
www.allitebooks.com

http://www.allitebooks.org

Chuck Hudson

eBay Commerce Cookbook

www.allitebooks.com

http://www.allitebooks.org

ISBN: 978-1-449-32015-7

[LSI]

eBay Commerce Cookbook
by Chuck Hudson

Copyright © 2013 Chuck Hudson. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Kara Ebrahim

Copyeditor: Rachel Head
Proofreader: Kara Ebrahim
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

December 2012: First Edition

Revision History for the First Edition:

2012-12-20 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449320157 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. eBay Commerce Cookbook, the image of a Mississippi kite, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449320157
http://www.allitebooks.org

To Michele, Sierra, and Alexandra. Thank you for fueling my creativity, keeping me
young, and showing me what is most important: you.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. vii

1. Product Discovery and Research. 1
1.1. Tapping Into Product Reviews and Guides 2
1.2. Mapping Product Availability 16
1.3. Presenting Products Through eBay 27
1.4. Conclusion 39

2. Product Presentation. 41
2.1. Customizing a Magento Storefront 42
2.2. Personalizing a Store Experience 54
2.3. Presenting Similar Items 69
2.4. Conclusion 76

3. Enhancing the Payment Experience. 77
3.1. Autogenerating Coupons with Magento 78
3.2. Making Payments with Preapprovals 93
3.3. Giving Back at Checkout 104
3.4. Conclusion 113

4. Order Fulfillment. 115
4.1. Just-in-Time Shipping Forms 116
4.2. Simple Shipping Extension in Magento 129
4.3. Multiple Supplier Fulfillment 140
4.4. Conclusion 152

5. Consumption and Sharing. 153
5.1. Sharing with QR Codes 154

v

www.allitebooks.com

http://www.allitebooks.org

5.2. Creating a Taste Graph 167
5.3. Social Recommendations 177
5.4. Conclusion 187

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

How We Do Commerce
The way in which we do commerce across the globe has changed greatly in the last
decade, and indeed in just the last couple of years. No longer can commerce be thought
of as solely completed in brick-and-mortar storefronts and on PCs, through online
commerce sites. We now have commerce anywhere and everywhere, through mobile
devices and card readers that plug into our smartphones. Business models have expan‐
ded past the “freemium” and premium models used extensively online into innovative
concepts such as social commerce and “causium” implementations. The commerce life‐
cycle is literally changing before our eyes.

On a recent trip to San Francisco, I found myself in one of the on-demand car service
options traveling from my hotel across town to the Moscone conference center. While
riding along, I realized that I had forgotten to purchase a birthday present for a friend.
Using my smartphone, I looked up my friend’s wish list on a popular online shopping
site and purchased a present to be shipped out that day in a few simple clicks. The site
let me sign in quickly via my mobile device, find my friend’s wish list, see what was
recommended for her, and check out without even having to pull out my credit card. I
then remembered that the night before another friend had paid for dinner and I wanted
to reimburse him for my half. So I opened my PayPal app on the phone and quickly
transferred some funds to him.

In that short ride, I had completed multiple commerce transactions. When we arrived
at the conference center, I handed my credit card to the driver, who took out his smart‐
phone and plugged in a tiny card reader. He proceeded to swipe my credit card, input
the total, and have me sign, and then emailed me a receipt.

The point of this story is that commerce is not only happening anywhere and at any
time due to an explosion of smartphone usage, but customers are being introduced to

vii

www.allitebooks.com

http://www.allitebooks.org

a new level of convenience and features that are quickly becoming the expected level of
service. Multiple models support these features, including ecommerce, mobile com‐
merce (mcommerce), and social commerce (scommerce). Who knows what the next
“initial-commerce” model will be? eBay has recognized this explosion of new models
and established the X.commerce initiative, aimed at supporting the commerce models
currently being used and ones yet to be invented. Many of the examples in this text
leverage the knowledge and code of the X.com website, and it is a recommended source
if you plan to be heavily involved in this area.

Even if you are familiar with the basic use cases of the various eBay APIs, you may not
have leveraged any of the many other API sets from other eBay properties to tap into
the greater commerce lifecycle. In this book, you will be able explore functional examples
that can be applied to generate more demand, traffic, and sales. The examples are de‐
signed so that you can jump in feet first and skip the rudimentary details that you may
already be familiar with. If you are not familiar with a particular API being used, the
example will discuss the basic concepts while providing links to further online docu‐
mentation and examples. By the end of the book the examples will have covered a wide
range of real-life scenarios, showing you how to incorporate into your commerce model
features and functionality from APIs including eBay, Hunch, Magento, Milo, PayPal,
RedLaser, and ql.io.

The goal of this book is to show how, with a little bit of effort and a wealth of powerful
APIs, you can create and enhance your commerce flows. The real-life technical examples
cover a range of exciting and innovative uses of the APIs, from generating social rec‐
ommendations using Twitter feeds to sharing products with friends by scanning QR
codes with the RedLaser API. The examples are designed to take you past the basic
transaction steps and into functional areas that create a strong commerce lifecycle,
combining business strategy with technical solutions.

Creating a Lifecycle
Generally speaking, the focus of any business is to implement an easy-to-use transaction
payment system for goods or services so that customers can pay for what they want
quickly and efficiently. The premise of this cookbook is that commerce in any form—
online, mobile, social, or even storefront—should not just be based on a single event in
which a customer purchases an item, but instead should be enveloped in a lifecycle that
encompasses the purchase transaction as a single step. The lifecycle starts before a cus‐
tomer ever reaches the point of purchase and can continue long past this event. Like an
engine that turns over and over to keep a vehicle moving forward, the lifecycle should
not stop after the single stroke of a purchase, but rather should optimally create the
opportunity for multiple recurring purchases. As the lifecycle matures, the processes
and stages that support the cycle become more robust and easier to accomplish.

viii | Preface

www.allitebooks.com

http://www.x.com/
http://x.com
http://www.allitebooks.org

Figure P-1 shows a simplified commerce lifecycle, which is the basis for the structure of
this book. The commerce lifecycle can be more complex, with more steps and sub-steps,
but simplifying the lifecycle allows us to focus on the technology that can enhance these
core steps or stages.

Figure P-1. Simplified commerce lifecycle

The simplified commerce lifecycle is composed of five steps:

1. Product discovery and research
2. Product presentation
3. Purchase through a payment transaction
4. Order fulfillment (shipment and receipt)
5. Consumption and sharing through social commerce

Each step of the simplified lifecycle will be the basis for a chapter of examples in this
book. Ultimately, all stages carry equal weight in their opportunity to create long-term
customer relationships.

The first stage—product discovery—represents the time and effort that the customer
puts into researching, discovering, and identifying a particular offering. Many different
sources of knowledge can contribute to this discovery: the user may look at recom‐
mendations of similar items, check out local sources of products, or read product re‐
views. The goal of this stage is to provide the information and data necessary for the
user to hone in on a product that she may have sought outright or discovered
accidentally.

After the identification of the product in the product discovery stage, the customer
moves into a viewing and confirmation stage, labeled here as “product presentation.”
The product presentation stage provides the user with all the information and data she
may need to make that purchase decision, whether by adding the item to a shopping

Preface | ix

cart or signing up for the service. In either case, as the merchant, you need to provide
access to the data and information about the product that the user may seek to trigger
the decision to move to the purchase stage. This could include price comparisons, de‐
tailed specifications, or other customers’ reviews.

The purchase stage is the one that most merchants focus on, since at this stage the
customer has decided to make a purchase and proceeds to check out. However, as with
the other stages, there are additional features and experiences beyond just the process
of entering payment information that can make this stage less complex for the customer.
This stage can even be turned into a potentially rewarding process for both the customer
and the merchant, through couponing, seamless payments, and opportunities to give
to causes. This may increase the likelihood of the customer returning to make more
purchases and referring new customers.

After the purchase transaction, the lifecycle continues through order fulfillment and,
following this, the customer’s use of the good or service purchased. These two stages are
often something of an afterthought, due to other efforts being deemed higher priority.
However, they can in fact have the greatest impact on whether a customer recommends
the product or service and, more importantly, whether he returns to the merchant for
future purchases.

The order fulfillment stage represents the period of time after the purchase and until
the customer has received the product or service. Timely delivery and communication
are essential to passing through this stage smoothly. The last stage—consumption and
sharing—is when customers make their final decisions about their commerce experi‐
ence, formulate opinions of the product or service purchased, and in turn share these
opinions—good or bad—throughout their social networks. At the conclusion of this
stage, the cycle should not end; instead, if handled well, this stage can feed into the
beginning of new cycles with the same customers or contacts in their social networks.
The goal is to keep the cycle going and increase the merchant’s customer base and sales.

Audience
We can compare the simplified lifecycle of commerce with a standard software devel‐
opment process, as seen in the inner circle of Figure P-1. And just as the simplified
lifecycle of commerce works to have multiple revolutions, the software development
lifecycle continually improves the resulting products through multiple revolutions. The
examples in this book will cover each of these stages, with best practices and notes
included with the working technical components.

The book is designed for you, the developer who may have developed ecommerce
storefronts, but is looking to or has been tasked with differentiating the business with
additional functionality. This differentiation could take the form of incorporating ad‐
ditional features or simplifying procedural steps. A solid programming foundation will

x | Preface

be required to implement these examples and apply them to your individual needs. The
book assumes you have a hands-on understanding of PHP, HTML, CSS, and JavaScript.
While you may not have specific experience with the APIs employed here, the examples
are detailed enough to get you started. And even if you are an experienced developer
who uses these APIs daily, these examples will hopefully give you some insight into other
possible ways to employ the API set, or one of the many other APIs from the other sites
referenced in the book.

There are three things working against creating this type of cookbook of commerce
examples. First, the examples shown here attempt to meet specific needs, and it has been
arduous to pick those examples that will be the most impactful to the most people.
Secondly, while we will cover a wide array of eBay-owned APIs, it would be impossible
to cover the API set in its entirety in this short text. Lastly, the APIs can of course be
integrated into a wide set of technologies, and I only have room to show one imple‐
mentation. So in the end, this is just a sampling of APIs that can be employed and applied
to the stages of the simplified commerce lifecycle. The goal of the solutions picked for
inclusion here is to provide an introduction to the wide set of APIs that are part of the
eBay properties available, while touching on some of the more directly applicable ex‐
amples of enhancing the commerce lifecycle in all its stages.

For your specific solution you may be coding in some other language than that used in
these examples, but the logic flow for each example should be fairly similar. The exam‐
ples included here are meant to drive creativity and provide examples on which to base
your own solutions. The code examples are exactly that, examples, and are not neces‐
sarily meant to be drop-in production-quality code. You will want to add in your own
level of deeper error handling and integration. An effort has been made to point out in
the examples where these handlers and modularization would be important. Ultimately,
the goal is to provide individual examples that can be independently applied to a wide
variety of solutions for you, the commerce developer.

How This Book Is Organized
The book consists of five chapters following the simplified commerce lifecycle:

• Chapter 1 provides examples covering the mapping of product availability to loca‐
tion using Milo, listing your products on eBay, and incorporating product reviews
from eBay into your site.

• Chapter 2 provides examples including customizing the Magento storefront, per‐
sonalizing a store experience with PayPal Access, and presenting similar items from
eBay.

• Chapter 3 provides examples including autogenerating coupons with Magento,
payment preapproval, and donating on checkout with PayPal Adaptive Payments.

Preface | xi

• Chapter 4 provides examples covering shipping form creation with PayPal Instant
Payment Notifications, shipping method extensions with Magento, and multiple
supplier payment with PayPal chained payments.

• Chapter 5 includes examples on facilitating social recommendations with QR codes,
generating taste graphs and recommendations via Hunch, and social sharing using
mashups through ql.io.

One can write about the steps needed to enhance a specific commerce flow, but there is
nothing like doing it firsthand. This book is laid out with working examples (three per
chapter) that can be taken in part or as a whole and applied to a business built on
commerce flows. Each example is built to take advantage of one or more sets of readily
available APIs from one of the multiple eBay-owned businesses.

There is a description of an opportunity that the example is driving to take advantage
of and a high-level view of a possible solution at the beginning of each example. Then
the example dives into a step-by-step implementation of the solution. While the exam‐
ples in this book provide each step needed to complete a working project with the specific
APIs, the goal is also to empower you with knowledge of how the APIs work, and most
importantly, how to work with the APIs outside of the confines of these examples. Thus,
you will not only have the benefit of seeing how to use the specific examples in your
website or application, but you will also gain knowledge about these APIs for your
toolbox going forward.

In the step-by-step directions, I have tried to also focus on providing tips and tricks for
integrating the code into your own site and troubleshooting when things do not go so
smoothly. Knowing how to troubleshoot the issues can be critical—whether because of
configuration differences or just the intricacies of trying to modify the examples to fit
your needs, it’s inevitable that something will not work.

To try and reach the broadest audience, the examples use some of the more standard
web technologies, including PHP, JavaScript, HTML, and CSS. Where possible, the ex‐
amples use the latest implementations of the technologies, such as various HTML5 and
CSS3 features, while at the same time trying to stay clear of technologies that may not
currently be universally supported across browsers.

If the opportunity presents itself, other technologies or libraries used in the industry
today (such as JQuery) are brought in so that you can see various methods of imple‐
mentation. When applicable in the examples, notes, recommendations, and best prac‐
tices are also inserted to save you time and expedite integration of the APIs. At the end
of each example a section titled “See Also” is appended, with links to various supporting
information and material for working with the APIs used in the example. This section
is not meant as an exhaustive list of resources, but rather as a reference to the key areas
where you can find more information for your specific implementation.

xii | Preface

Differentiating Your Offering
The expectations of customers are changing by the minute, and technologies are allow‐
ing for great new commerce delivery methods. It is difficult enough to build your busi‐
ness and keep up with these demands, without even considering trying to differentiate
your offering.

This is where external APIs come into play and can be extremely helpful. There are
numerous methods available to enhance the lifecycle described earlier by creating
stronger relationships, increasing the number of prospective sales that are completed,
and encouraging customers to return. Building these features into your solution from
scratch can be prohibitive from both a cost and a timing perspective, but through the
use of external APIs you can leverage the work of others and integrate the knowledge,
information, and data held in systems throughout the Web into your own. Doing so
gives you the opportunity to increase the numbers of consumers that successfully com‐
plete cycles and to differentiate your offering along the way.

Some of the more prominent questions that you may have asked already to fuel your
own commerce cycle include:

• How do I make my products or services visible to targeted consumers?
• How can I leverage social commerce efficiently?
• How can viral marketing take off around my offering?

The intention of this book is to get your creative juices flowing and give you ideas that
can be applied to answer these types of questions. The book has combined passions of
mine, including business commerce strategy and APIs, to solve technical challenges. It
is my hope that you find the cookbook beneficial for your projects, whether you’re
dealing with ecommerce, mcommerce, scommerce, or even the “x-commerce” that has
not been created yet.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, file paths, and file exten‐
sions

Constant width

Used for program listings and commands to be typed literally by the user, as well
as within paragraphs to refer to program elements such as variable or function
names, databases, statements, and keywords

Preface | xiii

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

This Book’s Example Files
You can download all of the code examples for this book from GitHub at the following
location:

https://github.com/cahudson/eBayCommerceCookbook

In the example files you will find the completed versions of the applications built in the
book, which will contain all the code required to run them. In a few cases you will need
to download additional content files, such as SDKs, from their original sites before
running the application; consult the README file in the top-level folder for details.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “eBay Commerce Cookbook by Chuck Hudson
(O’Reilly). Copyright 2013 Chuck Hudson, 978-1-449-32015-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

xiv | Preface

https://github.com/cahudson/eBayCommerceCookbook
mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/ebay-cookbook.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/ebay-cookbook
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
First, thank you to Mary Treseler, editorial strategist with O’Reilly Media, who from day
one has believed in the proposal for this book and supported it through all the stages.
Mary, you have been extremely patient as unexpected events throughout the project
threw off already tight timelines. With your fortitude for driving projects we now have
a text that I can indeed say I am proud of. I thank you for the opportunity.

The effort that goes into creating a book such as this is all-consuming and takes a toll
on friendships and family. Thank you to all my friends and family for their understand‐
ing while I have disappeared to complete this project. Without your ongoing support I
could not have finished it, and I look forward to catching up.

Over the years the people designing, creating, and supporting the APIs discussed in the
text have been extremely open with their time and knowledge, helping me solve some
challenging problems. Without the team at X.commerce, PayPal, and eBay, who have
not only been evangelists for the APIs but also reviewers, editors, and contributors, this
book would not have been possible. Special thanks especially to Praveen Alavilli, John
Jawed, Jonathan LeBlanc, and Matthew Russell for their endless knowledge sharing,
review feedback, and guidance. Their input has greatly strengthened the quality and
value of the examples. Thank you also to Carolyn Mellor and Delyn Simons for the many
opportunities you have provided to me along the way in the eBay ecosystem. I look
forward to our paths crossing on future projects, wherever they may take us.

Lastly, thank you to all the project partners that have provided the opportunity to create
solutions to challenging business problems. The lessons learned and knowledge gained
over the years in these projects in both a business strategy and a technical sense are the
tools by which I have been able to create this work. I look forward to being continually
challenged by the multitude of innovative business ideas and to having the opportunity
to lead the next set of disruptions.

xvi | Preface

CHAPTER 1

Product Discovery and Research

One of the most challenging activities for merchants is attracting new customers to their
online or retail sites. Large amounts of funding and effort go into various forms of
advertising, including banners, search engine keyword ads, and social or direct mar‐
keting to capture eyeballs, increase traffic, and optimally create new customer purchases.
At the same time, customers have at hand a large quantity of readily accessible infor‐
mation while researching products or services of interest, which may include reviews
and social feeds. These are the challenges of the first step of the simplified commerce
lifecycle shown in Figure 1-1—product discovery and research—for both merchants
and consumers.

Figure 1-1. Simplified commerce lifecycle—stage 1

In this chapter the examples will focus on leveraging various APIs to connect merchants
with potential customers and customers with information to make their research more
effective. The first example will cover incorporating eBay user reviews into a site to
provide customers with opinions about products they may be contemplating purchas‐
ing. The goal is to provide visitors with enough information to make a purchase decision,

1

so they don’t need to leave your site in search of more. For those customers that have
an immediate need, the next example will show how to incorporate local inventory levels
to facilitate a “must have now” type of purchase. The last recipe will look at getting
greater exposure of your products by using APIs to list items in the eBay marketplace,
where literally thousands of people may discover these products and a merchant’s online
business.

By incorporating the functionality provided by the APIs shown here, you should be able
to minimize the length of time that a potential consumer needs to research a product
in this initial stage, and broaden the scope of potential consumers who know of your
offering. The aim is to allow more customers to discover your products and to ensure
that they have at hand the necessary information to make a buying decision, rather than
seeking an alternate source for that information.

1.1. Tapping Into Product Reviews and Guides
Opportunity
For many online and offline customers, purchasing decisions are affected by recom‐
mendations from their circles of contacts. These circles may be small (close networks
of friends and family) or large (including online reviews from other consumers who
may have already purchased the product or had an experience with a site). For the
merchant, providing online reviews of products by purchasers is rapidly becoming an
expectation, and for consumers, this is becoming a required piece of data for product
selection. Fortunately, including consumer reviews with your product information is
not as difficult as you might expect, and there are several established repositories of
reviews that can be tapped.

Solution
The eBay Shopping developers API provides an API call called FindReviewsAnd
Guides that opens access to product reviews and buying guides created by eBay users,
along with average rating data for any product in the eBay catalog. Passing an internal
eBay product ID into the FindReviewsAndGuides call can retrieve the applicable re‐
views. This example will go through a sample flow of finding a product in the catalog
that could match one that you provide and then displaying the average rating, the num‐
ber of reviews, and a list of the most recent reviews.

2 | Chapter 1: Product Discovery and Research

Discussion
The eBay Shopping API is designed with a series of calls for searching items on eBay.
In addition, the API includes calls to retrieve products from a stock catalog that eBay
maintains. An overview of the entire eBay Shopping API can be found online in the
Shopping API Guide.

To retrieve reviews for a product, you first need to know the internal eBay product ID
for that specific item. eBay provides a Shopping API call called FindProducts to facilitate
locating this product ID. A sample FindProducts XML request is in Example 1-1; it will
perform a search for products that match the query string “Amazon+kindle+fire”.

Example 1-1. FindProducts request
<?xml version="1.0" encoding="utf-8"?>
<FindProductsRequest xmlns="urn:ebay:apis:eBLBaseComponents">
 QueryKeywords>Amazon+kindle+fire</QueryKeywords>
</FindProductsRequest>

This is the most basic use of the FindProducts call; other fields exist to limit and filter
results by category, pages of results, and sort order. The QueryKeywords field has a min‐
imum length of 3 characters and maximum length of 350 characters and allows for the
use of wildcard characters (+, −, and *) for further refinement or enlargement of your
search. The request will provide an XML response containing all matching products in
corresponding product blocks, as seen in the sample response in Example 1-2.

Example 1-2. FindProducts response
<?xml version="1.0" encoding="UTF-8"?>
<FindProductsResponse xmlns="urn:ebay:apis:eBLBaseComponents">
 <Timestamp>2012-07-08T13:42:23.164Z</Timestamp>
 <Ack>Success</Ack>
 <Build>E781_CORE_BUNDLED_15030490_R1</Build>
 <Version>781</Version>
 <ApproximatePages>3</ApproximatePages>
 <MoreResults>true</MoreResults>
 <PageNumber>1</PageNumber>
 <Product>
 <DomainName>Tablets</DomainName>
 <DetailsURL>
 http://syicatalogs.ebay.com/ws/
 eBayISAPI.dll?PageSyiProductDetails&IncludeAttributes=
 1&ShowAttributesTable=1&ProductMementoString=
 117984:2:21418:574021108:424383568:730a26cc1986d38949
 d2048fe33ce24e:1:1:1:5000000768188
 </DetailsURL>
 <DisplayStockPhotos>true</DisplayStockPhotos>
 <ProductID type="Reference">110592598</ProductID>
 <ReviewCount>383</ReviewCount>
 <StockPhotoURL>
 http://i.ebayimg.com/00/$(KGrHqR,!jgE5)db1gtTBOmNLBOggw~~_

1.1. Tapping Into Product Reviews and Guides | 3

http://bit.ly/XFZpzw

 6.JPG?set_id=89040003C1
 </StockPhotoURL>
 <Title>Amazon Kindle Fire 8GB, Wi-Fi, 7in - Black</Title>
 </Product>
 <Product>
 ...
 ...
 <TotalProducts>3</TotalProducts>
</FindProductsResponse>

If the search finds more than 2,000 products, the API call will return an error and you
should further refine the search.

Most businesses that deal with products will have some code as part of their inventory
information that uniquely identifies a particular product, such as a UPC code or an
ISBN number. With FindProducts, you can also use one of these unique identifiers to
isolate and retrieve the internal eBay product ID. Instead of using the QueryKeywords
property, you would use the ProductID property, providing an ID type as an attribute
and the ID in the value of the XML node:

<ProductID type="ISBN">9780321769381</ProductID>

For a list of the product types allowed, see the FindProducts call reference page.

So you don’t have to program your entire solution to see if the API calls will provide the
data you need and to verify that your requests are properly structured, eBay provides
an API Test Tool, seen in Figure 1-2, through developer.ebay.com. You can use this tool
not only to exercise the Shopping API calls with sample structures of XML requests, but
also to exercise other API sets from eBay. The tool will take your request and execute
the call selected, providing the response XML block. In this manner you can select and
test your call flows prior to full implementation of the solution in code.

To execute any of the Shopping API calls, you will need to register with the eBay devel‐
oper network and go to the My Account section to create and retrieve your application
key sets. An application key set can be generated for a testing sandbox and for the
production environment. The application key set will contain three IDs that are sent
with your API request:

• DevID
• AppID
• CertID

4 | Chapter 1: Product Discovery and Research

http://developer.ebay.com/devzone/shopping/docs/CallRef/FindProducts.html
https://developer.ebay.com/DevZone/build-test/test-tool/default.aspx
http://developer.ebay.com/
https://developer.ebay.com/
https://developer.ebay.com/
http://sandbox.ebay.com

Figure 1-2. eBay API Test Tool

The AppID will be needed for the calls in this example, and a different set will need to
be used based on whether you are making sandbox or production requests. When you
have your application key sets, you can use the API Test Tool under Development Tools
to validate the credentials. An easy test call to make is GeteBayTime, under the Shopping
API. The call has a simple request format with no arguments passed in the XML block
and will return the current eBay time for the site specified on the left side of the tool.
The site ID represents the applicable eBay country site; for these examples, 0 will be used
for the site ID, which corresponds to the United States.

The eBay Shopping API has a request limit of 5,000 queries per day, per
IP address. If you need a higher limit, you can apply for an increase by
having your application certified through the Compatible Application
Check program.

1.1. Tapping Into Product Reviews and Guides | 5

http://bit.ly/R3LFAg
http://bit.ly/R3LFAg

The first web page of our example will allow the user to enter a keyword or keywords
to search for, in a form. The form will be posted to the same page and the FindProd
ucts API call will be constructed and sent to the eBay API servers via a PHP curl
command. The XML response block will then be parsed by looping through each prod‐
uct in the response, and the product name, image, and product ID for each will be
retrieved. Each product will be displayed and linked to a second page, passing the prod‐
uct ID when selected. Example 1-3 has the code for the findProducts.php page.

Example 1-3. findProducts.php
<?php
/**
findProducts.php

Uses FindProducts to retrieve list of
products based on keyword query.

**/

// include our Shopping API constants
require_once 'shoppingConstants.php';

// check if posted
if (!empty($_POST)) {

 // grab our posted keywords and call helper function
 $query = $_POST['query'];
 $response = getFindProducts($query);

 // create a simple XML object from results
 $xmlResponse = simplexml_load_string($response);
}

// function to call the Shopping API FindProducts
function getFindProducts($query) {

 // create the XML request
 $xmlRequest = "<?xml version=\"1.0\" encoding=\"utf-8\"?>";
 $xmlRequest .= "<FindProductsRequest
 xmlns=\"urn:ebay:apis:eBLBaseComponents\">";
 $xmlRequest .= "<QueryKeywords>" . $query . "</QueryKeywords>";
 $xmlRequest .= "<ProductSort>Popularity</ProductSort>";
 $xmlRequest .= "<SortOrder>Descending</SortOrder>";
 $xmlRequest .= "<MaxEntries>100</MaxEntries>";
 $xmlRequest .= "<HideDuplicateItems>true</HideDuplicateItems>";
 $xmlRequest .= "</FindProductsRequest>";

 // define our header array for the Shopping API call
 $headers = array(
 'X-EBAY-API-APP-ID:'.API_KEY,
 'X-EBAY-API-VERSION:'.SHOPPING_API_VERSION,

6 | Chapter 1: Product Discovery and Research

 'X-EBAY-API-SITE-ID:'.SITE_ID,
 'X-EBAY-API-CALL-NAME:FindProducts',
 'X-EBAY-API-REQUEST-ENCODING:'.RESPONSE_ENCODING,
 'Content-Type: text/xml;charset=utf-8'
);

 // initialize our curl session
 $session = curl_init(SHOPPING_API_ENDPOINT);

 // set our curl options with the XML request
 curl_setopt($session, CURLOPT_HTTPHEADER, $headers);
 curl_setopt($session, CURLOPT_POST, true);
 curl_setopt($session, CURLOPT_POSTFIELDS, $xmlRequest);
 curl_setopt($session, CURLOPT_RETURNTRANSFER, true);

 // execute the curl request
 $responseXML = curl_exec($session);

 // close the curl session
 curl_close($session);

 // return the response XML
 return $responseXML;
}
?>

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>1-2 Find Products with FindProducts</title>
<style>
body {background: #fff; color: #000;
 font: normal 62.5%/1.5 tahoma, verdana, sans-serif;}
* {margin: 0; padding: 0;}
form {padding: 0 10px; width: 700px;}
legend {font-size: 2em; padding-left: 5px; padding-right: 5px;
 position: relative;}
fieldset {border: 1px solid #ccc; border-radius: 5px; padding: 10px;
 width: 320px;}
li {clear: both; list-style-type: none; margin: 0 0 10px;}
label, input {font-size: 1.3em;}
label {display: block; padding: 0 0 5px; width: 200px;}
input {background-position: 295px 5px; background-repeat: no-repeat;
 border: 2px solid #ccc; border-radius: 5px;
 padding: 5px 25px 5px 5px; width: 285px;}
input:focus {outline: none;}
input:invalid:required {background-image: url(asterisk.png);
 box-shadow: none;}
input:focus:invalid {background-image: url(invalid.png);
 box-shadow: 0px 0px 5px #b01212; border: 2px solid #b01212;}
input:valid:required {background-image: url(accept.png);
 border: 2px solid #7ab526;}

1.1. Tapping Into Product Reviews and Guides | 7

div label {width: 100%;}
div.product {float: left; border: 7px solid #ccc; border-radius: 5px;
 padding: 10px; margin: 10px; height: 150px; width: 200px;
 text-align: center; vertical-align: top;}
div.product:hover {background-color: #39F; border-color: #FF6;}
</style>
</head>
<body>
<div id="frmProduct">
 <!-- simple form for query keyword entry -->
 <form name="search" action="findProducts.php" method="post">
 <fieldset>
 <legend>Product Search</legend>

 <label for="query">Keyword</label>
 <input autofocus required id="query" name="query"
 placeholder="Nook" />

 <input type="submit" value="Search">
 </fieldset>

 </form>
</div>
<div id="container">

 <?php
 // result block creation if results from form being posted
 // check for valid XML response object
 if ($xmlResponse) {

 echo '<H1>Results for "' . $query . '". Select one.</H1>';

 // loop through each XML product node in the response
 foreach ($xmlResponse->Product as $product) {

 // display the image and title for each product
 // create link to reviews page with internal ProductID
 echo '<a href="showReviews.php?pid=' .
 $product->ProductID . '">';
 echo '<div class="product">';
 if (($product->DisplayStockPhotos)=='true') {
 echo 'StockPhotoURL . '" />';
 } else {
 echo '';
 }
 echo "
";
 echo $product->Title;
 echo '</div>';
 }
 }
 else {

8 | Chapter 1: Product Discovery and Research

 // display message if no search results (not posted)
 echo "Enter a search keyword above.";
 }
 ?>

</div>
</body>
</html>

This example uses multiple API calls across pages, so the constants for the credentials
have been placed in a separate file, shoppingConstants.php. These constants include the
API key, URL endpoint, version number of the API being called, eBay site ID, and
response encoding type, as seen in Example 1-4. You will need to replace the API key
field in the shoppingConstants.php file with your AppID. The constants will be used in
the headers of the curl request on the findProducts.php and review retrieval pages.

Example 1-4. shoppingConstants.php
<?php
/**
shoppingConstants.php

Constants used for Shopping API calls.

**/

// eBay developer API key
DEFINE("API_KEY","<YOUR_API_KEY>");

// eBay Shopping API constants
DEFINE("SHOPPING_API_ENDPOINT","http://open.api.ebay.com/shopping");
DEFINE("SHOPPING_API_VERSION",779);

// eBay site to use - 0 = United States
DEFINE("SITE_ID",0);

// response encoding format - XML
DEFINE("RESPONSE_ENCODING","XML");
?>

After placing the findProducts.php and shoppingConstants.php pages on your site and
browsing to the findProducts.php page, type in a keyword to search for and submit the
form. If the call is successful, you should see a chart of products, as displayed in
Figure 1-3.

1.1. Tapping Into Product Reviews and Guides | 9

Figure 1-3. Resulting eBay product ID availability map

Now that the product IDs for each product have been retrieved, the reviews retrieval
page needs to be added so that when a product is selected, the reviews and ratings for
that product can be displayed.

Remember that if you have the ISBN, EAN, or UPC code, you can skip
the product search step and make the FindProducts call behind the
scenes so that the reviews can be shown directly with the particular
product. The keyword search form is used for the sample purpose of
making the FindProducts API call.

The reviews retrieval page follows a similar flow to the findProducts.php page. Instead
of a form, however, the showReviews.php page will take a product ID passed in the query
string to create an XML request, as seen in Example 1-5, for the eBay Shopping API.

Example 1-5. FindReviewsAndGuides request
<?xml version="1.0" encoding="utf-8"?>
<FindReviewsAndGuidesRequest xmlns="urn:ebay:apis:eBLBaseComponents">
 <ProductID type="Reference">110592598</ProductID>
</FindReviewsAndGuidesRequest>

10 | Chapter 1: Product Discovery and Research

The resulting return XML block will contain summary items including the average
rating and number of reviews available for the product, followed by the most current
reviews in one or more <Review> XML blocks, as seen in Example 1-6.

Example 1-6. FindReviewsAndGuides response
<?xml version="1.0" encoding="UTF-8"?>
<FindReviewsAndGuidesResponsexmlns="urn:ebay:apis:eBLBaseComponents">
 <Timestamp>2012-07-08T13:45:31.555Z</Timestamp>
 <Ack>Success</Ack>
 <Build>E781_CORE_BUNDLED_15030490_R1</Build>
 <Version>781</Version>
 <ReviewCount>383</ReviewCount>
 <BuyingGuideCount>0</BuyingGuideCount>
 <ProductID type="Reference">110592598</ProductID>
 <ReviewsAndGuidesURL>
 http://search.reviews.ebay.com/
 Amazon-Kindle-Fire-8GB-Wi-Fi-7in-Black?fvcs=5918&sopr=
 110592598&upvr=2
 </ReviewsAndGuidesURL>
 <PageNumber>1</PageNumber>
 <TotalPages>77</TotalPages>
 <BuyingGuideDetails>
 <BuyingGuideHub>
 http://search.reviews.ebay.com/?satitle=
 Amazon+Kindle+Fire+8GB%2C+Wi-Fi%2C+7in+-+Black&uqt=g
 </BuyingGuideHub>
 </BuyingGuideDetails>
 <ReviewDetails>
 <AverageRating>4.5</AverageRating>
 <Review>
 <URL>
 http://search.reviews.ebay.com/
 Amazon-Kindle-Fire-8GB-Wi-Fi-7in-Black?fvcs=5918&sopr=
 110592598&upvr=2
 </URL>
 <Title>
 Fair price should be $199. Just don't expect too m...
 </Title>
 <Rating>4</Rating>
 <Text>
 Kindle Fire is great
 ...
 ...
 </Text>
 <UserID>nopink2000</UserID>
 <CreationTime>2012-03-10T17:16:41.000Z</CreationTime>
 </Review>
 <Review>
 <URL>
 http://search.reviews.ebay.com/
 Amazon-Kindle-Fire-8GB-Wi-Fi-7in-Black?fvcs=5918&sopr=

1.1. Tapping Into Product Reviews and Guides | 11

 110592598&upvr=2
 </URL>
 <Title>Excellent buy.</Title>
 <Rating>5</Rating>
 <Text>
 I love my Kindle!
 ...
 ...

The showReviews.php page in Example 1-7 will display the summary product rating
information and loop through the reviews, displaying the title, rating, author’s eBay
username, and text of each review.

Example 1-7. showReviews.php
<?php
/**
showReviews.php

Uses FindReviewsAndGuides to retrieve list of
most recent reviews.

Called by findProducts.php with ProductID.
**/

// include our Shopping API constants
require_once 'shoppingConstants.php';

// check if called with query string
if (!empty($_GET)) {

 // get the product ID and call the helper function
 $pid = $_GET['pid'];
 $response = getFindReviewsAndGuides($pid);

 // create a simple XML object from results
 $xmlResponse = simplexml_load_string($response);
}

// function to call the Shopping API FindReviewsAndGuides
function getFindReviewsAndGuides($pid) {

 // create the XML request
 $xmlRequest = "<?xml version=\"1.0\" encoding=\"utf-8\"?>";
 $xmlRequest .= "<FindReviewsAndGuidesRequest
 xmlns=\"urn:ebay:apis:eBLBaseComponents\">";
 $xmlRequest .= "<ProductID type=\"Reference\">" . $pid .
 "</ProductID>";
 $xmlRequest .= "</FindReviewsAndGuidesRequest>";

 // define our header array for the Shopping API call
 $headers = array(

12 | Chapter 1: Product Discovery and Research

www.allitebooks.com

http://www.allitebooks.org

 'X-EBAY-API-APP-ID:'.API_KEY,
 'X-EBAY-API-VERSION:'.SHOPPING_API_VERSION,
 'X-EBAY-API-SITE-ID:'.SITE_ID,
 'X-EBAY-API-CALL-NAME:FindReviewsAndGuides',
 'X-EBAY-API-REQUEST-ENCODING:'.RESPONSE_ENCODING,
 'Content-Type: text/xml;charset=utf-8'
);

 // initialize our curl session
 $session = curl_init(SHOPPING_API_ENDPOINT);

 // set our curl options with the XML request
 curl_setopt($session, CURLOPT_HTTPHEADER, $headers);
 curl_setopt($session, CURLOPT_POST, true);
 curl_setopt($session, CURLOPT_POSTFIELDS, $xmlRequest);
 curl_setopt($session, CURLOPT_RETURNTRANSFER, true);

 // execute the curl request
 $responseXML = curl_exec($session);

 // close the curl session
 curl_close($session);

 // return the response XML
 return $responseXML;
}
?>

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>1-2 Show Reviews with FindReviewsAndGuides</title>
<style>
body {background: #fff; color: #000;
 font: normal 62.5%/1.5 tahoma, verdana, sans-serif;}
* {margin: 0; padding: 0;}
div#stats {font-size: 1.3em; font-weight: bold; margin: 10px;
 padding: 10px;}
div.reviewHeader {font-size: 1.3em; font-weight: bold;
 border: 7px solid #ccc; border-radius: 5px;
 padding: 10px 10px 20px 10px; margin: −17px 0px 10px −17px;
 width: 500px; vertical-align: top; background-color: #9FC}
div.review {border: 7px solid #ccc; border-radius: 5px; padding: 10px;
 margin: 10px; width: 500px; vertical-align: top;}
</style>
</head>
<body>
<div>
 < Back
</div>
<div>

1.1. Tapping Into Product Reviews and Guides | 13

 <?php
 // Result block creation if results from product ID
 // Check for valid XML response object
 if ($xmlResponse) {

 // display review count, guide count, and average rating
 echo '<H1>Reviews</H1>';
 echo '<div id="stats">';
 echo $xmlResponse->ReviewCount . ' Reviews
';
 echo $xmlResponse->BuyingGuideCount . ' Guides
';
 echo 'Average rating: ' .
 $xmlResponse->ReviewDetails->AverageRating;
 echo '</div>';

 // loop through each XML review node in the response
 foreach ($xmlResponse->ReviewDetails->Review as $review) {

 // display the title, userid, rating, and text for each
 // review based on internal ProductID
 echo '<div class="review">';
 echo '<div class="reviewHeader">';
 echo '<div>' . $review->Title . '</div>';
 echo '<div style="float:left;">' . $review->UserID . '</div>';
 echo '<div style="float:right;">
 Rating . '.png"
 style="height:15px;"/></div>';
 echo '</div>';
 echo '<div style="clear:both;"></div>';
 echo '<div class="reviewText">';
 echo $review->Text;
 echo '</div>';
 echo '</div>';
 }
 }
 else {
 // display message if no reviews returned
 echo "No reviews found.";
 }
 ?>

</div>
</body>
</html>

Figure 1-4 shows the resulting screen for showReviews.php after having selected a prod‐
uct on the findProducts.php page.

14 | Chapter 1: Product Discovery and Research

Figure 1-4. eBay reviews for the product

This example has shown how the Shopping API provides an easy method to include
social data on products in the form of ratings and reviews for potential customers to
research. In addition, this information can be combined with other Shopping API calls
to show lists of popular items, allowing visitors to discover new products.

See Also
eBay Developer Network

eBay Shopping API Documentation

eBay Shopping API FindProducts call reference

eBay Shopping API FindReviewsAndGuides call reference

API Test Tool

1.1. Tapping Into Product Reviews and Guides | 15

http://developer.ebay.com/
https://www.x.com/developers/ebay/products/shopping-api
http://developer.ebay.com/DevZone/shopping/docs/CallRef/FindProducts.html
http://developer.ebay.com/DevZone/shopping/docs/CallRef/FindReviewsandGuides.html
https://developer.ebay.com/DevZone/build-test/test-tool/default.aspx

1.2. Mapping Product Availability
Opportunity
One of the challenges of having a business storefront is attracting potential customers
to what you carry and your product inventory. This results in a significant line item for
marketing in any business budget. The Milo.com website provides visitors a means to
search for products within a specific radius of their current location or another specified
location. Not only can businesses link into this service and integrate their stores and
inventory into the results of Milo.com, but also an API is available for integrating the
data into your site for your own business needs.

Solution
In this example, we will go through the Milo Open API and its endpoints, specifically
looking at the use of Milo product IDs and the Availability endpoint to access current
inventory of an item within a certain radius of a location. This can provide a means to
get your goods in front of online buyers, who can discover the availability of the product
locally from you. For businesses, this API can also provide critical information for ver‐
ification of your store’s inventory and competitive intelligence about other merchants
and their pricing, products, and availability.

Discussion
The Milo Open API is focused on three areas of information: merchant locations, prod‐
uct information, and availability. The API is free to developers and has standard rate
limits in place for usage. The default rate limit is 5,000 queries per API key per hour.
Businesses or developers who hit the rate limit are encouraged to contact the Milo API
group via email explaining their situation for possible rate increases. For more infor‐
mation, see the online Milo Open API documentation.

A per-domain developer API key is required to make calls to the Milo Open API plat‐
form. The key is included with your API requests from your pages to validate the origin
of the requests. You can acquire a key by going to the X.com developer’s portal. If you
do not have an account, you will need to create one. Once logged in, click “Manage
Applications.” This will bring you to “My Applications.” Click the “Register Application”
button to add a new application that will use the Milo Open API. A form will be displayed
for registering your new application, as seen in Figure 1-5. Fill out the form, making
sure to check the Milo offering for the API Scope. This will allow your application to
access the Milo Open API from the domain that you specify in the form.

16 | Chapter 1: Product Discovery and Research

http://milo.com
http://www.x.com/developers/documentation-tools/milo/miloindex
http://devportal.x.com

Figure 1-5. X.com new application registration

After submitting the form via the “Register Application” button, you will be provided
with your API key, as shown in Figure 1-6. If you forget your API key, you can access it
by logging into the developer’s portal and viewing your applications. Your API key will
be listed with each application you have registered.

Figure 1-6. X.com completed registration for new application

Now that you have an API key, try a call to one of the Milo Open API endpoints to verify
that the key works. Open a browser and type in the following URL, replacing
<YOUR_API_KEY> with the key for your application:

https://api.x.com/milo/v3/store_addresses?key=<YOUR_API_KEY>

If your API key is valid, you will see a list of store addresses returned in JSON format,
similar to the one in Figure 1-7.

1.2. Mapping Product Availability | 17

Figure 1-7. Milo store address results from API key test

If your key is invalid, you will get a message saying that you need to register your ap‐
plication here.

Note that the JSON return in Figure 1-7 and used throughout the book
is nicely formatted for visual verification. The formatted output is avail‐
able via a helpful extension to the Chrome browser called JSONView.

The test link used to validate your API key is hitting the first of the endpoints of the
Milo Open API: the Store Addresses endpoint. This endpoint provides a list of store
address blocks of information based on a list of merchant IDs (Milo IDs) or 10-digit
phone numbers. The return information can include merchant information, latitude,
longitude, hours of operation, and address information for the store.

The second Milo endpoint is the Products endpoint, which will return detailed product
data including a list of merchants that carry the product, Milo category IDs, brand IDs,
minimum and maximum pricing, image links, and the Milo product ID. Search requests
can be performed on keywords or a range of other criteria, including UPC codes. To
perform a test search, navigate to this endpoint in your browser with a URL like the one
shown here:

https://api.x.com/milo/v3/products?q=nook&key=<YOUR_API_KEY>

18 | Chapter 1: Product Discovery and Research

http://devportal.x.com
https://chrome.google.com/webstore/detail/chklaanhfefbnpoihckbnefhakgolnmc

Remember to substitute your key for <YOUR_API_KEY> and put in an appropriate product
keyword for the q variable in the query string. To perform a search using a UPC code,
use the format q=upc:<upc_code>, where the <upc_code> field is replaced with a cor‐
responding numerical UPC code. The return for this call should look something like
Figure 1-8.

Figure 1-8. Return from Products endpoint

The results from the Products endpoint will be paginated and contain a list of matching
products and other information. The primary key is the internal Milo product ID, which
will be used in the upcoming coding example. If you were presenting a solution to
visitors, you would typically show the matching products and have the user select one
to see the availability of that product in her area.

The last endpoint, Availability, is how we can access information about the availability
of a product at particular stores in a given geographic area. The request takes a specific
location, a radius, and a Milo product ID to isolate the local stores carrying that product
and the availability levels. The result of the Availability endpoint calls is structured
differently from that of the other endpoints, and may be slightly confusing. Unlike the
other endpoints, which have a single request/response format, the response for the
Availability endpoint returns data via chunked transfer encoding. That is, the data is
returned in separate merchant, store, and inventory response blocks. An inventory block

1.2. Mapping Product Availability | 19

http://en.wikipedia.org/wiki/Chunked_transfer_encoding

will follow the corresponding store block, which will follow a merchant block. There
could be multiple store and inventory blocks for a single merchant, since a merchant
could have multiple store locations. The connections of the blocks will be covered more
with the web service call in the example.

To map the availability of a particular product (now that we have the Milo product ID
from the Products endpoint), open a blank HTML file and paste in the code from
Example 1-8.

Example 1-8. productAvail.html product availability map
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>1-3 Mapping Product Availability with Milo</title>
<script
 src="//ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js">
</script>
<style>
body {background: #fff; color: #000;
 font: normal 62.5%/1.5 tahoma, verdana, sans-serif;}
* {margin: 0; padding: 0;}
#container {width: 500px;}
#mapCanvas {width: 500px; height: 300px; border: 1px solid #ccc;
 border-radius: 5px; margin: 22px 10px; padding:10px;}
form {padding: 0 10px; width: 700px;}
legend {font-size: 2em; padding-left: 5px; padding-right: 5px;
 position: relative;}
fieldset {border: 1px solid #ccc; border-radius: 5px; padding: 10px;
 width: 320px;}
li {clear: both; list-style-type: none; margin: 0 0 10px;}
label, input {font-size: 1.3em;}
label {display: block; padding: 0 0 5px; width: 200px;}
input {background-position: 295px 5px; background-repeat: no-repeat;
 border: 2px solid #ccc; border-radius: 5px;
 padding: 5px 25px 5px 5px; width: 285px;}
input:focus {outline: none;}
input:invalid:required {background-image: url(asterisk.png);
 box-shadow: none;}
input:focus:invalid {background-image: url(invalid.png);
 box-shadow: 0px 0px 5px #b01212; border: 2px solid #b01212;}
input:valid:required {background-image: url(accept.png);
 border: 2px solid #7ab526;}
input[type=range]:before{content: "1";}
input[type=range]:after{content: "100";}
div#range label {font-weight: bold;}
output {font-size: 1.3em; font-weight: bold; display: block;
 text-align: center;}
div label {width: 100%;}
</style>
<script src="http://maps.google.com/maps/api/js?sensor=false"></script>

20 | Chapter 1: Product Discovery and Research

<script>
// global map reference variable
var map;

// initialize the page
function init() {

 // load and initialize map with default location
 var myLatlng = new google.maps.LatLng(33.85095,-84.2075);
 var myOptions = {
 zoom: 10,
 center: myLatlng,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 }
 map = new google.maps.Map(document.getElementById("mapCanvas"),
 myOptions);

 // add the button click listener
 var btnFindProduct = document.getElementById('findProduct');
 btnFindProduct.addEventListener('click',findProduct,false);

} // end init

// function to call AJAX helper for retrieving availability
function findProduct() {

 // set helper URL location
 var wsUrl = "ajax/wsMiloAvailability.php";

 // grab values from form for product ID search
 var inProduct = document.getElementById('product').value;
 var inZip = document.getElementById('zip').value;
 var inRadius = document.getElementById('radius').value;

 // encapsulate fields for query string
 var params = {
 product_id: inProduct,
 postal_code: inZip,
 radius: inRadius
 };

 // make AJAX call
 $.ajax({ url: wsUrl, data: $.param(params), success: processData});

} // end findProduct

// function to process the availability data received via AJAX
function processData(data) {

 var merName;
 var merImg;

1.2. Mapping Product Availability | 21

 var storeLat;
 var storeLng;
 var storeStock;

 // convert JSON data into JSON object
 var obj = jQuery.parseJSON(data);

 // TODO: should handle if no data or error returned

 // loop through each merchant returned
 $.each(obj, function(i, merchant) {

 // grab merchant name and image
 merName = this['name'];
 merImg = this['image_url'];

 // loop through each store location of merchant
 $.each(merchant, function() {

 // simple check if a store object
 if (this['id']) {

 // grab the store location information and availability
 storeLat = this['latitude'];
 storeLng = this['longitude'];
 storeStock = this['availability'];

 // create the marker with the data
 createMarker(merName, merImg, storeLat, storeLng, storeStock)
 }
 });
 });

 // pan to the marker displayed
 map.panTo(mkrLatLng);

} // end processData

// function to create each map marker based on passed data
function createMarker(mkrName, mkrImg, mkrLat, mkrLng, mkrStock) {

 /* Milo availbility values include:
 in_stock Currently available for purchase
 out_of_stock Currently not available for purchase
 limited Currently available though stock may be low
 carries The product is sold at the store but availability
 is unknown
 likely Likely to be available but not certain
 never The store does not carry the product
 call The store should be contacted for availability
 information

22 | Chapter 1: Product Discovery and Research

 */

 // check availabilty and set icon to merchant image if available
 var mkrIcon = '';
 if (mkrStock == 'in_stock' || mkrStock == 'limited') {
 mkrIcon = mkrImg;
 }

 // create the marker based on Latitude and Longitude
 var mkrLatLng = new google.maps.LatLng(mkrLat, mkrLng);
 var marker = new google.maps.Marker({
 position: mkrLatLng,
 map: map,
 icon: mkrIcon
 });

 // set the info window content and click listener to display
 var infowindow = new google.maps.InfoWindow();
 google.maps.event.addListener(marker, 'click', (function(marker) {
 return function() {
 infowindow.setContent('' + mkrName
 + '
' + mkrStock);
 infowindow.open(map, marker);
 }
 })(marker));

} // end createMarker

// initialize the page
window.addEventListener('load',init,false);

</script>
</head>
<body>
<div id="container">
 <div id="mapCanvas"></div>
 <div id="productForm">
 <form>
 <fieldset>
 <legend>Product Search</legend>

 <label for="product">Product ID (Milo ID)</label>
 <input autofocus required id="product" name="product"
 value="6754308" />

 <label for="zip">Zip Code</label>
 <input required id="zip" name="zip" value="30345" />

 <label for="radius">Radius (1-100 miles)</label>

1.2. Mapping Product Availability | 23

 <input required id="radius" name="radius" min="1" max="100"
 value="10" />

 </fieldset>

 <button id="findProduct" name="findProduct" type="button">
 Locate Product
 </button>
 </form>
 </div>
</div>
</body>
</html>

This page will allow the user to enter a product ID, zip code, and radius in a form. The
radius parameter is a range for the search, between 1 and 100 miles. After submitting
the form, the page will make a request to a helper web service we will create, which will
in turn call the Milo Availability endpoint, get the results, merge them into a single JSON
block, and return the block to the HTML page. Once received, the page will map the
locations on an embedded Google map, as seen in Figure 1-9. If a store has stock, the
page will show the store logo image as the marker. If there is no stock, the marker will
be a regular map marker. If you click on the marker, an info window will appear with
the merchant logo and a stock count. You could add the store hours, address, and other
information from the results as desired.

To assist with the chunked data that is returned from the Availability call, a PHP helper
web service has been implemented in this example. The PHP file takes the parameters
set in the page, adds them to a request to the Availability endpoint, and executes the call,
as if a file were being opened via a URL so that the return can be handled as a stream.
Each chunk of data received is a block or line, which is then handled according to the
type of data in the block: merchant, location, or availability. The blocks are added as
arrays into a master array, which is then encoded in JSON and returned to the HTML
page. The code for the PHP web service helper is in Example 1-9.

24 | Chapter 1: Product Discovery and Research

Figure 1-9. Resulting product ID availability map

Example 1-9. wsMiloAvailability.php web service helper
<?php

/**
wsMiloAvailability.php
Web service helper for accessing Milo Open
API Availabilty endpoint.

API key required for your domain.
Calls caller.php and APIError.php.
**/

DEFINE("API_KEY","<YOUR_API_KEY>");
DEFINE("AVAIL_ENDPOINT","https://api.x.com/milo/v3/availability");

// set the URL to call
$url = AVAIL_ENDPOINT . "?key=" . API_KEY . "&" .
 $_SERVER['QUERY_STRING'];

1.2. Mapping Product Availability | 25

// Use a file stream to handle availability chunking of the
// return information. We will loop through all the chunks
// received and collapse to one JSON block.
$file_handle = fopen($url, "r");
if ($file_handle) {

 // array to hold new block for client
 $arr_json = array();

 while (!feof($file_handle)) {

 // get the next line from the file stream
 $line = fgets($file_handle);

 // decode the chunk or line we just received
 $jsonLine = json_decode($line, true);

 // determine chunk type and handle
 switch (key($jsonLine)) {

 // received a merchant chunk
 case "merchant":
 // get the merchant and hold the merchant JSON
 $merchant_id = (string)$jsonLine['merchant']['id'];
 $arr_json[$merchant_id] = $jsonLine["merchant"];
 break;

 // received a store location chunk
 case "location":
 // get the location and add under merchant
 $location_id = (string)$jsonLine['location']['id'];
 $merchant_id = (string)$jsonLine['location']['merchant_id'];
 $arr_json[$merchant_id][$location_id] = $jsonLine["location"];
 break;

 // received the availability chunk
 case "result":
 // get the result and just merge with location stored
 $arr_json[$merchant_id][$location_id] += $jsonLine["result"];
 break;
 }
 }
 if (!feof($file_handle)) {
 echo "Error: unexpected fgets() fail\n";
 }

 // close our stream handler
 fclose($file_handle);

 // send the new JSON block down to the client

26 | Chapter 1: Product Discovery and Research

 echo json_encode($arr_json);

}
?>

This is but one method for dealing with the chunked data return. Other options include
using JSONP, which is supported by the Milo API. However, by including a helper web
server you can also filter the results as needed and track the usage by your visitors.

As a business that is trying to get exposure to online customers, integrating and using
the Milo API provides another avenue of reaching potential customers searching online:
the customer can see that a storefront right around the corner has the product in stock,
and see the current price. This can be compelling if the customer doesn’t want to wait
for (or pay for) the product to be shipped.

A business can easily integrate and expose locations and inventories on
Milo and third-party applications that use the Milo Open API by using
a service called Milo Fetch. At the time of writing, the service is in beta
form. It integrates with several third-party business administration and
point-of-sale software packages, including Intuit QuickBooks Point of
Sale, Pro, Premier, and Enterprise editions. See http://pointof
sale.milo.com for more information.

See Also
Milo Open API Documentation

Milo Open API Endpoints

Milo Fetch (beta)

1.3. Presenting Products Through eBay
Opportunity
When potential customers are searching online for a product, the main challenge a
merchant faces is having its product offerings exposed and presented to those customers.
Most of the time merchants rely on indexing of their sites and keywords to hopefully be
mapped to online searches performed by people browsing the Internet. The more places
that merchants can get their products indexed and listed, the greater potential there is
for discovery by potential customers.

1.3. Presenting Products Through eBay | 27

http://pointofsale.milo.com
http://pointofsale.milo.com
https://www.x.com/developers/documentation-tools/milo/miloindex
https://www.x.com/developers/documentation-tools/milo/endpoints.html
https://pointofsale.milo.com/

Solution
With a little effort, merchants can manually post products for auction and purchase on
eBay by signing up for a seller account. This provides an opportunity for eBay users to
discover the products. However, this is a manual process that is not integrated into the
merchant’s backend system. This example will show how an item can be added to eBay’s
marketplace by using the eBay Trading API and some simple calls. This model could
then be employed to either automate or streamline the process.

Discussion
The eBay Trading API is designed to work both in a sandbox and a production envi‐
ronment to search for items, retrieve category information, and add items. In this case
we will use the AddItem call to programmatically add an item, with fields passed in an
XML request that mimics adding an item manually. There are several fields in the
AddItem request that are required, and additional fields that can be included based on
the type of listing. eBay provides a full documentation set on the AddItem call, available
in the eBay Trading API Call Reference.

This example will present the user with a brief form in which to enter the title of the
item, the eBay category ID, the starting price, a URL of the item’s picture, and a de‐
scription, as seen in Figure 1-10. These are the core fields of an item listing.

Figure 1-10. Add eBay item form

28 | Chapter 1: Product Discovery and Research

http://bit.ly/VO99WY
http://bit.ly/12yutWn

The additem.php page, which presents this form, will take the submitted fields and place
them in an XML block to pass over in the AddItem call. In addition to these fields, there
are a number of other fields that get included in the XML request. In this case, these
fields have been left in the XML block and not brought into the form. When adapting
this example to your needs, however, you may wish to change some of these fields,
include others, or even allow the user to select the AddItem call fields in the form.

The eBay call reference page for the AddItem call describes each of the fields in detail
and their possible values. For example, in the XML block of the addItem.php page you
will find ConditionID, which is a numerical value representing the condition of the item
(1000 is equal to “New” while 5000 is “Good”). For more information on working with
the ConditionID field, you can reference the eBay document “Specifying an Item’s Con‐
dition”. You could let the user select from a drop-down or choose a different value
automatically. In this example, the item will be listed in an auction format, or in eBay
terms as a “Chinese” auction, which is the standard auction type for eBay. You could
change this to any of the other listing types that eBay provides; the full list of eBay listing
types can be viewed in the eBay Trading API Call Reference online. Example 1-10 shows
the addItem.php code.

Example 1-10. addItem.php
<?php
/**
addItem.php

Uses eBay Trading API to list an item under
a seller's account.

**/

// include our Trading API constants
require_once 'tradingConstants.php';

// check if posted
if (!empty($_POST)) {

 // grab our posted keywords and call helper function
 // TODO: check if need urlencode
 $title = $_POST['title'];
 $categoryID = $_POST['categoryID'];
 $startPrice = $_POST['startPrice'];
 $pictureURL = $_POST['pictureURL'];
 $description = $_POST['description'];

 // call the getAddItem function to make AddItem call
 $response = getAddItem($title, $categoryID, $startPrice, $pictureURL,
 $description);

}

1.3. Presenting Products Through eBay | 29

http://bit.ly/R3MyIZ
http://bit.ly/R3MyIZ
http://bit.ly/UAkWsI

// function to call the Trading API AddItem
function getAddItem($addTitle, $addCatID, $addSPrice, $addPicture,
 $addDesc) {

 // create unique ID for adding item to prevent duplicate adds
 $uuid = md5(uniqid());

 // create the XML request
 $xmlRequest = "<?xml version=\"1.0\" encoding=\"utf-8\"?>";
 $xmlRequest .= "<AddItemRequest
 xmlns=\"urn:ebay:apis:eBLBaseComponents\">";
 $xmlRequest .= "<ErrorLanguage>en_US</ErrorLanguage>";
 $xmlRequest .= "<WarningLevel>High</WarningLevel>";
 $xmlRequest .= "<Item>";
 $xmlRequest .= "<Title>" . $addTitle . "</Title>";
 $xmlRequest .= "<Description>" . $addDesc . "</Description>";
 $xmlRequest .= "<PrimaryCategory>";
 $xmlRequest .= "<CategoryID>" . $addCatID . "</CategoryID>";
 $xmlRequest .= "</PrimaryCategory>";
 $xmlRequest .= "<StartPrice>" . $addSPrice . "</StartPrice>";
 $xmlRequest .= "<ConditionID>1000</ConditionID>";
 $xmlRequest .= "<CategoryMappingAllowed>true
 </CategoryMappingAllowed>";
 $xmlRequest .= "<Country>US</Country>";
 $xmlRequest .= "<Currency>USD</Currency>";
 $xmlRequest .= "<DispatchTimeMax>3</DispatchTimeMax>";
 $xmlRequest .= "<ListingDuration>Days_7</ListingDuration>";
 $xmlRequest .= "<ListingType>Chinese</ListingType>";
 $xmlRequest .= "<PaymentMethods>PayPal</PaymentMethods>";
 $xmlRequest .= "<PayPalEmailAddress>yourpaypal@emailaddress.com
 </PayPalEmailAddress>";
 $xmlRequest .= "<PictureDetails>";
 $xmlRequest .= "<PictureURL>" . $addPicture . "</PictureURL>";
 $xmlRequest .= "</PictureDetails>";
 $xmlRequest .= "<PostalCode>05485</PostalCode>";
 $xmlRequest .= "<Quantity>1</Quantity>";
 $xmlRequest .= "<ReturnPolicy>";
 $xmlRequest .= "<ReturnsAcceptedOption>ReturnsAccepted
 </ReturnsAcceptedOption>";
 $xmlRequest .= "<RefundOption>MoneyBack</RefundOption>";
 $xmlRequest .= "<ReturnsWithinOption>Days_30</ReturnsWithinOption>";
 $xmlRequest .= "<Description>" . $addDesc . "</Description>";
 $xmlRequest .= "<ShippingCostPaidByOption>Buyer
 </ShippingCostPaidByOption>";
 $xmlRequest .= "</ReturnPolicy>";
 $xmlRequest .= "<ShippingDetails>";
 $xmlRequest .= "<ShippingType>Flat</ShippingType>";
 $xmlRequest .= "<ShippingServiceOptions>";
 $xmlRequest .= "<ShippingServicePriority>1
 </ShippingServicePriority>";
 $xmlRequest .= "<ShippingService>USPSMedia</ShippingService>";

30 | Chapter 1: Product Discovery and Research

 $xmlRequest .= "<ShippingServiceCost>2.50</ShippingServiceCost>";
 $xmlRequest .= "</ShippingServiceOptions>";
 $xmlRequest .= "</ShippingDetails>";
 $xmlRequest .= "<Site>US</Site>";
 $xmlRequest .= "<UUID>" . $uuid . "</UUID>";
 $xmlRequest .= "</Item>";
 $xmlRequest .= "<RequesterCredentials>";
 $xmlRequest .= "<eBayAuthToken>" . AUTH_TOKEN . "</eBayAuthToken>";
 $xmlRequest .= "</RequesterCredentials>";
 $xmlRequest .= "<WarningLevel>High</WarningLevel>";
 $xmlRequest .= "</AddItemRequest>";

 // Define our header array for the Trading API call
 // Notice different headers from shopping API and SITE_ID
 // changes to SITEID
 $headers = array(
 'X-EBAY-API-SITEID:'.SITEID,
 'X-EBAY-API-CALL-NAME:AddItem',
 'X-EBAY-API-REQUEST-ENCODING:'.RESPONSE_ENCODING,
 'X-EBAY-API-COMPATIBILITY-LEVEL:' . API_COMPATIBILITY_LEVEL,
 'X-EBAY-API-DEV-NAME:' . API_DEV_NAME,
 'X-EBAY-API-APP-NAME:' . API_APP_NAME,
 'X-EBAY-API-CERT-NAME:' . API_CERT_NAME,
 'Content-Type: text/xml;charset=utf-8'
);

 // initialize our curl session
 $session = curl_init(API_URL);

 // set our curl options with the XML request
 curl_setopt($session, CURLOPT_HTTPHEADER, $headers);
 curl_setopt($session, CURLOPT_POST, true);
 curl_setopt($session, CURLOPT_POSTFIELDS, $xmlRequest);
 curl_setopt($session, CURLOPT_RETURNTRANSFER, true);

 // execute the curl request
 $responseXML = curl_exec($session);

 // close the curl session
 curl_close($session);

 // return the response XML
 return $responseXML;
}
?>

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>1-4 Add Item to eBay using eBay Trading API</title>
<style>
body {background: #fff; color: #000;

1.3. Presenting Products Through eBay | 31

 font: normal 62.5%/1.5 tahoma, verdana, sans-serif;}
* {margin: 0; padding: 0;}
form {padding: 0 10px; width: 700px;}
legend {font-size: 2em; padding-left: 5px; padding-right: 5px;
 position: relative;}
fieldset {border: 1px solid #ccc; border-radius: 5px; padding: 10px;
 width: 320px;}
li {clear: both; list-style-type: none; margin: 0 0 10px;}
label, input {font-size: 1.3em;}
label {display: block; padding: 0 0 5px; width: 200px;}
input {background-position: 295px 5px; background-repeat: no-repeat;
 border: 2px solid #ccc; border-radius: 5px;
 padding: 5px 25px 5px 5px; width: 285px;}
input:focus {outline: none;}
input:invalid:required {background-image: url(asterisk.png);
 box-shadow: none;}
input:focus:invalid {background-image: url(invalid.png);
 box-shadow: 0px 0px 5px #b01212; border: 2px solid #b01212;}
input:valid:required {background-image: url(accept.png);
 border: 2px solid #7ab526;}
div label {width: 100%;}
</style>
</head>
<body>
<div id="frmProduct">
 <!-- simple form for query keyword entry -->
 <form name="addItem" action="addItem.php" method="post">
 <fieldset>
 <legend>Add Item</legend>

 <label for="title">Title</label>
 <input autofocus required id="title" name="title"
 value="Great Black Headphones" maxlength="80" />

 <label for="categoryID">Category ID</label>
 <input required id="categoryID" name="categoryID"
 value="112529"/>

 <label for="startPrice">Start Price</label>
 <input required id="startPrice" name="startPrice"
 value="20.00"/>

 <label for="pictureURL">Picture URL</label>
 <textarea rows="4" cols="40" required id="pictureURL"
 name="pictureURL">http://www.monsterproducts.com/images_db/
 mobile/MH_BTS_ON-SOHD_BK_CT_glam.jpg</textarea>

32 | Chapter 1: Product Discovery and Research

www.allitebooks.com

http://www.allitebooks.org

 <label for="description">Description</label>
 <textarea rows="4" cols="40" required id="description"
 name="description">A great pair of brand new black
 headphones - one for each ear.</textarea>

 <input type="submit" value="Add Item">
 </fieldset>

 </form>
</div>
<div id="container">

 <?php
 // display information to user based on AddItem response

 // convert the XML response string in an XML object
 $xmlResponse = simplexml_load_string($response);

 // verify that the XML response object was created
 if ($xmlResponse) {

 // check for call success
 if ($xmlResponse->Ack == "Success") {

 // display the item ID number added
 echo "<p>Successfully added item as item #" .
 $xmlResponse->ItemID . "
";

 // calculate fees for listing
 // loop through each Fee block in the Fees child node
 $totalFees = 0;
 $fees = $xmlResponse->Fees;
 foreach ($fees->Fee as $fee) {
 $totalFees += $fee->Fee;
 }
 echo "Total Fees for this listing: " . $totalFees . ".</p>";

 } else {

 // unsuccessful call, display error(s)
 echo "<p>The AddItem called failed due to the following
 error(s):
";
 foreach ($xmlResponse->Errors as $error) {
 $errCode = $error->ErrorCode;
 $errLongMsg = htmlentities($error->LongMessage);
 $errSeverity = $error->SeverityCode;
 echo $errSeverity . ": [" . $errCode . "] " .
 $errLongMsg . "
";
 }
 echo "</p>";

1.3. Presenting Products Through eBay | 33

 }

 }
 ?>

</div>
</body>
</html>

To get the appropriate eBay category ID that is required for adding an item, you can use
the GetCategories Trading API call [and test it with the API Test Tool, as described in
Recipe 1.1, “Tapping Into Product Reviews and Guides”]. In this example, the appro‐
priate category ID has been included directly in the XML request. This is fine if you are
listing only one type of item that always fits into a single category, but you will most
likely want to incorporate the GetCategories call into your own solution.

In addition to the fields already mentioned as required, there are two other fields worth
describing in the AddItem call. The first is a universally unique ID, or UUID. For the
AddItem call, this UUID field takes a 32-hex-character string. This value must be different
for each AddItem call that is made. The purpose of this field is to prevent duplication of
calls, which could add the same item more than once. In the example here, a simple
MD5 hash of the output of the uniqid PHP function is used to produce this ID.

The last field that will be specific to your call is the eBayAuthToken, and it is critical to
the request. The auth token represents the authorization of the eBay user on whose
behalf this call is made in your application to access eBay data. To get an auth token for
a single user—for example, if you will be adding items for only a single merchant in-
house or you are testing in the sandbox—you can use the User Token Tool in the eBay
Developer Tools. With this tool, you can generate an auth token for a single user in the
sandbox or production environment and create a sandbox user to test with, as seen in
Figure 1-11.

When creating a sandbox user, use a real email address to which you
have access. eBay listing confirmation messages from the sandbox en‐
vironment will be sent to this email address.

34 | Chapter 1: Product Discovery and Research

http://developer.ebay.com/devzone/xml/docs/reference/ebay/GetCategories.html
https://developer.ebay.com/DevZone/account/tokens/default.aspx

Figure 1-11. Creating an eBay user token

If you are creating an item-listing tool, you will need to get the auth
token programmatically for the eBay user using your application. For
more information on programmatically acquiring a user’s authorization
and fetching the token for your application, see the online eBay Trading
API tutorial, “Getting Tokens”.

After getting your auth token, place the token string and app credentials in the trading
Constants.php file. These constants are used in the HTTP headers and the XML request
for the addItem.php page. Example 1-11 shows the tradingConstants.php file with sample
sandbox credentials set.

1.3. Presenting Products Through eBay | 35

http://bit.ly/ZKRPcf

Example 1-11. tradingConstants.php
<?php
/***
tradingConstants.php

Constants used for Trading API calls.
Replace keys and tokens with your information.

***/

// eBay site to use - 0 = United States
DEFINE("SITEID",0);

// production vs. sandbox flag - true=production
DEFINE("FLAG_PRODUCTION",false);

// eBay Trading API version to use
DEFINE("API_COMPATIBILITY_LEVEL",779);

/* Set the Dev, App, and Cert IDs.
Create these on developer.ebay.com.
Check if need to use production or sandbox keys. */
if (FLAG_PRODUCTION) {

 // PRODUCTION
 // set the production URL for Trading API calls
 DEFINE("API_URL",'https://api.ebay.com/ws/api.dll');

 // set production credentials (from developer.ebay.com)
 DEFINE("API_DEV_NAME",'<YOUR_PRODUCTION_DEV_ID>');
 DEFINE("API_APP_NAME",'<YOUR_PRODUCTION_APP_ID>');
 DEFINE("API_CERT_NAME",'<YOUR_PRODUCTION_CERT_ID>');

 // set the auth token for the user profile used
 DEFINE("AUTH_TOKEN",'<YOUR_PRODUCTION_TOKEN>');

} else {

 // SANDBOX
 // set the sandbox URL for Trading API calls
 DEFINE("API_URL",'https://api.sandbox.ebay.com/ws/api.dll');

 // set sandbox credentials (from developer.ebay.com)
 DEFINE("API_DEV_NAME",'48242bdb-6e6e-4a84-bba9-aaaaaaaaaaaa');
 DEFINE("API_APP_NAME",bbbbbbbbb-ff13-407f-993c-3fd6de0e3c27');
 DEFINE("API_CERT_NAME",'45daa688-54ec-cccc-cccc-b72247092fba');

 // set the auth token for the user profile used
 DEFINE("AUTH_TOKEN",'AgAAAA**AQAAAA**aAAAAA**8L/9Tw**nY+sHZ2PrBmd
 j6wVnY+sEZ2PrA2dj6wFk4GhCZCLow6dj6x9nY+seQ**7bgAAA**AAMAAA**MrJ
 m8FW/aMCMHEJUpxoPu3lbx3moJHLrO6E3dIJmN6Y7ljWtD0EMM/TKSS26K1IaSp

36 | Chapter 1: Product Discovery and Research

 Z4JR4pZ5YelGOS5z571BsPwokbcdcy/G4wDHxF3DWXfh8uEUY3j/R4VOY2h4VzU
 9sNLl6iXdMRvtm9Td7M4artDSiecqiR1JUv+Oy3OSI5XevHGY0RSEDt+...');
}
?>

After the form on the addItem.php page is submitted with the basic listing information,
the AddItem Trading API call is made using the merged fields in the request XML block.
The AddItem call will return an XML block similar to the one shown in Example 1-12
if successful. The return XML will contain an Ack element to flag whether the call was
a Success or had a Failure. If a failure occurred, the return XML will contain the error
causing the failure. In a successful call, summary information will be contained in the
response, including the resulting eBay item ID and start and end times for the listing.
In addition, the return block will include a section of fees representing the individual
costs for the added item.

Example 1-12. Sample AddItem return XML
<?xml version="1.0" encoding="UTF-8"?>
<AddItemResponse xmlns="urn:ebay:apis:eBLBaseComponents">
 <Timestamp>2012-07-12T00:01:43.177Z</Timestamp>
 <Ack>Success</Ack>
 <Version>779</Version>
 <Build>E779_CORE_BUNDLED_15043314_R1</Build>
 <ItemID>110100620547</ItemID>
 <StartTime>2012-07-12T00:01:42.817Z</StartTime>
 <EndTime>2012-07-19T00:01:42.817Z</EndTime>
 <Fees>
 <Fee>
 <Name>AuctionLengthFee</Name>
 <Fee currencyID="USD">0.0</Fee>
 </Fee>
 <Fee>
 <Name>BoldFee</Name>
 ...
 ...
 <Fee>
 <Name>MotorsGermanySearchFee</Name>
 <Fee currencyID="USD">0.0</Fee>
 </Fee>
 </Fees>
 <DiscountReason>SpecialOffer</DiscountReason>
</AddItemResponse>

The addItem.php page will check the return XML for success via the Ack field, and if it’s
found to be successful, will display the item ID and the total fees paid to list the item. If
this functionality were being included in an automated listing application, the item ID,
fees, and start and end times returned could be stored for further automation and
viewing.

Figure 1-12 shows the resulting listing for our sample item.

1.3. Presenting Products Through eBay | 37

Figure 1-12. Resulting eBay listing

To manually validate that the item was listed, you can search for the item ID returned
on the addItem.php page on the eBay site. The GetItem Trading API call can also be
used to present the same item details to the user.

With some simple programming, you can make a custom entry form for your staff to
add products more easily, integrate your inventory into the eBay site, and even do batches
of listings, potentially creating more traffic for your site and boosting sales of your
products.

See Also
eBay Trading API

eBay Trading API AddItem call reference

eBay Trading API GetCategories call reference

API Test Tool

38 | Chapter 1: Product Discovery and Research

https://www.x.com/developers/ebay/products/trading-api
http://developer.ebay.com/DevZone/XML/docs/Reference/eBay/AddItem.html
http://developer.ebay.com/devzone/xml/docs/reference/ebay/GetCategories.html
https://developer.ebay.com/DevZone/build-test/test-tool/default.aspx

1.4. Conclusion
The first step of the commerce lifecycle—product discovery and research—can be one
of the most difficult to get past since customers have so many options for finding goods
on the Internet. The examples contained in this chapter show the possibilities of pro‐
viding product reviews inline, displaying local purchase options if available, and adding
products to eBay programmatically. By incorporating features such as these into your
own commerce practices, you can increase the number of users who start the commerce
lifecycle and the number of people who move on to the second step of the simplified
commerce lifecycle described here.

1.4. Conclusion | 39

CHAPTER 2

Product Presentation

In the last chapter we considered step one of the simplified commerce lifecycle, where
a potential customer discovers your product or service. The challenge for a vendor is to
provide the information necessary to allow for a quick and simple purchase decision by
the visitor. How the product is presented to the user can greatly influence the likelihood
of getting to the next step in the simplified commerce lifecycle illustrated in
Figure 2-1: purchasing.

Figure 2-1. Simplified commerce lifecycle—stage 2

In this chapter the examples will show how, with proper presentation techniques and
incorporating concepts such as social commerce, single sign-on, and cross selling, a
vendor can increase the chance of a customer making the decision to purchase. In the
first recipe we will incorporate the Facebook Open Graph API with the X.commerce
services to incorporate social commerce into a Magento storefront. User feedback of
“want” and “use” of products from the Open Graph will be incorporated into the product
page.

41

The next recipe will show how, with minimal effort, you can incorporate the PayPal
Access and Identity offerings to provide a single sign-on for a user with that user’s PayPal
credentials and retrieve basic user profile information. In this manner you can customize
your product presentation without having to ask the user to set multiple configuration
options.

Lastly, we will look at the potential of cross-selling or up-selling a customer with similar
items presented from eBay with the eBay Merchandising API. Overall, these examples
can increase conversion rates and the number of customers moving on in the simplified
commerce lifecycle.

2.1. Customizing a Magento Storefront
Opportunity
The Magento commerce platform is a powerful engine with many features for creating
an online storefront quickly and easily. However, presenting products and incorporating
social feedback can still be a challenge. Social commerce, or the use of social feeds,
websites, and recommendations by social contacts, can have a profound impact on in‐
creasing user engagement and click-through sales. The incorporation of the Facebook
Open Graph into a Magento storefront can fuel this social commerce opportunity.

Solution
One of the robust architecture features of Magento is the capability of the platform to
add functionality through extensions developed by you or one of the developers in the
Magento community. Developers can create extensions to enhance the present func‐
tionality of the storefront or to incorporate outside features or websites into the appli‐
cation. In this example, a free extension (Facebook Open Graph 2.0) will be used to
incorporate actions such as “I use” and “I want” between the Facebook Open Graph and
Magento. The end result is that users will see Facebook buttons on product pages to
mark products they use or want, and these attributions will appear on the product pages
and the users’ Facebook accounts.

Discussion
“Social commerce” is a term that has been used to describe the intersection of the social
spectrum with vendors and their products or services. By incorporating the social graph,
where members of the community can express positive feedback for items they like or
want, vendors can increase sales through word of mouth and brand recognition. The
Facebook Open Graph API provides integration into the social feeds of Facebook, and
when it is combined with the messaging potential of the X.commerce services and the
product catalog of Magento, a powerful social commerce engine can be created.

42 | Chapter 2: Product Presentation

The Magento ecommerce platform provides for this type of integration and collaborative
data sharing through the use of extensions. Published extensions from developers can
be found in the Magento Extension Marketplace or Magento Connect. For this example,
the implementation will leverage a free extension from Magento that incorporates the
Facebook Open Graph functionality and the X.commerce Fabric messaging and data
retrieval features. The extension is named Facebook Open Graph 2.0, and when installed
it will be listed under the Social Commerce section in the Magento configuration.

If as a developer you are interested in creating your own extension to
the Magento system, documentation including the downloadable Ma‐
gento Connect Extension Developer’s Guidelines is available online at
the Magento Commerce site, with detailed steps for developing and
packaging your extension.

Before you get started with installing the Facebook extension into your Magento im‐
plementation, make sure that your Magento version is one of the compatible versions
for the extension. Compatible versions are listed on the extension page in the Magento
Extension Marketplace.

To integrate the Facebook Open Graph 2.0 extension, this example is broken down into
the following seven steps:

1. Install the xcom prerequisite extension in Magento.
2. Install the Facebook Open Graph 2.0 extension.
3. Configure a new app in your Facebook account.
4. Create an X.commerce account and authorization file.
5. Authorize the extension with X.commerce.
6. Create the Open Graph Facebook object and actions.
7. Create the same actions in the extension, and launch.

The Facebook extension requires the installation of the xcom PHP extension into your
system. The xcom extension handles communication with the X.commerce services and
provides the core methods by which the Facebook extension communicates with Ma‐
gento. The xcom extension is available through PECL or GitHub. To install the xcom
extension on your system, clone the project from GitHub by performing the following
command on your Magento server:

git clone git://github.com/johnj/php5-xcom.git

After cloning the Git repository, perform the following commands:

2.1. Customizing a Magento Storefront | 43

http://www.magentocommerce.com/magento-connect
http://www.magentocommerce.com/magento-connect/facebook-open-graph-2-0.html
http://www.magentocommerce.com/magento-connect/create_your_extension/
http://www.magentocommerce.com/magento-connect/create_your_extension/
http://bit.ly/12yv8qK
http://bit.ly/12yv8qK
https://github.com/johnj/php5-xcom

phpize
./configure
make install

The xcom extension should now be installed on your system as a prerequisite for running
the Facebook extension.

In order to compile and install the xcom extension, your system will
need libavro. libavro is a remote procedure call and serialization frame‐
work that is used in the xcom extension for messaging. If your system
does not have libavro installed, you will need to follow the steps below
to retrieve the library from the Git avro repository, make the package,
and install it. The avro library uses CMake to build:

git clone https://github.com/johnj/avro.git
cd avro/lang/c
cmake .
sudo make install

To perform step 2 and install the Facebook extension into your Magento implementa‐
tion, you will first need to get an extension key from Magento Connect for the Facebook
extension. On the Facebook Open Graph 2.0 extension page in Magento Connect, select
your platform and click “Install Now.” Then select your Magento Connect version, agree
to the extension license agreement, and click “Get Extension Key.” An extension key
similar to the following will be displayed: http://connect20.magentocommerce.com/
community/Social_Facebook. The specific key that you receive may be different based
on your platform and Connect version. Copy the extension key and store it for later, as
you will use it in your Magento administration console to install and activate the Face‐
book extension.

Next, log into the Magento administration console of your implementation and go to
System → Magento Connect → Magento Connect Manager. In the “Install New Exten‐
sions” section, paste the extension key retrieved from Magento Connect for the Face‐
book extension and click “Install,” as shown in Figure 2-2.

44 | Chapter 2: Product Presentation

http://www.magentocommerce.com/magento-connect/facebook-open-graph-2-0.html

Figure 2-2. Installing new extensions in Magento Connect

After installation, the extension should be listed in the existing extensions list on the
same page under the title Social_Facebook. Click “Return to Admin” and go to the System
→ Configuration menu, where you should now see a new configuration area titled “SO‐
CIAL COMMERCE → X.commerce & Facebook,” as seen in Figure 2-3. If you do not
see the new configuration submenu, log out of Magento and log back into the admin‐
istration console. The menu option should now be shown.

Figure 2-3. Extension installed in System → Configuration

2.1. Customizing a Magento Storefront | 45

For step 3, you need to create the Facebook app that will integrate into this extension
and allow the extension to communicate with the Facebook Open Graph API. To add
a new Facebook app you will need a Facebook developer account, which is authorized
to create apps. You may be required by Facebook to further validate your account, but
the developer access will be free of charge. Once your account is authorized, go to http://
developers.facebook.com/apps and click “Create New App.” A dialog will be shown where
you can enter your app name and namespace, as shown in Figure 2-4. The web hosting
selection should be left unchecked, as the X.commerce messaging service will be lever‐
aged for the application. After selecting a name and namespace for the app, click
“Continue.”

Figure 2-4. Creating a new app in Facebook

After the initial dialog on Facebook for creating a new app, you will be asked to enter
the basic information for the app along with the app domains (Figure 2-5). The app
domains should contain the domain that corresponds to your Magento implementation.
In the bottom portion of the form, make sure to add the same domain into the section
“Website with Facebook Login.”

Take note of the app ID, app secret, and namespace for your Facebook
app, as these fields will be needed later to configure the Facebook ex‐
tension in Magento.

After filling out the rest of the form, click “Save Changes.” An X.commerce account and
authorization file will need to be created next. To do so, return to the Magento Admin‐
istration console and go to the X.commerce & Facebook configuration settings, under
System → Configuration. On the configuration screen of the extension, click “Generate
an X.commerce Authorization File.” You will then be taken to the X.commerce Extension
Center, as shown in Figure 2-6.

46 | Chapter 2: Product Presentation

http://developers.facebook.com/apps
http://developers.facebook.com/apps

Figure 2-5. Completed Facebook app registration

Note that sometimes the X.commerce, Facebook, and Magento inter‐
faces may become confused with session management. If you do not
get the expected screen in this flow, log out of the site you’re in, close
the window or tab in your browser, and try again. For example, if you
do not get the X.commerce Extension Authorization Center page when
trying to generate an authorization file, click the “Log Out” link, close
the window or tab, and try again from the Magento interface.

Click the Login button to continue. After logging into the X.commerce area you will be
asked to create an X.commerce Merchant Account, if you do not already have one. Fill
in the appropriate information as shown in Figure 2-7 and continue.

2.1. Customizing a Magento Storefront | 47

Figure 2-6. Extension Authorization Center login

Figure 2-7. X.commerce Merchant Account creation form

48 | Chapter 2: Product Presentation

Once the form is complete and you have confirmed the information, the authorization
file can be generated. Enter your store name as shown in Figure 2-8. The store name can
be any name corresponding to your storefront that you wish.

Figure 2-8. Generating the authorization file

Click “Generate Authorization File” and a download of your authorization file will begin.
The file downloaded will have an .auth extension and will be named after your store,
similar to Apiris_50786b489353d.auth.

Once the file has been downloaded, return to the Social Commerce extension settings
and upload the authentication file. After successfully uploading the file, a “Current To‐
ken” field should be displayed, as seen in Figure 2-9.

Figure 2-9. Successful authorization file upload

Once you’ve uploaded the authorization file you will need to authorize the Social Com‐
merce extension with X.com, or X.commerce Fabric. Click the “Authorize the Social
Commerce Extension” button, as shown in Figure 2-10. This will open the X.commerce
authorization window.

2.1. Customizing a Magento Storefront | 49

Figure 2-10. Authorizing the social commerce extension

If you are not brought to the expected “Authorize Social Commerce Extension” page, as
seen in Figure 2-11, log out of X.commerce, close the window, and try again.

Figure 2-11. Authorizing the extension on X.commerce

Select the checkbox to authorize the extension, and then click the “Authorize Extension”
button. This concludes step 5, to authorize the extension with the X.commerce services.

50 | Chapter 2: Product Presentation

The last two steps are to map the available objects and actions that will be integrated
with the Facebook Open Graph. First you will need to set up the object and actions for
the Facebook app. Next, the same object and action will need to be tied into the Magento
Social Commerce extension settings so the two match.

An Object for the Open Graph can reference any type of object, but for
most Magento implementations it will typically be a Product or Ser‐
vice. However, if your Magento product catalog consists only of video
games, as an example, your object may instead be a Game. In this man‐
ner the proper messaging can be displayed, such as “I play this game”
or “I want this game.”

In the Facebook developers area, open the Open Graph settings for your Facebook app
by clicking on “Open Graph” in the menu, as seen in Figure 2-12. Define the action and
product for the app by entering what people can do with the product. Click “Get Started”
to continue with the wizard to configure the action and object.

Figure 2-12. Open Graph settings

Define the action name, as seen in Figure 2-13, and continue through the wizard with
the defaults.

2.1. Customizing a Magento Storefront | 51

Figure 2-13. Defining the action type

After completing the action and object configuration wizard, the resulting object and
action will be shown on the dashboard. Next, you need to add this same action into the
Magento Social Commerce extension. In the administration settings for the extension
at the bottom of the page, click “Add an Action” and enter the Facebook action and
button title to display, as seen in Figure 2-14.

Figure 2-14. Extension action settings

Now that the relationships are set between the Magento extension, Facebook, and
X.commerce, the extension can be enabled in Magento. At the top of the settings, select
“Yes” from the “Enable Facebook on Frontend” drop-down, as seen in Figure 2-15, to
enable the extension.

52 | Chapter 2: Product Presentation

Figure 2-15. Enabling the extension

You have now reached the end of the seven steps, and hopefully you were able to follow
along fairly easily. Now it’s time to test the added social component and see how it looks
on the product pages of your site. On your Magento storefront, navigate to a particular
product page. You should see on your product page the social commerce extension
embedded with the action or actions that you have defined, as in Figure 2-16.

Figure 2-16. Embedded social commerce extension view

If you get an error stating that the X.commerce extension was not loaded, as shown in
Figure 2-17, the issue stems from not having the libavro library installed. This is a nec‐
essary component for running the xcom extension installed at the beginning of this
example. You will need to install the libavro library to correct the error.

This example shows how, with some installed extensions but no coding, you can add a
social element to your Magento storefront to bring in recommendations and create
brand awareness among Facebook social circles.

2.1. Customizing a Magento Storefront | 53

Figure 2-17. Error display without libavro dependency

See Also
Magento Connect − Facebook Open Graph 2.0

Social Commerce with Magento & Facebook

Facebook Developers Site

X.commerce Fabric Developer Package

X.commerce Messaging: Advanced Method Using Magento

2.2. Personalizing a Store Experience
Opportunity
Creating and securing user login information can be challenging, not only for merchants
but also for the customers who have to remember credentials across several websites.
With secure systems and protocols such as OpenID Connect, there is the opportunity
to provide a form of single sign-on across multiple websites. Customers can then rely
on a universal login, while merchants can leverage an outside party for user authenti‐
cation. In turn, once the customer is logged in, merchants can provide more custom
information with the products presented.

Solution
In an OpenID Connect model, a user chooses to log into a website using an ID that has
been registered with a third party. The user is passed over to the third-party login in‐
terface to validate her account, and the credentials are securely returned to the referring
site. Third-party OpenID Connect providers include Google, PayPal, and Yahoo!. By
default, with PayPal’s Access offering for OpenID Connect, users can log into your site
through PayPal’s Access control and be authenticated via the OpenID Connect support
for PayPal Access. This allows the user to sign in quickly and securely and to share profile
information with the site if she so chooses.

54 | Chapter 2: Product Presentation

http://www.magentocommerce.com/magento-connect/facebook-open-graph-2-0.html
http://prezi.com/pocorwswf_dj/social-commerce/
https://developers.facebook.com/
https://www.x.com/developers/x.commerce/products/x.commerce-developer-package
https://www.x.com/developers/x.commerce/how-to-guides/x.commerce-messaging-advanced-method-using-magento

Discussion
This example will use the PayPal Access API to provide a login to users, allowing them
to authenticate using their PayPal credentials. The user will be provided with a button
to click to log in via PayPal. When clicked, the button will launch a secure login window
from PayPal. If the user successfully logs in, PayPal will ask if he wishes to allow sharing
of profile information with the referring website. If the user agrees, the login window is
closed and the user is returned to the referring website and logged in—with the website
knowing a little more about the user so the user experience can be customized. The
benefits of this streamlined user experience include:
Customization

Increased opportunities to customize the product presentation based on the knowl‐
edge of the user.

Peace of mind
An increased comfort level for the user through PayPal brand recognition.

Security
Increased security for the merchant, since PayPal handles the account login infor‐
mation.

Convenience
A new account is not required; the user needs to remember only a single account.

From the user’s point of view, using PayPal login credentials to securely sign into multiple
websites is quick and simple. But behind the scenes the process is a bit more complex,
with care taken to assure that the flow is seamless and, most importantly, secure through
the use of OpenID Connect and OAuth 2 for the protocol.

OpenID Connect is preferred over OpenID for implementing PayPal
Access, due to its higher security standards.

In Figure 2-18 the flow for this example is shown, including the retrieval of secure tokens
and user profile information that the code in this example will perform.

2.2. Personalizing a Store Experience | 55

Figure 2-18. Access flow to log in and retrieve profile information

In the flow in Figure 2-18 you can see that multiple calls have to take place to the PayPal
Access API to authenticate the user and retrieve the profile information. In this example
the process involves the following steps:

1. The user is presented with a PayPal Access login button pulled from the PayPal
servers.

2. A request is made to the PayPal Access API for the authentication URL to pass the
user to.

3. A window is opened with the authentication URL.
4. After completing the sign-in on the authentication URL from PayPal, the user is

returned to a return URL on your domain.
5. Now that the user has been authenticated and allowed your site access to his OpenID

Connect profile, authentication and access tokens can be retrieved from an OpenID
Connect session.

6. With the tokens returned, the user’s OpenID Connect profile information can be
retrieved.

7. After retrieving the user’s profile, the OpenID Connect session is closed.

For a merchant, the benefits of using the PayPal Access and OpenID Connect model of
user authentication not only include validating the user against a known entity such as

56 | Chapter 2: Product Presentation

PayPal, but also that the merchant can request profile information about the user from
PayPal. The code in this example will retrieve the OpenID Connect demographic profile
information of the user, as well as the user’s email address and physical address. The
OpenID Connect components that are retrieved are considered the scope of the data to
be shared with the website and must be set up and requested by the website.

On the development side, the first step is to sign into the X.commerce Developer Por‐
tal and register an application for use with the PayPal Access services. In Figure 2-19,
the form for registering your new application is shown.

Figure 2-19. X.com application registration form

In the form for registering your application, select “PayPal Access” for the API Scope to
be used. Then provide an application name and a display name. The display name is
what will be shown to the user on the PayPal login pages. In the Protocols section under
“PayPal Access,” make sure to select “OAuth 2.0 / Open Id Connect.” When you select
this combination, you will be asked for the return URL and attributes level for access.
The return URL is the page to which the user is returned upon completion of the PayPal
sign-on form. This will be the page on your site that will handle opening the OpenID
Connect session and retrieving the tokens and profile information. In this example the
page is named authReturn.php. The attributes level corresponds to the OpenID Connect
attributes that you wish to have access to on your site. For this example you can select
all the attributes, for testing purposes.

2.2. Personalizing a Store Experience | 57

http://bit.ly/ZgK3ru
http://bit.ly/ZgK3ru

In a production version of this example the OpenID Connect attributes
selected in the application registration form should be the minimum
set that you need, to minimize security risks. In this example we have
selected all the attributes for demonstration purposes only.

After completing the registration of your application, you will be provided with an app
ID (also known as an app key) and app secret. You will need to pass this key and secret
over to the PayPal Access service with your requests for authentication. Figure 2-20
shows the registered application with the app ID and secret.

Figure 2-20. Registered application details

58 | Chapter 2: Product Presentation

Now that you’ve registered the application for use with the PayPal Access service, you
can add to your site the code to talk with the service. To begin, download the initial code
kit from GitHub. Make sure to download the openid-connect-php-ppaccess folder to
match the protocols and PHP language used in this example. The folder will contain
two files, auth.php and example.php. This example will use only the auth.php file, which
is the communication class for handling the PHP curl and JSON calls to the PayPal
Access service.

Inside auth.php, the application key and secret are also kept for making the calls to the
PayPal Access service. You will need to update these two items in the heading of the
class, along with the scopes and return_url variables. Example 2-1 shows the header
of the class with the fields that need to be replaced. For this example the return URL
should match your domain and the authReturn.php filename.

Example 2-1. auth.php variables to be set
class PayPalAccess{
 private $key = '<YOUR_APP_KEY>';
 private $secret = '<YOUR_APP_SECRET>';
 private $scopes = 'openid profile email address';
 private $state;
 private $return_url = '<YOUR_URL>/authReturn.php';

The scopes variable contains the OpenID Connect scopes that are going to be requested
to be shared from the OpenID Connect service to the website making the request. You
should change the value to 'openid profile email address', which informs the
OpenID Connect service that you would like the user’s demographic profile informa‐
tion, email address, and physical address. The possible scopes include profile, email,
address, and phone. The list must start with openid and contain a space-delimited list
of the scopes being requested. The scopes are based on the OpenID Connect specifica‐
tion. Once these class variables are set for the PayPalAccess object class, you can save
the auth.php file.

Next, the page that will display the PayPal Access login button needs to be created. This
page will also display the user’s profile information after login. Example 2-2 contains
the code for the ppaccess_example.php page.

Example 2-2. ppaccess_example.php example page
<?php
/***
ppaccess_example.php

Example launch file showing if the customer
has logged in via the PayPal Identity service.
If the user has not logged in, a login button
is provided that will launch the auth URL.
Once logged in, the token and profile info are

2.2. Personalizing a Store Experience | 59

https://github.com/paypal/paypal-access/tree/master/openid-connect-php-ppaccess
http://openid.net/specs/openid-connect-basic-1_0.html
http://openid.net/specs/openid-connect-basic-1_0.html

shown.
***/

// Start our session.
session_start();

// Require the auth class.
require_once('auth.php');

// Handle actions selected.
if (isset($_GET['action'])) {
 if ($_GET['action'] = 'logout') {
 // Clean up session and flags.
 unset($_SESSION['TOKEN']);
 unset($_SESSION['PROFILE']);
 $flgLoggedIn = false;
 }
}

// Check if the user is logged in.
if (isset($_SESSION['TOKEN'])) {

 // User logged in, set flag.
 $flgLoggedIn = true;

} else {

 // User not logged in, set flag.
 $flgLoggedIn = false;
 // Initialize a new PayPal Access instance.
 $ppaccess = new PayPalAccess();
 // Get the authentication URL for logging in.
 $auth_url = $ppaccess->get_auth_url();
}

?>

<!DOCTYPE html>
<html>
<head>
<title>PayPal Access OpenID Connect</title>
<style>
* {margin: 0; padding: 0;}
body {background: #fff; color: #000;
 font: normal 62.5%/1.5 tahoma, verdana, sans-serif;}
legend {font-size: 2em; padding-left: 5px; padding-right: 5px;
 position: relative;}
fieldset {border: 1px solid #ccc; border-radius: 5px; float: left;
 padding: 10px; margin: 10px; width: 320px;}
li {clear: both; list-style-type: none; margin: 0 0 10px;
 white-space: pre-wrap; /* CSS3 */
 white-space: -moz-pre-wrap; /* Firefox */
 white-space: -pre-wrap; /* Opera <7 */

60 | Chapter 2: Product Presentation

 white-space: -o-pre-wrap; /* Opera 7 */
 word-wrap: break-word; /* IE */}
button {width: 168px; height: 31px; cursor: pointer;
 margin-bottom: 10px;}
</style>
<script>

// Initialize the button click event handlers.
function init() {

<?php
 // Set button handlers based on logged-in status.
 if ($flgLoggedIn) {
 // User is logged in.
?>
 var buttonLogout = document.getElementById('logout');
 buttonLogout.addEventListener('click', launchLogout, false);
<?php
 } else {
 // User is not logged in.
?>
 var buttonLogin = document.getElementById('login');
 buttonLogin.addEventListener('click', launchLogin, false);
<?php } ?>
}

// Helper functions for button clicks.
function launchLogin() {
 window.open('<?php echo $auth_url;?>','_blank','height=550,
 width=400');
}
function launchLogout() {
 window.location.href = 'ppaccess_example.php?action=logout';
}

// Add the window load event listener.
window.addEventListener('load', init, false);

</script>
</head>
<body>
<?php
 if ($flgLoggedIn) {
 // User logged in.
?>
 <fieldset>
 <legend>PayPal Access - Logged In</legend>
 <div><button id="logout">Log Out</button></div>
 </fieldset>
 <fieldset>
 <legend>Profile</legend>

2.2. Personalizing a Store Experience | 61

 Name: <?php echo $_SESSION['PROFILE']->name;?>
 Email: <?php echo $_SESSION['PROFILE']->email;?>
 Address:

 <?php echo $_SESSION['PROFILE']->address->street_address;?>

 <?php echo $_SESSION['PROFILE']->address->locality.", ".
 $_SESSION['PROFILE']->address->region." ".
 $_SESSION['PROFILE']->address->postal_code;?>
 Country: <?php echo $_SESSION['PROFILE']->address->country;?>

 Language: <?php echo $_SESSION['PROFILE']->language;?>
 Locale: <?php echo $_SESSION['PROFILE']->locale;?>
 Zone: <?php echo $_SESSION['PROFILE']->zoneinfo;?>
 User ID: <?php echo $_SESSION['PROFILE']->user_id;?>

 </fieldset>
 <fieldset>
 <legend>Token Info</legend>

 Token Type: <?php echo $_SESSION['TOKEN']->token_type;?>
 Expires: <?php echo $_SESSION['TOKEN']->expires_in;?>
 Refresh Token:

 <?php echo $_SESSION['TOKEN']->refresh_token;?>
 ID Token:
<?php echo $_SESSION['TOKEN']->id_token;?>
 Access Token:

 <?php echo $_SESSION['TOKEN']->access_token;?>

 </fieldset>
<?php
 } else {
 // User not logged in.
?>
 <fieldset>
 <legend>PayPal Access - Not Logged In</legend>
 <div>
 <button id="login">
 <img src=
 "https://www.paypalobjects.com/en_US/Marketing/i/btn/
 login-with-paypal-button.png" />
 </button>
 </div>
 </fieldset>
<?php
 } // End check if user logged in.
?>
</body>
</html>

62 | Chapter 2: Product Presentation

In the ppaccess_example.php page, the auth.php class file is included and the output will
be based on whether or not the user is presently logged into the website. This is set with
a simple session flag containing the token object that will be returned once the user logs
in. In a production environment you can use your own method of validating whether
or not the user is logged in. In the top code of the page there is also a check to determine
if the user has selected to log out of the site, which simply unsets the session variable.
This will allow you to test logging in and out multiple times using the PayPal Access
service.

If the user is not logged in, the code will display on the page that the user is not logged
in and provide an image button for logging in. It is recommended to use a link to the
PayPal image for the button rather than storing the button on your site, as the image
may be updated in the future. The link for the button image is here and the current
image is shown in Figure 2-21.

Figure 2-21. “Log in with PayPal Access” button

When the user clicks the button, a JavaScript event handler fires and executes the
launchLogin function. This function opens a new window with the recommended
dimensions of 550 pixels high and 400 pixels wide. The address URL provided to the
window is dynamically generated through a request to the PayPal Access URL via a
method in the PayPalAccess class, get_auth_url. The resulting window will present a
login form for the user to enter her PayPal credentials in, as shown in Figure 2-22.

As expected, the browser window shows an authenticated and secure URL and the
content states that the user is using her PayPal account information to log into your
application. After the user enters her credentials and clicks “Log In,” PayPal Access will
validate the account and then present the user with a scope allowance screen, as shown
in Figure 2-23.

2.2. Personalizing a Store Experience | 63

https://www.paypalobjects.com/en_US/Marketing/i/btn/login-with-paypal-button.png

Figure 2-22. PayPal Access Login form

The allow access form confirms with the user that she is allowing PayPal to share the
profile information requested with your website. It is important to note that this form
is only displayed once to the user if she accepts. In subsequent logins the user is not
asked to allow this sharing of information, since it has been shared in the past.

Since PayPal Access is based on the user’s PayPal account information,
users can also manage which websites they want to share profile infor‐
mation with via their PayPal accounts. If a user desires, he can log into
his PayPal account, go to “My Account Settings,” and, under “Preferred
Sites,” not only see what is shared with a website but also remove his
consent for sharing information with that website. If a user changes his
mind about sharing his profile information with your site, a notice will
be sent to your registered application’s administration email address
instructing the removal of any information that has been shared. If the
user logs in via PayPal Access on your site in the future, he will be asked
to allow the sharing of data once more.

64 | Chapter 2: Product Presentation

Figure 2-23. PayPal access scope sharing

Once the user allows the profile information to be shared, the window is closed and the
user is returned to the return URL that was defined in the auth.php file. In this case the
user is returned to authReturn.php, which is listed in Example 2-3.

Example 2-3. authReturn.php return URL page
<?php
/***
authReturn.php

This file checks the return from PayPal Access.
If the login was successful, the code retrieves
the token information and profile information.

Called by PayPal Access upon return.

Uses the auth.php PayPal Access library via
OpenID Connect found at:
https://github.com/jcleblanc/paypal-access.

2.2. Personalizing a Store Experience | 65

***/

session_start();

// Require the auth library.
require_once('auth.php');

// Initialize a PayPalAccess instance.
$ppaccess = new PayPalAccess();

// If the code variable is present, returning from
// PayPal Access login.
if (isset($_GET['code'])){

 // Ask for a set of tokens from PayPal Access.
 $token = $ppaccess->get_access_token();

 // Check for a token retrieval error.
 if (!isset($token->error)) {

 // Save the token settings in the session for debugging.
 $_SESSION['TOKEN'] = $token;

 // Get the profile through PayPal Access using the
 // tokens retrieved.
 $profile = $ppaccess->get_profile();
 if (isset($profile)) {

 // Store the profile in the session for now.
 $_SESSION['PROFILE'] = $profile;
 }

 // End the session with PayPal Access.
 $ppaccess->end_session();

 // Echo out JavaScript to refresh the base window and close
 // this window.
 echo '<script>window.opener.location.href =
 "ppaccess_example.php";window.close();</script>';

 } else {
 // An error has occurred while acquiring the tokens.
 echo "Error: " . $token->error . " :: " .
 $token->error_description;
 }

// If the code parameter is not available, the user should be
// pushed to auth.
} else {

 // Handle case where there was an error during auth (e.g.,

66 | Chapter 2: Product Presentation

 // the user didn't log in, refused permissions, invalid_scope).
 if (isset($_GET['error_uri'])){

 echo "You need to log in via PayPal Access.";

 // If no error then need to push to PayPal Access.
 } else {

 // Get auth URL and redirect user's browser to PayPal to log in.
 $url = $ppaccess->get_auth_url();
 header("Location: $url");
 }
}
?>

When loaded, the authReturn.php file will include the auth.php class and instantiate a
PayPalAccess object. Next, the file will check if a code has been included in the query
string. If included, the code signifies that the file has been called from the PayPal Access
service after successful completion of the login process. To validate that this is an au‐
thentic OpenID Connect session, the page will request the access token from the PayPal
Access service. If an error is returned, the particular error is displayed, but you can
handle the error as needed and send the user to the PayPal Access authentication URL
or return the user to the website without logging her in.

It is worth noting that the token returned by PayPal Access is not a single token, but a
token object including various token properties and separate tokens. Example 2-4 shows
the token object returned and its properties.

Example 2-4. Resulting token access object
[token_type] => Bearer
[expires_in] => 900
[refresh_token] => 18198637SA996854W
[id_token] => eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhdWQiOiI3NzRh
YWVmOWEzMGY3NjhiMzIxNGJlNjAxOTM3OWU5YyIsImF1dGhfdGltZSI6MTM0OTAyNDM
5OCwiaXNzIjoiaHR0cHM6Ly93d3cucGF5cGFsLmNvbSIsInNlc3Npb25JbmRleCI6Ij
Q2NjE1NTNiNmM5MmIwMjI1NGFkZmJjNGQ5OTNkOTM4MTJmNmI4NjIiLCJpYXQiOjEzN
DkwMjQ0MDEsImV4cCI6Mjg4MDAsIm5vbmNlIjoiMTM0OTAyNDM4MjE4MjczNjc3MTgi
LCJ1c2VyX2lkIjoiaHR0cHM6Ly93d3cucGF5cGFsLmNvbS93ZWJhcHBzL2F1dGgvaWR
lbnRpdHkvdXNlci9zMzN3TVpneVdLMVBLOFBRUWNDLTJzRDhMcks0T0VuWm5BUHFKZz
BwY2lRIn0=.9SSdbnDpPhAXgySQM8ViucU9VAe9iEXkM8LwkPwnSmg
[access_token] =>
M9COMwk4EPbMeGNDBbXZM3dRv8aLRMy8lf5u4NEohLnE_dO6I_k2PnEndEXGfnhQD7-1Bg

In the token object, the type of the token is returned along with the number of seconds
in which the access token will expire. In this case the token will expire in 900 seconds,
or 15 minutes. For our example we will not be keeping the session open longer than is
necessary to retrieve the tokens and profile information, but in some cases you may wish

2.2. Personalizing a Store Experience | 67

to do so. To keep the session open, you will need to use the refresh token to refresh the
session on a regular basis. Refresh tokens are good for 8 hours. For more information
on the tokens and refresh functions, see the OpenID Connect Integration for PayPal
Access Getting Started Guide.

Once the tokens have been retrieved by the PayPalAccess class instance, the example
code requests the attributes of the user’s profile through the get_profile method. If
the profile attributes object is returned, the profile is stored in the Session object for
convenience. At this point you can handle the information as you wish, perhaps storing
it in a database or merging the data with other account information. The profile infor‐
mation will be stored in the Session object with the token object so that it can be easily
displayed for debugging purposes.

After completing the profile request the code closes the OpenID Connect session, which
ends the session with the PayPal Access service. At this point the tokens retrieved are
no longer valid and cannot be used to make calls to the PayPal Access service. If you
wanted to make subsequent calls to the service from other pages, you would want to
keep the session open and keep the token data for the PayPalAccess class to use.

In addition to this simple example of logging in, retrieving tokens, and
accessing the profile attributes, a more complex example is available
that allows for manually refreshing tokens and ending the session. This
second example is available in the corresponding chapter code of the
book’s online code repository.

An example of the profile attributes object that is returned is shown in Example 2-5.

Example 2-5. Resulting profile object
address (
 [postal_code] => 92027
 [locality] => Atlanta
 [region] => GA
 [country] => US
 [street_address] => 218 Main St.
)
[language] => en_US
[verified] => true [locale] => en_US
[zoneinfo] => America/Los_Angeles
[name] => Charles Hudson
[email] => chudson@aduci.com
[user_id] => https://www.paypal.com/webapps/auth/identity/user/
 s33wMZgyWK1PK8PQQcC-2sD8LrK4OEnZnAPqJg0pcAQ

The properties in the JSON return include the profile information, email address, and
physical address, as specified in the scopes attribute of the PayPal Access profile request

68 | Chapter 2: Product Presentation

https://www.x.com/developers/paypal/documentation-tools/quick-start-guides/openid-connect-integration-paypal-access
https://www.x.com/developers/paypal/documentation-tools/quick-start-guides/openid-connect-integration-paypal-access

in the auth.php file. Notice that the return also includes a user_id property. This is
PayPal’s unique ID for the user. You can use this ID to uniquely identify and match the
user to your customer information, thus allowing you to merge the OpenID Connect
profile information with your own.

When the OpenID Connect session is ended, the page refreshes the opening (parent)
window’s contents and closes the child window. When refreshed, the ppaccess_
example.php file recognizes that the user has logged in successfully and displays the
profile information and token data that were stored in the session. In turn, you could
then present customized product information based on the customer’s profile informa‐
tion or linked customer information from your database.

See Also
PayPal Access Overview

Getting to Know PayPal Access

OpenID Connect Integration for PayPal Access Getting Started Guide

2.3. Presenting Similar Items
Opportunity
Presenting a product to a customer via a web store is fairly straightforward, and the
product description can contain a wide range of information. However, if the product
does not match the users’ needs exactly, they may leave your website and seek out another
vendor, resulting in the potential loss of a sales and customers.

Solution
Even though a website may not carry the exact match for an item desired by a customer,
there is the potential to assist the customer and start a relationship by showing similar
items from eBay as an up-sell or cross-sell opportunity. eBay provides a Merchandising
API that can be used to retrieve eBay listings similar to a particular item. These items
can be displayed on a vendor’s site with a link to the eBay items for purchase. Not only
can the customer end up purchasing the desired product and feeling good about finding
the item on the website visited, but the website can potentially receive affiliate fees for
leading the customer to eBay.

Discussion
The eBay Merchandising API contains five calls that provide retrieval methods for items
and recommendations from eBay:

2.3. Presenting Similar Items | 69

https://www.x.com/developers/paypal/products/paypal-access
http://bit.ly/UaR897
http://bit.ly/WokenN
http://bit.ly/ZgMaLY

getMostWatchedItems

Retrieves items with the highest watch counts

getRelatedCategoryItems

Retrieves items related to a specific category or item

getSimilarItems

Retrieves items similar to a provided item

getTopSellingProducts

Retrieves the top-selling items by sales rank

getVersion

Retrieves the version of the Merchandising API service

This example will call getSimilarItems to retrieve a list of 10 similar “Buy It Now”
items on eBay based on a provided eBay item ID. The item ID provided in the request
to getSimilarItems must be for an item on eBay that has expired within the past two
weeks. The service will take the item ID passed in with the call and return an array of
similar items and their various properties, including the item image, title, price, and
viewing link. Figure 2-24 shows the resulting display of items if an item ID was passed
in for an iPhone 5.

Figure 2-24. Sample eBay Similar Items list

70 | Chapter 2: Product Presentation

http://bit.ly/VOaOf2

The first step to running this example is to create a new application in the develop‐
er.ebay.com site. When the application is created a set of keys will be provided, including
an application ID (AppID) that will be used as an identifier for your app for requests to
the eBay servers. To create your application ID, log into the developer.ebay.com site and
go to the “My Account” menu option.

Once you have your AppID, enter the string into the merchandisingConstants.php
API_KEY constant, replacing the value of the <YOUR_API_KEY> field as seen in
Example 2-6. The merchandisingConstants.php file will be used to load constants used
in making the getSimilarItems call. You will notice that besides the API key, the end‐
points are defined for the service, the service version, the eBay site to use for the items,
and the format of the request and response data for the call. In this example the data
format for the request and response will be JSON, but you could use name/value pairs
or XML formats depending on your specific needs. To learn more about structuring
requests with other data formats, see the eBay Merchandising API “Making an API
Call” document.

Example 2-6. merchandisingConstants.php constants file
<?php
/**
merchandisingConstants.php

Constants used for Merchandising API calls.

**/

// eBay developer API key for production
DEFINE("API_KEY","<YOUR_API_KEY>");

// eBay Merchandising API constants
DEFINE("MERCHANDISING_API_ENDPOINT",
 "http://svcs.ebay.com/MerchandisingService");
DEFINE("MERCHANDISING_SANDBOX_API_ENDPOINT",
 "http://svcs.sandbox.ebay.com/MerchandisingService");
DEFINE("MERCHANDISING_API_VERSION","1.1.0");

// eBay site to use - 0 = United States
DEFINE("GLOBAL_ID","EBAY-US");

// encoding format - JSON
DEFINE("REQUEST_ENCODING","JSON");
DEFINE("RESPONSE_ENCODING","JSON");
?>

The main file for this example is getSimilarItems.php, shown in Example 2-7. This file
will include the merchandisingConstants.php file, create the JSON request structure,
execute the curl call, and process the results. Depending on whether your application
is registered for the eBay sandbox or production environments, the proper endpoint

2.3. Presenting Similar Items | 71

http://developer.ebay.com/
http://developer.ebay.com/
http://developer.ebay.com/
http://bit.ly/UaRvAu
http://bit.ly/UaRvAu

will need to be used in the getSimilarItems.php file. In Example 2-7 the production
endpoint for the Merchandising API is used. If instead your app is using the sandbox,
the sandbox endpoint will be needed. To change the endpoint, change the constant value
provided to the curl_init method in the getSimilarItems.php file from MERCHANDIS
ING_API_ENDPOINT to MERCHANDISING_SANDBOX_API_ENDPOINT.

For the JSON request, three variables are used: itemId, listingType, and max
Results. The itemId is the only field that is required, but the listingType variable
allows filtering of the type of listings returned and the maxResults variable provides a
limit on the number of items returned. In this case the listings will be limited to Fixed
PriceItem and a maximum of 10 items will be returned.

In addition to these optional fields, the getSimilarItems call can accept
an affiliate block of information. As a third party executing the
getSimilarItems call, you can include a set of IDs corresponding to
an eBay affiliate account. The getSimilarItems call will then wrap the
view item URL and the product URL with the affiliate information. If
a customer from your site then opens either URL, you will have the
opportunity to receive affiliate revenue from purchases made on the
eBay site.

The itemId value will need to be updated to a recent item for you to execute this example
properly, since the item needs to be recently expired on eBay (within the last two weeks).
To retrieve an item ID you can use one of the eBay Finding APIs to search based on
keyword, or for demonstration purposes a simple search of the eBay site in your browser
will expose the item ID, titled item number on any item listing.

Example 2-7. getSimilarItems.php item retrieval and display
<?php
/***
getSimilarItems.php

Uses getSimilarItems of the eBay Merchandising
API to display 10 items similar to a recently
closed item on eBay, given the item ID.

Requires the merchandisingConstants.php file.
***/

// Include our Merchandising API constants.
require_once 'merchandisingConstants.php';

// Create the JSON request variables.
// Replace the itemId with a recently (within
// 2 weeks) completed eBay item ID.
$jsonRequest = '{

72 | Chapter 2: Product Presentation

 "itemId":"170923268700",
 "listingType":"FixedPriceItem",
 "maxResults":"10"
}';

// Define the header array for the Merchandising API call.
$headers = array(
 'X-EBAY-SOA-OPERATION-NAME:getSimilarItems',
 'X-EBAY-SOA-SERVICE-NAME:MerchandisingService',
 'X-EBAY-SOA-SERVICE-VERSION:'.MERCHANDISING_API_VERSION,
 'EBAY-SOA-CONSUMER-ID:'.API_KEY,
 'X-EBAY-SOA-GLOBAL-ID:'.GLOBAL_ID,
 'X-EBAY-SOA-REQUEST-DATA-FORMAT:'.REQUEST_ENCODING,
 'X-EBAY-SOA-RESPONSE-DATA-FORMAT:'.RESPONSE_ENCODING
);

// Initialize the curl session.
$session = curl_init(MERCHANDISING_API_ENDPOINT);

// Set the curl HTTP POST options with the JSON request.
curl_setopt($session, CURLOPT_HTTPHEADER, $headers);
curl_setopt($session, CURLOPT_POST, true);
curl_setopt($session, CURLOPT_POSTFIELDS, $jsonRequest);
curl_setopt($session, CURLOPT_RETURNTRANSFER, true);

// Execute the curl request.
$responseJSON = curl_exec($session);

// Close the curl session.
curl_close($session);
?>

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>2-4 Presenting Similar Items</title>
<style>
body {background: #fff; color: #000;
 font: normal 62.5%/1.5 tahoma, verdana, sans-serif;}
* {margin: 0; padding: 0;}
div.item {font-size: 1.3em; font-weight: bold; border: 7px solid #ccc;
 border-radius: 5px; padding: 10px; margin: 10px; width: 500px;
 vertical-align: top;}
div.itemImage {float: left; display: block; width: 100px;}
div.itemTitle {float: left; display: block; width: 320px;}
div.itemPrice {float: right;}
</style>
</head>
<body>

<?php
// Convert the JSON to a PHP object.

2.3. Presenting Similar Items | 73

$objResponse = json_decode($responseJSON);

// Set the call ack response value.
$ack = $objResponse->getSimilarItemsResponse->ack;

// Check if the call to the Merchandising API was successful.
if ($ack == "Success") {

 // Get a reference to the array of items.
 $items =
 $objResponse->getSimilarItemsResponse->itemRecommendations->item;

 // Loop through the items and display.
 echo '<H1>Similar Items</H1>';
 foreach ($items as $item) {
 // Display the image, title, item ID, and price.
 echo '<div class="item" style="overflow:hidden">';
 echo '<div class="itemImage">imageURL.'"/>
 </div>';
 echo '<div class="itemTitle">viewItemURL.'">
 '.$item->itemId." - ".$item>title.'</div>';
 echo '<div class="itemPrice">'.$item->buyItNowPrice->
 __value__.'</div>';
 echo '</div>';
 }
} else {
 // Call to Merchandising API failed.
 $errors = $objResponse->getSimilarItemsResponse->errorMessage->error;

 // Display errors.
 echo '<H1>'.count($errors).' Error(s)</H1>';
 foreach ($errors as $error) {
 echo "Error Id " . $error->errorId . " :: " . $error->message .
 "
";
 }
}
?>

</body>
</html>

After the call to getSimilarItems is complete, a JSON block will be returned containing
either an error condition or a success. Figure 2-25 shows a sample JSON response object
containing several items. The code in the display portion of the HTML will first check
whether the ack field has a return code that is equal to Success, designating that the
call was successful. Otherwise, the error handling at the bottom of the page will be
triggered.

74 | Chapter 2: Product Presentation

Figure 2-25. Sample JSON items returned

If the call was successful, a pointer to the item array in the JSON object will be set and
the array of items will be looped through, displaying the image, title, view link, and
current “Buy It Now” price. There are other fields that may be of interest in your solution,
including the time remaining, shipping costs, and category ID.

If an error is returned, the ack property will be set to Failure. This designates that the
call to getSimilarItems was received by the eBay services but not successfully executed.
In Figure 2-26 a sample JSON error object is shown, displaying an “Invalid Item ID”
error.

Figure 2-26. Sample error with invalid item ID

This example has shown how easy it is to leverage the eBay Merchandising API to show
items similar to an item of your choosing. This could be integrated into a vendor website
as an up-sell opportunity or even a cross-sell opportunity, depending on the purpose of
the website. As well, the other Merchandising API calls may be of benefit to populate
popular items via the top-selling and most-watched services available.

2.3. Presenting Similar Items | 75

See Also
eBay Merchandising API

eBay Merchandising API − Making an API Call

eBay Merchandising API getSimilarItems call reference

2.4. Conclusion
This chapter has exposed some of the exciting technologies that can be integrated into
your commerce site, whether your site is based on Magento or a homegrown storefront.
The first recipe touched upon integrating social content into product presentation by
leveraging a social framework. The addition of the social element to the commerce
lifecycle can be extremely powerful in moving people to the next step: purchasing.

In the second recipe we looked briefly at incorporating OpenID Connect with PayPal
Access and Identity services, not only to minimize the work needed for incorporating
single sign-on but also to retrieve profile information. Visitors can now sign in with just
their PayPal credentials in a secure and trusted interface. At the same time, risk is mini‐
mized by not having to store visitor login credentials, and beneficial profile data can be
provided. This profile data can then be used in a number of ways, including for dynamic
and customized product presentation.

The final recipe looked at presenting products similar to the one being shown to the
consumer via eBay’s Merchandising API to cross- or up-sell the consumer on goods that
may not be in your product catalog. With this method, you can strengthen your rela‐
tionship with the consumer by making applicable recommendations.

Hopefully you have seen just how powerful these enhancements and integrations into
your commerce site can be. Now that the consumer has found the product he wants to
purchase and been presented with the information necessary for making the purchasing
decision, we can focus on streamlining the purchase process. This is the focus of the
next chapter and the next stage of the commerce lifecycle.

76 | Chapter 2: Product Presentation

https://www.x.com/developers/ebay/products/merchandising-api
http://developer.ebay.com/DevZone/merchandising/docs/Concepts/MerchandisingAPI_FormatOverview.html
http://developer.ebay.com/DevZone/merchandising/docs/CallRef/getSimilarItems.html

CHAPTER 3

Enhancing the Payment Experience

The purchase stage in the simplified commerce lifecycle (Figure 3-1) is the final hurdle
before a vendor is able to establish the buyer/seller relationship with a potential cus‐
tomer. Several opportunities exist in this stage to enhance the process, for example, by
shortening the payment process and changing the process from a series of necessary
steps to a positive user experience. If the process is complex, confusing, or just plain
troublesome for a user, there is the potential to not only irritate the user but also lose
the sale and have the commerce lifecycle end.

Figure 3-1. Simplified commerce lifecycle—stage 3

In this chapter the examples will focus on streamlining the purchase and payment pro‐
cess, while making it an experience that can be both rewarding and positively memorable
for the customer. If successful, this step can contribute to the likelihood of a customer
returning to the site and becoming a member of the seller’s loyal customer base.

Our first example will show how you can encourage visitors to complete the purchase
process on your site through individualized coupons generated in a Magento storefront.
This example will include extending the Magento REST API to allow for integration of

77

these coupon codes into marketing services and other business systems. For those busi‐
nesses where subsequent purchases are key, the second example will show the use of
preapproval payments, whereby a customer can authorize future payments with one
click. Finally, this chapter’s last example will examine the use of parallel payments via
the PayPal Adaptive Payments API to create a positive emotional association with the
purchase by providing a charity donation option during the checkout process.

The overall goals for this stage in the lifecycle are to use APIs to expedite the purchase
process, make it something that has positive ties for the consumer, and keep customers
focused on completing the purchase.

3.1. Autogenerating Coupons with Magento
Opportunity
Couponing has become a wide social phenomenon, both in the brick-and-mortar store
checkout line and online. Coupon codes can be emailed or mailed to users, who can
then input them upon checkout in an online shopping experience, resulting in a more
rewarding experience for the consumer and, if handled correctly, providing important
marketing information for the vendor.

Solution
In release 1.7 of the Magento Community Edition a new method of creating coupon
codes was added, titled “Auto Generation.” With this method, several coupon codes can
be generated at one time. Individual coupon codes can then be distributed to customers,
and vendors are able to see which codes have been used. However, doing this manually
for large amounts of customers can be time-consuming and labor-intensive. This recipe
will show how to leverage the autogenerated coupon codes through an extended REST
API, which can be called by an outside program to automatically generate a number of
codes for distribution. In this manner, as an example, you could email your top 100
customers an individual coupon code quite easily.

Discussion
The Auto Generation option in Magento 1.7 allows Magento to automatically generate
one or more coupon codes for a particular Shopping Cart Price Rule. Magento allows
you to export these codes, but it would be nice to dynamically call a REST-based API
to generate a series of codes that can then automatically be put into an email campaign
or other promotion vehicle. For a brief introduction to the Magento REST interface, see
the “Introduction to REST API” document on the Magento website. To illustrate ex‐
tending this REST API and adding a web service for generating and retrieving coupon
codes, this example will walk through four main steps:

78 | Chapter 3: Enhancing the Payment Experience

http://bit.ly/V3DIHo

1. Setting up an autogenerating coupon rule in Magento
2. Adding a new REST-based API extension
3. Creating a user for the OAuth access to the new service
4. Testing the web service from an external web page

Setting up the autogenerating coupon rule

To create a new autogenerating coupon code rule, you will need to log into your Magento
Admin Panel and select “Shopping Cart Price Rules” under the Promotions menu option
(Figure 3-2).

Figure 3-2. Creating a new shopping cart price rule

The Shopping Cart Price Rules screen will list any rules you have currently for your
shopping cart, including any discounts or coupons. To create a new rule, select “Add
New Rule” in the top-right corner. This will open the “New Rule” screen, which will
have a form for adding the new rule, conditions, actions, and labels. If you need more
information on the various form fields, you can find documentation on creating coupon
codes in the Magento Knowledge Base. The parts that are important for autogeneration
of codes are the fields Coupon and Coupon Code. To have the rule use autogeneration,
change the Coupon value to “Specific Coupon,” which will display the “Use Auto Gen‐
eration” option (Figure 3-3). Check the checkbox next to “Use Auto Generation,” fill out
the rest of your rule, and click “Save.”

Figure 3-3. Creating a rule with coupon autogeneration

3.1. Autogenerating Coupons with Magento | 79

http://bit.ly/UaRHzy

Now that the rule is in place, you can manually generate new coupon codes by selecting
the rule from the list and clicking on “Manage Coupon Codes” in the Shopping Cart
Price Rule detail screen, as seen in Figure 3-4.

Figure 3-4. Manually generating new coupon codes

The “Coupons Information” form allows you to designate the number of coupons, the
length of the coupon code, its format, and some other optional properties. When you
click “Generate,” the coupon codes will be generated and displayed in the list at the
bottom of the screen.

The Magento system will track which coupon codes have been used in the list of coupon
codes under the “Manage Coupon Codes” section. The coupon codes can be exported
to CSV (i.e., as a comma-separated values file), but we will extend Magento so that we
can generate and retrieve new codes dynamically by calling a new REST-based API that
we will create.

Setting up the extended REST API

In several cases you may have a need to create and pull coupon codes for incorporation
into another application, such as an email-marketing tool, or to display on your site to
individual users. Currently the Magento API does not provide a web service that pro‐
vides for the autogeneration of coupon codes. However, the REST-based API architec‐
ture that Magento has released is both flexible and extensible. Based on this framework,
we will add a new web service that will take four parameters:

80 | Chapter 3: Enhancing the Payment Experience

1. The rule ID that we want to create codes for
2. The quantity of codes to create
3. The length that each code should be
4. The format for the generation of the codes

The web service will use these parameters to instantiate the underlying Mage sales rule
(salesrule/rule) coupon code generator and create a pool of new codes. These codes
will be added to the system and returned to the caller via a JSON string.

To create a REST-based extension API in Magento, we’ll define a new module with a
specified directory structure and five required files:

1. <module>.xml
2. config.xml
3. api.xml
4. api2.xml
5. V1.php

The first thing we need to do is tell Magento that we are adding a new module to the
system. This is done with a <module>.xml file, which describes the new module and
where the module definition can be found in the system. In this case we will name our
module CommerceBook_AutoGen, so the file will be named CommerceBook_Auto
Gen.xml and should mirror Example 3-1. The important sections in the module defi‐
nition are the module name (<CommerceBook_AutoGen>) and <codePool> tags, which
inform Magento as to the location of the model for this module.

Example 3-1. Module definition XML file
<?xml version="1.0"?>
<config>
 <modules>
 <CommerceBook_AutoGen>
 <active>true</active>
 <codePool>community</codePool>
 </CommerceBook_AutoGen>
 </modules>
</config>

Once created, the file should be placed in the app/etc/modules directory, as seen in
Figure 3-5.

3.1. Autogenerating Coupons with Magento | 81

Figure 3-5. Location of module definition XML file

Now that Magento knows about the new module, the module directory structure and
files need to be added in the “community” code area under app/code/community. It is
important to make sure that the naming and directory structure are kept the same as
what is defined here, as Magento uses this structure to configure the module and execute
the module logic. The file and directory structure will mimic the normal Magento REST-
based APIs: there will be an etc folder for the configuration of the REST-based service
and a Model folder for the model directory structure. Figure 3-6 shows the directory
structure that should be created and the locations of the XML configuration files and
the web service file, V1.php.

Figure 3-6. REST-based module API directory structure

In Example 3-2 the module and model are defined in the config.xml file.

Example 3-2. config.xml model definition file
<?xml version="1.0"?>
<config>
 <modules>

82 | Chapter 3: Enhancing the Payment Experience

www.allitebooks.com

http://www.allitebooks.org

 <CommerceBook_AutoGen>
 <version>0.1.0</version>
 </CommerceBook_AutoGen>
 </modules>
 <global>
 <models>
 <autogen>
 <class>CommerceBook_AutoGen_Model</class>
 </autogen>
 </models>
 </global>
</config>

By default Magento has system caching turned on, including caching of
modules and web service information. If you are changing the module
directory structure or configuration XML files, you will need to either
turn off the caching temporarily while development occurs or flush the
cache each time that you update the files by going into the System →
Cache Management interface (Figure 3-7). If you receive errors doing
development such as “Route to resource not found,” you should clear
your cache to try and rectify the issue.

Figure 3-7. Magento cache management

Now that Magento has the correct structure for the module, the API XML configuration
files that provide the location of the specific service and service characteristics such as
privileges and routes can be added. In the api.xml file the service is defined with the
appropriate method, faults, and access control list (acl), as shown in Example 3-3.

Example 3-3. api.xml web service definition
<?xml version="1.0"?>
<config>
 <api>
 <resources>
 <autogen_catalog translate="title" module="autogen">
 <model>autogen/catalog_api2</model>

3.1. Autogenerating Coupons with Magento | 83

 <title>autogen catalog API</title>
 <acl>extcatalog</acl>
 <methods>
 <list translate="title" module="autogen">
 <title>Retrieve Coupon Codes</title>
 <method>retrieve</method>
 <acl>extcatalog/info</acl>
 </list>
 </methods>
 <faults module="autogen">
 <data_invalid>
 <code>100</code>
 <message>Invalid Request.</message>
 </data_invalid>
 </faults>
 </autogen_catalog>
 </resources>
 <v2>
 <resources_function_prefix>
 <autogen_catalog>autogen_catalog</autogen_catalog>
 </resources_function_prefix>
 </v2>
 <acl>
 <resources>
 <autogen_catalog translate="title" module="autogen">
 <title>catalog</title>
 <sort_order>3</sort_order>
 <info translate="title" module="autogen">
 <title>Create and retrieve coupon codes</title>
 </info>
 </autogen_catalog>
 </resources>
 </acl>
 </api>
</config>

The api2.xml file in Example 3-4 defines the resources and route information. The route
XML definition is important for telling the system where to find the specific service
code file.

Example 3-4. api2.xml web service definition
<?xml version="1.0"?>
<config>
 <api2>
 <resource_groups>
 <autogen translate="title" module="api2">
 <title>CommerceBook API calls</title>
 <sort_order>30</sort_order>
 <children>
 <autogen_product translate="title" module="api2">
 <title>Product</title>

84 | Chapter 3: Enhancing the Payment Experience

 <sort_order>50</sort_order>
 </autogen_product>
 </children>
 </autogen>
 </resource_groups>
 <resources>
 <autogenproducts translate="title" module="api2">
 <group>autogen_product</group>
 <model>autogen/catalog_api2_product</model>
 <working_model>autogen/catalog_api2_product</working_model>
 <title>Coupon Code Auto Generation</title>
 <sort_order>10</sort_order>
 <privileges>
 <admin>
 <retrieve>1</retrieve>
 </admin>
 </privileges>
 <routes>
 <route_entity_retrieve>
 <route>/commercebook/products/retrieve</route>
 <action_type>entity</action_type>
 </route_entity_retrieve>
 </routes>
 <versions>1</versions>
 </autogenproducts>
 </resources>
 </api2>
</config>

The last step in creating the web service is to drop the actual functional logic into the
module. The PHP logic file should be named V1.php, to follow the Magento naming
scheme, and will extend the Mage_Api2_Model_Resource class. Inside the file a protected
function is added for _retrieve, which Magento will automatically map to the GET
HTTP call action.

Magento uses four “verbs” for accessing resources via the REST-based
API (GET, POST, PUT, and DELETE) and automatically maps each to a
corresponding function: GET → _retrieve, POST → _create, PUT → _up
date, and DELETE → _delete.

In the _retrieve function the code will consume the parameters passed to the call by
using the getRequest method to get the request object, followed by the getParams
method to access each parameter. The code will then load the specific shopping cart
price rule requested and create an instance of the CouponMassGenerator object. The
parameters will be passed to the generator, which will validate the parameters passed
and generate the requested codes.

3.1. Autogenerating Coupons with Magento | 85

Since the Magento autogeneration coupon code objects are fairly new, there is not yet
a method for easily retrieving the coupon codes that were added. However, there is a
call to get all the coupon codes for a rule, and conveniently, the codes will be listed in
the order in which they were generated. To get the list of added codes, the file will take
note of the number of codes generated and then “slice” the array of coupon code objects.
The file will loop through the resulting list and retrieve each coupon code from the
coupon objects. The code listing for V1.php is in Example 3-5.

Example 3-5. V1.php REST web service
<?php
/* Extended AutoCoupon api
 *
 * @category CommerceBook
 * @package CommerceBook_AutoGen
 * @author Chuck Hudson
*/

class CommerceBook_AutoGen_Model_Catalog_Api2_Product_Rest_Admin_V1
 extends Mage_Api2_Model_Resource {

 /**
 * Add one or more sub-coupons to an established rule
 *
 * @param int $rule_id
 * @param int $qty
 * @param int $length
 * @param string $format
 *
 * @return JSON-encoded array of new coupon codes
 */

 protected function _retrieve() {

 // Retrieve the Request object.
 $params = $this->getRequest();

 $rule_id = $params->getParam('rule_id');
 $qty = $params->getParam('qty');
 $length = $params->getParam('length');
 $format = $params->getParam('format');

 // Set the passed-in arguments.
 $data['rule_id'] = $rule_id;
 $data['qty'] = $qty;
 $data['length'] = $length;

 /* Set the format of the coupon codes. Possible formats:
 alphanum Alphanumeric
 alpha Alphabetical
 num Numeric

86 | Chapter 3: Enhancing the Payment Experience

 */
 $data['format'] = $format;

 // Load the selected rule.
 $rule = Mage::getModel('salesrule/rule')->load($rule_id);

 // Reference the MassGenerator on this rule.
 $generator = $rule->getCouponMassGenerator();

 // Validate the generator.
 if (!$generator->validateData($data)) {
 $result['error'] = Mage::helper('salesrule')->__('Not valid data
 provided');
 } else {

 // Set the data for the generator.
 $generator->setData($data);

 // Generate the pool of coupon codes for the rule.
 $generator->generatePool();

 // Get the number of codes created.
 $generated = $generator->getGeneratedCount();
 }

 // Retrieve all the coupons under this rule.
 $coupons = $rule->getCoupons();

 // *** Trim reset index to 0.
 $coupons = array_slice($coupons, count($coupons)-$generated);

 // Set up our return array.
 $coupon_codes = array();

 // Loop through and grab the last qty codes.
 for ($i=0; $i<count($coupons); $i++) {
 $coupon_codes[$i] = $coupons[$i]->code;
 }

 // Return the array of coupon code objects.
 return json_encode(array('codes'=>$coupon_codes));
 }
}
?>

Configuring the REST OAuth user

To allow an outside request to the new web service, an OAuth user will need to be
authorized for the REST call. In Magento this is done under the System → Web Services
section, as seen in Figure 3-8.

3.1. Autogenerating Coupons with Magento | 87

Figure 3-8. Location of web service administration

First, a new role is needed for accessing the web service. To add a role, select the “REST
– Roles” option from the System → Web Services menu. Click “Add Admin Role,” and
add a role name. Then, in the “Roles Resources” section of the “Role API Resources”
screen, select the “CommerceBook API calls” checkbox as shown in Figure 3-9. After
adding the resources, click “Save Role.”

Figure 3-9. REST role creation with resources

Next, to acquire a consumer key and secret, you’ll need to add an OAuth consumer. The
page making the OAuth call in the next section will require these credentials. To add an

88 | Chapter 3: Enhancing the Payment Experience

OAuth consumer in Magento, go to System → Web Services → REST – OAuth Consumers
and click “Add New.” A form will be provided, as shown in Figure 3-10. Add a consumer
name and copy the key and secret provided so that these can be added into the calling
page in the next section. Save the OAuth consumer information form.

Figure 3-10. OAuth consumer information form

The web service is now ready to be tested with the OAuth consumer.

Testing the new extended REST API

To test the new extended REST service call, you’ll use a PHP page named rest_test.php.
The page will make an OAuth version 1a (Magento’s supported OAuth version) call for
authorization and then make a GET request, sending the specific parameters across to
the call. To make the OAuth call this example will use the OAuth pecl extension. You
can verify that the system from which you are running the test call has the extension
installed by running phpinfo and checking for the OAuth section, as shown in
Figure 3-11.

Figure 3-11. OAuth installation verification

In the test call page (shown in Example 3-6), you’ll need to add the consumerKey and
consumerSecret acquired in the last section. Replace the appropriate fields at the top
of the file with your generated consumer key and secret. Once the OAuth client is set
up, the code will define the data to be passed in the $ruleData array. The data should

3.1. Autogenerating Coupons with Magento | 89

http://www.pecl.php.net

include the rule ID (listed next to the rule in the rule list in the Magento Admin Panel),
the number of codes desired, the length of the codes, and the format to be used. The
format of coupon codes can be alphanumeric, alphabetical, or numeric. The array of
parameters is then passed in the fetch command with the resourceUrl for the web
service call.

Example 3-6. rest_test.php extended API test page
<?php
/**
rest_test.php

Test PHP file for calling our newly extended REST API auto-
genned coupon code web service, which will return a list of
coupon codes, given a particular rule ID, quantity, length,
and format for the codes.

**/

// Set the key and secret for the authorized REST user.
$consumerKey = '<YOUR_CONSUMER_KEY>';
$consumerSecret = '<YOUR_CONSUMER_SECRET>';

// Set the callback URL for handling the results.
$callbackUrl = "http://apiris.com/rest_test.php";

// Set the applicable URLs for your Magento installation.
$temporaryCredentialsRequestUrl =
 "http://apiris.com/oauth/initiate?oauth_callback=" .
 urlencode($callbackUrl);
$adminAuthorizationUrl = 'http://apiris.com/admin/oauth_authorize';
$accessTokenRequestUrl = 'http://apiris.com/oauth/token';
$apiUrl = 'http://apiris.com/api/rest';

session_start();

if (!isset($_GET['oauth_token']) && isset($_SESSION['state']) &&
 $_SESSION['state'] == 1) {
 $_SESSION['state'] = 0;
}
try {
 $authType = ($_SESSION['state'] == 2) ?
 OAUTH_AUTH_TYPE_AUTHORIZATION : OAUTH_AUTH_TYPE_URI;
 $oauthClient = new OAuth($consumerKey, $consumerSecret,
 OAUTH_SIG_METHOD_HMACSHA1, $authType);
 $oauthClient->enableDebug();

 if (!isset($_GET['oauth_token']) && !$_SESSION['state']) {
 $requestToken =
 $oauthClient->getRequestToken($temporaryCredentialsRequestUrl);
 $_SESSION['secret'] = $requestToken['oauth_token_secret'];
 $_SESSION['state'] = 1;

90 | Chapter 3: Enhancing the Payment Experience

 header('Location: ' . $adminAuthorizationUrl . '?oauth_token=' .
 $requestToken['oauth_token']);
 exit;
 } else if ($_SESSION['state'] == 1) {
 $oauthClient->setToken($_GET['oauth_token'], $_SESSION['secret']);
 $accessToken =
 $oauthClient->getAccessToken($accessTokenRequestUrl);
 $_SESSION['state'] = 2;
 $_SESSION['token'] = $accessToken['oauth_token'];
 $_SESSION['secret'] = $accessToken['oauth_token_secret'];
 header('Location: ' . $callbackUrl);
 exit;
 } else {
 // We have the OAuth client and token; now let's make the API call.
 $oauthClient->setToken($_SESSION['token'], $_SESSION['secret']);
 $resourceUrl = "$apiUrl/products";

 // Set the array of params to send with the request.
 $ruleData = array();
 $ruleData['rule_id'] = 1; // Coupon rule ID.
 $ruleData['qty'] = 10; // Number of codes to create.
 $ruleData['length'] = 7; // Length of each code.
 $ruleData['format'] = "alphanum"; // Set alphanumeric for format.
 /* Options for format include:
 alphanum Alphanumeric
 alpha Alphabetical
 num Numeric */

 // Set and call the REST URL with the data array passed.
 $resourceUrl = "$apiUrl/commercebook/products/retrieve";
 $oauthClient->fetch($resourceUrl,$ruleData);

 // Get and decode the response from the call.
 // TODO: Should add any error handling necessary.
 $codeList = $oauthClient->getLastResponse();

 // Modify response, stripping slashes and extra double quotes.
 $strCodeList = stripslashes($codeList);
 $strCodeList = substr($strCodeList, 1, strlen($strCodeList) - 2);

 // Decode the JSON string.
 $newCodesObj = json_decode($strCodeList);

 // Create an array of the new codes generated.
 $arrNewCodes = $newCodesObj->codes;

 /* Display the newly created codes for debug; you could instead
 include them in an email, store them in a database, etc.*/
 echo "The codes created are:
";
 foreach ($arrNewCodes as $newCode) {
 echo " --> " . $newCode . "
";
 }

3.1. Autogenerating Coupons with Magento | 91

 }
} catch (OAuthException $e) {
 print_r($e);
}
?>

Once the call to the web service has completed, the returned JSON string is parsed and
the test page loops through the array of new codes created, displaying each as in
Figure 3-12.

Figure 3-12. Resulting coupon codes from REST API call

To verify the codes, open the rule in the Magento Admin Panel and select the “Manage
Coupon Codes” option. The new coupon codes should be included in the list of codes,
similar to Figure 3-13.

Figure 3-13. Matching coupon codes listed in Magento

92 | Chapter 3: Enhancing the Payment Experience

This example has shown how two powerful features of Magento—autogeneration of
coupon codes and extending the REST-based API—can be leveraged to enhance the
customer payment experience. The autogeneration of coupon codes provides a way of
focusing marketing efforts. This added focus could provide rewards for customers in
the payment process and encourage them to return to the online storefront.

See Also
Magento Shopping Cart Price Rules

Magento “Introduction to Rest API”

Magento API – REST – OAuth Authentication

3.2. Making Payments with Preapprovals
Opportunity
For many types of businesses, a relationship is established between a buyer and seller in
which the buyer may make multiple purchases over a period of time. Some of these
models include software as a service and online game play, where new functionality or
different levels of usage incur variable charges. Typically, either the customer will need
to enter his payment information each time he makes a purchase, or the business will
need to store payment information and regularly fulfill complicated PCI compliance
requirements. Having to temporarily stop using a service to execute a payment can be
disruptive and cause unnecessary work for the customer, and there is the potential for
loss of revenue for the business if customers become frustrated and decide that the return
is not worth the time and effort required.

Solution
One of the most powerful benefits of using a payment service such as PayPal is that
PayPal handles the requirements of PCI compliance and is able to store payment infor‐
mation securely on behalf of businesses. Included in the PayPal offering is a preapproval
payment flow by which a customer can allow a vendor to execute future payments on
behalf of the customer. The payments can take place only in a particular time period
and with limits in place. In this recipe we will look at how this preapproval payment
flow works and a code example.

Discussion
The PayPal Adaptive Payments API provides an interface to the preapproval process,
which can be leveraged for customer cases where multiple payments may happen over
a period of time. The preapproval process, illustrated in Figure 3-14, consists of

3.2. Making Payments with Preapprovals | 93

http://bit.ly/WmVZ5J
http://bit.ly/V3DIHo
http://bit.ly/T6hHv7

requesting a preapproval key from PayPal based on a set of payment parameters and
then asking the customer to confirm the preapproval for payments by sending the cus‐
tomer to PayPal with the preapproval key. Once approved by the customer, the
preapproval key can be used for future payments on that customer’s behalf. Thus, the
preapproval key should be stored with the customer record for use in future Pay API
requests through the PayPal Adaptive Payments API.

Figure 3-14. Preapproval payment flow

In this example, a form (preapprovalForm.php) will be used for demonstration purposes
to set the required fields for the Adaptive Payments preapproval request. This would
typically be handled by the business logic of your site behind the scenes. The form will
then be posted to a handler page (getPreapproval.php), which will use the fields and the
PayPal Adaptive Payments PHP SDK to request the preapproval key from PayPal. The
minimum required fields for a preapproval request are:
startingDate

The start date for this preapproval. The start date must be today or later, but not
after the endingDate. The format is either Zulu time (UTC) or GMT.

94 | Chapter 3: Enhancing the Payment Experience

endingDate

The ending date for this preapproval. The ending date must be later than the starting
date but not more than a year from the starting date. The format is either Zulu time
or GMT.

maxTotalAmountOfAllPayments

The maximum amount allowed for all payments under this preapproval.

currencyCode

The currency code for the payments.

returnUrl

The URL to return the user to on your site when the user has approved the preap‐
proval on PayPal.

cancelUrl

The URL to return the user to on your site if the user cancels the approval process
on PayPal.

requestEnvelope.errorLanguage

The language designation for any errors returned from the request. Must be en_US.

The maximum total amount allowed for a preapproval is $2,000.00 in
US dollars, or the equivalent in a different currency.

The entire list of fields, including optional fields, is available in PayPal’s Preapproval API
Operation documentation. One optional field is senderEmail, which is the email ad‐
dress of the PayPal user. This field is optional because the actual email address used to
log into PayPal and pay may be different than that used with the website or application.
However, this field can still be used, as the user can change the account information
when she is forwarded to PayPal. Some other useful fields include the memo field for
adding notes and the ipnNotificationUrl field, which will instruct the Preapproval
API to send an Instant Payment Notification (IPN) to your backend systems (we’ll see
an example of this in Recipe 4.1, “Just-in-Time Shipping Forms”).

Also available is a pinType field that informs PayPal that the customer must use a PIN
code to allow each payment. Depending on the specific use case of your site, enabling
this for customers may provide an added level of peace of mind. To enable PIN usage,
the pinType field should be set to REQUIRED.

Example 3-7 shows the preapprovalForm.php page with the form, which asks for the
optional senderEmail field and the required startingDate, endingDate, and max
TotalAmountOfAllPayments fields.

3.2. Making Payments with Preapprovals | 95

http://bit.ly/SO6xxj
http://bit.ly/SO6xxj

Example 3-7. preapprovalForm.php
<?php
/***
preapprovalForm.php
Sample order form that kicks off a preapproval request.
Calls getPreapproval.php from form submittal.
***/
?>

<!DOCTYPE html>
<html>
<head>
<title>Preapproval Form</title>
<style>
* {margin: 0; padding: 0;}
body {background: #fff; color: #000;
 font: normal 62.5%/1.5 tahoma, verdana, sans-serif;}
h1 {font-size: 2.9em; font-weight: bold; margin: 1em 0 1em 10px;}
form {padding: 0 10px; width: 700px;}
legend {font-size: 2em; padding-left: 5px; padding-right: 5px;
 position: relative;}
fieldset {border: 1px solid #ccc; border-radius: 5px; float: left;
 padding: 10px; width: 320px;}
fieldset:nth-of-type(1) {margin-right: 10px;}
li {clear: both; list-style-type: none; margin: 0 0 10px;}
label, input {font-size: 1.3em;}
label {display: block; padding: 0 0 5px; width: 200px}
input { background-position: 295px 5px; background-repeat: no-repeat;
 border: 2px solid #ccc; border-radius: 5px;
 padding: 5px 25px 5px 5px; width: 285px;}
input:focus {outline: none;}
input:invalid:required { background-image: url(images/asterisk.png);
 box-shadow: none;}
input:focus:invalid {background-image: url(images/invalid.png);
 box-shadow: 0px 0px 5px #b01212; border: 2px solid #b01212;}
input:valid:required {background-image: url(images/accept.png);
 border: 2px solid #7ab526;}
input[type=number] {background-position: 275px 5px; text-align: left;}
div {clear: both; float: left; margin: 10px 0; text-align: center;
 width: 100%;}
div label {width: 100%;}
input[type=submit] {background: #7ab526; border: none;
 box-shadow: 0px 0px 5px #7ab526; color: #fff; cursor: pointer;
 font-size: 3em; font-weight: bold; margin: 20px auto; padding: 15px;
 width: auto;}
input[type=submit]:hover {box-shadow: 0px 0px 25px #7ab526;}
</style>
</head>
<body>
<h1>Enter the required preapproval information below.</h1>
 <form id="preapprovalForm" name="preapprovalForm"
 action="getPreapproval.php" method="post">

96 | Chapter 3: Enhancing the Payment Experience

 <fieldset>
 <legend>Preapproval Information</legend>

 <label for="senderEmail">Sender's Email</label>
 <input type="text" size="50" maxlength="64" id="senderEmail"
 name="senderEmail" placeholder="Sandbox account email" />

 <label for="startingDate">Starting Date</label>
 <input type="date" required size="50" maxlength="32"
 id="startingDate" name="startingDate" value="" />

 <label for="endingDate">Ending Date</label>
 <input type="date" required size="50" maxlength="32"
 id="endingDate" name="endingDate" value="" />

 <label for="maxTotalAmountOfAllPayments">
 Maximum Total Amount
 </label>
 <input type="number" placeholder="$" required min="0"
 max="2000" size="50" maxlength="32"
 id="maxTotalAmountOfAllPayments"
 name="maxTotalAmountOfAllPayments" value="" />

 <div><input type="submit" value="Submit" /></div>
 </fieldset>
 </form>
</body>
</html>

When rendered in the browser, the form should appear as in Figure 3-15. Remember
when testing the form that the starting date needs to be today or later, the ending date
needs to be later than the start date but less than one year out, and the maximum total
amount can not be above $2,000 USD. A constant value of en_US is used for the curren
cyCode field in this example, but this could be dynamically set based on the region.

Example 3-8 shows the code for the preapproval processing page, getPreapproval.php.
This page will perform the following tasks:

• Include the adaptive payments library and the web_constants library, which contains
the constants for your application.

• Set the return and cancel URLs for the preapproval call.
• Package the request from the form fields and constants.

3.2. Making Payments with Preapprovals | 97

• Create an instance of the AdaptivePayments object and make the Preapproval
method call.

• Check the call response for success and send the user to PayPal with the preapproval
key in a cmd variable.

Figure 3-15. Preapproval form

Example 3-8. getPreapproval.php preapproval request page
<?php

/**
getPreapproval.php

This file creates the preapproval request, calls the PayPal
Adaptive Payments API for the preapproval key, and forwards
the user to paypal.com with the key upon success.

Called by preapprovalForm.php.

Calls APIError.php on error.
Forwards to paypal.com with cmd on success.
**/

// Link to our AP library and constants files.
require_once 'lib/AdaptivePayments.php';
require_once 'web_constants.php';

98 | Chapter 3: Enhancing the Payment Experience

try {

 // Set our local server information for the return and cancel URLs.
 $serverName = $_SERVER['SERVER_NAME'];
 $serverPort = $_SERVER['SERVER_PORT'];
 $url=dirname(
 'http://'.$serverName.':'.$serverPort.$_SERVER['REQUEST_URI']);

 // Set the return and cancel URLs for the user returning from PayPal.
 $returnURL = $url."/yourReturn.php";
 $cancelURL = $url."/preapprovalForm.php";

 // Create a new preapproval request and fill in entries.
 $preapprovalRequest = new preapprovalRequest();

 // Determine if senderEmail is provided.
 if ($_POST['senderEmail'] != "") {
 $preapprovalRequest->senderEmail = $_POST['senderEmail'];
 }
 $preapprovalRequest->startingDate = $_POST['startingDate']."Z";
 $preapprovalRequest->endingDate = $_POST['endingDate']."Z";
 $preapprovalRequest->maxTotalAmountOfAllPayments =
 $_POST['maxTotalAmountOfAllPayments'];
 $preapprovalRequest->currencyCode = "USD";
 $preapprovalRequest->memo = "Preapproval example.";

 // Set the cancel and return URLs.
 $preapprovalRequest->cancelUrl = $cancelURL ;
 $preapprovalRequest->returnUrl = $returnURL;

 // Add the required request envelope error language setting.
 $preapprovalRequest->requestEnvelope = new RequestEnvelope();
 $preapprovalRequest->requestEnvelope->errorLanguage = "en_US";

 // Create the adaptive payments object and call Preapproval.
 $ap = new AdaptivePayments();
 $response=$ap->Preapproval($preapprovalRequest);

 // Check for success of Preapproval call.
 if (strtoupper($ap->isSuccess) == 'SUCCESS') {
 // Call was successful, retrieve preapproval key and forward
 // user to PayPal.
 $PAKey = $response->preapprovalKey;
 $payPalURL =
 PAYPAL_REDIRECT_URL.'_ap-preapproval&preapprovalkey='.$PAKey;
 header("Location: ".$payPalURL);
 } else {
 // Call failed, show APIError message.
 $_SESSION['FAULTMSG']=$ap->getLastError();
 $location = "APIError.php";
 header("Location: $location");

3.2. Making Payments with Preapprovals | 99

 }
}
catch(Exception $ex) {
 // Catch any operation exceptions and show error.
 $fault = new FaultMessage();
 $errorData = new ErrorData();
 $errorData->errorId = $ex->getFile() ;
 $errorData->message = $ex->getMessage();
 $fault->error = $errorData;
 $_SESSION['FAULTMSG']=$fault;
 $location = "APIError.php";
 header("Location: $location");
}
?>

When the preapproval request is performed, a PreapprovalResponse object is returned.
The response object contains a responseEnvelope with an ack for success or failure. If
the call was successful, the PreapprovalResponse object will contain a preapproval
Key property containing a string value starting with PA (for Preapproval), as seen in
Example 3-9.

Example 3-9. PreapprovalResponse object
PreapprovalResponse Object (
 [responseEnvelope] => ResponseEnvelope Object (
 [timestamp] => 2012-08-16T07:43:31.599-07:00
 [ack] => Success
 [correlationId] => f55c60f33156d
 [build] => 3392538
)
 [preapprovalKey] => PA-41F84046H74869237
)

Upon receiving a preapproval key back from the Adaptive Payments
API, you should store it in your database record associated with the
customer so that it can be used later for payment purposes. If the user
cancels out of the authorization process, however, the preapproval key
should be removed since the user has decided to cancel the agreement.
It is also a good idea to keep the start and end dates in the database with
the key, along with any other parameters for the preapproval, for use in
the payment logic of your application and maintenance of the customer
record.

100 | Chapter 3: Enhancing the Payment Experience

Requesting and receiving the preapproval key is only the first part of setting up the
preapproval payments agreement; the user will still need to accept the agreement in his
PayPal account. To accomplish this, the getPreapproval.php page forwards to the user to
the PayPal site (in this case, the sandbox site for testing purposes) with a query string
including the cmd=_ap-preapproval and preapprovalkey=PA-... fields:

https://www.sandbox.paypal.com/webscr&cmd=_ap-
preapproval&preapprovalkey=PA-41F84046H74869237

The cmd key informs PayPal that a preapproval validation is taking place via the Adap‐
tive Payments API (_ap) for the preapproval key provided. When forwarded to PayPal,
the user is asked to log in. Once logged in, the user is shown a summary of the preap‐
proval payment and asked to Approve or Cancel, as seen in Figure 3-16.

Figure 3-16. Preapproval payment agreement acceptance

If the customer accepts the agreement, he will be forwarded to the returnUrl that was
provided in the original preapproval request. If instead the customer cancels the pre‐
approval, he will be forwarded to the cancelUrl address that was provided with the
preapproval request.

3.2. Making Payments with Preapprovals | 101

https://www.sandbox.paypal.com/webscr&cmd=_ap-preapproval&preapprovalkey=PA-41F84046H74869237
https://www.sandbox.paypal.com/webscr&cmd=_ap-preapproval&preapprovalkey=PA-41F84046H74869237

Once a preapproval has been set, the details of the preapproval can be
retrieved via the PreapprovalDetails API Operation, using the preap
provalKey that was acquired on the original preapproval request.

To validate that the preapproval payment agreement has been set correctly, log into your
sandbox test site as the payee user. Once logged into the sandbox interface, go to Profile
→ My Preapproved Payments → Preapproved Payment Plans. Displayed in the “My
Preapproved Payments” section should be the agreement that was just created, as seen
in Figure 3-17.

Figure 3-17. New preapproval payment agreement

If you select the agreement in the list of preapproved payments, the details will be shown
for that agreement, including the start and end dates (see Figure 3-18).

102 | Chapter 3: Enhancing the Payment Experience

http://bit.ly/UAuunJ

Figure 3-18. Preapproved payment details

Now that the preapproval payments agreement is in place, future Pay requests can be
performed through the PayPal API with the preapproval key on behalf of the customer.
This will provide for a smooth and simple payment process for the customer inside the
website or application.

Since a customer can cancel a preapproval payments agreement through
the PayPal account interface at any time, it is a good practice to use the
PayPal Instant Payment Notification capability when creating a preap‐
proval to ensure that any changes to the preapproval payments will be
sent to the backend of your site so you can update your customers’
accounts. See Recipe 4.1, “Just-in-Time Shipping Forms” for a sample
of receiving IPNs from PayPal and processing the data.

3.2. Making Payments with Preapprovals | 103

See Also
PayPal Integration Center “Preapproval API Operation”

PayPal Adaptive Payments Developer Guide

PayPal Developer Network “Preapproval API Operation”

PayPal Integration Center “PreapprovalDetails API Operation”

PayPal Instant Payment Notification

3.3. Giving Back at Checkout
Opportunity
In checkout lines at many brick-and-mortar stores we are presented with opportunities
to donate to local and global charities, contributing to the social good when we make a
purchase. This trend has spilled over to online sales, and merchants are finding that
being connected with a social cause can create an increased positive experience for
customers when they check out. Providing an option to contribute in the online checkout
flow can be a powerful method of creating a strong bond with customers.

Solution
The PayPal Adaptive Payments API provides a method for a single user to make pay‐
ments to multiple recipients in one transaction call. This form of transaction is aptly
named parallel or split payments and would typically be used when a vendor aggregates
products or services from multiple vendors that are displayed directly to the user. A
common example is a travel agent who may create a package of airline tickets and hotel
and car rentals. Even though there is one price for the package, that amount is split
between multiple vendors, with different amounts paid in parallel to each. In the con‐
sumer’s account, there will be a distinct payment per supplier of each particular service.
In this example we will use parallel payments to allow the customer to pay the vendor
and a selected charity in a single API call.

Discussion
The scenario is as follows. A customer is ready to check out on a site after selecting
multiple products. During the checkout process, the customer is presented with a form
similar to the one in Figure 3-19. The customer can check the box signifying that she
would like to contribute to a cause and then select a specific cause and dollar amount
to contribute. Upon paying for the order, the donation is added to the total purchase
price. However, the user will get two receipts via email: one from the vendor from which

104 | Chapter 3: Enhancing the Payment Experience

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_APPreapproval
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_AdaptivePayments.pdf
https://www.x.com/developers/paypal/documentation-tools/api/preapproval-api-operation
http://bit.ly/UAuunJ
https://www.paypal.com/ipn

the products were purchased and one from the charity to which the donation was given.
On the customer’s transaction record, two separate transactions will have occurred, even
though the customer input her payment details only once. More importantly, the don‐
ation portion will go straight from the customer to the charity (rather than through the
vendor), making the process simple for all parties.

Figure 3-19. Donation form on checkout

In this example we will create the form, which will then be posted and perform the
parallel payment with PayPal. Example 3-10 shows the code for the donation form to
be displayed on checkout.

Example 3-10. donateOption.php donate on checkout form
<?php
/***
donateOption.php

Sample form for donation option on checkout.

Calls doParallelPmt.php from form submittal.

***/
?>

<!DOCTYPE html>
<html>
<head>
<title>Donate on Checkout Form</title>
<style>
* {margin: 0; padding: 0;}
body {background: #fff; color: #000;
 font: normal 62.5%/1.5 tahoma, verdana, sans-serif;}
h1 {font-size: 2.9em; font-weight: bold; margin: 1em 0 1em 10px;}

3.3. Giving Back at Checkout | 105

form {padding: 0 10px; width: 700px;}
legend {font-size: 2em; padding-left: 5px; padding-right: 5px;
 position: relative;}
fieldset {border: 1px solid #ccc; border-radius: 5px; float: left;
 padding: 10px; width: 320px;}
fieldset:nth-of-type(1) {margin-right: 10px;}
li {clear: both; list-style-type: none; margin: 0 0 10px;}
label, input {font-size: 1.3em;}
label {display: block; padding: 0 0 5px; width: 200px}
input {background-position: 295px 5px; background-repeat: no-repeat;
 border: 2px solid #ccc; border-radius: 5px;
 padding: 5px 25px 5px 5px; width: 285px;}
input:focus {outline: none;}
input:invalid:required {background-image: url(images/asterisk.png);
 box-shadow: none;}
input:focus:invalid {background-image: url(images/invalid.png);
 box-shadow: 0px 0px 5px #b01212; border: 2px solid #b01212;}
input:valid:required {background-image: url(images/accept.png);
 border: 2px solid #7ab526;}
input[type=number] {background-position: 275px 5px; text-align: left;}
input[type=checkbox] {font-size: 2em; text-align: left; width: 20px;}
div {clear: both; float: left; margin: 10px 0; text-align: center;
 width: 100%;}
div label {width: 100%;}
input[type=submit] {background: #7ab526; border: none;
 box-shadow: 0px 0px 5px #7ab526; color: #fff; cursor: pointer;
 font-size: 3em; font-weight: bold; margin: 20px auto; padding: 15px;
 width: auto;}
input[type=submit]:hover {box-shadow: 0px 0px 25px #7ab526;}
</style>
</head>
<body>
 <form id="donationForm" name="donationForm"
 action="doParallelPmt.php" method="post">
 <fieldset>
 <legend>Contribute to a Cause?</legend>

 <input type="checkbox" id="flagDonation" name="flagDonation"
 value="1" />
 Yes I would like to contribute.

 <label for="charityEmail">Select a charity:</label>
 <select id="charityEmail" name="charityEmail">
 <option value="donate@childsplaycharity.org">
 Child's Play (childsplaycharity.org)
 </option>
 <option value="servic_1241987644_biz@aduci.com">
 My Charity (mycharity.org)
 </option>
 </select>

106 | Chapter 3: Enhancing the Payment Experience

 <label for="donation">Donation Amount</label>
 <input type="number" placeholder="$" min="1" max="1000"
 size="50" id="donation" name="donation" value="1" />

 <div><input type="submit" value="Submit" /></div>
 </fieldset>
 </form>
</body>
</html>

To create a parallel payment, the code will need to know the recipient’s registered PayPal
email address. Thus, in the donation form, when the user selects the charity the value
set is actually the charity’s PayPal email address. For this example the select box has one
real option, which is the Child’s Play charity, and one testing email address, which co‐
incides with a testing account that has been set up in the PayPal sandbox. (To learn about
setting up test accounts in the PayPal sandbox, see the online PayPal Sandbox Docu‐
mentation.)

Once the customer has selected the charity, added the amount of the donation, and
clicked “Submit,” the form will be posted to a processing page. The processing page will
use the PayPal Adaptive Payments PHP SDK library to facilitate a simple call to the Pay
API method with the parallel payments information. In the processing page the code
will perform the following steps:

1. Create the cancel and return URLs for the call to the PayPal Adaptive Payments
API.

2. Create a new PayRequest instance and set the sender email, return and cancel URLs,
currency code, and client details.

3. Set the payment receivers in a receiver array.
4. Add the receiver array to the PayRequest.
5. Set the fee allocation model and memo.
6. Make the call to the Adaptive Payments API.

Example 3-11 shows the code for the processing page, doParallelPmt.php.

Example 3-11. doParallelPmt.php parallel payment call
<?php
/***
doParallelPmt.php

Called by donateOption.php.
Calls APIError.php on error.

3.3. Giving Back at Checkout | 107

http://bit.ly/UPl7Ru
http://bit.ly/UPl7Ru

Based on PayParallelReceipt.php from SDK Samples.
***/

require_once 'lib/AdaptivePayments.php';
require_once 'web_constants.php';

session_start();

try {

 /* Set our store PayPal ID (seller email) for receiving the order
 payment. Also set the total sale amount for the order and the
 buyer's email. These would normally come from a customer database
 and the shopping cart.*/
 $recEmailSeller = 'wppm_13411073_biz@aduci.com';
 $totalSale = 218.73;
 $senderEmail = "chudso_12419875_per@aduci.com";

 /* Set the return and cancel URLs, instructing PayPal where to
 return the user upon payment confirmation or cancellation.*/
 $serverName = $_SERVER['SERVER_NAME'];
 $serverPort = $_SERVER['SERVER_PORT'];
 $url=dirname(
 'http://'.$serverName.':'.$serverPort.$_SERVER['REQUEST_URI']);
 $returnURL = $url."/PaymentDetails.php";
 $cancelURL = $url."/donateOption.php" ;

 /* Create the actual pay request with our URLs, client details,
 currency code, buyer's email, and request envelope.*/
 $payRequest = new PayRequest();
 $payRequest->actionType = "PAY";
 $payRequest->cancelUrl = $cancelURL ;
 $payRequest->returnUrl = $returnURL;
 $payRequest->clientDetails = new ClientDetailsType();
 $payRequest->clientDetails->applicationId = APPLICATION_ID;
 $payRequest->clientDetails->deviceId = DEVICE_ID;
 $payRequest->clientDetails->ipAddress = "127.0.0.1";
 $payRequest->currencyCode = "USD";
 $payRequest->senderEmail = $senderEmail;
 $payRequest->requestEnvelope = new RequestEnvelope();
 $payRequest->requestEnvelope->errorLanguage = "en_US";

 // Create our receiver list for parallel payments.
 $receiverList = array();

 /* Set the store as the first receiver with the shopping
 cart total sale. The order of receivers does not matter but
 having the main store first keeps it logical.*/
 $receiver0 = new receiver();
 $receiver0->email = $recEmailSeller;
 $receiver0->amount = $totalSale;

108 | Chapter 3: Enhancing the Payment Experience

 $receiverList[0] = $receiver0;

 // Check if a charity donation has been selected.
 if ($_POST['flagDonation'] == 1) {
 // If so, then create a secondary receiver for the donation.
 $receiver1 = new receiver();
 $receiver1->email = $_POST['charityEmail'];
 $receiver1->amount = $_POST['donation'];
 $receiverList[1] = $receiver1;
 }

 // Add the receiver list into the pay request.
 $payRequest->receiverList = $receiverList;

 /* Set optional Pay Request fields. The feesPayer with
 EACHRECEIVER instructs PayPal that each receiver will cover
 their fees for the portion of the payment. Non-profits for
 the donation have discounted fees with PayPal.*/
 $payRequest->feesPayer = "EACHRECEIVER";
 $payRequest->memo = "Donation via yoursite.com.";

 /* Make the call to PayPal to get the Pay token.
 If the API call succeeded, then redirect the buyer to PayPal
 to begin to authorize payment. If an error occured, show the
 resulting errors.*/
 $ap = new AdaptivePayments();
 $response=$ap->Pay($payRequest);

 // Check the return of the request and handle appropriately.
 if (strtoupper($ap->isSuccess) == 'FAILURE') {
 $_SESSION['FAULTMSG']=$ap->getLastError();
 $location = "APIError.php";
 header("Location: $location");
 } else {
 $_SESSION['payKey'] = $response->payKey;
 if ($response->paymentExecStatus == "COMPLETED") {
 $location = "PaymentDetails.php";
 header("Location: $location");
 } else {
 $token = $response->payKey;

 // Important to pass _ap-payment command and paykey to PayPal.
 $payPalURL = PAYPAL_REDIRECT_URL.'_ap-payment&paykey='.$token;
 header("Location: ".$payPalURL);
 }
 }
}
catch(Exception $ex) {
 $fault = new FaultMessage();
 $errorData = new ErrorData();
 $errorData->errorId = $ex->getFile() ;
 $errorData->message = $ex->getMessage();

3.3. Giving Back at Checkout | 109

 $fault->error = $errorData;
 $_SESSION['FAULTMSG']=$fault;
 $location = "APIError.php";
 header("Location: $location");
}
?>

For testing purposes, after the try statement the code sets the vendor’s email as the
recEmailSeller variable, the total sale of the cart (as totalSale), and the customer’s
PayPal email address (senderEmail). In a real scenario these would be set from your
shopping cart and customer database.

In the processing page, there is one key difference that makes this a parallel payment:
when creating the PayRequest, the recipients of the payments are listed in the receiver
array with their corresponding PayPal email addresses and the amount that goes to each
recipient. In this example the code is informing the PayPal API that the sender is re‐
questing funds to be sent to each recipient, in the amount listed for each in the call.
Normal transaction fees apply, but the fees can be assigned in multiple ways. In this case
we want each recipient to handle its proportion of the fees, so we will designate the
EACHRECEIVER flag. The possible fee models are:
EACHRECEIVER

Each receiver pays its proportion of the fees (default).

PRIMARYRECEIVER

The primary receiver of the funds pays all fees.

SECONDARYONLY

The secondary receivers pay all fees, proportionally.

SENDER

The sender pays all fees.

For a complete guide to the different fee model options, see the PayPal Adaptive Pay‐
ments Developer Guide. The additional benefit in this case is that a registered charity
receives discounts on the normal transaction fees, so the fee for the amount donated to
the charity will be discounted.

The PayPal Adaptive Payments API provides for both parallel and
chained payments. The main technical difference between the two is
that for chained payments a relationship between payment recipients is
created via a primary receiver property, which can be set to true or
false. Chained payments are discussed and illustrated in Recipe 4.3,
“Multiple Supplier Fulfillment”.

110 | Chapter 3: Enhancing the Payment Experience

https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_AdaptivePayments.pdf
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_AdaptivePayments.pdf

The processing page also incorporates a web_constants.php file, which has the PayPal
sandbox URL and credentials that will get swapped or dynamically replaced with the
production credentials when ready.

To use the Adaptive Payments API in production, your application will
need approval from PayPal.

To test the parallel payments process, load the form page in your browser and select to
contribute, then select the charity and enter a donation amount. When you submit the
form, the processing page will package the request and perform the Pay call to the PayPal
Adaptive Payments API. Upon successful completion, the processing page will then
send you (the customer) to PayPal with a cmd option of _ap-payment, instructing PayPal
that you need to approve a payment request made through the Adaptive Payments API.
To uniquely identify this request, the pay key returned from the Pay request is also
appended. When a user is directed to PayPal with this information, a screen similar to
Figure 3-20 asking the user to log into his PayPal account is displayed.

Figure 3-20. User asked to log in on parallel payment

Notice that the individual payments and the total amount are noted in the PayPal landing
page. In this case, since we are using the sandbox, donate@childsplaycharity.org is not
recognized as a testing account. In a production environment, this would not be the
case.

After logging in, the customer will be asked to Pay or Cancel the payment, as shown in
Figure 3-21.

3.3. Giving Back at Checkout | 111

mailto:donate@childsplaycharity.org

Figure 3-21. Payment summary

If the user cancels the payment verification process, he will be returned to the URL
designated in the cancelUrl variable of the initial Pay request. If the user successfully
makes the payment, he will be returned to the URL designated in the returnUrl field.

To validate that the payments were performed separately, log in as the test user who
made the payments and check the history in the account in the sandbox. You will see
one payment to the vendor account and a separate payment to the charity account. Using
parallel payments to add a donation form to the checkout process is really this easy, and
it can improve the overall experience for the buyer while raising some funds for good
causes.

See Also
PayPal Adaptive Payments Developer Guide

PayPal Integration Center “Pay API Operation”

PayPal Adaptive Payments PHP SDK

112 | Chapter 3: Enhancing the Payment Experience

https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_AdaptivePayments.pdf
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_APPayAPI
https://www.x.com/developers/paypal/documentation-tools/paypal-sdk-index#adaptivepaymentsnew

3.4. Conclusion
The purchase stage is the step in the commerce lifecycle when a potential customer
enters into a paid relationship with the vendor. This step can be both an emotional and
a physical hurdle, based on the complexities of the purchase process. However, through
the use of various APIs the process can be shortened and, as we have seen from the
examples in this chapter, cemented quickly with an overall positive experience. New
customers entering into a relationship with the vendor will expect the overall value of
completing the purchase to be greater than the time and effort expended. Customers
should not have to think twice about whether putting in the time and effort required to
complete the purchase process is worth it, but instead should be brought quickly to the
next stage, having their orders fulfilled.

3.4. Conclusion | 113

CHAPTER 4

Order Fulfillment

The fourth stage in the simplified commerce lifecycle, as shown in Figure 4-1, involves
the fulfillment, shipment, and receipt of orders. Merchants sometimes consider the steps
after the purchase transaction as simply routine actions to fulfill the order, and think
that at this point the work of receiving a new order and cementing a new customer
relationship is complete. However, given the competitive landscape of the Internet and
the ease with which consumers can review their experiences with a merchant, this step
in the commerce lifecycle is critical to establishing an extensive base of repeat customers
and referrals.

Figure 4-1. Simplified commerce lifecycle—stage 4

The range of APIs available to support the fulfillment process is growing rapidly as third-
party payment providers, shipping firms, and merchants recognize the value of provid‐
ing tighter integration into their platforms through APIs. In this chapter we will look at
streamlining the fulfillment process through automated notifications for faster

115

packaging, adding flexible shipping options to a Magento cart, and delivering orders
faster by leveraging chained payments through PayPal to pay suppliers. In the end, this
automation and the added efficiency due to the use of APIs can result in a simpler process
for the merchant, and a positive customer experience.

4.1. Just-in-Time Shipping Forms
Opportunity
In the back office, several processes are triggered once the sale of a product takes place.
Automating these tasks can reduce the time taken and any errors in fulfilling orders. It
would be helpful if there were a way to determine automatically when a transaction
cleared, was rejected, or was cancelled so that shipping slips could be printed, emails
automatically sent, and accounts updated.

Solution
As part of a PayPal business account, merchants have access to a service for automated
notifications: the Instant Payment Notification, or IPN for short. This service is able to
notify a URL on the merchant’s side of transaction status changes and pass along specific
order information. In this example we will use the IPN service to notify a web page when
transactions are completed. If the transaction is via a shopping cart and has a completed
status, the page will create a shipping slip or invoice based on a previously designed
template. The shipping invoices can then be emailed, printed, or reviewed in an ad‐
ministration interface.

Discussion
When a transaction is performed on behalf of a business by PayPal, whether through a
virtual terminal, express checkout, recurring payment, or some other form, a notifica‐
tion can be sent from the PayPal servers to a handler or listener web page. The notifi‐
cation is built as a posted series of key and value pairs. The fields contain a variety of
information including the transaction ID, type, and payment status. Depending on the
transaction type and status, the data transmitted can include shipping information,
detailed shopping cart information (item name, quantity), and currency information.

After receiving an IPN, your listener will need to post the IPN back to PayPal in a
validation request. There are two reasons for posting the IPN back to PayPal:

1. Validation of the authenticity of the IPN
2. Verification for PayPal that the IPN was received

116 | Chapter 4: Order Fulfillment

If your listener does not ask PayPal to verify the IPN, there is the potential that a fictitious
IPN could be injected into your listener, which could kick off any automated processing
in place. When the PayPal servers receive the validation request, they will mark the
request as either valid or invalid based on what was sent in the IPN. If the IPN is verified,
you can parse out the values, store the information in database tables for orders, message
other back office systems, and kick off other processes (such as creating a shipping form,
as demonstrated in this solution). This IPN flow is illustrated in Figure 4-2.

Figure 4-2. Instant Payment Notification flow

In this example, a PHP file will be installed on the web server to handle notifications
from PayPal. When a notification is sent to the listener, the IPN data will be processed
and a static shipping invoice HTML page will be created in a slips directory. The structure
of the invoice is based on shipping_slip.html, which is a template shipping invoice HTML
file.

4.1. Just-in-Time Shipping Forms | 117

To create your IPN listener, open an empty PHP file named IPNListener.php. This will
be the page in the URL that you direct PayPal to send the IPNs to when notifications
occur. Add the code in Example 4-1 to the file.

Example 4-1. IPNListener.php
<?php
/**
IPNListener.php

This file receives IPNs from PayPal and processes
them. Since this is from server to server, there is
no UI for this file. The only output is the log file,
which is for basic logging only.

**/

// flag to define if working in sandbox (debug mode)
$FLG_DEBUG_MODE = true;

// set our log file (could replace with PEAR)
$logfile = "./IPNListener.log";
$fh = fopen($logfile, 'a') or die("can't open log file");

logWrite("New IPN");

// create validate request with command
$req = 'cmd=' . urlencode('_notify-validate');

// add back all fields of the posted string
foreach ($_POST as $key => $value) {
 $value = urlencode(stripslashes($value));
 $req .= "&$key=$value";
}

// set if using the sandbox or production for validation
if ($FLG_DEBUG_MODE) {
 $val_server = 'https://www.sandbox.paypal.com/cgi-bin/webscr';
} else {
 $val_server = 'https://www.paypal.com/cgi-bin/webscr';
}

// launch the curl request to PayPal servers to verify
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $val_server);
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_setopt($ch, CURLOPT_POST, 1);
curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
curl_setopt($ch, CURLOPT_POSTFIELDS, $req);
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 1);
curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 2);
$res = curl_exec($ch);

118 | Chapter 4: Order Fulfillment

curl_close($ch);

// check if PayPal verified the IPN received
if (strcmp ($res, "VERIFIED") == 0) {

 // log out IPN in a JSON format
 logWrite("Verified: " . json_encode($_POST));

 // assign posted variables to local variables
 $txn_id = $_POST['txn_id'];
 $txn_type = $_POST['txn_type'];
 $payment_status = $_POST['payment_status'];
 $receiver_email = $_POST['receiver_email'];

 // TODO: check that receiver_email is your primary PayPal email

 // dispatch based on status of payment
 switch ($payment_status) {

 case "Completed":
 // completed sale

 // TODO: check that payment_amount/payment_currency are correct
 // TODO: check that txn_id has not been previously processed

 // check if the type of transaction is cart
 if ($txn_type == 'cart') {

 // set up our holding arrays for keys and values
 $arrShipKeys = array();
 $arrShipValues = array();

 // set our shipping header information
 array_push($arrShipKeys, "<<DATE>>");
 array_push($arrShipValues, date("M j, Y",
 strtotime($_POST['payment_date'])));

 array_push($arrShipKeys, "<<STATUS>>");
 array_push($arrShipValues, "PAID");

 array_push($arrShipKeys, "<<TXNID>>");
 array_push($arrShipValues, $txn_id);

 // get payer information and add to arrays
 // TODO: check if following funcs required
 $first_name = $_POST['first_name'];
 $last_name = $_POST['last_name'];
 $payer_email = $_POST['payer_email'];
 $address_street = $_POST['address_street'];
 $address_city = $_POST['address_city'];
 $address_state = $_POST['address_state'];
 $address_zip = $_POST['address_zip'];

4.1. Just-in-Time Shipping Forms | 119

 $address_country = $_POST['address_country'];

 array_push($arrShipKeys, "<<ADDRESS>>");
 array_push($arrShipValues, $first_name . " " . $last_name .
 "
" . $address_street . "
" . $address_city . ", " .
 $address_state . " " . $address_zip . "
" .
 $address_country);

 // get rest of transaction details
 $shipping_method = $_POST['shipping_method'];
 if (isset($_POST['num_cart_items'])) {
 $num_cart_items = $_POST['num_cart_items'];
 } elseif ($FLG_DEBUG_MODE) {
 // catch defect with simulator-based IPN
 $num_cart_items = 1;
 } else {
 $num_cart_items = 0;
 }

 // get the items in the cart
 $subtotal = 0;
 $items = "";

 for ($i=1; $i<=$num_cart_items; $i+=1) {

 // get fields of items in transaction and store each set
 $item_order_id = $i;
 $item_number = $_POST['item_number'.$i];
 $item_name = $_POST['item_name'.$i];
 $quantity = $_POST['quantity'.$i];
 $mc_gross = $_POST['mc_gross_'.$i];

 $subtotal += $mc_gross;

 $items .= '<tr><td align="right" valign="top"
 class="borderBottomLeftRight"><p class="sliptabledata">' .
 $item_number . '</p></td>' . '<td align="left" valign="top"
 class="borderBottomRight"><p class="sliptabledata">' .
 $item_name . '</p></td>' . '<td align="center" valign="top"
 class="borderBottomRight"><p class="sliptabledata">' .
 $quantity . '</p></td>' . '<td align="right" valign="top"
 class="borderBottomRight"><p class="sliptabledata">' .
 $mc_gross . '</p></td>' . '</tr>';
 }
 array_push($arrShipKeys, "<<ITEMS>>");
 array_push($arrShipValues, $items);

 // set the financial section numbers
 array_push($arrShipKeys, "<<SUBTOTAL>>");
 array_push($arrShipValues, number_format($subtotal,2));

 $mc_shipping = $_POST['mc_shipping'];

120 | Chapter 4: Order Fulfillment

 if ($mc_shipping == "") {
 $mc_shipping = 0;
 }
 array_push($arrShipKeys, "<<SHIPPING>>");
 array_push($arrShipValues, number_format($mc_shipping,2));

 $mc_handling = $_POST['mc_handling'];
 if ($mc_handling == "") {
 $mc_handling = 0;
 }
 array_push($arrShipKeys, "<<HANDLING>>");
 array_push($arrShipValues, number_format($mc_handling,2));

 $tax = $_POST['tax'];
 if ($tax == "") {
 $tax = 0;
 }
 array_push($arrShipKeys, "<<TAX>>");
 array_push($arrShipValues, number_format($tax,2));

 $mc_gross = $_POST['mc_gross'];
 array_push($arrShipKeys, "<<TOTAL>>");
 array_push($arrShipValues, $mc_gross);

 // finished parsing IPN
 logWrite("Finished IPN");

 // call the function to create shipping label
 createShipping($txn_id, $arrShipKeys, $arrShipValues);

 } // end if txn_type is cart

 break;

 // some other possible IPN transaction statuses:
 case "Reversed":
 // sale was reversed - mark order as such
 break;

 case "Refunded":
 // refunded: you refunded the payment
 break;

 } // end switch payment status

} else if (strcmp ($res, "INVALID") == 0) {

 // PayPal responded with invalid request
 logWrite("INVALID REQUEST: " . json_encode($_POST));
}

// close log file

4.1. Just-in-Time Shipping Forms | 121

fclose($fh);

// function to create the shipping form
function createShipping($txn_id, $arrShipKeys, $arrShipValues) {

 // read in template file
 $ship_contents = file_get_contents("shipping_slip.html");

 // verify the template was read in
 if($ship_contents) {

 // merge in fields from IPN
 $ship_contents = str_replace($arrShipKeys, $arrShipValues,
 $ship_contents);

 // set output file to txn # and output merged content
 $shipping_file = "./slips/" . $txn_id . ".html";
 file_put_contents($shipping_file, $ship_contents);
 }
}

// function to add log entry
function logWrite($log_msg) {
 global $fh;
 $log_entry = date("y/m/d G:i:s") . " - " . $log_msg . "\n";
 fwrite($fh, $log_entry);
}
?>

To prevent security issues and the possible injection of fictitious IPNs, the first action
taken when the file receives an IPN is to repackage the posted fields of the transaction
from PayPal and ask the PayPal servers to verify that the IPN is valid. If a validation
request is not sent back to the PayPal system, PayPal will attempt to resend the IPN for
a period of time.

To request PayPal validation of the IPN, cURL is used to send the IPN fields in a new
query string containing an additional key and value, cmd=_notify-validate. The addition
of this new key and value asks the PayPal servers to validate the IPN that was received
as having come from PayPal:

<?php
// create validate request with command
$req = 'cmd=' . urlencode('_notify-validate');

// add back all fields of the posted string
foreach ($_POST as $key => $value) {
 $value = urlencode(stripslashes($value));
 $req .= "&$key=$value";
}

122 | Chapter 4: Order Fulfillment

In this example a log file is used for debugging purposes since the IPN
listener being called by PayPal will not display any visual queue when
an IPN is received. In the log file we will put brief messages, including
a JSON version of the IPN payload. To read the payload of a received
IPN copy, paste the JSON into a JSON viewer.
You can replace this logger with a more powerful and production-ready
version using PEAR or the like.

In this code a flag is added, $FLAG_DEBUG_MODE, to indicate whether we are running in
debug mode. PayPal provides a testing sandbox here from which we can send test IPNs,
as we will explore later. The script sets the correct endpoint based on the mode in which
we are running. This allows you to test your IPN handler by sending and validating IPNs
from the PayPal sandbox prior to releasing the handler to production, at which time
you would set the debug flag to false.

It is a good practice to give the listener file an obscure name and to have
the file located in an orphaned, unsearchable directory so that anyone
looking will not accidentally locate it.

Upon receiving a response from PayPal and validating that the IPN is VERIFIED, the
script will log the JSON version of the payload and begin to parse the payload fields.
Before getting too far into the transaction, however, the script checks the payment_
status to determine if this is a Completed transaction, meaning that a payment has
been successful. PayPal provides IPNs on several different transaction statuses and types.
You can review the list of available payment statuses and transaction types in the online
documentation. In this case we want to also check that this is a completed payment from
a shopping cart, so the code also verifies that the transaction type is of type cart
($txn_type=='cart').

Once all the fields have been parsed and pushed into arrays with their corresponding
keys for the shipping form template, the script calls the createShipping function, pass‐
ing in the transaction ID and arrays. The createShipping function then reads in the
template HTML file, shipping_slip.html (Example 4-2), and replaces the matching keys
from the key array with the corresponding values in the value array. The newly merged
shipping invoice is then saved out to a new file in the slips directory and named with
the unique transaction ID provided by PayPal.

Example 4-2. Shipping invoice template
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />

4.1. Just-in-Time Shipping Forms | 123

http://www.jsonviewer.com
https://developer.paypal.com
http://bit.ly/V3IqoA
http://bit.ly/V3IqoA

<title>Shipping Invoice Template</title>
<style>
body {font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: 10pt; margin:50px 0px; padding:0px; text-align:center;}
H1 {margin: 0px; font-weight: bold; font-size: 18px; color: #332B26;}
label {display: block; padding: 0 0 5px; width: 110px;}
#slip {width: 744px; margin: 0px auto; text-align: left;
 padding: 15px;}
.sliptableheader {margin: 5px 10px 5px 10px; font-weight: bold;}
.sliptabledata {margin: 5px 10px 5px 10px;}
#shipto {clear: both; padding-top: 40px}
#shipto legend {font-size: 1.1em; padding-left: 5px;
 padding-right: 5px; position: relative;}
#shipto fieldset {border: 1px solid #000; border-radius: 5px;
 float: left; padding: 10px; width: 360px;}
#invoice {float:right}
#invoice legend {font-size: 1.5em; position: relative;
 text-align:right}
#invoice fieldset {border: 1px solid #000; border-radius: 5px;
 width: 250px; padding: 10px}
#invoice li {clear: both; list-style-type: none; margin: 0;
 padding: 0;}
#invoice ol {padding: 0; margin:0}
#invoice label {display: block; padding: 5px; width: 63px;
 border: 1px solid #000; float:left; text-align:right}
#invoice span {display: block; padding: 5px; width: 237px;
 border: 1px solid #000; text-align:right}
.borderBottomLeftRight {border-left: 1px solid Black;
 border-bottom: 1px solid Black; border-right: 1px solid Black;
 font-family: Arial, Helvetica, sans-serif; font-size: 9pt;
 font-style: normal; line-height: normal; font-weight: normal;
 color: #000000; text-decoration: none;}
.borderBottomRight {font-family: Arial, Helvetica, sans-serif;
 font-size: 9pt; font-style: normal; line-height: normal;
 font-weight: normal; color: #000000; text-decoration: none;
 border-bottom: 1px solid Black; border-right: 1px solid Black;}
.borderAll {font-family: Arial, Helvetica, sans-serif; font-size: 9pt;
 font-style: normal; line-height: normal; font-weight: normal;
 color: #000000; text-decoration: none; border: 1px solid Black;}
.borderBottomLeft { font-family: Arial, Helvetica, sans-serif;
 border-bottom: 1px solid Black; border-left: 1px solid Black;
 font-size: 9pt; font-style: normal; line-height: normal;
 font-weight: normal; color: #000000; text-decoration: none;}
</style>
</head>
<body>

 <!-- page break always for printing -->
 <br style="page-break-before:always;" />

 <div id="slip">

124 | Chapter 4: Order Fulfillment

 <div id="headerLogo" style="float:left; padding-right:10px;">

 </div>
 <div id="headerCompany" style="float:left">
 <H1>Your Company</H1>

 yourcompany.com

 support@yourcompany.com

 1-800-852-1973
 </div>

 <div id="invoice">
 <fieldset>
 <legend>Shipping Invoice</legend>

 <label>Date</label><<DATE>>
 <label>Status</label><<STATUS>>
 <label>Txn ID</label><<TXNID>>

 </fieldset>
 </div>

 <!-- address blocks -->
 <div id="shipto">
 <fieldset>
 <legend>Ship To</legend>
 <p style="margin:5px 0px 5px 10px;"><<ADDRESS>></p>
 </fieldset>
 </div>

 <!-- order details -->
 <div style="clear:both; padding-top:50px;">
 <table width="100%" border="0px" cellpadding="0" cellspacing="0">
 <tr>
 <td colspan="4" align="left" class="borderAll">
 <p class="sliptableheader">Order Details</p>
 </td>
 </tr>
 <tr>
 <td width="12%" align="center" class="borderBottomLeftRight">
 <p class="sliptableheader">Item #</p>
 </td>
 <td align="center" class="borderBottomRight">
 <p class="sliptableheader">Item</p>
 </td>
 <td align="center" class="borderBottomRight">
 <p class="sliptableheader">Quantity</p>
 </td>
 <td width="10%" align="right" class="borderBottomRight"
 nowrap>
 <p class="sliptableheader">Ext Price</p>
 </td>
 </tr>

4.1. Just-in-Time Shipping Forms | 125

 <<ITEMS>>
 <tr>
 <td align="rigt" valign="top" class="borderBottomLeftRight">
 </td>
 <td align="left" valign="top" class="borderBottomRight">
 <p class="sliptabledata"> </p>
 </td>
 <td align="center" valign="top" class="borderBottomRight">
 <p class="sliptabledata"> </p>
 </td>
 <td align="center" valign="top" class="borderBottomRight">
 <p class="sliptabledata"> </p>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center" class="borderBottomLeft">
 Thank you for your order. We look forward to serving you
 in the future.
 </td>
 <td align="right" class="borderBottomRight">
 <p class="sliptabledata">
 Subtotal

 Shipping

 Handling

 Tax
 </p>
 </td>
 <td align="right" valign="top" class="borderBottomRight"
 nowrap>
 <p class="sliptabledata">
 <<SUBTOTAL>>

 <<SHIPPING>>

 <<HANDLING>>

 <<TAX>>
 </p>
 </td>
 </tr>
 <tr>
 <td colspan="3" width="90%" align="right"
 class="borderBottomLeftRight">
 <p class="sliptableheader">Total ($ USD)</p>
 </td>
 <td width="10%" align="right" valign="top"
 class="borderBottomRight" nowrap>
 <p class="sliptableheader"><<TOTAL>>
 </td>
 </tr>
 </table>
 </div>
 </div>
</body>
</html>

126 | Chapter 4: Order Fulfillment

Now that we have the IPN listener and the template shipping invoice HTML file in place,
we can send a test IPN from the PayPal sandbox. If you do not have a developer login
to the sandbox, go to https://developer.paypal.com and create an account.

After logging into the PayPal sandbox, navigate to the Test Tools section in the site menu.
On the Test Tools page, select the Instant Payment Notification (IPN) Simulator as seen
in Figure 4-3.

Figure 4-3. PayPal Sandbox IPN Simulator

The IPN Simulator provides prebuilt forms with the required fields for a variety of
transaction types, including express checkout, cart checkout, and eBay checkout. More
importantly, you can set the payment status of the transaction to test refunds, cancelled
payments, and other statuses if needed.

When the IPN Simulator loads, enter the URL of your IPN listener in the IPN Handler
URL field and select “Cart Checkout” as the transaction type. The test IPN form will
open with prefilled entries where appropriate. Update any of the fields you would like,
and then click “Send IPN.” The simulator will refresh and inform you whether the IPN
was sent successfully to the listener. If the IPN delivery failed, the IPN Simulator will
typically display the reason, such as “HTTP error code 404: Not Found.” Make sure that
you have entered the URL of your listener correctly.

Note that IPNs sent from the IPN Simulator will include an extra key/
value pair in their payload, test_ipn=1, which designates that the IPN
has come from the simulator and allows you to catch test IPNs inde‐
pendently in your code if desired.

4.1. Just-in-Time Shipping Forms | 127

https://developer.paypal.com

If the IPN delivery is successful, the resulting shipping invoice will be found in your slips
directory. Figure 4-4 shows how the individual fields from our test IPN have been taken
and put into the shipping invoice in their appropriate places.

Figure 4-4. Resulting shipping invoice

Remember, to put this example into production you will need to change the debug flag
in the listener to false to set the correct PayPal account to send IPNs to when trans‐
actions are received. You can also tell PayPal to send IPNs via a notification URL field
on individual transactions if you want to programmatically set the notification URL.

In this example a single listener is employed to handle all IPNs that are
sent, but multiple IPN listeners can be employed to handle different
transaction types. In this manner, a different listener could handle re‐
fund transactions launched from a refund page, for example. The noti
fication_url field can be used in many of the PayPal API calls to des‐
ignate an IPN listener.

128 | Chapter 4: Order Fulfillment

This scenario provides a brief example of leveraging the IPN functionality built into
PayPal transactions to automate your backend systems. Your specific listener could
perform a number of desired functions, including customer order database updates,
customer emailings, recurring payment status notifications, refund administration, and
account management.

See Also
PayPal Integration Center – Introducing IPN

PayPal Developer Network Code Samples – Instant Payment Notification

4.2. Simple Shipping Extension in Magento
Opportunity
Setting up a storefront is made extremely easy with the many features of Magento. One
of the most powerful yet underutilized features of the Magento commerce system is the
ability to customize it by adding your own extension or module. An area that people
often want to enhance or add their own custom logic to is the available shipping meth‐
ods. Magento covers quite a few of the standard shipping carriers, including DHL, UPS,
and FedEx, but you may have your own packer/shipper or want to set up your own
charging structure for different methods.

Solution
The code structure of Magento has been set up to allow for fairly straightforward ex‐
tension of functionality through the addition of configuration files and PHP code. You
may have a shipper with an accessible API for shipping method calculations, or want to
structure your own calculated methods. With Magento, you can add the new shipping
carrier or methods by adding a new module, which will automatically be picked up by
Magento and integrated into the administration area and shopping cart.

Discussion
In this example a new shipping carrier module will be created for a fictitious carrier,
“Rubber Ducky Shipping.” The carrier offers two simple shipping methods, “slow boat”
and “fast plane,” as seen in the bottom of the checkout page shown in Figure 4-5.

4.2. Simple Shipping Extension in Magento | 129

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_admin_IPNIntro
https://www.x.com/developers/PayPal/documentation-tools/code-sample/216623

Figure 4-5. Shipping options shown on the cart

After completing the module, using the code provided as a basis you will be able to create
your own version and change the shipping method logic to support your own carrier
API or custom shipping methods.

To create a full shipping carrier solution, the new shipping module will also appear in
the system configuration shipping methods section for setup and will automatically be
pulled into the list of available shipping methods when a customer checks out with his
cart. The shipping method calculations will be simple and be based on a formula of a
base fee plus a percentage of the cart subtotal. You’ll be able to set the fee and percentage
amounts for the formula in the Magento system configuration for the shipping carrier
methods. The example will be broken into the following four steps:

1. Create the Magento module directory structure.
2. Add the module definition through configuration files.
3. Add the module settings to the Magento system configuration.
4. Create the shipping method logic and validate the functionality in a cart.

130 | Chapter 4: Order Fulfillment

The first step is to prepare the directory structure for the module configuration and
logic files that will be added to define the module. In a default community installation
of Magento the app/code directory structure will only contain community and core
subdirectories, which represent the code pools used by default.

For this example we are using the latest version of Magento Community
Edition, version 1.7.0.2, with the optional sample data, version 1.6.1.0.
The Magento Community Edition and sample data are available for
download.

A third code pool is available, named local. The local code pool is for extensions to the
core code that are only for this specific, or local, instance of Magento. The local code
pool will be the home for our shipping module, so we will need to add the local subdir‐
ectory and the child subdirectory structure, as seen in Figure 4-6.

Figure 4-6. New module directory structure

In addition to adding the local subdirectory and the module subdirectories under the
local folder, it is important to inform the PHP server about the local path so that Magento
can find the new module. You will need to make sure that the local subdirectory is in
the include_path variable of your PHP implementation.

It is essential that the include_path of your PHP environment contain
the app/code/local path so that Magento can locate and execute the
module. You can verify the path contents by checking the
include_path variable of the phpinfo method.

Once the directory structure is set in the Magento installation, you can define the module
by adding two configuration files. The first configuration file defines the module, the

4.2. Simple Shipping Extension in Magento | 131

http://www.magentocommerce.com/download
http://www.magentocommerce.com/download

current active status, and which code pool the module files may be found in. The XML
configuration file is named based on your module’s name; for this example it will be
called RubberDucky_ShippingModule.xml and is shown in Example 4-3. Once you have
created this file, you should copy it into the /app/etc Magento directory.

Example 4-3. RubberDucky_ShippingModule.xml definition
<config>
 <modules>
 <RubberDucky_ShippingModule>
 <active>true</active>
 <codePool>local</codePool>
 </RubberDucky_ShippingModule>
 </modules>
</config>

The second configuration file required for the Magento system to recognize the module
is config.xml, shown in Example 4-4. The config.xml file defines the version of the mod‐
ule, the class model to use, and the resources for the module. This file should be placed
in the /app/code/local/RubberDucky/ShippingModule/etc folder.

Example 4-4. config.xml for ShippingModule/etc folder
<?xml version="1.0"?>
<config>
 <modules>
 <RubberDucky_ShippingModule>
 <version>1.0.0</version>
 </RubberDucky_ShippingModule>
 </modules>
 <global>
 <models>
 <shippingmodule>
 <class>RubberDucky_ShippingModule_Model</class>
 </shippingmodule>
 </models>
 <resources>
 <shippingmodule_setup>
 <setup>
 <module>RubberDucky_ShippingModule</module>
 </setup>
 <connection>
 <use>core_setup</use>
 </connection>
 </shippingmodule_setup>
 </resources>
 </global>
 <default>
 <carriers>
 <shippingmodule>
 <active>1</active>

132 | Chapter 4: Order Fulfillment

 <model>shippingmodule/carrier_shippingmodule</model>
 </shippingmodule>
 </carriers>
 </default>
</config>

Once these two configuration files are in place, the system will recognize the extension.
However, we have not told the system how to present the module in the administration
side of Magento or the frontend, so nothing will be seen as yet in the Magento frontend.

If you are working on a development system, it may be easier when
working with extensions and modules to turn caching off in Magento
through System → Cache Management. Otherwise, as you make changes
to the module you will need to flush the Magento cache to pick up the
new modifications.

To enable management of the module’s settings through System → Configuration →
Shipping Methods in the administration area, the Magento system needs to be told what
properties can be set. This is done through an XML configuration file called sys
tem.xml, shown in Example 4-5. This file should be placed in the module etc directory,
like the config.xml file (i.e., in /app/code/local/RubberDucky_ShippingModule/etc). The
purpose of this file is to define the specific settings of the module, including an active
switch, title, and presentation sort order. In this case other fields are also included, which
will allow the administrator to set the shipping method base fees and percentages to be
used. The fields for the shipping methods are defined as slow_boat_base_fee,
slow_boat_base_percent, fast_plane_base_fee, and fast_plane_base_percent.
The fields defined in the system.xml file will be used in the logic of the module for doing
the calculations we need for each shipping rate.

Example 4-5. system.xml configuration file
<?xml version="1.0"?>
<config>
 <sections>
 <carriers>
 <groups>
 <shippingmodule translate="label" module="shipping">
 <label>Rubber Ducky Shipping</label>
 <frontend_type>text</frontend_type>
 <sort_order>13</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 <fields>
 <active translate="label">
 <label>Enabled</label>

4.2. Simple Shipping Extension in Magento | 133

 <frontend_type>select</frontend_type>
 <source_model>
 adminhtml/system_config_source_yesno
 </source_model>
 <sort_order>1</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </active>
 <title translate="label">
 <label>Title</label>
 <frontend_type>text</frontend_type>
 <sort_order>2</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </title>
 <slow_boat_base_fee translate="label">
 <label>Slow boat base fee</label>
 <frontend_type>text</frontend_type>
 <sort_order>10</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </slow_boat_base_fee>
 <slow_boat_percent translate="label">
 <label>Slow boat percent add (0.05 = 5 percent)</label>
 <frontend_type>text</frontend_type>
 <sort_order>11</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </slow_boat_percent>
 <fast_plane_base_fee translate="label">
 <label>Fast plane base fee</label>
 <frontend_type>text</frontend_type>
 <sort_order>12</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </fast_plane_base_fee>
 <fast_plane_percent translate="label">
 <label>Fast plane percent add (0.15 = 15 percent)</label>
 <frontend_type>text</frontend_type>
 <sort_order>13</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </fast_plane_percent>
 <specificerrmsg translate="label">
 <label>Displayed Error Message</label>
 <frontend_type>textarea</frontend_type>

134 | Chapter 4: Order Fulfillment

 <sort_order>80</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </specificerrmsg>
 <showmethod translate="label">
 <label>Show method if not applicable</label>
 <frontend_type>select</frontend_type>
 <sort_order>92</sort_order>
 <source_model>
 adminhtml/system_config_source_yesno
 </source_model>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </showmethod>
 <sort_order translate="label">
 <label>Sort order</label>
 <frontend_type>text</frontend_type>
 <sort_order>100</sort_order>
 <show_in_default>1</show_in_default>
 <show_in_website>1</show_in_website>
 <show_in_store>1</show_in_store>
 </sort_order>
 </fields>
 </shippingmodule>
 </groups>
 </carriers>
 </sections>
</config>

If you review the other shipping carriers in the Magento shipping methods configuration
area, you will find many other fields that could be added. The fields that you add will
be determined by what your logic requires. For example, if your shipping calculations
leverage an outside API set that requires a set of credentials, your settings may include
fields for the remote service login credentials.

If you’d like to see the system.xml definition files for some of the other
shipping carriers, the default system.xml for the included carriers is
available at app/code/core/Mage/Usa/etc/system.xml. This file includes the
shipping carrier properties for all the out-of-box services, such as FedEx
and UPS.

After uploading the config.xml file to the proper location, you can verify that Magento
has loaded the module and the settings are available by logging into the administration

4.2. Simple Shipping Extension in Magento | 135

side of Magento and navigating to the System → Configuration → Shipping Methods
area. If the module has been configured correctly, you should see the Rubber Ducky
Shipping carrier listed among the possible carriers, with the settings defined in the
config.xml file (as seen in Figure 4-7).

Figure 4-7. The shipping module in Magento’s shipping methods configuration area

When you open the Rubber Ducky Shipping carrier settings the first time, the values
for the properties will be empty. The Enabled field should be set to Yes and the title to
the name of the carrier. The base fee and percentage can be filled in with the values you
would like to be used for your calculations. Here, the values $4.50 and 5 percent and
$12.00 and 15 percent have been used for the slow boat and fast plane methods, re‐
spectively. A text block can be added for display when an error occurs, and you can
select to hide the method if not applicable. Lastly, to give the carrier top billing in the
list of carriers displayed in the cart, set the sort order to zero. Click “Save Config” to
save the settings. The module settings should now be configured.

136 | Chapter 4: Order Fulfillment

Now that the module has been configured in the administration console, the last step
is to add the logic for doing the actual calculations for our two shipping methods, slow
boat and fast plane. To add the logic for the new module, we have to add the shipping
module class PHP file into the /app/code/local/RubberDucky/ShippingModule/Model/
Carrier directory. The name of the file will be Shippingmodule.php, and the contents are
shown in Example 4-6.

The naming scheme for a module is required to be consistent through‐
out the configuration files, directory structure, and class file. This is
how Magento will locate your class file and module definitions. The
actual names used in this example are for demonstration purposes and
can be replaced by your own names, as long as they are consistent
throughout. If the naming is not consistent, Magento will not be able
to properly load and execute your module class, resulting in system
errors.

Example 4-6. Shippingmodule.php
<?php
/**
 * Shippingmodule.php
 *
 * PHP file for implementing the new shipping model in the cart
 * and checkout.
 *
 * @method RubberDucky_ShippingModule_Model_Carrier_Shippingmodule
 * collectRates(Mage_Shipping_Model_Rate_Request $request)
 * @method array getAllowedMethods()
 *
 * @author Chuck Hudson
 */

class RubberDucky_ShippingModule_Model_Carrier_Shippingmodule extends
 Mage_Shipping_Model_Carrier_Abstract {

 /**
 * Code of the carrier
 *
 * @var string
 */
 const CODE = 'shippingmodule';

 /**
 * Code of the carrier
 *
 * @var string
 */
 protected $_code = self::CODE;

4.2. Simple Shipping Extension in Magento | 137

 /**
 * Collect the rates for this shipping method to display.
 *
 * @param Mage_Shipping_Model_Rate_Request $request
 * @return Mage_Shipping_Model_Rate_Result
 */
 public function collectRates(Mage_Shipping_Model_Rate_Request
 $request) {

 // Return now if this carrier is not active in the configured
 // shipping methods.
 if (!Mage::getStoreConfig('carriers/'.$this->_code.'/active')) {
 return false;
 }

 // Create the container for holding rates for this shipping method.
 $result = Mage::getModel('shipping/rate_result');

 // Get shipping method settings (base fee and percentage add
 // of subtotal).
 $slow_boat_base_fee = Mage::getStoreConfig('carriers/'.$this-
 >_code.'/slow_boat_base_fee');
 $slow_boat_percent = Mage::getStoreConfig('carriers/'.$this-
 >_code.'/slow_boat_percent');
 $fast_plane_base_fee = Mage::getStoreConfig('carriers/'.$this-
 >_code.'/fast_plane_base_fee');
 $fast_plane_percent = Mage::getStoreConfig('carriers/'.$this-
 >_code.'/fast_plane_percent');

 // Retrieve cart subtotal for calculating additional percentage.
 $subtotal = $this->_getCartSubtotal();

 // Calculate "Slow Boat" method rate and append to the collection.
 $rate = Mage::getModel('shipping/rate_result_method');
 $rate->setCarrier($this->_code);
 $rate->setCarrierTitle($this->getConfigData('title'));
 $rate->setMethod('slowboat');
 $rate->setMethodTitle('Slow Boat');
 $rate->setCost($slow_boat_base_fee);
 $rate->setPrice(number_format($slow_boat_base_fee+
 ($subtotal*$slow_boat_percent)),2);
 $result->append($rate);

 // Calculate "Fast Plane" method rate and append to the collection.
 $rate = Mage::getModel('shipping/rate_result_method');
 $rate->setCarrier($this->_code);
 $rate->setCarrierTitle($this->getConfigData('title'));
 $rate->setMethod('fastplane');
 $rate->setMethodTitle('Fast Plane');
 $rate->setCost($fast_plane_base_fee);
 $rate->setPrice(number_format($fast_plane_base_fee+
 ($subtotal*$fast_plane_percent)),2);

138 | Chapter 4: Order Fulfillment

 $result->append($rate);

 // Return the collection of shipping rates for display.
 return $result;
 }

 /**
 * Get order subtotal
 *
 * @return float
 */
 protected function _getCartSubtotal() {
 // Retrieve the totals of the current cart.
 $cartTotals =
 Mage::getSingleton('checkout/cart')->getQuote()->getTotals();
 // Get the subtotal value from the totals array.
 $cartSubtotal = $cartTotals["subtotal"]->getValue();
 return $cartSubtotal;
 }

 /**
 * Get allowed shipping methods
 *
 * @return array
 */
 public function getAllowedMethods() {
 return array($this->_code => $this->getConfigData('name'));
 }
}
?>

The Shippingmodule.php file defines the class for the RubberDucky_ShippingMod
ule_Model_Carrier_Shippingmodule module, and the class name follows the subdir‐
ectory structure. Inside the module logic class are two functions that are required for
working with shipping methods, the getAllowedMethods and collectRates functions.
The getAllowedMethods function simply informs Magento of the allowed methods. The
collectRates function is called from the cart and checkout process to “collect the rates”
for the different shipping methods of this carrier. In this case the logic is fairly simple:
it requires the retrieval of the shipping method fee and percentage to be used from the
stored configuration data that was set in the administration console. The code will
retrieve the current cart subtotal via a helper function, _getCartSubtotal. The values
are then used to calculate the slow boat rate and the fast plane rate, which are added to
the result object. The result object is then returned to the caller of the class for display,
as shown in Figure 4-8.

4.2. Simple Shipping Extension in Magento | 139

Figure 4-8. Completed shipping option in cart

This example has shown an easy way to add your own shipping module into a Magento
installation. The shipping methods used here are quite simple, but the logic and calcu‐
lations can be replaced with your own matrix of calculations, or rates calculated through
a remote service and looped through to add them to the result to be displayed in the
cart or checkout. This can be a powerful way to customize the shipping experience for
your customers.

See Also
Magento Connect – Create Your Extension

Magento Connect Extension Developer’s Guidelines

4.3. Multiple Supplier Fulfillment
Opportunity
For many product-based businesses, the inventory or goods they sell may be sourced
from multiple suppliers that can ship directly to customers. An opportunity exists to
minimize inventory on hand, expedite customer shipments, and automate processing

140 | Chapter 4: Order Fulfillment

http://bit.ly/V3IIf0
http://bit.ly/ZgQCKL

if product suppliers can be paid at the time of sale. The profit margin can remain with
the seller while the suppliers can ship the goods when they are paid. In essence, one
primary receiver of the funds exists from the buyer’s viewpoint, and the funds are then
split accordingly among other receivers.

Solution
In this scenario a customer chooses a range of products and completes the purchase at
company XYZ’s online store. When the purchase is made, the customer pays company
XYZ the total amount. Behind the scenes, the funds are automatically split between
company XYZ and the other companies that are supplying the products the customer
has selected. For example, two products may come from company XYZ, while two come
from company A and the fifth product from company B. The payment is automatically
split among these companies based on the costs negotiated in a “chained payment,” as
shown in Figure 4-9.

Figure 4-9. Chained payment model

The PayPal Adaptive Payments API and SDK make this scenario easy to implement
through a robust set of chained payment functionality. In a single API call, a payment
can be sent to a primary receiver and then separate amounts passed on to other desig‐
nated receivers.

If you want to use the Adaptive Payments API in a production envi‐
ronment, PayPal must preapprove your PayPal account and application
for security purposes.

4.3. Multiple Supplier Fulfillment | 141

https://www.x.com/developers/paypal/documentation-tools/paypal-sdk-index#adaptivepayments

Discussion
For this example a rudimentary order form will be used to trigger the chained payment
processing. On the order form we will include an extra field, Receiver, which represents
the supplier of the item that is being ordered and will not be shown to a normal viewer.
This field will be used in the processing to determine how much money is passed on to
the specific suppliers. In a production environment this information will be stored with
the products in your database. A receiver ID of 0 represents our store, so we will need
to take into account cases where goods are coming directly from us. Figure 4-10 shows
the order form as displayed from orderForm.php.

Figure 4-10. Basic order form with receiver ID

In Example 4-7 you can see the HTML behind the order form, which includes additional
hidden fields for each item. The input values are structured as arrays so that the PHP
page to which the form is posted can loop through the items. This shopping cart expe‐
rience would normally be implemented with a database and session variables, but it is
simplified here to show the process for setting up and kicking off a chained payment
using the Adaptive Payments API.

Example 4-7. orderForm.php
<?php
/**
orderForm.php

Sample order form that kicks off chained payment. In practice
this would be your shopping cart checkout page.

Calls processOrder.php from form submittal.

**/
?>

<!DOCTYPE html>
<html>

142 | Chapter 4: Order Fulfillment

<head>
<title>Order Form - Chained Payments</title>
<style>
* {margin: 0; padding: 0;}
body {background: #fff; color: #000;
 font: normal 90%/1.5 tahoma, verdana, sans-serif;}
h1 {font-size: 2.9em; font-weight: bold; margin: 1em 0 1em 10px;}
form {padding: 0 10px; width: 700px;}
legend {font-size: 2em; padding-left: 5px; padding-right: 5px;
 position: relative;}
fieldset {border: 1px solid #ccc; border-radius: 5px; float: left;
 padding: 10px; width: 640px;}
td {padding: 2px;}
</style>
</head>
<body>
<div id="orderForm">
<fieldset>
 <legend>Order Form</legend>
 <form id="orderForm" name="orderForm"action="processOrder.php"
 method="post">
 <div>
 Sender's Email: <input type="text" size="50" maxlength="64"
 name="email" placeholder="Sandbox account email"
 value="chudso_1241987592_per@aduci.com">
 </div>
 <table align="center">
 <thead>
 <tr>
 <td>item #</td>
 <td>Item :</td>
 <td>Qty:</td>
 <td>Price:</td>
 <td>Receiver:</td>
 </tr>
 </thead>
 <tr>
 <td><input type="hidden" name="item[]" value="1001" />1001</td>
 <td>Blue pencil</td>
 <td><input type="text" name="qty[]" value="2" /></td>
 <td><input type="text" name="price[]" value="1.00" /></td>
 <td><input type="text" name="source[]" value="0" /></td>
 </tr>
 <tr>
 <td><input type="hidden" name="item[]" value="1002" />1002</td>
 <td>Red pencil</td>
 <td><input type="text" name="qty[]" value="1" /></td>
 <td><input type="text" name="price[]" value="0.90" /></td>
 <td><input type="text" name="source[]" value="1" /></td>
 </tr>
 <tr>
 <td><input type="hidden" name="item[]" value="1003" />1003</td>

4.3. Multiple Supplier Fulfillment | 143

 <td>Eraser</td>
 <td><input type="text" name="qty[]" value="3" /></td>
 <td><input type="text" name="price[]" value="1.25" /></td>
 <td><input type="text" name="source[]" value="1" /></td>
 </tr>
 <tr>
 <td><input type="hidden" name="item[]" value="2001" />2001</td>
 <td>Cup</td>
 <td><input type="text" name="qty[]" value="3" /></td>
 <td><input type="text" name="price[]" value="5.25" /></td>
 <td><input type="text" name="source[]" value="2" /></td>
 </tr>
 </table>
 <div><input type="submit" value="Submit" /></div>
 </form>
</fieldset>
</div>
</body>
</html>

When submitted, the order form is posted to a processing page, processOrder.php, that
will process the items and execute the Adaptive Payments Pay call. The processing page
will leverage a code library from the PayPal Adaptive Payments SDK. The SDK provides
a production-ready framework and examples on which you can base your Adaptive
Payments solutions.

Once you have downloaded the SDK for Adaptive Payments from the X.com developer
site, place the lib folder in the same location as the order form and the new processOr
der.php page, which will be created shortly.

The processOrder.php, APIError.php, and PaymentDetails.php pages are
based on files that are included in the samples folder of the Adaptive
Payments SDK. The samples folder also includes examples of other uses
of the Adaptive Payments API.

Figure 4-11 shows the process flow that we will end up with. The order form on the site
will post items in the cart to the processing page, which will call the PayPal Adaptive
Payments API. Depending on the PayPal payments method, on success the API may
direct the user to the payment details, or return the API results to the processing page.
If there is a failure in the API call, the API error page will be shown. The customer may
also cancel the PayPal transaction during the process, which will bring her back to the
order form.

144 | Chapter 4: Order Fulfillment

https://www.x.com/developers/paypal/documentation-tools/paypal-sdk-index#adaptivepayments

Figure 4-11. Chained payment flow

The processOrder.php page has been modified from a copy of the payChained
Receipt.php page found in the SDK samples. The new page will perform the following
steps:

1. Set the endpoint for the API calls.
2. Create a PayRequest message envelope.
3. Create the receiver list for the payments.
4. Set any optional PayRequest fields.
5. Execute the Pay API call with the PayRequest.
6. Check the results of the call and redirect the page accordingly.

The complete processOrder.php is included in Example 4-8.

Example 4-8. processOrder.php
<?php
/***
processOrder.php

Called by orderForm.php.
Calls APIError.php on error.

Based on PayChainedReceipt.php from SDK samples.
***/

require_once 'lib/AdaptivePayments.php';
require_once 'web_constants.php';

4.3. Multiple Supplier Fulfillment | 145

session_start();

try {

 /* The servername and serverport tell PayPal where the buyer
 should be directed back to after authorizing payment. In this
 case, it's the local web server that is running this script. Using
 the servername and serverport, the return URL is the first portion
 of the URL that buyers will return to after authorizing payment.*/
 $serverName = $_SERVER['SERVER_NAME'];
 $serverPort = $_SERVER['SERVER_PORT'];
 $url=dirname('http://'.$serverName.':'.$serverPort.
 $_SERVER['REQUEST_URI']);

 /* The returnURL is the location where buyers return when a
 payment has been succesfully authorized. The cancelURL is
 the location buyers are sent to when they hit the cancel
 button during authorization of payment during the PayPal flow.*/
 $returnURL = $url."/PaymentDetails.php";
 $cancelURL = "$url/orderForm.php" ;
 $email = $_REQUEST["email"];

 /* Set a couple of arrays of item costs and receivers, since we
 are not using a real database in this example. Normally this
 information would come from the shopping cart and/or database
 being used to track items being sold and sources.*/
 $arrItemCosts = array('1001' => 1.00,
 '1002' => 0.60,
 '1003' => 1.00,
 '2001' => 4.00);

 // Set array of receivers with us first (based on order).
 $arrReceivers = array('wppm_1341107399_biz@aduci.com',
 'sell1_1341107573_biz@aduci.com',
 'servic_1241987644_biz@aduci.com');
 $arrReceiverAmounts = array();

 // Determine and set amounts for each receiver.
 $totalSale = 0;

 $itemCount = count($_POST['item']);
 for ($idxItem=0; $idxItem<$itemCount; $idxItem++) {

 /* Get each item's data. This would typically come
 from the cart/database.*/
 $itemSku = $_POST['item'][$idxItem];
 $itemQty = $_POST['qty'][$idxItem];
 $itemSource = $_POST['source'][$idxItem];
 $itemPrice = $_POST['price'][$idxItem];
 $itemCost = $arrItemCosts[$itemSku];

146 | Chapter 4: Order Fulfillment

 // Update total sale amount.
 $totalSale += $itemQty * $itemPrice;

 // Calculate amount for this item and add to receiver amounts.
 $itemAmount = $itemQty * $itemCost;
 $arrReceiverAmounts[$itemSource] += $itemAmount;
 }

 // Set the total sale to our own primary receiver.
 $arrReceiverAmounts[0] += $totalSale;

 /* Make the call to PayPal to get the Pay token.
 If the API call succeeded, then redirect the buyer to PayPal
 to begin to authorize payment. If an error occurred, show the
 resulting errors.*/
 $payRequest = new PayRequest();
 $payRequest->actionType = "PAY";
 $payRequest->cancelUrl = $cancelURL ;
 $payRequest->returnUrl = $returnURL;
 $payRequest->clientDetails = new ClientDetailsType();
 $payRequest->clientDetails->applicationId = APPLICATION_ID;
 $payRequest->clientDetails->deviceId = DEVICE_ID;
 $payRequest->clientDetails->ipAddress = "127.0.0.1";
 $payRequest->currencyCode = "USD";
 $payRequest->senderEmail = $email;
 $payRequest->requestEnvelope = new RequestEnvelope();
 $payRequest->requestEnvelope->errorLanguage = "en_US";

 // Set the receivers.
 $arrReceiverList = array();

 for ($idxReceivers=0; $idxReceivers<count($arrReceivers);
 $idxReceivers++) {

 $tmpReceiver = new receiver();
 $tmpReceiver->email = $arrReceivers[$idxReceivers];
 $tmpReceiver->amount = $arrReceiverAmounts[$idxReceivers];
 if ($idxReceivers == 0) {
 // If receiver is us, set primary to true.
 $tmpReceiver->primary = true;
 } else {
 $tmpReceiver->primary = false;
 }

 // Create a unique invoice per receiver (replace with yours).
 $tmpReceiver->invoiceId = "12009-" . $idxReceivers;

 // Add this receiver to the array.
 array_push($arrReceiverList, $tmpReceiver);
 }

 // Set the array of receivers into the Pay Request.

4.3. Multiple Supplier Fulfillment | 147

 $payRequest->receiverList = $arrReceiverList;

 // Set optional Pay Request fields.
 $payRequest->feesPayer = "EACHRECEIVER";
 $payRequest->memo = "Chained Payment";

 /* Make the call to PayPal to get the Pay token.
 If the API call succeeded, then redirect the buyer to PayPal
 to begin to authorize payment. If an error occurred, show the
 resulting errors.*/
 $ap = new AdaptivePayments();
 $response=$ap->Pay($payRequest);

 if (strtoupper($ap->isSuccess) == 'FAILURE') {
 $_SESSION['FAULTMSG']=$ap->getLastError();
 $location = "APIError.php";
 header("Location: $location");
 } else {
 $_SESSION['payKey'] = $response->payKey;
 if ($response->paymentExecStatus == "COMPLETED") {
 $location = "PaymentDetails.php";
 header("Location: $location");
 } else {
 $token = $response->payKey;
 $payPalURL = PAYPAL_REDIRECT_URL.'_ap-payment&paykey='.$token;
 header("Location: ".$payPalURL);
 }
 }
}
catch(Exception $ex) {
 $fault = new FaultMessage();
 $errorData = new ErrorData();
 $errorData->errorId = $ex->getFile();
 $errorData->message = $ex->getMessage();
 $fault->error = $errorData;
 $_SESSION['FAULTMSG']=$fault;
 $location = "APIError.php";
 header("Location: $location");
}
?>

In the processOrder.php page, the key difference from a normal PayPal transaction is the
creation of a list of receivers. The list of receivers is added to the PayRequest to tell the
API method who the primary and secondary receivers are and the appropriate amounts
to transfer to each. In this example the script will cycle through the list of items ordered
and add to each receiver’s amount the wholesale cost of the item multiplied by the
quantity. The item costs are pulled from an embedded array, $arrItemCosts, but nor‐
mally this information would be pulled from your product database or be available in
the shopping cart with other item information.

148 | Chapter 4: Order Fulfillment

The script marks the account of the first receiver, which represents the storefront, as the
primary receiver. This receiver will be the initial recipient of all funds, so the total order
amount must be set as the amount for this receiver. PayPal will automatically transfer
from the primary receiver the designated amounts for the other receivers.

The primary receiver’s amount set for the transaction must be equal to
or greater than the amounts of all receivers combined, or the payment
transaction will fail.

To allow for easier identification of the amounts for each receiver, the script also adds
an optional invoice ID with a unique extension for each receiver. You will want to gen‐
erate the invoice IDs dynamically in your own solution.

In a chained payment, PayPal allows a maximum of five receivers to be
designated in one request.

After adding the array of receivers to the pay request, the script sets some optional
parameters for the payment. A field titled feesPayer instructs PayPal which model to
use for charging transaction fees for the chained payment. In this case the value of
EACHRECEIVER is used to signify that each receiver will pay a proportional amount of
the total fees for its received monies. Two other options for fee payment are available:
PRIMARYRECEIVER signifies that the primary receiver will pay all fees, while SECONDARY
ONLY designates that the secondary receiver will pay all fees when only one secondary
receiver is included.

The second field, memo, is for any memo that you would like to be added with the trans‐
action. The memo field will be shown to the payer upon checkout and has a limit of
1,000 characters.

In Recipe 4.1, “Just-in-Time Shipping Forms”, we specified the URL for
our IPN listener in the PayPal IPN Simulator. In the Pay request we can
also add an optional field, ipnNotificationUrl, to designate an IPN
listener for the chained payment transaction.

To run this example we will need a couple of supporting files: web_constants.php, which
has the PayPal service endpoints defined and should not need to be changed from the
version in the SDK samples directory; PaymentDetails.php, which is the landing page to

4.3. Multiple Supplier Fulfillment | 149

which a user is sent after a successful payment; and APIError.php, which is used to
display any errors that occur while calling the API. The files used in this example are
direct copies from the SDK samples folder, with the links modified for the locations of
the web_constants.php file (Example 4-9) and the lib folder.

Example 4-9. web_constants.php
<?php
/**
web_constants.php

Define constants used by web pages in this file.
**/

/* Define the PayPal URL. This is the URL that the buyer is
 first sent to to authorize payment with his PayPal account.
 Change the URL depending on whether you are testing in the
 sandbox or going to the live PayPal site.
 For the sandbox, the URL is:
 https://www.sandbox.paypal.com/webscr&cmd=_ap-payment&paykey=.
 For the live site, the URL is:
 https://www.paypal.com/webscr&cmd=_ap-payment&paykey=.
 */

define('PAYPAL_REDIRECT_URL',
 'https://www.sandbox.paypal.com/webscr&cmd=');
define('DEVELOPER_PORTAL', 'https://developer.paypal.com');
define('DEVICE_ID', 'PayPal_Platform_PHP_SDK');
define('APPLICATION_ID', 'APP-80W284485P519543T');
?>

To test the chained payment, we will use buyer and seller accounts created in the PayPal
sandbox. In your sandbox account, create four accounts: a personal buyer account and
three business seller accounts. Take the email addresses generated for the seller accounts
and place them in the $arrReceivers array in the processOrder.php page, with the first
one being your primary receiver. Lastly, put the personal buyer email address in your
orderForm.php for the input value of “Sender’s Email.”

Now that the accounts are set, you can launch orderForm.php in a browser. Confirm
that the sender’s email matches the one generated in the PayPal sandbox and click
“Submit.” When submitted, the process order page should handle the form post and
redirect to the PayPal sandbox for payment completion, as seen in Figure 4-12.

150 | Chapter 4: Order Fulfillment

https://developer.paypal.com
https://developer.paypal.com

Figure 4-12. PayPal payment login

Once the PayPal payment is complete, the customer is brought to the payment details
page seen in Figure 4-13, showing the debug information. You can easily substitute a
receipt or other landing page for a successful payment.

Figure 4-13. Payment details page

In this example we have seen how easy it is to set up chained payments, where a buyer
interacts with a single seller but the funds are split between different suppliers. In this
case the payment has taken place immediately. The Adaptive Payments API also allows
for holding payment to secondary receivers for up to 90 days. To hold the payment to
secondary receivers, change the action type in the request to PAY_PRIMARY. This can
allow for goods to be paid for upon receipt. Chained payments have been designed to
fit a variety of buyer-to-seller-to-seller business models.

4.3. Multiple Supplier Fulfillment | 151

See Also
PayPal Adaptive Payments Developer Guide

PayPal Adaptive Payments SDK

PayPal Developer Network – Pay API Operation

4.4. Conclusion
The examples shown in this chapter provide a glimpse of what can be done to automate
and streamline the fulfillment step of the commerce lifecycle, for the benefit of both the
merchant and the consumer. Instant Payment Notifications allow you to keep your cus‐
tomer information databases up-to-date, know when payments have cleared, and take
care of transactions that fall outside of the normal payment flow (reversals, refunds,
etc.). The Magento extension shows how easy it is to customize your shipping options
and provide shipping algorithms for your customers based on your specific needs. In‐
stead of making a set of prescribed shipping options match your product orders, you
can now customize those options to fit your business. Lastly, product fulfillment can
leverage new payment models such as chained payments to allow product manufac‐
turers to easily fulfill orders from other sites.

With these and other APIs the fulfillment process can be automated and integrated,
shortening the time to ship, reducing shipping errors, expediting payments to vendors,
and encouraging customers to come back and buy from sellers again.

152 | Chapter 4: Order Fulfillment

https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_AdaptivePayments.pdf
https://www.x.com/developers/paypal/documentation-tools/paypal-sdk-index#adaptivepayments
https://www.x.com/developers/paypal/documentation-tools/api/pay-api-operation

CHAPTER 5

Consumption and Sharing

The last stage in the simplified commerce lifecycle (Figure 5-1) is the consumption and
sharing of the product or service by the customer. In this stage customers are developing
their overall perception of what they have purchased and discussing it with friends in
their social circles. The time window for this stage typically starts when the customer
receives the product or begins using the service purchased, although the sharing of a
product purchasing experience could begin even earlier in the cycle. In either case, it is
important for vendors to realize that during this stage, customers can be the best source
for driving future sales and new revolutions of the commerce lifecycle.

Figure 5-1. Simplified commerce lifecycle—stage 5

In many cases, this stage—in keeping with its place in the commerce lifecycle—is
thought of last. Little investment may be made in improving the customer’s consumption
and sharing of a product. However, with some effort and simple API incorporation, this
stage can quickly become a high-quality gear in the engine producing future leads and
sales. This chapter will focus on two aspects of customer sharing: enabling sharing with
technology and using APIs to create targeted social recommendations.

153

5.1. Sharing with QR Codes
Opportunity
One of the primary ways consumers share product favorites is word of mouth. For a
vendor, there is no sales aid as powerful as a passionate consumer. With the social web
and smartphones, consumers can easily share product likes among their social circles
—and by supporting newer technologies such as Quick Response (QR) codes and scan‐
ning apps to link information about a product to a small symbol, we can make this even
easier.

Solution
Typically, writing a review for a product or sharing a product with a friend requires
several steps by the consumer. The process may involve the consumer searching for the
item online, copying a link, and either posting it in her social feed or emailing the link
to a friend. In this example we will use a QR code and the RedLaser SDK to create a
simple way for consumers to share product information. Users will be able to scan a
code found on a product with their smart devices and be taken to a landing page in their
web browsers, through which they can quickly submit the product to their favorite social
feed or email product information to a friend.

Discussion
The concept of sharing a product with friends via a QR code is gaining traction, and
you may have already seen the use of QR codes in stores to “tell a friend” about a product
(such as in the “I LIKE DIESEL” campaign). However, for a lot of consumers, the “like”
or “dislike” stage does not happen until they have used the product in their own envi‐
ronment after purchase. This example will show how to programmatically create a QR
code tied to a specific product, which can be screen-printed onto a product or included
on a card contained in the packaging. With the QR code can be a brief message in‐
structing the consumer to scan the QR code to easily share the product recommendation
with their friends.

A Quick Response code is a two-dimensional barcode that can be scan‐
ned by most mobile barcode scanning applications and can contain a
maximum of 4,296 encoded alphanumeric characters, based on the size
and level of error correction chosen. QR codes can contain actionable
links such as URLs to be opened in a browser, or mailto: links to open
a new email by default. For more information on QR codes and their
encoding and decoding, see the Wikipedia page.

154 | Chapter 5: Consumption and Sharing

http://redlaser.com/developers
http://bit.ly/TY6x9k
http://en.wikipedia.org/wiki/QR_code

To scan a QR code the consumer can use a scanning application or a custom vendor
mobile application leveraging the RedLaser SDK for scanning, as we will see in this
example. Once scanned, the encoded URL in the QR code will open a URL in the user’s
browser that will log the use of the QR code for analytics and then forward the user to
a page where he can choose one of several social services by which to share the product
(see Figure 5-2).

Figure 5-2. Product sharing flow via QR codes

This example is broken down into three steps:

1. Programmatic creation of a product QR code
2. Creation of an iPhone application for scanning the code
3. Presenting the appropriate page for sharing the product

The first step of this example is to create the QR code with the specific link to open when
scanned. The link will pass the product ID so that the browser page presented can include
specific product information. There are multiple QR code encoding libraries available,
supporting various languages. One of the easiest methods for creating a code is to use
the Google Infographics API. This API creates a static QR code image based on infor‐
mation passed in on the API call. Documentation on QR codes with the Google Info‐
graphics API is available at https://google-developers.appspot.com/chart/infographics/
docs/qr_codes.

5.1. Sharing with QR Codes | 155

https://google-developers.appspot.com/chart/infographics/docs/qr_codes
https://google-developers.appspot.com/chart/infographics/docs/qr_codes

As of April 20, 2012, Google has deprecated the infographics part of the
Google Chart Tools. Based on the Google Deprecation Policy, the API
will be available through April 20, 2015. Currently the Google API for
creating a QR code is possibly the easiest to integrate, but other libraries
are available, including PHP QR Code and QR-Generator-PHP for
PHP.

To make it easy to create a specific product QR code, this example will first ask the
vendor for the specific product ID to be encoded with the link, as seen in Figure 5-3.

Figure 5-3. QRShareIt.php, our QR code label entry form

The code for the QR code creation form is shown in Example 5-1. This step could be
replaced with a script to automatically generate several codes from a database of prod‐
ucts, if needed.

Example 5-1. QRShareIt.php, QR code creation form with product ID
<?php
/***
QRShareIt.php

Simple form for entering product ID for QR code referral link.

Calls QRCreateLabel.php from form submittal.

***/
?>

<!DOCTYPE html>
<html>
<head>
<title>QR Code Creation Form</title>
<style>
* {margin: 0; padding: 0;}
body {background: #fff; color: #000;
 font: normal 62.5%/1.5 tahoma, verdana, sans-serif;}
form {padding: 0 10px; width: 700px;}

156 | Chapter 5: Consumption and Sharing

http://phpqrcode.sourceforge.net/
https://github.com/edent/QR-Generator-PHP/

legend {font-size: 2em; padding-left: 5px; padding-right: 5px;
 position: relative;}
fieldset {border: 1px solid #ccc; border-radius: 5px; float: left;
 padding: 10px; width: 320px;}
li {clear: both; list-style-type: none; margin: 0 0 10px;}
label, input {font-size: 1.3em;}
label {display: block; padding: 0 0 5px; width: 200px}
input {background-position: 295px 5px; background-repeat: no-repeat;
 border: 2px solid #ccc; border-radius: 5px;
 padding: 5px 25px 5px 5px; width: 285px;}
input:focus {outline: none;}
input:invalid:required {background-image: url(images/asterisk.png);
 box-shadow: none;}
input:focus:invalid {background-image: url(images/invalid.png);
 box-shadow: 0px 0px 5px #b01212; border: 2px solid #b01212;}
input:valid:required {background-image: url(images/accept.png);
 border: 2px solid #7ab526;}
div {clear: both; float: left; margin: 10px 0; text-align: center;
 width: 100%;}
input[type=submit] {background: #7ab526; border: none;
 box-shadow: 0px 0px 5px #7ab526; color: #fff; cursor: pointer;
 font-size: 2em; font-weight: bold; margin: 10px auto;
 padding: 10px; width: auto;}
input[type=submit]:hover {box-shadow: 0px 0px 25px #7ab526; }
</style>
</head>
<body>
 <form id="qrForm" name="qrForm" action="QRCreateLabel.php"
 method="post">
 <fieldset>
 <legend>Create the Product QR Label</legend>

 <label for="product_id">Product ID/SKU</label>
 <input type="text" id="product_id" name="product_id"
 required />

 <div><input type="submit" value="Submit" /></div>
 </fieldset>
 </form>
</body>
</html>

When you submit the form with the product ID on the QRShareIt.php page, the QRCrea
teLabel.php page (Example 5-2) will take the product ID, combine it with the landing
page URL, and create an appropriate label layout, including the QR code graphic. The
page will add the product ID as a query string parameter to the landing URL we have
selected, which in this case is <yoursite>.com/QRscan.php.

5.1. Sharing with QR Codes | 157

For additional security, a GUID or other unique identifier could be
added to the query string to authenticate the scan and product ID
received.

The URL that is created will be passed to the Google API as the data to be encoded in
the QR code. Next, the page creates the image source URL, which references the QR
code generator at Google. The URL contains the chart type, cht=qr, and size,
chs=220x220, of the image to be created. The link for the QR code is added as the chl
query string variable. A sample URL for the QR code image generator would be:

https://chart.googleapis.com/chart?cht=qr&chs=220x220&chl= http%3A%2F
%2Fwww.%3Cyoursite%3E.com%2FQRscan.php%26pid%3DMSA2012

Notice that the example contains a link that has been encoded. The Google API will
decode the passed data and include the link in the resulting QR code appropriately.

The page that handles all of this, QRCreateLabel.php, is shown in Example 5-2.

Example 5-2. QRCreateLabel.php, QR code creation page
<?php
/**
QRCreateLabel.php

Create the QR code label for putting on the product.

Call from QRShareIt.php with the product ID.

**/

// For documentation on the Google QR Code Infographics API, see:
// https://google-developers.appspot.com/chart/infographics/docs/
// qr_codes.

// Check if the page has been posted to with a product ID.
if (isset($_REQUEST['product_id'])) {

 // Retrieve the product ID.
 $product_id = $_REQUEST['product_id'];
 $product_string = "pid=" . $product_id;

 // Create the data to put into the QR code with the tracking link.
 $qr_link = "http://www.<yoursite>.com/QRscan.php";
 $qr_data .= urlencode($qr_link . "?" . $product_string);

 // Create the full URL for the QR image using Google.
 $qr_generator = "https://chart.googleapis.com/chart?cht=qr";
 $qr_size = "&chs=220x220";
 $qr_data = "&chl=" . $qr_data;

158 | Chapter 5: Consumption and Sharing

https://chart.googleapis.com/chart?cht=qr&chs=220x220&chl=http%3A%2F%2Fwww.%3Cyoursite%3E.com%2FQRscan.php%26pid%3DMSA2012
https://chart.googleapis.com/chart?cht=qr&chs=220x220&chl=http%3A%2F%2Fwww.%3Cyoursite%3E.com%2FQRscan.php%26pid%3DMSA2012

 $qr_image = $qr_generator . $qr_size . $qr_data;

} else {

 // Redirect the user if not posted.
 header("Location: QRShareIt.php");
}
?>

<!DOCTYPE html>
<html>
<head>
<title>Product Share It Label</title>
<style>
body {
 background: #ddd;
 color: #000;
 font: normal 100%/1.5 tahoma, verdana, sans-serif;
 text-align:center
}
#labelcontainer {
 margin:0 auto;
 background:#fff;
 width:270px;
 padding:20px;
}
fieldset {
 border:5px solid #ccc;
 border-radius: 5px;
 padding: 10px;
}
legend {
 font-size: 1.8em;
 padding: 0 5px;
}
#qrcode {
 position:relative;
}
#prodid {
 font-size:60%;
 text-align:right;
}
</style>
</head>
<body>
 <div id="labelcontainer">
 <fieldset>
 <legend>Scan It. Share It.</legend>
 Like this product? Then scan the QR code below and share it
 with your friends.

 <div id="qrcode">
 <img src="<?php echo $qr_image;?>"/>

5.1. Sharing with QR Codes | 159

 </div>
 Use our mobile app to scan the code for additional offers.
 <div id="prodid">
 <p><?php echo "PRD-" . $product_id;?></p>
 </div>
 </fieldset>
 </div>
</body>
</html>

Figure 5-4 shows the resulting label displayed, showing the QR code image generated
from the Google API.

Figure 5-4. Resulting QR code product label

With the “Scan It. Share It.” label created, we now need to create the mobile application
to scan the QR code and launch the encoded URL. A customer could use one of the
many mobile applications available for scanning QR codes, but with a custom mobile
application a deeper relationship with your customers can be built. In this part, the
RedLaser SDK will be included in a sample iPhone application to show how easy it is to
include QR code scanning in a mobile application.

To use the RedLaser SDK for iOS, download the SDK from here using the link under
“Evaluate for free.” If you are implementing an Android solution, RedLaser also provides

160 | Chapter 5: Consumption and Sharing

http://redlaser.com/developers/
http://redlaser.com/developers/

an SDK for Android API 7 and higher. There is a limit of 25 scans with the evaluation
kit; if you wish to include the SDK in a production application, the license pricing is
based on a tiered quantity and the number of devices to which your application will be
deployed.

The RedLaser SDK for iOS contains a “Using the RedLaser SDK” PDF that provides all
the information needed for incorporating the library files (libRedLaserSDK.a and Red
LaserSDK.h) into your project. Also included in the download is a sample iOS project,
titled Sample. This sample will be the basis for this example and will allow us to quickly
create a scanning iOS application.

The sample application provides functionality to scan a code and provide the returned
data in a table. For this example the sample will be modified slightly to run the project
in your development environment and launch a browser window with the decoded URL.
The steps you’ll need to take are the following:

1. Replace the Bundle Identifier with your own.
2. Update the UITableView of scanned data to allow selection of cells.
3. Add the didSelectRowAtIndexPath method for launching the scan selected in a

browser on the device.

Open the RLSample.xcodeproj file found in the Sample directory in your XCode devel‐
opment environment. The minimum version of iOS supported by the RedLaser SDK is
iOS 4.0. The first step to get the sample working in your environment is to change the
Bundle Identifier of the project to your organization’s identifier. By default the identifier
of the sample project will be eBay, as seen in Figure 5-5.

Figure 5-5. RLSample bundle identifier

5.1. Sharing with QR Codes | 161

Once you’ve done this, you should be able to build the project and have it run in device
mode on your connected development iPhone.

Next, you’ll need to modify the application to allow the user to select the scanned code
from the UITableView and have it launch the URL in a browser. By default the sample
project will take the scanned data and insert it into a new table cell in a UITableView
for viewing purposes. In your own project, you could of course have the browser
launched automatically once the code is scanned and confirmed as a valid URL.

To update the UITableView, open the RLSampleViewController.xib layout found in the
View Controllers → Scan Results Table folder in XCode. By default a view describing the
RLSample will be displayed on top of the results table. Move this view over a bit to gain
access to the UITableView underneath.

Select the UITableView and, in the properties window, change the Selection type from
“No Selection” to “Single Selection” (as shown in Figure 5-6). Move the description view
back on top of the UITableView.

Figure 5-6. Change selection type of table to “Single Selection”

162 | Chapter 5: Consumption and Sharing

The last step is to have the RLSampleViewController launch the device’s default browser
with the URL scanned from the QR code when a user selects the row in the table of
scanned results. Open the RLSampleViewController.m file, which is located in the same
folder as the .xib file. At the end of the method file, add the code in Example 5-3 to catch
the row selection event by the user.

Example 5-3. RLSampleViewController.m addition
- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:
 (NSIndexPath *)indexPath {

 // Retrieve cell that has been selected based on indexPath.
 UITableViewCell *cell = [tableView cellForRowAtIndexPath:indexPath];

 // Create URL with the textLabel of the cell, since that is what was
 // scanned.
 NSURL *url = [NSURL URLWithString:cell.textLabel.text];

 // Open the URL that was scanned.
 [[UIApplication sharedApplication] openURL:url];
}

Now when the iPhone app is launched on your device you should be able to scan the
image of the QR code created earlier, view the link data in the table of results, tap on
the table row, and have the URL launched in the browser on your iPhone. The iOS
example scanning application is now complete.

To complete the example here, a page for the consumer to land on when the code is
scanned by the iOS application needs to be created. The URL encoded in the QR code
is set to go to a distribution or “traffic cop” page. There are several benefits to using a
distributor configuration instead of going directly to a product landing page. First, if
the specific handling of the link needs to change in the future, it will be easier to change
the linkage in the traffic handling page, or a database of links behind the scenes, rather
than changing the product page. In addition, this will allow for centralized validation
of the scanned information and logging of any analytics.

Example 5-4 contains the code for the traffic handler receiving a scanned URL. The
traffic handler will validate the product data passed and then forward the session to a
specific product-sharing page. Sections have been left as TODOs where you can inte‐
grate the code with your specific product and analytics databases.

Example 5-4. QRscan.php
<?php
/***
QRscan.php

Traffic handler for receiving a scanned QR code.
Update stats, and forward appropriately.

5.1. Sharing with QR Codes | 163

Called from qr code scan

***/

// Check if the page has been posted to with a product ID.
if (isset($_GET['pid']) && isset($_GET['pky'])) {

 // Retrieve the product ID and product key.
 $product_id = $_GET['pid'];
 $product_key = $_GET['pky'];

 /* Verify that the key is valid by looking in your product
 database.
 TODO: Replace following line with check if key in database
 and guid. */
 $pkeyValid = true;

 if ($pkeyValid) {
 // If valid do the following:

 // 1) Log the scan in your statistics.
 // TODO: Put in your logging functionality.

 // 2) Forward user to the social page with the product guid.
 $sharePage = "SharePage.php?pid=" . $product_id;

 // 3) Forward user to the share page for the product.
 header("Location: " . $sharePage);
 } else {

 // Redirect the user if not from a QR code scan.
 header("Location: InvalidAccess.php");
 }
} else {
 // Redirect the user if not from a QR code scan.
 header("Location: InvalidAccess.php");
}
?>

If the data passed in with the URL is correct, the user will be brought to the page for
sharing the product with friends via her social network memberships. Example 5-5
shows the code for this page, which will display the links to selected social networks. In
your solution, you could have this post on a person’s Facebook wall or send an email
from a form. This is meant to provide an idea of the possibilities for sharing.

Example 5-5. SharePage.php
<?php
/***
SharePage.php

164 | Chapter 5: Consumption and Sharing

Allow users to share the specific product with their friends.
Add your own landing page for the product - maybe a central
product support menu for product documentation, email share
with friends, social feed integration, etc.

Call from QRscan.php with the product ID and key.

***/
?>

<!DOCTYPE html>
<html>
<head>
<title>Share the Product You Love</title>
<meta name="viewport" content="width=device-width; initial-scale=1.0;
 maximum-scale=1.0; user-scalable=0;" />
<style>
body {
 background: #fff;
 color: #000;
 font: normal 100%/1.5 tahoma, verdana, sans-serif;
 text-align:center
}
#container {
 width:270px;
 padding:20px;
}
fieldset {
 border:5px solid #ccc;
 border-radius: 5px;
 padding: 10px;
}
legend {
 font-size: 1.8em;
 padding: 0 5px;
}
</style>
</head>
<body>
 <div id="container">
 <fieldset>
 <legend>Share It.</legend>
 We are glad that you are enjoying your purchase. Share it with
 your friends via your favorite format; email, twitter, facebook,
 google+.

 As a thank you after sharing you will be provided a discount
 code off your next purchase.

5.1. Sharing with QR Codes | 165

 </fieldset>
 </div>
</body>
</html>

Figure 5-7 shows the example product landing page. If a company scanning mobile
application is created, you could also launch the sharing page in an embedded
UIWebView or call web services from the company site to trigger native code and func‐
tionality in your application.

Figure 5-7. Landing page on iPhone

In this example, the primary focus has been to provide a simple method for consumers
to share a product with friends. However, this same flow and QR code scanning tech‐
nology could be used to provide product or service support information, coupons, access
to detailed product documentation, or a host of other information and services.

See Also
Google Chart Tools: Infographics (QR Codes)

RedLaser developer site

166 | Chapter 5: Consumption and Sharing

https://google-developers.appspot.com/chart/infographics/docs/qr_codes
http://redlaser.com/developers/

5.2. Creating a Taste Graph
Opportunity
Once a customer has made a purchase from a vendor, there is a window of opportunity
to understand the customer’s tastes, present him with similar or complementing prod‐
ucts, and increase the likelihood of future purchases. The challenge is to present an
adequate and applicable set of products that best match the consumer’s tastes, also
known as a taste graph.

Solution
The Hunch.com site contains an ever-growing set of data representing millions of an‐
swers to questions by people, product ratings, Facebook likes, venue check-ins, social
connections, and user profiles. As commerce developers, all this data provides us with
access to a powerful and ever-changing taste graph for the entire Web. Hunch provides
an API to access these personalized taste graphs and user trends that we can tap into to
make recommendations for our customers.

Discussion
A vendor has a higher potential of making future sales and creating an ongoing rela‐
tionship with a customer if the vendor can present the customer with personalized
product selections. The Hunch API is designed to provide recommendations of movies,
books, household products, and more based on data provided about an individual. That
data could include anything from a record of products that person has already purchased
to her social feed online. Hunch takes this data and, based on millions of other data
points, creates a taste graph illustrating the customer’s interests.

In addition to the knowledge of any prior purchases, the vendor may have a profile for
the customer, which could include that customer’s Twitter username. Having the Twitter
username is not a requirement to use the Hunch API to provide recommendations, but
including the social feed identifier will allow Hunch to personalize the recommenda‐
tions for the consumer to a much higher level.

Column Five Media has created an infographic (Hunch Infographic:
The Ever Expanding Taste Graph) that provides just a glimpse of the
massive data structure that has been created by Hunch. By comparing
users across the Internet, patterns of interests can be formed into highly
customized taste graphs for individual consumers. You can go to
Hunch.com and try it out with your own free account.

5.2. Creating a Taste Graph | 167

http://hunch.com
http://columnfivemedia.com/work-items/hunch-infographic-the-ever-expanding-taste-graph/
http://columnfivemedia.com/work-items/hunch-infographic-the-ever-expanding-taste-graph/
http://hunch.com

This code example will use two API calls from Hunch to produce product recommen‐
dations: get-results and get-recommendations. Figure 5-8 shows an example of the
resulting display of product recommendations for a consumer.

Figure 5-8. Other products presented from Hunch

In our example, the consumer has previously purchased a “KitchenAid Professional 600
series stand mixer” from the vendor and has a Twitter username of chuckhudson. With
this information, the code will call the Hunch get-results API method to retrieve the
Hunch ID for the stand mixer product. This is a unique ID for the product that Hunch
has assigned; it is prefixed with “hn_”, signifying a Hunch ID. In addition, the return
from get-results will provide a category topic ID for the product, such as “cat_home-
garden”. Hunch categorizes products into a tree. A product can be included in one or
more product topic lists, and each topic list will have a corresponding parent category.

The full category tree and IDs can be found here. If necessary, you can
programmatically search and retrieve the topics; for more information
see the Hunch API Topic Methods documentation.

The Hunch product ID and category topic will be passed into the get-

recommendations call, along with other data, to determine the best recommendations
for the consumer. Both of the calls return JSON strings, and our example code will loop
through the results of the get-recommendations call and display the images for a set of
recommended products. The images will be linked to the appropriate Hunch product
pages and each will have a title property set to the item’s name, as seen in Figure 5-8.

168 | Chapter 5: Consumption and Sharing

http://bit.ly/12yBJRS
http://bit.ly/UPnqE1

Example 5-6 shows the code for the getRecommendations.php page, which will make the
calls to the Hunch API and display the results. The first thing the page will do is to
include a library that will be used to sign the calls that are made to the Hunch server
and set constants used in the application. To execute API calls against the Hunch server,
the application needs to be registered in the Hunch developer environment. To do this,
create a developer account and log into the self-service area of the Hunch API developer
site. When you’ve completed your application registration, your application will be as‐
signed an app_id and an app_secret. Replace the app_id and app_secret strings at
the top of the getRecommendations.php file with your application information.

Example 5-6. getRecommendations.php Hunch taste graph recommendations
<?
/***
getRecommendations.php

Create 3x3 box of recommendations via the Hunch API from a
user's item purchase history and Twitter username taste graph.

***/

// Include the auth_sig library.
require_once("libHunchAuthSig.php");

// Define the app constants.
define("HUNCH_API_ROOT","http://api.hunch.com/api/v1");
define("APP_ID","3149331");
define("APP_SECRET","37e05a61369680d9f3605dd899dd455da944e877");

// Define the number of recommendations.
define("LIMIT_NUM",9);

// Function to handle Curl API calls.
function curl_get_file($url) {

 // Initialize the curl request.
 $ch = curl_init();

 // Set the curl options.
 curl_setopt($ch, CURLOPT_AUTOREFERER, TRUE);
 curl_setopt($ch, CURLOPT_FOLLOWLOCATION, TRUE);
 curl_setopt($ch, CURLOPT_HEADER, FALSE);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE);
 curl_setopt($ch, CURLOPT_URL, $url);

 // Execute the curl request.
 $data = curl_exec($ch);
 curl_close($ch);

 return $data;
}

5.2. Creating a Taste Graph | 169

http://hunch.com/developers/self-service/signup/

// Function to use the get-results Hunch API call to retrieve the
// Hunch item ID.
function getHunchItemInfo($itemName, $topicList) {

 // Create Hunch URL for get-results call.
 $urlGetRes = HUNCH_API_ROOT."/get-results/?topic_ids=".$topicList.
 "&name=".$itemName."&app_id=".APP_ID;

 // Sign the URL request.
 $urlGetResSigned = signUrl($urlGetRes, APP_SECRET);

 // Make the curl request.
 $strResults = curl_get_file($urlGetResSigned);

 // Convert the JSON results string to an object.
 $objResults = json_decode($strResults);

 // Check the results and set the result_id and topic_id.
 if ($objResults->ok && $objResults->total>0) {
 $result_id = $objResults->results[0]->result_id;
 $topic_id = $objResults->results[0]->topic_ids[0];
 }

 // Return the item result_id and topic_id.
 return array ($result_id, $topic_id);
}

// Function to use get-recommendations to retrieve Hunch
// recommendations.
function getHunchRecommendations($prodName, $listId, $twName) {

 // Get the Hunch item ID and topic category via the get-results API.
 $hunchItemInfo = getHunchItemInfo($prodName, $listId);

 // Set the Hunch item ID and category returned.
 $hnItemId = $hunchItemInfo[0];
 $hnCategory = $hunchItemInfo[1];

 // Modify the Twitter username with the Hunch prefix for Twitter.
 $twName = "tw_".$twName;

 // Construct the get-recommendations API call with the data.
 $urlGetRec = HUNCH_API_ROOT."/get-recommendations/?likes=".$hnItemId.
 "&blocked_result_ids=".$hnItemId."&user_id=".$twName."&topic_ids=".
 $hnCategory."&limit=".LIMIT_NUM."&tags=kitchen&app_id=".APP_ID;

 // Sign the URL request.
 $urlGetRecSigned = signUrl($urlGetRec, APP_SECRET);

 // Make the get-recommendations request.
 $strResults = curl_get_file($urlGetRecSigned);

170 | Chapter 5: Consumption and Sharing

 return $strResults;
}
?>

<!DOCTYPE html>
<html>
<head>
<title>Recommendations</title>
<style>
body {color: #000; font: normal 100%/1.5 tahoma, verdana, sans-serif;
 text-align: center}
#reccontainer {margin: 0 auto; background: #fff; width: 340px;
 padding:20px;}
fieldset {border: 2px solid #ccc; border-radius: 5px; padding: 10px;}
legend {font-size: 1em; padding: 0 5px;}
.productHolder {float: left; width: 100px; height: 100px;}
.productImage {max-width: 100px; max-height: 100px;}
</style>
</head>
<body>
 <div id="reccontainer">
 <fieldset>
 <legend>Other Product Ideas</legend>

<?php
 // Set the item recently purchased, Hunch list topic,
 // and Twitter username.
 $itemName = "kitchenaid-professional-600-series-stand-mixer-
 kp26m1xnp";
 $hunchList = "list_electric-mixer";
 $twitterUsername = "chuckhudson";

 // Make function call to get the recommendations.
 $strRecommendations = getHunchRecommendations($itemName,
 $hunchList,$twitterUsername);

 // Convert the recommendations JSON string to an object.
 $objRecs = json_decode($strRecommendations);

 // Check the results to verify success.
 if ($objRecs->ok && $objRecs->total>0) {

 // Loop through each recommendation and display linked image.
 foreach($objRecs->recommendations as $recommendation) {
 echo '<div class="productHolder">';
 echo 'url.'"
 title="'.$recommendation->title.'">';
 echo '<img class="productImage"
 src="'.$recommendation->image_url.'" />';
 echo '';
 echo '</div>';
 }

5.2. Creating a Taste Graph | 171

 } else {
 echo "No Recommendations Found.";
 }
 ?>

 </fieldset>
 </div>
</body>
</html>

As mentioned earlier, each request to the Hunch API should be signed and referenced
to the application registered. The app_id associated with the application will be included
as a query string parameter for the API call, while the app_secret will be passed into
the authentication signature function in the libHunchAuthsig.php file to create a unique
signature for the call request.

The Hunch API has a quota per registered application of 5,000 calls per
day. If you find that you need a higher quota, you can contact support
at Hunch.com (api@hunch.com).

Hunch provides a library helper function to hash the URL and create the auth_sig,
listed in Example 5-7. The core function of the helper file is signUrl; it takes the string
URL of the API call and the application’s secret key. The function organizes the query
string parameters and creates a unique encoded signature held in a query string variable
named auth_sig. The auth_sig is appended to the URL and returned from the function.
The URL request is now valid with the auth_sig token and can be sent to the Hunch
servers via the curl_get_file function.

Example 5-7. libHunchAuthSig.php Hunch request signing
<?php
/***
libHunchAuthSig.php

Library to sign a Hunch API call based on an app_secret.

Source of file:
http://hunch.com/developers/v1/resources/samples/#signing

***/

// Helper function to the signUrl function.
function enc($c) {
 $c = str_replace(array('+', '/', '@', '%20'), array('%2B', '%2F',
 '%40', '+'), $c);
 return $c;
}

172 | Chapter 5: Consumption and Sharing

http://hunch.com
mailto:api@hunch.com

// Function to create the signed URL from the URL and secret_key
// (app_secret) passed in.
function signUrl($url, $secret_key)
{
 $original_url = $url;
 $urlparts = parse_url($url);

 // Build $params with each name/value pair.
 foreach (split('&', $urlparts['query']) as $part) {
 if (strpos($part, '=')) {
 list($name, $value) = split('=', $part, 2);
 } else {
 $name = $part;
 $value = '';
 }
 $params[$name] = $value;
 }

 // Sort the array by key.
 ksort($params);

 // Build the canonical query string.
 $canonical = '';
 foreach ($params as $key => $val) {
 $canonical .= "$key=".enc(utf8_encode($val))."&";
 }

 // Remove the trailing ampersand.
 $canonical = preg_replace("/&$/", '', $canonical);

 // Build the sign.
 $string_to_sign = enc($canonical) . $secret_key;

 // Calculate our actual signature and base64-encode it.
 $signature = bin2hex(hash('sha1', $string_to_sign, $secret_key));

 // Finally, rebuild the URL with the proper string and include the
 // signature.
 $url = "{$urlparts['scheme']}://{$urlparts['host']}
 {$urlparts['path']}?$canonical&auth_sig=".rawurlencode($signature);
 return $url;
}
?>

The following URL request shows the get-results request for this example prior to the
addition of the auth_sig token from signing the URL. The topic ID and product name
to search for have been included:

http://api.hunch.com/api/v1/get-results/?topic_ids=list_electric-
mixer&name=kitchenaid-professional-600-series-stand-mixer-kp26m1xnp

5.2. Creating a Taste Graph | 173

http://api.hunch.com/api/v1/get-results/?topic_ids=list_electric-mixer&name=kitchenaid-professional-600-series-stand-mixer-kp26m1xnp
http://api.hunch.com/api/v1/get-results/?topic_ids=list_electric-mixer&name=kitchenaid-professional-600-series-stand-mixer-kp26m1xnp

Once the get-results call is made, a JSON string is returned from Hunch, as displayed
in Figure 5-9. In this case one item has been returned from the Hunch taste graph, as
defined in the total property. The ok property value of true informs the code that the
Hunch API executed the call successfully.

Figure 5-9. Hunch get-results JSON results

The first property that we will retrieve is the result_id, which corresponds to the Hunch
unique product ID.

To quickly validate the Hunch result_id for an item, you can load the
following URL in a browser window, replacing the “hn_” number used
here with the Hunch ID for the item: http://hunch.com/item/
hn_244011. If successful, the item product page will be viewable in the
browser.

The second property returned is the first topic_id element, which in this case is
“cat_home-garden”. This is the parent category for the item in the Hunch category tree;
you can pass it into the get-recommendations call to limit the results to only this
category.

Once the product ID and category topic ID are retrieved from the get-results call, the
get-recommendations request can be constructed. The get-recommendations param‐
eters are a bit more complicated: they consist of variables that allow the Hunch API to

174 | Chapter 5: Consumption and Sharing

narrow down the taste graph of product recommendations to be created. The re
sult_id that was retrieved from the get-results call is used in two ways in the new
request: to tell Hunch what the person likes already via a likes query string variable
(providing the Hunch graph with a starting point), and to instruct Hunch to not present
this product in the results, since the consumer has already purchased the product, via
the blocked_result_ids query string parameter.

Next, the request contains other data points by which the taste graph can be honed: the
user_id and topic_ids. The user_id represents a social stream for the consumer, ref‐
erencing the consumer’s Twitter username. To tell Hunch that this is a Twitter username,
the username is prefixed with the characters “tw_”. The list of prefixes and services
integrated into Hunch are available on the Hunch developer site; they include social
network systems such as Facebook and Twitter. The topic_ids correlate to topic IDs
from the Hunch category tree. In this case the topic ID “cat_home-garden” will be used
to limit the results to those products in the home and garden space:

http://api.hunch.com/api/v1/get-recommendations/?
likes=hn_244581&blocked_result_ids=hn_244581&user_id=tw_chuckhudson&
topic_ids=cat_home-garden&limit=9&tags=kitchen

The final two query string variables are limit and tags. The limit element with a value
of 9 tells Hunch to only return a maximum of nine recommendations. If this element is
not included, by default Hunch will return 10 recommendations; however, we only need
9 products to fill our 3 × 3 recommendations grid. The final element, tags, contains any
special tags that we want the recommended products to contain. Each product in the
Hunch system can have keyword tags associated with it. If you refer back to
Figure 5-9, you’ll see the tags value with a set of tags corresponding to the product
returned. In this example, a tag value of “kitchen” will be included in the get-
recommendations request to limit the results to just those products that have a “kitchen”
tag.

The JSON response from the get-recommendations call, shown in Figure 5-10, contains
an ok status flag showing that the call was successful and a total value of 73, showing
the total number of recommendations found for the request. Only nine products are
returned, though, because the limit tag was included in the request.

At the root of the JSON response is a variable called is_personalized, which can be
either true or false. A true value for this variable informs us that Hunch was able to
personalize the results to the user based on knowledge of the user in the Hunch data
structure. This is where the Twitter username becomes useful—without the user_id
the results would only have been based on a collective knowledge of other people’s “like”
of the product.

5.2. Creating a Taste Graph | 175

http://api.hunch.com/api/v1/get-recommendations/?likes=hn_244581&blocked_result_ids=hn_244581&user_id=tw_chuckhudson&topic_ids=cat_home-garden&limit=9&tags=kitchen
http://api.hunch.com/api/v1/get-recommendations/?likes=hn_244581&blocked_result_ids=hn_244581&user_id=tw_chuckhudson&topic_ids=cat_home-garden&limit=9&tags=kitchen
http://api.hunch.com/api/v1/get-recommendations/?likes=hn_244581&blocked_result_ids=hn_244581&user_id=tw_chuckhudson&topic_ids=cat_home-garden&limit=9&tags=kitchen

Figure 5-10. Hunch get-recommendations JSON results

Packaged in the get-recommendations response is an array of the recommendations
returned under the recommendations element. In each recommendation are several
properties, including the title, the image URL address, and a URL to the listing for the
product or service on Hunch. As well, each recommendation contains a unique re
sult_id, which is the unique ID for the product or service. In this example the code
will loop through each recommendation and pull out the image URL, Hunch URL, and
title to display in our recommendations box. In your implementation, the Hunch IDs
could be tied to the products in your product catalogue instead of using the Hunch
product links.

In this example the Hunch API calls were made one after another, with
the second call using results from the first. Hunch has a special API in
addition to the results-oriented API that contains a “batch” call for
making multiple calls in one request. You can explore this call in the
online Hunch API Special Methods documentation.

176 | Chapter 5: Consumption and Sharing

http://hunch.com/developers/v1/docs/reference/#special-methods

See Also
Hunch Developer Area

Hunch API Reference

Hunch API Reference – Result Methods

Hunch API Console

Hunch API Topics

5.3. Social Recommendations
Opportunity
Social recommendations can be a powerful driver of future sales, often leading to new
revolutions of the commerce lifecycle. Most of the time social recommendations come
from customers sharing their interests and things they like with people in their social
circles. Technically, to make recommendations ourselves we have had to perform mul‐
tiple and potentially exponentially growing numbers of web service calls. If a data re‐
trieval and aggregation gateway could be available to call services such as Hunch and
eBay, providing mashups of social recommendations to visitors could be easier and more
straightforward.

Solution
Fortunately, we’re not the first to face the challenge of mashing together large sets of
data from multiple services around the Web. In fact, the platform engineers at eBay have
created an open source system called ql.io that can, from a single request, perform calls
to multiple web services with access to large data sets, join the relational data, and return
the result set in various formats. This is an overly simple definition of the power of ql.io,
but it will suffice for our needs. For this example, we will make a single request from
client-side JavaScript to a ql.io URL that will return a list of recommendations from
eBay mashed together based on recommendations from the Hunch services, as seen in
the previous example in this chapter. Using ql.io will make this mashup quite simple,
reducing the amount of data transmitted and the processing required to display the
information.

Discussion
For this mashup, we will allow the viewer to input a friend’s Twitter username into a
form, select a category, and have a set of recommended items from eBay in a specific
category presented. The items presented will contain a picture (if available), a title, and
a link to the item on the eBay site for bidding or purchase. Through the eBay Finding

5.3. Social Recommendations | 177

http://hunch.com/developers/v1/
http://hunch.com/developers/v1/docs/reference/
http://hunch.com/developers/v1/docs/reference/#result-methods
http://hunch.com/developers/v1/resources/console
http://hunch.com/developers/v1/resources/topics/
http://ql.io

API, eBay provides a findItemsByKeywords call that will return a list of items (and their
details) that match a set of search criteria. The search criteria used in the request will
include keywords. To get the keywords to search against with the eBay call, we’ll again
use the Hunch get-recommendations call that we used in the last example (Recipe 5.2,
“Creating a Taste Graph”). This will allow us to retrieve a list of keywords based on a
Twitter username. To merge the results of the two services, multiple calls would normally
need to be made in a specific order, culling the data from one result to be used in the
request of the next call. This is where the power of ql.io shines through.

The ql.io service provides the framework for creating multirelational models from mul‐
tiple APIs. The ql.io architecture reuses key technology concepts, such as SQL and JSON,
to provide the developer with tools to build new models that can be accessed in a single
API request. The new models and requests can be employed on the ql.io system in a
remotely hosted data model, or on your own system.

The ql.io domain servers should only be used for your own development
and testing of calls, as they are not set up to serve as a scalable production
system. By default ql.io servers have timeouts in place to protect the
requests of multiple developers. To create your own ql.io app instance
and service, you will need the Node platform; follow the instructions
for installing a ql.io app.

The ql.io system is an open source project available on GitHub and released under the
Apache License, version 2.0.

The basic concept of ql.io is that you can call an API service and a table of the results
can be created. When you have one or more of these tables, you can write a sub-select
to retrieve mashed-up data in one call. There are two steps to extrapolating and creating
your own ql.io mashup of data:

1. Create the data model tables from the API call results.
2. Write the selects and joins to relate the data together.

An excellent quick-start tutorial that demonstrates these steps is available here. By de‐
fault the ql.io online system includes several predefined tables based on the APIs of
services such as Bing, Bitly, eBay, Google, and Twitter. To see which tables are predefined
in ql.io, run the following query using the show tables command:

http://ql.io/q=s?showtables

Figure 5-11 shows the JSON results block, which includes the table name, about com‐
mand, and info string of each table.

178 | Chapter 5: Consumption and Sharing

http://ql.io/docs/build-an-app
http://ql.io/docs/build-an-app
https://github.com/ql-io/ql.io
http://ql.io/docs/quickstart
http://ql.io/q=s?showtables

Figure 5-11. ql.io show tables result

To view the information on a specific table, use the table ql.io service with the name of
the table. For example, to get the details of the ebay.finditems table, you would use
the following URL:

http://ql.io/table?name=finditems

The resulting page will show how the table is constructed using a URI template and GET
method. ql.io uses the URI template to replace fields in the URIs with dynamic variables
(marked with curly braces).

The ql.io tables and routes can also be found online.

ql.io already has the finditems table for eBay created, so we won’t need to create this
table. The documentation on the finditems table reveals that there are a number of
parameters available, with only one required: keywords. The value of the keywords
parameter will be a list of the titles of the recommendations that are returned from the
get-recommendations call to Hunch. However, there is no Hunch get-

recommendations table by default in ql.io, so we will need to create this table.

To create a table, ql.io uses the SQL create command based on the results of a select
get command. The Hunch table create command for ql.io will be:

create table hunch on select get from "http://api.hunch.com/api/v1/get-
recommendations/?user_id={uid}&topic_id={tid}&limit={limit}" using
defaults limit="10" resultset "recommendations";

5.3. Social Recommendations | 179

http://ql.io/table?name=finditems
http://ql.io/tables
http://ql.io/api

Notice that the create command creates a table from the results of the same call we
used in Recipe 5.2, “Creating a Taste Graph” by calling the get-recommendations API
method with a user ID, a topic ID, and a limit. The resulting table will be titled “hunch,”
and the call will use the default of 10 for the number of recommendations to return (the
limit). The three parameters are passed using a URI template containing variables.

Now that we have a command to create the table for the Hunch recommendations and
a default table definition in ql.io for the eBay finditems table, we can put the two
together with a SQL select statement:

select * from finditems where keywords in (select title from hunch
where uid="tw_chuckhudson" and tid="cat_electronics")

The SQL select is the trigger for making all the calls for filling the tables and creating
a result set of data. Here, the uid and tid, or user ID and topic ID, are being passed into
the Hunch table defined earlier. The results from the table call are then passed into the
eBay finditems keywords parameter. The result is a blend of multiple calls from two
different APIs. In practice, this is a simple example of using ql.io; the number of tables
and selects could grow quite large depending on your specific use case, but hopefully
the methodology for creating a relational data model from large data stores using ql.io
is clear.

To test whether the tables and selects are defined correctly, ql.io provides a convenient
HTTP interface that you can access by opening a browser and pasting in your URL-
encoded script. To do this, use a URL of the form:

http://ql.io/q?s={url-encoded script}

Or, for a JSON-P implementation with a callback method, use:

http://ql.io/q?s={url-encoded script}&callback={func}

So, to test the script for this example with the table creation and select statements, you
can paste the test URL in Example 5-9 into your browser’s address bar (a decoded version
of the script has been included in Example 5-8 for easier reading, but for testing purposes
you’ll need to use the URL-encoded version in Example 5-9).

Example 5-8. ql.io test URL (decoded)
http://ql.io/q?s=create table hunch on select get from "http://api.hunch.com/api/v1/
get-recommendations/?user_id={uid}&topic_id={tid}&limit={limit}" using
defaults limit="10" resultset "recommendations";select * from finditems
where keywords in (select title from hunch where uid="tw_chuckhudson"
and tid="cat_electronics")

180 | Chapter 5: Consumption and Sharing

Example 5-9. ql.io test URL (encoded)
http://ql.io/q?s=create%20table%20hunch%20on%20select%20get%20from%20%
22http%3A%2F%2Fapi.hunch.com%2Fapi%2Fv1%2Fget-recommendations%2F%
3Fuser_id%3D%7Buid%7D%26topic_id%3D%7Btid%7D%26limit%3D%7Blimit%7D%22%
20using%20defaults%20limit%3D%2210%22%20resultset%20%22recommendations%
22%3B%0A%0Aselect%20*%20from%20finditems%20where%20keywords%20in%
20(select%20title%20from%20hunch%20where%20uid%3D%22tw_chuckhudson%22%
20and%20tid%3D%22cat_electronics%22)

The ql.io servers will take the HTTP request, create the Hunch table, perform the sub‐
sequent API requests, mash up the results into a JSON block, and return the block to
the browser, as shown in Figure 5-12.

Figure 5-12. JSON eBay items returned from ql.io

Now that the ql.io call has been defined, the call can be used in either server-side or
client-side programming. In this case the call will be used via client-side scripting with
JQuery, as in Example 5-10, to make the remote call based on the user inputting a Twitter
username and selecting a category (the categories are from the Hunch topic tree, as
discussed in the previous example). You could make the call in PHP, as shown in the
previous example with Hunch, but this shows pushing the overhead to the client browser.
Once the user submits the form, the ql.io request will be dynamically created and made
(using the JQuery getJSON method) to the ql.io endpoint to retrieve the eBay items.

5.3. Social Recommendations | 181

Example 5-10. qlSocialRec.html social recommendations
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>eBay Recommendations</title>
<style>
body {color: #000; font: normal 100%/1.5 tahoma, verdana, sans-serif;}
.itemImage {max-width: 75px; max-height: 75px;}
.itemrow {position: relative; clear: both; width: 500px;
 height: 80px; border: 1px solid #ccc;}
.gallery {position: relative; float: left; width: 80px; height: 80px;
 border: 1px solid #ccc;}
.info {position: relative; float: right; text-overflow: ellipsis;
 overflow: hidden; white-space: nowrap; width: 416px;
 height: 80px; border: 1px solid #ccc;}
legend {font-size: 1.3em; padding-left: 5px; padding-right: 5px;
 position: relative;}
fieldset {border: 1px solid #ccc; border-radius: 5px; float: left;
 paddng: 10px; width: 520px;}
li {clear: both; list-style-type: none; margin: 0 0 10px;}
label, input, select {font-size: 1.0em;}
label {width: 200px}
input {border: 2px solid #ccc; border-radius: 5px;
 padding: 5px 25px 5px 5px; width: 285px;}
</style>
<script src="http://code.jquery.com/jquery-latest.js"></script>
<script>

// Function to initialize any page handlers.
function init() {
 // Set up the button click handler.
 var btnSubmit = document.getElementById('btnSubmit');
 btnSubmit.addEventListener('click',getSocialRecs,false);
}

// Function to get the recommendations from ql.io.
function getSocialRecs() {

 // Clear the current list of eBay items.
 document.getElementById("items").innerHTML = "";

 // Retrieve the form fields.
 var uid = document.getElementById('uid').value;
 var tid = document.getElementById('tid').value;

 // Construct the URL for JSON retrieval from ql.io.
 var jsonUrl = 'http://ql.io/q?s=';
 var qTblCreate = 'create table hunch on select get from
 "http://api.hunch.com/api/v1/get-
 recommendations/?user_id={uid}&topic_id={tid}&limit={limit}"
 using defaults limit="10" resultset "recommendations";';

182 | Chapter 5: Consumption and Sharing

 var qSelect = 'select * from finditems where keywords in (select
 title from hunch where uid="'+uid+'" and tid="'+tid+'")';

 var getUrl = jsonUrl + encodeURIComponent(qTblCreate + qSelect) +
 "&callback=?";

 // Execute the JQuery call to ql.io.
 $.getJSON(getUrl,
 function(data) {
 // Loop through each item returned and display.
 $.each(data, function(i,item){
 displayItem(item);
 });
 });
}

// Display helper to display each eBay item.
function displayItem(item) {
 var outputHTML = "";

 outputHTML += '<div class="itemrow">';
 outputHTML += '<div class="gallery"><img src="'+item.galleryURL+'"
 class="itemImage"/></div>';
 outputHTML += '<div class="info">'+item.title+'</div>';
 outputHTML += '</div>';

 var divItems = document.getElementById("items");
 divItems.innerHTML += outputHTML;
}

// Call the init function on page load.
window.addEventListener('load',init,false);

</script>
</head>
<body>
 <div id="socRecForm">
 <fieldset>
 <legend>Retrieve eBay Recommendations</legend>

 <label for="username">
 Twitter or Facebook Username (tw_ or fb_)
 </label>
 <input type="text" id="uid" value="tw_chuckhudson" />

 <label for="topic">Hunch Category</label>
 <select id="tid">

5.3. Social Recommendations | 183

 <option value="cat_art-design">Art & design</option>
 <option value="cat_electronics">Electronics</option>
 <option value="cat_health">Health</option>
 <option value="cat_home-garden">Home & Garden</option>
 </select>

 <button id="btnSubmit">Submit</button>
 </fieldset>
 </div>
 <div id="items"></div>
</body>
</html>

If you deploy your own ql.io app, you can preload the create table and select state‐
ments so that a call can be aliased to a route using the get method. This will allow you
to then make a call to your own route, which exposes your API. Information on how to
add your own route in the ql.io select can be found in the ql.io “Build an App Local‐
ly” documentation.

The results from running Example 5-10 can be seen in Figure 5-13. Note that the Twitter
or Facebook username will need to be entered, with the initials of the specific service
added to the beginning of the username.

The power of ql.io can be demonstrated by running the example script here in the test
console that ql.io provides. In the console, add your ql.io script and click “run.”

Figure 5-14 shows how just asking for recommendations of eBay items results in 11
separate calls to Hunch and eBay. The Hunch API request returns 10 titles of recom‐
mendations, which are then each sent to eBay in subsequent and separate calls to find
the resulting items. ql.io then merges the results, as shown in Figure 5-15, and returns
the results in JSON.

184 | Chapter 5: Consumption and Sharing

http://ql.io/docs/build-an-app
http://ql.io/docs/build-an-app
http://ql.io/console
http://ql.io/console

Figure 5-13. eBay item results from Hunch mashup

When developing commerce applications, there are times when it is necessary to pro‐
grammatically create mashups of data from your own data and external data stores. In
this example, we have explored how to leverage ql.io’s relational modeling of large data
sets to provide targeted social recommendations. The example here has been relatively
simple, and the ql.io framework can be leveraged to mash up many more large sets of
data, and in different ways. The intent of this example was to show the capability and
means of displaying targeted and succinct social recommendations given user-provided
information. If done well and positioned with customers, this information can cue an‐
other round of the commerce lifecycle.

5.3. Social Recommendations | 185

Figure 5-14. Output from ql.io console

See Also
About ql.io

ql.io Quick Start

ql.io HTTP Interface

Hunch API Reference – get-recommendations

eBay Finding API Call Reference

186 | Chapter 5: Consumption and Sharing

http://ql.io/docs/about
http://ql.io/docs/quickstart
http://ql.io/docs/http
http://hunch.com/developers/v1/docs/reference/#result-methods
http://developer.ebay.com/devzone/finding/callref/finditemsbykeywords.html

Figure 5-15. Call flow for ql.io social recommendations

5.4. Conclusion
In many cases, after the sale and fulfillment stages the commerce lifecycle ends for a
vendor. However, there is an opportunity to feed the lifecycle again, by making targeted
product recommendations, or making it easy for customers to make recommendations
to their social contacts based on their happiness with the products or services that you
sell. As the saying goes, “the best future customer is the customer you have already,” and
the costs of acquiring new customers can be considerable. By incorporating available
APIs, you can not only create long-lasting relationships with your present customers
but also leverage their help to lower customer acquisition costs by spreading the word
about your products and services through their social circles.

5.4. Conclusion | 187

In this chapter we have looked at a few examples, including the use of QR codes with
the RedLaser SDK to streamline the flow for customers to share product information
with people in their social circles. Using this technology, customers can easily and
quickly share products with their online social networks via their smartphones. There
are many other uses for QR codes, but this example shows the benefit of connecting QR
codes with social networking to drive commerce.

The second example in this chapter leveraged the Hunch API to make smart recom‐
mendations based on a person’s online social postings. This can be integrated into your
web or mobile application in multiple ways; for example, providing recommendations
for a present customer or creating a tool for suggesting products for another given per‐
son. Building upon the second example, the last exercise leveraged the ql.io service with
Hunch and eBay to build a mashup of targeted products on eBay for a given Twitter
user. This example showed two key benefits to using ql.io in this manner: mashing up
the results of multiple API calls from across the Web, and creating a set of targeted
recommendations using online social network user information.

Ultimately, incorporating the examples in this chapter along with the APIs discussed to
make sharing of product information easy and social recommendations more targeted
will prime new revolutions of the commerce lifecycle.

188 | Chapter 5: Consumption and Sharing

About the Author
Chuck Hudson has been at the intersection of web business and technology since the
inception of online commerce in the mid 1990s. Having programmed in numerous web
and mobile languages, he combines a passion for the commerce lifecycle and a wealth
of experience to create innovative solutions. He is currently a Director of Application
Development focusing on HTML5, iOS, and Android products. With an MBA focused
on entrepreneurship and managing technologically innovative enterprises, Chuck has
been a successful entrepreneur and consulted with multiple companies on web and
mobile product and service strategies. He shares his knowledge of web and mobile
product execution through business advisory roles and as a visiting faculty member in
the Masters of Internet Technology program at the Terry College of Business, University
of Georgia. Chuck has spoken and led lab sessions on web and mobile best practices at
development conferences nationally and internationally. In 2008, he received the eBay
Star Developer award for the first iOS-based web and native applications for users of
eBay. Chuck is also a certified PayPal developer and certified PHP programmer, and sits
on the PayPal Developers Council.

	Copyright
	Table of Contents
	Preface
	How We Do Commerce
	Creating a Lifecycle
	Audience
	How This Book Is Organized
	Differentiating Your Offering
	Conventions Used in This Book
	This Book’s Example Files
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Product Discovery and Research
	1.1. Tapping Into Product Reviews and Guides
	Opportunity
	Solution
	Discussion
	See Also

	1.2. Mapping Product Availability
	Opportunity
	Solution
	Discussion
	See Also

	1.3. Presenting Products Through eBay
	Opportunity
	Solution
	Discussion
	See Also

	1.4. Conclusion

	Chapter 2. Product Presentation
	2.1. Customizing a Magento Storefront
	Opportunity
	Solution
	Discussion
	See Also

	2.2. Personalizing a Store Experience
	Opportunity
	Solution
	Discussion
	See Also

	2.3. Presenting Similar Items
	Opportunity
	Solution
	Discussion
	See Also

	2.4. Conclusion

	Chapter 3. Enhancing the Payment Experience
	3.1. Autogenerating Coupons with Magento
	Opportunity
	Solution
	Discussion
	See Also

	3.2. Making Payments with Preapprovals
	Opportunity
	Solution
	Discussion
	See Also

	3.3. Giving Back at Checkout
	Opportunity
	Solution
	Discussion
	See Also

	3.4. Conclusion

	Chapter 4. Order Fulfillment
	4.1. Just-in-Time Shipping Forms
	Opportunity
	Solution
	Discussion
	See Also

	4.2. Simple Shipping Extension in Magento
	Opportunity
	Solution
	Discussion
	See Also

	4.3. Multiple Supplier Fulfillment
	Opportunity
	Solution
	Discussion
	See Also

	4.4. Conclusion

	Chapter 5. Consumption and Sharing
	5.1. Sharing with QR Codes
	Opportunity
	Solution
	Discussion
	See Also

	5.2. Creating a Taste Graph
	Opportunity
	Solution
	Discussion
	See Also

	5.3. Social Recommendations
	Opportunity
	Solution
	Discussion
	See Also

	5.4. Conclusion

	About the Author

