used
another HTTP header here (Pragma: no-cache) to make sure that older clients
can understand my intent of not caching the response.

Listing 6-7 Example of HTTP headers of noncacheable content

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Expires: Fri, 01 Jan 1990 00:00:00 GMT
Pragma: no-cache

06-ch06.indd 216 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 217

A last use case is for situations where you want the same user to reuse a piece
of content, but at the same time you do not want other users to share the cached
response. For example, if your website allowed users to log in, you may want to
display the user’s profile name in the top-right corner of the page together with
a link to his or her profile page. In such a scenario, the body of the page contains
user-specific data, so you cannot reuse the same response for different users. You
can still use the full page cache, but it will have to be a private cache to ensure
that users see their own personalized pages. Listing 6-8 shows the HTTP headers
allowing web browsers to cache the response for a limited amount of time (for
example, ten minutes from July 23, 2015, 13:04:28 GMT).

Listing 6-8 Example of HTTP headers of short-lived full page cache

Cache-Control: private, must-revalidate
Expires: Sat, 23 Jul 2015 13:14:28 GMT
Vary: Accept-Encoding

The last thing worth noting here is that in addition to HTTP caching headers,
you can find some HTML metatags that seem to control web page caching.
Listing 6-9 shows some of these metatags.

Listing 6-9 Cache-related HTML metatags to avoid

<meta http-equiv="cache-control" content="max-age=0" />
<meta http-equiv="cache-control" content="no-cache" />
<meta http-equiv="expires" content="Tue, 01 Jan 1990 1:00:00 GMT" />
<meta http-equiv="pragma" content="no-cache" />

It is best to avoid these metatags altogether, as they do not work for intermediate
caches and they may be a source of confusion, especially for less experienced
engineers. It is best to control caching using HTTP headers alone and do so with
minimal redundancy. Now that we have discussed how HTTP caching can be
implemented, let’s have a look at different types of caches that can be used to
increase performance and scalability of your websites.

Types of HTTP Cache Technologies
The HTTP protocol gives a lot of flexibility in deploying caches between the
web client and the web server. There are many ways in which you can leverage

06-ch06.indd 217 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 218 Web Scalability for Startup Engineers

HTTP-based caches, and usually it is fairly easy to plug them into existing
applications. There are four main types of HTTP caches: browser cache, caching
proxies, reverse proxies, and CDNs. Most of them do not have to be scaled by
you, as they are controlled by the user’s devices or third-party networks. I will
discuss scalability of HTTP-based caches later in this chapter, but first let’s
discuss each of these HTTP cache types.

Browser Cache
The first and most common type of cache is the caching layer built into all
modern web browsers called browser cache. Browsers have built-in caching
capabilities to reduce the number of requests sent out. These usually use a
combination of memory and local files. Whenever an HTTP request is about to
be sent, the browser can check the cache for a valid version of the resource. If the
item is present in cache and is still fresh, the browser can reuse it without ever
sending an HTTP request.

Figure 6-3 shows a developer’s toolbar shipped as part of the Google Chrome
web browser. In the sequence of web resources being downloaded on the first
page load, you can see that the time needed to load the HTML was 582 ms,
after which a CSS file was downloaded along with a few images, each taking
approximately 300 ms to download.

If HTTP headers returned by the web server allow the web browser to cache
these responses, it is able to significantly speed up the page load and save our
servers a lot of work rendering and sending these files. Figure 6-4 shows the same
page load sequence, but this time with most of the resources being served directly
from browser cache. Even though the page itself needs a long time to be verified,
all the images and CSS files are served from cache without any network delay.

Figure 6-3 Sequence of resources downloaded on first visit

06-ch06.indd 218 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 219

Caching Proxies
The second type of caching HTTP technology is a caching proxy. A caching proxy
is a server, usually installed in a local corporate network or by the Internet service
provider (ISP). It is a read-through cache used to reduce the amount of traffic
generated by the users of the network by reusing responses between users of the
network. The larger the network, the larger the potential saving—that is why it was
quite common among ISPs to install transparent caching proxies and route all of the
HTTP traffic through them to cache as many web requests as possible. Figure 6-5
shows how a transparent caching proxy can be installed within a local network.

Figure 6-4 Sequence of resources downloaded on consecutive visit

Figure 6-5 HTTP proxy server in local network

Internet

HTTP proxy server
in the

corporate network

Of�ce Building Data Center of
example.com

Web server
responds directly to

all incoming requests

Connects to local
proxy (may not even
know that connection
is being proxied)

Forwards on
cache miss

Client

06-ch06.indd 219 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 220 Web Scalability for Startup Engineers

In recent years, the practice of installing local proxy servers has become less
popular as bandwidth has become cheaper and as it becomes more popular
for websites to serve their resources solely over the Secure Sockets Layer (SSL)
protocol. SSL encrypts the communication between the client and the server,
which is why caching proxies are not able to intercept such requests, as they
do not have the necessary certificates to decrypt and encrypt messages being
exchanged.

Reverse Proxy
A reverse proxy works in the exactly same way as a regular caching proxy, but the
intent is to place a reverse proxy in your own data center to reduce the load put
on your own web servers. Figure 6-6 shows a reverse proxy deployed in the data
center, together with web servers, caching responses from your web servers.

For some applications, reverse proxies are an excellent way to scale. If you can
use full page caching, you can significantly reduce the number of requests coming
to your web servers. Using reverse proxies can also give you more flexibility
because you can override HTTP headers and better control which requests are
being cached and for how long. Finally, reverse proxies are an excellent way
to speed up your web services layer. You can often put a layer of reverse proxy
servers between your front-end web application servers and your web service
machines. Figure 6-7 shows how you can scale a cluster of REST-ful web services

Figure 6-6 Reverse proxy

Internet

Data Center

Web server

Reverse HTTP proxy
intercepts all traf�c

Forwards on
cache miss

Client

Connects directly
to example.com

06-ch06.indd 220 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 221

by simply reducing the number of requests that need to be served. Even if you
were not able to cache all of your endpoints, caching web service responses can
be a useful technique.

Content Delivery Networks
A content delivery network (CDN) is a distributed network of cache servers
that work in a similar way as caching proxies. They depend on the same HTTP
headers, but they are controlled by the CDN service provider. As your web
application grows larger, it becomes very beneficial to use a CDN provider. By
using a CDN, you reduce the load put on your servers, you save on network
bandwidth, and you improve the user experience by pushing content closer to
your users. CDN providers usually have dozens of data centers located all around
the world, which allows them to serve cached results from the closest cache
server, thereby decreasing the network latency. Web applications would typically
use CDN to cache their static files like images, CSS, JavaScript, videos, or Portable
Document File (PDF) documents. You can implement it easily by creating a

Figure 6-7 Reverse proxy in front of web services cluster

Data Center

Reverse HTTP proxy
caching and load
balancing

Front-end web server

Web Services

Server 1 Server N

Add/remove servers

Internet

Client

Connects directly
to example.com

06-ch06.indd 221 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 222 Web Scalability for Startup Engineers

“static” subdomain (for example, s.example.org) and generating URLs for all of
your static files using this domain. Then, you configure the CDN provider to
accept these requests on your behalf and point DNS for s.example.org to the
CDN provider. Any time CDN fails to serve a piece of content from its cache, it
forwards the request to your web servers (origin servers) and caches the response
for subsequent users. Figure 6-8 shows how CDN can be used to cache static files.

You can also configure some CDN providers to serve both static and dynamic
content of your website so that clients never connect to your data center directly;
they always go through the cache servers belonging to the CDN provider. This
technique has some benefits. For example, the provider can mitigate distributed
denial of service attacks (as CloudFlare does). It can also lead to further reduction
of web requests sent to your origin servers, as dynamic content (even private
content) can now be cached by the CDN. Figure 6-9 shows how you can configure
Amazon CloudFront to deliver both static and dynamic content for you.

Now that we have gone through the different types of caches, let’s see how we
can scale each type as our website traffic grows.

Figure 6-8 CDN configured for static files

Internet

Internet

Internet

Client

Data Center of
example.com

Then client
connects to
s.example.org
for static �les

Front-end web server
responds to

example.com

Data Center of
CDN Provider

Reverse HTTP proxy
server responds to

s.example.com

CDN is a hosted
reverse proxy service

On cache miss CDN issues
a request to origin server

for example.com

First client connects to example.com
and fetches the HTML page

06-ch06.indd 222 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 223

Scaling HTTP Caches
One reason HTTP-based caching is so attractive is that you can usually push the
load off your own servers onto machines managed by third parties that are closer to
your users. Any request served from browser cache, a third-party caching proxy, or
a CDN is a request that never got to your web servers, ultimately reducing the stress
on your infrastructure. At the same time, requests served from HTTP caches are
satisfied faster than your web servers could ever do it, making HTTP-based caching
even more valuable.

As mentioned before, do not worry about the scalability of browser caches or
third-party proxy servers; they are out of your control. When it comes to CDN
providers, you do not have to worry about scalability either, as CDN providers
scale transparently, charging you flat fees per million requests or per GB of data
transferred. Usually, the prices per unit decrease as you scale out, making them
even more cost effective. This leaves you to manage only reverse proxy servers.
If you use these, you need to manage and scale them yourself.

Figure 6-9 CDN configured for both static files and dynamic content

Client connects to
CloudFront to fetch
both dynamic and
static content

AWS

Your Front-End Servers

Your EC2 instance
running a Web Server

HTTP requests
for dynamic

content

HTTP requests
for static
content S3 cloud service

containing static �les

CloudFront CDN
accepts all HTTP

requests for
example.com

Internet

Client

06-ch06.indd 223 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 224 Web Scalability for Startup Engineers

There are many open-source reverse proxy solutions on the market, including
Nginx, Varnish, Squid, Apache mod_proxy, and Apache Traffic Server. If you are
hosted in a private data center, you may also be able to use a built-in reverse proxy
functionality provided by some of the hardware load balancers.

For most young startups, a single reverse proxy should be able to handle the
incoming traffic, as both hardware reverse proxies and leading open-source ones
(Nginx or Varnish) can handle more than 10,000 requests per second from a
single machine. As such, it is usually more important to decide what to cache and
for how long rather than how to scale reverse proxies themselves. To be able to
scale the reverse proxy layer efficiently, you need to focus on your cache hit ratio
first. It is affected by the same three factors mentioned at the beginning of the
chapter, and in the context of reverse proxies, they translate to the following:

 ▶ Cache key space Describes how many distinct URLs your reverse proxies
will observe in a period of time (let’s say in an hour). The more distinct URLs
are served, the more memory or storage you need on each reverse proxy to
be able to serve a significant portion of traffic from cache. Avoid caching
responses that depend on the user (for example, that contain the user ID
in the URL). These types of responses can easily pollute your cache with
objects that cannot be reused.

 ▶ Average response TTL Describes how long each response can be cached.
The longer you cache objects, the more chance you have to reuse them.
Always try to cache objects permanently. If you cannot cache objects forever,
try to negotiate the longest acceptable cache TTL with your business
stakeholders.

 ▶ Average size of cached object Affects how much memory or storage your
reverse proxies will need to be able to store the most commonly accessed
objects. Average size of cached object is the most difficult to control, but
you should still keep it in mind because there are some techniques that help
you “shrink” your objects. For example, CSS files and JavaScript files can be
minified and HTML can be preprocessed to remove redundant white spaces
and comments during the template-rendering phase.

It is worth pointing out that you do not have to worry much about cache
servers becoming full by setting a long TTL, as in-memory caches use algorithms
designed to evict rarely accessed objects and reclaim space. The most commonly
used algorithm is Least Recently Used (LRU), which allows the cache server to
eventually remove rarely accessed objects and keep “hot” items in memory to
maximize cache hit ratio.

06-ch06.indd 224 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 225

Once you verify that you are caching objects for as long as possible and that
you only cache things that can be efficiently reused, you can start thinking of
scaling out your reverse proxy layer. You are most likely going to reach either the
concurrency limit or throughput limit. Both of these problems can be mitigated
easily by deploying multiple reverse proxies in parallel and distributing traffic
among them.

Figure 6-10 shows a deployment scenario where two layers of reverse proxies
are used. The first layer is deployed directly behind a load balancer, which
distributes the traffic among the reverse proxies. The second layer is positioned

Figure 6-10 Multiple reverse proxy servers

Load balancer
Data center

Reverse proxy servers
caching and load
balancing

Front-End Web Servers

Reverse proxy servers

External traf�c

Server 1 Server N

Add/remove servers

Web Services

Server 1 Server M

Add/remove servers

06-ch06.indd 225 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 226 Web Scalability for Startup Engineers

between the front-end web servers and web service machines. In this case, front-
end web servers are configured to pick a random reverse proxy on each request.
Once your stack grows even larger, it makes sense to deploy a load balancer in
front of the second reverse proxy layer as well to make configuration changes
more transparent and isolated. Luckily, it is unlikely that you would need such a
complicated deployment; usually, reverse proxies in front of the front-end web
application are unnecessary, and it is more convenient to push that responsibility
onto the CDN.

HINT
If you are using HTTP caching correctly, adding more reverse proxies and running them in parallel
should not cause problems. The HTTP protocol does not require synchronization between HTTP
caches, and it does not guarantee that all of the client’s requests are routed through the same
physical networks. Each HTTP request can be sent in a separate TCP/IP connection and can be
routed through a different set of intermediate caches. Clients have to work under these constraints
and accept inconsistent responses or use cache revalidation.

No matter what reverse proxy technology you choose, you can use the same
deployment pattern of multiple reverse proxies running in parallel because the
underlying behavior is exactly the same. Each proxy is an independent clone, sharing
nothing with its siblings, which is why choice of reverse proxy technology is not that
important when you think of scalability. For general use cases, I recommend using
Nginx or a hardware reverse proxy, as they have superior performance and feature
sets. A few Nginx features that are especially worth mentioning are

 ▶ Nginx uses solely asynchronous processing, which allows it to proxy tens
of thousands of concurrent connections with a very low per-connection
overhead.

 ▶ Nginx is also a FastCGI server, which means that you can run your web
application on the same web server stack as your reverse proxies.

 ▶ Nginx can act as a load balancer; it supports multiple forwarding algorithms
and many advanced features, such as SPDY, WebSockets, and throttling.
Nginx can also be configured to override headers, which can be used to
apply HTTP caching to web applications that do not implement caching
headers correctly or to override their caching policies.

 ▶ Nginx is well established with an active community. As of 2013, it is reported
to serve over 15% of the Internet (source Netcraft).

06-ch06.indd 226 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 227

If you are hosting your data center yourself and have a hardware load balancer,
I recommend using it as a reverse proxy as well to reduce the number of
components in your stack. In all other cases, I recommend investigating available
open-source reverse proxy technologies like Nginx, Varnish, or Apache Traffic
Server; selecting one; and scaling it out by adding more clones.

Finally, you can also scale reverse proxies vertically by giving them more
memory or switching their persistent storage to solid-state drive (SSD). This
technique is especially useful when the pool of fresh cached objects becomes
much larger than the working memory of your cache servers. To increase your
hit ratio, you can extend the size of your cache storage to hundreds of GB by
switching to file system storage rather than depending solely on the shared
memory. By using SSD drives, you will be able to serve these responses at least
ten times faster than if you used regular (spinning disc) hard drives due to the
much faster random access times of SSD drives. At the same time, since cache
data is meant to be disposable, you do not have to worry much about limited SSD
lifetimes or sudden power failure–related SSD corruptions.w73

Caching Application Objects
After HTTP-based caches, the second most important caching component in a
web application stack is usually a custom object cache. Object caches are used
in a different way than HTTP caches because they are cache-aside rather than
read-through caches. In the case of cache-aside caches, the application needs to
be aware of the existence of the object cache, and it actively uses it to store and
retrieve objects rather than the cache being transparently positioned between the
application and its data sources (which happens with read-through cache).

Cache-aside cache is seen by the application as an independent key-value data
store. Application code would usually ask the object cache if the needed object
is available and, if so, it would retrieve and use the cached object. If the required
object is not present or has expired, the application would then do whatever
was necessary to build the object from scratch. It would usually contact its
primary data sources to assemble the object and then save it back in the object
cache for future use. Figure 6-11 shows how cache-aside lives “on the side” and
how the application communicates directly with its data sources rather than
communicating through the cache.

Similar to other types of caches, the main motivation for using object cache
is to save the time and resources needed to create application objects from
scratch. All of the object cache types discussed in this section can be imagined

06-ch06.indd 227 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 228 Web Scalability for Startup Engineers

as key-value stores with support of object expiration, and they usually support
a simplistic programming interface, allowing you to get, set, and delete objects
based on the unique key string. Let’s now have a closer look at different types of
object caches and their benefits and drawbacks.

Common Types of Object Caches
As was the case for the HTTP caches we discussed earlier in this chapter, there
are many different ways application object caches can be deployed. The actual
technologies used may depend on the technology stack used, but the concepts
remain similar.

Client-Side Caches
Let’s first look at the local storage located directly in the client’s device. Years ago,
it was impossible for JavaScript to store information on the client’s machine, but
now, most of the modern web browsers support the web storage specification,
allowing JavaScript to store application data directly on the user’s device. Even
though web storage allows a web application to use a limited amount of space
(usually up to 5MB to 25MB of data), it is a great way to speed up web applications
and reduce the pressure put on your infrastructure. It is even more valuable, as
it can be safely used to store user-specific information because web storage is
isolated to a single device.

Listing 6-10 shows how easy it is to store an object in web storage. Web storage
works as a key-value store. To store an object, you provide a unique identifier, called
the key, and the string of bytes that you want to be persisted (called the value).

Figure 6-11 Cache-aside cache

Cache-Aside Cache Service

Store results in cache for later

Access the data store or web service

Client

06-ch06.indd 228 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 229

Listing 6-10 JavaScript code storing objects in web storage

var preferences = {/* data object to be stored */};
localStorage.setItem('preferences', JSON.stringify(preferences));

Web storage persists the data permanently so it can be accessed in the future
even if the user decides to close the browser or restart the computer. Users are
able to clean the web storage data using their browser settings, so you should keep
that in mind and use web storage as a cache rather than as a reliable data store.
Whenever you want to access the value stored in web storage you simply request
it using the same key that you used when persisting it. Listing 6-11 shows how
you can retrieve objects from web storage using JavaScript.

Listing 6-11 JavaScript code accessing previously persisted object

var cachedData = localStorage.getItem('preferences');
var preferences = JSON.parse(cachedData);

Local device storage becomes even more important when you are developing
single-page applications (SPAs), as these applications run much more code within
the user’s browser and perform more asynchronous web requests (AJAX). In
particular, if you are developing an SPA for mobile devices (for example, using
Sencha Touch framework), you should always integrate a local storage solution
to cache web service responses and reduce the number of requests that you need
to send to your web servers. Similarly to web storage, you can store data directly
on the client’s device when developing native mobile applications. In this case,
the technologies are different, but the theory of operation is similar. When using
local device storage, it is important to remember that it is isolated from your data
center, which makes it impossible for your servers to remove/invalidate cached
objects directly. Anytime you use web storage or similar client-side storage, you
need to include the code responsible for cache refresh and invalidation in your
front-end JavaScript code. For example, imagine you were developing a mobile
SPA that would allow users to see restaurants within walking distance from their
current location. Since it is a mobile application, you might want to speed up the
application loading time or reduce its data usage by using local storage. You could
do that by showing the user their last search results whenever the application is
opened rather than showing a blank screen when waiting for global positioning
system (GPS) location and search results.

06-ch06.indd 229 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 230 Web Scalability for Startup Engineers

To execute this, you could save each search result in web storage, together with
the user’s coordinates and a timestamp; then on load time, you could simply show
the last search results by loading it from web storage. At the same time, you could
compare a user’s location and current time to the coordinates of their previous
search. If the user’s location has changed significantly—let’s say they moved by
more than 200 meters or they have not opened the application for more than a
day—you could update the user interface to indicate an update is in progress and
then issue a new asynchronous request to your server to load new data. This way,
your users can see something immediately, making the application seem more
responsive; at the same time, you reduce the number of unnecessary requests sent
to your servers in case users are opening their apps a few times on their way to
the restaurant.

Caches Co-located with Code
Another important type of object cache is one located directly on your web
servers. Whether you develop a front-end web application or a web service, you
can usually benefit from local cache. Local cache is usually implemented in one of
the following ways:

 ▶ Objects are cached directly in the application’s memory. The application
creates a pool for cached objects and never releases memory allocated for
them. In this case, there is virtually no overhead when accessing cached
objects, as they are stored directly in the memory of the application process
in the native format of the executing code. There is no need to copy, transfer,
or encode these objects; they can be accessed directly. This method applies
to all programming languages.

 ▶ Objects are stored in shared memory segments so that multiple processes
running on the same machine could access them. In this approach, there is
still very little overhead, as shared memory access is almost as fast as local
process memory. The implementation may add some overhead, but it can
be still considered insignificant. For example, in PHP, storing objects in
shared memory forces object serialization, which adds a slight overhead but
allows all processes running on the same server to share the cached objects
pool. This method is less common, as it is not applicable in multithreaded
environments like Java, where all execution threads run within a single
process.

 ▶ A caching server is deployed on each web server as a separate application. In
this scenario, each web server has an instance of a caching server running

06-ch06.indd 230 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 231

locally, but it must still use the caching server’s interface to interact with
the cache rather than accessing shared memory directly. This method is
more common in tiny web applications where you start off with a single
web server and you deploy your cache (like Memcached or Redis) on the
same machine as your web application, mainly to save on hosting costs and
network latencies. The benefit of this approach is that your application is
ready to talk to an external caching server—it just happens to run on the
same machine as your web application, making it trivial to move your cache
to a dedicated cluster without the need to modify the application code.

Each of these approaches boils down to the same concept of having an object
cache locally on the server where your application code executes. The main
benefit of caching objects directly on your application servers is the speed at
which they can be persistent and accessed. Since objects are stored in memory on
the same server, they can be accessed orders of magnitude faster than if you had
to fetch them from a remote server. Table 6-1 shows the orders of magnitude of
latencies introduced by accessing local memory, disk, and remote network calls.

An additional benefit of local application cache is the simplicity of development
and deployment. Rather than coordinating between servers, deploying additional
components, and then managing them during deployments, local cache is usually
nothing more than a bit of extra memory allocated by the application process.
Local caches are not synchronized or replicated between servers, which also
makes things faster and simpler, as you do not have to worry about locking
and network latencies. By having identical and independent local caches on

Operation Type Approximate Time

Time to access local memory 100 ns
SSD disk seek 100,000 ns
Time of a network packet round trip within the same data center 500,000 ns
Disk seek (non-SSD) 10,000,000 ns
Read 1MB sequentially from network 10,000,000 ns
Read 1MB sequentially from disk (non-SSD) 30,000,000 ns
Time of a network packet round trip across Atlantic 150,000,000 ns
How many nanoseconds in a single second 1,000,000,000 ns

Table 6-1 Approximate Latencies when Accessing Different Resources

06-ch06.indd 231 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 232 Web Scalability for Startup Engineers

each server, you also make your web cluster easier to scale by adding clones (as
described in Chapters 2 and 3) because your web servers are interchangeable yet
independent from one another.

Unfortunately, there are some drawbacks to local application caches. Most
importantly, each application server will likely end up caching the same objects,
causing a lot of duplication between your servers. That is caused by the fact that
caches located on your application servers do not share any information, nor are
they synchronized in any way. If you dedicate 1GB of memory for object cache on
each of your web servers, you realistically end up with a total of 1GB of memory
across your cluster, no matter how many servers you have, as each web server will
be bound to that limit, duplicating content that may be stored in other caches.
Depending on your use case, this can be a serious limitation, as you cannot easily
scale the size of your cache.

Another very important limitation of local server caches is that they cannot
be kept consistent and you cannot remove objects from such a cache efficiently.
For example, if you were building an e-commerce website and you were to
cache product information, you might need to remove these cached objects any
time the product price changes. Unfortunately, if you cache objects on multiple
machines without any synchronization or coordination, you will not be able to
remove objects from these caches without building overly complex solutions (like
publishing messages to your web servers to remove certain objects from cache).

Distributed Object Caches
The last common type of cache relevant to web applications is a distributed
object cache. The main difference between this type and local server cache is that
interacting with a distributed object cache usually requires a network round trip
to the cache server. On the plus side, distributed object caches offer much better
scalability than local application caches. Distributed object caches usually work
as simple key-value stores, allowing clients to store data in the cache for a limited
amount of time, after which the object is automatically removed by the cache
server (object expires). There are many open-source products available, with
Redis and Memcached being the most popular ones in the web space. There are
commercial alternatives worth considering as well, like Terracotta Server Array
or Oracle Coherence, but I would recommend a simple open-source solution for
most startup use cases.

Interacting with distributed cache servers is simple, and most caching servers
have client libraries for all common programming languages. Listing 6-12 shows
the simplicity of caching interfaces. All you need to specify is the server you want

06-ch06.indd 232 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 233

to connect to, the key of the value you want to store, and TTL (in seconds) after
which the object should be removed from the cache.

Listing 6-12 PHP code caching user count for five minutes in Memcached

$m = new Memcached();
$m->addServer('10.0.0.1', 11211); //set cache server IP
$m->set('userCount', 123, 600); // set data

Storing objects in remote cache servers (like Redis or Memcached) has a few
advantages. Most importantly, you can scale these solutions much better. We will
look at this in more detail in the next section, but for now, let’s say that you can
scale simply by adding more servers to the cache cluster. By adding servers, you
can scale both the throughput and overall memory pool of your cache. By using a
distributed cache, you can also efficiently remove objects from the cache, allowing
for cache invalidation on source data changes. As I explained earlier, in some
cases, you need to remove objects from cache as soon as the data changes. Having
a distributed cache makes such cache invalidation (cache object removal) easier,
as all you need to do is connect to your cache and request object removal.

Using dedicated cache servers is also a good way to push responsibility out of
your applications, as cache servers are nothing other than data stores and they
often support a variety of features. For example, Redis allows for data persistence,
replication, and efficient implementation of distributed counters, lists, and object
sets. Caches are also heavily optimized when it comes to memory management,
and they take care of things like object expiration and evictions.

HINT
Cache servers usually use the LRU algorithm to decide which objects should be removed from
cache once they reach a memory limit. Any time you want to store a new object in the cache, the
cache server checks if there is enough memory to add it in. If there is no space left, it removes
the objects that were least recently used to make enough space for your new object. By using
LRU cache, you never have to worry about deleting items from cache—they just expire or get
removed once more “popular” objects arrive.

Distributed caches are usually deployed on separate clusters of servers, giving
them more operating memory than other machines would need. Figure 6-12
shows how cache servers are usually deployed—in a separate cluster of machines
accessible from both front-end and web service machines.

06-ch06.indd 233 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 234 Web Scalability for Startup Engineers

Even though distributed caches are powerful scalability tools and are relatively
simple in structure, adding them to your system adds a certain amount of
complexity and management overhead. Even if you use cloud-hosted Redis
or Memcached, you may not need to worry about deployments and server
management, but you still need to understand and monitor them to be able to
use them efficiently. Whenever deploying new caches, start as small as possible.
Redis is a very efficient cache server, and a single machine can support tens of
thousands of operations per second, allowing you to grow to reasonable traffic
without the need to scale it at all. As long as throughput is not a problem, scale
vertically by adding more memory rather than trying to implement a more
complex deployment with replication or data partitioning. When your system
grows larger and becomes more popular, you may need to scale above a single
node. Let’s now have a closer look at how you can scale your object caches.

Scaling Object Caches
When it comes to scaling your object caches, the techniques depend on the
location and type of your cache. For example, client-side caches like web browser
storage cannot be scaled, as there is no way to affect the amount of memory that

Figure 6-12 Common distributed cache deployment

Web service requests

Distributed
Object Cache

Object cache access

Object cache access

Web requests

Cache Server

Cache Server

Front End Server Front App. Server

Web Services Server Web Services Server

06-ch06.indd 234 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 235

browsers allow you to use. The value of web storage comes with the fact that users
have their own cache. You can keep adding users, and you do not have to scale the
client-side caches to store their user-specific data.

The web server local caches are usually scaled by falling back to the file system,
as there is no other way to distribute or grow cache that, by definition, lives on a
single server. In some scenarios, you may have a very large data pool where each
cached object can be cached for a long period of time but objects are accessed
relatively rarely. In such a scenario, it may be a good idea to use the local file system
of your web servers to store cached objects as serialized files rather than storing
them in the memory of the shared cache cluster. Accessing cached objects stored
on the file system is slower, but it does not require remote connections, so that
web server becomes more independent and insulated from the other subsystems’
failures. File-based caches can also be cheaper because the disk storage is much
cheaper than operating memory and you do not have to create a separate cluster
just for the shared object cache. Given the rising popularity of SSD drives, file
system–based caches may be a cheap and fast random access memory (RAM)
alternative.

When it comes to distributed object caches, you may scale in different ways
depending on the technology used, but usually data partitioning (explained in
Chapters 2 and 5) is the best way to go, as it allows you to scale the throughput
and the overall memory pool of your cluster. Some technologies, like Oracle
Coherence, support data partitioning out of the box, but most open-source
solutions (like Memcached and Redis) are simpler than that and rely on client-
side data partitioning.

If you decide to use Memcached as your object cache, the situation is quite
simple. You can use the libMemcached client library’s built-in features to partition
the data among multiple servers. Rather than having to implement it in your
code, you can simply tell the client library that you have multiple Memcached
servers. Listing 6-13 shows how easy it is to declare multiple servers as a single
Memcached cluster using a native PHP client that uses libMemcached under the
hood to talk to Memcached servers.

Listing 6-13 Declaring multiple Memcached servers as a single cluster

<?php
$cache = new Memcached();
$cache->setOption(Memcached::OPT_LIBKETAMA_COMPATIBLE, true);
$cache->addServers(array(
 array('cache1.example.com', 11211),

06-ch06.indd 235 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 236 Web Scalability for Startup Engineers

 array('cache2.example.com', 11211),
 array('cache3.example.com', 11211)
));

By declaring a Memcached cluster, your data will be automatically distributed
among the cache servers using a consistent hashing algorithm. Any time you
issue a GET or SET command, the Memcached client library will hash the cache
key that you want to access and then map it to one of the servers. Once the
client finds out which server is responsible for that particular cache key, it will
send the request to that particular server only so that other servers in the cluster
do not have to participate in the operation. This is an example of the share-
nothing approach, as each cache object is assigned to a single server without any
redundancy or coordination between cache servers.

Figure 6-13 illustrates how consistent hashing is implemented. First, all
possible cache keys are represented as a range of numbers, with the beginning
and end joined to create a circle. Then you place all of your servers on the
circle, an equal distance from one another. Then you declare that each server
is responsible for the cache keys sitting between it and the next server (moving
clockwise along the circle). This way, by knowing the cache key and how many
servers you have in the cluster, you can always find out which server is responsible
for the data you are looking for.

Figure 6-13 Cache partitioning using consistent hashing

<00-3F>

<40-7F><80-BF>

<C0-FF>

Server 1

Server 2

Server 3

Server 4

Cache key: "product-3453"

8c2cf0cdc1d4d1081a33dfd88cb425af

get("product-34535")

md5("product-34535")

Server 3 is responsible for
all the hashes between

8000...and BFFF...

Hash starts with "8", check where "8" belongs

Server 1 is responsible for
hashes between
000...and 3FF...

06-ch06.indd 236 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 237

To scale your cache cluster horizontally, you need to be able to add servers to
the cluster, and this is where consistent hashing really shines. Since each server
is responsible for a part of the key space on the ring, adding a new server to the
cluster causes each server to move slightly on the ring. This way, only a small
subset of the cache keys get reassigned between servers, causing a relatively small
cache-miss wave. Figure 6-14 shows how server positions change when you scale
from a four-server cluster to a five-server cluster.

If you used a naïve approach like using a modulo function to map a cache key
to the server numbers, each time you added or removed a server from the cluster,
most of your cache keys would be reassigned, effectively purging your entire
cache. The Memcached client for PHP is not the only client library supporting
consistent hashing. In fact, there are many open-source libraries that you can use
in your application layer if your cache driver does not support consistent hashing
out of the box.

HINT
To understand caching even better, it is good to think of cache as a large hash map. The reason
caches can locate items so fast is that they use hashing functions to determine the “bucket” in
which a cached object should live. This way, no matter how large the cache is, getting and setting
values can be performed in constant time.

Another alternative approach to scaling object caches is to use data replication
or a combination of data partitioning and data replication. Some object caches,
like Redis, allow for master-slave replication deployments, which can be helpful

Figure 6-14 Scaling cache cluster using consistent hashing

Scaling out

Adding a �fth server
moves each server
slightly on the ring.

06-ch06.indd 237 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 238 Web Scalability for Startup Engineers

in some scenarios. For example, if one of your cache keys became so “hot” that all
of the application servers needed to fetch it concurrently, you could benefit from
read replicas. Rather than all clients needing the cached object connecting to a
single server, you could scale the cluster by adding read-only replicas of each node
in the cluster (see Chapter 2). Figure 6-15 shows how you could deploy read-only
replicas of each cache server to scale the read throughput and allow a higher level
of concurrency.

It is worth mentioning that if you were hosting your web application on
Amazon, you could either deploy your own caching servers on EC2 instances or
use Amazon Elastic Cache. Unfortunately, Elastic Cache is not as smart as you
might expect, as it is basically a hosted cache cluster and the only real benefit of
it is that you do not have to manage the servers or worry about failure-recovery
scenarios. When you create an Elastic Cache cluster, you can choose whether you
want to use Memcached or Redis, and you can also pick how many servers you
want and how much capacity you need per server. It is important to remember
that you will still need to distribute the load across the cache servers in your
client code because Elastic Cache does not add transparent partitioning or
automatic scalability. In a similar way, you can create cache clusters using other

<00-3F>

<40-7F><80-BF>

<C0-FF>

Shard 1 master

Shard 2
master

Shard 3 master

Shard 4
master

Read-only slaves

Read-only slavesRead-only slaves

Read-only slaves

Figure 6-15 Scaling cache cluster using data partitioning and replication

06-ch06.indd 238 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 239

cloud-hosting providers. For example, Azure lets you deploy a managed Redis
instance with replication and automatic failover in a matter of a few clicks.

Object caches are in general easier to scale than data stores, and usually simple
data partitioning and/or replication is enough to scale your clusters horizontally.
When you consider that all of the data stored in object caches is, by definition,
disposable, the consistency and persistence constraints can be relaxed, allowing
for simpler scalability. Now that we have discussed different types of caches and
their scalability techniques, let’s move on to some general rules of thumb that may
be helpful when designing scalable web applications.

Caching Rules of Thumb
How difficult caching is depends on the application needs and how we use it. It’s
important to know the most common types of caches and how to scale them. In
this section, we will discuss where to focus and prioritize your caching efforts to
get the biggest bang for the buck. We will also discuss some techniques that can
help you reuse cached objects and some pitfalls to watch out for. Let’s get to it.

Cache High Up the Call Stack
One of the most important things to remember about caching is that the higher
up the call stack you can cache, the more resources you can save. To illustrate it a
bit better, let’s consider Figure 6-16. It shows how the call stack of an average web
request might look and roughly how much can you save by caching on each layer.
Treat the percentage of the resources saved on Figure 6-16 as a simplified rule
of thumb. In reality, every system will have a different distribution of resources
consumed by each layer.

First, your client requests a page or a resource. If that resource is available
in one of the HTTP caches (browser, local proxy) or can be satisfied from local
storage, then your servers will not even see the request, saving you 100 percent of
the resources. If that fails, your second best choice is to serve the HTTP request
directly from reverse proxy or CDN, as in such a case you incur just a couple
percentage points of the cost needed to generate the full response.

When a request makes it to your web server, you may still have a chance to use
a custom object cache and serve the entire response without ever calling your
web services. In case you need to call the web services, you may also be able to get
the response from a reverse proxy living between your web application and your
web services. Only when that fails as well will your web services get involved in

06-ch06.indd 239 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 240 Web Scalability for Startup Engineers

serving the request. Here again, you may be able to use object caches and satisfy
the request without the need to involve the data stores. Only when all of this
fails will you need to query the data stores or search engines to retrieve the data
needed by the user.

The same principle applies within your application code. If you can cache an
entire page fragment, you will save more time and resources than caching just
the database query that was used to render this page fragment. As you can see,
avoiding the web requests reaching your servers is the ultimate goal, but even
when it is not possible, you should still try to cache as high up the call stack as
you can.

Reuse Cache Among Users
Another important thing to remember when working with caching is to always try
to reuse the same cached object for as many requests/users as you can. Caching
objects that are never requested again is simply a waste of time and resources.

Figure 6-16 Caching in different layers of the stack

Web Application Servers
Local Caches/Distributed Caches

Web Service Servers
Local Caches/Distributed Caches

Web service requests

Web requests

HTTP Reverse Proxies/CDN

Client Caches
HTTP and Object Caches

Web requests

Saved 100% of resources

Saved 98% of resources

Saved 75% of resources

Saved 66% of resources

Main Data Store Saved 0% of resources

Web service requests

HTTP Reverse Proxies

Web service requests

Saved 50% of resources

06-ch06.indd 240 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 241

To illustrate it better, let’s consider an example. Imagine you are building
a mobile application that allows users to find restaurants near their current
location. The main use case would be for the user to see a list of restaurants
within walking distance so they could pick the restaurant they like and quickly
have something to eat. A simple implementation of that application could check
the GPS coordinates, build a query string containing the user’s current location,
and request the list of nearby restaurants from the application server. The request
to the web application programming interface (API) could resemble Listing 6-14.

Listing 6-14 Request for lat: -33.880381, lon: 151.209146

GET /restaurants/search?lat=-33.880381&lon=151.209146

The problem with this approach is that request parameters will be different for
almost every single request. Even walking just a few steps will change the GPS
location, making the URL different and rendering your cache completely useless.

A better approach to this problem would be to round the GPS location to three
decimal places so that each person within the same street block could reuse the
same search result. Instead of having billions of possible locations within the city
limits, you reduce the number of possible locations and increase your chances of
serving responses from cache. Since the URL does not contain user-specific data
and is not personalized, there is no reason why you should not reuse the entire
HTTP response by adding public HTTP caching headers.

If you were serving restaurants in Sydney and you decide to round the latitude
and longitude to three decimal places, you would reduce the number of possible
user locations to less than one million. Having just one million possible responses
would let you cache them efficiently in a reverse proxy layer (or even a dynamic
content CDN). Because restaurant details are unlikely to change rapidly, you
should be able to cache service responses for hours without causing any business
impact, increasing your cache hit ratio even further. Listing 6-15 shows how
the structure of the URL remains the same and just the request arguments have
changed, reducing the number of possible URLs being requested.

Listing 6-15 Request for lat: -33.867, lon: 151.207

GET /restaurants/search?lat=-33.867&lon=151.207

06-ch06.indd 241 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 242 Web Scalability for Startup Engineers

This principle of reusing the same data for many users applies to many more
scenarios. You have to look for ways that would let you return the same result
multiple times rather than generating it from scratch. If it is not possible to cache
entire pages, maybe it is possible to cache page fragments or use some other trick
to reduce the number of possible cache keys (as in my restaurant finder example).
The point is, you need to maximize the cache hit ratio, and you can only do it by
increasing your cache pool, extending the TTL of your objects, and decreasing
the number of potential cache keys.

Where to Start Caching?
If you ever find yourself supporting an existing web application that does not have
enough caching, you have to ask yourself, “Where do I start? What are the most
important queries to be cached? What pages are worth caching? What services
need to be cached the most?” As with any type of optimization, to be successful,
you need to prioritize based on a strict and simple metric rather than depending
on your gut feeling. To prioritize what needs to be cached, use a simple metric of
aggregated time spent generating a particular type of response. You can calculate
the aggregated time spent in the following way:

aggregated time spent = time spent per request * number of requests

This allows you to find out which pages (or resources) are the most valuable
when it comes to caching. For example, in one of my previous jobs I worked
on a website with fairly high levels of traffic. We wanted to scale and improve
performance at the same time, so we began looking for opportunities to cache
more aggressively. To decide where to start, I used a Google Analytics report and
correlated traffic stats for the top 20 pages with the average time needed to render
each of these pages. Then I created a ranking based on the overall value, similar to
Table 6-2.

Value Rank Page Avg. Seconds Requests per Hour Aggregated Time Spent

1 / 0.55 700000 385000
2 /somePage 1.1 100000 110000
3 /otherPage 0.84 57000 47880

Table 6-2 Page Ranks Based on Potential Gain from Caching

06-ch06.indd 242 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 Chapter 6: Caching 243

If you look closely at Table 6-2 you can see that improving performance of the
home page by 5 ms gives more overall saving than improving performance of
the second most valuable page by 10 ms. If I went with my gut feeling, I would
most likely start optimizing and caching in all the wrong places, wasting a lot
of valuable time. By having a simple metric and a ranking of pages to tackle,
I managed to focus my attention on the most important pages, resulting in a
significant capacity increase.

Cache Invalidation Is Difficult
“There are only two hard things in computer science: cache invalidation and
naming things and off-by-one errors.” –Phil Karlton

The last rule of thumb is that cache invalidation becomes difficult very quickly.
When you initially develop a simple site, it may seem easy. Cache invalidation is
simply removing objects from cache once the source data changes to avoid using
stale objects. You add an object to cache, and any time the data changes, you go
back to the cache and remove the stale object. Simple, right? Well, unfortunately,
it is often much more complicated than that. Cache invalidation is difficult
because cached objects are usually a result of computation that takes multiple
data sources as its input. That, in turn, means that whenever any of these data
sources changes, you should invalidate all of the cached objects that have used it
as input. To make it even more difficult, each piece of content may have multiple
representations, in which case all of them would have to be removed from cache.

To better illustrate this problem, let’s consider an example of an e-commerce
website. If you used object caches aggressively, you could cache all of the search
queries that you send to the data store. You would cache query results for
paginated product lists, keyword searches, category pages, and product pages. If
you wanted to keep all of the data in your cache consistent, any time a product’s
details change, you would have to invalidate all of the cached objects that contain
that product. In other words you would need to invalidate the query results for all
of the queries, including not just the product page, but also all of the other lists
and search results that included this product. But how will you find all the search
results that might have contained a product without running all of these queries?
How will you construct the cache keys for all the category listings and find the
right page offset on all paginated lists to invalidate just the right objects? Well,
that is exactly the problem—there is no easy way to do that.

The best alternative to cache invalidation is to set a short TTL on your cached
objects so that data will not be stale for too long. It works most of the time,
but it is not always sufficient. In cases where your business does not allow data

06-ch06.indd 243 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 6

 244 Web Scalability for Startup Engineers

inconsistency, you may also consider caching partial results and going to the
data source for the missing “critical” information. For example, if your business
required you to always display the exact price and stock availability, you could still
cache most of the product information and complex query results. The only extra
work that you would need to do is fetch the exact stock and price for each item
from the main data store before the rendering results. Although such a “hybrid”
solution is not perfect, it reduces the number of complex queries that your data
store needs to process and trades them for a set of much simpler “WHERE
product_id IN (….)” queries.

Advanced cache invalidation techniques are beyond the scope of this book,
but if you are interested in learning more about them, I recommend reading
two white papers published in recent years. The first onew6 explains a clever
algorithm for query subspace invalidation, where you create “groups” of items
to be invalidated. The second onew62 describes how Facebook invalidates cache
entries by adding cache keys to their MySQL replication logs. This allows them
to replicate cache invalidation commands across data centers and ensures cache
invalidation after a data store update.

Due to their temporary nature, caching issues are usually difficult to reproduce
and debug. Although cache invalidation algorithms are interesting to learn, I do
not recommend implementing them unless absolutely necessary. I recommend
avoiding cache invalidation altogether for as long as possible and using TTL-based
expiration instead. In most cases, short TTL or a hybrid solution, where you load
critical data on the fly, is enough to satisfy the business needs.

Summary
Caching is one of the most important scalability techniques, as it allows you to
increase your capacity at relatively low cost, and you can usually add it to your system
at a later stage without the need to significantly rearchitect your system. If you can
reuse the same result for multiple users or, even better, satisfy the response without
the request ever reaching your servers, that is when you see caching at its best.

I strongly recommend getting very familiar with caching techniques and
technologies available on the market, as caching is heavily used by most large-scale
websites. This includes general HTTP caching knowledge42 and caching in the
context of REST-ful web services,46 in addition to learning how versatile Redis
can be.50

Caching is one of the oldest scalability techniques with plenty of use cases.
Let’s now move on to a much more novel concept that has been gaining popularity
in recent years: asynchronous processing.

06-ch06.indd 244 09/05/15 12:01 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

245

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

CHAPTER

7
Asynchronous Processing

07-ch07.indd 245 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 246 Web Scalability for Startup Engineers

Asynchronous processing and messaging technologies introduce many
new concepts and a completely different way of thinking about software.
Instead of telling the system what to do step by step, we break down the

work into smaller pieces and let it decide the optimal execution order. As a result,
things become much more dynamic, but also more unpredictable.

When applied wisely, asynchronous processing and messaging can be very
powerful tools in scaling applications and increasing their fault tolerance. However,
getting used to them can take some time. In this chapter, I will explain the core
concepts behind message queues, event-driven architecture, and asynchronous
processing. I will discuss the benefits and the “gotchas,” as well as some of the
technologies that can be useful on your journey to asynchronous processing.

By the time you reach the end of the chapter, you should have a good understanding
of how messaging and asynchronous processing work. I also hope you’ll be excited
about event-driven architecture, an interesting field gaining popularity in recent
years.

Core Concepts
Before we dive into asynchronous processing, let’s first start with a brief explanation
of synchronous processing and how the two differ. Let’s now look at some examples
to explain the difference between synchronous and asynchronous processing.

Synchronous processing is the more traditional way of software
execution. In synchronous processing, the caller sends a request to get
something done and waits for the response before continuing its own
work. The caller usually depends on the result of the operation and
cannot continue without it. The caller can be a function calling another
function, a thread, or even a process sending a request to another
process. It can also be an application or a system sending requests to a
remote server. The key point is that in all these cases, the caller has to
wait for the response before continuing its execution.

Asynchronous processing, in a nutshell, is about issuing requests that do
not block your execution. In the asynchronous model, the caller never waits
idle for responses from services it depends upon. Requests are sent and
processing continues without ever being blocked.

07-ch07.indd 246 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 247

Synchronous Example
Let’s discuss synchronous processing using an object-oriented programming
example of an EmailService. Imagine we have an EmailService interface with
a single method, sendEmail, which accepts EmailMessage objects and sends
e-mails. In Listing 7-1, you can see how the EmailMessage and EmailService
interfaces might look. I do not show the implementation of the service on
purpose, because the interface is all that client code should care about.

Listing 7-1 Simple EmailService and EmailMessage interfaces

Interface EmailMessage {
 public function getSubject();
 public function getTextBody();
 public function getHtmlBody();
 public function getFromEmail();
 public function getToEmail();
 public function getReplyToEmail();
}
Interface EmailService {
 /**
 * Sends an email message
 *
 * @param EmailMessage $email
 * @throws Exception
 * @return void
 */
 public function sendEmail(EmailMessage $email);
}

Whenever you wish to send out an e-mail, you obtain an instance of EmailService
and invoke the sendEmail method on it. Then the EmailService implementation
can do whatever is necessary to get the job done. For example, it could have an
SmtpEmailAdapter allowing it to send e-mails over the Simple Mail Transport
Protocol (SMTP) protocol. Figure 7-1 shows how the sequence of calls might appear.

The important thing to realize here is that your code has to wait for the e-mail
service to complete its task. It means that your code is waiting for the service to
resolve Internet Protocol (IP) addresses, establish network connections, and send
the e-mail to a remote SMTP server. You also wait for the message to be encoded
and all its attachments to be transferred. This process can easily take a few seconds
depending on the speed of the SMTP server, network connection, and size of

07-ch07.indd 247 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 248 Web Scalability for Startup Engineers

the message. In this context, synchronous processing means that your code has
to synchronize its processing with the remote server and all of your processing
pauses for the time necessary to complete the sendMail method. Having to stop
execution to wait for a response in such a way is also called blocking.

Blocking occurs when your code has to wait for an external operation
to finish. Blocking can happen when you read something from a hard
drive because the operating system needs time to fetch the data for you.
Blocking can also occur when you wait for a user’s input, for example,
an automated teller machine (ATM) waiting for you to take your credit
card before giving you the money. Blocking can also occur when you
synchronize multiple processes/threads to avoid race conditions.

Blocking I/O means blocking input/output. This term is used to describe
blocking read and write operations on resources like hard drives, network
connections, and user interfaces. Blocking I/O occurs most often when
interacting with hard drives and network connections. For example, opening
a Transmission Control Protocol/Internet Protocol (TCP/IP) network connection
to a remote server can be a blocking operation (depending on your
programming model). In such a case, your thread blocks on a synchronous
call to open the connection.

Figure 7-1 Synchronous invocation

:ClientCode

Your System Remote System

:EmailService

sendEmail Send
SMTP + TCP

Return

This can
take a very
long time.

Return
Return

:RemoteServer:SmtpEmailAdapter

07-ch07.indd 248 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 249

Synchronous processing makes it hard to build responsive applications because
there is no way to guarantee how long it will take for a blocking operation to
complete. Every time you perform a blocking operation, your execution thread is
blocked. Blocked threads consume resources without making progress. In some
cases, it may take a few milliseconds, but in others, it may take several seconds
before you get the result or even find out about a failure.

It is especially dangerous to block user interactions, as users become impatient
very quickly. Whenever a web application “freezes” for a second or two, users
tend to reload the page, click the back button, or simply abandon the application.
Users of a corporate web application that provides business-critical processes are
more forgiving because they have to get their job done; they do not have much
choice but to wait. On the other hand, users clicking around the Web on their
way to work have no tolerance for waiting, and you are likely to lose them if your
application forces them to wait.

To visualize how synchronous processing affects perceived performance, let’s
look at Figure 7-2. This diagram shows how all blocking operations happen one
after another in a sequence.

The more blocking operations you perform, the slower your system becomes,
as all this execution time adds up. If sending e-mail takes 100 ms and updating a
database takes 20 ms, then your overall execution time has to be at least 120 ms
because in this implementation, operations cannot happen in parallel.

Now that we have explained what synchronous processing looks like, let’s go
through the same example for asynchronous processing.

Asynchronous Example
In a pure fire-and-forget model, client code has no idea what happens with the
request. The client can finish its own job without even knowing if the request was
processed or not. Asynchronous processing does not always have to be purely
fire-and-forget, however, as it can allow for the results of the asynchronous call to
be consumed by the caller using callbacks.

A callback is a construct of asynchronous processing where the caller
does not block while waiting for the result of the operation, but provides
a mechanism to be notified once the operation is finished. A callback
is a function, an object, or an endpoint that gets invoked whenever
the asynchronous call is completed. For example, if an asynchronous
operation fails, callback allows the caller to handle the error condition.
Callbacks are especially common in user interface environments, as they
allow slow tasks to execute in the background, parallel to user interactions.

07-ch07.indd 249 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 250 Web Scalability for Startup Engineers

Let’s go back the EmailService example and imagine an alternative
implementation that is split into two independent components. We still use
the EmailService interface to send e-mails from the client code, but there is
a message queue buffering requests and a back-end process that sends e-mails.
Figure 7-3 shows how the invocation could look in this scenario. As we can see,
your code does not have to wait for the message delivery. Your code waits only
for the message to be inserted into a message queue.

Your code does not know if the e-mail can be delivered successfully, as by the
time your code finishes, the e-mail is not even sent yet. It may be just added into
the queue or somewhere on its way to the SMTP server. This is an example of
asynchronous processing in its fire-and-forget form.

Figure 7-2 Multiple synchronous operations: adding up of execution times

:ClientCode

Your System Remote System 1 Remote System 2

:EmailService :SMTPServer :DatabaseServer

Update e-mail archive data

sendEmail Send
SMTP + TCP

Return
ReturnReturn

Return

:SmtpEmailAdapter

A
rr

ow
 o

f t
im

e

07-ch07.indd 250 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 251

Another important thing to notice here is that we can have independent
threads. Client code can execute in a separate process and add messages to the
queue at any point in time. On the other hand, the message queue consumer,
who sends out e-mails, can work in a separate process and at a different rate. The
message consumer could even be shut down or crash and the client code would
not know the difference, as long as it can add messages into the queue.

If we wanted to handle results of e-mails being sent by EmailService, we
could provide a web service endpoint or other way of notification (some form
of callback). This way, every time an SMTP request fails or a bounced e-mail is
detected, we could be notified. We could then implement callback functionality
that would handle these notifications. For example, we could update the database
record of each e-mail sent by marking it as successfully sent or as being bounced
back. Based on these statuses, we could then inform our users of failures.
Naturally, callback could handle failure and success notifications in any other way
depending on the business needs. In Figure 7-4, we can see how the sequence
diagram might appear once we include callback functionality. Client code can
continue its execution without blocking, but at the same time, it can handle
different results of e-mail delivery by providing a callback.

Figure 7-3 Asynchronous processing of e-mail message

Your System Remote System

:ClientCode :EmailService :QueueConsumer

Invoke
Invoke

Return

Client code returns

Return

Consume
Send

Acknowledge Return
Return

This can
take a very
long time.

SMPT

:SmptAdapter :RemoteServer:Queue

07-ch07.indd 251 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 252 Web Scalability for Startup Engineers

This diagram is a great simplification of the actual implementation, but we can
see that it already becomes much more complicated than the synchronous version
from Figure 7-1. Figure 7-4 looks much more complicated because instead of
a single application, we effectively decoupled parts of the call sequence into
separate applications. Instead of all the steps happening within a single execution
thread, we can have ClientCode, Callback, Queue, and QueueConsumer execute
in separate threads. They could also execute on different servers as different
processes.

To make it easier to work with asynchronous processing, it is important
to provide good frameworks and abstraction layers hiding routing and
dispatching of asynchronous calls and callbacks. AJAX is a good example of how
asynchronous processing can be made simple to use. If an e-mail message was
triggered from JavaScript running in the browser, we could handle its results by
providing a callback function declared in place. Listing 7-2 shows an example of
the sendEmail invocation with a callback function passed as an argument.

Figure 7-4 Asynchronous call with a callback

Your System Remote System

:ClientCode :Callback :QueueConsumer

Invoke

Return

Invoke

Return
Consume

Send
SMPT

Return
Acknowledge

Client code returns

Callback

Handles callback
with delivery result

Return

This can
take a
very
long time.

:SmptAdapter :MailServer:Queue:EmailService

07-ch07.indd 252 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 253

Listing 7-2 Invocation of sendEmail function with a callback function declared in place

// messageRow variable is declared before and
// it is bound to UI element on the screen
emailService.sendEmail(message, function(error){
 if(error){
 // modify UI by accessing messageRow
 messageRow.markAsFailed(error);
 }else{
 // modify UI by accessing messageRow
 messageRow.markAsDelivered();
 }
});

The trick here is that JavaScript anonymous functions capture the variable
scope in which they are declared. This way, even when the outer function
returns, the callback can execute at a later stage, still having access to all the
variables defined in the outer scope. This transparent scope inheritance of
JavaScript makes it easy to declare callback functions in a concise way.

Finally, let’s consider how asynchronous processing affects perceived
performance of the application. Figure 7-5 shows how asynchronous calls are
executed. Parallel execution of client code and remote calls can be achieved
within a single execution thread. As soon as the sendEmail method returns, client
code can allow the user to interact with the page elements. Parallel processing is
“emulated” by JavaScript’s event loop, allowing us to perform Nonblocking I/O
and achieve the illusion of multithreaded processing.

Nonblocking I/O refers to input/output operations that do not block
the client code’s execution. When using nonblocking I/O libraries, your
code does not wait while you read data from disk or write to a network
socket. Any time you make a nonblocking I/O call, you provide a
callback function, which becomes responsible for handling the output of
the operation.

07-ch07.indd 253 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 254 Web Scalability for Startup Engineers

In this case, we create the illusion of instant e-mail delivery. As soon as the user
clicks a button, the sendEmail function is called and asynchronous processing
begins. The user can be instantly notified that e-mail has been accepted and that
she can continue with her work. Even if sending e-mail takes 100 ms and updating
the database takes another 20 ms, the user does not have to wait for these steps
to happen. If necessary, when the callback code executes, it can notify the user
whether her message was delivered.

We have discussed the core concepts of the synchronous and asynchronous
models, but let’s further simplify this complicated subject with a quick analogy.

Shopping Analogy
To simplify it even further, you can think of synchronous processing as if you
were shopping at a fish market. You approach a vendor, ask for a fish, and wait.

Figure 7-5 Multiple asynchronous operations: execution time hidden from user

Your System Remote System 1 Remote System 2

Return

Client code
does not
block, it
returns

Callback
handles
result and
creates
another
callback

Database
request
callback

A
rr

ow
 o

f t
im

e

Return

Return

Send

Callback

SMTP + TCP

:ClientCode :EmailService

sendEmail

:SmtpEmailAdapter :SMTPServer :DatabaseServer

Update e-mail archive data using
another asynchronous call

07-ch07.indd 254 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 255

The vendor wraps the fish for you and asks if you need anything else. You can
either ask for more seafood or pay and go to the next stand. No matter how many
things you have to buy, you are buying one thing at a time. You need your fish
before you go to the next vendor to get some fresh crab. Figure 7-6 shows such
a scenario. Why a fish market? you ask. Just to make it more fun and easier to
remember.

Continuing our shopping analogy, asynchronous shopping is more like ordering
online. Figure 7-7 shows how a sequence of events could look when you order
books online. When you place your order, you provide a callback endpoint (the
shipping address). Once you submit your request, you get on with your life. In the
meantime, the website notifies vendors to send you the books. Whenever books

Figure 7-6 Synchronous shopping scenario

Figure 7-7 Asynchronous shopping scenario

1. Go to market

Synchronous Fish Market Shopping Program

2. Get some �sh 3. Get some crab

Arrow of time

4. Get some mussels 5. Go home and cook

Book provider A
locates, wraps,
dispatches, etc.

www.

Ordering Books Online

1. Order books
on Amazon.com

2. Get on with
your life.

Book provider B
locates, wraps,
dispatches, etc.

Arrow of time

4. Get on with
your life.

Provider A is faster than provider B.

3. Open door and
collect a book from

the postman.

5. Open door and
collect a book from

the postman.

07-ch07.indd 255 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 256 Web Scalability for Startup Engineers

arrive at your home, you have an opportunity to handle the result of your order
using your callback functionality (steps 3 and 5). You could collect the books
yourself or have someone in your family do it for you. The core difference is that
no matter how long it takes to ship the books, you do not have to wait motionless
for the books to arrive; you can do other things. It also means that multiple providers
can now fulfill parts of your order in parallel without synchronizing on each step.

In addition, if you decided to order the books as a gift for a friend, you would
not need to handle the response at all and your order would become a fire-and-
forget request.

From a scalability point of view, the main difference between these two approaches
is that more agents (processes, threads, or independent systems) can work in
parallel at any point in time. This, in turn, means that you can execute each agent
on a separate central processing unit (CPU) or even on a separate server.

Message Queues
Now that we have discussed the basic concepts of synchronous and asynchronous
processing, let’s have a look at message queues. Message queues are a great tool
for achieving asynchronous processing and they can be used in applications that
are built in a synchronous fashion. Even if your application or programming
language runtime does not support asynchronous processing, you can use message
queues to achieve asynchronous processing.

A message queue is a component that buffers and distributes asynchronous
requests. In the message queue context, messages are assumed to be
one-way, fire-and-forget requests. You can think of a message as a piece of
XML or JSON with all of the data that is needed to perform the requested
operation. Messages are created by message producers and then buffered
by the message queue. Finally, they are delivered to message consumers
who perform the asynchronous action on behalf of the producer.

Message producers and consumers in scalable systems usually run as separate
processes or separate execution threads. Producers and consumers are often
hosted on different servers and can be implemented in different technologies to

07-ch07.indd 256 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 257

allow further flexibility. Producers and consumers can work independently of
each other, and they are coupled only by the message format and message queue
location. Figure 7-8 shows how producers create messages and send them to
the message queue. Independently of producers, the message queue arranges
messages in a sequence to be delivered to consumers. Consumers can then
consume messages from the message queue.

This is a very abstract view of a message queue. We do not care here about
the message queue implementation, how producers send their messages, or how
consumers receive messages. At this level of abstraction, we just want to see the
overall flow of messages and that producers and consumers are separated from
each other by the message queue.

The separation of producers and consumers using a queue gives us the benefit
of nonblocking communication between producer and consumer. Producers do
not have to wait for the consumer to become available. The producer’s execution
thread does not have to block until the consumer is ready to accept another piece
of work. Instead, producers submit job requests to the queue, which can be done
faster, as there is no processing involved.

Another benefit of this separation is that now producers and consumers can be
scaled separately. This means that we can add more producers at any time without
overloading the system. Messages that cannot be consumed fast enough will just
begin to line up in the message queue. We can also scale consumers separately,
as now they can be hosted on separate machines and the number of consumers
can grow independently of producers. An important feature of the diagram in
Figure 7-8 is that there are three distinct responsibilities: producers, message
queue, and consumers. Let’s now look at each responsibility in more detail.

Figure 7-8 Message producers, queue, and consumers

Message Producer 1

Message Queue

22 A

A

1

2 A 1
1

Message Consumer

Message Producer 2

07-ch07.indd 257 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 258 Web Scalability for Startup Engineers

Message Producers
Message producers are parts of the client code that initiate asynchronous
processing. In message queue–based processing, producers have very little
responsibility—all they have to do is create a valid message and send it to the
message queue. It is up to the application developer to decide where producers
should execute and when they should publish their messages.

Producing a message is referred to as publishing or message publishing.
Message producer and message publisher are basically synonyms and
can be used interchangeably.

Applications often have multiple producers, publishing the same type of
message in different parts of the codebase. All of these messages get queued up
together and processed asynchronously.

Going back to our EmailService example, if the e-mail service was implemented
with message queues, then producers would be instances of client code that want
to send e-mails. Producers could live in the code handling new account creation,
purchase confirmation, or reset password. Any time you want to send an e-mail,
you would produce a message and add it to the queue. Producers could be
implemented in any technology as long as they can locate the message queue and
add a valid message to it. Listing 7-3 shows how a sample message could appear.
The message format becomes the contract between producers and consumers,
so it is important to define it well and validate it strictly.

Listing 7-3 Custom message format; contract between producers and consumers

<?xml version="1.0"?>
<emails>
 <message>
 <type>NEW-ACCOUNT</type>
 <from>some@guy.com</from>
 <to>your@client.org</to>
 <subject>Welcome to Our.Service.Com</subject>
 <textBody>
 Contents of the message.
 </textBody>

07-ch07.indd 258 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 259

 <htmlBody>
 <h1>Contents of the html.</h1>
 </htmlBody>
 </message>
</emails>

Using a platform-independent format like XML or JSON allows for
producers and consumers to be implemented in different technologies and work
independently of one another. You could have some PHP code creating e-mails
whenever a user subscribes to a new account. You could also have a back-end
system written in Java that sends e-mails for every purchase that is processed.
Both of these producers could create XML messages and send them to the queue.
Producers would not have to wait for e-mails to be delivered; they would simply
assume that e-mails will be delivered at some point in time.

HINT
Not having to know how consumers are implemented, what technologies they use, or even if they
are available are signs of strong decoupling (which is a very good thing).

As we said before, message producers have a lot of freedom and there is not
much responsibility on their end.

Let’s now take a closer look at the message queue itself.

Message Broker
The core component of message queue–based asynchronous processing is the
queue itself. It is the place where messages are sent and buffered for consumers. A
message queue can be implemented in many different ways. It could be as simple
as a shared folder with an application allowing you to read and write files to and
from it. It could be a component backed by a SQL database (as many homegrown
message queues are), or it could be a dedicated message broker that takes care of
accepting, routing, persisting, and delivering messages. The message queue could
also be a simple thread running within the same application process.

Since the message queue is a distinct component that can have more
responsibilities, like permissions control, routing, or failure recovery, it is often
implemented as an independent application. In such a case, it is usually referred
to as a message broker or message-oriented middleware.

07-ch07.indd 259 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 260 Web Scalability for Startup Engineers

A message broker is a specialized application designed for fast and
flexible message queuing, routing, and delivery. Brokers are the more
sophisticated way of implementing message queues and usually provide
a lot of specialized functionality out of the box. Message brokers are
also optimized for high concurrency and high throughput because being
able to enqueue messages fast is one of their key responsibilities. A
message broker may be referred to as message-oriented middleware
(MOM) or enterprise service bus (ESB), depending on the technology
used. They all serve similar purpose, with MOM and ESB usually taking
even more responsibilities.

A message broker has more responsibilities than producers do. It is the element
decoupling producers from consumers. The main responsibility of the message
queue is to be available at all times for producers and to accept their messages.
It is also responsible for buffering messages and allowing consumers to consume
relevant messages. Message brokers are applications, similar to web application
containers or database engines. Brokers usually do not require any custom code;
they are configured, not customized. Message brokers are often simpler than
relational database engines, which allows them to reach higher throughput and
scale well.

Because brokers are distinct components, they have their own requirements
and limitations when it comes to scalability. Unfortunately, adding a message
broker increases infrastructure complexity and requires us to be able to use
and scale it appropriately. We will discuss the benefits and drawbacks of using
message brokers in a following section, but let’s look at message consumers first.

Message Consumers
Finally, we come to the last component: message consumer. The main responsibility
of the message consumer is to receive and process messages from the message
queue. Message consumers are implemented by application developers, and they
are the components that do the actual asynchronous request processing.

Going back to our EmailSevice example, the consumer would be the code
responsible for picking up messages from the queue and sending them to remote
mail servers using SMTP. Message consumers, similar to producers, can be
implemented in different technologies, modified independently, and run on
different servers.

07-ch07.indd 260 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 261

To achieve a high level of decoupling, consumers should not know anything
about producers. They should only depend on valid messages coming out of the
queue. If we manage to follow that rule, we turn consumers into a lower service
layer, and the dependency becomes unidirectional. Producers depend on some
work to be done by “some message consumer,” but consumers have no dependency
on producers whatsoever.

Message consumers are usually deployed on separate servers to scale them
independently of message producers and add extra hardware capacity to the system.
The two most common ways of implementing consumers are a “cron-like” and
a “daemon-like” approach.

A cron-like consumer connects periodically to the queue and checks
the status of the queue. If there are messages, it consumes them and
stops when the queue is empty or after consuming a certain amount
of messages. This model is common in scripting languages where you
do not have a persistently running application container, such as PHP,
Ruby, or Perl. Cron-like is also referred to as a pull model because
the consumer pulls messages from the queue. It can also be used if
messages are added to the queue rarely or if network connectivity is
unreliable. For example, a mobile application may try to pull the queue
from time to time, assuming that connection may be lost at any point
in time.

A daemon-like consumer runs constantly in an infinite loop, and it usually
has a permanent connection to the message broker. Instead of checking
the status of the queue periodically, it simply blocks on the socket read
operation. This means that the consumer is waiting idly until messages are
pushed by the message broker into the connection. This model is more
common in languages with persistent application containers, such as
Java, C#, and Node.js. This is also referred to as a push model because
messages are pushed by the message broker onto the consumer as fast as
the consumer can keep processing them.

Neither of these approaches is better or worse; they are just different methods of
solving the same problem of reading messages from the queue and processing them.

07-ch07.indd 261 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 262 Web Scalability for Startup Engineers

In addition to different execution models, message consumers can use different
subscription methods. Message brokers usually allow consumers to specify what
messages they are interested in. It is possible to read messages directly from
a named queue or to use more advanced routing methods. The availability of
different routing methods may depend on which message broker you decide to
use, but they usually support the following routing methods: direct worker queue,
publish/subscribe, and custom routing rules.12,24

Let’s quickly look at each message routing method.

Direct Worker Queue Method
In this delivery model, the consumers and producers only have to know the name
of the queue. Each message produced by producers is added to a single work
queue. The queue is located by name, and multiple producers can publish to it
at any point in time. On the other side of the queue, you can have one or more
consumers competing for messages. Each message arriving to the queue is routed
to only one consumer. This way, each consumer sees only a subset of messages.
Figure 7-9 shows the structure of the direct worker queue.

This routing model is well suited for the distribution of time-consuming tasks
across multiple worker machines. It is best if consumers are stateless and uniform;
then replacement of failed nodes becomes as easy as adding a new worker node.
Scaling becomes trivial as well, as all we have to do is add more worker machines
to increase the overall consumer throughput. Please note that consumers can
scale independently of producers.

Good examples of this model include sending out e-mails, processing videos,
resizing images, or uploading content to third-party web services.

Figure 7-9 Direct worker queue

Message Producer 1

You can add
producers

independently

Scaling throughput
by adding

more workers
Message Queue

Message Producer N

Message Consumer 1

Message Consumer M

07-ch07.indd 262 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 263

Publish/Subscribe Method
In the publish/subscribe model, messages can be delivered to more than one
consumer. Producers publish messages to a topic, not a queue. Messages arriving
to a topic are then cloned for each consumer that has a declared subscription to
that topic. If there are no consumers at the time of publishing, messages can be
discarded altogether (though this behavior may depend on the configuration of
the message broker).

Consumers using the publish/subscribe model have to connect to the message
broker and declare which topics they are interested in. Whenever a new message is
published to a topic, it is cloned for each consumer subscribing to it. Each consumer
then receives a copy of the message into their private queue. Each consumer
can then consume messages independently from other consumers, as it has
a private queue with copies of all the messages that were published to the
selected topic.

Figure 7-10 shows how messages published to a topic are routed to separate
queues, each belonging to a different consumer.

A good example of this routing model is to publish a message for every purchase.
Your e-commerce application could publish a message to a topic each time a purchase
is confirmed. Then you could create multiple consumers performing different actions
whenever a purchase message is published. You could have a consumer that notifies
shipping providers and a different consumer that processes loyalty program rules
and allocates reward points. You would also have a way to add more functionality in
the future without the need to ever change existing publishers or consumers. If you
needed to add a consumer that sends out a purchase confirmation e-mail with a PDF
invoice, you would simply deploy a new consumer and subscribe to the same topic.

Figure 7-10 Publish/subscribe queue model

Message Producer 1

Message Producer M

Message Consumer 1

Message Consumer M

Message Queue 1

Message Queue M

07-ch07.indd 263 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 264 Web Scalability for Startup Engineers

The publish/subscribe model is a flexible pattern of messaging. It is also a
variation of a generic design pattern called observer1,7 used to decouple components
and to promote the open-closed principle (described in Chapter 2). To make it
more flexible and scalable, most brokers allow for competing consumers, in which
case multiple consumers subscribe to the same queue and messages are distributed
among them, rather than a single consumer having to process all of the messages.

Custom Routing Rules
Some message brokers may also support different forms of custom routing, where
a consumer can decide in a more flexible way what messages should be routed to
its queue. For example, in RabbitMQ you can use a concept of bindings to create
flexible routing rules (based on text pattern matching).12 In ActiveMQ you can
use the Camel extension to create more advanced routing rules.25

Logging and alerting are good examples of custom routing based on pattern
matching. You could create a “Logger Queue” that accepts all log messages and an
“Alert Queue” that receives copies of all critical errors and all Severity 1 support
tickets. Then you could have a “File Logger” consumer that would simply write
all messages from the “Logger Queue” to a file. You could also have an “Alert
Generator” consumer that would read all messages routed to the “Alert Queue”
and generate operator notifications. Figure 7-11 shows such a configuration.

The idea behind custom routing is to increase flexibility of what message
consumers can subscribe to. By having more flexibility in the message broker,
your system can adapt to new requirements using configuration changes rather
than having to change the code of existing producers and consumers.

Figure 7-11 Custom routing configuration

Log Producer

File Logger

Alert Generator

Logger Queue
All Logs

Critical Errors

Severity 1
Alert QueueSupport Ticket Producer

07-ch07.indd 264 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 265

These are the most common routing methods, but I encourage you to read
documentation for your message broker or check out some of the books on
messaging.12,24,25 Now that we’ve covered the most important concepts of
asynchronous processing and messaging, let’s have a quick look at different
messaging protocols and then at the infrastructure to see where message brokers
belong.

Messaging Protocols
A messaging protocol defines how client libraries connect to a message broker
and how messages are transmitted. Protocols can be binary or text based, they
can specify just minimal functionality, or they can describe in details hundreds of
features. You should be familiar with the messaging protocols used to transport
messages from producers to consumers. As an application developer, you will
probably not have to develop your own implementation of any messaging
protocol, but it is best to understand the properties of each protocol so that you
can choose the best fit for your project. Here, we will look at the three most
common protocols in the open-source world: AMQP, STOMP, and JMS.

AMQP (Advanced Message Queuing Protocol) is a well-defined contract
for publishing, consuming, and transferring messages, and best of all, it is an
industry standard. It is more advanced than STOMP, and it is aimed at enterprise
integration and interoperability. Since it is a standardized protocol accepted
by OASIS (Organization for the Advancement of Structured Information
Standards),w54 integration between different messaging vendors, consumers, and
publishers is easier. AMQP includes a lot of features in the protocol specification
itself, so things like reliable messaging, delivery guarantees, transactions, and
other advanced features are guaranteed to be implemented in the same way
by all supporting libraries and servers. Most modern programming languages
have stable AMQP clients, and as of this writing both RabbitMQ and ActiveMQ
support AMQP as a communication protocol. Considering all of its benefits,
I would recommend AMQP as a messaging protocol whenever it is possible.

STOMP (Streaming Text-Oriented Messaging Protocol), on the other hand,
is a truly minimalist protocol. In fact, simplicity is one of its main advantages.
STOMP is a stateless, text-based protocol similar to HTTP. It supports fewer
than a dozen operations, so implementation and debugging of libraries are much
easier. It also means that the protocol layer does not add much performance
overhead. What can be unpleasant about STOMP is that advanced features
have to be implemented as extensions using custom headers, and as a result,
interoperability can be limited because there is no standard way of doing certain

07-ch07.indd 265 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 266 Web Scalability for Startup Engineers

things. A good example of impaired interoperability is message prefetch count. It
allows the consumer to declare how many messages they want to receive from the
server without having to acknowledge them. Prefetch is a great way of increasing
throughput because messages are received in batches instead of one message at
a time. Although both RabbitMQ and ActiveMQ support this feature, they both
implement it using different custom STOMP headers. If you talk to ActiveMQ,
you have to specify it using the “activemq.prefetchSize” header; when talking to
RabbitMQ, you have to set the “prefetch-count” header instead. Obviously, this
does not let you create a universal STOMP client library supporting the prefetch
feature, as your library will need to know how to negotiate it with every type of
message broker, and what is even worse, your code will have to know whether it
is talking to RabbitMQ or ActiveMQ. Even though this is a simplistic example,
it should demonstrate how important standards are and how difficult it may
become to integrate your software using nonstandardized protocols.

The last protocol, JMS (Java Message Service), is a Java messaging standard
widely adopted across Java-based application servers and libraries. Even though
JMS provides a good feature set and is popular, unfortunately, it is a purely Java
standard and your ability to integrate with non-JVM (Java Virtual Machine)–based
technologies will be very limited. If you develop purely in Java or JVM-based
languages like Groovy or Scala, JMS can actually be a good protocol for you. If
you have to integrate with different platforms, though, you may be better off using
AMQP or STOMP, as they have implementations for all popular languages.

From a scalability point of view, protocols used to transfer messages are not
really a concern, so you should make your choice based on the feature set and
availability of the tools and libraries for your programming languages.

Messaging Infrastructure
So far we have discussed message queues, brokers, producers, and consumers. We
have also described some of the most common messaging protocols. Let’s take a
step back now to see how messaging components affect our system infrastructure.

We first looked at infrastructure in Chapter 1. Figure 7-12 shows that same
infrastructure from Chapter 1, but with message brokers highlighted for better
clarity. The message queuing systems are usually accessible from both front-end
and back-end sides of your system. You would usually produce messages in the
front end and then consume them in the back end, but it does not have to be this
way. Some applications could consume messages in the front end. For example,
an online chat application could consume messages to notify the user as soon as a
new message arrives in her mailbox. How you use the message broker ultimately
depends on your needs and your use cases—it is just another tool in your toolbox.

07-ch07.indd 266 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 267

Figure 7-12 Message brokers and queue workers in system infrastructure

3

2

Traf�c Volumes

Very Heavy

Heavy

Medium

Light, UDP

Light

User’s network

Load Balancer

Front Cache 1

Your Data Center

Front Cache N

Customers DNS/geoDNS

Content Delivery Network

Internet

4

10

1

Front App. Server 1

Cache Servers

Queue Workers

Message Queue Servers

Front App. Server M

7

5 6

Web Services Server 1 Web Services Server K

8

Data Store Servers

9

Search Servers

07-ch07.indd 267 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 268 Web Scalability for Startup Engineers

In Figure 7-12, servers dedicated to message consumers are labeled “Queue
Workers.” It is common to see entire clusters of servers dedicated solely to
message processing. These machines are often called queue workers, as their sole
purpose is to perform work based on queue messages.

HINT
If you hosted your servers in the cloud, like Amazon EC2 or another virtualization provider, you
could easily select different types of server instances for the queue workers cluster depending on
what their bottleneck is (memory, I/O, or CPU).

It is best to isolate queue workers into a separate set of servers so their
scalability would not depend on the scalability of other components. The more
independent and encapsulated the workers, the less impact and dependency on
the rest of the system. An important thing to remember here is that queue worker
machines should be stateless just like web application servers and web service
machines. Workers should get all of their data from the queue and external
persistence stores. Then machine failures and scaling out will not be a problem.

HINT
You may need to use other services to save and retrieve state from to keep your queue workers
stateless. For example, if your workers are transcoding videos, your message producer should
upload the video binary file into a distributed persistence store (like S3 or a shared FTP, SAN, or
NAS). Then it should publish a message to the queue with location of the binary so that any queue
worker machine could process the message without having to keep local state.

By having queue workers stateless and isolated to a separate set of machines,
you will be able to scale them horizontally by simply adding more servers. Failures
will have no impact on you either because new workers can always be added to
replace broken ones.

Usually, message brokers provide some built-in functionality for horizontal
scalability,12,25 but each broker may have its own gotchas and scalability
limitations. There are limitations on the total throughput of a single queue
because messages passing through the queue need to be delivered to all
connected subscribers. As long as your application is able to distribute messages
across multiple queues using simple application-level sharding, you should be
able to scale messaging brokers horizontally by adding more message broker
servers.

07-ch07.indd 268 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 269

If you require throughput of thousands or tens of thousands of messages per
second, RabbitMQ or ActiveMQ should work fine out of the box. If you plan for
hundreds of thousands of messages per second, you may need to add custom
sharding mechanisms into your application to spread the load among multiple
broker instances.

Surprisingly, even in using a cloud-based messaging platform like Microsoft
Azure Queues, you may hit scalability limits. For example, as of this writing,
Microsoft Azure Queues has a throughput limitation of 2,000 messages per
second, per queue,L1 which is a lot. Another Azure product called Service
Bus Queues has a hard limit of 100 concurrent connections to a single queue.
Depending on your needs, this may be irrelevant, but you simply cannot
assume that infinite scalability is available, unless you do some research. Before
committing to a messaging solution, always check the most current pricing,
required infrastructure, and out-of-the-box scalability guarantees.

HINT
You can think of a message broker as if it was a very “dumb” SQL database engine—an engine
that does not allow updates, and the only operation you can perform is to add an item to the end
of a table and pop an item from the beginning of a table. A message broker can also be a stand-
alone application or an embedded one. It can be connected to using standard protocols and shared
libraries. A message broker is just an abstraction of adding messages to the queues and routing
them to consumers.

Before you decide which message broker to choose and whether you really
have to worry about the broker’s scalability in the first place, prepare the following
metrics for your application:

 ▶ Number of messages published per second
 ▶ Average message size
 ▶ Number of messages consumed per second (this can be much higher than

publishing rate, as multiple consumers may be subscribed to receive copies
of the same message)

 ▶ Number of concurrent publishers
 ▶ Number of concurrent consumers
 ▶ If message persistence is needed (no message loss during message broker

crash)
 ▶ If message acknowledgment is needed (no message loss during consumer crash)

07-ch07.indd 269 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 270 Web Scalability for Startup Engineers

With these metrics, you have an informed approach to discuss your scalability
needs with vendors and/or the open-source community. We will look at a few
message brokers later in this chapter and discuss their impact on scalability, but
before we do that, let’s review the benefits of messaging and motivation for adding
this extra complexity to our systems.

Benefits of Message Queues
So far, we have looked at the core concepts and terminology of asynchronous
processing and message queues, and you’ve likely deduced that they don’t come
for free. You will now need to learn, deploy, optimize, and scale your message
queues. Adding new components to your stack usually increases the overall
complexity of your system. Since it is so much work, why should you bother?
There are a number of benefits to using message queues:

 ▶ Enabling asynchronous processing
 ▶ Easier scalability
 ▶ Evening out traffic spikes
 ▶ Isolating failures and self-healing
 ▶ Decoupling

In addition to giving you these benefits, message queues are a specific type
of technology. Once you become familiar with them and integrate them into
your system, you will find many use cases where a message queue is a perfect fit,
making things easier and faster.

Enabling Asynchronous Processing
One of the most visible benefits of using a message queue is the fact that it gives
us a way to defer processing of time-consuming tasks without blocking our
clients. The message broker becomes our door to the world of asynchronous
processing. Anything that is slow or unpredictable is a candidate for asynchronous
processing. The only requirement is that you have to find a way to continue
execution without having the result of the slow operation.

07-ch07.indd 270 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 271

Good use cases for a message queue could be

 ▶ Interacting with remote servers If your application performs operations
on remote servers, you might benefit from deferring these steps via a queue.
For example, if you had an e-commerce platform, you might allow users to
create marketing campaigns advertising their products. In such a case, you
could let users select which items should be promoted and add requests to
the queue so that users would not have to wait for remote service calls to
finish. In the background, your system could contact multiple advertising
providers like Google AdWords and set up marketing campaigns.

 ▶ Low-value processing in the critical path Every application has some
critical paths or features that have to work all the time as a matter of top
priority. In an e-commerce website, it may be the ability to place orders,
search for products, and process payments. It is a common requirement
that critical paths have to work 24/7 no matter what else breaks. After all,
what kind of e-commerce is it if you cannot place orders or pay for goods?
Under such constraints, integrating with a new recommendation engine in
checkout could introduce a new point of failure. It could also slow down
the checkout process itself. Instead of synchronously sending orders to the
recommendation system, you could enqueue them and have them processed
asynchronously by an independent component.

 ▶ Resource intensive work Most CPU- or I/O-hungry processing like
transcoding videos, resizing images, building PDFs, or generating reports
are good candidates for a queue-based workflow instead of running
synchronously to users’ interactions.

 ▶ Independent processing of high- and low-priority jobs For example,
you could have separate queues dedicated to top-tier customers (high-
urgency tasks) and others for low-value customers (less urgent tasks). You
could then dedicate more resources to these high-value jobs and protect
them from spikes of low-value tasks.

Message queues enable your application to operate in an asynchronous way,
but it only adds value if your application is not built in an asynchronous way to
begin with. If you developed in an environment like Node.js, which is built with
asynchronous processing at its core, you will not benefit from a message broker
that much. A message broker does not make already asynchronous systems more
asynchronous. What is good about message brokers is that they allow you to
easily introduce asynchronous processing to other platforms, like those that are
synchronous by nature (C, Java, PHP, Ruby).

07-ch07.indd 271 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 272 Web Scalability for Startup Engineers

Easier Scalability
Applications using message brokers are usually easier to scale due to the nature
of deferred processing. Since you produce messages as fire-and-forget requests,
for expensive tasks you can publish requests from multiple servers in parallel. You
can also process messages in parallel on multiple back-end servers. You can run
multiple physical servers dedicated to message queue consumers, and it is usually
easy to keep adding more machines as your workload increases.

A good example of parallel back-end processing could be a service resizing
images and videos. Figure 7-13 shows how such an application could be
assembled. Your front-end application uploads files to a network attached storage
(NAS) (1) and then publishes a message for each file to be processed (2). Messages
get buffered in the message queue and get picked up by workers at a later stage (3).
Each worker consumes a message from a queue and begins the resizing process
(which may take some time to complete). Once the file is processed, it can
be uploaded back to NAS (4). Workers could also publish a new message to a
separate queue to indicate that work has been completed. In such configuration,
you can easily add or remove back-end servers whenever demand changes.

Figure 7-13 Scalability by adding more parallel queue workers

Upload �le

1

Publish a message

Process �le

Consume message

Front-end Cluster Back-end Workers

NAS

Message Broker

2

4

3

Queue

07-ch07.indd 272 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 273

As you can see, by adding more message consumers, we can increase our
overall throughput. No matter what the constraint on our queue worker nodes is
(disk, memory, CPU, external latency), we can process more messages by simply
adding more back-end servers. What gives us even more flexibility is that adding
servers does not require publisher configuration changes. Consumers simply
connect to the message broker and begin consuming messages; producers do not
have to know how many consumers are there or where are they hosted.

Even if you used Node.js or Erlang, which are asynchronous by nature, you
would still benefit from using queues as a way to share the workload among
multiple servers.

Evening Out Traffic Spikes
Another advantage of using message queues is that they allow you to transparently
even out traffic spikes. By using a message broker, you should be able to keep
accepting requests at high rates even at times of increased traffic. Even if your
publishing generates messages much faster than consumers can keep up with,
you can keep enqueueing messages, and publishers do not have to be affected by
a temporary capacity problem on the consumer’s side.

If your front-end application produces messages to be consumed by the back-
end cluster, the more traffic you get in the front end, the more messages you will
be publishing to the queues. Since front-end code does not have to wait for slow
operations to complete, there is no impact on the front-end user. Even if you
produce messages faster than consumers can keep processing them, messages
still get enqueued quickly. The only impact of the traffic spike is that it takes
longer before each message gets processed, because messages “sit” longer in the
queues. Figure 7-14 shows how queue consumers work at their full capacity as
long as there are messages to be processed. Even when the front-end application
produces messages above capacity limits, messages can still be enqueued quickly
and processed over time. After the traffic spike is over, consumers eventually
catch up with the messages and “drain the queues.”

This property of evening out spikes increases your availability. Your system is
less likely to go down even if you are not able to fully process all of the incoming
requests right away. Soon after the spike is over, the system automatically recovers
to its normal status.

07-ch07.indd 273 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 274 Web Scalability for Startup Engineers

Isolating Failures and Self-Healing
As was already discussed, message queues allow us to remove functionality from
critical paths and to insulate producers from consumers, making a system more
robust and fault tolerant. The message broker isolates failures of different parts
of your system because publishers do not depend directly on consumers being
available. Publishers are not affected by failures happening on the consumers’
side of the queue. Symmetrically, consumers can keep doing their work even
if publishers experience technical issues. As long as there are messages in the
queue, consumers are not affected in any way by the producers’ failures.

The fact that consumers’ availability does not affect producers allows us to stop
message processing at any time. This means that we can perform maintenance
and deployments on back-end servers at any time. We can simply restart, remove,
or add servers without affecting producers’ availability, which simplifies
deployments and server management.

Finally, having multiple queue worker servers makes the system more tolerant
to failures and allows it to heal itself to some extent. If you have multiple workers,
a hardware failure can be dealt with as a matter of low priority. Instead of breaking the
entire application whenever a back-end server goes offline, all that we experience
is reduced throughput, but there is no reduction of availability. Reduced throughput
of asynchronous tasks is usually invisible to the user, so there is no consumer
impact. To recover from failure, you simply add a server replacement and the

Figure 7-14 Consumers process messages at their full capacity, but don’t get overwhelmed.

Producers’ Load

Above capacity

Within capacity

Within capacity

capacity

capacity

Consumers’ Load

07-ch07.indd 274 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 275

system “heals” itself automatically by slowly catching up with the queues and
draining messages over time.

Surviving failures and self-healing are some of the most important features of
truly horizontally scalable systems.

Decoupling
Message queues allow us to achieve some of the highest degrees of decoupling,
which can have big impact on the application architecture. I already explained the
benefits of decoupling on its own in Chapter 2, but I want to emphasize here how
much message queues promote decoupling.

As I mentioned earlier in this chapter, using a message broker allows us to
isolate message producers from message consumers. We can have multiple
producers publishing messages, and we can also have multiple consumers
processing messages, but they never talk to one another directly. They do not
even have to know about each other at all.

HINT
Whenever we can separate two components to a degree that they do not know about each other’s
existence, we have achieved a high degree of decoupling.

Ideally, we should strive to create publishers that do not care who is consuming
their messages or how. All that publishers need to know is the format of the
message and where to publish it. On the other hand, consumers can become
oblivious as to who publishes messages and why. Consumers can focus solely
on processing messages from the queue. Figure 7-15 shows how producers and
consumers become unaware of one another. It is best if they do not know what is
on the other side of the queue.

Such a high level of decoupling, by use of an intermediate message broker,
makes it easier to develop consumers and producers independently. They can
even be developed by different teams using different technologies. Because
message brokers use standard protocols and messages themselves can be encoded
using standards like JSON or XML, message brokers can become an integration
point between completely independent applications.

HINT
You can think of a queue as a border. Whatever happens on the other side of that border should
be an implementation detail, not known to the code at hand. The queue becomes your single point
of interaction and the message format becomes your contract.

07-ch07.indd 275 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 276 Web Scalability for Startup Engineers

Although message queues offer great benefits, remember there is no golden
hammer. In the following section, let’s consider some of the common challenges
related to messaging.

Message Queue–Related Challenges
As with most technologies, messaging comes with its own set of challenges and
costs. Some of the common difficulties and pitfalls you may encounter when
working with message queues and asynchronous processing include no message
ordering, message requeueing, race conditions, and increased complexity. Let’s
look at each in more detail.

No Message Ordering
The first significant challenge developers face when working with message queues
at scale is simply that message ordering is not guaranteed. This is caused by
the fact that messages are processed in parallel and there is no synchronization
between consumers. Each consumer works on a single message at a time and has
no knowledge of other consumers running in parallel to it (which is a good thing).
Since your consumers are running in parallel and any of them can become slow
or even crash at any point in time, it is difficult to prevent messages from being
occasionally delivered out of order.

Figure 7-15 Decoupling and isolation of message producers and consumers

Queue

Queue

Publisher
Publish message I don’t care what happens next

Publisher’s Perspective

Consumer
Consume messageI don’t care who publishes it

Consumer’s Perspective

07-ch07.indd 276 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 277

It is difficult to explain messages being consumed out of order, so let’s use a
sequence of diagrams. For the sake of simplicity, let’s look at a synthetic example
of producers sending multiple message types to a shared queue. Figure 7-16
shows a producer publishing two messages. The first message is sent to create
a new user account, and the second message is published to send the user
a welcome e-mail. Notice that there are two concurrently running message
consumers working in parallel on the same message queue.

Each message has an equal chance of being sent to either one of the consumers,
as they both arrive at the same logical queue. It is easy to imagine a scenario where
each message is sent to a different consumer, as in Figure 7-17. Now, the order of
these messages being processed depends on how fast each consumer is and how
much time it takes to complete task1 and task2. Either the account can be created
first or the e-mail can be created first. The problem that becomes visible here is that
e-mail creation could fail if there was no user account present first. It is a classic
example of a race condition, as execution of these two tasks in parallel without
synchronization may produce incorrect results, depending on the ordering.

Figure 7-17 Each consumer receives one of the two messages.

Figure 7-16 Producer creates two messages related to the same user.

Consumer 1

Queue

2

Welcome E-mail Create User

Consumer 2

Producer

1

Consumer 1

Queue

2

Consumer 2

Producer

1

07-ch07.indd 277 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 278 Web Scalability for Startup Engineers

To make things worse, there is another possible failure scenario. Consumer 2
can become unavailable or simply crash. In such a situation, messages that
were sent to that consumer may have to be returned to the queue and sent to
other consumers. Requeueing messages is a strategy used by many message
brokers, as it is assumed that the message has not been fully processed until it
is “acknowledged” by the consumer. Figure 7-18 shows how a message could be
requeued and how it could be delivered out of order to consumer 1.

If that was not bad enough, there is an additional difficulty in this failure
scenario. There is no guarantee that consumer 2 did not process the message
before the failure occurred. Consumer 2 might have already sent out an e-mail
and crashed just before sending the message acknowledgment back to the
message broker. In such a situation, message 1 would actually be processed twice.

Fortunately, there are things we can do to make the message ordering problem
disappear. Here are three common ways to solve the ordering problem:

 ▶ Limit the number of consumers to a single thread per queue. Some message
queues guarantee ordered delivery (First In First Out [FIFO]) as long as you
consume messages one at a time by a single client. Unfortunately, this is not
a scalable solution and not all messaging systems support it.

 ▶ Build the system to assume that messages can arrive in random order.
This may be either easy or difficult depending on the system and on the
requirements, but seems the best way out. In the previous example, we
could achieve it by changing who publishes which messages. If the front
end published a create-account message, then consumer 1 could publish an
email-customer message once the account has been created. In this case,
message ordering is forced by the application-level workflow. If we decided
to go down this route, we would need to make sure that all of our engineers
understood the constraints. Otherwise, incorrect message ordering may
come as a bitter surprise.

Figure 7-18 Consumer failure causes message to be passed on to another worker.

Consumer 1

Queue

2

Consumer 2
FAILS

Producer

1

07-ch07.indd 278 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 279

 ▶ Use a messaging broker that supports partial message ordering guarantee.
This is the case with ActiveMQ’s message groups, for example.

It is best to depend on the message broker to deliver messages in the right
order by using a partial message guarantee (ActiveMQ) or topic partitioning
(Kafka).w52 If your broker does not support such functionality, you will need
to ensure that your application can handle messages being processed in an
unpredictable order.

Partial message ordering is a clever mechanism provided by ActiveMQ
called message groups. Messages can be published with a special
“label” called a message group ID. The group ID is defined by the
application developer (for example, it could be a customer ID). Then
all messages belonging to the same group are guaranteed to be
consumed in the same order they were produced. Figure 7-19 shows
how messages belonging to different groups get queued up separately
for different consumers. Whenever a message with a new group ID gets
published, the message broker maps the new group ID to one of the
existing consumers. From then on, all the messages belonging to the
same group are delivered to the same consumer. This may cause other
consumers to wait idly without messages as the message broker routes
messages based on the mapping rather than random distribution. In our
example, if both account creation and e-mail notification messages were
published with the same message group ID, they would be guaranteed
to be processed in the same order they were published.

Figure 7-19 Message groups get assigned to consumers when the first message arrives.

Consumer 1

Queue

Consumer 2

Producer

12

1

2

2

31

Messages belonging to group A

Messages belonging to groups B and C

07-ch07.indd 279 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 280 Web Scalability for Startup Engineers

Message ordering is a serious issue to consider when architecting a message-
based application, and RabbitMQ, ActiveMQ, and Amazon SQS messaging
platform cannot guarantee global message ordering with parallel workers. In fact,
Amazon SQS is known for unpredictable ordering of messages because their
infrastructure is heavily distributed and ordering of messages is not supported.
You can learn more about some interesting ways of dealing with message
ordering.w14,w52

Message Requeueing
As previously mentioned, messages can be requeued in some failure scenarios.
Dealing with this problem can be easy or difficult, depending on the application
needs. A strategy worth considering is to depend on at-least-once delivery instead
of exactly-once delivery. By allowing messages to be delivered to your consumers
more than once, you make your system more robust and reduce constraints put
on the message queue and its workers. For this approach to work, you need to
make all of your consumers idempotent, which may be difficult or even impossible
in some cases.

An idempotent consumer is a consumer that can process the same
message multiple times without affecting the final result. An example of
an idempotent operation would be setting a price to $55. An example
of a nonidempotent operation would be to “increase price by $5.” The
difference is that increasing the price by $5 twice would increase it by a
total of $10. Processing such a message twice affects the final result. In
contrast, setting the price to $55 once or twice leaves the system in the
same state.

Unfortunately, making all consumers idempotent may not be an easy thing to
do. Sending e-mails is, by nature, not an idempotent operation, because sending
two e-mails to the customer does not produce the same result as sending just a
single e-mail. Adding an extra layer of tracking and persistence could help, but
it would add a lot of complexity and may not be able to handle all of the failure
scenarios. Instead, make consumers idempotent whenever it is practical, but
remember that enforcing it across the system may not always be worth the effort.

07-ch07.indd 280 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 281

Finally, idempotent consumers may be more sensitive to messages being
processed out of order. If we had two messages, one to set the product’s price to
$55 and another one to set the price of the same product to $60, we could end up
with different results based on their processing order. Having two nonidempotent
consumers increasing the price by $5 each would be sensitive to message
requeueing (redelivery), but not to out-of-order delivery.

Race Conditions Become More Likely
One of the biggest challenges related to asynchronous systems is that things that
would happen in a well-defined order in a traditional programming model can
suddenly happen in a much more unexpected order. As a result, the asynchronous
programming is more unpredictable by nature and more prone to race conditions,
as work is broken down into much smaller chunks and there are more possible
orders of execution.

Since asynchronous calls are made in a nonblocking way, message producers
can continue execution without waiting for the results of the asynchronous call.
Different message consumers may also execute in a different order because there
is no built-in synchronization mechanism. Different parts of an asynchronous
system, especially a distributed one, can have different throughput, causing
uneven latency in message propagation throughout the system.

Especially when a system is under heavy load, during failure conditions and
deployments, code execution may become slower in different parts of the system.
This, in turn, makes things more likely to happen in unexpected order. Some
consumers may get their messages much later than others, causing hard-to-
reproduce bugs.

HINT
You could say that asynchronous programming is programming without a call stack.w11 Things
simply execute as soon as they are able to, instead of traditional step-by-step programming.

The increased risk of race conditions is mainly caused by the message-ordering
issue discussed earlier. Get into a habit of careful code review, with an explicit
search for race conditions and out-of-order processing bugs. Doing so will increase
your chance of mitigating issues and building more robust solutions. The less you
assume about the state of an asynchronous system, the better.

07-ch07.indd 281 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 282 Web Scalability for Startup Engineers

Risk of Increased Complexity
Systems built as hybrids of traditional imperative and message-oriented code
can become more complex because their message flow is not explicitly declared
anywhere. When you look at the producer, there is no way of telling where the
consumers are or what they do. When you look at the consumer, you cannot be sure
under what conditions messages are published. As the system grows and messaging
is added ad hoc through the code, without considering the overall architecture,
it may become more and more difficult to understand the dependencies.

When integrating applications using a message broker, you must be very diligent
in documenting dependencies and the overarching message flow. Remember the
discussion about levels of abstraction and how you should be able to build the mental
picture of the system (Chapter 2). Without good documentation of the message
routes and visibility of how the messages flow through the system, you may increase
the complexity and make it much harder for developers to understand how the
system works.

Keep things simple and automate documentation creation so it will be generated
based on the code itself. If you manage to keep documentation of your messaging in
sync with your code, you should be able to find your way through the dependencies.

Message Queue–Related Anti-Patterns
In addition to message queue–related challenges, I would like to highlight a few
common design anti-patterns. Engineers tend to think alike, and they often create
similar solutions to similar problems. When the solution proves to be successful
over and over again, we call it a pattern, but when the solution is repeatedly
difficult to maintain or extend, we call it an anti-pattern. A typical anti-pattern is
a solution that seems like a good idea at first, but the longer you use it, the more
issues you discover with it. By getting familiar with anti-patterns, you should be
able to easily avoid them in the future—it is like getting a vaccination against a
common design bug.

Treating the Message Queue as a TCP Socket
Some message brokers allow you to create return channels. A return channel
becomes a way for the consumer to send a message back to the producer. If
you use it a lot, you may end up with an application that is more synchronous
than asynchronous. Ideally, you would want your messages to be truly one-way

07-ch07.indd 282 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 283

requests (fire-and-forget). Opening a response channel and waiting for response
messages makes messaging components more coupled and undermines some
of the benefits of messaging. Response channels may also mean that failures
of different components on different sides of the message broker may have an
impact on one another. When building scalable systems, avoid return channels, as
they usually lead to synchronous processing and excessive resource consumption.

Treating Message Queue as a Database
You should not allow random access to elements of the queue. You should not
allow deleting messages or updating them, as this will lead to increased complexity.
It is best to think of a message queue as an append-only stream (FIFO). It is most
common to see such deformations when the message queue is built on top of a
relational database or NoSQL engine because this allows secondary indexes and
random access to messages. Using random access to modify and delete messages
may prevent you from scaling out and migrating to a different messaging broker.

If you have to delete or update messages in flight (when they are in the middle
of the queue), you are probably doing something wrong or applying messaging to
a wrong use case.

Coupling Message Producers with Consumers
As I mentioned before, it is best to avoid explicit dependency between producers
and consumers. You should not hardcode class names or expect messages to
be produced or consumed by any particular piece of code. It is best to think of
the message broker as being the endpoint and the message body as being the
contract. There should be no assumptions or any additional knowledge necessary.
If something is not declared explicitly in the message contract, it should be an
implementation detail, and it should not matter to the other side of the contract.

For example, a flawed implementation I saw involved serializing an entire
object and adding it to the message body. This meant that the consumer had to
have this particular class available, and it was not able to process the message
without executing the serialized object’s code. Even worse, it meant that the
consumer had to be implemented in the same technology as the producer and its
deployment had to be coordinated to prevent class mismatches. Messages should
not have “logic” or executable code within. Messages should be a data transfer
object10 or simply put, a string of bytes that can be written and read by both
consumer and producer.

Treat the format of the message as a contract that both sides need to understand,
and disallow any other type of coupling.

07-ch07.indd 283 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 284 Web Scalability for Startup Engineers

Lack of Poison Message Handling
When working with message queues you have to be able to handle broken messages
and bugs in consumer code. A common anti-pattern is to assume that messages
are always valid. A message of death (also known as a poison message) is a
message that causes a consumer to crash or fail in some unexpected way. If your
messaging system is not able to handle such cases gracefully, you can freeze your
entire message-processing pipeline, as every time a consumer crashes, the broker
will requeue the message and resend it to another consumer. Even with auto-
respawning consumer processes, you would freeze the pipeline, as all of your
consumers would keep crashing and reprocessing the same message for infinity.

To prevent that scenario, you need to plan for failures. You have to assume that
components of your messaging platform will crash, go offline, stall, and fail in
unexpected ways. You also have to assume that messages may be corrupt or even
malicious. Assuming that everything would work as expected is the quickest way
to building an unavailable system.

HINT
Hope for the best, prepare for the worst.

You can deal with a poison message in different ways depending on which
message broker you use. In ActiveMQ you can use dead-letter queue policies out
of the box.25 All you need to do is set limits for your messages, and they will be
automatically removed from the queue after a certain number of failures. If you
use Amazon SQS, you can implement poison message handling in your own code
by using an approximate delivery counter. Every time a message is redelivered,
SQS increments its approximate delivery counter so that your application could
easily recognize messages of death and route them to a custom dead-letter queue
or simply discard them. Similarly, in RabbitMQ you get a boolean flag telling you
if a message has been delivered before, which could be used to build a dead-letter
queue functionality. Unfortunately, it is not as simple to use as having a counter or
an out-of-the-box functionality.

Whenever you use message queues, you simply have to implement poison
message handling.

Quick Comparison of Selected Messaging Platforms
Choosing a message broker is similar to choosing a database management system.
Most of them work for most use cases, but it always pays to know what you are
dealing with before making a commitment. This section is a quick overview of

07-ch07.indd 284 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 285

three most common message brokers: Amazon Simple Queue Service (SQS),
RabbitMQ, and ActiveMQ.

Unfortunately, there is no way to recommend a messaging platform without
knowing details of the application use cases, so you may have to do some more
research before making your final decision. I recommend reading more25,12,L1–L3 to
learn specific details about selected platforms. Here, let’s focus on the strengths
and best use cases of each platform, which should empower you with the
knowledge necessary to begin your own selection.

Amazon Simple Queue Service
Amazon SQS is known for its simplicity and pragmatic approach. SQS is a cloud-
based service provided by Amazon with a public application programming
interface (API) and software development kit (SDK) libraries available for most
programming languages. It is hosted and managed by Amazon, and users are
charged pro rata for the amount of messages they publish and amount of service
calls they issue.

If you are hosting your application on Amazon EC2, Amazon SQS, which is
a hosted messaging platform, is certainly worth considering. The main benefit
of using SQS is that you do not have to manage anything yourself. You do not
have to scale it, you do not need to hire additional experts, you do not need to
worry about failures. You do not even need to pay for additional virtual server
instances that would need to run your message brokers. SQS takes care of the
infrastructure, availability, and scalability, making sure that messages can be
published and consumed all the time.

If you work for a startup following the Lean Startup methodology, you should
consider leveraging SQS to your advantage. Lean Startup advocates minimal
viable product (MVP) development and a quick feedback loop.30,9 If SQS
functionality is enough for your needs, you benefit in the following ways:

 ▶ Deliver your MVP faster because there is no setup, no configuration, no
maintenance, no surprises.

 ▶ Focus on the product and customers instead of spending time on the
infrastructure and resolving technical issues.

 ▶ Save money by using SQS rather than managing message brokers yourself.

Saving time and money in early development stages (first 6 to 12 months) is
critical, because your startup may change direction very rapidly. Startup reality
is so unpredictable that a few months after the MVP release, you may realize that

07-ch07.indd 285 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 286 Web Scalability for Startup Engineers

you don’t need the messaging component at all, and then all the time invested
into it would become a waste!

If you do not prioritize every dollar and every minute spent, your startup may
run out of money before ever finding product-market fit (offering the right service
to the right people). SQS is often a great fit for early-stage startups, as it has the
lowest up-front time and money cost.

HINT
Any up-front cost, whether it is money or time, may become a waste. The higher the chance of
changes, the higher the risk of investment becoming a waste.

To demonstrate the competitiveness of Amazon SQS, let’s have a look at
a simple cost comparison. To deploy a highly available message broker using
ActiveMQ or RabbitMQ, you will need at least two servers. If you are using
Amazon EC2, at the time of writing, two medium-sized reserved instances would
cost you roughly $2,000 a year. In comparison, if you used SQS and needed, on
average, four requests per message, you would be able to publish and process one
billion messages per year for the same amount of money. That is 32 messages per
second, on average, throughout the entire year.

In addition, by using SQS you can save hours needed to develop, deploy,
manage, upgrade, and configure your own message brokers, which can easily add
up to thousands of dollars per year. Even if you assumed that initial time effort
to get message brokers set up and integrated would take you a week of up-front
work, plus an hour a week of ongoing maintenance effort, you would end up with
at least two weeks of time spent looking after your broker rather than looking
after your customers’ needs.

Simply put, if you don’t expect large message volumes, or you don’t know
what to expect at all, you are better off using SQS. SQS offers just the most basic
functionality, so even if you decide to use your own messaging broker later on,
you should have no problems migrating away from it. All you need to do when
integrating with SQS is to make sure your publishers and consumers are not
coupled directly to SQS SDK code. I recommend using thin wrappers and your
own interfaces together with design patterns like Dependency Injection, Factory,
façade, and Strategy.1,7,10 Figure 7-20 shows how your infrastructure becomes
simplified by removing custom messaging brokers and using SQS.

When it comes to scalability, SQS performs very well. It scales automatically
according to your needs and provides really impressive throughput without any
preparation or capacity planning. You should be able to publish and consume
tens of thousands of messages per second, per queue (assuming multiple

07-ch07.indd 286 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 287

Figure 7-20 Simplified infrastructure depending on Amazon SQS

3

2

Traf�c Volumes

Very Heavy

Heavy

Medium

Light, UDP

Light

User’s network

Load Balancer

Front Cache 1

Your Data Center

Front Cache N

Customers DNS/geoDNS

Content Delivery Network

Internet

4

10

1

Front App. Server 1

Cache Servers

Queue Workers

Amazon SQS Service

Front App. Server M

7

5 6

Web Services Server 1 Web Services Server K

8

Data Store Servers

9

Search Servers

AWS

07-ch07.indd 287 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 288 Web Scalability for Startup Engineers

concurrent clients). Adding more queues, producers, and consumers should allow
you to scale without limits.

It is important to remember that SQS is not a golden hammer, though. It scales
well, but it has its limitations. Let’s quickly discuss its disadvantages.

First of all, Amazon had to sacrifice some features and guarantees to be able to
scale SQS easily. Some of the features missing in SQS are that it does not provide any
complex routing mechanisms and is less flexible than RabbitMQ or ActiveMQ.12,25,L3
If you decide to use SQS, you will not be able to deploy your own logic into it or
modify it in any way, as it is a hosted service. You either use it as is, or you don’t use
it at all.

Second, SQS has limits on message size, and you may be charged extra if you
publish messages with large bodies (tens of kilobytes).

Another important thing to remember is that messages will be delivered out of
order using SQS and that you may see occasional redeliveries. Even if you have a
single producer, single queue, and single consumer, there is no message-ordering
guarantee whatsoever.

Finally, you pay per service call, which means that polling for nonexisting
messages counts as a service call; it also means that sending thousands of messages
per second may become more expensive than using your own message broker.

If your company is a well-established business and you are not dealing with
a huge amount of uncertainty, it may be worth performing a deeper analysis of
available platforms and choose a self-managed messaging broker, which could
give you more flexibility and advanced features. Although SQS is great from a
scalability and up-front cost point of view, it has a very limited feature set. Let’s
see now what self-managed brokers can offer.

RabbitMQ
RabbitMQ is a high-performance platform created initially for financial institutions.
It provides a lot of valuable features out of the box, it is relatively simple to operate,
and it is extremely flexible. Flexibility is actually the thing that makes RabbitMQ
really stand out.

RabbitMQ supports two main messaging protocols—AMQP and STOMP—
and it is designed as a generic-purpose messaging platform, without preferences
towards Java or any other programming language.

The most attractive feature of RabbitMQ is the ability to dynamically configure
routes and completely decouple publishers from consumers. In regular messaging,
the consumer has to be coupled by a queue name or a topic name. This means
that different parts of the system have to be aware of one another to some extent.

07-ch07.indd 288 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 289

In RabbitMQ, publishers and consumers are completely separated because they
interact with separate endpoint types. RabbitMQ introduces a concept of an
exchange.

An exchange is just an abstract named endpoint to which publishers
address their messages. Publishers do not have to know topic names or
queue names as they publish messages to exchanges. Consumers, on
the other hand, consume messages from queues.

Publishers have to know the location of the message broker and the name
of the exchange, but they do not have to know anything else. Once a
message is published to an exchange, RabbitMQ applies routing rules
and sends copies of the message to all applicable queues. Once messages
appear in queues, consumers can consume them without knowing anything
about exchanges.

Figure 7-21 shows how RabbitMQ takes care of routing and insulates publishers
from consumers, both physically and logically. The trick is that routing rules
can be defined externally using a web administration interface, AMQP protocol,
or RabbitMQ’s REST API. You can declare routing rules in the publisher’s or
consumer’s code, but you are not required to do so. Your routing configuration
can be managed externally by a separate set of components.

Figure 7-21 RabbitMQ fully decoupling publishers from consumers

Publisher A

Routing

Exchange A

Exchange B

Queue 1

Queue 2Publisher B

Consumer X

Consumer Y

RabbitMQ

07-ch07.indd 289 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 290 Web Scalability for Startup Engineers

If you think about message routing this way, you move closer towards
service-oriented architecture (SOA). In SOA, you create highly decoupled and
autonomous services that are fairly generic and that can be wired together
to build more complex applications using service orchestration and service
policies.31 In the context of RabbitMQ, you can think of it as an external
component that can be used to decide which parts of the system should
communicate with each other and how messages should flow throughout the
queues. The important thing about RabbitMQ routing is that you can change
these routing rules remotely, and you can do it on the fly, without the need to
restart any components.

It is worth noting that RabbitMQ can provide complex routing based on
custom routing key patterns and simpler schemas like direct queue publishing
and publish/subscribe.

Another important benefit of using RabbitMQ is that you can fully configure,
monitor, and control the message broker using its remote REST API. You can
use it to create any of the internal resources like hosts, nodes, queues, exchanges,
users, and routing rules. Basically, you can dynamically reconfigure any aspect
of the message broker without the need to restart anything or run custom code
on the broker machine. To make things even better, the REST API provided
by RabbitMQ is really well structured and documented. Figure 7-22 shows
RabbitMQ’s self-documenting endpoint, so you don’t even need to search for the
documentation of the API version you are running to learn all about it.

Figure 7-22 Fragment of RabbitMQ REST API documentation within the endpoint

07-ch07.indd 290 11/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 291

When it comes to feature comparison, RabbitMQ is much richer than SQS and
supports more flexible routing than ActiveMQ. On the other hand, it does miss
a few nice-to-have features like scheduled message delivery. The only important
drawbacks of RabbitMQ are the lack of partial message ordering and poor poison
message support.

From a scalability point of view, RabbitMQ is similar to ActiveMQ. Its
performance is comparable to ActiveMQ as well. It supports different clustering
and replication topologies, but unfortunately, it does not scale horizontally out of
the box, and you would need to partition your messages across multiple brokers
to be able to scale horizontally. It is not very difficult, but it is not as easy as when
using SQS, which simply does it for you.

If you are not hosted on Amazon EC2 or you need more flexibility, RabbitMQ
is a good option for a message broker. If you are using scripting languages like
PHP, Python, Ruby, or Node.js, RabbitMQ will allow you to leverage its flexibility
and configure it at runtime using AMQP and RabbitMQ’s REST API.

ActiveMQ
The last message broker I would like to introduce is ActiveMQ. Its functionality
is similar to RabbitMQ and it has similar performance and scalability abilities.
The main difference is that it is written in Java and it can be run as an embedded
message broker within your application. This offers some advantages and may be
an important decision factor if you develop mainly in Java. Let’s go through some
of the ActiveMQ strengths first and then discuss some of its drawbacks.

Being able to run your application code within the message broker or run the
message broker within your application process allows you to use the same code
on both sides of the border. It also allows you to achieve much lower latency
because publishing messages within the same Java process is basically a memory
copy operation, which is orders of magnitude faster than sending data over a
network.

ActiveMQ does not provide advanced message routing like RabbitMQ,
but you can achieve the same level of sophistication by using Camel. Camel
is an integration framework designed to implement enterprise integration
patterns,10,31–32 and it is a great tool in extending ActiveMQ capabilities.
Camel allows you to define routes, filters, and message processors using XML
configuration and allows you to wire your own implementations of different
components. If you decide to use Camel, you will add extra technology to your
stack, increasing the complexity, but you will gain many advanced messaging
features.

07-ch07.indd 291 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 292 Web Scalability for Startup Engineers

In addition to being Java based, ActiveMQ implements a common messaging
interface called JMS (Java Message Service) and allows the creation of plugins,
written also in Java.

Finally, ActiveMQ implements message groups mentioned earlier, which allow
you to partially guarantee ordered message delivery. This feature is quite unique
and neither RabbitMQ nor SQS has anything like that. If you desperately need
FIFO-style messaging, you may want to use ActiveMQ.

We went through some of the most important strengths of ActiveMQ, so now
it is time to mention some of its drawbacks.

First, ActiveMQ has much less flexible routing than RabbitMQ. You could use
Camel, but if you are not developing in Java, it would add to the burden for your
team. Also, Camel is not a simple technology to use, and I would recommend
using it only if you have some experienced engineers on the team. There are a
few features allowing you to build direct worker queues and persistent fan-out
queues, but you don’t have the ability to route messages based on more complex
criteria.

The second major drawback in comparison to RabbitMQ is that ActiveMQ
cannot be fully controlled using its remote API. In contrast, RabbitMQ can be
fully configured and monitored using a REST API. When dealing with ActiveMQ,
you can control some aspects of the message broker using the JMX (Java
Management Extensions) protocol, but it is not something you would like to use
when developing in languages other than Java.

Finally, ActiveMQ can be sensitive to large spikes of messages being published.
It happened to me multiple times during load tests that ActiveMQ would simply
crash when being overwhelmed by high message rates for extended periods
of time. Although it is a stable platform, it does not have access to low-level
functions like memory allocation and I/O control because it runs within JVM.
It is still possible to run out of memory and crash the broker if you publish too
many messages too fast.

Final Comparison Notes
Comparing ActiveMQ and RabbitMQ based on Google Trends,L4 we can see that
RabbitMQ has gained a lot of popularity in recent years and both message brokers
are pretty much going head to head now (as of this writing). Figure 7-23 shows
ActiveMQ and RabbitMQ over the course of the last five years.

These trends may also be caused by the fact that RabbitMQ was acquired
by SpringSource, which is one of the top players in the world of Java, and that
ActiveMQ is being redeveloped from scratch under a new name, Apollo.

07-ch07.indd 292 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 293

Another way to compare brokers is by looking at their high-availability focus
and how they handle extreme conditions. In this comparison, ActiveMQ scores
the worst of all three systems. It is relatively easy to stall or even crash ActiveMQ
by simply publishing messages faster than they can be routed or persisted.
Initially, ActiveMQ buffers messages in memory, but as soon as you run out of
RAM, it either stalls or crashes completely.

RabbitMQ performs better in such a scenario, as it has a built-in backpressure
feature. If messages are published faster than they can be processed or persisted,
RabbitMQ begins to throttle producers to avoid message loss and running out of
memory. The benefit of that approach is increased stability and reliability, but it
can cause unexpected delays on the publisher side, as publishing messages slows
down significantly whenever backpressure is triggered.

In this comparison, SQS performs better than both ActiveMQ and RabbitMQ,
as it supports very high throughput and Amazon is responsible for enforcing
high availability of the service. Although SQS is a hosted platform, you can still
experience throttling in some rare situations and you need to make sure that your
publishers can handle failures correctly. You do not have to worry about crashing
brokers, recovery procedures, or scalability of SQS, though, as it is managed by
Amazon.

No matter which of the three technologies you choose, throughput is always
finite and the best way to scale is by partitioning messages among multiple broker
instances (or queues in the case of SQS).

RabbitMQ
80

70

60

50

40

30

20

10

0
2008-01 2008-06 2009-01 2009-06 2010-01 2010-06 2011-01 2011-06 2012-01 2012-06 2013-01 2013-06 2014-01

ActiveMQ

Figure 7-23 ActiveMQ and RabbitMQ search popularity according to Google Trends

07-ch07.indd 293 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 294 Web Scalability for Startup Engineers

If you decide to use SQS, you should be able to publish tens of thousands of
messages per second, per queue, which is more than enough for most startups.
If you find yourself reaching that limit, you would need to create multiple
queue instances and distribute messages among them to scale out your overall
throughput. Since SQS does not preserve message ordering and has very few
advanced features, distributing messages among multiple SQS queues should be
as easy as picking one of the queues at random and publishing messages to it. On
the consumer side, you would need similar numbers of consumers subscribing
to each of the queues and similar hardware resources to provide even consumer
power.

If you decide to use ActiveMQ or RabbitMQ, your throughput per machine is
going to depend on many factors. Primarily you will be limited by CPU and RAM
of machines used (hardware or virtual servers), average message size, message
fan-out ratio (how many queues/customers each message is delivered to), and
whether your messages are persisted to disk or not. Regardless of how many
messages per second you can process using a single broker instance, as you need
to scale out, your brokers need to be able to scale out horizontally as well.

As I mentioned before, neither ActiveMQ nor RabbitMQ supports horizontal
scalability out of the box, and you will need to implement application-level
partitioning to distribute messages among multiple broker instances. You would
do it in a similar way as you would deal with application-level data partitioning
described in Chapter 5. You would deploy multiple brokers and distribute
messages among them. Each broker would have the exact same configuration
with the same queues (or exchanges and routing). Each of the brokers would also
have a pool of dedicated customers.

If you use ActiveMQ and depend on its message groups for partial message
ordering, you would need to use the message group ID as a sharding key so that
all of the messages would be published to the same broker, allowing it to enforce
ordering. Otherwise, assuming no message-ordering guarantees, you could select
brokers at random when publishing messages because from the publisher’s point
of view, each of them would be functionally equal.

Messaging platforms are too complex to capture all their differences and
gotchas on just a few pages. Having said that, you will need to get to know your
tools before you can make really well-informed choices. In this section, I only
mentioned the most popular messaging platforms, but there are more message
brokers out there to choose from. I believe messaging is still an undervalued
technology and it is worth getting to know more platforms. I recommend starting
the process by reading about RabbitMQ12 and ActiveMQ,25 as well as a fantastic
paper on Kafka.w52

07-ch07.indd 294 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 295

Introduction to Event-Driven Architecture
We have gone a long way since the beginning of this chapter, but there is
one more exciting concept I would like to introduce, which is event-driven
architecture (EDA). In this section I will explain the core difference between the
traditional programming model and EDA. I will also present some of its benefits
and how you can use it within a larger non-EDA system.

First of all, to understand EDA, you need to stop thinking about software in
terms of requests and responses. Instead, you have to think about components
announcing things that have already happened. This subtle difference in the
way you think about interactions has a profound impact on the architecture and
scalability. Let’s start off slowly by defining some basic terms and comparing how
EDA is different from the traditional request/response model.

Event-driven architecture (EDA) is an architecture style where most
interactions between different components are realized by announcing
events that have already happened instead of requesting work to
be done. On the consumer side, EDA is about responding to events
that have happened somewhere in the system or outside of it. EDA
consumers do not behave as services; they do not do things for others.
They just react to things happening elsewhere.

An event is an object or a message that indicates something has
happened. For example, an event could be announced or emitted
whenever an order in an online store has been placed. In such case, an
event would probably contain information about the buyer and items
purchased. An event is an entity holding the data necessary to describe
what has happened. It does not have any logic; instead, it is best to think
of an event as a piece data describing something that has happened in the
real world or within the application.

So far the difference between EDA and messaging can still be quite blurry. Let’s
have a closer look at the differences between the following interaction patterns:
request/response, messaging, and EDA.

07-ch07.indd 295 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 296 Web Scalability for Startup Engineers

Request/Response Interaction
This is the traditional model, resembling the synchronous method or function
invocation in traditional programming languages like C or Java. A caller sends
a request and waits for the receiver to process the message and return with a
response. I described this model in detail earlier in this chapter, so we won’t go
into more detail here. The important things to remember are that the caller has
to be able to locate the receiver, it has to know the receiver’s contract, and it is
temporally coupled to the receiver.

Temporal coupling is another term for synchronous invocation and means
that caller cannot continue without the response from the receiver. This
dependency on the receiver to finish its work is where coupling comes
from. In other words, the weakest link in the entire call stack dictates the
overall latency. (You can read more about temporal coupling.w10,31)

In the case of request/response interactions, the contract includes the location
of the service, the definition of the request message, and the definition of the
response message. Clients of the service need to know at least this much to be
able to use the service. Knowing things about the service implies coupling, as we
discussed it in Chapter 2—the more you need to know about a component, the
stronger is your coupling to it.

Direct Worker Queue Interaction
In this interaction model, the caller publishes messages into the queue or a
topic for consumers to react to. Even though this is much more similar to the
event-driven model, it still leaves opportunities for closer coupling. In this
model, the caller would usually send a message to a queue named something like
OrderProcessingQueue, indicating that the caller knows what needs to be done
next (an order needs to be processed).

The good side of this approach is that it is asynchronous and there is no
temporal coupling between the producer and consumer. Unfortunately, it usually
happens that the producer knows something about the consumer and that the
message sent to the queue is still a request to do something. If the producer

07-ch07.indd 296 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 297

knows what has to be done, it is still coupled to the service doing the actual
work—it may not be coupled by the contract, but it is still coupled logically.

In the case of queue-based interaction, the contract consists of the queue
location, the definition of the message sent to the queue, and quite often, the
expectation about the result of the message being processed. As I already
mentioned, there is no temporal coupling and since we are not expecting a
response, we also reduce the contract’s scope because the response message is not
part of it any more.

Event-Based Interaction
Finally, we get to the event-driven interaction model, where the event publisher
has no idea about any consumers being present. The event publisher creates an
instance of an event, for example, NewOrderCreated, and announces it to the
event-driven framework. The framework can use an ESB, it can be a built-in
component, or it can even use a messaging broker like RabbitMQ. The important
thing is that events can be published without having to know their destination.
Event publishers do not care who reacts or how they react to events.

By its nature, all event-driven interactions are asynchronous, and it is assumed
that the publisher continues without needing to know anything about consumers.

The main advantage of this approach is that you can achieve a very high level of
decoupling. Your producers and consumers do not have to know each other. Since
the event-driven framework wires consumers and producers together, producers
do not need to know where to publish their event—they just announce them. On
the other hand, consumers do not need to know how to get to the events they are
interested in either—they just declare which types of events they are interested in,
and the event-driven framework is responsible for routing them to the consumer.

It is worth pointing out that the contract between producer and consumers
is reduced to just the event message definition. There are no endpoints, so there
is no need to know their locations. Also, since the publisher does not expect
responses, the contract does not include them either. All that publishers and
consumers have in common is the format and meaning of the event message.

To visualize it better, let’s consider two more diagrams. Figure 7-24 shows
how the client and service are coupled to each other in the request/response
interaction model. It shows all the pieces of information that the client and
service need to share to be able to work together. The total size of the contract is
called the contract surface area.

07-ch07.indd 297 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 298 Web Scalability for Startup Engineers

Contract Surface Area is the measurement of coupling. The more
information components need to know about each other to collaborate,
the higher the surface area. The term comes from diagrams and UML
modeling as the more lines you have between two components, the
stronger the coupling.

In the Request/Response interaction model clients are coupled to the service
in many ways. They need to be able to locate the service and understand its
messages. Contract of the service includes both request and response messages.
The client is also coupled temporally, as it has to wait for the service to respond.
Finally, clients often assume a lot about the service’s methods. For example,
clients of the createUser service method could assume that a user object gets
created somewhere in the service’s database.

Figure 7-24 Coupling surface area between the service and its clients

Request/Response Coupling Surface Area

Depends on

Constrained by
C
o
u
p
lin

g
 Su

rfa
ce A

rea

Client Component Service Component

How to �nd
the service

Service request
de�nition (methods and

arguments)

Service response
de�nition and how to

interpret it

Expectations about
service’s side effects

Temporal dependency
on service’s response

Location needs to be
preserved or backward

compatible

Service response
restricts changes as

contract needs to remain

Methods and parameters
need to remain for

backward compatibility

Needs to respond
within agreed time (SLA)

07-ch07.indd 298 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 299

On the other side of the contract, the service does not have an easy job
adapting to changing business needs as it needs to keep the contract intact. The
service is coupled to its clients by every action that it ever exposed and by every
piece of information included in request or response messages ever exposed. The
service is also responsible for supporting agreed SLA (Service Layer Agreement)
which means responding quickly and not going offline too often. Finally service
is constrained by the way it is exposed to its clients, which may prevent you from
partitioning the service into smaller services to scale better.

In comparison, Figure 7-25 shows EDA interactions. We can see that many
coupling factors are removed and that the overall coupling surface area is much
smaller. Components do not have to know much about each other, and the only
point of coupling is the event definition itself. Both the publisher and consumer
have to establish a shared understanding of the event type body and its meaning.
In addition, the event consumer may be constrained by the event message,
because if certain data was not included in the event definition, the consumer
may need to consult a shared source of truth, or it may not have access to a piece
of information at all.

In a purely EDA, all the interactions are based on events. This leads to an
interesting conclusion that if all of the interactions are asynchronous and all the
interactions are carried out using events, you could use events to re-create the
state of the entire system by simply replaying events. This is exactly what event
sourcing allows us to do.L6–L7,24

Figure 7-25 Coupling surface area between EDA components

Event-Driven Coupling Surface Area

Depends on

Constrained by

C
o
u
p
lin

g
 Su

rfa
ce A

rea

Publisher Component Consumer Component

Event message
format and meaning

Event message
format and meaning

Constrained by the
event de�nition and

data included

07-ch07.indd 299 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 300 Web Scalability for Startup Engineers

Event sourcing is a technique where every change to the application
state is persisted in the form of an event. Events are usually stored on
disk in the form of event log files or some data store. At the same time,
an application is built of event consumers, which process events passed
to them. As a result, you can restore the system to an old state (for
example, using a daily snapshot) and replay events to reach the same
end state.

I have seen EDA with event sourcing in action handling 150,000 concurrently
connected clients performing transactions with financial ramifications. If
there was ever a crash, the entire system could be recovered to the most recent
consistent state by replaying the event log. It also allowed engineers to copy
the event log and debug live issues in the development environment by simply
replaying the event logs. It was a very cool sight.

In fact, asynchronous replication of distributed systems is often done in a
similar way. For example, MySQL replication is done in a similar way, as every
data modification is recorded in the binary log right after the change is made
on the master server. Since all state changes are in the binary log, the state of
the slave replica server can be synchronized by replaying the binary log.16 The
only difference is that consumers of these events are replicating slaves. Having
all events persisted in a log means that you can add a new event consumer and
process historical events, so it would look like it was running from the beginning
of time.

The important limitation of event sourcing is the need for a centralized state
and event log. To be able to reconstruct the state of the application based on
event log alone, you need to be processing them in the same order. You could
say that you need to assume a Newtonian perception of time with an absolute
ordering of events and a global “now.” Unfortunately, in distributed systems
that are spanning the globe, it becomes much harder because events may be
happening simultaneously on different servers in different parts of the world.
You can read more about the complexity of event sourcing and reasoning about
time, L7,39 but for simplicity, you can just remember that event sourcing requires
sequential processing of all events.

Whether you use event sourcing or not, you can still benefit from EDA and
you can benefit from it even in pre-existing systems. If you are building a new

07-ch07.indd 300 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 Chapter 7: Asynchronous Processing 301

application from scratch, you have more freedom of choice regarding which parts
should be developed in EDA style, but even if you are maintaining or extending
an existing application, there are many cases where EDA will come in handy. The
only trick is to start thinking of the software in terms of events. If you want to add
new functionality and existing components do not have to know the results of the
operation, you have a candidate for an event-driven workflow.

For example, you could develop a core of your online shopping cart in a
traditional way and then extend it by publishing events from the core of the
system. By publishing events, you would not make the core depend on external
components, you would not jeopardize its availability or responsiveness, yet
you could add new features by adding new event consumers later on. The
EDA approach would also let you scale out, as you could host different event
consumers on different servers.

Summary
We covered a lot of material in this chapter, discussing asynchronous processing,
messaging, different brokers, and EDA. To cover these topics in depth would
warrant a book dedicated to each. Our discussion here has been simple and fairly
high level. The subject matter is quite different from the traditional programming
model, but it is really worth learning. The important thing to remember is that
messaging, EDA, and asynchronous processing are just tools. They can be great
when applied to the right problem, but they can also be a nightmare to work with
when forced into the wrong place.

You should come away from this chapter with a better understanding of the
value of asynchronous processing in the context of scalability and having gained
enough background to explore these topics on your own. All of the concepts
presented in this chapter are quite simple and there is nothing to be intimidated
by, but it can take some time before you feel that you fully understand the
reasoning behind them. Different ways of explaining the same thing may work
better for different people, so I strongly encourage you to read more on the
subjects. I recommend reading a few books31–32,24–27,12 and articles.L6,w10–w11

Asynchronous processing is still underinvested. High-profile players like
VMware (RabbitMQ, Spring AMQP), LinkedIn (Kafka), and Twitter (Storm) are
entering the stage. Platforms like Erlang and Node.js are also gaining popularity
because distributed systems are built differently now. Monolithic enterprise

07-ch07.indd 301 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 7

 302 Web Scalability for Startup Engineers

servers with distributed transactions, locking, and synchronous processing seem
to be fading into the past. We are moving into an era of lightweight, innovative,
and highly parallel technologies, and startups should be investing in these types of
solutions. EDA and asynchronous processing are going through their renaissance,
and they are most likely going to become even more popular, so learning about
them now is a good investment for every engineer.

07-ch07.indd 302 06/05/15 11:59 AM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

303

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

CHAPTER

8
Searching for Data

08-ch08.indd 303 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 304 Web Scalability for Startup Engineers

Structuring your data, indexing it efficiently, and being able to perform more
complex searches over it is a serious challenge. As the size of your data
set grows from gigabytes to terabytes, it becomes increasingly difficult to

find the data you are looking for efficiently. Any time you read, update, delete, or
even insert new data, your applications and data stores need to perform searches
to be able to locate the right rows (or data structures) that need to be read and
written. To be able to understand better how to search through billions of records
efficiently, you first need to get familiar with how indexes work.

Introduction to Indexing
Being able to index data efficiently is a critical skill when working with scalable
websites. Even if you do not intend to be an expert in this field, you need to have
a basic understanding of how indexes and searching work to be able to work with
ever-growing data sets.

Let’s consider an example to explain how indexes and searching work. Let’s say
that you had personal data of a billion users and you needed to search through
it quickly (I use a billion records to make scalability issues more apparent here,
but you will face similar problems on smaller data sets as well). If the data set
contained first names, last names, e-mail addresses, gender, date of birth, and an
account number (user ID), in such a case your data could look similar to Table 8-1.

If your data was not indexed in any way, you would not be able to quickly find
users based on any criteria. The only way to find a user would be to scan the entire
data set, row by row. If you had a billion users and wanted to check if a particular
e-mail address was in your database, you would need to perform up to a billion
comparisons. In the worst-case scenario, when a user was not in your data set, you
would need to perform one billion comparisons (as you cannot be sure that user is
not there until you check all of the rows). It would also take you, on average, half a

User ID First Name Last Name E-mail Gender Date of Birth

135 John Doe jdoe@example.com Male 10/23/86
70 Richard Roe richard@example.org Male 02/18/75
260 Marry Moe moemarry@example.info Female 01/15/74
… … … … … …

Table 8-1 Sample of Test User Data Set

08-ch08.indd 304 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 305

billion comparisons to find a user that exists in your database, because some users
would live closer to the beginning and others closer to the end of the data set.

A full table scan is often the term used for this type of search, as you need
to scan the entire data set to find the row that you are looking for. As you can
imagine, that type of search is expensive. You need to load all of the data from
disk into memory to be able to perform comparisons and check if the row at hand
is the one you are looking for. A full table scan is pretty much the worst-case
scenario when it comes to searching, as it has O(n) cost.

Big O notation is a way to compare algorithms and estimate their
cost. In simple terms, Big O notation tells you how the amount of work
changes as the size of the input changes. Imagine that n is the number
of rows in your data set (the size) and the Big O notation expression
estimates the cost of executing your algorithm over that data set. When
you see the expression O(n), it means that doubling the size of the data
set roughly doubles the cost of the algorithm execution. When you see
the expression O(n^2), it means that as your data set doubles in size,
the cost grows quadratically (much faster than linear).

Because a full table scan has a linear cost, it is not an efficient way to search large
data sets. A common way to speed up searching is to create an index on the data that
you are going to search upon. For example, if you wanted to search for users based
on their e-mail address, you would create an index on the e-mail address field.

In a simplified way, you can think of an index as a lookup data structure, just
like a book index. To build a book index, you sort terms (keywords) in alphabetic
order and map each of them to a page number. When readers want to find pages
referring to a particular term, they can quickly locate the term in the index
and find page numbers that they should look at. Figure 8-1 shows how data is
structured in a book index.

There are two important properties of an index:

 ▶ An index is structured and sorted in a specific way, optimized for particular
types of searches. For example, a book index can answer questions like
“What pages refer to the term sharding?” but it cannot answer questions
like “What pages refer to more than one term?” Although both questions
refer to locations of terms in the book, a book index is not optimized to answer
the second question efficiently.

08-ch08.indd 305 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 306 Web Scalability for Startup Engineers

 ▶ The data set is reduced in size because the index is much smaller in size
than the overall body of text so that the index can be loaded and processed
faster. A 400-page book may have an index of just a few pages. That makes
searching for terms faster, as there is less content to search through.

The reason why most indexes are sorted is that searching through a sorted data
set can be performed much faster than through an unsorted one. A good example
of a simple and fast searching algorithm is the binary search algorithm. When
using a binary search algorithm, you don’t scan the data set from the beginning to
the end, but you “jump around,” skipping large numbers of items. The algorithm
takes a range of sorted values and performs four simple steps until the value is
found:

1. You look at the middle item of the data set to see if the value is equal, greater
to, or smaller than what you are searching for.

2. If the value is equal, you found the item you were looking for.
3. If the value is greater than what you are looking for, you continue searching

through the smaller items. You go back to step 1 with the data set reduced
by half.

4. If the value is smaller than what you are looking for, you continue searching
through the larger items. You go back to step 1 with the data set reduced
by half.

Figure 8-1 Book index structure

Mapping is performed from a
keyword to a list of sorted

page numbers.

Abstraction 6,9,33,43
backup 9
DNS 78
redundancy 32,94,145
replication 54
sharding 56,77
simplicity 3,23,55
single responsibility principle 30

Terms are
sorted

alphabetically
in this direction.

08-ch08.indd 306 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 307

Figure 8-2 shows how binary search works on a sequence of sorted numbers.
As you can see, you did not have to investigate all of the numbers.

The brilliance of searching using this method is that with every comparison
you reduce the number of items left by half. This in turn allows you to narrow
down your search rapidly. If you had a billion user IDs, you would only need to
perform, on average, 30 comparisons to find what you are looking for! If you
remember, a full table scan would take, on average, half a billion comparisons to
locate a row. The binary search algorithm has a Big O notation cost of O(log

2
n),

which is much lower than the O(n) cost of a full table scan.
It is worth getting familiar with Big O notation, as applying the right algorithms

and data structures becomes more important as your data set grows. Some of the
most common Big O notation expressions are O(n^2), (n*log(n)), O(n), O(log(n)),
and O(1). Figure 8-3 shows a comparison of these curves, with the horizontal
axis being the data set size and the vertical axis showing the relative computation
cost. As you can see, the computational complexity of O(n^2) grows very rapidly,
causing even small data sets to become an issue. On the other hand, O(log(n))
grows so slowly that you can barely notice it on the graph. In comparison to the
other curves, O(log(n)) looks more like a constant time O(1) than anything else,
making it very effective for large data sets.

Indexes are great for searching, but unfortunately, they add some overhead.
Maintaining indexes requires you to keep additional data structures with sorted
lists of items, and as the data set grows, these data structures can become large
and costly. In this example, indexing 1 billion user IDs could grow to a monstrous
16GB of data. Assuming that you used 64-bit integers, you would need to store
8 bytes for the user ID and 8 bytes for the data offset for every single user. At such
scale, adding indexes needs to be well thought out and planned, as having too

Figure 8-2 Searching for number 75 using binary search

11 14 19 21 26 28 30 33 34 41 46

You inspect the central element and decide if you should look to the right
or to the left. By making this decision you divide the remaining list by half

wtih every step.

48 52

2. Divide the remaining list into half.
Look at the middle of the list. Is it 75?

3. Repeat recursively.

1. Look at the middle of the list. Is it 75?

53 55 56 61 62 67 70 75 79 86 88 93

08-ch08.indd 307 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 308 Web Scalability for Startup Engineers

many indexes can cost you a great amount of memory and I/O (the data stored
in the index needs to be read from the disk and written to it as well).

To make it even more expensive, indexing text fields like e-mail addresses takes
more space because the data being indexed is “longer” than 8 bytes. On average,
e-mail addresses are around 20 bytes long, making indexes even larger.

Considering that indexes add overhead, it is important to know what data is
worth indexing and what is not. To make these decisions, you need to look at the
queries that you intend to perform on your data and the cardinality of each field.

Cardinality is a number of unique values stored in a particular field.
Fields with high cardinality are good candidates for indexes, as they
allow you to reduce the data set to a very small number of rows.

Figure 8-3 Big O notation curves

nˆ2

Y axis
represents

relative
computational

complexity

X axis represents the size of
the data set

n*log(n)

log(n)
1

n

08-ch08.indd 308 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 309

To explain better how to estimate cardinality, let’s take a look at the example
data set again. The following are all of the fields with estimated cardinality:

 ▶ gender In most databases, there would be only two genders available,
giving us very low cardinality (cardinality ~ 2). Although you can find
databases with more genders (like transsexual male), the overall cardinality
would still be very low (a few dozen at best).

 ▶ date of birth Assuming that your users were mostly under 80 years old
and over 10 years old, you end up with up to 25,000 unique dates (cardinality
~ 25000). Although 25,000 dates seems like a lot, you will still end up with
tens or hundreds of thousands of users born on each day, assuming that
distribution of users is not equal and you have more 20-year-old users than
70-year-old ones.

 ▶ first name Depending on the mixture of origins, you might have tens of
thousands of unique first names (cardinality ~ tens of thousands).

 ▶ last name This is similar to first names (cardinality ~ tens of thousands).
 ▶ email address If e-mail addresses were used to uniquely identify accounts

in your system, you would have cardinality equal to the total number of
rows (cardinality = 1 billion). Even if you did not enforce e-mail address
uniqueness, they would have few duplicates, giving you a very high cardinality.

 ▶ user id Since user IDs are unique, the cardinality would also be 1 billion
(cardinality = 1 billion).

The reason why low-cardinality fields are bad candidates for indexes is that they
do not narrow down the search enough. After traversing the index, you still have a
lot of rows left to inspect. Figure 8-4 shows two indexes visualized as sorted lists.
The first index contains user IDs and the location of each row in the data set. The
second index contains the gender of each user and reference to the data set.

Both of the indexes shown in Figure 8-4 are sorted and optimized for different
types of searches. Index A is optimized to search for users based on their user ID,
and index B is optimized to search for users based on their gender.

The key point here is that searching for a match on the indexed field is fast,
as you can skip large numbers of rows, just as the binary search algorithm
does. As soon as you find a match, though, you can no longer narrow down
the search efficiently. All you can do is inspect all remaining rows, one by one.
In this example, when you find a match using index A, you get a single item; in
comparison, when you find a match using index B, you get half a billion items.

08-ch08.indd 309 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 310 Web Scalability for Startup Engineers

HINT
The first rule of thumb when creating indexes on a data set is that the higher the cardinality, the
better the index performance.

The cardinality of a field is not the only thing that affects index performance.
Another important factor is the item distribution. If you were indexing a field
where some values were present in just a single item and others were present in
millions of records, then performance of the index would vary greatly depending
on which value you look for. For example, if you indexed a date of birth field, you
are likely going to end up with a bell curve distribution of users. You may have a
single user born on October 4, 1923, and a million users born on October 4, 1993.
In this case, searching for users born on October 4, 1923, will narrow down the
search to a single row. Searching for users born on October 4, 1993, will result in
a million items left to inspect and process, making the index less efficient.

HINT
The second rule of thumb when creating indexes is that equal distribution leads to better index
performance.

Figure 8-4 Field cardinality and index efficiency

You can �nd user
id = 234443 very
quickly because
ids are sorted.

Once you �nd it
you are left with a
single pointer to

data. You found a
single row; only a
single row needs
to be processed.

...
F
F
F
F
F
F
F
M
M
M
M
M
M
M
...

...
6696828
5980619
8404006
2834638
7848756
4959893
6099663
7128274
1502792
4389734
8242479
6941149
2691054
1529331
...

...
234424
234425
234426
234427
234430
234431
234432
234433
234434
234435
234442
234443
234444
234445
...

...
6492492
6421399
7016517
4109933
8969427
1932573
7022404
3480085
7639679
6886959
1720247
2007066
3288350
6941149
...

User ID Pointer to
the data

Each entry in the index is a pair of
user id and a pointer to the

location of the data (where entire
row is stored).

Index B is sorted by gender. You
can �nd all males very quickly.
Once you �nd the section of the
index containing males you are

left with tons of pointers. That in turn
means that all of these rows need

to be fetched from the data �le and
processed.

Gender

Index A Index B
Pointer to
the data

08-ch08.indd 310 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 311

Luckily, indexing a single field and ending up with a million items is not the
only thing you can do. Even when cardinality or distribution of values on a single
field is not great, you can create indexes that have more than one field, allowing
you to use the second field to narrow down your search further.

A compound index, also known as a composite index, is an index
that contains more than one field. You can use compound indexes to
increase search efficiency where cardinality or distribution of values of
individual fields is not good enough.

If you use compound indexes, in addition to deciding which fields to index,
you need to decide in what order they should be indexed. When you create a
compound index, you effectively create a sorted list ordered by multiple columns.
It is just as if you sorted data by multiple columns in Excel or Google Docs.
Depending on the order of columns in the compound index, the sorting of data
changes. Figure 8-5 shows two indexes: index A (indexing first name, last name,
and date of birth) and index B (indexing last name, first name, and date of birth).

Figure 8-5 Ordering of columns in a compound index

CHARLES
DAVID
DONALD
FRANK
FRANK
FRANK
GARY
GARY
GARY
GARY
JAMES
JOHN
JOSEPH
LARRY
LARRY
MARK
ROBERT
SCOTT
THOMAS

LEE
LEE
JACKSON
GARCIA
GARCIA
LEE
GARCIA
GARCIA
LEE
LEE
THOMAS
JACKSON
THOMAS
ANDERSON
LEE
JACKSON
JACKSON
ANDERSON
ANDERSON

12-Jan-1985
14-Aug-1984
19-Mar-1986
6-Dec-1978
16-Jun-1981
11-Sep-1980
8-Apr-1984
7-Oct-1986
28-Mar-1986
2-Sep-1986
22-Oct-1982
2-Dec-1983
3-Apr-1985
9-Jan-1984
14-Apr-1981
7-Aug-1985
13-Dec-1983
9-Mar-1978
7-Nov-1985

6492492
6421399
7016517
8969427
1932573
6886959
6099663
2007066
3480085
6941149
7022404
7639679
1720247
8242479
4959893
2691054
8404006
2834638
7848756

ANDERSON
ANDERSON
ANDERSON
GARCIA
GARCIA
GARCIA
GARCIA
JACKSON
JACKSON
JACKSON
JACKSON
LEE
LEE
LEE
LEE
LEE
LEE
THOMAS
THOMAS

LARRY
SCOTT
THOMAS
FRANK
FRANK
GARY
GARY
DONALD
JOHN
MARK
ROBERT
CHARLES
DAVID
FRANK
GARY
GARY
LARRY
JAMES
JOSEPH

9-Jan-1984
9-Mar-1978
7-Nov-1985
6-Dec-1978
16-Jun-1981
8-Apr-1984
7-Oct-1986
19-Mar-1986
2-Dec-1983
7-Aug-1985
13-Dec-1983
12-Jan-1985
14-Aug-1984
11-Sep-1980
28-Mar-1986
2-Sep-1986
14-Apr-1981
22-Oct-1982
3-Apr-1985

8242479
2834638
7848756
8969427
1932573
6099663
2007066
7016517
7639679
2691054
8404006
6492492
6421399
6886959
3480085
6941149
4959893
7022404
1720247

First
Name

Last
Name

Last
Name

First
Name

Pointer to
the Data

Pointer to
the DataDOB DOB

Index A Index B

08-ch08.indd 311 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 312 Web Scalability for Startup Engineers

The most important thing to understand here is that indexes A and B are
optimized for different types of queries. They are similar, but they are not equal,
and you need to know exactly what types of searches you are going to perform to
choose which one is better for your application.

Using index A, you can efficiently answer the following queries:

 ▶ get all users where first name = Gary
 ▶ get all users where first name = Gary and last name = Lee
 ▶ get all users where first name = Gary and last name = Lee and

date of birth = March 28, 1986

Using index B, you can efficiently answer the following queries:

 ▶ get all users where last name = Lee
 ▶ get all users where last name = Lee and first name = Gary
 ▶ get all users where last name = Lee and first name = Gary and

date of birth = March 28, 1986

As you might have noticed, queries 2 and 3 in both cases can be executed
efficiently using either one of the indexes. The order of matching values would be
different in each case, but it would result in the same number of rows being found
and both indexes would likely have comparable performance.

To make it more interesting, although both indexes A and B contain date of
birth, it is impossible to efficiently search for users born on April 8, 1984, without
knowing their first and last names. To be able to search through index A, you
need to have a first name that you want to look for. Similarly, if you want to search
through index B, you need to have the user’s last name. Only when you know
the exact value of the leftmost column can you narrow down your search by
providing additional information for the second and third columns.

Understanding the indexing basics presented in this section is absolutely
critical to being able to design and implement scalable web applications. In
particular, if you want to use NoSQL data stores, you need to stop thinking of
data as if it were stored in tables and think of it as if it were stored in indexes. Let’s
explore this idea in more detail and see how you can optimize your data model for
fast access despite large data size.

08-ch08.indd 312 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 313

Modeling Data
When you use NoSQL data stores, you need to get used to thinking of data as if it
were an index.

The main challenge when designing and building the data layer of a scalable
web application is identifying access patterns and modeling your data based on
these access patterns. Data normalization and simple rules of thumb learned
from relational databases are not enough when working with terabytes of data.
Huge data sets and the technical limitations of data stores will force you to design
your data model much more carefully and consider use cases over the data
relationships.

To be able to scale your data layer, you need to analyze your access patterns
and use cases, select a data store, and then design the data model. To make it
more challenging, you need to keep the data model as flexible as possible to allow
for future extensions. At the same time, you want to optimize it for fast access to
keep up with the growth of the data size.

These two forces often conflict, as optimizing the data model usually reduces
the flexibility; conversely, increasing flexibility often leads to worse performance
and scalability. In the following subsections we will discuss some NoSQL
modeling techniques and concrete NoSQL data model examples to better explain
how it is done in practice and what tradeoffs you need to prepare yourself for.
Let’s start by looking at NoSQL data modeling.

NoSQL Data Modeling
If you used relational databases before, you are likely familiar with the process of
data modeling. When designing a relational database schema, you would usually
start by looking at the data itself. You would ask yourself, “What is the data that I
need to store?” You would then go through all of the bits of information that need
to be persisted and isolate entities (database tables). You would then decide which
pieces of information should be stored in which table. You would also create
relationships between tables using foreign keys. You would then iterate over
the schema design, trying to reduce the amount of redundant data and circular
relationships.

As a result of this process, you would usually end up with a normalized and
flexible database schema that could be used to answer almost any type of question
using SQL queries. You would usually finish this process without thinking much
about particular features or what feature would need to execute what types of

08-ch08.indd 313 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 314 Web Scalability for Startup Engineers

queries. Your schema would be designed mainly based on the data itself, not
queries or use cases. Later on, as you implement your application and new types
of queries are needed, you would create new indexes to speed up these queries,
but the data schema would usually remain unchanged, as it would be flexible
enough to handle any type of query.

Unfortunately, that process of design and normalization focused on data does
not work when applied to NoSQL data stores. NoSQL data stores trade data model
flexibility (and ability to perform joins) for scalability, so you need to find a different
approach.

To be able to model data in NoSQL data stores and access it efficiently, you
need to change the way you design your schema. Rather than starting with data in
mind, you need to start with queries in mind. I would argue that designing a data
model in the NoSQL world is more difficult than it is in the relational database
world. Once you optimize your data model for particular types of queries, you
usually lose the ability to perform other types of queries. Designing a NoSQL data
model is much more about tradeoffs and data layout optimization than it is about
normalization.

When designing a data model for a NoSQL data store, you want to identify all
the queries and access patterns first. Only once you understand how your data
will be accessed can you move on to identifying key pieces of data and looking for
ways to structure it so that you could execute all of your query types efficiently.

For example, if you were designing an e-commerce website using a relational
database, you might not think much about how data would be queried. You might
decide to have separate tables for products, product categories, and product
reviews. Figure 8-6 shows how your data model might look.

If you were designing the same type of e-commerce website and you had to
support millions of products with millions of user actions per hour, you might
decide to use a NoSQL data store to help you scale the system. You would then
have to model your data around your main queries rather than using a generic
normalized model.

For example, if your most important queries were to load a product page
to display all of the product-related metadata like name, image URL, price,
categories it belongs to, and average user ranking, you might optimize your data
model for this use case rather than keeping it normalized. Figure 8-7 shows an
alternative data model with example documents in each of the collections.

By grouping most of the data into the product entity, you would be able to
request all of that data with a single document access. You would not need to join
tables, query multiple servers, or traverse multiple indexes. Rendering a product
page could then be achieved by a single index lookup and fetching of a single

08-ch08.indd 314 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 315

Figure 8-6 Relational data model

categories

+id
+name
+parent_category

products

+id
+name
+price
+description
...

users

+id
+�rst_name
+last_name
...

product_categories

+product_id
+category_id

0..n 1..n 0..n 1..n

product_reviews

+product_id
+user_id
+rating
+headline
+comment

Figure 8-7 Nonrelational data model

Collection of products

Collection of users

Collection of product reviews

{
 "id": 4234,
 "userName": "Sam",
 "email": "sam@example.org",
 "yearOfBirth": 1981,
 ...
}
...

{
 "id": 6523123,
 "product": {
 "id": 6329103,
 "name": "Digital wall clock",
 "price": 59.95,
 "thumbnail": "http://example.org/img/6329103.jpg"
 },
 "user": {
 "id": 4234,
 "userName": "Sam"
 },
 "rating": 5,
 "comment": "That is the coolest clock I ever had."
}
...

{
 "id": 6329103,
 "name": "Digital wall clock",
 "price": 59.95,
 "description": "...",
 "thumbnail": "http://example.org/img/6329103.jpg",
 "categories": ["clocks", "kitchen", "electronics"],
 "categoryIds": [4123, 53452, 342],
 "avgRating": 3.75,
 "recentComments": [
 {
 "id": 6523123,
 "userId": 4234,
 "userName": "Sam",
 "rating": 5,
 "comment": "That is the coolest clock I ever had."
 }
 ...
]
}
...

08-ch08.indd 315 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 316 Web Scalability for Startup Engineers

document. Depending on the data store used, you might also shard data based
on the product ID so that queries regarding different products could be sent to
different servers, increasing your overall capacity.

There are considerable benefits and drawbacks of data denormalization and
modeling with queries in mind. Your main benefit is performance and ability to
efficiently access data despite a huge data set. By using a single index and a single
“table,” you minimize the number of disk operations, reducing the I/O pressure,
which is usually the main bottleneck in the data layer.

On the other hand, denormalization introduces data redundancy. In this
example, in the normalized model (with SQL tables), category names live in a
separate table and each product is joined to its categories by a product_categories
table. This way, category metadata is stored once and product metadata is
stored once (product_categories contains references only). In the denormalized
approach (NoSQL-like), each product has a list of category names embedded.
Categories do not exist by themselves—they are part of product metadata. That
leads to data redundancy and, what is more important here, makes updating data
much more difficult. If you needed to change a product category name, you would
need to update all of the products that belong to that category, as category names
are stored within each product. That could be extremely costly, especially if you
did not have an index allowing you to find all products belonging to a particular
category. In such a scenario, you would need to perform a full table scan and
inspect all of the products just to update a category name.

HINT
Flexibility is one of the most important attributes of good architecture. To quote Robert C. Martin
again, “Good architecture maximizes the number of decisions not made.” By denormalizing
data and optimizing for certain access patterns, you are making a tradeoff. You sacrifice some
flexibility for the sake of performance and scalability. It is critical to be aware of these tradeoffs
and make them very carefully.

As you can see, denormalization is a double-edged sword. It helps us optimize
and scale, but it can be restricting and it can make future changes much more
difficult. It can also easily lead to a situation where there is no efficient way to
search for data and you need to perform costly full table scans. It can also lead
to situations where you need to build additional “tables” and add even more
redundancy to be able to access data efficiently.

Regardless of the drawbacks, data modeling focused on access patterns and use
cases is what you need to get used to if you decide to use NoSQL data stores. As
mentioned in Chapter 5, NoSQL data stores are more specialized than relational

08-ch08.indd 316 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 317

database engines and they require different data models. In general, NoSQL data
stores do not support joins and data has to be grouped and indexed based on the
access patterns rather than based on the meaning of the data itself.

Although NoSQL data stores are evolving very fast and there are dozens of
open-source projects out there, the most commonly used NoSQL data stores can
be broadly categorized based on their data model into three categories:

 ▶ Key-value data stores These data stores support only the most simplistic
access patterns. To access data, you need to provide the key under which
data was stored. Key-value stores have a limited programming interface—
basically all you can do is set or get objects based on their key. Key-value
stores usually do not support any indexes or sorting (other than the
primary key). At the same time, they have the least complexity and they
can implement automatic sharding based on the key, as each value is
independent and the only way to access values is by providing their keys.
They are good for fast one-to-one lookups, but they are impractical when
you need sorted lists of objects or when you need to model relationships
between objects. Examples of key-value stores are Dynamo and Riak.
Memcached is also a form of a key-value data store, but it does not persist
data, which makes it more of a key-value cache than a data store. Another
data store that is sometimes used as a key-value store is Redis, but it has
more to offer than just key-value mappings.

 ▶ Wide columnar data stores These data stores allow you to model data as
if it was a compound index. Data modeling is still a challenge, as it is quite
different from relational databases, but it is much more practical because
you can build sorted lists. There is no concept of a join, so denormalization
is a standard practice, but in return wide columnar stores scale very well.
They usually provide data partitioning and horizontal scalability out of the
box. They are a good choice for huge data sets like user-generated content,
event streams, and sensory data. Examples of wide columnar data stores are
BigTable, Cassandra, and HBase.

 ▶ Document-oriented data stores These data stores allow more complex
objects to be stored and indexed by the data store. Document-based data
stores use a concept of a document as the most basic building block in their
data model. Documents are data structures that can contain arrays, maps,
and nested structures just as a JSON or XML document would. Although
documents have flexible schemas (you can add and remove fields at will on a
per-document basis), document data stores usually allow for more complex
indexes to be added to collections of documents. Document stores usually

08-ch08.indd 317 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 318 Web Scalability for Startup Engineers

offer a fairly rich data model, and they are a good use case for systems
where data is difficult to fit into a predefined schema (where it is hard to
create a SQL-like normalized model) and at the same time where scalability
is required. Examples of document-oriented data stores are MongoDB,
CouchDB, and Couchbase.

There are other types of NoSQL data stores like graph databases and object
stores, but they are still much less popular. Going into more detail about each
of these data store types is outside the scope of this book, especially because
the NoSQL data store market is very fragmented, with each of the data stores
evolving in a slightly different direction to satisfy specialized niche needs.

Instead of trying to cover all of the possible data stores, let’s have a look at a
couple of data model examples to see how NoSQL modeling works in practice.

Wide Column Storage Example
Consider an example where you needed to build an online auction website similar
in concept to eBay. If you were to design the data model using the relational
database approach, you would begin by looking for entities and normalize the
model. As I mentioned before, in the NoSQL world, you need to start by looking
at what queries you are going to perform, not just what data you are going to store.

Let’s say that you had the following list of use cases that need to be satisfied:

1. Users need to be able to sign up and log in.
2. Logged-in users can view auction details by viewing the item auction page.
3. The item auction page contains product information like title, description,

and images.
4. The item auction page also includes a list of bids with the names of users who

placed them and the prices they offered.
5. Users need to be able to change their user name.
6. Users can view the history of bids of other users by viewing their profile pages.

The user profile page contains details about the user like name and reputation
score.

7. The user profile page shows a list of items that the user placed bids on. Each
bid displays the name of the item, a link to the item auction page, and a price
that the user offered.

8. Your system needs to support hundreds of millions of users and tens of
millions of products with millions of bids each.

08-ch08.indd 318 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 319

After looking at the use cases, you might decide to use a wide columnar data
store like Cassandra. By using Cassandra, you can leverage its high availability
and automated horizontal scalability. You just need to find a good way to model
these use cases to make sure that you can satisfy the business needs.

The Cassandra data model is often represented as a table with an unlimited
number of rows and a nearly unlimited number of arbitrary columns, where each
row can have different columns, and column names can be made up on the spot
(there is no table definition or strict schema and columns are dynamically created
as you add fields to the row). Figure 8-8 shows how the Cassandra table is usually
illustrated.

Each row has a row key, which is a primary key and at the same time a sharding
key of the table. The row key is a string—it uniquely identifies a single row and
it is automatically indexed by Cassandra. Rows are distributed among different
servers based on the row key, so all of the data that needs to be accessed together
in a single read needs to be stored within a single row. Figure 8-8 also shows
that rows are indexed based on the row key and columns are indexed based on a
column name.

The way Cassandra organizes and sorts data in tables is similar to the way
compound indexes work. Any time you want to access data, you need to provide
a row key and then column name, as both of these are indexed. Because columns

Figure 8-8 Fragments of two rows in a Cassandra table

Columns are sorted by the column name, independently for each row.

Columns

Columns

dob

dob

Row key

sam@example.org

Row key

Rows in
Cassandra
table are

sorted based
on the row

key.

Cassandra table can
have an unlimited
number of rows.

E-mail address is used as a row key
here. Row key needs to be a unique

identi�er of a row.

Each row can have different
columns and you can have
millions of columns per row.

sarah@example.com

1981–12–29

1975-03-13

home_address

password

4 Small Rd, Sydney

84408c34214634e

password

d417dd9ba812272

postCode

postCode state

2000

2153 NSW

08-ch08.indd 319 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 320 Web Scalability for Startup Engineers

are stored in sorted order, you can perform fast scans on column names to
retrieve neighboring columns. Since every row lives on its own and there is no
table schema definition, there is no way to efficiently select multiple rows based
on a particular column value.

You could visualize a Cassandra table as if it was a compound index. Figure 8-9
shows how you could define this model in a relational database like MySQL. The
index would contain a row key as the first field and then column name as the second
field. Values would contain actual values from Cassandra fields so that you would
not need to load data from another location.

As I mentioned before, indexes are optimized for access based on the fields
that are indexed. When you want to access data based on a row key and a column
name, Cassandra can locate the data quickly, as it traverses an index and does not
need to perform any table scans. The problem with this approach is that queries
that do not look for a particular row key and column may be inefficient because
they require expensive scans.

HINT
Many NoSQL data modeling techniques can be boiled down to building compound indexes so that
data can be located efficiently. As a result, queries that can use the index perform very well, but
queries that do not use the index require a full table scan.

Going back to the example of an online auction website, you could model users
in Cassandra by creating a users table. You could use the user’s e-mail address (or

Figure 8-9 Cassandra table represented as if it were a compound index

Index Structure
Row key

If you represented the Cassandra
table as a compound index then each
row would have as many entries in
the index as it had columns in the
table.

...
sam@example.org
sam@example.org
sam@example.org
sam@example.org
...
sarah@example.com
sarah@example.com
sarah@example.com
sarah@example.com
...

...
dob
home_address
password
postCode
...
dob
password
postCode
state
...

...
1981-12-29
4 Small Rd, Sydney
d417dd9ba812272
2000
...
1975-03-13
84408c34214634e
2153
NSW
...

You can quickly locate any row and
within the row you can scan columns
in alphabetical order or �nd a column
by name (both using the index).
Finding a password of a particular
user (sarah@example.com) is very fast,
no matter how many rows and columns
you have.

Column name Value

08-ch08.indd 320 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 321

user name) as a row key of the users table so that you could find users efficiently
when they are logging in to the system. To make sure you always have the user’s
row key, you could then store it in the user’s HTTP session or encrypted cookies
for the duration of the visit.

You would then store user attributes like first name, last name, phone number,
and hashed password in separate columns of the users table. Since there is no
predefined column schema in Cassandra, some users might have additional
columns like billing address, shipping address, or contact preference settings.

HINT
Any time you want to query the users table, you should do it for a particular user to avoid
expensive table scans. As I mentioned before, Cassandra tables behave like compound indexes.
The row key is the first field of that “index,” so you always need to provide it to be able to
search for data efficiently. You can also provide column names or column name ranges to find
individual attributes. The column name is the second field of the “compound index” and providing
it improves search speed even further.

In a similar way, you could model auction items. Each item would be uniquely
identified by a row key as its ID. Columns would represent item attributes like
title, image URLs, description, and classification. Figure 8-10 shows how both
the users table and items table might look. By having these two tables, you can
efficiently find any item or user by their row key.

To satisfy more use cases, you would also need to store information about
which users placed bids on which items. To be able to execute all of these queries
efficiently, you would need to store this information in a way that is optimized for
two access patterns:

 ▶ Get all bids of a particular item (use case 4)
 ▶ Get all bids of a particular user (use case 7)

To allow these access patterns, you need to create two additional “indexes”: one
indexing bids by item ID and the second one indexing bids by user ID. As of this
writing Cassandra does not allow you to index selected columns, so you need to
create two additional Cassandra tables to provide these indexes. You could create
one table called item_bids to store bids per item and a second table called user_
bids to store bids per user.

Alternatively, you could use another feature of Cassandra called column
families to avoid creating additional tables. By using column families, you would

08-ch08.indd 321 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 322 Web Scalability for Startup Engineers

still end up with denormalized and duplicated data, so for simplicity’s sake I
decided to use separate tables in this example. Any time a user places a bid, your
web application needs to write to both of these data structures to keep both of
these “indexes” in sync. Luckily, Cassandra is optimized for writes and writing to
multiple tables is not a concern from a scalability or performance point of view.

Figure 8-11 shows how these two tables might look. If you take a closer look at
the user_bids table, you may notice that column names contain timestamps and
item IDs. By using this trick, you can store bids sorted by time and display them
on the user’s profile page in chronological order.

By storing data in this way you are able to write into these tables very
efficiently. Any time you need to place a bid, you would serialize bid data and
simply issue two commands:

 ▶ set data under column named “$time|$item_id” for a row “$user_email” in
table user_bids

 ▶ set data under column named “$time|$user_email” for a row “$item_id” in
table item_bids

Figure 8-10 User and item tables

Example Row from a Users Table

Example Row from an Items Table

Columns

Columns

dob

Row key

Row key

sam@example.org

345632

1981–12–29

classi�cations

4232,12,55,123

description

Have you
ever ...

image1

http://example..

image2

http://example..

title

Digital wall clock

homeAddress

4 Small Rd, Sydney

password

d417dd9ba812272

postCode

2000

08-ch08.indd 322 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 323

Cassandra is an eventually consistent store, so issuing writes this way ensures
that you never miss any writes. Even if some writes are delayed, they still end up
in the same order on all servers. No matter how long it takes for such a command
to reach each server, data is always inserted into the right place and stored in the
same order. In addition, order of command execution on each server becomes
irrelevant, and you can issue the same command multiple times without affecting
the end result (making these commands idempotent).

It is also worth noting here that bid data would be denormalized and
redundant, as shown in Listing 8-1. You would set the same data in both user_
bids and item_bids tables. Serialized bid data would contain enough information
about the product and the bidding user so that you would not need to fetch
additional values from other tables to render bids on the user’s profile page or
item detail pages. This data demineralization would allow you to render an item
page with a single query on the item table and a single column scan on the item_
bids table. In a similar way, you could render the user’s profile page by a single
query to the users table and a single column scan on the user_bids table.

Figure 8-11 Tables storing bids based on item and user

Row key Columns

Columns

sam@example.org

Row key

345632

{”product”:{”id”:345632,
“name”:”Digital wall clock”,
“price”:59.95,
“thumbnail”:”http://ex...

{”product”:{”id”:655632
“name”:”Samsung Galaxy
S5”, “price”:350.00,
“thumbnail”:”http://ex...

{”product”:{”id”:345632,
“name”:”Digital wall clock”,
“price”:59.95,
“thumbnail”:”http://ex...

{”product”:{”id”:345632,
“name”:”Digital wall clock”,
“price”:59.95,
“thumbnail”:”http://ex...

1418879899|345632

1418879899|sam@example.org 1418879654|otheruser@example.org

1395119895|655632
Older bids of that user

Older bids of this item

Example Row from a user_bids Table

Example Row from an item_bids Table

08-ch08.indd 323 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 324 Web Scalability for Startup Engineers

Listing 8-1 Serialized bid data stored in column values

{
 "product": {
 "id": 345632,
 "name": "Digital wall clock",
 "price": 59.95,
 "thumbnail": "http://example.org/img/6329103.jpg"
 },
 "user": {
 "email": "sam@example.org",
 "name": "Sam",
 "avatar": "http://example.org/img/fe6e3424rwe.jpg"
 },
 "timestamp": 1418879899
}

Once you think your data model is complete, it is critical to validate it against
the list of known use cases. This way, you can ensure that your data model can,
in fact, support all of the access patterns necessary. In this example, you could go
over the following use cases:

 ▶ To create an account and log in (use case 1), you would use e-mail address
as a row key to locate the user’s row efficiently. In the same way, you could
detect whether an account for a given e-mail address exists or not.

 ▶ Loading the item auction page (use cases 2, 3, and 4) would be performed
by looking up the item by ID and then loading the most recent bids from the
item_bids table. Cassandra allows fetching multiple columns starting from
any selected column name, so bids could be loaded in chronological order.
Each item bid contains all the data needed to render the page fragment and
no further queries are necessary.

 ▶ Loading the user page (use cases 6 and 7) would work in a similar way. You
would fetch user metadata from the users table based on the e-mail address
and then fetch the most recent bids from the user_bids table.

 ▶ Updating the user name is an interesting use case (use case 5), as user
names are stored in all of their bids in both user_bids and item_bids tables.
Updating the user name would have to be an offline process because it
requires much more data manipulation. Any time a user decides to update
his or her user name, you would need to add a job to a queue and defer

08-ch08.indd 324 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 325

execution to an offline process. You would be able to find all of the bids
made by the user using the user_bids table. You would then need to load
each of these bids, unserialize them, change the embedded user name, and
save them back. By loading each bid from the user_bids table, you would
also find its timestamp and item ID. That, in turn, would allow you to issue
an additional SET command to overwrite the same bid metadata in the
item_bids table.

 ▶ Storing billions of bids, hundreds of millions of users, and millions of
items (user case 8) would be possible because of Cassandra’s auto-sharding
functionality and careful selection of row keys. By using user ID and an item
ID as row keys, you are able to partition data into small chunks and distribute
it evenly among a large number of servers. No auction item would receive
more than a million bids and no user would have more than thousands or
hundreds of thousands of bids. This way, data could be partitioned and
distributed efficiently among as many servers as was necessary.

There are a few more tradeoffs that are worth pointing out here. By structuring
data in a form of a “compound index,” you gain the ability to answer certain types
of queries very quickly. By denormalizing the bid’s data, you gain performance
and help scalability. By serializing all the bid data and saving it as a single value,
you avoid joins, as all the data needed to render bid page fragments are present in
the serialized bid object.

On the other hand, denormalization of a bid’s data makes it much more
difficult and time consuming to make changes to redundant data. By structuring
data as if it were an index, you optimize for certain types of queries. This, in turn,
makes some types of queries perform exceptionally well, but all others become
prohibitively inefficient.

Finding a flexible data model that supports all known access patterns and
provides maximal flexibility is the real challenge of NoSQL. For example, using
the data model presented in this example, you cannot efficiently find items with
the highest number of bids or the highest price. There is no “index” that would
allow you to efficiently find this data, so you would need to perform a full table
scan to get these answers. To make things worse, there is no easy way to add an
index to a Cassandra table. You would need to denormalize it further by adding
new columns or tables.

An alternative way to deal with the NoSQL indexing challenge is to use a dedicated
search engine for more complex queries rather than trying to satisfy all use cases with
a single data store. Let’s now have a quick look at search engines and see how they can
complement a data layer of a scalable web application.

08-ch08.indd 325 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 326 Web Scalability for Startup Engineers

Search Engines
Nearly every web application needs to perform complex search queries nowadays.
For example, e-commerce platforms need to allow users to search for products
based on arbitrary combinations of criteria like category, price range, brand,
availability, or location. To make things even more difficult, users can also
search for arbitrary words or phrases and apply sorting according to their own
preferences.

Whether you use relational databases or NoSQL data stores, searching through
large data sets with such flexibility is going to be a significant challenge even if
you apply the best modeling practices and use the best technologies available on
the market.

Allowing users to perform such wide ranges of queries requires either building
dozens of indexes optimized for different types of searches or using a dedicated
search engine. Before deciding whether you need a dedicated search engine, let’s
start with a quick introduction to search engines to understand better what they
do and how they do it.

Introduction to Search Engines
You can think of search engines as data stores specializing in searching through
text and other data types. As a result, they make different types of tradeoffs
than relational databases or NoSQL data stores do. For example, consistency
and write performance may be much less important to them than being able to
perform complex searches very fast. They may also have different needs when it
comes to memory consumption and I/O throughput as they optimize for specific
interaction patterns.

Before you begin using dedicated search engines, it is worth understanding
how full text search works itself. The core concept behind full text search and
modern search engines is an inverted index.

An inverted index is a type of index that allows you to search for
phrases or individual words (full text search).

The types of indexes that we discussed so far required you to search for an
exact value match or for a value prefix. For example, if you built an index on a text

08-ch08.indd 326 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 327

field containing movie titles, you could efficiently find rows with a title equal to
“It’s a Wonderful Life.” Some index types would also allow you to efficiently search
for all titles starting with a prefix “It’s a Wonderful,” but they would not let you
search for individual words in a text field. If your user typed in “Wonderful Life,”
he or she would not find the “It’s a Wonderful Life” record unless you used a full
text search (an inverted index). Using an inverted index allows you to search for
any of the words contained in the text field, regardless of their location and order.
For example, you could search for “Life Wonderful” or “It’s a Life” and still find
the “It’s a Wonderful Life” record.

When you index a piece of text like “The Silence of the Lambs” using an
inverted index, it is first broken down into tokens (like words). Then each of
the tokens can be preprocessed to improve search performance. For example,
all words may be lowercased, plural forms changed to singular, and duplicates
removed from the list. As a result, you may end up with a smaller list of unique
tokens like “the,” “silence,” “of,” “lamb.”

Once you extract all the tokens, you then use them as if they were keywords in
a book index. Rather than adding a movie title in its entirety into the index, you
add each word independently with a pointer to the document that contained it.
Figure 8-12 shows the structure of a simplistic inverted index.

As shown in Figure 8-12, document IDs next to each token are in sorted order
to allow a fast search within a list and, more importantly, merging of lists. Any
time you want to find documents containing particular words, you first find these
words in the dictionary and then merge their posting lists.

Figure 8-12 Inverted index structure

Indexed Documents Inverted Index

document id document body

Indexing process

1 The Silence of the Lambs
2 All About Eve
3 All About My Mother
4 The Angry Silence
5 The Godfather
6 The Godfather 2

dictionary posting lists
(document ids)

2 6
about 2, 3
all 2, 3
angry 4
eve 2
godfather 5, 6
lamb 1
mother 3
my 3
of 1
silence 1, 4
the 1,4, 5, 6 Words in the dictionary

are stored in sorted order.
So �nding all documents

with the word “godfather”
can be done very quickly.

Document ids in posting
lists are stored in sorted
order which allows fast

merging.

08-ch08.indd 327 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 328 Web Scalability for Startup Engineers

HINT
The structure of an inverted index looks just like a book index. It is a sorted list of words (tokens)
and each word points to a sorted list of page numbers (document IDs).

Searching for a phrase (“silence” AND “lamb”) requires you to merge posting
lists of these two words by finding an intersection. Searching for words (“silence”
OR “lamb”) requires you to merge two lists by finding a union. In both cases,
merging can be performed efficiently because lists of document IDs are stored
in sorted order. Searching for phrases (AND queries) is slightly less expensive, as
you can skip more document IDs and the resulting merged list is usually shorter
than in the case of OR queries. In both cases, though, searching is still expensive
and carries an O(n) time complexity (where n is the length of posting lists).

Understanding how an inverted index works may help to understand why OR
conditions are especially expensive in a full text search and why search engines
need so much memory to operate. With millions of documents, each containing
thousands of words, an inverted index grows in size faster than a normal index
would because each word in each document must be indexed.

Understanding how different types of indexes work will also help you design
more efficient NoSQL data models, as NoSQL data modeling is closer to
designing indexes than designing relational schemas. In fact, Cassandra was
initially used at Facebook to implement an inverted index and allow searching
through the messages inbox.w27 Having said that, I would not recommend
implementing a full text search engine from scratch, as it would be very
expensive. Instead, I would recommend using a general-purpose search engine
as an additional piece of your infrastructure. Let’s have a quick look at a common
search engine integration pattern.

Using a Dedicated Search Engine
As I mentioned before, search engines are data stores specializing in searching.
They are especially good at full text searching, but they also allow you to index
other data types and perform complex search queries efficiently. Any time you
need to build a rich search functionality over a large data set, you should consider
using a search engine.

A good place to see how complex searching features can become is to look at
used car listings websites. Some of these websites have hundreds of thousands
of cars for sale at a time, which forces them to provide much more advanced
searching criteria (otherwise, users would be flooded with irrelevant offers). As
a result, you can find advanced search forms with literally dozens of fields. You

08-ch08.indd 328 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 Chapter 8: Searching for Data 329

can search for anything from free text, mark, model, min/max price, min/max
mileage, fuel type, transmission type, horsepower, and color to accessories like
electric mirrors and heated seats. To make things even more complicated, once
you execute your search, you want to display facets to users to allow them to
narrow down their search even further by selecting additional filters rather than
having to start from scratch.

Complex search functionality like this is where dedicated search engines really
shine. Rather than having to implement complex and inefficient solutions yourself
in your application, you are much better off by using a search engine. There are
a few popular search engines out there: search engines as a service, like Amazon
CloudSearch and Azure Search, and open-source products, like Elasticsearch,
Solr, and Sphinx.

If you decide to use a hosted service, you benefit significantly from not having
to operate, scale, and manage these components yourself. Search engines,
especially the cutting-edge ones, can be quite difficult to scale and operate
in production, unless you have engineers experienced with this particular
technology. You may sacrifice some flexibility and some of the edge-case features,
but you reduce your time to market and the complexity of your operations.

Going into the details of how to configure, scale, and operate search engines
is beyond the scope of this book, but let’s have a quick look at how you could
integrate with one of them. For example, if you decided to use Elasticsearch as
a search engine for your used car sales website, you would need to deploy it in
your data center and index all of your cars in it. Indexing cars using Elasticsearch
would be quite simple since Elasticsearch does not require any predefined
schema. You would simply need to generate JSON documents for each car and
post them to be indexed by Elasticsearch. In addition, to keep the search index
in sync with your primary data store, you would need to refresh the documents
indexed in Elasticsearch any time car metadata changes.

HINT
A common pattern for indexing data in a search engine is to use a job queue (especially since
search engines are near real time anyway). Anytime anyone modifies car metadata, they submit
an asynchronous message for this particular car to be reindexed. At a later stage, a queue worker
picks up the message from the queue, builds up the JSON document with all the information, and
posts to the search engine to overwrite previous data.

Figure 8-13 shows how a search engine deployment could look. All of the searches
would be executed by the search engine. Search results could then be enriched
by real-time data coming from the main data store (if it was absolutely necessary).

08-ch08.indd 329 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 8

 330 Web Scalability for Startup Engineers

On the other hand, people editing their car listings would write directly to the main
data store and refresh the search index via a queue and an asynchronous indexing
worker process.

By having all of your cars indexed by Elasticsearch, you could then start issuing
complex queries like “Get all cars mentioning ‘quick sale’ made by Toyota between
2000 and 2005 with electric windows and tagged as special offer. Then sort it all
by price and product facets like location, model, and color.”

Search engines are an important tool in the NoSQL web stack toolbelt, and I
strongly recommend getting familiar with at least a couple of platforms to be able
to choose and use them efficiently.

Summary
Being able to search for data efficiently can be a serious challenge. The key things
to take away from this chapter are that data should be stored in a way that is
optimized for specific access patterns and that indexes are the primary tool for
making search scalable.

It is also important to remember that NoSQL brings a new way of thinking
about data. You identify your main use cases and access patterns and derive the
data model out of this knowledge rather than structuring data in a generic way.
It may also require dedicated search engines, to complement your infrastructure
and deal with the most complex search scenarios.

Explore searching, indexing, and data modeling in more detail.16,19,w27–w28,w47–w48,w71
Searching for data was the last purely technical chapter of this book; let’s now
have a look at some other dimensions of scalability in the context of web startups.

Figure 8-13 Inverted index structure

Searches
ApplicationApplication

Worker
Queue

Search for cars

ListenPost

Fetch
latest
data

Update main data store

Edits content

Schedule indexing
of a modi�ed car

Fetch real-time data

Search
engine

Main
data store

Buyers Sellers

08-ch08.indd 330 09/05/15 12:06 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

331

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

CHAPTER

9
Other Dimensions

of Scalability

09-ch09.indd 331 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 332 Web Scalability for Startup Engineers

The majority of this book is dedicated to technical details of designing and
building scalable web applications, as these subjects are the main areas of
focus for software engineers. In reality, building scalable systems is more

than just writing code. Some of the other dimensions of scalability that you need
to pay attention to are

 ▶ Scaling operations How many servers can you run in production? Once
you deploy your system to hundreds of servers, you need to be able to
manage them efficiently. If you need to hire an additional sysadmin every
time you add 20 web servers to your stack, you are not going to be able to
scale fast or cheap.

 ▶ Scaling your own impact How much value for your customers and
your company can you personally generate? As your startup grows, your
individual impact should grow with it. You should be more efficient and able
to increase your personal contributions by expanding your responsibilities
and advising your business leaders.

 ▶ Scaling the engineering department How many engineers can your
startup hire before becoming inefficient? As your company grows, you need
to be able to hire more engineers and increase the size of your engineering
department without reducing their productivity. That means developing the
right culture and structuring your teams and systems in a way that allows
parallel development and collaboration at scale.

As you become more senior, you should be able to appreciate these additional
facets of scalability. For your applications to be truly scalable, you need to be able
to scale the size of your teams, the number of servers you support, and your own
personal productivity, minimizing the costs (time and money) at the same time.
Let’s now discuss some of the ways in which you can help your startup scale.

Scaling Productivity through Automation
“If you want something to happen, ask.
If you want it to happen often, automate it.” – Ivan Kirigin

A big part of startup philosophy is to scale the value of your company
exponentially over time while keeping your costs growing at a much slower rate.
That means that the cost of serving the first ten million users should be higher
than the cost of serving the second ten million users. Although that may be

09-ch09.indd 332 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 333

counterintuitive, the cost of capacity unit should decrease over time. That means
your company has to become more efficient as it grows. The cost per user or per
transaction or per checkout (or whatever you measure) should decrease as you
grow in size.

Modern technology startups manage to achieve incredible customer-to-
employee ratios, where tiny technical teams support products used by tens or
even hundreds of millions of users. This efficiency constraint makes scalability
even more challenging, as it means that you need to design and build systems that
become more efficient as they grow. To achieve this level of efficiency, you need to
automate everything you can. Let’s have a look at some common areas that can be
automated to increase efficiency.

Testing
Testing is the first thing that you should automate when building a scalable web
application. Although it took over a decade for businesses and engineers to
appreciate automated testing, it is finally becoming a de facto standard of our
industry. The main reason why automated testing is a sound investment is that
the overall cost of manual testing grows much faster over time than the overall
cost of automated testing.

Figure 9-1 shows the overall cost of manual and automated testing. If you
decide to depend on manual testing alone, you do not have any up-front
investments. You hire testers and they test your application before every release.
Initially, the cost is small, but it stacks up very fast. Every time you build a new
feature, you need to test that feature, as well as all the previously released features,
to make sure that your changes did not break anything else. That, in turn, means
that the cost of testing each release is higher than testing any of the previous
releases (you become less efficient over time). It also takes longer and longer to
release new versions of software because testing cycles become longer as your
system grows in size.

Automated testing requires an up-front investment, as you need to set up
your automated testing suites and deploy continuous integration servers, but it
is much cheaper going forward. Once you are done with initial setup, you only
create tests for new features. You do not need to spend time on regression testing
existing features because this does not cost you anything. As a result, you become
more efficient over time because with every release, the ratio of code being tested
by existing tests to the new code (which requires tests to be created) increases.
Eventually, you reach a break-even point where the overall cost of automated
testing is lower than manual testing.

09-ch09.indd 333 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 334 Web Scalability for Startup Engineers

Although it is difficult to measure the costs and benefits of automated testing, I
would expect a startup to reach the break-even point after three to six months of
development. The benefits of automated testing depend on the volatility of your
business, the number of “pivots” (when you decide to change the focus of your
business), the size of your team, and the tolerance for defects.

In addition to the time and money spent, automated tests bring confidence to
your team and allow you to make rapid changes and refactor aggressively, which
is a great advantage when working for a startup. By using automated tests and
continuous integration, you can also speed up your development cycles. You do
not need to spend days or weeks hardening and testing your code before releasing
it. By having a suite of automated tests, you can integrate early and release more
often, making you more responsive to market needs.

HINT
With the safety net of automated tests, your teams can become what Robert C. Martin calls
fearless engineers. Fearless engineers are not afraid to make changes. They control their software
and they have legitimate confidence that bugs are detected before they make their way into
production.

Depending on the languages and technologies you work with, you may use
different tools to automate your tests. First of all, you want the majority of
your tests to be unit tests, which can execute without other components being
deployed. Unit tests are the fastest to execute and cheapest to maintain. They
don’t cause false positives, and they are easy to debug and fix when making
changes.

Figure 9-1 Overall cost of manual and automated testing

O
ve

ra
ll

co
st

of
 te

sti
ng

Time

Manual testing

Break-even

Automated testing

Initial time
investment

09-ch09.indd 334 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 335

In addition, you may want to have integration tests, which span multiple
components, and some end-to-end tests, which test entire applications via their
public interfaces. Two tools that are worth recommending for end-to-end tests
are Jmeter and Selenium. Jmeter is great at testing low-level Hypertext Transfer
Protocol (HTTP) web services, HTTP redirects, headers, and cookies and it is
also a great tool for performance and load testing. Selenium, on the other hand,
allows you to remotely control a browser from within your tests. As a result, you
can create test cases for complex scenarios like login, purchase, or subscription.
Using Selenium, you can automate anything that a manual tester would do and
plug it into your automated test suites.

Once you automate your tests, you gain a solid foundation to automate your
entire build deployment and release process. Let’s have a look at how you can
expand automation in these areas.

Build and Deployment
The next step in increasing your efficiency is to automate your entire build, test,
and deployment process. Manual deployments are a time sink in the same way
manual testing is. As the number of servers and services grows, more people need
to be involved, more servers and services need to be coordinated, and it becomes
more difficult to execute a successful deployment. As it becomes more difficult
and complex to release software, releases take longer and testing/integration
cycles become longer as well. As a result, your releases become larger because
more code is developed between releases, leading to even larger and more
complex releases. Figure 9-2 shows the vicious cycle of manual releases and the
positive cycle of automated releases.

Figure 9-2 Manual deployments vs. automated deployments

Releases
get more
dif�cult

More features
get into each

release

Testing takes
longer to

verify
integration

Manual

Fewer features
get into each

release

Automated

Releases
get simpler

Testing and
deployments

happen
immediately

09-ch09.indd 335 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 336 Web Scalability for Startup Engineers

The best practice, as of this writing, to break the vicious cycle of manual
releases is to automate the entire build, test, and deployment process by adopting
continuous integration, delivery, and deployment.

Continuous integration is the first step of the automation evolution. It allows
your engineers to commit to a common branch and have automated tests
executed on that shared codebase any time that changes are made. Writing
automated tests and committing to a shared branch allows your engineers to
detect integration issues early. You reduce time spent on merging long-living
branches and the effort needed to coordinate releases. By having a stable
integration branch with all tests passing (as they are executed for every commit
on the integration server), you can deploy to production at any point in time.
Continuous integration does not span onto deployment—it only ensures that
code can be built and packaged and that tests pass for every commit.

Continuous delivery is the second step in the automation evolution. In addition
to running unit tests and building software packages, the continuous delivery
pipeline deploys your software to a set of test environments (usually called dev,
testing, or staging). A critical feature of that process is that software is built,
assembled, and deployed in a reproducible way without any human interaction.
That means that any time engineers make a commit to any of the repositories,
a set of new builds is triggered; software is deployed to the dev, test, or staging
environment; and additional end-to-end test suites are executed to verify
correctness of the wider system. As a result, it becomes a business decision
whether to deploy code to production or not rather than being an engineering/
testing team’s decision. Once the change makes its way through the continuous
delivery pipeline, it is ready to be deployed to production. At this stage of
evolution, deployment to production usually uses the same automated scripts as
deployment to staging environments, and it can be done by a click of a button or
issuing a single command, regardless of the complexity of the infrastructure and
number of servers.

Continuous deployment is the final stage of the deployment pipeline evolution,
where code is tested, built, deployed, and pushed to production without any
human interaction. That means that every commit to the shared branch triggers a
deployment to production servers without humans being involved. Deployments
become cheap and can occur multiple times a day rather than once every couple
of weeks.

Figure 9-3 shows an example of a continuous deployment pipeline. It also
shows which areas are automated by continuous integration, delivery, and
deployment, respectively. Ideally, software would move automatically through
the entire pipeline, so that a commit on the integration branch would trigger tests

09-ch09.indd 336 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 337

to be executed and a build assembled. Then code would be deployed to dev and
testing environments. Automated end-to-end tests would be executed against the
testing environment. If all these steps were successful, code would be immediately
deployed to production servers, ending the continuous deployment pipeline.

While working in different companies over the years, I have witnessed
deployments of various sizes and various degrees of automation. For example, in
one of the teams that I have worked with, it would take three people up to four
hours per week to release software. That is a combined cost of over 300 man-
hours per year. That equates to one of our engineers doing nothing but releasing
software for two months straight. On the other end of the spectrum, I have seen
people deploy software to production with every commit, where a release cycle
takes 15 minutes from commit to code being in production.

HINT
Testing and deployments have to be automated if you want to scale. If you need to do more
than click a button to create a build, run tests, and deploy software to production, you need to
automate further.

The number of tools and platforms that help implement continuous deployment
has been increasing in recent years, but it is still a fairly involved process to set up
a full-stack, continuous deployment pipeline. Setting up a continuous deployment
pipeline is challenging because it requires skills from both ends of DevOps. You
need to have Dev’s knowledge of the code and testing tools and Ops’ expertise in
setting up servers and deploying software and managing configurations.

Your best bet is to make sure that you have an experienced DevOps engineer
on your team to avoid frustration and speed up the initial setup. If you have to
learn how to build a continuous deployment pipeline yourself, I would recommend
using Jenkins (which is an open-source product) or Atlassian Bamboo (which is a
commercial product but with a great feature set) as the tool controlling the pipeline.

Figure 9-3 Example of a continuous deployment pipeline

Code
commit
detected

Run unit
tests

Assemble a
deployable

build

Redeploy/re-create
development
environment

Redeploy/re-create
integration

environment

Execute
integration

tests

Redeploy/re-create
production

environment

Developer

09-ch09.indd 337 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 338 Web Scalability for Startup Engineers

In addition to configuring the continuous deployment tool (for example, using
Jenkins), you will need to decide how to manage configuration of your servers.
The goal is to store server configuration in the source control system to be able to
re-create servers at any point in time and track changes. If you want to manage
servers at scale, it is absolutely critical to manage their configuration using
specialized tools like Chef or Puppet so that you can build server definitions and
then create identical instances of these servers at will.

HINT
Having to control more than a dozen servers manually or allowing your servers’ configurations
to diverge from one another is a recipe for disaster. Each server type (like a database server
or a web server) should have a server definition created using a configuration management
tool. This definition should then be used to create all of the instances of a particular server type,
ensuring that each and every one of them is identical. By following this process, you can scale the
number of servers without affecting the overall management cost. Whether you need to deploy a
single server or a hundred servers, your overhead of building a server definition is constant, and
deploying to more servers is just a matter of creating more server instances of a particular type.

Once you have server definitions and the continuous deployment tool configured,
you are ready to deploy automatically to your servers. To achieve that, you may need
to write some custom scripts that will know which servers need to be redeployed
in what order. You may also need additional commands, such as purging caches,
restarting web servers, or taking servers out of a load balancer.

To be able to deploy to production, your continuous deployment pipeline (and
custom scripts) may need to be integrated with your cloud hosting provider to
allow server images to be created (for example, Amazon Machine Image [AMI]),
new server instances to be built, and servers to be added or removed from
load balancers. There is no single right way of doing it, and depending on your
infrastructure, skills, and preferences, you may opt for one way or another. For
example, if you were hosting your stack on Amazon, you might want to use AMI
images for your deployments to also allow auto-scaling and automated server
replacement. In such a case, your continuous deployment pipeline might look
as follows:

1. Developer commits code to a master branch.
2. Continuous deployment tool is notified by a github web hook.
3. The pipeline starts by checking out the code. Then unit tests are executed;

the build is assembled; and test results, documentation, and other artifacts
are zipped and pushed to permanent storage (like Amazon S3).

09-ch09.indd 338 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 339

4. On success, a new server instance is created using Amazon API to build a
new server image. The instance is restored using the most recent production
AMI image for that cluster (let’s say a web service cluster).

5. The instance is then upgraded using configuration management tools
to bring its packages up to date and to deploy the latest version of your
application. This way, you perform installation, configuration, and
dependency assembly only once.

6. Once the instance is ready, you take a snapshot of it as a new AMI image so
that it can be used later to create new server instances.

7. As the next step in the pipeline, you deploy the newly created server image
in the testing/staging cluster and verify its correctness using end-to-end
tests like Selenium or Jmeter.

8. In the next step, you mark the newly created AMI image as production ready
and move on to production deployment.

9. You can then redeploy the production web service cluster by updating
the load balancer and taking servers out of rotation, one by one, or by
doubling the capacity and killing the old instances. Either way, deployment
is performed by the Elastic Load Balancer by re-creating all server instances
from scratch using the newly created AMI image.

Having a continuous deployment pipeline like this allows you to deliver
software extremely fast. You can deploy new features multiple times a day and
quickly validate your ideas by running A/B tests on your users rather than having
to wait weeks for customer feedback.

The only question that may still remain is “How do you make sure that things
don’t break if every commit goes straight to production?” To address this concern,
it is best to use a combination of continuous deployment best practices:

 ▶ Write unit tests for all of your code. Your code coverage should be at least
85 percent to give you a high stability and confidence level.

 ▶ Create end-to-end test cases for all critical paths like sign up, purchase, adding
an item to a shopping cart, logging in, or subscribing to a newsletter. Use a
tool like Selenium so that you can quickly verify that the most important parts
of your system are actually working before deploying code to production hosts.

 ▶ Use feature toggles to enable and disable selected features instantly. A feature
in hidden mode is not visible to the general audience, and disabled features
are not visible at all. By using feature toggles, you can quickly disable a new
broken feature without redeploying any servers.

09-ch09.indd 339 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 340 Web Scalability for Startup Engineers

 ▶ Use A/B tests and feature toggles to test new features on a small subset of
users. By rolling out features in a hidden mode and enabling them for a small
group of users (let’s say, 2 percent of users), you can test them with less risk.
During the A/B testing phase, you can also gather business-level metrics
to see whether a new feature is used by users and whether it improves your
metrics (for example, increased engagement or user spending).

 ▶ Use a wide range of monitoring tools, embed metrics into all of your
applications, and configure alerts on critical metrics so that you will be the
first to know whenever things break.

Following these best practices will help you implement a continuous deployment
pipeline and push changes to production faster without increasing the risk of
failures, but no matter how well you test your code, your servers will occasionally
fail and you need to be able to handle these failures fast and efficiently. To be able
to scale your operations, it is absolutely critical to automate monitoring and
alerting. Let’s now have a closer look at how it could be achieved.

Monitoring and Alerting
The main motivation to automate monitoring and alerting of your systems is to
increase your availability by reducing mean time to recovery (MTTR). It may
seem like a luxury to have automated monitoring, failure detection, and alerting
when you run two servers in production, but as the number of servers grows, it
becomes absolutely critical to be able to run your operations efficiently. Mean
time to recovery is a combination of four components:

MTTR = Time to discover + Time to respond + Time to investigate + Time to fix

Time to discover is the time needed for your business to realize there is a
problem with the system. In small companies, failures are often reported by
customers or when employees notice that something broke. As a result, things
can be broken for hours or even days before anyone reports a problem, resulting
in poor user experience and terrible availability metrics. By using automated
monitoring, you should be able to reduce the time to discovery to a few minutes.

The second component of MTTR is time to respond. Again, in small companies,
it can take hours before the right person responds to the problem. People may
not know who to call, they may not have private phone numbers, engineers being
called may not have their laptops or passwords necessary to log in to the right

09-ch09.indd 340 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 341

servers, or they may just have their phones turned off. As a result, time to respond
is unpredictable and it can easily take a few hours before the right person can
start looking at a problem. As your company grows, your operations team needs
to automate failure notifications so that production issues can be escalated to the
right people and so that they can be ready to respond to critical problems within
minutes. In addition to automated alerting, you need to develop procedures to
define who is on call on which days and how they should react to different types
of issues. By implementing clear procedures and automated alerting, you should
be able to reduce the time to respond to tens of minutes rather than hours.

The last component of MTTR that you can reduce by monitoring is time to
investigate, as time to fix is independent from monitoring and alerting. In small
companies, when things break, engineers start logging into production servers,
tailing logs, and trying to figure out what exactly broke. In many cases, it is a
data store or an external system failure causing alerts through complex knock-on
effects, and finding a root cause by traversing logs on dozens of servers can be a
very time-consuming process.

To speed up debugging and maintain a clear picture of your “battlefield,” you
can introduce metrics and log aggregation. By monitoring internals of your
system, you can quickly identify components that are slow or failing. You can also
deduce knock-on effects by correlating different metrics. Finally, by aggregating
logs, you can quickly search for log entries related to the issue at hand, reducing
time to investigate even further.

In addition to reducing MTTR, collecting different types of metrics can help
you see trends and gain insight into your business. To get the most out of your
monitoring configuration, you should collect four different types of metrics:

 ▶ Operating system metrics These allow you to see the status of your
hardware, network infrastructure, and operating systems. On this level, you
collect information like CPU load, memory statistics, number of processes
running, network connections, and disk I/O. These metrics are mainly
for system admins and DevOps people to estimate capacity and debug
performance problems.

 ▶ Generic server metrics These are all of the metrics that you can get from
standard web servers, application containers, databases, message queues,
and cache servers. In this level you collect metrics such as the number of
database transactions per second, time spent waiting for locks, number of
web requests per second, the number of messages in the deepest queue, or
a cache hit ratio of your object cache server. These metrics help you gain a
much deeper insight into the bottlenecks of each of your components.

09-ch09.indd 341 11/05/15 5:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 342 Web Scalability for Startup Engineers

 ▶ Application metrics These are metrics that your application publishes to
measure performance and gain insight into what is happening within the
application. Examples of application-level metrics can be calls to external
systems like databases, object caches, third-party services, and data stores.
With every external call, you would want to keep track of the error rate,
number of calls, and time it took to execute the call. By having these types
of metrics, you can quickly see where the bottlenecks are in your systems,
which services are slow, and what the trends of capacity are. On this level,
you may also want to collect metrics such as how long it takes for each web
service endpoint to generate a response or how often different features are
used. The main purpose of these metrics is to allow engineers to understand
what their code is doing and what pressures it is facing.

 ▶ Business metrics These are metrics that track business events. For
example, you may track dollars spent, user account creation, the number of
items added to shopping carts, or the number of user logins per minute. The
value of such metrics from an engineer’s point of view is that they allow you
to verify within seconds whether you have a consumer-affecting problem
or not. You can also use them to translate production issues into business
impact, like dollars lost or user login failure count. By knowing the business
impact of your issues, you can escalate more efficiently and verify recovery
of critical systems by observing user activity.

Operating web applications at scale without metrics in each of the four categories
mentioned earlier is like driving blind. In fact, I would argue that every single
service you deploy to production should publish metrics so that you can diagnose
and operate it at scale. Let’s now have a look at how monitoring can be done in
practice.

Monitoring and alerting are usually implemented by installing a monitoring
agent on each of your servers. Each agent is then configured to collect metrics
about that server and all of its services. Depending on the role of the server, the
agent could have plugins installed to collect metrics from different sources, such
as database processes, message queues, application servers, and caches. Each
monitoring agent would usually aggregate dozens, hundreds, or even thousands
of metrics. Periodically (for example, every minute or every five minutes), the
agent would publish its metrics to a central monitoring service, which is usually a
cloud service or an internally deployed monitoring server.

Once metrics are published to the monitoring service, they can be recorded
so that dashboards and graphs can be drawn. At the same time, the monitoring

09-ch09.indd 342 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 343

service can watch the rate of change and values of each of these metrics, and
alerts can be sent whenever safety thresholds are breached. For example, you can
send a text message to your engineers on call if the number of open connections
to your database reaches a certain level (as it may indicate that database queries
execute too slowly and connections keep piling up as a result).

By having metrics pushed to a central monitoring service from all of your
servers, you can visualize them per server or per server group. That also allows
you to set alerts per server or per cluster of servers. For example, you could
monitor free disk space per server because some servers may run out of disk
space faster than others. On the other hand, when monitoring the number of
open database connections to your replication slaves, you might be interested
in a sum of all the connections across the entire cluster to see the higher-level
picture of your system, regardless of which machines are out of rotation or in
maintenance.

In addition to metrics gathering via internal monitoring agents and the
monitoring service, you can use an external service level agreement (SLA)
monitoring service. The advantage of using a third-party SLA monitoring
service is that it connects to your services from external networks just like your
customers would. As a result, it can detect network outages, routing/virtual
private network (VPN) configuration issues, Domain Name Service (DNS)
problems, load balancer configuration problems, Secure Sockets Layer (SSL)
certificate expiration, and other issues that may be impossible to detect from
within your own networks. In addition, some of the SLA monitoring services
allow you to measure performance of your services from different locations on the
planet and using different devices (simulating mobile network and low-bandwidth
connections). As a result, they can provide you with an ocean of valuable data
points, allowing you to optimize your user experience and alert on additional
types of failures.

Figure 9-4 shows how monitoring and alerting could be implemented. You
would have monitoring agents deployed across all of your servers, metrics being
pushed to a central monitoring service, and alerting rules being configured within
the monitoring service. In addition, an external SLA monitoring service could be
utilized to watch performance and availability from the client’s point of view.

As you can imagine, quite a few different components need to be put in place
for such a comprehensive monitoring setup to work. You need to install your
monitoring agents with plugins for all possible types of services that you want
to monitor. You also need to be able to publish arbitrary metrics from your
application code to monitor application and business metrics. Then you need to
configure all of these agents to publish data to the aggregations service, and on

09-ch09.indd 343 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 344 Web Scalability for Startup Engineers

the service side you need to configure graphs, thresholds, alerts, and dashboards.
Getting it all to work together and managing all these components at scale can
be quite a lot of work—that is why I recommend using a third-party, cloud-based
monitoring service rather than deploying your own solution.

The best monitoring service I have seen so far (as of 2014) is Datadog, and I
would strongly recommend testing it before committing to a different solution.L5
Some of its advantages are the feature set, ease of integration, and ease of use.
Datadog provides plugins to monitor dozens of different open-source servers
so that you would not need to develop custom code to monitor things like
data stores, message queues, and web servers. In addition, it provides a simple
application programming interface (API) and client libraries, so you can start
publishing custom metrics from within your application code in a matter of
minutes. Finally, it has a user-friendly user interface (UI), allowing you to
configure graphs, dashboards thresholds, and alerts with minimal effort.

The competition in monitoring space has been increasing in recent years,
and there are quite a few good alternatives that you might want to look at, with
Stackdriver, New Relic, and Server Density, to name a few. Some of these providers,
like Server Density, provide external SLA monitoring as part of their offering; others
don’t. If you need a separate provider for external SLA monitoring, I recommend
looking at Pingdom, Moniris, and Keynote.

Figure 9-4 Sample monitoring and alerting configuration

Admin

Uses

Data store
Pushes
metrics

Pushes
metrics

Health
check

More servers

Web console to
monitor and

investigate issuesMetrics aggregating
infrastructure

Availability and
performance

monitoring agent

Alerting
infrastructure

Noti�es

Monitored System Monitoring Service

Admin

Server 1

Server N

09-ch09.indd 344 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 345

With monitoring, alerting, and on-call procedures, you should be able to reduce
MTTR to tens of minutes. If you wanted to reduce the time needed to investigate and
debug issues even further, you might also want to implement a log aggregation
and indexing solution.

Log Aggregation
When working with small applications, which run on just a couple of servers, log
aggregation is not really necessary. Things usually break on the same server, and
you usually have just a handful of log files to tail or grep through to find the root
cause of an issue. Unfortunately, as your system grows and the number of servers
goes into the dozens (and then the hundreds), you lose the ability to manually
search through logs. Even with as few as ten servers it becomes impossible to
tail, grep through, and correlate events happening across all of the log files on all
of these servers simultaneously. Requests to your front-end layer may cascade
to dozens of web service calls, and searching through all of the logs on all the
machines becomes a serious challenge. To be able to search through logs and
effectively debug problems, you need a way to collect all of your logs in a central
location. There are a few common ways of solving this.

First of all, you can log to a data store directly rather than logging to files. The
good side of this approach is that you do not have to move the logs once they
are written, but the downside is that all of your components become dependent
on the availability and performance of the logging data store. Because of this
additional coupling, logging directly to a data store is not recommended.

A better alternative is to write to local log files and then have these logs shipped
to a centralized log service. In its simplest form, you install log-forwarding agents
on each of your servers and configure them to stream logs to a central log server.
The main benefit of this approach is its simplicity, as all you need is a log server
and log-forwarding agents installed on each of your servers.

There are quite a few open-source products that allow you to stream logs to a
centralized log server, and a good example of such a product is Fluentd. Fluentd
is easy to work with; it is robust, scalable, and offers a wide range of features.
Your log-forwarding agents can tail multiple log files, perform complex filtering
and transformations, and then forward logs to a central log server. In addition to
having all of the log files on a single server, you can merge events from different
sources and standardize time formats to a single time zone, as dealing with logs
in multiple time zones and formats can be frustrating.

Streaming all of your logs to a central server is an improvement, but if you store
your logs in flat files, it is still going to be time consuming to search through them.

09-ch09.indd 345 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 346 Web Scalability for Startup Engineers

The more logs you have, the slower it will become to perform searches. Depending
on your needs, you may want to go a step further and use a log-indexing platform
to speed up your searches and make log data more available across your company.

Figure 9-5 shows how a complete log aggregation deployment might look. You
install a log-forwarding agent on each of your servers with a configuration telling
it which logs to forward, how to filter and transform the log events, and where to
send them. Then the logs are streamed to a set of search engine servers, where
they are persisted and indexed so that you can search through them efficiently. In
addition, a log-processing platform provides you with a web-based interface to
make searching through logs easier.

Deploying and managing a set of components to allow log aggregation and
indexing is a fair amount of work, and I recommend using a hosted solution
whenever it is possible and affordable. As of this writing, one of the most famous
and most attractive solutions on the market is Splunk, but unfortunately, it is quite
expensive and not all startups will get enough value from it to justify the cost. Some
cloud vendors have a basic solution for log aggregation, like Amazon CloudWatch
Logs or Azure Diagnostics, but they may not provide you with enough flexibility.
You can also consider an independent hosted log-processing service like Loggy,
which provides good functionality regardless of your hosting platform.

If sharing your application logs with third parties or running third-party
agents on your servers is not an option, you might need to go for a self-hosted,
open-source solution. In such a case, I recommend looking at Logstash, which
is a feature-rich and scalable log-indexing platform. Logstash uses its own

Figure 9-5 Sample log aggregation workflow

Admin

Uses

Search
engine

Streams logs

Streams logs

More servers
Log collecting
infrastructure

Web console to
search through and

visualize logs

SearchesIndexes
logs

Production System Log Aggregating Service

Server 1

Server N

09-ch09.indd 346 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 347

log-forwarding agents to ship logs to the Elasticsearch search engine. It also
comes with a web interface called Kibana to let you perform free text searches
and visualize your logs in near real time. The only downside of using Logstash is
that you need to learn how to configure and operate it. Although the Logstash
platform is a solid piece of software, it is not simple. Even a simple deployment
requires a lot of configuration steps,L8–L9 and without an experienced sysadmin,
it may become more of a burden than a benefit to manage it yourself.

Having automated testing, configuration management, deployments, monitoring,
alerting, and keeping all of your logs in a central location should enable you to
operate web applications at scale. Let’s now have a look at what can you do to scale
your own personal productivity as your startup grows.

Scaling Yourself
The main reason why startups are so attractive is the hope to achieve exponential
growth. Growing fast and efficiently is what allows investors and founders to
make a profit. To enable this exponential growth, your startup needs you to
become more efficient as it grows as well. You need to become more productive
and generate more value for your customers and for your business as you go
along. Let’s discuss some of the challenges that you may face when working in a
startup and how you could approach them to maximize your own productivity
and happiness.

Overtime Is Not a Way to Scale
Working under a lot of pressure with limited resources, tight deadlines, and under
extreme uncertainty can be nerve wracking, and this is exactly what web startups
feel like. Startups are an explosive cocktail of emotions. They are challenging,
exhausting, and very rewarding at the same time, but you need to be careful not
to fall into a blind race, as working can easily become a thoughtless compulsion.

At first, getting more done by working longer hours feels natural. You push
yourself a bit more, work a few extra hours every day, or work over the weekends.
It feels like the right thing to do and it feels like a relatively small sacrifice to make,
as you are full of energy, motivation, hope, and belief in your future. In addition, it
feels good to be needed and to be the hero who saves the day. After all, if working
harder is what it takes, then why not do it?

The problem is that in the long run, working overtime is a terrible strategy to
scale your productivity. As you work longer hours for extended periods of time,

09-ch09.indd 347 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 348 Web Scalability for Startup Engineers

your mental capacity decreases; your creativity drops; and your attention span,
field of vision, and ability to make decisions all degrade. In addition, you are likely
going to become more cynical, angry, or irritable. You will resent people who
work less than you do; you will feel helpless or depressed in the face of an ever-
growing pile of work. You may even begin to hate what you used to love doing or
feel anxious, with the only way to repress this anxiety being to work even harder.
All of these are symptoms of burnout.

Burnout is your archenemy when working for a startup, as it sneaks upon you
slowly and by the time it hits you, you are completely blind to it, making you fall
even deeper into its grip. It is like a vicious cycle—you work harder, get more
tired, you can’t see ways to work smarter, and as a result you end up working even
harder. Everyone experiences burnout slightly differently, but from my experience,
it is a terrible state to be in and it takes months to fully recover. Again, based on
my own experiences, you can expect significant burnout after anything from three
to nine months of excessive work (working under high pressure for over 45 to 60
hours a week).

Figure 9-6 shows how productivity changes over time when working excessively.
Initially, you experience increased productivity, as you perform at full capacity for
more hours. Shortly after that, your productivity begins to decline, diminishing
the benefit of working overtime. Finally, if you let it go on for too long, your
productivity becomes marginal. You can’t get anything meaningful done even
though you spend endless hours working, and eventually you have to give up
on the project or quit.

Figure 9-6 Productivity over time

Pr
od

uc
tiv

ity

Break-even, same
productivity despite

longer hours

Burnout
I QUIT!!!

Sustainable pace
(40 hours a week)

Unsustainable pace
(50+ hours a week)

Time

09-ch09.indd 348 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 349

HINT
If you are working for a startup, chances are that you are already experiencing burnout. The bad
news is that there is no quick and easy cure for it. Working less, exercising more, and spending
time with friends and family helps, but recovering fully this way takes months. A quicker way is
to take a long holiday (three to six weeks) or leave the project altogether and take a couple of
months of light work. It can take a lot of focus and a couple of burnouts in your lifetime before
you learn how to recognize early symptoms and how to prevent it altogether by managing
yourself.

Rather than continually falling into cycles of hyperproductivity and crashes,
it is more efficient and healthier to maintain a more sustainable level of effort.
Every person has different limits, depending on their motivation, internal energy,
engagement, and personality, but from my personal experience, working more
than 50 hours per week is dangerous, and working more than 60 hours per week
leads to burnout in a matter of months.

Your time is one of the most precious and nontransferable values you have. You
are spending it at a constant rate of 60 minutes per hour, and there is no way to
scale beyond that. Instead of trying to work longer hours, you need to find ways
to generate more value for your customers, business, and peers within the safety
zone of 40 hours per week. Although it may sound like an empty slogan, you truly
need to learn to work smarter, not harder.

Managing Yourself
A good way to look at the problem of maximizing your own productivity is to
look at your workload as if you were managing a project and all of your potential
tasks were parts of this project. When managing a project, you have three “levers”
allowing you to balance the project: scope, cost, and time.

Anytime you increase or decrease the scope, cost, or deadline, the remaining
two variables need to be adjusted to reach a balance. As you add more work,
you need to spend more resources or extend deadlines. As you reduce the time
available to deliver your project, you need to reduce scope or add resources.
Finally, as you reduce available resources, you need to either cut the scope or
extend your deadlines.

Figure 9-7 shows the project management triangle with a few extra notes to
help you memorize some of the coping strategies. The first thing that you need
to do is to accept the fact that managing a project is about making tradeoffs. You
spend more time or money or do less work. It is as simple as that. When you

09-ch09.indd 349 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 350 Web Scalability for Startup Engineers

start thinking about work this way, you may be able to find ways to balance your
project without working overtime.

HINT
It is important to consider the role of quality in this context. I would suggest that building
automated tests and ensuring high-quality code is part of the scope of each feature. You should
not try to reduce scope by sacrificing quality if you want to maintain efficiency over the long term.
In a way, sacrificing the quality of your code is like borrowing money from Tony Soprano. It may
seem like a good idea when you are in a rush and under pressure, but sooner or later you will
have to start repaying the vig (excessive weekly interest on a loan).

Let’s have a closer look at how you can influence the amount of work, cost, and
deadlines to make your own workload more sustainable.

Influencing the Scope
“Without data, you’re just another person with an opinion.” –W. Edwards Deming

Influencing the scope of work is usually the easiest way to balance your workload,
and it is also an area where the most significant savings can be made. The first step to

Figure 9-7 Project management levers

SCOPE
features/tasks

TIME
schedule/deadlines

You have to balance
your workload

around 40 hours per
week for the sake of

the long-term
bene�ts

COST
money/people

To reduce the amount of work:
- Prioritize all the tasks
- Cut features to reduce work/complexity
- Apply 80/20 rule to know when to stop
- Automate more processes

If you can increase your resources:
- Delegate to other people
- Leverage third-party services
- Use commercial tools
- Outsource

If you can manipulate deadlines:
- Release in phases
- As a last resort extend deadlines

09-ch09.indd 350 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 351

get better at managing your own workload is to understand that any time you get
a new task or an existing task increases in size, you need to reevaluate deadlines,
increase available resources, or cut scope elsewhere.

Anything that you decide to do takes time, and by doing one thing you will
have less time for the remaining tasks. It may sound obvious, but learning how
to prioritize tasks based on their cost and value is the most important skill
in managing scope. After all, one of the most important things for a startup
to survive is making sure you are building the right stuff. To prioritize tasks
efficiently, you need to know their value and their cost. You can then prioritize
them based on their relative value/cost ratio.

Task priority = (value of that task) / (overall cost of that task)

The cost component of the equation is usually estimated quite accurately by
estimating the time needed to complete the task. Even for larger projects that include
financial costs (buy more servers or get additional services), people are usually good
at coming up with relatively accurate estimates. The real difficulties begin when you
try to estimate the value of each task, as most of the time, people do it based solely
on their personal gut feeling rather than past experience or actual data.

This inability to evaluate the true value of features is what leads most companies
to develop things that nobody needs. I have witnessed people working their hands
to the bone on features that made absolutely no difference, just because they
bought into a vision based on someone’s gut feeling without any data or critical
validation. In fact, following a vision without validating it is probably one of
the most common reasons for startup failures. That is why gathering data and
making decisions based on experiments is what the Lean Startup movement is
advocating. By designing experiments, gathering data, and making decisions
based on this data, you can reduce the risk of building things that nobody needs.

HINT
Following your gut feeling might be a great way to go if you are Richard Branson or Warren
Buffett, but in reality, most of us are not. That is why most decisions should be made based on
data, not gut feeling.

Changing the decision-making culture of your startup may be difficult, and it is
beyond the scope of this book, but I strongly recommend reading more about the
Lean Startup philosophy.30,9 Even if you are not able to change the way decisions
are made in your organization, you should collect metrics, talk to your customers,
run A/B tests, and try to help your business people make sure that you are not
building unnecessary things.

09-ch09.indd 351 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 352 Web Scalability for Startup Engineers

Another way to reduce the scope of your work is to follow the 80/20 rule and
know when to stop doing things rather than compulsively working for marginal
gain. The 80/20 rule is an observation that 80 percent of the value is generated
by 20 percent of the effort. Surprisingly, the 80/20 rule applies in many areas of
software development:

 ▶ 80 percent of the features can be built in 20 percent of the overall time.
 ▶ 80 percent of code coverage can be achieved in 20 percent of the overall time.
 ▶ 80 percent of users use only 20 percent of the features; in fact, studies show

that in many systems almost half of the features are never used.L10

 ▶ 80 percent of the documentation value is in 20 percent of its text.
 ▶ 80 percent of the bugs come from 20 percent of the code.
 ▶ 80 percent of the code changes are made in 20 percent of the codebase.

Although the 80/20 rule is a simplification, by realizing it, you can reduce
the time spent on gold plating and make sure that you stop working on the task
as soon as it is “complete enough” rather than trying to reach the 100 percent,
regardless of the cost. Applying the 80/20 rule is about being pragmatic and
considering the cost of your work. You can apply the 80/20 rule in many ways;
here are some ideas of how you could apply the 80/20 mind-set to reduce the
amount of work that needs to be done:

 ▶ Negotiate with your stakeholders to reduce the scope of new features to
80 percent and delay the most expensive/difficult parts to future releases.
By getting the base functionality out early, you can gather A/B test results
before investing more time in their “full” implementation. The minimum
viable product mentality can be applied to any feature, and in some cases,
it is all that your customers really need.

 ▶ Keep functionality minimalistic and simple as long as possible. Use A/B
testing any time you add new features to make sure that they are used and
that they generate the expected value. Code that is not used is a form of
technical debt, and features that are not used should be removed to reduce
that debt. Remember that less is more, especially in a startup.

 ▶ Make sure that you implement only the code that is absolutely necessary
without adding nice-to-have parameters, classes, and methods. All this “you
ain’t gonna need it” code needs to be tested, documented, understood, and
managed. Less is more!

09-ch09.indd 352 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 353

 ▶ Strive for 85 percent to 90 percent code coverage rather than going for 100
percent coverage at all costs. Some areas of code may be much more difficult
to test than others, and the cost of testing this remaining 10 percent may be
more than it is worth.

 ▶ When creating documentation, focus on critical information and the high-
level picture rather than documenting everything imaginable. Draw more
diagrams, as images are truly worth a thousand words. If you feel that your
documentation is complete, you have most likely wasted 80 percent of the time!

 ▶ Don’t fix it if it ain’t broke. Refactor parts of your codebase as you need to
modify them, but allow old code to just sit there if it does not need to be
changed. Why would you want to refactor a class that no one touched for
months? Just to feel better? I know that it sounds harsh, but doing things like
that is a compulsion and you simply can’t afford to do that in a startup.

 ▶ Always try to distinguish whether a task at hand belongs to the “I have to
do it” or “I want to do it” category, as the second one is a source of huge
amounts of extra work. Engineers love to learn and they love to build
software—that makes us biased towards building rather than reusing and
towards trying new things rather than doing what we already know. As a
result, we tend to chase the newest, coolest technologies, frameworks, and
patterns rather than using the best tool for the job. In addition, we are smart
enough to be able to justify our choices and fool ourselves into believing
that the choice we made is truly the best option there is for our company.
Practicing self-awareness and watching out for these biases should help you
reduce the amount of unnecessary work.

 ▶ Don’t scale or optimize until you absolutely have to, and remember that
even when you think you have to, you may be falling into an “I want to do
it” trap. You should not build horizontal scalability into every project you
work on, as most of the time it will be a waste of time. It is estimated that
90 percent of startups that get seed funding fail. The same statistic applies
to startups that go through accelerators. Out of the remaining 10 percent
that survive, the majority never need to scale beyond a dozen servers, not
to mention horizontal scalability. If you work for a startup, you should plan
for scalability, but defer complexity and time investments for as long as you
can so you can focus on more urgent needs, like making sure that you are
building a product that your customers really need.

It is especially difficult for engineers to manage scope, as engineers are passionate
and optimistic people. We want to get everything done, we want it all to be perfect,

09-ch09.indd 353 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 354 Web Scalability for Startup Engineers

and we truly believe it can all be done by tomorrow afternoon. We wish our UIs
were beautiful, back ends were optimized, data was consistent, and code was clean.
Unfortunately, unless you have unlimited resources or years of time to muck
around, you will have to make sacrifices and sometimes you will need to let go of
some things for the sake of more important tasks. Be pragmatic.

Influencing the Cost
Another way to balance your workload and allow your startup to scale is to learn
how to increase the costs to reduce the amount of work. You can reduce the
scope of your own work by delegating tasks and responsibilities to other people,
tools, or third-party companies. If you have too much work to do, all of the work
truly needs to be done, nothing else can be automated, and deadlines cannot be
postponed, you should start looking for ways to delegate.

By delegating tasks to other members of your team, you increase the scalability
of your department. If you are the only person who can do a certain task, you
are the bottleneck and a single point of failure. By having multiple people on the
team equally capable of performing a particular task, work can be distributed
more evenly among more people and you stop being the bottleneck. In addition,
by having more people working on the same problem, you increase the chances of
breakthroughs and innovation in this area. For example, your peer may find a way
to automate or optimize part of the workflow that you would never think of.

To be able to easily delegate tasks and responsibilities to other team members,
you need to make sure that people are familiar with different tasks and different
parts of the application. For that reason, you need to actively share knowledge
within the team and collaborate more closely. Here are some of the practices that
help in sharing knowledge and responsibility for a project:

 ▶ Pair programming This is a practice where two engineers work together
on a single task. Although it may seem inefficient, pair programming leads
to higher-quality designs, fewer bugs, and much closer collaboration.
I would not recommend practicing pair programming all the time, but
one day a week may be a great way to share knowledge, develop a shared
understanding of the system, and agree on best practices. It is also a great
way to mentor more junior members of the team, as they can see firsthand
how senior engineers think and how they solve problems.

 ▶ Ad hoc design sessions These are spontaneous discussions involving
whiteboards or pen and paper to discuss problems, brainstorm ideas, and
come up with a better solution.

09-ch09.indd 354 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 355

 ▶ Ongoing code reviews This is a practice of reviewing each other’s code.
Although code reviews may be associated mainly with code quality, they are
a powerful way to increase collaboration and knowledge sharing. Reviewing
each other’s code allows engineers not only to provide feedback and enforce
best practices, it is also a great way for engineers to stay up to date with
changes being made.

Another way to reduce the workload by increasing costs is by buying the
services of third-party companies or using commercial tools. A good example of
scaling your throughput by third parties is by using third-party monitoring and
alerting tools. If you wanted to develop a monitoring and alerting system yourself,
it might take you months to get anything useful and scalable built. However,
if you decided to deploy an open-source alternative, you might only need days
to get it up and running, but you would still incur some ongoing management
time costs. If you decided to sign up with a third party, on the other hand, you
could convert the time cost of developing and managing the service into a dollars
cost. By using a third-party monitoring service, you drastically reduce the initial
time cost and trade ongoing time cost for an ongoing money cost. In a similar
way, you can reduce your workload or increase your productivity by using more
sophisticated commercial tools, hosted data stores, caches, workflow engines, and
video conferencing services.

HINT
Engineers love to build software. This love for building new things makes us biased towards
developing rather than reusing. Developing things like monitoring services, analytics and alerting
platforms, frameworks, or even data stores is just another form of reinventing the wheel. Before
you jump into implementation, you should always check what can be used for free and what can
be bought.

Although reducing the workload by increasing cost is usually beyond an
engineer’s pay grade, it is something that can be presented to the business leaders.
Not having to do the work at all is a way to scale, as it allows you to keep 100 percent
focused on your customers’ needs.

Influencing the Schedule
The last of the three levers of project management that you may be able to affect
is the schedule. In a similar way as with costs, it may be out of your direct control
to decide which features can be released by when, but you can usually affect the

09-ch09.indd 355 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 356 Web Scalability for Startup Engineers

schedule to some degree by providing feedback to your business leaders. Most of
the time, both deadlines and the order of features being released are negotiable
and subject to cost considerations. On a very rare occasion you may face a
hard deadline when your company schedules a media campaign that cannot be
canceled or when your company signs a contract forcing you to deliver on time,
but most of the time, things are flexible.

To be absolutely clear, I am not trying to say that you should extend deadlines,
as delaying releases is usually a bad idea and it hurts your company. What I
am trying to say is that when working in a startup, you are much closer to the
decision-making people and you can have a much bigger impact on what gets
shipped and when. Rather than passively listening for commands, you should
actively provide feedback to your business leaders, letting them know which
features are cheap and quick to build and which ones are expensive or risky. As a
result, they may understand the costs better and prioritize tasks more accurately.

In addition to providing constant feedback, I recommend releasing in smaller
chunks. By reducing the size of each release, you can gain consumer feedback
more quickly and decide whether you should keep building what you intended
to build or if you should change the direction and build something different.
Rapid learning is what Lean Startup methodology is all about. You release often,
you gather feedback and data, and then you figure out what your next move is
going to be rather than trying to plan it all up front. By developing the product in
small pieces, you reduce the risk and the cost of making mistakes, which are an
inevitable part of working for a startup.

For example, if you were extending an e-commerce platform to allow external
merchants to build their own online stores, you might simply come up with a list
of features, plan execution, and then work on that plan for three or six months
before releasing it to your customers. By working for three months without any
customer feedback, you work as if you were suspended in a vacuum. There is no
way of knowing whether your customers will like your features; there is also no
way of knowing what other features merchants might need. The larger the release
cycle, the higher the risk of building things that customers don’t need.

A better way of approaching such a scenario would be to release a minimal
management console as soon as possible and then add features based on your
customer feedback. By releasing more quickly, you give yourself an opportunity
to interview your customers, run surveys, collect A/B testing data, and ultimately
learn. Then, based on this additional information, you can further refine your feature
set without the need to implement everything up front. By breaking larger features
into smaller pieces, you can also leverage the 80/20 rule, as you will often discover

09-ch09.indd 356 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 357

that what you have already built is enough for your customers and further phases
of development on a particular feature may not be needed any more.

In addition to splitting features into smaller chunks, you may experiment
with mocks, which are especially helpful in early phases of startup development.
A mock is a feature that is not really implemented, but presented to users to
measure their engagement and validate whether this feature is needed or not.

For example, if you wanted to implement an artificial intelligence algorithm
that would automatically tag product pictures uploaded by your merchants, you
might need months or years to complete the implementation. Instead of doing
that, you could resort to a mock to run a quick and cheap experiment. You could
start by selecting a sample of random products in your database. You would then
ask your employees to tag the selected images rather than using actual artificial
intelligence software. Finally, you could interview your merchants and run A/B
tests to measure the impact on search engine optimization and user engagement.
By using such a mock and collecting data, your startup could learn more about
the true value of the feature in a very quick time (a matter of weeks); then based
on this, you could decide whether it is worth building the feature or whether you
should build something different.

Depending on your role and the company you are working for, it may be easier
to control the scope, costs, or schedules. By looking for tradeoffs and providing
feedback to your business leaders, you should be able to balance your workload
more efficiently and hopefully avoid working overtime.

Scaling Agile Teams
The final aspect of scalability that I would like to highlight is the challenge of scaling
agile teams. As your organization grows, you will need to hire more engineers,
managers, product owners, and system administrators to be able to grow your
product. Unfortunately, scaling agile is difficult, as you cannot scale an agile team
by simply adding people to it. Things that work in teams of eight people do not work
as well in larger teams consisting of dozens or hundreds of people.

Adding More People
A good example of things that don’t scale linearly as your team grows is
communication. When working in a team of five, you can always get up to speed
on what is happening; what changes are being made; what requirements have
been discussed; and what designs, standards, and practices were chosen. As you

09-ch09.indd 357 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 358 Web Scalability for Startup Engineers

keep adding people to the team, the number of communication paths grows very
rapidly, making it impractical for everyone to stay up to date with everyone else at
the same time. Figure 9-8 shows how the number of communication paths grows
with the size of the team.

A common way out of this problem is to create a set of smaller teams of four
to nine people and to give each of the teams a set of distinct responsibilities
based on their functions. You can have a team of testers, a team of system
administrators, a few teams of programmers focusing on different areas, and you
can sometimes even see teams of project managers and product owners. It may
seem like a good idea to grow this way, but what you inevitably end up with is a
culture of handoffs, politics, finger pointing, and hostility among what becomes a
set of opposing camps.

The reason why this approach does not work efficiently is that teams are
created based on their job function, not an area of product development. As
a result, your development and deployment life cycle becomes a pipeline of
handoffs where people at every stage care about their own point of view rather
than considering the overarching goals. In companies like that, product owners
pass requirements to engineers, who then write code and hand over features
to testers and sysadmins. Whenever things go wrong, finger pointing begins,
stronger and stricter procedures are developed, and progress becomes even more
difficult to make as everyone wants to save their own skin.

Luckily, there is a better way to scale software engineering teams: by removing
monopolies and creating cross-functional teams.L11 Rather than having teams
consisting of only testers or only programmers, you should build teams around
products or services. For example, you can have a dedicated team maintaining
a checkout functionality, with a designer, web developer, a sysadmin, three

Figure 9-8 Number of communication paths

5 people on the team
10 communication paths

9 people on the team
36 communication paths

09-ch09.indd 358 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 359

back-end engineers, and a couple of front-end ones. As a result, such a team can
autonomously design, develop, and deploy features. Ideally, such a team could
also gather feedback, analyze metrics, and lead the development of the checkout
“product” without having to wait for anyone else.

By reducing dependencies between teams and giving them more autonomy,
progress can be made independently. When you think of it, scalability on the
organization level is similar to the scalability of your applications. You need to be
able to add more workers (servers) to distribute the work among them. Following
this analogy, to maximize throughput, your workers need to be able to make
decisions locally so that they do not have to wait for other workers. In addition,
they need to have the skills, tools, and authority (code and data) to execute with
minimal communication overhead.

This model of scaling technology departments by building cross-functional
teams can be especially successful in startups embracing service-oriented
architecture (or micro-services), as you design your system as a set of loosely
coupled UIs and web services, which can then be developed and deployed
independently by separate teams. It is best to have teams responsible for an end-
to-end product, like a “checkout experience,” including UI, front end, back end,
and data stores, but as your applications grow, you may need to create a dedicated
team handling the checkout UI and another managing a checkout web service.
By splitting the team in two, you can have more people working on the checkout
product, but at the same time, you create cross-team dependencies, which can
make it more difficult to make progress, as UI guys need to wait for service
changes.

Procedures and Innovation
Another important part of scaling your engineering department is to get the
right balance among procedures, standards, and autonomy of your teams. As
your organization grows, you may want to develop certain procedures to make
sure that your organization is aligned and everybody follows best practices. For
example, you may require all teams to have an on-call roster to ensure 24-hour
support for production issues. You may want every service to have a business
continuity plan to be able to recover quickly in case of major disasters and
failures. You may also want to develop certain coding standards, documentation
standards, branching strategies, agile processes, review processes, automation
requirements, schema modeling guidelines, audit trail requirements, testing best
practices, and much, much more.

09-ch09.indd 359 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 360 Web Scalability for Startup Engineers

An important thing to keep in mind is that as you develop all of these standards
and procedures, you benefit from them, but at the same time, you sacrifice some
of your team’s autonomy, flexibility, and ability to innovate.

For example, you may develop a process mandating that every product that
goes into production needs to have data replication and a secondary hot standby
environment for business continuity. It may be a great idea if all of your systems
require 99.999 percent availability, but at the same time, it may slow your teams
down significantly. Rather than developing and deploying a lightweight MVP
service within a couple of weeks, your people may need to spend an additional
month making that service robust enough to be able to meet your business
continuity requirements. In some cases, it may be a good thing, but at the same
time, it will make experimentation and learning much more expensive, as you will
be forced to treat all of your use cases in the same way, regardless of their true
requirements.

Procedures and standards are an important part of growing up as a company,
but you need to keep them lean and flexible so that they do not have an adverse
effect on your productivity, agility, and your culture.

Culture of Alignment
The last, but not least, important facet of scaling technology organizations is to
align your teams on common goals and build a good engineering culture. Without
alignment, every team will do their own thing. They will lead products in different
directions, they will focus on different priorities, and they will ultimately clash
against each other as they try to achieve conflicting goals. Anything that you can
do as an engineer, a leader, or a business person to align your teams is going to
magnify the momentum and increase the overall productivity of your startup.

Figure 9-9 shows how you can visualize alignment across your technology
department. When your teams are unaligned, they all pull in different directions.
As a result, the overall direction of movement is undefined and uncoordinated.
In comparison, by making everyone pull in the same direction, you magnify their
strengths, as they do not have to fight each other’s conflicting interests.

To align your teams more closely, you can start by developing a culture of
humility, respect, and trust, where every engineer’s motto is that “we are all in
this together.” To be a good team player, the benefit of the company should always
come before the benefit of a team, and the benefit of the team should always come
before the benefit of an individual.

Whether you are a CTO, a manager, or an engineer, you can always influence
the culture by aiming to work together, learning about others’ needs, seeking
compromises, and trying to understand others’ points of view. A good engineering

09-ch09.indd 360 09/05/15 12:14 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Chapter 9

 Chapter 9: Other Dimensions of Scalability 361

culture is built on foundations of mutual respect, trust, and mindfulness.L11,11
Without a good culture, you end up in a vicious cycle of hiring ever worse engineers,
getting bogged down with politics and egos, and fighting obstructionism.

For people to be productive, healthy, and happy, you need to create an environment
where everyone can feel safe and accepted, and where people get support from
their peers. The good news is that it is in everyone’s capacity to ignite and foster
a good engineering culture. You do not have to be a CEO to do this.

Summary
As I have learned over the years, scalability is a deep and difficult subject. I have
covered a lot of different topics in this book and although I have just scratched
the surface of many of these subjects, I believe that it will help you build a holistic
picture of scalability and inspire you to learn more about it.

If you are passionate about scalability from the organizational point of view,
I strongly recommend that you learn more about the Lean Startup mentality.30,9
building a good engineering culture,11 and automating processes.4 Each of these
subjects is deep as an ocean by itself, and covering it all in this chapter would not
be possible.

On a personal level, my final piece of advice to you is to remain pragmatic and
never stop learning. Building software, and especially scalable software, is a game
of tradeoffs, and there is never a single right way to do things. Learn as much as
you can and then decide for yourself what rules are worth following and when to
break them.

Figure 9-9 Effects of alignment

Every team pulls in their
own direction. As a result
you are not moving much.

When all of your teams
pull in the same direction

you move without
resistance.

Unaligned Teams

?

Aligned Teams

09-ch09.indd 361 09/05/15 12:14 PM

This page intentionally left blank

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

363

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

A
References

10-Appendix.indd 363 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 364 Web Scalability for Startup Engineers

References noted in italics are not directly quoted within this book, but they
contribute to the greater body of knowledge about Web Scalability and are
recommended as further reading.

Books
1. Robert Cecil Martin (2002) Agile Software Development, Principles,

Patterns, and Practices
2. Eric Evans (2003) Domain-Driven Design: Tackling Complexity in the Heart

of Software
3. Dean Leffingwell, Don Widrig (2010) Agile Software Requirements: Lean

Requirements Practices for Teams, Programs, and the Enterprise
4. John Allspaw, Jesse Robbins (2010) Web Operations: Keeping the Data

on Time
5. Diomidis Spinellis, Georgios Gousios (2009) Beautiful Architecture: Leading

Thinkers Reveal the Hidden Beauty in Software Design
6. John Allspaw (2008) The Art of Capacity Planning: Scaling Web Resources
7. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (1994) Design

Patterns: Elements of Reusable Object-Oriented Software
8. Steve Souders (2009) Even Faster Web Sites: Performance Best Practices for

Web Developers
9. Curt Hibbs, Steve Jewett, Mike Sullivan (2009) The Art of Lean Software

Development
10. Martin Fowler (2002) Patterns of Enterprise Application Architecture
11. Brian Fitzpatrick, Ben Collins-Sussman (2012) Team Geek
12. Alvaro Videla, Jason Williams (2012) RabbitMQ in Action: Distributed

Messaging for Everyone
13. Ian Molyneaux (2009) The Art of Application Performance Testing: Help for

Programmers and Quality Assurance
14. Gary Mak (2008) Spring Recipes: A Problem-Solution Approach
15. Chad Fowler (2009) The Passionate Programmer: Creating a Remarkable

Career in Software Development

10-Appendix.indd 364 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 Appendix: References 365

16. Jeremy Zawodny, Derek Balling (2004) High Performance MySQL:
Optimization, Backups, Replication, Load Balancing & More

17. Ivo Jansch (2008) PHP|Architect's Guide to Enterprise PHP Development
18. Paul Allen, Joseph Bambara (2007) Sun Certified Enterprise Architect for

Java EE Study Guide
19. Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein (2003)

Introduction to Algorithms
20. David Chappell, Tyler Jewell (2002) Java Web Services
21. Vivek Chopra, Sing Li, Jeff Genender (2007) Professional Apache Tomcat 6
22. Glen Smith, Peter Ledbrook (2009) Grails in Action
23. Chuck Lam (2010) Hadoop in Action
24. Opher Etzion, Peter Niblett (2011) Event Processing in Action
25. Bruce Snyder, Dejan Bosanac, Rob Davies (2011) ActiveMQ in Action
26. Henry Liu (2009) Software Performance and Scalability: A Quantitative

Approach
27. Bill Wilder (2012) Cloud Architecture Patterns
28. John Arundel (2013) Puppet 3 Beginner’s Guide
29. Jeffrey Barr (2010) Host Your Web Site in the Cloud: Amazon Web Services

Made Easy
30. Eric Ries (2011) The Lean Startup
31. Arnon Rotem-Gal-Oz (2012) SOA Patterns
32. Gregor Hohpe, Bobby Woolf (2003) Enterprise Integration Patterns:

Designing, Building, and Deploying Messaging Solutions
33. David S. Linthicum (2009) Cloud Computing and SOA Convergence in Your

Enterprise: A Step-by-Step Guide
34. Bashar Abdul-Jawad (2008) Groovy and Grails Recipes
35. Charles Bell, Mats Kindahl, Lars Thalmann (2010) MySQL High Availability
36. Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra (2004) Head First

Design Patterns
37. Robert C. Martin (2008) Clean Code: A Handbook of Agile Software

Craftsmanship
38. Steve McConnell (2004) Code Complete, Second Edition

10-Appendix.indd 365 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 366 Web Scalability for Startup Engineers

39. Dominic Betts, Julián Domínguez, Grigori Melnik, Fernando Simonazzi,
Mani Subramanian, Microsoft (2012) Exploring CQRS and Event Sourcing
A Journey into High Scalability, Availability, and Maintainability with
Windows Azure; http://msdn.microsoft.com/en-us/library/jj554200.aspx

40. Frederick Brooks (1995) The Mythical Man-Month: Essays on Software
Engineering

41. Martin L. Abbott, Michael T. Fisher (2009) The Art of Scalability: Scalable
Web Architecture, Processes, and Organizations for the Modern Enterprise

42. Duane Wessels (2001) Web Caching
43. Martin Abbott, Michael Fisher (2011) Scalability Rules: 50 Principles for

Scaling Web Sites
44. Kyle Banker (2011) MongoDB in Action
45. Joel Spolsky (2004) Joel on Software
46. Jim Webber, Savas Parastatidis, Ian Robinson (2010) REST in Practice
47. Flavio Junqueira, Benjamin Reed (2013) ZooKeeper
48. Peter Membrey, David Hows, Eelco Plugge (2012) Practical Load Balancing:

Ride the Performance Tiger
49. Steve Souders (2007) High Performance Web Sites
50. Josiah L. Carlson (2013) Redis in Action
51. Martin Kalin (2013) Java Web Services: Up and Running, 2nd Edition

White Papers
w1. Jeffrey Dean, Sanjay Ghemawat (2004) MapReduce: Simplied Data

Processing on Large Clusters
http://static.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf

w2. Floris Engelbertink, Harald Vogt (2010) How to Save on Software
Maintenance Costs
http://www.omnext.net/downloads/Whitepaper_Omnext.pdf

w3. Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou, Member (2006)
CP-Miner: Finding Copy-Paste and Related Bugs in Large-Scale Software Code
http://pages.cs.wisc.edu/~shanlu/paper/TSE-CPMiner.pdf

10-Appendix.indd 366 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 Appendix: References 367

w4. Angela Lozano, Michel Wermelinger (2010) Tracking Clones’ Imprint
http://released.info.ucl.ac.be/pmwiki/uploads/Publications/
TrackingClonesImprint/clonesImprint.pdf

w5. NASA Office of Chief Engineer (2009) NASA Study on Flight Software
Complexity
http://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf

w6. Jakub Łopuszanski (2013) Algorithm for Invalidation of Cached Results of
Queries to a Single Table
http://vanisoft.pl/~lopuszanski/public/cache_invalidation.pdf

w7. Google, Inc. (2012) Spanner: Google’s Globally-Distributed Database
http://static.googleusercontent.com/external_content/untrusted_dlcp/
research.google.com/en/us/archive/spanner-osdi2012.pdf

w8. Solarflare (2012) Cisco and Solarflare Achieve Dramatic Latency Reduction
for Interactive Web Applications with Couchbase, a NoSQL Database
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/white_
paper_c11-708169.pdf

w9. Couchbase (2013) Dealing with Memcached Challenges
http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/
Couchbase_Whitepaper_Dealing_with_Memcached_Challenges.pdf

w10. Gregor Hohpe (2006) Programming Without a Call Stack: Event-Driven
Architectures
http://www.eaipatterns.com/docs/EDA.pdf

w11. Matt Welsh (2000) The Staged Event-Driven Architecture for Highly-
Concurrent Server Applications
http://www.eecs.harvard.edu/~mdw/papers/quals-seda.pdf

w12. Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion
Hodson, Antony Rowstron (2013) Nobody Ever Got Fired for Buying a Cluster
http://research.microsoft.com/pubs/179615/msrtr-2013-2.pdf

w13. Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety,
Antony Rowstron (2009) Migrating Server Storage to SSDs: Analysis of
Tradeoffs
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.2362&rep=rep
1&type=pdf

w14. Jiri Simsa, Randy Bryant, Garth Gibson, Jason Hickey (2013) Scalable
Dynamic Partial Order Reduction
http://www.pdl.cmu.edu/PDL-FTP/Storage/scalablePOR.pdf

10-Appendix.indd 367 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 368 Web Scalability for Startup Engineers

w15. Ariel Rabkin, Randy Katz (2012) How Hadoop Clusters Break
http://www.cs.princeton.edu/~asrabkin/papers/software12.pdf

w16. Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M.
Hellerstein, Ion Stoica (2012) Probabilistically Bounded Staleness for
Practical Partial Quorums
http://arxiv.org/pdf/1204.6082.pdf

w17. Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden (2013) MDCC:
Multi-Data Center Consistency
http://arxiv.org/pdf/1203.6049.pdf

w18. Google, Inc. (2011) Megastore: Providing Scalable, Highly Available Storage
for Interactive Services
http://pdos.csail.mit.edu/6.824-2012/papers/jbaker-megastore.pdf

w19. Brenda M. Michelson (2006) Event-Driven Architecture Overview
http://www.omg.org/soa/Uploaded%20Docs/EDA/bda2-2-06cc.pdf

w20. Facebook Data Infrastructure Team (2010) Hive: A Petabyte Scale Data
Warehouse Using Hadoop
http://people.cs.kuleuven.be/~bettina.berendt/teaching/2010-11-
2ndsemester/ctdb/petabyte_facebook.pdf

w21. Ian Foster, Yong Zhao, Ioan Raicu, Shiyong Lu (2008) Cloud Computing and
Grid Computing 360-Degree Compared
http://arxiv.org/ftp/arxiv/papers/0901/0901.0131.pdf

w22. Daniel J. Abadi (2012) Consistency Tradeoffs in Modern Distributed
Database System Design
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-pacelc.pdf

w23. Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica
(2013) HAT, not CAP: Highly Available Transactions
http://arxiv.org/pdf/1302.0309.pdf

w24. Stephan Muller (2012) The CAP-Theorem & Yahoo’s PNUTS
http://www.math.hu-berlin.de/~muellste/CAP-PNUTS-Text.pdf

w25. Eric Brewer (2012) CAP Tvelve Years Later: How the “Rules” Have Changed
http://www.realtechsupport.org/UB/NP/Numeracy_CAP+12Years_2012.pdf

w26. Microsoft Research (2012) Cloud Types for Eventual Consistency
http://research.microsoft.com/pubs/163842/final-with-color.pdf

w27. Avinash Lakshman, Prashant Malik (2009) Cassandra: A Decentralized
Structured Storage System
http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf

10-Appendix.indd 368 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 Appendix: References 369

w28. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber
(2006) Bigtable: A Distributed Storage System for Structured Data
http://static.usenix.org/events/osdi06/tech/chang/chang_html/?em_x=22

w29. Ryan Thompson, T.C. Friel (2013) The Sustainability of Cloud Storage
http://sais.aisnet.org/2013/ThompsonFriel.pdf

w30. Edward P. Holden, Jai W. Kang (2011) Databases in the Cloud: A Status Report
http://sigite2011.sigite.org/wp-content/uploads/2011/10/session11-paper02.pdf

w31. Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz,
Alexander Rasin (2009) HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads
http://www-master.ufr-info-p6.jussieu.fr/2009/Ext/naacke/grbd2010/extra/
exposes2010/C3_VLDB09_HadoopDB.pdf

w32. Brian Holcomb (2013) NoSQL Database in the Cloud: Riak on AWS
http://media.amazonwebservices.com/AWS_NoSQL_Riak.pdf

w33. Miles Ward (2013) NoSQL Database in the Cloud: MongoDB on AWS
http://media.amazonwebservices.com/AWS_NoSQL_MongoDB.pdf

w34. Matt Tavis, Philip Fitzsimons (2012) Web Application Hosting in the AWS
Cloud Best Practices
http://media.amazonwebservices.com/AWS_Web_Hosting_Best_Practices.pdf

w35. Jinesh Varia (2011) Architecting for the Cloud: Best Practices
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf

w36. Jeff Barr, Attila Narin, and Jinesh Varia (2011) Building Fault-Tolerant
Applications on AWS
http://media.amazonwebservices.com/AWS_Building_Fault_Tolerant_
Applications.pdf

w37. Amazon Web Services (2010) AWS Security Best Practices
http://media.amazonwebservices.com/Whitepaper_Security_Best_
Practices_2010.pdf

w38. Jinesh Varia (2008) Cloud Architectures
http://media.amazonwebservices.com/AWS_Cloud_Architectures.pdf

w39. Amazon.com (2007) Dynamo: Amazon’s Highly Available Key-Value Store
http://www.read.seas.harvard.edu/~kohler/class/cs239-w08/
decandia07dynamo.pdf

10-Appendix.indd 369 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 370 Web Scalability for Startup Engineers

w40. Edward Curry, Desmond Chambers, Gerard Lyons (2004) Extending
Message-Oriented Middleware Using Interception
http://www.edwardcurry.org/web_publications/curry_DEBS_04.pdf

w41. Sharma Chakravarthy, Raman Adaikkalavan (2007) Ubiquitous Nature of
Event-Driven Approaches: A Retrospective View
http://drops.dagstuhl.de/opus/volltexte/2007/1150/pdf/07191.
ChakravarthySharma.Paper.1150.pdf

w42. Daniel Ford, Francois Labelle, Florentina Popovici, Google (2010)
Availability in Globally Distributed Storage Systems
http://static.googleusercontent.com/external_content/untrusted_dlcp/
research.google.com/en//pubs/archive/36737.pdf

w43. Daniel Peng, Frank Dabek, Google (2010) Large-Scale Incremental Processing
Using Distributed Transactions and Notifications
http://static.googleusercontent.com/external_content/untrusted_dlcp/
research.google.com/en//pubs/archive/36726.pdf

w44. Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, Google (2003) The
Google File System
http://static.googleusercontent.com/external_content/untrusted_dlcp/
research.google.com/en//archive/gfs-sosp2003.pdf

w45. Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, Grzegorz Czajkowski, Google (2010) Pregel: A System
for Large-Scale Graph Processing
http://kowshik.github.io/JPregel/pregel_paper.pdf

w46. Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, Theo Vassilakis, Google (2010) Dremel: Interactive
Analysis of Web-Scale Datasets
http://static.googleusercontent.com/external_content/untrusted_dlcp/
research.google.com/en//pubs/archive/36632.pdf

w47. Sergey Brin, Lawrence Page, Google (1998) The Anatomy of a Large-Scale
Hypertextual Web Search Engine
http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf

w48. Luiz André Barroso, Jeffrey Dean, Urs Hölzle, Google (2003) Websearch for
a Planet: The Google Cluster Architecture
http://www.eecs.harvard.edu/~dbrooks/cs246-fall2004/google.pdf

w49. Mike Burrows, Google, Inc. (2006) The Chubby Lock Service for Loosely-Coupled
Distributed Systems
http://static.googleusercontent.com/external_content/untrusted_dlcp/
research.google.com/en//archive/chubby-osdi06.pdf

10-Appendix.indd 370 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 Appendix: References 371

w50. Raymond Cheng, Will Scott, Paul Ellenbogen, Arvind Krishnamurthy,
Thomas Anderson (2013) Radiatus: Strong User Isolation for Scalable Web
Applications
http://www.cs.washington.edu/education/grad/UW-CSE-13-11-01.PDF

w51. Yahoo! Research (2010) Feeding Frenzy: Selectively Materializing Users’ Event
Feeds.

w52. LinkedIn (2011) Kafka: A Distributed Messaging System for Log Processing
http://research.microsoft.com/en-us/um/people/srikanth/netdb11/
netdb11papers/netdb11-final12.pdf

w53. LinkedIn (2013) Using Set Cover to Optimize a Large-Scale Low Latency
Distributed Graph
http://0b4af6cdc2f0c5998459-c0245c5c937c5dedcca3f1764ecc9b2f.r43.cf2.
rackcdn.com/11567-hotcloud13-wang.pdf

w54. AMQP.org (2011) AMQP v1.0 Specification
http://www.amqp.org/sites/amqp.org/files/amqp.pdf

w55. DataStax (2014) Apache Cassandra 2.0 Documentation
http://www.datastax.com/documentation/cassandra/2.0/pdf/cassandra20.pdf

w56. DataStax (2014) CQL for Cassandra 2.0 Documentation
http://www.datastax.com/documentation/cql/3.1/pdf/cql31.pdf

w57. George Candea, Armando Fox from Stanford University (2003) Crash-Only
Software
https://www.usenix.org/legacy/events/hotos03/tech/full_papers/candea/
candea.pdf

w58. Konstantin V. Shvachko (2010) HDFS Scalability: The Limits to Growth
https://www.usenix.org/legacy/publications/login/2010-04/openpdfs/
shvachko.pdf

w59. Google, Inc. (2013) MillWheel: Fault-Tolerant Stream Processing at Internet
Scale
http://static.googleusercontent.com/media/research.google.com/en/us/pubs/
archive/41378.pdf

w60. Google, Inc. (2010) FlumeJava: Easy, Efficient Data-Parallel Pipelines
http://pages.cs.wisc.edu/~akella/CS838/F12/838-CloudPapers/FlumeJava.pdf

w61. Ranjit Noronha, Dhabaleswar K. Panda (2008) IMCa: A High Performance
Caching Front-End for GlusterFS on InfiniBand
http://nowlab.cse.ohio-state.edu/publications/conf-papers/2008/noronha-
icpp08.pdf

10-Appendix.indd 371 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 372 Web Scalability for Startup Engineers

w62. Facebook (2013) Scaling Memcache at Facebook
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final170_
update.pdf&sa=U&ei=gWJjU97pOeqxsQSDkYDAAg&ved=0CBsQFj
AA&usg=AFQjCNGMeuWne9ywncbgux_XiZW6lQWHNw

w63. Intel (2012) Enhancing the Scalability of Memcached
https://software.intel.com/sites/default/files/m/0/b/6/1/d/45675-
memcached_05172012.pdf

w64. Yahoo! (2010) ZooKeeper: Wait-Free Coordination for Internet-Scale Systems
https://www.usenix.org/legacy/event/usenix10/tech/full_papers/Hunt.pdf

w65. University of Washington (2011) Scalable Consistency in Scatter
http://homes.cs.washington.edu/~arvind/papers/scatter.pdf

w66. James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey III, Craig A. N.
Soules, Alistair Veitch (2012) LazyBase: Trading Freshness for Performance in
a Scalable Database
http://www.pdl.cmu.edu/PDL-FTP/Database/euro166-cipar.pdf

w67. Hyeontaek Lim, Bin Fan, David G. Andersen, Michael Kaminsky (2011) SILT:
A Memory-Efficient, High-Performance Key-Value Store
https://www.cs.cmu.edu/~dga/papers/silt-sosp2011.pdf

w68. Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, David G. Andersen
(2011) Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area
Storage with COPS
http://sns.cs.princeton.edu/docs/cops-sosp11.pdf

w69. Microsoft (2007) Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks
http://www.cs.cmu.edu/~./15712/papers/isard07.pdf

w70. Facebook (2013) TAO: Facebook’s Distributed Data Store for the Social Graph
https://www.cs.cmu.edu/~pavlo/courses/fall2013/static/papers/11730-atc13-
bronson.pdf

w71. Facebook (2013) Unicorn: A System for Searching the Social Graph
http://db.disi.unitn.eu/pages/VLDBProgram/pdf/industry/p871-curtiss.pdf

w72. Google (2014) Mesa: Geo-Replicated, Near Real-Time, Scalable Data
Warehousing
http://static.googleusercontent.com/media/research.google.com/en/us/
pubs/archive/42851.pdf

w73. The Ohio State University (2013) Understanding the Robustness of SSDs
under Power Fault
https://www.usenix.org/system/files/conference/fast13/fast13-final80.pdf

10-Appendix.indd 372 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 Appendix: References 373

w74. Philippe Flajolet, Éric Fusy, Olivier Gandouet, Frédéric Meunier (2007)
HyperLogLog: The Analysis of a Near-Optimal Cardinality Estimation
Algorithm
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

w75. Google, Inc. (2013) HyperLogLog in Practice: Algorithmic Engineering of a
State of the Art Cardinality Estimation Algorithm
http://static.googleusercontent.com/media/research.google.com/en//pubs/
archive/40671.pdf

w76. Martin Fowler (2004) Inversion of Control Containers and the Dependency
Injection Pattern
https://blog.itu.dk/MMAD-F2013/files/2013/02/3-inversion-of-control-
containers-and-the-dependency-injection-pattern.pdf

w77. Martin Thompson, Dave Farley, Michael Barker, Patricia Gee, Andrew
Stewart (2011) Disruptor: High Performance Alternative to Bounded Queues
for Exchanging Data Between Concurrent Threads
http://disruptor.googlecode.com/files/Disruptor-1.0.pdf

w78. Pat Helland (2009) Building on Quicksand
http://blogs.msdn.com/cfs-file.ashx/__key/communityserver-components-
postattachments/00-09-20-52-14/BuildingOnQuicksand_2D00_
V3_2D00_081212h_2D00_pdf.pdf

w79. Mark Slee, Aditya Agarwal, Marc Kwiatkowski, Facebook (2007) Thrift:
Scalable Cross-Language Services Implementation
http://thrift.apache.org/static/files/thrift-20070401.pdf

Talks
t1. Robert C. Martin (2011) Keynote Speech of Ruby Midwest: Architecture the

Lost Years
t2. Renat Khasanshyn (2012) CouchConf San Francisco

http://www.couchbase.com/presentations/benchmarking-couchbase
t3. Google, Inc. (2012) F1: The Fault-Tolerant Distributed RDBMS Supporting

Google's Ad Business
http://static.googleusercontent.com/external_content/untrusted_dlcp/
research.google.com/en//pubs/archive/38125.pdf

t4. Andy Parsons (2013) Lessons on Scaling Rapidly-Growing Startups in the Cloud
http://java.dzone.com/articles/lessons-scaling-rapidly

10-Appendix.indd 373 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 374 Web Scalability for Startup Engineers

t5. Sean Cribbs (2012) Fear No More: Embrace Eventual Consistency
http://qconsf.com/sf2012/dl/qcon-sanfran-2012/slides/SeanCribbs_
FearNoMoreEmbraceEventualConsistency.pdf

t6. Robert Hodges (2013) State of the Art for MySQL Multi-Master Replication
http://www.percona.com/live/mysql-conference-2013/sites/default/files/
slides/mysql-multi-master-state-of-art-2013-04-24_0.pdf

t7. Jay Patel (2013)
http://www.slideshare.net/jaykumarpatel/cassandra-data-modeling-best-
practices

Links
L1. Windows Azure Queues and Windows Azure Service Bus Queues:

Compared and Contrasted
http://msdn.microsoft.com/en-us/library/windowsazure/hh767287.aspx

L2. Thomas Bayer (2013) Broker Wars
http://www.predic8.com/activemq-hornetq-rabbitmq-apollo-qpid-
comparison.htm

L3. Amazon SQS Documentation
http://aws.amazon.com/documentation/sqs/

L4. Google Trends of ActiveMQ and RabbitMQ Searches
http://www.google.com/trends/explore?q=activemq%2C+rabbitmq%2C+z
eromq%2C+hornetq#q=activemq%2C%20rabbitmq&date=7%2F2008%20
61m&cmpt=q

L5. Datadog
https://www.datadoghq.com/product/

L6. Martin Fowler (2011) The LMAX Architecture
http://martinfowler.com/articles/lmax.html

L7. Martin Fowler (2005) Event Sourcing
http://martinfowler.com/eaaDev/EventSourcing.html

L8. Mitchell Anicas (2014) How to Use Logstash and Kibana to Centralize Logs
on Ubuntu 14.04
https://www.digitalocean.com/community/tutorials/how-to-use-logstash-
and-kibana-to-centralize-and-visualize-logs-on-ubuntu-14-04

10-Appendix.indd 374 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 Appendix: References 375

L9. Logstash (2013) Introduction
http://logstash.net/docs/1.4.2/tutorials/getting-started-with-logstash

L10. Luu Duong’s Blog (2009) Applying the “80-20 Rule” with The Standish
Group’s Statistics on Software Usage
http://luuduong.com/blog/archive/2009/03/04/applying-the-quot8020-
rulequot-with-the-standish-groups-software-usage.aspx

L11. Spotify (2014) Spotify Engineering Culture
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/

L12. The Netflix Tech Blog (2010) Chaos Monkey Released into the Wild
http://techblog.netflix.com/2012/07/chaos-monkey-released-into-wild.html

L13. Azure SQL Database Elastic Scale Overview
http://azure.microsoft.com/en-us/documentation/articles/sql-database-
elastic-scale-introduction/

L14. The Netflix Tech Blog (2013) Astyanax Update
http://techblog.netflix.com/2013/12/astyanax-update.html

L15. Red Hat Storage Server NAS Takes on Lustre, NetApp
http://www.theregister.co.uk/2012/06/27/redhat_storage_server_2_launch/

L16. Zookeeper
http://zookeeper.apache.org/

L17. Curator
http://curator.apache.org/

L18. Amazon API (2012) Elastic Load Balancer LB Cookie Stickiness
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/APIReference/
API_CreateLBCookieStickinessPolicy.html

L19. F5 DevCentral (2013) Back to Basics: The Many Faces of Load Balancing
Persistence
https://devcentral.f5.com/articles/back-to-basics-the-many-faces-of-load-
balancing-persistence

L20. Amazon (2013) Creating Latency Resource Record Sets
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/
CreatingLatencyRRSets.html

L21. Amazon (2012) Multi-Region Latency Based Routing Now Available for AWS
http://aws.amazon.com/blogs/aws/latency-based-multi-region-routing-
now-available-for-aws/

10-Appendix.indd 375 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 376 Web Scalability for Startup Engineers

L22. Amazon (2014) Two New Edge Locations for CloudFront and Route 53
http://aws.amazon.com/blogs/aws/two-new-edge-locations-for-cloudfront-
and-route-53-taipei-and-rio-de-janeiro/

L23. Wikipedia, List of Managed DNS Providers
http://en.wikipedia.org/wiki/List_of_managed_DNS_providers

L24. Cloudharmony blog (2012) Comparison and Analysis of Managed DNS
Providers
http://blog.cloudharmony.com/2012/08/comparison-and-analysis-of-
managed-dns.html

L25. Citrix (2013) Citrix NetScaler
http://www.citrix.com/content/dam/citrix/en_us/documents/products-
solutions/netscaler-data-sheet.pdf

L26. F5 Networks (2013) Comparative Performance Report
http://www.f5.com/pdf/reports/F5-comparative-performance-report-
ADC-2013.pdf

L27. statisticshowto.com, Misleading Graphs: Real Life Examples
http://www.statisticshowto.com/misleading-graphs/

L28. Gernot Heiser (2010) Systems Benchmarking Crimes
http://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html

L29. Amazon, Auto-scaling Documentation
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/
USBasicSetup-Console.html

L30. Amazon, Auto-scaling Documentation
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-register-
lbs-with-asg.html

L31. highscalability.com (2013) Scaling Pinterest: From 0 to 10s of Billions of
Page Views a Month in Two Years
http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-
of-billions-of-page-views-a.html

L32. highscalability.com (2010) 7 Lessons Learned While Building Reddit to
270 Million Page Views a Month
http://highscalability.com/blog/2010/5/17/7-lessons-learned-while-building-
reddit-to-270-million-page.html

L33. highscalability.com (2012) Tumblr Architecture: 15 Billion Page Views
a Month and Harder to Scale Than Twitter
http://highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-
page-views-a-month-and-harder.html

10-Appendix.indd 376 09/05/15 12:22 PM

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Appendix

 Appendix: References 377

L34. Charles Bretana via stackoverflow.com (2009) Does Anyone Have a Good
Analogy for Dependency Injection?
http://stackoverflow.com/questions/424457/does-anyone-have-a-good-
analogy-for-dependency-injection

L35. highscalability.com (2010) Facebook at 13 Million Queries Per Second
Recommends: Minimize Request Variance
http://highscalability.com/blog/2010/11/4/facebook-at-13-million-queries-
per-second-recommends-minimiz.html

L36. www.percona.com (2014) MySQL Ring Replication: Why It Is a Bad Option
http://www.percona.com/blog/2014/10/07/mysql-ring-replication-why-it-
is-a-bad-option/

L37. Pramod Sadalage, Martin Fowler (2012) Introduction to Polyglot Persistence:
Using Different Data Storage Technologies for Varying Data Storage Needs
http://www.informit.com/articles/article.aspx?p=1930511

L38. Fangjin Yang (2012) Fast, Cheap, and 98% Right: Cardinality Estimation for
Big Data
http://druid.io/blog/2012/05/04/fast-cheap-and-98-right-cardinality-
estimation-for-big-data.html

L39. Stripe, API Libraries
https://stripe.com/docs/libraries

10-Appendix.indd 377 09/05/15 12:22 PM

This page intentionally left blank

379

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

Index

A
A/B tests, 340, 352
abstraction

avoiding overengineering, 40–41
promoting simplicity, 38–40
reducing coupling on higher levels of, 44–46

access patterns
data modeling focus on, 314, 316–317
denormalizing/optimizing for, 316
identifying/modeling data based on, 313
in NoSQL data stores, 317–318
wide column storage example, 321, 324–325

account ID (user ID)
in binary search, 307
in full table scans, 305
implementing sharding key, 172–174,

188–189
partitioning search data, 325
search optimization, 309–310

ACID (Atomicity, Consistency, Isolation,
Durability) transaction, 177, 178

active data set size, 167–168
ActiveMQ

advanced routing rules, 264
comparing messaging platforms, 286, 288,

292–294
load handling, 269
messaging protocols, 265–266
ordering messages, 280
overview of, 291–292
partial message ordering guarantee, 279
poison message handling, 284

ad hoc design sessions, 354
administration, Cassandra, 202–203
Advanced Message Queuing Protocol (AMQP),

265, 288–289
agent, monitoring, 342
agile teams, scaling

adding more people, 357–359
culture of alignment, 360–361

overview of, 357
procedures and innovation, 359–360

AJAX
front-end applications with, 29
local device storage for SPAs, 229
simplifying asynchronous processing,

252–253
alerts

automating, 340–345
automating build and deployment, 340
custom routing rules for, 264

alignment, culture of, 361–362
alter table statements, MySQL replication, 169
Amazon

CloudFront, 17, 117–119, 222–223
CloudSearch, 329
CloudWatch, 116, 118
CloudWatch Logs, 346
Dynamo. See Dynamo data store
Elastic Cache, 238–239
RDS (Relational Database Service), 170
Route 53 service, 101–103, 117–119

Amazon EC2 (Elastic Compute Cloud)
auto-scaling, 115–116
AWS web deployment, 117–119
deploying own caching servers, 238–239
load balancer. See Amazon ELB

(Elastic Load Balancer)
queue workers, 268

Amazon ELB (Elastic Load Balancer)
automating build and deployment, 339
auto-scaling, 116–118
as hosted service, 106–107
stateless web service machines and, 140

Amazon Machine Image (AMI), 115, 339
Amazon SQS (Simple Queue Service)

comparing messaging platforms, 293–294
disadvantages of, 288
message ordering problem, 280, 288
overview of, 285–288
poison message handling, 284

11-Index.indd 379 12/05/15 10:21 AM

 380 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

AMI (Amazon Machine Image), 115, 339
AMQP (Advanced Message Queuing Protocol),

265, 288–289
anti-patterns, message queue, 282–284
Apache mod_proxy, 224
Apache server, 53–54
Apache Traffic Server, 224
API-first design, web services, 127–129, 130–131
APIs (application programming interfaces)

learning simplicity from, 42–43
promoting simplicity with TDD, 41
in web application development, 124
web service design not using, 124–127

Apollo, 292
application architecture

front end, 28–30
overview of, 27–28
supporting technologies, 34–35
web services, 30–34

application metrics, reducing MTTR, 342
application servers

caching objects directly on, 231, 232
deploying web services in parallel to, 25
distributed storage/delivery of public files, 94
object cache servers using front-end, 25
placing reverse proxy servers, 220
serving private files, 95
stateful web, 86
using locks, 98–99
in web application layer, 24

applications
caching objects. See object caches
promoting loose coupling, 44–46

architecture
application. See application architecture
Cassandra, 199–204
event-driven. See EDA (event-driven

architecture)
flexibility of good, 316
function-centric web services, 131–134
resource-centric web services, 134–138

Astyanax Chunked Object Store, Netflix, 96
asynchronous nature, of MySQL replication,

158–159
asynchronous processing

comparing messaging platforms, 284–294
currently in renaissance phase, 301–302
direct worker queue interactions as, 296–297
event-driven architecture as, 295–301
example of, 249–254
message queue anti-patterns, 282–284
message queue benefits, 270–276
message queue challenges, 276–282
message queues in, 256–270

overview of, 246
shopping analogy of, 254–256
summary, 301–302
synchronous example, 247–250
synchronous processing vs., 246

Atlassian Bamboo, 337
at-least-once delivery, message requeueing, 280
atomic counters, application-level sharding, 184
atomic transactions, ACID, 177
authentication, 138, 141
authorization, stateless web services for, 141–142
automation

build and deployment, 49, 335–340
Cassandra, 202–203
log aggregation, 345–347
monitoring and alerting, 340–345
overview of, 332–333
scaling with load balancers, 105
self-healing repair process, 79–80
testing, 333–335

auto-scaling
front-end scalability with, 114–116
with load balancers, 105–107
stateless web service machines with, 140

availability
CAP theorem and, 191–192
message queues evening out traffic spikes

for, 273–274
MySQL ring replication reducing,

164–165
reduced thoroughput vs., 274–275

Azure
auto-scaling with, 115
Blob Storage for files, 93–95
Diagnostics, 346
Load Balancer, 111, 140
load balancer as hosted service in,

106–107
scalability limits in Queues, 269
Search, 329
Service Bus Queues, 269
SQL Database Elastic Scale, 184

B
back-end server termination, ELB, 107
backpressure feature, RabbitMQ, 293
backup, MySQL replication, 159–160
bandwidth, CDN reducing, 15
benchmarks, gaining value of, 113
best practices, continuous deployment pipeline,

339–340
big data, 25
Big O notation, 305, 307–308, 328

11-Index.indd 380 12/05/15 10:21 AM

 Index 381

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

Big-IP, F5, 109–111
BigTable, 190–191, 317
binary search algorithm, 306–307
bindings, RabbitMQ, 264
binlog file, MySQL replication, 157–158, 161
Blob Storage, Azure, 93–95
blocking, 248–249
blocking I/O, 248
book index structure, 306, 328
book references, for this book, 364–366
browser cache

HTTP-based, 208, 218–219
scalability of, 223
scaling front end with, 113–114

buffers, active data set size, 168
build process, automating, 49, 335–340
burnout, preventing, 348–349
business continuity plans, 79
business logic

front-end servers freed of, 22–24, 29
hexagonal architecture and, 32
pushing to web services, 24–25, 30–34
web application layer freed of, 24

business metrics, reducing MTTR, 342

C
cache hit ratio

bundling CSS/JS files to maximize, 216
overview of, 208–209
scaling reverse proxies, 224, 227

cache invalidation, 233, 243–244
cache key space, 208, 224
cache-aside caches. See object caches
Cache-Control HTTP header, 213–217
cached objects. See HTTP-based caches
caches co-located with code, 230–232
caching

application objects. See object caches
AWS web deployment example,

117–119
cache hit ratio. See cache hit ratio
data partitioning using, 76–77
definition of, 12
front-end components using back end, 29
HTTP-based. See HTTP-based caches
local server, 97–98
Nginx benefits, 108
overview of, 208
preventing MySQL replication timing

issues, 169
rules of thumb for, 239–244
scaling front end using, 113–114
summary, 244

caching proxy, 219–220
caching servers

caches co-located with code, 230–232
distributed, 232–233
scaling object caches, 238

call stack
asynchronous processing as programming

without, 281
caching high up, 239–240
latency dictated by weakest link in, 296

callback
asynchronous call with, 251–254
definition of, 249
shopping analogy with, 255–256

Camel, integration with ActiveMQ, 264, 291–292
CAP (consistency, availability, and partition

tolerance) theorem, 191–192
capacity, increasing

adding more servers, 73, 77
front line components, 22–24
load balancer limits, 109
load balancers increasing, 105
scalabilty and, 3
scaling horizontally, 16–17
scaling vertically, 8–10

cardinality, estimating for index, 308–310
Cassandra

failure handling, 80
scaling own file storage/delivery, 96
self-healing strategies, 196
topology, 199–204
as wide columnar data store, 317, 319–325

CDNs (content delivery networks)
caching front end, 113
definition of, 14
delivering public files to end users, 94
as front-end layer component, 101
horizontal scaling with, 17
hosting own hardware with, 121
as HTTP-based cache, 221–222
offloading traffic to third party with, 13
reducing bandwidth with, 15
scalability of, 223
scaling for global audience, 20–21

central processing unit. See CPU (central
processing unit)

centralized log service, streaming logs to, 345
Chaos Monkey, 78
Chrome, 53–54
circular dependencies, 47
class diagrams, 59–60
classes

avoiding unnecessary coupling, 47
dependencies of, 60

11-Index.indd 381 12/05/15 10:21 AM

 382 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

classes (cont.)
dependency injection principle, 65–68
designing, 53
promoting loose coupling, 44–46
single responsibility principle of, 61–63

clients
decoupling providers and, 51–54
interacting with HTTP read-through

caches, 211–212
in request/response interactions, 298–299
stateless web service machines and, 139

client-side caches
caching high up call stack, 240
overview of, 228–229
scaling, 233–234

client-side conflict resolution, 195–196
clones

implementing distributed locking, 99–100
load balancing by adding, 104–105, 108, 110
multiple slave machines and, 158
in publish/subscribe method, 263
replication challenges, 166
reverse proxy as independent, 226
scaling by adding, 71, 72–74
scaling REST web services by adding, 138, 140
scaling web cluster by adding, 232
using local/independent locks, 98–99

Cloud Load Balancers, Rackspace, 111
cloud-based hosting

auto-scaling with load balancers, 105
AWS web deployment, 117–119
Azure SQL Database Elastic Scale, 184
file storage, 93–95
in, 268
load balancer, 106–107
log aggregation, 346
MySQL, 170
stateless web service machines, 140

CloudFront, Amazon
AWS web deployment, 117–119
cost effectiveness of, 17
delivering static/dynamic content,

222–223
CloudSearch, Amazon, 329
CloudWatch, 116, 118
CloudWatch Logs, 346
clusters

Cassandra topology, 200, 203
reverse proxy in front of web service,

220–221
scaling by adding clones to web, 232
scaling distributed object caches, 233,

235–239

coarse locks, 143
code

80/20 rule for, 352–353
problems from hacking own, 50
reducing coupling when writing, 45
reviews, 355
writing vs. reusing, 49

coding to contract, 51–54, 60
collocated servers, 13
column families, Cassandra, 321–322
Common Object Request Broker Architecture

(CORBA), 132
communication paths, 357–358
complexity

application-level sharding and, 184
dependency injection reducing, 68
key-value stores offering least, 317
message queue challenges, 281
promoting simplicity by hiding, 38–40
reducing coupling by hiding, 44
reducing with single responsibility, 61–63
shared lock management service

increasing, 99
of SOAP, 134

composition, and repetitive code, 50
compound (composite) indexes

Cassandra tables similar to, 319–320
definition of, 311
ordering of columns in, 311–312
structuring data as, 325
wide columnar data stores using, 317

concurrency, measuring for higher, 3–4
conflict resolution

client-side, 195–196
of data store with CAP theorem, 191–192
eventual consistency and, 194–195
self-healing strategies for, 196

connection: close response header, 212
connection draining, Elastic Load Balancer, 107
consistency

ACID transactions, 177
CAP theorem and, 191–192
local application cache issues, 232
quorum, 196–197
rise of eventual, 192–197
trading high availability for, 197–199

consistent hashing, 236–237
constraints, scalability, 4
content delivery networks. See CDNs

(content delivery networks)
continuous delivery, 336
continuous deployment pipeline, 336–340
continuous integration, 336

11-Index.indd 382 12/05/15 10:21 AM

 Index 383

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

contract, decoding to, 51–54
contract surface area, 298, 299
cookies

establishing HTTP session, 88–89
handling session state with load balancers,

92–93
session data stored in, 89–90

copy and paste programming, 49, 50–51
CORBA (Common Object Request Broker

Architecture), 132
core concepts

application architecture. See application
architecture

data center infrastructure, 22–26
defining scalability, 2–4
evolution stages. See evolution to global

audience
organizational scalability, 4
scalability in startup environment, 2

cost
benefits of ELB, 106
challenges of sharding, 176–184
of cookie-based session storage, 89–90
of hardware load balancers, 110
of hosting on own servers, 119
influencing, 354–355
manual vs. automated testing, 333–334
monolithic web service design and, 126–127
per user/transaction decreasing over time,

332–333
as project management lever, 349–350
saving with Amazon SQS, 285–286
of scaling by adding clones, 74
vertical scalability issues, 9–10
vertical vs. horizontal scaling, 16–17

Couchbase, 318
CouchDB, 79, 318
country code, sharding by, 174–175
coupling

avoiding producer/consumer, 283
class diagrams visualizing, 59
definition of, 43
dependency injection reducing, 65–68
direct worker queue interactions and,

296–297
in event-driven architecture, 299
loose. See loose coupling
measuring with contract surface area, 298
in request/response interaction, 296, 297–299
single responsibility reducing, 61

CPU (central processing unit)
function-centric web services and, 132
memory caches, 208

vertical scalability issues, 9–10
virtual private server upgrades, 7

Crash-Only, 78–79
critical path, message queues, 271
cron-like consumer approach, 261
culture of alignment, engineers, 361–362
custom routing rules, consumers, 264–265
customers, single server set-up, 6

D
daemon-like consumer approach, 261
data

consistency in MySQL replication, 169
redundancy, from denormalization, 316
scalability issues of more, 3
searching for. See searching for data

data center infrastructure
additional components, 25
data persistence layer, 25–26
front line, 22–24
overview of, 22
understanding, 26
web application layer, 24
web services layer, 24–25

data centers
in content delivery network, 14–15
deployment of private, 119–121
in horizontal scalability, 18
in isolation of services, 14
load balancers as entry point to, 103
Route 53 latency-based routing and, 101–102
scaling for global audience with multiple,

19–21
data layer

MySQL. See MySQL, scaling
NoSQL. See NoSQL data stores, scaling
overview of, 156
partitioning. See data partitioning (sharding)
summary, 204

data model, Cassandra, 201
data normalization, 189–190
data partitioning (sharding)

advantages of, 175–176
building own file storage/delivery, 96
Cassandra automatic, 200–201
challenges of, 176–184
choosing sharding key, 171–175
implementing, 188–189
overview of, 170–171
putting it all together, 184–189
scaling by adding, 71, 75–77
scaling cache cluster using, 239

11-Index.indd 383 12/05/15 10:21 AM

 384 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

data partitioning (cont.)
scaling distributed object caches, 235–237
storing session data in dedicated session

store, 91
wide columnar data stores using, 317

data persistence layer, data center, 25–26
data set size

affecting cache hit ratio, 208–209
master-master replication and, 164
reducing in indexes for faster search, 306
replication challenges, 166–170
splitting in data partitioning. See data

partitioning (sharding)
data storage, 113–114
data stores

advantages of sharding, 176
in application architecture, 34–35
horizontal scalability/high availability for, 190
logging to, 345
mapping data with, 180–182
NoSQL era and, 191
replication of. See replication, MySQL
rise of eventual consistency for, 192–197
scaling object caches vs. scaling, 239
scaling own file storage/delivery, 96
storing session data in dedicated, 90–91

databases
avoid treating message queues as, 282–283
front end unaware of, 29
scaling by adding clones, 73

Datadog monitoring service, 344
DCOM (Distributed Component Object Model), 132
deadlocks, 142, 143
decision-making, 351
decoupling

API-first design for web services, 128
clients/providers, 51–54
definition of, 44
in event-driven interactions, 297
message consumers, 259
message queues promoting, 275–276
in MySQL replication, 158
producer/consumer, 260, 261
publisher/consumer in RabbitMQ, 288–289

dedicated search engine, using, 328–330
DELETE method, HTTP, 135–136, 211
deletes

avoiding message queue, 283
distributed object cache and, 232
as limitation in Cassandra, 203–204
local application cache issues, 232

delivery, continuous, 336
denormalization, 316, 317, 325

dependencies
class diagrams visualizing, 59–60
promoting loose coupling and, 44
reducing between teams, 359
web service, 31, 33–34

dependency injection, 65–71
deployment

automating process of, 49, 335–340
front-end layer examples, 117–121

design. See software design principles
design patterns

in copy-paste programming, 50–51
drawing diagrams with, 60
for publish/subscribe model, 264
using Amazon SQS with, 286

Diagnostics, Azure, 346
diagrams

circular dependencies exposed via, 47
class, 59–60
drawing, 54–57
module, 60–61
reducing coupling on higher levels of

abstraction via, 45
use case, 57–58

direct worker queue interaction, and EDA,
296–297

direct worker queue model,
routing, 262

disaster recovery plans, 79
Distributed Component Object Model

(DCOM), 132
distributed locking

implementing, 98–101
Terracotta allowing for, 91
web service challenges, 142–143

distributed object caches
cache high up call stack, 240
overview of, 232–234
scaling, 235–236

distributed transactions, 178
DNS (Domain Name System) server

in CDNs, 15
in client caches, 208
as front-end component, 102–103
in front line of data center infrastructure,

22–23
geoDNS server, 19–23
in isolation of services, 12, 14
in round-robin DNS service, 18–19
in round-robin–based load balancing,

103–104
in single server set-up, 5–6
in vertical scalability, 11

11-Index.indd 384 12/05/15 10:21 AM

 Index 385

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

document IDs, inverted index structure, 327–328
documentation

80/20 rule for, 352–353
reducing complexity with message route, 281
via diagrams. See diagrams

document-oriented data stores, NoSQL, 317–318
downloading files, 93–96
drafts, diagram, 55–57
draw diagrams, as software design principle, 54–61
draw.io, drawing diagrams with, 60
DRY (don't repeat yourself), software design

principle, 48–51
duplication

API-first design for web services with,
127–129

avoiding in software design, 48–51
local application cache issues, 232

durability, ACID transactions, 177
dynamic content, CDN, 222–223
dynamic languages, front end, 111
Dynamo data store

as key-value data store, 317
pushing conflict resolution onto clients, 195
scaling with NoSQL, 190–193

E
eBay bidding application

local locks preventing scaling out in,
98–99

scaling by adding clones, 72–74
scaling with data partitioning, 75–77
scaling with functional partitioning, 74–75

EC2. See Amazon EC2 (Elastic Compute Cloud)
EDA (event-driven architecture)

currently in renaissance phase, 301–302
definition of, 32, 295
direct worker queue interaction, 296–297
event-based interaction, 297–301
request/response interaction, 296
traditional interactions vs., 32–33

edge-cache servers, 20–21
80/20 rule, 352–353, 356–357
Elastic Cache, Amazon, 238–239
Elastic Compute Cloud. See Amazon EC2

(Elastic Compute Cloud)
Elasticsearch, 329–330, 347
ELB. See Amazon ELB (Elastic Load Balancer)
e-mail

asynchronous processing of, 250–254
class diagram, 59–60
single responsibility for validation of, 62–63
synchronous processing of, 247–250

EmailService interface, 60
end-to-end tests, 335, 339
engineering department, scaling, 332, 349, 357–361
equal distribution, index performance, 310–311
ESB (enterprise service bus), 260
event sourcing, EDA, 300–301
event-based interaction, EDA, 297–301
event-driven architecture. See EDA (event-driven

architecture)
events, definition of, 295
eventual consistency, 193–197, 203
evolution to global audience

content delivery network, 13–16
horizontal scalability, 16–19
isolation of services, 11–13
overview of, 5
scalability for global audience, 19–21
single-server configuration, 5–7
vertical scalability, 7–11

exactly-once delivery, message requeueing, 280
exchange concept, RabbitMQ, 289
Expires HTTP header, 215, 216
Extensible Markup Language-Remote Procedure

Call (XML-RPC), 132

F
failover

Azure automatic, 239
MySQL maintenance timeline for, 162–163
MySQL master-master, 161–162
MySQL not supporting automatic, 160
NoSQL with automatic, 198
removing for high availability, 79
using load balancers with automatic, 106

failure handling
with load balancers, 105
for messaging platform, 284
with MySQL replication, 159–162
with stateless web service machines, 139

fearless engineers, 334
feature toggles, build and deployment, 339–340
features

80/20 rule for new, 352
Amazon SQS, 288
RabbitMQ, 291

feedback
balancing schedule with, 356–357
continuous deployment pipeline, 339
Lean Startup methodology, 285
making use of, 49
ongoing code reviews, 355
releasing smaller chunks for customer, 356

11-Index.indd 385 12/05/15 10:21 AM

 386 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

FIFO (First In First Out)
ActiveMQ for messaging, 292
message queue as, 283
solving message ordering with, 278

file storage
choosing deployment, 121
managing, 93–96
as possible single point of failure, 79
using Amazon S3 for, 119

file system, scaling local cache, 235
file-based caches, 235
fine-grained locks, 143
fire-and-forget requests

asynchronous example, 249–251
easier scalability and, 272
message queue as, 256, 282

Firefox, 53–54
First In First Out. See FIFO (First In First Out)
flexibility

Amazon SQS disadvantages, 288
of good architecture, 316
of RabbitMQ, 288–291

framework, front end, 111
front cache servers, 22–24
front-end layer

application architecture for, 28–30
building, 84–85
deployment examples, 117–121
overview of, 84
summary, 121

front-end layer, scalability components
auto-scaling, 114–116
caching, 113–114
DNS, 102–103
load balancers, 103–111
overview of, 101–102
web servers, 111–113

front-end layer, state
for files, 93–96
for HTTP sessions, 88–93
other types of, 97–101
stateless vs. stateful services, 85–88

frontline layer, data center infrastructure, 22–24
full page caching, 220–221
full table scans, 305
full text search, with inverted indexes, 326–328
functional partitioning

with distributed locking, 98–100
isolation of services using, 13–14
scaling with, 71, 74–75, 185–187

function-centric web services, 131–135
functions

MySQL replication, 169
sharding, 182

G
generic server metrics, reducing MTTR, 341
geoDNS server, 19, 21–23
GET method

caching service responses, 146–148
challenges of sharding, 176–177
HTTP and resource-centric services,

135–138
HTTP session management, 88, 90–91

GFS (Google File System), 96, 190–191
github web hook, 338
global audience, scalability for, 19–21
globally unique IDs, application-level sharding, 184
Google Maps API, 42–43
Google Trends, 292–293
Grails framework, 42, 68
Grails in Action, 42
GridFS, in MongoDB, 96
group, auto-scaling, 115–116
group ID, ActiveMQ, 279, 294

H
HA Proxy, 119–120
Hadoop, 42
Hadoop Distributed File System (HDFS), 96
Hadoop in Action, 42
HAProxy, 107–109
hard drive caches, 208
hard drive speed, 9–10
hardware

isolation of services using rented, 13
load balancers, 109–111
private data center hosting own, 119–121
reverse proxy, 226–227
upgrading for vertical scalability, 8–9

HBase, 317
HDFS (Hadoop Distributed File System), 96
headers, HTTP, 211–217
hexagonal architecture, 32
high availability

building own file storage/delivery, 95
comparing in messaging platforms, 293
data stores for, 190–191
definition of, 78
Elastic Load Balancer with, 106
eventual consistency increasing, 194
HAProxy with, 109
MySQL replication with, 159–160
software design for, 77–80
trading for consistency, 197–199

high cardinality fields, indexes, 309–310
high coupling, 43, 46

11-Index.indd 386 12/05/15 10:21 AM

 Index 387

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

high value processing, message queues, 271
Hollywood principle, IOC as, 69
horizontal scalability

Cassandra for, 203
comparing in messaging platforms, 294
data partitioning and. See data partitioning

(sharding)
data stores for, 190–191
deferring building of, 353
evolution to, 16–19
RabbitMQ for, 291
scaling data layer for. See data layer
stateless front-end web servers for, 111–112
wide columnar data stores using, 317

HTML (Hypertext Markup Language), 124, 217
HTTP (Hypertext Transfer Protocol)

coding to contract and, 53–54
edge-cache servers and, 20
managing sessions, 88–93
REST services using, 135–137
in single server set-up, 5–6
testing with Jmeter, 335
web applications initially built with, 124

HTTP-based caches
browser cache, 208, 218–219
caching headers, 211–217
caching proxies, 219–220
caching rules of thumb, 239–244
CDNs, 221–222
between clients and web service, 213
object caches vs., 227
overview of, 210–211
reverse proxies, 220–221
scaling, 223–227
SOAP scalability and, 134
types of, 217–218

HTTPS (HTTP over TLS Transport Layer
Security), REST services, 138

hybrid applications, front-end layer, 85
Hypertext Markup Language (HTML), 124, 217

I
idempotent consumer, 280
IIS (Internet Information Services), 53–54
incremental change, for inefficient processes, 49
indexes

adding overhead, 308–309
binary search algorithm in, 306–307
book, 305–306
compound (composite), 311
estimating field cardinality for, 308–310
full table scans vs., 305

full text search using inverted, 326–327
item distribution in, 310–311
key-value stores not supporting, 317
as lookup data structure, 305
properties of, 305–306
searching for data and, 304–305
using job queue for search engine data, 329

infrastructure, messaging, 266–270
inheritance, for repetitive code, 50
innovation, scaling engineering department, 359–361
integration, continuous, 336
integration tests, 335
interaction rates, scaling for higher, 3–4
interfaces

dependencies of, 60
in open-closed principle, 63–64

Internet Information Services (IIS), 53–54
interoperability, JMS/STOMP, 266
inverted indexes, 326–330
I/O (input/output)

blocking, 248
as indexing overhead, 308
in MySQL replication, 158–159
nonblocking, 253
vertical scalability improving, 8–9

IOC (inversion of control), software design
principle, 68–71

IP (Internet Protocol) address, 5–6, 101–102
isolation

in ACID transactions, 177
decoupling of producers/consumers,

275–276
evolution of services to, 11–13
message queues for failure, 274–275
of queue workers, 268

J
Java

ActiveMQ written in, 291–292
distributed locking in, 99–100
overengineering in, 40
using inversion of control, 68

Java JVM, 91
JavaScript, 228–229
Jenkins, 337–338
Jmeter, 335, 339
JMS (Java Message Service), 266, 292
JMX (Java Management Extensions) protocol,

ActiveMQ, 292
job queue, search engines, 329
JSON (JavaScript Object Notation)-based REST

services, 133, 136

11-Index.indd 387 12/05/15 10:21 AM

 388 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

K
Kafka topic partitioning, 279
keep-alive header, 212
keys

accessing value in web storage, 229
client-side caches and, 228

key-value stores
client-side caches as, 228–229
distributed object caches as, 232
NoSQL, 317

Kibana web interface, Logstash, 347

L
language

function-centric web services and, 132
selecting for front end, 111

latency
Amazon Route 53 routing and, 102
dictated by weakest link in call stack, 296
eventually consistent stores and, 197
hosting own hardware and, 119
shared lock management increasing, 99

LbaaS load balancer, Open Stack, 111
Lean Startup methodology, 285, 356
Least Recently Used (LRU) algorithm, 224, 233
links, references, 374–377
Linux OS file caches, 208
Load Balancer, Azure, 111, 140
load balancers

benefits of, 104–106
benefits of stateless web service machines,

139–140
deploying private data center with,

119–120
DNS round-robin–based, 103–104
as front line of data center infrastructure,

22–24
as front-end layer component, 101
handling session state with, 92–93
hardware-based, 109–111
as hosted service, 106–107
in MySQL replication with multiple

slaves, 158
self-managed software-based, 107–109

load testing, Jmeter, 335
local cache

caching in different layers of stack, 240
implementing, 230–232
scaling web server, 235

local device storage, client-side cache,
228–229

local simplicity, in software design, 39–40
lock contention, 9–10

locks
managing server state, 98–99
preventing deadlocks, 142
resource. See resource locks

logging
automating log aggregation, 345–347
custom routing rules for, 264
log-forwarding agents, 346

Loggy, hosted log-processing service, 346
Logstash, 346–347
longevity, affecting cache hit ratio, 209
loose coupling

avoiding unnecessary coupling, 47
models of, 47–48
overview of, 43–44
promoting, 44–46

low coupling, 44, 46
low value processing, message queue, 271
LRU (Least Recently Used) algorithm, 224, 233

M
maintenance

cloud service provider costs for, 17
data stores for file storage reducing cost of, 96
higher costs for more code, 50
load balancers for hidden server, 104
master-master deployment for long-lasting,

161–163
message queues and performing, 274
stateless web services for easy, 139

manual deployment, vs. automated, 335–336
manual testing, vs. automated, 333–334
mapping

keeping data in separate database, 179–182
modulo-based issues, 178
multidatabase sharded solution, 182
scaling with data partitioning using, 76–77
sharding key to server number, 172–173

MapReduce, 42, 190–191
master server

MySQL master-master replication, 161–164
MySQL replication, 169–170
MySQL ring replication, 164–165
replicating sharding key mappings, 180–182

master-master replication, MySQL
adding difficulty by using, 166
challenges of, 166–170
deploying, 160–163
not viable for scalability, 163–164

master-slave topology, MySQL
object caches allowing for replication, 237
recovering from failure, 160–161
replication, 157–159
replication, scaling cache cluster, 237–238

11-Index.indd 388 12/05/15 10:21 AM

 Index 389

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

replication challenges, 166–170
as single source of truth semantics, 166

max-age response, Cache-Control HTTP header, 214
Memcached

distributed locking, 100–101
distributed object caches, 232–234
scaling distributed object caches, 235–236

memory
cache servers using LRU for limits of, 233
implementing local application caches, 230
as indexing overhead, 308
needs of search engines, 328

message brokers
in ActiveMQ, 291–292
creating custom routing rules, 264–265
isolating failures, 274–275
in message queue-based processing, 259–260,

273–274
metrics, 267–270
in RabbitMQ, 290
scaling horizontally, 268
in system infrastructure, 267

message consumers
benefits of message queues, 272–273
custom routing rules for, 264–265
decoupling producers from, 260, 274–275, 283
delivering messages to, 256–257
direct worker queue interaction, 262, 297
event-driven interaction, 297, 299
idempotent, 280–281
message ordering problem, 276–279
messaging infrastructure for, 268–269
overview of, 260–262
publish/subscribe method, 263–264

message groups, ActiveMQ, 279, 292
message of death, handling, 284
message ordering problem

causing race conditions, 281
overview of, 276–278
partial message ordering, 279
solving, 278–279

message producers
decoupling consumers from, 260,

275–276, 283
in direct worker queue interactions, 297
in event-driven interactions, 297, 299
isolating failures and, 274–275
overview of, 258–259

message publishing, 258, 274–276
message queues

anti-patterns, 282–284
benefits of, 270–276
caching high up call stack, 240
challenges of, 276–282
as data center infrastructure, 25

example of, 250–254
front-end sending events to, 29
message broker, 259–260
message consumers, 260–265
message producers, 258–259
messaging infrastructure, 266–270
messaging protocols, 265–266
overview of, 256–257
removing resource locking in web

services, 142
message requeueing problem, 280
message-oriented middleware (MOM), 259–260
messaging infrastructure, 266–270
messaging platforms

ActiveMQ, 291–292
Amazon SQS, 285–288
final comparison notes on, 292–294
overview of, 284–285
RabbitMQ, 288–291

messaging protocols, 265–266, 288
metatags, avoiding cache-related HTML, 217
metrics, reducing MTTR, 341–343
Microsoft Azure. See Azure
minimal viable product (MVP) development, Lean

Startup, 285
mobile clients

developing mobile APIs, 124
scaling front end with browser cache, 113–114
single-page application for devices, 229

mocks, startup development, 357
modeling data

NoSQL, 313–318
overview of, 313
wide column storage example, 318–325

modules
avoiding unnecessary coupling in, 47
class diagrams of, 59–60
drawing diagrams, 60–61
loose coupling for, 44–46
single responsibility for, 62

modulo-based mapping, and sharding, 178
MOM (message-oriented middleware), 259–260
MongoDB

as document-oriented data store, 318
fast recovery for availability, 197–199
scaling file storage/delivery with, 96

monitoring
automating, 340–345
installing agent on each server, 342
tools, 340

monolithic application with web service, 124–127,
130–131

MTTR (mean time to recovery), reducing
in monitoring and alerting, 340–345
in self-healing, 80

11-Index.indd 389 12/05/15 10:21 AM

 390 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

multidatabase sharded solution, 181–182, 183
multilayer architecture, 31
multiple load balancers, 109–110
multiple reverse proxy servers, 225–226
must-revalidate response, Cache-Control HTTP

header, 214
MVC frameworks, 65, 126
MVP (minimal viable product) development, Lean

Startup, 285
MySQL, as most popular database, 156
MySQL, scaling

overview of, 156
replication, 156–166
replication challenges, 166–170
vertical scalability issues, 9–10

N
NASA (National Aeronautics and Space

Administration), 50
Netscaler, Citrix, 109–111
networks

HTTP proxy server in local, 219–220
improving throughput for vertical scalability, 9

Nginx
private data center deployment using, 119–120
reverse proxy, 224
as software-based load-balancer, 107–109
superior performance of, 226

no-cache response, Cache-Control HTTP header, 214
Node.js, 112, 271
nodes

in Cassandra topology, 80, 199–201
in MongoDB failure handling, 198–199
share-nothing principle for, 76

nonblocking I/O, 253
noncacheable content, HTTP headers of, 216–217
normalization

NoSQL denormalization, 316
in relational data model, 314–315

NoSQL data stores
data as index in, 312–313
in data layer of data center, 25
data modeling, 313–317
dedicated search engine for, 328–330
defined, 190–191
as most commonly used, 317–318

NoSQL data stores, scaling
Cassandra topology, 199–204
faster recovery for availability, 197–199
overview of, 189–191
rise of eventual consistency, 192–197

no-store response, Cache-Control HTTP header, 214
no-transform response, Cache-Control HTTP

header, 214

O
OASIS (Organization for the Advancement of

Structured Information Standards), AMQP, 265
object cache servers, 25, 114
object caches

caching application objects, 227–228
caching rules of thumb, 239–244
client-side, 228–230
co-located with code, 230–232
distributed object, 232–234
scaling, 234–239
size affecting cache hit ratio, 209

object-clustering, Java JVM session storage, 91
object-oriented languages, coupling in, 44–45, 47
open-closed principle, 63–68
operating system

metrics reducing MTTR, 341
as multilayered architecture, 31

operations, scalability of, 332
optimistic concurrency control, 142
OR conditions, full text search, 328
Organization for the Advancement of Structured

Information Standards (OASIS), AMQP, 265
organizational scalability, constraints, 4
overengineering

API-first for web services risking, 128–129
avoiding for simplicity, 40–41
designing for scale without, 71

overhead, added by indexes, 308–309
overtime, and productivity, 347–348

P
pair programming, 354
parallel back-end processing, 272–273
partial message ordering guarantee, 279
partition tolerance, CAP theorem, 191–192
partitioning. See data partitioning (sharding)
partitioning, topic, 279
pattern matching, customizing routing rules for, 264
performance

asynchronous processing and, 253–254
caching to improve, 242–243
increasing. See caching
synchronous processing and, 249–250

persistent data, and stateless web services, 140–141
pipes, Unix command-line program, 47–48
plugins, inversion of control principles for, 70
poison message handling, 284
policies, scaling, 115
POST method, HTTP, 135–136, 211
pragmatic approach, web service design, 130–131
presentation layer, and web services, 124–127,

130–131

11-Index.indd 390 12/05/15 10:21 AM

 Index 391

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

primary node failure, MongoDB, 198–199
prioritizing

tasks to manage scope, 351–354
where to start caching, 242–243

private files, 93, 95
private response, Cache-Control HTTP header, 213
procedures, scaling engineering department,

359–361
processes, wasting time on inefficient, 49
productivity, scaling. See automation; yourself, scaling
products, building teams around, 358
protocols, messaging, 265–266
providers

auto-scaling using hosting, 115
coding to contract to decouple clients from,

51–54
configuring/scalability of CDN, 221–223

proxy (intermediate), HTTP-based caches, 210
proxy servers, 223
pt-table-checksum, MySQL replication issues, 170
pt-table-sync, MySQL replication issues, 170
public files, 93–94
public response, Cache-Control HTTP header, 214
publishing, message, 258, 274–276
publish/subscribe queue model, routing, 263–264
PUT method, HTTP, 135–136, 211

Q
queries

in Cassandra, 202
designing NoSQL data model, 314–316
executing across shards, 176–177
optimizing for kinds of, 325
wide column storage example of, 318–321

queue workers
allowing self-healing of system, 274–275
isolating, 268
scalability by adding parallel, 272–273
in system infrastructure, 267–268

queue-based interaction, and EDA, 296–297
queues, in Cassandra, 204
quorum consistency, 196–197, 203

R
RabbitMQ

comparing messaging platforms, 286
flexible routing rules in, 264
message ordering problem, 280
messaging infrastructure, 269
messaging protocols for, 265–266
overview of, 288–291
poison message handling in, 284

race conditions, 98–99, 281
Rackspace

auto-scaling with, 115
hosting MySQL with Cloud Database, 170

RAID (Redundant Array of Independent Disks),
8, 95–96

Rails, 68
RAM (random access memory), 7–10
random access, in message queue, 283
random access I/O, 8
random access memory (RAM), 7–10
random order, solving message ordering, 278
rapid learning, Lean Startup, 356
RDS (Relational Database Service), Amazon, 170
read-only statements, MySQL replication, 158
reads

adding replica servers, 185–186
eventual consistency conflicts, 194–196
MySQL replication, 166, 186–188
MySQL replication timing issues, 169
trading high availability for consistency,

197–199
read-through caches

cache-aside caches vs., 227
caching proxies as, 219–220
HTTP-based caches as, 210–212

Redis, distributed object caches, 232–234
redundancy, for high availability, 79–80
Redundant Array of Independent Disks (RAID),

8, 95–96
refactoring

80/20 rule for, 353
copy-paste programming and, 50
single responsibility principle for, 61–63

references, for this book
books, 364–366
links, 374–377
talks, 373–374
white papers, 366–373

regression testing, 333
reinventing the wheel, avoiding wasted time, 49
relational data model, 313–315
Relational Database Service (RDS), Amazon, 170
relay log, MySQL replication, 158, 161
release cycle

reducing size of each, 356–357
wasting time on inefficient processes in, 49

remote servers, message queue interaction with, 271
replica servers, adding, 185–186
replica sets, MongoDB, 198–199
replication

Cassandra, 201–202
local caches not using, 231–232
scaling object caches with, 237–238

11-Index.indd 391 12/05/15 10:21 AM

 392 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

replication, MySQL
applicable to other data stores, 170
challenges of, 166–170
defined, 156–157
handling slave failures, 160
master-master, 160–164
master-slave, 157–158
overview of, 156
ring, 164–165
scaling with, 186–187
summary of, 166
using multiple slaves, 158–159

replication lag, 165–166, 169
request headers, HTTP-based caches, 212–213
request/response interaction, and EDA, 296
requirements, scalability, 3–4
resource intensive work, with message queues, 271
resource locality, CDNs, 15
resource locks, 98–99, 141–143
resource management, 105–106
resource-centric web services, 134–138
response headers, HTTP-based caches, 212–214
REST (Representational State Transfer) web services

between front-end and web services, 25
JSON-based, 133
as resource-centric, 135–138

REST API, RabbitMQ, 289–290
REST web services, scaling

caching service responses, 146–149
cluster of, 220–221
functional partitioning, 150–153
keeping service machines stateless, 139–146
overview of, 138

return channels, avoiding message queue, 282–283
reuse of cached objects, 240–242
reuse of code

avoid reinventing the wheel, 49
open-closed principle for, 64–65
single responsibility principle for, 61–63

reuse of tools, 355
revalidation, Cache-Control HTTP header, 214
reverse proxies

caching high up call stack, 240
as front-end layer component, 101
as HTTP-based cache, 220–221
managing scalability of, 223–227
scaling front end with caching, 113
as software-based load-balancers, 107–109

Riak, 317
ring replication, MySQL, 164–170
round-robin DNS service, 18, 19, 103–104
Route 53 service, Amazon, 101–103, 117–119
routing

ActiveMQ and, 291, 292
Amazon SQS and, 288

methods, 262–265
RabbitMQ advanced message, 288–290

rows, Cassandra table, 319
rules

creating indexes, 310
custom routing, 264–265

rules, caching
cache invalidation is difficult, 243–244
caching high up call stack, 239–240
reusing cache among users, 240–242
where to start caching, 242–243

run-time environments, function-centric web
services, 132

S
S3 (Simple Storage Service), 93–95, 117–119
scalability

ActiveMQ, 291–292
agile teams, 357–361
Amazon SQS, 286–288
automation. See automation
concept of, 2–4
definition of, 3
engineering department, 349
local application vs. distributed object

caches, 232–234
message queues for easier, 272–273
of object caches, 234–237
operations, 332
RabbitMQ, 291
as software design principle, 71–77
startup environment and, 2
your own impact, 349
for yourself. See yourself, scaling

schedule, influencing, 355–357
schema, NoSQL data model, 314
scope

influencing by prioritizing tasks, 350–354
as project management lever, 349–350

Search, Azure, 329
search engines

introduction to, 326–328
memory needs of, 328
overview of, 326
using dedicated, 328–330

searching for data
introduction to indexing. See indexes
modeling data, 313–325
overview of, 304
search engines, 326–330
summary, 330

Secure Sockets Layer (SSL)
overview of, 220
termination. See SSL termination

11-Index.indd 392 12/05/15 10:21 AM

 Index 393

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

security
REST services vs. SOAP, 138
stateless web services for, 140–142

Selenium, end-to-end tests, 335, 339
self-healing

auto-scaling similar to, 116
in Cassandra, 202–203
designing software for, 77–80
message queues promoting, 274–275

self-managed software-based load-balancers,
107–109

separation of concerns, API-first design for web
services, 128

sequential I/O, 8
server number

mapping data in separate database,
179–182

mapping sharding key to, 179
servers

adding to sharded deployments, 178
automating configuration of, 338
horizontal scalability with multiple, 16–19
hosting on hardware vs. virtual, 119
isolating roles in functional partitioning,

74–75
isolating services to separate, 11–14
managing state, 97–101
reducing with CDNs, 15
stateless vs. stateful, 85–88
uploading user-generated content to, 93–96

Service Bus Queues, scalability limits of, 269
service calls, in Amazon SQS, 288
service level agreement (SLA), 343
service-oriented architecture. See SOA

(service-oriented architecture)
services

adding abstraction for, 40
building teams around, 358
isolating to separate servers, 11–14
in request/response interactions, 299
scaling with functional partitioning, 74–75
in web services layer, 30–34

sessions, managing HTTP, 88–93
setters, unnecessary coupling and, 47
sharding. See data partitioning (sharding)
sharding key

choosing, 171–174
definition of, 171
implementing, 188–189
mapping to server number, 178

shared hosting, 6, 7
shared libraries, 50
shared memory, 230
shared object cache, 141–142

share-nothing principle
advantages of sharding, 175–176
scaling distributed object caches, 236
scaling with data partitioning using, 76–77

Simple Logging Facade for Java (SLF4J), loose
coupling in, 48

Simple Mail Transfer Protocol (SMTP), 59–60
Simple Object Access Protocol. See SOAP

(Simple Object Access Protocol)
Simple Queue Service. See Amazon SQS

(Simple Queue Service)
Simple Storage Service (S3), 93–95, 117–119
simplicity

hiding complexity/building abstractions,
38–40

learning from software design, 42–43
overengineering reducing, 40–41
single responsibility increasing, 61–63
as software design principle, 38
with test-driven development, 41–42

single points of failure, 79, 106
single responsibility, 61–63, 68
single-page applications. See SPAs

(single-page applications)
single-server configuration

adding vertical scalability to, 7–11
evolution from, 5–7
isolation of services for, 11–14
scalability limitations of, 7
scaling by adding copies of same thing,

184–185
size

of cache affecting cache hit ratio, 209
data set. See data set size
scalability of reverse proxy, 224

SLA (service level agreement), 343
slave servers, MySQL replication. See also

master-slave topology, MySQL
breaking data consistency, 169–170
multiple, 158–159
overview of, 157–158
rebuilding of failed, 160
returning stale data, 169
scaling reads, 166

SLF4J (Simple Logging Facade for Java), loose
coupling in, 48

SMTP (Simple Mail Transfer Protocol), 59–60
SOA (service-oriented architecture)

definition of, 30
RabbitMQ message routing as, 290
scaling with functional partitioning in, 74–75

SOAP (Simple Object Access Protocol)
as function-centric, 132
integration flow for, 132–133

11-Index.indd 393 12/05/15 10:21 AM

 394 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

SOAP (cont.)
interoperability/usability of, 133–134
over HTTP, 25
REST vs., 137–138
scalability issues of, 134
SOA vs., 30

software design principles
coding to contract, 51–54
dependency injection, 65–68
design for scale, 71–77
design for self-healing, 77–80
don’t repeat yourself, 48–51
draw diagrams, 54–61
inversion of control, 68–71
loose coupling, 43–48
open-closed principle, 63–65
overview of, 38
simplicity, 38–43
single responsibility, 61–63
summary, 81

software-based load-balancers, self-managed,
107–109

solid-state drives. See SSDs (solid-state drives)
Solr, as dedicated search engine, 329
sorting algorithm, open-closed principle, 63–64
SPAs (single-page applications)

building front-end layer as, 84
building front-end layer as hybrid

application, 85
local device storage for, 229
scaling front end with browser cache, 113–114

Sphinx, as dedicated search engine, 329
spikes

ActiveMQ message, 292
message queues evening out traffic, 273–274

Spring framework, 68
Spring Recipes, 42
SpringSource, 292
SQL Database Elastic Scale, Azure, 184
SQS. See Amazon SQS (Simple Queue Service)
Squid, as open-source reverse proxy, 224
SSDs (solid-state drives)

building own file storage/delivery, 96
improving access I/O for vertical scalability, 8
scaling reverse proxies vertically, 227

SSL (Secure Sockets Layer), 220
SSL termination

benefits of Elastic Load Balancer, 106
defined, 106
HAProxy load balancer supporting, 109

stale, cached objects as, 214
startups, high failure rate of, 71

state, managing
files, 93–96
HTTP sessions, 88–93
keeping web service machines stateless,

139–146
other types of state, 97–101
stateless vs. stateful services and, 85–88

stateful services, stateless vs., 85–88
stateless services

defined, 73
queue workers as, 268
scaling by adding clones to, 73
stateful vs., 85–88
web servers as, 268
web service machines as, 139–146, 268

static files, 215–216, 222–223
sticky sessions, 92–93, 109
STOMP (Streaming Text-Oriented Messaging

Protocol), 265–266, 288
streaming logs, to centralized log service, 345
Streaming Text-Oriented Messaging Protocol

(STOMP), 265–266, 288
subscription methods, message consumers, 262
subsets, in sharding, 171, 175
Symfony, and inversion of control, 68
synchronization

consistent data stores supporting, 196
local application caches not using, 231–232
replication in MySQL as, 157

synchronous invocation, as temporal coupling, 296
synchronous processing

affecting perceived performance, 249–250
asynchronous processing vs., 246
example of, 247–249
shopping analogy for, 254–255

T
tables, Cassandra, 201, 319–323
talks, references for, 373–374
tasks

80/20 rule for, 353
delegating responsibilities and, 354
prioritizing to manage scope, 351–354

TCP socket, avoid treating message queue as,
282–283

TCP/IP programming stack, 31
TDD (test-driven development), 40–41
technologies, application architecture supporting,

34–35
templates, 29
temporal coupling, 296–297

11-Index.indd 394 12/05/15 10:21 AM

 Index 395

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

Teracotta, JVM session storage, 91
test-driven development (TDD), 40–41
testing, automated, 333–335
third-party services

application architecture, 35
content delivery network, 13–16
data centers, 24
Datadog monitoring service, 344
deploying private data center, 119–120
distributed file storage, 96
front end unaware of, 29
horizontal scaling, 17–19
hosting DNS, 101
integration between web applications, 25
reducing workload/increasing costs, 355
scaling HTTP caches, 223–227
service level agreement monitoring, 343
sharing application logs with, 346–347

time
avoiding overtime, 347–349
influencing schedule, 355–357
MySQL replication issues, 169
as project management lever, 349–350

time to discover, MTTR, 340
time to investigate, MTTR, 341
Time to Live. See TTL (Time to Live) expiration
time to respond, MTTR, 340–341
tokens, inverted index structure, 327–328
Tomcat, 53–54
traditional multipage web applications, 84, 85
traffic

benefits of stateless web service
machines, 139

in CDNs, 15
distribution in single server, 5–6
message queues evening out spikes in,

273–274
scaling for global audience, 19–21
single-server scalability limits, 7

TTL (Time to Live) expiration
defined, 209
keeping web service machines stateless, 140
max-age response, Cache-Control HTTP

header, 214
overcoming cache invalidation by setting

short, 243–244
scalability of reverse proxy, 224

U
Ultima Online, 171
UML (Unified Modeling Language), 60
Unified Modeling Language (UML), 60

uniform resource locators. See URLs (uniform
resource locators)

unit tests, 334, 338–339
Unix command-line program, loose coupling,

47–48
updates

avoiding message queue, 283
breaking data consistency in MySQL

replication, 169
denormalized data model issues, 316
stateless web service machines and, 139
validating data model use cases, 324–325

upgrades, 7, 8
uploading, user-generated content to your server,

93–96
URLs (uniform resource locators)

bundling CSS and JS files under unique, 216
distributed file storage using S3, 94
downloading files using, 93
REST services using, 135–137

use cases
API-first design for web services, 127–129
drawing diagrams, 57–58
file storage, 93
message queues, 271
preventing repetition with most

common, 51
stateless web services, 141–146
validating data model against known,

324–325
web server, 111–112
wide column storage example, 318–322

user ID. See account ID (user ID)
user interface, front end application as, 29
user-generated content, uploading to servers, 93
users

reuse of cached object, 240–242
sharding based on, 172–174
validating data model use cases, 324

V
value

accessing in web storage, 229
client-side caches and, 228

Varnish, 53–54, 224
Vary HTTP header, 215
vertical scalability

cost issues of, 9–10
definition of, 8
methods, 8–9
reverse proxies, 227
system architecture unaffected by, 10–11

11-Index.indd 395 12/05/15 10:21 AM

 396 Web Scalability for Startup Engineers

AppDev / Web Scalability for Startup Engineers / 365-5 / Artur Ejsmont / Index

virtual servers, 8, 119
vision, validating for success, 351
VPS (virtual private server), 6, 7, 13

W
web application layer

data center infrastructure, 24
managing HTTP sessions, 91–92
master-master replication and, 163
sharding in, 174, 176–178, 188

web application servers, 240
web applications, building front-end layer, 84–85
web browsers, decoupling from providers, 53–54
web flows, separate from business logic, 29
web servers

benefits of load balancers, 104–106
decoupling from clients, 53–54
for front-end scalability, 111–113
as front-end layer component, 101
for HTTP session with cookies, 88–89
keeping stateless, 101, 139
local cache on, 230–232
reverse proxy reducing load on, 220–221
scaling by adding clones, 72–74
scaling local caches, 235

web services
application architecture for, 30–34
in data center infrastructure, 24–25
designing, overview, 124
designing API-first, 127–129
designing as alternative presentation layer,

124–127
designing with pragmatic approach, 130–131
function-centric, 131–134
overview of, 124
resource-centric, 134–138
REST. See REST (Representational State

Transfer) web services
scaling REST. See REST web services, scaling
scaling with functional partitioning, 74–75
summary, 153

web session scope, HTTP sessions, 89
web storage

with JavaScript code, 228–229
scaling client-side caches for, 233–234
speeding up application time, 229–230
using as cache vs. reliable data store, 229

white paper references, 366–373
wide columnar data stores, 317, 318–325
writes

Cassandra optimization for, 202,
322–323

cost of deletes in Cassandra, 203–204
eventual consistency conflicts, 194–196
master-master replication and, 163–164
not scaling using replication, 166
scaling with, 186–187
trading high availability for consistency,

197–199
ws-* specifications, SOAP, 133–134

X
XML-RPC (Extensible Markup Language-Remote

Procedure Call), 132

Y
yourself, scaling

influencing cost, 354–355
influencing schedule, 355–357
influencing scope, 350–354
overtime and, 347–349
overview of, 347
self-management, 349–350
your own impact, 349

Z
zero-downtime

backups, 159
updates, 139

Zookeeper, 99–100, 142

11-Index.indd 396 12/05/15 10:21 AM

	Cover
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	Chapter 1 Core Concepts
	What Is Scalability?
	Evolution from a Single Server to a Global Audience
	Single-Server Configuration
	Making the Server Stronger: Scaling Vertically
	Isolation of Services
	Content Delivery Network: Scalability for Static Content
	Distributing the Traffic: Horizontal Scalability
	Scalability for a Global Audience

	Overview of a Data Center Infrastructure
	The Front Line
	Web Application Layer
	Web Services Layer
	Additional Components
	Data Persistence Layer
	Data Center Infrastructure

	Overview of the Application Architecture
	Front End
	Web Services
	Supporting Technologies

	Summary

	Chapter 2 Principles of Good Software Design
	Simplicity
	Hide Complexity and Build Abstractions
	Avoid Overengineering
	Try Test-Driven Development
	Learn from Models of Simplicity in Software Design

	Loose Coupling
	Promoting Loose Coupling
	Avoiding Unnecessary Coupling
	Models of Loose Coupling

	Don’t Repeat Yourself (DRY)
	Copy and Paste Programming

	Coding to Contract
	Draw Diagrams
	Use Case Diagrams
	Class Diagrams
	Module Diagrams

	Single Responsibility
	Promoting Single Responsibility
	Examples of Single Responsibility

	Open-Closed Principle
	Dependency Injection
	Inversion of Control (IOC)
	Designing for Scale
	Adding More Clones
	Functional Partitioning
	Data Partitioning

	Design for Self-Healing
	Summary

	Chapter 3 Building the Front-End Layer
	Managing State
	Managing HTTP Sessions
	Managing Files
	Managing Other Types of State

	Components of the Scalable Front End
	DNS
	Load Balancers
	Web Servers
	Caching
	Auto-Scaling

	Deployment Examples
	AWS Scenario
	Private Data Center

	Summary

	Chapter 4 Web Services
	Designing Web Services
	Web Services as an Alternative Presentation Layer
	API-First Approach
	Pragmatic Approach

	Types of Web Services
	Function-Centric Services
	Resource-Centric Services

	Scaling REST Web Services
	Keeping Service Machines Stateless
	Caching Service Responses
	Functional Partitioning

	Summary

	Chapter 5 Data Layer
	Scaling with MySQL
	Replication
	Data Partitioning (Sharding)

	Scaling with NoSQL
	The Rise of Eventual Consistency
	Faster Recovery to Increase Availability
	Cassandra Topology

	Summary

	Chapter 6 Caching
	Cache Hit Ratio
	Caching Based on HTTP
	HTTP Caching Headers
	Types of HTTP Cache Technologies
	Scaling HTTP Caches

	Caching Application Objects
	Common Types of Object Caches
	Scaling Object Caches

	Caching Rules of Thumb
	Cache High Up the Call Stack
	Reuse Cache Among Users
	Where to Start Caching?
	Cache Invalidation Is Difficult

	Summary

	Chapter 7 Asynchronous Processing
	Core Concepts
	Synchronous Example
	Asynchronous Example
	Shopping Analogy

	Message Queues
	Message Producers
	Message Broker
	Message Consumers
	Messaging Protocols
	Messaging Infrastructure

	Benefits of Message Queues
	Enabling Asynchronous Processing
	Easier Scalability
	Evening Out Traffic Spikes
	Isolating Failures and Self-Healing
	Decoupling

	Message Queue–Related Challenges
	No Message Ordering
	Message Requeueing
	Race Conditions Become More Likely
	Risk of Increased Complexity

	Message Queue–Related Anti-Patterns
	Treating the Message Queue as a TCP Socket
	Treating Message Queue as a Database
	Coupling Message Producers with Consumers
	Lack of Poison Message Handling

	Quick Comparison of Selected Messaging Platforms
	Amazon Simple Queue Service
	RabbitMQ
	ActiveMQ
	Final Comparison Notes

	Introduction to Event-Driven Architecture
	Request/Response Interaction
	Direct Worker Queue Interaction
	Event-Based Interaction

	Summary

	Chapter 8 Searching for Data
	Introduction to Indexing
	Modeling Data
	NoSQL Data Modeling
	Wide Column Storage Example

	Search Engines
	Introduction to Search Engines
	Using a Dedicated Search Engine

	Summary

	Chapter 9 Other Dimensions of Scalability
	Scaling Productivity through Automation
	Testing
	Build and Deployment
	Monitoring and Alerting
	Log Aggregation

	Scaling Yourself
	Overtime Is Not a Way to Scale
	Managing Yourself

	Scaling Agile Teams
	Adding More People
	Procedures and Innovation
	Culture of Alignment

	Summary

	Appendix: References
	Books
	White Papers
	Talks
	Links

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

