
this print for content only—size & color not accurate spine = 0.865" 456 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Workflow in the 2007 Microsoft Office System
Dear Reader,

Apparently, I’m supposed to say here that this book is an essential guide to
workflow in SharePoint and the 2007 Office System. I’ll leave that for you to
decide. I think it is, but I’ll admit to being biased. What I can tell you is that the
book covers just about anything you’re likely going to need to know—from
what Workflow is all about, to creating new activities; from InfoPath forms to
ASP.NET forms; from the Rules engine to the Object Model. There’s even a section
on integrating Office 2003 clients with SharePoint 2007 workflows. You’ll come
away from reading this book with a solid knowledge of what workflow is all
about and how to implement it in the new world of Office and SharePoint.
You’ll understand what you can and can’t accomplish. The book covers a lot of
ground. Most of it you’ll use daily when you’re doing workflow development,
some of it you’ll use every so often, a bit of it you may never use—but all of it
you’ll find interesting.

Besides teaching the fundamentals that you’ll be able to use right away, one
of my main goals in writing this book was to try to help you think outside the
box. SharePoint 2007 in general, and specifically its workflow capabilities, are
incredibly powerful tools. Read this book and learn how to use them.

One final note: This book is not like most other technical books. There’s a little
humor (all of it bad), and a little sarcasm thrown in just to keep things interest-
ing. I also assume that you have a certain level of technical ability and don’t
bore you to tears (and pad out the book) with mindless listings of steps to
accomplish basic tasks. My target audience is intermediate to advanced profes-
sional developers. I’ll assume that you don’t need that hand-holding.

Enjoy the book and enjoy working with Workflow.

David Mann

US $49.99

Shelve in
Office

User level:
Intermediate–Advanced

M
ann

W
orkflow

THE EXPERT’S VOICE® IN WORKFLOW

David Mann
Foreword by George Hatoun,
Program Manager, Workflow 2007 Microsoft Office system

Workflow
in the 2007
Microsoft Office
System

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN-13: 978-1-59059-700-2
ISBN-10: 1-59059-700-1

9 781590 597002

54999

Companion
eBook Available

Using workflow in SharePoint and Office 2007
to enforce and enhance business processesRELATED TITLES

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

in the
2007

M
icrosoft Office System

www.allitebooks.com

http://www.allitebooks.org

Workflow in the 2007
Microsoft Office System

■ ■ ■

David Mann

Mann_700-1FRONT.fm Page i Monday, January 22, 2007 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

Workflow in the 2007 Microsoft Office System

Copyright © 2007 by David Mann
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-700-2

ISBN-10 (pbk): 1-59059-700-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewer: George Hatoun
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Sofia Marchant
Copy Edit Manager: Nicole Flores
Copy Editor: Liz Welch
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Susan Glinert
Proofreader: Lori Bring
Indexer: Joy Dean Lee
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section. You will need to answer questions pertaining to this book in order to successfully
download the code.

Mann_700-1FRONT.fm Page ii Monday, January 22, 2007 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

To my family

Mann_700-1FRONT.fm Page iii Monday, January 22, 2007 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

Mann_700-1FRONT.fm Page iv Monday, January 22, 2007 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

Foreword . xiii

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

PART 1 ■ ■ ■ A New Beginning
■CHAPTER 1 Introduction . 3

■CHAPTER 2 Getting Started . 37

PART 2 ■ ■ ■ Having an Out-of-the-Box Experience
■CHAPTER 3 Using the Default Workflows . 51

■CHAPTER 4 Using the SharePoint Designer . 79

PART 3 ■ ■ ■ Teaching Your Workflow to Dance
■CHAPTER 5 Activities . 113

■CHAPTER 6 Building a Workflow with Visual Studio 2005 157

■CHAPTER 7 Workflow Forms . 205

PART 4 ■ ■ ■ Turning Things Up a Notch
■CHAPTER 8 Workflow Rules . 255

■CHAPTER 9 A Workflow Smorgasbord . 301

■CHAPTER 10 The Workflow Object Model . 371

■APPENDIX Frequently Asked Questions . 389

■GLOSSARY . 399

■INDEX . 405

Mann_700-1FRONT.fm Page v Monday, January 22, 2007 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

Mann_700-1FRONT.fm Page vi Monday, January 22, 2007 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

Foreword . xiii

About the Author . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

PART 1 ■ ■ ■ A New Beginning

■CHAPTER 1 Introduction . 3

Introducing Workflow . 3

Workflow Scenarios . 5

Types of Workflow . 7

Workflowasaurus: Workflow in the Pre–Office 2007 Mesozoic 16

Ladies and Gentlemen…Windows Workflow Foundation 17

Windows Workflow Foundation Architecture 17

Office 2007 Workflow Technology . 22

Introducing the Office 2007 Client . 23

Introducing the Office 2007 Servers. 28

The Cast of Ben-Hur . 32

Key Facts Summary . 33

Sample Office 2007 Workflow Scenarios . 34

Summary . 35

■CHAPTER 2 Getting Started . 37

Setting Up the Environment . 37

Scenarios in This Book . 43

Welcome to KCD Holdings . 43

Scenarios in the Chapters . 46

Summary . 47

Mann_700-1FRONT.fm Page vii Monday, January 22, 2007 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

viii ■C O N T E N T S

PART 2 ■ ■ ■ Having an Out-of-the-Box
Experience

■CHAPTER 3 Using the Default Workflows . 51

The Out-of-the-Box Workflows . 51

WSS Workflow: Three-State . 52

MOSS Workflow: Document Approval . 53

Solving the Problem: The Workflow Administrator’s Role 55

Showcasing the Solution . 62

Permutations = Power . 73

Benefits of the Solution . 76

Workflow in Previous Office Versions . 77

Summary . 78

■CHAPTER 4 Using the SharePoint Designer . 79

Introducing the SharePoint Designer . 79

Overview of the Workflow Designer . 80

Steps . 81

Conditions . 81

Actions . 83

Variables . 86

Workflow Lookups . 87

Initiation . 89

Check Your Workflow . 89

Information Types . 90

Workflow Forms . 93

Constructing a Workflow with the Workflow Designer 93

Going Through the Steps . 95

Deploying Our New Workflow . 106

Testing 1, 2, 3…Testing 1, 2, 3 . 106

Summary . 109

Mann_700-1FRONT.fm Page viii Monday, January 22, 2007 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S ix

PART 3 ■ ■ ■ Teaching Your Workflow to Dance

■CHAPTER 5 Activities . 113

Simple Activities . 113

Composite Activities . 115

Out-of-the-Box Activities . 115

WF Activities . 116

SharePoint Activities. 121

Building a Custom Simple Activity . 124

Setting Up the Environment . 127

Coding the Activity . 128

Adding Custom Properties . 135

Wrapping It All Up . 138

Finishing and Compiling. 146

Deploying Our Activity . 146

Building a Custom Composite Activity . 146

Setting Up the Environment . 147

Coding the Activity . 148

Compiling and Finishing. 154

Summary . 155

■CHAPTER 6 Building a Workflow with Visual Studio 2005 157

Getting Started . 157

New Project Types . 157

Building a Sequential Workflow . 159

Working in the Designer. 161

Adding Activities . 165

Writing All That Code . 174

Compiling and Wrapping Up . 176

Deploying Our Workflow . 176

Testing Our Workflow . 183

Wrap Up . 186

Building a State Machine Workflow . 186

Exploring State Machines and the State Machine Designer 187

Working in the Designer. 195

Deploying and Testing . 202

Deploying to Production . 202

Summary . 203

Mann_700-1FRONT.fm Page ix Monday, January 22, 2007 10:04 AM

www.allitebooks.com

http://www.allitebooks.org

x ■C O N T E N T S

■CHAPTER 7 Workflow Forms . 205

Types of Forms . 205

Introducing InfoPath . 205

ASP.NET . 208

Association and Initiation Forms . 208

Modification Forms . 210

Task Forms . 211

Creating Custom Workflow Forms . 212

Scenario 7-1: Using InfoPath Forms . 212

Scenario 7-2: Using ASP.NET Forms . 239

Summary . 251

PART 4 ■ ■ ■ Turning Things Up a Notch

■CHAPTER 8 Workflow Rules . 255

Rule Mechanics . 257

Code Conditions . 259

Declarative Rule Conditions . 260

Policy Activity . 266

Office Workflow External Policy Solution . 275

External Policy Activity . 276

Rule Management. 284

Putting It All Together—A Sample Workflow. 295

Summary . 300

■CHAPTER 9 A Workflow Smorgasbord . 301

Dehydration . 301

Reality Check . 302

Workflow Processing . 302

Debugging . 304

Mann_700-1FRONT.fm Page x Monday, January 22, 2007 10:04 AM

■C O N T E N T S xi

Going Mobile . 306

SharePoint Mobile Views . 307

Outlook Synchronization With SharePoint . 309

The Mobile Experience . 310

Fault Handling . 313

Configuring Fault Handlers . 316

Local Scope . 318

Fault Handling Summary . 319

Canceling Workflows . 319

Tools Comparison . 321

Integrating Office 2003 . 322

Getting Started . 323

Step 1: Write a Web Service . 325

Step 2: Create the VSTO Solution . 329

Step 3: Create the File Share . 334

Step 4: Publish the Solution . 334

Step 5: Create Site and Document Library 335

Step 6: Move VSTO Document . 335

Step 7: Switch New Document Template . 335

Step 8: Set Security . 336

Step 9: Test . 336

Step 10: Celebrate . 337

Wrapping Up . 337

Picking On People—The InfoPath Contact Picker and
the ASPX People Editor . 338

InfoPath Contact Picker . 340

ASPX People Editor . 345

Building with Blocks—The Makings of an ASPX Form 350

XAML . 355

Hiding Documents During Workflow Processing 357

Custom Conditions and Actions for SPD . 359

Custom Actions . 359

Custom Conditions . 363

Activity Verbs . 365

Workflow Reports . 367

Odds and Sods . 368

Summary . 369

Mann_700-1FRONT.fm Page xi Monday, January 22, 2007 10:04 AM

xii ■C O N T E N T S

■CHAPTER 10 The Workflow Object Model . 371

Primary Objects . 371

SPWorkflow . 372

SPWorkflowCollection . 374

SPWorkflowFilter. 375

SPWorkflowActivationProperties . 376

SPWorkflowAssociation . 378

SPWorkflowManager . 381

SPWorkflowState . 382

SPWorkflowTask . 383

SPWorkflowTaskProperties . 384

SPWorkflowTemplate . 384

SPWorkflowHistoryEventType . 385

Workflow Throughout the Object Model . 386

MOSS . 387

Workflow Web Service . 387

Extensions to the Core Object Model . 388

Summary . 388

■APPENDIX Frequently Asked Questions . 389

Introduction and General Questions . 389

Development Questions . 391

Administration Questions . 396

■GLOSSARY . 399

■INDEX . 405

Mann_700-1FRONT.fm Page xii Monday, January 22, 2007 10:04 AM

xiii

Foreword

On behalf of the engineers on the Microsoft Office and Windows Workflow Foundation teams
who spent over three years building workflow into the 2007 Microsoft Office system, I would
like to thank you very much for your interest in Microsoft Office and workflow. I am pleased to
recommend this book to you as a roadmap and tutorial for getting started designing and
building workflows for Microsoft Office.

While we’ve prebuilt the most common review and approval workflows into Microsoft
Office, I know well that we did not scratch the surface of all the important processes that orga-
nizations will need to build as they modernize the way their information workers get their jobs
done. That is because a primary goal in building workflow into Windows SharePoint Services
and Microsoft Office was to provide a platform for developers to build a wide range of People-
Ready Processes. When I say People-Ready Process, I mean to emphasize Microsoft Office’s
focus on human-centric workflow scenarios—those business processes that will reduce clutter
in your inbox, help you track and correlate information automatically, and hopefully help you
get home to your family a bit earlier each day.

Speaking of saving time, David Mann has done a heroic job of synthesizing large volumes
of information into a well-organized reference for developers and IT administrators alike. I
would particularly commend his focus on connecting the topics in this book to real-world
scenarios, which makes the technical information even more valuable. In many cases, such as
his primer on writing workflows for mobile devices, he explores new scenarios that can be built
on the Microsoft Office platform that go beyond our out-of-the-box feature set—but are quite
doable if you follow his step-by-step instructions.

Although this is a comprehensive book about the workflow features in Microsoft Office, it’s
not the only reference that you will need as you build your own workflows. I would encourage
you to also consult the Microsoft Office developer resources available on MSDN (http://
msdn.microsoft.com/office), especially the SDKs for Windows SharePoint Services and
Microsoft Office SharePoint Server.

George Hatoun
Program Manager for Microsoft Office

Microsoft Corporation

Mann_700-1FRONT.fm Page xiii Monday, January 22, 2007 10:04 AM

Mann_700-1FRONT.fm Page xiv Monday, January 22, 2007 10:04 AM

xv

About the Author

■DAVID MANN is the principal architect for portal and collaborative solutions at Anexinet,
a Microsoft Gold-Certified partner headquartered in Philadelphia. Anexinet provides solutions
for customers spanning the entire Microsoft stack. Dave has been working with portal, infor-
mation worker, and content management technologies for just shy of 300 years (OK, really for
12 years). He has designed and delivered solutions for Fortune 500, international conglomerates,
small family-run businesses, and everything in between—always with a focus on end users and
making their lives easier.

Dave can be reached at dave@kcdholdings.com or www.kcdholdings.com.

Mann_700-1FRONT.fm Page xv Monday, January 22, 2007 10:04 AM

Mann_700-1FRONT.fm Page xvi Monday, January 22, 2007 10:04 AM

xvii

About the Technical Reviewer

■GEORGE HATOUN is a program manager on the Microsoft Office User
Experience team. For the 2007 Microsoft Office system release, he
defined Office workflow engine requirements and the integration of
Windows Workflow Foundation into Windows SharePoint Services. He
worked closely with customers and IT departments to understand how
workflow in Microsoft Office could improve their efficiency. George has
been working on collaboration products at Microsoft for over a decade,

including seven years on Microsoft Office. His previous roles at Microsoft include lead program
manager for Outlook Express and MSN Explorer. George holds a BA in computer science from
Rice University. He lives in Bellevue, Washington, with his wife Angela, where he enjoys kayaking,
snowshoeing , and hiking in the great Pacific Northwest, and traveling abroad when the weather
there is not so great.

Mann_700-1FRONT.fm Page xvii Monday, January 22, 2007 10:04 AM

Mann_700-1FRONT.fm Page xviii Monday, January 22, 2007 10:04 AM

xix

Acknowledgments

First of all, I’d like to thank the Academy…
But seriously, this book would not have been possible without the help, support, prodding,

and gentle nagging of some good people at Apress. Jon, Sofia, Liz, Kelly—thank you for your
feedback, your comments, and for putting up with a manic first-time author. Thanks, too, to my
boss Paul for giving me time to write and helping to keep me moving forward.

Without the input, help, and guidance of my technical reviewers, this book would not have
been possible. George, thank you for your insightful comments; they helped keep things on
track and helped me fine-tune the direction and contents of the book as the beta evolved. Eilene,
although you came on late in the project, your help was outstanding. I couldn’t have wrapped
my head around some of the final pieces without your help.

Last but most importantly, thank you to my family. You guys are the best. Lil: what can I say,
I couldn’t live without you. K-Man: Keep doing your best—you’ll be amazed at what you can
accomplish. You’re a smart, funny, and caring young man, and I’m proud of you. C-Note: You’re
a wonderful person—kind, caring, and smart. Keep reaching for your dreams and never let
anyone tell you what you can’t do. I’m proud of you. D: You work harder than anyone I know—
not bad for a five-year-old. You’re an amazing kid. Someday we’ll talk and I’ll tell you all of this.
I can’t wait.

Finally, a request to you, my reader: please support autism research and autism awareness.
It’s an epidemic that is stealing our future. Thank you.

Mann_700-1FRONT.fm Page xix Monday, January 22, 2007 10:04 AM

Mann_700-1FRONT.fm Page xx Monday, January 22, 2007 10:04 AM

■ ■ ■

P A R T 1

A New Beginning

I’ll be the first to admit it—I never read the first chapter of a technical book. Introductions

are often boring and rarely contain much useful information.

I’d like to ask your indulgence here, though. Read the first two chapters that make up

this part. As the author, I’ll admit to being biased, but I think there’s a lot of good informa-

tion in these chapters. We’re going to be wading deep into new waters as we progress

through the later chapters and it’s important that everyone speak the same language and

start from the same base.

Chapter 1 is an introduction to all things workflow and then an overview of Windows

Workflow Foundation and Workflow in the 2007 Microsoft Office System. It provides infor-

mation that lays the foundation for what we will cover later.

Chapter 2 covers establishing our environment. It talks about all of the pieces and how

to get them installed and configured properly. Chapter 2 then wraps up with an overview

of the scenarios we are going to cover later in the book. If you’re going to skip a chapter,

skip this one. Naturally, as the author, I hope you don’t, but, hey, you paid for the chapter

whether you read it or not. Also, don’t blame me if something doesn’t work for you later—

everything you need to get things working properly is covered in Chapter 2.

That’s it, so let’s get started…

Mann_700-1C01.fm Page 1 Thursday, January 18, 2007 2:55 PM

Mann_700-1C01.fm Page 2 Thursday, January 18, 2007 2:55 PM

3

■ ■ ■

C H A P T E R 1

Introduction

Imagine waking up one morning and finding everything you knew, or thought you knew, had
been flipped over 180°—the sun was green, the sky orange, and you were suddenly no longer a
seasoned computer professional but instead a 10-year-old kid sitting in elementary school
again. That’s kind of how most of us felt when we sat down in front of Office 2007 for the first
time—or the first few dozen times.

It’s a whole new ballgame.
Once the shock begins to wear off, however, you can see some glimmer of hope. Things are

different, certainly, but not so different that you can’t function. There are some interesting new
kids on the block but most of your old friends are still around—just pimped out in some fancy
new clothes. You still use Word to produce documents, Excel to crunch numbers, and SharePoint
to collaborate and share content. They just look and act a little differently.

Hopefully, that’s where you are when you start reading this book. Are the Office 2007 client
applications different from what came before them? Yes, absolutely. Is the Office 2007 System—
server and client—better than what came before? Again, the answer is a resounding yes.

Continuing on with my somewhat lame analogy, Workflow is just one of those new kids on
the block. Workflow is the kid who somehow makes everything else better. Sure, you’ve got an
Xbox 360, but the new kid has the wireless controllers and the big-screen HD TV to play it on.
Could you play Xbox before? Sure. But once you’ve sipped from the fountain, there’s no going
back. Workflow is the same way. There’s very little in Office 2007 Workflow that you couldn’t do
before, either manually, with a third-party product, or with a homegrown solution. Office 2007
Workflow just makes it all easier, faster and better in every way—everything tastes better on an
Office 2007 workflow...

Introducing Workflow
All bluster and pontificating aside, Workflow truly is the single most exciting new feature in
Office 2007. It is, perhaps, not as immediately noticeable as the changes to the client interface,
but it is going to have the most impact on business productivity.

■Note One thing that is important to understand early on is that we’re talking about workflow in the Office
2007 System—this includes both the client products typically referred to as “Office,” as well as the server
products—primarily SharePoint.

Mann_700-1C01.fm Page 3 Thursday, January 18, 2007 2:55 PM

4 C H A P T E R 1 ■ I N T R O D U C T I O N

You would think, perhaps, that Workflow is new technology Microsoft has developed to fill
what had been a huge hole in the Office system. In reality, though, Workflow is as old as the
hills. It existed before computers were invented and will exist after your souped-up gaming rig
has been replaced with something that makes the HAL 9000 look like the ENIAC.

■Note Before going any further, I’d like to make sure that we are all on the same page with regard to the
definition of workflow. After all, the rest of this book is going to be about workflow so we should get a definition out
of the way right here at the beginning. Workflow is a term that means different things to different people. For
our purposes, we’ll start defining the word by breaking it down:

work: a task to be completed

flow: a process

We’ll add one other important aspect and that is a goal. Every workflow has an identified end result it is
targeted to achieve. So, our full definition of workflow is as follows: the process that defines and controls the
completion of one or more tasks in order to bring about the realization of an identified goal. The key parts of
this definition are “process,” “tasks,” and “identified goal.” Everything else typically associated with work-
flow—notification, reporting, tracking, escalation, etc.—merely support the process and the realization of the goal.

Before computers, workflows were handled manually, usually by a secretary or low-level
manager. For example, back in the dark ages (i.e., when I was in college in the ’80s) the secretary
of the MIS department for the college played the role of what we now call the workflow engine.
She would take in documents and manually deliver paper copies to professors or computer
operators for review or approval. She had a separate calendar on her desk where she would
write herself reminders to follow up on documents and remind people to review them in a few
days. To remind people, she would walk to their office and talk to them, talk to them in the
hallway, or place a note (an actual physical piece of paper—gasp!) in their mailbox. For what
we now call long-running workflows, she had a tickler file—a collection of file folders in a filing
cabinet into which she would place copies of documents that she needed to do something with
at some point in the future. Every Monday morning she would check the tickler file for the
current month to see if there was anything she needed to act on. If there were, she would pull
out the paper copy and route it or act on it appropriately. The system worked great—with only
the occasional hiccup when she was out sick—until she and her husband moved out of state.
Suddenly, the entire department fell apart for a few weeks while the new secretary got up to
speed on the system. Documents didn’t get circulated, people felt out of touch, and work fell
through the cracks. It was really ugly for about a month. Then the new secretary had a handle
on everything; she had learned the process and caught up on everything that had fallen behind.
All was right again with the world.

A computer’s role in workflow is merely to automate that manual process. Like most other
computerized processes, the computer isn’t doing anything that couldn’t be done by a human
being, as you saw earlier. It is just doing it more quickly, efficiently, and without cigarette
breaks. You also don’t have to worry about the computer moving out of state. However, in a
sense, something is missing from computerized workflows—human intelligence and adaptability.

Mann_700-1C01.fm Page 4 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 5

Until HAL is installed in your office, computers can only follow a prescribed series of steps.
Those steps can be flexible and account for many exceptions and situations within a process,
but they will not replace a human being’s capability to adjust for a new situation. For example,
Nancy (the original secretary from my college) knew that a certain professor would not be at
work the day after his alma mater won the NCAA basketball championship and so she had to
not only cancel all of his classes, but also follow up with the department head for approval on a
document due back to the president of the college that day. While not impossible, computerized
processes generally don’t account for sudden, unplanned, celebratory drinking binges. Keep
that in mind as you plan and execute your workflows.

So, trips down memory lane aside, where are we? At a high level, we know that workflows
automate a business process, handling all touch points, routing, escalation, and so forth. Office
2007 fits into this picture as the tool used by most workflow participants to interact with the
workflow. This chapter presents some theory on workflow as well as architectural details and
some high-level information on how workflows are implemented in the new Office system.

A WORKFLOW BY ANY OTHER NAME…

Business process management. Business process automation. In most cases, these terms are just fancy
names for a workflow. Somewhere, someone decided that workflow just didn’t sound impressive enough, so
they coined a new set of terms. When you break it all down to its core, though, it’s just workflow.

Workflow Scenarios
Still staying at a high level, workflow basically comes in two flavors:

• Human-centric: People are the primary participants and completers of tasks.

• Machine-centric: Computers are the primary participants and completers of tasks.

There will almost always be some mixing of human versus machine participation in a
workflow, but we classify them based on who does most of the work.

Starting with the machine-centric, the following are both examples of machine-centric
workflows:

• Assembly-line robotics, for example, assembling cars. This is a workflow because there
are tasks to be completed (rivets, welding, electrical connections, etc.) and they must be
completed in a certain order (you can’t install the seats before the floor) in order to
achieve a goal (a new car). Human beings do not get involved in most of this work
because we are too slow and it is dangerous.

• Credit card approvals for online purchases. This is also a workflow because there are
tasks (verify card number, verify address, check credit limit, etc.) to be completed in a
certain order (you need to verify the account number and access the account before you
can verify the billing address) to achieve a goal (sell a product). Human beings do not get
involved in this process for fraud-prevention reasons and because we are too slow—
imagine what Amazon’s sales would look like if a human being had to review and approve
every transaction.

Mann_700-1C01.fm Page 5 Thursday, January 18, 2007 2:55 PM

6 C H A P T E R 1 ■ I N T R O D U C T I O N

These examples are very different and yet both fit well within our definition of a workflow.
Similarly, these are machine-centric workflows for different reasons, but at a very basic level it
is because the process can be defined and codified to a degree that does not require human
intervention. All seats are riveted to the floor in the same way for a given car. All credit card
transactions are approved following the same well-defined set of rules and conditions. There is
no reason for a human being to be involved for any reason other than exception handling—
which brings up a good point. Most machine-centric workflows exist because the process can
be defined well enough for someone to write code to enforce the process. However, no matter
how well defined the rules and process are, there must always be a final piece to handle
unplanned-for conditions. That final step is usually to stop and pass the process off to a person
to take care of the problem—whatever it may be. A well-written machine-centric workflow will
always have this step for unforeseen circumstances because there is no way to code for the
unknown.

Human-centric workflows are different—they start with preparing for the unknown and
support the human participants in whatever tasks they need to perform in order to complete
the process. Human-centric workflows generally need some sort of advanced reasoning,
comparison, or abstract thinking that cannot be codified. Also common to a human-centric
workflow is some sort of approval decision. Whether for accountability or opinion, many
human-centric workflows include a step where someone makes a judgment call on whether
to proceed. The following are examples of human-centric workflows:

• Document approval: The stereotypical human workflow example. No two documents
are alike. Each requires advanced reasoning and a high level of abstract thinking in order
to be approved. In the vast majority of scenarios, there is no way this can be fully automated.

• Design approval: Machines cannot assess aesthetics. For example, there is no way for a
computer to determine which of three designs is best suited for a web site, a brochure,
or some other marketing material.

• Document translations: Machines cannot yet capture all of the nuances of human
language. This requires a human being who understands context, cultural implications,
and often very precise domain-specific knowledge.

Most human-centric workflows are similar to these examples. Machines are involved for
the routing, storage, and notification of task assignments—in effect, the mechanics of the
process—while humans are responsible for the actual work performed at most of the steps.
In some cases, machines may play a bigger role; for example:

• Retrieving data from external sources to augment information contained in a Workflow
step. During a purchase requisition workflow, for instance, the computer may retrieve
purchase history, budget, and other information to provide additional data to the person
responsible for approving the purchase request

• Automated document creation based on content supplied during the workflow steps.
A scenario for this would be where a salesperson supplies information via a workflow
form as part of a sales order workflow and the computer automatically creates a contract
document based on a template prefilled with the appropriate details and then routes
that document for approval.

Mann_700-1C01.fm Page 6 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 7

• Automated document manipulation, for example, removing macros from Word documents
before they are circulated for approval to combat the spread of viruses.

• Process automation based on information supplied during the workflow. An example of
this is the creation of Exchange and Active Directory accounts as part of a new employee
workflow.

These steps, however, are still typically secondary to the human tasks in the process. The machine
is still following a prescribed set of steps in support of, or based on, the human pieces of the
process.

Human-centric workflows are the focus of Workflow in Office 2007. Office is a human-
productivity tool and so this makes perfect sense. Office is all about documents (documents in
a generic sense as this includes not only Word documents but also Excel spreadsheets, PowerPoint
presentations, InfoPath forms, etc.). These documents are often referred to as the payload for
the workflow; they are the chewy nougat at the center. The whole reason the workflow exists is
to move this payload through a process.

■Note All of this machine-centric and human-centric talk makes me feel like I’m in a bad Terminator
sequel—T99: Rise of the Workflow. Since we’re focusing on Office 2007 Workflow, which is all about human-
centric processes, I’m going to drop the human-centric bit from here on out. Just remember that there is a
whole other world of workflow out there that has very little to do with documents and people. When we talk
about Windows Workflow Foundation later in this chapter, we’ll revisit this dark side just a little bit.

Types of Workflow
Workflows fall into one of two broad types, based on how the tasks are processed:

• Sequential workflows: Typically depicted as a flowchart, in which the process has a
beginning, a prescribed path (which could include parallel branches, criteria-based
branching, and loops, but is nonetheless a defined path) and an end. Figure 1-1 shows a
generic example of a sequential workflow. It includes most of the typical structures found in
a standard flowchart. Starting from the top, it is possible to trace the execution logic
from beginning to end without much knowledge of even what the process represents.

• State machine workflows: State machines are a significantly different beast from sequen-
tial workflow and often harder to bend your mind around. They are, however, much
better at modeling complex human activities. Essentially, a state machine is based on
the concept of conditions and transitions. A condition is a set of circumstances that indicate
the current status or situation of the process being modeled. Events occur and cause
a transition from one condition to another. Unlike sequential workflows, there is no
prescribed path through the workflow. Instead, the path taken by the workflow is deter-
mined by the events that occur as the workflow is processing. Figure 1-2 shows a generic
state machine workflow.

Mann_700-1C01.fm Page 7 Thursday, January 18, 2007 2:55 PM

8 C H A P T E R 1 ■ I N T R O D U C T I O N

Figure 1-1. A generic sequential workflow has a prescribed path through the process.

Looking at Figure 1-2, you can see that on the one hand, the representation of the work-
flow is much simpler; there are only two structures—states and events. On the other hand, the
process seems more complex because there is no way to start from the beginning and step
through to the end—there is no prescribed path to follow. Office 2007 supports either type of
workflow. We’ll cover each in more detail and with concrete examples in the next sections.

Mann_700-1C01.fm Page 8 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 9

Figure 1-2. A generic state machine workflow

Sequential Workflows

As alluded to earlier, and as indicated by the name, sequential workflows follow a sequence of
prescribed steps to move from beginning to end. They are easy to understand and follow when
presented graphically; consequently, most people start their exploration of workflows with
sequential workflows.

For those of you old enough to remember life before event-driven programming, sequen-
tial workflows are like the first programs you learned to write in high school or college—linear.
They started, did something in the middle, and stopped. You could read from line 1 of the
source code all the way through to the end and get a good understanding of what the program
did without much (or any) jumping around. There were likely conditions and branches that
might send the code down one path or another, but it was all laid out cleanly and in a way that
was easy to step through. Sequential workflows are like this.

One key tenet of sequential workflows is that the participants do not typically determine
the next step in the workflow. Each participant merely indicates to the workflow engine that
they have completed their step. They may or may not have any knowledge of what happens
after they have done their task. As I have said before, there is a prescribed path to the sequential
workflow so the workflow engine determines the next step in the process based on how it was
constructed. The workflow engine is in control.

Mann_700-1C01.fm Page 9 Thursday, January 18, 2007 2:55 PM

www.allitebooks.com

http://www.allitebooks.org

10 C H A P T E R 1 ■ I N T R O D U C T I O N

A sequential workflow works very well in many scenarios you are likely to encounter when
implementing Workflow in Office 2007:

• Approval

• Translation

• Feedback

• Collaboration

Most of these scenarios, however, can be generalized into a single category known as basic
routing, in which documents need to be moved from one person to another. Each person reviews
the document and passes it along either with or without adding or changing some content.
A sequential workflow handles that scenario very well.

Unfortunately, most business processes are not quite that simple. Sequential workflows
are not well suited to modeling complex business processes. They begin to break down with
the introduction of significant exception handling, multiple (often arbitrary) execution paths,
and nontrivial external factors. In these scenarios, it’s time to explore state machine workflows.

State Machine Workflows

Revisiting my programming analogy, state machines are to workflow what object orientation is
to programming—a way to simplify the development of something that is complex. As mentioned
before, only two elements make up a state machine:

• States: A condition that represents the current status of your workflow

• Events: Responsible for managing the movement of your workflow from one state
to another

Therefore, the definition of a state machine workflow is simply the identification of the
possible states and the allowable events that signal a transition to and from each state.

To help understand this better, let’s look at an example. A common workflow scenario in
Office 2007 will be the approval of a document, so we’ll explore a state machine implementa-
tion of an approval workflow. Figure 1-3 shows a basic document approval process as a state
machine. Not counting the begin and end states, which are really just labels for the diagram
and will not actually be developed as part of our workflow, there are three states:

• DocumentSubmitted: A document is in this state from the moment the workflow is initiated
until the moment someone approves or rejects the document.

• DocumentRejected: A document is in this state when the reviewer has rejected it.

• DocumentApproved: A document is in this state once someone has approved it.

Mann_700-1C01.fm Page 10 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 11

and three events:

• OnDocumentSubmitted: This event occurs when the workflow is initiated. The handler
for this event will need to determine who needs to approve the document and notify
them in some way that there is a document awaiting their review.

• OnDocumentRejected: This event occurs when the reviewer rejects the document. The
handler for this event will need to notify the author that their document was not approved.

• OnDocumentApproved: This event occurs when a user approves the document. The
event handler for this event will need to perform any finalization tasks for the workflow.

Figure 1-3. A simple state machine for document approval

Mann_700-1C01.fm Page 11 Thursday, January 18, 2007 2:55 PM

12 C H A P T E R 1 ■ I N T R O D U C T I O N

State machine workflows can be used for any scenario you are likely to encounter in Office
2007. As shown earlier, even the simplest workflow can be handled by a state machine. But the
real power of a state machine comes in handling complex scenarios. To help you understand
this, the next section will look at a single scenario modeled as both a sequential and a state
machine workflow.

Sequential vs. State Machine: A Workflow Smackdown

If each style of workflow can handle any scenario we are likely to encounter in our Office 2007
Workflow lives, how do we know which style to use in a given scenario? We already know that
simple workflows can be modeled as either sequential or state machine, so the answer there is
really whichever model you are more comfortable with. Complex scenarios are a different
story, however. I’ve stated a few times that state machines are more suited to complex scenarios,
but there is nothing inherent to Workflow in Office to stop you from handling complex scenarios
with a sequential workflow. I’ll show you an example of a complex scenario modeled as both
sequential and state machine to help you grasp why a state machine is a better choice for
complex situations.

First, let’s present our scenario. We’ll start with the same basic scenario we saw earlier for
the state machine—document approval. While not uncommon, a simple scenario such as this
is not typical. More common is a situation in which complexity is added in the form of require-
ments like those listed here:

• The document is time-sensitive so approvals need to happen in a timely fashion or be
escalated to another approver.

• There are multiple potential approvers of a document, each with their own area of focus.
For example, a document might need approval from several departments.

• Not all reviewers are created equal—some reviewers can trump another’s approval or
rejection with their own super-approval or super-rejection.

• There are levels of approval, occurring either in series or parallel. What happens when a
document is rejected by a second-level reviewer—does it go back to the first level, back
to the original author, or continue on for a final review?

• A document requires a subset of the reviewers to approve or reject it before it moves on
or falls back. For example, a document is sent to five reviewers and requires any three of
the five to approve it before it can be published.

• The document is modified by one approver—does it go back to the original author, start
the workflow over again, or just continue on?

For our scenario, we’re going to take on just a few of these additional complexities. Our
approval is going to require the fourth and fifth items from the previous list. Figure 1-4 shows
our process modeled as a sequential workflow. As you can see, even a process that is only slightly
more complex gets unwieldy in a sequential model.

Mann_700-1C01.fm Page 12 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 13

Figure 1-4. A complex process modeled as a sequential workflow

Looking at Figure 1-4, we can describe the process as follows:

1. An author creates a document and initiates the workflow.

2. The manager reviews the document and takes one of three paths:

• Rejects document outright: The document is returned to the author as rejected.

• Approves document but makes some modifications: The document is returned to the
author with suggested modifications.

• Approves document as is: The document moves on to the Product Management step.

Mann_700-1C01.fm Page 13 Thursday, January 18, 2007 2:55 PM

14 C H A P T E R 1 ■ I N T R O D U C T I O N

If the document is returned to the author with suggested modifications, the author can
accept the modifications, in which case the document moves on to product management,
or else reject the modifications, in which case the document dies.

3. Product management has the same three options as the manager—reject, accept as
modified, or accept as is. The only difference here is that anything except rejected
requires a majority of the Product Management Committee. If less than the majority of
the committee approves or approves with modifications, the document is returned to
the author.

4. The Marketing Manager and Legal steps are similar to the Manager step as well, except
that if they reject or accept with modifications, they can opt to send it back to anyone in
the process earlier than them—depending on what their objection or suggestion is
related to.

Figure 1-4 is not the easiest process to follow. It loops back on itself, branches multiple
ways, and generally is difficult to understand. The process depicted is not really that complex
and yet the representation is quite complex. The code to implement this process will be equally
intricate. It must account for many situations and track the current status of the document
through a maze of possibilities. Making this situation worse is the fact that if this process needs
to change in the future, making any changes will require someone with significant knowledge
of how the process was coded in the first place. None of this makes for a good situation.

Now let’s take a look at the same process modeled as a state machine. Figure 1-5 shows
this same process.

Figure 1-5. A complex process modeled as a state machine

Mann_700-1C01.fm Page 14 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 15

At first glance, Figure 1-5 may not seem any simpler. However, once you come to grips
with how state machines are modeled, it is much easier to understand. Remember, too, that
this is only a somewhat more complex process—fortunately, however, a state machine work-
flow does not get progressively more complicated as the process it models does. In many ways,
once you get over the initial learning curve, very, very complex state machines are not much
harder to follow than simpler ones. Take a few minutes to review Figure 1-5 and you’ll begin to see
what I mean. You’ll notice that there are five states (excluding the placeholder begin/end states):

• Waiting for Manager Approval

• Waiting for Product Management Approval

• Waiting for Marketing Approval

• Waiting for Legal Approval

• Waiting for Author Review

and six events:

• OnDocumentSubmitted

• OnApproved

• OnRejected

• OnModified

• OnModificationsAccepted

• OnModificationsRejected

Each participant in the workflow has the same options as in the sequential model. However,
looking at Figure 1-5, you can see that it is easier to follow—each state has a set number of
events that it supports to transition to or from another state. Future modifications are simply
a matter of adding new states or events and updating which are supported at each part of the
workflow. The object-oriented nature of a state machine workflow brings all of the same bene-
fits to our workflows as it does to our programs—modularity, ease of maintenance, isolation,
and so forth.

As we progress through the book, we’ll look at examples of both state machine and
sequential workflows. However, we’re going to begin our exploration of workflows in Office
2007 with sequential workflows for three reasons:

• Sequential workflows are what most people think of when they think about workflow.
They are simpler to understand and so we can focus our time on understanding Workflow’s
tools and constructs in Office 2007 rather than a new processing paradigm.

• The out-of-the-box workflows (detailed in Chapter 3) are all sequential models.

• The SharePoint Designer—the software formerly known as FrontPage (presented in
Chapter 4)—only supports the creation of sequential workflows.

As we delve deeper into Workflow in Office 2007, we’ll revisit state machines and see the
power and simplicity they bring to a complicated process.

Mann_700-1C01.fm Page 15 Thursday, January 18, 2007 2:55 PM

16 C H A P T E R 1 ■ I N T R O D U C T I O N

Workflowasaurus: Workflow in the
Pre–Office 2007 Mesozoic
With a pretty good understanding of workflow now under our belts, it’s time to start honing our
knowledge of Office 2007. Before we start, however, you need to understand a bit about where
I’m coming from. I alluded earlier to the fact that the lack of workflow has been a huge hole in
the Office System for quite some time. Does this mean that the work didn’t happen, or that it
didn’t follow a process? No, naturally not. What it means is that until now, the solution was
harder than it could have been. Before Office 2007, workflow in an Office environment was
handled in one of three ways:

• With a third-party tool

• With custom code

• As a manual process

Of the three of these possibilities, the last is by far the most common. People route paper
copies of documents or email electronic copies. Just last week I spoke to two clients about their
processes. Both use folders with the tabs marked as “Return to <Name>” to make sure that the
document inside eventually made it back to the author. In one case they placed sticky notes
inside the folder with the document listing the names of the people who had to review it. In the
other case, they just sent the document out and hoped it made the appropriate rounds. The
apparent benefit—the cost of implementing this “solution” is zero—is more than outweighed
by the ongoing costs of lost productivity and incomplete, incorrect, undocumented, and
inconsistent processes. The amount of time, paper, and network or email storage wasted routing,
tracking, and following up on documents in a manual process is staggering. In addition, in
today’s ever-more-regulated business environment a good automated workflow implementa-
tion can help ensure regulatory compliance that could save millions of dollars in legal fees,
penalties, or settlements.

For those companies that implemented some sort of automated workflow process, most
were homegrown solutions. While certainly better than a fully manual process, the time, effort,
and cost spent developing, managing, and extending this solution often reduced its business
value to a marginal sum. True, the compliance benefits were still there—if the developers did
their jobs right—but the costs were often immense.

Finally, workflows built using a third-party tool—and there are many—were often nearly
as costly (or in some situations more costly) than a homegrown solution. The benefits of
support, reliability, and compliance were usually better than in the homegrown solution, but
again, the costs were often a fairly high barrier to entry. Compliance benefits were generally
very good and solid, but there’s still that niggling little detail of cost.

Windows Workflow Foundation and Workflow in Office 2007 allow you to take care of all
of the same compliance issues but at a software cost that is easier for most companies to handle—
free (well, at least for the workflow engine). Yes, there is still development, configuration, and
administration that needs to happen, but that’s no different than any third-party solution

Mann_700-1C01.fm Page 16 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 17

and better than a homegrown one. Add to that the tight integration with the most popular
productivity suite on the planet, the tight integration with SharePoint, and a few other bells and
whistles and you’ll begin to understand why the 2007 Microsoft Office system is rocking the work-
flow world.

■Note In Chapter 9, we’ll burn a few cycles on integrating Office 2003 with our Office 2007 Workflow expe-
rience. We won’t come close to the full-blown Office 2007 experience, but we’ll at least make Office 2003 a
player in the game.

Ladies and Gentlemen…Windows Workflow
Foundation
The core of every workflow in Office 2007 is the Windows Workflow Foundation (WF). WF is
part of the .NET Framework 3 that also includes the Windows Presentation Foundation and the
Windows Communication Foundation. WF consists of

• A collection of classes and objects that form the in-process workflow engine

• Add-on designers for Visual Studio 2005

• A programming model for delivering workflow-enabled applications

In the rest of this chapter, we focus on the core workflow engine provided by WF. The
other two aspects will be covered throughout the book as we discuss various development
tasks and scenarios.

■Note Workflow in Office 2007 is deeply intertwined with the new Office servers and the significant
changes that have been made to the Office client applications. While this book is not an authoritative source
for either the Office servers or the Office client applications, a brief overview of the salient points of each is
provided later in this chapter.

Windows Workflow Foundation Architecture
The workflow engine part of WF is responsible for providing several core services to all work-
flows built utilizing Windows Workflow Foundation. These services are classified into several
categories. Figure 1-6 shows a high-level view of the WF architecture. To better understand the
architecture of Workflow, we’ll discuss each piece of Figure 1-6 in the following sections.

Mann_700-1C01.fm Page 17 Thursday, January 18, 2007 2:55 PM

18 C H A P T E R 1 ■ I N T R O D U C T I O N

Figure 1-6. The Windows Workflow Foundation architecture

Host Interface

One thing that it is important to understand about WF is that it is not directly executable. It is
designed only to exist within another process. That other process is called the host. For Office 2007,
the host is SharePoint. We’ll talk more about the host functionality provided by SharePoint
later. For now, it’s only important to understand the concept of a host and the role it plays in
our workflows. For more information on workflow hosts, see the sidebar “Every Party (Workflow)
Needs a Host.”

Mann_700-1C01.fm Page 18 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 19

■Definition A host is an executable process that serves as the interface between the workflow engine and
workflow participants. The host provides common mechanisms for all WF workflows to provide core services.

WF provides a common set of interfaces that allows hosts to directly interact with the core
engine. Specific implementation details are left up to the host. As shown in Figure 1-6, the
services provided by the WF host interface are like sockets that a specific host application can
plug into. The services provided include

• Persistence: Even if the various human participants in a workflow responded immedi-
ately to notifications and dropped everything to complete their workflow tasks, each
workflow would still be considered a long-running process. Let’s face it, from the computer’s
point of view, wetware is slow. Combine the fact that people are rarely able to respond to
workflow tasks immediately with the fact that some workflows are by nature going to
require days, weeks, or months (the design and approval of a new multimillion-dollar
widget is not an overnight process) and we could have a major problem on our hands. If
the server processing our workflow had to keep all of the details concerning each running
workflow in memory, it would soon run out of memory. Furthermore, if all the details
about a workflow are stored in memory and the server were to go down for any reason,
all of the workflow information would be lost. To get around these problems, WF provides
for workflows to be stored and unloaded from memory in the middle of processing. As
WF is meant to be hosted inside another application, it does not specify precisely how
the information is persisted; it merely provides a mechanism for signaling when the
workflow details need to be dehydrated and stored or rehydrated and activated (for
details on dehydration/rehydration, see Chapter 9). Each workflow host determines the
specific storage mechanism appropriate for its workflows and responds accordingly
when signaled by WF. So, for example, one host may store its information in a set of XML
files, while another may write them to a set of tables inside a database. In Office 2007,
our workflow host is SharePoint, and it stores persistence information in SQL Server.

• Timer: It is not uncommon for a workflow to wait for a specified interval before proceeding.
For example, a workflow may wait three days and then send out a reminder for a task that
has not been completed. It may then wait an additional two days and then escalate the task
assignment to a manager. In some cases, this delay information may need to be persistent as
well. A typical Windows timer would not serve in all cases because it would not survive a
system restart. Each workflow host must be able to specify how it handles delays and other
time-based events. WF, therefore, needs to provide a mechanism for each host to imple-
ment its own Timer subsystem but still hook into the core workflow processing.

• Communication: Each host implementation for WF is going to require a different mech-
anism for communicating messages (events, information, etc.) from the core workflow
engine to the specific host implementation or from the host implementation back into
the core. If the WF were to limit communications to only one channel, it would severely
limit the flexibility of the platform. For this reason, WF provides a communication inter-
face that can be extended to support whatever mechanism is required by each individual
host—from web services to Microsoft Message Queue (MSMQ)-style messages to what-
ever is required by the host implementation.

Mann_700-1C01.fm Page 19 Thursday, January 18, 2007 2:55 PM

20 C H A P T E R 1 ■ I N T R O D U C T I O N

• Tracking: As workflow is the representation of a business process, it is not at all unusual
for the business to need to monitor the progress of a workflow. Companies may need to
know where in the process each workflow is at a given point in time. Similar to the Timer
process, the details of how this information is stored and retrieved could depend on a
number of factors. It would be impossible for the developers of WF to predict each case
in advance. Instead, they provide an event system inside WF that raises events during
the course of a workflow. Each host implementation is responsible for responding to or
ignoring those events as it deems appropriate.

■Note Unfortunately, SharePoint does not implement the Tracking provider from WF and does not support
third-party tracking providers. It does implement various types of reports and status windows but nothing as
extensible as what would be possible were this interface supported. If we need to track our workflow
progress, we will need to handle all of that manually.

• Transaction support: Transactions in a workflow can be a tricky thing. Some workflows
will require full rollback and transaction isolation functionality whereas others will
require no transactions. Every workflow is going to be different. WF therefore can’t be all
things to all workflows. Instead, it supports a transaction interface that allows the host to
determine how to handle transactions. Workflow merely signals when transaction func-
tionality is required and lets the host do the rest.

EVERY PARTY (WORKFLOW) NEEDS A HOST

Much like a host at a party, a workflow host is responsible for the entire experience of its guests. In this case,
those guests are the workflow activities as well as the end users. As mentioned earlier, WF by itself is simply
a set of objects that expose functionality. It does not expose a user interface (UI) that would allow you to create
a workflow, manage a workflow, or respond to workflow events or notifications.

That is all the job of a workflow host. The host presents the interface and the functionality that allows

• Document owners to select and assign a workflow to a document

• Administrators to manage and track workflows

• End users to receive notifications of workflow events that concern them

• End users to update the status of tasks assigned to them

Important tasks of a workflow host include

• Security: WF is a generic engine. There is no way that the developers at Microsoft could write a security
model into a workflow engine that would suit every application’s needs. This is left to the host to imple-
ment as it needs to. Some hosts will require no security; others will require Department of Defense–
level security. Most will be somewhere in between.

Mann_700-1C01.fm Page 20 Thursday, January 18, 2007 2:55 PM

06efef0b9048e2ff96ce5fbf04038bce

C H A P T E R 1 ■ I N T R O D U C T I O N 21

• User interface: Similar to security, building one all-encompassing UI into the WF engine would be a
nearly impossible task. It would mean that the UI would need to be so generic as to be almost useless,
or else that the process of customizing the UI be so open-ended and flexible that it would be exceedingly
difficult to work with. So the UI is left entirely to the host developer.

There is nothing in WF that would stop you from writing your own host. Microsoft wholeheartedly
supports and encourages this, and WF contains a wealth of information and processes to simplify this task.
Unfortunately, writing a workflow host is well beyond the scope of this book.

■Note For information and resources on writing a workflow host, you can visit http://wf.netfx3.com.

The next version of SharePoint is a workflow host and for our purposes will serve all our needs nicely.
Any customization work that we need to do can be handled with custom activities, which will be covered in
more detail in Chapter 5.

■Definition An activity is a discrete unit of functionality used to build a workflow. Send Email, Create
Task, and Write to Log are all examples of potential activities. We’ll look at activities in much greater
detail, and even build one of our own, in Chapter 5.

Runtime Services

The next set of services provided by WF that we’re going to discuss are Runtime Services, shown as
the first interior box in Figure 1-6. Unlike the host interface in Figure 1-6, this layer of function-
ality is isolated from the world outside of WF and will be identical for all hosts and workflow
implementations. This layer provides the core services that allow individual workflows to
execute. It includes these services:

• Scheduling: The Scheduling service is responsible for controlling the runtime execution
of activities. It determines when each activity runs.

• Activity Management: This service provides the functionality for execution of activities—
event management, exception management, transaction management, tracking, and
persistence. As necessary, this service interfaces with the host interface layer services.

• Rule Management: WF provides for the external application of policy to a workflow via a
rules engine. Rules will be addressed in greater detail in Chapter 8.

Mann_700-1C01.fm Page 21 Thursday, January 18, 2007 2:55 PM

22 C H A P T E R 1 ■ I N T R O D U C T I O N

Programming Interface

The final layer of Figure 1-6 that we need to discuss appears in the innermost shaded box—the
programming interface. As workflow developers, this is the functionality that interests us the
most; it allows us to write our own custom activities that do what we need. This is the primary
means of developing a highly custom workflow. Most of the rest of this book covers the program-
ming interface.

■Note One final item to be aware of with regard to WF is that it can support machine-centric workflows as
easily as it supports human-centric workflows. We talked earlier about the distinction between these two
types of workflows and discussed how most of this book will focus on human-centric workflows. I just want
to make sure that you remember that WF is not limited to only human-centric workflows.

Office 2007 Workflow Technology
So far, we’ve been talking about workflow in a generic sense, with little if any specific references
to Office 2007. That trend stops here. We’ve covered all of the basics, and everyone should have
a pretty good idea of what workflow is, the different types of workflows available, the benefits
of workflow, and so forth. From here through the end of the book, we’re all about workflow
specifically in the Office 2007 system.

Before we get started, you need to understand the Workflow-specific features and additions
in the Office 2007 system. We’re not going to cover them in painful detail—we’ll touch on the
various aspects in more detail as we cover topics throughout the rest of the book—for now
we’re just going to talk about them at a fairly high level so everyone has a basic understanding.
Because we’re only covering the Workflow-specific features of Office 2007, this should not be
considered an exhaustive dissertation on Office 2007. For a more detailed look at Office 2007 in
general, or any specific topic not related to Workflow, you’ll need to look elsewhere.

■Note There will be plenty of books on Office 2007, some good, some not so good. The pundits will heap
praise and scorn on Office 2007, sometimes at the same time. Just about the only thing you can say with
absolute certainty about Office 2007 is that it will not be a nonevent. For my thoughts on some of the various
Office 2007 books that come out both before and after this one, please visit www.kcdholdings.com and
peruse the book lists.

We’ll start with the Office 2007 client applications and then cover the server-side elements
of the Office 2007 System.

Mann_700-1C01.fm Page 22 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 23

Introducing the Office 2007 Client
Unless you’ve been living under a rock (what a strange expression!) for the last several months,
you have likely heard all of the chatter about the new UI in the Office 2007 client applications.
It is different, I’ll grant you that. But once you get used to it, you look at Office 2003 the way a
Ferrari owner looks at a minivan—I’m not going near that… While we won’t specifically walk
through the new interface, we will see various parts of it as we explore Workflow.

The full list of Office 2007 client applications is stunningly impressive:

• Access

• Business Contact Manager

• Communicator

• Excel

• Groove

• InfoPath

• OneNote

• Outlook

• PowerPoint

• Project

• Publisher

• SharePoint Designer

• Visio

• Word

Fourteen applications that do just about anything you need, short of laundry and grocery
shopping. Wonderful, simply wonderful; no wonder Microsoft has such a lion’s share of the
productivity suite market. However, and I hate to rain on your parade, but the most important
thing to realize about the Office System is that not all of the client applications are created
equally. In the client-side world of the Office System, there are

• The Fabulous Four: Word, Excel, PowerPoint, and Access

• Outlook

• A young upstart known as InfoPath

• A bunch of other applications

Mann_700-1C01.fm Page 23 Thursday, January 18, 2007 2:55 PM

24 C H A P T E R 1 ■ I N T R O D U C T I O N

Please understand that this is not a slight on those “other applications.” I love OneNote—
it’s probably my most-used Office application. I use Project frequently, and Visio, Publisher,
and the SharePoint Designer are all great at what they do. However, none of these “others” gets
the new UI in this release. Personally, I can see why and it makes sense to me—these applica-
tions fall into one or more of several exception categories:

• They are not part of what most people use in Office.

• They are more specialized in their focus than the rest of Office.

• They are not document-centric (document in a generic sense of a cohesive file that is
easily portable and shared among multiple users).

• They are focused on developers.

Having the two UIs presents a problem in a workflow scenario, however. As mentioned
earlier, some of the new constructs in the Office UI are intended to inform users of workflow
information, for example, the tasks assigned to them. This works beautifully if the document
they are working with sports the new UI. But what if it doesn’t? Presumably, this is only a signif-
icant problem in Publisher, Project, and Visio as the rest of the “others” are not so file-centric.
However, from a workflow point of view, there are two very different experiences:

• If the user opens a Word document in Word 2007, they will be informed of their work-
flow tasks. The new UI will inform them of the task and support them in managing and
completing that task.

• If the document they open, however, is a Project plan, or a Visio or Publisher file, they
will receive no indication in the client itself that they have to review and approve that
document—even if they open the file in the 2007 version of the program.

Workflow builders and administrators will need to keep this fact in mind and must be sure
to support these other file types as special cases should the need arise in their environment.
Presumably, a future release of Office will at least partially remedy this situation.

Workflow Features in the Office Client Applications

Hidden among the myriad changes to the Office 2007 client applications are a handful of features
that impact our workflows. We’re going to touch on them briefly here. As mentioned previously,
we’ll drill into them in more detail as we step through the examples and scenarios later in this book.

Business Bar

First and foremost among these elements is a construct known (during the beta cycle, at least)
as the Business Bar. The Business Bar integrates the client application with a Microsoft Office
2007 SharePoint Server (MOSS) that is storing the document.

Realizing that there are multiple ways for a user to get access to a document (through email,
through a browser, through the Office client, etc.), Microsoft has made sure that users will still be
aware of workflow information by placing it directly within the client application itself. If a user has
a task assigned to them for the current document, the Business Bar will be shown just under the
Ribbon. It will contain information regarding workflow tasks related to the currently opened docu-
ment. Figure 1-7 shows an example of the Business Bar displaying information about a pending
workflow task as well as a notification about editing the document.

Mann_700-1C01.fm Page 24 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 25

Figure 1-7. The Business Bar shows information about pending workflow tasks so the user always
knows what they need to do.

Clicking the Open link on the Business Bar will present the user with information related
to the workflow task they have been assigned and give them the opportunity to directly complete
and modify that task. The user’s experience will depend on which components of the Office
2007 System are installed in their environment.

• Clicking the Edit this task button will launch a browser. The task information will be
presented as an ASPX page, as shown in Figure 1-8. This is the only option available if
only WSS is installed.

Figure 1-8. The Workflow information dialog box shown as an ASPX page

• We have not discussed the new part of Office 2007 known as the Forms Server. However,
it is part of the 2007 Office System and is responsible for converting InfoPath forms to
HTML. MOSS ships with core components of the Forms Server that allow for the conversion
of our Workflow forms (even if the full Forms Server is not installed). In this case, the work-
flow task information will be presented as a form in a dialog box, seamlessly displayed by
the Office client application as though it were a native dialog box. An example of this is
shown in Figure 1-9. We’ll cover the Forms Server in much more detail in Chapter 7.

Mann_700-1C01.fm Page 25 Thursday, January 18, 2007 2:55 PM

26 C H A P T E R 1 ■ I N T R O D U C T I O N

■Note There is another component of MOSS that allows our workflow forms to be rendered directly in the
Office client applications—a set of web services that only ship with MOSS. This means that even if you install
the full Forms Server in an otherwise WSS-only installation, you will still not get this level of integration.

Figure 1-9. The Workflow information dialog box shown utilizing the new Office 2007
Forms Server

If the Office Forms Server is not installed in the environment, then the only option avail-
able to us as Workflow Builders and Administrators will be the ASPX forms.

File Menu Integration

OK, so technically there is no File menu anymore—another one of those little changes in the
Office client applications that will take a little getting used to. In place of the File menu, we now
have a construct known (again in beta-terminology) as the Office Button. Clicking the Office
Button will reveal what is effectively the old File menu on steroids, as shown in Figure 1-10.

We’ll see the Workflow features of the Office Button in action later as we walk through
the various scenarios (although you can get a sneak preview of some of the functionality in
Figure 1-10).

Mann_700-1C01.fm Page 26 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 27

Figure 1-10. The new Office Button menu replaces the File menu and provides access to Workflow
functionality right from within the Office client applications.

Outlook

Outlook is likely the most often used Office client application. It’s typically the first application
opened in the morning and the last closed at the end of the day. Wouldn’t it be nice if we could
get our Workflow information to show up in Outlook, too? With a lead-up like that you shouldn’t be
surprised to find out that the level of integration between Outlook and SharePoint has gone
through the roof in the 2007 release.

Sticking just with the Workflow-related aspects, the main thing we’re looking at is that our
Workflow tasks will now show up in our Outlook task list. But it gets even better—the synchro-
nization is two-way. If you edit the task (mark it as complete, etc.) in Outlook, the change will
be reflected in the SharePoint task list. Figure 1-11 shows the same Workflow task we saw in
Figures 1-8 and 1-9 as an Outlook task.

Mann_700-1C01.fm Page 27 Thursday, January 18, 2007 2:55 PM

28 C H A P T E R 1 ■ I N T R O D U C T I O N

Figure 1-11. A Workflow task synchronized into Outlook

■Note Later in the book, we’ll make use of this two-way functionality to get our Workflow tasks to be
accessible from a mobile device.

Microsoft Office SharePoint Designer 2007

No, this is not another client application; it is simply FrontPage renamed and all spruced up.
There is some new functionality added that impacts Workflow. The SharePoint Designer includes
a wizard interface that allows power users to build a workflow without writing any code. It’s
called the Workflow Designer and we’ll cover it in detail in Chapter 4.

Introducing the Office 2007 Servers
The changes that have been made server-side in the Office 2007 system are, in my opinion,
even more significant than the client-side changes. Not all of them will impact our workflows,
and they won’t be as noticeable to most users, but to a company as a whole they offer much,
much more. As before, this section will barely scratch the surface of the new features and func-
tionality. I will cover only those elements that are relevant to Workflow.

Microsoft Office SharePoint Server 2007/Windows SharePoint Services v3

We’ll start with the biggie—you can’t do workflow right in Office 2007 without doing SharePoint.
The next version of SharePoint contains significant changes and will have the most impact on
our workflow world. Dozens of books on SharePoint 2007 will flood the market. Hundreds of
white papers will be written covering the details of specific features—even the most seemingly
insignificant. Thousands upon thousands of blog entries will be written with tips and tricks on
how to work with the new features. We’re going to cover the couple of items that relate directly
to Workflow. Trust me, this barely scratches the surface of the new SharePoint.

Mann_700-1C01.fm Page 28 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 29

■Note Before we really begin, a quick word about SharePoint. First and foremost, there really is no product
known as SharePoint. What people refer to as SharePoint is really two distinct products—just as in the last
version. First there is Windows SharePoint Services (WSS). This product is free and forms the basis for the
next product, Microsoft Office SharePoint Server (MOSS) 2007. WSS ships as part of Microsoft’s server products
(Windows Server 2003, Longhorn, etc.). MOSS, on the other hand, is a separate product and is not free. It
extends WSS in several important ways, primarily due to its lineage—it is a combination of the old SharePoint
Portal Server and Microsoft Content Management Server products. When I refer to SharePoint, I mean both
products. If I’m talking about just one product, I’ll call it be name.

We will discuss the specific feature breakdowns of the two SharePoint products in Chapter 3
when we discuss the out-of-the-box functionality of Workflow in Office. For now, a high-level
overview of the differences between the two products follows.

WSS is a platform component central to all of Microsoft’s collaborative applications. The
functionality provided by WSS includes

• Document management

• Core collaboration

• Core Workflow capabilities

• User management

• Security

As stated previously, MOSS is built on WSS. In the future, more and more Microsoft products
will build on this base and extend it for their own needs. Microsoft has already announced that
future versions of many of their products will utilize WSS as their core collaboration platform.
MOSS is simply the first product to build on that base. The additional functionality provided by
MOSS includes

• Enterprise content management—drawing on its Content Management Server heritage

• Business Intelligence capabilities

• Expanded search and management functionality

• Integration with line-of-business applications

• Internet publishing

Workflow Features in WSS and MOSS

SharePoint (remember, that means both WSS and MOSS) contain a host of new features that
impact our workflows and allow us to build robust, Workflow-enabled applications. Many of
them are incidental to Workflow itself, since they are more focused on SharePoint as an appli-
cation platform and as a robust product. We’ll touch on the two most significant of these features
here and cover them all in later chapters as we walk through our scenarios and examples.

Mann_700-1C01.fm Page 29 Thursday, January 18, 2007 2:55 PM

www.allitebooks.com

http://www.allitebooks.org

30 C H A P T E R 1 ■ I N T R O D U C T I O N

Content Types A content type in the next version of SharePoint is a means of packaging function-
ality and metadata into a single manageable and deployable unit. Content types are focused on
the developer’s mantra of write-once, use-often. Because we define the functionality, features,
and information in one place, it can be managed centrally. That’s the write-once part. The use-
often comes in when you deploy the content type and associate it with multiple lists. Each list
gets the full power of the content type without having to define it over and over again. Changes
made to the single central copy can be immediately reflected in the lists that use it.

■Note Rather than typing “lists and document libraries” repeatedly here, I’m just using lists in a generic
sense. In SharePoint 2007, the distinction between lists and document libraries blurs considerably. Document
libraries are merely specialized lists with some additional functionality.

A related benefit is the fact that in the 2007 release of SharePoint, lists can contain more
than one type of item. By storing multiple types of documents in a single document library, we
can reduce the complexity of our sites, for both administrators and end users. For example, a
site dedicated to a specific project can now contain a single document library that houses all of
the documents related to that project—designs, requirements, status, project plans, etc. Within
a list itself, content types show up on the New menu, as shown in Figure 1-12, which show two
new content types—Expense Report and Status Report.

Figure 1-12. Content types are a powerful new feature in SharePoint.

Now that you have a basic understanding of what a content type is, let’s talk a little about
what you can put into a content type. The answer is just about anything you would need to:

• Metadata: Each content type can contain any number of columns of any data type avail-
able in SharePoint. By adding the content type to the list, you can automatically add the
columns.

• Policy: Each content type can have its own information management policy defined
and enforced.

• Workflow: Content types can carry with them their own workflows to enforce business
policies specific to the content type. This is obviously the part that interests us the most.

• Document Information Panel: Each content type can define a custom form to be displayed
in the Business Bar within the Office client applications. This form can be used to keep
users informed or to collect information from them.

Mann_700-1C01.fm Page 30 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 31

By default, SharePoint ships with a single content type per list, but it is certainly possible
to create your own and add them to your lists as necessary to meet your requirements.

■Note For lists of resources that cover creating content types, please visit www.kcdholdings.com.

An example here will help clarify the power of the new content types feature. In SharePoint
2003, each list contains one type of information—announcements, links, events, etc. Each
document library contains one type of document—contracts, status reports, budget reports,
etc. If you need to store multiple types of information and documents, you’re forced to create
a list for each and put them all in the same site. Although this is certainly better than simple file
shares, it is nonetheless problematic. Each site contains the full definition of lists, which means
that initially you had to create them all each time, or use site or list templates. In either event,
each site still contains the full definition of the list and because each list can only effectively
contain a single type of content, you have multiple lists to manage.

Six months pass and you’ve created dozens or hundreds of sites, each containing your
multiple lists. Suddenly the business need changes and you need to start tracking additional
information. You need to add one column to every list on every site. Because each list contains
its own copy of its definition, you need to manually or programmatically change each.

Ugh.
Now let’s look at this using content types in SharePoint 2007. Instead of having to create

multiple lists to store all of the various types of content, you can centrally create a content type
for each type of item that you need to store and add them to a single list on each site. Not only
is your site design easier and cleaner for the end user, but six months, or six days, down the
road, you’ve built hundreds of sites utilizing your new content types. So when the business
needs change, you make the necessary changes to the single centralized content type, push
those changes out to all lists using the content type, and all is right with the world. It’s time for
happy hour.

Perhaps this is a little more work up front to identify and design the content types, but the
payoff in the long run is more than worth any extra initial effort.

Content types are one of the strongest additions to the next release of SharePoint—regardless
of whether you are looking from a Workflow point of view. The ability to wrap our business
needs up into a nice, neat package and deploy that package as a unit across multiple sites, but
still manage it centrally, is quite powerful.

■Note It doesn’t have to be the case, but to my mind, content types are most useful with documents.

Features While customizing a site definition in SharePoint 2003 was possible, it wasn’t exactly
the easiest thing in the world. Even seasoned veterans would not look forward to opening
ONET.xml or Schema.xml and wading through line after line of raw XML. In SharePoint 2007 this
task is considerably less onerous because site definitions are now broken apart into Features.

Mann_700-1C01.fm Page 31 Thursday, January 18, 2007 2:55 PM

32 C H A P T E R 1 ■ I N T R O D U C T I O N

A Feature is essentially a package of functionality that can be developed, deployed, managed,
and activated as a unit. Once deployed to a server, Features can be turned on or off for indi-
vidual sites.

Features are certainly used for more than Workflow in SharePoint 2007, but from a Workflow
point of view, Feature packaging is a useful means of encapsulation and deployment. As you’ll
see in Chapter 6, we will package our custom workflow into a Feature and deploy it to our
SharePoint server.

Microsoft Office Forms Server 2007

Another big addition to the Workflow family is the Forms Server. This Office 2007 server is
responsible for dynamically generating HTML forms for data collection. This is going to come
into play in two primary ways with regard to Workflow:

• As a mechanism for displaying and collecting information intrinsic to our workflow. We’ve
already seen this use of the Forms Server in action. Flip back a few pages to Figure 1-9. The
Workflow task information dialog box shown earlier is an example of a dynamically
generated form using the Forms Server delivered right in the Office client applications.
The integration with the Office 2007 clients is impressive—it looks like an integrated
piece of the application.

• As documents stored in a SharePoint List, forms can have their own workflows assigned
directly to them. The possibilities for this scenario are practically limitless. Any form
used in your business can be delivered via the web and have a Workflow associated with
it. When an instance of that form is submitted by a user, the workflow can automatically
begin the appropriate business process.

There is naturally a lot more to this server than that, and the use outside Workflow is
equally as important. For now, however, we’ll leave it at that. We’ll cover the Forms Server in
more detail in Chapter 7.

The Cast of Ben-Hur
Well, no, not really. There are really only five user types that come into play in a workflow:

• Initiator: This is the person who originates or kicks off a workflow. Typically, this will be
owner or author of the document or list item but it doesn’t have to be. Anyone with suffi-
cient privileges can start a workflow on an item.

• Participant: This person receives the tasks of a workflow and completes them.

• Server administrator: The server administrator is responsible for establishing and main-
taining the environment in which the workflows operate. Primarily this means installing
workflows on the server so that they are available to individual sites.

Mann_700-1C01.fm Page 32 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 33

• Site administrator: The site administrator is responsible for associating our workflow
with a specific list or document library. Often, this will be the same person as the server
administrator, though it does not have to be.

• Builder: This role is tasked with creating new workflows. This role could alternately be
named designer to cover the declarative workflows created with the SharePoint Designer
(covered in Chapter 4) but for simplicity’s sake, I’ll just stick with builder.

The majority of this book focuses on the builder and two administrator roles. The initiator
and participant roles are typically end user focused (though certainly at one point or another,
both administrators and builders will find themselves as participants in a workflow). The primary
audience for this book is not end users, so we will not spend a lot of time on those roles. As we
walk through examples in the later chapters, however, we will step through the end-user experi-
ence. Among other things, it is important for builders and administrators to walk the proverbial
mile in the end user’s shoes if we are going to create and support an efficient workflow system
for them.

Key Facts Summary
That wraps up our whirlwind introduction to Workflow, WF, and Workflow in Office 2007.
We’ve covered a lot of ground pretty quickly. Here’s a quick review of what we’ve seen:

• Terminology: A few key terms were presented in this chapter:

• Workflow: The process that defines and controls the completion of one or more tasks
in order to bring about the realization of an identified goal.

• Payload: The document or other piece of content that a workflow is assigned to. For
example, in an instance of an approval workflow, the document that a reviewer must
approve or reject is called the payload.

• Host: The interface between the workflow engine and workflow participants.

• Activity: A discrete unit of functionality used to build a workflow. Send Email, Create
Task, and Write to Log are all examples of activities.

• State: In a state machine workflow, a condition that represents the current status of
the process.

• Event: In a state machine workflow, the action responsible for managing the move-
ment of our workflow from one state to another.

• Windows Workflow Foundation, part of .NET Framework 3.0, is the basis for Workflow
in Office.

• SharePoint is a Windows Workflow Foundation host.

Mann_700-1C01.fm Page 33 Thursday, January 18, 2007 2:55 PM

34 C H A P T E R 1 ■ I N T R O D U C T I O N

• Despite all of the fun that could be had with a WWF acronym, the preferred acronym for
Windows Workflow Foundation is simply WF. Somehow the World Wildlife Fund is
drawn into the fight and even Microsoft doesn’t mess with the Panda. I’m still on the
lookout, though, for a Windows Workflow seminar that calls itself “SMACKDOWN”!

• Windows Workflow Foundation provides a pluggable architecture to facilitate specific
implementations of the following services within each workflow host:

• Persistence: Management of long-running processes

• Communications: Integration of myriad disparate components through a common
communication subsystem

• Tracking: Monitoring workflow progress in real time (unfortunately, this is not
supported in SharePoint)

• Transaction support: The ability to commit or roll back workflow actions as a unit

• Timer: Support for delay or time-triggered processing

• Office 2007 focuses on human-centric workflows, as opposed to machine-centric work-
flows. Windows Workflow Foundation, however, supports either.

• Office 2007 supports both sequential and state machine style workflows.

• The primary Office client applications (what I termed the Fabulous Four—Word, Excel,
PowerPoint, and Access, plus portions of Outlook) support Workflow through a variety
of customizations and user interface constructs.

• Some of the new aspects of SharePoint that support Workflow are content types
and Features.

Sample Office 2007 Workflow Scenarios
To help everyone understand Workflow in Office 2007 better, straight from the home office in
Ottumwa, Iowa, here is my list of the top-10 scenarios best suited to Workflow in Office 2007:

1. Document lifecycle: Controlling a document from creation to archiving to destruction.

2. Document translation: In our increasingly global economy, support for multiple languages
is a business necessity.

3. Feedback: Submitting an idea (list item or document) for review and formal or informal
suggestions for improvement (as opposed to approval).

4. Collaboration: Working with a team to build a document collectively.

5. Design approval: Whether for a web page, a brochure, a logo, or some other type of mar-
keting material, aesthetic reviews and feedback are an integral part of this creative process.

Mann_700-1C01.fm Page 34 Thursday, January 18, 2007 2:55 PM

C H A P T E R 1 ■ I N T R O D U C T I O N 35

6. Form processing: Forms strongly imply a process. Any electronic form that generates a
discrete document can likely be routed and processed by a workflow. Though certainly
not limited to these types, here are a few examples of forms that would lend themselves
well to Workflow:

• Requisition forms

• Expense reports

• Travel requests

• Timesheets

7. Web content management: Moving content from concept to publication is often a precise
and intense process requiring multiple levels of review and approval. Often, in highly
regulated environments, there are prescribed steps to follow prior to publication.

8. Knowledge management: Maintaining a knowledgebase is an increasingly important
part of corporate life. The ability to have multiple people submit content is often one
way to improve the relevancy and quantity of information available. However, without
a process to manage those submissions, the knowledgebase will quickly become over-
grown and unwieldy.

9. Document approval: Not quite as formal or involved as a whole document lifecycle
process, this is just a simple review and approval.

10. <Insert Your Favorite Scenario Here>: I’d like to say I was being considerate of my audience
and letting them supply an entry to this “Top-10” list that met their needs, but the truth
of the matter is that I got stumped at 9. Somehow, though, a “Top-9” list just doesn’t
sound right. So go ahead and supply your own entry for number 10.

Summary
I’ll close out this chapter with a quick synopsis of a conversation I had with my CTO and one of
our salespeople. We were discussing a few projects we were either bidding on or had recently
won. After I had mentioned Workflow as an option for the first three brought up, they both
asked me what was up with this sudden Workflow-based approach. The end result of our little
tangential conversation was a realization that Workflow represents one third of all business
applications. Think about it this way: nearly every business application ever written consists of
only three things:

• Data storage

• Data presentation

• A business process

Every application differs somewhat in the degree of complexity involved in each of these
areas, but any way you slice it, Workflow is roughly 30 percent of every business application.
You’ve been writing Workflow applications for years likely without ever realizing it. Wait and
see how much easier your life is going to become.

Mann_700-1C01.fm Page 35 Thursday, January 18, 2007 2:55 PM

Mann_700-1C01.fm Page 36 Thursday, January 18, 2007 2:55 PM

37

■ ■ ■

C H A P T E R 2

Getting Started

Before we can begin building a workflow, we need to get our environment set up. This chapter is
going to cover everything we need to get that taken care of. Yep, I know, it doesn’t sound that
exciting. Nonetheless, it is important. As I said in the introduction to this part, if you feel some
pathological need to skip a chapter, this is the one to skip. I’d recommend at least skimming it,
though, just to make sure that you’ve got everything covered. The chapter is pretty short and
I’m not going to insult your intelligence by walking you through each installation. I’m going to
discuss all of the prerequisites and talk about the part they play. I’ll cover any gotchas and just
generally make sure that everyone gets started out correctly. If something doesn’t seem to be
working properly as you go through the examples later in the book, check back here to see if
you missed some configuration step.

Also in this chapter I’ll briefly walk through the scenarios that will be covered in the subse-
quent chapters. Because this technology is brand-new, having all of the scenarios covered in
one place will help you get a sense of what is possible with the technology.

Setting Up the Environment
The first thing we need to do is get our environment established. Anyone familiar with Share-
Point 2003 development won’t find this very different. There are just a few new things to take
care of. For the rest of you, this is all new so I’ll cover things in enough detail to get you going
without padding out the book with mindless step-by-step directions to install everything. I’ve
taught classes to fifth graders on how to install their operating systems. They need step-by-step
directions. I’ll assume most of you are not fifth graders (no offense to fifth graders…).

■Note This chapter is going to cover setting up a development environment—D-E-V-E-L-O-P-M-E-N-T—
not a production environment. There are many, MANY, additional steps you will need to take to set up a
production environment. Some of the shortcuts and configuration options I recommend here would make a
network admin shudder and a security analyst crawl up in a fetal position and whimper. Please, please,
please do not rely on this chapter for your production setup. Every production setup is different so you need
to work out the details on your own. At most, look at these instructions as a starting point.

Mann_700-1C02.fm Page 37 Monday, January 15, 2007 9:58 AM

38 C H A P T E R 2 ■ G E T T I N G S T A R T E D

First let’s take a look at the pieces we need. Table 2-1 covers the software requirements for
our little excursion into Workflow.

Table 2-1. Software Prerequisites for Developing Workflows in Office 2007

Component Version Notes

Windows SharePoint Services 2007 Core component, which will be installed
for you if you install MOSS. If you’re
installing MOSS, you don’t need to
install this.

Microsoft Office SharePoint
Server (MOSS)

2007 SharePoint Server, including Forms
Services. If you’re installing this, you
don’t need to install WSS separately.

Windows Server 2003, with Service
Pack 1 or better

.NET Framework 2.0 Provides the primary .NET runtime
and development components. You
will be prompted to install this by the
3.0 Framework if it is not already
installed.

.NET Framework 3.0 Provides core WF components.

Visual Studio 2005 Development environment.

Workflow Extensions for
Visual Studio 2005

Workflow extensions for Visual Studio.
Contains the Workflow Designer
elements and supporting libraries (like
IntelliSense).

Office client applications 2007 For the examples in the book, you’ll
need the SharePoint Designer, Word,
Excel, and InfoPath.

Office System XML
Code Snippets

2007 Not technically required, but we’ll be
making use of one of the snippets in
Chapter 7.

WSS and MOSS SDKs Reference material. Part of the MOSS
SDK is some material that used to be
called the Enterprise Content Manage-
ment Starter Kit. It contains excellent
samples, white papers, and information
on development in SharePoint 2007,
including Workflow. Again, not
technically required but we’ll use
them heavily and the value they
provide is huge.

Mann_700-1C02.fm Page 38 Monday, January 15, 2007 9:58 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 39

■Note A list of current prerequisites, including links to download them (where available), is available at
www.kcdholdings.com.

One thing that you’ll notice as being conspicuously missing from this list is a database. While
you could install a full version of SQL Server (SharePoint requires SQL 2005 or SQL 2000 SP3a
or better), we’re going to let the SharePoint installer install SQL Server 2005 Express Edition for
us. This isn’t a production environment, and our usage will be limited to a single user (you) and
low volume. Naturally, I would never recommend SQL Express for a production environment
but for our purposes it will work out nicely.

■Caution When you install Visual Studio you will be given the option of installing SQL Express. Don’t. Let
SharePoint install the database.

The software requirements in Table 2-1 are a little daunting. Am I telling you that you need
to install all of this on your development machine just to get started? Well, the answer is really
“It depends.” If all you want to work with are the out-of-the-box features and you don’t want to
do any custom coding, you won’t need Visual Studio or the Workflow Extensions. If you’re not
going to be using Forms Services and some of the other MOSS features, you won’t need that
component. Otherwise, you pretty much need everything.

I can hear your reaction already:

YOU: Dave, that’s an awful lot to install on my machine just to play around with a new
technology. I have real work I have to do. I can’t risk my machine being taken out of
commission.

ME: Yep, it’s a problem, all right.

YOU: So what’s a poor workflow developer to do?

ME: Virtualize…

Seriously, I strongly recommend that you look into one of the virtual machine products
available on the market for your development efforts—both for Workflow in Office 2007 and
just general development. See the sidebar “Virtual Reality” for more information. Little if
anything in this book will presume that you are working in a virtual environment as opposed
to a “real” one; nonetheless, I strongly recommend it as the benefits are tremendous and the
downside is pretty minimal.

Looking back at Table 2-1 you’ll see that I am freely mixing client and server elements.
As this is a development environment, we are going to be installing everything on a single machine.
It just makes things easier. Again, this would not be the case for a production environment, or
even your test/QA environment. But for development, it works just fine.

Mann_700-1C02.fm Page 39 Monday, January 15, 2007 9:58 AM

40 C H A P T E R 2 ■ G E T T I N G S T A R T E D

VIRTUAL REALITY

Virtual machine technology is the greatest thing since sliced bread and that Internet fad we all keep talking
about. Why? Because it is, trust me. For our purposes, it allows us developers to have a separate environment
for every project we work on. We can configure a base environment with all of our usual tools and make a copy
of this every time we need to start a new project. We can then customize each separate environment exactly
as we need to for that project.

Customized environments is only the tip of the iceberg. Also of tremendous value is the ability to stop a
project in the middle, save everything exactly how you need it, and pick it up again months later with every-
thing unchanged. A quick list of other benefits to virtual machines for development includes

• Sandboxing: The ability to quickly set up a test environment completely independent of your standard
environment.

• Testing: Using a virtual environment allows you to simulate multiple operating systems/software version
combinations all on one physical machine.

• Rollback: If you’re about to press the button on a potentially risky piece of code that could bring your
entire machine to its knees, you can do so without fear in a virtual environment. If things go south in the
proverbial handbasket, a quick file copy gets you back up and running in very little time—even less time
if you use undo disks.

That’s a very tiny look into the benefits. There are many more, but those are the biggest ones to me.
All it costs is a little performance (virtual machines are generally a little slower than their physical coun-

terparts) and disk space, but that’s pretty cheap these days anyway. There are licensing implications to this,
naturally, but MSDN Universal and a Microsoft Gold Partnership help there. Not having the intelligence of
Einstein, the wisdom of Solomon, and the patience of Job, I generally don’t try to understand Microsoft’s
licensing plans. I periodically check with a Microsoft rep or someone from a license reseller to make sure I’m
OK. You’ll each need to wade through your own licensing situation and make sure you’re covered. As a general
rule, you’ll need a valid license for every piece of software you install and, in the case of server products, at
least one Client Access License. Microsoft typically has trial versions available for most of their products so
that is worth looking into—it gets you typically 4–6 months of coverage.

Different virtual machine products have different features and you’ll need to find the one that works best
for you, your style, and your company. Personally, I’ve always used Microsoft’s Virtual PC product, but I have
heard people rave about VMware as well. You can choose whichever product suits you best. The benefits of a
virtual environment remain, regardless of which product you use.

As promised, I’m not going to lead you through each and every step of each and every
installation—that would just be too painful. I will, however, point out a few caveats and other
important things to take into consideration as you go through the setup process. Table 2-2 lists
this information.

Mann_700-1C02.fm Page 40 Monday, January 15, 2007 9:58 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 41

■Note Everything here assumes you are running your development environment on Windows Server 2003.
At the time of this writing, Longhorn Server is still in beta. There’s enough new stuff going on to worry about
in Office 2007 without throwing a beta operating system into the mix. I strongly recommend not running on
Longhorn until it ships.

Table 2-2. Information and Recommendations for Setting Up Your Workflow Development
Environment

Element Detail

Hardware More is better—especially memory. You’re going to be running some
heavy-duty server applications, so the most hardware you can afford
to throw at this, the better. Memory is critical. I do all development in
a virtual machine on my laptop, which has 2GB of RAM. I typically
allocate about 1200–1500MB to the guest OS and things move along
pretty well. A nice, fast hard drive is also important. Also, if you’re
using a virtual environment and have multiple hard drives available,
store your virtual hard drives on a different physical hard drive from
your host OS’s system files to avoid contention.

Windows Server 2003 You must be using the NTFS file system. Use the Convert utility
rather than reinstalling if you need to fix this.

Windows Server 2003 You’ll need IIS and ASP.NET 2.0 installed.

Web server Configure IIS 6.0 to run in worker process isolation mode, which is
the default unless you’ve upgraded from IIS 5.0.

Web server Enable ASP.NET 2.0 in IIS (from a command line: aspnet_regiis –i).

Email We are going to be using Outlook 2007 and email notifications, so I
suggest you install the POP3 and SMTP components of Windows
Server 2003. You could connect to external providers, but then you
are tied to them. Running it all locally makes you completely inde-
pendent—and mobile.

Security This is the part that will make your security and network administra-
tors cringe. My advice is to violate every password requirement
known to man—use a short, simple password that is easy to remember
and type, and use the same password for every account. This is a
development machine and it shouldn’t be on your production
domain anyway so the risk is minimal.

Updates After installing each component (OS, Office, WF, etc.), check for and
install any updates.

User Accounts Create several user accounts ahead of time. As you configure Share-
Point you can assign them various levels of access. This makes it easy
to test various users as you try out the different scenarios in the book.
I usually give my users clever names like Admin, Reader1, Reader2,
Author1, and Author2, but those may be too esoteric so feel free to
use whatever names you want.

Visual Studio Don’t install SQL Express.

MOSS or WSS v3 Select to install on a single server.

Mann_700-1C02.fm Page 41 Monday, January 15, 2007 9:58 AM

42 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Other than the few things listed in Table 2-2, all of the installs are pretty vanilla. There are
a few particulars with getting things installed in the right order. I recommend the following:

1. Install and configure Windows Server 2003. Use NTFS for your file system. Make sure
the email (POP3 and SMTP) and web server components (IIS, ASP.NET 2.0) are installed
and configured, and then connect online and install all of the latest patches and
service packs.

2. Enable ASP.NET in IIS (aspnet_regiis.exe –i) and the IIS Manager Management Console.

3. Make sure IIS is configured to run in worker process isolation mode.

4. Create all of the user accounts you’ll need—for both users and service accounts.
Remember: Use short, simple, common passwords. For user accounts, I typically do this
through the POP3 console so I can create mailboxes and user accounts in one fell
swoop. Two accounts that I always create are an SPAdmin account, which I configure as
the SharePoint administrator, and SPService, which I use for all service accounts (job
servers, application pools, database access, etc.). This is a development environment,
so this simple, albeit extremely unsecure, approach is OK.

5. Install the .NET Framework (2.0 and 3.0) components next. Again, after these are installed,
connect online and download any updates.

6. Install MOSS or WSS v3. Select Basic for the installation type to install all components
on your single machine.

7. Run the SharePoint Configuration Wizard to configure your environment.

8. Install Visual Studio 2005.

9. Install the Office 2007 client applications. As mentioned previously, for the examples in
this book, you will need the SharePoint Designer, Word, Excel, and InfoPath.

10. Install the Workflow Extensions for Visual Studio 2005.

11. Install the various SDKs, Code Snippets, and various other nonrequired elements from
Table 2-1.

12. Finalize your MOSS or WSS v3 configuration through Central Administration:

• Configure incoming and outgoing email settings for your environment.

• Configure Workflow settings—all options should be set to Yes.

13. Connect online and install all service packs and updates.

For each installation step, just run the component’s setup program (as appropriate). Unless
otherwise noted, you can accept all of the setup program defaults, or whatever installation
settings you typically use. If you have the hard drive space and are using a virtual machine,
it wouldn’t hurt to make a quick backup copy of the virtual machine files after steps 5 and 7.
It only takes a few minutes and you don’t need to keep these backups; just use them as a fall-
back as you go through the process in case something goes awry. Once you have completed
step 12, you can delete these interim backups.

Mann_700-1C02.fm Page 42 Monday, January 15, 2007 9:58 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 43

So there you have it. Our development environment is all set up and ready to go. If you’re
running in a virtual environment, there’s only one more step and it’s an important one: back
up your virtual machine file. Do it right now. Do not pass Go, do not collect your $200. Burn it
to DVD (you’ll likely need to compress it first) and store the DVD somewhere safe. When (not
if, when) something goes all FUBAR (“fouled” up beyond all recognition), all you’ll need to do
is copy the image file back from the DVD and you’ll start all over again right here.

Scenarios in This Book
In a futile attempt to make this book somewhat coherent, all of the scenarios and examples in
the book are going to be related. Some of the chapters will build on a previous one, though this
won’t always be the case. In any event, all of the examples will center around a fictitious
company. I placed all of the samples in the context of a single company so that they should be
a little more relevant. I tried to pick realistic business problems, although they are somewhat
stilted because my main goal is to help you understand the material.

So, without further ado…

Welcome to KCD Holdings
The premise behind all of the scenarios presented in this book is that you are a new employee
of KCD Holdings in the not-too-distant future. KCD Holdings is an international conglomerate
formed by purchasing other, smaller companies and streamlining their operations to reduce
costs, improve efficiency, and improve profits. You have been hired to expand the company’s
portal and collaboration functionality for use by the Global Marketing department.

To get a feeling for the possibilities offered by a consistent, enterprisewide implementa-
tion of the 2007 Office System, imagine that you have arrived at the office on your first day and
need to fill out all of your typical first day paperwork—tax forms, direct deposit forms, benefit
forms, and so forth. Typically, this is a manually intensive operation—get out your blue or
black pen and prepare to do a lot of writing.

You’ll find, though, that KCD is anything but typical.
Imagine your surprise when you arrive and find only a single piece of paper awaiting you.

The HR administrator explains that everything else is done electronically. This single piece of
paper is simply your agreement that your digital signature is legal and valid for all company-
related documents on which it is used. Still a little skeptical, you sit down at the conference
table and sign the paper. Once you hand the paper back to the HR administrator, she hands
you a smart card and explains how to use it. She shows you how to log into a computer using it
and how to digitally sign documents.

Over the course of the next few hours, you read the documents and fill out the forms that
constitute typical new employee paperwork. After you have finished with each document or
form, you sign it with the digital certificate from your new smart card. As you progress through
the documents, you notice a few things. First of all, you never have to enter information twice.
Once you’ve put your address on the W4, it automagically appears on all subsequent forms in
the appropriate place—same thing for your Social Security number, date of birth, and so forth.
You begin to get the feeling that there’s a lot happening under the covers here:

Mann_700-1C02.fm Page 43 Monday, January 15, 2007 9:58 AM

44 C H A P T E R 2 ■ G E T T I N G S T A R T E D

• As you are filling out the forms, you notice that new documents and forms are showing
up in your list. For example, on the payroll form you checked the boxes for 401(k), life
insurance, and the Section 125 plan. After you submit the payroll form you notice the
following new documents in your “to do” list:

• 401(k) enrollment

• Life insurance details and beneficiary designation

• Section 125 claim instructions

• Each document in your list has a “status” associated with it: Incomplete, Submitted,
Under Review, Approved, Rejected, Posted, etc. Some of these statuses are changing
apparently in real time as the result of the actions of others somewhere in the background.
You made a mistake on a few of the documents and they are showing back up in the list
flagged as Requires Attention.

You notice that all of the documents you are accessing are coming from KCD’s New
Employee Orientation portal, which also includes links to information about the company and
other things of interest to a new employee. The portal itself looks vaguely like the SharePoint
Portal Server that was used at your last job. But there’s more to it than that. It acts like your
previous portal the same way a Model T acts somewhat like a Formula 1 racecar—they both
perform the same basic job but are light years apart in how they achieve their goal. This entire
experience is more like your previous portal and document experience after it has been given
enough steroids to disqualify it from any professional sporting event for the rest of time.

After all of the administrivia is finished, you finally meet your new boss for lunch and you
nonchalantly bring up the new portal and the entire new hire process. She chuckles and says
“You ain’t seen nothin’ yet.” She then proceeds to fill you in on some of the details:

• KCD has been a part of an early adopter program for the Office 2007 wave of products.
Timing worked very much in their favor as they were preparing to upgrade the majority
of their systems anyway.

• Beginning with the private alpha build of the Office 12 System, KCD began planning for
and preparing to upgrade all of their applications.

• Over the last 18 months, they have been upgrading their internal systems. While not all
systems are upgraded yet, the HR portions are done and are jokingly referred to as their
“Shock and Awe” campaign for new hires.

You stare at her a little dumbfounded. That was all Office? She smiles knowingly… the
Shock and Awe campaign claims another victim.

Business Value of the Office 2007 System

After picking your jaw up off the floor, you continue your discussion with your boss. She moves
away from the technical details and fills you in on the business reasons for the investments
they’ve made. Early in 2005, KCD found itself struggling. As a large company formed by an
aggressive purchasing schedule, they were suffocating under the weight of their multiple,
disparate internal systems. The volume of information that had to be stored, tracked, and
acted upon was growing exponentially. They couldn’t keep up. A few high-profile failures had

Mann_700-1C02.fm Page 44 Monday, January 15, 2007 9:58 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 45

focused attention of the entire senior management team on the value of information and the
importance of process.

Your boss found herself in a unique situation and she took full advantage of it. Working
closely with a consulting partner, her team mapped out a strategy to upgrade all of their critical
internal systems to the latest product releases, including beta products, where possible, for
proof-of-concept projects and eventual deployment. An overall, process-driven, service-oriented
architecture was designed for all of their internal systems, and each piece of the puzzle was
plugged into the architecture as time and resources have permitted. The benefits to the company
have been many, including

• A single, global portal environment for all of their information and multiple user bases
(employees, partners, customers). Because of this:

• Content is now created, managed, and secured in one place and with one paradigm.

• Duplicate content is eliminated.

• Content publishing now pushes content to their public web sites as appropriate from
a single source.

• Defined policies now control all aspects of the content and document lifecycle, infor-
mation rights management, and records management.

• IT needs only to support a single technology base.

• Users have a single experience for all content management, searching, and
consumption.

• Training costs have dropped significantly.

• Fully mapped and documented processes. This allowed the company to investigate and
study what they did and how they did it. They could eliminate inconsistencies, inaccuracies,
and bottlenecks. Common processes were implemented across departments to eliminate
duplication. The user experience was streamlined and implemented in a consistent manner
to reduce training and support costs and also make employees more efficient.

• Transparent access to their business data through scorecarding, aggregated data views,
and reporting.

Workflow is the glue that ties all of their systems together. Your boss explains how even
outside the Office 2007 pieces of the company’s new infrastructure, Workflow enforces their
processes and streamlines their operations. Because they built all of their processes in Windows
Workflow Foundation, their human- and machine-centric processes were built utilizing the
same technology. This reduces their costs, simplifies their environment, and allows for reuse of
the various components they developed.

Your job is to extend this architecture into the last department of the company that is not
currently using it—Global Marketing. Although this department is taking advantage of some of
the new architecture, such as document and content management, it is not making use of
Workflow elements specific to their processes yet. Their processes have been all mapped and
designed to fit into the overall architecture. It is now up to you to implement the solution.

Good luck. As always, if you or any member of your team are captured or killed, the Secretary
will disavow any knowledge of your actions.

Mann_700-1C02.fm Page 45 Monday, January 15, 2007 9:58 AM

46 C H A P T E R 2 ■ G E T T I N G S T A R T E D

Scenarios in the Chapters
Table 2-3 provides a quick overview of the scenarios covered in each chapter of the book to
help you understand how everything ties together.

■Note I know you haven’t backed up your virtual machine file. Don’t say I didn’t warn you…

Table 2-3. Scenarios Used in Each Chapter of the Book

Chapter Scenario Overview Products Utilized

3 Monitoring
Marketing
Campaigns

Using nothing but the out-of-the-
box capabilities of MOSS, develop
a workflow based on a sample
template to handle document
review and approval.

MOSS

4 Product Launch
Campaigns

Building a new workflow using the
SharePoint Designer. Functionality
includes these steps: Collect Feed-
back, Review and Approval, and
Notification. Participants review
material, provide feedback, and
verify details. Other participants are
notified but provide no feedback or
approval.

SharePoint Designer,
MOSS, WSS v3

5 Removing
Macros

This chapter does not include a full
workflow as it is focused on building
activities. The scenario focuses on
removing macros from Office 2007
documents.

Visual Studio, MOSS,
or WSS v3

6 Removing
Macros

A sequential workflow that uses the
custom activity built in Chapter 5.

Visual Studio, MOSS,
or WSS v3

6 Preventing
Outdated Tasks

A state machine workflow to ensure
that task assignments are current
and accurate.

Visual Studio, MOSS,
or WSS v3

7 Global Marketing
Campaigns

Custom forms used to modify work-
flow processing. This scenario is
duplicated using InfoPath forms and
ASP.NET forms.

Forms Services, MOSS,
WSS v3, InfoPath and
ASP.NET forms, Visual
Studio

8 External Ruleset
Management

Similar to Chapter 5, this chapter
does not really implement a work-
flow scenario. Its primary purpose is
to build a custom activity. It has a
workflow at the end, but it’s just there
to see our new activity in action.

Visual Studio, MOSS,
or WSS v3

Mann_700-1C02.fm Page 46 Monday, January 15, 2007 9:58 AM

C H A P T E R 2 ■ G E T T I N G S T A R T E D 47

Summary
There you have it—short but sweet. The bulk of this chapter is geared toward making sure that
you get your environment set up correctly. We covered all the elements that are necessary to
build our development environment as well as some pointers on getting things set up correctly.
Finally, we went through an overview of the scenarios that will be presented in later chapters
and discussed the business benefits our fictional company is getting from their investment in
the Office 2007 System.

Next up, we start looking at specific workflows and the functionality they provide. See you
in Chapter 3.

Mann_700-1C02.fm Page 47 Monday, January 15, 2007 9:58 AM

Mann_700-1C02.fm Page 48 Monday, January 15, 2007 9:58 AM

■ ■ ■

P A R T 2

Having an Out-of-the-
Box Experience

Now it’s time to get our hands dirty. All of the introductory material is out of the way and

we can finally get our hands around the product. Part 1 introduced workflow concepts in

general and Windows Workflow Foundation (WF) in particular. It also covered some of the

important changes to the Office system that will impact workflow and showed how to set

up your environment.

This part walks you through the capabilities and features of Workflow in Office 2007

that become available to you as soon as you install and configure the product—no code

required. As you’ll see, you can do a lot with this out-of-the-box functionality.

Chapter 3 introduces and provides details on the workflows that ship with MOSS. We

take a look at how administrators should configure these workflows and what situations

the workflows were designed for. Finally, we take a walk in a participant’s shoes and get

an understanding of what their experience will be like.

In Chapter 4 we build our first workflow. Nothing too exciting yet—we still stick with

the out-of-the-box capabilities. However, in this chapter we fire up the SharePoint

Designer and build a customized workflow to solve a specific business problem at KCD

Holdings. We go through the process of building our workflow and deploying it to the

server, and take a brief look at the administrator and participant experience.

Let’s get started…

Mann_700-1C03.fm Page 49 Monday, January 15, 2007 10:11 AM

Mann_700-1C03.fm Page 50 Monday, January 15, 2007 10:11 AM

51

■ ■ ■

C H A P T E R 3

Using the Default Workflows

MOSS ships with a number of preconfigured workflows out-of-the-box. WSS ships with only
one. Each workflow provides immediate value, and also serves as a sample for developers who
need to create their own workflows.

The MOSS workflows are more interesting and a bit more relevant in a document scenario
than the WSS workflow. However, the one WSS workflow is intriguing as it is fairly generic,
though still quite useful across multiple scenarios. This chapter explores the default workflows
and the experience they provide to end users.

The first thing that it is important to understand is that, just like the previous version of
SharePoint, WSS is the core product and MOSS extends it. From a Workflow perspective, this
means that both products provide the same basic experience and core capabilities for partici-
pants, administrators, and builders. MOSS just provides more capabilities on top of that base.
Not taking into account the Forms Services (which we’ll cover in a bit), there is nothing in
MOSS that you couldn’t build yourself in WSS. The extra out-of-the-box workflows in MOSS
are just part of its value.

The Out-of-the-Box Workflows
To get an understanding of what is available in SharePoint out-of-the-box, take a look at Table 3-1.
It lists all of the out-of-the-box workflows and provides a brief description of each.

Table 3-1. Default Workflows Available in MOSS and WSS

Workflow Name Available In Description

Three-State WSS, MOSS Used to track and move list items through a series
of states. Can be configured to react differently at
various stages.

Approval MOSS Routes a document for approval. Approvers can approve
or reject the document, reassign the approval task, or
request changes to the document.

Collect Feedback MOSS Routes a document for review. Reviewers can provide
feedback, which is compiled and sent to the document
owner when the workflow has completed.

Mann_700-1C03.fm Page 51 Monday, January 15, 2007 10:11 AM

52 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

As you can see in Table 3-1, the default workflows in MOSS are geared toward typical
document management tasks, and the WSS workflow is a generic, list-targeted workflow. While
they may not suit every need, all these workflows are a good start and can be implemented
immediately as a complete process to meet many organizations’ immediate concerns. In a
moment, we’ll walk through a scenario solved entirely with one of the default MOSS workflows.
First, though, let’s take a quick look at the WSS default workflow.

WSS Workflow: Three-State
As implied by the name, this workflow handles the movement of a list item from an initial state,
to a middle state, and ultimately to a final state. All transitions are triggered by the completion
of workflow tasks. At each transition, the workflow can be configured to automatically send an
email to the appropriate user notifying them of the task assignment.

The perfect example for using this workflow is a help desk scenario. When a problem
occurs, a help desk ticket is created and the information for it is stored as a list item. When each
help ticket is created, it is assigned an initial state of Active. By configuring the workflow (the
term is associating—we’ll examine the process shortly when we explore the MOSS workflow in
detail), you can control what happens when the list item is created. In all cases, a workflow task
will be created and you can specify the person to whom that task should be assigned. Optionally,
you can choose to have the server send that person an email and specify the details of that
email message.

Continuing on, you can configure the workflow to control what happens when the user
marks their assigned task as complete (which causes the list item to transition to its middle
state). Again, a task is going to be created and you can specify the details of that task. Also as
before, you can indicate whether you want an email to be sent to the person to whom the task
is assigned and configure the details of that email.

When the second user completes their task, the list item is automatically set to its final
state and the workflow is complete.

In order to function, the list to which this workflow is associated must have at least one
Choice field with at least three potential values from which to choose. If you attempt to asso-
ciate the workflow with a list that does not meet these requirements, you will get an error, like
the one shown in Figure 3-1, and the OK button on the form will be disabled, preventing you
from submitting the form.

Collect Signatures MOSS Gathers signatures needed to complete an Office
document.

Disposition Approval MOSS Manages document expiration and retention by
allowing participants to decide whether to retain or
delete expired documents.

Table 3-1. Default Workflows Available in MOSS and WSS (Continued)

Workflow Name Available In Description

Mann_700-1C03.fm Page 52 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 53

Figure 3-1. The Three-State workflow will only work on a list with a Choice field type.

■Note This workflow only supports three states. If the Choice field you designate has more than three
possible values, you can still only specify a beginning, middle, and end state. Figure 3-1 also shows the interface
that allows you to select the List field and specify the values for each of the three states from those available
within that Choice field.

The Three-State workflow is interesting because it is a good example of codifying a generic
process but still providing a workflow that can be easily applied to multiple situations. It places
only one significant requirement upon the list to which is applied—the need for a Choice field
with at least three values. While we haven’t gotten to workflow forms yet (that’s not until
Chapter 7), this workflow is also a great example of a pretty complex workflow form delivered
via ASP.NET.

Next up, we’ll take a more detailed look at one of the out-of-the-box MOSS workflows.

MOSS Workflow: Document Approval
Document approval is a fundamental problem for information workers. Multiple ad hoc
methods of tackling this problem have been created. Some are manual; some are automated.
Some utilize a third-party solution, some utilize homegrown solutions, and some are cobbled
together from available functionality within Office. In any case, the problem being addressed
is similar to the scenario we’ll investigate here.

Scenario: Monitoring Marketing Campaigns

Mary works in the Global Marketing department of KCD Holdings. She is responsible for posting the results of marketing
campaigns at biweekly intervals and a final summary document at the conclusion of each campaign. These docu-
ments are known as CEBs—Campaign Effectiveness Briefs. The intention is to closely monitor the effectiveness of
each campaign and allow KCD to take steps to increase the effectiveness of a campaign if necessary. In addition,
the final summary of the campaign’s effectiveness allows KCD to continuously improve by learning from the past.

Mann_700-1C03.fm Page 53 Monday, January 15, 2007 10:11 AM

54 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

Before each CEB can be published, it must be reviewed by Mary’s boss, the director of Global Marketing, as well as
the product manager for the particular product being marketed by the campaign. Currently, Mary emails a draft of
the CEB around and waits for results. As you can imagine, this is not a very effective process. It is up to Mary to
remember to remind her boss and the product manager to provide feedback, and when they do, she needs to man-
ually keep the document up to date and if necessary circulate another draft for additional review.

It is not unusual for these CEBs to be published late, not due to any incompetence or inactivity on Mary’s part, but
simply because the process is manual and extremely time consuming. The whole Global Marketing department
needs the information in these CEBs in order to do their jobs. Everyone is frustrated when the documents are published
late, and Mary bears the brunt of this frustration.

Your job is to automate this process and help Mary out. The primary goal is to increase the timeliness of publishing
the results documents. KCD has been unable to reliably fine-tune their marketing campaigns in mid-stream due to
a lack of information. Although there are no hard-and-fast numbers to support it, there is anecdotal evidence and a
general feeling that the campaigns are not as effective as they could be.

It’s still your first day on the job (see Chapter 2 if you missed the introduction to KCD Holdings and this whole sce-
nario is making very little sense to you). As your boss had explained, your job is to help KCD automate the processes
in their Global Marketing department. This problem has been identified as a high-profile, relatively straightforward problem
to be solved. It is therefore considered a perfect candidate for the first process to be automated. The process itself
is pretty simple. Success in improving the CEB publishing process will go a long way toward eliminating the resentment
various key members of Global Marketing have had toward IT for wanting to meddle in their department. Success
here will convert Global Marketing to a believer and make the rest of your work much easier—good luck, Agent 86.

After talking to Mary, you’ve got a good understanding of the business needs for the situation. In short, the process
is as follows:

1. Mary creates the CEB on Monday morning.

2. Mary emails the CEB to her boss, the director of Global Marketing, for review.

3. If the director approves the CEB, he emails Mary back or tells her in the hallway that she can send the
document to the product manager.

4. If the director makes changes, he emails the document back to Mary with his notes and comments.
Mary reviews and updates the CEB document and then emails it to the product manager.

5. If the product manager approves the CEB, she also sends an email back to Mary. Mary now emails the
document to all of Global Marketing.

6. If the product manager makes any changes, she emails the document back to Mary. Mary reviews and
updates the CEB, emails it back to the director for review, and the whole process starts over again.

In the past, people have complained about not being able to find the CEBs in their email Inbox. Similarly, the director
and the product manager have complained that having multiple copies of the CEB document show up in their inboxes as
new drafts are circulated is confusing. They never know which copy is the correct one.

Being a MOSS 2007 guru, you immediately recognize this as an opportunity custom-made for a document library
and a simple workflow. You assure Mary that you will be able to help her.

Mann_700-1C03.fm Page 54 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 55

We’re going to explore the process of configuring one of the out-of-the-box workflows to
solve this problem. All of the out-of-the-box workflows (and really all workflows) will be configured
in a similar manner. After the workflow is configured, we’ll walk through the end user’s s expe-
rience using the workflow.

Solving the Problem: The Workflow Administrator’s Role
To begin with, the CEBs belong in a document library. Email is a bad mechanism for delivering
mission-critical content. You connect to the Global Marketing site on the KCD intranet and
create a document library to store the CEBs.

■Note In a real production system, the CEBs would likely be a candidate for a content type. There are
numerous other settings, such as versioning, permissions, and so forth, that would need to be taken into
consideration. For this simple scenario, let’s skip all this and put the workflow directly on the document library.

After creating the new document library, you need to configure the workflow settings. The
process to do this varies depending on whether this is your first workflow for the document
library or whether you have previously configured workflows to be available in the document
library. In either case, the process begins the same: From the toolbar inside the document library
you select Settings ➤ Document Library Settings and in the resulting screen, select Workflow
Settings in the Permissions and Management section.

Now the process changes slightly. If this is not the first workflow instance on the document
library, you’ll see a screen similar to the one in Figure 3-2. It allows you to either change (or
remove) an existing workflow instance, add a new one, or view workflow reports (we’ll cover
workflow reports in Chapter 9). If this is the first workflow instance on the document library,
you will be taken directly to the Add a Workflow screen, shown in Figure 3-3. For the CEB process,
if you are shown the screen in Figure 3-2, just click the Add a workflow link to proceed to the
next screen.

Figure 3-2. If you already have workflows in a document library, this screen allows you to change
them or add a new workflow.

Mann_700-1C03.fm Page 55 Monday, January 15, 2007 10:11 AM

56 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

Figure 3-3. Configuring one of the out-of-the-box workflows is a simple matter of filling in a form
in the document library settings.

Regardless of how you arrived at it, the Add a Workflow screen (shown in Figure 3-3) allows
you to specify how the workflows that are available on your site will be customized to meet
your particular needs. Finishing the setup of the workflow for the CEB process is fairly straight-
forward. On the Add a Workflow screen there are six basic settings to configure. Table 3-2 gives
details on each of these settings as well as the value to provide for our CEB workflow.

Table 3-2. Configuring the Add a Workflow Screen for the CEB Process

Option Setting for CEB
Scenario

Notes

Workflow Approval In this section at the top of the screen, you will see
the default workflows listed. Each custom workflow
represents an instance of one of the available templates.
Later in the book we will create new workflow templates
and deploy them so that they show up as available
templates in this list.

Name CEB Approval Each workflow instance must have a distinct name.
While any name is permissible here, it is important to
remember that this is the name that will be shown to
end users, so it should be short but descriptive.

Mann_700-1C03.fm Page 56 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 57

Because Mary needs to specify the appropriate product manager for the particular CEB,
we’ll have her start the workflow manually.

This first screen in the process of configuring a workflow will be exactly the same for all
workflows. The information you provide here is used to create the new workflow instance.
Click the Next button at the bottom of the screen to continue customizing our new workflow
instance. The screen that appears next, shown in Figure 3-4, will be unique to each and every
workflow template. While the specific options available on this second screen will be different
for each workflow, the general gist of the next screen will be similar. This second screen is used
for configuring each instance of the workflow by providing values for the settings the workflow
requires in order to execute. In some cases, this will simply be the names of the people to assign
tasks to. In other cases, there may be significant additional metadata that must be provided in
order for the workflow to process. The ultimate decision for this lies with the builder.

Task List Tasks Presumably, all workflows in Office 2007 are going to
create and assign tasks to participants. To accomplish
this, a SharePoint list needs to be designated as the task
list for each instance of a workflow, including our CEB
Approval instance. Depending on your needs, you can
either select an existing list from the drop-down or choose
to have a new list created. Having a unique list for each
instance keeps things cleaner, but it does create a number
of potentially extraneous lists. Having all workflow tasks
in one list is not as straightforward, but it keeps down
your list count. For our purposes here, select the option
to use the existing task list.

History List New History List The history list for a workflow does exactly what the
name implies—it stores a record of the activities and
actions taken by the workflow instance and its participants.

Start Options Manual The Start options allow you to specify the conditions and
circumstances that allow your workflow instance to be
kicked off. The basic options are

Manual: A user needs to step through the UI and choose
to kick off this workflow. You can further fine-tune the
setting to indicate which permissions the user must have
in order to be able to start the workflow. You can require
either Edit Items (the default) or Manage Lists.

New Item Created: The workflow is kicked off whenever a
new item is added in the document library.

Item Changed: The workflow is kicked off whenever an
item is updated in the document library.

Table 3-2. Configuring the Add a Workflow Screen for the CEB Process

Option Setting for CEB
Scenario

Notes

Mann_700-1C03.fm Page 57 Monday, January 15, 2007 10:11 AM

58 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

Figure 3-4. The second screen in creating a new workflow is used to supply metadata for the
specific workflow instance.

Mann_700-1C03.fm Page 58 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 59

Table 3-3 gives the details for each option on this second screen, along with the values to
provide for our CEB scenario.

Table 3-3. Configuring the Customize Workflow Screen for the CEB Process

Section Option Setting for
CEB Scenario

Notes

Workflow
Tasks

Assign Tasks To
One Participant
at a Time (serial)

Checked This option allows you to specify
how tasks are assigned. For our
purposes, we want to make
sure that the director of Global
Marketing is assigned the review
task before the product manager.
In the case of the other option
(parallel), all participants
would be assigned their tasks
simultaneously.

Workflow
Tasks

Allow Workflow
Participants To
Reassign the Task
to Another Person

Unchecked Allows participants to delegate
tasks. For the CEB process, the
director must review each
document. Business rules
prohibit this from being
delegated.

Workflow
Tasks

Request a
Change Before
Completing
the Task

Checked If the director requires that
changes be made to the
document, he can request that
Mary make these changes and
then resubmit the document for
approval.

Default
Workflow
Start Values

Approvers <two valid
usernames in
your environment>

Since we’ve opted for a serial
assignment of tasks, it is important
that the names entered here be in
the proper order—the first person
named will receive their task first
and the second will receive their
task when the first is done.

Default
Workflow
Start Values

Assign a Single
Task to Each
Group Entered

Unchecked With this box unchecked, any
Active Directory, NTLM, or
SharePoint groups entered will be
expanded and each member will
receive a task assignment. If the
box is checked, a single task is
assigned and any member of the
group can complete it.

Default
Workflow
Start Values

Allow Changes
to the Participant
List When This
Workflow Is
Started

Unchecked If this option is checked, the person
manually starting the workflow
will be given the opportunity to
modify the approvers. For the
CEB process, this is disallowed by
a business rule.

Mann_700-1C03.fm Page 59 Monday, January 15, 2007 10:11 AM

60 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

SHORT-CIRCUITING YOUR WORKFLOW

Typically, you will want your workflow to complete the whole business logic—after all, that’s why the logic
exists. However, in some cases, your business logic will define circumstances under which the process needs
to stop immediately. As each one of these situations will be unique to your particular business case, there is
no way for the default workflows to account for all potential situations. Instead, the default workflows give you
the option of stopping your workflow in response to a number of situations:

• A certain number of tasks are completed: In some cases, your business logic may dictate that not all
users need to complete their tasks. Typically, this will be the case in, for example, an Approval workflow
in which only a majority of participants need to approve the document. Once that majority of participants
have approved of the document, the document is considered Approved and so there is no reason for the
other participants to compete their tasks. This option allows you to account for this situation.

Default
Workflow
Start Values

Message Please review
this CEB

Allows you to enter a customized
message or instructions to parti-
cipants for this instance of the
workflow.

Default
Workflow
Start Values

Due Date Give each person
two days to complete
their task.

Default
Workflow
Start Values

CC <blank> This option allows you to specify
other users who will be notified
that a task has been assigned,
though they will not be assigned
a task.

Complete the
Workflow

All unchecked This section allows you, as the
workflow administrator, to
define certain conditions that
can cause your workflow to end
prematurely—that is, before all
of the tasks have been completed.
For more information, see the
sidebar “Short-Circuiting Your
Workflow.”

Post-
Completion
Workflow
Activities

Update the
Approval
Status

Checked This setting allows you to have
your workflow control the docu-
ment or list level approval for the
document (if content approval is
enabled). In our case, we will be
enabling Content Approval on the
CEB document library and will use
it to make sure that users will not
be able to see the CEB until it has
been approved.

Table 3-3. Configuring the Customize Workflow Screen for the CEB Process (Continued)

Section Option Setting for
CEB Scenario

Notes

Mann_700-1C03.fm Page 60 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 61

• Document is rejected: If one of the participants rejects the document, you would likely not have later
participants in the process continue to review a document that has already been rejected.

• Document is changed: Again, if the document is changed by one participant, there is no way for the
workflow to route the document back to earlier participants. In this case, those earlier participants
reviewed one version of the document, but it is not the same version as the one that completes the
workflow. This could cause significant problems.

Regardless of the reason that the workflow is ended early, the end result is the same: the workflow
history list is updated and the current outstanding tasks are marked as complete (and therefore removed from
users’ task lists, the notification areas of the Office client applications, etc.).

Once you have configured these options, click OK and you’re done. The CEB Approval
process is now automated and ready for use by Mary.

REMOVING A WORKFLOW

While we’re looking at the out-of-the-box functionality, let’s take a quick little side trip into some additional
administrative functionality: removing a workflow. It is important to note, however, that this functionality will
be the same regardless of whether it is an out-of-the-box workflow or one of our custom workflows.

From the Change Workflow Settings screen (shown earlier in Figure 3-2) for any list or document library,
click the Remove a Workflow link. You will be taken to a screen similar to the one shown here:

At the right of the screen are a few columns. The first lists the available workflows. The Instances column
lets us know how many instances of this workflow are currently running on items within the list or document
library. The other three options are presented as radio buttons, allowing us to indicate whether this workflow
should be allowed to remain unchanged (the default), whether it should be immediately removed and all
instances canceled (the right radio button, Remove), or whether existing instances should be allowed to finish
running but no new instances started (the middle column, No New Instances).

In a production environment, in most cases your choice will likely most often be the No New Instances option.

There’s just one more setting to change before our workflow is complete. If you recall from
our earlier discussion, we are using the workflow to control the content approval setting for the
document, so we need to change the configuration to require content approval. It is perhaps a
bit unintuitive, but the option for this is in the Versioning settings for the document library.

Mann_700-1C03.fm Page 61 Monday, January 15, 2007 10:11 AM

62 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

Change that option and that’s it—the CEB Approval workflow is complete and ready to be
demonstrated to the users.

Showcasing the Solution
Mary is naturally quite surprised to hear that you are ready to show her your solution so
quickly. She is a little skeptical but agrees to set up a meeting with her boss and a few of the
primary product managers who are most often involved in reviewing and approving the CEBs.

The End User’s Experience

When you arrive at the conference room, you explain the new process to everyone before
walking them through a sample. The process will now work as follows:

1. Mary still creates the CEB on Monday morning. The way she creates the document
remains the same.

2. Instead of emailing the document to her boss, Mary connects to the Global Marketing
department site and uploads the document to the new CEB document library.

3. Once the document is in the library, Mary manually kicks off the workflow and specifies
the appropriate product manager. For now, Mary’s work is done.

4. Mary’s boss has a task assigned to him to review the CEB. There are two ways he can be
notified of this new task, besides navigating to the site and seeing it:

• Assuming he is synchronizing the task list with Outlook, he will see the task assign-
ment right in his Outlook To-Do Bar. See the sidebar “Synchronizing with Outlook”
for more information on this functionality.

• Assuming that outbound email is configured on the server, he will receive an email
informing him of the task and providing links to the task.

5. Mary’s boss can choose to approve or reject the document or request changes from
Mary. Because of the way we configured the workflow, he cannot reassign the task to
someone else.

6. When Mary’s boss approves the document, the appropriate product manager receives a
notification of the document that is awaiting his review. He has the same options as
Mary’s boss.

7. Once the document is fully approved, it will be automatically flagged as Approved and
therefore available to users with at least Reader access to the CEB document library.

To help everyone understand the power and simplicity of this new process, you explain
what each of the participants will experience in the brave new world you’ve created for them.

Mann_700-1C03.fm Page 62 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 63

SYNCHRONIZING WITH OUTLOOK

While this functionality is not directly related to Workflow, it is so useful, and likely to be used for most of our
workflows, that it is worth covering here. What I’m talking about is synchronizing a SharePoint list with Outlook
so that the information is accessible (and manageable) in either application.

For our workflows, this will most often take the form of synchronizing Workflow task lists with Outlook
so that the tasks show up on our To-Do Bar. The process to set this up is astoundingly simple:

1. Navigate to the SharePoint list that you wish to synchronize.

2. From the Action drop-down, select Connect to Outlook, as shown here:

3. In the dialog box that appears, click the Advanced button.

4. In the SharePoint List Options dialog box, change the Folder Name to CEB Tasks and click OK.

5. Click Yes.

6. Outlook will open, automatically configured to maintain a two-way synchronization with the SharePoint
list on the server.

Mann_700-1C03.fm Page 63 Monday, January 15, 2007 10:11 AM

64 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

The result of this is that Workflow tasks will now be accessible and manageable in Outlook, as shown here:

The Document Owner’s Experience

Mary begins her Monday like any other—she collects the information necessary to produce a
CEB. Today it is for the Ultra-Widget II product marketing campaign that has been running for
the last six weeks. Once she has collected the raw information necessary to produce the docu-
ment, she fires up Word 2007 and begins typing away.

Mann_700-1C03.fm Page 64 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 65

■Note The experience detailed here is the same regardless of who initiates the workflow. It does not have
to be the official owner of the document. Anyone with sufficient privileges can start a workflow (as specified
in the workflow association form).

When the document is complete, Mary saves it and uploads it to the CEB document library
on the Global Marketing site. As mentioned previously, if this were a real production system
the experience would be slightly different because we could take advantage of the new content
types feature in SharePoint, but that’s unrelated to Workflow and for now we’re going to keep
things simple. So far, the experience has not been any different for Mary. But here’s where the
fun begins.

After uploading the document, Mary runs her mouse over the document name in the
document list and selects Workflows from the drop-down menu, as shown in Figure 3-5.

Figure 3-5. The document drop-down menu has been expanded in SharePoint 2007 to include
new functionality—including the Workflows option we’re interested in here.

The screen that comes up next (shown in Figure 3-6) lets Mary choose which workflow she
wants to use. This screen also shows information on currently running and completed work-
flows, if there are any. Mary chooses CEB Approval Workflow and is shown a screen that allows
her to customize this instance of the workflow (Figure 3-7).

In our scenario, Mary needs to specify the appropriate product manager for the Ultra-
Widget II product line. This person needs to approve the CEB document before it can be
published. Other information to be supplied on this screen includes a message to be included
with the emails and task assignments. This message will be the same for all approvers. Mary
can also customize the number of days each approver will get to review the document as well
as any other people who should be notified of the tasks. Notice that each field on this screen is
set to the default values we set up as the administrator when we added the CEB workflow to the
CEB document library. Mary does not need to change any of these options so she can just click
the Start button.

Mann_700-1C03.fm Page 65 Monday, January 15, 2007 10:11 AM

66 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

Figure 3-6. The Workflow screen for our document library shows workflows available to be
started, as well as information on currently running and completed workflows, if there are any.

Figure 3-7. This screen allows the person starting the workflow to specify the parameters for
the workflow.

The MOSS server will whir and pop in the background for a few seconds as it starts the
workflow. Then Mary will be shown the document library screen listing all of the available
documents, as shown in Figure 3-8. One thing to take note of is the new CEB Approval column
that has been added to the view. This column is added the first time a particular type of work-
flow is run for a document shown in that view. The column is named for the workflow, so in our
case it is CEB Approval. The column shows the current status of the workflow where applicable.

Mann_700-1C03.fm Page 66 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 67

Figure 3-8. The CEB Approval column shows the status of our workflow for the CEB document.

As the originator of the workflow, Mary receives an email informing her of the successful
initiation of her workflow process. The email lists the name of the document, the participants
of the workflow, and other relevant details. The email also includes a link to allow her to view
the current status of the workflow. This link takes her to a screen (shown in Figure 3-9) that
shows the details of the workflow running on her document. From this screen, she can see a
concise view of all tasks assigned and their current status. She can also see the entries from the
workflow history list, cancel the workflow, or view workflow reports.

■Note The Workflow Status screen is also available by navigating through the SharePoint site. Open the list
or document library that stores the document, select Workflows from the drop-down menu for the document,
and then click the name of the workflow in the list of running workflows. You’ll arrive at the same screen as
shown in Figure 3-9.

Figure 3-9. The Workflow Status screen is always available to show the progress of a process.

Mary’s work is now mostly done. She can monitor the process via the Workflow Status
screen shown in Figure 3-9.

Mann_700-1C03.fm Page 67 Monday, January 15, 2007 10:11 AM

68 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

The Workflow Participant’s Experience

Our workflow was configured to run serially, so this means that all participants will receive
their tasks in the order in which their name appears in the Approvers list. The first participant
in our workflow is Mary’s pointy-haired boss, the director of Global Marketing. Continuing our
walkthrough, we find him at his desk hard at work on his morning Sudoku puzzle and drinking
his third cup of coffee. He is just beginning to wonder whether everyone has completed their
TPS reports when his Outlook toast pops up informing him that he has a new email message.
Like a little kid at Christmas, he switches over to Outlook to see what the email fairy has sent
him. He sees a message similar to the one shown in Figure 3-10.

Figure 3-10. SharePoint sends out an email notification of new task assignments for the out-of-
the-box approval workflow.

Drat. Now he’s got work to do. It doesn’t look too bad, though. The email fairy has kindly
given him an Edit This Task button at the top of the email message that he can click to see more
information on the task that has been assigned to him. When he clicks the button, a new screen
(shown in Figure 3-11) pops up on his desktop. It gives him more details on what he needs to
do and when it has to be completed by. It also includes a link to the document he must review.

Mann_700-1C03.fm Page 68 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 69

Figure 3-11. The task information screen provides details on the work that needs to be completed.

From this screen, he is given several options:

• Approve: After reviewing the document he can click this button to give his blessing to the
document and pass it along to the next person in the process. He can fill in comments if
he has anything to say about the document or his review. These comments will be persisted
with the document and available to other participants in the workflow.

• Reject: If after reviewing the document he decides that it is wholly inaccurate, unnecessary,
or for some other reason should not be published, he can click the Reject button. As
before, he can supply comments to explain his choice. Rejecting a document immedi-
ately ends the workflow.

• Reassign: This is usually the pointy-haired boss’ favorite option. Selecting this option
allows him to give the work to someone else. Unfortunately, this option is annoyingly
unavailable to him—he keeps clicking on it, but nothing happens (remember, when we
configured the workflow, we turned this option off). If we had allowed this option, he
would be presented with the form shown in Figure 3-12.

• Request Change: If after reviewing the document he decides that the document needs
some revision before he approves it, he can select this option. The screen for requesting
a change is shown in Figure 3-13.

Mann_700-1C03.fm Page 69 Monday, January 15, 2007 10:11 AM

70 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

Figure 3-12. If the workflow is configured to allow this option, participants can choose to assign a
task to another user.

Figure 3-13. Workflow participants can ask for a change to the document from either the person
originating the workflow or anyone else.

Mann_700-1C03.fm Page 70 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 71

The director of Global Marketing reviews the document and decides that everything in the
CEB looks OK. He clicks the Approve button and happily goes back to his puzzle.

Unlike the pointy-haired boss, the product manager for the Ultra-Widget II product is
hard at work. He is already browsing the company portal and completing other work when he
notices that the CEB document for his product has been posted (he can see the document even
though it is not approved because he has permissions to approve documents in this document
library). He clicks directly on the link to the document and opens it in Word. He has not seen
the email yet and is not aware (yet) of the task that has been assigned to him. He just knows that the
document pertains to his most important product.

Because he is interacting with the workflow through a different mechanism than that used
by the director of Global Marketing, his experience is slightly different. The end result is the
same, but the interface is integrated directly into his Office client, in this case Word. When the
document opens, he sees the document, as expected, but he also notices something new just
below the Ribbon.

What he sees, shown in Figure 3-14, is called the Business Bar. It is responsible for ensuring
that users who interact with a document that is part of a workflow directly through the client
application are still informed of relevant tasks assigned to them. In this case, the product
manager sees that he has a task assigned to him to review and approve the CEB he currently
has open. Clicking the Edit this task button will take him to the same screen the pointy-haired
boss saw back in Figure 3-11.

Figure 3-14. Users opening documents in the Office 2007 client applications are still informed of
workflow tasks via the Business Bar.

Keeping the user informed regardless of their access method is part of the benefit of Office
2007. Rather than forcing the user into one method of access, Microsoft has let the application
do the heavy lifting and kept the user experience as simple and streamlined as possible. In each
case in our story, the Workflow forms were rendered via the Forms Services component and
shown directly in the Office 2007 client application—either Outlook or Word.

Returning to our Newbery Award–winning story, the product manager reviews the CEB
document and realizes that Mary might be using the wrong figures for the number of responses
received to the campaign. He clicks the Request a Change link, fills out the form he is presented
with (shown back in Figure 3-13), and clicks Send.

Back at Mary’s desk, she receives an email informing her that the product manager has
requested a change. From the email, Mary can see the details on the request that the product
manager entered into the Comments section. She can also click the Edit this task button to
access the other task information and the document itself, as shown in Figure 3-15.

Mann_700-1C03.fm Page 71 Monday, January 15, 2007 10:11 AM

72 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

Figure 3-15. The task screen when a participant has requested a change to a document

Mary updates the document, types a comment in the Response section, and clicks the
Send button. The workflow automatically updates its status and sends another notification to
the product manager that a task has been assigned back to him. Again, he receives this notifi-
cation both via email and directly in the Word client when he opens the document.

In the event that he already has the document open in Word, he can still check for tasks
assigned to him. Clicking Office Button ➤ Server Tasks ➤ View Workflow Tasks brings up a
dialog box similar to the one shown in Figure 3-16. It lists and provides access to all incomplete
tasks for the current user (for the current document).

■Note The Server Tasks menu option is only available for documents that were opened from a
SharePoint server.

The product manager again reviews the document and everything looks OK this time. He
approves the document. As this step is the end of the workflow, Mary, as the person who originated
the workflow, will receive an email that the process is complete. The email, shown in Figure 3-17,
provides details on the workflow—including the change request—and provides her with a link
to view the workflow history.

The workflow history is the same Workflow Status screen we saw back in Figure 3-9 and
provides details on every task and action taken during the course of processing this instance of
our workflow. The primary difference now, of course, is that the workflow is complete so much
more information is provided.

Mann_700-1C03.fm Page 72 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 73

Figure 3-16. Users can view workflow information on demand by accessing this dialog box
through the Office Button menu.

Figure 3-17. The final email received by the person who started the workflow contains a summary
of the process.

With the workflow complete, the CEB document is flagged within the document library as
Approved. This has the effect of making it visible to all users with at least Reader access to the
CEB document library. The process is now complete. We have moved a CEB document from
conception through to publishing all with a simple, out-of-the-box workflow.

Permutations = Power
There are many, many possible variations of this process. Our first scenario showcased the out-
of-the-box functionality but barely scratched the surface of what’s possible. The options avail-
able in MOSS and WSS are quite powerful and let you construct a solution that meets just about
any need. Other possible elements of our CEB Approval workflow, all of which are out-of-the-
box functionality not requiring any code, would include elements such as the following:

Mann_700-1C03.fm Page 73 Monday, January 15, 2007 10:11 AM

74 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

• Starting workflows from within the Office 2007 client applications: Figure 3-18 shows
the Workflows option dialog box, which is available on the Office Button menu. While the
Workflows option is only available for documents opened from a SharePoint server,
selecting it will bring up a screen similar to what you have seen before that lets you choose
which workflow to start. Figure 3-18 assumes that MOSS and Forms Services are avail-
able. WSS alone or combined with Forms Server cannot deliver this level of integration.
In that case, the dialog box would open in a browser.

Figure 3-18. Office 2007 is flexible enough to allow users to start workflows from right
within their Office client.

■Note This level of integration with the Office client applications is only available with MOSS. Even installing the
full-blown Forms Server with a WSS installation won’t get it for you. The web services that enable the inte-
gration only ship with MOSS.

• The ability to assign workflow tasks to external users: In some cases, there may be people
(clients, partners, contractors, etc.) who need to perform a task as part of your process
but who do not work for your organization. Naturally, as users outside of your environ-
ment, they do not have access to an internal SharePoint site that contains the documents
and other workflow information. Fortunately, SharePoint will allow you to assign tasks
to these users. What it does, however, is delegate the task to the workflow originator in
lieu of the actual external user. The external user will receive an email with the document
attached, asking them to review the document and send their feedback to the workflow
originator. An example of this email is shown in Figure 3-19. The workflow originator
receives the email, shown in Figure 3-20, informing them of the task assigned to the

Mann_700-1C03.fm Page 74 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 75

external user. When the external user completes the task, they email their feedback to
the workflow originator, who can then complete the task in SharePoint on their behalf.
One thing that is important to note is that the external user can be using any Simple Mail
Transfer Protocol (SMTP)-compliant email server and client to receive their notification.
It does not have to be Outlook or Exchange.

Figure 3-19. External users receive an email with the document attached if they are
assigned workflow tasks.

Figure 3-20. The workflow originator is sent an email notifying them that they have been
delegated responsibility for a task assigned to an external user.

The task created will show that it has been assigned to the workflow originator on behalf of
the external user.

Mann_700-1C03.fm Page 75 Monday, January 15, 2007 10:11 AM

76 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

■Tip External users are typically not going to have entries in your Active Directory tree. In order to assign
tasks to them, you will need to enter their name as a valid email address (e.g., dmann@kcdholdings.com)
instead of as a domain name (e.g., KCDHoldings\dmann).

Benefits of the Solution
Although this is a fairly simple situation (and solution), it nonetheless showcases the power of
Workflow to provide considerable value. For a total investment of perhaps 15 minutes on your
part, you have now saved Mary, her boss, and numerous product managers countless hours of
time and improved their ability to respond to and fine-tune their marketing campaigns. Over
the course of time, the return on investment on this effort is going to be phenomenal. Here are
just some of the benefits that will be realized as a result of your efforts:

• All steps of the process are logged and auditable.

• The process always follows the same series of steps.

• All communication about the process is handled automatically via email by the system
but the document is not routed in this way. However, if a participant is browsing the site
and opens the document in Word (or Excel or PowerPoint) they will still be notified of
the pending workflow tasks. Email is an unreliable communication medium, so even if
the email is not delivered, the important information—the document and the task infor-
mation—is still available via MOSS.

• There only exists one copy of the document—it is stored centrally in the CEB’s document
library. Remember that prior to this workflow, copies of the document were routed via
email and no one was ever sure which copy was the most current. Now, the single
current copy (plus any historical versions if versioning is enabled) is stored centrally on
the server.

Perhaps most important, you have a new champion in the Global Marketing department.
From this point forward, Mary will sing your praises to anyone in the department who will
listen. No longer will IT be seen as trying to meddle in Global Marketing. You will now be
viewed as a partner who can help streamline their operations, saving them time, money, and
frustration.

Not bad for a 15-minute investment.

■Note As mentioned previously, this process could be streamlined further by making the CEB a content
type and associating the content type with the document library. Our workflow could then be attached to the
content type, rather than directly to the document library. However, this would only really change the way
Mary creates the document and not the workflow process itself. To keep the focus on workflow, I have
avoided this additional complexity.

Mann_700-1C03.fm Page 76 Monday, January 15, 2007 10:11 AM

C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R KF L O W S 77

Workflow in Previous Office Versions
Before closing this chapter on the out-of-the-box capabilities of Workflow in Office 2007, I would
be remiss if I didn’t at least mention the experience for users of previous versions of Microsoft
Office. Typically, Microsoft has what they call their Good, Better, Best scenario for the interaction of
various Office versions with SharePoint.

■Note While neither stratification covered in this section is strictly a Workflow phenomenon, it is nonethe-
less relevant to our experience. We are, after all, users of Office and so all of the good and bad baggage comes
along for the ride.

For Office 2003 with SharePoint 2003, this breaks down into the following:

Good = Office 2000. Users of Office 2000 have a minimum level of integration with SharePoint.
This integration is limited to basic file input/output (I/O) operations and the ability to
receive alert emails in Outlook.

Better = Office XP. Office XP improves on the integration capabilities of Office 2000 and
adds the ability to import and export information between SharePoint and Excel. In addition,
document properties and metadata are viewable from Office XP for documents stored on
a SharePoint site.

Best = Office 2003. Office 2003 continues to build on the integration capabilities of previous
versions. In addition, Office 2003 offers a tightly integrated experience through the use of
task panes. End users can interact directly with SharePoint in many ways without leaving
their Office client application.

For Office 2007, this breakdown steps up a notch and morphs slightly. In my mind, the
integration experience for the various Office clients is now more like Barely Acceptable, Acceptable,
and Phenomenal:

Barely Acceptable = any version of Office prior to Office 2003. Office XP and Office 2000
will be able to open and save files from the SharePoint site. That’s about it. To my mind,
if your organization is still using these versions of Office with no plans to upgrade, then
moving to the next version of SharePoint as your collaboration platform makes little sense.
It would be like buying a sports car and then only driving it to the grocery store at 15 miles
per hour.

Acceptable = Office 2003. With some development effort, the integration of MOSS/WSS v3
and Office 2003 can be improved considerably. There are still some issues to be overcome,
and some items that cannot be overcome, but this experience is closer to the ideal state.
See Chapter 9 for information on improving the integration between Office 2003 and the
next version of SharePoint—strictly from a Workflow point of view.

Phenomenal = Office 2007. No surprise here. The capabilities of the Office System are only
fully realized when you have all of the pieces working together. And the experience here is
a gigantic leap forward. As I’ve said before (and will say again), once you’ve sipped from
the fountain, there’s no going back…

Mann_700-1C03.fm Page 77 Monday, January 15, 2007 10:11 AM

78 C H A P T E R 3 ■ U S I N G T H E D E F A U L T W O R K F L O W S

Again, these breakdowns are not limited to the Workflow experience. They are, however,
part and parcel of what our end users will experience as they interact with our workflows and
so you should keep them in mind. As mentioned earlier, we’ll burn a few cycles in Chapter 9
looking to improve the integration of Office 2003 with the Office Workflow Experience (not to
be confused with the Jimi Hendrix Experience). We won’t bring Office 2003 up to the same level
as Office 2007, but we will smooth out some of the rough edges.

Summary
We covered a fair amount of ground in this chapter even though we never left the default capa-
bilities of the products. As we progress through the book we’ll build on this foundation, extending
the products to their limits to drive significant value. To wrap up this chapter, here are some
important things to remember:

• Workflow is available in both WSS v3 and MOSS. Other than the Forms Services
elements, the capabilities are identical.

• MOSS provides five sample workflows out-of-the-box—WSS v3 provides one.

• While not required, the Forms Services component of MOSS provides significant
improvement to the user experience—especially in the area of integration directly into
the Office client applications.

• We created our first workflow in less than 15 minutes and without writing a single line of
code. For basic processes, it really is that easy.

In the next chapter, we’ll still be sticking with the out-of-the-box features, but we’ll build
a custom workflow. We’ll use the SharePoint Designer to construct a new workflow to meet
another business need for the Global Marketing department of KCD Holdings. We’ll touch on
both the building of the workflow and the deployment to the server.

Mann_700-1C03.fm Page 78 Monday, January 15, 2007 10:11 AM

79

■ ■ ■

C H A P T E R 4

Using the SharePoint Designer

Until now, we have been working strictly with the out-of-the-box features and capabilities of
SharePoint. We have reviewed the changes in Office 2007 both from the client and server sides;
we have examined workflow in a generic sense and then drilled into the details of the Windows
Workflow Foundation. Finally, we examined the roles of the two primary participants in work-
flows, participants and originators, as we walked through an instance of one of the default
workflows.

Now we can get our hands dirty. This chapter begins our discussions on development of
new workflows in Office 2007. We’re going to start with no-code workflows so we’re still not in
full-bore developer mode; however, we are beginning to cover customized solutions so it kind
of counts as development. In any event, it is a good first step in understanding the full capabil-
ities of the product. We’ll pull the gloves off after we’re done with this chapter and foray into
full-tilt-boogie coding.

Introducing the SharePoint Designer
No, don’t worry; Microsoft hasn’t introduced yet another client application. This is merely
FrontPage in new clothing. In reality, the name change is simply a reflection of the fine-tuning
of Microsoft’s strategy for non-IT-built web initiatives. FrontPage has been Microsoft’s premier
web-site coding and development tool for power users. It offers nondevelopers powerful tools
to design, code, deploy, and manage their web sites. FrontPage has a long history but recently
has been focusing more and more on SharePoint. This trend continues in Office 2007.

Deserved or not, FrontPage has a bad reputation among the ranks of professional developers.
Like many other arguments in the IT industry, the battle cries between FrontPage aficionados
and those who eschew its reputation for code mangling and being too much of a black box
have approached religious zealotry. Those of us in the SharePoint space have had to strike an
often uneasy truce between these two camps. Our views on the pros or cons of FrontPage have
fallen by the wayside as we had to learn that FrontPage was a necessary tool in our arsenal. We
learned tricks and workarounds for dealing with the ghosted versus unghosted issue and code
mangling, and we learned to love the Data View web part.

Mann_700-1C04.fm Page 79 Thursday, January 18, 2007 7:59 AM

www.allitebooks.com

http://www.allitebooks.org

80 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Whatever your personal views on this argument, if you want to play in the SharePoint
sandbox the SharePoint Designer is going to be in your future. Fortunately, Microsoft has made
significant strides in eliminating the most serious problem many people have had with FrontPage
in SharePoint development—namely that the ghosting issue is largely rendered toothless in the
next version of SharePoint.

As this is a book about Workflow, we’re going to focus in on only those aspects of SharePoint
Designer that are relevant to Workflow. This means we’ll be spending all of our time on a new
feature in FrontPage/SharePoint Designer called the Workflow Designer.

Overview of the Workflow Designer
The primary purpose of the Workflow Designer is to build new workflows from preexisting
activities. According to Microsoft, the primary audience of the Workflow Designer tool is non-
IT department power users. While I understand this, I feel that Microsoft is selling the tool
short. This tool, like any other, is used to accomplish a certain task. Although the tasks handled
by the Workflow Designer are somewhat limited in this version (for example, no support for
state machines and no arbitrary branching, or goto), there are still a wide range of scenarios at
which it excels. Look for the capabilities of this tool to be expanded in future versions.

So, limitations aside, the tool handles certain tasks well and should be used by anyone who
needs to accomplish those tasks. You could use other tools to accomplish the same thing, but
in some cases this tool happens to be the most efficient. Again, there are other tools, and über-
developers may look down their noses at FrontPage and use Visual Studio instead. Although
this is certainly possible, the rest of us will be sitting at a bar somewhere while they manually
step through all of the tasks that the Workflow Designer did for us automatically.

So, marketing focus aside, if you need to work with SharePoint and workflows, you will at
one time or another use this tool. Whether you are in the IT department; whether you are a
power user, administrator, or über-developer; or if you need to build a basic workflow from
preexisting activities and attach it to a single list or document library, you should use this tool.

Like much of the SharePoint Designer, the Workflow Designer presents you with a wizard-
type interface in which you proceed through a number of steps to design and deploy your
workflow. This approach takes the complexity out of building workflows. It extends the under-
lying user-empowerment design goal of SharePoint by taking certain tasks out of the hands of
the IT department and placing them in the hands of users.

Later in this chapter, we’ll walk through the process of building a workflow in the Share-
Point Designer. First, though, we need to examine a few core concepts and details about the
process.

■Note In order to design workflows in SharePoint Designer, you need to have the .NET Framework 3.0
installed on the client machine.

Mann_700-1C04.fm Page 80 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 81

Steps
A workflow built with the SharePoint Designer (SPD) consists of one or more steps. Each step
defines the conditions and actions that control the activities of that step. For example, a step in
an approval workflow might be as follows: “If the cost is greater than $10,000, assign a task to
the department manager to review and approve.” In the Workflow Designer, the steps of your
workflow are shown as a list on the right side, as shown in Figure 4-1.

Figure 4-1. Steps are the core building block of a workflow in the Workflow Designer.

Each step is made up of zero or more conditions, which determine whether the step processes
or simply proceeds to the next step. If a condition is met, then the actions for the step are executed.
Conditions and actions are discussed next.

■Note In case you’re wondering, each workflow can hold a lot of steps—I don’t know exactly how many;
I stopped adding steps when I got to 300. If you are creating a workflow in SPD that has 300 steps, you really
ought to have your head examined. Visual Studio would be a far better tool for a workflow that is so complex.
Unfortunately, I can see a power user somewhere implementing their 248-step workflow and feeling very
proud of themselves. Quietly, very quietly, drag them out behind the shed and beat them with a copy of this
book. If you need to, buy a second copy explicitly for this purpose—my publisher and I won’t mind.

Conditions
Conditions are the circumstances that signal that this step of the workflow should execute.
Conditions allow your workflows to contain some logic and determine at runtime whether the
actions for that step should execute. This is useful for situations where your workflow is not
always a straightforward process but needs to branch based on some value provided by the
originator or some value of the payload.

■Definition Payload refers to the document or list item that our workflow is acting upon.

Mann_700-1C04.fm Page 81 Thursday, January 18, 2007 7:59 AM

82 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

The Workflow Designer in SPD ships with a number of default conditions out-of-the-box.
Table 4-1 provides details on the out-of-the-box conditions. It is also possible to extend the
Workflow Designer by adding custom conditions; we’ll cover that process in Chapter 9.

■Note The specific conditions available for each step depend on the SharePoint list that the workflow is
attached to. If the list permits attachments, then the two file-based conditions (file type and file size) are
available. Otherwise, they are not.

Conditions can be stacked, so that you could specify a compound condition such as
“Modified by a certain person, before a certain date and the Title field contain certain keywords.”
To do this, simply select additional conditions from the drop-down list.

Table 4-1. Default Conditions Available in the SharePoint Designer

Condition Description

Compare <List name> Field Allows you to specify a value for a column in the list this
workflow is attached to. If the payload item has that
value in the specified column, then this step will process.

Compare Any Data Source Allows you to specify a set of values to be compared.
Each value can contain either a hard-coded value or
a lookup to another list on the site. See the section
“Workflow Lookups,” later in this chapter.

Title Field Contains Keyword Allows you to specify a value to look for in the Title
column. If the current list item has that value in the
title, then this step will process.

Modified in a Specific Date Span Allows you to specify begin and end dates for when the
list item was modified. If the current list item was
modified within this span, then this step will process.

Modified by a Specific Person Allows you to specify the name of a person. If that
person modified the list item, this step will execute.

Created in a Specific Date Span Same as Modified in a Specific Date Span but works off
the list item creation date.

Created by a Specific Person Same as Modified by a Specific Person but works off the
original list item creator, not the last modifier.

The File Type Is a Specific Type Allows you to specify a certain type of file. If the file
payload matches this file extension, the step will
process.

The File Size in a Specific Range
of Kilobytes

Allows you to specify a range of kilobytes. If the file
payload falls within this range, the step will process.

Mann_700-1C04.fm Page 82 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 83

■Note All compound conditions are “and-ed” together. To create “or” conditions, you need to specify what
the Workflow Designer calls “else-if” conditional branches.

You add an else-if condition by clicking the Add "Else-If" Conditional Branch link in the
Workflow Designer. You set up the else-if condition in exactly the same way as you would a
regular condition. The only difference is that at runtime, the else-if branch will be evaluated
only if the parent condition evaluates to false. If the parent condition evaluates to true, then the
else-if condition will never process. We’ll see this later in the chapter when we build our own
custom workflow.

It is also possible to set up a step with no condition. In this case, the step would always
process. Use this if the actions in the step should be executed for each instance of this work-
flow, regardless of any other factors. There are countless cases where this would be necessary,
including the following:

• Logging the initiation, conclusion, or an internal milestone of a workflow

• Notifying the originator of the initiation, conclusion, or an internal milestone of
their workflow

• Requiring all documents in the workflow to pass legal review before being published

To set up a condition-less step, simply add an action to the step but no condition. Actions
are covered next.

Actions
An action is what happens in a workflow step. If the condition(s) for a step are evaluated and
indicate that the step should process, then the actions set for that step are the tasks that will be
executed.

Actions can be either serial (each action happens after the preceding action has completed) or
parallel (all actions happen simultaneously). Serial actions are the default and are useful when
actions must follow a process and are dependent on the completion of a preceding action.
Parallel actions are useful for notifications or when there is no dependency between actions.
To switch between serial and parallel, click the drop-down arrow located at the right side of the
condition branch and select either Run All Actions in Sequence or Run All Actions in Parallel.
Figure 4-2 shows this menu.

Figure 4-2. Actions can be run either in sequence or in parallel.

Mann_700-1C04.fm Page 83 Thursday, January 18, 2007 7:59 AM

84 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Unfortunately, the only indication of how actions are processed in the regular user inter-
face (UI) is a single word. As shown in Figure 4-3, then indicates serial; and indicates parallel.
This is not the easiest difference in the world to spot and it will likely cause some consternation
as you work through your processes.

Figure 4-3. Checking whether your actions happen in sequence or parallel is a matter of looking
at one word in the UI.

Table 4-2 shows the default actions available out-of-the-box.

Table 4-2. Default Actions

Action Description

Add Time to Date Allows you to work with date values and store the result in a
variable. You can add (or subtract, by indicating a negative
value) time (minutes, hours, days, months, or years) to a
specified date and store the result in either an existing variable
or in a new variable created in this step.

Assign a Form to a Group Launches a custom wizard that allows you to easily build a
form to collect information from users. The wizard is similar to
the Variables Editor discussed in a moment. You can indicate
which users are assigned the survey as part of the configuration
for this action.

Assign a To-Do Item Launches a dialog box that allows you to specify the parameters
for creating a simple task for a specified user.

Build Dynamic String Configure this step to create a string value and assign it to a
variable. The string value can contain values retrieved from the
current workflow instance by using lookups. We discuss lookups
later in this chapter. The variable used to store the string value
can be either preexisting or created as part of this action.

Check In Item Checks in an item so other users can edit it. You can specify
Current Item or provide a column name and value to identify
which item to check in. Also allows you to specify a check-in
comment, which can be either hard-coded or set via a workflow
lookup.

Check Out Item Checks out an item so other users cannot edit it. You can
specify Current Item or provide a column name and value to
identify which item to check out.

Mann_700-1C04.fm Page 84 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 85

Collect Data from a User Creates and assigns a task to the specified user. Tasks are used
to collect specific information from the assigned user or to
have the user complete a process. The ID of the task is stored
in a variable so that the information from that task is available
later in the workflow via a workflow lookup. Configuring this
action will launch the custom task wizard, which is similar to
the Variables Editor discussed in a moment. This action is
similar to the Assign a To-Do Item action, but allows you to
collect information for later use instead of just creating a task.

Copy List Item Creates an exact duplicate of an existing list item in a different
list on the current site. You specify both the source and
destination lists. You can specify Current Item or provide a
column name and value to identify which item to copy.

Create List Item Creates a new list item in any list on the current site. You specify
the list as well as values for all necessary columns. Values can
either be hard-coded or based on a workflow lookup.

Delete Item Deletes an item from a list on the current site. You can specify
Current Item or provide a column name and value to identify
which item to delete.

Discard Check Out Item Pretty self-explanatory, but this allows you to undo the check-
out of an item. All changes to that item will be lost.

Do Calculation Performs a simple calculation (plus, minus, multiply, divide,
modulo) with two values, which you can either specify or base
on a workflow lookup. The results of the calculation are stored
in a variable. Typically, this variable would be one created
specifically for this workflow.

Log to History List Allows you to write an entry to the designated history list for
this workflow instance. You can use either fixed text or a
workflow lookup value (but not both) as the text to be written.

Pause for Duration Allows you to specify that the workflow should suspend
processing for a time period you specify (in days, hours,
and minutes) when you configure this action.

Pause Until Date Similar to the previous action, except that you configure a
specific date on which to continue processing the workflow.

Send an Email Sends an email when it is executed. The action can be
customized to specify the recipient, CC, subject, and body of
the message. Each of these fields can be either hard-coded or
based on formulas, lookups, or workflow variables.

Set Content Approval Status Allows you to specify the current status of the payload item.
You can also specify comments, but keep in mind that those
comments will be the same for every instance of this workflow
unless you use lookups.

Set Field in Current Item Allows you to set the value of a specific column in the payload
item to a specified value. You can specify this value with either
fixed text or a workflow lookup value (but not both).

Table 4-2. Default Actions (Continued)

Action Description

Mann_700-1C04.fm Page 85 Thursday, January 18, 2007 7:59 AM

86 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Variables
In discussing actions and conditions, we have several times referenced workflow variables.
Workflow variables are no different from other programming variables—they store a value (or
values) for later use. They can be set by the workflow originator when they initiate a workflow,
set as part of a task assignment during a workflow step, or set programmatically by the work-
flow itself. They are useful for collecting and storing values for use later in the workflow.

At the bottom of every screen in the Workflow Designer wizard is the Variables button.
This button provides access to the Variables Editor, as shown in Figure 4-4.

Figure 4-4. The Variables Editor allows you to quickly and easily create variables to store values
used by your workflow.

When you click the Add button, you are presented with a dialog box that allows you to
specify the name and data type of your new variable. Figure 4-5 shows this dialog box.

Set Time Portion of
Date/Time Field

Similar to the Add Time to Date action, except that you specify
a specific value for hours and minutes (i.e., not a relative
time—plus 5 minutes from when the action executes) and
store the results in a variable.

Set Workflow Variable Sets a variable for this workflow to a specified value. The value
can be either hard-coded or set via a workflow lookup. You can
reference a previously created variable or create a new one.

Stop Workflow Causes the workflow to stop processing. You can specify text to
be logged to the history list with either fixed text or a lookup.

Update List Item Updates one or more existing columns in one or more lists.
You can specify the list(s), the column(s), and the value(s). You
can also specify Current Item to indicate the item that
triggered the current workflow instance.

Wait for Field Change in
Current Item

Pauses the workflow until the specified column for this item
from the attached SharePoint list equals the value specified.
The value can be hard-coded or based on a workflow lookup.

Table 4-2. Default Actions (Continued)

Action Description

Mann_700-1C04.fm Page 86 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 87

Figure 4-5. The Edit Variable dialog box allows you to specify the details of your variable.

The Workflow Designer provides a number of data types to customize the data collected:

• Boolean

• Date/Time

• List Item ID

• Number

• String

The only one from this list that you may not recognize is the List Item ID. It is used to store
a globally unique identifier (GUID) for a SharePoint list item.

Workflow Lookups
As we’ve already indicated, values for actions, conditions, and variables can be hard-coded or
based on other values located elsewhere. To retrieve a value from somewhere else, you need to
make use of a workflow lookup. A workflow lookup is available any place you see the function
button:

In general, a lookup is useful to refer to or retrieve another value. This value could be from
another list on the site where users store content or a value retrieved from the payload for the
current workflow instance. But perhaps a more useful situation would be to provide for central
configuration of variables. For example, if you create a hidden list and store values in there for
things like

• Delay time before escalation

• Threshold values for approvals

• Values for routing

you can then reference these list items from any workflow on the site and be certain of utilizing
the correct value. If the value needs to change, you can make the change in one central place.
As an example, suppose sales orders require approval from a branch manager if they are greater
than $10,000; you can specify the $10,000 in this configuration list. If later the threshold changes
to $15,000, you need to make the change in only one place, instead of any workflow that may
reference that value.

Mann_700-1C04.fm Page 87 Thursday, January 18, 2007 7:59 AM

88 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

To configure a lookup, click the function button. You will be presented with a screen
similar to the one shown in Figure 4-6.

Figure 4-6. Workflow lookups are a powerful mechanism for retrieving data from external sources.

The Source drop-down lets you select the item you want to retrieve a value from. Lookup
values can be retrieved from one of three places:

• Current Item gives you access to item that the workflow is currently acting upon.

• Workflow Data gives you access to the variables that have been set up as part of this
workflow.

• Select another list on the site to get access to items from another list.

Regardless of what is selected for the Source drop-down, you then need to specify the field
or variable that you want to retrieve a value from. The Field drop-down contains all of the
possible choices from the selected source. If you selected Current Item or another list, the Field
drop-down will contain the available columns. If you selected Workflow Data as the source,
then the Field drop-down will contain the available variables.

If you select another list as the source, you need to specify the particular item from the
selected list that you want to retrieve a value from. To facilitate this, the dialog box will change
to look as shown in Figure 4-7.

Figure 4-7. Defining a workflow lookup allows you to specify the specific list item you need to
retrieve a value from.

Mann_700-1C04.fm Page 88 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 89

The bottom portion of the dialog box now allows you to supply a field and a value. This
enables you to specify the filter criteria to identify the specific item that you wish to retrieve
a value from. Select a field from the chosen list and specify a value. The lookup will use these
entries to select which item from the source list to use to retrieve the lookup value.

The Clear Lookup button will reset all of the drop-downs to their default blank values to let
you start over again.

Initiation
The Initiation button at the bottom of the Workflow Designer allows you to create a custom
Workflow form. We haven’t covered Workflow forms yet (we dive into those in Chapter 7), but
at a high level, forms allow you to collect information from the various participants in your
workflow. This button in SPD allows you to specify the data that you need to collect from the
person who starts an instance of your workflow on a particular payload. This form is called the
initiation form—hence the name on the button.

Clicking this button will present a simple wizard-type interface that will step you through
the process of indicating the information you need to collect. We cover the information types
supported for initiation form fields in a moment. We’ll create an initiation form later in this
chapter and you’ll see that the process is pretty straightforward.

Check Your Workflow
The Check Workflow button at the bottom of the Workflow Designer window does just that—it
checks your workflow for errors. When you click on it, a message box pops up that says “The
Workflow contains no errors”—at least, that’s what you want to see.

If your workflow does in fact contain errors, they will be indicated in one of two ways:

• In the Workflow Steps pane on the right side of the screen, the step(s) that contain errors
will have an indicator next to the step name, as shown in Figure 4-8.

• The particular condition or action will be highlighted with asterisks, as shown in Figure 4-9.

Figure 4-8. Errors are indicated in the workflow steps by a small icon next to the step name.

Figure 4-9. The specific location of the error is highlighted with asterisks.

Mann_700-1C04.fm Page 89 Thursday, January 18, 2007 7:59 AM

90 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Information Types
Workflows in SharePoint Designer support the use of a number of different types of informa-
tion in a number of different places. We saw the brief set of data types supported by workflow
variables earlier. The following list provides details on all of the information types, including
where they are usable and a screenshot of the UI that each renders:

• Single Line of Text: Presents the user with a textbox they can enter characters into. In the
custom task wizard, this can be configured to require a value. In the initiation form, you
can only specify a default value.

• Usable on an initiation form and for task assignments

• Interface rendered:

• Multiple Lines of Text: Allows the user to enter multiple lines of freeform text. In the
custom task wizard, you can control whether it can include HTML markup and other
rich text, whether the field is append-only, and the number of lines to display. In the
initiation form, you can only specify a default value.

• Usable on initiation form and for task assignments

• Interface rendered:

• Number: Presents the user with a space in which to enter a number. In the custom task
wizard, you can control the formatting (number of decimal places, display as percentage,
etc., as well as specify a minimum and maximum value). In the initiation form, you can
only specify a default value.

• Usable on initiation form and for task assignments

• Interface rendered:

• Currency: Similar to the Number type, but also presents you with a currency-type drop-
down list for supporting international currencies.

• Usable for task assignments

• Interface rendered:

Mann_700-1C04.fm Page 90 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 91

• Date and Time: Presents the user with an interface to specify a date/time combination,
including a pop-up calendar. Allows you to specify the display format—Date only or
Date and Time.

• Usable on initiation forms and for task assignments

• Interface rendered for date and time:

• Interface rendered for date-only:

• Choice: Presents the user with a list of options to choose from. Allows you to specify the
display format (radio button, drop-down list, or checkboxes for the custom task wizard;
only radio buttons or drop-down list for the initiation form). The custom task wizard
also allows you to specify whether the user can supply their own value and whether
blank values are permitted.

• Usable on initiation forms or for task assignments

• Interface rendered for drop-down:

• Interface rendered for checkboxes:

• Interface rendered for radio buttons:

• Yes/No: Presents the user with a checkbox to flag the variable or field either on or off.

• Usable on an initiation form or for task assignments

• Interface rendered:

• Lookup: Allows you to add a workflow lookup. See the earlier section on lookups for
details. In this situation, you specify the list and field you want the user to select a value
from when they fill out the form. The form presents the values from that field as a drop-
down list for the user to select from.

• Usable for task assignments

• Interface rendered:

Mann_700-1C04.fm Page 91 Thursday, January 18, 2007 7:59 AM

92 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

• User: Presents the user with a control to allow them to enter usernames. Also includes
functionality to verify usernames and to select names from the user profile store.

• Usable for task assignments

• Interface rendered:

• Hyperlink or Picture: Presents the user with an interface to enter a hyperlink to another
resource or the URL of a picture. Provides the capability to browse the site in an open-
file dialog box to locate the resource or picture. The user can also enter a description of
the resource. Also provides a facility to test the link. Allows you to specify default values
for the URL and the text as well as whether blank values are permitted.

• Usable for task assignments

• Interface rendered:

• Calculated: Allows the workflow builder to set the value of one variable based on a formula,
which could include values of other fields.

• Usable for task assignments

• No interface rendered

Each information type is configured slightly differently, depending on the details of each
type. For task assignments, there is an additional screen in the wizard used to define them that
lets you customize each information type. A sample of this screen is shown in Figure 4-10. In
this case, the screen is for configuring a multiline field, though the screen for other field types
will be similar. The Variables Editor (discussed earlier) supports only simple information types
so there is no additional customization screen.

Mann_700-1C04.fm Page 92 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 93

Figure 4-10. The final screen of the task assignment wizard will vary based on the information
type selected.

Workflow Forms
One more point about workflow forms here before we leave them until Chapter 7: after you
specify the fields for the information you need to collect for either task assignments or initia-
tion forms, SPD automatically generates an ASP.NET form for you. This ASPX file is stored and
deployed with your workflow automatically. If you would like to edit this ASPX file before
deploying it—perhaps to add some user instructions or some other content—you can edit it
right in SPD and it will be deployed with your workflow. One thing to keep in mind, however, is
that if you make changes to one of the ASPX forms manually and then go back into SPD and
edit the form there (either the initiation form or one of the task forms for a To-Do item) all of
the changes you made manually will be lost because SPD will re-create the form from scratch.

■Caution Be careful when you are editing the ASP.NET form that you don’t inadvertently change any of
the Workflow-specific elements or code. I recommend only working in Design view for these pages.

Constructing a Workflow with the
Workflow Designer
In this exercise, we are going to build and configure a workflow from preexisting actions. We
will use the SharePoint Designer to build and deploy our workflow. Let’s begin by setting up
the situation.

Mann_700-1C04.fm Page 93 Thursday, January 18, 2007 7:59 AM

94 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

The Scenario: Product Launch Campaigns

For this exercise, you are going to work closely with the marketing director in the KCD Holdings Global Marketing
department. As director of the Global Marketing department she has a number of marketing managers reporting to
her. Each marketing manager typically handles the details of a specific product launch. In the past, product launches
have been difficult and intensive processes involving multiple emails, phone calls, missed deadlines, and an excessive
amount of manual tracking. Over the last several months, the director has worked to identify the core tasks that
need to be completed in order to ensure a smooth and successful product launch. After she has explained the details
to you, you tell her she is faced with two choices:

• She can oversee each product launch herself and make sure everything is completed properly.

• She can create a workflow that embodies all of the steps and tasks that have been identified and let the
workflow enforce the process.

Considering that the various member companies that comprise KCD launch an average of three new products every
month, she decides that the second option is probably the right way to go (besides, choosing the first option would
mean working many late nights and missing all of those MacGyver reruns). After she shows you her Richard Dean
Anderson shrine, you tell her that this workflow is something she can build herself, but that you’ll help her out this
first time because you happen to think that Stargate SG-1 is a pretty decent show, too.

KCD’s intranet already has a section dedicated to Global Marketing. The Global Marketing page has a document
library dedicated to marketing plans so you don’t need to worry about establishing space in which to work. All you
need to do is set up the workflow process and attach it to the document library.

SETTING UP THE ENVIRONMENT

Before we can begin setting up our workflow, we need to make sure that our environment is set up properly.
The first step is perhaps somewhat obvious, but I’ll mention it anyway: we need to have our SharePoint site
set up and our task lists created.

For this exercise we are going to use the standard TeamSite site definition. This contains a document
library and a task list, which for this scenario, is really all we need. Naturally, in a production environment, we
would use a custom site definition with content types, lists, and document libraries related to other aspects of
product marketing. To keep things simple and focused on Workflow, we’ll just use an out-of-the-box site definition.

If you do not already have a site suitable for use, go ahead and create one. Once your SharePoint site is
created, you need to decide on how the tasks your workflow creates are going to be stored. As discussed in
Chapter 3, all workflow tasks are created in standard SharePoint task lists. If your workflow is going to store
its tasks in a unique list, you need to create that list before starting to design your workflow. If all of your work-
flows in the site store their tasks in a central list, you need to make sure that you have access to that list before
beginning.

To follow along at home, you’ll also need to create a document library named Marketing Plans. This is
the document library that we’ll add our workflow to. If you don’t want to create a new document library, you
can just use the default Shared Documents library on the site.

Mann_700-1C04.fm Page 94 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 95

Going Through the Steps
Now that we know the background scenario for our exercise, we are ready to begin designing
our workflow. In this section, we will step through the process to build, configure, and deploy
our workflow.

At a high level, the process we need to enforce is as follows:

1. A marketing manager creates a draft marketing plan.

2. The marketing manager sends the plan to the product manager to review and verify
product details and specifications.

3. After the product manager approves the specifications, the following things need to
happen simultaneously:

• The external advertising agency needs to be notified of the upcoming marketing
effort and provide feedback on the planned budget.

• The manufacturing coordinator needs to be notified of the upcoming marketing
effort and approve of initiation and other dates based on current production schedules.

4. After all these steps have been completed, the plan is submitted to the marketing
director for final departmental approval.

At any stage of this process, the plan can be returned to the originating marketing manager
for modifications. Figure 4-11 shows this process.

Figure 4-11. Overview of the approval process for a KCD Holdings product marketing plan

With our site and task list created and an understanding of what processes we need to
enforce with our workflow, we can now begin designing our workflow.

Mann_700-1C04.fm Page 95 Thursday, January 18, 2007 7:59 AM

96 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Defining Our Workflow

The first thing we need to do is get our environment set up and create our workflow. This step
will connect to the site that will run our workflow. We will also name our workflow and set up
some basic variables.

To complete this task, we need to

1. Open the SharePoint Designer.

2. Open your SharePoint site by clicking File ➤ Open Site and typing in the URL for your
SharePoint site (without the page name)—for example, http://intra.kcdholdings.com/
sites/marketing/products/UltraWidget2.

3. Once the site has loaded, launch the Workflow Designer. From the top menu, click File
➤ New ➤ Workflow.

4. The Workflow Designer will load and you will see the Define Your New Workflow screen,
as shown in Figure 4-12.

Figure 4-12. The Workflow Designer is a wizard-based tool to walk you through the steps of
creating a workflow.

Mann_700-1C04.fm Page 96 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 97

This screen allows us to set up the basic details for our new workflow. Table 4-3 details
each of the options and how we need to set them for our workflow. Configure these options as
indicated and then click Next.

Setting Up the Initiation Form

Before we get into defining our workflow, we must collect some information from the marketing
manager when they initiate the workflow in order to allow the workflow to process. For this
exercise, this includes

• The name of the product the marketing plan relates to

• The specific subsidiary that creates the product

• The budget allocated for this marketing campaign

• The proposed launch date for the marketing campaign

We briefly discussed initiation forms earlier. Setting up the fields for the form is a simple
matter of following the steps of a wizard. Click the Initiation button at the bottom left of the
screen and then click Add to set up the fields as shown in Tables 4-4 through 4-7.

■Note In reality, some of this information could likely be retrieved programmatically from the payload docu-
ment itself. However, this would require custom code, and for now we’re focusing on just the capabilities
available in no-code workflows built with the SharePoint Designer.

Table 4-3. Basic Settings for the KCD Holdings Marketing Plan Workflow

Item Description Setting for Product
Marketing Plan Workflow

Name Pretty self-explanatory, but just make
sure the name is unique and descriptive.
This is what will be presented in the UI
for originators and recipients

Product Marketing Plans

What SharePoint List
Should This Workflow
Be Attached To?

This is the list from our SharePoint site
where the payload documents or list
items will be stored.

Marketing Plans (or for this
walkthrough, any valid
document library on the site)

Allow This Workflow to
Be Manually Started for
an Item

Indicates whether or not originators will
have the option to initiate this workflow
from the Start a New Workflow screen.

Checked

Automatically Start This
Workflow When a New
Item Is Created

Indicates whether this workflow should
be automatically initiated whenever a
new item is added to the attached list.

Unchecked

Automatically Start This
Workflow Whenever an
Item Is Changed

Indicates whether this workflow should be
automatically initiated whenever an item
in the attached list is modified.

Unchecked

Mann_700-1C04.fm Page 97 Thursday, January 18, 2007 7:59 AM

98 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Table 4-4. Configuration Settings for the Product Name Field of Our Initiation Form

Item Value

Name Product Name

Information Type Single Line of Text

Default Value <blank>

Table 4-5. Configuration Settings for the Subsidiary Field of Our Initiation Form

Item Value

Name Subsidiary

Information Type Choice (menu to choose from)

Choices KCD Widgets Ltd. (UK)
KCD Widgets, Inc. (US)

Default Value <blank>

Display As Drop-down Menu

Table 4-6. Configuration Settings for the Budget Field of Our Initiation Form

Item Value

Name Budget

Information Type Number

Default Value 0

Table 4-7. Configuration Settings for the Launch Date Field of Our Initiation Form

Item Value

Name Launch Date

Information Type Date and Time

Display Format Date Only

Blank default Value Selected

Use Date and Time of Item Creation as Default Unselected

Default Value Unselected

Mann_700-1C04.fm Page 98 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 99

When you have set up the variables, your Workflow Initiation Parameters screen should
look like the one shown in Figure 4-13.

Figure 4-13. Parameters configured properly for the KCD Marketing Plan example

Click OK to close the Initiation window and return to the Workflow Designer.

Building the Workflow Steps

With the basic workflow settings in place and the initiation form created, we can now begin
creating the steps our workflow requires. This exercise requires three steps:

• Product Manager

• Notifications (to advertising agency and manufacturing coordinator)

• Marketing Director

Step 1: Product Manager

This step will notify the product manager that the marketing plan for one of their products
needs to be reviewed. The next screen allows us to specify the details of each step of our workflow.

To complete this part of the exercise, follow these steps:

1. Click on Step 1 in the Workflow Steps list on the right side of the screen and we’ll begin
customizing this step.

2. Rename the step to Product Manager.

3. Click the Conditions button and select Compare Any Data Source to set up our first
condition. A sample is shown in Figure 4-14.

Mann_700-1C04.fm Page 99 Thursday, January 18, 2007 7:59 AM

100 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Figure 4-14. The Compare Any Data Source condition allows you to specify values to deter-
mine whether the step will process.

4. Click on the first Value link and then click the function button that appears next to the
field to define the condition.

5. Select Workflow Data from the Source drop-down and Initiation: Subsidiary from the
Field drop-down in the Define Workflow Lookup dialog box (shown in Figure 4-15) and
then click OK.

Figure 4-15. The completed workflow lookup for our first workflow step

6. Click on the second Value link and type KCD Widgets, Inc. (US) in the textbox that appears.
It is important that this value match exactly the value you typed in the Subsidiary Initiation
Form drop-down list.

7. Click the Action button and select Send an Email. You may need to click on the More
Actions option to view the full list of available actions.

8. Click on the This Message link to open the Define Email Message dialog box.

9. In the To parameter, type ProdMngrUS@kcdholdings.com (or a valid email address on
your development machine).

10. Configure the Subject parameter by clicking the function icon to the right of the field
and selecting

• Source: Workflow Data

• Field: Initiation: Product Name

11. For the body of the message, enter the information shown in Figure 4-16.

Mann_700-1C04.fm Page 100 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 101

Figure 4-16. Configuring the email message that will be sent as part of our workflow

The information in brackets can be automatically entered by positioning the cursor in
the proper place and clicking the Add Lookup to Body button. Select the following
Source and Field combinations:

• [%Initiation: ProductName%]

• Source: Workflow Data

• Field: Initiation: Product Name

• [%Marketing Plans: Encoded Absolute URL%]

• Source: Current Item

• Field: Encoded Absolute URL

• [%Marketing Plans: Modified By%]

• Source: Current Item

• Field: Modified By

12. Click OK to close the Define Email Message dialog box.

13. We need to wait until the product manager has completed their task, so we’ll assign
them a To-Do item. The To-Do item action will automatically pause the workflow until
the item is completed. To add another action to this step, click the Actions button and
select More Actions from the drop-down.

14. In the Workflow Actions dialog box, select the All Actions category and then select
Assign a To-Do Item.

15. Click on the A To-Do Item link in the action.

16. In the first screen of the custom task wizard, click Next.

Mann_700-1C04.fm Page 101 Thursday, January 18, 2007 7:59 AM

102 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

17. On the next screen, name the To-Do item Review Plan (US), enter a description of
Please review the Marketing Plan, and then click Finish.

18. Click the These Users link in the action and select the ID for the US product manager (or
whichever user you want to use as the product manager in your environment) from the
list of users. Click the Add button to add the user to the Selected list and then click OK to
close the dialog box. The actions for this condition are now complete.

If the subsidiary company was not KCD Widgets, Inc. (US), then the only other choice is
KCD Widgets, Ltd. (UK). To finish setting the proper product manager, we need to add an else
condition. We do not need to set a condition for this branch—this will ensure that the action
associated with this branch will always execute if the preceding branch’s action does not.

Here are the steps to follow to set this up:

1. Click the link Add "Else If" Conditional Branch link on the main Workflow Designer screen.

2. Repeat steps 7 through 18 except

• Enter ProdMngrUK@kcdholdings.com for the To parameter in step 9.

• Name the To-Do item Review Plan (UK).

• Assign the To-Do item to kcd\ProdMngrUK in step 20.

3. The first step of our workflow is now complete. Our Workflow Designer should look
similar to Figure 4-17.

Figure 4-17. When completely configured, step 1 of our workflow should look similar to this.

That takes care of the first step in our workflow. We can continue with the subsequent steps.

Mann_700-1C04.fm Page 102 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 103

Step 2: Notifications

This step will notify the advertising agency and manufacturing coordinator that a marketing
plan needs to be reviewed. These tasks will happen in parallel.

To complete this part of the exercise, follow these steps:

1. Click the Add Workflow Step link in the Workflow Steps section on the right side of
the screen.

2. Rename this step to Notifications.

3. Since we will not reach this step until the appropriate product manager has approved
the specs and marked their To-Do item as complete, we can safely execute the actions
for this step without checking a condition.

4. Click the Actions button and select Send an Email.

5. Click the Actions button again and select Send an Email a second time.

6. Click the small arrow at the top-right corner of the Condition/Action box and select
Run All Actions in Parallel from the drop-down menu (as shown in Figure 4-18) to make
sure the two emails are sent simultaneously.

Figure 4-18. We want all of our notifications to go out simultaneously.

Note that the Actions text now reads and Email this message as opposed to the original
then Email this message. This is how we can be sure that the actions will happen simul-
taneously. Remember, unfortunately, it’s just that one-word difference.

7. Click on the first This Message link and configure the fields as shown in Figure 4-19.

■Tip To actually test this workflow later, you’ll want to send it to an email address you can receive mail on.

Mann_700-1C04.fm Page 103 Thursday, January 18, 2007 7:59 AM

104 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Figure 4-19. Configuration settings for the email to the advertising agency

8. Click on the second This Message link and configure the fields as shown in Figure 4-20.
Again, set the email address to one you can monitor.

Figure 4-20. Configuration settings for the email to the KCD manufacturing coordinator

9. To cause the workflow to pause until the advertising and manufacturing people have
completed their work, we want to assign a To-Do item to each of them. We stepped
through the process for this earlier, so I’ll just give you the details this time around and
let you fend for yourselves:

• Assign a To-Do named Verify Media Buys to SomeUser@kcdadvertising.com.

• Assign a To-Do named Verify Production Schedules to kcd\MfgCoord.

■Tip Remember, when you are assigning To-Do items and sending emails, you’ll need to make sure that
the accounts and email addresses you use are valid in your environment and ones that you can monitor.

Mann_700-1C04.fm Page 104 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 105

The second step in our workflow is now complete. The Workflow Designer screen should
now look similar to Figure 4-21.

Figure 4-21. The completed step 2 for our workflow

Step 3: Marketing Director

This step will notify the marketing director that the marketing plan for a product is complete
and ready for final approval. This step won’t execute until the To-Do items in the previous step
have been completed and we want it to execute every time. All of the tasks you’ll need to
complete for this step have been covered earlier in this chapter, so I won’t spoon-feed you
directions. At a high level, the tasks are

1. Create a new workflow step called Marketing Director.

2. Configure the step to not wait for a certain condition to be met (hint: configuring this is
actually not doing something as opposed to doing something).

3. Configure this step to send an email to the marketing director. Include the name of the
product in the body of the email as well as some text describing what is going on, as well
as a link to the document.

4. Configure this step to assign a To-Do item to the marketing director to have them
review the plan. Have this action execute at the same time (parallel) as the email action.

When you are done, step 3 should look like Figure 4-22.
Our sample workflow exercise is now complete. In a matter of minutes, using nothing but

out-of-the-box features, we have completed a workflow that supports the required business
process. All we need to do now is deploy and test.

Mann_700-1C04.fm Page 105 Thursday, January 18, 2007 7:59 AM

106 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Figure 4-22. Step 3 in our custom workflow

Deploying Our New Workflow
Before deploying our workflow, it would behoove us to make use of the Check Workflow button.
Go ahead and click it. If you typed everything correctly, you should get a message box telling
you that your workflow contains no errors. If you don’t get this, go back and check that you’ve
completed each step correctly.

Now we’re ready to deploy. You might want to pause here for a minute and get yourself a
drink and snack before beginning this next part of the process because it’s a doozy and you
won’t want to stop in the middle.

All ready now? Good. To deploy our workflow, simply click the Finish button in the Workflow
Designer. The SharePoint Designer will validate our workflow, build the initiation form, and
deploy the files to the SharePoint site. When it is finished, it closes the Workflow Designer and
returns you to SPD.

Man, that deployment was hard work. Go ahead and take another drink now. You’ve
earned it.

Drum roll please… Congratulations, you’ve just created your first Office 2007 Workflow.

Testing 1, 2, 3…Testing 1, 2, 3
Before we can really say that we’re done, we need to test our workflow. This will give you the
opportunity to see how your workflow looks, too. To get started, fire up a browser and navigate
to the site you deployed the workflow to (the same URL you specified when you opened the site
in SPD). From here, navigate into the Marketing Plans document library and upload a new
document.

Once the document is in place, run your mouse over the document name and select Work-
flows from the drop-down menu. Near the top of the next screen, in the Start a New Workflow
section, will be a listing of the workflows that are available in this document library. You will
likely have two default workflows (Approval and Collect Feedback) plus our custom workflow
(Product Marketing Plans), as shown in Figure 4-23.

Go ahead and click our workflow name to get it started. The first screen you’ll see (shown
in Figure 4-24) is the initiation form that SPD created for us based on the fields we specified. Fill
in some test values for each field and click Start.

Mann_700-1C04.fm Page 106 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 107

Figure 4-23. Our custom workflow is available in the list of workflows to start on our document.

Figure 4-24. SPD automatically created this initiation form for us based on the fields we specified.

Our workflow will start and we will be returned to the view of our document library, as
shown in Figure 4-25. You’ll also notice in Figure 4-25 that a new column has been added to
this view. The column is named for our workflow—Product Marketing Plans—and contains the
current status of our workflow; in this case, it is currently In Progress. This column is added to
the default view the first time a new instance of a workflow is added. Any documents or list
items that have run or are running this workflow will show their status in this column.

Figure 4-25. The default view of our document library shows the current status of our workflow.

If you recall, the first step of our workflow checked whether the subsidiary was US or UK
and then sent an email and assigned a task to the appropriate product manager. If you check
the email for the account you set up as the product manager, you will see our email sitting
there. A sample of this email is shown in Figure 4-26. Notice that the workflow lookups we
added to the body of the email message have been replaced with the appropriate information.

Back in the browser, if you check the task list, you will see a new task created with a name
of Review Plan (US) and assigned to the account you set up for the US product manager.
Figure 4-27 shows this task as well as the Complete Task button that’s provided to allow us to
indicate when the task is finished. Go ahead and click the button now.

Mann_700-1C04.fm Page 107 Thursday, January 18, 2007 7:59 AM

108 C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R

Figure 4-26. The email sent by the first step of our workflow has the appropriate information for
this instance and this payload.

Figure 4-27. The task created by our workflow

You can click through the tasks and emails that are sent by the other two steps in our work-
flow. You’ll notice that each step only executes when the tasks (To-Do items) from the previous
step have been marked as complete. In the case of the third step, it only executes when both
tasks from step 2 have been marked as complete.

Notice, also, that the status of our workflow back in the document library stays as In Progress
until the last task—assigned to the marketing director—is marked as complete.

So there you have it. In just a short amount of time, we’ve built and tested a custom work-
flow using nothing but the out-of-the-box capabilities of SharePoint and the SharePoint Designer.
Before we close up shop on this functionality, there are a few things you should know:

• There is no way to save your in-progress workflow in SPD. Once you start, you need to
deploy it in order to save your work. Don’t ask me why—that’s just the way it is.

• As I said before, SPD is great for what it is intended for. However, it is not, repeat not,
going to meet all of your needs. For pretty basic, straightforward workflows attached to
a single list or document library, it is a great tool. It does have some pretty significant
limitations in this release, though. My recommendation is to familiarize yourself with
the tool first on some basic test balloons before you try to tackle something more
complex. Make sure that it is the right tool.

• With that said, if it is the right tool, it will save you lots of time.

• There is no way to do escalation, parallel branches, or other more advanced workflow
constructs with this tool.

Mann_700-1C04.fm Page 108 Thursday, January 18, 2007 7:59 AM

C H A P T E R 4 ■ U S I N G T H E S H A R E P O I N T D E S I G N E R 109

Summary
For the seriously time-pressured among us, here is the abridged version of this chapter. For
more information on any of these items, you ought to at least skim the chapter. Thanks.

• In Office 2007, FrontPage has been rebranded as the SharePoint Designer.

• The Workflow Designer in the SharePoint Designer follows a wizard-based process to
allow nontechnical users to build workflows.

• Workflows are built as a collection of steps.

• Initiation forms allow you to collect information from an originator of your workflow
and use it later in the workflow to do conditional routing, updating lists, and so forth.

• The Variables Editor walks you through the process of adding variables to store values
used elsewhere in the workflow.

• Conditions control which steps, or which parts of steps, are processed.

• Actions are the meat of the workflow; they’re what the workflow does.

• The SharePoint Designer ships with certain out-of-the-box actions readily available to
cover many situations you are likely to encounter.

• The Workflow Designer works directly with a single list on a single site. It is not intended
for creating workflows that are to be deployed to multiple lists or sites. (This is not to say
that you can’t make that happen; it’s just not what the tool does well.)

• Workflow lookups allow you to retrieve information from other lists in your site or from
variables set as part of your workflow.

Here’s some food for thought:

• The SharePoint Designer is good but it still requires a client install and a fairly knowl-
edgeable power user. It would be interesting to build a purely browser-based interface
for building very basic workflows. There has also been some discussion in the commu-
nity about building a workflow designer right into the core Office applications via a task
pane. I’ll post some thoughts on my web site and point you to some of the discussions
elsewhere in the community. I’d love to hear your thoughts on this.

• The Workflow Designer is built for simple, single-path workflows. For example, there is
no way to automatically escalate a workflow to another user if one user doesn’t complete
their assigned task within a certain period of time. Yes, there are two delay-type actions,
but they are going to block your whole workflow and prevent any additional steps from
processing, even if the user does complete their task in the time allotted. You could
probably cobble something together but it wouldn’t be pretty. It would be an interesting
discussion on how to make it work easily. Visit me at http://kcdholdings.com if you have
ideas and would like to discuss them.

Mann_700-1C04.fm Page 109 Thursday, January 18, 2007 7:59 AM

Mann_700-1C04.fm Page 110 Thursday, January 18, 2007 7:59 AM

■ ■ ■

P A R T 3

Teaching Your
Workflow to Dance

This just keeps getting better and better. So far we’ve covered some introductory material

and then the out-of-the-box capabilities of SharePoint and the rest of the 2007 Office

System. Now it’s time to take things to a whole new level.

Beginning in this section we start to flex our development muscles. In Chapter 5, we

build custom activities and explore the power and flexibility these new components bring

to our programs. In Chapter 6 we finally build our own workflows. We look at both sequential

(“flowchart”) workflows as well as state machine (um… “not flowchart”) workflows.

Chapter 7 covers everything we need to know to introduce custom InfoPath and ASP.NET

forms to allow users to interact and customize our workflows. Chapter 8 explores the

Rules engine and builds a custom solution that allows us to manipulate rules externally

and use them to modify the processing of our workflow.

These chapters form the core of the book. Everything that precedes them is laying the

foundation. Everything after them is icing on the cake. Take your time going through the

material. Honestly, none of it is that difficult technically, but there are lots of moving parts.

Try to ignore all of my annoying tangential comments and you’ll be fine. Have fun—things

get interesting now.

Mann_700-1C05.fm Page 111 Friday, January 19, 2007 8:47 AM

Mann_700-1C05.fm Page 112 Friday, January 19, 2007 8:47 AM

113

■ ■ ■

C H A P T E R 5

Activities

As the more astute among you will have already guessed, this chapter is all about activities—
what they are, how they work, what’s available, and how to build our own. We’ll cover the out-
of-the-box activities provided by the Windows Workflow Foundation (WF) that are usable from
our Office workflows, as well as the activities that are added with SharePoint. Finally, we’ll end
the chapter with a review of the activity architecture as well as a walkthrough of building our
own custom activity.

So, jumping right in—activities, what are they? Simply put, activities are the building
blocks of a workflow. Generically, an activity is just a component—no different than any other
.NET custom control.

At a very high level, two types of activities can exist within WF, whether they are built by
Microsoft, third parties, you, or your Aunt Matilda: simple activities or composite activities.

■Note Microsoft is lumped in with the rest of us (yes, even with your Aunt Matilda) when it comes to activity
development. All of the default activities that ship with WF or SharePoint were developed using the same
framework that we’re using. There’s no secret-squirrel, magical API for Microsoft activities.

Simple Activities
The term simple here does not imply that these activities are not complex. Simple activities
could require months of design and thousands of lines of code. Simple here means only that
the activity does something (and typically only one something). For instance, sending an email
is an example of a simple activity. It is an atomic unit of functionality. Although it could be
broken down into various subtasks (set To address, set email subject, set email body, etc.),
those are merely steps within a single functional unit of sending an email.

■Note For simplicity’s sake (no pun intended) and because simple activities are far more common than
composite activities, the simple prefix is typically dropped. It is assumed that if you say just activity you are
referring to a simple activity.

Mann_700-1C05.fm Page 113 Friday, January 19, 2007 8:47 AM

114 C H A P T E R 5 ■ A C T I V I T I E S

Although there is nothing explicitly in the WF framework that prohibits the inclusion of
multiple tasks within an activity, adding multiple tasks would be bad form. So, for example,
having a single activity that sends an email and creates a SharePoint list entry would be too
much in a single activity—even if those two tasks “always” occur together. If it were necessary
that both of these tasks succeed or fail together, they could be wrapped in a transactional
context activity (see the activity breakdown later in this chapter for further details) by a work-
flow builder. As a writer of a simple activity, our job is to write single task–based components.
Our mantra is do one thing and do it well.

So, all pontificating aside, we know what activities are in a theoretical, bore-your-audience-at-
a-cocktail-party kind of way, but still nothing concrete. Some examples will help bring things
home. The following are all examples of specific simple activities:

• Send email

• Invoke web service

• Execute code

• Create task

• Delay

That should wrap things up pretty nicely. We now know what activities are: units of code
that perform a logically atomic task. The only real question left to round out our definition is,
just what can that task be? The answer: anything your business requirement needs it to be.
Really. If your business requirement—whatever that may be—can be expressed in code and
executed on a computer, that’s your activity. There is no reason that any of the following
couldn’t be coded as custom activities:

• Insert or delete a database row

• Send or wait for a fax/SMS message/email/voicemail

• Send a control sequence to a piece of robotic equipment

• Record an input from a piece of test equipment

• Open or close an electrical circuit

• Erase the high scores from your MAME arcade cabinet

Specifically in the Office 2007 space, the following are additional examples of potential
custom activities:

• Create WSS site

• Create WSS alert

• Strip macros from Office 2007 documents

• Replace document style sheet in new XML file formats

• Convert document to PDF or XPS (Microsoft’s XML Paper Specification)

Some of these activities exist already; others are just waiting for you to code them.

Mann_700-1C05.fm Page 114 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 115

Composite Activities
Typically, composite activities act as containers for other activities. These other, or child, activ-
ities are not typically included as part of the composite activity built by the developer. Instead,
they are usually added by the workflow builder at the time they are creating a new workflow.
Unlike simple activities, composite activities don’t do anything. OK, that’s not precisely true;
composite activities are used to control the flow of the process being enforced by the workflow
or perhaps do some processing either before or after its child activities run, so they do some-
thing. It is not, however, a typical task that would be listed as a step of a workflow. So, in a
sense, a composite activity doesn’t really do anything, but rather it controls and augments how
other activities do their things.

■Note Similar to the guideline of a simple activity only performing one task not being enforced in WF, there
is nothing in the WF Framework that explicitly dictates that a composite activity not perform any tasks. It’s just
a good convention to follow.

By way of example, the following are all composite activities that ship with WF:

• Parallel

• ConditionedActivityGroup

• Replicator

• IfElse

Details on these and other default activities are provided later in this chapter. For now, it
is important just to know that each of these activities is designed to control how their child
activities are processed.

Building composite activities will not be as common a task as building simple ones. This
is merely because there are not as many different needs or options for controlling workflow
processing as there are for performing actual tasks. Building a composite activity is also a
fundamentally different process than writing a simple one. The bulk of this chapter will focus
on simple activities. We’ll circle back around at the end of the chapter and cover the creation of
a sample composite activity.

Out-of-the-Box Activities
As you’ve seen, there are very few limitations on what your custom activity can be or do. The
sky’s the limit. Before you take off, however, it might be a good idea to get an understanding
of what already exists—no sense reinventing the wheel. As I mentioned before, WF ships with
certain out-of-the-box activities. SharePoint adds more. So before you start creating your activity
masterpiece, you might want to see what Microsoft has already given you. Your idea may have
already been taken, or at the very least there may be something you can inherit from to get you

Mann_700-1C05.fm Page 115 Friday, January 19, 2007 8:47 AM

116 C H A P T E R 5 ■ A C T I V I T I E S

part of the way. Either way, the next two sections will cover the known world. Where you go
from there is entirely up to you.

WF Activities
While WF is primarily an engine and does not provide a lot of extended functionality out-of-
the-box, it does include a number of core activities. These activities are provided as part of the
base WF platform and are therefore available to every workflow built on top of the platform.

A total of 31 activities ship out-of-the-box with WF. To me, only 20 are of real use to us
when we’re developing workflows in Office 2007. More than 20 will work in Office workflows,
but I honestly don’t see them as being useful for most of the situations that you will find your-
self in. Table 5-1 provides the name of each of the 20 as well as a description of the functionality
provided and, where appropriate, an example of where the activity might be useful to you.
Note that this table is intended to give you an overview of these default activities and not serve
as an exhaustive reference.

■Tip Additional information on the full list of default activities can be found at Microsoft's WF site,
http://wf.w3fx.com.

Table 5-1. Activities from the Windows Workflow Engine That Are Useful
in Office Workflows

Activity Description Thoughts on Usage

Code Allows you to add custom
code to your workflow. This
code can be Visual Basic
.NET or C#.

This activity is a catchall; it
can be used to execute any
server-side code your
workflow requires. Calling
web services, instantiating
and using objects, and
executing inline code are
all valid uses of this
activity.

Mann_700-1C05.fm Page 116 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 117

ConditionedActivityGroup (CAG) The CAG is a control
mechanism for a workflow.
It allows you, the workflow
builder, to specify a group of
activities that will execute
based on certain conditions.
The CAG is different from a
simple if-else or while
activity in a couple of key
ways. First, the CAG itself
has a UntilCondition
property that controls the
processing of the CAG and
therefore all of the activities
that it contains. Second,
each activity contained
within the CAG gets a
WhenCondition property
added to it that specifies the
condition under which that
individual activity executes.
This combination of
conditions can be combined
to create an extremely
powerful, complex workflow
operating off conditions not
known until runtime. The
third difference is that the
CAG can contain multiple
child activities, unlike the
while activity, which can
only contain one child (yes,
you could make that one
child a composite activity,
but…). The CAG activity is
quite advanced and entire
chapters of WF books will be
dedicated to it.

Delay Allows you to pause your
workflow. Useful if you need
to have your workflow stop
executing until a certain time.

If your workflow needs
to execute a process that
consumes a large amount
of server resources, you
may want to delay that
execution until after
business hours.

EventDriven Enables your workflow to
process based on events.

Necessary for state machine
workflows to handle trans-
itions between states based
on events and also for
enabling workflow modif-
ications. (We cover state
machines in Chapter 6.)

Table 5-1. Activities from the Windows Workflow Engine That Are Useful
in Office Workflows (Continued)

Activity Description Thoughts on Usage

Mann_700-1C05.fm Page 117 Friday, January 19, 2007 8:47 AM

118 C H A P T E R 5 ■ A C T I V I T I E S

EventHandlingScope Like the EventDriven activity,
this one is necessary to enable
workflow modifications.

FaultHandler Allows your workflow to
handle errors. This is a com-
posite activity that serves as
a separate branch of your
workflow that executes if an
error is encountered. We
cover fault handling in
workflows in Chapter 9.

HandleExternalEvent Used for indicating which
events are handled by
various states in a state
machine workflow.

IfElse Allows your workflow to
branch conditionally.

Useful in a scenario such
as when your approval
workflow requires a depart-
ment manager’s approval if
the dollar amount is under
$10,000 but a vice pres-
ident’s signature if the
amount is over that.

InvokeWebService Enables your workflow to
call an external web service
and wait for a response.

Useful in a scenario where
you need data or function-
ality available from an
external system that exposes
a web service interface.

Parallel This composite activity is a
container to hold other
activities and allows your
workflow to branch into
multiple independent ope-
ration streams. This activity
will wait until all branches
complete processing before
continuing.

Useful in a situation where
your workflow needs to
complete several long-
running tasks. Rather than
wait for each to be com-
pleted before starting the
next, this activity allows
you to execute them all at
the same time. Can also be
used to introduce timeouts
and escalations into your
workflow.

Table 5-1. Activities from the Windows Workflow Engine That Are Useful
in Office Workflows (Continued)

Activity Description Thoughts on Usage

Mann_700-1C05.fm Page 118 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 119

Replicator Another container activity,
the Replicator can hold only
one other activity—though
that one activity could be
another container such as a
Sequence or Parallel. The
Replicator allows your work-
flow to repeat its set of child
activities with the number of
repetitions not being known
until runtime.

Useful in a scenario such
as one where your
workflow needs to collect
approvals for a proposal.
The specific approvers and
the number of approvers
will vary from proposal to
proposal depending on
which technologies are
used and which depar-
tments are affected. The
Replicator will allow you to
build that approver list at
runtime and execute the
approval process the appro-
priate number of times.

Sequence This activity is similar in
form to a Parallel activity in
that by itself it does nothing—
it is merely a container for
other activities. In this case,
it controls the execution of
its child activities, causing
them to be performed in a
series. As serial execution is
the default for workflow
execution, this activity is
only useful as a container
object. It allows you to place
several activities in situations
(such as inside a Replicator
activity) where only one
activity is allowed.

SetState
State
StateInitialization
StateFinalization

These activities are only
useful for state machine
workflows. They allow you
to control the state of your
workflow. More on state
machines in the next
chapter.

Suspend The Suspend activity pauses
the execution of your work-
flow and optionally passes
an error message back to the
host (SharePoint). Workflow
execution can be resumed
from the host.

Table 5-1. Activities from the Windows Workflow Engine That Are Useful
in Office Workflows (Continued)

Activity Description Thoughts on Usage

Mann_700-1C05.fm Page 119 Friday, January 19, 2007 8:47 AM

120 C H A P T E R 5 ■ A C T I V I T I E S

■Caution Officially, only four of the standard WF activities are supported:

• Code

• ConditionedActivityGroup

• Sequence

• Replicator

I’ll admit to being puzzled by this. The IfElse activity isn’t supported? Not to mention While, Delay, Parallel, and
Terminate? If the FaultHandler activity isn’t supported, why is there a Fault Handler view on our workflow?
As near as I can figure, the official documentation is lagging behind the product itself. Various Microsoft
people I’ve spoken with confirm that this list of supported activities is from very early in the product develop-
ment process and needs to be updated. So I’ve left the full list intact in Table 5-1. At one point or another, I’ve
worked with each of the activities and haven’t run into any problems. Perhaps there is some esoteric issue
that will raise its ugly head in certain scenarios and I’m just not testing those scenarios. Keep that in mind as
you go, but I think you’ll be all right.

Terminate This activity causes the
immediate cessation of all
workflow activity—your
workflow just stops running.
Similar to the Suspend
activity, an error message
can be provided back to the
host application. Unlike the
Suspend activity, this
activity makes it impossible
to restart a workflow.

Throw This activity allows you
to explicitly invoke an
exception, which should
then be handled via a Fault
Handler activity. This is
functionally equivalent to
the C# throw statement.

Useful in a scenario where
your workflow accepts
external input and expects
that input to be within a
certain range. If the received
input is outside that range,
you can throw an exception
and let the Fault Handler
catch and handle the error.

While Another flow-control activity.
This activity allows your work-
flow to loop through, and
continue looping through a
series of activities so long as a
certain condition is met.

Table 5-1. Activities from the Windows Workflow Engine That Are Useful
in Office Workflows (Continued)

Activity Description Thoughts on Usage

Mann_700-1C05.fm Page 120 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 121

For the record, the 11 activities that I disregard are

• CallExternalMethod

• CompensatableSequence

• Compensate

• InvokeWorkflow

• Listen

• Policy

• SynchronizationScope

• TransactionScope

• WebServiceFault

• WebServiceInput

• WebServiceOutput

SharePoint Activities
With 20 of 31 out-of-the-box activities available to us, you might wonder what’s left. What else
do we need? The answer is that we need SharePoint-specific functionality (and, believe it or
not, we need the ability to send an email—a conspicuous hole in the default activities list).
SharePoint ships with a number of activities out-of-the-box to provide SharePoint-specific
tasks. We can make use of these activities in our custom workflows. Table 5-2 provides details
on the additional 22 SharePoint activities—each with a brief description (although most are
pretty self-explanatory). Table 5-2 brings our total count of available activities up to 42—not
too bad for an initial release (and perhaps a little significant if you’re a Douglas Adams fan).
Once the vibrant third-party component community kicks in, this number will explode.

■Note If you can’t see these activities, you need to add them to the Toolbox. I recommend creating a new
tab called something clever like SharePoint to place them all in. Right-click on the new tab, select Choose
Items, select the Activities tab, and add a reference to the Microsoft.Sharepoint.WorkflowActions
assembly from the \Program Files\Common Files\Microsoft Shared\Web Server Extensions\
12\ISAPI folder. Now you’ll have a whole slew of new activities to play with.

Mann_700-1C05.fm Page 121 Friday, January 19, 2007 8:47 AM

122 C H A P T E R 5 ■ A C T I V I T I E S

Table 5-2. Additional Activities Added by SharePoint

Activity Description

CompleteTask Facilitates the closing of a workflow task. Allows you
to specify the final status of the task.

CreateTask Enables you to create a new workflow task—bet you
never would have guessed that one.

CreateTaskWithContentType The same as the previous item, except that you can
also specify a content type for the task. Among other
things, this enables the task to be opened with a
specific form.

DelayFor Allows you to pause your workflow for a specified
number of days, hours, and minutes. This composite
activity is just a glorified wrapper around the default
Delay activity. It adds the ability to specify a comment
that is logged at the beginning of execution and
also one logged at the end of execution (via the
EnterComment and ExitComment properties), although
you need to do this in code as those properties are not
exposed in the Properties window.

DelayUntil Similar to DelayFor except that you specify an
absolute end date as opposed to a relative one. The
time cannot be set through the Properties window,
but can be set to any valid Date/Time value in code.

DeleteTask Um… deletes a workflow task? Good guess. You
specify the TaskId.

EnableWorkflowModification Used to enable a workflow modification form at the
specified point in your workflow. The modification
form is available within the scope prescribed by
the activity.

InitializeWorkflow Allows you to specify a method to be fired off to
initialize your workflow. Similar to a Code activity,
except that it has a CorrelationToken property. We’ll
talk about correlation tokens in the next chapter.

LogToHistoryList Permits your workflow to explicitly write an entry to
the SharePoint list designated as the history list for
the running workflow instance. Because this list can
be set at the time of workflow association, there is
no way to know its identity at design time.

OnTaskChanged Allows your workflow to subscribe to an event raised
when the specified task is modified—either by the
user or programmatically. You can specify a custom
event to be fired when this activity triggers. This
activity also contains a custom property for both
BeforeProperties—which records the state of the task
prior to the change—as well as AfterProperties—
which contains the sate after the change.

Mann_700-1C05.fm Page 122 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 123

■Tip One more set of activities that bears looking into before you begin developing your own are those
available on Microsoft’s Workflow site: http://wf.netfx3.com. In addition to hosting an ever-growing
library of activities this site is an invaluable resource to activity and Workflow developers. Check it out,
contribute some ideas or code, and keep checking back. It’s well worth the effort.

OnTaskCreated Similar to the previous item, but triggered when the
event is created.

OnTaskDeleted Also similar to the previous item, but for task deletion.

OnWorkflowActivated This activity must be the first activity in every one of
our SharePoint workflows and will in fact be auto-
matically added when you create a new SharePoint
workflow class. Facilitates the establishment of
various aspects of our workflow.

OnWorkflowItemChanged Like the OnTaskChanged activity, receives an event
when an item is modified. Allows you to execute
code in response to this event. Also contains both
BeforeProperties and AfterProperties properties.

OnWorkflowItemDeleted Similar to the OnTaskDeleted activity but for a
workflow Item.

OnWorkflowModified Works in conjunction with the
EnableWorkflowModification activity. Receives an
event when the workflow modification is actually
implemented.

RollbackTask Allows your workflow to undo a workflow task.

Sendemail Pop quiz! You have to guess what this one does…

SetState Not to be confused with the state-machine-based
activity of the same name, this one is used to specify
the current processing status of a workflow. This
status is shown in the column added to the default
view when an instance of the workflow is run for the
first time. Default potential values are specified in
the SPWorkflowStatus enumeration, although you
can specify your own custom values.

SharepointSequentialWorkflowActivity This is the base activity from which our SharePoint
workflows derive. We can’t add it to one of our work-
flows, so you can just delete it from the Designer.

UpdateAllTasks Allows for batch processing of workflow tasks.
You can specify the new property values via the
TaskProperties custom property.

UpdateTask Modifies the properties of a single task.

Table 5-2. Additional Activities Added by SharePoint (Continued)

Activity Description

Mann_700-1C05.fm Page 123 Friday, January 19, 2007 8:47 AM

124 C H A P T E R 5 ■ A C T I V I T I E S

Building a Custom Simple Activity
So, now that we have an understanding of what is available to us out-of-the-box, it’s time to
talk about building custom activities. If activities are the building blocks of a workflow, then
developing custom activities is like making your own Lego blocks in the exact size, shape, and
color that you need.

We’re going to start with a simple activity and then at the end of the chapter build a
composite activity.

WHY WRITE CUSTOM ACTIVITIES?

The question was posed to me: why should we write custom activities? The default Code activity allows us to
write any custom code we need. This inline code is compiled into our workflow assembly so there’s no perfor-
mance reason to write custom activities. So why bother with the extra hassle of packaging, deploying, and
maintaining a separate activity if we can just put the code directly into our workflow?

It's true; not every bit of custom functionality should be turned into a new activity. So how do we know
when to write an activity and when to use inline code? The answer requires a little forethought, a little experi-
ence, and a small leap of faith. The forethought comes in identifying the right custom activities. You need to
know your organization and its business, and you need to think about the types of functionality that happens
frequently. For example, if your organization utilizes Microsoft CRM it would not be unreasonable to assume
that at some point more than one workflow is going to need to get information from CRM or provide informa-
tion to CRM. So a set of CRM activities would probably make sense.

Now here’s where the experience part comes in. Rather than write a whole set of activities to get/set
every possible piece of data in CRM, you should try to abstract the functionality and develop only two CRM
activities—one to get data and one to set data. All of the specifics of what data to get/set can be configured
via activity properties. Now instead of dozens of CRM activities, we have just two that should suffice for the
majority of our needs. Understand, though, that there will be situations where these two do not fit the bill. You
then have a decision to make: do I write a third activity or do I handle that one-off with inline code? It depends
on the situation and the need. There is no right or wrong answer, provided that you think about it and don't just
blindly follow one path or the other.

So finally, the leap of faith. You need to trust that your knowledge of the business (validated by the busi-
nesspeople or not) is sufficient. You need to trust that the business needs will not change significantly in the
immediate future (if your old CRM system is being replaced by Microsoft CRM in two weeks, don’t plan on
spending three weeks writing a CRM activity to work off the old system). You need to trust that your coding
skills are sufficient to write a robust, reusable component. You need to trust that the other developers in your
organization will use your activities.

Here are a few general rules to keep in mind when deciding what functionality to make into a custom
activity:

• It should be functionality that will be used more than once in a single workflow or used in multiple work-
flows.

• It should be written as generically as makes sense to facilitate reuse without making specific instances
of the activity overly difficult to configure.

Mann_700-1C05.fm Page 124 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 125

• It should be configurable through properties so that individual instances of the activity can be custom-
ized to do what they need to do.

• It should be as atomic as makes sense. Don’t lump functionality together in a single activity even if they
“always” go together. A good way to think about this is, “How would I explain this to my manager?” In
the CRM example earlier, a GetCRMData and a SetCRMData activity make sense, even though each is
composed of perhaps dozens of subtasks (connect to CRM, authenticate, pass parameters, query data,
etc.). The get/set boundary is a good, logical breakdown for the functionality.

Organizations should look to develop a solid library of custom activities over time. The ability to easily develop
custom activities is one of the strongest features of WF, and smart companies will carefully build on this strength.

Like other components, activities must meet certain requirements. In this case, those
requirements are specified by WF—the engine that drives the workflow. Primarily there are
two major requirements placed on every activity:

• An entry point: Each activity must have an Execute method that can be called by the
WF host.

• Notification of completion: Each activity must inform the host when it has completed its
tasks. The host can then continue with the next step of the workflow.

There are other optional elements—related to the presentation of the activity in the Visual
Studio Designer and Toolbox, and also validation of activity properties. We’re going to cover
most of the elements that make up an activity as we progress through this chapter, so before we
get started we need to talk a bit about the structure of an activity.

An activity is more than a single class. In fact, a complete activity is made up of seven sepa-
rate classes:

• Activity Definition: The guts of the activity; controls what the activity does and what
properties it exposes. This class contains the Execute method called by the workflow
host. This class is required.

• Activity Toolbox Item: Used in Visual Studio to display the activity in the Toolbox and
control the events when the activity is dropped onto the Designer.

• Activity Designer: Used in Visual Studio to control the behavior and structure of the
activity at design time in Visual Studio.

• Activity Validator: Handles verification of activity properties and environment to ensure
that they are configured properly at both design time and runtime.

• Activity Theme: Also used in Visual Studio, this time to control the color and other
appearance elements of the activity as it is rendered in the visual designer. I don’t
see this class as being overly useful unless you are rehosting the Designer in another
application.

Mann_700-1C05.fm Page 125 Friday, January 19, 2007 8:47 AM

126 C H A P T E R 5 ■ A C T I V I T I E S

• Activity Serializer: Provides for custom serialization in case your activity makes use of
objects that the default serializers cannot process.

• Activity Code Generator: Allows you to inject custom code during compile-time code
generation.

As indicated, only the first class, the Activity Definition, is required. All of the other classes
are optional but can be used to enhance your activity in a variety of ways. If you don’t include
them, Visual Studio will use default functionality. As we build our sample activity throughout
the rest of this chapter, we’re going to make use of the first five elements from the previous list.
I don’t want to belittle the remaining two, but honestly, I don’t see them being used much for our
Office workflows. They’re a little more hardcore than we typically need to get in the Office world.

Scenario: Removing Macros

Like many other companies, KCD is concerned with viruses and other nasty things that go bump in the night. They
have a corporate policy against macro-enabled documents, and for documents produced internally, they have
things under control. However, it is not easy to enforce externally as they deal with a large number of external
partners and customers, many of whom can post documents on KCD’s customer or partner extranets.

Because all documents are stored inside their MOSS document management system, this seems like the perfect
place to take steps toward alleviating the problem. You have been asked to prototype a solution. After kicking
around various options, your recommendation is to produce a single workflow activity that will remove macros from
all Office 2007 documents it processes. This activity can be used in workflows that kick off automatically for any
document posted to one of the externally available document libraries.

Now that we know what we are building, we can begin. The rest of this chapter is going to
walk you through the process of building and deploying the custom activity described in the
“Removing Macros” scenario. Rather than build the traditional Hello World–type activity,
we’re going to build one that actually has some value. Among other things, this will help you
understand the value of activities, and you’ll see what goes into making a real-world solution
to a business problem.

The activity we’ll build is going to work with a few new features of the Office 2007 System,
namely SharePoint v3 document libraries and the new XML file formats. If you are unfamiliar
with the new XML-based file formats introduced with Office 2007, see the sidebar “Party Like
It’s 1997...” for a quick introduction.

PARTY LIKE IT’S 1997…

For those of you who are old like me, you’ll remember when Microsoft introduced new Office file formats back
with Office 1997. It was a bit painful for a while—you would produce a document or a spreadsheet and send
it to someone to review and they wouldn’t be able to open it. You would have to save it back to the old format
and send it to them again. Certainly not a difficult task, but an annoyance nonetheless and, after doing it a few
dozen times, a major annoyance.

Mann_700-1C05.fm Page 126 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 127

Office 2007 again introduces new file formats. It’s going to be painful again for a little while. Unlike
before, the new file formats are now set as the default format for saving files. That’s going to make things
worse. Like before, Microsoft is introducing an update for older versions of Office that will allow them to work
with the new formats. This time around, however, that update will allow older versions of Office to both read
and write the new formats. That should make things a little bit easier on everyone.

All of that is interesting, but what do the new formats mean to us as developers? Simple. The new file
formats, as I’ve mentioned, are all XML based. This means that working with them is no different than working
with any other XML file. Reading and writing Office files can now be done with familiar XML tools and code.
The DOM, XPath, namespaces, and so forth will become even more critical to understand. As developers, the
new XML file formats open up a whole new world for us.

For our custom activity, the most important aspect of the new formats we need to understand is the
concept of a package. Quite simply, a single Office document is in reality not a single, monolithic, binary file
anymore. From a user’s point of view, nothing is different—they will see one file, and they will interact with
one file and never know the difference. As developers, however, we are aware that the single file that looks
like an Office document is actually a collection of individual files, packaged and compressed (using the familiar
ZIP algorithm). The constituent files that make up the ZIP package represent the elements of the file—styles,
content, properties, markup, and so forth. Each of those components is stored in individual XML files within
the package—and are therefore called package parts. Besides those that I just mentioned, other package
parts include images, embedded objects, attachments, and macros. The XML-based parts can be extracted
from the package and worked with just like any other XML file. To help facilitate this, Microsoft has introduced
a new set of packaging APIs to allow us to work with the new packages.

One final element you should understand is the concept of relationships. Rather than dictating naming
standards or other rules to define what each part is, and how it interacts with the other parts, relationships are
used to define parts and their connections to each other. A part with a relationship type of style to the main
document content is going to define the stylistic elements for the document. Similarly, a part with a relation-
ship type of vbaProject is going to represent the macros contained within the file. We’ll be making use of these
relationships in our activity.

That’s a five-paragraph overview of an element that will have entire chapters devoted to it in other books.
It’s enough of the important stuff that you can understand the code we’ll write in a bit, but is by no means an
exhaustive reference. If you’d like to read more, please visit www.kcdholdings.com and peruse the list of
resources there.

Setting Up the Environment
First, we need to set up our project and explore the activity environment inside Visual Studio,
so go ahead and create a new project. The Workflow Extensions for Visual Studio has added
a number of project templates to the standard New Project dialog box specifically related to
Workflow. We’re going to make use of only one of them here: the Workflow Activity Library.
Select Workflow for the Project Type and then select Workflow Activity Library for the
Template. For this example, I’m going to call the project KCD.SharePoint.Activities.

The Visual Studio IDE will open up, looking much like it does for any project we create.
The IDE opens up in Design view, which we don’t need right now, so you can go ahead and
close it.

Mann_700-1C05.fm Page 127 Friday, January 19, 2007 8:47 AM

128 C H A P T E R 5 ■ A C T I V I T I E S

There are a few steps to walk through to tweak our project before we start coding:

1. In the Solution Explorer, right-click on the Activity1.cs file and select Rename from
the context menu. Rename the file to MacroStripperActivity.cs. Click Yes when you’re
asked whether you want to rename all references to Activity1.

2. In the Solution Explorer, expand the References list and notice the additional assemblies
that have been added for our activity:

• System.Workflow.Activities

• System.Workflow.ComponentModel

• System.Workflow.Runtime

Each of these namespaces provides functionality we need in our activity.

3. Add references to the following assemblies:

• WindowsBase: This one should be near the bottom of the .NET tab in the Add Reference
dialog box. It provides access to the packaging APIs to work with the new file formats.

• Microsoft.Sharepoint: Browse to \Program Files\Common Files\Microsoft Shared\
Web Server Extensions\12\ISAPI to add this one. It gives us access to the majority
of the SharePoint APIs.

4. Examine other aspects of our project inside the Solution Explorer. Note that all other
aspects of the project are the same as any other class library project in Visual Studio 2005.

Coding the Activity
Continuing on with the process of building our custom activity, it’s time to start writing code.
We’ll be adding code initially to the MacroStripperActivity class. This is our Activity Definition
class—as I said before, the only one actually required for a valid activity. We’ll add the other
supporting classes to our activity as we go.

Let’s get started:

1. Open the MacroStripperActivity.cs file in Code view.

2. Take a minute to review the code provided for us by the template. There are a few items
to take note of:

• The using declarations give us access to the necessary components of the WF engine
without having to supply the fully qualified name. There are seven declarations
related directly to a workflow project, as shown in Listing 5-1.

• Our namespace declaration defaults to the name of the project. If you’re following
along at home, my namespace is KCD.SharePoint.Activities.

• Our class declaration itself: public partial class MacroStripperActivity:
SequenceActivity. Notice that we inherit from the SequenceActivity base class.
Honestly, I’m not sure why the template is set up that way. Go ahead and change that
to inherit just from Activity.

Mann_700-1C05.fm Page 128 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 129

Listing 5-1. The Seven Namespaces Used for Most Workflow Projects

using System.Workflow.ComponentModel.Compiler;
using System.Workflow.ComponentModel.Serialization;
using System.Workflow.ComponentModel;
using System.Workflow.ComponentModel.Design;
using System.Workflow.Runtime;
using System.Workflow.Activities;
using System.Workflow.Activities.Rules;

As mentioned earlier, the WF engine is going to be looking for an Execute method in our
activity to use as its entry point. This is the method that will be called by the engine when our
activity is started. The method stub is not provided for us, so we need to add it ourselves.

3. Add the code from Listing 5-2 to our class file.

Listing 5-2. A Syntactically Correct and Complete Execute Method—It Just Doesn’t Do Anything!

protected override ActivityExecutionStatus Execute ➥

(ActivityExecutionContext context)
{
 return ActivityExecutionStatus.Closed;
}

Technically, this is the shortest custom activity you can build. It will compile, you can
add it to a workflow, and it won’t throw any errors. It won’t do anything, but it is technically
complete. All we’ve done is provide the required entry point (the Execute method) so that the
WF runtime can start our activity and then immediately tell the runtime that we are done.

Six statuses are available within the ActivityExecutionStatus class referenced in Listing 5-2:

• Canceling: Some occurrence during the activity’s processing has caused the activity to
cancel. Indicate to the runtime that we are canceling.

• Closed: The activity has finished its work and the runtime can now proceed with the next
activity. This is typically what will be returned during the course of normal processing.

• Compensating: The activity is rolling back changes. This status won’t be used very often
in our Office workflows.

• Executing: Return this status to indicate to the runtime that we’ve initiated some asyn-
chronous tasks or kicked off some child activities and are now signaling that the runtime
can proceed to the next step. Note that when the child activities or asynchronous tasks
are complete, you’ll need to tell the runtime with the CloseActivity method of the
ActivityExecutionContext object. We’ll see this in action later on when we build our
composite activity.

• Faulting: Some occurrence during the activity’s processing has caused an error. Indicate
this to the runtime.

• Initialized: The activity is instantiated and ready to execute. This is an internal status
and we will never use it in our code.

Mann_700-1C05.fm Page 129 Friday, January 19, 2007 8:47 AM

130 C H A P T E R 5 ■ A C T I V I T I E S

Naturally, looking at Listing 5-2, anything we need our activity to do will have to happen
before the return ActivityExecutionStatus.Closed; line.

To get our activity to actually do what we need it to do, we need to add quite a few lines of
code. The next few steps, and their accompanying code listings, take care of this—line numbers
are provided for reference only.

■Note If you’d rather not type in all of this code, you can download the source files for this activity from
www.kcdholdings.com.

4. Add some directives at the top of the class to get shorthand access to the namespaces
we need, as shown in Listing 5-3.

Listing 5-3. Our using Statements

using System.IO;
using System.IO.Packaging;
using Microsoft.SharePoint;
using System.Xml;

5. The next code we need to type in is shown in Listing 5-4. It fills out the Execute method
by preparing things for the call to the RemoveMacros method, which actually does the
work of taking out the macros:

• Line 1 retrieves an SPFile object representing the payload for the current instance of
the workflow.

• Lines 2 and 3 grab some values we’ll use later.

• Lines 4 through 7 check that the payload is a macro-enabled file in one of the new file
formats. If it is, we continue processing. If it is not, we skip to the end and just return
our status of Closed; our work here is done.

• The switch statement in lines 11 through 24 sets the file extension for the macro-free
file type that corresponds with the macro-enabled file that is the payload.

• Line 27 sets a custom property so that we can get at this information later.

• Line 28 opens the payload as a stream and line 29 makes the call to the method that
will remove the macros.

• Line 30 saves the new file back into SharePoint, complete with the updated file exten-
sion to indicate that this is a macro-free file.

• Line 31 removes the original macro-enabled file from the document library.

• Lines 32, 33, 37, 38, 43, and 44 set some of our custom properties.

• Line 46 is the return statement we already had in place.

Mann_700-1C05.fm Page 130 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 131

Listing 5-4. The Meat of Our Execute Method—Accomplishing Some Work Before We Return
a Status

1 SPFile file = PayloadItem.File;
2 string sFileExtension = Path.GetExtension(file.Name);
3 this.ParentList = PayloadItem.ParentList;
4 if (
5 (sFileExtension.ToLower() == ".docm")
6 || (sFileExtension.ToLower() == ".xlsm")
7 || (sFileExtension.ToLower() == ".pptm")
8)
9 {
10 string sNewFileExtension = string.Empty;
11 switch (sFileExtension.ToLower())
12 {
13 case ".docm":
14 sNewFileExtension = ".docx";
15 break;
16 case ".xlsm":
17 sNewFileExtension = ".xlsx";
18 break;
19 case ".pptm":
20 sNewFileExtension = ".pptx";
21 break;
22 default:
23 break;
24 }
25 try
26 {
27 this.OriginalDocumentName = file.Name;
28 Stream strmFile = file.OpenBinaryStream();
29 RemoveMacros(strmFile, sFileExtension);
30 PayloadItem.ParentList.RootFolder.Files.Add(➥
 PayloadItem.Url.Replace(sFileExtension, ➥

 sNewFileExtension), strmFile, PayloadItem.Properties, ➥

 true);
31 PayloadItem.Item.Delete();
32 this.FinalDocumentName = ➥

 Path.GetFileName(file.Name).Replace(➥
 sFileExtension, sNewFileExtension);
33 this.IsMacroFree = true;
34 }
35 catch (Exception ex)
36 {
37 this.FinalDocumentName = Path.GetFileName(file.Name);
38 this.IsMacroFree = false;
39 }
40 }

Mann_700-1C05.fm Page 131 Friday, January 19, 2007 8:47 AM

132 C H A P T E R 5 ■ A C T I V I T I E S

41 else
42 {
43 this.FinalDocumentName = Path.GetFileName(file.Name);
44 this.IsMacroFree = true;
45 }
46 return ActivityExecutionStatus.Closed;

You’ll notice that in various places throughout Listing 5-4 we reference an object called
PayloadItem. This is a custom property we’ll add to our activity in just a few minutes. For now,
just know that it stores the SPListItem on which the current instance of the workflow is running.

The last major piece of code we need to add to our activity is responsible for actually strip-
ping the macros out of the file and converting the file to an Office 2007 macro-free document
type. This is the RemoveMacros call made in line 29 of Listing 5-4. Listing 5-5 handles this chore.

■Note The code for the RemoveMacros method was adapted from a Visual Studio 2005 Code Snippet for
the Open XML file formats provided by Microsoft. I would love to claim credit for it, because it’s some pretty
nifty stuff. However, anybody who knows me will tell you that I’m not that good a programmer… so thank you
to the nameless Microsoft employee who put this little gem together. If you’d like to get your sweaty little
hands on the code snippets (and I highly recommend that you do), I’ll post a link to it on my web site:
www.kcdholdings.com.

Line numbers in Listing 5-5 are for reference only, but here’s a quick rundown of the inter-
esting bits of the action:

• Lines 5 through 8 set up constants. Relationships in the Office 2007 file formats are iden-
tified via a URI. These constants store those URI strings.

• The switch statement in lines 11 through 27 sets a URI indicating the macro-free content
type URI for each particular type of file—Word, Excel, or PowerPoint.

• Line 28 checks whether we have a valid content type. If we don’t, we skip to the end. If
we do, we continue on.

• Line 30 opens our package file from the FileStream object passed in as a parameter.

• Lines 35 through 40 retrieve the root package part—we’ll use this as our launching point
to retrieve the other parts that interest us.

• Lines 42 through 47 locate and delete a part with a relationship type matching the
vbaRelationship URI we specified back in line 6, relative to the root part.

• Lines 48 through 57 do some XML manipulation to remove the node that contains the
VBA relationship information.

• Lines 58 through 64 delete and re-create the document part. This is the only way to reset
the package to be of a macro-free content type.

• Line 65 closes the package, which writes all of our modifications back to the FileStream.

Mann_700-1C05.fm Page 132 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 133

Listing 5-5. The RemoveMacros Method

1 private void RemoveMacros(Stream fs, string sFileExtension)
2 {
3 // Adapted from code in the Open XML File Formats Code Snippets
4 // provided by Microsoft
5 const string relationshipType = @"http://schemas.openxmlformats.org➥

 /officeDocument/2006/relationships/officeDocument";
6 const string vbaRelationshipType = @"http://schemas.microsoft.com/➥

 office/2006/relationships/vbaProject";
7 const string relationshipNamespace = @"http://schemas.openxmlformats. ➥

 org/package/2006/relationships";
8 const string vbaFreeRelsContentType = @"application/vnd. ➥

 openxmlformats-package.relationships+xml";
9 string vbaFreeContentType = string.Empty;
10 Uri relsUri = null;
11 switch (sFileExtension.ToLower())
12 {
13 case ".docm":
14 vbaFreeContentType = @"application/vnd.openxmlformats-➥

 officedocument.wordprocessingml.document.main+xml";
15 relsUri = new Uri("/word/_rels/document.xml.rels", ➥

 UriKind.Relative);
16 break;
17 case ".xlsm":
18 vbaFreeContentType = @"application/vnd.openxmlformats-➥

 officedocument.spreadsheetml.sheet.main+xml";
19 relsUri = new Uri("/xl/_rels/workbook.xml.rels", ➥

 UriKind.Relative);
20 break;
21 case ".pptm":
22 vbaFreeContentType = @"application/vnd.openxmlformats-➥

 officedocument.presentationml.presentation.main+xml";
23 relsUri = new Uri("/ppt/_rels/presentation.xml.rels", ➥

 UriKind.Relative);
24 break;
25 default:
26 break;
27 }
28 if ((vbaFreeContentType != string.Empty) && (relsUri != null))
29 {
30 using (Package onePackage = Package.Open(fs, FileMode.Open, ➥

 FileAccess.ReadWrite))
32 {
33 PackagePart startPart = null;
34 Uri startPartUri = null;

Mann_700-1C05.fm Page 133 Friday, January 19, 2007 8:47 AM

134 C H A P T E R 5 ■ A C T I V I T I E S

35 foreach (System.IO.Packaging.PackageRelationship relationship➥

 in onePackage.GetRelationshipsByType(relationshipType))
36 {
37 startPartUri = PackUriHelper.ResolvePartUri(new Uri("/",➥

 UriKind.Relative), relationship.TargetUri);
38 startPart = onePackage.GetPart(startPartUri);
39 break;
40 }
41 PackagePart relsPart = onePackage.GetPart(relsUri);
42 foreach (System.IO.Packaging.PackageRelationship relationship➥

 in startPart.GetRelationshipsByType(vbaRelationshipType))
43 {
44 Uri vbaUri = PackUriHelper.ResolvePartUri(startPartUri, ➥

 relationship.TargetUri);
45 onePackage.DeletePart(vbaUri);
46 break;
47 }
48 NameTable nt = new NameTable();
49 XmlNamespaceManager nsManager = new XmlNamespaceManager(nt);
50 nsManager.AddNamespace("r", relationshipNamespace);
51 XmlDocument xDocRels = new XmlDocument(nt);
52 xDocRels.Load(relsPart.GetStream());
53 XmlNode vbaNode = xDocRels.SelectSingleNode(➥

 @"//r:Relationship[@Target='vbaProject.bin']", ➥

 nsManager);
54 if (vbaNode != null)
55 {
56 vbaNode.ParentNode.RemoveChild(vbaNode);
57 }
58 XmlDocument xdoc = new XmlDocument(nt);
59 xdoc.Load(startPart.GetStream());
60 onePackage.DeletePart(startPart.Uri);
61 relsPart = onePackage.CreatePart(relsUri, ➥

 vbaFreeRelsContentType);
62 startPart = onePackage.CreatePart(startPartUri, ➥

 vbaFreeContentType);
63 xDocRels.Save(relsPart.GetStream(FileMode.Create, ➥

 FileAccess.Write));
64 xdoc.Save(startPart.GetStream(FileMode.Create, ➥

 FileAccess.Write));
65 onePackage.Close();
66 }
67 }
68 }

Mann_700-1C05.fm Page 134 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 135

So, we’ve nearly completed our activity. The hard-core code is done; we have just a few
more things to take care of. First we need to set up the PayloadItem property that we referenced
in our code earlier. We’ll take care of that next.

Adding Custom Properties
Custom properties for an activity are functionality equivalent to custom properties on other
.NET components. There are two ways to implement these properties, though—as regular
component properties or as dependency properties. We’re going to take a look at both approaches
as we progress through our examples. I will assume that you are familiar with regular properties
using member variables, and so won’t cover them in any great detail here. For more informa-
tion on dependency properties, see the sidebar “Dependency Properties Are Your Friends.”

DEPENDENCY PROPERTIES ARE YOUR FRIENDS

Among other things, dependency properties in our Office workflows give us the ability to tie our activity
properties to values that will not exist until runtime. Typically, this is going to be something from the
WorkflowProperties collection, but there is nothing that says it has to be. In our example, we’re tying our
PayloadItem dependency property to whatever SPListItem the workflow is running on. When the work-
flow executes, that value will be available to us, but it is not available at design time. We can’t even code for
it in our activity because the bridge from the activity to the workflow won’t exist until runtime.

At design time, the property is rendered as shown here. We can specify what value we want, and can
operate on the object as an SPListItem.

This isn’t to say that you should always use dependency properties. If the property you are working on is
not dependent on the specific workflow instance—for example, you just need to collect a simple string from
the Designer—you can write regular component-type properties with a member variable backing it up.

Dependency properties are great for when you need them, but otherwise, they just introduce overhead
and complexity. So, if you need them—great, use them. If not, keep things simple and use regular properties.

We’ll start with dependency properties. In their ongoing effort to be helpful, Microsoft has
provided us with a very easy way to add new dependency properties to our workflow activities
through the Code Snippet functionality introduced in Visual Studio 2005. Within the Workflow
category is a snippet for inserting a dependency property. Use that snippet to insert a skeleton
into our class file. Make the few modifications necessary to convert the snippet to the contents
of Listing 5-6 and our custom property is complete.

Listing 5-6. The Final Source for Our Custom Property Definition

public static DependencyProperty PayloadItemProperty =➥

 DependencyProperty.Register("PayloadItem", typeof(➥

 Microsoft.SharePoint.SPListItem),➥

 typeof(KCD.SharePoint.Activities.MacroStripperActivity));

Mann_700-1C05.fm Page 135 Friday, January 19, 2007 8:47 AM

136 C H A P T E R 5 ■ A C T I V I T I E S

 [DesignerSerializationVisibilityAttribute(➥

 DesignerSerializationVisibility.Visible)]
 [BrowsableAttribute(true)]
 [DescriptionAttribute("List Item the Workflow is operating upon")]
 [CategoryAttribute("Configuration")]
 public SPListItem PayloadItem
 {
 get
 {
 return
((SPListItem)(base.GetValue(KCD.SharePoint.Activities.MacroStripperActivity.➥

 PayloadItemProperty)));
 }
 set
 {
 base.SetValue(KCD.MacroStripper.➥

 PayloadItemProperty, (SPListItem)value);
 (SPListItem)value);

 }

 }

Each of the attributes decorating our property in Listing 5-6 means something different to
Visual Studio and the Workflow Designer. They are described briefly in Table 5-3.

Table 5-3. Design-Time Property Attributes

Attribute Description

DesignerSerializationVisibilityAttribute Controls how the property will be serialized.
Possible values for this attribute are:
Visible: Specifies that the property should
be serialized. Use this value for simple
properties.
Hidden: Specifies that the property should
not be serialized.
Content: Specifies that contents of the object
should be serialized. Use this value for
complex properties and collections.

ValidationVisibilityAttribute Controls validation of the values supplied
for the property by the workflow builder.
Possible values for this attribute are:
Optional: The property can be null.
Required: The workflow builder must supply
a value.
Hidden: No validation will occur.

BrowsableAttribute Controls whether or not the property is
displayed in the Properties window.
Possible values are true or false.

Mann_700-1C05.fm Page 136 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 137

That takes care of an example of using a dependency property, but as I said, you don’t
always need a dependency property. Sometimes a regular old simple property will do the trick
quite nicely. Listings 5-7 through 5-10 show the standard properties that we need for our
solution.

Listing 5-7. Nothing Special Here—Just a Regular Old Property

private string _finalDocumentName;
 [DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.➥

 Visible)]
 [BrowsableAttribute(false)]
 [DescriptionAttribute("Name of macro-free document in Document Library")]
 [CategoryAttribute("Configuration")]
 public string FinalDocumentName
 {
 get { return _finalDocumentName; }
 set { _finalDocumentName = value; }
 }

You’ll notice in Listing 5-7 that this property is not going to show up in the Properties
window because its BrowsableAttribute is set to false. This property is going to be accessed in
our Workflow code in Chapter 6 to retrieve the name of the macro-free document.

Next up (Listing 5-8) is another property that is only used in code. This time it is the oppo-
site of the previous property—it stores the original name of the document before we started
tearing it apart and looking to put it back together again.

Listing 5-8. A Property to Store the Original Name of Our Payload’s Document

private string _originalDocumentName;
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
[BrowsableAttribute(false)]
[DescriptionAttribute("Original name of document in Document Library")]
[CategoryAttribute("Configuration")]

DescriptionAttribute A brief description of the property to help
the workflow builder understand what the
property is used for. This is displayed in the
Properties window of Visual Studio.

CategoryAttribute Indicates the category in which the property
appears within the Properties window of
Visual Studio.

Table 5-3. Design-Time Property Attributes

Attribute Description

Mann_700-1C05.fm Page 137 Friday, January 19, 2007 8:47 AM

138 C H A P T E R 5 ■ A C T I V I T I E S

public string OriginalDocumentName
{
 get { return _originalDocumentName; }
 set { _originalDocumentName = value; }
}

One more property is shown in Listing 5-9. This time around, we’re storing a reference
to the SPList that our workflow is running within. As before, this is going to be used later in
Chapter 6.

Listing 5-9. Setting Up Our ParentList Property

private SPList _parentList;
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
[BrowsableAttribute(false)]
[DescriptionAttribute("SPList item containing document")]
[CategoryAttribute("Configuration")]
public SPList ParentList
{
 get { return _parentList; }
 set { _parentList = value; }
}

Last but not least, we need to set up a property we can check from the workflow to see
whether or not we successfully removed the macros from the file. Listing 5-10 shows this code.

Listing 5-10. The IsMacroFree Property

private bool _isMacroFree = false;
[DesignerSerializationVisibilityAttribute(DesignerSerializationVisibility.Visible)]
[BrowsableAttribute(false)]
[DescriptionAttribute("Indicates whether resulting document is free of macros")]
[CategoryAttribute("Configuration")]
public bool IsMacroFree
{
 get { return _isMacroFree; }
 set { _isMacroFree = value; }
}

Wrapping It All Up
Technically, our activity is complete. We don’t have to do anything more to it. If we stop here,
though, there are a few problems:

• Our activity is ugly (and its mother dresses it funny). Right now if a developer were to add
our activity to a workflow, it would look like Figure 5-1. While OK, it is a little dull. We
need to add some flash and pizzazz.

• In a similar vein, the icon representing our activity in the Visual Studio Toolbox is the
generic gear—not very appealing.

Mann_700-1C05.fm Page 138 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 139

• There is nothing in our activity that verifies that the user has supplied a valid value for
the PayloadItem property.

Figure 5-1. The default look of an activity is dull, dull, boring.

So, we have a little work still ahead of us after all. Let’s start with the Activity Designer.

Activity Designer Class

The Activity Designer class is responsible for controlling the behavior and appearance of our
activity in the Visual Studio environment. There are a few somewhat esoteric things that the
Activity Designer can do, but the main things it is responsible for are

• Rendering our activity when it is dropped onto the Workflow Designer canvas

• Controlling the actions available on the context menu for our activity (in activity-lingo,
these are known as verbs, and we’ll cover how to add new ones in Chapter 9)

For now, all we’re going to do is add a little eye candy to our activity—we’ll make it look a
bit nicer than the default. Before we get to the code to make this happen, let’s take a look at
what we’re aiming for. Figure 5-2 shows the end result of our Activity Designer class—a little
more appealing than the default presentation, no?

Figure 5-2. The end result of our Activity Designer class is a more visually appealing activity.

So, how do we get to Figure 5-2 from Figure 5-1? It actually involves two classes and a few
overridden methods, but all in all it’s pretty easy. To begin with, we need to declare our Activity
Designer class. Listing 5-11 shows this piece. Looking at this code, you’ll see that this class is also
decorated with an attribute—ActivityDesignerTheme. We’ll get to that in just a few minutes.

Listing 5-11. Declaring an Activity Designer Class for Our Activity

 [ActivityDesignerTheme(typeof(MacroStripperDesignerTheme))]
 public class MacroStripperDesigner : ActivityDesigner
 {

The visual appearance of our activity is controlled by three rectangles:

• The rectangle bounding the entire activity

• The rectangle controlling the size and placement of the text space

• The rectangle controlling the size and placement of the image space

Mann_700-1C05.fm Page 139 Friday, January 19, 2007 8:47 AM

140 C H A P T E R 5 ■ A C T I V I T I E S

Listing 5-12 shows the code to specify the size of our activity. For this first rectangle (bounding
the entire activity), this is all we can specify. You’ll notice that I have specified a size for our
activity that is wider than the default size for the Microsoft activities. This is to resolve a minor
annoyance I have with the default activities—the name of the activity wraps across multiple
lines, making it annoying to read. There is plenty of horizontal space on the Designer—why not
make use of it? If you’re a purist, the default dimensions are 91 pixels by 43 pixels. Just change
the arguments of your Size object and you’re back to conformity… boring.

Listing 5-12. Specifying the Size of our Activity As It Is Drawn on the Workflow Designer Canvas

protected override Size OnLayoutSize(ActivityDesignerLayoutEventArgs e)
{
 base.OnLayoutSize(e);
 return new Size(200, 45);
}

■Note Technically, we can control the entire presentation of our activity by overriding the OnPaint event
and handling all of the drawing ourselves. While I understand the appeal to this and appreciate the technical
challenge, I’m not sure I see the value in taking things to this level. If you disagree, there are some neat
samples floating around of highly customized activity presentations—including at least one that shows an
animated GIF for your activity. It’s pure eye candy, but neat in small doses.

The next two rectangles are controlled by overriding a few properties from our base class.
The first is a property called ImageRectangle and controls the size and placement of the image
for the activity (clever, huh?). The code for this is shown in Listing 5-13. The second is called—
wait for it—TextRectangle. The code is in Listing 5-14. In both cases, the code calculates the
size and placement of a Rectangle object based on the size of the activity rectangle (this.Bounds)
and some simple math.

Listing 5-13. Setting Up the Placement of Our Activity’s Image

protected override Rectangle ImageRectangle
{
 get
 {
 Rectangle rectActivity = this.Bounds;
 Size size = new Size(20, 20);
 Rectangle rectImage = new Rectangle();
 rectImage.X = rectActivity.Left + 5;
 rectImage.Y = rectActivity.Top + ((rectActivity.Height - size.Height) / 2);
 rectImage.Width = size.Width;
 rectImage.Height = size.Height;
 return rectImage;
 }
}

Mann_700-1C05.fm Page 140 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 141

Listing 5-14. Setting Up the Placement of Our Activity’s Text

protected override Rectangle TextRectangle
{
 get
 {
 Rectangle rectActivity = this.Bounds;
 Size size = new Size(170, 40);
 Rectangle rectText = new Rectangle();
 rectText.X = this.ImageRectangle.Right + 5;
 rectText.Y = rectActivity.Top + 2;
 rectText.Size = size;
 return rectText;
 }
}

The last piece for this class is to load the image that gets displayed with our activity. The
code is shown in Listing 5-15. If you skip this step, the default image will be loaded. Looking at
Listing 5-15, you’ll see that we’re loading the image from a resource. In order for this to work,
you’ll need to add an image resource to your project.

Listing 5-15. Loading the Image for Our Activity

protected override void Initialize(Activity activity)
{
 base.Initialize(activity);
 Bitmap img = KCD.SharePoint.Activities.Properties.Resources.➥

 MacroStripperImage;
 this.Image = img;
}

That’s it for the Activity Designer class.

ActivityDesignerTheme

The next piece to take care of is the ActivityDesignerTheme class referenced in the attributes
decorating our Activity Designer as shown in Listing 5-11. The Activity Designer class controlled
the structure of our activity; ActivityDesignerTheme controls the colors, the look, and various
other visual elements. All of the code we are using is shown in Listing 5-16. This code is pretty
straightforward. We set a few colors and set the background.

Listing 5-16. The ActivityDesignerTheme Class, Which Controls the Color and Styling of
Our Activity

public class MacroStripperDesignerTheme : ActivityDesignerTheme
{

Mann_700-1C05.fm Page 141 Friday, January 19, 2007 8:47 AM

142 C H A P T E R 5 ■ A C T I V I T I E S

 public MacroStripperDesignerTheme(WorkflowTheme theme)➥

 : base(theme)
 {
 BackColorStart = Color.White;
 BackColorEnd = Color.LightSlateGray;
 BackgroundStyle = System.Drawing.Drawing2D.LinearGradientMode.Horizontal;
 ForeColor = Color.Black;
 }
}

We’re done with the modifications to our activity’s appearance inside the Visual Studio
Designer canvas. Jump back to Figure 5-2 if you forget what we were aiming for. It wasn’t a lot
of code, which is good, and it makes things look a little nicer. If you or your company plan on
making a number of activities—and certainly if that is part of the business you’re in—it would
probably be a good idea to settle on a single Activity Designer class used for all of your activi-
ties. It will help lend some cohesion and allow workflow builders to differentiate between your
custom activities and those that come out-of-the-box.

■Note If you load your activity’s class file in the visual designer, it will still look like Figure 5-1. This
view does not reflect our customizations. One other thing, while I’m at it—the ActivityDesigner and
ActivityDesignerTheme classes are only refreshed when you shut down Visual Studio. So if you make
changes to this class and rebuild your project, you won’t see the changes until you restart Visual Studio.

ToolboxItem Class

The next class we’re going to tackle not only handles a visual element of our activity—the icon
that shows up in the Visual Studio Toolbox—but also does some work when our activity is
dropped on the canvas. For this first look at ToolBoxItem, we’re not going to do anything when
the activity is dropped on the canvas—we’ll be taking a look at that when we build a composite
activity later in the chapter. Typically you would use this functionality to control the adding
and removing of child activities on a composite activity, so for now, we’re simply going to
change the icon shown in the Toolbox.

■Note This isn’t to say that you can’t use the ToolboxItem class to control the events when a simple activity
is dropped onto the canvas. You can. It’s just more useful for composite activities.

In order to show the icon we want to in the toolbox, we need to take care of a couple of
things. While we’re at it, we’re going to change the contents of the tooltip that pops up when
we mouse over our activity in the Toolbox. None of this is going to make or break your activity,
but it can be some nice icing to throw on top to really wrap things up.

Listing 5-17 shows the code for our class. It’s all pretty self-explanatory. There are two
overridden constructors—the first is empty, but necessary nonetheless; the second contains

Mann_700-1C05.fm Page 142 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 143

our custom code. The first line deserializes the class. The next three lines configure the text to
be displayed on the tooltip. The last line sets the icon shown in the Toolbox to the picture we
want to display.

Listing 5-17. The ActivityToolboxItem Class, Used to Customize Our Activity in the Visual Studio
Toolbox

[Serializable]
 internal class MacroStripperToolboxItem : ActivityToolboxItem
 {
 public MacroStripperToolboxItem(Type type): base(type)
 {
 }

 private MacroStripperToolboxItem(SerializationInfo info, ➥

 StreamingContext context)
 {
 this.Deserialize(info, context);
 this.Description = "Remove Macros from Office 2007 Documents";
 this.Company = "KCD Holdings, Inc.";
 this.DisplayName = "Macro Stripper";
 this.Bitmap = new Bitmap(KCD.SharePoint.Activities.Properties.➥

 Resources.MacroStripper);
 }
 }

The last piece of code we need to add is an attribute on our activity class to tell it to use the
ToolboxItem class. Add the following to the attributes already decorating our activity class:
[ToolboxItem(typeof(MacroStripperToolboxItem))]. That’s it—our activity will now use the
custom ToolboxItem.

We’re just about done. The last thing we need to do is add the image we want to use for the
icon as a resource. The image needs to be 16 ×16 and 256 colors. Copy it into your application
directory and then use the Properties window for our project to add the existing file as a resource.
Verify that the file properties for the item are configured as an embedded resource and you’re
all set.

So there you are, a custom ToolboxItem class for our activity. Figure 5-3 shows the end
result of our efforts. Again, pure eye candy at this point, but a nice touch nonetheless. When we
revisit the ToolboxItem class for the composite activity, we’ll see a few more tricks it can do. For
now, let’s move on to our validator.

Figure 5-3. Our custom activity and its tooltip, as shown in the Toolbox

Mann_700-1C05.fm Page 143 Friday, January 19, 2007 8:47 AM

144 C H A P T E R 5 ■ A C T I V I T I E S

Validator Class

The intention of the validator class is to obviously check—at design and again at compilation—
that the various properties of our activity have been set. The goal we’re aiming for is to have our
activity act the same as the out-of-the-box activities—complete with the error notification in
the visual designer in the form of the exclamation point in the red circle on the activity itself
and in the Properties window, as well as the smart tag link to the offending property as appro-
priate.

Sounds like a pretty tall order. It might be time to call in Aunt Matilda. The good news is
that it’s actually dirt simple—fewer than 20 lines of code—and over half are open or close
braces.

If you remember back a few pages to our Activity Definition class, you’ll recall that we have
five properties defined, but only one that is editable by the workflow builder through the Prop-
erties window—PayloadItem. It is of type SPListItem and stores the SPListItem that the current
instance of the workflow is acting upon. We use it in our activity to access the ListItem and grab
the document we need to strip macros from.

We won’t be able to do much if that property isn’t set, so we really want to make sure that
it is. Also thinking back to the Activity Definition, you’ll recall that we set this as a dependency
property. This does complicate things just a little, but as you’ll see, not too badly.

To begin with, we need to add another class. This one will derive from ActivityValidator
and contain a single overridden method. Listing 5-18 shows the full source for this one. Again,
line numbers are only for reference. Here’s a quick rundown of the interesting bits:

• Line 5 creates a ValidationErrorCollection object and populates it by calling the Validate
method of our base type. This ensures that if there are other validation errors caught by
the base functionality, we will still report them.

• Line 6 casts the obj parameter as an instance of our activity.

• Line 7 checks that we need to continue our validation. The first check ensures that our
validator is indeed being used for our activity. The second check makes sure that we’re
running in the Visual Studio Designer (or another designer) and not as part of the
compilation of our validator class itself. If we don’t have a parent, then we’re not part of
a workflow.

• Line 9 is the bit that is different because we used a dependency property. The call to
IsBindingSet checks to see whether our property is bound to a property of the workflow.
While technically our property still does not have a value at design time, this binding will
ensure that we have one at runtime and so we’ll let it slide for now.

• If we get to line 11, we know that we’re not bound, so we need to check our property
value. If it’s null, we add a new ValidationError to our ValidationErrorCollection in
line 13.

• Line 13 looks pretty innocuous, but it is really the heart of our validation. The parameter
we pass in to the GetNotSetValidationError method is the name of our property. Behind
the scenes, this is what generates our smart tag notification and wires it up to the correct
property in the Properties window. Good stuff.

• Finally, line 17 returns our ValidationErrorCollection object, which contains our errors
as well as errors added from the base class.

Mann_700-1C05.fm Page 144 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 145

Listing 5-18. The Validator Class, Which Ensures That Our PayloadItem Property Has a Value

1 public class MacroStripperActivityValidator : ActivityValidator
2 {
3 public override ValidationErrorCollection Validate(ValidationManager
 manager, object obj)
4 {
5 ValidationErrorCollection activityErrors = base.Validate(manager,
 obj);
6 MacroStripperActivity msa = obj as MacroStripperActivity;
7 if ((null != msa) && (null != msa.Parent))
8 {
9 if (!msa.IsBindingSet(MacroStripperActivity.PayloadItemProperty))
10 {
11 if (msa.GetValue(MacroStripperActivity.PayloadItemProperty)
 == null)
12 {
13 activityErrors.Add(ValidationError.
 GetNotSetValidationError("PayloadItem"));
14 }
15 }
16 }
17 return activityErrors;
18 }
19 }

■Note All of the supporting classes we’ve added—designer, theme, toolbox item, and now validator—can
be either added to the same source file as our Designer or moved out to separate source files. It’s really a
matter of preference. It makes no difference to the functionality.

As before, we need to associate our custom validator with our activity. Once again, this is
done with an attribute. Add this code to the growing list of attributes decorating our activity:
[ActivityValidator(typeof(MacroStripperActivityValidator))].

The end result of this class is that our validation now looks and acts just like the built-in
validation. Figure 5-4 shows the end result.

Figure 5-4. Our validation is now fully integrated—just like the out-of-the-box activities.

Mann_700-1C05.fm Page 145 Friday, January 19, 2007 8:47 AM

146 C H A P T E R 5 ■ A C T I V I T I E S

Finishing and Compiling
If you’re impatient like me, you’ve been doing interim compilations as you completed each
class. That’s fine. But now it’s time to compile the whole activity for real.

Keep your fingers crossed.
Congratulations! You have just built your first WF activity.

Deploying Our Activity
So perhaps those congratulations seem a bit empty. After all, we don’t really have anything to
show for our work yet. Our activity has compiled but all we have is a DLL—not much to write
home about. We can’t run the activity directly and see it work. This is one drawback to any
component development effort and it certainly applies to activities.

Fortunately, deploying activities is easy; they’re just components, after all. There are the
two standard options, neither of which should be foreign to you if you’ve done .NET develop-
ment before:

• Deploy to the global assembly cache (GAC): Requires the standard steps—strong naming,
GACUtil, etc.

• Deploy to the file system: Requires a simple file system copy

For the purposes of this book, either option is fine. In either case, you then just need to add
the assembly to the Toolbox manually. This is no different than adding any other component.
As I’ve been told I have an unerring ability to state the obvious; however, I’ll walk you through
managing activities in the Toolbox in Chapter 6.

So now we have our custom activity built and deployed, but we still need a workflow to test
it with. We’ll cover that in the next chapter. Right now it’s time to cover the other half of the
activity-writing world—composite activities.

Building a Custom Composite Activity
We just spent 20 or so pages building a simple activity. Now we’re going to turn our attention
to building a custom composite activity. Don’t worry; it won’t take another 20 pages. I’ll move
through this material a little faster—covering mostly just the deltas.

As we covered back in the introduction to this chapter, composite activities are constructs
for allowing workflow builders to control the flow of their workflow by dictating the path taken
through the process and which activities execute under which circumstances, as well as the
execution of actions before, during, or after the activities added by the workflow builder are
executed. Either usage is a perfectly valid one for composite activities.

The composite activity we are going to build is going to be of the latter variety—it will
execute some actions prior to executing any activities added by the workflow builder.

Mann_700-1C05.fm Page 146 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 147

Scenario: Logging Workflow Processing

As KCD makes its way through workflow-enabling its processes, the developers find themselves with a common
scenario that comes into play repeatedly. One of these is a requirement for logging. Quite often they need to add
logging to their workflows to write information out to the history log for the workflow. Occasionally, this information
is needed during development but not necessary during production.

The process of adding and configuring a bunch of LogToHistoryList activities is tedious. On the opposite end of the
spectrum, taking the time to remove or disable them all before deploying to production is equally tedious.

There has to be a better way…

Fortunately, there is. Creating a custom composite activity that includes the logging component is pretty simple.
Taking things one step further, adding a condition that controls the circumstances under which the logging happens
is even easier.

After creating this component, workflow builders will be able to add it to their workflows, add their components to
it, and set a global variable to control whether or not the logging happens.

Let’s get started.

Setting Up the Environment
The beginning of our process for a composite activity is no different than that for a simple
activity.

1. Create a project based on the Workflow Activity Library project template. For this example,
I’m naming my project KCD.Sharepoint.Activities.Composite.

2. Close the Designer window that opens by default.

3. Rename the Activity1.cs file to LoggerActivity.cs.

4. Add references to the following assemblies:

• Microsoft.Sharepoint

• Microsoft.Sharepoint.WorkflowActions

5. Open the LoggerActivity.cs file in Code view.

6. Add the following to the top of the file with the rest of the using statements: using
Microsoft.SharePoint.WorkflowActions;.

Part of the functionality of a composite activity is to control the execution of its children
(wow, taken out of context, that sentence ends in a very dark, disturbing way). What this means
is that not only does our activity need to initiate the execution of each child activity, it also
needs to listen for the event fired when the child is finished executing so it can inform the
runtime that the child activity is closed. In order to listen for this event, we need to implement
an interface: IActivityEventListener. Right now, our class inherits from SequenceActivity,

Mann_700-1C05.fm Page 147 Friday, January 19, 2007 8:47 AM

148 C H A P T E R 5 ■ A C T I V I T I E S

which is fine. We just need to add the interface information to the end of it. Add the following
to the end of the class line, immediately after SequenceActivity:

, IActivityEventListener < ActivityExecutionStatusChangedEventArgs >

Yes, the comma is required.
The next piece of code we need to add is for two dependency properties. We covered

dependency properties in the simple activity earlier so I won’t rehash it here. Flip back to the
“Adding Custom Properties” section if you need a refresher, but the Code Snippet really makes
this a pretty simple operation. The first dependency property is going to be called Condition
and is of type ActivityCondition. This property will be used to determine whether we should
write anything to the log. Because this property is of type ActivityCondition, it will be displayed in
the Visual Studio Properties window just like Condition properties for other activities—which
we’ll look at further in Chapters 6 and 8. As mentioned in the scenario, we are going to be tying
this property to a global variable so that workflow builders can control the logging for their
entire workflow from a single place.

The next dependency property we need to add is a Boolean flag used to indicate whether
our activity is executing. As we’ll see, this will tie into the process of catching the event fired
when our child activities finish processing. We’ll call it Running and as mentioned, it is of type
bool.

We’ll see both of these properties in action in just a moment. Next, though, we need to
revisit our old friend the Execute method. Remember, it is this method that is called by the
workflow host to start our activity processing.

Coding the Activity
Listing 5-19 shows the full contents of our Execute method. As before, line numbers are included
for reference only. Here’s a rundown of what happens in the method:

• Lines 3 and 4 set some values so that we can keep track of the process of our activity.
Running is the property we created earlier. ActivityStarted is a local variable used to flag
that our activity has started a child activity running. We’ll use it at the end to determine
what value to return.

• Line 5 checks the Condition property we set up by calling its Evaluate method. If the
condition set by the workflow builder indicates we should do some logging, we’ll continue
on with lines 6 through 16. Otherwise, we jump right to line 18 and begin executing our
child activities.

• Lines 7–16 loop through our child activities looking for the logging activity, which we
actually add in the ToolboxItem class in just a few minutes. In the ToolboxItem class we
will set a value in the UserData property so we could identify our activity here.

• Line 18 begins a loop through the child activities of our composite activity that have their
Enabled property set to true. This loop ends on line 27.

• Line 23 is where we set things up to be able to catch the event fired off when our child
activity finishes executing. We make use of the generic RegisterForStatusChange
method and pass in a parameter that specifies what event it is that we are looking for—
Activity.ClosedEvent.

Mann_700-1C05.fm Page 148 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 149

• Line 24 actually executes our child activity within the context passed in for our activity.

• Line 25 sets our ActivityStarted variable so that we know that we have launched at least
one child activity.

• Because they are contained within the loop started on line 18, lines 23–25 execute once
for each enabled child activity.

• Line 28 sets up our return value based on whether or not we started up any child activities. If
we did, we return a value indicating that our activity is still running. We’ll take care of
closing out our activity when we handle the close events for our children. If we did not
fire up any child activities, we just pass back a value indicating that our activity is closed
and done processing.

Listing 5-19. The Execute Method for Our Composite Activity

1 protected override ActivityExecutionStatus Execute(➥

 ActivityExecutionContext executionContext)
2 {
3 this.Running = true;
4 bool ActivityStarted = false;
5 If (this.Condition.Evaluate(this, executionContext))
6 {
7 for (int i = 0; i < this.Activities.Count; i++)
8 {
9 if ((string)this.Activities[i].UserData["logger"] == "logger")
10 {
11 LogToHistoryListActivity logger = (➥

 LogToHistoryListActivity)this.Activities[i];
12 logger.HistoryDescription = string.Format(@"Begin ➥

13 Activity Execution:{0} with {1} enabled Children", ➥

 this.QualifiedName, ➥

 this.EnabledActivities.Count.ToString());
14 break;
15 }
16 }
17 }
18 for (int childNum = 0; childNum < this.EnabledActivities.Count; ➥

 childNum++)
19 {
20 Activity child = this.EnabledActivities[childNum] as Activity;
21 if (null != child)
22 {
23 child.RegisterForStatusChange(Activity.ClosedEvent, this);
24 executionContext.ExecuteActivity(child);
25 ActivityStarted = true;
26 }
27 }

Mann_700-1C05.fm Page 149 Friday, January 19, 2007 8:47 AM

150 C H A P T E R 5 ■ A C T I V I T I E S

28 return ActivityStarted? ActivityExecutionStatus.Executing : ➥

 ActivityExecutionStatus.Closed;
29 }

Next up is our event to process our child activities as they close. Listing 5-20 shows the
code for this, and here is a rundown of the highlights:

• Line 6 causes our activity to stop listening to events for the particular child that we’re
running for now. Since we have already received the Closed event for this child, there is
no need to keep listening.

• Line 12 is the real meat of this method. It is contained within another loop through all
enabled child activities so it will process for all child activities. It is responsible for
checking the execution status of all of the child activities of our activity. If one of those
children has a status of anything other than Initialized or Closed, then we can’t close yet.
If, however, all of the child activities are in one of those two states, then it is safe to close
our activity.

• Line 16 handles the process of notifying our workflow host that we are done processing.
It will only execute if the check in line 15 indicates that we are done; all of our child activ-
ities are done processing.

Listing 5-20. Listening for Our Child Activities to Finish

1 void IActivityEventListener<ActivityExecutionStatusChangedEventArgs>.➥

 OnEvent(object sender, ActivityExecutionStatusChangedEventArgs e)
2 {
3 ActivityExecutionContext context = sender as ➥

 ActivityExecutionContext;
4 if (e.ExecutionStatus == ActivityExecutionStatus.Closed)
5 {
6 e.Activity.UnregisterForStatusChange(Activity.ClosedEvent, this);
7 LoggerActivity lgr = context.Activity as LoggerActivity;
8 bool finished = true;
9 for (int childNum = 0; childNum < lgr.EnabledActivities.Count; ➥

 childNum++)
10 {
11 Activity child = lgr.EnabledActivities[childNum];
12 if ((child.ExecutionStatus != ActivityExecutionStatus. ➥

 Initialized) && (child.ExecutionStatus != ➥

 ActivityExecutionStatus.Closed))
13 finished = false;
14 }
15 if (finished)
16 context.CloseActivity();
17 }
18 }

Mann_700-1C05.fm Page 150 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 151

The last code for our Activity Definition class is to handle the cancellation of our activity—
for any number of reasons. We’ll cover cancellation in Chapter 9, but for now, just know that
if our composite activity is canceled, we need to handle canceling all of our child activities.
Listing 5-21 shows this code. The code for this method is pretty straightforward. As with the
previous two listings, we loop through all of our enabled child activities (lines 4 through 14).
Line 7 checks to see whether our current child activity is currently executing. If it is, line 9
cancels it and line 10 sets a local variable that indicates we have just canceled a child activity.
Lines 12 through 14 repeat a similar pattern, this time for child activities in a Faulting state.
Finally in line 15 we determine our return value. If all of our child activities were closed before
we got to them, we can tell our host that we are finished. If we had to signal a child activity to
close, we return a value of Canceling.

Listing 5-21. Handling the Potentiality of Canceling Our Children When We Are Canceled

1 protected override ActivityExecutionStatus Cancel(ActivityExecutionContext➥

 executionContext)
2 {
3 bool cancelled = true;
4 for (int childNum = 0; childNum < this.EnabledActivities.Count; ➥

 childNum++)
5 {
6 Activity child = this.EnabledActivities[childNum];
7 if (child.ExecutionStatus == ActivityExecutionStatus.Executing)
8 {
9 executionContext.CancelActivity(child);
10 cancelled = false;
11 }
12 else if ((child.ExecutionStatus == ➥

 ActivityExecutionStatus.Canceling) || (child.ExecutionStatus ➥

 == ActivityExecutionStatus.Faulting))
13 cancelled = false;
14 }
15 return cancelled ? ActivityExecutionStatus.Canceling : ➥

 ActivityExecutionStatus.Closed;
16 }

That does it for the Activity Definition class.
Just as with our simple activity earlier, a composite activity is made up of multiple classes.

We covered all the standard ones back in the simple activity. We’re going to touch on some of
them again here, but only as deep as we need to in order to build our composite activity. If
you’re interested in looking at these in further detail, we took care of that earlier in the chapter.

The first “other” class we’re going to look at is the ActivityToolboxItem class. The class file
is not listed in the Solution Explorer in Visual Studio so we’re going to have to add it fresh. Add
a new class file named LoggerActivityToolboxItem.cs.

The first thing we need to add is some using statements, and then set up our class and a
few constructors. Listing 5-22 shows the code for this. There’s nothing overly special about any
of this except for the serialization elements, but even that is pretty standard .NET stuff.

Mann_700-1C05.fm Page 151 Friday, January 19, 2007 8:47 AM

152 C H A P T E R 5 ■ A C T I V I T I E S

Listing 5-22. Setting Up Our Class with Two Available Constructors

using System;
using System.ComponentModel;
using System.ComponentModel.Design;
using System.Runtime.Serialization;
using System.Workflow.ComponentModel;
using System.Workflow.ComponentModel.Design;
using Microsoft.SharePoint.WorkflowActions;

namespace KCD.Sharepoint.Activities.Composite
{
 [Serializable]
 internal class LoggerActivityToolboxItem : ActivityToolboxItem
 {
 public LoggerActivityToolboxItem(Type type): base(type)
 {
 }
 private LoggerActivityToolboxItem(SerializationInfo info, ➥

 StreamingContext context)
 {
 this.Deserialize(info, context);
 }

The only other code we need to add to this class is an override of the CreateComponentsCore
method, shown in Listing 5-23. This method is called by Visual Studio when you add an activity
to the Designer. It gives us the opportunity to do some processing before our activity is added
to a workflow. In our case, we are going to use that to add the LogToHistoryList activity as a
child of our activity. We will also add some information to the UserData property so that we can
identify it later. We saw the other half of this back on line 9 of Listing 5-19 earlier. At the end, we
simply return our activity and Visual Studio goes on its merry way.

Listing 5-23. The CreateComponentsCore Method

 protected override IComponent[] CreateComponentsCore(IDesignerHost host)
 {
 System.Workflow.ComponentModel.CompositeActivity activity = ➥

 new LoggerActivity();
 LogToHistoryListActivity logger = new LogToHistoryListActivity();
 logger.UserData["logger"] = "logger";
 activity.Activities.Add(logger);
 return new IComponent[] { activity };
 }

Mann_700-1C05.fm Page 152 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 153

The next and last class we need to add to our activity is the Activity Designer class. Unlike
the simple activity where we made significant modifications to the look of our activity via the
designer class, this time around, we’re not going to change the look at all. Instead, we’re going
to make use of some additional functionality exposed via our base class
(SequentialActivityDesigner) to control how our activity manages its child activities as well as
the process of new activities being added.

To take care of this, we need to add three methods. First, add another class file to your
solution and replace the default contents with the contents of Listing 5-24.

Listing 5-24. Setting Up Our Class

using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Workflow.ComponentModel;
using System.Workflow.ComponentModel.Design;

namespace KCD.Activities
{

 public class LoggerActivityDesigner : SequentialActivityDesigner
 {

Next up, we need to override the first of our methods. This one allows you to control what
happens when a workflow builder attempts to drop an activity into ours. In our scenario, we
want to make sure that our LogToHistoryList activity is and remains the first child activity.
Listing 5-25 shows the code for this, which is surprisingly simple. It is not evident from the
code, but the net effect is to not allow users to drop an activity in front of our LogToHistoryList
activity. In the Designer, this translates to not showing the workflow builder the small green
plus sign indicator that marks valid drop locations for the space in front of our activity—a
pretty slick outcome for only one line of code.

Listing 5-25. Keeping Our LogToHistoryList Activity As the First Child

public override bool CanInsertActivities(HitTestInfo insertLocation, ➥

 ReadOnlyCollection<Activity> activitiesToInsert)
{
 return insertLocation.MapToIndex() != 0;
}

This takes care of part of the functionality required to keep our LogToHistoryList activity
first. There are two other situations we need to take care of—moving activities that have already
been added to our activity, and deleting the LogToHistoryList activity. Listing 5-26 is similar to
Listing 5-25 and has the same effect—it prevents users from dropping (in this case as part of a
move operation) an activity in front of our LogToHistoryList activity. Listing 5-27 is a bit different
but still pretty simple. It merely checks whether the activity (or one of the activities, it there are
multiple) being deleted is our LogToHistoryList activity. If so, it simply disallows the operation.

Mann_700-1C05.fm Page 153 Friday, January 19, 2007 8:47 AM

154 C H A P T E R 5 ■ A C T I V I T I E S

Listing 5-26. Controlling Activity Moves

public override bool CanMoveActivities(HitTestInfo moveLocation, ➥

 ReadOnlyCollection<Activity> activitiesToMove)
{
 return moveLocation.MapToIndex() != 0;
}

■Note Listing 5-27 hints at some pretty powerful capabilities that are available to us—the ability to restrict
the activities our composite activity can contain based on any number of properties or details. For more capa-
bilities and scenarios available to you, see the sidebar “Box? What Box?”

Listing 5-27. The Final Piece to Keeping Our LogToHistoryList Activity As the First Child

public override bool CanRemoveActivities(ReadOnlyCollection<Activity> ➥

 activitiesToRemove)
{
 foreach (Activity a in activitiesToRemove)
 {
 if ((string)a.UserData["logger"] == "logger")
 {
 return false;
 }
 }
 return true;
}

Compiling and Finishing
That’s it. All of our code is written and everything’s ready. Go ahead and compile.

It’s about as exciting as last time, isn’t it? We have nothing but a DLL to show for our efforts
(though it is a very nice-looking DLL).

We covered deployment earlier in this chapter—go ahead and flip back if you need a
refresher, but the options are the old standards—file system or GAC; the choice is up to you.

We’ll make use of this composite activity in Chapter 6 so I’ll leave it until then to walk you
through using it.

■Note We didn’t cover it here, but a composite activity supports all of the same capabilities for custom
presentation, themes, toolbox icons, validation, etc. In Chapter 6 we’re going to make use of a custom
composite activity to replicate a foreach loop that does make use of all of these elements.

Mann_700-1C05.fm Page 154 Friday, January 19, 2007 8:47 AM

C H A P T E R 5 ■ A C T I V I T I E S 155

BOX? WHAT BOX?

The examples we walked through in this chapter were pretty concrete. They covered some good material, but
let’s face it, unless you’re building a MacroStripper activity or a simple LoggerActivity, some of it isn’t of much
use. One of the goals I have for this book is not just to walk you through a specific scenario, but to help you
understand how that very specific example can be abstracted to a more generic understanding of the applica-
bility of the concepts covered. So, without further ado, here are some of my thoughts:

• The capabilities of custom validator, designer, and toolbox item classes are pretty powerful. Our custom
composite activity here was pretty lightweight in this regard, but there’s no reason you can’t get very
granular with this. You can get down to the level of controlling exact placement of specific activities
within your composite activity.

• The Information Worker or Portals and Collaboration spaces are rife with opportunities for custom activities.
Some ideas I had:

• Document generation: Creating aggregated documents built from multiple documents or other
contents is intriguing.

• Document manipulation: Similar to what we did with the MacroStripper, but you can manipulate any
aspect of your Office documents, spreadsheets, or presentations.

• Collaborative workspace creation and management: Why not automate the process of creating and
retiring WSS collaborative sites? Collect information in a form (covered in Chapter 7) and have
custom sites built and configured without requiring end users to jump through a bunch of hoops.
You can also log pertinent information as part of the process.

• Automated publishing: Sure, if your environment is pure WSS/MOSS this is likely unnecessary, but
many situations require interoperability with disparate systems. Requirements for activities to move
documents and other content in and out of other systems are going to be abundant in the not-too-
distant future. Many vendors will begin offering these activities on their own eventually, but that may
take longer than you or your clients can wait.

That’s what I’ve got for now, but it’s 4 in the morning and the neurons aren’t firing fully. With a little
thought, I’m sure you can come up with many other situations that call for custom activities.

Remember, WF in general, and Office workflows in particular, are quite powerful. Don’t let your thinking
be constrained by any artificial limitations. Thinking outside the box is a good thing.

Summary
Here’s the abridged version of this chapter:

• Activities are the building blocks of a workflow.

• Activities are specialized .NET components.

• Simple activities do one task.

Mann_700-1C05.fm Page 155 Friday, January 19, 2007 8:47 AM

156 C H A P T E R 5 ■ A C T I V I T I E S

• Composite activities control workflow execution and activity processing and can add
functionality either before or after the activities process.

• Composite activities are containers for other activities.

• WF ships with a set of activities out-of-the-box.

• SharePoint adds more activities to cover SharePoint- and Office-specific tasks.

• Only four of the default WF activities are officially supported (for now).

• Custom properties can either be added as regular component properties or dependency
properties.

• Building a custom activity is primarily a matter of providing an Execute method and
notifying WF when we are done.

• A complete activity can be made up of up to seven distinct classes, though only one class
is required.

• Deploying a custom activity is a matter of either installing into the GAC or copying the
DLL to a \bin folder.

• We have the same facilities open to us to build activities as Microsoft does. There is
nothing special about their activities that we couldn’t reproduce with the tools available
to us mere mortals.

Mann_700-1C05.fm Page 156 Friday, January 19, 2007 8:47 AM

157

■ ■ ■

C H A P T E R 6

Building a Workflow with
Visual Studio 2005

In Chapter 4 we built a workflow using the SharePoint Designer. It gave us a nice, wizard-
based approach to creating our custom workflow. That tool will suffice for many situations,
including

• Building basic workflows from the provided actions and conditions

• Quickly creating and deploying workflows on a single list or library

• Allowing power users to create their own workflows

But what if your needs are more complicated? What if you need to have more control over
your workflow processing, or deploy that workflow to more than one site? For these and many
other scenarios, you’re going to need a full developer platform. Rather than creating a whole
new tool, Microsoft has opted instead to simply extend Visual Studio with the Visual Studio
2005 Extensions for Windows Workflow Foundation. As developers, this makes our lives much
easier—we’re already familiar with the core tool—Visual Studio—and the programming paradigm.
We just need to pick up a few nuances of the extensions.

Getting Started
If you’re following along at home, we already installed the extensions and the MOSS or WSS
SDK, which contains our project templates, in Chapter 2, so we don’t need to rehash that here.

New Project Types
Visual Studio itself should not be new to anyone reading this book, and we already saw some of
the project templates, so I’m only going to cover the new items here. The first thing to notice is
the addition of yet another category of projects to the New Project dialog box. We now have a
SharePoint category under both Visual C# and VB .NET. This category contains two templates:

• SharePoint Server Sequential Workflow Library: Used for standard serial and parallel
flow workflows

• SharePoint Server State Machine Workflow Library: Used for state machine workflows

Mann_700-1C06.fm Page 157 Thursday, January 18, 2007 3:05 PM

158 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

We’ll be making use of both of these templates in the course of this chapter. We’ll get started
with a simple sequential workflow and then build a state machine workflow later in the chapter
to wrap things up.

■Note These names only apply if you have the MOSS SDK installed. If you only have the WSS SDK, the
names are simply SharePoint Sequential Workflow Library and SharePoint State Machine Workflow Library,
respectively. I know that is a huge gulf to bridge, but let’s see how we do overcoming it. It also means that if
you have both SDKs installed, you’ll have all four templates—how are we ever going to come to peace with that?

Each type of workflow is built in a similar, visual fashion; in either case, you lay out the
structure of your workflow—the activities that will perform the work—in a graphical environ-
ment known as the Workflow Designer. As this tool is integrated with Visual Studio 2005, the
experience should be very familiar to anyone who has worked with Visual Studio. Figure 6-1
shows a view of the Workflow Designer canvas for sequential workflows as well as the Toolbox
filled with some of the default activities. Figure 6-2 shows the Workflow Designer canvas for a
state machine workflow. It looks different, but functionally is quite similar.

Figure 6-1. The Workflow Designer in Visual Studio for a sequential workflow

The Workflow Designer is a powerful extension to Visual Studio 2005. It brings the simplicity
of drag-and-drop construction without sacrificing the power of full access to the code. Looking at
the Designer in Figure 6-1, you can pretty quickly see how the rest of the process for a sequential
workflow is going to go. At the top of the Designer is a small icon with a downward-facing
arrow. This signifies the beginning of our workflow. Opposite this at the bottom is a circle icon
signaling the end of our workflow. Anything we need to do will happen between those points.
The arrow connecting those two icons indicates the flow of our business process. Building a state
machine workflow is not as immediately apparent, but the concepts and process are quite similar.

Mann_700-1C06.fm Page 158 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 159

Figure 6-2. The Workflow Designer in Visual Studio for a state machine workflow

At a high level, the process for either type of workflow is as follows:

1. Drag activities from the Toolbox and drop them on the design canvas. Remember from
Chapter 5 that activities are just .NET components. This is no different than dropping
them on a Windows or a web form.

2. Set the properties of the activities via the Visual Studio Properties window.

3. Write code as necessary in your code-behind file to perform the specific tasks of
your workflow.

That’s it. As with anything else, the devil is in the details, but at a high level, that’s what it
takes to build either a sequential or a state machine workflow. We’ll get into those pesky little
details throughout the rest of this chapter.

Building a Sequential Workflow
Our first custom workflow is going to utilize the activity we built in Chapter 5. If you’ll recall,
that activity removes macros from Office 2007 documents.

Scenario: Removing Macros

As discussed previously, KCD is concerned with preventing macro viruses from entering their network via documents
posted by partners and clients on their various externally facing sites. The MacroStripper activity developed previously will
do the work of removing the macros; now they just need to implement a workflow to make use of it.

To make this work, you design a workflow that can be used across multiple document libraries to cover all docu-
ments posted by outside sources. The full, high-level process for this workflow is as follows:

1. Log the beginning of the workflow.

2. Attempt to remove macros from the document

Mann_700-1C06.fm Page 159 Thursday, January 18, 2007 3:05 PM

160 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

3. If no macros are present in the document, or all macros were successfully removed, log the end of the
workflow and end the workflow.

4. If the macros could not be successfully removed:

• Send an email to each registered owner of the site the document was loaded into, informing them of
the problem.

• Send an email to the author of the document, indicating that there was a problem.

5. Log the end of the workflow, including the results of the macro removal.

The workflow will be developed and deployed to all site collections that are externally accessible and then associated
with each appropriate document library.

■Note Anyone familiar with the BizTalk Orchestration Designer is going to breeze through this example.
The Workflow Designer for sequential workflows is nearly identical to the Orchestration Designer, so the
concepts, interface, and design are all already familiar to you.

Now that we know what we’re building, let’s get started. The first thing we need to do is
create a new project. Open the New Project dialog box and select whichever flavor of Sequential
Workflow Library you have the template for. For this example, I’ve named the solution DocCleaner.
Once the project is created, it will open in Visual Studio. So far, there’s really nothing different
from any other Visual Studio project. Before we start working in the files, let’s take a look at the
pieces that make up our project. Take a look at the Solution Explorer; the Project template has
added the following files for us:

• feature.xml (located in DeploymentFiles\FeatureFiles)—Initially a mostly blank file. It
will be used to package our workflow as a feature and deploy it to SharePoint. We’ll look
at this file later in this chapter when we talk about deploying our workflow.

• workflow.xml (located in DeploymentFiles\FeatureFiles)—Another mostly blank file for
the time being. This is the final piece we need for deployment. We’ll also cover this one later.

• manifest.xml (located in DeploymentFiles\ProductionDeployment)—Used for packaging
our workflow into a solution package. We’ll cover production deployment preparation
later in this chapter.

• wsp_Structure.ddf (located in DeploymentFiles\ProductionDeployment)—Also used for
production deployment and covered later.

• PostBuildActions.bat (located in DeploymentFiles)—A batch file used for deployment.
We’ll look at this one later, too.

• workflow1.cs—Finally, here’s the file we need to actually construct our workflow. We’ll
start with this file.

Mann_700-1C06.fm Page 160 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 161

The Properties and References items are standard Visual Studio 2005 stuff. There are also
a couple of references to the SharePoint assemblies added for us.

Before opening it, right-click on the Workflow1.cs file and rename it to DocCleanerWF.cs.
Click Yes if Visual Studio prompts you to update references to our renamed file.

Working in the Designer
Now it’s time to begin our workflow. Open the DocCleanerWF.cs file by double-clicking on it.
The Workflow Designer, shown in Figure 6-3, will open. Man, is that exciting.

Figure 6-3. The Visual Studio Workflow Designer gets things started for us by adding one activity.

The workflow template has already placed one activity on the Designer canvas for us. This
activity is an instance of the onWorkflowActivated activity. The template has placed this activity
because it is required that this activity be the first one in every SharePoint workflow since it is
our gateway back to SharePoint.

■Caution Every SharePoint workflow must begin with an onWorkflowActivated activity.

Typically, there is certain information that you will need in order to be able to do the work
of your workflow. In the architecture of a WF workflow, the majority of this information will
come from the workflow host. In the case of our SharePoint workflows, remember, our host is
SharePoint. The information we will typically need is things such as

• The SPListItem that the workflow is running upon

• The SPList, SPWeb, and SPSite that contain the SPListItem

• The user that initiated the workflow

• Information from the association and initiation forms (we’ll cover forms in Chapter 7)

Access to this information is through an instance of an SPWorkflowActivationProperties
object, which is created for us by the onWorkflowActivated activity and named
workflowProperties. Details on some of the more useful members of this object in relation to a
SharePoint workflow are provided in Table 6-1. You’ll see an example of working with these
properties in our code later in this chapter. One other thing that the onWorkflowActivated
activity does for us is set up our correlation tokens. We’ll cover these later in the chapter.

Mann_700-1C06.fm Page 161 Thursday, January 18, 2007 3:05 PM

162 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

■Note While this book is not about building a custom workflow host, the onWorkflowActivated activity hints
at an important point to keep in mind if you do need to build your own host. WF allows a workflow host to pass
any information to its workflows that it needs to. This is a powerful capability.

Table 6-1. Useful Information Available Through the WorkflowProperties Object

Property Type Description

AssociationData,
InitiationData

string Stores data from an incoming association or initiation form
that started the workflow. This string can be in any format,
although, for Office workflow forms, it would be XML
corresponding to the XML schema for the form.

HistoryList SPList The reference to the SharePoint list designated to store
entries related to the processing of our workflow.

HistoryListId GUID The identifier of the SharePoint list designated as the
history list for the particular instance of this workflow.

HistoryListUrl string The URL of the SharePoint list designated as the history list
for the particular instance of this workflow.

Item SPListItem The SharePoint list item that the current instance of our
workflow is working on.

ItemId integer The identifier of the SharePoint list item within the parent
list that triggered the workflow instance.

ItemUrl string The URL of the SharePoint list item that triggered the
workflow instance.

List SPList The reference to the SharePoint list our workflow is
associated with.

ListId GUID The identifier of the SharePoint list that owns the item that
triggered the workflow instance.

ListUrl string The URL of the SharePoint list that owns the item that
triggered the workflow instance.

Originator string The name of the SharePoint user that triggered the
workflow instance.

OriginatorEmail string The email of the SharePoint user that triggered the
workflow instance.

OriginatorUser SPUser The SPUser object representing the person who initiated the
instance of our workflow.

Site SPSite Stores a reference to the SPSite object that the current
instance of our workflow is running within.

Mann_700-1C06.fm Page 162 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 163

■Note Having separate object and ID (for example Web and WebID) properties at first seems a little extra-
neous—after all, the ID is available as object.ID. The reasoning behind this is related to performance. The
object properties instantiate an instance of the object and load it into memory—a potentially expensive oper-
ation. If all you need to do is access the ID, grab it from the ID property, as this does not incur the same
performance hit. The ID property is stored as a simple GUID—with much less performance impact.

The first step in building our workflow is to add the activities we will need. By default, Visual
Studio will show the default WF activities in the Toolbox. If it does not show the SharePoint
activities for your installation, you’ll need to add them manually. These activities are stored
in the \Program Files\Common Files\Microsoft Shared\Web Server Extensions\12\ISAPI
\Microsoft.SharePoint.WorkflowActions.dll assembly. See the sidebar “Managing Activities
in the Toolbox” for information on how to add the activities to your Toolbox.

I generally like to add all of my activities to the Designer canvas and set the (Name) property
so that each has a unique name, and then go back and set the rest of properties at the end. This
allows me to keep my focus on getting my process correct as I build the model and then go back
and fill in the details.

SiteId GUID The identifier of the SharePoint site that owns the item that
triggered the workflow instance.

SiteUrl string The URL of the SharePoint site that owns the item that
triggered the workflow instance.

TaskList SPList A reference to the SharePoint list designated to store
workflow tasks for the current instance of our workflow.

TaskListId GUID The identifier of the SharePoint list designated as the task
list for the particular instance of this workflow.

TemplateName string The name of the workflow template that the current
instance of our workflow is based on.

Web SPWeb Stores a reference to the SPWeb object our workflow instance
is running within.

WebId GUID The identifier of the SPWeb that owns the item that triggered
the workflow instance.

Workflow SPWorkflow Stores a reference to the current instance of our workflow.

WorkflowId GUID The identifier of the current instance of our workflow.

Table 6-1. Useful Information Available Through the WorkflowProperties Object

Property Type Description

Mann_700-1C06.fm Page 163 Thursday, January 18, 2007 3:05 PM

164 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

MANAGING ACTIVITIES IN THE TOOLBOX

There are two ways to add your custom activities to the Toolbox in Visual Studio. Starting with the easiest:

• If your custom activity project is in the same solution as your workflow project, the activity will automat-
ically be added to the Toolbox under a heading taken from the activity project name, as shown here:

• One potential drawback to this approach is that your custom activity is only available in the Toolbox for
the current project. This may or may not meet your needs. Another quirk about this approach is that
while the activity will be the most recently compiled version from your project, it will not show any
custom Toolbox item elements, such as icons. You will always get the default gear icon, as shown in the
accompanying graphic.

• In other scenarios, you will need to manually add the activity to the Toolbox. This is almost no different
compared with adding other components to the Visual Studio Toolbox:

• Right-click on the Toolbox.

• Select Choose Items from the context menu.

• In the Choose Toolbox Items dialog box, click on the Activities tab (this is the one different thing).

• Click the Browse button and navigate to the location of your activity’s assembly.

• Click on the name of your activity DLL and click OK.

• Click OK in the Choose Toolbox Items dialog box.

• Your activity is now available in the Toolbox, underneath the heading that was active when you started,
as shown here:

You’ll notice in this graphic that our custom class for the Toolbox item that we added in the last chapter
is used to deliver the icon and tooltip for the activity.

If you’re borderline OCD, as I am, you can organize your activities by adding multiple tabs to the Toolbox.
This is standard Visual Studio functionality.

Finally, looking at the Choose Toolbox Items dialog box, you can see how to remove items from the Toolbox.
Deselecting the checkbox to the left of the activity in the list and clicking OK will remove it from the Toolbox,
which you can also do by right-clicking on a specific activity and selecting Delete from the context menu.

Mann_700-1C06.fm Page 164 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 165

Adding Activities

Adding activities is simply a matter of dragging them from the Toolbox and dropping them
onto the Designer canvas where we need them. The Designer even helps us out by lighting up
each valid location to drop an activity with a small green plus sign icon:

■Caution If you drag an activity out of the Toolbox you’ll see it is possible to add an activity above the
onWorkflowActivated activity even though, as I mentioned earlier, the onWorkflowActivated activity needs to
be the first activity in our workflow. This is because the Designer does not know to stop us. Having the
onWorkflowActivated activity come first is a SharePoint restriction. The Designer will let us build and compile
a workflow with another activity first, but if we deploy it and try to run it, SharePoint will yell at us—the exact
message is “Correlation value has not been initialized on declaration <correlation_token_name> for activity
<name_of_activity>” or something similar, depending on which activity you have first.

To get started with our example, we need the following activities, added in this order,
starting right below the onWorkflowActivated activity:

• LogToHistoryListActivity—Used to write an entry to the history list for our workflow at
the beginning of processing. Set the (Name) property to hlogBegin.

• MacroStripper—The custom activity we wrote in Chapter 5. Set the ID property to
macroStripper.

• IfElse—Branches our workflow conditionally depending on whether the posted document
is now macro-free. Leave the ID property at the default.

• ForEach—A custom activity available from Microsoft on the .NET Framework 3.0 site
(wf.netfx3.com). I’ll post a link directly to it on my web site: www.kcdholdings.com. Add it
to the first branch of the IfElse activity. Leave the ID property at the default.

• Two SendEMail activities, which are part of the SharePoint activity set—Add one inside
the ForEach and one just after it. Set the ID properties to emlError for the first and
emlAuthor for the second.

• Another LogToHistoryListActivity—Used to write an entry to the history log at the end of
our workflow to indicate the end of our processing. Add it after the IfElse, at the very end
of the workflow. Set the ID property to hlogEnd.

Figure 6-4 shows how these activities need to be laid out in the Designer. Simply drag each
from the Toolbox and drop it in the proper place. Note that when you drop the IfElse activity,
it is going to have two branches by default. For this example, we are not going to do anything in
the else branch, so you can either leave it in place but empty, or right-click on it and delete it. I
went with the latter simply because it makes things look cleaner. If you ever need it back again,
you can always add another branch via the context menu.

Mann_700-1C06.fm Page 165 Thursday, January 18, 2007 3:05 PM

166 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Figure 6-4. The Workflow Designer

Another interesting thing to note is the LogToHistoryList activity. As covered in Chapter 3,
the history list for our workflow is set up by an administrator when they associate our workflow
with a document library. What this means to us is that we have no idea of the name, URL, or
any other details of the history list. So how do we write information to a list we know almost
nothing about? We don’t. That’s why this activity exists. We tell this activity the information
we’d like to record, and the SharePoint workflow host does some magic behind the scenes to
write this information to the proper history list. If you ask me, it’s a rather slick solution to a
somewhat thorny problem.

Mann_700-1C06.fm Page 166 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 167

With each of the activities in place, you can get a good picture of how the workflow will
run, as shown in Figure 6-4. This is why I like to drop all of my activities first. It lets me look at
my workflow as a whole and make sure I get all of the pieces laid out before I start customizing
them. This is obviously a very simple workflow; nonetheless, it helps to have the activities all
set in the proper order before you go setting properties and writing code.

■Note If you look at Figure 6-4, you’ll see an unfamiliar activity—the ForEach activity. This does not ship
out of the box, and is not part of the SharePoint activities. Back in Chapter 5, I mentioned one additional
source of activities—the WF and SharePoint developer communities. ForEach is a perfect example of the
former. It was posted to the Microsoft workflow community site as a sample activity for use in WF workflows.
Because our Office workflows are nothing more than specialized WF workflows, we can make use of it. You
can get your hands on this little treasure at wf.netfx3.com.

You’ll notice in Figure 6-4 that some of our activities each have an error indicator—the
small red circle with the exclamation point inside. This is design-time validation. The author of
these activities is telling us that we need to take some action in order to use these activities. We
touched on this in Chapter 5 when we were creating our custom activity and writing our custom
validators. Here it is in action.

You can probably guess what each activity needs, but to see for sure, move your mouse
over the error indicator and click on the drop-down arrow that appears. This smart tag tells us
exactly what we need to do in order for our instance of the activity to pass the validation test, as
indicated in Figure 6-5.

Figure 6-5. Smart tags warn us of validation errors before we compile.

■Tip For missing property value errors such as this one, if you click on the error message itself, it will take
you directly to the appropriate place in the Properties window where you need to take action.

With our activities in place, we can go in and start setting properties—not only to fix validation
errors, but also to just get the workflow doing what we need. Table 6-2 shows the properties
that need to be set for each activity. As you’re changing the properties for each activity, take a
look around at the other properties. You’ll begin to get a good sense of what is possible.

Mann_700-1C06.fm Page 167 Thursday, January 18, 2007 3:05 PM

168 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Table 6-2. Setting Properties on Our Workflow Activities

Activity Property New Value Description

onWorkflowActivated1 CorrelationToken workflowToken For information on corre-
lation tokens, see the
sidebar “Correlation
Tokens?” later in this
chapter.

onWorkflowActivated1 CorrelationToken\
OwnerActivityName

DocCleanerWF For information on corr-
elation tokens, see the
sidebar “Correlation
Tokens?” later in this
chapter.

onWorkflowActivated1 workflowProperties\
Name

DocCleanerWF

onWorkflowActivated1 workflowProperties\
Path

workflowProperties The name of the variable
that represents our
SPWorkflowActivation ➥
Properties object. This
object is created auto-
matically and the name
cannot be edited here.

hlogBegin EventID WorkflowStarted

hlogBegin MethodInvoking setBeginLog After you enter the method
name here, Visual Studio
will jump you over to Code
view with a method
signature created for you.
The code for this is in
Listing 6-3.

macroStripper PayloadItem workflowProperties.
Item

This dependency property
cannot be edited directly.
Click on either the ellipsis
in the value field or the
small blue information
icon to load the Binding
dialog box. Navigate down
to workflowProperties.
Item, as shown in
Figure 6-6.

ifElseBranchActivity1 Condition Declarative Rule
Condition

We go into much more
detail on rules and
conditions in Chapter 8.

ifElseBranchActivity1 ConditionName <leave blank> I’ll walk you through
setting this in just a
minute.

ifElseBranchActivity1 ConditionExpression <leave blank> I’ll also walk you through
setting this in just a
minute.

Mann_700-1C06.fm Page 168 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 169

forEach1 Items workflowProperties.
Item.ParentList.
ParentWeb.
AssociatedOwnerGroup.
Users

Like the payloadItem
property earlier, you can
again use the Binding
dialog box to set this
property (but you’ll have
to access it via the little
blue icon). For our
scenario, we’re going to
use the Owners collection
for our SharePoint site.
The forEach property will
iterate through its child
activities once for every
member of this collection.

emlError CorrelationToken workflowToken You can just select this
from the drop-down. For
information on correlation
tokens, see the sidebar
“Correlation Tokens?” later
in this chapter.

emlError From <a valid email address
in your environment>

emlError MethodInvoking sendErrorEmail After you enter the method
name here, Visual Studio
will jump you over to Code
view with a method
signature created for you.
The code for this is in
Listing 6-1.

emlError Subject Error Removing Macros

emlAuthor CorrelationToken workflowToken You can just select this
from the drop-down. For
information on correlation
tokens, see the sidebar
“Correlation Tokens?” later
in this chapter.

emlAuthor From <a valid email address
in your environment>

emlAuthor MethodInvoking sendAuthorEmail After you enter the method
name here, Visual Studio
will jump you over to Code
view with a method sig-
nature created for you. The
code for this is in Listing 6-2.

emlAuthor Subject Document at KCD
Holdings Client
Portal

Table 6-2. Setting Properties on Our Workflow Activities (Continued)

Activity Property New Value Description

Mann_700-1C06.fm Page 169 Thursday, January 18, 2007 3:05 PM

170 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

■Note When you have finished setting all of the property values indicated in Table 6-1, there will still be
an error indicator on the onWorkflowActivated activity. To get rid of this, you will need to edit the Designer
file (DocCleaner.designer.cs). Find the line that reads activitybind.Name = "Workflow1" and
change it to read activitybind.Name="DocCleanerWF". For some reason this isn’t updated when we
rename our workflow code file.

Figure 6-6. This dialog box allows you to connect properties to elements of your workflow.

hlogEnd EventId workflowCompleted

hlogEnd MethodInvoking setEndLog After you enter the method
name here, Visual Studio
will jump you over to Code
view with a method signa-
ture created for you. The
code for this is in Listing 6-4.

Table 6-2. Setting Properties on Our Workflow Activities (Continued)

Activity Property New Value Description

Mann_700-1C06.fm Page 170 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 171

■Caution Interestingly, the validator for the SendEmail activity does not make us set any of the typical
information associated with sending an email—To, From, Subject, Body, etc. Presumably this is because this
information is, or can be, set in code. However, be aware that you will not receive any warnings about this in
the Designer or when you build your workflow. At runtime, your activity will throw an error when it tries to
execute the SendEmail activity if this information is not set. You can either set the properties directly or set
them via the Headers property.

Table 6-2 takes care of setting most of our properties. We’ll get to the code for the couple
of activities that need it in a moment. First, if you click back into the Designer view, you’ll see
that we still have a validation error in one of our activities—the IfElseBranch. If you click on the
error indicator on the Designer, you’ll see the smart tag pop up that tells you that the Condition
property is not set. In order to tackle this one, we need to take a brief foray into activity condi-
tions. We go much further into this topic in Chapter 8; we’ll just touch upon it here.

For now, think of conditions as a mechanism for determining the circumstances under
which an activity executes. It can get more complex than that, but that’s a pretty close first
pass. By way of example, the simplest condition is on a basic IfElseBranch activity—such as we
have in our scenario. The logic of the activity is pretty straightforward—if a certain condition is
true, execute the activities in the branch; otherwise, move on to the second branch and evaluate its
condition. While this logic can certainly get more complicated, all activity conditions essen-
tially break down to this simple state, and the heart of this logic is the condition that is
evaluated.

The condition that is evaluated must result in either a true or a false. Each activity that
contains this logic will take different actions based on the return value from the condition eval-
uation, but the expression itself always results in a Boolean evaluation. Conditions can be
applied as either of the following:

• A Code Condition, which means that you write code that results in a Boolean value to
indicate whether or not the condition evaluates to true or false, thereby controlling how
the activity processes.

• A Declarative Rule Condition, which means that you define the logic that controls how
the activity processes utilizing the built-in Condition Editor. Technically, you’re still
writing code in the Condition Editor, but the code itself is simpler since it consists of
basic comparisons between fields, variables, and values.

Selecting between these two options is done in the Properties window for your activity, as
shown in Figure 6-7.

Mann_700-1C06.fm Page 171 Thursday, January 18, 2007 3:05 PM

172 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Figure 6-7. You select which type of condition to use in the Properties window.

For our IfElseBranch activity, we’re going to make use of a Declarative Rule Condition, so
go ahead and select it in the drop-down in the Properties window. After you make that selec-
tion, expand the Condition property and you’ll see that we now have two subproperties to set—
ConditionName and Expression. Clicking in the ConditionName field will show a small ellipsis
button. Click this button to launch the Condition Editor, shown in Figure 6-8.

Figure 6-8. The Condition Editor allows you to specify conditions.

Again, we’ll look at this tool further in Chapter 8, so for now, just click the New button, type
a condition of this.macroStripper.IsMacroFree != True, and we’ll move on. Save your condi-
tion and return to the Designer. You’ll notice that none of our activities now show a validation
error. If we were impatient, we could build our solution and not receive any errors. But we’re
not impatient, are we?

Mann_700-1C06.fm Page 172 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 173

CORRELATION TOKENS?

So just what exactly is a correlation token and what does it do for us? Good question. It’s actually a lot easier
than it may sound. A correlation token is essentially a means of uniquely identifying each instance of a work-
flow, modification, or task.

To understand this, you need to understand a little bit about how workflows are processed. When SharePoint
needs to initiate a workflow, it does not spawn a unique set of objects. Instead, if one instance of the workflow
is already running when the second initiates, the second will reuse the objects from the first. This provides us
with a huge performance boost, but means that we need to be able to keep the instances straight. Correlation
Token properties ensure that the single activity object is operating on the correct payload instance and
accessing the correct details about the workflow.

All we need to do is set the proper correlation token property and then we can go on our merry way—
blissfully unaware of all of the sticky bits happening behind the scenes.

By far, the single hardest thing about correlation token is keeping them straight. There are three different
places where correlation tokens come into play:

• Workflows

• Tasks

• Modifications

and the tricky part is making sure that you assign the correct correlation token in each scenario. This gets
even more difficult when you have multiple tasks and multiple modifications in a workflow. Each distinct task
or modification gets its own distinct correlation token.

Eilene Hao, one of the Microsoft Program Managers for Office Workflows, produced an excellent guide to
correlation tokens on the SharePoint team blog (http://blogs.msdn.com/sharepoint/archive/
2006/11/23/developing-workflows-in-vs-part-3-five-steps-for-developing-your-
workflow.aspx). Check out the full posting, but I’ve reproduced her table in Table 6-3 (thanks, Eilene!) as it
provides a lot of good detail—more than you think after a simple first pass.

Table 6-3. Keeping Correlation Tokens Straight

Workflow Token Task Token Modification Token

OnWorkflowActivated CreateTask EnableWorkflowModification

OnWorkflowItemChanged CreateTaskWith ➥
ContentType

OnWorkflowModified

OnWorkflowItemDeleted UpdateTask

SetState DeleteTask

SendEmail CompleteTask

UpdateAllTasks RollbackTask

OnTaskChanged

OnTaskDeleted

OnTaskCreated

Mann_700-1C06.fm Page 173 Thursday, January 18, 2007 3:05 PM

174 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

The table shows us where each SharePoint activity falls with regard to correlation tokens. If you’re using
an OnWorkflowItemDeleted activity, you use the workflow token. If you’re using the UpdateTask activity, use
the task token. So far, it makes perfect sense. The one activity that is a bit counterintuitive, though, is the
UpdateAllTasks activity. It gets the workflow token, not the task token, which might be what you would expect.
If you think a little further about it, though, it makes sense. This activity does not work on a single task, so there
is not a single task token to assign to it. Instead, it gets the workflow token and is then tied to all tasks in the
workflow.

The best example, and again, one that I stole from Eilene, is as follows: if you have in a sequence the
activities CreateTask, OnTaskChanged (to wait for the user to edit his task), then CompleteTask, you want
these three activities to map to the same task in SharePoint; you do this by specifying the same correlation
token in all three (from the same blog entry cited earlier).

■Note The plumbing of WF and SharePoint as a workflow host and correlation is beyond the scope of
this book. For our purposes, we just need to know how to set the correlation token property. If you’d like
to read more about correlation, take a look at http://wf.netfx3.com.

Writing All That Code
The last thing we need to do to wrap up our workflow is add the code to our methods. We’ll take
care of that now. As you’ll recall, Visual Studio automatically created method signatures for us
as we set some of our properties, so all we need to do now is go into our code file and add the
code.

The first method we’re going to tackle is sendErrorEMail. Click in the method body and
add the code in Listing 6-1. There’s not really anything special to this code; we just set the To
and Body properties for our email. Remember, though, that this activity sits inside the ForEach
activity so it is going to execute once for each member of the Owners group from the site that
owns the document library with which our workflow is associated. We access the CurrentItem
property of the ForEach activity to set the To field properly.

Listing 6-1. Configuring the sendErrorEMail Activity

this.emlError.To = ((SPUser)this.forEach1.CurrentItem).Email;
this.emlError.Body = string.Format(@"The following document was
 posted to {0} - {1}. The automatic process was unable to
 successfully remove the macro parts from the document package.
 This document will be unavailable to end users until it is
 manually processed.{2}",
 this.macroStripper.ParentList.ParentWeb.Title,
 this.macroStripper.ParentList.Title,
 this.macroStripper.FinalDocumentName);

Mann_700-1C06.fm Page 174 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 175

Next up is the code to configure the To and Body properties of the sendAuthorEmail activity.
This code, shown in Listing 6-2, is quite similar to the previous code, except that we set the To
property to the email address of the person who posted the document. We access this piece of
information from the workflowProperties object.

Listing 6-2. Configuring the sendAuthorEmail property

this.emlAuthor.To = this.workflowProperties.OriginatorEmail;
 this.emlAuthor.Body = string.Format(@"The document ({0}) you
 recently posted to the KCD Holdings Client portal has encountered
 a problem. KCD policy prohibits the posting of documents with
 embedded macros. We were unable to automatically remove the
 macros from your document. Therefore it has been quarantined
 until it can be processed manually.",
 this.macroStripper.OriginalDocumentName);

The next two code listings are going to handle setting the text that gets written to our
history list—one at the beginning of processing and one at the end. Listing 6-3 shows the code
for our setBeginLog method. Listing 6-4 handles setEndLog.

Listing 6-3. Logging the Beginning of Our Workflow

this.hlogBegin.HistoryDescription = string.Format(@"
 Processing: {0}. Attempting to remove macros",
 this.workflowProperties.Item.Name);

Listing 6-4. More Logging…

string sHistoryOutcome = @"Processing complete: ";
if (macroStripper.IsMacroFree)
{
 sHistoryOutcome += "Macros successfully removed";
}
else
{
 sHistoryOutcome += "Macros NOT successfully removed";
}
this.hlogEnd.HistoryDescription = sHistoryOutcome;

There you have it—all of the code for our workflow in 30 lines; not too shabby. While this
example is pretty basic, it nonetheless makes an important point: our workflow itself does not
contain any real business logic. All of the real work of our workflow is done using activities. All
that the code in our workflow itself does is tie those activities together and handle some runtime
configuration and logging. We’ve centralized our business logic into objects and simply reused
that logic where we needed to.

Mann_700-1C06.fm Page 175 Thursday, January 18, 2007 3:05 PM

176 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Compiling and Wrapping Up
Before we can compile, we need to configure our assembly to be strongly named because it is
going to be deployed to the GAC. I’ll assume that you know how to do this.

So there you have it—your first Office 2007 workflow. Go ahead and compile. If neither of
us made any typos, everything should compile OK and you can give yourself a pat on the back.

Congratulations on a job well done.
OK, so this is only marginally better than the feeling after compiling our activity in the

previous chapter. We still have nothing to test and play with—just a boring old DLL file.
Where’s the fun in that?

We need to complete one more step before we have something to actually show for all of
our work. We need to deploy and associate our workflow. We’ll cover all that next.

Read on, MacDuff…

Deploying Our Workflow
Be glad you’re tackling deployment in the final release of the product. In the beta cycle, deploy-
ment was a nightmare of interrelated moving parts that practically set you up for failure the
first few times you tried it.

OK, so maybe it wasn’t that bad, but it is a lot easier now. We’re going to start with a
deployment for development and testing, and then circle back and go through a deployment
for production. They are different. For development, there are two files we need to work with:

• feature.xml

• workflow.xml

■Note Deploying our workflow to SharePoint is going to make use of the SharePoint Features functionality.
While you can get through this section without a deep understanding of Features, it would help if you had
some knowledge. When we get to the section on production deployment, we’ll raise the bar a little further and
talk about SharePoint Solutions.

Taking these one at a time, we’ll start with feature.xml.
Open the feature.xml file that the project template has created for your solution (under

DeploymentFiles\FeatureFiles in the Solution Explorer). Initially, there’s really nothing of
much value in this file, other than some instructions on inserting a Code Snippet. Make sure
that your cursor is positioned at the end of the file and then follow the instructions provided to
insert the feature.xml Code Snippet. You will end up with a file that looks like Figure 6-9.

■Tip If the workflow Code Snippets aren’t showing up, click on Tools ➤ Code Snippets Manager, select
XML from the Language drop-down, and add C:\Program Files\Microsoft Visual Studio 8\
Xml\1033\Snippets\SharePoint Server Workflow to your snippets collection.

Mann_700-1C06.fm Page 176 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 177

Figure 6-9. Our feature.xml file after inserting the Code Snippet

Figure 6-9 loses a little bit of its usefulness when it gets printed in bland and white, but take
a look on your screen. The parts highlighted in green are the ones we’re interested in. These are
the pieces we need to customize for our particular workflow. Table 6-4 provides details on the
changes we need to make to each of these entries in our feature.xml file.

Table 6-4. Customizing feature.xml After Inserting the Code Snippet

Entry New Value Description

Id Create a new Registry-format
GUID (but be sure to delete the
opening and closing braces after
inserting it).

This entry uniquely identi-
fies your new Feature.

Title DocCleaner This value will show up
in the list of Features
deployed to your site.

Description This Feature encapsulates the
custom workflow to remove
macros from Office documents.

The description will show
up underneath the title in
the list of Features.

Mann_700-1C06.fm Page 177 Thursday, January 18, 2007 3:05 PM

178 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

The other elements of the file can remain as is. Save and close feature.xml; we’re done
with it.

■Note When our workflow is deployed, feature.xml will be copied to the server underneath the FEATURES
folder. When you specify a path, for example for the ElementManifest attribute, make sure that your path
is relative to the server folder hierarchy.

Open up workflow.xml from the Solution Explorer. Repeat the same process to insert the
workflow.xml Code Snippet. Your screen should look like Figure 6-10. Table 6-5 details the
changes to make.

ElementManifest\Location workflow.xml Leave this entry set to its
default. Since our
workflow.xml file is located
in the same directory as
our feature.xml we don’t
need to specify the full
path to it. If for some
reason, this were not the
case, you would need to
specify the full path and
filename for your workflow
definition file.

ElementFile You can delete this whole
tag, leaving just one
ElementManifest tag
nested within the
ElementManifests tag.

Table 6-4. Customizing feature.xml After Inserting the Code Snippet

Entry New Value Description

Mann_700-1C06.fm Page 178 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 179

Figure 6-10. Our workflow.xml file after inserting the Code Snippet

Table 6-5. Customizing workflow.xml After Inserting the Code Snippet

Entry New Value Description

Name DocCleaner The name of our workflow as it will
appear to administrators when
they associate it to a list.

Description This workflow removes
macros from Office 2007 files

The description will appear to
administrators when they select
our workflow during the association
process.

Id Create a new Registry-format
GUID (again, be sure to delete
the opening and closing braces
after inserting it)

This entry uniquely identifies your
new workflow.

CodeBesideClass DocCleaner.DocCleanerWF The name of your project and
the name of your workflow class,
separated by a period.

CodeBesideAssembly (The fully qualified strong
name of your assembly)

For help retrieving the proper value
for this entry, see the sidebar
“What’s in a (Strong) Name?”

Mann_700-1C06.fm Page 179 Thursday, January 18, 2007 3:05 PM

180 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Leave everything else at its defaults. When you’re all finished, your workflow.xml file ought
to look similar to Figure 6-11. That takes care of workflow.xml.

Figure 6-11. Our completed workflow.xml file

WHAT’S IN A (STRONG) NAME?

To retrieve the correct name for your assembly, you’ve got two choices (well, really you’ve got more, but
only two that make much sense). First, you could add the DLL to the global assembly cache (GAC)
(c:\windows\assembly) and check the value from there. You will need to strong-name your assembly
before adding it to the GAC. This option requires you to piece together the various pieces of data into the full
string that you need:

TaskListContentTypeId
AssociationUrl
InstantiationUrl
ModificationURL
Association_FormURN
Instantiation_FormURN
Task0_FormURN
Modification_GUID_FormURN
Modification_GUID_Name

We’re not using any forms for this
workflow—we cover forms in
Chapter 7. You can go ahead and
delete all of these entries. Just be
careful that you don’t inadvertently
delete the StatusUrl attribute and
the closing angle bracket from the
workflow tag when you delete the
rest of the attributes (yes, that is
experience talking…)

Table 6-5. Customizing workflow.xml After Inserting the Code Snippet (Continued)

Entry New Value Description

Mann_700-1C06.fm Page 180 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 181

(Assembly Name), (Version), (Culture), (PublicKeyToken)

where:

• Assembly Name is the filename of your assembly, minus the extension.

• Version is the full major/minor/build/revision version of your assembly.

• Culture is the culture supported by your assembly (typically neutral).

• PublicKeyToken is the public key portion of the key pair used to sign the assembly.

The first four columns in the default view of the GAC give you all of this information—you just need to
retype it properly or go into the properties for the assembly, copy out each element, and paste it into the right
place. If you’re lazy and/or a bad typist, like me, retyping those values—especially the public key token—is
asking for trouble. Copying and pasting is equally fraught with the potential for mistakes. There has to be a
better way.

Fortunately, there is—Lutz Roeder’s .NET Reflector, a little utility that is quite likely more important than
the discovery of fire. If you’re not already familiar with it, Google “roeder reflector” and it should be your top
hit. Download the ZIP file and extract the EXE—there’s nothing to install. Run the EXE, drag your assembly and
drop it on the top portion of the screen, select it from the list, and retrieve the full strong name string we need
from the bottom portion of the screen. You can copy the Name string right from Reflector and paste it into your
workflow.xml file. The following screenshot shows this bad boy in action:

Mann_700-1C06.fm Page 181 Thursday, January 18, 2007 3:05 PM

182 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Now we’re at the point where Microsoft really cleaned up the deployment process coming
out of the beta. Previously, there was a file named install.bat that did the actual deployment.
Hold your comments about doing deployment with a batch file because it really makes perfect
sense, and, guess what… we’re still using one; it’s just better hidden from us, and we don’t
need to edit it manually the way we did during the beta. The reason that the batch file (how ’80s!)
makes perfect sense is because of the tasks it is completing. At a very high level, the major steps
it performs for us are as follows:

1. Copy the required files to a directory on the server.

2. Adds your assemblies to the GAC.

3. Verify the InfoPath forms. Again, we’re not using forms, but there is no harm in this
line executing.

4. Install and activate the Feature, making it available on the site for which you specified
a URL.

5. Reset IIS so that your changes are recognized by the server.

As you can see, when you look at what is happening, a batch file is the best way to go.
Fortunately, as I said, things are a lot easier now. We no longer need to edit the file manually
and it is integrated right into the build process within Visual Studio for us by the MOSS SDK
project templates.

Configuration of the deployment is handled right from within Visual Studio. Inside your
project properties is a tab called Build Events. Click it and you’ll see an entry for the postbuild event
that looks like Listing 6-5. The last parameter on that command line is the one we’re interested in.
It starts out as NODEPLOY. This tells the batch file to build our project but not to do any of the deploy-
ment steps. This allows us to do interim builds to see how things are progressing and whether we’ve
broken anything, without wasting time deploying to the server before we’re ready.

Listing 6-5. The Postbuild Command

call "$(ProjectDir)\DeploymentFiles\PostBuildActions.bat"➥

 "$(ConfigurationName)" "$(ProjectDir)" "$(ProjectName)" ➥

"$(TargetDir)" "$(TargetName)" NODEPLOY

Once you have completed your development and are ready to deploy, simply change the
NODEPLOY parameter to DEPLOY. Now, as part of the build process, the batch file will perform the
steps to deploy our workflow to the server.

■Tip There is one additional option available to control the processing of our build and deployment cycle. If you
have made changes only to the code files—either through the Designer or by actually writing code—all you need
to do is update the assembly in the GAC. There is no need to redeploy the whole Feature to SharePoint. In this case,
append a QUICK parameter at the end of the postbuild command line (after DEPLOY). Now upon a successful build,
the GAC will be updated and IIS reset so that your new assembly is used. Just remember to take this parameter off
if you make changes to forms or any of the XML files or they will not be updated.

Mann_700-1C06.fm Page 182 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 183

Getting back to our example, we’re now ready to actually deploy our project to our devel-
opment server. Go into properties and change NODEPLOY to DEPLOY and you’re ready to go (that
was easy). Save your solution before continuing and then build your project. You’ll notice that
the output from the batch deployer is shown in the output window within Visual Studio. You
may see some error messages, for example when GACUtil tries to remove your assembly (the –
uf line in postbuildactions.bat). The first time you deploy, there is nothing to remove. There
are other similar situations like this, especially the first time you run the deployment. If you see
other errors, however, you’ll need to do some troubleshooting. It is likely that the problem will
be in a misconfigured feature.xml or workflow.xml, or perhaps you forgot to sign the assembly.

If there are no unexpected error messages, you’re done. Your workflow Feature is success-
fully installed. Now we can test it out.

THE ENABLED PROPERTY

As we hopped around in this chapter and examined the various activity properties, you may have noticed one
property we haven’t talked about that is common to all activities—even the custom activity we built in Chapter 5. I’m
talking about the Enabled property. We didn’t specifically add it to our MacroStripper activity so how did it get
there and what does it do?

The Enabled property is added by the base activity class that ultimately all activities derive from. As far
as usage, it does exactly what you think it would do: it indicates whether the activity is marked as commented
out. When we’re writing code, commenting out a particular block of code is a common activity. Perhaps it’s
code we’re still working with, or old code that we’re not quite ready to get rid of yet. It could be code we’re
refactoring or reworking for performance reasons; developers comment out code for any number of reasons.

The Enabled property of an activity gives you the same capability in a workflow. If you have activities
on the Designer canvas that you need to leave in place but don’t want to have as part of your compiled work-
flow, simply set their Enabled property to false. The activity and all of its property settings, code, and so
forth will remain in place. It just won’t be compiled into your workflow DLL.

Disabled activities are indicated in the Designer with a semitransparent coloring over the activity.

Testing Our Workflow
We’re getting closer to something we can actually feel good about. We’ve built an activity, built
a workflow around it, and deployed that workflow to our server. Now let’s see how it works.

In order to test our workflow, we need to go through the following steps:

1. Associate the workflow with a document library.

2. Create an instance of the workflow on a specific document.

3. Sit back and marvel at the sheer wonder of our accomplishment.

Mann_700-1C06.fm Page 183 Thursday, January 18, 2007 3:05 PM

184 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

■Tip You may not need to worry about the next step. I’m using a prerelease version of the
PostBuildActions.bat file to write this part of the chapter. Some people at Microsoft are telling me that
this step should not be necessary. It has been all through the beta, when it also shouldn’t have been, so I’m
leaving the step in just in case. Try it the first time you deploy an activity and see if you need it.

The first time we deploy our workflow to the server, there is one additional step we need to
take care of—activating the Feature on our site collection. To take care of this, from the Site
Actions drop-down menu, select Site Settings. If need be, navigate to the settings for the top-
level site. Underneath the heading Site Collection Administration, click the link for site collection
features. On the next screen, locate the entry for our DocCleaner workflow and click its Activate
button. Now we can continue with a more typical test. Step 1 is pretty straightforward. From
the Settings page for your document library, click the Workflow Settings link. Next you’ll see
the Add a Workflow screen. Figure 6-12 shows the completed version of this form for our work-
flow. There are only two pieces of information we need to change:

• Select DocCleaner as the workflow template.

• Enter DocCleaner1 as the unique name for our instance.

All of the other settings can be left at their defaults for our example. Click OK to associate
your workflow with the document library. If you’re interested in the various other settings on
this page, the descriptive text to the left provides some pretty good detail. You could also refer
back to Table 3-1 in the “Solving the Problem: The Workflow Administrator’s Role” section of
Chapter 3.

After the workflow is successfully associated with the document library, you will be taken
to the Change Workflow Settings screen for your document library. So far, so good; now it’s
time to load up a document and kick off our workflow.

Step 2 actually tells SharePoint that we want to run our workflow on a specific document.
First, make sure that there is an Office 2007 document utilizing the new file formats in the
document library you associated with in step 1. For this first run, make sure it is a document
that contains macros. Later on, if you’d like, you can run it through for a nonmacro document.
Run your mouse over the name of the document and select Workflows from the context menu,
as shown in Figure 6-13.

■Tip When you create your macro-enabled document, make sure the macro is actually in the document,
and not the template it is based on (typically Normal.???m). If the macro is in the template instead of the
document, our activity will (rightly so) not remove it. Yep, that’s experience talking…

Mann_700-1C06.fm Page 184 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 185

Figure 6-12. The completed Add a Workflow form for our workflow

Figure 6-13. Launching a workflow on a particular document

The next screen that comes up, shown in Figure 6-14, shows the available workflows for
this document library. Click the name of our workflow (DocCleaner1) and get ready for step 3.

Figure 6-14. The available workflows in our document library

Mann_700-1C06.fm Page 185 Thursday, January 18, 2007 3:05 PM

186 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

The last part of the process, step 3, is the fun part—we take a look at the fruits of our labors.
The first thing you’ll notice, right on the main document library screen that we are returned to,
is that our document is gone. Yes, there is a document there, but if you run your mouse over it,
you’ll see the full document name, including the extension, in the status bar of the browser.
The document is not any longer a macro-enabled document (DOCM, XLSM, or PPTM) but
instead is now of the macro-free variety (DOCX, XLSX, PPTX). Go ahead and click on the docu-
ment to open it up. Check the macros list—there really is nothing there anymore.

Cool.
Now go check the workflow history list. There should be an entry showing our workflow

starting and an entry showing our workflow finishing.
Way cool…

■Tip The default history list, called Workflow History, does not show up on the Quick Launch or the All Site
Content page by default. In order to get to it, you need to navigate to it manually. The address will be

http://<base_site_url>/Lists/Workflow%20History/AllItems.aspx

Wrap Up
So there you have it: a complete sequential workflow from start to finish. Again, the example
we walked through was pretty simple, but the process you would follow for an infinitely more
complex workflow would be the same. We looked at pretty much all the options for configuring
a workflow that we have available to us.

■Note For the record, the options we didn’t cover were all pretty basic and self-explanatory. I’m going
to go out on a limb and assume that you’re all intelligent enough to figure out what, for example, an option
labeled Start Workflow When a New Item Is Created does. That’s the type of stuff I skipped over. If you have
questions, feel free to ping me at my web site: www.kcdholdings.com.

That wraps up our foray into sequential workflows. Next up: state machines…

Building a State Machine Workflow
At a high level, building a state machine is fundamentally identical to building a sequential
workflow. The devil is, of course, in the details, where they are completely different. In this
section, we’ll explore those differences by looking at another problem encountered at KCD
Holdings and see how a simple state machine workflow comes to the rescue.

First, though, let’s start at the high level and see where the two models are the same. In
both types of workflow, we do the following:

Mann_700-1C06.fm Page 186 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 187

• Add activities from the Toolbox

• Set properties on activities in the Properties window

• Write code in event handlers and other standard Visual Studio constructs

• Configure our deployment with two XML files

• Deploy our workflow as a feature

• Test our workflow through the browser

If you think that list looks like most of what we’ve covered in the last 20-something pages,
you’re absolutely right. The majority of the mechanics of building a state machine are identical
to the process we covered for a sequential workflow, or nearly enough so as to not matter.
There are a few differences in the Designer that impact how we add and configure our activi-
ties, but they are not that significant.

The only thing that is significantly different is the model or paradigm we follow for our
workflow process and the impact that has on how our workflow is built. Let’s go through a
quick refresher on state machines so we all start from the same place.

Essentially, a state machine is based on the concept of conditions (“states”) and transitions. A
condition is a set of circumstances that indicate the current status or situation of the process
being modeled. Events occur and cause a transition from one condition to another. Unlike
sequential workflows, there is no defined path through the workflow. Instead, the path taken
by the workflow is determined by the events that occur as the workflow is processing. A state
machine can only be “in” one condition at a time.

State machines are good at modeling both complex processes as well as simpler process.
They excel at modeling nondeterministic processes—that is, processes that do not have a
prescribed path that is known at design time. Finally, due to their nature and the inherent
event-driven paradigm, state machines are naturally suited to modeling processes that progress
based on the occurrence of a trappable event from a collection of events known and planned
for at design time.

■Note If you’d like a refresher on state machines, complete with pictures, please flip back to Chapter 1.
Otherwise, we’re done with the dictionary definition and so we will be moving on.

So, that’s a good dictionary definition. Let’s start to look at state machines in the real world.

Exploring State Machines and the State Machine Designer
You saw a screenshot of the Designer for state machines back in Figure 6-2, but you likely didn’t
pay much attention to it. We’ll need to correct that here. Go ahead and create a new project in
Visual Studio using the SharePoint State Machine Workflow Library template. Don’t worry
about what you call it or anything like that; we’ll be throwing this project away before we walk
through our sample state machine. We’re just going to use it to explore for a bit. Figure 6-15
shows our workflow when we open our Workflow1.cs file in the Designer for the first time. The
project template for the state machine workflow has kindly added one state activity to our

Mann_700-1C06.fm Page 187 Thursday, January 18, 2007 3:05 PM

188 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Designer to get us started. We’re going to take a minute and explore the Designer environment
for state machines because it is somewhat different from what we’ve seen before. We’ll make
use of the one state activity that was added for us to poke around.

Figure 6-15. The initial Designer for our state machine workflow

You’ll notice that the Designer for state machines is entirely freeform. You can place activ-
ities anywhere you need to and drag them around at will. Remember, there is no set path
through a state machine workflow so the structured Designer of the sequential workflow would
not work here.

The one activity on the Designer is a state activity. By default, it is named
Workflow1InitialState because it is just that—the first state in our workflow. If you think back
to the beginning of our sequential workflow, you’ll remember that I said it had to start with an
onWorkflowActivated activity in order to function in the SharePoint environment. So the ques-
tions you’re likely asking are “Why are things different for a state machine? Why doesn’t it need
to begin with an onWorkflowActivated?” Those are both very astute questions and you’re very
observant for having brought them up. The answer is that things aren’t different and the state
machine does start with an onWorkflowActivated. You just can’t see it yet.

To get to the bottom of this mystery, we need to explore a fundamental element of the state
machine Designer. Looking at Figure 6-15, it looks like it contains just the one state activity, which
then includes the nested eventDrivenActivity. Looks can be deceiving. It turns out that the
state activity is a special type of composite activity with a quite unique Designer of its very own.

Double-click on the eventDrivenActivity1 in the Designer and the magic will be revealed—
a view inside the eventDrivenActivity showing its children, as shown in Figure 6-16.

Now you can see the onWorkflowActivated activity. I told you it was here.
Looking at Figure 6-16, the eventDrivenActivity should look familiar—it looks an awful lot

like some of the sequential activities we’ve seen already. In fact, it looks like we could add more
activities underneath the onWorkflowActivated activity and have them executed in sequence;
and, in fact, that is exactly the case. When we’re walking through the construction of our state
machine workflow, we’ll add more activities to the EventDrivenActivity to have them do the
work we need.

Mann_700-1C06.fm Page 188 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 189

Figure 6-16. Opening the secret door reveals more of the inner workings of our state machine.

We’re going to leave this piece alone for now and come back to it when we’re building our
workflow. We have a few more Christmases Past to visit before we can settle in, so let’s get
going, Ebenezer. At the top of Figure 6-16 you’ll see two links—one for the name of our work-
flow and the other for the name of the activity we’re currently examining. Each of those links
will take us back to the high-level view of our workflow—the former to the beginning of the
workflow and the latter to a view of the current activity. For our small-potatoes workflow, they
both operate the same. Go ahead and click either one to go back.

The next thing we’re going to take a look at is adding new activities to our workflow.
There’s not anything different here, so just drag any activity out of the Toolbox and drop it any
old place on the Designer. Go ahead, just pick an activity and add it.

Now, unless you’re cleverer than I am (which admittedly, isn’t all that impossible) you
probably weren’t successful. As you might expect, it turns out that the only activities you can
add directly to the workflow itself is a state activity or an EventDriven activity. It’s not too much
of a stretch, considering that this is a state machine; it is made to handle states and transitions,
which is essentially what these two activities represent. We’ll go into more detail on these two
activities in just a bit.

So now we’ll add a state activity to the Designer. Grab it and drag it out; drop it anywhere
you like. Remember, this is a freeform canvas. I’ve expanded the height of the activity slightly
so you can read all of the text, but Figure 6-17 shows our state activity after dropping it on the
canvas. It tells us which activities we can drop on it:

• State activity

• EventDriven activity

• StateInitialization activity

• StateFinalization activity

Mann_700-1C06.fm Page 189 Thursday, January 18, 2007 3:05 PM

190 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Figure 6-17. The state activity gives us a clue as to the children it can contain.

Let’s take a look at these one at a time.

StateInitialization Activity

The StateInitialization activity will fire as our state machine transitions into our state. We can
use it to execute other activities as soon as the transition happens. If you double-click on the
StateInitialization activity on the canvas, you will also be taken to a lower-level view, similar to
what we saw before. In this view, you can add additional activities as children of the StateIni-
tialization activity to be executed sequentially.

A state activity can contain zero or one StateInitiation activities. If it exists, it will always be
executed, although nothing prevents you from adding conditional activities (IfElse, While, etc.)
activities as children of the StateInitialization to control processing at a more granular level. If
you try to add more than one StateInitialization activity, the Designer will not let you.

Unlike the next activity we’ll look at, this activity can be added to your workflow and not
contain any children. In this case, it just won’t do anything.

EventDriven Activity

The next activity we can work with at this level is the EventDriven activity. You add it to the
state activity in the same way, and you can double-click on it to see its children. When you do
so for the first time, you’ll see a little bit of the specifics of this activity. The error message that
shows up tells us that not only can the EventDriven activity contain other activities as children,
but in fact it must contain at least one child activity. So unlike the other activities we’re looking
at here, if you add an EventDriven activity, you have to add at least one child activity to it.

If you add just about any activity to the EventDriven activity, you’ll see a bit more of the
specifics of this activity. Go ahead and add an activity, say a Code activity, to the EventDriven
activity. You can add it but you’ll see that the error indicator is still there. Click on the smart
tag and you’ll see a new error message: “The first ‘EventDrivenActivity’ child should imple-
ment ‘System.Workflow.Activities.IEventActivity’, such as ‘HandleExternalEventActivity’ or
‘DelayActivity’.” The wording is perhaps a little misleading—the use of should implies that you
can get away with not implementing the interface when in fact it is a requirement. It really
ought to read must.

Anyway, back to our walkthrough. Wording issues aside, what the error message tells us
is that the first child activity inside our EventActivity must implement the stated interface.
Without going too far into the inner working of the interface, this requirement is in place because
the EventDriven activity needs to be able to subscribe to specific events so that it can respond
to them.

Mann_700-1C06.fm Page 190 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 191

Nine activities fit this bill. From the default WF activity set, we have

• HandleExternalEvent

• Delay

And from the SharePoint activities, we have

• OnTaskChanged

• OnTaskCreated

• OnTaskDeleted

• OnWorkflowActivated

• OnWorkflowItemChanged

• OnWorkflowItemCreated

• OnWorkflowItemDeleted

In reality, all of these SharePoint activities are just customized versions of the
HandleExternalEvent activity, preconfigured for specific events from within the SharePoint host.

All of this brings us to the final piece of information that you need to know about the
EventDriven activity—it does just what the name says. It executes its child activities as a
response to a specified event. Each EventDriven activity can subscribe to exactly one event—
no more, no less. If you attempt to add more than one of the nine activities from the previous
lists, you will get an error in the Designer telling you that this is a no-no. This is the defining
element of this activity. It allows your workflow to control the processing of its child activities.
It allows you to say essentially, “Just because something has transitioned me to a certain state
doesn’t mean that I am going to do anything about it yet. I’m going to wait until my subscribed
event happens before I proceed.”

This is important in our Office workflows. See the sidebar “Designing Office State Machines”
for more information.

■Note We’ll see this in a few minutes when we finally get around to building our sample workflow, but
you can support multiple events in a given state by adding multiple EventDriven activities to the state and
subscribing each to different events.

DESIGNING OFFICE STATE MACHINES

I’m going to speak in some generalities here for a minute to try to help you understand how state machines
are typically designed in an Office, Information Worker scenario. Notice the emphasis on typically and cut me
a little slack. Yes, I know there are many, many situations that can differ from this model, but we’re looking at
things from a high level right now.

Mann_700-1C06.fm Page 191 Thursday, January 18, 2007 3:05 PM

192 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Typically (there’s that word again), the various components of a state machine are used as follows:

• In the single StateInitialization activity you can have for a given state, you do whatever processing you
need to and then create tasks and assign them to users. You would also typically include some logging here.

• Next in the chain would be one or more EventDriven activities—one for each potential event that you
are interested in responding to. OnTaskChanged is usually going to be one of those events you’re inter-
ested in. Each EventDriven activity is going to include a SetState activity to effect a transition to a new
state. Exactly what state that is depends on many factors, including what event was handled.

• Finally in the single StateFinalization activity each state can have, you will do some processing to close
things out for this state. This may include things such as

• Logging

• Closing out tasks as appropriate

Again, remember that we’re talking in generalities here, but that list is a pretty good approximation of
how most Office state machines will be built. This is, in fact, the design we implement in our example.

There is nothing in SharePoint or WF that locks you into this. Numerous other scenarios are possible, but
they will all be some variation of this. Perhaps you won’t use a StateInitialization activity and you’ll create tasks
directly in your EventDriven activity. That’s fine. Perhaps you won’t have a StateFinalization activity and your
process will jump immediately to the next state. That’s fine, too. Perhaps the only “event” your EventDriven
activity will handle is the signaling of a Delay activity so in a sense it always processes. That, too, is OK.

The only thing you can’t do is not have an EventDriven activity in your state. This is because it is the
EventDriven activity that must contain the SetState activity that is what causes your process to transition to the
next state. The only exception to this rule is your “completed” state, which cannot contain any other activities
as it signifies the end of your workflow.

StateFinalization Activity

The StateFinalization activity does just what you would expect: it gives you the opportunity to
execute some activities just before the workflow transitions out of a state. It is the antithesis of
the StateInitialization activity we just looked at. Other than its place in the processing order, it
is exactly the same as the StateInitialization activity.

State Activity

The last activity that can be added directly to a state is another state activity. You may wonder
what the ability to nest states gets you; the answer is that it gets you a pretty decent form of
event inheritance. EventHandler activities can be defined at the parent state level, and the child
states can have those events available as potential targets for a transition. This functionality is
not something we’re going to look at as part of our simple example here, but take a look at the
sidebar “Recursive Composition—Nesting States” for some further exploration of this topic.

Mann_700-1C06.fm Page 192 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 193

STATE MACHINE VS. SEQUENTIAL—A WORKFLOW SMACKDOWN

Beyond the obvious world of states such as Waiting for Approval and Approved, transitions such as
OnDocumentPublished and onDocumentApproved and other states and transitions of their ilk, the applicability
of states and transitions is a bit more difficult than in other scenarios where the states and approvals can easily
number in the dozens or even hundreds. I have to admit that I had a long struggle to come to grips with the
benefit that state machines bring to the information worker world. I’ve got a pretty good picture now, but I
know that there are still elements that I’m not at peace with yet. The one thing I am certain of, though, is that
I’m convinced of the value of state machines—so much so, that most of the workflows I’m building for clients
these days are state machines. I tend to put up a pretty good fight when someone tries to implement a process
as a sequential workflow when I know that a state machine would be a much better approach.

OK, all of that aside, how did I come by this preference for state machines and how can you achieve the
same Zen-like level of workflow nirvana? Read on.

Typical processing in an Office workflow scenario would go as follows:

1. Create content and post for review.

2. Reviewers review and offer feedback.

3. Integrate feedback and submit document for approval.

4a. Approver reviews and approves. Go to 5a.

4b. Approver reviews and rejects. Go to 5b.

5a. Content is published to a wider audience.

5b. Content is returned to author.

6. Process ends.

Naturally there will be significant variations from scenario to scenario when you get down to specific
details, but remember, we’re talking in generalities here so this is a pretty good description of processing.

So why is a state machine better than a sequential workflow? The answer lies in four parts:

1. The wildcard is that review and approval can occur on multiple levels whereby one level can trump another
level’s response, causing the process to short-circuit or branch arbitrarily. This is what showcases the
power of a state machine. It represents an occurrence that is global to the entire process—meaning
that it can happen at just about any point. Building this into a sequential workflow almost always results
in an ugly mess of loops and conditional evaluations. It is much cleaner in a state machine, especially with
judicious use of nested states—which we look at in the sidebar “Recursive Composition—Nesting States.”

2. The realization that each of the items we’ve listed is really a combination of states and events already.
Posted, Feedback Offered, Approved, Rejected, Published—these are all states that content can exist
in. The trigger to move between these states is always an event—Author posts content, Reviewer offers
feedback, Approver rejects, etc.

Mann_700-1C06.fm Page 193 Thursday, January 18, 2007 3:05 PM

194 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

3. While our list pretty much covers the majority of information worker workflows, it is by no means all
encompassing. As soon as you toss in things such as translations, automated processing, external
lookups, and so forth, things get a little murkier. You’re beginning to move out of the realm of human
workflow and skirting the edges of machine workflow. State machines work very well in situations such
as these. In these situations, the external processes are services that can respond to and signal events
that our state machine can interact with. We’re moving our workflows into the realm of a service archi-
tecture with the inherent benefits of loose coupling, isolation, and so forth.

4. Human interaction is rarely definable in a neat little package of a primarily straight-line processing that
a sequential workflow prescribes. Toss into the mix the fact that over time processes change and things
get even trickier. Even if you were able to shoehorn your process into a nice, neat sequential workflow
in the beginning, over time changes and exceptions will make it unwieldy. A state machine is much less
susceptible to these types of problems.

OK, that’s it, time to get down off my high horse. That’s my take on things; I’m sure your view of the world
will be different and more than one of you will be wondering who whacked me with the stupid stick. My final
advice would be to use what makes the most sense in your situation. While I prefer a state machine, I also
realize that it does not fit the bill in every situation, and in some situations just plain will not work at all. So,
look at the needs and restrictions of each situation and head down the road that makes the most sense. Don’t
just blindly head down one road or another.

There are a few last things to look at in the Designer before we get to building our state
machine. First of all, in your sample project, notice that the state that was added automatically
for us by the template is named Workflow1InitialState. This touches on a concept that says that
each state machine must have one state designated as the Initial state. This is where our work-
flow begins its processing. At the opposite end, there can be, but doesn’t have to be, a state
designated as the Completed state. It will not be unusual to have a state machine that does not
ever really end. It continues moving from state to state in response to various triggers. It may
live in a given state for years, but it technically never ends, so we don’t have have to have a
Completed state. With that said, I typically add a Completed state to my state machines because I
can usually think of some situation that would bring about the end of the workflow.

There are two ways to designate these special states:

1. Right-click on an activity and select either Set as Initial State or Set as Completed State.

2. Click on the Designer canvas itself and look at the Properties window for the workflow
as a whole. You’ll see an InitialStateName property and a CompletedStateName property.

To stop a state from being designated as one of these special roles, you need to either
remove it from the property name in option 2 or else assign another activity to that state via the
context menu. Finally, you can tell visually in the Designer which activities are fulfilling the
Initial and Completed roles because the icon in the header of the activity changes, as shown in
Figure 6-18.

Mann_700-1C06.fm Page 194 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 195

Figure 6-18. The various icons for state machine activities indicate the role they play.

It’s a little hard to see in Figure 6-18, but the icon for the Initial state is a small green circle
with a white arrow inside—the same icon used to signify the beginning of our sequential work-
flow. The icon for the Completed state is the red square with the white circle that signified the
end of our sequential workflow.

Lastly, realize that our workflow itself is a state activity. In the Designer, that means that
the entire canvas is a great big state activity with all the rights, privileges, and responsibilities
thereof. The importance of this will dawn on you after you read the sidebar on recursive
composition.

RECURSIVE COMPOSITION—NESTING STATES

As mentioned earlier, it is possible to nest one state activity within another. The benefit of this is that an EventDriven
activity defined on the parent state activity is available on any of its child states. For our Office workflows, this
means that if you were to define an EventDriven activity on a parent level to handle an onWorkflowItemChanged
event, that event can be handled from any state within the parent.

The real benefit of this, and part of what makes state machines so powerful, is subscribing to events at
the workflow level—global events that can occur at any point during the process. By defining them at the
workflow level (remember, the top-level workflow is nothing more than a great big state activity), they can be
captured and handled regardless of which state the workflow is in currently. Events like items being deleted
are a perfect example of the benefit this offers. Instead of having to define a handler for this as part of every
state, it can be defined once at the workflow level.

Working in the Designer
Our foray into state machines and the Designer for them is done; now we can go ahead and
build our first state machine workflow. Let’s take a look at the scenario we’re going to tackle.

Scenario: Preventing Outdated Tasks

One problem KCD has encountered as they increase their use of workflow is outdated task assignments. For
example, Sue in Marketing creates a document detailing plans for a marketing campaign for a new product and
posts it to the Marketing department’s collaboration section on the intranet. After posting the document, Sue man-
ually kicks off the Marketing Campaign workflow. Sue does not need to assign users to tasks because, as part of the
workflow, a task is assigned to the current members of the campaign review committee—a virtual team that rotates
its members quarterly and is made up of employees from all over the world. Sue does not know who the current
members of the review committee are, although she could find out if she needed to. The workflow encapsulates the
logic to look up the current team members and assign tasks appropriately.

Mann_700-1C06.fm Page 195 Thursday, January 18, 2007 3:05 PM

196 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Shortly after posting the document, Sue receives an email from the product manager informing her that the product
has encountered a production problem and is going to be delayed for six weeks. Sue knows that this changes the
marketing campaign schedule that is part of the document, and also means that the deadlines on the tasks assigned
to review the document are now no longer valid. Sue modifies the document and reposts it to the portal. She also
updates the metadata for the document—one piece of which is the due date used by the workflow process to
assign task deadlines.

The problem is that the tasks that were created by the workflow are still assigned to the users. As mentioned, Sue
does not know who was assigned a task when the workflow started. She could look it up and send them an email
notifying them that the schedule has changed and that they can hold off on completing their task, but that would
take hours and she’s busy. She decides just to let them figure it out. After all, what’s the harm? So they complete
their tasks a bit early—at least the document is correct so they’ll see the right data.

You can see where this is going…

Meanwhile, in London, Robert, part of the current campaign review committee, sees the task assigned to him. He
is busy trying to get things wrapped up before he goes away on vacation for two weeks, but the deadline for this
task falls right smack in the middle of his time off. He puts aside other work and begins reading the document
immediately, adding his comments as he goes. Two hours later, he gets to the end of the document where the
marketing schedule is. At first he thinks it is a mistake, but he checks again and sure enough, the schedule is six
weeks off what the task assignment told him. There’s two hours of time he won’t get back. He stops working on the
document and tries to get back to the other, more pressing items on his to-do list so he can go away on vacation
and think seriously about finding a new job…

So perhaps this scenario is a bit stilted, but the ability to react to changing conditions in
our environment is going to be key for our workflows. While I’m sure it would be possible to
implement this as a sequential workflow, it would likely involve a morass of While and Parallel
activities. As you’ll see, in a state machine, this type of scenario is easy.

■Note To keep matters simple, we’re only going to walk through the elements of this scenario that are
specific to state machines—namely building out the event-driven process so we can respond to changes on
the document and its metadata. The other portions of the process—creating and updating tasks, retrieving
information from SharePoint lists and other data sources, and so forth are all pretty standard SharePoint
development fodder. We’ll put placeholders in so you can see where things will be happening, but I really just
want to keep the focus on the state machine elements.

To get started we need to create a new project of the SharePoint State Machine Workflow
Library type. If you created a playground project to explore things in the previous section, you
can close it and don’t worry about saving the changes. For my example, I’m going to name the
new project ResetTaskOnChange. We’ll go through the same beginning steps for this project
as we did for the sequential one earlier. If you need details, flip back to the beginning of this
chapter, but here are the steps in summary:

Mann_700-1C06.fm Page 196 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 197

1. Create the project.

2. Rename workflow1.cs to ResetTask.cs.

3. Examine the files in the solution. Notice that they are the same as the sequential
workflow.

4. Open the ResetTask.cs file in the Designer.

We explored the Designer already in the previous sections, so we can just go directly to the
tasks to build our workflow.

Configuring the Top Level

As we’ve already seen, you add activities to a state machine the same as any other workflow.
Go ahead and add two more state activities to the canvas. With the Initial state added by the
template for us, that makes a total of three states. Add a StateInitialization activity, two Event-
Driven activities, and a StateFinalization activity to one of the state activities. Notice that the
activities always reorder themselves to Initialization–EventDriven–Finalization regardless of
the order you drop them.

All of the activities for this level are in place, so let’s go ahead and set some properties; at
this level, that only means giving our states and other activities meaningful names. Table 6-6
shows what we’re going to change the names to.

■Note While not a requirement, a good practice to adopt is to name your EventDriven activities for the event
they handle—typically on<Event_Name_Here> as we did here. Similarly, states are typically named
state<Descriptive_Name> or <Descriptive_Name>State. We used the latter for our example.

Table 6-6. Renaming States and Activities

Old Name New Name

workflow1InitialState InitialState

stateActivity1 TaskCreatedState

stateActivity2 CompletedState

stateInitializationActivity1 InitTaskCreatedState

eventDrivenActivity1 onWorkflowActivated

eventDrivenActivity2 onTaskChanged

eventDrivenActivity3 onWorkflowItemChanged

stateFinalizationActivity FinalizeTaskCreatedState

Mann_700-1C06.fm Page 197 Thursday, January 18, 2007 3:05 PM

198 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

When we rename our states the designation as the Initial and Completed states gets lost,
so we need to redo the designation. Right-click on CompletedState and select Set As Completed
State from the context menu. Right-click on InitialState and select Set As Initial State.

The last thing we need to do is build our transitions. There are two ways to do this—we’ll
cover them both. The first is a visual approach and the second is, well, not a visual approach.
Personally I find the former to be easier most of the time, but you can make up your own mind.
Also, if you are going to decide at runtime which state your process will transition to, you have
to use the second approach.

For the first approach, we are going to build a transition from the onWorkflowActivated
EventDriven activity to the TaskCreatedState activity. This means that when our workflow is
initiated, it will transition to the TaskCreatedState. We’re not setting any conditions on it, so
this transition will happen every time our workflow runs. To set this up, use the following steps:

1. Click on the onWorkflowActivated activity to select it.

2. Run your mouse over the small blue dot in the middle of the right vertical border of the
activity until your cursor changes to a crosshair-like effect. The change is kind of subtle
but you’ll see what I mean.

3. Click and drag down to the top center of the TaskCreatedState activity. A Visio-like con-
nector will follow your mouse and attach itself permanently to the two activities once
you release your mouse.

That’s it for the first method. If you double-click on the onWorkflowActivated activity, you’ll
see that a SetState child activity has been added and configured to transition to the
TaskCreatedState.

For the next transition, we are going to react to our workflow task being changed. However,
we’ll only transition to the Completed state if the task was actually marked as complete. Other-
wise, we’ll just stay right where we are. We’ll need to do some runtime decision making for this one.

To build this transition, follow these steps:

1. Double-click on the onTaskChanged activity to go to the view of its children.

2. Add an IfElse activity to the onTaskChanged activity.

3. Add a SetState activity to the first ifElseBranch activity. One note of caution—there are
two SetState activities in the Toolbox: one for state machines and one for SharePoint.
We want the former. It is in the Windows Workflow tab on the Toolbox.

4. Set the TargetStateName property of the SetState activity to CompletedState by selecting
it from the drop-down list.

Don’t worry about the validation errors for now; we’ll come back to take care of them in
just a minute. Click on the ResetTask link to return to the top-level view.

Mann_700-1C06.fm Page 198 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 199

■Note There is no transition kicked off by the onTaskChanged activity. As you’ll see in a moment, the only
function of that activity is to update the due date for tasks based on information supplied with the payload
item.

When you’re done to this point, this top level of your workflow is complete and should
look like Figure 6-19. The Designer lets you drop activities anywhere so your screen won’t look
exactly like mine, but as all the pieces are there, the layout doesn’t matter.

Figure 6-19. A look at the finished top level of our state machine

Configuring the Child Level

The next pieces that we need to configure are all one level down from where we’ve spent the
majority of our time so far. This will take care of all of the child activities.

First up will be the onWorkflowActivated activity in the InitialState activity. Double-click
on it to see its children. All we need to do is fix up the CorrelationToken property (and possibly
the WorkflowProperties\Name property—it depends on how you did your renaming).
CorrelationToken should be set to workflowToken and the name for both the CorrelationToken
and the WorkflowProperties properties should be ResetTask. We’re done with this first task, so
go ahead and click on the ResetTask link in the Designer to take us back to the top level.

Next we will take care of the child activities for the InitTaskCreatedState activity, so go
ahead and double-click on it. Drag a CreateTask activity from the Toolbox and add it to the
InitTaskCreatedState activity. Set the properties as shown in Table 6-7. Any properties not
listed in the table can be left at their defaults.

Mann_700-1C06.fm Page 199 Thursday, January 18, 2007 3:05 PM

200 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

Moving on, we can tackle the onTaskChanged EventDriven activity next. Again, double-click
on it to bring up the child view. There are a few error indicators on this screen, so we’ll take care
of them. First of all, at the top of the activity is an error that tells us we need to add an activity
above our IfElse that implements the IEventActivity interface. Drag an onTaskChanged activity
from the SharePoint section of the Toolbox and drop it above the IfElse. The first error goes
away.

We now need to configure the onTaskChanged activity; the details are in Table 6-8.

The last issue we need to fix on this screen is to set the Condition for the IfElseBranch
activity. Configure the Condition property as a Declarative Rule Condition. Use the Condition
Editor dialog box to create a new condition named TaskCompleted with a value of this.
onTaskChanged1.AfterProperties.PercentComplete == 1.

We don’t need the else portion of our IfElseBranch, so you can go ahead and delete it.
That’s all we need to do on this screen; simply click the ResetTask link at the top of the canvas
to return to the top level.

Table 6-7. Configuring Properties for the CreateTask Activity

Property New Value Notes

CorrelationToken taskToken

CorrelationToken\OwnerActivityName taskCreatedState

MethodInvoking InitCreateTask The code for this method is
shown in Listing 6-6.

TaskID taskID Click on the ellipsis in the
value field to bring up the
Binding dialog box and create
a new field (not a property)
named taskID. The various
subproperties of TaskId will be
filled in appropriately.

TaskProperties taskProperties Again use the Binding dialog
box to create a new field named
taskProperties.

Table 6-8. Configuring Properties for the onTaskChanged Activity

Property New Value Notes

CorrelationToken taskToken Select the value from the drop-down list.

TaskId taskID Use the Binding dialog box to bind to the existing
taskID field that we created earlier.

AfterProperties afterProps Use the Binding dialog box to create a new field named
afterProps. This field will get a hash table of property
values in place after the task is edited.

Mann_700-1C06.fm Page 200 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 201

The next EventDriven activity we need to configure is the onWorkflowItemChanged
activity. Double-click on it to go to the child view. We need to add three activities here:

1. One that implements the IEventActivity interface

2. One Code activity

3. One UpdateTask activity

Add the activities in the order shown here. This time around we’ll use the onWorkflow-
ItemChanged activity for the IEventActivity activity. Add it to the top of the canvas and then
you’ll need to set its CorrelationToken property to workflowToken. Next add a Code activity
to the onWorkflowItemChanged activity. Change its ExecuteCode property to updateDueDates.
We’ll add the code for this in a bit. Finally, add the UpdateTask activity below the Code activity.
Set its CorrelationToken property to taskToken. Use the Binding dialog box to bind its TaskId prop-
erty to the existing taskID field we created as part of the CreateTask activity. Also use the Binding
dialog box to connect its TaskProperties property with the existing taskProperties field
we created. We’re done with this EventDriven activity. You can close out of it and return to the
top level.

The last child activity we need to configure is going to be on the FinalizeTaskCreatedState
activity. From its child view, we need to drag in a CompleteTask activity. Set its CorrelationToken to
taskToken from the drop-down list, and bind its TaskId property to our existing taskID field.
Close out of the child view and return to the top-level view.

We’re almost there. The last thing we need to do in our workflow itself is to add some code.
Open ResetTask.cs in Code view. You’ll see a couple of variables and two empty methods. Add
the code in Listing 6-6 to the InitCreateTask method. This code is pretty simple. It creates a
new GUID in order to uniquely identify our new task and then sets some properties of the task
itself.

■Note As I mentioned previously, I’m cutting out certain portions of this scenario to keep the focus on the
state machine aspects. The GetCurrentReviewers method is a perfect example of that. In the full-blown
solution, this retrieves information from a SharePoint list that stores the names of the current members of the
Marketing Campaign Review Committee. For this sample, I just have it returning a single value, which is
hard-coded. The entire contents of the GetCurrentReviewers method is return @"mossrtm\
marketingreviewer";. You’ll need to replace that with a valid account in your environment.

Listing 6-6. The InitCreateTask Method

this.taskID = Guid.NewGuid();
this.updateDueDates(null, null);
this.taskProperties.AssignedTo = GetCurrentReviewers();
this.taskProperties.Title = "Marketing Campaign Review";

Add the code in Listing 6-7 to the updateDueDates method. This code is responsible for
calculating the due dates for the task created by this workflow based on some metadata values

Mann_700-1C06.fm Page 201 Thursday, January 18, 2007 3:05 PM

202 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

supplied with the payload item. Naturally in a production system, we would perform an actual
calculation as opposed to using a random number generator. As I’ve said, though, I want to
keep the focus on state machines and not get bogged down making you type irrelevant code.

Listing 6-7. Generating random task due dates

Random rand = new Random();
this.taskProperties.DueDate = DateTime.Now.AddDays(➥

 rand.Next(5, 15));

Deploying and Testing
Fortunately, deploying a state machine is no different than deploying a sequential workflow.
Edit your two XML files (workflow.xml and feature.xml) and change your postbuild command
line (DEPLOY instead of NODEPLOY). I covered specific instructions for this earlier in this chapter,
so I won’t rehash it all here. Just remember to configure your project for strong naming before
compiling and that your Feature name is now ResetTaskOnChange.

After the build and postbuild process is complete, you need to create a new workflow asso-
ciation with a list in SharePoint and then actually kick off an instance of the workflow on a list
item or document. Again, the steps for this were covered earlier in this chapter.

Once the workflow has processed, you should have a task assigned to the name you spec-
ified in the GetCurrentReviewers method. There are three things we want to try out in order to
verify that our state machine is actually doing what it is supposed to do:

1. Change a piece of metadata (such as the title) or upload a new copy of the document, over-
writing the existing document. Either one of these will trigger the onWorkflowItemChanged
event and we should see a new due date (coming from the random number generator)
for our task when we refresh the view of the task details. Our workflow should not
change to a Completed state.

2. Modify the task, but don’t mark it Complete or set its % Complete column to 100%. The
onTaskChanged event should fire within our workflow, but it shouldn’t change anything
until we it is marked as Complete (or technically until its % Complete is 100%).

3. Change the task again, this time marking it as 100% complete. Check the workflow
status again. It should be marked as Completed.

There you have it: a complete, functioning state machine workflow. Nice work. You rock.
Go ask your boss for a raise.

Deploying to Production
So far, we’ve been doing our deployment in a nonproduction environment. We’ve been using
the provided PostBuildActions.bat file to do all of the work for us. That’s been all fine and
dandy for a development environment, but now we’re ready to deploy to production. What do
we need to do now?

Mann_700-1C06.fm Page 202 Thursday, January 18, 2007 3:05 PM

C H A P T E R 6 ■ B U I L D I N G A W O R K F L O W W I T H V I S U A L S T U D I O 2 0 0 5 203

(I love being the bearer of good news…)
The short answer is hardly anything. The long answer is OK, there are three steps.

1. Switch Visual Studio to a Release build and compile as normal.

2. Grab the WSS Solution package file (.wsp) from the \bin\Release\Package folder of your
solution and copy it to your production server.

3. Run the following commands, replacing paths and filenames as appropriate:

• <path>\stsadm.exe -o addsovution -filename <path>\filename>.wsp

• <path>\stsadm.exe -o deploysolution -name <path>\filename>.wsp –local -
allowGacDeployment -force

• <path>\stsadm.exe -o installfeature -filename <path>\feature.xml -force

• <path>\stsadm.exe -o activatefeature -filename < path>\feature.xml -force
-url http://localhost/ -force

When we switch Visual Studio to a Release build, the PostBuildActions.bat file automati-
cally creates our WSS Solution deployment files for us. All we need to do is deploy them just the
same way we deploy any other WSS solution.

See, you didn’t even need your Easy Button for that.

Summary
We covered a lot of ground in this chapter, introducing a whole new landscape of functionality
now available in Visual Studio. Here is a summary of the major points:

• The SharePoint SDKs (MOSS and WSS) add new project types to Visual Studio for our
workflow projects. The names vary slightly depending on which SDKs you have installed

• In many ways, workflow projects are no different from any other project in Visual Studio.
All of our code is still written in our class file, we have objects to create and manage, and
all object properties are set in the Properties window.

• The visual workflow Designer is very similar to the BizTalk Orchestration Designer for
those of you who have worked in that environment before.

• An instance of the onWorkflowActivated activity must be first in every SharePoint
workflow.

• The onWorkflowActivated activity is our gateway back to our workflow host by way of
the workflowProperties object it provides.

• Activities are managed in the Toolbox just like any other component in Visual Studio.

• Design-time validators warn us visually of errors configuring our activities.

• The WSSHistory activity provides functionality similar to the Windows Event Log for our
workflow instances.

• The Enabled property allows you to comment out activities, removing them from your
compiled workflow but keeping them in the Designer.

Mann_700-1C06.fm Page 203 Thursday, January 18, 2007 3:05 PM

204 C H A P T E R 6 ■ B U I LD I N G A W O R K F LO W W I T H V I S U A L S T U D I O 2 0 0 5

One major (and I do mean major) item we did not cover in this chapter is debugging. I
figured that your code never fails and so you wouldn’t need to worry about debugging—actu-
ally, I saved that for Chapter 9. The short answer is that our workflows are extremely
debuggable. The long answer is in Chapter 9.

Speaking of Chapter 9 (nice segue, huh?), I’ll add a plug for it here. We took a pretty happy
path through our first workflows here. This was intentional because most of the time things
should work pretty smoothly. There are some sticky bits that will rear their ugly heads periodi-
cally and Chapter 9 will help you deal with them. See if your question is answered or your problem
is solved; if not, ping me at my web site (www.kcdholdings.com) and I’ll see what I can do to help out.

Mann_700-1C06.fm Page 204 Thursday, January 18, 2007 3:05 PM

205

■ ■ ■

C H A P T E R 7

Workflow Forms

Welcome to Chapter 7. In this chapter we’re going to explore (obviously) Workflow forms. We’ve
discussed forms in various places throughout the book so far, and we’ve seen examples of many
different types of Workflow forms—in both a browser and directly integrated into the Office client
applications. In the previous chapter, we created a workflow, but it was one that did not use
any forms. In this chapter, we’re going to look at introducing forms built in InfoPath 2007 and
ASP.NET to our Workflow arsenal. Microsoft has provided us with rich, nearly limitless capabil-
ities to extend our forms experience. By the time we’re done with this chapter, we’ll have
covered everything you need to know (and some things you probably don’t) about Workflow
forms in the 2007 Office System.

Types of Forms
The first thing we need to understand is specifically what forms we’re talking about. There are
two ways to classify the Workflow forms we deal with:

• By technology: ASP.NET or InfoPath

• By function: Association and initiation forms, modification forms, and task forms

The two technologies are just a delivery mechanism. Functionally, they are equivalent, and
each of the functional types of forms can be rendered via either technology. The three func-
tional classifications each serve a different purpose in the workflow lifecycle. We’ll briefly cover
each of these classifications.

Introducing InfoPath
InfoPath forms are designed and built in the InfoPath Office client application. InfoPath was
introduced in Office 2003 but undergoes some serious upgrades in Office 2007. The major
enhancement in Office 2007 is the addition of the Forms Server. This newcomer is responsible
for taking a form designed in InfoPath and rendering it as standards-compliant HTML acces-
sible from any modern browser. In addition, one nifty new feature introduced by MOSS 2007 is
the ability to wrap these rendered forms directly in the Office 2007 client applications—looking
for all the world like native Office dialog boxes. Cool.

Mann_700-1C07.fm Page 205 Monday, January 22, 2007 3:20 PM

206 C H A P T E R 7 ■ W O R K F LO W F O R M S

Although the benefits of this technology are many for nearly any scenario, the case that
interests us now is how this impacts our workflows. We’ve already seen several examples of
InfoPath forms being rendered through the Forms Server. In Chapter 3, when we discussed the
out-of-the-box experience, we saw some of these forms integrated into the Office client appli-
cations. To refresh your memory without forcing you to flip back to Chapter 3, lose your place
in this chapter, and toss the book away in frustration, I’ll include another screenshot here,
shown in Figure 7-1. To show both sides of this coin, Figure 7-2 shows the same InfoPath form
rendered into the browser. Again, the backend form is the same and was only built once—in
InfoPath; we’re just rendering it via a different technology.

Figure 7-1. The Forms Server renders InfoPath forms as standards-compliant HTML—shown here
rendered directly in the Office client applications.

Mann_700-1C07.fm Page 206 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 207

The primary benefits we derive from this technology include

• The ability to utilize the rich design-time experience of InfoPath to develop our forms.

• The ability to develop the forms once and utilize them in multiple situations—namely
both a browser and the Office client applications. We don’t need to develop duplicate
forms to handle each different client application.

Figure 7-2. InfoPath forms rendered as HTML can, of course, also be viewed in a browser. Here is
the same form as in Figure 7-1, displayed in a browser.

■Note One thing to keep in mind about these browser and Office client renditions of InfoPath-based forms
is that they do require the Forms Server technology be installed in your environment. Without the Forms
Server, InfoPath forms are only consumable from within the InfoPath client—not nearly as useful. MOSS ships
with a derivative of the full-blown Forms Server known as simply Forms Services. This allows for the browser-
based forms and the forms to be integrated into the browser but does require MOSS. WSS alone won’t cut it.
Even WSS and a full Forms Server implementation won’t get you the Office client integration—that is strictly
MOSS territory.

Mann_700-1C07.fm Page 207 Monday, January 22, 2007 3:20 PM

208 C H A P T E R 7 ■ W O R K F LO W F O R M S

ASP.NET
ASP.NET forms are nothing new and aren’t anything to write home about. Their use in Office
Workflow is pretty typical as a primarily web-based application. There are some special
requirements to keep in mind as you develop these forms, but we’ll delve into building these
forms a little later in this chapter. For now, just keep in mind that all of your ASP.NET skills will
be useful here and that without some flavor of the Forms Server in your environment, this is the
only option available to you for Workflow forms.

Figure 7-3 shows a sample of a standard ASP.NET form in use during a workflow.

Figure 7-3. Eminently useful in many situations, regular old ASP.NET web forms find yet another
home in workflows where the new Forms Server is not available.

Association and Initiation Forms
Association and initiation forms, while serving distinct purposes within the workflow lifecycle,
are typically lumped together because they both are utilized before a workflow is begun. These
forms are the first grouping in our functional breakdown of Workflow forms.

Association forms are used by administrators when they make a workflow available on a
particular list, document library, or content type. Figure 7-4 shows an example of an association
form. The function of these forms is to allow the administrator to specify parameters to customize
a workflow—including listing the names of participants who will be assigned tasks. Initiation
forms are similar to association forms, except that they are utilized when an instance of the
workflow is kicked off for a particular document or list item. Quite often, data collected from
the association form is used to set default values for fields on the initiation form. The initiation
form can either allow editing of these default values or won’t allow editing. Figure 7-5 shows a
sample of an initiation form.

Mann_700-1C07.fm Page 208 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 209

Figure 7-4. A workflow association form is used to specify default values when attaching a
workflow to a document library or list.

Figure 7-5. Initiation forms are used by workflow initiators to specify parameters for their particular
instance of a workflow.

Mann_700-1C07.fm Page 209 Monday, January 22, 2007 3:20 PM

210 C H A P T E R 7 ■ W O R K F LO W F O R M S

While technically neither an association form nor an initiation form is required, the vast
majority of the time, you will need one or the other. We’ll cover details on how to do this later
in this chapter. Besides the obvious function of allowing users to specify participants for their
workflow instances, a few other situations that could be handled via custom association or
initiation forms include

• More granular control over processes: The ability to associate or initiate a workflow is a
binary permission on a given list. Users either have the right to do it or don’t. If they have
permission to start one workflow, they have the right to start every workflow. This may
not be exactly what you need. In a custom association or initiation form, you could apply
specific rules over who can associate or initiate a particular workflow.

• Similar to that situation, there may be other criteria for limiting which workflows can
run on content:

• Dates: Certain processes may only apply during certain times throughout the year.

• Content of the payload itself: Employee reviews may require one process for “Meets
Expectations” or “Exceeds Expectations” reviews, but a totally separate process for
“Below Expectations” reviews. While this could be handled within a single workflow
process, the ability to handle it before a workflow is actually started just provides
more flexibility.

• Logging: In some environments, it may be necessary to record or audit the processes
that were attached to a particular document library. No workflows have actually begun
yet, and so logging to a workflow history list is not appropriate. This would be more
along the lines of process-control auditing.

Modification Forms
Modification forms, as the name cleverly implies, are those forms that allow users to make
changes to a workflow once it is in progress. We saw this in Chapter 3 when we discussed the
ability to reassign tasks or request changes to a task. Figure 7-6 shows one of these screens
again for reference.

Workflow modifications are a powerful capability that is only touched on lightly in the
sample workflows that ship with MOSS. The capability is really quite open-ended. It gives you
the capability to make changes to a running workflow while it is in progress for any reason
identified by your business process, or more likely a one-off exception to your business process.
Perhaps it is a change in the process flow based on some new information. Perhaps it is a
change based on a new threshold level for approvals.

Mann_700-1C07.fm Page 210 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 211

Figure 7-6. Modification forms, like this Reassign Task form, allow users to make changes to
in-progress workflows.

Imagine this scenario: you are reviewing a document for a new wonder drug your company is
working on. The day before the document landed on your To-Do list, the FDA levied a hefty
fine against another pharmaceutical company for some infraction related to their internal
documentation. Now here you are with a similar document sitting on your desktop. Before you
add your comments and pass the document along, you’d really like to run it past someone
in the legal department to get their input in light of the new landscape. When the document
workflow was constructed, there was no facility for a legal review at this point in the process—
that comes later. If, however, the workflow supports modifications during its processing, you
can route the document over to someone in legal and have them review it before you do. Crisis
averted thanks to workflow modification.

Task Forms
While similar to the previous two types of forms in the functionality provided, task forms are a
unique beast. Due to the underlying architecture of SharePoint, a task form for a workflow is
not simply a form associated with the workflow. Instead, it needs to work with other constructs
within SharePoint—task lists. For basic functionality, and in most cases, we can largely ignore
this and simply use the default form that ships with SharePoint.

Mann_700-1C07.fm Page 211 Monday, January 22, 2007 3:20 PM

212 C H A P T E R 7 ■ W O R K F LO W F O R M S

Creating Custom Workflow Forms
Now that you have a good understanding of the role played by forms in our workflows, it’s time
to dig in and build some forms. We’re going to walk through two different scenarios in this
chapter—perhaps this is where the scenario model I’ve presented up to this point begins to fall
apart a little. The scenarios covered here start to feel a bit forced or contrived. Forgive me for
that, but I think it’s important to walk through both ASP.NET and InfoPath forms to see how to
implement each. We’ll start with the InfoPath forms and wrap up the chapter with ASP.NET forms.

In each case, we’ll be building a brand-new workflow in Visual Studio to meet the needs of
our scenarios. Since we already covered the steps for building the workflow project and adding
activities, I’m not going to cover them in great detail here. I’ll just list the information you need
to set up and let you work through the process on your own. If you need help with anything,
refer back to Chapter 6 for a refresher.

Scenario 7-1: Using InfoPath Forms
As mentioned previously, using InfoPath forms is an extremely attractive option if you have
some version of MOSS installed in your environment. You could also have WSS and Forms
Server installed, although in this case you would not get the integration between the forms and
the Office client applications—but it’s still a step up from ASP.NET.

For this scenario, we’re going to assume that we have MOSS installed. We’ll start by creating
our Visual Studio project, adding and configuring our activities, and preparing for deployment.
Before we deploy, however, we’ll build and configure our forms and configure our workflow to
use these new forms. After that, we’ll continue packaging our workflow into a Feature,
deploying it and testing it.

Scenario: Global Marketing Campaigns

In the KCD Holdings Global Marketing department, a common occurrence is naturally the creation of new marketing
campaigns. Often, however, these campaigns are not new. Instead, they have begun as local campaigns that were
successful and are now going to be adapted and introduced globally. The local marketing director in the region that
originated the campaign needs to review global campaigns that originated in their region. They do not actually
approve the campaign, but they are given the opportunity to offer suggestions to fine-tune the campaign based on
their experience as the originating region.

A task is assigned to a marketing traffic coordinator, however. This person is responsible for coordinating all of the
resources necessary for a successful campaign. The task assigned to the traffic coordinator is for them to review
the marketing plan document and approve of schedules and so forth.

To facilitate this process, each workflow is constructed to notify the appropriate regional marketing director via
email and assign a task to the traffic coordinator. The initiation form will present the workflow originator with an
interface that will allow them to specify the email address for the appropriate regional marketing director and the
traffic coordinator.

Mann_700-1C07.fm Page 212 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 213

■Note This workflow is intentionally simplistic. Among other things, in a real production application, we
would get the name of the marketing director and look up their email address. To keep things simple and to
keep the focus on the forms, we’ll just collect their email address on the form for now.

We’ve already covered building workflows and adding activities in Chapter 6. The focus here is on the forms
so I didn’t want to get us distracted. Naturally, your workflows can be as complex or as simple as you need
them to be. The information collected in your forms can be as much or as little as you require. However,
regardless of complexity, the basic principles covered here will apply in every case.

To begin with, we need to create our workflow project in Visual Studio. Select a Sequential
Workflow project and name it MarketingCampaign. After the project is created, rename the
default Workflow1.cs to MarketingCampaign.cs.

Adding and Configuring Activities

Open this file in the Designer and follow these steps:

1. Add a SendEmail activity to the canvas directly below the default OnWorkflowActivated1
activity.

2. Drag and drop a CreateTask activity directly below the SendEmail.

3. Add a While activity after the CreateTask activity.

4. Add a Sequence activity inside the While activity.

5. Add an onTaskChanged activity inside the Sequence activity.

6. Add an UpdateTask activity inside the Sequence, after the onTaskChanged.

7. Add a CompleteTask activity at the end, after the While activity.

When you are done, your Designer canvas should look like Figure 7-7. Don’t worry about
the property errors indicated by the exclamation points. We’ll take care of them next.

Mann_700-1C07.fm Page 213 Monday, January 22, 2007 3:20 PM

214 C H A P T E R 7 ■ W O R K F LO W F O R M S

Figure 7-7. The Designer canvas with our activities dropped into place

Tables 7-1 through 7-7 provide details on customizing the properties of each of our activities.
Set the properties of each activity as indicated. If a particular property is not listed, just accept
the default value.

Mann_700-1C07.fm Page 214 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 215

■Tip After making the changes in Table 7-1 there will still be an error indicator shown. You need to manu-
ally change an item in the MarketingCampaign.designer.cs file. Open the file, find the line that looks
something like activitybind2.Name = "Workflow1";, and change the value to MarketingCampaign.
For some reason, this isn’t caught during the refactoring when we rename our class file.

Table 7-1. Property Settings for the OnWorkflowActivated1 Activity

Property Setting Notes

CorrelationToken\OwnerActivityName MarketingCampaign Select the value from the
drop-down list.

Invoked onWorkflowActivated Visual Studio will auto-
matically create a method
framework with the proper
signature for us.

WorkflowProperties\Name MarketingCampaign

Table 7-2. Property Settings for the SendEmail1 Activity

Property Setting Notes

CorrelationToken workflowToken If you select from the
property drop-down list,
the OwnerActivityName
subproperty will be
automatically set.

CorrelationToken\OwnerActivityName MarketingCampaign

From admin@kcdholdings.com Set to a valid email address
in your development
system.

MethodInvoking onSendEmail We’ll set the To and Body
properties for our email
programmatically in this
method at runtime.

Subject Marketing Campaign
Submission

Mann_700-1C07.fm Page 215 Monday, January 22, 2007 3:20 PM

216 C H A P T E R 7 ■ W O R K F LO W F O R M S

Table 7-3. Property Settings for the CreateTask1 Activity

Property Setting Notes

CorrelationToken taskToken You’ll need to type this value in.

CorrelationToken\
OwnerActivityName

MarketingCampaign

MethodInvoking onCreateTask

TaskId Activity = MarketingCampaign,
Path = taskID

Click the ellipsis in the TaskId
property field, select the Bind
To New Member tab, and enter
taskID as the new member name.
Select the Create Field radio button
and click OK. A new variable of
type Guid will be created and
automatically associated for us.

TaskProperties Activity = MarketingCampaign,
Path = taskProperties

As before, if you click the ellipsis
and use the Bind To New Member
tab, the proper variables will be
created for you.

Table 7-4. Property Settings for the While Activity

Property Setting Notes

Condition Code Condition

Condition taskComplete This subproperty is the name of the method that the
While activity uses to determine whether it is finished
processing. We’ll add the code to this in a bit.

Table 7-5. Property Settings for the onTaskChanged Activity

Property Setting Notes

AfterProperties afterProperties Use the Bind dialog box to create a new
member field with the proper name and
data type.

BeforeProperties beforeProperties Use the Bind dialog box to create a new
member field with the proper name and
data type.

CorrelationToken taskToken If this isn’t available in the drop-down
list, you’ll need to type it in by hand.

CorrelationToken\
OwnerActivityName

MarketingCampaign

Invoked onTaskChanged This method will be called when the
activity is executed.

TaskId Use the Bind dialog box to bind to the
existing taskID property.

Mann_700-1C07.fm Page 216 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 217

■Note As I said before, this chapter is on forms. If you need a refresher on correlation tokens, activities,
etc., please flip back to Chapter 6. It’s all covered in far more detail there. I blew through it all pretty quickly
here so we could keep our focus on the forms.

All of our activities are now configured. They don’t actually do anything, but they are all
configured. If you take a look at the code-behind file, you will see the six variable declarations
and the five methods that Visual Studio has created for us. Although it’s not a requirement, I’m
semi-OCD so I like to move all of my variable declarations to the top of the class file (right under the
constructor) and keep the methods at the end of the class file in the same order as the activities
they belong to.

■Note If you’re coming back through this section for the ASP.NET forms, this is the point at which you want
to stop, check the flux capacitor, and jump ahead to the ASP.NET forms again. If this is your first time through
this chapter, you have no idea what I’m talking about here. Just ignore this little note for now. It will all
become clear in about 20 pages.

Building Our Forms in InfoPath

We’re going to leave Visual Studio for a minute before getting into any of the coding aspects of
our workflow and go through the process of building our forms. You could continue and write
your code and do the forms later. I prefer to do it this way for two reasons:

Table 7-6. Property Settings for the UpdateTask Activity

Property Setting Notes

CorrelationToken taskToken

CorrelationToken\
OwnerActivityName

MarketingCampaign

TaskId Use the Bind dialog box to bind to the
existing taskID variable.

TaskProperties Use the Bind dialog box to bind to the
existing taskProperties variable.

Table 7-7. Property Settings for the CompleteTask1 Activity

Property Setting Notes

CorrelationToken taskToken Select from the drop-down list.

TaskId Use the Bind dialog box to bind to the existing
taskID property.

Mann_700-1C07.fm Page 217 Monday, January 22, 2007 3:20 PM

218 C H A P T E R 7 ■ W O R K F LO W F O R M S

• Some pieces of the coding part of the project (like schema definitions and field names)
are dependent on the forms. Building the form first lets you drop everything in place as
you write your code.

• The rich design environment of Visual Studio is a great place to fine-tune your require-
ments and prototype the user interface for end users before writing much, if any, code.
If the users change a requirement after you’ve written code (I can hear your startled
gasps—that never happens!), it’s a lot harder to change. If all you’ve done is drop some
activities onto the canvas and put together some forms in InfoPath, changes are a lot
easier to absorb. In addition, these two aspects deliver some nice eye candy to show to
end users to help explain the process.

So, let’s dig into InfoPath. We’ll build the initiation form first and then the task form.

■Note For our scenario, there is no data that we need to collect when a workflow is associated with a
particular list so we will not be using an association form. The process of working with an association form
would be nearly identical to what we’ll cover here for an initiation form.

Building the Initiation Form

Open InfoPath 2007 and select the option to design a new, blank form. The InfoPath design
view opens and presents you with a blank form and the Design Tasks tool pane. Click the
Controls option and drag two textboxes onto your form. Double-click on the first textbox to
bring up its Properties window. On the Data tab, change the Binding Field name to marketing-
directoremail. At the bottom of the Data tab, in the Validation and Rules section, select the
Cannot Be Blank checkbox. Click OK to close the window. Repeat the process for the second
textbox, but change the Binding Field name to trafficcoordinator.

■Caution Be careful with your field names—XML is case sensitive. All of the field names you enter in
InfoPath here end up as XML elements. A misplaced capital letter can really throw things into a tizzy.

Drag a Button control out onto the form and, in its Properties window, change its Label to
Submit. In order to wire it up to actually submit our form, we need to add some rules:

1. At the bottom of the General tab, click the Rules button.

2. Name the rule something clever, like Submit.

3. Click the Add Action button.

4. Select Submit Using a Data Connection from the drop-down menu.

5. Click the Add button.

Mann_700-1C07.fm Page 218 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 219

6. In the Data Connection wizard, accept the default of Create a New Connection to
Submit Data by clicking Next.

7. Select To the Hosting Environment… for your destination, then click Next.

8. Click Finish to close the wizard.

9. Click OK to close the Add Action dialog box.

Once our form is submitted back to the server, there is one last thing we need to do—close
the form. We handle that with another rule. Follow steps similar to those earlier (starting with
step 3) to add a Close the Form action. You must uncheck the If Changes Have Not Been Saved
checkbox before clicking OK. Click OK a few more times to exit the dialog boxes.

Add some descriptive labels directly onto the form to indicate what data goes into each
field. When you are done, your form should look like Figure 7-8.

Figure 7-8. Our basic initiation form all laid out on InfoPath

This form is pretty straightforward. It presents an interface to collect two pieces of infor-
mation. The fields are named such that when we access them from our code, they’ll make
sense. The last thing we’ll need to do to make our coding easier is customize our data source a
bit. For those of you not familiar with InfoPath, it automatically builds an XML schema (which
is called your data source) behind the scenes. When users complete a form, the data is saved in
an XML file that matches that schema. In our case, as we’ll see in a moment, that XML file is
submitted to the server and accessed by our workflow. To make our coding a little bit more
straightforward and logical, we’re going to rename the top-level element of this schema to
something that makes a little more sense. In addition to forming the structure of our XML data,
this top-level name also becomes the name of the object we use to access the XML data. To
rename this element, in the Controls tool pane, click the Design Tasks link at the top to return
to the Design Tasks tool pane. This time, select the Data Source menu option to view the data
source for our form. Right-click on the myFields entry at the top of the tool pane and select
Properties from the context menu. In the Field or Group Properties dialog box, change Property
Name to InitForm. You’ll see this name reappear shortly in this section and then again when
we’re writing our code. Click OK to close the dialog box.

Mann_700-1C07.fm Page 219 Monday, January 22, 2007 3:20 PM

220 C H A P T E R 7 ■ W O R K F LO W F O R M S

The last thing we need to do before publishing our form is to check that it will be able to be
rendered into a browser by the Forms Server. We do this with the Design Checker:

1. In the tool pane, again click on the Design Tasks link.

2. From the Tasks menu, select Design Checker.

3. In the Form Options dialog box, in the Browser Compatibility section, select the Design
a Form That Can Be Opened in a Browser or InfoPath option and click OK.

4. There should be no errors or warnings.

The last step is to set the security on our form so that it can operate in our environment:

1. Inside InfoPath, click Tools ➤ Form Options.

2. Select the Security and Trust category.

3. Uncheck the box next to Automatically Determine Security Level (Recommended).

4. Select the Domain radio button.

5. Click OK.

That’s it; our first InfoPath form is done. All we need to do is save and publish it. First, save
the form to your hard drive. To save yourself some hassle, do not save the files to the same
directory as your Visual Studio solution or to a subdirectory of that solution folder—I’ll explain
why in just a moment.

We can now publish our form:

1. Click File ➤ Publish.

2. In the Publishing wizard, select the option to publish To a Network Location and click
Next. You might think that you want to publish to a SharePoint server. Ultimately, you’re
correct—that will be our destination—but for now we’re just publishing to a network
location. We’ll move the forms to the SharePoint server as part of deploying our workflow.

3. Click the Browse button and navigate to your solution folder. Make sure that the Form
Template Name is set to InitForm and click Next. I mentioned just a bit ago about not
saving to your solution folder—this step is why. By publishing our form to our solution
folder, it simplifies deployment, as we’ll see shortly. If we had saved the files here, we
would have had a conflict.

Mann_700-1C07.fm Page 220 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 221

4. In the next step of the wizard, it is very important that you clear the alternate access
textbox—it must be totally blank or your forms won’t be rendered properly by SharePoint.
With the field blank, click Next.

5. If you get a warning message about users not being able to access the form from this
location, ignore it by clicking OK. Our users will be accessing the form from SharePoint.
If you don’t get this message box, you didn’t set your security to Domain. Shame on you.

6. In the next step of the wizard, click Publish.

7. The final step of the wizard should tell us that our form was successfully published.
Keep both checkboxes unselected and click Close.

Our initiation form is now published and ready to go. Before we close it, however, we’re
going to take one more step to generate some files we’ll need while writing our code:

1. Click File ➤ Save As Source Files.

2. Select our solution folder in the dialog box that pops up.

3. Click OK.

That’s it. If you look in your solution folder, you should see five new files:

• manifest.xsf

• myschema.xsd

• sampledata.xml

• template.xml

• view1.xsl

From all of these, we really only need the myschema.xsd file, but the others are nice to have.
Regardless of your form name, data source name, InfoPath filename, etc., the saved schema
file is always called myschema.xsd. We’ll make use of the XSD file in a few minutes. So that we
don’t get it confused with the schema from our task form—which we’re building next—close
your form in InfoPath and then rename myschema.xsd to InitFormSchema.xsd.

Initiation form built and published—check. It’s time to build the task form.

Building the Task Form

The task form is not going to be very different from the initiation form. You can repeat most of
the same process from earlier. I’ll walk you through it again but in less detail this time. If you
have questions, refer to the previous pages.

Create a new form in InfoPath and add controls and label text so that it looks like Figure 7-9.

Mann_700-1C07.fm Page 221 Monday, January 22, 2007 3:20 PM

222 C H A P T E R 7 ■ W O R K F LO W F O R M S

Figure 7-9. The Design view of our Task Edit form in InfoPath

The Task Instructions and Comments fields are set up similar to the two textboxes we set
up on the initiation form. The only differences are that these two are set to be multiline fields
and the Instructions field is set up to be read-only. The Task Instructions textbox should have
a field name of taskinstruction, the Comments textbox should have a field name of taskcomments,
and the Task Complete checkbox should have a field name of taskcompleted. Set up the Submit
button the same as we did on the initiation form earlier. Make sure that the rules for the button
are set up the same, too.

There is one unique step for the task form that is not required for any other type of form.
When SharePoint is configured to display a task form, it needs a mechanism to pass values
from the current task to the form in order to be displayed. This is necessary because of the split
nature of tasks between SharePoint and Workflow. While the association and initiation forms
are only used by the workflow, this is not true with task forms. Task forms exist as part of SharePoint
and can be modified directly within SharePoint—adding a column, for example, through
SharePoint for one particular task list; worse still would be the deletion of an existing column.
If that task form was passed into a workflow, the workflow would not know how to handle the
extra, or missing, column. This could cause all kinds of problems. Instead, Microsoft opted to
just pass in the task data as XML. The workflow can parse and deal with any data now because
it is not tied to a fixed schema.

Mann_700-1C07.fm Page 222 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 223

■Note While task forms can be shared across tasks, there is nothing that requires this. You can have
unique task forms for each task in your workflow. You just need to specify the correct information for each
task in your deployment files.

The mechanism for receiving this information is an XML file named ItemMetadata.xml,
which provides the schema for our received data. If any of you worked with workflows during
the beta cycle, you know that this file was required. Without it, SharePoint would crash when-
ever you tried to load task forms. In the final release, this problem was fixed. The file is no longer
required, though it makes for a pretty boring task form without it, so in all likelihood, you will
be using it.

■Caution The filename ItemMetadata.xml is case sensitive. You must match the case as shown here
or you will still get an error, even if the file is otherwise configured and bound correctly.

To configure this correctly, you must create the ItemMetadata.xml file and then bind that
file to your form as a secondary data source by following these steps:

1. In your solution folder, create a text file named ItemMetadata.xml—remember about
the case-sensitive filename!

2. Add the following line to the top of the file: <z:row xmlns:z="#RowsetSchema" />.

If there are no data elements that you need in your task form, you are finished with this
file—you can save and close it. If there are some fields that you need to have available to your
form, add them to the file. To do this, for each field that you need available, add the field name
as an attribute to the z:row tag and set it equal to an empty string. There is one important point
to remember for this—you must prefix each field name with ows_. For our scenario, we need
the taskinstructions and taskcomments fields available, so we will add an attribute of ows_
taskinstructions and an attribute of ows_taskcomments. Our finished ItemMetadata.xml will
look like this: <z:row xmlns:z="#RowsetSchema" ows_taskinstructions="" ows_taskcomments=
"" />. After adding an attribute for each field (in our case, just the two) you can save and close
the file.

If we’re using the ItemMetadata.xml file, we need to add the schema to our task form as a
secondary data source:

1. From the InfoPath Data Source task pane, click Manage Data Connections.

2. Click Add.

3. Configure the options to create a new connection to receive data.

4. Click Next.

Mann_700-1C07.fm Page 223 Monday, January 22, 2007 3:20 PM

224 C H A P T E R 7 ■ W O R K F LO W F O R M S

5. Click the option to receive data from an XML document.

6. Browse to your ItemMetadata.xml file and select it.

7. Click the Resource Files button.

8. Click Add.

9. Browse to your ItemMetadata.xml file and select it.

10. Click OK and then Next.

11. Make sure the option is selected to automatically retrieve data.

12. Click Finish.

Once the data source is created, if you need to retrieve any of the task data for your form,
you can bind the specific fields to the new data source. In our case, we need to retrieve the
taskinstructions and taskcomments fields, so we’ll bind those to our new data source:

1. Double-click on the taskinstructions textbox to bring up the Properties window.

2. Click the function button to the right of the Value textbox.

3. Click the Insert Field or Group button.

4. Select the ItemMetadata (Secondary) data source from the drop-down list.

5. Choose the ows_taskinstructions field.

6. Click OK a few times to exit all of the dialog boxes.

Repeat the steps for the taskcomments field.
That’s all we need to do as a special step for our task form. We can now go back to finishing the

task form just as we did earlier with the association form. Repeat the same process from before:

1. Make the form browser-compatible (in the Design Checker).

2. Rename the top-level element of your data source (to TaskForm).

3. Change the security setting on the form.

4. Save the form to a folder other than your solution folder.

5. Publish the form to your solution folder. Be sure to name the form TaskForm and to
clear out completely the alternate access textbox.

6. Save the source files for this form and rename the XSD file to TaskFormSchema.xsd.
When prompted about overwriting files, you can click OK. The only file we really need is
the XSD, and that one won’t be overwritten because we renamed it in our first go-
around.

Both of our forms are now complete. We can close InfoPath and return to Visual Studio to
write our code, compile, and deploy.

Mann_700-1C07.fm Page 224 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 225

Writing the Code in Visual Studio

We’ve created two forms for use in our scenario. The code we write now needs to handle our
workflow’s interaction with each. Let’s get started with the initiation form.

Initiation Forms

Looking at our initiation form, there are a few pieces of information that we collect:

• The name of the senior traffic coordinator

• The email address of the regional marketing director

To work with these pieces of information, we need to assign them to local variables within
our workflow class. Declare the private variables shown in Listing 7-1 at the top of your class file.

Listing 7-1. Private Variable Declarations

private string sTrafficCoordinator = default(String);
private string sMarketingDirectorEMail = default(String);

Now that we have a place to store the values, we need to get the values and store them.
Then we can use them where and how we need to. To understand the two approaches we could
take to retrieve this data from the forms, we need to know how it is made available to us. The
SPWorkflowActivationProperties class exposes two members that are of interest to us here—
InitiationData and AssociationData.

When our workflow is associated with a particular list by an administrator, the
AssociationData property gets populated with an XML string that contains the values supplied
on the association form. When an instance of our workflow is initiated by a user on a particular
list item, the InitiationData property gets populated with an XML string that contains the
values supplied on the initiation form. A sample schema for these two properties is shown in
Listing 7-2. Looking at this schema reveals that our individual properties are stored as XML
elements.

Listing 7-2. A Sample XSD Schema for an Association or Initiation Form

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema targetNamespace="http://schemas.microsoft.com/office/➥

infopath/2003/myXSD/2006-06-15T12:34:02" ➥

xmlns:my="http://schemas.microsoft.com/office/infopath/2003/ ➥

myXSD/2006-06-15T12:34:02" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="InitForm">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="my:trafficcoordinator" minOccurs="0"/>
 <xsd:element ref="my:marketingdirectoremail" minOccurs="0"/>
 </xsd:sequence>
 <xsd:anyAttribute processContents="lax" namespace="http://www.w3.org/XML/➥

1998/namespace"/>
 </xsd:complexType>

Mann_700-1C07.fm Page 225 Monday, January 22, 2007 3:20 PM

226 C H A P T E R 7 ■ W O R K F LO W F O R M S

 </xsd:element>
 <xsd:element name=" trafficcoordinator " type="xsd:string"/>
 <xsd:element name=" marketingdirectoremail" type="xsd:string"/>
</xsd:schema>

Listing 7-3 shows a sample of the data from the InitiationData property from our current
scenario. This example is quite simple, which makes it easy to see how the data is stored and
could be retrieved. Even more complex property structures can be just easily retrieved with
some simple XPath expressions.

Listing 7-3. Sample Data from SPWorkflowActivationProperties.InitiationData

<my:InitForm xml:lang=\"en-US\" xmlns:my=\"http://schemas.microsoft.com/office/➥

infopath/2003/myXSD/2006-06-15T12:34:02\">
 <my: trafficcoordinator >
 kcd\\Administrator
 </my: trafficcoordinator >
 <my: marketingdirectoremail >
 User1@kcd.com
 </my: marketingdirectoremail >
</my:InitForm>

Now that you we see how the data entered into our initiation form is available to us, let’s
discuss the two options for retrieving it and working with it in our workflow:

• Query the InitiationData or AssociationData property, retrieve the XML, and manually
parse it to retrieve the information we need.

• Use the .NET Framework command-line tool, xsd.exe, to generate a class based on our
particular schema and use XML serialization to create an object based on that class. The
values from our forms will then be available as properties of that object.

For this example, we’ll use the second approach. In general, this is a far simpler and more
robust solution than manually writing a bunch of code that has to be maintained. I strongly
recommend that you use this approach.

■Note As mentioned previously, we’re not making use of an association form in this scenario. If you need
to, the only significant difference would be that you would work with the AssociationData property instead
of the InitiationData property. I suppose that was a pretty obvious difference but I figured I’d mention it
anyway. If I were being paid by the word, I’d have just picked up an extra 37 cents—look out retirement, here
I come!

We have two XSD files that we need to process to build classes from—one for each of our
forms. The process for each is identical:

Mann_700-1C07.fm Page 226 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 227

1. Open a Visual Studio 2005 command prompt (there should be an icon for this under
Start ➤ All Programs ➤ Visual Studio 2005 ➤ Visual Studio Tools).

2. In the Command window, navigate to your solution folder.

3. Run the following command: xsd initformschema.xsd /c.

The XSD utility will whir and pop for a few seconds and then be complete. After a momen-
tary victory dance around your chair, it’s time to repeat the process for the other schema file
(taskformschema.xsd) and then continue.

Back in Visual Studio, add your newly created class files to your project (the new class files
are going to be listed under their corresponding XSD files). If you open them to take a look,
you’ll see that they are made up essentially of just properties—one for each data point we
collect on our form. With those in place, we can use them in our code.

Open the MarketingCampaign.cs file in Visual Studio. While we were configuring the prop-
erties for our activities, an onWorkflowActivated property was automatically generated for us
when we set the Invoked property of the onWorkflowActivated1 activity. Find this method now
in the code-behind file and add the code from Listing 7-4 the body of the method.

Listing 7-4. Using XML Serialization to Retrieve Our Form Values

XmlSerializer serializer = new XmlSerializer(typeof(InitForm));
XmlTextReader rdrInitForm = new XmlTextReader(new System.IO.StringReader➥

(workflowProperties.InitiationData));
InitForm frmInit = (InitForm)serializer.Deserialize(rdrInitForm);

sTrafficCoordinator = @"kcd\" + frmInit.trafficcoordinator;
sMarketingDirectorEMail = frmInit.marketingdirectoremail;

At a high level, this code uses the XML contents of the InitiationData property to create
an instance of the InitForm object. The deserialization process maps the values from the XML
elements trafficcoordinator and marketingdirectoremail to properties of the InitForm object.
Those values are then available to us from there. As mentioned earlier, this process could be
handled with manual parsing of the XML but this strategy is much simpler. Unless you need
some unique handling, I strongly recommend this approach.

Now that we have the values from our initiation form, we can use them to deliver the func-
tionality we need: sending an email and assigning a task. First we’ll cover the email.

Like the onWorkflowActivated method, Visual Studio also creates an onSendEmail method
for us as we set the properties of the SendEmail activity. If you recall from Table 7-2, we set all
of the standard email properties except To and Body. The onSendEmail method is called when
the activity begins executing but before it attempts to send the email, so it is the perfect place
to finish setting these values.

From the initiation form, we have the email address of the person we need to send an
email to—the regional marketing director—in the sMarketingDirectorEMail variable. As I said
before, in a real application we would have collected the name of the marketing director and
performed a lookup to retrieve their email address, but for this walkthrough we’re keeping
non-workflow-related tasks as simple as possible. Setting the To property of our SendEmail
activity is a simple matter of assigning the value of sMarketingDirectorEMail to it, like this:

Mann_700-1C07.fm Page 227 Monday, January 22, 2007 3:20 PM

228 C H A P T E R 7 ■ W O R K F LO W F O R M S

sendEmail1.To = sMarketingDirectorEMail + "@kcdholdings.com". Naturally you’ll need to
change the domain name to one that works in your environment.

Easy enough. The other piece of information we need to set for our email is the Body. We
want to include some information about the particular marketing campaign and a link back to
the document in the message to the marketing director. We’ll retrieve this information from
the WorkflowProperties object. Add the code in Listing 7-5 to the onSendEmail method.

Listing 7-5. Setting the Email Body

string sItemTitle = workflowProperties.Item["Name"].ToString();
string sItemURL = workflowProperties.ItemUrl;
sendEmail1.Body = string.Format("New Marketing Campaign: {0}. URL:{1}", ➥

sItemTitle, sItemURL);

That’s it for the SendEmail activity. Now we need to add the code to customize our task.
Again, Visual Studio has created an empty method for us; go ahead and find the onCreateTask
method in your code-behind file. Like the onSendEmail method, this method is called by the
activity before the task is actually created. We need to set up certain parameters for the task
before it is created. Add the code in Listing 7-6 to your method.

Listing 7-6. Creating Our Task in C#

taskID = Guid.NewGuid();
taskProperties.Title = "New Marketing Campaign";
taskProperties.AssignedTo = sTrafficCoordinator;

string sItemTitle = workflowProperties.Item["Name"].ToString();
string sItemURL = workflowProperties.ItemUrl;
string sOriginator = workflowProperties.Originator;

taskProperties.Description = string.Format("New Marketing Campaign: {0}. URL:{1}", ➥

sItemTitle, sItemURL);
taskProperties.ExtendedProperties["taskinstructions"] = string.Format("Please review ➥

this proposed marketing campaign and let {0} know if there are any scheduling➥

 issues.Thanks!", sOriginator);

■Caution Field names in the InfoPath forms and the ExtendedProperties object are case-sensitive.
If they don’t match, you’ll have problems.

Looking at either of these code listings, they’re pretty straightforward, except perhaps
for the last line where we’re working with something called ExtendedProperties. The
ExtendedProperties property of the SPWorkflowTaskProperties object is a hash table that
allows you to store any number and combination of key-value pairs of extra information. In
this example, we want to store the instructions for this particular task. These will get passed to

Mann_700-1C07.fm Page 228 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 229

the task form we created in InfoPath. The ExtendedProperties mechanism shows some of the
flexibility and power available to our workflows.

The last functionality we need to add with code is to check whether or not the traffic coor-
dinator has indicated that their task is complete. There are two elements to this. First, the While
activity references a taskComplete method; this method is checked to determine whether the
While activity should continue processing. Add this code to the empty taskComplete method:
e.Result = !taskCompleted;. Add a variable declaration at the top of your class file with the
other variable declarations to create a Boolean variable named taskCompleted. In your code-
behind file, you should also have an empty method for onTaskChanged. This method gets called
when the associated task is modified by an end user (i.e., when the traffic coordinator submits
the task form). In this method, we’ll check whether the user has indicated that the task is
complete; if so, our While activity can stop looping and the workflow can continue on with the
next activity. If not, the While activity will reenter the loop and wait for the task to be changed
again. We’ll also grab any comments that were submitted and make sure that they get stored in
the task so that they can be retrieved again to be displayed. The code that handles this is in
Listing 7-7. Go ahead and add it to your empty onTaskChanged method.

■Caution Any of the taskProperties properties that we access are merely snapshots in time. They
are not linked to the actual task in any way, so if the task changes, we will not see that change. Similarly,
changing these property values will not change the task itself.

Listing 7-7. Checking Whether the Task Is Complete and Capturing Comments

taskCompleted= bool.Parse(afterProperties.ExtendedProperties➥

["taskcompleted"].ToString());
taskProperties.ExtendedProperties["taskcomments"] = ➥

afterProperties.ExtendedProperties["taskcomments"].ToString();

■Tip Notice in Listing 7-7 that we are referencing an object variable called afterProperties. When we
were configuring our activities, we created this object (and one called beforeProperties) as part of our
onTaskChanged activity. These objects give us access to the original values of our task properties before the
user submits the task form (in beforeProperties) as well as the new values submitted on the form (in
afterProperties). If we needed to, we could access these properties as part of the onTaskChanged
method and do something—disallow changes, log changes, and so forth. In this scenario, we just need to
make sure that the comments are saved, but you get an idea of what some of the possibilities are.

All of our code is finished now. We can compile our project and move on to deployment.
Ultimately, our assembly is going to be deployed to the GAC, so you’re going to have to strong-
name it. Configure your key file in the Project properties window (on the Signing tab), save your
solution, and then go ahead and build. Take care of whatever rituals you need to before building
(personally, I’m fond of the “shake-the-rubber-chicken-over-the monitor-while-chanting” ritual,

Mann_700-1C07.fm Page 229 Monday, January 22, 2007 3:20 PM

230 C H A P T E R 7 ■ W O R K F LO W F O R M S

but you just take whatever approach you’re accustomed to in order to appease the compiler
gods). If you’ve lived a righteous life (and if you typed all of the code in correctly), the project
will compile. If not, well, you’re on your own—go back and review the code in this section and
the configuration of your activities. The rest of us are moving on to…

(Cue trumpets...)

Deploying Our Custom Workflow

As we saw in Chapter 6, deployment of our custom workflows is not as straightforward as we
would like. We covered most of this in Chapter 6, but I’m going to rehash it here because there
are a few new elements (the information to deploy our forms, for example) and the steps and
details are so interrelated that just giving you the deltas and forcing you to flip back to Chapter 6
for the rest is a recipe for disaster. Forgive me for the duplication and padding out the book, but
in this instance, I think it’s worth it. Let’s get started.

Be glad you’re tackling deployment in the final release of the product. In the beta cycle,
deployment was a nightmare of interrelated moving parts that practically set you up for failure
the first few times you tried it.

OK, so maybe it wasn’t that bad, but it is a lot easier now. We’re going to cover just the
development deployment here. Deploying for production was covered back in Chapter 6 and
the steps are nearly identical; I’m sure you’ll be able to figure out the slight differences.

For development, there are two files we need to work with:

• feature.xml

• workflow.xml

■Note Deploying our workflow to SharePoint is going to make use of the SharePoint Features functionality.
While you can get through this section without a deep understanding of Features, it would help if you had
some knowledge.

Taking these one at a time, we’ll start with feature.xml.
Open the feature.xml file that the project template has created for your solution (under

DeploymentFiles\FeatureFiles in Solution Explorer). Initially, there’s nothing of much value
in this file, other than some instructions for inserting a Code Snippet. Make sure that your
cursor is positioned at the end of the file and then follow the instructions provided to insert the
feature.xml Code Snippet. You will end up with a file that looks like Figure 7-10.

Mann_700-1C07.fm Page 230 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 231

■Tip If the workflow Code Snippets aren’t showing up, click on Tools ➤ Code Snippets Manager, select
XML from the Language drop-down, and add C:\Program Files\Microsoft Visual Studio 8\
Xml\1033\Snippets\ SharePoint Server Workflow to your snippets collection.

Figure 7-10. Our feature.xml file after inserting the Code Snippet

Figure 7-10 loses a little bit of its usefulness when it gets printed in black and white, but
take a look at your screen. The parts highlighted in green are the ones we’re interested in. These
are the pieces we need to customize for our particular workflow. Table 7-8 provides details on
the changes we need to make to each of these entries in our feature.xml file.

Mann_700-1C07.fm Page 231 Monday, January 22, 2007 3:20 PM

232 C H A P T E R 7 ■ W O R K F LO W F O R M S

The other elements of the file can remain as is. Save and close feature.xml; we're done with it.

■Note When our workflow is deployed, feature.xml will be copied to the server underneath the FEATURES
folder. When you specify a path, for example for the ElementManifest attribute, make sure that your path
is relative to the server folder hierarchy.

Open workflow.xml from the Solution Explorer. Repeat the same process to insert the
workflow.xml Code Snippet. Your screen should look like Figure 7-11. Table 7-9 details the
changes to make.

Table 7-8. Customizing feature.xml After Inserting the Code Snippet

Entry New Value Description

Id Create a new Registry-format
GUID (but be sure to delete
the opening and closing braces
after inserting it).

This entry uniquely identifies
your new Feature.

Title MarketingCampaign This value will show up in the list
of Features deployed to your site.

Description This Feature encapsulates the
custom workflow to process a
new marketing campaign.

The description will show up
under the title in the list of
Features.

Element Manifest
Location

workflow.xml Leave this entry set to its
default. Since our workflow.xml
file is located in the same
directory as our feature.xml,
we don’t need to specify the full
path to it. If for some reason
this were not the case, you
would need to specify the full
path and filename for your
workflow definition file.

<ElementFile
Location="MyForm.xsn"/>

<deleted> Delete this entry; we won’t
need it.

Mann_700-1C07.fm Page 232 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 233

Figure 7-11. Our workflow.xml file after inserting the Code Snippet

Table 7-9. Customizing workflow.xml After Inserting the Code Snippet

Entry New Value Description

Name MarketingCampaign. The name of our workflow as it will
appear to administrators when they
associate it to a list.

Description This workflow enforces the
business process for new
marketing campaigns.

The description will show up to admi-
nistrators when they select our workflow
during the association process.

Id Create a new Registry-format
GUID (again, be sure to delete
the opening and closing braces
after inserting it).

This entry uniquely identifies your
new workflow.

CodeBesideClass MarketingCampaign.
MarketingCampaign.

The name of your project and the name
of your workflow class, separated by
a period.

CodeBesideAssembly The fully qualified strong name
of your assembly.

For help retrieving the proper value for
this entry, see the sidebar “What’s in a
(Strong) Name?” in Chapter 6.

TaskListContentTypeId 0x01080100C9C9515DE4E2400 ➥
1905074F980F93160.

We did not create a custom content
type for our task so we can just accept
the default value.

Mann_700-1C07.fm Page 233 Monday, January 22, 2007 3:20 PM

234 C H A P T E R 7 ■ W O R K F LO W F O R M S

Leave everything else at its defaults. That takes care of workflow.xml.

■Note One thing to notice in Table 7-9—the InstantiationUrl and Instantiation_FormURN entries really are
Instantiation, even though everywhere else, this form is called the initiation form. Someone at Microsoft got
their words mixed up…

AssociationUrl _layouts/CstWrkflIP.aspx. Accept the default value. For infor-
mation related to this entry, see the
sidebar “So Just How Are Our Forms
Rendered Anyway?” later in this chapter.

InstantiationUrl _layouts/IniWrkflIP.aspx. Accept the default value. For infor-
mation related to this entry, see the
sidebar “So Just How Are Our Forms
Rendered Anyway?” later in this chapter.

ModificationUrl _layouts/ModWrkflIP.aspx. Accept the default value. For infor-
mation related to this entry, see the
sidebar “So Just How Are Our Forms
Rendered Anyway?”

Association_FormURN For this scenario, we do not have an
association form. You can delete this
entire entry—opening tag, value, and
closing tag.

<Instantiation_FormURN> The unique URN for your
initiation form.

See the sidebar “Ode on an InfoPath
URN” later in this chapter for
information on retrieving the proper
values.

Task0_FormURN The unique URN for your
task form.

See the sidebar “Ode on an InfoPath
URN” for information on retrieving the
proper values.

Modification_GUID_
FormURN

For this scenario, we do not have a
modification form. You can delete this
entire entry—opening tag, value, and
closing tag.

Modification_GUID_Name For this scenario, we do not have a
modification form. You can delete this
entire entry—opening tag, value, and
closing tag.

Table 7-9. Customizing workflow.xml After Inserting the Code Snippet

Entry New Value Description

Mann_700-1C07.fm Page 234 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 235

SO JUST HOW ARE OUR FORMS RENDERED ANYWAY?

In our workflow.xml file we accepted the default values for the AssociationUrl, InstantiationUrl,
and ModificationUrl entries. That’s great, but what exactly do these entries do and what are those ASPX
pages that are referenced in the values? The answer is so simple it just might surprise you—someone back
at Camp Redmond gets a gold star on the refrigerator for devising a scheme that is the perfect mix of simplicity
and power.

I’ll use the initiation form as an example, but the association and modification forms operate in a similar
way. What happens is this:

When a new instance of a workflow is started on a list item, SharePoint checks the InstantiationUrl
entry in the workflow.xml file for that workflow template. SharePoint now knows which ASPX page to load
and its job is essentially done. The ASPX page loads and finishes the process of loading our form, independent
of SharePoint. In the case of InfoPath forms, the ASPX page that loads is one provided by Microsoft as part of
the product. That ASPX page contains a special web part that handles the rest of the form interaction. It reads the
Instantiation_FormURN from the workflow.xml file to identify the specific form that it needs to load and
present to the user. Mission accomplished.

Now we’re at the point where Microsoft really cleaned up the deployment process coming
out of the beta. Previously, there was a file named install.bat that did the actual deployment.
Hold your comments about doing deployment with a batch file because it really makes perfect
sense, and, guess what—we’re still using one; it’s just better hidden from us, and we don’t need
to edit it manually the way we did during the beta. The reason that the batch file (how ’80s!)
makes perfect sense is because of the tasks it is completing. At a very high level, the major steps are

1. Copy the required files to a directory on the server.

2. Add your assemblies to the GAC.

3. Verify the InfoPath forms.

4. Install and activate the Feature, making it available on the site for which you specified
a URL.

5. Reset IIS so that your changes are recognized by the server.

As you can see, when you look at what is happening, a batch file is the best way to go.
Fortunately, as I said, things are a lot easier now (at least while we’re using InfoPath forms). We
no longer need to edit the file manually and it is integrated right into the build process within
Visual Studio for us by the MOSS SDK project templates.

Mann_700-1C07.fm Page 235 Monday, January 22, 2007 3:20 PM

236 C H A P T E R 7 ■ W O R K F LO W F O R M S

ODE ON AN INFOPATH URN

Sigh. Bad pun—my apologies to John Keats.
Anyway, as you likely know, URN is an acronym for Universal Resource Name. According to RFC 2141

from the Internet Engineering Task Force (IETF), URNs are “intended to serve as persistent, location-independent,
resource identifiers” (http://www.ietf.org/rfc/rfc2141.txt). Great, that and five bucks will buy me
a coffee. What does that really mean and why should we care?

We care because InfoPath uses URNs to uniquely identify our forms. Technically, URNs are not guaran-
teed to be unique. It is possible for two InfoPath forms to have the same URN, but you’d almost need to force
it to happen. So, for our purposes, consider URNs to be unique. The important part of the URN, harkening back
to the IETF definition, is that they are location-independent. Unlike URLs, which are very location-dependent,
the URNs for our forms are going to be the same whether they come from our local hard drive or whether they
are delivered from the SharePoint server. This is important because the location of our forms is almost guar-
anteed to change. We develop them and set the configuration for them locally and then the deployment
process copies them to the SharePoint server.

I won’t go into the makeup of the InfoPath URN here. InfoPath generates them for us—we never need to
worry about that—so it’s not that important to know what the various pieces mean. If you’re interested, there’s
a pretty good blog entry from the InfoPath team located at http://blogs.msdn.com/infopath/archive/
2004/05/20/136165.aspx that explains the makeup of the InfoPath URN.

Intellectually, all of that is quite stimulating and someday it will win you a trivia contest. But honestly, who
cares? All I want to know is “How do I get the URN for my form so I can put it into my workflow.xml file,
finish this workflow, and go home?” Easy. Open your form from your solution folder (the published version of
the form) in Design mode. Click File ➤ Properties and copy the URN from the ID field. Paste it into the appro-
priate place in your workflow.xml file and you’re good to go.

Configuration of the deployment is handled right from within Visual Studio. Inside your
project properties is a Build Events tab. Click it and you’ll see an entry for the postbuild event
that looks like Listing 7-8. The last parameter on that command line is the one we’re interested
in. It starts out as NODEPLOY. This tells the batch file to build our project but not to do any of the
deployment steps. This allows us to do interim builds to see how things are progressing and
whether we’ve broken anything, without wasting time deploying to the server before we’re ready.

Listing 7-8. The Postbuild Command

call "$(ProjectDir)\DeploymentFiles\PostBuildActions.bat"➥

 "$(ConfigurationName)" "$(ProjectDir)" "$(ProjectName)" ➥

"$(TargetDir)" "$(TargetName)" NODEPLOY

Once you have completed your development and are ready to deploy, simply change the
NODEPLOY parameter to DEPLOY. Now, as part of the build process, the batch file will perform the
steps to deploy our workflow to the server.

Mann_700-1C07.fm Page 236 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 237

■Tip There is one additional option available to control the processing of our build and deployment cycle. If
you have made changes only to the code files—either through the Designer or by actually writing code—all
you need to do is update the assembly in the GAC. There is no need to redeploy the whole Feature to Share-
Point. In this case, append a QUICK parameter to the end of the postbuild command line (after DEPLOY). Now
upon a successful build, the GAC will be updated and IIS reset so that your new assembly is used. Just remember
to take this parameter off if you make changes to forms or any of the XML files, or they will not be updated.

Getting back to our example, we’re now ready to deploy our project to our development
server. Open the properties and change NODEPLOY to DEPLOY and you’re ready to go (that was
easy). Save your solution before continuing and then build your project. You’ll notice that the
output from the batch deployer is shown in the output window in Visual Studio. You may see
some error messages, for example when GACUtil tries to remove your assembly (the –uf line in
postbuildactions.bat). The first time you deploy, there is nothing to remove. There are other
similar situations like this, especially the first time you run the deployment. If you see other
errors, however, you’ll need to do some troubleshooting. It is likely that the problem will be in
a misconfigured feature.xml or workflow.xml, or you forgot to sign the assembly.

If there are no unexpected error messages, you’re done. Your workflow feature is success-
fully installed. Now we can test it out.

Testing Our InfoPath Forms Workflow

Before we can test our workflow, we need to associate it with a document library. We’ve previously
walked through these steps, but at a high level, they are as follows:

1. From the settings page for the document library, go into Workflow Settings.

2. Add a new workflow based on the Marketing Campaign Workflow template, giving it a
unique name.

Because we didn’t create an association form, you won’t see a form pop up here. After the
workflow is associated, we need to kick off an instance of it on a document:

1. From a document in the same document library, select Workflows from its drop-
down menu.

2. Click the name that you gave the workflow in step 2 earlier.

3. Our initiation form will now pop up, as shown in Figure 7-12. Fill in valid values for your
environment and click Submit.

Mann_700-1C07.fm Page 237 Monday, January 22, 2007 3:20 PM

238 C H A P T E R 7 ■ W O R K F LO W F O R M S

Figure 7-12. Our custom initiation form in action

4. Once the form is submitted, our workflow will create and assign a task to the person you
specified as the traffic coordinator and will send an email to the account you specified
for the marketing director. The task, using our custom task form, is shown in Figure 7-13.
Notice the instructions that we put in programmatically are shown in the read-only
Task Instructions field.

Figure 7-13. Our second custom form—this time for task information

5. Open the task form and add some comments, but do not mark the task as complete. Save
the form. The comments will be recorded, but the workflow will not be flagged as complete.

6. Click on the document to open it in Word. If you are logged in as the user to whom the
Task is assigned, you will see the Task information in the Business Bar. In this case, you
can click the Edit This Task button in Word to see our custom form rendered within the
Word client, as shown in Figure 7-14. Notice that it contains the comment we entered in
step 5.

Mann_700-1C07.fm Page 238 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 239

Figure 7-14. Our custom InfoPath form rendered through the Office client. Sweet.

7. Mark the task as Complete within Word and click Submit.

8. Close Word and refresh your browser. The workflow is now marked as Complete.

■Note The form we built was totally unstyled. If we know we’re going to be rendering into the Office client
applications, we can spend a little time styling things to look more integrated.

So there you have it: a brand-new workflow, complete with custom forms. Not too bad;
give yourself a pat on the back and then let’s move on to ASP.NET forms. As you’ll see, these are
a little harder.

Scenario 7-2: Using ASP.NET Forms
Functionally, using ASP.NET forms for your workflow is no different from using InfoPath
forms. You still have association, initiation, task, and modification forms. Users still interact
with your forms the same way (well, actually, there is one difference: having the forms display
inside the Office 2007 client applications is not an option with anything except InfoPath forms
and MOSS).

The one thing that is significantly different—and I’m not kidding when I say significantly
different—is the work necessary to build the ASP.NET forms. Building the ASP.NET forms is a
lot more work. Fortunately, Microsoft has given us some good starting points and some good
building blocks to build our forms from MOSS and WSS SDSs. This set of sample code, white
papers, and documentation provides a wealth of information to any SharePoint developer.

Mann_700-1C07.fm Page 239 Monday, January 22, 2007 3:20 PM

240 C H A P T E R 7 ■ W O R K F LO W F O R M S

■Note Because I’m a nice guy, I’ve done a lot of the legwork for you by tearing the sample projects apart
and distilling them down to a set of template files and a few code snippets. I’ll be referring to these files as
we step through this process. Altogether, they constitute several hundred lines of code—most of which we
won’t need to change. So, instead of making you type all of that out, I’ve packaged them together and posted
them on my web site (www.kcdholdings.com). You’ll want to download the template files before going
much further. While I would love to claim credit for all of this code, I can’t. I added about 5 percent on top of
what came out of Microsoft’s SDKs.

Let’s get started. For simplicity’s sake, we’re going to implement the same scenario with
ASP.NET forms as we did for InfoPath forms. Here’s a refresher on the scenario.

Scenario: Global Marketing Campaigns

In the KCD Holdings Global Marketing department, a common occurrence is naturally the creation of new marketing
campaigns. Often, however, these campaigns are not new. Instead, they have begun as local campaigns that were
successful and are now going to be adapted and introduced globally. The local marketing director in the region that
originated the campaign needs to review global campaigns that originated in their region. They do not actually
approve the campaign, but they are given the opportunity to offer suggestions to fine-tune the campaign based on
their experience as the originating region.

A task is assigned to a marketing traffic coordinator, however. This person is responsible for coordinating all of the
resources necessary for a successful campaign. The task assigned to the traffic coordinator is for them to review
the marketing plan document and approve of schedules, etc.

To facilitate this process, each workflow is constructed to notify the appropriate regional marketing director via
email and assign a task to the traffic coordinator. The initiation form will present the workflow originator with an
interface that will allow them to specify the email address for the appropriate regional marketing director and the
traffic coordinator.

Unlike with the InfoPath forms where there was little real difference between the associa-
tion and initiation forms (and so we only covered the initiation forms), when using ASP.NET
forms the process for association and initiation, while similar, is different enough to warrant
covering them both here. It is important to note, however, that you could use the same form for
both initiation and association—your form and code-behind will just need to contain an amal-
gamation of the details covered here for each individual form as necessary for your particular
situation. For our scenario, the association form will allow the administrator to provide some
initial values as defaults that can be changed in the initiation form.

The first thing we’re going to do is to set up our solution. Set up a new SharePoint Sequential
Workflow project in Visual Studio called MarketingCampaignASP. To make things easier, if
you have both MOSS and WSS, make sure that you use the WSS template; it will be the one that
says “SharePoint Sequential Workflow”. Before we begin working with the actual project itself,
there are a few housekeeping items to take care of first:

Mann_700-1C07.fm Page 240 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 241

• In the project’s Properties window, configure the project to be signed with a strong
name.

• Copy the contents of the ASPXWorkflow folder from the templates you downloaded from
my web site into the root of your solution. Rename each file by removing _template from
the filename.

• Rename the default Workflow1.cs file to MarketingCampaignASPWF.cs in the
Solution Explorer.

• Open MarketingCampaignASPWF.cs in the Designer. Set the CorrelationToken\
OwnerActivityName and WorkflowProperties\Name for the onWorkflowActivated activity
to MarketingCampaignASPWF.

• Open MarketingCampaignASPWF.designer.cs and rename the one reference to Workflow1
to MarketingCampaignASPWF.

• Build the solution. Yes, I know it doesn’t do anything yet. This will allow us to grab the
fully qualified strong name for our assembly when we need it in just a bit. See how clever
we can be?

• Set the six template files we pasted in earlier to be included in the project. You’ll likely
need to click the Show All Items button at the top of the Solution Explorer in order to
see them.

■Caution When you’re doing this for real, you’ll want to give your ASPX files unique names. They’re going
to be copied to the _layouts/ folder so there’s the possibility of contention with other forms that you create
based off these templates. Make sure you also set the correct names in your workflow definition files.

Now we can start working on our project. As I mentioned before, we’re going to implement
the same scenario as we did for the InfoPath forms. The first thing we need to do is to add and
configure all of our activities. Rather than repeat all of those instructions here, I’ll refer you to
the section “Adding and Configuring Activities” earlier in this chapter. Go through those steps
again and then jump back here to begin working with our forms.

■Caution When you’re repeating the steps to add and configure the activities, remember that our
workflow name is now MarketingCampaignASPWF. Any place that the earlier instructions tell you to enter
MarketingCampaign, you’ll want to enter MarketingCampaignASPWF instead.

Shoo, now, on with you…
[Exeunt Omnes… cue intermission music]

Mann_700-1C07.fm Page 241 Monday, January 22, 2007 3:20 PM

242 C H A P T E R 7 ■ W O R K F LO W F O R M S

Welcome back, I hope you had a nice trip. Was the earlier part of the chapter any better the
second time around? Anyway, now that our activities are all set up, we can continue on with
our forms. We’ll start with the association form.

ASP.NET Association Forms

When using ASP.NET forms for workflow association, the process the forms implement is
always going to follow the same basic steps:

• When the form is first loaded, display the appropriate interface to collect the informa-
tion that your workflow needs.

• If you are editing an existing association, read content from the stored association data
and display it for editing.

• When the form is submitted, call the appropriate method, depending on whether this is
a new workflow association or you’re editing an existing association (which you can tell
by examining the GuidAssoc parameter) to process the association:

• AssociateWorkflowTemplate for new associations

• UpdateWorkflowTemplate for editing associations

• If necessary, create the task and history lists for the workflow.

• Set the properties of the SPWorkflowAssociation object from the values collected on
your form.

We’re not going to explore all of these steps in excruciating detail. The code is right in the
files and it is pretty straightforward. If you’re interested in digging into the functionality in this
file a little further, the heart of things is the BtnOK_Click event. Take a peek there; the actual
association happens on about lines 242 and 248—once for lists and once for content types.
Everything else is mostly just setting the stage for that event.

■Note There is likely going to be a bug in the RTM version of the sample from the SDK that prevents the
sample from working correctly on content types. I don’t know if Microsoft will get it fixed in time to be part of
the RTM release. I have a copy of an untested potential fix, which I’ll test and integrate into my templates
before I post them for you. Just keep this in mind if you’re working directly with the SDK samples.

The file we’re going to start working with is AssocForm.aspx; go ahead and open it in Code
view. Take 30 seconds and scroll through the contents of the template. It’s all pretty standard
ASP.NET—nothing to be worried about.

There are three places within this template where we need to add some code. I’ve conve-
niently labeled them Step 1 through Step 3 so we can stay on track. Step 1 is located near the top
of the file. Delete the placeholder text, Step 1: Assembly Strong Name, from the Name attribute
and paste in its place the fully qualified strong name for your assembly. This is why we compiled
before doing anything else—the strong name is available to us. If you need help determining
the strong name, see the sidebar “What’s in a (Strong) Name?” in Chapter 6.

Mann_700-1C07.fm Page 242 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 243

Step 2 is in the line immediately after Step 1, inside the Inherits attribute. Again, delete the
placeholder text—Step 2: Namespace.Classname. In its place, type MarketingCampaignASP.
AssocForm. We’ll be changing the namespace for all of our files as we go through. The class
name is for the association form code-behind file, which we’ll be editing soon.

Step 3 is about halfway down the file. Here we’re going to be adding interface controls so
that we can collect information from our users. If you recall from the InfoPath forms, we need
to collect two pieces of information in order to run our workflow:

• The name of the traffic coordinator so we can assign a task to them

• The email address of the regional marketing director

so we’ll need a text box for each of them. Add the code from Listing 7-9 immediately after the
<asp:Content ID="Content6" ContentPlaceHolderID="PlaceHolderMain" runat="server"> tag.
Again, all we’re doing here is adding interface controls—nothing special.

■Note If you’ve used SharePoint much, you’ll have noticed that in many places, it presents a pretty slick
interface for designating users. It’s called the Contact Picker or the People Editor (depending on how it is
implemented). We’ll take a look at using it in Chapter 9.

Listing 7-9. Building Our Interface

Traffic Coordinator: kcd\<input type="text" name="TrafficCoordinator" ➥

id="TrafficCoordinator" runat="server" />

Marketing Director Email: <input type="text" name="MarketingDirector" ➥

id="MarketingDirector" runat="server" />@kcdholdings.com

That’s all we need to do with this file, and there’s really not much else exciting going on
here. You can save and close it. Next up is AssocForm.cs, so go ahead and open it.

Once again, I’ve indicated the steps necessary to customize this file; you’ll notice there’s
only one step. Simply update the namespace to MarketingCampaignASP and save and close the
file.

That takes care of the changes specific to our association form. There is some generic or
reused processing that we need to customize a bit, but we’ll get to that soon. First, we’ll walk
through some similar steps to configure the initiation form.

ASP.NET Initiation Forms

The next form we’re going to tackle is the initiation form. While this is similar to the association
form in many ways, most notably in the user interface, it performs some different tasks behind
the scenes, as you’ll see.

When using ASP.NET forms for workflow initiation, the process the forms implement is
always going to follow the same basic steps:

Mann_700-1C07.fm Page 243 Monday, January 22, 2007 3:20 PM

244 C H A P T E R 7 ■ W O R K F LO W F O R M S

• When the form is first loaded, display the interface to collect the information that your
workflow needs.

• As appropriate, prepopulate fields on the form with information from the association form.

• When the form is submitted, store the supplied information and start the workflow.

First, we’re going to look at the ASPX form itself, so open InitForm.aspx and feast your eyes
on its coding splendor. You’ll notice that it is almost identical to the AssocForm.aspx file we
looked at earlier. Guess what? The changes we make to this file are nearly identical, too. There
is only one exception—the class name in Step 2 is going to be InitForm instead of AssocForm as
it was the first time around.

If you need a refresher, jump back to the section on customizing the association ASPX form;
otherwise just plow on through the three steps identified in this template file. When you’re
done, save and close this one.

■Note If there is information you need to collect only on workflow association (which would typically be
done by some type of administrator), you can accomplish this by simply not adding that field to the UI for the
initiation form. You’ll need to make sure that you can still carry around the information—typically in ViewState—
there’s an example in the comments of the template file.

The next file we need to take a look at is the InitForm.cs file. Once again, I’ve added place-
holders where you’ll need to make edits.

Step 1: Update the namespace.

Step 2a: Add an entry for each piece of data that you collect only on the association form to
store it in ViewState.

Step 2b: Add an entry for the same fields from 2a that retrieves the value from ViewState
and populates the appropriate property.

For the scenario we’re walking through, we don’t need to worry about Steps 2a and 2b, so
just change the namespace in Step 1 to MarketingCampaignASP and then save and close the
file.

Supporting Files

There are two template files that we haven’t touched upon yet: WFDataPages.cs and FormData.cs.
These files play a supporting role in the process—as a common base class for both forms to
inherit from (WFDataPages) and as a serializable class to store and retrieve our data (FormData).
We’ll look at FormData first.

The FormData.cs file serves the same function as the class we generated with the XSD
utility for the InfoPath forms. It needs to contain at least one public property for each field we
make use of on our forms. Open Formdata.cs and you’ll see a skeleton with an example
embedded in the comments. Step 1 again involves updating the namespace. For Step 2, we
need to add the code in Listing 7-10 as our property getters and setters.

Mann_700-1C07.fm Page 244 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 245

Listing 7-10. Properties for Our FormData Class

private string trafficCoordinator = default(string);
public string TrafficCoordinator
{
 get { return this.trafficCoordinator; }
 set { this.trafficCoordinator = value; }
}

private string marketingDirector = default(string);
public string MarketingDirector
{
 get { return this.marketingDirector; }
 set { this.marketingDirector = value; }
}

After adding the code from Listing 7-10 you can save and close the Formdata.cs file. There
are some other elements in there for working with the Contact Selector control, but we’ll leave
those alone for now; we’ll revisit them in Chapter 9.

Open WFDataPages.cs. Again, you’ll see that I have added placeholders. Step 1 is to update
the namespace to MarketingCampaignASP as we’ve done before. In Step 2 we create objects for
the various form controls that get displayed to the user on both the association and initiation
forms. As I said before, each of the forms inherit from this class, so we can define these objects
once centrally and use them in each child form. Because the forms can have different fields, we
need to make sure that each is created here so they’re accessible for Steps 2a and 2b in the
initiation form code-behind (which we covered earlier). For our scenario, add the code from
Listing 7-11 after the placeholder text for Step 2.

Listing 7-11. Creating Objects for Our UI Elements

protected HtmlInputText TrafficCoordinator = new HtmlInputText();
protected HtmlInputText MarketingDirector = new HtmlInputText();

Step 3 is within the PopulatePageFromXml method, which is responsible for re-creating a
FormData object from a serialized representation of the data submitted via our forms. All we’re
doing here is grabbing the data from the FormData object and populating the properties for the
control that represents our form field. When the form loads, the appropriate values will be
displayed. Add the code from Listing 7-12 just under the placeholder for Step 3.

Listing 7-12. Retrieving Values from FormData

TrafficCoordinator.Value = formdata.TrafficCoordinator;
MarketingDirector.Value = formdata.MarketingDirector;

The last customization we need to make is Step 4. It does exactly the opposite of Step 3—it
takes the values that were submitted via the form and stores them in FormData so that they can
be serialized and stored. As before, we potentially have different fields for the two forms and
the need to handle them differently, so we’re split into 4a and 4b. For our scenario, our code
will be exactly the same, so add the code from Listing 7-13 for both 4a and 4b.

Mann_700-1C07.fm Page 245 Monday, January 22, 2007 3:20 PM

246 C H A P T E R 7 ■ W O R K F LO W F O R M S

Listing 7-13. Storing Values into FormData

data.TrafficCoordinator = TrafficCoordinator.Value;
data.MarketingDirector = MarketingDirector.Value;

That brings us to the end of our templates. Save and close WFDataPages.cs. The last code
we need to add for this project is to enable our activities to do their work.

Adding Code to Our Activities

We covered all of this ground when we did the InfoPath-based solution but it’s scattered
throughout the section up there. To keep things nice and simple, I’ll just give you the code
again. To begin with, open the MarketingCampaignASPWF.cs file in Code view and add the vari-
able declarations from Listing 7-14 to the top of the class file.

Listing 7-14. Global Variables for Our Workflow Class

private string sTrafficCoordinator = default(String);
private string sMarketingDirectorEMail = default(String);
private bool taskCompleted = false;

Add the code from Listing 7-15 to the empty onSendEmail method. Update the first line to
work in your environment.

Listing 7-15. Code for onSendEmail

sendEmail1.To = sMarketingDirectorEMail + "@kcdholdings.com";
string sItemTitle = workflowProperties.Item["Name"].ToString();
string sItemURL = workflowProperties.ItemUrl;
sendEmail1.Body = string.Format("New Marketing Campaign: {0}. URL:{1}",sItemTitle,
sItemURL);

We’re nearly done with this part. Add the code from Listing 7-16 to the onCreateTask method.

Listing 7-16. Code for onCreateTask

taskID = Guid.NewGuid();
taskProperties.Title = "New Marketing Campaign";
taskProperties.AssignedTo = sTrafficCoordinator;
string sItemTitle = workflowProperties.Item["Name"].ToString();
string sItemURL = workflowProperties.ItemUrl;
string sOriginator = workflowProperties.Originator;
taskProperties.Description = string.Format("New Marketing Campaign: {0}. URL:{1}"➥

,sItemTitle, sItemURL);
taskProperties.ExtendedProperties["taskinstructions"] = string.Format("Please ➥

review this proposed marketing campaign and let {0} know if there are any ➥

scheduling issues. Thanks!", sOriginator);

The taskComplete method is short and sweet: add e.Result = !taskCompleted; to the
empty method.

Last but not least is the onTaskChanged method. Add the code from Listing 7-17 and we’re done.

Mann_700-1C07.fm Page 246 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 247

Listing 7-17. Code for onTaskChanged

if (afterProperties.ExtendedProperties.ContainsValue("Completed"))
 {
 taskCompleted = true;
 }

If you’re impatient, you can go ahead and compile. There wasn’t a boatload of new code
we added, so things should be OK. If not, either go back and check that you typed everything
correctly, or else bag the whole thing and become a Tibetan monk. The choice is yours—I’m all
about empowering my readers.

Next up: deployment.

Deploying Our ASPX Forms-Based Workflow

Remember that nice, easy deployment scenario we had for the InfoPath forms? The one where
we just set a few options on the command line for our build actions? Yeah, hold onto that fond
memory. We’re not so lucky this time around. For a WSS-only scenario, we’ll be making use of
the project templates from the WSS SDK, which do not include the PostBuildActions.bat file.
Instead, it has its weaker, less friendly sibling Install.bat.

Welcome to our nightmare, Alice.
OK, so maybe things aren’t all that bad. Perhaps I should have done ASPX forms first in this

chapter so you wouldn’t be pining for the better world of InfoPath forms quite so much. Oh
well, water under the bridge now…

To get started, we need to update our deployment files. The first one—feature.xml—is similar
to the InfoPath version of the file. Insert the WSS version of the snippet and replace the elements. If
you need a refresher, flip back to the InfoPath deployment section. Just remember that our
solution is now MarketingCampaignASP.

The second file to be edited, workflow.xml, is slightly different this go around. The first
few elements you edit are the same as before. Beginning with the TaskListContentTypeId,
though, things get different. Delete the TaskListContentTypeId attribute. The AssociationUrl and
InitiationUrl elements need to be set to the appropriate path and filename for our forms. For
this scenario, that means _layouts/AssocForm.aspx and _layouts/InitForm.aspx, respectively.
Remember that if you change the names of these files in the file system to make sure they’re
unique when they get copied to the _layouts folder, you need to update these references too.
You can go ahead and delete the ModificationUrl attribute as well as the Modification_GUID_
Name element a little further down as we're not doing modifications this time around.

That’s it for workflow.xml; save it and close it.

■Caution If you’re doing this development on a machine with MOSS installed (as I am; I know that’s going
to jump up and bite me at some point here), you’ll have a slightly different experience than the WSS-only
developers. Everything will work OK for you because MOSS sits on top of WSS, but if you try to deploy your
solution to a WSS-only environment, you will have problems. You need to make sure that you remove all
MOSS-only elements from your deployment files, as well as from the rest of your project. This includes any
InfoPath references, and references to any assembly that begins Microsoft.Office.SharePoint or
Microsoft.Office.Workflow and a few other bits and pieces. Just be careful. You could avoid a lot of
this by making sure that you use the proper WSS template to begin with.

Mann_700-1C07.fm Page 247 Monday, January 22, 2007 3:20 PM

248 C H A P T E R 7 ■ W O R K F LO W F O R M S

The problem with the last piece of our deployment is that it feels like it doesn’t belong. It’s
disconnected from the rest of the work we’ve been doing. It’s not hard; in fact, it’s pretty easy.
It just doesn’t fit in with the rest. Oh well, we just have to suck it up.

Open up the install.bat file. At the top of the file are some comments with instructions,
which I’ve duplicated in Listing 7-18 for reference. I’m not going to regurgitate the process here
in painful detail as these instructions are pretty good. Instead, I’ll just offer some general infor-
mation and some clarifying points to help you out.

Listing 7-18. Instructions from install.bat

:: Before running this file, sign the assembly in Project properties
::
:: To customize this file, find and replace
:: a) "MyFeature" with your own feature names
:: b) "feature.xml" with the name of your feature.xml file
:: c) "workflow.xml" with the name of your workflow.xml file
:: d) "http://localhost" with the name of the site you wish to publish to

From the instructions in Listing 7-18, you only need to worry about Step a for our scenario.
We left our workflow.xml and feature.xml files named with their defaults so we don’t need to
change them here, which is what Steps b and c are handling. Technically you could rename
these files to anything you want, but if you do, there are a number of places you would need to
reflect that change. Personally, I can’t think of a compelling reason why you would want to
change the filenames. If you need to, though, remember that it is possible.

The first thing to notice about the install.bat file is that it is pretty well commented. Each
major task being performed by the batch file is preceded by an echo statement that tells you
what is about to happen. At a very high level, the major steps are

1. Copy the required files to a directory on the server. Notice in this section that the xcopy
command for the ASPX files will pull from your solution folder (where install.bat is
located) and all subfolders. In our scenario, we need to customize the name of our
Feature—MarketingCampaignASP—in place of MyFeature.

2. Add your assemblies to the GAC. Make sure that you change MyFeature to Marketing-
CampaignASP on both lines in this section.

3. Installs and activates the Feature, making it available on the site you specify a URL
for. Specify the URL to your SharePoint server here or leave it at http://localhost, as
appropriate. The first set of commands are commented out by default and only need to
be uncommented if you rerun install.bat. They uninstall and deactivate your Feature
from the specified server. The first time you run install.bat there is nothing to uninstall/
deactivate. It won’t hurt to uncomment them for every run, but it is unnecessary.

4. Resets IIS so that your changes are recognized by the server.

Mann_700-1C07.fm Page 248 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 249

■Tip There is one additional change I like to add to the install.bat file and that is a pause statement
at the end, after the iisreset. It’s not necessary but it can be helpful to go back and review the contents of
the command window after the batch file has run. The first time I went through this I had forgotten to strongly
name my assembly so it failed when install.bat tried to add it to the GAC. If I did not have the contents of
the command window to go back through and review, I likely would have spent hours troubleshooting why my
installation didn’t work.

That’s it. Make those changes, save your file, and you’re ready to deploy. Save your solution
before continuing. Open an Explorer window, navigate to your solution folder, and double
click on install.bat. You may see some error messages, for example when GACUtil tries to
remove your assembly (the –uf line). The first time you run install.bat, there is nothing to
uninstall. There are other similar situations like this, especially the first time you run the
installer. If you see other errors, however (like my unsigned assembly), you’ll need to do some
troubleshooting.

If there are no unexpected error messages, you’re done. Your Workflow Feature is success-
fully installed. The moment of truth is at hand. Open a document library, select Document
Library Settings from the Settings menu, and then click Workflow Settings from the Permissions
and Management section. On the next screen, click the Add a Workflow link.

Finally, we’re at the screen we need. Select MarketingCampaignASP from the list of avail-
able workflow templates at the top and give it a unique name. Leave all of the other options set
at their defaults and simply click the Next button.

Voilà! Our ASPX association form is shown on screen in all of its workflow-form glory—see
Figure 7-15. Fill in a valid name and email address for your environment and click OK.

Figure 7-15. Our ASPX association form

Go back to your document library and kick off a workflow based on this new association.
You’ll see our ASPX initiation form, as shown in Figure 7-16, complete with prefilled content
that was entered on our association form.

Mann_700-1C07.fm Page 249 Monday, January 22, 2007 3:20 PM

250 C H A P T E R 7 ■ W O R K F LO W F O R M S

Figure 7-16. Our ASPX initiation form

That’s it. Functionally, everything else about our ASPX forms is the same as InfoPath forms.
As I said at the beginning, the real difference is the implementation mechanism. To my mind,
ASPX forms are a lot more work, but if they’re all you have available, at least know that you’re
not missing out on any important functionality.

■Note Looking at Figures 7-15 and 7-16 it is easy to see that these forms do not look very nice. They look
like they were designed by… well, by a developer. You’re right; they were. In Chapter 9 I cover some material
on making your ASPX forms look nicer and more like they fit in with the rest of SharePoint. This is one area
that ASPX form developers have the upper hand over InfoPath form developers.

ABSTRACT THINKING

The basic functionality we covered here can be taken and expanded on for many other situations. We took a
fairly straight and narrow path through the functionality, but there’s no reason you can’t branch out to cover
other needs. At a high level, here’s what we covered:

• Creating a form that collects information from a user and passes that information in to our workflow,
where it is accessible via code. At that point we can do whatever we need to with it—including launching
other processes, sending emails, calling web services, programmatically altering documents, etc.

• Setting values on our workflow form programmatically and having them be read-only on the form. These
values can be retrieved from anywhere.

• Moving data in a full round-trip—from form to workflow and back to form again. This process can start
anywhere (form or workflow) and keep that same round-trip capability.

• Creating, updating, and completing tasks.

• Sending email.

So even though what we saw here was pretty concrete, keep in mind that the capabilities open to you
are pretty broad. Take what we covered here and look to apply it to many different situations—the opportunity
is there.

Mann_700-1C07.fm Page 250 Monday, January 22, 2007 3:20 PM

C H A P T E R 7 ■ W O R K F L O W F O R M S 251

Summary
There was a lot of material in this chapter. Here’s a quick synopsis:

• Forms allow you to collect any information you need from your workflow participants.

• With some flavor of the Forms Server in your environment, you can build your forms in
InfoPath 2007 and have them rendered into a browser.

• With MOSS 2007 installed, you can also have your forms rendered directly into the Office
clients that support the new UI.

• With only WSS you are limited to strictly ASPX forms. They’re more work, but your solution
won’t lack any important functionality.

• There are various types of forms to support various functions:

• Association forms for when an administrator is creating an association between a
workflow and a SharePoint list or document library.

• Initiation forms for when a user is kicking off an instance of a workflow on a particular
list item or document.

• Task forms to customize the look and functionality of tasks assigned to users as part
of your workflow.

• Modification forms to support the functionality of making changes to a workflow in
mid-processing.

• A lot of moving parts are involved in getting our forms to work properly as part of our
workflow. Follow the steps we’ve covered here to make sure everything clicks.

• In many situations, association and initiation forms are very similar. The association
form allows you to set information that can then be changed in the initiation form. Similarly,
the initiation form could be configured to not allow values set in the association form to
be changed. It all depends on your business needs.

• There is nothing we need to do differently in order to move our forms down to the Office
client applications, so these are all full players in whatever process we need to implement.

Mann_700-1C07.fm Page 251 Monday, January 22, 2007 3:20 PM

Mann_700-1C07.fm Page 252 Monday, January 22, 2007 3:20 PM

■ ■ ■

P A R T 4

Turning Things Up
a Notch

In the movie This is Spinal Tap, there is a great line (OK, there’s really more than one, but

only one that I’ll reference here). The band is talking to the interviewer about their amplifiers

and Nigel says something along the lines of “Whereas most amps go to 10, ours go to 11…

it’s one louder.” I’m paraphrasing that pretty heavily, but if you’ve seen the movie you

know the scene I’m talking about. Somewhere in the recesses of poor Nigel’s heavily

sedated brain, the implication is that this is what makes them louder—it is the extra little

bit that they provide for their audience.

Consider this part the “11” setting for this book—it’s the little bit extra I provide for you.

We’ve covered all of the basics and walked through numerous examples of how to

operate within and build an Office 2007 Workflow. While you may not be completely

comfortable with everything yet, we’ve at least covered it all. You should know what is

possible and know that when you need a refresher on a particular area you can always go

back and review the appropriate chapter.

The three chapters in this part, however, take things to a whole new level. No longer

are we content with the basics. No longer do we need step-by-step instructions to walk us

through each task. The material covered here is more advanced than previous material,

and it’s possible that you will never need some of it. And that’s OK. The information is

useful, nonetheless.

Mann_700-1C08.fm Page 253 Monday, January 22, 2007 10:00 AM

Chapter 8, “Workflow Rules,” introduces the WF Rules engine as well as some

advanced activities, and proceeds to extend things well past the out-of-the-box capabili-

ties. The solution introduced there to facilitate external management of workflow

processing crosses many pieces of functionality and ties them all together into a package

that makes your Office workflows eminently more useful and extensible.

Chapter 9, “A Workflow Smorgasbord,” is just that—an eclectic mix of material. While

it’s all important, none of it is a big enough topic to get a chapter of its own. Some of this

chapter is based on material presented elsewhere, building upon it or filling in details;

some of it is entirely standalone.

Chapter 10 is a walkthrough of the Workflow Object Model. It is not an exhaustive

dissertation—that would be both boring and foolish. If you want an object reference, you

can get it in the Visual Studio Object Browser or the documentation on MSDN. Instead, I

look at the major members of the major classes from the Workflow Object Model. I break

them down and talk about what the various members are used for and when you will need

them. I include code snippets for many of the pieces to help you understand how they can

be used.

Mann_700-1C08.fm Page 254 Monday, January 22, 2007 10:00 AM

255

■ ■ ■

C H A P T E R 8

Workflow Rules

Rules are part of the crunchy goodness in Office workflows. We’ll delve more deeply into
rules as we progress through this chapter (not that “crunchy goodness” doesn’t tell you every-
thing you need to know, but I do have a whole chapter to fill here), but think about it this way—
without rules as separately definable entities the following are true:

• A workflow locks a business process in as a snapshot in time.

• Business logic is tightly intertwined with processing logic.

• Documenting and tracking business logic is made more difficult.

None of these are ideal.
With rules, however, we can extract some of that logic and define it separately. If that part

of the logic ever needs to change, we can update the rule and leave the rest of the logic intact.
That separation provides for a lot of flexibility and power. You’ll see more as we progress
through this chapter.

One of the tenets of the Information Worker Revolution is to reduce dependence on IT. If
business logic is intertwined with code and processing logic, business departments can never
fully take ownership of it—they will always be dependent on IT to modify and deploy that logic
when it changes.

An example will help to drive this idea home:

Early in its experience with Office 2007, KCD Holdings targeted the employee review
process as a key process to be modeled and introduced using workflows and Office 2007.
It was a classic example of document routing, approval, and feedback. Based on their
research, they felt that they would be able to introduce this process using largely out-of-
the-box activities stitched together with a minimal amount of custom code.

The only sticky bits were related to the various approval levels for pay raises. This year,
they had budgeted for a 5 percent raise as the maximum that would be permitted
within any department without additional executive approval. The final review step in
their process would always look like Figure 8-1. However, knowing their business, they
knew that the threshold percentage that would trigger additional approval require-
ments would change every year.

Mann_700-1C08.fm Page 255 Monday, January 22, 2007 10:00 AM

256 C H A P T E R 8 ■ W O R K F LO W R U L E S

Figure 8-1. Final approval on the KCD Employee Review workflow would always follow these steps.

They toyed with a few options as they worked to design the process:

• Wrapping the threshold percentage in a web service called by the workflow: Each year, all
they needed to do was update that web service. While this was appealing, they knew that
it would still require intervention by IT and also that it was not practical as their use of
Workflow grew—having one (or more) web services for every business process was not a
recipe for an easily maintainable architecture.

• Storing the threshold value in a simple XML configuration file: Again, this would fit the
bill for this particular scenario, but it was not a desired architecture for significant long-
term use by multiple processes. In addition, it only stores a single value—not the logic of
the condition itself. If the logic changes slightly from “greater than x percent” to “greater
than x percent or less than y percent,” then this approach will not work.

• Hard-coding the threshold value and business logic directly into the workflow code: Again,
this would solve the immediate problem, but it presented many others—dependence on
IT, versioning issues, and deployment problems, just to name a few.

• Implementing the threshold value as an entry on the association or initiation form for the
workflow: This approach came in a close second, but because the employee reviews
were stored in multiple document libraries across the portal, they wanted to avoid
having to update the threshold value multiple times when it changed. They felt that the
chances of one document library not being updated with the new value were too great
and would cause too many problems. Like the XML file discussed earlier, this too only
stores a simple threshold value.

• Storing the threshold value as a SharePoint list item and writing code to access it from
within the process: This approach was also appealing for many reasons, including its
simplicity. However, like the XML file or forms-based approaches, this too only stores a
simple threshold value.

• Using the Workflow Rules engine and configuring the threshold value and business logic
as an externally accessible rule, which could be read by each workflow instance and
maintained separately from the process itself by a business user.

Naturally, as this is a chapter on rules in Workflow, they chose the last option.

Mann_700-1C08.fm Page 256 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 257

Although that example is very simple, it should help to clarify the benefit of a separate
rules engine. Expanding on it slightly, any decision in a workflow that uses discrete data points
as factors in the decision is a candidate for the Rules engine. This would include, but is certainly
not limited to

• Timeframes for reviewing documents

• Policy details for document retention, disposition, etc.

• Approval paths for purchase requisitions, travel requests, etc.

Like many other things, there is more than one way to skin this cat. Many factors will drive
how you go about solving your particular problem. As alluded to earlier, a close second to
implementing rules is to simply collect the information on an association or initiation form,
which we covered in Chapter 7. Honestly, this would certainly be easier to implement than a
foray into the Rules engine. However, it does have a few shortcomings when compared to rules:

• Duplication: Rule values are duplicated every time the workflow is implemented. If
you’re only using the workflow in one or a few lists or document libraries, this may not
be a big deal.

• Versioning: With the form approach, there is no (easy) way to track and control the
values that are applied to a specific instance.

• Control: Using rules, specifically in the way we are going to cover in this chapter, will
allow you to define and manage the rules centrally.

• Auditing: In highly regulated environments, it may be necessary to be able to report on
or verify the specific rules that were implemented at a certain point in time. The approach
we are going to take in this chapter could easily be extended to support full auditing and
reporting by treating the rules as records and utilizing the full record-management
capabilities of MOSS.

So with that understanding of when and why to use rules, let’s begin our investigation.

■Note This chapter is going to be slightly different from previous ones in that there is not a single scenario
that we are going to walk through. Rather, in this chapter, we’re going to build a custom piece of functionality
that will be useful across many scenarios. For this chapter, the functionality we’re building out is a custom
activity to implement rules defined externally from our workflow as well as a simple Windows Forms applica-
tion to define and manage those external rules.

Rule Mechanics
Before going much further into rules, and certainly before we can build our own rules-based
workflow, we need to cover a bit of the what and how for rules in Office workflows. In the first
place, where exactly can you use rules in an Office workflow? Good question. The answer is that
there are two situations in which rules come into play:

Mann_700-1C08.fm Page 257 Monday, January 22, 2007 10:00 AM

258 C H A P T E R 8 ■ W O R K F LO W R U L E S

• As conditions on activities such as

• IfElseBranch

• While

• ConditionedActivityGroup

• Replicator

(We covered each of these at a high level in Chapter 3—we’ll cover them in more
detail here.)

• As a full ruleset on the Policy activity. We touched only briefly on the Policy activity in
Chapter 3. We’ll cover it in more detail (including an explanation of just what the heck a
ruleset is) in just a bit. Our actual implementation in this chapter is going to replicate
much of the functionality of the Policy activity but allow us to define and store our rules
outside of the workflow itself.

The difference between these two situations is related to the complexity of the rule being
applied and the manner in which it is applied.

■Note This is probably a good time to fill you in on one little caveat… the use of the Policy activity and
rulesets is not officially supported by Microsoft for Office workflows. In conversations with some Microsoft
people, it appears that this is simply because it is not a scenario that they tested. There is nothing in the
product to preclude their use, and as you’ll see, everything works and is not that different from any other
custom activity. Plus, the value provided is too useful to just pass up.

Let’s start with activity conditions. Activity conditions are local to a particular activity.
Generally they are used to indicate whether one specific activity executes. For example, the
simplest condition is on a basic IfElse activity. The logic of the activity is pretty straightforward—
if a certain condition is true, execute the logic in the first branch; otherwise, execute the logic
in the second branch. Although this logic can certainly get more complicated, all activity
conditions essentially break down to this simple state, and the heart of this logic is the condi-
tion that is evaluated.

The condition that is evaluated must result in either a true or a false. Each activity that
contains this logic will take different actions based on the return value from the condition eval-
uation, but the expression itself always results in a Boolean evaluation. Conditions can be
applied as either of the following:

• Code Condition: Means that you write code that results in a Boolean value to indicate
whether the condition evaluates to true or false, thereby controlling how the activity
processes.

• Declarative Rule Condition: Means that you define the logic that controls how the activity
processes utilizing the built-in Condition Editor. Technically, you’re still writing code in
the Condition Editor, but the code itself is simpler as it consists of basic comparisons
between fields, variables, and values.

Mann_700-1C08.fm Page 258 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 259

The latter is considered a part of the Rules engine, while the former is strictly custom code.
You select between these two options in the Properties window for your activity, as shown in
Figure 8-2. If you opt to write custom code, you are not utilizing the Workflow Rules engine—
which may be perfectly acceptable in some cases. Although this is a chapter on the Rules
engine, we’ll take a little time to explore the Code Condition here just so we’re presenting a
complete picture.

Figure 8-2. Select which type of condition to use in the Properties window.

Code Conditions
When you opt to write your condition as code, you specify a method name as the ConditionName
property and Visual Studio automatically creates a method for you with the proper signature,
as shown in Listing 8-1. All you need to do is write your code to arrive at either a true or a false.
You then set the Results property of the ConditionalEventArgs parameter (the parameter e in
Listing 8-1) for your method and all is right with the world.

Listing 8-1. A Shell for Our Condition Method

private void conditionCheck(object sender, ConditionalEventArgs e)
 {
 }

Code Conditions can contain any combination of the following:

• Inline code

• Method calls

• Calls to a web service

Your business needs and coding practices determine specifically what will go into the
method evaluated for your condition. I recommend as a good habit that you avoid inline code
and utilize method calls for code in your assembly and web services for code outside your
assembly. It’s just easier to maintain and reuse your logic that way. A simple method call
example is shown in Listing 8-2. The call to the checkAuthor method could just as easily be a call
to a web service.

Mann_700-1C08.fm Page 259 Monday, January 22, 2007 10:00 AM

260 C H A P T E R 8 ■ W O R K F LO W R U L E S

Listing 8-2. A Simple Condition Evaluation to Control the Flow of Our Process

private void conditionCheck(object sender, ConditionalEventArgs e)
{
 e.Result = checkAuthor(this.workflowProperties.Originator);
}

private bool checkAuthor(string sAuthor)
{
 if (this.workflowProperties.Item["Author"].ToString().ToLower() == sAuthor.➥

ToLower())
 {
 return true;
 }
 else
 {
 return false;
 }
}

The code executed inside your method call (or in inline code) can do whatever you need
it to, getting as complex as necessary. The benefit of Code Conditions is that they are easy for
developers to wrap their minds around. They live in code, so writing a few more lines of code is
easy. The problem with this approach is primarily that only coders can understand and main-
tain these conditions. Business departments can’t touch them.

■Note While this may seem like pretty good job security for developers, most good developers I know
would not want a job that has evolved into mostly maintaining values in a bunch of rules. After a very few
times of changing a 5 to a 6, recompiling and redeploying, most good developers are thinking that they don’t
want to be secure in this job anymore. The ability to farm these types of things off to business users means
that the developers can do things quite a bit more interesting.

If you are dead set on implementing your rules and business logic entirely in code, do yourself
a favor and at least strip the rules out into a separate assembly. In your Code Condition, you
then just instantiate that object and call the appropriate method. That way, when the rules
change, you only need to update that assembly and don’t have to touch the rest of your logic.
If you play your cards right, you can do a lot with this approach but it’s more work than necessary.

Declarative Rule Conditions
As alluded to earlier, Declarative Rule Conditions are part of the Workflow Rules engine. “Great,”
you say. “What does that mean?” Hang on there, Beppo, we’re getting to it. Declarative Rule
Conditions are, as the name implies, declared and therefore not compiled. At runtime, they are
interpreted and evaluated to determine a course of action.

Mann_700-1C08.fm Page 260 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 261

Interpreted? Wait, doesn’t that slow things down? Yes, it does—slightly. However, if you
ever actually notice the extra nanoseconds this adds to your processing you can call Microsoft
and complain. Otherwise, don’t worry about it.

Declarative Rule Conditions on activities offer us a simple way to separate our condition
from the rest of our logic. They don’t get us all the way to the promised land of fully separate,
externally maintainable rules, but they take us a step in the right direction. The step they take
is to allow us to create a condition once and utilize it in multiple places from within the same
workflow.

One other important feature of Declarative Rule Conditions is that they can be dynami-
cally updated at runtime. Wait! Isn’t that what we’re looking for—the ability to dynamically
manipulate our rules at runtime? Yes, it is. I’m glad you’re paying attention. It is important to
note, however, that due to the nature of SharePoint as a Workflow host, our ability to manipu-
late our conditions at runtime is significantly more limited than in the rest of the WF world.
Essentially, what this means is that while a given workflow instance can manipulate its own
conditions dynamically at runtime, there is no simple way to manipulate the conditions from
outside the workflow. Drat. So close and yet so far.

■Tip When I said our ability to manipulate our conditions at runtime is “significantly more limited” back
there, you really ought to read that as while not impossible, it’s really difficult and probably not worth the time.
I know some very stubborn developers (myself included) and if I said impossible there, they would spend hour
after hour hacking together code to make it work just because it’s a challenge. Really, folks, read on; there is
a better way.

In my opinion, this limits the usefulness of Declarative Rule Conditions for Office work-
flows as it makes them not very different from well-crafted Code Conditions. Although it is true
that you can’t (easily) update your code at runtime, if the solution is well architected and well
written, you can achieve the same end with the use of method parameters and some global
variables. As mentioned earlier, even separating all of your rules out into a separate assembly
provides a lot of the same benefits of Declarative Rule Conditions.

We will cover more details on Declarative Rule Conditions, however, for a few reasons:

• They still provide some value for our Office workflows. The tool exists and in some cases
it will be the best tool for the job, so we should make sure it is available in our arsenal.

• In many ways, Declarative Rule Conditions are simpler to implement, maintain, and
work with than Code Conditions. (The developer in me just let out a gasp of disbelief…)

• When we do reach the promised land of externally maintainable rules, there will still be
the need for either Code or Declarative Rule Conditions, so they don’t go away. We’ll see
a return of Declarative Rule Conditions in the example at the end of the chapter.

Declarative Rule Conditions on our activities make use of the Condition Manager, shown
in Figure 8-3. The Condition Manager provides access to the Condition Editor, a simple wizard
that allows us to manage the conditions available to us in the current workflow. So, for example, if
another activity elsewhere in our workflow needed to make the same evaluation as Condition1

Mann_700-1C08.fm Page 261 Monday, January 22, 2007 10:00 AM

262 C H A P T E R 8 ■ W O R K F LO W R U L E S

shown in Figure 8-3, it could simply reuse the condition—we would not need to re-create it.
This provides some of the value of Declarative Rule Conditions, but is no different than utilizing a
Code Condition and pointing at the same method call.

Figure 8-3. The Condition Manager showing a very simple Declarative Rule Condition

The Condition Editor is really the heart of setting up Declarative Rule Conditions. Let’s
take a look at how it works and what it lets us do. First of all, to access the Condition Editor, you
need to specify Declarative Rule Condition as the type of condition for your activity. Next, click
the ellipsis in the ConditionName property to open the Condition Manager. The buttons across
the top of the Condition Editor (New, Edit, Rename, Delete) are pretty self-explanatory, so I
won’t go into detail on each one. Just remember that they are the options available to you when
working with Declarative Rule Conditions. Notice that clicking on a condition will show you a
preview of the contents of that condition in the lower half of the Condition Editor window. This
avoids having to open each condition to find the one you need. Remember, conditions defined
anywhere in your workflow will be available to all of the activities in your workflow. Conceivably,
then, in a complex workflow this dialog box could get quite busy.

Clicking on either the New or the Edit button will bring up the Condition Editor dialog box,
shown in Figure 8-4. The only difference is obviously that in the former case you are creating a
new rule so the dialog box is blank, whereas in the latter you are changing an existing rule so
the contents of that condition will be shown, as in Figure 8-4.

Mann_700-1C08.fm Page 262 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 263

Figure 8-4. Editing an existing condition in the Condition Editor

Creating a condition is a simple matter—just type it in. Whatever you type needs to evaluate to
a Boolean condition, and while this is the “if” statement, you don’t actually type in “if…”. To
assist you, the Condition Editor supplies capabilities similar to IntelliSense. This means that if
you type this or some_object_name followed by a period, an IntelliSense-like window will pop
up showing you the available members for that object, as shown in Figure 8-5. You also get a
little indicator—the exclamation point in the red circle on the right side of Figure 8-5—when
your condition is not valid.

Figure 8-5. The Condition Editor supplies an IntelliSense-like feature for creating our conditions.

Mann_700-1C08.fm Page 263 Monday, January 22, 2007 10:00 AM

264 C H A P T E R 8 ■ W O R K F LO W R U L E S

■Note For objects, only static members are available for use within conditions. For the object this, which
represents the current workflow, all properties, variables, and methods are available—just as if we were
writing inline code. Keep this in mind if you are creating objects for use inside your conditions—to be accessible,
members must be static.

So writing our condition is a simple matter of setting up our comparisons to arrive at a
Boolean result. But what can those comparisons look like? Each side of the comparison will be
a property, variable, method, or other member of either the current workflow or a referenced
object (static members only). In between will be an operator. The available operators are
shown in Table 8-1.

Table 8-1. Available Operators for Our Rules

Symbol Operation

== or = Equality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

+ Addition

- Subtraction

* Multiplication

/ Division

MOD Modulus (division remainder)

AND or && Boolean AND

OR or || Boolean OR

NOT or ! Negation

| Bitwise OR

& Bitwise AND

Mann_700-1C08.fm Page 264 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 265

So, each of the following is an example of a valid condition:

• this.Enabled != True

• myObject.myStaticMethod(this.workflowProperties.AssociationData ➥

["Some_Property"]) != String.Empty

• this.workflowProperties.Item.Attachments.Count >= 0 && this.➥

workflowProperties.Item.Attachments.Count < 5

• this.some_variable + this.another_variable >= 3

Pretty straightforward stuff. The last thing we need to cover with regard to Declarative Rule
Conditions is how they are stored and applied. We’ve already said that these conditions are not
compiled, so what happens with them? Where do they go? What are they all about, Alfie? If you
take a look in the Solution Explorer inside Visual Studio after creating a condition, you will see
a new file has been added to your project. It will be the name of your workflow class file with a
.rules extension—for example, MyRulesWorkflow1.rules. If you open the file in Visual Studio,
you will see a whole lot of very verbose XML. I say it’s verbose because, for example, for the
simple condition this.workflowProperties.Item.Attachments.Count > 0, the resulting XML is
36 lines long.

Ouch.
I’m not going to show you an example here because we’re not going to do anything with it

and it would just fill the page with a lot of unattractive XML. The XML itself is pretty straightfor-
ward. If you take a few minutes to analyze it, you’ll come to grips with the logic behind it all. It
makes heavy use of CodeDom, so a familiarity with that would be helpful.

Oh, OK, stop whining, I’ll show you an example of a .rules file. But don’t blame me if you
get a hernia carrying this book around. Figure 8-6 shows the .rules file for a Declarative Rule
Condition of this.workflowProperties.Item.Attachments.Count > 0. As you can see in Figure 8-6,
it is quite lengthy. In my ongoing effort to be a good, helpful author, I added some indicators
for the important parts:

A: The name of our condition in case we need to use it over again or refer to it in
documentation

B: The operator that sits between the left and right portions of our condition

C-F: The left side of our condition, shown from the inside out

G: The right side of our expression—in this case, simply the value we’re comparing against

That’s it, a simple .rules file. As I said, verbose, but not difficult to understand. If you
happen to be a code-masochist, you could write a utility to generate the properly formed XML.
As I mentioned before, we are somewhat limited with what we could do with the conditions. In
a pure WF project, you can dynamically load and modify these .rules files at runtime based on
your needs. In that case, the schema and details of the .rules file would be far more important.

For our Office workflows, however, we need to take a slightly different approach, which
we’re sneaking up on. I can sense the anticipation building…

Mann_700-1C08.fm Page 265 Monday, January 22, 2007 10:00 AM

266 C H A P T E R 8 ■ W O R K F LO W R U L E S

Figure 8-6. The .rules file for a simple single expression condition. Brevity is not its strong suit.

Policy Activity
Our goal is to be able to control our workflow from an external source without having to recom-
pile and redeploy, and we haven’t quite gotten there yet. The constructs we’ve been looking at
will be a part of the solution, but before we can add the external control, we’ll need to introduce
the final player I mentioned a little while ago—the Policy activity.

The Policy activity takes the simple conditions we have explored so far in this chapter and
tacks a then and an else on the end. The function of the conditions—either Code or Declarative—
is to be the if part of an if-then-else statement. The policy, with its rulesets (which we’ll explore
shortly), is the full if-then-else, plus a bit more.

The Policy activity is one of the default activities that ship with WF. Its primary function, at
a high level, is simply to manage the creation and execution of rules within a ruleset. I know I’ve
tossed the word ruleset around a few times and I haven’t defined it yet, so let’s take care of
that now.

Mann_700-1C08.fm Page 266 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 267

■Definition A ruleset is a collection of business rule definitions that together serve to describe the full
logic of a solution.

The rule definitions that make up the ruleset consist of

• if-then-else expressions:

• One or more conditions

• Zero or more actions taken if the condition(s) evaluate to true

• Zero or more actions taken if the condition(s) evaluate to false

• Metadata to control execution:

• Name

• Priority

• Active flag

• Reevaluation conditions

In addition, the ruleset itself has an attribute that lets you specify the specific chaining
behavior for the ruleset as a whole. (Chaining behavior? Forget it—we’re on a roll…)

So, there you have it. Ready to move on? I thought not. That definition may have created
more questions than it answered—like just what is chaining behavior. OK, let’s take a deeper
look at rulesets.

Rulesets

First and foremost, rulesets are just that—sets of rules... a collection of business logic that are
interrelated and so are treated as a unit. A rule, as already mentioned, is an if-then-else state-
ment. That part of understanding rulesets is pretty straightforward. What you’re likely having a
harder time understanding is some of the metadata elements from the previous list. Let’s break
them down a little bit.

Starting with the easy ones.

• Name: Simply a label to use to refer to the rule.

• Priority: Again, simple; indicates the order in which the rules within a ruleset should
execute. Higher priority trumps lower priority and executes first. By default, all rules
have a priority of 0. To indicate that a particular rule should execute last without changing
the priority of all other rules, you can specify a negative priority number.

• Active: Also dirt simple; a simple Boolean flag that indicates whether the individual rule
should be processed at all. This allows you to temporarily remove rules from execution
processing without deleting them.

That takes care of all but two pieces of metadata—one on the individual rules and one on
the whole ruleset. These last two are more complicated and related to the same functionality.
First up: reevaluation conditions. This is a simple binary choice—Always or Never. Rules can be
reevaluated based on the chaining settings (which we’ll cover in a moment), and this property

Mann_700-1C08.fm Page 267 Monday, January 22, 2007 10:00 AM

268 C H A P T E R 8 ■ W O R K F LO W R U L E S

allows you to override the reevaluation caused by chaining for each individual rule. This will
make more sense in a moment, but basically it comes down to always reevaluate a specific rule
when necessary or never, ever, reevaluate. Evaluations are a result of chaining, so let’s get to that.

Chaining

First a warning: if you try to jump in with both feet and tackle chaining and all of its implications
head on, your head is likely to explode. On one level, chaining can be very, very complicated and
trying to come to grips with all of the potential ramifications can be a daunting task. On the
other hand, chaining itself is quite a simple concept. If you start with simple examples and get
a good understanding of how chaining works and what it offers to your workflows, you can
safely venture into deeper waters without needing to wrap your head in duct tape and put plastic
up on the walls.

So, the basics. At a very basic level, chaining is nothing more than a mechanism for identi-
fying, managing, and responding to dependencies between rules. There, that’s not too difficult.
Let’s take a look at an example. If I have the three rules shown in Listing 8-3, the dependencies
are fairly obvious.

Listing 8-3. A Basic Ruleset to Help Us Understand Chaining

Rule 1 (Priority: 2) - If y=3 then b=9
Rule 2 (Priority: 3) - If x=1 then a=2
Rule 3 (Priority: 1) - If z=4 then x=1

The single dependency between these rules is fairly obvious: Rule 2 is dependent on Rule 3
because the condition in Rule 1 is based on the value of x, which is set in the action of Rule 3.

If we start with values of

x=5

y=7

z=4

b=6

a=3

we can walk through the execution process fairly easily:

1. Rules are processed in descending order of their priority so Rule 2 executes first with x
at its initial value of 5. The condition (if x=1) evaluates to false so the action for the
rule never executes.

2. Next in descending priority order is Rule 1 with a priority of 2. Rule 2 executes with y at
its initial value of 7. The condition (if y=3) evaluates to false so the action for the rule
never executes. So far, so good—nothing has happened.

3. Rule 3 will execute last because it has the lowest priority. When Rule 3 executes, z still
has its original value of 4 because it has not been changed by any of the preceding rules.
The condition for Rule 3 (if z=4) evaluates to true so the action executes, setting x to 1.

Mann_700-1C08.fm Page 268 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 269

4. Without chaining, processing would stop right here. However, because of chaining,
dependencies are taken into account and Rule 2 will be reevaluated because it has a
dependency on Rule 3.

5. Rule 2 is reevaluated, this time with a value of 1 for x. In this case, the condition (if x=1)
evaluates to true and so the action sets a to a new value of 2.

6. No other dependencies exist within our ruleset and so processing stops here.

Our process ends with the following values:

x=1

y=7

z=4

b=6

a=2

Whew. That was a pretty simple example—no else pieces for our conditions, no multiple
dependencies, simple priorities, etc.—and I can feel my head straining against the duct tape.

Chaining is unbelievably powerful but it’s also very easy to get in over your head. Fortunately,
Microsoft has made things simple for us mere mortals for most of the situations we’re likely to
find ourselves in. Out of the box, chaining such as we just went through would all be handled
for us automagically. We wouldn’t have to worry about it unless we needed our process to
operate differently. Then we need the duct tape. If you’re a glutton for punishment and want to
test out your newfound understanding of chaining, take a look at the sidebar “Cleanup in Aisle 4.”

CLEANUP IN AISLE 4

So now you’re feeling all cocky in your new knowledge of rulesets and chaining and want to try out one that’s
a bit more complex. Here’s a challenge for you—see how you do.

Start with initial values of

• x=1

• y=2

• z=3

• a=4

• b=5

Now set up your rules as shown here. Walk through the process manually and see what you come up
with. Here’s a hint for you: pay attention to the Reevaluation settings.

Mann_700-1C08.fm Page 269 Monday, January 22, 2007 10:00 AM

270 C H A P T E R 8 ■ W O R K F LO W R U L E S

The correct answers are

• x=4

• y=4

• z=1

• a=4

• b=7

So how did you do? Honestly, that one is still not too bad, but it does demonstrate inactive rules, reeval-
uation settings, dependencies, slightly more complex conditions, etc. Now imagine a situation where we’re not
working with simple integers but instead calling external objects or web services, setting object properties that
may trigger other actions, and so forth. You can see how this can quickly get a bit crazy. Be careful and just
expect that at one time or another, you’ll lock up your workflow with a circular reference inside your rules. I
did it twice setting up this example.

The heart of chaining is the identification of dependencies. There are three ways that
dependencies can be identified in our rules:

• Implicit: These are what we saw earlier. The Rules engine walked our ruleset before
executing any rules and identified situations where a value used in the condition of one
rule is modified in the action of another rule. This represents an implicit dependency.
There’s not much more to implicit dependencies so we won’t go any further. Most of the
time, this is what you’ll use.

• Attribute-based: Used when a rule invokes a method. Because of the potential web of
dependencies and interrelations once code starts stepping into method calls, this mech-
anism allows a developer to explicitly identify how methods should be accounted for
when determining ruleset dependencies. We’ll delve more deeply into this in the next
section.

Mann_700-1C08.fm Page 270 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 271

• Explicit: This type of dependency control is only useful in situations where a property is
updated by a call to a method that for one reason or another (perhaps it is a third-party
control) cannot be modified to add attribute-based dependency information. We’ll look
at this in just a moment.

Attribute-Based Dependencies There are three specific attributes available for developers to deco-
rate their methods with for use with rules:

• [RuleRead("property_name")]: The associated method reads the specified property value.

• [RuleWrite("property_name")]: The associated method writes to the specified property.

• [RuleInvoke("method_name")]: The associated method makes a call to another method.
The first method gets decorated with RuleInvoke and the name of the second method.
The second method gets decorated with RuleRead or RuleWrite and the name of the
property involved.

■Tip Like conditions, methods and properties of objects used in rules must be static.

For example, a method called by a rule that modifies the property RequisitionValue would
be decorated as shown in Listing 8-4.

Listing 8-4. Using RuleWrite

[RuleWrite("RequisitionValue")]
private void SetRequisitionTotal(int iReqID, int iDiscountPercent)
{
 // do some processing here…
 RequisitionValue = …
}

An example of using RuleRead is shown in Listing 8-5.

Listing 8-5. Using RuleRead

[RuleRead("RequisitionValue")]
private double GetRequisitionTotal(int iReqID)
{
 // do some processing here…
 return RequisitionValue
}

Finally, an example of RuleInvoke is shown in Listing 8-6. Note the use of RuleWrite as well
on the called method.

Mann_700-1C08.fm Page 271 Monday, January 22, 2007 10:00 AM

272 C H A P T E R 8 ■ W O R K F LO W R U L E S

Listing 8-6. Last, but Not Least, RuleInvoke

 [RuleInvoke("SetRequisitionTotal")]
private void UpdateRequisitionDetails(int iReqID)
{
 // do some processing to determine discount percentage here…
 SetRequisitionTotal(iReqID, iDiscountPercent);
}

[RuleWrite("RequisitionValue")]
private void SetRequisitionTotal(int iReqID, int iDiscountPercent)
{
 // do some processing here…
}

Explicit Dependencies

Explicit dependencies are identified by use of an Update statement, which is added directly to a
rule in the Rule Set Editor, as shown in Listing 8-7.

Listing 8-7. Using the Update Statement for Explicit Identification of Dependencies

If a>3 then Some_External_Method(b)
Update(b)

As mentioned previously, this only comes into play when you can’t modify the invoked
method for some reason. Using the Update statement to explicitly identify a dependency should be
pretty rare. Most of the time, dependencies will be handled implicitly. In cases where we use
methods in our rules, attribute-based identification should suffice.

Wrapping Up Rulesets

Now that we have a pretty good understanding of chaining, there are just a few more items to
cover to complete our understanding of rulesets:

• As mentioned before, each ruleset has a property that allows us to control chaining for
the ruleset as a whole. The following three options are available:

• Full chaining: Chaining is unrestrained and will execute as described earlier.

• Sequential: Essentially chaining is turned off. Rules are executed only once and only
in descending priority order.

• Explicit: Turns off attribute-based and implicit and only processes dependencies
explicitly identified with Update statements. While this might be extreme, this option
provides the rule author with the greatest level of granular control over chaining within a
given ruleset.

• Utilizing the Halt directive in the action part of a rule will cause the ruleset to immedi-
ately stop processing and to return control to the next statement in the workflow.

So that’s it. Chaining and rulesets are now fully integrated into your vocabulary. You’re a
ruleset expert. You dream about attribute-based dependencies. Great, let’s get back to the
Policy activity.

Mann_700-1C08.fm Page 272 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 273

Using the Policy Activity

To recap, the primary purpose of the Policy activity is to oversee the execution of a ruleset. If
you drag a Policy activity out onto your workflow and look at its properties, you’ll see a property
called RuleSetReference. Clicking on the ellipsis in this property field will bring up the RuleSet
Manager. This screen allows you to choose which ruleset defined in the current workflow you
wish to apply with this Policy activity. A sample of this dialog box is shown in Figure 8-7. You’ll
notice that it looks very similar to the Declarative Condition Manager we saw back in Figure 8-3.

Figure 8-7. The RuleSet Manager allows you to choose which ruleset to apply via the Policy
activity.

Clicking the New or Edit button opens the Rule Set Editor, which allows you to manage the
rules that are part of the ruleset and also the chaining behavior and other metadata about the
ruleset. An example of the Rule Set Editor is shown in Figure 8-8. The options available on this
screen should be pretty familiar to you from our walkthrough of ruleset functionality. We’ll
explore the Rule Set Editor in more detail shortly as part of our process of building our exter-
nally manageable ruleset activity at the end of this chapter.

Mann_700-1C08.fm Page 273 Monday, January 22, 2007 10:00 AM

274 C H A P T E R 8 ■ W O R K F LO W R U L E S

Figure 8-8. The Rule Set Editor is somewhat more complex than the simple Declarative Condition
Editor we saw earlier.

The more astute among you will have noticed that I slipped in a little knock against the
Policy activity a few paragraphs back when I introduced the RuleSet Manager. For those of you
that missed it, here it is again: This screen allows you to choose which ruleset defined in the
current workflow you wish to apply with this Policy activity. The key to my knock against the
Policy activity is defined in the current workflow. Drat. We still can’t get at our rulesets from
outside of our workflow.

Double-drat.
So, the Policy activity gets us pretty close but not all the way there. To take the final step we

need to do some coding—some pretty heavy-duty coding. For what it’s worth, even the full WF
does not have the capability to support external rule management out of the box, so this isn’t
just a slight against Office workflows. It is a capability that is conspicuously absent from the
current version of all WF-based workflows.

In an apparent nod to the importance of this functionality, and perhaps as a harbinger of
things to come in future releases of the WF engine, Microsoft has published a sample on the
Windows Workflow Foundation section of the .NET 3.0 Framework site that shows how to store
rulesets in SQL Server and dynamically load them into a workflow at runtime.

Mann_700-1C08.fm Page 274 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 275

■Tip The External Ruleset Demo application is available from http://wf.netfx3.com/files/folders/
rules_samples/entry309.aspx at the time of this writing. Because it is still in beta, I expect that the
sample will be updated for the production release and will likely be available from a different URL. You may
need to dig around the WF section to find it.

“Great!” you say. “I’ll just take a look at that sample application to make my rulesets exter-
nally accessible. I don’t need to read any more of this inane drivel.”

Not so fast, bucko. Sorry to burst your bubble, but the WF sample referenced earlier won’t
work for Office workflows. Sorry. You’re stuck reading my inane drivel.

In the rest of this chapter, we’re going to build a custom activity, a custom document
library, a Windows Forms application to rehost the Rule Set Editor, and finally a sample work-
flow to show it all in action.

SOMETIMES IT’S JUST TOO MUCH

Now that you understand the Policy activity and are embarking on an exploration of our custom ExternalPolicy
activity, you may be wondering why the simple Declarative Rule Conditions exist at all. The answer is that
sometimes you don’t need the then and the else. Back in the “Rule Mechanics” section of this chapter, you’ll
recall that I mentioned that the conditions were used on activities such as

• IfElseBranch

• While

• ConditionedActivityGroup

• Replicator

These activities do not need the then or the else—those are both provided by the activity itself or the
activities they contain. Think about it, the IfElseBranch only needs to know whether or not it executes. If it
does, the activities added to it will do the necessary work. If it does not, control passes on and nothing within
that branch executes. The other activities that use conditions are similar.

Conditions are perfect for this scenario because they only signal how the process should flow. Throwing
a policy into this, whether or not it is externally maintainable, would be overkill. Simplicity is a goal we should
all shoot for.

Office Workflow External Policy Solution
As I mentioned earlier, the WF sample application will not work in Office workflows, so we
need to take a different approach. While we’re at it, we might as well take care of a few other
issues with the sample application.

Mann_700-1C08.fm Page 275 Monday, January 22, 2007 10:00 AM

276 C H A P T E R 8 ■ W O R K F LO W R U L E S

• The sample application stores rulesets in SQL Server (actually SQL Express). We have
SharePoint at our disposal, so we’ll change this to store our rulesets as documents in a
custom document library.

• The sample application implements its own versioning functionality. We’ll make use of
SharePoint versioning.

• The sample application is not very approachable by nontechnical users. It references
assemblies, types, and a few other technical details that would make business users
blanch. Since one of our goals is to provide a tool to business users that allows them to
manage rules without the help of IT, we’ll make the rule management tool a little less
technically focused.

So, without further ado, let’s get started.

■Note The full source code for all of the pieces utilized here is available at www.kcdholdings.com. If you
don’t feel like typing in all of the code for this solution, you can simply download it and follow along at home.

To understand what we’re about to step into, let’s take a look at our goals. We want to

• Duplicate the functionality of the Policy activity, namely the management and execu-
tion of rulesets.

• Make our rulesets editable from a process divorced from our workflow.

• Utilize SharePoint for storage, versioning, and security.

• Deliver a rule management application that nontechnical business users can under-
stand and work with.

There are two primary processes to be implemented via our code: rule management and
rule execution. We’ll start with rule execution via a custom activity.

External Policy Activity
To execute externally defined rules within our workflows, we first need to retrieve them and
then we can execute them. To do this and make this process flexible so that it can be used in
multiple scenarios, we’re going to create a custom activity to implement the following process:

1. Retrieve the serialized ruleset from the SharePoint document library.

2. Deserialize the ruleset into a ruleset object.

3. Execute the ruleset.

Mann_700-1C08.fm Page 276 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 277

Create a new activity Library with a project name of KCD.Workflow.Rules and give the activity
class a clever name, such as ExternalPolicy. When the solution is created, open up the activity
in Code view and add the contents of Listing 8-8 to the top with the other using statements.
Add references to Microsoft.SharePoint.dll and System.Windows.Forms.dll to your project and
we can continue on.

■Note I’m joking about the name for this activity. The name you use here is referenced again in the RuleSet
Manager. If you change the name here, you’ll need to change it in line 21 of Listing 8-17.

Listing 8-8. The using Statements for Our Solution

using System.Xml;
using System.Windows.Forms;
using System.Drawing.Design;
using System.Windows.Forms.Design;
using Microsoft.SharePoint;
using System.IO;

The next piece we’re going to tackle is the custom properties for our activity. To make this
activity work, we need three pieces of information:

• The URL of the SharePoint site that stores the ruleset documents

• The name of the document library on that site that stores the ruleset documents

• The name of the ruleset document to apply

Listing 8-9 shows all of the code for the properties we’ll use to capture this information.
The SourceSiteURL property is the same as the properties we set up on our activity in Chapter 5—
it just makes sense to use a dependency property. If you need a refresher on dependency prop-
erties, jump back to Chapter 5. Other than that, there is nothing special about this property.

Listing 8-9. Setting Up Our Properties

 public static DependencyProperty SourceSiteURLProperty =
 DependencyProperty.Register("SourceSiteURL",
 typeof(string),
 typeof(KCD.Workflow.Rules.ExternalPolicy));

 public string SourceSiteURL
 {
 get
 {
 return ((string)(base.GetValue(
 KCD.Workflow.Rules.ExternalPolicy.SourceSiteURLProperty)));
 }

Mann_700-1C08.fm Page 277 Monday, January 22, 2007 10:00 AM

278 C H A P T E R 8 ■ W O R K F LO W R U L E S

 set
 {
 base.SetValue(
 KCD.Workflow.Rules.ExternalPolicy.SourceSiteURLProperty,
 value);
 }
 }

 public static DependencyProperty DocumentLibraryProperty =
 DependencyProperty.Register("DocumentLibrary",
 typeof(string),
 typeof(KCD.Workflow.Rules.ExternalPolicy));

 [Description("Name of Document Library storing Ruleset information"),
 Editor(typeof(docLibSelector), typeof(UITypeEditor))]
 public string DocumentLibrary
 {
 get
 {
 return ((string)(base.GetValue(
 KCD.Workflow.Rules.ExternalPolicy.DocumentLibraryProperty)));
 }
 set
 {
 base.SetValue(
 KCD.Workflow.Rules.ExternalPolicy.DocumentLibraryProperty,
 value);

 }
 }

 public static DependencyProperty RuleSetNameProperty =
 DependencyProperty.Register("RuleSetName", typeof(string),
 typeof(KCD.Workflow.Rules.ExternalPolicy));

 [Description("Name of RuleSet to Apply"),
 Editor(typeof(RuleSetSelector), typeof(UITypeEditor))]
 public string RuleSetName
 {
 get
 {
 return ((string)(base.GetValue(
 KCD.Workflow.Rules.ExternalPolicy.RuleSetNameProperty)));
 }

Mann_700-1C08.fm Page 278 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 279

 set
 {
 base.SetValue(
 KCD.Workflow.Rules.ExternalPolicy.RuleSetNameProperty,
 value);
 }
 }

The other two properties are a bit different, though, and for the same reason. They both
make use of dependency properties, but in each case, we need to control the choices available
to the user of our activity. For the document library, we want to make sure that they enter a
valid document library name for the site specified by the URL. To do this, we’ll present them
with a list of document libraries. For the second case, they need to select a ruleset document
from that document library. In addition, the ruleset they select needs to be valid for the work-
flow they are building. Again, we’ll present them with a list to choose from. To accomplish this,
we will set up custom property editors for each of these two properties.

■Note As we’ll see in a bit, our rules are going to be interacting with the members—variables, properties,
and methods—of our workflow. Therefore, each ruleset is tightly bound to a particular type—the specific
workflow assembly. This is somewhat limiting and will result in some problems, but let’s face it—there’s no
good way around it. We just need to live with it.

The property editors are attached to the appropriate property by means of an attribute:
Editor(typeof(docLibSelector), typeof(UITypeEditor)). The first type (docLibSelector) is
the name of the class we’ll build as our editor. The second type is always UITypeEditor. We’ll
cover these a little more when we actually build the editors.

The next thing we need to take care of is overriding the Execute method. Again, we saw this
in Chapter 5 so I won’t go into a lot of detail about the mechanics of executing activities; I’ll just
give you the code in Listing 8-10. At a high level, this code uses the properties to retrieve the
ruleset document from the SharePoint document library as XML. It deserializes that XML to
create a ruleset object and then executes that ruleset.

Listing 8-10. Code to Retrieve and Execute Our External Ruleset

protected override ActivityExecutionStatus Execute(
 ActivityExecutionContext context)
 {
 string sFullURL = this.SourceSiteURL + @"/" + this.DocumentLibrary
 + @"/" + this.RuleSetName + ".ruleset";
 WorkflowMarkupSerializer serializer = new WorkflowMarkupSerializer();
 XmlUrlResolver resolver = new XmlUrlResolver();
 System.Net.NetworkCredential myCredentials =
 new System.Net.NetworkCredential(
 "Administrator", "password", "Mossb2tr");

Mann_700-1C08.fm Page 279 Monday, January 22, 2007 10:00 AM

280 C H A P T E R 8 ■ W O R K F LO W R U L E S

 resolver.Credentials = myCredentials;
 XmlReaderSettings settings = new XmlReaderSettings();
 settings.XmlResolver = resolver;
 XmlReader reader = XmlReader.Create(sFullURL, settings);
 RuleSet ruleSet = (RuleSet)serializer.Deserialize(reader);
 reader.Close();
 Activity targetActivity = Utility.GetRootWorkflow(this.Parent);
 RuleValidation validation = new RuleValidation(
 targetActivity.GetType(), null);
 RuleExecution execution = new RuleExecution(validation,
 targetActivity, context);
 ruleSet.Execute(execution);
 return ActivityExecutionStatus.Closed;
 }

The execution of the ruleset in this manner is duplicating the functionality of the default
Policy activity. Essentially, it walks through the individual rules contained within the ruleset
and evaluates them—keeping the various properties of the rules and the ruleset (reevaluation
condition, chaining settings, priority, etc.) in mind as it does so.

■Note Yes, in the middle of Listing 8-10 I have a hard-coded username and password. Trust me, that’s
only for this sample code. I strongly recommend that you implement your choice of the various impersonation
methods floating around. Hard-coding this information directly into your assembly is a bad, bad idea. Even
retrieving the information from a configuration file would be a better option. While I’m at it, there are a number
of things that I would change in Listing 8-10 in addition to the hard-coded user credentials—the complete
lack of error control comes immediately to mind. If you’re implementing this in a production environment,
you’ll want to apply your own rigorous coding standards. For now, let’s just keep things simple.

In the middle of Listing 8-10, you’ll notice a call to a GetRootWorkflow method. The code for
this method is provided in Listing 8-11. All it does is call itself iteratively until it reaches the top
of the activity hierarchy, which represents our workflow itself. I have this method separated out
in a utility class because I use it from various places in development projects.

Listing 8-11. The GetRootWorkflow Method Used by Our Custom Activity

public static CompositeActivity GetRootWorkflow(CompositeActivity activity)
 {
 if (activity.Parent != null)
 {
 CompositeActivity workflow = GetRootWorkflow(activity.Parent);
 return workflow;
 }

Mann_700-1C08.fm Page 280 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 281

 else
 {
 return activity;
 }
 }

The last piece of this section of the solution is to build the custom property editors for the
DocumentLibrary and RuleSetName properties. I’m only going to cover these pieces at a pretty
high level because they’re really not related to workflow rules. Listing 8-12 shows the full class
for the first editor, used by the DocumentLibrary property. It is all SharePoint development 101—
grab the document libraries and present them in a list box; nothing special there. The rest of
the code is mandated by the custom property editor.

Listing 8-12. The Custom Property Editor for the DocumentLibrary Property

public class docLibSelector : UITypeEditor
 {
 IWindowsFormsEditorService frmEditor = null;

 public override UITypeEditorEditStyle GetEditStyle(
 ITypeDescriptorContext context)
 {
 return UITypeEditorEditStyle.DropDown;
 }

 public override object EditValue(ITypeDescriptorContext context,
 IServiceProvider provider, object value)
 {
 ExternalPolicy parent = (ExternalPolicy)context.Instance;
 string sSourceSiteURL = parent.SourceSiteURL;
 if (sSourceSiteURL != null)
 {
 frmEditor = (IWindowsFormsEditorService)
 provider.GetService(
 typeof(IWindowsFormsEditorService));
 ListBox lbDocLibs = new ListBox();
 SPSite site = new SPSite(sSourceSiteURL);
 SPWeb web = site.OpenWeb();

 foreach (SPDocumentLibrary dl in web.GetListsOfType(
 SPBaseType.DocumentLibrary))
 {
 lbDocLibs.Items.Add(dl.Title);
 }

Mann_700-1C08.fm Page 281 Monday, January 22, 2007 10:00 AM

282 C H A P T E R 8 ■ W O R K F LO W R U L E S

 lbDocLibs.SelectedValueChanged +=
 new EventHandler(lbDocLibs_SelectedValueChanged);
 frmEditor.DropDownControl(lbDocLibs);
 return lbDocLibs.SelectedItem;
 }
 else
 {
 MessageBox.Show(@"You must specify a Source
 Site URL first!");
 return null;
 }

 }

 void lbDocLibs_SelectedValueChanged(object sender, EventArgs e)
 {
 frmEditor.CloseDropDown();
 }
 }

The next custom editor is similar to the previous one. It handles the process of presenting
the user with a list of valid rulesets to be utilized. A ruleset is considered valid for the current work-
flow if the name of the workflow containing the activity matches the value of the WorkflowName
column in the document library. We’ll cover setting that value to the proper value when we
build the RuleSet Manager application in a bit. As before, the code for all of this is straightforward
SharePoint development. We use an SPQuery object to filter our result set and loop through the
SPListItemCollection to populate the list box. Listing 8-13 shows you this code.

Listing 8-13. The Custom Property Editor for the RuleSetName Property

public class RuleSetSelector: UITypeEditor
 {
 IWindowsFormsEditorService frmEditor = null;

 public override UITypeEditorEditStyle GetEditStyle(
 ITypeDescriptorContext context)
 {
 return UITypeEditorEditStyle.DropDown;
 }

 public override object EditValue(ITypeDescriptorContext context,
 IServiceProvider provider, object value)
 {
 ExternalPolicy parent = (ExternalPolicy)context.Instance;
 string sSourceSiteURL = parent.SourceSiteURL;
 string sDocLibName = parent.DocumentLibrary;

Mann_700-1C08.fm Page 282 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 283

 if (
 (sSourceSiteURL != null)
 && (sDocLibName != null)
)
 {
 frmEditor = (IWindowsFormsEditorService)
 provider.GetService(
 typeof(IWindowsFormsEditorService));
 ListBox lbRuleSets = new ListBox();
 SPSite site = new SPSite(sSourceSiteURL);
 SPWeb web = site.OpenWeb();
 SPDocumentLibrary dl = (SPDocumentLibrary)
 web.Lists[sDocLibName];

 CompositeActivity workflow =
 Utility.GetRootWorkflow(parent.Parent);

 SPQuery qry = new SPQuery();
 qry.Query = string.Format(
 @"<Where><Eq><FieldRef Name='WorkflowName' />
 <Value Type='Text'>{0}</Value></Eq></Where>",
 workflow.QualifiedName);
 SPListItemCollection lic = dl.GetItems(qry);
 if (lic.Count > 0)
 {
 foreach (SPListItem li in lic)
 {
 lbRuleSets.Items.Add(
 Path.GetFileNameWithoutExtension(li.File.Name));
 }
 }
 lbRuleSets.SelectedValueChanged +=
 new EventHandler(lbRuleSets_SelectedValueChanged);
 frmEditor.DropDownControl(lbRuleSets);
 return lbRuleSets.SelectedItem;
 }
 else
 {
 MessageBox.Show(@"You must specify a
 Document Library first!");
 return null;
 }
 }

Mann_700-1C08.fm Page 283 Monday, January 22, 2007 10:00 AM

284 C H A P T E R 8 ■ W O R K F LO W R U L E S

 void lbRuleSets_SelectedValueChanged(object sender, EventArgs e)
 {
 frmEditor.CloseDropDown();
 }
 }

■Note I won’t walk through building the auxiliary classes for our activity—the Designer, toolbox item, etc.
We covered that in Chapter 5 so there’s little reason to rehash it here. In my copious spare time, I’ll be wrapping
up all of the code from the book and posting it on my web site so you can go there to grab it all if you’re interested
in the final product: www.kcdholdings.com.

That’s it. Build and deploy the activity as we did in Chapter 5 and we’re ready to move onto
the RuleSet Manager application.

Rule Management
Ruleset management is the other half of our solution. For this we’ll be building a Windows
Forms application. Before getting to the code, I’ll walk you through the functionality provided
by the application so that the source code makes a little more sense.

At a high level, the functionality of this application is as follows:

1. Allow the user to select which workflow template they wish to create a ruleset for. The
list of available templates is filtered to only show those that make use of our ExternalPolicy
activity.

2. Once the user has selected a template, allow them to either select an existing ruleset to
edit or create a new ruleset. The names of existing rulesets are retrieved from a SharePoint
document library.

3. Present the Rule Set Editor provided by Microsoft to manage the rules and ruleset
properties.

4. Save the ruleset back to our SharePoint document library.

Only two screens make up the user interface for our solution—and one of them is provided
by Microsoft—so we need to create only one. Figure 8-9 shows the form we’ll be building. The
other form is the Rule Set Editor provided by Microsoft and shown back in Figure 8-8.

■Note As I mentioned while we were building the ExternalPolicy activity, each ruleset is going to be manip-
ulating member variables of a given workflow template. Therefore, the ruleset is tightly bound to that specific
workflow template’s Type. We’re trying to hide some of the ugliness of types and members from our users,
so we’ll do all of that work in the background. All we need them to do is select the workflow template for
which they wish to build a ruleset.

Mann_700-1C08.fm Page 284 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 285

Figure 8-9. The RuleSet Manager form we’ll build for our solution

Now that we have an idea of what we’re building, let’s go ahead and get started. To begin,
create a new Windows Forms application in Visual Studio 2005 and add controls to the form
so that it looks like Figure 8-9. Table 8-2 shows the details for the controls that matter. Most
importantly, for the code to operate, you need to set the control names properly.

Table 8-2. Control Properties for Our Rule Manager Solution

Control Property Value Description

TextBox (Name) txtSiteURL Holds the URL for the site
(duh) that contains our
ruleset documents.

Button (Name) btnGetWorkflows Initiates the process to
retrieve the list of workflow
templates from the site
specified in txtSiteURL.

Button (btnGetWorkflows) Text Get Workflow Templates

ListBox (Name) lbWorkflows Holds the list of workflow
templates, filtered on those
that use the ExternalPolicy
activity.

Panel (Name) pnlRuleSets All of the controls below the
list box are contained in this
panel. It’s just easier to work
with them as a unit when
they’re in a container.

Mann_700-1C08.fm Page 285 Monday, January 22, 2007 10:00 AM

286 C H A P T E R 8 ■ W O R K F LO W R U L E S

With all of the visual elements set up, we can now start working with the code (finally!).
Listing 8-14 shows the extra namespace references we need to add to the top of our code file.
You’ll need to add references to your project as appropriate for these namespaces.

Listing 8-14. Namespace References

using Microsoft.SharePoint;
using Microsoft.SharePoint.Workflow;
using System.IO;
using System.Xml;
using System.Xml.XPath;
using System.Reflection;
using System.Workflow.Activities.Rules.Design;
using System.Workflow.Activities.Rules;
using System.Workflow.ComponentModel.Serialization;

The next step is to create a new class for an object we will use throughout the rest of the
code to store information about the available workflows. After the default class created for you
by Visual Studio, add the code from Listing 8-15. It’s just a collection of properties, so I won’t
step you through each one. We’ll see them in action in just a few minutes.

Panel (pnlRuleSets) Enabled False All of the controls will be
enabled once the user selects
a workflow from the list box.

ComboBox (Name) cmboExistingRulesets Stores the list of rulesets
already created for the
selected workflow. Also
enables the creation of a new
ruleset (by selecting New).

Label (Name) lblRuleSetName This label is different from
the others because we
programmatically control its
Enabled property during the
course of the solution.

Label(lblRuleSetName) Enabled False Starts out as disabled.

TextBox (Name) txtRuleSetName Holds the name of a new
ruleset to be created.

TextBox (txtRuleSetName) Enabled False Starts out as disabled.

Button (Name) btnRuleSet Initiates the process to show
the Rule Set Editor.

Button (btnRuleSets) Text Create RuleSet We’ll change this program-
matically depending on
whether we’re editing an
existing ruleset or creating a
new one.

Table 8-2. Control Properties for Our Rule Manager Solution (Continued)

Control Property Value Description

Mann_700-1C08.fm Page 286 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 287

■Caution In order to be able to work with the Visual Studio visual form designer, it is important that this
class come after the form class in your code file. If it doesn’t, Visual Studio will bark at you.

Listing 8-15. Our Utility WorkflowData Class for Storing Information About the Available Workflows

 public class WorkflowData
 {
 private string _name;
 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }

 private Guid _id;
 public Guid ID
 {
 get { return _id; }
 set { _id = value; }
 }

 private string _assemblyName;
 public string AssemblyName
 {
 get { return _assemblyName; }
 set { _assemblyName = value; }
 }

 private Type _assemblyType;
 public Type AssemblyType
 {
 get { return _assemblyType; }
 set { _assemblyType = value; }
 }
 }

Listing 8-16 shows the last piece of setup code for our solution—it just sets up a few variables
for us. I’ll leave you to decipher this complex set of code on your own. Add the code to the top
of the class and we can move on.

Listing 8-16. Three of the Most Complex Lines of Code You’ll Ever Encounter

List<WorkflowData> WFDataCollection = new List<WorkflowData>();
string sWorkflowName = string.Empty;
string sSiteURL = string.Empty;

Mann_700-1C08.fm Page 287 Monday, January 22, 2007 10:00 AM

288 C H A P T E R 8 ■ W O R K F LO W R U L E S

With all of that out of the way, now we can get on to some fun code (did I just say “fun
code”? I’m such a geek). Anyway, the code shown in Listing 8-17 handles the click event for the
Get Workflows button. Double-click the button in the Designer to have Visual Studio automag-
ically create and associate the method for you and then just add the code—line numbers are
for reference only. There are a few interesting things about this method:

• Line 10 sets up an instance of the WorkflowData class that we created in Listing 8-15.

• Line 13 begins a loop through all of the workflows that have been installed on the site
indicated by the provided URL. The rest of the method is within this loop.

• Lines 15 through 21 check that the workflow is using the ExternalPolicy activity we created
earlier. Since the rulesets we create with this application are only useful to our ExternalPolicy
activity, there’s no sense in showing other workflows.

• Line 15 makes a call to the method GetAssemblyName. We’ll be creating that method in a
few minutes.

• Lines 23 through 27 are the meat of this method—everything else is just qualifying and
leading up to these five lines. These lines fill out our WorkflowData object and add it to the
collection of WorkflowData objects we created back in cryptic Listing 8-16. Finally, line 27
simply adds the name of this workflow template to our list box so that it’s available for
users to select.

Listing 8-17. Getting the Workflows That Use Our ExternalPolicy Activity

1 Cursor.Current = Cursors.WaitCursor;
2 sSiteURL = txtSiteURL.Text;
3 sSiteURL.Replace(@"\","/");
4 if (!sSiteURL.EndsWith("/"))
5 {
6 sSiteURL += "/";
7 }
8 SPSite site = new SPSite(sSiteURL);
9 SPWeb web = site.OpenWeb();
10 WorkflowData wfd = null;
11 SPWorkflowTemplateCollection wftc = web.WorkflowTemplates;
12 string sAssemblyName = string.Empty;
13 foreach (SPWorkflowTemplate wft in wftc)
14 {
15 sAssemblyName = GetAssemblyName(wft.Id.ToString());
16 if (sAssemblyName != string.Empty)
17 {
18 Assembly a = Assembly.Load(sAssemblyName);
19 foreach (AssemblyName mod in a.GetReferencedAssemblies())
20 {

Mann_700-1C08.fm Page 288 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 289

21 if (mod.FullName.ToLower().Contains("externalpolicy"))
22 {
23 wfd = new WorkflowData();
24 wfd.Name = wft.Name;
25 wfd.ID = wft.Id;
26 WFDataCollection.Add(wfd);
27 lbWorkflows.Items.Add(wfd.Name);
28 }
29 }
30 }
31 }
32 Cursor.Current = Cursors.Default;

The next chunk of code is shown in Listing 8-18 and it’s a doozy. It is the handler for the
SelectedIndexChanged event on our list box, so it will fire every time the user selects a new
workflow from the list. Again, line numbers are for reference only.

• Line 4 begins the fun by checking whether we have already retrieved the name of
the assembly for the selected workflow template. If not, line 6 makes a call to the
GetAssemblyName method (which we saw in Listing 8-17 and will be adding shortly) and
stores the result back in the WorkflowData collection. This ensures that each workflow is
queried only once to find out its assembly information. After that, we store it in our
WorkflowDataCollection object.

• Line 8 loads the assembly so that we can begin iterating through its contained types in
line 9.

• Lines 11 through 16 set the AssemblyType parameter in our WorkflowData collection for
the appropriate type within the assembly. We’re looking for a type that descends from
one of the workflow base classes—SequentialWorkflowActivity or StateMachineActivity.
At a minimum, the assembly is going to contain a settings type, which is why we filter
on the name of the base type.

■Note Yes, there is a certain amount of fragility to this approach. If there are other types within the
assembly that descend from one of those base types, it could break things—or at least produce unexpected
results. For now, we’re going to live with this. If I come up with a better solution, I’ll post it to my web site:
www.kcdholdings.com. If you have any ideas, I’d love to hear them.

• Line 17 begins our interaction with SharePoint. In lines 17 through 20 we connect to
SharePoint and the document library that contains our ruleset documents. Yes, in line
19 I have hard-coded the name of the document library. You could easily change the
code to read it from any number of other places; this was just a bit simpler for this demo.
In the activity, as you recall, we coded functionality to let the developer select the docu-
ment library. Doing so here would likely just confuse the user, which is never a good idea.

Mann_700-1C08.fm Page 289 Monday, January 22, 2007 10:00 AM

290 C H A P T E R 8 ■ W O R K F LO W R U L E S

• Lines 20 through 22 query the document library for items where the WorkflowName
column match the name of the workflow we’re working with. Again, remember that
rulesets are tightly bound to a workflow template and shouldn’t show the user rulesets
that are not applicable to the workflow they have selected.

• Finally, lines 23 through 29 loop through and add each ruleset name to the combo box.
They’re now available for the user to choose from.

Listing 8-18. Retrieving the Rulesets Applicable to the Selected Workflow

1 Cursor.Current = Cursors.WaitCursor;
2 cmboExistingRulesets.Items.Clear();
3 pnlRuleSets.Enabled = false;
4 if (WFDataCollection[lbWorkflows.SelectedIndex].AssemblyName == ➥

 null)
5 {
6 WFDataCollection[lbWorkflows.SelectedIndex].AssemblyName = ➥

 GetAssemblyName(WFDataCollection➥

 [lbWorkflows.SelectedIndex].ID.ToString());
7 }
8 Assembly a = Assembly.Load(WFDataCollection➥

 [lbWorkflows.SelectedIndex].AssemblyName);
9 foreach (Type type in a.GetTypes())
10 {
11 if ((type.BaseType.Name.ToLower() == ➥

 "sequentialworkflowactivity") || ➥

 (type.BaseType.Name.ToLower() == ➥

 "statemachineworkflowactivity"))
12 {
13 WFDataCollection[lbWorkflows.SelectedIndex].AssemblyType = ➥

 type;
14 break;
15 }
16 }

17 SPSite site = new SPSite(sSiteURL);
18 SPWeb web = site.OpenWeb();
19 SPDocumentLibrary dl = (SPDocumentLibrary)web.Lists["Rules"];
20 SPQuery qry = new SPQuery();
21 qry.Query = string.Format(@"<Where><Eq>➥

 <FieldRef Name='WorkflowName' /><Value Type='Text'>{0}</Value>➥

 </Eq></Where>",➥

 WFDataCollection[lbWorkflows.SelectedIndex].AssemblyType.Name);
22 SPListItemCollection lic = dl.GetItems(qry);

Mann_700-1C08.fm Page 290 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 291

23 if (lic.Count > 0)
24 {
25 foreach (SPListItem li in lic)
26 {
27 cmboExistingRulesets.Items.Add➥

 (Path.GetFileNameWithoutExtension(li.File.Name));
28 }
29 }
30 cmboExistingRulesets.Items.Insert(0,"<New>");
31 cmboExistingRulesets.SelectedIndex = 0;
32 pnlRuleSets.Enabled = true;
33 Cursor.Current = Cursors.Default;

A few times in the last few listings, we’ve referenced a method named GetAssemblyName.
Listing 8-19 finally shows the code for this method. This one is a little different from the rest in
that it does some XML parsing instead of working with SharePoint or workflows. Again, we’ll
just step through the highlights:

• Line 4 begins our loop through the Features directory on our server. We grab any files
named workflow.xml that we find and load them into an XmlDocument object.

• Line 10 retrieves the GUID ID of the workflow and line 11 checks to see whether it
matches against the workflow template selected by the user. If not, this iteration ends
and we continue the loop.

• If line 11 does match, then we have found the workflow.xml file for the workflow selected
by the user. Lines 13 and 14 can do some additional querying to retrieve the internal
name of the workflow (the Name attribute of the <Workflow> XML tag) and the fully quali-
fied assembly name (from the CodeBesideAssembly attribute).

• Since we’ve now found what we need, there is no reason to continue looping, so line 15
short-circuits the loop and drops us into line 18, which simply returns the assembly name.

Listing 8-19. Getting the Name of the Assembly for the Selected Workflow from Its workflow.xml File

1 private string GetAssemblyName(string WFID)
2 {
3 string sRetVal = string.Empty;
4 foreach (string sFileName in Directory.GetFiles(@"C:\Program Files\➥

 Common Files\Microsoft Shared\➥

 web server extensions\12\TEMPLATE\ FEATURES\", ➥

 "workflow.xml", SearchOption.AllDirectories))

5 {
6 XmlDocument xDoc = new XmlDocument();
7 xDoc.Load(sFileName);
8 XmlNamespaceManager nsMgr = new XmlNamespaceManager
 (xDoc.NameTable);

Mann_700-1C08.fm Page 291 Monday, January 22, 2007 10:00 AM

292 C H A P T E R 8 ■ W O R K F LO W R U L E S

9 nsMgr.AddNamespace("def",
 "http://schemas.microsoft.com/sharepoint/");
10 string wfid = xDoc.SelectSingleNode(
 "/def:Elements/def:Workflow/@Id",nsMgr).InnerText;
11 if (wfid.ToLower() == WFID.ToLower())
12 {
13 sWorkflowName = xDoc.SelectSingleNode(
 "/def:Elements/def:Workflow/@Name", nsMgr).InnerText;
14 sRetVal = xDoc.SelectSingleNode(
 "/def:Elements/def:Workflow/@CodeBesideAssembly",
 nsMgr).InnerText;
15 break;
16 }
17 }
18 return sRetVal;
19 }

■Note The code in Listing 8-19 only works because we are running it on our SharePoint server. For a real
production environment, this method will need to be made into a web service and various security aspects
taken care of in order to allow businesspeople to run the application from their desktop.

Listing 8-20 shows the code to handle the click event on our btnRuleSet object. Like
Listing 8-18, its pretty long; fortunately, though, most of it consists of auxiliary-type code
that is simply supporting the real work of this method.

• Lines 4 through 12 set things up for creating a new ruleset.

• Lines 13 through 26 handle the editing of an existing ruleset, with line 24 creating the
ruleset object by deserializing the XML stored in the document library. We saw this in
the ExternalPolicy activity as well.

• Lines 29 and 30 show how easy it is to instantiate and show the Rule Set Editor provided
by Microsoft.

• If the user clicks OK in the dialog box (as opposed to Cancel, checked in line 32), we grab
the ruleset from the dialog box (line 34).

• If there are any rules (checked in line 35), lines 37 through 48 save the information back
to SharePoint, including setting the WorkflowName column for the SPListItem to the name
of the selected workflow template.

Mann_700-1C08.fm Page 292 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 293

Listing 8-20. Editing the Rulesets and Saving the Information to SharePoint

1 RuleSet rs = null;
2 if (cmboExistingRulesets.SelectedItem.ToString() == "<New>")
3 {
4 if (
 (txtRuleSetName.Text == null)
 || (txtRuleSetName.Text == string.Empty)
)
5 {
6 MessageBox.Show("Please specify a name for the RuleSet");
7 }
8 else
9 {
10 rs = new RuleSet(txtRuleSetName.Text);
11 }
12 }
13 else
14 {
15 string sFullURL = sSiteURL + "Rules/" + ➥

 cmboExistingRulesets.SelectedItem + ".ruleset";
16 WorkflowMarkupSerializer serializer = ➥

 new WorkflowMarkupSerializer();
17 XmlUrlResolver resolver = new XmlUrlResolver();
18 System.Net.NetworkCredential myCredentials;
19 myCredentials = new System.Net.NetworkCredential("Administrator", ➥

 "password", "MossRTM");
20 resolver.Credentials = myCredentials;
21 XmlReaderSettings settings = new XmlReaderSettings();
22 settings.XmlResolver = resolver;
23 XmlReader reader = XmlReader.Create(sFullURL, settings);
24 rs = (RuleSet)serializer.Deserialize(reader);
25 reader.Close();
26 }
27 if (rs != null)
28 {
29 RuleSetDialog ruleSetDialog = new RuleSetDialog(➥

 WFDataCollection[lbWorkflows.SelectedIndex].AssemblyType, ➥

 null, rs);
30 DialogResult result = ruleSetDialog.ShowDialog();
31 WorkflowMarkupSerializer serializer = ➥

 new WorkflowMarkupSerializer();

Mann_700-1C08.fm Page 293 Monday, January 22, 2007 10:00 AM

294 C H A P T E R 8 ■ W O R K F LO W R U L E S

32 if (result == DialogResult.OK)
33 {
34 rs = ruleSetDialog.RuleSet;
35 if (rs.Rules.Count > 0)
36 {
37 MemoryStream ms = new MemoryStream();
38 string sFilename = rs.Name + ".ruleset";
39 XmlWriter writer2 = XmlWriter.Create(ms);
40 serializer.Serialize(writer2, rs);
41 writer2.Flush();
42 SPSite site = new SPSite(sSiteURL);
43 SPWeb web = site.OpenWeb();
44 SPDocumentLibrary dl = ➥

 (SPDocumentLibrary)web.Lists["Rules"];
45 SPFile newfile = dl.RootFolder.Files.Add(➥

 sFilename, ms.ToArray(), true);
46 newfile.Item["WorkflowName"] = sWorkflowName;
47 newfile.Item.Update();
48 writer2.Close();
49 MessageBox.Show("RuleSet Saved");
50 cmboExistingRulesets.Items.Add(rs.Name);
51 cmboExistingRulesets.SelectedItem = rs.Name;
52 txtRuleSetName.Text = string.Empty;
53 }
54 }
55 }

■Note Yes, once again, I have a hard-coded username and password (line 19). In your production system
you really don’t want to do this. Impersonation is your friend; let it help you.

We’re almost done. Listing 8-21 shows the code for the SelectedIndexChanged event on the
combo box. The code is straightforward (unlike that impenetrable Listing 8-16) and only handles
some minor housekeeping, so I won’t walk you through it.

Mann_700-1C08.fm Page 294 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 295

Listing 8-21. Closing with Some Housekeeping

 if (cmboExistingRulesets.SelectedIndex == 0)
 {
 btnRuleSet.Text = "Create RuleSet";
 lblRuleSetName.Enabled = true;
 txtRuleSetName.Enabled = true;
 }
 else
 {
 btnRuleSet.Text = "Edit RuleSet";
 lblRuleSetName.Enabled = false;
 txtRuleSetName.Enabled = false;
 }

So there you have it—the whole code base for the RuleSet Manager application. Go ahead
and build and hope for the best. If neither of us made any typos, it should all compile and run
just fine. Of course, if you try to walk through the process, it will fail because there are still a few
things to wrap up:

1. We need a document library to store the ruleset documents in. You should call it Rules
(unless you changed it in the RuleSet Manager code), and it needs a column called
WorkflowName, which is a required, single-line-of–text-field.

2. We need to build and deploy a workflow that makes use of the ExternalPolicy activity.
We’ll handle that in the next section.

Putting It All Together—A Sample Workflow
To see everything in action, we just need to build a sample workflow that uses our ExternalPolicy
activity. This workflow won’t do anything useful—we just want to show off to all of the cynics in
the crowd that our solution actually works.

Figure 8-10 shows the final product of the sample workflow in the Workflow Designer. It
contains our new activity plus an IfElse activity and two SendEmail activities. We have a variable
defined in the code that is used in two places:

• The first IfElseBranch checks the variable as part of its Declarative Rule Condition to see
whether it should execute.

• The ExternalPolicy activity sets the value of the variable as part of the execution of the
external ruleset.

Mann_700-1C08.fm Page 295 Monday, January 22, 2007 10:00 AM

296 C H A P T E R 8 ■ W O R K F LO W R U L E S

Figure 8-10. Our sample workflow makes use of the custom activity we wrote to retrieve and
execute a ruleset stored outside of our workflow.

There are only a few lines of custom code for this project. With the first, we set up a variable
at the top of the class file: int myFlagVariable = 0;. The other code is shown in Listing 8-22 and it
simply sets the Body property of the SendEmail activities to a value that will tell us which
branch of the if-else executed.

Listing 8-22. Setting the Email Body

private void sendEMailA(object sender, EventArgs e)
{
 this.sendEmail1.Body = "Branch 1 executed, so myFlagVariable = 7";
}

private void sendEMailB(object sender, EventArgs e)
{
 this.sendEmail2.Body = "Branch 2 executed, so myFlagVariable <> 7";
}

From here, the process will get a little strange due to the nature of the solution. The problem is
that we have a bit of the which came first—the chicken or the egg syndrome here. As I’ve mentioned
before (are you sick of it yet?) rulesets are tightly bound to the workflows they are based on. In
our scenario, we need to specify in the activity the name of the ruleset we’d like to implement.
We also need to build that ruleset, which means that we must point it at our assembly. To
remedy this, we’ll set enough of the properties so that we can compile and deploy and then go

Mann_700-1C08.fm Page 296 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 297

back and build our ruleset. Last, we’ll reopen the workflow, specify the ruleset we just built, and
then redeploy. It’s a little bit of jumping back and forth for us as developers, but for the end
users it will not be nearly so complicated. The real benefit of all of this is still that when the rules
change in the future, we can just edit the ruleset without touching the workflow itself.

■Note If you were wondering, this is why none of the properties of the ExternalPolicy activity were specified
as required—we need to compile the workflow before we can set them all.

Table 8-3 specifies values for the properties we need to set in order to be able to compile.

With the activities configured, configure the project to be signed with a strong name key
file and then compile your workflow. After compiling (so you can get the strong name of the
assembly), make sure you edit the workflow.xml, feature.xml, and install.bat files, and then
go ahead and deploy. If you need a refresher on how to deploy the workflow, jump back to
Chapter 6. Chapter 7 also covers workflow deployment, but in Chapter 7 we make use of Work-
flow forms so things are a little different from what we need here.

■Caution When configuring the workflow.xml file, make sure that you set the Name attribute to the
name of your class. We look for this value when we’re determining which rulesets are valid for a given work-
flow template.

Table 8-3. Properties for Our External Policy Test Workflow

Activity Property Value

IfElseBranchActivity1 Condition Declarative Rule Condition

IfElseBranchActivity1 Condition Name Check Flag Variable

IfElseBranchActivity1 Expression this.myFlagVariable == 7

SendEmail1 CorrelationToken workflowToken

SendEmail1 MethodInvoking SendEmailA

SendEmail1 Subject External Policy Test

SendEmail1 To <a valid email address in your environment>

SendEmail2 CorrelationToken workflowToken

SendEmail2 MethodInvoking SendEmailB

SendEmail2 Subject External Policy Test

SendEmail2 To <a valid email address in your environment>

Mann_700-1C08.fm Page 297 Monday, January 22, 2007 10:00 AM

298 C H A P T E R 8 ■ W O R K F LO W R U L E S

With the workflow deployed, we can fire up the external RuleSet Manager application and
configure a new ruleset. Although it’s not referenced anywhere, give the new ruleset a meaningful
name—I’ll be calling mine myFlagVariable. Add a rule to the ruleset and set the condition for
the rule to 1==1 so that it always executes. Add the following code to the Then actions for the rule:

this.myFlagVariable = 9

Then click OK to save the ruleset.
Close the RuleSet Manager application and go back to the test workflow project. Set the

properties for the ExternalPolicy activity as shown in Table 8-4.

You won’t need to make any other changes, so compile and redeploy. Go into a SharePoint
document library and add an instance of the test workflow. Kick off the workflow instance on a
document, and after whirring and popping for a few seconds, SharePoint will report back that
the workflow is complete. If you go in and check your email, you’ll see a new message indi-
cating that branch 2 executed. This is just as we expected.

Now, to put things to the test, fire up the external RuleSet Manager application again and
change the Then actions for the myFlagVariable ruleset to

this.myFlagVariable = 7

Don’t change anything else. Back in SharePoint, rerun the same workflow instance on the
same document. The email you receive this time will indicate that branch 1 executed. Again,
just as we expected.

Congratulations. You have just successfully altered the processing of a workflow without
touching the compiled workflow assembly or changing anything in SharePoint.

Sigh. You might be thinking that this is no big deal. All we did was change which branch of
an if-else fired and sent out a different email—not a very useful accomplishment. You’re
right; by itself, this is not going to make anyone’s life any easier. Take a minute and think,
though. The implications of this are huge. All we were working with here were simple condi-
tions, simple actions, and simple activities, so all we got were simple results. In a more
complicated scenario, this is an incredibly powerful capability. To make yourself feel better,
take a look at the “Houston, We Have Liftoff” sidebar.

Table 8-4. Property Values for the ExternalPolicy Activity

Property Value

SourceSiteURL <URL of the SharePoint site that has the Rules document library>

Document Library Rules

RuleSetName myFlagVariable

Mann_700-1C08.fm Page 298 Monday, January 22, 2007 10:00 AM

C H A P T E R 8 ■ W O R K F L O W R U L E S 299

HOUSTON, WE HAVE LIFTOFF

So you’re feeling a little let down. All of the work and gyrations in this chapter leads to what feels like a hollow
victory. Yep, join the club. When I was writing this chapter, I was constantly fighting with myself over whether
it should be included. I’ve already mentioned that it is not officially supported by Microsoft. The examples I was
working through in the book were small potatoes. Should I just drop it and write a chapter about something
else? Even a chapter on alpaca farming might be more useful.

In the end, it took a few comments from one of my technical reviewers (thanks, Eilene!) and some more
thought on just what functionality this solution provided to convince me that the material really did provide
value. Here are some of the thoughts I had as I came to peace with the material:

• While the functionality would not be widely used in Office 2007 workflows, when it was used, it would
be a major boon to the situation.

• The examples in the chapter were intentionally kept simple—only one rule per ruleset and even then
just working with simple integer values. I did this to keep the focus on the solution, not the scenario.
There is nothing that prevents your rulesets from being incredibly complex, including any of the following,
just to name a few options:

• Calling external objects or web services.

• Setting multiple values as part of a Then condition.

• Including multiple rules per ruleset. As hinted at in the complex ruleset example back in the “Cleanup
in Aisle 4” sidebar, the ability to handle extremely complex scenarios is built into the WF framework.
We’re just tapping into a tiny piece of it.

• We’re only creating one ruleset per workflow template in our examples. The solution, however, supports
multiple rulesets per workflow template. This means that each instance of a workflow template can
have its own ruleset. So, for example, if you create a single Approval workflow template, each depart-
ment that implements it can have their own ruleset to customize the processing to meet their needs.

• Rulesets are stored as XML files in the SharePoint document library. The full document-management
capabilities (also including the record-management capabilities) are available to you for approval,
versioning, and so forth. You can also easily move these documents around if you need to support
multiple environments. Flexibility is a strong suit of this solution.

• All you’ve really hard-coded into your workflow is that a decision needs to be made at a certain point
and that the workflow will react to that decision. You have not locked in any details of what goes into
making that decision.

In addition, the functionality does not need to be limited to true decision-based rules. As seen in our final
walkthrough, a condition can be set such that it always executes (i.e., if 1=1). In this case, the ruleset is not
making a decision, but the Then condition will still execute. What you have on your hands now is a simple
process to allow nontechnical (albeit still trained) business users to maintain their workflows. The core interface
is all built—at most you’ll need to tweak things a bit to fit into your specific situation.

So, yes, on the surface, this chapter may not seem like much of a big deal. In the end, though, the sky’s
the limit—Houston, we do indeed have liftoff. Where you go from here is entirely up to you.

Mann_700-1C08.fm Page 299 Monday, January 22, 2007 10:00 AM

300 C H A P T E R 8 ■ W O R K F LO W R U L E S

Summary
We covered a lot of ground in this chapter. Here’s a quick refresher:

• Rules allow your workflow to take alternate execution paths, based on identified
conditions.

• Among other things, without rules as separately definable entities:

• A workflow locks a business process in as a snapshot in time.

• Business logic is tightly intertwined with processing logic.

• Documenting and tracking business logic is made more difficult.

• Simple conditions, based on values and variables known at the time the workflow is
created, can be handled more easily within the confines of the workflow itself. Rules
allow you to future-proof your workflows. All you’ve really hard-coded into your workflow
is that a decision needs to be made at a certain point and that the workflow will react to
that decision. You have not locked in any details of what goes into making that decision.

• There are two types of simple conditions—Code Conditions and Declarative Rule
Conditions.

• Various activities support simple conditions. IfThenElse, While, ConditionedActivityGroup,
and so forth all include some basic facility for logical evaluation. None of them provide
anywhere near the possibility of the Policy activity.

• A ruleset is a collection of business rule definitions that together serve to describe the full
logic of a solution.

• Rulesets are incredibly powerful, supporting various reevaluation conditions, priority-
based execution ordering, and multiple chaining scenarios.

• Chaining refers to the process of having the execution of one rule cause another rule to
be reevaluated.

• Chaining is built on dependencies between rules within a ruleset. When one rule updates a
value that is used by the condition of another rule, the second rule is considered to be
dependent on the first.

• Dependencies can be identified implicitly (the default), based on attributes, or explicitly.

• The ultimate goal of this chapter is to provide functionality that allows for the manage-
ment of rulesets entirely divorced from the process of building a workflow.

Mann_700-1C08.fm Page 300 Monday, January 22, 2007 10:00 AM

301

■ ■ ■

C H A P T E R 9

A Workflow Smorgasbord

This chapter contains a collection of topics—all related to Workflow in Office 2007, but not
necessarily otherwise related to each other—hence the title of the chapter. As I said in the
introduction for this part, all of the material is important, but none of it fit in anywhere else or
was sufficient to warrant a chapter unto itself. In the interest of providing as complete a picture
as possible about Workflow, I collected it all and present it here for your edification. There’s
a little smattering of many topics here—hopefully you’ll find at least one or two interesting
and useful.

■Note One of my goals here is to get you thinking outside of the box just a bit. The rest of the book has
been pretty straightforward and operated well within the bounds of how most people will use Workflow in
Office 2007. This chapter specifically is an attempt to push that envelope a little. I hope you’ll find the infor-
mation here a little thought provoking. You may even find yourself thinking, “That’s pretty cool” as you make
your way through one or two sections.

So, without further ado…

Dehydration
Not many people know this, and it is not well documented by Microsoft, but managing and
executing workflows is hard work and if you leave your SharePoint servers out in the blazing
sun like most people do, they can easily become dehydrated. If this happens, your business
processes will slow down as the server processes scream out for fluids… um, no. That’s not
what dehydration means in workflow terms.

In workflow terms dehydration means that we persist our workflow (to disk, typically) and
remove it from memory. There isn’t anything you need to be concerned with for this—SharePoint,
as our workflow host, takes care of it for us. I just want to spend a little time talking about dehy-
dration so you understand what it is and why it exists. It will come into play when we talk about
workflow processing in a bit, but still not in any way that we need to actually do anything about.

If you recall from Chapter 1, one of the interfaces provided by WF to be implemented in
the various workflow hosts is persistence. There are various terms for this persistence—unloading
and passivation are two others that I’ve heard—but dehydration seems to be the most common.

Mann_700-1C09.fm Page 301 Friday, January 19, 2007 8:44 AM

302 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Workflows, especially human-centric workflows, are typically long-running processes.
Analyzed in computer timeframes, even if a document is approved within two or three minutes,
it is still a long time to a processor that can complete millions of instructions per second. From
the computer’s point of view, it’s keeping information in memory for eons while it waits for
another ice age to pass before it gets to move on to the next step of the process.

If all we’re executing is a few workflows at a time, there would not be such a problem storing
the information in memory. But WF is built to scale to handle nearly any load of concurrent
workflows. If we had to store all of that information in memory, then we’d have a problem on
our hands. The ability to store this information in some sort of persistent storage while we
aren’t actively working with it comes to our rescue here.

One other problem—and one that presents itself even if we only had one workflow ever
running on our system—is that all of the information about that workflow stored in memory
will be lost if the server crashes. There will be no way to recover the current status of the work-
flow without it having been persisted in some way.

Dehydration takes care of this for us, and it does it automatically so that most of the time,
we don’t need to think about it much. Essentially, dehydration occurs when our workflow is
waiting for some event to occur.

There is, as you’ve probably guessed, a complementary aspect to dehydration known as
rehydration. This is the process of taking the information about a workflow that has been
persisted, loading it back into memory, and assigning a thread to continue processing. Just
like dehydration, this is entirely automatic—it is triggered by an event that our workflow is
listening for. There is nothing we need to do to make this happen.

The persistent storage medium for SharePoint workflows is tables in the SQL Server data-
base. This means that when SharePoint needs to unload an idle workflow, it serializes the
information and stores it in SQL Server. When it needs to rehydrate, it reads the information
from the tables and spins the workflow back up.

We’ll see when we talk about SharePoint workflow processing that there are reasons we
would want to force our workflow to dehydrate and mechanisms to support doing just that.

Reality Check
Up to this point, the book has been pretty “happy-path” and hasn’t focused much on things
too far off the beaten path. I tried to stay at a level of “this is how things will go when everything
is working right” because, honestly, that is how things will be most of the time. Unfortunately,
as we all know, things don’t always work right. So, we need to pop off the rose-colored glasses
and spend some time looking at some of the sticky bits we’ll encounter. There’s nothing too
scary in this section—just some things you need to be aware of if you’re going to make a serious
run at this.

Here we go…

Workflow Processing
There is an important point about the processing of our SharePoint workflows that you need to
understand. It’s not going to be a factor often in your workflows, but when it does come into play,
it will do so in a major way—especially as you begin to build more and more complex workflows.

Mann_700-1C09.fm Page 302 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 303

■Tip Quite possibly, this little section is the most important part of the book. If you’re doing workflow devel-
opment, you need to know the information here if you want to avoid a lot of headaches. Unfortunately, this
information is not very well publicized by Microsoft. Read it, read it again, photocopy the page and hang it in
your cube. When you’re about to tear your hair out troubleshooting a workflow, refer back to it. It will probably help.

What I’m talking about is the way the SharePoint batches the workflow operations. When
a workflow executes, all of the operations (CreateTask, UpdateTask, etc.) are collected into a
single batch. They are not processed as they are encountered. When the workflow reaches a
state where it is about to dehydrate (see the previous section), the entire batch is executed as a
single SQL transaction.

There are two primary benefits to this, two significant gotchas and one thing to simply
keep in mind. First the benefits:

• Performance: Because the operations are batched, performance is much better than if
each individual operation were immediately executed as a standalone SQL transaction.

• Rollback: If any of the operations fail, the process of rolling back to the last known good
state is greatly simplified.

And now the drawbacks:

• The big exception to this rule is non-SharePoint activities—whether built by us or by
Microsoft. Non-SharePoint activities do not participate in this batch process model. If
you write custom code inside a Code activity that updates the database, that operation
will be committed immediately. It is not included as part of the batch. Similarly, if you
write custom code that attempts to access a task created earlier in the workflow, the task
may not exist yet. It depends on whether the batch has executed. While on the surface
this may not appear to be a big deal, the implications are actually quite far-reaching. We’ll
cover the potential problems and some potential workarounds in the rest of this section.

• As mentioned in the dehydration section, when the workflow is persisted, objects are
serialized and stored—which is great unless the objects aren’t serializable. What type of
objects might that be a problem for? Well, certainly any custom, nonworkflow objects
unless you explicitly mark them as serializable—but also minor things like, say, SPList.
(SPList, a minor item in SharePoint? No, that was sarcasm. Certainly this is a hugely
important object in just about any custom SharePoint solution.) Depending on some
specific details about the objects in question, at worst, your workflow will fail when it
attempts to dehydrate. At best, any nonserializable objects will be invalid after a dehy-
dration/rehydration cycle.

• The last disadvantage is not too much of a big deal, but something to keep in mind nonethe-
less. Because the batch can be rolled back as a unit, there is no explicit error handling that we
need to do there (not that we can’t add our own custom error handling—we’ll get to that in
a bit), but the low-level elements of ensuring that the database is reset to a valid state are
taken care of for us. However, this does complicate error handling a bit because we’ll need to
keep track of which activities we need to handle manually. Certainly, we’ll need to handle
any custom activities. We’ll also need to handle any nonSharePoint activities. We’ll cover
error handling later in this chapter. This just makes things more interesting.

Mann_700-1C09.fm Page 303 Friday, January 19, 2007 8:44 AM

304 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

So, with all of that now out of the way, what do we do? How can we still write the complex
workflows we need to in order to get our jobs done while taking these issues into account?
Fortunately, it’s pretty easy. We just need to know when our workflow is going to dehydrate. If
we can identify those points, we can identify where we’re going to have batches being committed
and therefore where we need to pay a little extra attention.

As mentioned earlier, our workflow will dehydrate when it is in a waiting state. From a
practical point of view, this means that our workflow will dehydrate any time it reaches an
Onxxx activity (for example, OnTaskCreated). Workflows will also dehydrate whenever they
reach a Delay activity. So, if we have code that we want to execute, but only, say after a new task
is actually created, put it inside the OnTaskCreated activity. The workflow will dehydrate
until the task is actually created, then wake up and continue with the code we placed in the
OnTaskCreated and we’ll be fine. You could also place this code on the other side of a one-
second Delay activity and you would be OK, but this is not using things the way they were
meant to be used. The Onxxx activities exist so that we can be sure that we’re on the opposite
side of a dehydrate/rehydrate cycle before continuing.

In a similar fashion, our error handling just needs to be aware of where our process is in
regard to a dehydrate/rehydrate cycle before continuing, and know what activities we need to
handle manually.

The last issue we need to be aware of as we progress is reinstantiating objects as necessary
after a dehydrate/rehydrate cycle. This can get a little trickier in complex scenarios, but shouldn’t
be too bad if you plan your workflow before coding it. Just remember that, while they’re built
in a fashion similar to any other program, they do not execute that way. Check your objects
before you use them and you’ll be OK.

All in all, this section seems a little scary, but it really isn’t. We just need to think things
through more before we start hacking code and we have to test a little better throughout and
on the back end. Come to think of it, that’s all stuff most people need to get better at anyway.

■Tip One final word of advice on this topic: if you are implementing “standard” human-workflow constructs—
tasks, notifications, documents, list items, etc.—use the SharePoint activities whenever possible. The more
you can get into the standard workflow processing batches, the better off you are going to be. There should
rarely, if ever, be a reason to duplicate this functionality in custom code.

Debugging
Once again, reality needs to intrude ever so slightly on our foray into workflow. We are not all
coding gods. Not every single line of code we write is perfect and pristine as soon as we type it.
Not every method does exactly what we (think we) told it to do the first time.

Sorry to burst your bubble, but this means that we need to debug our code.

Debugging Workflows

Fortunately, debugging our workflows is not any different from debugging any other .NET code
we write, except for one added capability. We still set breakpoints, we still use watch windows,
and we still step through code and use the various other debugging tools in Visual Studio.

Mann_700-1C09.fm Page 304 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 305

After building and deploying (at least to the GAC if not a full-feature deployment), simply
attach to the W3WP process (the one with a type of Workflow). In the browser, go ahead and
start an instance of your workflow on an item. When the runtime gets to your breakpoint, it will
jump you back over to Visual Studio, just as you would expect. Debugging at this point is no
different than any other .NET debugging you’ve ever done.

The one additional thing you can do with debugging workflows is set a breakpoint in the
Designer by right-clicking on an activity. Honestly, I don’t see much value in this. If I’m debug-
ging, I want to look right at the code—not just know that it has hit a certain activity. I suppose
there would be some value in stepping through your workflow execution process at the activity
level if you have multiple potential paths through your workflow and you simply need to confirm
the path that is being taken. Other than that, I don’t see Designer-set breakpoints being of
much use—but that’s just my opinion.

Debugging Activities

Hark back to Chapter 5 when we were building our first activity. Remember how I said it was
really nothing more than a .NET custom control? Guess what? Debugging activities is exactly
the same as debugging any other custom control. Set your breakpoint, run the workflow that
contains your activity, and the runtime will pause when it gets to your breakpoint.

Debugging in the SharePoint Designer

This is going to be the shortest section in the book. You can’t debug your workflows in the
SharePoint Designer.

Next, please!

Debugging Tips

There are just a few more pieces to keep in mind when you’re debugging:

• When your workflow fails at some point, you will get an ultra-useful message of either
Failed on Start or Error Occurred. Not that either of those doesn’t give gobs of helpful
information right out of the gate, but they do mean different things:

• Failed on Start typically means that something prevented SharePoint (as the workflow
host) from launching your workflow. Perhaps it can’t find the workflow DLL—check
that things deployed properly and that the version of your assembly matches the
information in the strong name in the workflow.xml file. Debugging your workflow
here likely won’t reveal anything.

• Error Occurred typically means that your workflow was launched but encountered an
error. In this case, you’ll want to debug your workflow as it will likely turn something up.

• In either case, you can occasionally get useful information from the workflow’s cancel-
lation and error report available from the Workflow Status page.

Mann_700-1C09.fm Page 305 Friday, January 19, 2007 8:44 AM

306 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

• Check the Event log—occasionally useful tidbits show up in there.

• Check the log files located at \Program Files\Common Files\Microsoft Shared\
Web Server Extensions\12\Logs. Again, depending on the nature of the problem, you
can often get useful information from here. If you do go this route, start from the end of
the file and work up. There will be a ton of information that is irrelevant to our workflow,
which you’ll need to ignore, but if there is something logged about your workflow, it will
likely be very useful. I can tell you that this piece has saved me hours of head-scratching
trying to figure out what was going wrong.

So that’s it. Keep the information about workflow processing in mind and understand
your debugging options, and the rest of the time you can remain in the happy, lotus-land of
workflow development.

Going Mobile
In today’s business world, it is not unusual to have various members of your team working
remotely—which could mean in another office but still connected to your corporate network,
but more and more often, it means that they are in an airport, sitting in traffic as they drive
from client site to client site, or even sitting on the sidelines watching their kid’s soccer or
lacrosse game. In the first case—when they’re in a remote office—there’s really nothing we
need to do to make our workflows accessible to them. They’re likely using their laptop and
they’re on the network. Assuming that connectivity to the remote office is at an acceptable
speed, it’s no different than if they were sitting down the hall. They can be full participants in
our workflows.

What about some of the other scenarios? What about when they are in an airport and the
only connectivity they have is via their smartphone? What do we need to do to allow them to
participate in our workflows?

Nothing.
Yep, that’s right. Through the magic of MOSS and WSS, users on mobile devices can

participate in our workflows without us having to lift a finger and without forcing them to
interact with the SharePoint site’s regular pages across their cellular connection. Cool.

There are a few things to keep in mind, however:

• The Office 2007 applications are not available for mobile devices yet (and I can’t find
anyone talking about when they will be) so the functionality of the SharePoint integra-
tion is limited. In many ways, the experience will be similar to users of previous Office
versions. What this means is that things such as the Business Bar and Workflow forms
being integrated directly into the client will not be available. Also, if documents are only
available in the new file formats, they will not be able to be opened from a mobile device.

• Due to the nature of SharePoint Mobile views (discussed in a moment), mobile users can
participate in existing workflows but cannot initiate new workflows. In this case, you
would want to look into the various auto-start options for workflows.

• Data connection speeds will also be considerably reduced—even the best cellular networks
are not on the same level as high-speed LANs. This is just another thing to keep in mind.

Mann_700-1C09.fm Page 306 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 307

Accessing SharePoint and specifically our workflow functionality from a mobile device
will make heavy use of two pieces of the Office System: SharePoint Mobile views and Outlook
synchronization with SharePoint. We’ll take a quick look at each of these before walking through
the experience of a mobile user within a workflow scenario.

SharePoint Mobile Views
SharePoint Mobile views is perhaps one of the best-kept secrets in MOSS and WSS v3. In a
nutshell, Mobile views are a window into your SharePoint content for a mobile device. Every
site, list, and document library in SharePoint 2007 is capable of supporting Mobile views right
out of the box. For our workflows, this means that our workflow-enabled document libraries,
our task lists, and our history lists will all be available from a properly equipped mobile device.

As mentioned earlier, the functionality available out of the box is a little limited. Users will
only be able to interact with existing workflows—they will not be able to create new workflow
instances or perform much of the administration functionality we’ve discussed. Nonetheless,
this is a powerful capability to have available to us with no effort on our part.

Accessing these Mobile views is easy; simply append /_layouts/mobile to the end of your
site URL and SharePoint takes care of the rest. So, for example, if your site had a URL of http://
portal.kcdholdings.com, the Mobile view would be accessible at http://portal.kcdholdings.
com/_layouts/mobile. If you have a SharePoint site available to you and a mobile device that
you can access the site with, go ahead and try it out. You’ll see something akin to Figure 9-1.
You can see that what is generated for us is only a textual representation of our site, but on a
mobile device with limited screen real estate and limited bandwidth, that’s really all we want.

Figure 9-1. SharePoint content on a mobile device. Cool, way cool.

Mann_700-1C09.fm Page 307 Friday, January 19, 2007 8:44 AM

308 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Part of what you’ll see in this view is the gold at the end of our workflow rainbow—access
to both the document libraries themselves but also the Workflow task list. We’ll walk through
the whole experience for our mobile workflow participants in just a few minutes.

SEE WHAT ALL THE BUZZ IS ABOUT WITHOUT BUYING A NEW PDA

If you don’t have a device available that can access the Internet, you can still see what all of the buzz is about
by one of two methods:

• If you have access to Visual Studio 2005, you can utilize the emulator tools built into that tool. You may
still want to download a new ROM image from the URL listed next.

• If you do not have VS 2005, you can use Microsoft’s Mobile Device Emulator. You’ll need to download
both the emulator itself along with the ROM images for the machine type you want to emulate. You can
get both of these from here: www.microsoft.com/downloads/details.aspx?FamilyId=
C62D54A5-183A-4A1E-A7E2-CC500ED1F19A&displaylang=en. I’ll also post links to them on my
web site: www.kcdholdings.com.

If you’re going the first route, you can either use one of the images that comes with Visual Studio or
download a new image from the “Emulator Images for Visual Studio 2005” section of this page: http://
msdn.microsoft.com/mobility/downloads/Emulator/default.aspx. The installation is pretty
vanilla and shouldn’t give you any fits.

If you are going with door #2, you first need to download the ZIP file for the emulator itself. Open the ZIP
file and run the vs_emulator.exe file, which will install the emulator. After that installation finishes, down-
load and install the ROM image you need. Personally I use the Windows Mobile 5 image available at the site
because, well, because I run Windows Mobile 5 on my device and it was just easier. You can use any of the
“Emulator Images for Microsoft Device Emulator 1.0” available here: http://msdn.microsoft.com/
mobility/downloads/Emulator/default.aspx. Again, the installation is pretty vanilla.

Whichever emulator tool and ROM image you’re using, there are one or two things to configure before
you can load a SharePoint Mobile view:

• If you do not have the Virtual Machine Network Driver for Microsoft Device Emulator installed on the
machine you are trying to install the emulator on, you’ll need to download and install it from here:
www.microsoft.com/downloads/details.aspx?familyid=DC8332D6-565F-4A57-BE8C-
1D4718D3AF65&displaylang=en.

• Before you can use either of the emulators, you’ll need to configure networking so that it can access
your server. To do this, follow these steps:

• In the emulator program itself (i.e., not in the mobile device image), click File ➤ Configure and then
select the Network tab.

• Select the checkbox next to Enable NE2000 PCMCIA Network Adapter and Bind To and click OK.

• Inside the emulated mobile device, click Start ➤ Settings and select the Connections tab. (This step
will be slightly different depending on which version of Windows Mobile you are running.)

• Open Network Cards and click on the NE2000 Compatible Ethernet Driver to modify its settings.

Mann_700-1C09.fm Page 308 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 309

• Configure the IP Address, Subnet mask Default Gateway, and Name Server settings to valid values for
your network and click OK.

• Click OK in the warning that pops up about the new settings being applied.

• Click OK a few more times to return to the Today screen.

• Once again in the emulator program itself, click File ➤ Configure and then select the Network tab.

• Ensure that the checkbox next to Enable NE2000 PCMCIA Network Adapter and Bind To is still selected
and click OK. Repeating these steps here simulates removing and reinserting the PCMCIA network
card in the device, which forces the new settings to take effect. If this doesn’t work, reset the Guest
(i.e., emulated) operating system.

That’s it. The emulator is now ready to browse your SharePoint site and wow you with the automatic
Mobile views. Fire up IE Mobile and connect to your SharePoint site. Just remember to append /_layouts/
mobile/ to the site URL or you’ll end up browsing the full SharePoint site. While this isn’t too bad running an
emulator on your machine that is likely sitting on a high-speed network, it can be mind-numbingly slow on a
standalone mobile device across a cellular network.

If you want to close the emulator and be able to fire it up again to browse the Mobile views, make sure
that you save state before closing the emulator. Otherwise, you’ll have to repeat all of the steps in this sidebar
to reconfigure the network cards.

There may be a few extra steps to configure inside your emulator—it all depends on how your machine
and network is set up. This, however, gets you most of the way there. You’ll need to take it the rest of the way.

Outlook Synchronization With SharePoint
We’ve already talked about the integration between SharePoint 2007 and Outlook 2007. The
integration with a mobile device is simply an extension of that. Workflow tasks and emails that
are delivered to Outlook will be delivered to the mobile device the next time the user synchro-
nizes their mobile device with Exchange. Our workflow information just comes along for the
ride. Links inside emails or tasks will open inside IE Mobile and take the user to the appropriate
page on the SharePoint server. One drawback is that unless we specifically craft a mobile URL,
the links will take the mobile user to the full-fidelity site page. It’s not the worst thing in the
world, but it can be a little painful on a mobile device. (See the accompanying tip for some
information on making this a little better.)

We’ll see this integration in the next section as we walk through the mobile experience.

■Tip The experience for our mobile users interacting with tasks assigned to them is going to be better if we
use a custom workflow for the simple reason that we can control things a bit better and set values (for links,
descriptions, etc.) that will work better from their mobile devices. The out-of-the-box workflows will still work,
and even a custom workflow built with the SharePoint Designer can function—but really, if you want to truly
support a sizable mobile workforce, you’ll need to create custom workflows in Visual Studio and craft links
specifically for them.

Mann_700-1C09.fm Page 309 Friday, January 19, 2007 8:44 AM

310 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

To allow this synchronization to happen, you need to go through just a few steps in both
SharePoint and Outlook. I covered them in detail in Chapter 3, complete with pictures, so I’ll
just hit the steps here:

1. From the list that you want to synchronize into Outlook (in our case, the task list), click
the Actions menu and then select Connect to Outlook.

2. If it is not already open, Outlook will open on your desktop.

3. A dialog box will pop up asking you to confirm that you want to connect the list to
Outlook. Go ahead and click Yes.

4. Outlook will whir and pop for a few seconds and then your list will be synchronized.

From now on, every change made to the list item, either in Outlook or in SharePoint, will
be synchronized across to the other. As we’ll see in just a minute, this can be easily extended to
our mobile devices.

■Note Only Outlook content that synchronizes with your mobile device will be available, so not every
SharePoint list that you connect to Outlook will be available on your mobile device.

The Mobile Experience
As mentioned earlier, mobile users can only be participants in workflows; they cannot manu-
ally kick off a workflow. To help you understand what mobile users can and cannot do, we’ll
walk through the participant experience for a mobile user, including a few screenshots.

First, if a user is browsing a SharePoint Mobile view from a mobile device, they will initially
see a view similar to the one shown earlier in Figure 9-1. It is simply a textual listing of the lists
available on the site. From there, if they click to browse the task list, they will see a Mobile view
of the items in that list—including any workflow tasks assigned to them. An example of this is
shown in Figure 9-2.

The experience in this view is perhaps not the best—if there are a number of tasks in the
view, the user will have to do a lot of scrolling. Nonetheless, for something we get out of the
box, this is going to go a long way. As you can see in Figure 9-2, users have the choice of opening
the document (in Word Mobile—remember, there are none of the Office 2007 client integra-
tion elements available in Word Mobile), displaying the task, or editing the task. If they choose
to edit the task, they will see a screen similar to Figure 9-3. Again, not the best interface, but on
a mobile device the UI is less important than the raw information.

Mann_700-1C09.fm Page 310 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 311

Figure 9-2. Our workflow tasks viewed through a mobile device

Figure 9-3. Our workflow task shown on a mobile device

Mann_700-1C09.fm Page 311 Friday, January 19, 2007 8:44 AM

312 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

■Note Before you ask, no, that isn’t the real size of my mobile device screen in Figure 9-3. I Photoshopped
two images together to show you the whole screen in one shot. You can thank me later…

With these two views of the task, I can perform my work from wherever I am when I am
assigned the task. If I need to review a document, I can download it into Word Mobile, read it,
and then provide feedback or approval/rejection—all from my mobile device.

The experience reviewed above is a pull scenario—the user needs to be browsing the
Mobile views in order to see the task assigned to them. I don’t know about you, but the form
factor on my mobile device is still just a little too limiting for me to casually browse the company
intranet on a whim. I need a reason to go there. This is where the push aspect of the mobile
experience comes into play. This experience, too, is easy.

If properly configured, as covered earlier, SharePoint will synchronize our task list to our
mobile device. Assuming that our mobile device is already synchronizing tasks and emails with
our Exchange server, there’s nothing else we need to do. Our workflow tasks and emails will
show up on our device just the same as any other email or task. And because the synchroniza-
tion is two-way, if we update the task on our device, the next time we synchronize the Outlook
task will be updated and then the SharePoint task will be updated by Outlook. Pretty nifty.

■Note I’m not showing you any screenshots here because if you have a mobile device, you already know
what tasks and emails look like on your device. If you don’t have a mobile device capable of supporting email
and tasks, um… can I ask why not?

■Note Seriously, though, if you don’t have a mobile device that supports email and tasks, showing you an
example of an email and a task won’t provide much value. Skip back to the sidebar “See What All The Buzz
Is About Without Buying a New PDA” and you’ll be able to see for yourself.

That’s it. Our workflows are now fully mobile.

SUPPORTING A MOBILE WORKFORCE

One additional thing to think about when planning for your road warriors is allowing them to work from their
laptops. There are a few options for this:

• Users can choose one of the various tethering options, which would allow them to use their mobile
device as a modem and connect to it from their laptop. It’s a bit slow, but they can then browse the
intranet as if they were on the network and so will not need to muck about with Mobile views and the
inherent limitations.

Mann_700-1C09.fm Page 312 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 313

• If tethering is not an option, users can achieve the same end manually—have them use the Mobile
views to see tasks and download documents. Once the documents are on their mobile devices, they can
move them to their laptops via one of three mechanisms:

• Using a USB cable and ActiveSync.

• Using a Bluetooth Personal Area Network.

• Using the modern version of the old sneaker net—save the file to the removable memory card in their
phone, pop the card into their laptop, and open it from their laptop. Do the reverse when they need to
load the documents back to the portal. Various adapters are available if the two devices don’t support
a common card format.

One added benefit of any of these options is the fact that users will be able to work with Office 2007 format
documents with any of these options. They won’t, however, unless they’re tethered, see any of the Office 2007
constructs such as the Business Bar and Workflow forms.

Fault Handling
The functionality provided by fault handling in our workflows is no different from what you
expect in typical .NET applications: you try something and then catch any errors and handle
them. The implementation, however, is turned 90 degrees from what you would expect. Starting
from the top, fault, or error, handling in our workflows is going to have the same capabilities as
any other .NET application:

• Faults can be caught within a local scope, or globally for the entire workflow.

• Unhandled exceptions will cause the workflow to immediately halt execution and
shut down.

• Handled exceptions can be processed and allow your workflow to either continue
processing or shut down gracefully, with as much logging or notifications as you need.

We’ll cover the details on these as we go through the rest of this section. First, let’s review
some of the mechanics of how you configure fault handling in workflows.

The primary construct for handling errors is the FaultHandler activity. We’ll walk through
using this activity in just a bit, but at a high level, each FaultHandler activity is associated with
one particular type of exception and contains other activities that dictate how the particular
error is handled.

Like any other error handling, the goal of fault handling in WF is to trap errors as they
occur, respond according to our business rules, and ideally allow the workflow to continue
processing. If continuation is not possible, we need to clean things up and return our documents
or other content to a stable, manageable state.

At a global level, exception handling can be applied to the entire workflow. To do this you
are going to make use of the three little tabs (shown in Figure 9-4) at the bottom of the Workflow
Designer pane in Visual Studio that we haven’t paid much attention to as yet. Specifically,
we’re going to focus on the rightmost tab.

Mann_700-1C09.fm Page 313 Friday, January 19, 2007 8:44 AM

314 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Figure 9-4. The tabs at the bottom of the Workflow Designer in Visual Studio provide access to the
fault handling functionality.

Clicking on that tab will reveal the Workflow Exceptions design canvas, shown in Figure 9-5.
Even the most cursory glance will reveal that the Exceptions design canvas looks nearly iden-
tical to the Workflow Designer we’ve worked with so far. That is not an accident. Configuring
our exception handling is just configuring another part of the workflow. Looking at Figure 9-5
a little more closely, you’ll see it consists of a single composite activity of type
faultHandlersActivity. This composite, like all of the others we’ve seen so far (Sequence,
Parallel, While, IfElse, etc.) is made to serve as a container for other activities. This one is a little
special, though, because it is made to store only one type of activity: the FaultHandler activity
mentioned earlier. If you try to add any other type of activity to it, the Designer will not let you.

Figure 9-5. The Workflow Exceptions design canvas looks remarkably like the regular Workflow
Designer canvas we’ve already worked with.

One other thing that is different about this composite activity is the manner in which it
displays its children. Because each of the children is another composite activity, the tree display
could get very ugly, very fast. To help alleviate this, Microsoft has coded the faultHandlersActivity
to display its children in a unique way—essentially each FaultHandler gets its own design
canvas. Each FaultHandler child dropped onto the faultHandlersActivity parent will be displayed
in the small ribbon-like construct at the top of the activity. The two blue arrow icons allow you
to scroll back and forth between the FaultHandler activities that have been added. The main
body of the activity below this will display the child activities from the currently selected
FaultHandler.

That’s a little confusing. Let’s walk through an example to help clarify things:

1. Open or create any workflow.

2. From the designer canvas, click the right-hand tab located at the bottom of the screen.
This will open the Workflow Exceptions design canvas.

Mann_700-1C09.fm Page 314 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 315

3. From the Toolbox, drag two FaultHandler activities and drop them onto the
faultHandlersActivity on the canvas

4. Click on the first FaultHandler activity—indicated by this icon on the left side:

5. Drag a Code activity and drop it into the body of the faultHandlerActivity1 activity—
where the small green plus sign has appeared.

6. Click on the second FaultHandler activity—indicated by same icon shown in step 4, this
time on the right side.

Notice that the Code activity has disappeared. This is because we are now working with
a different FaultHandler activity.

7. Drag an IfElse activity from the ToolBox and drop it into the body of the
faultHandlerActivity2—again where the small green plus sign has appeared.
Add another Code activity to the left-hand branch.

8. Click back on the first FaultHandler—you’ll see that the Code activity is still in place.

If you click back and forth between the two FaultHandler activities, you’ll see that every-
thing is still intact—you just have two totally distinct environments in which to handle errors.
This, of course, begs the question of why you need separate environments. The answer is that
you need multiple environments in order to explicitly handle different types of errors. It is the
equivalent of the code shown in Listing 9-1.

Listing 9-1. The Code Equivalent for Our Workflow Fault Handling Constructs

try
{
 //do something
}
catch (System.NullReferenceException exNull)
{
 //handle a null reference exception
}
catch (System.ArithmeticException exArith)
{
 //handle an arithmetic exception
}
catch (System.Exception ex)
{
 //catch-all to handle any other error
}

Each FaultHandler activity represents one of the catch blocks in Listing 9-1.

Mann_700-1C09.fm Page 315 Friday, January 19, 2007 8:44 AM

316 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Configuring Fault Handlers
There are two ways to configure fault handling for our workflows—declarative or imperative.
The imperative type of fault handling requires setting one set of properties, creating variables,
and writing some code to handle the error however we need to. We’ll show this option in a
minute. Declarative handling is slightly different. When we handle our workflows declaratively,
we work exclusively in the Designer—adding activities to the canvas and setting properties to
handle our exception. We don’t write any code. We’ll cover this next.

Declarative Fault Handling

Declarative fault handling is all about adding activities to the canvas and configuring them to
handle the exception according to your business rules. One of the primary distinctions of this
approach is that it is somewhat generic in nature; the only real information you know about the
fault is its type—and that only because, as we saw earlier, each FaultHandler is configured to
handle a particular type of error.

So, how do we work with this style of fault handling? As you would expect, it’s really pretty
straightforward if you’re comfortable with the Workflow Designer.

1. From the Exceptions tab in the Workflow Designer, drag a FaultHandler activity out
onto the canvas.

2. Make sure that the FaultHandler activity is selected and open the Properties window.

3. Inside the Properties window click on the ellipsis for the Fault Type property. This will
bring up a dialog box, shown in Figure 9-6. This dialog box allows you to specify which
type of error this particular FaultHandler activity will take care of.

4. Once you’ve specified the type of error to be handled by this FaultHandler activity, you
can add whatever activities you need to in order to handle the error.

5. If you need to handle more than one exception type, drag another FaultHandler activity
out and configure it in the same way.

OK, I have to jump in here and editorialize a bit. I don’t understand the usefulness of declar-
ative fault handling (except for one circumstance, which I’ll get to in just a minute). Here’s the
problem I see—if I’m catching and handling an error, I want to be pretty specific about the way
I handle it. Also, in most cases, the error being thrown is likely unique to the workflow that is
running. Because of these two points, I need my handler to be specific, which means that I’m
likely adding a Code activity and writing some code. Once I’ve crossed that line, I’m into the
realm of imperative fault handling.

The only exception I see to this is if all you are doing is simple logging. In that case, write
a custom, generic logging activity that will write the information to whatever logging medium
you require, add it to the Designer for your fault handler, and you’re good to go. No coding
required, but you still get some useful information and didn’t have to write any code specific
to this handler.

Mann_700-1C09.fm Page 316 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 317

Figure 9-6. This dialog box indicates which type of exception is handled by our
FaultHandler activity.

Other than this one case, I recommend that you read on and understand the benefits of imper-
ative fault handling—it’s a little more work but well worth it for the extra value, as you’ll see.

Imperative Fault Handling

Imperative fault handling, as I alluded to earlier, is a little more involved than simple declara-
tive handling. However, it gives us a lot more control and a lot more capability to manipulate
our handler process and to be specific with how we process our faults.

Imperative fault handling makes use of one new property of the FaultHandler activity: the
Fault property. The Fault property allows us to create a property that will be used to store the
object representing the exception that was thrown by our workflow. With that, we can then
handle our exception however we need to, typically within a Code activity. When the exception
is thrown, we will have access to the entire Exception object through the variable referenced in
the Fault property.

To make this work, follow these steps:

1. Repeat steps 1–3 from the previous section.

2. Right-click on the FaultHandler activity and select Promote Bindable Properties from
the context menu.

Mann_700-1C09.fm Page 317 Friday, January 19, 2007 8:44 AM

318 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

3. Take a look in your code-behind file and you’ll see that a new dependency property,
named <Fault_Handler_Activity_Name>_Fault1, has been created for you. For example,
if your fault handler is named faultArgExcep, then the dependency property will be
called faultArgExcep_Fault1. The new property will have a type of System.Exception.
If you choose to, you could make the type for this variable more specific.

4. You’ll still need to fill in the FaultType property to tell the workflow runtime which
type of error this particular handler is taking care of. For this example, you can type in
System.Exception.

That’s it. If your workflow ever triggers this handler, your dependency property will store
a reference to the exception that was thrown. You can drop a Code activity onto the canvas,
reference the dependency property, and do with it whatever you need to do in order to handle
this error. The main benefit is that you have a lot more information about the error available to
you. To harp on logging again—placing some of this information (stack trace, source, etc.) into
your logging is going to make errors much easier to troubleshoot.

Local Scope
So far, we’ve looked at fault handling at what is essentially the global level. We’ve created handlers
for faults that bubble up, unhandled, to the top of the chain—the workflow itself. One definite
problem with this is that when you are capturing errors at the workflow level, there is no way to
continue the workflow after the error has been handled. Faults caught at the workflow level
always immediately precede the termination of the workflow. This is obviously less than desirable.

So, what can we do about it? Fortunately, there is an option. Faults can also be handled at
the level of any composite activity, so the Parallel, Repeater, Sequence, and While activities
(just to name a few) can all handle faults at a more granular level.

Handling the errors at the level of a composite activity is exactly the same experience as we
saw at the global level. The only thing that is different is how you access the fault handler design
canvas for a specific composite activity—simply right-click on the activity itself and select View
Fault Handlers from the context menu. That’s it. The rest is identical to what I described earlier.

■Tip With the scope issues discussed in this section in mind, I recommend that you make judicious use of
some of the composite activities that ship with WF. Certainly the Parallel, IfElse, and While activities have their
place by performing a specific function in addition to being composite activities. There is, however, the
Sequence activity, which can be used when you are executing activities serially but still need to be able to
handle faults locally.

If an error is not explicitly handled at a local scope, it will bubble up to the global handler
to attempt to be handled there. If the global handler does not take care of the error, the work-
flow will error out with unpredictable results—including potentially leaving your documents
or tasks in unknown states.

Mann_700-1C09.fm Page 318 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 319

Fault Handling Summary
So now we have a pretty good idea of how we go about handling faults in our workflows. The
only thing that I’d like to conclude this section with is a brief discussion of how you should
handle errors in your SharePoint workflows:

• As I alluded to previously, you should always log the error. Whether this is with code or a
logging activity is entirely up to you. I’ll just leave the recommendation at this: log it
somewhere.

• Local, local, local. Whenever possible, handle your faults as locally as possible.

• Always, always provide a catchall fault handler at the workflow level. Add a FaultHandler
activity at the workflow level and configure it to catch exceptions of type System.
Exception. If it does nothing else, log the error details somewhere.

• If tasks were already assigned, you should go back and either delete them or flag them as
inactive. Specific details around this would be dependent on your particular business
requirements, but it wouldn’t do much good, and could potentially be very confusing,
if participants had tasks assigned to them for a workflow that had errored out.

■Caution If you are going to undo changes in your workflow because of an error, you should understand
how workflows process operations in batches and do some experimentation with your particular situation. Go
back and read the section “Workflow Processing” earlier in this chapter before proceeding too far down this
road. Specifically when your workflow will commit operations to the database is unique to every workflow.
Keep this in mind as you plan your fault handling.

Canceling Workflows
Canceling workflows is similar in many ways to fault handling in our workflows. If fault handlers
are the catch block, then cancellation handlers are the finally block. Workflows can be canceled
in a few ways and for any number of reasons:

• By unhandled exceptions

• By an administrator in the UI

• Explicitly based on a condition within the workflow through the use of a Terminate activity

The cancellation handler allows us to perform any processing that needs to occur before
the workflow actually shuts down. One thing that is important to note is that there is no way to
stop the cancellation of a workflow once it has been initiated by any means.

So, if we can’t stop the cancellation of a workflow, what can we do? The answer is just
about anything else. Off the top of my head, the following comes to mind:

• Notify a document owner that the workflow has been canceled.

• Notify participants that the workflow has been canceled.

Mann_700-1C09.fm Page 319 Friday, January 19, 2007 8:44 AM

320 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

• Just like with fault handling, if tasks were already assigned, you should go back and
either delete them or flag them as inactive.

• Again just like fault handlers, log the cancellation.

■Caution The caution at the end of the section “Fault Handling” applies equally as much to cancellation
handlers as well. Go back and reread it. You’ll be glad that you did.

So, with all of that out of the way, how do we actually catch a workflow cancellation event
and respond to it? As I said when I started this section, it is similar to fault handling. To work
with the cancellation handler for the whole workflow, click on the middle tab at the bottom
of the Designer canvas (and shown earlier in Figure 9-4). This will reveal another canvas used
specifically for handling workflow cancellations.

Also, composite activities can also contain specific, local cancellation handlers. This local
cancellation handler will be called if one of their child activities is canceled or is executing when the
workflow is canceled. Access this via a similar mechanism to the fault handler—right-click on
the activity and select View Cancel Handler.

One thing to note about cancellation handlers is that they may not exactly execute as you
would expect. If you place a cancellation handler globally on the entire workflow, it would be
logical to assume that it would fire any time the workflow is canceled—for any reason. Unfor-
tunately, this is not the case. Because cancellation can be handled locally, only the composite
activities that have children executing at the time the error is thrown or the workflow otherwise
canceled will have their cancellation handlers triggered. So, in the case of the global cancella-
tion handlers, this will only be triggered if the whole workflow is canceled—typically by an
administrator via the user interface.

In other cases, in order to get multiple activities executing simultaneously, you need to
be using the Parallel activity. If one branch of the Parallel activity causes the workflow to be
canceled—for example, by throwing an unhandled error—the other branch(es) of the Parallel
activity will be notified that the workflow is being canceled. Individual composite activities
within those other branches will also have their cancellation handlers triggered. However, the
Parallel activity itself and the workflow as a whole will not have their cancellation handlers
triggered.

It’s all a bit happenstance and highly dependent on execution order, timing, and which
activities are executing at the time the cancellation is triggered. While you can generally plan
out your cancellation handlers pretty well, there will be an experimentation aspect to it to see
how things execute in your environment.

■Note For an example of the variable nature of cancellation handlers, in a nod to Mr. Heisenberg, I could
consistently produce different results just by alternating between running my test workflow in the debugger
or outside the debugger. As I said, this all highly dependent on exactly what is happening at the moment the
cancellation is triggered. Your mileage may vary.

Mann_700-1C09.fm Page 320 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 321

Tools Comparison
In Chapters 4, 5, and 6, we work with the two development tools for building workflows in
Office 2007—the SharePoint Designer and Visual Studio. Each tool is good and serves a specific
audience and purpose. To help you get a handle on where and when to use each tool, take a
look at Table 9-1. This information is reproduced from the WSS v3 SDK and is available online
at http://msdn2.microsoft.com/en-us/library/ms461944.aspx. It is reproduced here with the
express permission of Bill Gates (well, no, not really, but I know a guy named Bill and he said it
would be OK… does that count?).

Table 9-1. Differences Between SharePoint Designer and Visual Studio for Workflow
Development. Taken from the WSS v3 SDK, See Previously Cited URL.

Visual Studio 2005 Designer for
Windows Workflow Foundation

Office SharePoint Designer 2007

Can write workflows for Microsoft Windows
SharePoint Services (version 3).

Can write workflows for Microsoft Windows
SharePoint Services (version 3).

Code-behind file enables developer to write
custom Microsoft Visual C# or Microsoft Visual
Basic .NET code to express business logic.

No code behind; workflow rules file declar-
atively encapsulates business logic instead.

Generates workflow markup file. Generates workflow markup file.

Workflow is authored as a template, which
can be associated with multiple sites and lists.

Workflow is authored against and data-
bound to specific list at design time.

Workflow markup file, or markup and code-
behind files, compiled into workflow assembly.

Workflow markup, workflow rules, and
supporting file are stored, uncompiled,
in a specific document library on the site.

Workflow template must be associated with
each list on which it is to be available.

Association happens when the workflow is
authored against the specific list; no later
association is necessary or possible.

Workflow template can be associated with a
site content type.

Cannot author workflows against
content types.

Can use any forms technology. For example,
Microsoft ASP.NET 2.0 forms for Microsoft
Windows SharePoint Services (version 3)
workflows.

Automatically generates Microsoft
ASP.NET 2.0 forms, which you can
then customize.

Can include workflow modifications. Workflow modifications are not available.

Can author custom activities for inclusion in
workflows.

Must use activities provided.

Package workflow assembly and workflow
definition as a SharePoint Feature, and deploy
to the site.

Automatically handles deployment to
specific list.

Can use initiation form to gather information
from the user when they start the workflow.

Can use initiation form to gather infor-
mation from the user when they start the
workflow.

Mann_700-1C09.fm Page 321 Friday, January 19, 2007 8:44 AM

322 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

* Taken from the WSS v3 SDK, available online at http://msdn2.microsoft.com/en-us/library/
ms461944.aspx

Integrating Office 2003
The experience of working with the Office 2007 client applications and the Office 2007 server
applications—specifically Workflow in our case—is phenomenal. The level of integration and
interaction is exceptional.

But let’s face it—not everyone will upgrade all of their client applications to the 2007 versions
immediately. This is understandable. Upgrading thousands of users’ desktops is not an operation
to be taken lightly—especially when the change is as significant as the change from Office 2003 to
Office 2007. Microsoft and their partners are making a valiant effort to streamline this and help
however they can, but it is nonetheless a daunting task.

So, does this mean that we can’t take advantage of the server-side benefits and improve-
ments in the Office 2007 System until the client side is updated? Absolutely not. As we explored
earlier in the book, users of previous Office versions can still play in the SharePoint 2007/Workflow
playground. They just don’t get all the bells and whistles.

To help alleviate some of their feelings of being second-class citizens, we’ll burn a few
cycles here exploring how the experience for Office 2003 users can be made a bit better.

■Note I’m only going to be focusing on the Office 2003 client here. You could probably take some of this
material and make it work in Office XP and maybe even Office 2000, but I’m not going to be looking at either
of those here.

Before we get started solving the problem, let’s make sure we all understand exactly what
it is we’re trying to accomplish. From my perspective, the elements lacking in Office 2003 related to
workflow are the following:

• Notification of pending workflow tasks for the current document

• The ability to interact with workflow tasks from the client

• The ability to initiate a workflow from the client applications

Can use custom forms for users to interact with
tasks in Microsoft Windows SharePoint Services
(version 3).

Can use custom forms for users to interact
with SharePoint tasks.

Visual Studio debugging available. No step-by-step debugging available.

Can author both sequential and state workflows. Can author only sequential workflows.

Table 9-1. Differences Between SharePoint Designer and Visual Studio for Workflow
Development. Taken from the WSS v3 SDK, See Previously Cited URL.

Visual Studio 2005 Designer for
Windows Workflow Foundation

Office SharePoint Designer 2007

Mann_700-1C09.fm Page 322 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 323

There are some other elements, but these are the biggies. Of these three, the first is the one
that will break all kinds of new ground for us. The other two are just extensions of the core
required for the first one, so we’re just going to tackle the first item here. I’ll leave you to tackle
the other two as a homework assignment.

■Note If you’d like to explore the other two or other aspects of integrating Office 2003, please visit
www.kcdholdings.com. I’ll get around to posting more information there eventually and would love to hear
any ideas you have.

Getting Started
The overall architecture of the solution is going to make heavy use of Visual Studio Tools for
Office (VSTO) and custom task panes. If you are not familiar with programming task panes in
Office 2003, it’s OK; you can pick most of it up as you go. It wouldn’t hurt, however, to do some
brushing up. I’ll list some good VSTO resources on my web site: www.kcdholdings.com.

■Note In addition to limiting this to Office 2003, I am going to limit it further to just Word. There is no tech-
nical reason for this—it’s just that to cover all of the major Office 2003 applications would entail a book unto
itself. With very little work, you should be able to easily convert the solution presented here to work with any
of the Office 2003 applications that support task panes. Similarly, with a little work, you could make this work
for the Office 2007 clients if you do not have the Forms Server available in your environment—i.e., you only
have WSS installed.

In order to continue with the rest of this section, you’ll need a slightly different environ-
ment than what we have been working with so far. Although you can have Word 2003 and Word
2007 on the same machine, the potential for cross-contamination is too much for something so
far out on the edge. If something is going wrong while I’m developing, I don’t want a whole lot
of extraneous variables thrown into the mix while I’m trying to debug. I’m going to do all of my
development on a separate virtual machine and just use my SharePoint 2007 virtual machine
as a server that I’ll connect to remotely. If you’d like to mirror this environment, here’s how I
have it set up:

• VM #1—SharePoint 2007 Server: Nothing special here—I’m using the same VM image
I’ve done the rest of the development on throughout the book. I created a new site and a
new document library to work with this section just to keep things separate. I also cranked
the memory down to 900MB of RAM. It’s low for SharePoint and slows things down a bit,
but I need to run two virtual machines for this exercise, so I need some memory for the
other. If you have a SharePoint 2007 server available somewhere in your test environment,
you can skip this one and allocate more memory to VM #2.

Mann_700-1C09.fm Page 323 Friday, January 19, 2007 8:44 AM

324 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

• VM #2—Office 2003 development machine: This is a new virtual machine created with
the following specs:

• Virtual machine configured with 600MB of RAM (or as much as you can allocate).

• Windows XP, SP2 with all updates and security fixes.

• Visual Studio 2005 (install this before Office so you get the option for .NET Program-
mability Support when you install Office).

• Office 2003—Word plus the common Office files only. Make sure that you install .NET
Programmability Support.

• Visual Studio Tools for Office 2005 (VSTO).

Now that we have our environment ready to go, we can get started. At a high level, there
are only ten steps to the whole process:

1. Write a web service to operate on the SharePoint server.

2. Create a new VSTO document and assembly pair.

3. Create a file share on the SharePoint server.

4. Publish the VSTO solution to the file share.

5. Create a SharePoint site and document library to test the solution with.

6. Move the VSTO document into the Forms folder of the document library.

7. Switch the template used by the document library.

8. Set security.

9. Test.

10. Celebrate.

Easy as pie, right? We’ll obviously go into a little more detail on most of those steps. I do
have a whole book to fill out here and I wouldn’t want you to feel ripped off… so let’s go. As in
the rest of the book, I’m not going to hold your hand and walk you through each and every step.
I’m assuming you don’t need that level of support. If you do, stop by my web site and I’ll help
as much as I can.

■Note There’s a fair amount of code to this solution—and I stripped it down to about the bare minimum. If
you don’t want to type it all in (to borrow from Truman Capote—that’s not coding, that’s just typing), you can
download all of the code from my web site: www.kcdholdings.com.

Mann_700-1C09.fm Page 324 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 325

Step 1: Write a Web Service
This is the code that will execute on the SharePoint server. Because the SharePoint object model is
not available remotely, we need some way of accessing it from the client—web services to the
rescue.

For the main flow of the book here, I’ll assume that you are an experienced developer and
comfortable creating web services in a SharePoint environment and understand some of the
quirks that go with that territory. If you’re not comfortable with that task, see the sidebar “It
Shouldn’t Be This Hard.” If you’re following along at home, just make sure that you name your
web service WFTask so that the code we write later will work.

There is only one method for this web service; the code is shown in Listing 9-2. You’ll
also need to add a reference to the Microsoft.Sharepoint.dll and add using statements for
Microsoft.SharePoint, Microsoft.SharePoint.Utilities, Microsoft.SharePoint.Workflow,
and System.Xml.

Listing 9-2. The Custom Web Service to Retrieve Workflow Task Information

1 [WebMethod]
2 public XmlDocument GetWFTasks(string sSiteURL, string sDocLibName, ➥

 string sFolder, string sDocName,string sUser)
3 {
4 string sTaskName = string.Empty;
5 string sTaskURL = string.Empty;
6 XmlDocument xDoc = new XmlDocument();
7 XmlElement xElem = null;
8 XmlText xText = null;
9 XmlNode xNode = null;
10 SPSite site = new SPSite(sSiteURL);
11 SPWeb web = site.OpenWeb();
12 SPDocumentLibrary doclib = (SPDocumentLibrary)web.Lists[sDocLibName];
13 SPListItem item = null;
14 foreach (SPListItem itemTemp in doclib.Items)
15 {
16 if (sFolder == string.Empty)
17 {
18 if (itemTemp.File.Name.ToLower() == sDocName.ToLower())
19 {
20 item = itemTemp;
21 break;
22 }
23 }
24 else
25 {
26 if ((itemTemp.Folder.Name == sFolder)
27 && (itemTemp.File.Name.ToLower() == sDocName.ToLower())
28)

Mann_700-1C09.fm Page 325 Friday, January 19, 2007 8:44 AM

326 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

29 {
30 item = itemTemp;
31 break;
32 }
33 }
34 }
35 string sTaskAssignedTo = string.Empty;
36 for (int i = 0; i < item.Workflows.Count; i++)
37 {
38 SPWorkflow wf = item.Workflows[i];
39 if (!wf.IsCompleted)
40 {
41 wf.TaskFilter = new SPWorkflowFilter(SPWorkflowState.Running,➥

 SPWorkflowState.None);
42 for (int j = 0; j < wf.Tasks.Count; j++)
43 {
44 SPWorkflowTask task = item.Workflows[i].Tasks[j];
45 sTaskAssignedTo = task["AssignedTo"].ToString();
46 sTaskAssignedTo = sTaskAssignedTo.Substring(➥

 sTaskAssignedTo.IndexOf('#') + 1);
47 if (sUser.ToLower() == sTaskAssignedTo.ToLower())
48 {
49 sTaskName = task.DisplayName;
50
51 sTaskURL = sSiteURL.TrimEnd('/') + "/Lists/" + ➥

 wf.TaskList.Title + "/DispForm.aspx?zID=" ➥

 + task.ID.ToString();
52 break;
53 }
54 }
55 }
56 }
57 xNode = xDoc.CreateNode(XmlNodeType.XmlDeclaration, string.Empty, ➥

 string.Empty);
58 xDoc.AppendChild(xNode);
59 xElem = xDoc.CreateElement("WorkFlowTask");
60 xDoc.AppendChild(xElem);
61 xElem = xDoc.CreateElement("TaskName");
62 xText = xDoc.CreateTextNode(sTaskName);
63 xElem.AppendChild(xText);
64 xDoc.ChildNodes.Item(1).AppendChild(xElem);
65 xElem = xDoc.CreateElement("TaskURL");
66 xText = xDoc.CreateTextNode(sTaskURL);
67 xElem.AppendChild(xText);
68 xDoc.ChildNodes.Item(1).AppendChild(xElem);
69 return xDoc;
70 }

Mann_700-1C09.fm Page 326 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 327

Line numbers are included for reference only. This code looks like it does an awful lot, but
really it’s pretty straightforward. Starting from the top of Listing 9-2:

• Lines 4 through 13 set up some variables, which we’ll use later.

• Lines 14 through 34 get a reference to the document the user is working with, whether it
exists in the root of the document library or in a folder/subfolder, and stores it in the
item variable.

• Line 36 begins a loop through all of the workflows running on item.

• Line 39 ensures that we don’t do any processing against workflows that are closed
already.

• Line 41 applies a filter against the workflow tasks to limit it to only those that are
currently in a running state.

• Line 42 begins a loop through the filtered workflow tasks.

• Lines 45 and 46 check the name of the user the task is assigned to so that we can limit
further processing to only tasks assigned to the current user (passed in as a parameter)
in line 47.

• Lines 57 through 68 build our XML document to return the workflow task information.

That is really the heart of our solution. The rest of the work we need to do is preparing to
call that web service and then reacting to its return value.

That’s all of the code we need for the web service so you can go ahead and compile and
deploy. If you need a refresher on the steps, see the sidebar “It Shouldn’t Be This Hard.”

IT SHOULDN’T BE THIS HARD

So, just a little editorializing there, but it’s true—creating web services in the SharePoint environment should
not be as hard as it is. There are a bunch of moving parts and lots of steps to go through. I’m sure there’s a
reason, and I’m sure it makes perfect sense, but it still doesn’t change the facts. Creating a web service in a
SharePoint environment is more difficult than creating a “regular” web service. It’s not impossible, honestly,
not even that hard, despite what I said. It’s just harder than it should be. There’s no good way around it, though, so
we just learn to live with it. (One potential way around it is to create your web services on a separate virtual
server on the same box as your SharePoint server. You can add references to the SharePoint DLLs and access
the object model that way. Just make sure that this separate virtual server is running with the same application
pool account as your SharePoint virtual server and things will work OK. The only drawback is that I’ve seen
some strange permission problems and that you lose the SharePoint context this way. Depending on what
you’re doing, this may be an option. Try it and see how it works for you.)

Anyway, enough whining. To create a web service within the SharePoint environment, maintaining the
SharePoint context, you need to do the following:

1. Create a regular ASP.Net Web Service project with Location set to File System.

2. Add a new class library project to the web service solution.

3. Add references to the Microsoft.Sharepoint and System.Web.Services assemblies.

Mann_700-1C09.fm Page 327 Friday, January 19, 2007 8:44 AM

328 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

4. Move the Service.cs file from the web service project to the class library solution and delete the
Class1.cs file.

5. Add the custom WebMethod code to the Service.cs file.

6. Strong-name the class library project.

7. Build the class library project and deploy it to the GAC.

8. Open the Service.asmx file (rename it if you’d like something more descriptive).

9. Remove the CodeBehind attribute from the page directive.

10. Modify the Class attribute to read Class="<class_project_name>, <assembly_strong_name>".
You can retrieve the strong name for your assembly using the Reflector tool we discussed back in Chapter 7.

11. Copy your ASMX file to Program Files\Common Files\Microsoft Shared\web server
extensions\12\TEMPLATE\LAYOUTS.

12. From a Visual Studio command prompt, run the following command: disco.exe http://
<server_name>/_layouts/Service.asmx. Make sure that you change the name of the ASMX file
to whatever you called yours. This will generate static .disco and .wsdl files for you.

13. Open the .disco and .wsdl files in Visual Studio and replace the XML processing directive (<?xml
version="1.0" encoding="utf-8"?>) at the top of each with the code shown here:

<%@ Page Language="C#" Inherits="System.Web.UI.Page"%>
<%@ Assembly Name="Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral,➥

 PublicKeyToken=71e9bce111e9429c" %>
<%@ Import Namespace="Microsoft.SharePoint.Utilities" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<% Response.ContentType = "text/xml"; %>

14. Near the bottom of the .wsdl file, replace the entire <soap:address element with the following:
<soap:address location=<% SPEncode.WriteHtmlEncodeWithQuote(Response,
SPWeb.OriginalBaseUrl(Request), '"'); %> />.

15. In the .disco file, replace the entire <contractRef and <soap:address elements with this code:

<contractRef ref=<% SPEncode.WriteHtmlEncodeWithQuote(Response, SPWeb.➥

OriginalBaseUrl(Request) + "?wsdl", '"'); %> docRef=<% SPEncode.CCC
WriteHtmlEncodeWithQuote(Response, SPWeb.OriginalBaseUrl(Request), '"'); %> ➥

xmlns="http://schemas.xmlsoap.org/disco/scl/" />
<soap address=<% SPEncode.WriteHtmlEncodeWithQuote(Response, SPWeb.➥

OriginalBaseUrl(Request), '"'); %> xmlns:q1="http://tempuri.org/" binding=➥

"q1:HelloWorld" xmlns="http://schemas.xmlsoap.org/disco/soap/" />

16. Rename the .disco file to <service_name>disco.aspx, for example Service1disco.aspx.

17. Rename the .wsdl file to <service_name> wsdl.aspx, for example Service1 wsdl.aspx.

18. Copy the ASMX, DISCO, and WSDL files to Local_Drive:\Program Files\Common Files\
Microsoft Shared\Web Server Extensions\12\ISAPI.

Mann_700-1C09.fm Page 328 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 329

Step 2: Create the VSTO Solution
The next thing we need to do is create our solution. This is all pretty typical Visual Studio stuff;
just make sure that you select Word Template as the project type and choose to create a new
document when the VSTO Project wizard prompts you. Name the document anything you like,
but if you’re following along, I’m calling the document WFTaskDocument.

After Visual Studio whirs and pops for a few seconds, the project will be created with a Word
template file open right inside Visual Studio. Everybody all together now… oh, that is so cool.

Starting with an overview, our code is going to perform the following steps:

1. Collect the information we need about the current document and the document library
it resides in—site URL, document library name, document name, folders.

2. Call the custom web service we created in step 1, passing in the values we collected in
the previous step.

3. Receive XML from the web service.

4. Parse the returned XML to retrieve the information we need: the name of the task and
the URL to display it.

5. If the XML indicates a task assigned to the current user, create an action pane and
display the information as well as a link to the task form.

Unfortunately, the code to handle this is not as straightforward as you would hope. Steps
2 through 5 are pretty run-of-the-mill, but step 1—collecting the information—is a little harder
than it should be. What we end up doing is a lot of string parsing to get the values we need. Not
pretty, but certainly functional.

■Note This code worked for as many different permutations I could think of to throw at it. However, it is
certainly possible that your situation could introduce a combination of site, document library, folder, and
document names that will break this logic. In that case, you’ll just need to adjust the string parsing as
appropriate.

Before we begin, you’ll need to add a reference to the web service we created in step 1.
For the code to work, name your web service proxy WFTaskService. Now, open the
ThisDocument.cs file in Code view and you’ll see the default ThisDocument_Startup and
ThisDocument_Shutdown methods. For our solution, we’re going to make use of the startup
procedure.

Taking things in order, Listing 9-3 shows the variable declarations we need to place at the
top of our class. We’ll use these variables to store the values we need to pass to the web service.
The last two variables will be used once we have retrieved our task information from the
web service.

Mann_700-1C09.fm Page 329 Friday, January 19, 2007 8:44 AM

330 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Listing 9-3. Variable Declarations for Our Class

string sSiteURL = string.Empty;
string sDocLibName = string.Empty;
string sDocName = string.Empty;
string sFolders = string.Empty;
string sTaskName = string.Empty;
string sTaskURL = string.Empty;

Listing 9-4 shows the contents to add to the ThisDocument_Startup. It’s pretty straight-
forward—basically just a few method calls. We’ll be adding those in just a bit.

Listing 9-4. Code Called When We Open Our VSTO Document

if (GetValues())
{
 XmlNode xNode = CheckForWFTasks();
 if (GetValuesFromXML(xNode))
 {
 ShowTaskPane();
 }
}

The first method, GetValues, is going to do all of our string manipulation and parsing in
order to retrieve the information we need to pass over to the web service. Unfortunately, to
retrieve this, we need to do some gyrations. As I said before, it ain’t pretty, but we have to work
with what we’re given and it gets the job done. In this case, what we’re given to work with is a
few pieces of information about the document library the document came from (including an
indicator as to whether it actually came from one at all) and then the name and path of our
document. That’s about it. So, we do a little parsing and all is right with the world. Listing 9-5
shows the full contents of the GetValues method. As always, line numbers are for reference only
and here’s a breakdown of what is going on:

• Line 9 is the first interesting code; it checks whether we’re getting the document from a
document library by checking if we’re connected to a shared workspace. If we’re not,
there’s no reason to continue—there’s no way it has any workflow tasks assigned to it;
we just skip ahead to line 45 and we’re done. Otherwise, we continue.

• Line 11 checks whether or not the document library contains folders. If it does, we need
to look for a match between the folder name (which is actually the full folder hierarchy,
such as ParentFolder/ChildFolder/GrandchildFolder/, etc.) and the full path to our
document. If we find a match, we know the name of the folder our document is in. If the
document library does not contain folders, our document cannot possibly be in a folder,
so we don’t need to retrieve the folder path—we skip ahead to line 36.

• Lines 13 through 20 loop through all of the folders in the document library checking to
see if our filename contains the folder path. If it doesn’t, our temporary string variable
remains empty and so lines 22 through 26 will execute and figure out the name of the
document library we’re in. If we do find a match, line 29 determines the name of our
document library.

Mann_700-1C09.fm Page 330 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 331

• Once we know the name of the document library, we can assume that everything in front
of that is the URL for the site, so line 31 does that parsing.

• Now that we have the name of our document, the name of the document library and the
URL for the site, the only thing that can remain in the full name of our document is the
folder structure. Lines 32, 33, and 34 remove the known elements from the full name,
and so the only thing remaining is the folder path.

• Line 36 will only execute if the document library does not contain folders. In this case,
lines 38 and 39 do some basic parsing and then lines 40 and 41 figure out the name of our
document library and the site URL, respectively, by doing some more string
manipulation.

• Line 47 only executes if we’re not coming from a document library, so it can just
return false.

• Lines 50 through 53 simply catch any errors and return false, signifying that we shouldn’t
continue with any processing. This is certainly an area that could stand some
improvement.

Listing 9-5. GetValues—Functional, but Not Pretty

1 private bool GetValues()
2 {
3 string sTemp = string.Empty;
4 string sFullName = string.Empty;
5 try
6 {
7 sFullName = this.FullName;
8 sDocName = this.Name;
9 if (this.SharedWorkspace.Connected)
10 {
11 if (this.SharedWorkspace.Folders.Count > 1)
12 {
13 for (int i = 1; i <= this.SharedWorkspace.Folders.Count;➥

 i++)
14 {
15 if (sFullName.IndexOf(SharedWorkspace.Folders[i].➥

 FolderName) > -1)
16 {
17 sTemp = this.SharedWorkspace.Folders[i].➥

 FolderName;
18 break;
19 }
20 }
21 if (sTemp == string.Empty)
22 {

Mann_700-1C09.fm Page 331 Friday, January 19, 2007 8:44 AM

332 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

23 sTemp = sFullName.Replace(sDocName, String.Empty);
24 sTemp = sTemp.TrimEnd('/');
25 sDocLibName = sTemp.Substring(sTemp.LastIndexOf("/")➥

 + 1);
26 }
27 else
28 {
29 sDocLibName = sTemp.Substring(0, sTemp.IndexOf('/'));
30 }
31 sSiteURL = this.FullName.Substring(0, this.FullName.➥

 IndexOf(sDocLibName));
32 sFolders = sTemp.Replace(sDocLibName, string.Empty);
33 sFolders = sFolders.Replace(sDocName, string.Empty);
34 sFolders = sFolders.Replace(sSiteURL, string.Empty);
35 }
36 else
37 {
38 sTemp = sFullName.Replace(sDocName, String.Empty);
39 sTemp = sTemp.TrimEnd('/');
40 sDocLibName = sTemp.Substring(sTemp.LastIndexOf("/") + 1);
41 sSiteURL = this.FullName.Substring(0, this.FullName.➥

 IndexOf(sDocLibName));
42 }
43 return true;
44 }
45 else
46 {
47 return false;
48 }
49 }
50 catch (Exception ex)
51 {
52 return false;
53 }
54 }

The next method called from our startup method is CheckForWFTasks. This method, shown
in its entirety in Listing 9-6, is pretty simple. It is basically just the call to the web service we
created earlier. It returns an XMLNode that contains any task information.

Listing 9-6. Calling the Web Service and Passing Back the XML

private XmlNode CheckForWFTasks()
{
 WFTaskService.WFTask wft = new WFTaskService.WFTask();
 wft.Credentials = System.Net.CredentialCache.DefaultNetworkCredentials;
 XmlNode xNode = wft.GetWFTasks(sSiteURL, sDocLibName, sFolders, sDocName);
 return xNode;
}

Mann_700-1C09.fm Page 332 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 333

Next up is the method to parse the XML and set the values into the variables we created
way back in Listing 9-3. Before we show this code, let’s take a look at the XML we’ll be getting
back. There’s really only two pieces of information we need here—the name of the task and the
URL for the task form—so it’s pretty simple. Take a look at Listing 9-7 to see what it looks like.

Listing 9-7. An Example of the XML We’ll Get Back from Our Web Service

<WorkFlowTask>
 <TaskName>Task 1</TaskName>
 <TaskURL>http://mossrtm/o2003/Lists/Tasks/DispForm.aspx?ID=4</TaskURL>
</WorkFlowTask>

Now let’s parse that out and assign the values back into our variables. Listing 9-8 shows the
GetValuesFromXML method referenced in our startup method. Again, there’s not much to this
method, either; a couple of SelectSingleNode calls and we’re pretty well done with this method.

Listing 9-8. Parsing Out the Retrieved XML to Get Our Task Information

private bool GetValuesFromXML(XmlNode xNode)
{
 try
 {
 sTaskName = xNode.SelectSingleNode("/TaskName/text()").Value;
 sTaskURL = xNode.SelectSingleNode("/TaskURL/text()").Value;
 if ((sTaskName != string.Empty)
 && (sTaskURL != string.Empty)
)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 catch (Exception ex)
 {
 return false;
 }
}

The error handling here is pretty sparse (OK, really it’s nonexistent) but it works fine. If there
are no tasks for the current document, an error will be thrown in one of the SelectSingleNode
statements, and our catch statement will grab it and just return false. You can add whatever
more robust error handling you need. Notice, too, that this method does double-duty. Not only
does it populate the variables we need with the task information, it also returns a Boolean value
so we know whether or not to show the task pane.

Mann_700-1C09.fm Page 333 Friday, January 19, 2007 8:44 AM

334 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

If we got valid values from the GetValuesFromXML method, the last thing we need to do is
show the task pane with the workflow task information. While this can certainly be made nicer
looking by using user controls and the visual design environment in Visual Studio, my main
goal here is to highlight the functionality, so we’re just going to create a very rudimentary task
pane. You can gussy up your task pane any way you need to when you’re building your produc-
tion system. For now, the code in Listing 9-9 does the trick. It creates a button and a label, and
creates an event handler for the button to launch a browser and open the task form for the
workflow task. That’s all we need for now.

Listing 9-9. Our Task Pane

private void ShowTaskPane()
{
 Label lblTaskName = new Label();
 lblTaskName.Text = sTaskName;
 Button btn = new Button();
 btn.BackColor = Color.Silver;
 btn.Text = "View Workflow Task";
 btn.Click += new System.EventHandler(btn_Click);
 this.ActionsPane.Controls.Add(lblTaskName);
 this.ActionsPane.Controls.Add(btn);
}

private void btn_Click(object sender, System.EventArgs e)
{
 System.Diagnostics.Process.Start(sTaskURL);
}

That’s all there is for this step. Go ahead and compile your solution.

Step 3: Create the File Share
No rocket science here—just a simple file share. It makes things easier to put it on your SharePoint
server but it could go anywhere on your network—as long as it is accessible. One important
thing is that anyone who will be using this solution will need at least Read access to this share
so that they can get at the VSTO assembly. The account we use in the next step to publish our
VSTO solution will need Write access as well. Your network security policies will dictate exactly
how you make that happen.

For this exercise, I’ll call the share VSTOApps.

Step 4: Publish the Solution
With our assembly built and our file share created, we can go ahead and publish. Before doing
so, we need to configure the publishing process just a little. In the Properties window for your
project, on the Publish tab uncheck the box that says Automatically Increment Revision With
Each Release. We don’t need it for our development and testing, and it just makes our deploy-
ment share cumbersome and bloated.

Mann_700-1C09.fm Page 334 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 335

With that out of the way, it’s time to publish our masterpiece. Right-click on the project
name in the Solution Explorer and select Publish from the context menu. Specify the UNC path
to the file share you created in step 3. In my case, the path looks like this: \\mossrtm\VSTOApps.
Click Finish and wait. If the gods are smiling down upon your endeavors, publishing will be
successful and you can move on.

The last part of publishing is to move the assembly DLL from the subdirectory the publishing
wizard kindly created for you and paste it right into the root of the file share. The subdirectory
will be named for the name of your project and the version of the assembly—something like
WordTemplate4_1.0.0.0. Simply drag the file from there and drop it directly into the root of
the share.

Step 5: Create Site and Document Library
There’s nothing special about this step—you can even skip it if you already have a site and
document library you can work with in a sandbox environment that won’t impact or be
impacted by other users.

For my environment, I created a site called O2003 and a document library named O2003a.
Notice the nice and confusing naming I give everything.

Step 6: Move VSTO Document
In this step, we’re going to take the Word template document we published to our file share
and move it into our document library. We’re not going to do a regular file upload, though.
We’re going to do this through Windows Explorer because we need to get to the Forms folder of
the document library.

The easiest way to do this is, from the SharePoint server itself, to open the document library in
a browser and then click into Explorer view. Open the Forms folder in Explorer view. Copy the
Word template you created (in my case, it’s called WFTaskDocument.dot) from the file share and
paste it into the document library’s Forms folder (which you have open in Explorer view).

■Caution Make sure that you are copying the template file from the file share that you published to and
not the project folder on your development machine. Part of the work performed by the Publish wizard is to
create and configure the application’s manifest. If you take the copy from your project folder, it will not have
this manifest information.

Step 7: Switch New Document Template
Next we need to tell SharePoint to use this new template for all new documents in this document
library. Go into the Advanced Settings page for the document library and change the entry for
the Document Template setting to point to our new template file. In my example, this means
that I change the value to O2003a/Forms/WFTaskDocument.dot. Your settings may be different,
but basically the value should be <name of document library>/Forms/<Name of template file>.

Mann_700-1C09.fm Page 335 Friday, January 19, 2007 8:44 AM

336 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Step 8: Set Security
Setting security for VSTO applications is a black art. Experienced practitioners move in the
shadows and rarely mingle with mere mortals.

OK, so it’s not really that bad. Getting your Code Access Security (CAS) set properly, though, is
a fairly detailed process and one that will be different for every environment. There are plenty
of white papers that cover the gory details and your organization should already have your
guidelines in place (right?).

So, with that cop-out firmly set in place, what I’ll cover here is setting up CAS for our devel-
opment environment. What that means is that we basically leave all of the doors wide open.
After you have this set up and configured, I’ll ask that you kindly tear this page out of your book
and burn it. That way, your organization’s security team has no way of knowing that I told you
to do this.

Thanks.
To get started, you’ll need to fire up a command prompt on your client machine—not the

SharePoint server, unless it is also your client machine. Remember, CAS is concerned with
determining what our code can do, and our code executes within Word on the client machine.
Yes, that means that if you were to deploy this into production, you’d need to configure CAS on
each and every client. There are ways to make that less painful—Google “Code Access Security
Group Policy” and you’ll be headed down the right road.

Now, back in our command prompt (I told you this was a black art). Navigate to the
\WINDOWS\Microsoft.NET\Framework\v2.0.50727 folder and then type the two commands shown in
Listing 9-10, replacing <file_share_path> with the path of your file share and <url_for_doclib>
with the correct URL for your customized document library. The asterisk at the end of each
URL entry is important—it means “everything in this location.” This avoids having to explicitly
name each DLL and document.

Listing 9-10. Configuring CAS for Our Development Environment

caspol -m -ag LocalIntranet_Zone -url "file://<file_share_path>*" FullTrust -n ➥

"VSTO Assemblies"
caspol -m -ag LocalIntranet_Zone -url "<url_for_doclib>/*" FullTrust -n "VSTO ➥

Documents"

Listing 9-10 contains two separate commands; you’ll need to hit Enter and run each one
individually. After hitting Enter, you will be prompted to confirm that you really want to change
the security policy. Go ahead and confirm that you do and then wait a second or two for the
heart-warming confirmation that you’ve “Added union code group with ‘-url’ membership
condition to the Machine level. Success.”

Step 9: Test
Well, that’s it. Now comes the big moment—time for the rubber to meet the road. Fire up a
browser and navigate to your document library. Click the New button and confirm that you
really want to open this file from the server.

Wait a few seconds for Word to open your new document and bask in the glory of… nothing.
Remember, if this is a new document it is not associated with a document library so there is no

Mann_700-1C09.fm Page 336 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 337

possibility of it having any workflow tasks yet. Most of our code doesn’t execute yet. What you
should have open on your screen is a regular old Word document.

Type some startlingly brilliant prose and save the document back into the document library.
Close down Word and refresh your browser window. Click on your new document again and
open it in Word. Get ready now, because… still nothing.

Our code executed this time but we still don’t see anything. We need to initiate a workflow
on the new document and assign ourselves a task. Close Word again and go back to the browser.
Initiate a workflow for the new document—the default Approval workflow will work nicely—and
make sure that you list yourself (whatever account you’re logged in with) as approver. After the
workflow kicks off, go back to the document library and try opening the document again.

It seems that the third time is a charm—now we have something. As shown in Figure 9-7,
our task pane shows up this time and has the information on our workflow task. If we click the
button, the task form will open inside a browser.

Go ahead and try it.

Figure 9-7. Office 2007 workflow tasks in Office 2003. How sweet it is…

Step 10: Celebrate
I can hear Kool & the Gang wafting over the cubicle walls already. Congratulations, you’ve
successfully integrated Word 2003 with the Office 2007 Workflow engine.

Wrapping Up
The information presented here barely scratches the surface of the possibilities. As I said at the
beginning, there are three primary classifications of the possible functionality:

• Notification of pending workflow tasks for the current document

• The ability to interact with workflow tasks from the client

• The ability to initiate a workflow from the client applications

We only covered the first, as the rest are just variations on that theme. To support each, all
you need to do is create a new web service to return the appropriate information and modify
the UI generated in the task pane.

From those three core pieces of functionality, there are many, many places you can take
this to. Off the top of my head, the following is just a partial list of where you could go from here:

Mann_700-1C09.fm Page 337 Friday, January 19, 2007 8:44 AM

338 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

• Enable users to initiate workflows available in the document library that their document
is stored in.

• Enable Forms Server integration so users can directly interact with their workflow from
the client applications.

• Embed the Workflow Designer into a task pane to allow advanced users to create ad hoc
workflows from within Office 2003. With a little additional work, this one could be rolled
into Office 2007 as well.

• Integrate the ASPX task form directly into the task pane rather than launching an external
browser session. This could come close to mimicking the Forms Server without requiring
Forms Server.

• Build the task pane with a user control. This will give you better control over the UI so
you can make the task pane look nicer.

• Add a new button to allow the user to refresh the workflow task information on demand.

There is more, I’m sure, that you’ll think of based on your needs and background. My main
goal here was to show that the functionality was possible and to get you thinking. If you’d like
to explore this further, please stop by my web site—www.kcdholdings.com. I’ll post some musings
on this and other topics as often as my copious spare time allows.

■Caution One warning on this solution: it is far from perfect as it currently stands. As I said in the begin-
ning of this chapter, my main goal is to push the envelope a bit and get you thinking of how you can get the
most out of workflows in Office 2007. This section certainly does that, but there are a lot of moving parts and
you will need to touch every client’s machine to install the VSTO runtime and the various other prerequisites.
I think, however, that this is still easier than upgrading all of your clients to Office 2007 in one fell swoop. One
other issue that will rear its ugly head is the fact that this will only work for document libraries that you have
attached the VSTO solution to. If you are seriously exploring this option for a production environment, you are
going to want to look into Features and content types in SharePoint 2007. Google them or pick up a good book
on SharePoint 2007 (Scot Hillier’s books—also from Apress—are always a good choice) and you should find
everything you need. These approaches won’t change the core of how the functionality is delivered; they will
only impact the way in which you deploy everything to SharePoint.

Picking On People—The InfoPath Contact Picker
and the ASPX People Editor
If you were paying attention as you explored the out-of-the-box workflows, you’d have noticed
that they contain a pretty nifty interface for indicating the participants in your workflow. In
InfoPath forms, it looks like Figure 9-8. In ASPX forms, it is similar, but looks like Figure 9-9.

Mann_700-1C09.fm Page 338 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 339

Figure 9-8. The InfoPath Contact Picker

Figure 9-9. The ASPX People Editor

In each case, you get the same functionality, though the UI is slightly different. Each control
allows you to browse or search for users and to validate the users entered. This validation can
occur against any of the following:

• SharePoint users and groups

• Active Directory (or other LDAP server) users and groups

• Local machine users and groups

Figure 9-10 shows the lookup interface for ASPX pages. The InfoPath rendition is similar.

Figure 9-10. The user lookup interface from the ASPX version of the People Editor

Mann_700-1C09.fm Page 339 Friday, January 19, 2007 8:44 AM

340 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Always trying to be the bearer of good news, I’m happy to let you know that this same
control is available to you for use in your custom workflows. In InfoPath, it is called the Contact
Picker control. In ASPX it is known as the People Editor. Two names, same great functionality.

Let’s take a look at how you can make use of these controls in your custom workflows—
first for InfoPath forms.

InfoPath Contact Picker
The InfoPath Contact Picker is an ActiveX control that ships as part of MOSS. As mentioned
earlier, it encapsulates all of the functionality you need to specify users for various roles within
your workflow and validates those users before the form is submitted.

Using the InfoPath Contact Picker is pretty simple. At a high level, you need to

1. Add the control to the InfoPath toolbar.

2. Add an instance of the control to your form and configure it for use.

3. Write some code to grab data sent to the form by SharePoint to be used by the control.

We’ll cover these steps in a bit more detail in the following sections.

Adding the Control to the InfoPath Toolbar

Here’s the first task we need to make the Contact Selector control available to add to our
InfoPath forms:

1. In InfoPath 2007, click the Add or Remove Custom Controls link at the bottom of the
Controls pane.

2. Click the Add button.

3. Select the option for ActiveX Controls.

4. Select Contact Selector and click Next.

5. Select the option to not include a .cab file and click Next.

6. For the Binding Property, select Value and click Next.

7. For the Data Type options, select Field or Group (Any Data Type) from the drop-down
near the top and click Finish.

8. Click Close and OK to exit the wizard.

The Contact Picker control is now available in the list of available controls under the
“Custom” section.

Mann_700-1C09.fm Page 340 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 341

Adding and Configuring an Instance of the Control

Adding the control to the form is no different from any other InfoPath control—just drag it out
and drop it where you need it. Configuring the control for use in our workflow forms is a little
more involved but not too bad:

1. Double-click on the control you dropped onto your form.

2. On the Data tab, give the control a meaningful name—perhaps something clever
like Approvers.

3. On the General, Display, Size, and Advanced tabs, customize the look of the control to
your needs.

If you click the Items tab, you’ll see information about binding the control and the schema
required for the control. We’ll cover this in the next few steps.

Each contact entered into the control at runtime is going to produce a single XML node
that adheres to the schema shown in Listing 9-11. Most of the nodes in this XML are pretty self-
explanatory. Only the AccountType node may be a little unclear but is really pretty easy. The
AccountType holds a value indicating whether this is a user or a group. That’s it!

Listing 9-11. The Schema Required for Contacts in Our Contact Selector Control

 <person>
 <DisplayName> </DisplayName>
 <AccountId> </AccountId>
 <AccountType> </AccountType>
 </person>

To configure our control to make use of this schema, we need to do some work with data
sources, covered in the next few steps.

1. From the Design Tasks pane in InfoPath, select Data Source.

2. Underneath the (default) myFields entry should be an entry with the same name as our
Contact Selector control. In my case, it is simply called Approvers.

3. From the drop-down menu for Approvers, select the Add option to add a new field
or group.

4. In the resulting dialog box, configure the new field as follows and then click OK:

• Name: person

• Type: Group

• Repeating: (checked)

Mann_700-1C09.fm Page 341 Friday, January 19, 2007 8:44 AM

342 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

5. Back in the Data source pane, click the new person group you just added and add a new
field to it, configured as follows:

• Name: DisplayName

• Type: Field (element)

• DataType: Text (string)

• Repeating: (checked)

6. Add another field to the person group as follows:

• Name: AccountId

• Type: Field (element)

• DataType: Text (string)

• Repeating: (checked)

7. Add the final field to the person group:

• Name: AccountType

• Type: Field (element)

• DataType: Text (string)

• Repeating: (checked)

Our control is now configured to handle contact data. You’ll have noticed, I’m sure, that
the data source information we added matches the schema presented earlier.

The last piece we need to do for this section is to add a secondary data source to our Info-
Path form. When our form is rendered, this channel will be used to pass useful information
from the SharePoint workflow host to our form. The primary piece of information is the URL of
the site that the workflow is running within—this allows our form to know which site to vali-
date users against. Other information includes

• isStartWorkflow: A Boolean flag that indicates whether the form is an initiation form

• isRunAtServer: A Boolean value that indicates whether the form is being opened from
the server

• provideAllFields: Another Boolean value that indicates whether the form is used as
either an initiation form or an association form for a workflow that starts automatically

We need to create a simple XML file so that we have something to work with when we add
the data source. It’s a pretty small file, so just fire up Notepad and add the contents of Listing 9-12.
Save the file as ContactsDataSource.XML. Looking at Listing 9-12, you’ll notice that we have
supplied values for the three Boolean fields. This is not setting defaults—it is only to indicate
that these are Boolean fields.

Listing 9-12. The Contents of the File We’ll Use to Establish Our Secondary Data Source

 <Context
 isStartWorkflow="true"
 isRunAtServer="true"

Mann_700-1C09.fm Page 342 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 343

 provideAllFields="true"
 siteURL=""
 />

■Note If you remember back in Chapter 7, this is the same process we went through to establish the
secondary data source for our workflow task forms with the ItemMetadata.xml file.

Now that we have this XML file, we just need to add it as a data source within InfoPath.

1. In the DataSource pane, click Manage Data Connections and then Add.

2. Choose the Create a New Connection to Receive Data option and then click Next.

3. Select the option to receive data from an XML document and click Next.

4. Browse to and select the ContactsDatasSource.xml file we created earlier and click Next.

5. Choose the option to include the data as a resource file in the form template and
click Next.

6. Make sure that the Automatically Retrieve Data When Form Is Opened box is checked,
and then click Finish and Close.

■Note You will not need the ContactsDatasSource.xml file anymore. Keep it with your solution’s
source files in case you need to rebuild things later, but you do not need to distribute it with your form.

That’s it. Our InfoPath form is now configured to display and use the Contact Picker control.
In addition, we’ve configured it to receive the information passed to it by SharePoint when the
form is displayed. The rest of the process involves writing code within our workflow to handle
inbound and outbound contacts data. We’ll cover that in the next section.

Writing Code to Handle Data

The process that occurs as part of the handoff from SharePoint to our workflow in this scenario
is similar to what happens with other Workflow forms and we generally handle it in a similar
fashion. There are a few little quirks, as you’ll see when we walk through the process.

As before, the information is handed to our workflow as XML. Also as before, we need to
grab the XML and parse it to get to the information we need. For our initiation form, the data is
stored within the WorkflowProperties.InitiationData property of the OnWorkflowActivated
activity. Also, just as before, the information contained within the InitiationData property is
all of the form data—we need to go in and parse out the contact information—we’ll get to that
in just a minute.

Mann_700-1C09.fm Page 343 Friday, January 19, 2007 8:44 AM

344 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

For workflow modification forms, the form data is passed to our workflow and is stored in
the ContextData property of both the EnableWorkflowModification and OnWorkflowModified
activities. Once again, we need to write some code to parse out the contact information—we’ll
get to that in a minute, too.

For workflow task forms, things are a little different—one of those quirks I mentioned. In
this case, the data is passed as a hash table as opposed to XML.

In the case of data coming in as XML—for the initiation and modification forms—we
are dealing with serialized XML so we can take the same route we used in Chapter 7 with the
xsd.exe utility to generate a class that maps our XML data into properties. You can flip back to
Chapter 7 to see details on making this work (it’s right around Listing 7-4), but at a high level,
the process is as follows:

1. Save your InfoPath form schema files.

2. Use the XSD utility to generate a class file from the myschema.xsd file.

3. Add the generated class to your workflow project.

4. Use code similar to Listing 9-13 to access the data.

Listing 9-13. Accessing the First Contact’s Information from Our Approvers Control

XmlSerializer ser = new XmlSerializer(typeof(MyFields));
xmlTextReader rdr = new XmlTextReader(new StringReader(workflowProperties.➥

InitiationData));
MyFields fields = ser.Deserialize(rdr);
string sPersonName = fields.Approvers[0].DisplayName;
string sLoginName = fields Approvers[0].AccountId;
string sContactType = fields.Approvers[0].AccountType;

Remember that when we added the Contact Picker control to our InfoPath form, we named
it Approvers—hence the reference to an Approvers object in the code in Listing 9-13. Along the
same lines, the name of our primary DataSource in InfoPath was MyFields so that becomes the
name of our class from the XSD utility and the type of our fields object in Listing 9-13.

The last piece we need to fit in here is the task form. Remember that this one is handled
slightly differently—data is passed to our workflow as a hash table instead of as XML. We handle
it in a similar fashion, though.

For task forms, we create a hash table object and populate it with the TaskProperties.
ExtendedProperties property of the activity that triggered the display of the task form (CreateTask,
DeleteTask, UpdateTask, or CompleteTask). We also make use of a utility class that Microsoft
provides for us in the Microsoft.Office.Workflow.Utility namespace. Listing 9-14 shows how
we accomplish this task (no pun intended) by using the ToContact method of the utility class
Contact.

Listing 9-14. Accessing Task Form Data in Our Workflow

Contacts[] approvers = Contact.ToContacts(taskProperties.ExtendedProperties ➥

["Approvers"].ToString());

Mann_700-1C09.fm Page 344 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 345

We can now use the Contact class’s methods and properties to work with our contact
information. Table 9-2 provides information on some of these members.

So there you have it—everything you ever wanted to know about the InfoPath Contact
Picker but were afraid to ask. Next up—duplicating the functionality in ASPX forms.

ASPX People Editor
The functionality delivered by the ASPX People Editor is identical to that provided by the Info-
Path Contact Picker. Naturally, however, the means of achieving that functionality is quite
different. In this section we’ll delve into the mysteries of the ASP.NET version of this dark magic.

The process of working with this control is similar to the process we used for InfoPath:

1. Add the control to the page and configure it as necessary.

2. Write some code to grab data sent to the form by SharePoint to be used by the control.

Adding and Configuring an Instance of the Control

First things first—the ASPX People Editor is encapsulated within a server control contained
within the Microsoft.SharePoint.WebControls namespace (within the Microsoft.SharePoint
assembly). So, in order to release this little nugget, we need to add the line shown in Listing 9-15 to
the top of our ASPX page.

Listing 9-15. Setting Things Up to Access the People Editor Functionality

<%@ Register Tagprefix="wssawc" Namespace="Microsoft.SharePoint.WebControls" ➥

Assembly="Microsoft.SharePoint, Version=12.0.0.0, Culture=neutral, ➥

PublicKeyToken=71e9bce111e9429c" %>

Next up is adding the code to actually render the control onto the page. Like other server
controls, there are a handful of properties that we can set to configure our instance of the control as
we need to. First, adding the code in Listing 9-16 will render a basic version of the control. After
you’ve pondered that for about the two seconds it will take to understand what is going on, you
can take a look at Table 9-3, which spells out the properties available to configure the control.

Table 9-2. Members of the Contact Class

Member Type Notes

DisplayName Property Returns the name for the contact that is typically shown in the UI

EmailAddress Property Returns the email address for the contact

LoginName Property Returns the name the contact uses to log into the network, in
the format Domain\LoginName

ToContacts Method The method we used in Listing 9-14 to convert the hash table to
an array of Contacts objects

Mann_700-1C09.fm Page 345 Friday, January 19, 2007 8:44 AM

346 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Some of the information presented in Table 9-3 is inherited from a base EntityEditor class, but
I’ll cover it as though it were all directly in PeopleEditor.

Listing 9-16. The ASPX People Editor—Sample Code from the MOSS SDK

<wssuc:InputFormControl LabelText="Approvers:" runat="server">
 <Template_Control>
 <wssawc:PeopleEditor
 AllowEmpty="false"
 id="Reviewers"
 runat="server"
 SelectionSet="User,SecGroup,SPGroup"
 width='300px'/>
 </Template_Control>
</wssuc:InputFormControl>

■Note For information on other building blocks for our ASPX forms, including information on the
InputFormControl and Template_Control tags, see the next section in this chapter.

Table 9-3. Some of the More Useful Properties of the ASPX People Editor

Property Description

Accounts An array list of the validated accounts entered into the control

AllowEmpty A Boolean indicating whether the control requires a value

AllowTypeIn A Boolean that indicates whether users can type their own
values to be validated or whether they are required to select
from the attached directory

CommaSeparatedAccounts A string containing the validated accounts entered into the
control, separated by commas (duh)

CssClass Allows you to modify the presentation of the control

MaximumEntities Allows you to limit how many names are entered into
the control

MultiSelect Indicates that users can enter more than one contact

PlaceButtonUnderEntityEditor Denotes that you want to have the button to validate names or
use the address book show up underneath the entry text box

PrincipalSource Allows you to specify which directory names are
validated against

SharePointGroup Allows you to limit available options for contacts to members
of a specific SharePoint group

Mann_700-1C09.fm Page 346 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 347

There are a bunch more properties for things like specifying the images for the buttons
and the text of the buttons, but I listed some of the key ones in Table 9-3. They give you an idea
of what is possible with this control.

Writing Code to Handle Data

So now that we know all about adding the control to our page and configuring it, how do we
actually work with the content it collects? Unfortunately, as with most things about the ASPX
forms in our workflows, it is quite a bit more involved than with the InfoPath forms. Read on,
MacDuff, but you’ll find yourself sorely missing InfoPath before too long.

■Note I’ve previously mentioned the MOSS SDK Microsoft has published. I strongly recommend that you
download that and study the CollectFeedbackWorkflow example. I’ll cover a lot of what you need to know
here, but there is just a ton of information available. If you can’t find it via Google (unlikely), check www.
kcdholdings.com. I’ll post a link to it once the final version is published.

While it would certainly be possible to reinvent this wheel, there is no reason to do so. The SDK has 90 percent
of what you need to solve this problem. All of the code and explanatory material I’m covering in this section
is taken directly from the SDK—code examples intact; scintillating, explanatory prose from my own review;
and analysis of the samples in the SDK. Spend a little time with it—you’ll wonder how you ever lived without it.

The first piece of the CollectFeedbackWorkflow sample that you’re going to want to get
really cozy with is the WFDataPages class from the CollectFeedbackSampleAspxPages project. It
contains all of the utility routines for getting ASPX form data—including the PeopleEditor
information—into and out of the forms and moving it back and forth to our workflow. There is
also the FormData.cs file, which actually contains three distinct classes—Contacts, FormData,
and Helper. We saw these pieces earlier (in Chapter 7 where we worked with the templates I
created) but didn’t go into the elements of the FormData file that we’re going to cover here. You
can crack open the original file or the templates I made from them to see the inner workings—I’ll
just cover the various pieces of these two files here and how they are used.

■Note It looks like the samples from the SDK are only going to be available in C#. VB .NET (and naturally
all of the Eiffel.NET developers out there) are going to have some translating to do. Sorry, folks, I’m just the
messenger.

Table 9-4 lists the useful parts of the SDK classes, along with some descriptions, circles,
and arrows and a paragraph on the back of each one explaining what each one is to be used as
evidence against us (every technical book worth its salt has to have at least one Arlo Guthrie
reference—there’s mine).

Mann_700-1C09.fm Page 347 Friday, January 19, 2007 8:44 AM

348 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

With those utilities doing most of the heavy lifting, the basic process for the ASPX forms is
pretty straightforward.

1. Add the control to your ASPX form—something similar to Listing 9-16 earlier.

2. When the form is loaded, check whether we are creating new or modifying existing
data. If the former, we don’t need to do anything. If the latter, we need to add code to
retrieve the existing data and populate the form. The SDKs handle this by deserializing
the AssociationData (or InitiationData) properties from our workflow, parsing out the
contact information, and populating the CommaSeparatedAccounts property of our
PeopleEditor. The relevant portion of this code (from the PopulatePageFromXml method)
is shown in Listing 9-17.

3. When the form is submitted, we need to store the information from the People Editor in
the appropriate property of our workflow—either AssociationData or InitiationData.
The SDKs accomplish that with this line from the BtnOK_Click event handler:
m_assocTemplate.AssociationData = SerializeFormToString(FormType.Association);.
The SerializeFormToString method is defined in the WFDataPages class. It is responsible
for storing all of our form’s data—the People Editor information just comes along for
the ride. The relevant portions of the SerializeFormToString method are shown in
Listing 9-18.

Table 9-4. Useful Elements from the SDK’s Utility Classes

Class Element Description

Contacts ContactList A public property to access the list of contacts stored
in a private System.Collections.GenericList variable.

Contacts AddContact Not typically used directly. Front-ended by an
AddContact method of the FormData class.

FormData Reviewers A public property that returns an instance of the
Contacts class.

FormData GetReviewers Returns a string array representation of the
Contact.ContactList property.

FormData AddContact Front-end to the Contacts.AddContact method.
Before calling this underlying method, ensures
that the property contains a properly instantiated
Contacts object.

Helper DeserializeFormData Casts the passed in XML string to a FormData object
and returns it to the calling routine.

WFDataPages PopulatePageFromXml Responsible for deserializing the XML representation
of a Workflow form and populating values into global
variables.

WFDataPages SerializeFormToString Does the exact opposite of the PopulatePagesFromXml—
takes existing Workflow Form data, converts it to an
XML string, and returns it to the caller.

Mann_700-1C09.fm Page 348 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 349

Listing 9-17. Grabbing People Editor Data from the AssociationData or InitiationData Properties
of Our Workflow

string[] reviewers = formdata.GetReviewers();
string commaSepAccts = "";
foreach (string reviewer in reviewers)
{
commaSepAccts += reviewer;
commaSepAccts += ",";
}
Reviewers.CommaSeparatedAccounts = commaSepAccts;

Listing 9-18. Storing Our People Editor Data with the Rest of Our Form Values

foreach (Microsoft.SharePoint.WebControls.PickerEntity person in Reviewers.➥

ResolvedEntities)
{
 data.AddContact(person.Key);
}

That about covers the important aspects—adding the control and adding code to move
data in and out. While there is a lot more to a complete solution around this, you need to take
a look at the CollectFeedbackWorkflow sample from the SDKs. It covers everything. I’m not
going to sit here and regurgitate it all back to you. I’ll just point you to the source. If you have
any questions, feel free to ping me.

As if all of this weren’t cool enough, because the ASPX People Editor control is nothing
more than a server control; it is available for use with other components of our solutions as
well—like web parts. See the sidebar “The Flying Purple People Picker” for more information.

THE FLYING PURPLE PEOPLE PICKER

See, there’s this song from the late '50s by Sheb Wooley about a flying, purple…oh never mind.
The important thing to know is that we can get all of the functionality described in this section for the

ASPX People Editor anywhere we need it. For example, add the code here to a web part and add the line
pedt.RenderControl(writer) to your web part’s Render method and whammo—instant, full-blown
People Editor functionality.

PeopleEditor pedt;
protected override void CreateChildControls()
{
 pedt = new PeopleEditor();
 this.Controls.Add(pedt);
 base.CreateChildControls();
}

You can set all of the same properties as specified in Table 9-3. When the control is posted back to the
server, the data will be available in the Accounts or CommaSeparatedAccounts property. All in all, not too
shabby for eight lines of code…

Mann_700-1C09.fm Page 349 Friday, January 19, 2007 8:44 AM

350 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Building with Blocks—The Makings of
an ASPX Form
Microsoft provides a number of components that we can utilize to streamline the process of
building our ASPX forms and make them look like they fit in with the rest of the site. These
components act as building blocks that can help us jump-start our form’s interface. As an
added benefit, they will make use of the standard Microsoft styles and so remain fully synchro-
nized with Cascading Style Sheet (CSS) changes you make for the rest of the site.

If you take a look in the \Program Files\Common Files\Microsoft Shared\
web server extensions\12\TEMPLATE\CONTROLTEMPLATES folder, you will see a bunch of user
controls. From the 40-plus provided, we are interested in three:

• InputFormSection.ascx

• InputFormControl.ascx

• ButtonSection.ascx

These three user controls give us the ability to quickly add user interface constructs to our
ASPX workflow forms. They’re the same constructs Microsoft uses elsewhere in SharePoint, so
by default we already look like we fit in. Before we take a look at how they work, let’s first show
a completed form so you can see what the whole picture looks like before we start dissecting it
to see how it ticks. Figure 9-11 shows an association form from the Collect Feedback sample
that ships with the SDKs. Take a quick look at it, and then refer back to it as we step through its
constituent parts.

Figure 9-11. A sample association form from the workflow SDKs

Mann_700-1C09.fm Page 350 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 351

The first control to look at is the InputFormSection. InputFormSection does just what you
would expect considering its name—it renders the HTML to create a visual section on our
form. In Figure 9-12, the thin gray lines running the width of the screen indicate the boundaries
of each section and are rendered via the InputFormSection control. Properties of the control
can be used to customize its appearance and to provide some instructions to the user. The
following list provides details on the properties of the InputFormSection control and how they
are used. Those four properties aside, the InputFormSection control does very little else. To get
value from it, you need to add other controls to it—as we’ll see next.

• Title: This string property displays the header for the form section. The text you enter
here is styled with the ms-standardheader CSS class.

• Interface rendered:

• and:

• Description: Another string property. This one is displayed underneath the title
and provides instructions to the user. The text you enter here is styled with the
ms-descriptiontext and ms-inputformdescription CSS classes.

• Interface rendered:

• Collapsible: A Boolean property that indicates whether the form section can be collapsed
to show just the title. Defaults to false. If set to true, a small plus/minus indicator is
shown to the left of the title. If set to false, displays the title as shown earlier for the Title
property.

• Interface rendered for true:

• Collapsed:This Boolean property indicates whether a section is shown as collapsed or
expanded. Defaults to false.

• Interface rendered for false:

Mann_700-1C09.fm Page 351 Friday, January 19, 2007 8:44 AM

352 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

• Interface rendered for true:

• Padding: A Boolean property that indicates whether or not extra space is added at the
bottom of the form section. Can be used to make complex forms look less busy. Defaults
to false.

• Interface rendered for false:

• Interface rendered for true:

■Caution The data types for each of the properties are indicated in this list. However, when you enter them
in your markup, they are all treated as strings. The user control attempts to convert them to the proper data
type but it will throw an error if it can’t convert them properly. So, for example, while there is nothing that will
stop you from entering x where a Boolean value is expected, you will get a big ugly error page when the form
is rendered. Double-check your values!

The full markup to define and display an InputFormSection is shown in Listing 9-19, which is
taken from the SDK Collect Feedback sample. It includes both the InputFormSection and the
InputFormControl, which is next up in our discussion. Again, this name is pretty descriptive of
the function it serves.

Listing 9-19. The Full Markup to Define a Form Section (Taken from the MOSS SDK Collect Feed-
back Sample)

<wssuc:InputFormSection Title="Workflow Tasks." Description=➥

"Specify how tasks are routed to participants and whether to allow tasks to ➥

be delegated or if participants can request changes be made to the document ➥

prior to finishing their tasks." runat="server" Collapsible="true" ➥

Collapsed="false" Padding="true">
 <template_inputformcontrols>
 <wssuc:InputFormControl Runat="server" LabelText="Assign tasks to:">
 <Template_Control>
 <TABLE border=0 cellspacing=0 cellpadding=0>

Mann_700-1C09.fm Page 352 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 353

 <tr>
 <td class="ms-authoringcontrols">
 <asp:radiobutton runat="server" id="radParallel" ➥

 text="All participants simultaneously (parallel)" ➥
 GroupName="stage" OnClick="ParallelSettings()" ➥

 checked="true"/>
 </td>
 </tr>
 <tr>
 <td class="ms-authoringcontrols">
 <asp:radiobutton runat="server" id="radSerial" ➥

 text="One participant at a time (serial)" ➥

 GroupName="stage" OnClick=➥

 "SerialSettings()" />
 </td>
 </tr>
 </TABLE>
 </Template_Control>
 </wssuc:InputFormControl>
 </template_inputformcontrols>
</wssuc:InputFormSection>

Only one property is available to customize the InputFormControl itself: LabelText. You
use that property to specify the text that will appear just above the controls rendered within the
InputFormControl control (more on these in a minute). Figure 9-12 shows you how this is
rendered.

Figure 9-12. The LabelText property of the InputFormControl renders just above the controls it
contains and is useful for labeling the controls.

The secret to this little gem lies in the markup that you place within its opening and closing
tags. You can place any valid HTML or ASP.NET tag in there and the control will take care of wrap-
ping it properly to render as part of the form. For an example, see the sample code in Listing 9-19.
You’ll see that it has a regular HTML table and two ASP radio buttons. Nothing too fancy, but the
result, as shown back in Figure 9-11, is a nice-looking label for our contained controls.

The final user control we need to look at is the ButtonSection control. As you will likely
have guessed from the name, this control renders the buttons for your form. There are two
properties available to customize the rendering of this control, as shown in Table 9-5.

Mann_700-1C09.fm Page 353 Friday, January 19, 2007 8:44 AM

354 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

■Caution The data types for each of the properties are indicated in Table 9-5. However, when you enter
them in your markup, they are all treated as strings. The user control attempts to convert them to the proper
data type but it will throw an error if it can’t convert them properly. So, for example, while there is nothing that
will stop you from entering x where a Boolean value is expected, you will get a big ugly error page when the
form is rendered. Double-check your values!

The last piece that we need to look at to style our ASPX forms is actually the header and intro-
ductory text that appears at the top of the page. These two elements are delivered via standard
HTML and ASP.NET. Figure 9-13 shows which elements on the page I’m talking about.

Figure 9-13. The form head elements are rendered with standard HTML and ASP.NET.

Again, lifting code from the SDKs, Listing 9-20 shows the markup to render these elements.
The two variables, strPTS and strPD, are used to hold the values that are displayed at the top of
the page. strPTS is the title, and strPD is the descriptive text below it.

Listing 9-20. Markup from the MOSS SDK Demonstrating How to Render the Form Head
Elements

<asp:Content ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea" ➥

runat="server">
 <%
 string strPTS = "Customize " + m_workflowName;
 SPHttpUtility.HtmlEncode(strPTS, Response.Output);
 %>
 :
 <asp:HyperLink ID="hlReturn" runat="server" />
</asp:Content>

Table 9-5. Properties for the ButtonSection Control

Property Data Type Description

ShowSectionLine Boolean Indicates whether or not a section line should be shown
above the buttons to visually close off the sections above.
Defaults to false.

BottomSpacing Integer Indicates the number of pixels worth of space to insert
after the buttons are rendered. Useful if you have other text
or markup coming after the buttons. Pretty useless if the
buttons are at the bottom of your form.

Mann_700-1C09.fm Page 354 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 355

<asp:Content ContentPlaceHolderID="PlaceHolderPageImage" ➥

runat="server">

</asp:Content>
<asp:Content ContentPlaceHolderID="PlaceHolderPageDescription" ➥

runat="server">
 <%
 string strPD = "Use this page to customize this instance of " + ➥

m_workflowName + ".";
 SPHttpUtility.HtmlEncode(strPD, Response.Output);
 %>
</asp:Content>

If you want to customize the text displayed in either of these two sections, it is a simple
matter to edit one or both of those two variables.

So that’s it. Those are the major components to building an attractive UI for your ASPX
forms. We covered a fair amount of material, but it’s not difficult. Now that you understand
how to do it, customizing your ASPX forms is just a matter of adding InputFormSections,
InputFormControl sections, the specific controls your form needs inside the InputFormControl,
and a ButtonSection control. You can use the various properties of the controls to customize
how they are rendered on your form.

■Note InfoPath forms, at least the majority of the ones SharePoint ships with in the sample workflows, are
typically not styled to look like these ASPX forms. They are left pretty plain because they potentially serve
double duty by being rendered into the Office 2007 client applications. There is nothing that would stop you
from styling them—you would just do it strictly in InfoPath.

XAML
XAML—YAGA (XAML—“Yet Another Geeky Acronym”).

Sigh. Yes, folks, in our already acronym-choked world, we have another to add—XAML,
pronounced “zammel”). XAML stands for Extensible Application Markup Language, and why
it’s not EAML goes back to someone deep in the bowels of the World Wide Web Consortium
(W3C), who decided that X was a cooler letter than E and that Extensible Markup Language
should be XML and not EML. Go figure.

Anyway, tangents about the death of the English language aside, just what the heck is
XAML and why do we care in our Office Workflow world?

The answer is that we do and we don’t. We care, because it is an underlying technology
within Workflow and it is always good to know as much as you can about your toolkit; we don’t
care because, in Office at least, we are not going to make use of it. I will, however, provide a very
(very!) brief overview of XAML here just so you know what it is and you can impress your peers
at cocktail parties.

Mann_700-1C09.fm Page 355 Friday, January 19, 2007 8:44 AM

356 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

■Note The reason that we won’t be using XAML is that the SharePoint Designer takes care of this for us.
We’ll get into a little more on this soon; just keep it in mind.

So, first of all, what exactly is XAML? We need to answer this question before we can go into
how it is used in WF workflows and then why we won’t use it in our Office workflows—at least
not directly. So, XAML is a purely declarative (no-code) style of defining a workflow in the form
of a valid XML file. Put another way, we set up our workflow in XAML by building constructs
(activities, etc.) described entirely in XML. At runtime, the workflow compiler converts this
declarative markup into an in-memory workflow object and executes it.

The benefits to this include

• XAML files are both human-readable and machine-readable.

• Because they are XML files, XAML files can easily be manipulated by the wealth of XML
tools available from both Microsoft and other vendors. This means that we can write (or
buy) tools that will generate XAML for us or manipulate existing XAML.

There, that second benefit points to why we won’t be exposed to much XAML in our Office
workflows. The SharePoint Designer is one of those tools that can both create and edit XAML.
While it is possible to view the XAML generated by SPD and manipulate it outside of SPD if you
wanted to, SPD nicely insulates us from all of this.

■Note If you want to look at the XAML generated by SPD you’ll actually be looking for a file with an .xoml
extension. Why Microsoft changed one letter is beyond me. And, yes, when you’re talking about this file
created by SPD, it is pronounced “zommel” instead of “zammel.”

Now you know what XAML is and why we won’t be using it much. To wrap up this brief
discussion on XAML, let’s take a look at some sample XAML markup. Listing 9-21 shows a very
basic “Hello Workflow” example created as pure XAML.

Listing 9-21. A “Hello Workflow” Example Created Entirely in XAML

<SequentialWorkflowActivity
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/workflow"
 xmlns:xaml="http://schemas.microsoft.com/winfx/2006/xaml"
 xaml:Class="HelloWorkflow" >

 <CodeActivity ExecuteCode="HelloWorkflow" />

 <xaml:Code>
 <![CDATA[
 private void HelloWorkflow(object sender, EventArgs e)

Mann_700-1C09.fm Page 356 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 357

 {
 Console.WriteLine("Hello Workflow");
 }
]]>
 </xaml:Code>

</SequentialWorkflowActivity>

The code and markup shown in Listing 9-21 is pretty straightforward—it contains a single
Code activity that executes the method defined within the CDATA section to write to the console.
Not particularly useful, especially from an Office point of view, but it gives you a sampling of
what XAML looks like. You can get as crazy as you’d like to with it.

That’s it. We’ll end our discussion of XAML right there. We haven’t touched on any details
but I just wanted to give you an overview—and even then just one that applies to XAML’s use
in Workflow. XAML is a very large part of the .NET Framework 3.0 and there are tons of other
uses for it besides Workflow. If you’re interested, just Google “XAML” and be prepared to spend
the next several hours reading all about it.

■Note For you purists out there, yes, XAML is, at its core, simply a schema for defining objects and their
properties in a purely declarative XML format. XAML is a large part of the Windows Presentation Foundation
(nee Avalon) where it provides a separation between the user interface and the application logic. Its use as
part of Workflow may seem a little strange but if you separate XAML as a schema from its heritage of defining
user interface objects, you’ll see that it makes perfect sense. XAML in WF is used to define and describe work-
flow objects. That’s a perfect use of the technology.

Hiding Documents During Workflow Processing
I flip-flop on this one. On the one hand, I would expect that keeping users from seeing docu-
ments until any workflows finish processing should be the default—especially for workflows
that start automatically when a document is created or modified. On the other hand, though,
I can easily think of situation where you would not want this to happen. So I guess Microsoft
took the right road by not making it the default. All we need now is a means to hide documents
when we have to.

Fortunately, it’s pretty easy. We take advantage of the security-trimming features of
SharePoint (which don’t show things that a user doesn’t have access to) and use those features
to hide our documents until we’re ready to show them.

First, we need to hide the documents. At the beginning of your workflow, add a Code activity
and add the code from Listing 9-22. This code will do two things:

• Stop the document from inheriting its permissions from its containing document
library—this automatically causes the current user to be assigned as an administrator
on the document.

• Assign the specific approvers as administrators (or whatever access level you need to
give them) to the per-item permission set for the current document.

Mann_700-1C09.fm Page 357 Friday, January 19, 2007 8:44 AM

358 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Listing 9-22. Hiding Documents from Users Not Involved in the Workflow

SPListItem item = this.workflowProperties.Item;
item.BreakRoleInheritance(false);

SPUser user = this.workflowProperties.Web.CurrentUser;
SPRoleAssignment assignment = new SPRoleAssignment(user);
SPRoleDefinitionBindingCollection binding = new ➥

SPRoleDefinitionBindingCollection();
binding.Add(workflowProperties.Web.RoleDefinitions.GetByType➥

(SPRoleType.Administrator));
assignment.ImportRoleDefinitionBindings(binding);
item.RoleAssignments.Add(assignment);

//repeat code similar to the following for each user involved in your workflow.
SPRoleAssignment assignment2 = new SPRoleAssignment➥

(@"KCDHoldings\User1", "user1@kcdholdings.com", "User1", "");
SPRoleDefinitionBindingCollection binding2 = new ➥

SPRoleDefinitionBindingCollection();
binding2.Add(workflowProperties.Web.RoleDefinitions.GetByType➥

(SPRoleType.Contributor));
assignment2.ImportRoleDefinitionBindings(binding2);
item.RoleAssignments.Add(assignment2);

In Listing 9-22 we break the permission inheritance and then add specific permissions for
two users—the current user and then the ever-present “User1.” In your workflow, you would
likely want to add permissions for every user who will play a role in your workflow. You can get
this list of users easily from the Contact Selector (or People Editor) control—see the information
earlier in this chapter. Notice that you can specify different permissions for each user added to
the permission set—we gave the current user administrative access but User1 contributor access.

The last thing we need to do is reset the permissions once the workflow is done so that it is
again available according to the permissions of its containing document library. Two lines of
code will take care of this for us. Add another Code activity to the end of your workflow and add
the code from Listing 9-23 to it.

Listing 9-23. Granting Access to the Document Again

SPListItem item = this.workflowProperties.Item;
item.ResetRoleInheritance();

Bang. Done. By setting the per-item permissions for the document, we have hidden it from
users who are not involved in the workflow. Once we reset those permissions to inherit from
the document library, the document automagically appears for all users who should have
access.

Before you say anything, yes, the Approval default workflow does exactly this for you if you
choose—as shown in Figure 9-14, which was taken from the association form for the Approval
workflow. One drawback, however, is that it requires content approval be turned on in the
document library. Our code will work regardless of the content approval setting on the list
or document library.

Mann_700-1C09.fm Page 358 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 359

Figure 9-14. The default Approval setting allows you to hide documents until they are approved,
but it requires content approval be turned on in the document library.

Custom Conditions and Actions for SPD
Way back in Chapter 5, we wrote a custom activity that removes macros from Office 2007 docu-
ments. In Chapter 6 we made use of that activity in our workflow. The workflow we created was
done in Visual Studio and we could easily add the custom activity to the toolbar. But what
about workflows created using the SharePoint Designer? Wouldn’t it be nice if we could add
custom actions and conditions to meet our business needs?

Fortunately, you can—easily.

Custom Actions
We’ll start with a custom action. There’s not a lot to this, beyond writing a custom activity—
which we covered in Chapter 5. There are a few things to keep in mind. I’ll blow through most
of the activity stuff pretty quickly here and focus instead on the things that are specific to custom
actions. The custom activity we’re going to build here will allow workflow builders using the
SharePoint Designer to determine a working date (Monday through Friday) a certain period of
time from the date the action runs. It is similar to the default Add Time to Date action that ships
with the SharePoint Designer, but goes one step further by returning the nearest working day.

To begin with, create a new activity, derived from SequenceActivity. If you’re following
along at home, for my sample, I called my namespace WorkDayDate and my class is called
GetWorkDayDate. Add three dependency properties using the Workflow Code Snippet:

• WorkingDayDate: type = DateTime

• AddValue: type = int

• Unit: type = string

■Note The dependency properties are the secret sauce here. They’re what make the whole thing work by
making our properties available outside our activity. If you read a lot of the Microsoft documentation, they will
often call these promoted properties.

Just like any other activity, this one needs an Execute method. The code I used for mine is
shown in Listing 9-24.

Mann_700-1C09.fm Page 359 Friday, January 19, 2007 8:44 AM

360 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Listing 9-24. Calculating a Valid Working Day for Our Custom Action

protected override ActivityExecutionStatus Execute(ActivityExecutionContext ➥

executionContext)
{
 DateTime dt = DateTime.Now;
 switch (this.Unit)
 {
 case "days":
 dt = dt.AddDays(this.AddValue);
 break;
 case "months":
 dt = dt.AddMonths(this.AddValue);
 break;
 case "years":
 dt = dt.AddYears(this.AddValue);
 break;
 default:
 break;
 }
 if (dt.DayOfWeek == DayOfWeek.Saturday)
 {
 WorkingDayDate = dt.AddDays(-1);
 }
 if (dt.DayOfWeek == DayOfWeek.Sunday)
 {
 WorkingDayDate = dt.AddDays(+1);
 }
 return ActivityExecutionStatus.Closed;
 }

All this code does is add the appropriate number of days/weeks/months to Now (whenever
the activity executes) and then modifies the result to be a weekday. In a real production system,
you’d need to worry about holidays, too. It’s nothing fancy, but it makes the Kessel run in less
than 12 parsecs, so we’ll just go with it. Strong-name your assembly, compile it, add it to the
GAC, and it’s time to move on.

Now we can get down to the details of making this activity into an action. There are only
five steps to this:

1. Open the web.config file for your virtual server.

2. Add the assembly to the authorizedTypes list (down near the bottom of the web.config):
<authorizedType Assembly="WorkDayDate, Version=1.0.0.0, Culture=neutral,
PublicKeyToken=16837ed8463a28fd" Namespace="WorkDayDate" TypeName="*"
Authorized="True" />. Except for the last attribute being Authorized instead of Safe,
this entry is identical to the SafeControls entry we use for web parts.

3. Save and close the web.config file.

Mann_700-1C09.fm Page 360 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 361

4. Create a new file named WorkDayDate.actions in the \Program Files\Common Files\
Microsoft Shared\web server extensions\12\TEMPLATE\1033\Workflow folder and
paste the code from Listing 9-25 into it. This code sets up our activity to be accessible
in SPD and configures how it is displayed to developers. Most of Listing 9-25 is pretty
straightforward. Microsoft provides a lot of functionality for us in the form of the default
Designer types for our actions and some other interesting tidbits. See the sidebar “Action
Heroes” for more information.

5. Reset IIS.

Listing 9-25. The Contents of Our Custom WorkDayDate.actions File

<?xml version="1.0" encoding="utf-8" ?>
<WorkflowInfo Language="en-us">
 <Actions Sequential="then" Parallel="and">
 <Action Name="Get Working Day Due Date" ➥

 ClassName="AWLookup.GetWorkDayDueDate" ➥

 Assembly="AWLookup, Version=1.0.0.0, ➥

 Culture=neutral, PublicKeyToken=16837ed8463a28fd" ➥

 AppliesTo="all" Category="Custom" >
 <RuleDesigner Sentence="Get Nearest Working Day %1 %2 ➥

 from current date (store in %3)">
 <FieldBind Field="Span" DesignerType="Integer" Text="number"➥

 Id="1"/>
 <FieldBind Id="2" Field="SpanType" DesignerType="Operator" ➥

 OperatorTypeFrom="DropDownMenu" Text="timeframe">
 <Option Name="days" Value="days" />
 <Option Name="months" Value="months" />
 <Option Name="years" Value="years" />
 </FieldBind>
 <FieldBind Field="WorkingDayDueDate" Text="WorkingDayDueDate"➥

 Id="3" DesignerType="parameterNames" />
 </RuleDesigner>
 <Parameters>
 <Parameter Name="Span" Type="System.Double, ➥

 mscorlib" Direction="In" />
 <Parameter Name="SpanType" Type="System.String, ➥

 mscorlib" Direction="In" InitialValue="days" />
 <Parameter Name="WorkingDayDueDate" ➥

 Type="System.DateTime, mscorlib" Direction="Out" />
 </Parameters>
 </Action>
 </Actions>
</WorkflowInfo>

Mission accomplished. Launch the SharePoint Designer and create a new workflow. Our
WorkDayDate action will be available on the Custom Actions list. Add it to your workflow and
you’ll see the fruits of your labor in action—as shown in Figure 9-15.

Mann_700-1C09.fm Page 361 Friday, January 19, 2007 8:44 AM

362 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Figure 9-15. Our custom action in the SharePoint Designer

ACTION HEROES

The functionality available to us to customize and support our custom actions is pretty good. Microsoft allows
us to specify

• What type of SharePoint entity our action can be used against via the AppliesTo attribute of the
Action tag. Valid values are doclib, list, or all.

• Whether the parameter is supplying data to the action or receiving data from the action via the Direction
attribute of the Parameter tag. A value of In indicates that the information is passed from the work-
flow to the activity assembly. A value of Out, then, indicates the reverse—the workflow receives the
value from the action assembly. A third option, Optional, specifies that the In parameter is not required.

• The category that our custom action will be displayed in within SharePoint Designer via the Category
attribute of the Action tag.

• We can set an initial value for a given parameter by adding the InitialValue attribute on the Parameter
tag and supplying a value.

• There are a number of options available to us via the DesignerType attribute of the FieldBind tag
to customize the interface presented to the workflow builder to allow them to enter values:

• FieldNames: Retrieves the column names from the list the workflow is attached to.

• Date: Presents a calendar to select a date.

• Person: Presents an interface to allow you to select one or more people from the SharePoint site containing
the list, the email address book, a workflow lookup, or the user who created the workflow payload.

• Integer: Limits input to a number value.

• Email: Presents an interface to supply typical email fields.

• Survey: Presents an interface that allows our action to launch the Custom Task tool.

• SinglePerson: Similar to Person, but limits choice to only one user.

• ParameterNames: Presents an interface that shows existing variables in a drop-down, and also an
option for creating a new variable.

• WritableFieldNames: Shows a drop-down similar to fieldNames, but choices are limited to only
those fields to which the workflow builder can write new values.

• UpdateListItem: Presents an interface allowing the workflow builder to commit changes to a list item.

Mann_700-1C09.fm Page 362 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 363

• CreateListItem: Presents an interface allowing the workflow builder to create a new item in a
specified list.

• ChooseListItem: Presents a drop-down list of all lists on the site in a pop-up box. Once a list is
selected, the interface to choose a specific list item is presented.

• ListNames: Presents a drop-down of all lists on the site.

• ChooseDoclibItem: Similar to ChooseListItem, except limited to only document libraries.

• TextArea: Presents an interface in which the workflow builder can type free text.

• StringBuilder: Presents an interface that allows the workflow builder to enter a larger amount of
textual content and then stores that content in a variable.

• Dropdown: Allows you to present a list of choices to the workflow builder.

Finally, there are a few specialty parameters that you can make use of to pass information into your assembly:

• A parameter of <Parameter Name="__Context" Type="Microsoft.SharePoint.
WorkflowActions.WorkflowContext, Microsoft.SharePoint.WorkflowActions" />
will allow your assembly to access the current context of the workflow instance.

• A parameter of <Parameter Name="__ListId" Type="System.String, mscorlib"
Direction="In" /> will pass the GUID of the current list in to your assembly.

• A parameter of <Parameter Name="__ListItem" Type="System.Int32, mscorlib"
Direction="In" /> will pass the integer ID of the current item within its parent list.

Custom Conditions
A condition is used to determine which steps of our workflow will execute. As we discussed in
Chapter 4, the SharePoint Designer ships with a number of default conditions that will be suffi-
cient in many situations. However, we can add our own if the defaults do not fit the bill.

Adding a custom condition is pretty much as easy as the custom action. A custom condition is
simply a class that contains one or more public, static methods. There is nothing that would
stop the class from containing other things as well, like, perhaps, our custom action that we
just created. The static method called by the SharePoint Designer to evaluate our condition
must return a Boolean value. In order to demonstrate this functionality, we can either create a
new class library or simply add the static method to our custom action assembly. The benefit
to this latter option right now is that part of our configuration will then already be done—the
entry in the web.config file will be exactly the same as what we entered for the custom action.
In the interest of time, I am going to choose the latter route and add my condition method to
my custom action assembly.

The entire contents of my condition method are shown in Listing 9-26. Obviously this is
extremely simple—I always return true. In your custom condition, you can perform whatever
actions you need to in order to determine your return value. Calling web services, instantiating
and using other objects, interacting with the SharePoint object model—these are all fair game
for your condition.

Mann_700-1C09.fm Page 363 Friday, January 19, 2007 8:44 AM

364 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Listing 9-26. A Simple Condition Method but Complete Nonetheless

public static bool ReturnTrue()
{
 return true;
}

■Caution A condition is nothing more than a method that returns a Boolean value, but it must be declared
as static because the class will not be instantiated—the method will be called directly.

As before, we need to register our condition assembly as an authorizedType in our
web.config. The entry for this will follow exactly the same model as the entry for our custom
action. We also need to register our condition with WSS. Again, we do this in a very similar
manner—adding more text to our .actions file. The options for parameters and fields are the
same as for the action, with one notable exception—any fields passed in to our method must
be declared parameters of the method we wrote. So, for example, if we wanted to pass in the
name of the current user, we would need to code our condition method to accept a string
parameter. This makes a certain amount of sense—if we’re going to declare a parameter, our
method is going to have to be able to accept it.

My sample code for the .actions file is shown in Listing 9-27. This code would go right
above the opening <Actions> element but below the <WorkflowInfo> element. The end result is
shown in Figure 9-16.

Listing 9-27. Adding a Custom Condition to the .actions File

<Conditions>
 <Condition Name="AlwaysTrue"
 FunctionName="ReturnTrue"
 ClassName="WorkDayDate.GetWorkDayDate"
 Assembly="WorkDayDate, Version=1.0.0.0, Culture=neutral, ➥

 PublicKeyToken=16837ed8463a28fd"
 AppliesTo="list"
 UsesCurrentItem="true">
 <RuleDesigner Sentence="True">
 </RuleDesigner>
 <Parameters>
 </Parameters>
 </Condition>
</Conditions>

Figure 9-16. Our custom condition in SPD. This step will always execute.

Mann_700-1C09.fm Page 364 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 365

Activity Verbs
Activity verbs are the options that show up on the context menu when we right-click on the
activity inside the Workflow Designer of Visual Studio. The default context menu contains a
number of useful elements. Figure 9-17 shows a few samples of these context menus. You can
see that the menu options are different, depending on which type of activity they are attached
to. From left to right, the activities are Sequence, Parallel, and Code. The options on each menu
are a combination of standard items from the root ActivityDesigner type; others are added to a
specific subtype, for example, CompositeActivityDesigner or ParallelActivityDesigner.

Figure 9-17. Context menus from three different activities—each with common options and
options specific to that activity

Wouldn’t it be nice if we could add our own options for our custom activity? As you’ve
probably guessed, we can, and it’s easy. As alluded to earlier, the custom verbs are added via
the activity’s Designer class, which we covered in detail back in Chapter 5.

I’ll walk through a sample here to add a Help verb to the context menu of the MacroStripper
custom activity we built back in Chapter 5. When selected, it will display a simple message box
with information that will be handy to people using our activity.

The first thing we need to do is add the item to the context menu. The System.Workflow.
ComponentModel.Design namespace contains a class called ActivityDesignerVerb, which is
what we need to work with. We need to create a new instance of this class, set a few properties,
and then add it to the Designer class’s Verbs collection (stored in the Verbs property).

Before we can do that we’ll need to create a global variable in our Designer class that will
store our new ActivityDesignerVerb: ActivityDesignerVerb helpVerb; will do the trick.

Now we can actually create the ActivityDesignerVerb object and add it to the Verbs collec-
tion. The perfect place to do this is in the Initialize method, which we’ve already overridden
in the MacroStripper activity we created in Chapter 5. The code in Listing 9-28 shows the full
method. The parameters of the Add method are pretty straightforward, except perhaps the

Mann_700-1C09.fm Page 365 Friday, January 19, 2007 8:44 AM

366 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

second one—the DesignerVerbGroup. All this does is specify where in the context menu our
new item is added. The options are Actions, Edit, General, Misc, Options, or View. Again, they
just determine where on the menu we are placed.

Listing 9-28. Creating and Adding Our New Verb to the Context Menu

protected override void Initialize(Activity activity)
{
 helpVerb = new ActivityDesignerVerb(this, DesignerVerbGroup.Edit, ➥

"Help", new EventHandler(ShowHelpHandler));
 Verbs.Add(helpVerb);
}

With our new verb added to the menu, the only thing left to do is to write the handler that
is referenced in Listing 9-28. The code you add to this method will obviously do whatever it is
you need your verb to do. In our case, that is just displaying a message box. The only thing even
marginally tricky about this is the method signature itself: private void ShowHelpHandler
(object sender, EventArgs e). From there, add whatever code you need to within that event
handler.

Build your project, add or update the GAC as necessary, reset IIS if you updated the GAC,
and then create a new workflow project to try it out. If today is your lucky day, you’ll end up
with something similar to Figure 9-18.

Figure 9-18. Our custom verb in action

■Tip The Designer class is only reloaded after you shut down and relaunch Visual Studio. Even just closing
your solution and reopening it won’t do the trick. It’s frustrating, but not too hard to work around.

If your verb is dependent on a property of the underlying activity—for example, if it should
only be enabled when the activity is enabled—you can override the OnActivityChanged event
and add some code similar to Listing 9-29.

Mann_700-1C09.fm Page 366 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 367

Listing 9-29. Keeping Our Verb in Synch with the Underlying Activity

protected override void OnActivityChanged(ActivityChangedEventArgs e)
{
 base.OnActivityChanged(e);
 customVerbObject.Enabled = this.Activity.Enabled;
}

This example was pretty basic, but it covered all of the important parts. To create other
verbs, all you would need to do is to change the text displayed on the context menu and change
the code executed in the custom handler to do whatever you need it to do. Here are a few ideas
that come immediately to my mind for how you could use this functionality:

• For a composite activity, the ability to set properties on all of its children could conceivably
be of use.

• If your activity is particularly complex, or contains a property that is dependent on external
values, you could launch a wizard from your verb to walk the workflow builder through
your configuration.

• Programmatically add child activities to a custom composite activity.

Overall, it is likely that you won’t use activity verbs too often. Just remember that they are
a weapon in your arsenal and use them when it would be appropriate.

Workflow Reports
Workflow reports in SharePoint are a bit light (hmmm…I wonder if they give Nobel Prizes for
understatements?). Other than some usefulness during debugging, or other troubleshooting,
they’re not very useful. Let’s take a look and then you can decide for yourself.

Using a document library as an example (lists work the same way), you get to the Workflow
Reports page through Document Library Settings. From there, click the Workflow Settings link
under the Permissions and Management heading. The Workflow Settings page gives you three
choices; we’re naturally interested here in the View Workflow Reports link, so go ahead and
click it.

The next screen, shown in Figure 9-19, shows the two reports available to us for each workflow
that has an association with our document library. The two reports available are the Activity
Duration Report and the Cancellation & Error Report. I’d show you examples except that I just
can’t bring myself to do it; it’s too painful. Take a look for yourself and you’ll see what I mean.

I have to tell you. There is absolutely nothing I like more than looking at a report that has
wonderfully sexy GUIDs in the first three columns and ends with a three-mile-wide column of
raw XML; if that doesn’t make you sit up and pay attention, I don’t know what will.

Seriously, though, I understand that this is just raw data. I know that it is XML (even though it
is targeted at Excel). I know that I can transform it any way I need to, or else dump it into a SQL
database and report against it from there. I know all of that. My comment then is then, don’t
call them reports. Perhaps I’m splitting hairs—perhaps it is just a matter of semantics—but by
calling something a report you set a certain expectation level, and this just doesn’t meet it.

Mann_700-1C09.fm Page 367 Friday, January 19, 2007 8:44 AM

368 C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D

Figure 9-19. The Workflow Reports screen

So, take a look. One thing you can’t say is that there isn’t enough information here. Like I
said, though, other than some use in debugging or other troubleshooting, I don’t see that these
reports provide much value.

Sorry.

Odds and Sods
Here are a handful of things important to know that didn’t fit in anywhere else:

• This may be common sense, but the Onxxx activities that ship with SharePoint are not
global listeners. They can only respond to events triggered by other SharePoint activities. So,
for example, placing an OnTaskCreated activity in your workflow will not cause the activity
to fire when any task is created. It only fires when a task is created by a CreateTask
activity. Furthermore, it will only fire if the CreateTask activity and the OnTaskCreated
activity have the same CorrelationToken. For information on CorrelationTokens, see
Chapter 6.

• A potential problem that I expect a lot of people to trip over is an issue of documents
being checked out (either manually by a user or by another workflow process) when the
workflow attempts to update them. In this case, the workflow will throw an exception
that you will need to handle. Imagine this scenario: a parallel workflow assigns tasks to
two different people. One of the people opens the payload document and checks it out.
The other person merely opens the document for viewing. The second person reviews
the document and marks their task as complete. If the workflow process attempts to
write any values back to the document library item (for example to update a column)
while the first person still has the document checked out, the workflow will fail unless
you explicitly check to see whether the document is checked out before you attempt to
update it. So, the take-away from this is to check whether you can write to an item before
you attempt to do so. Also, before you do write back to a list, check the item out.

Mann_700-1C09.fm Page 368 Friday, January 19, 2007 8:44 AM

C H A P T E R 9 ■ A W O R K F L O W S M O R G A S B O R D 369

■Note This may seem somewhat farfetched until you think about the fact that a list or document library can
have more than one workflow flagged to start automatically when an item is created or modified. That increases
the chances of things tripping over each other. Also, toss in the fact that human workflows are inherently
long-running processes and the possibilities increase even further. My advice is just to keep it in mind and
use good defensive programming techniques to mitigate the risk.

• Another potential land mine is related to task properties. We previously looked at
various incarnations of task property objects—for example, the TaskProperties and
BeforeProperties or AfterProperties properties of the various task activities. Keep in
mind that these are only snapshots in time. They do not synchronize with the underlying
task.

Summary
We’ve covered lots of ground in this chapter—too much to try to recap here at the end. If you’ve
read this chapter you likely hit upon one or two things that were of value. I hope the rest at least
made you think about your workflows differently.

The only thing left at this point is to point you at the object model for Workflow. Looking
at that should round out the picture of what is possible. We’re going to take a look at the object
model in the next chapter.

Mann_700-1C09.fm Page 369 Friday, January 19, 2007 8:44 AM

Mann_700-1C09.fm Page 370 Friday, January 19, 2007 8:44 AM

371

■ ■ ■

C H A P T E R 1 0

The Workflow Object Model

Well, here we are at Chapter 10. I said in Chapter 2 that if you felt a pathological need to skip
a chapter it should be that one. For Chapter 10, I’ll say that if you ever have insomnia and are
looking for some dry reading material to put you fast asleep, you should pick up this chapter.
Let’s face it, a bunch of object descriptions isn’t exactly best-seller material. It’s reference
material, folks; necessary, like a dictionary, but not Stephen King.

The first thing we need to understand about the Workflow Object Model is why we would
ever use it. Chances are, you won’t need to directly manipulate your workflow environment too
often. However, when you do, your only option will be the Object Model. Specifically what
you’ll be looking to do will depend on your situation, but here are some likely candidates for
direct Object Model manipulation:

• Manipulating workflows and tasks from an external application

• Customizing data extraction for reporting or other purposes

• Writing advanced workflows to manipulate workflow aspects of the SharePoint system,
including perhaps modifying one workflow as a result of another

My advice would be not to try to read this chapter straight through. I’ve found that the best
way to learn a new object model is to peruse the classes several times. Try first to get a feel for
what is possible—don’t get bogged down in all of the details. Skim through the chapter—look
at the classes and some of the properties or methods. Once you know what is possible, Intel-
liSense or a quick MSDN search (or even a quick run back to this chapter) can fill in the details
you need for implementation. As you use the Object Model more and more, you’ll become
familiar with the aspects that you use all of the time. Make subsequent passes through this
chapter periodically as you work more and more with Workflow. Various bits and pieces will
start to make more sense once you have a broader base of experience.

Primary Objects
Everything begins with the Microsoft.Sharepoint.Workflow namespace. This is the primary
namespace containing all of our objects and is part of Microsoft.Sharepoint.dll. I’m not
going to pad out the book by listing each and every object, interface, and enumeration in the
namespace and then each and every property and method within each object. I’ll just cover the
main ones that you are more likely to use. If you need information on one of the remaining
elements, you can fire up the Object Browser in Visual Studio or peruse the SDK.

Mann_700-1C10.fm Page 371 Thursday, January 18, 2007 9:00 AM

372 C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L

■Note I likely can’t say this enough: this chapter does not contain every member of every class. I cover the
highlights—the stuff you are more likely to use. For a deep-dive into all methods, properties, enumerations,
and so forth for each and every class, see the SDK reference material.

SPWorkflow
This class represents a workflow instance. It could be an instance that is currently running or
one that completed running (either successfully or resulting in some type of error). The prop-
erties and methods of the class give you access to information about the instance as well as the
ability to manipulate the instance. Table 10-1 lists the important properties of this class.

Table 10-1. Properties of the SPWorkflow Class

Property Data Type Description

HistoryList SPList Read-only. Returns the SPList object
that contains the history entries for
this workflow instance. There is also a
similar HistoryListId property that
returns the GUID for the history list
that is also read-only.

InstanceId GUID Read-only. Returns the unique
identifier for this workflow instance.

InternalState SPWorkflowState Read-only. Returns the current state
of the workflow instance. See the
SPWorkflowState object for details on
this enumeration.

IsCompleted bool Read-only. Returns an indicator as to
whether the workflow instance has
finished processing. You could also
get this information from the
InternalState property, although this
property returns true for any
InternalState value that indicates
the workflow is no longer running,
i.e., Cancelled, Completed, Expired,
FatalError, Orphaned, or Terminated.

IsLocked bool Read-only. Returns an indicator as to
whether this workflow instance is
locked. You could also get this infor-
mation by interrogating the
InternalState property and looking for
a value of SPWorkflowState.Locked.

ItemGuid GUID Read-only. Returns the unique
identifier for the SPListitem or SPWeb
to which this instance is attached.

Mann_700-1C10.fm Page 372 Thursday, January 18, 2007 9:00 AM

C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L 373

There are also a few methods, but only one that you will likely use from the SPWorkflow
class. It is described in Table 10-2.

ListId GUID Read-only. Returns the unique
identifier for the SPList to which this
instance is attached.

ParentAssociation SPWorkflowAssociation Read-only. Holds a reference to the
SPWorkflow association object for
this instance. Provides access to all
of the information related to the
association between this workflow
and its parent list.

ParentItem SPListItem Read-only. Returns an SPListItem
object that is the item that this instance
of the workflow is attached to.

ParentList SPList Read-only. Returns an SPList object
that is the list this workflow instance
is associated with.

ParentWeb SPWeb Read-only. Returns an SPWeb object
that is the SPWeb that this workflow
instance is executing within.

SiteId GUID Read-only. Returns a unique identifier
for the site collection that this workflow
instance is executing within.

TaskList SPList Read-only. Returns the SPList object
that contains the task entries for this
workflow instance. There is also a
similar TaskListId property that
returns the GUID for the task list
that is also read-only.

Tasks SPWorkflowTaskCollection Read-only. Returns an object that
contains the collection of tasks asso-
ciated with this workflow instance.

WebId GUID Read-only. Returns a unique identifier
for the web that this workflow instance
is executing within.

Table 10-2. The Useful Method from the SPWorkflow Class

Method Name Description

CreateHistoryEvent Allows you to programmatically write entries to the history list for this
instance. You can specify an event ID, the history outcome, a description,
and various other elements in the parameters.

Table 10-1. Properties of the SPWorkflow Class

Property Data Type Description

Mann_700-1C10.fm Page 373 Thursday, January 18, 2007 9:00 AM

374 C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L

Sample Code

To see this object in action, take a look at Listing 10-1. It contains code that could be placed
inside a workflow to log some pertinent details about the workflow to its own history list.

Listing 10-1. Working with SPWorkflow Properties in C#

//"workflowProperties" is an object of type SPWorkflowActivationProperties
SPWorkflow spw = new SPWorkflow(workflowProperties.Item, ➥

workflowProperties.WorkflowId);
StringBuilder sbLogInfo = new StringBuilder();
sbLogInfo.AppendFormat("Date Created: {0}", spw.Created.ToLongDateString());
sbLogInfo.AppendFormat("Instance ID: {0}", spw.InstanceId.ToString());
sbLogInfo.AppendFormat("Payload Item ID: {0}", spw.ItemGuid.ToString());
sbLogInfo.AppendFormat("List ID: {0}", spw.ListId.ToString());
sbLogInfo.AppendFormat("Web ID: {0}", spw.WebId);
spw.CreateHistoryEvent(0, null,workflowProperties.OriginatorUser, ➥

"Workflow Information", sbLogInfo.ToString(), string.Empty);

SPWorkflowCollection
This class represents… drum roll please… a collection of SPWorkflow objects. Go figure. There
are two ways to instantiate an SPWorkflowCollection object:

• By accessing the Workflows property of an SPListItem object. This property returns an
SPWorkflowCollection object containing all workflows for the particular list item.

• By creating a new collection and passing in parameters to specify which workflows
you want.

There is no way to filter the first method—you just get all of the workflows that have run or
are running on the SPListItem. The second method has four overrides that allow you to specify
different content for the resulting SPWorkflowCollection:

• public SPWorkflowCollection (SPList list): Specifying an SPList as the parameter will
return a collection of all workflows associated with that list.

• public SPWorkflowCollection (SPListItem item): Specifying an SPListItem as the parameter
will return all of the workflows that have run or are running on the SPListItem.

• public SPWorkflowCollection (SPList list, Guid associationId): Specifying an SPList
and a GUID for the particular association that you are interested in will return a collection of
all workflow instances based on that association within the specified list.

• public SPWorkflowCollection (SPListItem item, SPWorkflowState inclusiveFilterStates,
SPWorkflowState exclusiveFilterStates): This final override allows you to specify the
particular list item to retrieve workflows from as well as a set of filters to narrow down
the workflows returned based on the SPWorkflowState specified as either included or
excluded. For more information on filters, please see the SPWorkflowFilter class later in
this chapter.

Mann_700-1C10.fm Page 374 Thursday, January 18, 2007 9:00 AM

C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L 375

Once you have created or retrieved your SPWorkflowCollection object, there are a number
of properties and one method that you can use. The major properties are described in Table 10-3
and the method is described in Table 10-4.

Sample Code

The code shown in Listing 10-2 shows an example of working with the SPWorkflowCollection
class. It grabs all of the workflow instances currently running on the SPListItem object repre-
sented by <List_Item_Object>, and iterates through them.

Listing 10-2. Working with SPWorkflowCollection in C#

SPWorkflowCollection spc = new ➥

SPWorkflowCollection(<List_Item_Object>,SPWorkflowState.Running,➥

SPWorkflowState.None);
for (int i=0;i<spc.Count;i++)
{
 SPWorkflow spw = spc[i];
 // do something with workflow instance
}

SPWorkflowFilter
The SPWorkflowFilter class allows you to limit the workflows returned as part of a collection
based on certain criteria. By itself, it does very little, but used as a parameter to various other
class methods it allows for fine-tuning of the returned results. There are no useful methods in
this class and only three properties, as detailed in Table 10-5.

Table 10-3. The Major Properties of the SPWorkflowCollection Class

Property Data Type Description

Count int Returns the total number of items in the collection

Item[int] SPWorkflow Returns the SPWorkflow object at the specified
integer position from the collection

Item[GUID] SPWorkflow Returns the SPWorkflow object with the specified
unique identifier from the collection

Table 10-4. Major Method of the SPWorkflowCollection Class

Method Name Parameters Description

GetInstanceIds None Returns a collection of the unique identifiers for each
SPWorkflow object in the collection

Mann_700-1C10.fm Page 375 Thursday, January 18, 2007 9:00 AM

376 C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L

Sample Code

Listing 10-3 is adapted from the web service we wrote in Chapter 9 to integrate Office 2003 with
our Office 2007 workflows. It creates a workflow filter, applies it to a workflow instance, and
then iterates through the filtered task collection.

Listing 10-3. Filtering Tasks

SPWorkflowFilter fltr = new SPWorkflowFilter();
fltr.InclusiveFilterStates = SPWorkflowState.Running;
fltr.ExclusiveFilterStates = SPWorkflowState.None;
for (int i = 0; i < item.Workflows.Count; i++)
{
 SPWorkflow wf = item.Workflows[i];
 if (!wf.IsCompleted)
 {
 wf.TaskFilter = fltr;
 for (int j = 0; j < wf.Tasks.Count; j++)
 {
 //do something with each task in the collection
 }
 }
}

SPWorkflowActivationProperties
This class is another one that does not have any useful methods. The properties, however, are
quite useful (see Table 10-6). In general, this class provides access to information about the
state of a workflow when it is activated, or started, upon a particular list item.

Table 10-5. Useful Properties from the SPWorkflowFilter Class

Property Data Type Description

AssignedTo SPWorkflowAssignedToFilter Useful for filtering tasks by
the person or group they
are assigned to. Values for
this enumeration are
CurrentUserandGroups,
meaning the filter encompasses
the current user and any appli-
cable groups they belong to),
or None, which means the filter
does not restrict based on user.

InclusiveFilterStates SPWorkflowState Specifies which
SPWorkflowStates to allow
through the filter.

ExclusiveFilterStates SPWorkflowState Specifies which
SPWorkflowStates to block.

Mann_700-1C10.fm Page 376 Thursday, January 18, 2007 9:00 AM

C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L 377

It is possible that you haven’t realized this, but we have seen this class in action multiple
times throughout the book—the workflowProperties object we’ve been using frequently is of
type SPWorkflowActivationProperties.

Table 10-6. Properties of the SPWorkflowActivationProperties Class

Property Data Type Description

AssociationData string Read-only. Stores the serialized data from the workflow’s
association form as an XML string.

HistoryList SPList Read-only. Returns an SPList object that represents the
history list associated with this instance of the workflow.

HistoryListId GUID Read-only. Returns the unique identifier of the history
list associated with this instance of the workflow.

HistoryListUrl string Read-only. Returns the fully qualified URL of the history
list associated with this instance of the workflow.

InitiationData string Read-only. Stores the serialized data from the
workflow’s initiation form as an XML string.

Item SPListItem Read-only. Returns an SPListItem object that represents
the item this instance of the workflow is running on.

ItemId int Read-only. Returns an integer that represents the
payload item within its parent list’s Items collection.

ItemUrl string Read-only. Returns the fully qualified URL for the list
item this instance of the workflow is running on.

List SPList Read-only. Returns an SPList object representing the
list that contains the item that this instance of the
workflow is running on.

ListId GUID Read-only. Returns the unique identifier for the list that
contains the item that this instance of the workflow is
running on.

ListUrl string Read-only. Returns the fully qualified URL for the list
that contains the item that this instance of the workflow
is running on.

Originator string Read-only. Returns the name of the user who initiated
this instance of the workflow.

OriginatorEmail string Read-only. Returns the email address of the user who
initiated this instance of the workflow.

Site SPSite Read-only. Returns an SPSite object that represents the
site collection that contains the item that this instance
of the workflow is running on.

SiteId GUID Read-only. Returns the unique identifier for the site
collection that contains the item that this instance of
the workflow is running on.

SiteUrl string Read-only. Returns the fully qualified URL for the site
collection that contains the item that this instance of
the workflow is running on.

Mann_700-1C10.fm Page 377 Thursday, January 18, 2007 9:00 AM

378 C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L

Sample Code

An example of using the properties of this object is shown in Listing 10-4. It simply sets the To
address of a SendEMailActivity object to the email address of the person who kicked off the
workflow.

Listing 10-4. Working with SPWorkflowActivationProperties in C#

sendEmailActivity1.To = this.workflowProperties.OriginatorEmail;

SPWorkflowAssociation
The SPWorkflowAssociation class provides access to information and functionality related to
the association between a workflow template and a particular list or content type. Table 10-7
provides details on the more useful methods of this class.

TaskList SPList Read-only. Returns an SPList object that represents the
task list associated with this instance of the workflow.

TaskListId GUID Read-only. Returns the unique identifier of the task list
associated with this instance of the workflow.

TaskListUrl string Read-only. Returns the fully qualified URL of the task
list associated with this instance of the workflow.

TemplateName string Read-only. Returns the name of the workflow template
on which the current instance is based.

Web SPWeb Read-only. Returns an SPWeb object that represents the
web that contains the item that this instance of the
workflow is running on.

WebId GUID Read-only. Returns the unique identifier for the web
that contains the item that this instance of the workflow
is running on.

WebUrl string Read-only. Returns the fully qualified URL for the web
that contains the item that this instance of the workflow
is running on.

Workflow SPWorkflow Read-only. Returns an SPWorkflow object that represents
the current workflow instance to which this object
belongs.

WorkflowId GUID Read-only. Returns the unique identifier for the current
instance of the workflow.

Table 10-6. Properties of the SPWorkflowActivationProperties Class (Continued)

Property Data Type Description

Mann_700-1C10.fm Page 378 Thursday, January 18, 2007 9:00 AM

C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L 379

The SPWorkflowAssociation class has a multitude of properties to store the information
pertaining to a specific association. Table 10-8 lists the important properties likely to be used
by developers.

Table 10-7. Methods of the SPWorkflowAssociation Class

Method Return Type Description

SetHistoryList None This method allows you to specify which SharePoint list
will record the history entries for this workflow instance.

SetTaskList None This method allows you to specify which SharePoint list
will store the task entries for this workflow instance.

Table 10-8. Some Useful Properties of the SPWorkflowAssociation Class

Property Data Type Description

AllowManual bool Read/write. Indicates whether or not the
instance of the workflow can be started
manually by a user.

AssociationData string Stores the serialized data from the workflow’s
association form as an XML string.

AutoStartChange bool Read/write. Indicates whether or not the
workflow instance is automatically started
whenever the attached item is modified.

AutoStartCreate bool Read/write. Indicates whether or not the
workflow instance is automatically started
whenever a new item is created.

BaseTemplate SPWorkflowTemplate Read-only. Returns the template on which
the current association is based.

Created DateTime Read-only. Returns the date and time that
the association was created.

Description string Read/write. Contains a description of the
specific association instance.

HistoryListId GUID Read/write. Contains the unique identifier
for the list that stores the history entries for
this association.

HistoryListTitle string Stores the name of the history list for this
association.

Id GUID Read-only. Stores the unique identifier for
this association.

InstantiationUrl string Read-only. Returns the URL of the
association’s initiation form, as specified in
the workflow.xml file.

LockItem bool Read/write. Controls whether the association
is locked. Locked associations cannot have
any new instances started on them.

Mann_700-1C10.fm Page 379 Thursday, January 18, 2007 9:00 AM

380 C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L

Sample Code

Listing 10-5 shows how to programmatically set the association so that a user can start it
manually through the user interface and then save those changes. Note that <List> repre-
sents a valid SPList object, and this code assumes that a valid association GUID is passed
in on the QueryString.

ModificationUrl string Read-only. Returns the URL of the asso-
ciation’s modification form, as specified
in the workflow.xml file.

Modified DateTime Read-only. Returns the date and time that
the association was last changed.

Name string Read/write. Stores the name assigned to
this association.

ParentContentType SPContentType Read-only. Returns an SPContentType object
representing the content type this asso-
ciation is related to.

ParentList SPList Read-only. Returns an SPList object
representing the list this association is
connected to.

ParentSite SPSite Read-only. Returns an SPSite object repre-
senting the site collection that contains this
association.

ParentWeb SPWeb Read-only. Returns an SPWeb object repre-
senting the web that contains this association.

SiteId GUID Read-only. Returns the unique identifier of
the site that contains this association.

StatusUrl string Read-only. Stores the URL of the asso-
ciation’s status page, as specified in the
workflow.xml file.

TaskListId GUID Read/write. Contains the unique identifier
for the list that stores the task entries for this
association.

TaskListTitle string Read/write. Stores the name of the task list
for this association

WebId GUID Read-only. Returns the unique ID of the web
that contains this association.

Table 10-8. Some Useful Properties of the SPWorkflowAssociation Class (Continued)

Property Data Type Description

Mann_700-1C10.fm Page 380 Thursday, January 18, 2007 9:00 AM

C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L 381

Listing 10-5. Setting an Association to Allow Manual Startup

Guid g = new Guid(Request.QueryString["TemplateID"]);
SPWorkflowAssociation assoc = <List>.WorkflowAssociations[g];
if (assoc != null)
{
 assoc.AllowManual = true;
 <List>.UpdateWorkflowAssociation(assoc);
}

SPWorkflowManager
The SPWorkflowManager class is likely the second-most important class in the whole SharePoint
Workflow Object Model—coming in only behind the SPWorkflow class. As a developer, you’re
likely going to spend a fair amount of time in this class if you do any custom workflow program-
ming, beyond just creating activities and workflows in the Designer.

The SPWorkflowManager class does just what its name implies—it allows you to program-
matically manage workflows. Although there are only a handful of methods and properties
available in this class, they are all powerful. Table 10-9 shows the one property for this class and
Table 10-10 shows the useful methods.

Table 10-9. The Property Available in the SPWorkflowManager Class

Property Data Type Description

ShuttingDown bool Read-only. Returns a value to indicate whether or not the
Workflow Manager is shutting down.

Table 10-10. The Methods of the SPWorkflowManager Class

Method Return Type Description

CountWorkflowAssociations int This method will return the
number of associations a
specific SPWorkflowTemplate
has within an SPSite. You
specify the SPWorkflowTemplate
and the SPSite as parameters.

GetItemActiveWorkflows SPWorkflowCollection This method returns a col-
lection of the workflows that
are currently active for the list
item passed in as a parameter.

GetItemTasks SPWorkflowTaskCollection This method returns a col-
lection of the current tasks
for a list item specified as
a parameter.

GetItemWorkflows SPWorkflowCollection This method returns a col-
lection of all of the workflows
that are associated with the
specified list item.

Mann_700-1C10.fm Page 381 Thursday, January 18, 2007 9:00 AM

382 C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L

Sample Code

Listing 10-6 shows how to start a new workflow instance using the SPWorkflowManager object.
Each item in angle brackets (<SPSite>, <SPListItem>, etc.) represent valid object of each speci-
fied type. The last parameter, <string>, represents the serialized data from the initiation form.

Listing 10-6. Starting a New Workflow Instance

SPWorkflowmanager mngr = <SPSite>.WorkflowManager;
SPWorkflow myNewWorkflow = mngr.StartWorkflow(<SPListItem>, ➥

<SPWorkflowAssociation>, <string>);

SPWorkflowState
This enumeration is used to indicate the current condition of a given workflow. It is returned by
various properties and also used by the SPWorkflowFilter class to fine-tune the results returned
by a method. Table 10-11 shows the potential values of the SPWorkflowState enumeration.

GetWorkflowTasks SPWorkflowTaskCollection This method returns the tasks
associated with the specified
list item and workflow instance.

ModifyWorkflow void Allows you to update a
currently running workflow.

RemoveWorkflowFromListItem void This method disassociates a
workflow, specified as a para-
meter, from a list so that it is
no longer available to be started
on items within that list.

StartWorkflow SPWorkflow This method initiates a
workflow and returns a new
SPWorkflow object representing
the newly initiated instance.

Table 10-11. Values of the SPWorkflowState Enumeration

Value Description

All This state will never be returned by a property but is instead used to indicate
all possible states when setting a filter.

Cancelled Workflow has been canceled in one of three ways: manually by a user, pro-
grammatically, or due to a certain condition set within the workflow itself.

Completed Workflow has completed normal processing.

Expired Should never be returned from a property. Internal use only.

Expiring Should never be returned from a property. Internal use only.

Table 10-10. The Methods of the SPWorkflowManager Class (Continued)

Method Return Type Description

Mann_700-1C10.fm Page 382 Thursday, January 18, 2007 9:00 AM

C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L 383

Examples of this enumeration being used in code are provided in various places throughout
the samples in this chapter.

SPWorkflowTask
SPWorkflowTask is a very thin wrapper around the SPListItem. It adds a handful of pieces of new
functionality to make it “workflow-ready.” As the name implies, SPWorkflowTask is a represen-
tation of a workflow task that has been or will be assigned to a participant. Table 10-12 lists the
two useful methods for this object, and Table 10-13 lists the two new properties.

Faulting Workflow has encountered an error.

HasNewEvents Should never be returned from a property. Internal use only.

Locked Workflow is valid but no new instances can be started.

None This state will never be returned by a property but is instead used to indicate
no states for a filter.

NotStarted Workflow association has been created but the instance of the workflow has
not begun processing.

Orphaned Should never be returned from a property. Internal use only.

Running Workflow is currently executing normally.

Suspended Workflow has been put on hold.

Terminated Workflow was manually stopped by an administrator.

Table 10-12. Methods of the SPWorkflowtask Class

Method Return Type Description

AlterTask bool This method makes the alteration
to the workflow specified in the
parameters and returns a Boolean
value indicating whether or not the
change was made successfully.

GetExtendedPropertiesAsHashtable Hashtable Returns a set of key/value pairs repre-
senting the extended properties for
the specified task from the SPListItem
specified in the parameters.

Table 10-13. The Single Workflow-Specific Property of the SPWorkflowTask Class

Property Data Type Description

WorkflowId GUID Read-only. Returns the unique identifier for the workflow that
owns the current task.

Table 10-11. Values of the SPWorkflowState Enumeration

Value Description

Mann_700-1C10.fm Page 383 Thursday, January 18, 2007 9:00 AM

384 C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L

SPWorkflowTaskProperties
The SPWorkflowTaskProperties class is responsible for storing the specific details about a
particular task. This is another class we’ve seen before, perhaps without knowing it. All of the
task properties objects we’ve dealt with—taskProperties, afterProperties, beforeProperties,
etc.—are of this type.

There are no particularly useful methods defined in this class; however, there are a number
of properties. These are detailed in Table 10-14.

Sample Code

We’ve seen code using this class throughout many of our examples. Any workflow that uses the
CreateTask activity is going to make use of an instance of this type.

SPWorkflowTemplate
SPWorkflowTemplate represents a workflow template deployed to a site. It contains properties
and methods to retrieve or set information about the template and the default values set on it.

Table 10-14. Properties of the SPWorkflowTaskProperties Class

Property Data Type Description

AssignedTo string Read/write. The name of the user to whom the task
has been or will be assigned.

Description string Read/write. The description of the task provided by
the workflow originator.

DueDate DateTime Read/write. Stores the date that the task is due.

EMailBody string Read/write. The text of the email sent to the user the
task is assigned to informing them of their task.

ExtendedProperties Hashtable Read-only. Returns the extended properties for the
task as a set of key/value pairs.

HasCustomEMailBody bool Read/write. True if the email body has been changed
from the default, otherwise false.

OnBehalfEmail string Read/write. The email address of the user the task is
sent for.

OnBehalfReason string Read/write. The reason the email is sent by a
different user.

PercentComplete float Read/write. Indicates the progress made on finishing
the task.

SendEmailNotification bool Read/write. A flag to indicate whether or not this task
is configured to send notifications via email.

StartDate DateTime Read/write. The date that the task is configured
to begin.

Title string Read/write. The name of the task.

Mann_700-1C10.fm Page 384 Thursday, January 18, 2007 9:00 AM

C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L 385

Typically, these default values can be overridden by an administrator when they associate the
template with a list. Table 10-15 shows the properties of SPWorkflowTemplate. There are no
overly useful methods for this class.

SPWorkflowHistoryEventType
Entries written to the history list for a workflow can specify an event type. This helps to catego-
rize the events in the history list and also helps administrators (or developers doing debugging)
classify the type of event being recorded in a standard format. The entry description can then
simply record the pertinent information for that particular entry.

The members available within the SPWorkflowHistoryEventType enumeration are shown
in Table 10-16.

Table 10-15. Properties of the SPWorkflowTemplate Class Likely to Be Used by Developers

Property Data Type Description

AllowManual bool Read/write. Indicates whether or not the instances of the
template can be started manually by a user.

AssociationData string Stores the serialized data from the template’s association
form as an XML string.

AssociationUrl string Read-only. URL to the template’s association form. Specified
in workflow.xml.

AutoStartChange bool Read/write. Indicates whether or not the workflow instance is
automatically started whenever the attached item is modified.

AutoStartCreate bool Read/write. Indicates whether or not an instance based on
this template is automatically started whenever a new item
is created.

Description string Read/write. Contains a description of the template.

Id GUID Read-only. Stores the unique identifier for this template.

InstantiationUrl string Read-only. URL to the template’s initiation form. Specified in
workflow.xml.

IsDeclarative bool Read-only. Indicates whether this workflow was created in
code (false) or via XAML (true). Useful for identifying
workflows built with the SharePoint Designer.

ModificationUrl string Read-only. URL to the instance’s modification form. Specified
in workflow.xml.

Name string Read/write. Stores the name assigned to this template

StatusUrl string Read-only. URL to the status page for the template. Specified
in workflow.xml.

Mann_700-1C10.fm Page 385 Thursday, January 18, 2007 9:00 AM

386 C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L

Workflow Throughout the Object Model
The objects we’ve covered so far represent the major objects from the Microsoft.Sharepoint.
Workflow namespace. Workflow, however, is baked into SharePoint all across the board. For
this reason, there are workflow aspects to various other objects throughout the SharePoint
object model. Again, this section will provide information only on the major elements.

• A new Workflows property has been added to the SPListItem class. This property returns
an SPWorkflowCollection object containing all of the workflows that are running or have
run on the particular list item.

• The SPList class has gained two new methods (AddWorkflowAssociation and
RemoveWorkflowAssociation) that allow you to programmatically manage the collection
of workflows available to items in a given list.

• SPContentType also has an AddWorkflowAssociation and a RemoveWorkflowAssociation
method to allow you to manage the collection of workflows available to items based on
a particular content type.

• SPContentType also contains an overridden method
(UpdateWorkflowAssociationsOnChildren) that allows you to push new or modified
workflow associations down to other content types that are derived from the given
content type. The various overrides of this method allow you to control what gets
pushed down and under what conditions.

Table 10-16. SPWorkflowHistoryEventType Enumeration Members

Member Description

None Should perhaps be listed as Other instead of None. Signifies that this
entry is essentially uncategorized.

TaskCompleted The entry is marking the completion of a task.

TaskCreated The entry signifies a new task being successfully created.

TaskDeleted The entry for a task being deleted.

TaskModified The entry for a task being modified.

TaskRolledBack The entry for a task being rolled back to a previous state.

WorkflowCancelled The entry for a workflow that has been canceled.

WorkflowComment The entry represents a comment on the workflow—not tied to a
particular event.

WorkflowCompleted The workflow has completed, but does not indicate success or failure.

WorkflowDeleted The entry for when a workflow is deleted.

WorkflowError The entry to denote an error in workflow processing. The description
parameter should specify error details.

WorkflowStarted The entry for a new instance of a workflow being initiated.

Mann_700-1C10.fm Page 386 Thursday, January 18, 2007 9:00 AM

C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L 387

• SPContentType has a WorkflowAssociations property, which returns an
SPContentTypeWorkflowAssociationCollection object of all workflow associations
currently available for the given content type.

• SPList contains an UpdateWorkflowAssociation method, which allows us to program-
matically change the details of a workflow association.

• SPList contains a DefaultApprovalWorkflowId property, which contains the GUID of the
default Approval workflow for the particular list. This property value can be changed
programmatically if you need to change the default Approval workflow for a particular
list.

• SPSite now contains a WorkflowManager property, which returns an SPWorkflowManager
object.

• SPWeb now has a property (WorkflowTemplates), which returns an
SPWorkflowTemplateCollection object allowing you to manipulate the workflow
templates available on a given site.

There is a little bit more Workflow stuff sprinkled elsewhere in the Object Model. This only
covers the aspects you are most likely to use. Think of finding the rest as a geeky sort of “Where’s
Waldo?” game.

MOSS
So far, everything we’ve covered in this chapter is straight out of WSS, so it is available in both
WSS and MOSS. MOSS, as a product built on WSS, naturally extends the WSS workflow capa-
bilities to meet its own needs and provide some additional value. I’ll cover the major differences
from an object model perspective in this section.

Workflow Web Service
MOSS exposes a web service to allow for the manipulation of certain aspects of its Workflows
from an external system. In this release only a handful of methods are available in this web
service. They are detailed in Table 10-17.

Table 10-17. The Methods in the Workflow Web Service Available with MOSS

Method Description

AlterToDo This method allows you to programmatically change a task.

GetTemplatesForItem This method returns an XmlNode containing information
about the workflow templates available for the specified item.

GetToDosForItem This method returns an XmlNode containing information
about the tasks available for the specified item.

GetWorkflowDataForItem This method returns an XmlNode containing workflow infor-
mation about the item.

Mann_700-1C10.fm Page 387 Thursday, January 18, 2007 9:00 AM

388 C H A P T E R 1 0 ■ T H E W O R K F L O W O B J E C T M O D E L

Extensions to the Core Object Model
MOSS also includes a WSSTask class within the Microsoft.Office.Workflow namespace that
exposes a number of extensions to the default WSS workflow tasks. Table 10-18 provides infor-
mation on the properties available in this class.

Summary
This chapter is loaded with raw information. I included some code samples for most of the
major classes to let you see a bit of the Object Model in action. There is no way to summarize
concisely all of the information presented in this chapter—and as I said at the beginning, I only
cover the major elements of the Object Model here.

Take your time; peruse the chapter a few times. Each time you do, something new will
catch your eye. If you can come away with a good sense of what is possible, you’ll be a big step
ahead of most other Office Workflow developers. You can always look up the details.

GetWorkflowTaskData This method returns an XmlNode containing information
about the task information on the item.

StartWorkflow This method is the web service equivalent of the
SPWorkflowManager StartWorkflow method.

Table 10-18. Properties Exposed in the MOSS Object Model That Extend WSS

Property Data Type Description

DeleteOnComplete bool Read/write. Indicates whether or not the particular task
should be removed from the system once it has been marked
as complete.

IsChangeAllowed bool Read/write. Indicates whether or not the particular task can
be modified.

IsTaskCompleted bool Read/write. Indicates whether or not the particular task
is finished.

OnTaskCancelled delegate Read/write. Allows a developer to specify an event to be
called when a task is canceled.

OnTaskDeleted delegate Read/write. Allows a developer to specify an event to be called
when a task is deleted.

Table 10-17. The Methods in the Workflow Web Service Available with MOSS (Continued)

Method Description

Mann_700-1C10.fm Page 388 Thursday, January 18, 2007 9:00 AM

389

■ ■ ■

A P P E N D I X

Frequently Asked Questions

Well, OK, you caught me. If this is all new material and the first publishing of the book, who
exactly is asking these questions so “frequently”? I suppose I could claim that we set up focus
groups and did thousands of interviews across the world, but the truth of the matter is that I
just plain made them up. These questions represent what I would ask about this technology
and what I assume the rest of you will be asking too. The goal is to help you find the material
you are looking for when perhaps you don’t quite know what the question is that you’re asking
or don’t know the terminology to use to ask the question.

The FAQs in this section are broken down into a few sections:

• Introductory and General: Covers material generally from the first two chapters. Also
includes some overview material from other parts of the book.

• Development: Covers common development tasks (duh).

• Administration: Quiz time. You have to guess what this section covers…

Again, the goal of this appendix is to help you locate material elsewhere in the book. If
you’re new to Workflow or Office 2007, you should be able to find the material you need more
easily here than in a regular index (which requires that you know the proper terminology).
Once you’ve become familiar with the technology, you can likely tear these pages out and
make fancy origami cranes out of them.

Introduction and General Questions
What is workflow?

For a dictionary definition, see the “Introducing Workflow” section in Chapter 1. For
examples of different types of workflow, including noncomputerized workflows, see the
same section.

What role does a computer play in workflow?

Computers are process controllers and automaters (I think I just made up a word). For
details see the “Introducing Workflow” section in Chapter 1.

Mann_700-1Appendix.fm Page 389 Friday, January 19, 2007 3:05 PM

390 A P P E N D I X ■ F R E Q U E N T L Y A S K E D Q U E S T I O N S

How does workflow relate to business process management, business process automation,
or <insert_fancy_new_term_here>?

Really, they’re the same thing. See the sidebar “A Workflow by Any Other Name...” in
Chapter 1.

I’ve heard that Office 2007 supports human-centric workflows. What does that mean?

Human-centric and machine-centric workflows are discussed in the “Workflow
Scenarios” section of Chapter 1.

If Workflow is new to Office 2007, how did people get anything done before?

Boy, you really need to back away from the Kool-Aid station. Workflow is not a new concept
and, believe it or not, people got work done before Microsoft entered their lives. See the
section “Workflowasaurus: Workflow in the Pre–Office 2007 Mesozoic” in Chapter 1.

What is a sequential workflow? What is a state machine?

Both of these questions are covered in Chapter 1, with examples and pictures. We explore
them further in Chapter 6 when we build one of each.

What is Windows Workflow Foundation and why should I care?

Windows Workflow Foundation (WF) is described in Chapter 1. You should care because I
said so… (hmmm, that never works on my kids, either). OK, you should care because WF
forms the foundation for all Office workflows.

Just about every presentation I’ve seen on Windows Workflow Foundation uses a puzzle-
piece diagram to explain all of the pieces. Why don’t you?

See Figure 1-6 in the “Windows Workflow Foundation Architecture” section of Chapter 1.

What is the airspeed velocity of an unladen swallow?

African or European?

Where does SharePoint fit into Workflow in Office 2007?

The components of Workflow in the Office 2007 System are covered in various places
throughout this book. For a general overview, see the section on the Office 2007 servers in
Chapter 1. For details on working with the new version of SharePoint in a Workflow scenario,
see, well, the whole rest of the book.

What are some examples of scenarios for Office workflows?

See the top-10 list at the end of Chapter 1 for a quick synopsis. There are also other exam-
ples littered throughout that chapter and the rest of the book as well.

Workflow is part of the Office 2007 System. What does that mean? Is it a server or what?
How do the Office client applications fit into the picture?

The Office server and client pieces of the 2007 Microsoft Office System are covered in the
last third of Chapter 1.

Mann_700-1Appendix.fm Page 390 Friday, January 19, 2007 3:05 PM

A P P E N D I X ■ F R E Q U E N T L Y A S KE D Q U E S T I O N S 391

I’ve heard a lot about something called content types in SharePoint 2007. How does that
relate to Workflow?

Content types are discussed in Chapter 1.

Does Microsoft provide any default workflows that I can look at to get an idea of how this
all works?

Yes, take a look at the beginning of Chapter 3, the section “The Out-of-the-Box Workflows.”

How do I install and configure my Workflow environment?

Installation and configuration are covered in Chapter 2. Unfold the origami cranes you
made from the pages and take a look.

Development Questions
What is the SharePoint Designer?

The SharePoint Designer is the preferred client for SharePoint modifications (including
Workflow) that do not involve writing code. See Chapter 4 for details.

Where did FrontPage go?

FrontPage is now called the SharePoint Designer. See Chapter 4 for details.

Do all custom workflows need to be developed by a developer using Visual Studio?

No, see Chapter 4 for information on the SharePoint Designer. Also, see Chapter 9 for a
brief discussion of XAML.

I’ve heard that the SharePoint Designer uses conditions and actions to build workflows.
What the heck are they?

The SharePoint Designer is covered in Chapter 4; I included listings of the out-of-the-box
conditions and actions. Chapter 9 discusses the process of creating new conditions and
actions.

Can SharePoint Designer–built workflows support conditional branching?

Yep. See Chapter 4.

Can SharePoint Designer–built workflows support custom forms?

Yep. See Chapter 4.

Can SharePoint Designer–built workflows be deployed to more than one list?

No, at least not out of the box. See Chapter 4.

Can SharePoint Designer–built workflows define variables, look up values from external
sources, make potato fritters?

Yes, yes, no. See Chapter 4.

Mann_700-1Appendix.fm Page 391 Friday, January 19, 2007 3:05 PM

392 A P P E N D I X ■ F R E Q U E N T L Y A S K E D Q U E S T I O N S

The SharePoint Designer supports a number of actions and conditions out of the box.
Can I add my own?

Naturally. See Chapter 9.

What is an activity? What is a simple activity? What is a composite activity?

All things activity are covered in Chapter 5.

Can I build my own activity and have it operate just like Microsoft’s?

Yes—we walk through building both a simple and a composite activity in Chapter 5.

I typically only see references to activities; I don’t often see references to simple and
composite activities.

There are differences between the two. We look at them in Chapter 5.

What are some examples of activities?

The full list of WF and SharePoint activities are provided in Chapter 5. There are also examples
of other activities you and your friends can build.

How do I deploy my activities so I can use them in multiple workflows?

Activity deployment is covered in Chapter 5.

Are all WF activities usable in SharePoint workflows?

No. Most are, but there is an important caveat about officially supported activities in
Chapter 5.

Why on earth would I ever write a custom activity?

You may never need to; it depends on your situation. See the sidebar “Why Write Custom
Activities?” in Chapter 5.

I want to build an activity but I’d like to make it look and act differently when it is used
inside Visual Studio. Can I?

Absolutely—we do exactly this in Chapter 5. Look for information on the Theme,
ToolboxItem, and Designer classes.

I want to build an activity but don’t need it to look or act differently in Visual Studio—
the default functionality is fine. Can I?

Yes. This is easier than the previous question and, again, we cover it in Chapter 5.

How can I make sure that the person building a workflow using my activity supplies all
of the required values?

See the information on the Validator class in Chapter 5.

Mann_700-1Appendix.fm Page 392 Friday, January 19, 2007 3:05 PM

A P P E N D I X ■ F R E Q U E N T L Y A S KE D Q U E S T I O N S 393

My custom activity can only contain/cannot contain certain other activities. Can I do this?

Again, yes. See Chapter 5.

I’ve heard that Microsoft Office now supports XML-based file formats. What does this
mean to us as workflow developers?

Good, you’ve crawled out from under that rock. While the new file formats are not directly
related to workflow, they do open up a whole world of possibilities. We look at one of these
possibilities in detail in Chapter 5 and briefly discuss some other capabilities.

How is Visual Studio extended to facilitate workflow development?

There are a number of important elements installed with the Workflow Extensions for
Visual Studio. We use them extensively in Chapters 5, 6, 7, and 8. There are also a number
of Code Snippets available for building workflows. Some of these are installed with the
Workflow Extensions, and some are available with the Office 2007 Open XML Snippets. We
use those in Chapter 5.

What is the Workflow Designer?

This construct is part of the Workflow Extensions and is used as a graphical environment
for building workflows. It is very similar to the BizTalk Orchestration Designer. We make
use of it in Chapters 5, 6, 7, and 8.

If I’m building a workflow and need to get information on the payload item that my
workflow is running on, how do I accomplish that?

See the information on the WorkflowProperties object in Table 6-1.

How do I make new activities available in the Toolbox within Visual Studio?

See the sidebar “Managing Activities in the Toolbox” in Chapter 6.

If there are multiple instances of my workflow running, each on different payloads, how
does the workflow engine keep them all straight?

See the information on correlation tokens in Chapter 6.

How do I deploy a workflow?

It’s different, depending on whether you are deploying for development and test or for
production. Both options are covered in Chapter 6.

Where does InfoPath fit into all of this?

InfoPath is discussed heavily in Chapter 7. It also crops up in various other chapters that
reference the user experience in our workflows.

I’ve seen references to Workflow forms but don’t really understand them. What do they do?

Before we actually build our custom Workflow form in Chapter 7, we spend some time on
what the various types of forms are used for.

Mann_700-1Appendix.fm Page 393 Friday, January 19, 2007 3:05 PM

394 A P P E N D I X ■ F R E Q U E N T L Y A S K E D Q U E S T I O N S

How can I integrate my forms into the Office 2007 client applications if I’m only using WSS?

While technically the answer is that you can’t—this is MOSS-only territory—you can get a
semblance of the same functionality by looking at Chapter 9. You’ll find a section on inte-
grating Office 2003 clients with our workflows. You could follow a similar approach for
WSS-only environments with Office 2007.

Is there anything special about the way in which our workflows are processed?

Yes. (A resounding Yes.) There is a very important section that you should read in Chapter 9
that covers workflow processing. It’s kind of buried, but is important nonetheless.

■Note Hopefully, if you’re just skimming this page as you build origami out of it, this note will catch your
eye. Read the section in Chapter 9 on workflow processing. You’ll be glad you did.

How does the Forms Server know which form to render as part of our workflow?

See the information in Chapter 7 on deploying workflows, specifically the workflow.xml
file. Also, take a peek at the sidebar “Ode on an InfoPath URN.”

Once we build our forms, how are they actually rendered into the browser?

See the sidebar “So Just How Are Our Forms Rendered Anyway?” in Chapter 7 for information.

What are Workflow rules and why do I care?

See Chapter 8. You don’t have to care.

How is a Workflow rule related to an activity condition?

Also covered in Chapter 8.

Can I maintain a common set of rules outside of my workflows?

Yes. This is the functionality we explore in Chapter 8.

Can I version and audit rules?

Again, yes, we cover this in Chapter 8.

How do I build rules?

See Chapter 8.

What is chaining?

Chaining is a very simple concept, but also one likely to make your head explode as you
explore its power and potential for complexity. Get out the duct tape and plastic sheeting
and flip to Chapter 8.

Mann_700-1Appendix.fm Page 394 Friday, January 19, 2007 3:05 PM

A P P E N D I X ■ F R E Q U E N T L Y A S KE D Q U E S T I O N S 395

How about rulesets? What are they?

The answer is pretty obvious, once you know it. Flip to Chapter 8.

Is any part of my Office 2007 Workflow available from a mobile device?

Parts are, yes. See Chapter 9.

All of this material is pretty dry, but what does dehydration have to do with my workflows?

Besides being an opportunity for a bad pun, dehydration is an architectural concept key to
performance and reliability of WF. See Chapter 9.

How do I handle errors in my workflow?

See Chapter 9.

How do I debug my workflows?

See Chapter 9.

There are elements of the SharePoint user interface that allow my workflow to be canceled
by an administrator. How can I make sure that my workflow handles this event?

See Chapter 9, specifically the section “Canceling Workflows.”

We’ve worked with two different tools for building workflows: the SharePoint Designer
and Visual Studio. How do I know which tool I should use?

Table 9-1 shows a comparison of the two approaches that I pilfered from the WSS SDK.
It will help.

All of this workflow stuff is pretty neat and I can see the value, but we use Office 2003.
How can I still get some value without the same level of client interaction?

See the section of Chapter 9 that covers integration with Office 2003. It is not a complete
picture and it does not approach the same level of integration that you get with Office 2007,
but it’s a good start and provides a good foundation on which you could build to suit
your needs.

Some of the default Workflow forms have constructs that allow me to validate users
against my user store. How can I get that same functionality in my custom forms?

Microsoft really helped us out here. See the section “Picking on People—The InfoPath
Contact Picker and the ASPX People Editor” in Chapter 9 for details.

What if I want my forms to look like the rest of my SharePoint application? How can I
do that?

See the section “Building with Blocks—the Makings of an ASPX Form” in Chapter 9.

What is XAML? Is it just a typo—did you really mean XML?

No, XAML stands for Extensible Application Markup Language. It is really part of Windows
Presentation Foundation (nee Avalon) but is used for our workflows as well. See the section on
XAML near the end of Chapter 9 for details.

Mann_700-1Appendix.fm Page 395 Friday, January 19, 2007 3:05 PM

396 A P P E N D I X ■ F R E Q U E N T L Y A S K E D Q U E S T I O N S

I really don’t need your stupid book to learn about Workflow. All I need is an object model.
Why do you have all of this inane banter and dumb fluff? Just show me the object model.

OK, see Chapter 10.

The code examples in the book are good, but I was really hoping for more. How do I know
how to use some of the capabilities that aren’t touched on elsewhere in the scenarios?

There are more short code samples throughout Chapter 10 that deal directly with specific
objects and methods within the SharePoint Workflow Object Model.

Administration Questions

What does a workflow administrator do?

First of all, Office workflows support a stratification of administrative functionality into
two potential roles. See the section “The Cast of Ben-Hur” in Chapter 1 for details.

How do I add a workflow to a list or document library so it is available for my users?

The process to accomplish this task will be slightly different for every workflow. However,
a good example is shown in Chapter 3. It covers associating one of the out-of-the-box
workflows with a document library. Chapters 6 and 7 also associate a workflow with a
document library—in this case, a custom workflow. Finally, Chapter 4 covers the process
via the SharePoint Designer, which is a significantly different process from every other
method.

How do I check the status of a currently running workflow?

Each workflow provides a Status screen. See the section “The Document Owner’s Experience”
in Chapter 3 for information.

How do I check what happened on workflows that have finished processing (either
successfully or with an error)?

Viewing workflow reports is covered in Chapter 9.

Once I have uploaded a document, how do I start a workflow on it?

There are a number of ways this can happen, for example:

• From the SharePoint site

• From the Office 2007 client applications

• Automatically, based on conditions

• Manually

The examples in Chapters 3 through 8 all walk through the process in slightly different
ways. Take a look at those chapters for more information.

Do all of my Workflow participants need to be in my Active Directory?

No. See the “Permutations = Power” section of Chapter 3 for more information.

Mann_700-1Appendix.fm Page 396 Friday, January 19, 2007 3:05 PM

A P P E N D I X ■ F R E Q U E N T L Y A S KE D Q U E S T I O N S 397

Where are tasks assigned by my workflows stored?

This is covered throughout the book, but perhaps the best walkthrough is in Table 3-1.

Where is information about the processing of my workflow stored?

The short answer is history lists. The long answer is that this is covered throughout the
book, but you’ll find a good walkthrough in Table 3-1.

How do I delete a workflow from a list or document library?

See the sidebar “Removing a Workflow” in Chapter 3.

Having workflow tasks in SharePoint is great, but that means people have to go looking
for them. Is there any way to have it show up somewhere else that puts it right in their faces?

Thanks for lobbing up that softball; yes, synchronizing with Outlook is discussed in
Chapter 3, and with mobile devices in Chapter 9.

How do users initiate a workflow on a document or other list item manually?

See the section “The Document Owner’s Experience” in Chapter 3. While this section
discusses the experience for documents, it is no different for any type of list item.

Can tasks be reassigned by the user they are initially given to?

Yes, the out-of-the-box workflows support this Feature (called workflow modifications).
See “The Workflow Participant’s Experience” in Chapter 3.

How does Workflow integrate with the Office 2007 client applications?

See the various experience walkthroughs and the “Permutations = Power” section in
Chapter 3 for descriptions and screenshots.

All of the examples in the book deal with concrete examples. How can I apply them to my
specific situation?

This one I’m going to answer right here because there really isn’t anywhere else in the book
that it is covered. Yes, you’re right—these examples may not fit your situation. However,
I’m a firm believer in the teach a person to fish approach to training. I don’t know the
specific details of your scenario so I can’t answer here. What I can do, however, is expose
you to the wealth of possibilities and tools available to you and teach you how to use them.
It’s up to you, then, to take that and apply it to your situation. You are a good student,
Grasshopper; now it is time for you to go out into the world.

Mann_700-1Appendix.fm Page 397 Friday, January 19, 2007 3:05 PM

Mann_700-1Appendix.fm Page 398 Friday, January 19, 2007 3:05 PM

405

Index

■A
Access, 23, 34

Accounts property, ASPX People Editor, 346

actions in workflow steps, 83–84, 100–103, 109.
See also custom actions; parallel
actions; serial actions

ActiveSync, 313

activities, 21, 33, 113, 155. See also composite
activities; custom activities;
out-of-box activities; Policy
activities; state activities; WF
activities

adding to workflows, 165–166

correlation tokens, 173–174

deploying, 146, 156

events, responses by activities, 368

managing with Runtime Services, 21

tasks

single, 114

placement order of, 304

Activity Code Generator class, 126

activity conditions for rules, 257–258, 300

Code Conditions, 259–260

Declarative Rule Conditions, 260–266, 295

operators, 264–265

.rules files, 265–266

Activity Definition class, 125–128

LoggerActivity, 147–151

MacroStripperActivity, 128

Activity Designer class, 125

LoggerActivity, 153

MacroStripperActivity, 139–141

Activity Duration Report, 367–368

Activity Serializer class, 126

Activity Theme class, 125

Activity Toolbox Item class, 125

Activity Validator class, 125

activity verbs, 365–366

creating/adding to context menus, 366

synchronizing, 366–367

using, 366–367

Activity.ClosedEvent, 148

ActivityDesignerTheme attribute, Activity
Designer class, 139–140

ActivityDesignerTheme class,
MacroStripperActivity, 141–142

ActivityDesignerVerb class, 365

ActivityDesignerVerb objects, 365

ActivityExecutionStatus class

MacroStripperActivity, 129

statuses, 129

ActivityStarted variable, 148, 149

ActivityToolboxItem class, 151

ActivityValidator class,
MacroStripperActivity, 144–145

Add “Else-If” Conditional Branch link, 83

Add a Workflow screen, 55–58

Add Time to Date action, 84

AddContact method, Contacts and
FormData classes, 348

AddWorkflowAssociation method

SPContentType class, 386

SPList class, 386

AfterProperties property, onTaskChanged
activity, 200, 216, 229

AllowEmpty property, ASPX People
Editor, 346

Mann_700-1INDEX.fm Page 405 Tuesday, January 23, 2007 9:06 AM

406 ■I N D E X

AllowManual property

SPWorkflowAssociation class, 379

SPWorkflowTemplate class, 385

AllowTypeIn property, ASPX People
Editor, 346

AlterTask method, SPWorkflowTask
class, 383

AlterToDo method, MOSS Workflow web
service, 387

approval of designs, 6

approval of documents, 6, 11

requirements, 12

sequential workflow, 12–14

state machine workflow, 14–15

Approval workflow, 51–56, 78

CEB process, 56–61

benefits, 76

owner’s experience, 64–67

participant’s experience, 68–73

synchronizing with Outlook, 63–64

user’s experience, 62

variations, 73–76

hiding documents, 358–359

approvals, 10

credit card online purchases, 5

designs, 34

documents, 6, 11–15, 35

Approvers Contact Selector control, 341

accessing information, 344–345

ASP.NET forms, 205, 239–241. See also forms;
ASPX forms; association forms;
InfoPath forms; initiation forms;
Workflow forms

cautions, 93

editing, 93

FormData.cs template files, 244–246

Forms Server, 208

WFDataPages.cs template files, 244–246

ASPX

People Editor, 339, 345–346

data handling, 347–349

properties, 346–347

displaying Workflow information dialog
box, 25–26

ASPX forms, 251, 350. See also forms;
ASP.NET forms; association forms;
InfoPath forms; initiation forms;
Workflow forms

ButtonSection control, 350, 353

deploying MarketingCampaignASP
workflow, 247–250

head elements, 354–355

InputFormControl control, 350, 353

InputFormSection control, 350–352

assemblies

retrieving names from specific
workflows, 291

strong-naming, 180

assembly-line robotics, 5

Assign a Form to a Group action, 84

Assign a To-do Item action, 84

AssignedTo property

SPWorkflowFilter class, 376

SPWorkflowTaskProperties class, 384

AssocForm.aspx file, 244

AssocForm.cs file, 243

AssociateWorkflowTemplate, 242

association forms, 205, 208–209, 251. See also
forms; ASP.NET forms; ASPX forms;
InfoPath forms; initiation forms;
Workflow forms

vs. rules, 257

uses, 210

in Visual Studio, XSD schema, 225

workflow.xml file, 235

Mann_700-1INDEX.fm Page 406 Tuesday, January 23, 2007 9:06 AM

407■I N D E X

Find it faster at http://superindex.apress.com

AssociationData property, 225–226

SPWorkflowActivationProperties
class, 377

SPWorkflowAssociation class, 379

SPWorkflowTemplate class, 385

AssociationUrl property

SPWorkflowTemplate class, 385

workflow.xml file, 235, 247

attribute-based dependencies, 270–271, 300

automated documents

creating, 6

manipulating, 7

AutoStartChange property

SPWorkflowAssociation class, 379

SPWorkflowTemplate class, 385

AutoStartCreate property

SPWorkflowAssociation class, 379

SPWorkflowTemplate class, 385

■B
BaseTemplate property,

SPWorkflowAssociation class, 379

basic routing, 10

batch execution of workflow operations,
303–304

batch files in workflow deployment, 182–183,
235, 247–249

BeforeProperties property, 229

OnTaskChanged activity, 216

BizTalk Orchestration Designer, 160, 203

Bluetooth Personal Area Network, 313

Boolean data type, 87

BottomSpacing property, ButtonSection
control, 354

BrowsableAttribute, 136–137

Build Dynamic String action, 84

builders, 33

Business Bar, 71

Workflow, 24–26

Business Contact Manager, 23

Business Intelligence, MOSS, 29

business logic in workflows, 60–61

business process automation or
management. See workflows

business rule definitions. See rulesets

Business Value of Office 2007 System
scenario, 44–45

Button control

ID property, 285

Text property, 285

ButtonSection control, 350, 353

■C
CAG (ConditionedActivityGroup) WF

activity, 116, 120

Calculated information types, 92–93

CallExternalMethod activity, 120

Campaign Effectiveness Briefs. See CEB
Approval Workflow

Canceling status, 129

canceling workflows, 319, 320

Cancellation & Error Report, 367–368

cancellation handlers, 320

CAS (Code Access Security), 336

case sensitivity, 218

catch statements, 333

CategoryAttribute, 136

CEB Approval Workflow, 53–54

benefits, 76

document libraries, 55–56

owner’s experience, 64–67

participant’s experience, 68–73

settings, 56, 58,

customizing, 59–60

removing, 61

synchronizing with Outlook, 63–64

user’s experience, 62

variations, 73–76

Find it faster at http://superindex.apress.com

Mann_700-1INDEX.fm Page 407 Tuesday, January 23, 2007 9:06 AM

408 ■I N D E X

chaining, 268–270, 300

dependencies

attribute-based, 270–271, 300

explicit, 270, 272, 300

implicit, 270, 300

explicit, 272

full, 272

Halt directive, 272

sequential, 272

Change a Workflow screen, 55

Change Workflow Settings screen, 61

Check In Item action, 84

Check Out Item action, 84

Check Workflow button, 89, 106

checkAuthor method, 259–260

CheckForWFTasks method,
ThisDocument_Startup, 332

Choice information types, 91

Client Access License, 40

Closed status, 129

Code Access Security (CAS), 336

Code activity vs. writing code for custom
activities, 124

Code Conditions, 171, 172, 258–260, 300

Code Snippets

feature.xml, 230–231

recommended installation order, 42

Visual Studio 2005, 132

dependency properties, 135–136

Workflow development environment
setup, 38

workflow.xml file, 232–233

Code Snippets Manager, 231

Code WF activity, 116, 120

collaboration, 10, 34

WSS (Windows SharePoint Services), 29

Collapsed property, InputFormSection
control, 351

Collapsible property, InputFormSection
control, 351

Collect Data from a User action, 84

Collect Feedback workflow, 51–52, 78

Collect Signatures workflow, 51–52, 78

CollectFeedbackSampleAspxPages
project, 347

CollectFeedbackWorkflow sample, 347–352

ComboBox control, ID property, 285

CommaSeparatedAccounts property, ASPX
People Editor, 346

Comments section, workflows, 71

communications interface, 19, 34

Communicator, 23

Compare (%List name%) Field condition, 82

Compare Any Data Source condition, 82,
99–100

CompensatableSequence activity, 120

Compensate activity, 120

Compensating status, 129

CompletedState activity

ResetTask workflow, 197–198

state machine workflows, 194–195

CompletedStateName property, 194

CompleteTask activity, 122

MarketingCampaign workflow, 213

properties, 217

component properties, 135

composite activities, 115, 154–156. See also
activities; custom activities;
out-of-box activities; Policy
activities; state activities; WF
activities

FaultHandler, 314, 318

LoggerActivity, 147–153

recommendations, 318

single tasks, 114

compound conditions, 83

Condition Editor, 172, 258, 261

Declarative Rule Conditions, 262–263

Condition Manager, 261–262

Mann_700-1INDEX.fm Page 408 Tuesday, January 23, 2007 9:06 AM

409■I N D E X

Find it faster at http://superindex.apress.com

Condition property

IfElseBranch activity, 168, 200, 297

LoggerActivity, 148

subproperties, 172

While activity, 216

ConditionalEventArgs parameter, 259

ConditionedActivityGroup (CAG) WF
activities, 116, 120

conditions, 258, 275, 300

ConditionExpression property,
ifElseBranchActivity1, 168

ConditionName property, 259, 262

IfElseBranchActivity1, 297

ConditionName property,
ifElseBranchActivity1, 168

ConditionName subproperty, 172

conditions on activities, 171, 172

Code Conditions, 259–260

Declarative Rule Conditions, 260–266, 295

operators, 264–265

rules, 257–258, 300

.rules files, 265–266

conditions on state machine workflows, 7

conditions on workflow steps, 81–83, 99,
102, 109

Contact class

properties, 345

ToContact method, 344–345

Contact Picker control (InfoPath), 243,
339–340

accessing information, 344–345

adding to toolbar, 340

adding/configuring instances, 341–343

data handling, 343–344

Contact Selector control

Approvers, 341, 344–345

schema, 341–342

ContactList property, Contacts class, 348

Contacts class, properties and methods,
347–348

containers for composite activities, 115, 156

content types, 30, 338

associating with document libraries, 76

Document Information Panel, 30

lists, 30–31

management policies, 30

metadata, 30

packages of features, 31–32, 34

resources, 31

workflows, 30

context menus, 365–367

control properties, RuleSet Manager
application, 285

Copy List Item action, 84

correlation tokens, 173–174

properties, 173

SharePoint team blog, 173

CorrelationToken property

CompleteTask1 activity, 200, 216–217

emlAuthor activity, 168

emlError activity, 168

OnTaskChanged activity, 200, 216

onWorkflowActivated1 activity, 168

onWorkflowItemChanged activity, 201

ResetTask workflow, 199

SendEmail1 activity, 215, 297

UpdateTask activity, 217

CorrelationTokenOwnerActivityName
property

CreateTask activity, 200, 216

OnTaskChanged activity, 216

OnWorkflowActivated1 activity, 215

SendEmail1 activity, 215

UpdateTask activity, 217

CorrelationTokenOwnerActivityName
property, onWorkflowActivated1
activity, 168

Count property, SPWorkflowCollection
class, 375

Mann_700-1INDEX.fm Page 409 Tuesday, January 23, 2007 9:06 AM

410 ■I N D E X

CountWorkflowAssociations method,
SPWorkflowManager class, 381

Create List Item action, 84

CreateComponentsCore method,
LoggerActivity, 152

Created in a Specific Date Span condition, 82

Created in a Specific Person condition, 82

Created property, SPWorkflowAssociation
class, 379

CreateHistoryEvent method, SPWorkflow
class, 373

CreateTask activity, 122, 199

MarketingCampaign workflow, 213

properties, 200, 216

CreateTaskWithContentType activity, 122

credit card approvals, online purchases, 5

CRM (Microsoft), 124

CssClass property, ASPX People Editor, 346

Currency information types, 90

custom actions, 359–362

custom conditions, 364

Microsoft support, 362–363

custom activities, 113, 156. See also activities;
composite activities; out-of-box
activities; Policy activities; state
activities; WF activities

classes, 125–129, 156

creating, rules, 124–125

vs. default Code activities, 124

managing in Toolbox (Visual Studio),
164, 203

requirements, 125

vs. SharePoint activities, 304

structure, 125

custom conditions, 363–364

custom properties, PayloadItem, 135–136

custom task panes, 323–334

custom Workflow forms, 89

custom workflows vs. out-of-box workflows
for mobile connections, 309

Customize Workflow screen, CEB Approval,
59–60

■D
data types, 87

Date information types, 91

Date/Time data type, 87

debugging workflows, 304–305

error messages, 305

Event log, 306

Logs files, 306

Workflow Status page, 305

declarative fault handling, 316–317

Declarative Rule Condition, 200

IfElseBranch activity, 172

Declarative Rule Conditions, 171–172,
258–261, 295, 300

Condition Editor, 262–263

Condition Manager, 261–262

operators, 264–265

.rules files, 265–266

DefaultApprovalWorkflowId property, SPList
class, 387

Define Your New Workflow screen, 96

dehydration, 301–303

Delay activities, 304

activities, 304

persistence, 302

persistent storage, 301–302

reinstantiating objects after cycles, 304

Delay activities, 120

dehydration, 304

task placement, 304

Delay WF activity, 116

DelayFor activity, 122

DelayUntil activity, 122

Delete Item action, 84

DeleteOnComplete property, WSSTask
class, 388

DeleteTask activity, 122

dependencies. See ruleset dependencies

dependency properties, 135, 277–279

attributes, 136

inserting, 135–136

Mann_700-1INDEX.fm Page 410 Tuesday, January 23, 2007 9:06 AM

411■I N D E X

Find it faster at http://superindex.apress.com

deploying

activities, 146, 156

workflows, 176–181

configuring, 182

DocCleaner, 176–183

install.bat file, 182–183, 235, 247–249

MarketingCampaign, 230, 233–237

MarketingCampaignASP, 247–250

to production, 202–203

ResetTask, 202

Description property

InputFormSection control, 351

SPWorkflowAssociation class, 379

SPWorkflowTaskProperties class, 384

SPWorkflowTemplate class, 385

DescriptionAttribute, 136

deserialization, 227

DeserializeFormData method, Helper
class, 348

Design Checker

initiation forms, 220

task forms, 224

Designer class, 366

DesignerSerializationVisibilityAttribute, 136

DesignerVerbGroup objects, 366

development environment setup, 37

hardware requirements, 41

licensing, 40

recommended installation order, 42–43

software requirements, 38–41

virtual machines, 40

Discard Check Out Item action, 84

DisplayName property, Contact class, 345

Disposition Approval workflow, 51–52, 78

Do Calculation action, 84

DocCleaner workflow, 159–161, 186

deploying, 176–183

files, 160–161

launching, 185

onWorkflowActivated activity, 161

testing, 183–185

document approval, 6, 11, 35

requirements, 12

sequential workflow, 12–14

state machine workflow, 14–15

Document Approval workflow. See Approval
workflow

Document Information Panel, content
types, 30

document libraries

associating content type with, 76

CEB Approval Workflow, 55, 66

vs. lists, 30

Marketing Plans, 94

Shared Documents library, 94

Word template document, 335

workflow settings, 55–56, 367

Document Library Settings, Permissions and
Management section, 55

documents

creating, 6

lifecycles, 34

managing with WSS, 29

manipulating, 7

templates, 335

translating, 6, 34

DocumentApproved state, 10

DocumentLibrary property, ExternalPolicy
activity, 281

DocumentRejected state, 10

DocumentSubmitted state, 10

DueDate property,
SPWorkflowTaskProperties
class, 384

■E
ECM Starter Kit

CollectFeedbackWorkflow sample,
348–352

“Else-If” Conditional Branch link, 83

Mann_700-1INDEX.fm Page 411 Tuesday, January 23, 2007 9:06 AM

412 ■I N D E X

email notifications, Workflow environment
setup, 41

EmailAddress property, Contact class, 345

EmailBody property,
SPWorkflowTaskProperties class, 384

emlAuthor activities, properties, 168

emlError activities, properties, 168

Employee Review workflow, 255–256

emulator tools, Visual Studio 2005, 308–309

Enabled property, 183, 203

Label control, 285

Panel control, 285

TextBox control, 285

EnableWorkflowModification activity, 122

Enterprise Content Manager Starter Kit. See
MOSS SDK

environments. See development
environment setup

error handling. See fault handling

Error Occurred error message, 305

error type specification, 316–318

errors

checking, 89, 106

misconfigured files, 183

validation errors, 167, 172, 203

Event log, 306

EventDriven activity, 116, 188–190

multiple events, 191

Office state machines, 191–192

ResetTask workflow, 197

SharePoint activities, 191

WF activities, 191

EventHandlingScope WF activity, 116

EventID property, hlogBegin activity, 168

events, 8, 10–11, 15, 33

managing, 21

Tracking provider, 20, 34

Excel, 23

Workflow, 34

Workflow environment setup, 38

exception management, 21. See also fault
handling

Exception object, Fault property, 317–319

Exceptions design canvas. See Workflow
Exceptions design canvas

ExclusiveFilterStates property,
SPWorkflowFilter class, 376

Execute method, 129, 156

ExternalPolicy activity, 279–280

LoggerActivity, 148–150

RemoveMacros method, 130–132

Executing status, 129

explicit chaining, 272

explicit dependencies, 270, 272, 300

Expression property,
IfElseBranchActivity1, 297

Expression subproperty, 172

ExtendedProperties property, 228

case sensitivity, 228

SPWorkflowTaskProperties class, 384

ExtendedProperties property, case
sensitivity, 228

Extensible Application Markup Language
(XAML), 355–356

workflow sample, 356–357

External Ruleset Demo application,
274–275, 299

External Ruleset Management scenario, 46

ExternalPolicy activity, 275–276

DocumentLibrary property, 281

Execute method, 279–280

GetRootWorkflow method, 280

goals, 276

properties, 297–298

retrieving workflows, 288

RuleSetName property, 282

sample workflow, 295–296

SourceSiteURL property, 277, 279

using statements, 277

Mann_700-1INDEX.fm Page 412 Tuesday, January 23, 2007 9:06 AM

413■I N D E X

Find it faster at http://superindex.apress.com

■F
Failed on Start error message, 305

FAQs

administration, 396–397

general, 389–391

workflow development, 391–396

fault handling, 313

catch statements, 333

declarative, 316–317

global scope, 313

imperative, 317–318

local scope, 318–319

Workflow Designer tabs, 313–314

Workflow Exceptions design canvas, 314

workflow processing, 319

Fault property, FaultHandler activity,
317–319

Fault Type property, FaultHandler activity,
316–318

FaultHandler activity, 116, 120, 313–316

Fault property, 317–319

Fault Type property, 316–318

Faulting status, 129

feature.xml Code Snippet, 176

feature.xml files, 160, 176–178, 230

Code Snippets, 230–231

customizing, 232

error messages, 183

MarketingCampaignASP workflow,
247–248

Features (SharePoint), 176, 178, 230, 338

content types, 31–34

feedback, 10, 34

File menu. See Office Button

file-based conditions, 82

FinalDocumentName property, 137

FinalizeTaskCreatedState activity, ResetTask
workflow, 197

ForEach activity, 165–166

available at Microsoft workflow
community site, 167

properties, 168

FormData class, 347

properties and methods, 348

FormData.cs template files, 244–246

Forms Server

ASP.NET forms, 208

Forms Services, 207

InfoPath 2007, 206, 251

initiation forms, 220

task forms, 224

Workflow information dialog box, 25–26

Forms Services, 51, 74, 78, 207

forms. See ASP.NET forms; ASPX forms;
association forms; InfoPath forms;
initiation forms; Workflow forms

From property

emlAuthor activity, 168

emlError activity, 168

SendEmail1 activity, 215

FrontPage. See SharePoint Designer

full chaining, 272

■G
GAC (global assembly cache), 146, 156

GetCRMData activity, 125

GetCurrentReviewers method, 201, 202

GetExtendedPropertiesAsHashtable
method, SPWorkflowTask class, 383

GetInstanceIds method,
SPWorkflowCollection class, 375

GetItemActiveWorkflows method,
SPWorkflowManager class, 381

GetItemTasks method, SPWorkflowManager
class, 381

GetItemWorkflows method,
SPWorkflowManager class, 381

Mann_700-1INDEX.fm Page 413 Tuesday, January 23, 2007 9:06 AM

414 ■I N D E X

GetNotSetValidationError method, 144

GetReviewers method, FormData class, 348

GetRootWorkflow method, ExternalPolicy
activity, 280

GetTemplatesForItem method, MOSS
Workflow web service, 387

GetToDosForItem method, MOSS Workflow
web service, 387

GetValues method, ThisDocument_Startup,
330–331

GetValuesFromXML method,
ThisDocument_Startup, 333–334

GetWorkDayDate class, 359

GetWorkflowDataForItem method, MOSS
Workflow web service, 387

GetWorkflowTaskData method, MOSS
Workflow web service, 387

GetWorkflowTasks method,
SPWorkflowManager class, 381

ghosting, 80

global assembly cache (GAC), 146, 156

Global Marketing Campaigns scenario, 46

global scope

cancellation handlers, 320

fault handling, 313

Groove, 23

GUID (globally unique identifiers), List Item
ID data types, 87

■H
Halt directive, rulesets, 272

HandleExternalEvent WF activity, 116

hardware requirements, development
setup, 41

HasCustomEMailBody property,
SPWorkflowTaskProperties
class, 384

Helper class methods, 347–348

history lists

CEB Approval Workflow, 57

workflows, business logic, 61

HistoryList property

SPWorkflow class, 372

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

HistoryListId property

SPWorkflowActivationProperties
class, 377

SPWorkflowAssociation class, 379

workflowProperties object, 162

HistoryListTitle property,
SPWorkflowAssociation class, 379

HistoryListUrl property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

hlogBegin and hlogEnd activities,
properties, 168

hosts, 18–20, 33

communications, 34

communications interface, 19

persistence, 19, 34

resources, 21

security, 20

SharePoint, 33

Timer, 19, 34

Tracking provider, 20, 34

transaction support, 20, 34

user interface, 21

human-centric workflows, 5–7, 34

WF support, 22

Workflow, 7

Hyperlink information types, 92

■I
IActivityEventListener interface, 147

ID property

Button control, 285

ComboBox control, 285

Label control, 285

Mann_700-1INDEX.fm Page 414 Tuesday, January 23, 2007 9:06 AM

415■I N D E X

Find it faster at http://superindex.apress.com

ListBox control, 285

Panel control, 285

TextBox control, 285

ID property

SPWorkflowAssociation class, 379

SPWorkflowTemplate class, 385

IfElse activity, 120, 165–166

vs. CAG activities, 116

ResetTask workflow, 198

IfElseBranch activities, 295

Condition property, 200

conditions, 171, 258, 275, 300

Declarative Rule Condition, 172

ResetTask workflow, 198

properties, 168, 297

if-then-else statements

Policy activities, 266

rulesets, 267

IIS Manager Management Console,
installation order, 42

ImageRectangle property, Activity Designer
class, 140–141

imperative fault handling, 317–318

implicit dependencies, 270, 300

InclusiveFilterStates property,
SPWorkflowFilter class, 376

InfoPath 2007, 23, 205–206

Forms Server, 251

initiation forms, 217–221

task forms, 221–224

Workflow development environment
setup, 38

XML case sensitivity, 218

InfoPath forms, 205–207, 212. See also forms;
ASP.NET forms; ASPX forms;
association forms; initiation forms;
Workflow forms

Contact Picker control, 339–343

accessing information, 344–345

data handling, 343–344

Forms Server, 206

HTML, 207

MarketingCampaign workflow, 212–217

secondary data sources, 342–343

URNs (Universal Resource Names), 236

InfoPath Office client application, 205

InfoPath workflows

deploying MarketingCampaign, 230–237

testing MarketingCampaign, 237–239

information types, 90

InitCreateTask method, 201

InitForm object, 227

InitForm.aspx file, 244

InitForm.cs file, 244

InitFormSchema.xsd file, 221

Initialized status, 129

InitializeWorkflow activity, 122

InitialState activity, ResetTask workflow,
197–198

initialStateName property, 194

initiation forms, 89, 97–99, 109, 205, 208–209,
251. See also forms; ASP.NET forms;
ASPX forms; association forms;
InfoPath forms; Workflow forms

in InfoPath, 218–219

publishing, 220, 221

testing, 220

vs. rules, 257

testing, 237–238

uses, 210

in Visual Studio, 225–228

workflow.xml file, 235

InitiationData property, 225–226

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

initiators, 32

InitTaskCreatedState activity, ResetTask
workflow, 197, 199

Mann_700-1INDEX.fm Page 415 Tuesday, January 23, 2007 9:06 AM

416 ■I N D E X

inline code vs. writing code for custom
activities, 124

InputFormControl control, 350

properties, 353

InputFormSection control, 350–352

install.bat file, 182–183, 235, 247–249

installations for Workflow development, 41

recommended order, 42–43

InstanceId property, SPWorkflow class, 372

InstantiationUrl property

SPWorkflowAssociation class, 379

SPWorkflowTemplate class, 385

InstantiationUrl, workflow.xml file, 235, 247

InternalState property, SPWorkflow
class, 372

Internet publishing, MOSS, 29

Invoked property

OnTaskChanged activity, 216

OnWorkflowActivated1 activity, 215

onWorkflowActivated1 activity, 227

InvokeWebService WF activity, 116

InvokeWorkflow activity, 120

IsBindingSet method, 144

IsChangeAllowed property, WSSTask
class, 388

IsCompleted property, SPWorkflow class,
372

IsDeclarative property,
SPWorkflowTemplate class, 385

IsLocked property, SPWorkflow class, 372

IsMacroFree property, 138

IsTaskCompleted property, WSSTask
class, 388

Item, 375

Item Changed Start option, 57

Item property,

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

ItemGuid property, SPWorkflow class, 372

ItemId property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

ItemMetadata.xml file, 223

Items property, forEach1 activity, 168

ItemUrl property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

■J–K
KCD Holdings

Employee Review workflow, 255, 256

LoggerActivity, 147–153

MacroStripperActivity, 126–146

DocCleaner workflow, 159–161, 176–186

MarketingCampaign workflow, 212–239

MarketingCampaignASP workflow,
240–250

Monitoring Marketing Campaigns
scenario, 53–76

New Employee Orientation portal, 44

new employee scenario, 43–44

Office 2007 System’s business value, 44–45

Product Marketing Plan Workflow, 94–108

ResetTask workflow, 195–203

KCD.SharePoint.Activities namespace, 128

KCD.SharePoint.Activities project, 127

KCD.Sharepoint.Activities.Composite
project, 147

knowledge management, 35

■L
Label control

Enabled property, 285

ID property, 285

LabelText, InputFormControl, 353

launching workflows, DocCleaner, 185

libraries. See document libraries

licensing, Workflow development, 40

Mann_700-1INDEX.fm Page 416 Tuesday, January 23, 2007 9:06 AM

417■I N D E X

Find it faster at http://superindex.apress.com

line-of-business applications, MOSS, 29

List Item ID data type, 87

List property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

ListBox control, ID property, 285

Listen activity, 120

ListId property, 162

SPWorkflow class, 372

SPWorkflowActivationProperties
class, 377

lists, 30

content types, 31

vs. document libraries, 30

list items, List Item ID data types, 87

ListUrl property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

local scope, 313

cancellation handlers, 320

fault handling, 318–319

LockItem property, SPWorkflowAssociation
class, 379

Log to History List action, 84

LoggerActivity, 147–148, 155

canceling, 151–153

coding, 148–150

LoggerActivityToolboxItem, 151

logging activities

canceling workflows, 320

fault handling, 316–319

LoginName property, Contact class, 345

Logs files, 306

LogToHistoryList activity, 122, 153–154,
165–166

Longhorn Server, development setup, 41

Lookup information types, 91

lookups. See workflow lookups

■M
machine-centric workflows, 5–7, 22, 34

MacroStripperActivity, 126–128, 138–139,
155, 165–166

behavior and appearance, 139–141

coding, 128–132, 135

deploying, 146

DocCleaner workflow, 159–161, 176–186

icon and activities on canvas, 142–143

properties, 135–138, 144–145, 168

visual elements, 141–142

MacroStripperActivity class, 128

MacroStripperActivityValidator
attribute, 145

management policies

content types, 30

MOSS, 29

manifest.xml file, 160

manifest.xsf file, 221

Manual Start option, 57

Marketing Plans document library, 94

MarketingCampaign workflow, 212–213

activities, 213–217

deploying, 230, 233–237

initiation forms, 217

in InfoPath, 218–221

in Visual Studio, 225–228

task forms

in C#, 228

in InfoPath, 221–224

Visual Studio, 228–229

testing, 237–239

Mann_700-1INDEX.fm Page 417 Tuesday, January 23, 2007 9:06 AM

418 ■I N D E X

MarketingCampaignASP workflow, 240–241

activities, 241

ASP.NET

association forms, 242–243

FormData.cs template files, 244-246

initiation forms, 243–244

WFDataPages.cs template files, 244–246

deploying, 247–250

MaximumEntities property, ASPX People
Editor, 346

memory, hardware for development, 41

metadata

CEB Approval, 58

content types, 30

rulesets, 267–268

MethodInvoking property

CreateTask activity, 200

CreateTask1 activity, 216

emlAuthor activity, 168

emlError activity, 168

hlogBegin activity, 168

hlogEnd activity, 168

SendEmail1 activity, 215

SendEmail1 property, 297

SendEmail2 property, 297

Microsoft

CRM, 124

External Ruleset Demo application, 274,
299

Gold Partnership, 40

Message Queue, communications
interface, 19

Mobile Device Emulator (Microsoft), 308

Office 2007 SharePoint Server. See MOSS

support lacking for Policy activities and
rulesets in Workflows, 258

Microsoft.Office.Workflow.Utility
namespace, 344

Microsoft.Sharepoint assembly, 128, 147

Microsoft.SharePoint.WebControls
namespace, 345

Microsoft.Sharepoint.Workflow
namespace, 371

Microsoft.Sharepoint.WorkflowActions
assembly, 147

Microsoft’s Virtual PC, 40

Mobile Device Emulator, 308

mobile devices

accessing Mobile views, 308–309

custom vs. out-of-box workflows for
mobile connections, 309

Internet access, 308–309

moving documents to laptops, 313

Outlook synchronization, 309–312

workflow access, 306–307

Mobile views (SharePoint), 306–307

accessing with emulator tools, 308–309

moving documents to laptops, 313

of tasks, 310–312

modification forms, 205, 210–211, 235, 251

modifications, correlation tokens, 173–174

ModificationUrl property

SPWorkflowAssociation class, 379

SPWorkflowTemplate class, 385

workflow.xml file, 235

Modified by a Specific Person condition, 82

Modified in a Specific Date Span
condition, 82

Modified property, SPWorkflowAssociation
class, 379

ModifyWorkflow method,
SPWorkflowManager class, 381

Monitoring Marketing Campaigns
scenario, 46

MOSS (Microsoft Office 2007 SharePoint
Server), 29

ASPX forms, 247

Business Bar, 24

Forms Server, 26

Forms Services, 51, 74, 78, 207

Mann_700-1INDEX.fm Page 418 Tuesday, January 23, 2007 9:06 AM

419■I N D E X

Find it faster at http://superindex.apress.com

functionality, 29

InfoPath forms, 205, 212, 251

SDK, 29

project templates, 157–158, 203

Workflow development setup, 38

web service methods, 387

Workflow development setup, 38, 41

Workflow web service methods, 387

workflows

Approval, 51–56, 78

Approval, CEB process, 56–76

Collect Feedback, 51–52, 78

Collect Signatures, 51–52, 78

Disposition Approval, 51–52, 78

Three-State, 51–52, 78

WSSTask class, 388

MSDN Universal, 40

MSMQ (Microsoft Message Queue), 19

Multiple Line of Text information types, 90

MultiSelect property, ASPX People
Editor, 346

myschema.xsd file, 221

■N
Name property

SPWorkflowAssociation class, 379

SPWorkflowTemplate class, 385

namespaces for workflow projects, 128–129

nesting state activities, 195

.NET Framework 2.0 and 3.0

recommended installation order, 42

Workflow development environment
setup, 38

.NET Framework 3.0

activities, 113, 155

debugging vs. workflow debugging, 305

fault handling vs. workflow fault
 handling, 313

prerequisite for SharePoint Designer, 80

recommended installation order, 42

Reflector utility, 181

web site’s External Ruleset Demo
application, 274, 299

WF (Windows Workflow Foundation),
17, 33

Workflow development environment
setup, 38

New Employee Orientation portal, 44

notifications

workflow steps, 103–105

workflow tasks, 322, 337

Number data type, 87

Number information types, 90

■O
Object Model. See Workflow Object Model

Office 2000

Workflow versions, 77

Office 2003

InfoPath, 205

Workflow versions, 77

Workflows, 322–324, 329–337

Office 2007

books available, 22

InfoPath, 205

Workflow versions, 77–78

Office 2007 client applications, 22–24

Business Bar, 24–26

Office Button, 26–27, 73

Outlook, 27–28

recommended installation order, 42

SharePoint Designer, 28

Workflow development environment
setup, 38

XML Code Snippets

recommended installation order, 42

Workflow development environment
setup, 38

Office 2007 Forms Server. See Forms Server

Mann_700-1INDEX.fm Page 419 Tuesday, January 23, 2007 9:06 AM

420 ■I N D E X

Office 2007 servers, 28

Forms Server, 32

MOSS (Microsoft Office 2007 SharePoint
Server), 29

WSS (Windows SharePoint Services), 29

Office 2007 System, 44–45

Office XP, Workflow versions, 77

OnApproved events, 15

OnBehalfEmail property,
SPWorkflowTaskProperties
class, 384

OnBehalfReason property,
SPWorkflowTaskProperties
class, 384

onCreateTask method, 228, 246

OnDocumentApproved events, 11

OnDocumentRejected events, 11

OnDocumentSubmitted events, 11, 15

OneNote, 23–24

online purchases, credit card approvals, 5

OnModificationsAccepted/OnModifications
Rejected events, 15

OnModified events, 15

OnRejected events, 15

onSendEmail method, 227–228, 246

OnTaskCancelled property, WSSTask
class, 388

onTaskChanged activity, 122, 216

MarketingCampaign workflow, 213

properties, 200

ResetTask workflow, 197–199

onTaskChanged method, 229, 246–247

OnTaskCreated activity, 122

task placement, 304

OnTaskDeleted activity, 122

OnTaskDeleted property, WSSTask class, 388

onWorkflowActivated activity, 122, 161, 203

adding to workflows, 165–166

caution, 165

ResetTask workflow, 197–198

state machine workflows, 188–189

onWorkflowActivated method, 227

onWorkflowActivated1 activity, properties,
168, 170, 215, 227

onWorkflowItemChanged activity, 122

properties, 201

ResetTask workflow, 197, 201

OnWorkflowItemDeleted activity, 122

OnWorkflowModified activity, 122

operators for rules, 264

OriginalDocumentName property, 137

Originator property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

OriginatorEmail property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

OriginatorUser property,
workflowProperties object, 162

Outlook, 23

synchronization (SharePoint), 307,
309–312

task lists, 27–28, 63–64

Workflow, 27–28, 34

Workflow development setup, 41

out-of-box workflows vs. custom workflows
for mobile connections, 309

out-of-the-box activities, 116, 120, 121–123,
156. See also activities; composite
activities; custom activities; Policy
activities; state activities; WF
activities

■P
packages, 127

Padding property, InputFormSection
control, 352

Panel control

Enabled property, 285

ID property, 285

Mann_700-1INDEX.fm Page 420 Tuesday, January 23, 2007 9:06 AM

421■I N D E X

Find it faster at http://superindex.apress.com

parallel actions, 83–84

Parallel activity, 116, 120, 320

parallel flow workflow templates, 157

ParentAssociation property, SPWorkflow
class, 372

ParentContentType property,
SPWorkflowAssociation class, 379

ParentItem property, SPWorkflow class, 372

ParentList property, 138

SPWorkflow class, 372

SPWorkflowAssociation class, 379

ParentSite property, SPWorkflowAssociation
class, 379

ParentWeb property

SPWorkflow class, 372

SPWorkflowAssociation class, 379

participants, 32

passwords, Workflow development setup, 41

Pause for Duration action, 84

Pause Until Date action, 84

PayloadItem property, 132, 135–136

MacroStripper activity, 168

payloads, 81

information retrieval, 97

PDAs (personal digital assistants), Mobile
views, 308–309

People Editor (ASPX), 243, 339

adding/configuring instances, 345–346

data handling, 347–349

properties, 346–347

PercentComplete property,
SPWorkflowTaskProperties
class, 384

permissions

breaking inheritance, 358

resetting, 358

Permissions and Management section,
Document Library Settings, 55

persistence, 19, 34

activity management service, 21

dehydration, 302

persistent storage

dehydration, 301–302

personal digital assistants (PDAs), Mobile
views, 308–309

Picture information types, 92

PlaceButtonUnderEntityEditor property,
ASPX People Editor, 346

policies. See management policies

Policy activities, 120, 266, 300. See also
activities; composite activities;
custom activities; out-of-box
activities; state activities; WF
activities

ExternalPolicy, 280

if-then-else statements, 266

rulesets, 258, 273–275

PopulatePageFromXml method,
WFDataPages class, 348

Portals and Collaboration space, 155

postbuild events

DocCleaner workflow, 182

MarketingCampaign workflow, 236

ResetTask workflow, 202

PostBuildActions.bat file, 160

WSS Solution deployment files, 203

PowerPoint, 23

Workflow, 34

Preventing Outdated Tasks scenario, 46

PrincipalSource property, ASPX People
Editor, 346

process automation, 7

processing workflows, 302

batch execution, 303–304

canceling workflows, 320

fault handling, 319

hiding documents, 357–359

Mann_700-1INDEX.fm Page 421 Tuesday, January 23, 2007 9:06 AM

422 ■I N D E X

Product Launch Campaigns scenario, 46

Product Marketing Plan Workflow, 94

approval process, 95

defining, 96

deploying workflow, 106

designing, 95

initiation forms, 97–99

settings, 97

testing workflow, 106–108

workflow steps, 99–106

Project, 23, 24

promoted properties, 359

properties. See also component properties

ButtonSection control, 353

code or Declarative Rule Conditions,
171–172

CompleteTask1 activity, 217

Contact class, 345

Contacts class, 347-348

correlation tokens, 173

CreateTask activity, 200, 216

ExternalPolicy activity, 297–298

FormData class, 348

InputFormControl control, 353

InputFormSection control, 351–352

OnTaskChanged activity, 200, 216

OnWorkflowActivated1 activity, 215, 227

onWorkflowItemChanged activity, 201

People Editor (ASPX), 346–347

promoted properties, 359

RuleSet Manager application, 285

SendEmail1 activity, 215

SPContentType class, 387

SPList class, 387

SPListItem class, 386

SPWeb class, 387

SPWorkflow class, 372, 374

SPWorkflowActivationProperties class,
376–378

SPWorkflowAssociation class, 379, 381

SPWorkflowCollection class, 374–375

SPWorkflowFilter class, 376

SPWorkflowManager class, 381

SPWorkflowTask class, 383

SPWorkflowTaskProperties class, 384

SPWorkflowTemplate class, 384–385

task property caution, 369

UpdateTask activity, 217

While activity, 216

WSSTask class, 388

Publisher, 23–24

publishing projects, 334–335

initiation forms in InfoPath, 220–221

purchases online, credit card approvals, 5

■R
recursive composition, 195

RegisterForStatusChange method, 148

regular properties. See standard properties

rehydration, 302, 304

relationships, 127

Release build, 203

remote connections to workflows, 306, 307

custom vs. out-of-box workflows, 309

Mobile views, 307

accessing with emulator tools, 308–309

of tasks, 310–312

moving documents to laptops, 313

Outlook synchronization, 309–312

RemoveMacros method, 130, 132

MacroStripperActivity, 130–133, 135

RemoveWorkflowAssociation method

SPContentType class, 386

SPList class, 386

RemoveWorkflowFromListItem method,
SPWorkflowManager class, 381

Removing Macros scenario, 46

Replicator activities, 116, 120, 258, 275

reports. See Workflow Reports

RequisitionValue property, 271

Mann_700-1INDEX.fm Page 422 Tuesday, January 23, 2007 9:06 AM

423■I N D E X

Find it faster at http://superindex.apress.com

ResetTask workflow, 195–197

child-level properties, 199

CreateTask activity properties, 200

deploying, 202

deploying to production, 202–203

InitCreateTask method, 201

onTaskChanged activity properties, 200

onWorkflowItemChanged activity
properties, 201

state activities, 197–199

testing, 202

updateDueDates method, 201, 202

ResetTaskOnChange project, 196

resources

content types, 31

Office 2007 books available, 22

workflow hosts, 21

Response section, workflows, 72

Results property, ConditionalEventArgs
parameter, 259

Reviewers property, FormData class, 348

robotics, assembly-line, 5

rollbacks, 40

RollbackTask activity, 122

ROM image for emulators, 308–309

rule management service, 21

Rule Set Editor, 273–274, 284

RuleInvoke method, 271

RuleRead method, 271

rules, 256–257, 300

activity conditions, 257–259, 300

Code Conditions, 259, 260

Declarative Rule Conditions,
260–266, 295

vs. association or initiation forms, 257

operators, 264–265

.rules files, 265, 266

Rules engine. See Workflow Rules engine

rules for workflows. See rules

ruleset dependencies

attribute-based, 270–271, 300

explicit, 270, 272, 300

implicit, 270, 300

RuleSet Manager application, 273–274,
284–285

control properties, 285

editing rulesets and saving to SharePoint,
292–293

ExternalPolicy activity workflow
retrieval, 288

namespace references, 286

retrieving assembly names for specific
workflows, 291

retrieving specific workflow rulesets,
289–290

rulesets, 298

SelectedIndexChanged event, 294–295

WorkflowData class, 287–288

RuleSetName property, ExternalPolicy
activity, 282

rulesets, 267, 300

chaining, 268–272, 300

editing and saving to SharePoint, 292–293

explicit chaining, 272

External Ruleset Demo application,
275, 299

features, 300

full chaining, 272

Halt directive, 272

if-then-else statements, 267

metadata, 267–268

Policy activities, 258, 266, 273–275

retrieving and executing, 279–280

retrieving from specific workflows,
289–290

RuleSet Manager application, 298

sequential chaining, 272

RuleWrite method, 271

Run All Actions in Parallel action, 103

Mann_700-1INDEX.fm Page 423 Tuesday, January 23, 2007 9:06 AM

424 ■I N D E X

Runtime Services

activity management service, 21

rule management service, 21

Scheduling service, 21

■S
sampledata.xml file, 221

sandboxing, 40

Scheduling service, 21

schemas, Contact Selector control, 341–342

scope. See local scope; global scope

SDKs

MOSS, 38

recommended installation order, 42

WSS

Sequential Workflow Library, 158

State Machine Workflow Library, 158

Workflow development setup, 38

search functionality (MOSS), 29

security

CAS (Code Access Security), 336

Workflow development environment
setup, 41

workflow hosts, 20

WSS (Windows SharePoint Services), 29

SelectedIndexChanged event, RuleSet
Manager application, 294–295

SelectSingleNode statements, 333

Send an Email action, 84, 100–101, 103

sendAuthorEmail activity, 175

SendEmail activities, 122, 165–166, 228, 296

error message, 171

MarketingCampaign workflow, 213

properties, 215, 297

SendEmailNotification property,
SPWorkflowTaskProperties
class, 384

sendErrorEmail activity, 174

Sequence activity, 116, 120

MarketingCampaign workflow, 213

sequential chaining, 272

Sequential Workflow Library (WSS SDK), 158

sequential workflows, 7–10, 15, 34

DocCleaner, 160–161, 176–186

MarketingCampaign, 213–217

SharePoint Server Sequential Workflow
Library template, 157–159

vs. state machine workflows, 12–15,
186–187, 193–194

serial actions, 83–84

serialization, 227

SerializeFormToString method,
WFDataPages class, 348

server administrators, 32

Server Tasks menu options, 72

Set Content Approval Status action, 84

Set Field in Current Item action, 84

Set Time Portion of Date/Time Field
action, 84

Set Workflow Variable action, 84

setBeginLog method, 175

SetCRMData activity, 125

setEndLog method, 175

SetHistoryList method,
SPWorkflowAssociation class, 379

SetState activity, 116, 122

ResetTask workflow, 198

SetTaskList method, SPWorkflowAssociation
class, 379

Settings, Document Library Settings, 55

Shared Documents library, 94

SharePoint, 18, 29

content types, 30–34

Mobile views, 306–307, 310–313

Outlook synchronization, 307–312

persistence, 19

recommended installation order, 42

synchronizing task lists with Outlook,
63–64

task list synchronization, 27–28

Tracking provider, 20

Mann_700-1INDEX.fm Page 424 Tuesday, January 23, 2007 9:06 AM

425■I N D E X

Find it faster at http://superindex.apress.com

WF (Windows Workflow Foundation), 33

workflow hosts, 21

SharePoint 2007

content types, 338

document menu, 65

Features, 338

SharePoint 2007 Server

activities vs. custom activities, 304

web services

creating, 327, 328

retrieving workflow task information,
325, 327

Workflow development in Office 2003, 323

SharePoint Configuration Wizard, 42

SharePoint Designer, 15, 23–24, 79–80. See
also State Machine Designer;
Workflow Designer

ASP.NET forms, 93

correlation tokens, 173

custom forms, 89

custom vs. out-of-box workflows for
mobile connections, 309

debugging workflows, 305

Features, 176–178

guidelines for use, 109

information types, 90–93

initiation forms, 89, 97–109

new workflows, 96

testing workflows, 106–108

vs. Visual Studio 2005, 321

wizard-based process, 109

Workflow development setup, 38

SharePoint Portal Server, 44

SharePoint Server Sequential Workflow
Library template, 157–159

SharePoint Server State Machine Workflow
Library template, 157, 159

SharePoint Solutions, 176, 178

SharePoint State Machine Workflow Library
template, 187

SharePointGroup property, ASPX People
Editor, 346

SharepointSequentialWorkflowActivity
activity, 122

ShowSectionLine property, ButtonSection
control, 354

ShowTaskPane method,
ThisDocument_Startup, 334

ShuttingDown property,
SPWorkflowManager class, 381

Simple Mail Transfer Protocol
(SMTP)-compliant email, 75

Single Line of Text information types, 90

site administrators, 33

site collection features, 184

Site property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

SiteId property

SPWorkflow class, 372

SPWorkflowActivationProperties
class, 377

SPWorkflowAssociation class, 379

workflowProperties object, 162

SiteUrl property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

smart tags, validation errors, 167

SMTP (Simple Mail Transfer
Protocol)-compliant email, 75

Solutions (SharePoint), 176

SourceSiteURL property, ExternalPolicy
activity, 277, 279

SPAdmin account, 42

SPContentType class, 386–387

SPList class, 386–387

SPListItem class, 386

SPService class, 42

SPWeb class, 387

Mann_700-1INDEX.fm Page 425 Tuesday, January 23, 2007 9:06 AM

426 ■I N D E X

SPWorkflow class, 372–374

SPWorkflowActivationProperties class,
225–226, 376–378

SPWorkflowAssociation class, 379–381

ASP.NET forms, 242

SPWorkflowCollection class, 374–375, 386

SPWorkflowFilter class, 376

SPWorkflowHistoryEventType class, 386

SPWorkflowManager class, 381–382

SPWorkflowState class, 382–383

SPWorkflowTask class, 383

SPWorkflowTaskProperties class, 228, 384

SPWorkflowTemplate class, 384–385

SPWorkflowTemplateCollection object, 387

SQL Express, 39, 41

SQL Server

persistence information, 19

workflow dehydration, 302

SQL Server 2005 Express Edition. See SQL
Express

standard flow workflow templates, 157

standard properties, 135, 137–138

Start options, CEB Approval Workflow, 57

StartDate property,
SPWorkflowTaskProperties
class, 384

StartWorkflow method

MOSS Workflow web service, 387

SPWorkflowManager class, 381

state activities, 189, 192. See also activities;
composite activities; custom
activities; out-of-box activities;
Policy activities; WF activities

EventDriven activity, 190–191, 197

nesting, 195

StateFinalization activity, 192, 197

StateInitialization activity, 190, 197

State Machine Designer, 187–188. See also
SharePoint Designer; Workflow
Designer

State Machine Workflow Library
(WSS SDK), 158

state machine workflows, 7–11, 34, 187–188

EventDriven activity, 190–191, 197

events, 33

Initial state, 194–195

nesting state activities, 195–196

Office state machines, 191–192

onWorkflowActivated activity, 188–189

ResetTask, 196–203

vs. sequential workflows, 12–15, 186–187,
193–194

SharePoint Server State Machine
Workflow Library template, 157, 159

state activities, 189–192

StateFinalization activity, 192, 197

StateInitialization activity, 190, 197

states, 33

State WF activity, 116

StateFinalization activity, 189, 192

ResetTask workflow, 197

WF activity, 116

StateInitialization activity, 189–190, 192

ResetTask workflow, 197

WF activity, 116

states, 8, 10–11, 15, 33

StatusUrl property

SPWorkflowAssociation class, 379

SPWorkflowTemplate class, 385

steps. See workflow steps

Stop Workflow action, 84

String data type, 87

strong-naming assemblies, 180

Subject property

emlAuthor activity, 168

emlError activity, 168

SendEmail1 activity, 215

SendEmail1 and SendEmail2 properties, 297

Mann_700-1INDEX.fm Page 426 Tuesday, January 23, 2007 9:06 AM

427■I N D E X

Find it faster at http://superindex.apress.com

Suspend WF activity, 116

synchronization

activity verbs with underlying activities,
366–367

task lists, 27–28, 63–64

with Outlook, 63–64, 307–312

SynchronizationScope activity, 120

System.Workflow.Activities assembly, 128

System.Workflow.ComponentModel
assembly, 128

System.Workflow.ComponentModel.Design
namespace, 365

System.Workflow.Runtime assembly, 128

■T
TargetStateName property, 198

Task Edit form in InfoPath, 222

task forms, 205, 211, 238, 251

in C#, 228

in InfoPath, 221–224

in Visual Studio, 228–229

task lists

properties, caution, 369

synchronizing, 27–28

with Outlook, 63–64

workflows, business logic, 61

task panes (VSTO), 323, 334

taskComplete method, 229, 246

TaskCreatedState activity, ResetTask
workflow, 197–198

TaskId property

CompleteTask1 activity, 217

OnTaskChanged activity, 200, 216

onWorkflowItemChanged activity, 201

UpdateTask activity, 217

TaskList property

SPWorkflow class, 372

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

TaskListId property

SPWorkflowActivationProperties class, 377

SPWorkflowAssociation class, 379

workflowProperties object, 162

TaskListTitle property,
SPWorkflowAssociation class, 379

TaskListUrl property,
SPWorkflowActivationProperties
class, 377

TaskProperties property, 229

CreateTask activity, 200

onWorkflowItemChanged activity, 201

UpdateTask activity, 217

TaskProperties.ExtendedProperties
property, 344

tasks

in activities, 304

simple or composite, 113–115, 155

CEB Approval Workflow, 57

correlation tokens, 173–174

Mobile view, 310–312

Tasks property, SPWorkflow class, 372

taskToken property, onWorkflowItemChanged
activity, 201

TeamSite site definition, 94

template files

FormData.cs, 244–246

WFDataPages.cs, 244–246

template.xml file, 221

TemplateName property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

templates. See also document templates

SharePoint Server Sequential Workflow
Library, 157–159

SharePoint Server State Machine
Workflow Library, 157, 159

SharePoint State Machine Workflow
Library template, 187

Mann_700-1INDEX.fm Page 427 Tuesday, January 23, 2007 9:06 AM

428 ■I N D E X

Terminate activity, 116, 120

testing, 40

in InfoPath

initiation forms, 220

task forms, 224

workflows, 336–337

DocCleaner, 183–185

MarketingCampaign, 237, 239

ResetTask, 202

text

Multiple Line of Text information types, 90

Single Line of Text information types, 90

Text property, Button control, 285

TextBox control

Enabled property, 285

ID property, 285

TextRectangle property, Activity Designer
class, 140–141

The File Is a Specific Range of Kilobytes
condition, 82

The File Is a Specific Type condition, 82

ThisDocument_Startup method, 330

CheckForWFTasks method, 332

GetValues method, 330, 331

GetValuesFromXML method, 333, 334

ShowTaskPane method, 334

variables, 329–330

Three-State workflow, 51–53, 78

Throw WF activity, 116

Time information types, 91

Timer, 19, 34

Title Field Contains Keyword condition, 82

Title property

InputFormSection control, 351

SPWorkflowTaskProperties class, 384

To and Body properties, 174

To property, SendEmail1 and SendEmail2
properties, 297

ToContact method, Contact class, 344–345

To-Do Bar synchronization, 63–64

To-Do item action, 101

ToolboxItem class, 148

MacroStripperActivity, 142–143

Tracking provider, 20, 34

activity management service, 21

SharePoint, 20

transaction management, 21

transaction support, 20, 34

transactions, state machine workflows, 7

TransactionScope activity, 120

translations, 10, 34

documents, 6

■U
UI (user interface), workflow hosts, 21

Universal Resource Names (URNs), 236

UntilCondition property, 116

Update List Item action, 84

Update statements, 272

UpdateAllTasks activity, 122

updateDueDates method, 201–202

updateDueDates property,
onWorkflowItemChanged
activity, 201

UpdateTask activity, 122

MarketingCampaign workflow, 213

properties, 217

UpdateWorkflowAssociation method, SPList
class, 387

UpdateWorkflowAssociationsOnChildren
method, SPContentType class, 386

UpdateWorkflowTemplate, 242

URNs (Universal Resource Names), 236

user accounts

recommended installation order, 42

Workflow development environment
setup, 41

User information types, 92

user management, 29

UserData property, ToolboxItem class, 148

Mann_700-1INDEX.fm Page 428 Tuesday, January 23, 2007 9:06 AM

429■I N D E X

Find it faster at http://superindex.apress.com

using statements, 130

ExternalPolicy activity, 277

MacroStripperActivity, 128–129, 152

■V
Validate method, 144

validation errors, 167, 172, 203

ValidationErrorCollection object, 144

ValidationVisibilityAttribute, 136

Validator class, MacroStripperActivity,
144–145

variables, 86–87, 109

Variables Editor, 86–87, 109

Verbs collection, ActivityDesignerVerb
objects, 365

view1.xsl file, 221

virtual machines for development, 40

Virtual PC (Microsoft), 40

Visio, 23, 24

Visual Studio

custom vs. out-of-box workflows for
mobile connections, 309

initiation forms, 225–228

SQL Express, 41

steps in workflows, 81

task forms, 228–229

Workflow Extensions for project
templates, 127

Visual Studio 2005

emulator tools, 308–309

recommended installation order, 42

vs. SharePoint Designer, 321

Workflow Designer, 158

Workflow development setup, 38

Visual Studio 2005 Code Snippet, 132

dependency properties, 135–136

Visual Studio Tools for Office (VSTO)

Project wizard, 329

Workflow development in Office 2003,
323–324, 329–337

■W
Wait for Field Change in Current Item

action, 84

web content management, 35

Web property

SPWorkflowActivationProperties
class, 377

vs. WebID property, 163

workflowProperties object, 162

web services

communications interface, 19

creating in SharePoint environment,
327–328

MOSS, methods, 387

MOSS workflows, methods, 387

retrieving workflow task information,
325, 327

WebId property

SPWorkflow class, 372

SPWorkflowActivationProperties
class, 377

SPWorkflowAssociation class, 379

vs. Web property, 163

workflowProperties object, 162

WebServiceFault activity, 120

WebServiceInput activity, 120

WebServiceOutput activity, 120

WebUrl property,
SPWorkflowActivationProperties
class, 377

WF (Windows Workflow Foundation), 17

architecture, 17–18

hosts, 18–21

pre-Office 2007 workflows, 16

Runtime Services, 21–22

SharePoint, 33–34

WF activities, 113, 116, 120, 156. See also
activities; composite activities;
custom activities; out-of-box
activities; Policy activities; state
activities

Mann_700-1INDEX.fm Page 429 Tuesday, January 23, 2007 9:06 AM

430 ■I N D E X

WFDataPages class, methods, 347–348

WFDataPages.cs template files, 244–246

WFTask web service, 325–327

WFTaskService web service proxy, 329

WhenCondition property, 116

While activities, 120

vs. CAG activities, 116

conditions, 258, 275, 300

MarketingCampaign workflow, 213

properties, 216

Windows Communication Foundation, 17

Windows Presentation Foundation, 17

XAML, 357

Windows Server 2003

development environment setup, 41

recommended installation order, 42

Workflow development environment
setup, 38, 41

Windows SharePoint Services. See WSS

Windows Workflow Foundation. See WF

WindowsBase assembly, 128

Word, 23

document libraries, templates, 335

Workflow, 34

Workflow environment setup, 38

Word 2003, Workflow development, 323–324,
329–337

Word Mobile, 310

WorkDayDate custom action, 359–362

Workflow Activity Library template, 127

workflow cancellation, 319–320

workflow debugging, 304–305

error messages, 305

Event log, 306

Logs files, 306

Workflow Status page, 305

workflow deployment, 176–181

configuring, 182

DocCleaner, 176–183

install.bat file, 182–183, 235, 247–249

MarketingCampaign, 230–237

MarketingCampaignASP, 247–250

to production, 202–203

ResetTask, 202

Workflow Designer, 28, 80, 187, 203. See also
SharePoint Designer; State Machine
Designer

activities, dragging/dropping from
Toolbox, 165–166

breakpoint settings, 305

custom forms, 89

data types, 87

Define Your New Workflow screen, 96

guidelines, 109

information types, 90–93

initiation forms, 89, 97–99, 109

lookups, 87–89, 100–101, 109

single lists on single sites, 108–109

steps, 81, 96, 99,–106, 109

actions, 83–84, 100–103, 109

checking, 89, 106

conditions, 81–83, 99, 102, 109

notifications, 103–105

tabs for fault handling functionality,
313–314

Variables Editor, 86–87, 109

Visual Studio 2005, 158

wizard-based process, 109

Workflow development

environment, 37

hardware requirements, 41

licensing, 40

recommended installation order, 42, 43

software requirements, 38–41

virtual machines, 40

FAQs, 391–396

Office 2003, 322–324, 329–337

SharePoint Designer vs. Visual Studio
2005, 321

Workflow Exceptions design canvas, 314

Mann_700-1INDEX.fm Page 430 Tuesday, January 23, 2007 9:06 AM

431■I N D E X

Find it faster at http://superindex.apress.com

Workflow Extensions for Visual Studio

project templates, 127

Workflow environment setup, 38

Workflow forms, 205, 250. See also forms;
ASP.NET forms; association forms;
ASPX forms; InfoPath forms;
initiation forms; Workflow forms

custom forms, 89

processing, 35

Workflow Foundation. See WF

workflow hosts, 18–20

communications and interface, 19, 34

persistence, 19, 34

resources, 21

security, 20

Timer, 19, 34

Tracking provider, 20, 34

transaction support, 20, 34

user interface, 21

Workflow information dialog box

Forms Server, 25–26

information displayed as ASPX pages,
25–26

workflow lookups, 87–89, 100–101, 109

Workflow Object Model

Microsoft.Sharepoint.Workflow
namespace, 371

SPWorkflow class, 372

uses, 371

workflow processing, 302

batch execution, 303–304

canceling workflows, 320

fault handling, 319

hiding documents, 357–359

Workflow Designer, 159

workflow projects, 203

Workflow property

SPWorkflowActivationProperties
class, 377

workflowProperties object, 162

Workflow Reports, 367–368

Workflow Rules engine, 256–257

Declarative Rule Conditions, 259

Workflow Settings

Add a Workflow screen, 55–56

Change a Workflow screen, 55

Change Workflow Settings screen, 61

Customize Workflow screen, 59–60

Permissions and Management section,
Document Library Settings, 55

Workflow Status page, 67, 72, 305

workflow steps, 81, 96, 99–109

actions, 83–84, 100–103, 109

checking, 89, 106

conditions, 81–83, 99, 102, 109

deploying workflows, 106

notifications, 103–105

testing workflows, 106–108

workflow tasks

interacting with, 322, 337

notifications, 322, 337

synchronizing lists with Outlook, 63–64

workflow testing, 106–108, 336–337

DocCleaner, 183–185

MarketingCampaign, 237–239

ResetTask, 202

Workflow web service

MOSS, methods, 387

workflow.xml Code Snippet, 178

workflow.xml file, 160, 176, 178–180, 230, 235

Code Snippet, 232–233

customizing, 233–234

error messages, 183

MarketingCampaignASP workflow,
247–248

Name string, 181

workflow1.cs file, 160

WorkflowAssociations property,
SPContentType class, 387

Mann_700-1INDEX.fm Page 431 Tuesday, January 23, 2007 9:06 AM

432 ■I N D E X

WorkflowData class, RuleSet Manager
application, 287–288

WorkflowId property

SPWorkflowActivationProperties
class, 377

SPWorkflowTask class, 383

workflowProperties object, 162

WorkflowManager property, SPList class, 387

WorkflowProperties collection, 135

WorkflowProperties object, 161–162, 203, 228

WorkflowProperties property, ResetTask
workflow, 199

WorkflowPropertiesName property, 199

OnWorkflowActivated1 activity, 168, 215

workflowPropertiesPath property,
onWorkflowActivated1 activity, 168

Workflows, 3

Business Bar, 24–26

Forms Server, 32

launching with DocCleaner, 185

Office Button, 26–27

Outlook, 27–28

pre-Office 2007 workflows, 16–17

previous Office versions, 77–78

workflows, 4, 33

benefits, 76

business logic, 60–61

checking out documents, 368

computer’s role, 4–5

content types, 30

correlation tokens, 173–174

custom actions, 359–363

custom conditions, 363–364

deploying, 106

human-centric, 5–7, 22–34

initiating from client applications,
322, 337

machine-centric, 5–7, 22–34

manual process, 4

process, 159

sample, 295–296

sequential, 7–15, 34

state machine, 7–15, 33–34

user types, 32–33

variations, 73–76

workflows for mobile connections, 306–307

custom vs. out-of-box workflows, 309

Mobile views, 307

accessing, 308–309

tasks, 310–312

moving documents to laptops, 313

Outlook synchronization, 309–312

Workflows property, SPListItem class, 386

WorkflowTemplates property, SPWeb
class, 387

wsp_Structure.ddf file, 160

WSS (Windows SharePoint Services), 29

ASPX forms, 247, 251

Forms Server, 207

functionality, 29

workflows

Three-State, 51–53, 78

WSSTask properties, 388

WSS (Windows SharePoint Services) SDK

project templates, 158, 203

Solution deployment files, 203

v3, SharePoint Designer vs. Visual Studio
2005, 321

Workflow development environment
setup, 38

WSSHistory activity, 203

WSSTask class, properties, 388

Mann_700-1INDEX.fm Page 432 Tuesday, January 23, 2007 9:06 AM

433■I N D E X

Find it faster at http://superindex.apress.com

■X–Z
XAML (Extensible Application Markup

Language), 355–356

workflow sample, 356–357

XML case sensitivity, 218

XML Code Snippets

recommended installation order, 42

Visual Studio 2005 Code Snippet, 132

Workflow development environment
setup, 38

XML Serialization, 227

XSD schema, association or initiation
forms, 225

XSD utility, 227

ZIP packages, 127

Mann_700-1INDEX.fm Page 433 Tuesday, January 23, 2007 9:06 AM

Mann_700-1INDEX.fm Page 434 Tuesday, January 23, 2007 9:06 AM

You Need the Companion eBook
Your purchase of this book entitles you to buy the

companion PDF-version eBook for only $10. Take the
weightless companion with you anywhere.

We believe this Apress title will prove so indispensable that you’ll want to carry it

with you everywhere, which is why we are offering the companion eBook (in

PDF format) for $10 to customers who purchase this book now. Convenient and fully

searchable, the PDF version of any content-rich, page-heavy Apress book makes a

valuable addition to your programming library. You can easily find and copy code—or

perform examples by quickly toggling between instructions and the application. Even

simultaneously tackling a donut, diet soda, and complex code becomes simplified

with hands-free eBooks!

Once you purchase your book, getting the $10 companion eBook is simple:

1 Visit www.apress.com/promo/tendollars/.

2 Complete a basic registration form to receive a randomly

generated question about this title.

3 Answer the question correctly in 60 seconds, and you will

receive a promotional code to redeem for the $10.00 eBook.

All Apress eBooks subject to copyright protection. No part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher. The purchaser may print
the work in full or in part for their own noncommercial use. The purchaser may place the eBook title on any of their
personal computers for their own personal reading and reference.

Offer valid through

2560 Ninth Street • Suite 219 • Berkeley, CA 94710

8/07.

Mann_700-1INDEX.fm Page 435 Tuesday, January 23, 2007 9:06 AM

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

Leading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

Mann_700-1INDEX.fm Page 436 Tuesday, January 23, 2007 9:06 AM

399

A lot of new terms are introduced throughout this book, as there would be with any new tech-
nology. While you’re learning about Workflow in Office 2007, it may be helpful to peruse this
glossary periodically. It will help as you’re making your way through the book by serving as
a refresher of the material you’ve covered and an introduction to what is yet to come. Once
you’re a Workflow guru, you can also tear these pages out, write cryptic messages on them, and
toss them over the cubicle wall at your neighbor. Make sure you’re chanting like a Gregorian
monk while you do so. Your legendary status will only grow.

action
The work performed in a workflow built with the SharePoint Designer.

activity
A discrete unit of functionality used to build a workflow. Send Email, Create Task, and Write

to Log are all examples of activities.

administrator
The person responsible for establishing and maintaining the environment in which the

workflows operate. Can be broken down into server administrator and site administrator.

association
A relationship between a Workflow template and list or document library that makes the

workflow available to items within that list or document library.

builder
This role is tasked with creating new workflows. Typically this person would be using Visual

Studio (the Workflow Designer) to build compiled workflows. See designer.

business process automation
Another term for workflow.

business process management
Another term for workflow.

composite activity
An activity that contains other activities. It controls the processing of those child activities

and/or does some processing before or after the child activities. See simple activity.

Glossary

Mann_700-1Glossary.fm Page 399 Friday, January 19, 2007 3:06 PM

400 ■ G L O S S A R Y

condition
The circumstances that indicate whether or not a step of a SharePoint Designer Workflow

should execute.

condition
A construct within Visual Studio–built workflows that returns a Boolean result to indicate a

course of action within the workflow.

content type
A new feature in SharePoint that serves as a means of centralizing the definition of a cohe-

sive unit of information and its associated metadata into a single manageable and deploy-

able unit.

correlation token
The construct used to keep individual instances of a workflow separate, ensuring that activities

operate on the proper instance and data is connected to the proper instance.

dehydration
The process of persisting our workflow to disk and removing it from memory for performance

benefits. See rehydration.

dependency property
A special type of property on an activity that allows the workflow builder to assign values

that will not exist until runtime.

designer
Another name for someone who creates workflows. Typically, this person would be using

SharePoint Designer to create declarative (no code) workflows as opposed to Visual Studio.

See builder.

event
In a state machine workflow, an occurrence that is responsible for invoking the transition of

our workflow from one state to another.

feature
A package of SharePoint functionality that can be developed, deployed, managed, and activated

as a unit.

host
An executable process that serves as the interface between the workflow engine and work-

flow participants. The host provides common mechanisms for all WF workflows to provide

core services. For Office workflows, SharePoint is our host.

Mann_700-1Glossary.fm Page 400 Friday, January 19, 2007 3:06 PM

 ■ G L O S S A R Y 401

human-centric workflow
People are the primary participants and completers of tasks. See machine-centric workflow.

This type of workflow is the primary focus of Workflow in Office 2007. Human participants

play critical roles in the process.

initiation
The process of launching a workflow on a specific list item or document. Workflows must be

associated with the list or document library first. See association.

initiator
The person who originates or kicks off a workflow. Typically, this will be the owner or author

of the document or list item, but it doesn’t have to be. Anyone with sufficient privileges can

start a workflow on an item. Also referred to as originator.

instance
An individual occurrence of a workflow running on a given list item or document. Also known

as workflow instance.

lookups
See workflow lookups.

machine-centric workflow
Computers are the primary participants and completers of tasks. See human-centric workflow.

This type of workflow is not the primary focus of Workflow in Office 2007. There is, however,

nothing that stops WF from implementing a machine-centric process.

MOSS (Microsoft Office SharePoint Server)
The next version of SharePoint Portal Server—and no, it does not gather on rolling stones.

originator
See initiator.

participant
The person who receives the tasks of a workflow and completes them.

payload
The document or other piece of content that a workflow is assigned to. For example, in an

instance of an Approval workflow, the document that a reviewer must approve or reject is

called the payload.

rehydration
The process of reading our workflow information from its persisted state on disk and re-creating

its representation in memory exactly the same as if it had never been persisted. See dehydration.

Mann_700-1Glossary.fm Page 401 Friday, January 19, 2007 3:06 PM

402 ■ G L O S S A R Y

rules
A set of conditions evaluated at runtime to determine how a workflow should execute.

ruleset
A collection of rules applied as a unit. Within a ruleset, rules can be assigned priorities,

reevaluation conditions, dependencies, and so forth.

sequential workflow
A style of workflow in which the process moves via a prescribed path from beginning to end.

Often depicted as a flowchart. Compare to state machine workflow.

server administrator
The role responsible for installing workflows on a server or farm so that they are available for use.

simple activity
An activity that does a single task. See composite activity.

site administrator
The role responsible for creating a workflow association.

state
In a state machine workflow, a condition that represents the current status of our process.

state machine workflow
A style of workflow in which there is no prescribed path to follow through the process. The

process is completed as a result of events triggering transitions from one status to another.

Compare to sequential workflow.

steps
A portion of a workflow built with the SharePoint Designer. Each step of a workflow is composed

of conditions and actions that dictate when and what it does.

Windows Workflow Foundation
Part of the .NET Framework 3.0, it is responsible for providing the core services necessary for

running all Windows workflows.

workflow
The process that defines and controls the completion of one or more tasks in order to bring

about the realization of an identified goal.

workflow instance
See instance.

Mann_700-1Glossary.fm Page 402 Friday, January 19, 2007 3:06 PM

 ■ G L O S S A R Y 403

workflow lookups
In SharePoint Designer’s workflows, a means of retrieving data from external sources to use

within the workflow without writing code.

Workflow template
The SharePoint feature deployed to the server that defines the forms and assemblies used by

the workflow. Templates cannot be accessed directly other than to create an association.

XAML (Extensible Application Markup Language)
An XML dialect for describing objects and all of their members entirely in XML. Programs

can then read and parse this XML and then create the objects as part of the application.

Mann_700-1Glossary.fm Page 403 Friday, January 19, 2007 3:06 PM

Mann_700-1Glossary.fm Page 404 Friday, January 19, 2007 3:06 PM

	Workflow in the 2007 Microsoft Office System
	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Appendix
	Index
	Glossary

