
[ 1 ]



iOS Application Development 
with OpenCV 3

Create four mobile apps and explore the world through 
photography and computer vision

Joseph Howse

BIRMINGHAM - MUMBAI



iOS Application Development with OpenCV 3

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1230616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-949-1

www.packtpub.com

www.packtpub.com


Credits

Author
Joseph Howse

Reviewer
Mohit Athwani

Commissioning Editor
Sarah Crofton

Acquisition Editor
Rahul Nair

Content Development Editor
Samantha Gonsalves

Technical Editor
Vivek Arora

Copy Editor
Tasneem Fatehi

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta



About the Author

Joseph Howse lives in Canada. During the cold winters, he grows a beard and his 
four cats grow thick coats of fur. He combs the cats every day. Sometimes the cats 
pull his beard.

Joseph has been writing for Packt Publishing since 2012. His books include  
OpenCV for Secret Agents, OpenCV 3 Blueprints, Android Application Programming  
with OpenCV 3, iOS Application Development with OpenCV 3, Learning OpenCV 3 
Computer Vision with Python, and Python Game Programming by Example.

When he is not writing books or grooming cats, Joseph provides consulting,  
training, and software development services through his company, Nummist  
Media (http://nummist.com/).

http://nummist.com/


Acknowledgments

As always, Mom, Dad, and the cats have provided all kinds of support, including 
assistance with the photography in this book.

I am glad for this chance to recognize the iOS developers who trained me years ago. 
They include Alex Brodsky, Bill Wilson, Jesse Rusak, and Woody Lidstone.

During the writing of this book, I have benefitted from the opportunity to do other 
OpenCV projects with local colleagues such as Jeff Leadbetter, Matt Wright, Jad 
Tawil, and Kevin J. Gallant. I am proud that we are part of a growing computer 
vision community in Atlantic Canada.

Once again, the team at Packt Publishing has supported me with tremendous energy, 
skill, and loyalty. Thank you! Harsha Bharwani persuaded me to write another 
OpenCV book. After all, the set was incomplete without iOS. Samantha Gonsalves 
guided the project to completion, and she never let any complication discourage her 
or me. All the editors and the technical reviewer have added their marks of quality to 
the book, and have helped it speak to its audience. Please meet the technical reviewer 
by reading his biography here.

Finally, I want to thank my readers and the OpenCV community for the great years 
of learning that we have shared, and even greater years ahead!



About the Reviewer

Mohit Athwani is a self-taught iOS developer and has been developing apps since 
the early days of iOS 3. He has worked with several clients all around the world and 
has carried out intense research in the field of facial detection and recognition on iOS. 
His app, iRajanee, became the number one app on the Indian app store and fetched 
him tremendous success.

Mohit started his company, Geeks (http://www.geeksincorporated.net/), with a 
friend in 2010 and has since also involved himself in conducting training sessions on 
iOS for students and corporates alike. His website, http://indianios.guru/, hosts 
a lot of introductory videos and tutorials on developing for iOS with Swift.

I would like to thank my parents for gifting me my first MacBook 
and iPhone that allowed me to become an iOS developer. I would 
like to thank my friends and everybody who has encouraged me to 
come up with new ideas and concepts and I would also like to thank 
Packt Publishing for giving me the opportunity to review this book.

http://www.geeksincorporated.net/
http://indianios.guru/


www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib 




I dedicate my work to Sam, Jan, Bob, Bunny, and the cats,  
who have been my lifelong guides and companions.





[ i ]

Table of Contents
Preface v
Chapter 1: Setting Up Software and Hardware 1

Setting up Apple's developer tools 2
Setting up the OpenCV framework 3

Getting the prebuilt framework with standard modules 3
Building the framework from source with extra modules 4
Making the extra modules optional in our code 6

Developing a minimal application 6
Creating the project 8
Adding files to the project 10
Configuring the project 11
Laying out an interface 17
Writing the code 22
Connecting an interface element to the code 26
Building and running the application 28

Distributing to testers and customers 29
Finding documentation and support 30
Understanding the camera and setting up photographic accessories 30

Lights 36
Tripods and other stabilization 36
Lens attachments 37

Summary 38
Chapter 2: Capturing, Storing, and Sharing Photos 39

Planning a photo sharing application 40
Configuring the project 44

Adding frameworks 44
Specifying the camera requirement 45



Table of Contents

[ ii ]

Defining and laying out the view controller 46
Controlling the camera 50

Subclassing CvVideoCamera 52
Using the CvVideoCamera subclass in the view controller 59

Working with various color formats 64
RGB, BGR, RGBA, and BGRA 64
YUV and grayscale 66

Starting and stopping the busy mode 68
Saving an image to the Photos library 69
Displaying an alert 70
Sharing an image via social media 71
Running the application 73
Summary 73

Chapter 3: Blending Images 75
Thinking about hybrid images 76
Planning the blending controls 81
Expanding the view controller's interface 86
Expanding the view controller's implementation 90
Using the application for practical purposes 97

Seeing changes in a scene 97
Previewing a new object in a scene 98
Previewing a copy of a document or drawing 100

Summary 102
Chapter 4: Detecting and Merging Faces of Mammals 103

Understanding detection with cascade classifiers 104
Haar-like features 105
Local binary pattern features 106

Understanding transformations 107
Planning a face merging application 108
Configuring the project 114
Defining faces and a face detector 115
Defining and laying out the view controllers 119

Capturing and previewing real faces 119
Reviewing, saving, and sharing hybrid faces 126
Seguing between the view controllers 130

Detecting a hierarchy of face elements 132
Aligning and blending face elements 142
Using the application and acting like a cat 146
Learning more about face analysis 147
Summary 148



Table of Contents

[ iii ]

Chapter 5: Classifying Coins and Commodities 149
Understanding blob detection 152

Segmentation 152
Canny edge detection 153
Contour analysis 154

Understanding histogram analysis 155
Understanding keypoint matching 156

SURF and FLANN 157
ORB and brute-force Hamming-distance matching 158

Planning an object classification application 159
Configuring the project 162
Defining blobs and a blob detector 164
Defining blob descriptors and a blob classifier 166
Laying out the splash screen 169
Defining and laying out the view controllers 169

Capturing and previewing blobs 169
Reviewing, saving, and sharing classified blobs 176
Seguing between the view controllers 178

Detecting blobs against a plain background 180
Classifying blobs by color and keypoints 185
Using the application and testing the tough cases 191

An unevenly-lit background 192
Motion blur 194
Out of focus 195
Reflection 197
Overlapping blobs 198

Taking your study of OpenCV to the next level 200
Summary 200

Index 203





[ v ]

Preface
Although iOS started as an operating system for a phone, it now fills a much broader 
role in a world of mobile and connected devices. Among their many functions, 
iOS devices act as smart cameras, offering a programmable imaging chain with a 
good set of features and optimizations in hardware and software. Moreover, iOS 
has great support for C and C++, which are the dominant languages of computer 
vision libraries. This point brings us to OpenCV, a cross-platform, open source, C++ 
library that provides optimized implementations of algorithms for computer vision, 
image processing, and machine learning. OpenCV has good iOS support, including 
functionality to bridge the differences between OpenCV's C++ types and iOS SDK's 
Objective-C types.

I began to work as an iOS and Android developer in 2010 and then as an OpenCV 
developer in 2012. The demand for these technologies has grown tremendously in 
just a few years. Ideas about low-cost smart cameras have captured the imagination 
of inventors and marketers, and OpenCV has proven to be a versatile library 
for rapidly prototyping these ideas. For me, this surge of interest in the field has 
provided opportunities to write technical books, found a business, and come 
in contact with fellow computer vision enthusiasts who live on every inhabited 
continent. People are building careers in computer vision everywhere—not just in 
the San Francisco Bay area but also in San Salvador, Kampala, Tehran, Bremen, and 
my home city of Halifax in Canada, to name just a few of the places where loyal 
readers live.

At the time of writing, this is the only book on OpenCV 3 for iOS, and it is much 
more extensive than any online tutorials on the subject. The book's code is tested 
with OpenCV 3.1, which offers many bug fixes and improvements compared to 
OpenCV 3.0. I hope this collection of sample applications and reference material 
makes the library more accessible to scholars, workers, and creators such as you!



Preface

[ vi ]

What this book covers
Chapter 1, Setting Up Software and Hardware, covers the installation of an iOS 
development environment and OpenCV. To test our setup, we build a minimal 
application, CoolPig, which manipulates colors in a picture of a pig. Finally, we 
consider some photographic techniques and accessories.

Chapter 2, Capturing, Storing, and Sharing Photos, deals with camera control, the 
Photos library, and social networks. We build a photography app, LightWork.

Chapter 3, Blending Images, adds new features to our LightWork app. We use simple 
arithmetic operations as well as more complex filters to blend pairs of images in  
real time.

Chapter 4, Detecting and Merging Faces of Mammals, is about detection, classification, 
and geometric transformation, with an emphasis on faces. We create an application 
called ManyMasks, which can align and blend the faces of humans, cats, and 
possibly other mammals.

Chapter 5, Classifying Coins and Commodities, deals with detection and classification 
but with an emphasis on objects that have distinctive colors or designs. Our final 
application, BeanCounter, can classify coins, beans, and other objects, depending on 
a configuration file and a set of training images.

What you need for this book
You need a computer running Mac OS 10.10 (or a later version) as well as an iPhone, 
iPad, or iPod Touch running iOS 9 (or a later version).

On your computer, you need to install Apple's standard tools for iOS developers. 
These include Xcode, iOS SDK, and the Xcode Command Line Tools. You also need 
to set up OpenCV 3.1 (or a later version). All this software is free, and Chapter 1, 
Setting Up Software and Hardware, provides setup instructions.

Who this book is for
This book is great for developers who are new to iOS, computer vision, or both. 
Previous experience with Objective-C or C++ is recommended.



Preface

[ vii ]

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Next, let's define the instance variables of the ViewController class."

A block of code is set as follows:

- (void)startBusyMode {
  dispatch_async(dispatch_get_main_queue(), ^{
    [self.activityIndicatorView startAnimating];
    for (UIBarItem *item in self.toolbar.items) {
      item.enabled = NO;
    }
  });
}

Any command-line input or output is written as follows:

$ ./<opencv_source_path>/platforms/ios/build_framework.py  
<opencv_contrib_build_path> --contrib <opencv_contrib_source_path>

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Choose 
the Value Changed event, which occurs when the user selects a new option in the 
segmented control."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

[ viii ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
book's webpage at the Packt Publishing website. This page can be accessed by 
entering the book's name in the Search box. Please note that you need to be logged in 
to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support


Preface

[ ix ]

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Updated code for the book is also hosted on GitHub at https://github.com/
PacktPublishing/iOS-Application-Development-with-OpenCV3. We also  
have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Since this book has a GitHub repository, you can also report errata by creating an 
issue at https://github.com/JoeHowse/iOSWithOpenCV/issues.

https://github.com/PacktPublishing/iOS-Application-Development-with-OpenCV3
https://github.com/PacktPublishing/iOS-Application-Development-with-OpenCV3
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://github.com/JoeHowse/iOSWithOpenCV/issues


Preface

[ x ]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

You can also contact the author directly at josephhowse@nummist.com, or check  
his website, http://nummist.com/opencv, for answers to common questions about 
his books.

http://nummist.com/opencv


[ 1 ]

Setting Up Software  
and Hardware

Every year since 2007, the iPhone has spawned a new generation of hardware, 
and eager buyers have queued up outside their local Apple Store to get it. The 
iPhone and iPad have become centerpieces of consumer culture, promising instant 
gratification, timely information, and easy achievements. Apps are designed for 
retirees, working people, job hunters, vacationers, students, gamers, hospital 
patients, babies, and cats. Like a Swiss Army knife, an iPhone is a premium product 
that supposedly prepares the user for all kinds of contingencies. Moreover, the 
iPhone is a fashion item and sometimes inspires idiosyncratic behavior. For example, 
it enables the user to share large numbers of selfies and pictures of lunch.

As software developers and scholars of computer vision, we need to think a  
bit harder about the iPhone, the iPad, and their cameras. We need to make 
preparations before we can properly use these versatile tools in our work. We also 
need to demystify Apple's proprietary systems and appreciate the role of open 
source, cross-platform libraries such as OpenCV. Apple provides a fine mobile 
platform in iOS, but computer vision is not a fundamental part of this platform. 
OpenCV uses this platform efficiently but adds a layer of abstraction, providing 
high-level functionality for computer vision.

This chapter is the primer for the rest of the book. We assume that you already have 
a computer running Mac OS 10.10 (or a later version) as well as an iPhone, iPad, or 
iPod Touch running iOS 9 (or a later version). We will take the following steps to 
prepare a workspace and learn good habits for our future projects:

1. Set up Apple's standard tools for iOS developers, which include Xcode, iOS 
SDK, and Xcode Command Line Tools.



Setting Up Software and Hardware

[ 2 ]

2. Set up OpenCV 3.1 (or a later version) for iOS. We have the option to use a 
standard, prebuilt version or a custom-built version with extra functionality.

3. Develop a minimal application that uses the iOS SDK and OpenCV to 
display an image with a special effect.

4. Join Apple's iOS Developer Program and obtaining permission to distribute 
an application to other users to test.

5. Find documentation and support for the iOS SDK and OpenCV.
6. Learn about the kinds of lights, tripods, and lens attachments that may 

enable us to capture specialized images with an iPhone or iPad.

By the end of this chapter, you will possess the necessary software and skills to 
build a basic OpenCV project for iOS. You will also have a new appreciation of your 
iPhone or iPad's camera as a tool for scientific photography and computer vision.

Setting up Apple's developer tools
The Xcode integrated development environment (IDE) is Apple's core product for 
developers. It includes GUI tools for the design, configuration, development, and 
testing of apps. As an add-on, the Xcode Command Line Tools enable full control 
of Xcode projects from the command prompt in Terminal. For iOS developers, the 
iOS SDK is also essential. It includes all the standard iOS libraries as well as tools for 
simulation and deployment.

Xcode is available for free from the Mac App Store and comes with the current 
version of the iOS SDK. Go to https://itunes.apple.com/us/app/xcode/
id497799835, open Xcode's App Store link, and start the installer. The installer may 
run for an hour or longer, including the time to download Xcode and the iOS SDK. 
Give your agreement to any prompts, including the prompt to reboot.

Once Xcode is installed, open Terminal and run the following command to install the 
Xcode Command Line Tools:

$ xcode-select install

Again, give your agreement to any prompts. Once the Xcode Command Line Tools 
are installed, run the following command to ensure that you have reviewed and 
accepted the required license agreements:

$ sudo xcodebuild -license

https://itunes.apple.com/us/app/xcode/id497799835
https://itunes.apple.com/us/app/xcode/id497799835


Chapter 1

[ 3 ]

The text of the agreements will appear in Terminal. Press spacebar repeatedly until 
you reach the end of the text, then type agree, and press Enter. Now, we have the 
basic tools to develop iOS projects in Xcode and Terminal.

Setting up the OpenCV framework
OpenCV for iOS is distributed as a framework file, which is a bundle containing the 
library's header files as well as binary files for static linkage. The binaries support 
all iOS device architectures (ARMv7, ARMv7s, and ARM64) and all iOS simulator 
architectures (x86 and x64). Thus, we can use the same framework file for all 
configurations of an iOS application project.

OpenCV 3 is designed to be modular. Its build process is highly configurable to 
allow modules to be added, reimplemented, or removed without breaking other 
modules. Each module consists of one public header file along with various private 
header files and implementation files. Some modules are considered standard 
components of an OpenCV build, and these standard modules are maintained and 
tested by the library's core development team. Other modules are considered extras, 
and these extra or "contributed" modules are maintained and tested by third-party 
contributors. Collectively, the extra modules are called opencv_contrib.

If we just want to use the standard modules, we can obtain the official,  
prebuilt distribution of OpenCV for iOS. This prebuilt distribution consists of a 
framework file, opencv2.framework. If we want to use extra modules, we must 
build opencv2.framework for ourselves. Next, let's examine the steps to get or  
build the framework.

For this book's projects, the extra modules are not required 
but they are recommended because we will use them to 
implement some optional features.

Getting the prebuilt framework with standard 
modules
Go to http://opencv.org/downloads.html and click on the download link for 
the latest version of OpenCV for iOS. Specifically, we require OpenCV 3.1 or a later 
version. The download's filename is opencv2.framework.zip. Unzip it to get the 
framework file, opencv2.framework. Later, we will add this framework to our iOS 
application projects; we will import its header files using the following code:

#import <opencv2/core.hpp>

http://opencv.org/downloads.html


Setting Up Software and Hardware

[ 4 ]

This imports the core module's header file from opencv2.framework. The import 
statement will vary according to the module's name.

Building the framework from source with 
extra modules
We will try to get and build all of OpenCV's modules. Broadly, this process will 
consist of the following four steps:

1. Get the source code for OpenCV's standard modules. Store this in any folder, 
which we will refer to as <opencv_source_path>.

2. Get the source code for OpenCV's extra modules. Store this in any folder, 
which we will refer to as <opencv_contrib_source_path>.

3. Try to build all the modules and store the build in any folder, which we will 
refer to as <opencv_contrib_build_path>.

4. If any module fails to build, resolve the issue by either removing the module 
or patching its source code. Then, try to build again.

Now, let's discuss the details as we walk through the steps. To obtain OpenCV's 
latest source code, we can use Git, an open source version control tool. We already 
installed Git as part of the Xcode Command Line Tools. OpenCV's standard and 
extra modules are hosted in two repositories on GitHub, an online repository hosting 
service. To download the standard modules' source code to <opencv_source_path>, 
run the following command:

$ git clone https://github.com/Itseez/opencv.git <opencv_source_path>

Similarly, to download the extra modules' source code to <opencv_contrib_
source_path>, run the following command:

$ git clone https://github.com/Itseez/opencv_contrib.git <opencv_contrib_
source_path>

For an exhaustive guide to Git, see the book Pro Git, 2nd Edition 
(Apress, 2014) by Scott Chacon and Ben Straub. The free eBook 
version is available at https://www.git-scm.com/book.

OpenCV's source code comes with build scripts for various platforms. The iOS build 
script takes two arguments—the build path and the opencv_contrib source path. 
Run the script in the following manner:

$ ./<opencv_source_path>/platforms/ios/build_framework.py  
<opencv_contrib_build_path> --contrib <opencv_contrib_source_path>

https://www.git-scm.com/book


Chapter 1

[ 5 ]

Read the script's output to see whether it failed to build any modules. Remember 
that opencv_contrib contains experimental modules from various authors, and 
some authors might not test their modules for iOS compatibility. For example,  
the following output shows a compilation error in the saliency module  
(modules/saliency):

** BUILD FAILED **

The following build commands failed:

  CompileC /Users/Joe/SDKs/OpenCV/fork_build_ios/build/iPhoneOS-armv7/
modules/saliency/OpenCV.build/Release-iphoneos/opencv_saliency_object.
build/Objects-normal/armv7/FilterTIG.o /Users/Joe/SDKs/OpenCV/fork_
contrib/modules/saliency/src/BING/FilterTIG.cpp normal armv7 c++ com.
apple.compilers.llvm.clang.1_0.compiler

(1 failure)

('Child returned:', 65)

If we do not require the problematic module, we may simply delete its source 
subfolder in <opencv_contrib_source_path>/modules, and then rerun  
build_framework.py. For example, to avoid building the saliency module,  
we may delete <opencv_contrib_source_path>/modules/saliency.

For this book's projects, the following extra modules are useful:
• xfeatures2d: This provides extra algorithms to match images 

based on distinctive details in the images
• xphoto: This provides extra photo processing techniques

On the other hand, if we do require the problematic module, first somebody must 
modify its source code so that it successfully compiles and runs for iOS. Patching 
opencv_contrib is beyond the scope of this book, but if you are skilled in C++ 
programming, I encourage you to try it sometime. Alternatively, you may decide to 
file an issue report at https://github.com/Itseez/opencv_contrib/issues and 
wait for the module's authors to respond.

When build_framework.py works properly, it prints ** INSTALL SUCCEEDED 
**, and creates the framework file at <opencv_contrib_build_path>/opencv2.
framework. Later, we will add this framework to our iOS application projects; we 
will import its header files using the following code:

#import <opencv2/xphoto.hpp>

https://github.com/Itseez/opencv_contrib/issues


Setting Up Software and Hardware

[ 6 ]

This imports the xphoto module's header file from opencv2.framework. The import 
statement will vary according to the module's name.

Making the extra modules optional in our 
code
As the extra modules are less stable than the standard modules, we may want 
to make them optional in our code. By enclosing the optional code inside a 
preprocessor condition, we can easily disable or re-enable it in order to test  
the effect. Consider the following example:

#ifdef WITH_OPENCV_CONTRIB
#import <opencv2/xphoto.hpp>
#endif

If we want to use opencv2_contrib, we will edit the Xcode project settings to add 
WITH_OPENCV_CONTRIB as a preprocessor definition. Then, in the preceding example, 
the xphoto.hpp headers will be imported in our code. Detailed steps to create a 
preprocessor definition are provided later in this chapter, in the Configuring the 
project section.

Developing a minimal application
So far, we have set up a development environment including Xcode, the iOS SDK, 
and OpenCV. Now, let's use these tools and libraries to develop our first iOS 
application. The app will have the following flow of execution:

1. When the application starts:
1. Load an image from a file that is bundled with the app.
2. If the image is in color (not grayscale), automatically adjust its white 

balance.
3. Display the image in fullscreen mode.

2. Every two seconds:
1. Create an updated image by applying a random tint to the original 

image.
2. Display the updated image.



Chapter 1

[ 7 ]

Note that the application will not use a camera or any user input at all. However, the 
user will see an image that appears to be backlit with a colorful, changing light. This 
is not really a demo of computer vision, but it is a demo of image processing and 
integration between the iOS SDK and OpenCV. Moreover, it is decorative, festive, 
and best of all it has a theme—cool pigs. Our app's name will be CoolPig and it will 
display a cool picture of a pig. Consider the following example of a black-and-white 
photo of a piglet (left), along with three tinted variants:

In this book's print version, all images appear in grayscale. To see 
them in color, download them from Packt Publishing's website 
at https://www.packtpub.com/sites/default/files/
downloads/iOSApplicationDevelopmentwithOpenCV3_
ColorImages.pdf, or read the eBook.

The original image is the work of Gustav Heurlin (1862-1939), a Swedish 
photographer who documented rural life in the early 20th century. He was an early 
adopter of the autochrome color photography process, and National Geographic 
published many of his photographs during 1919-1931.

When our users see a pig in a beautiful series of pop-art colors, they will question 
their preconceptions and realize it is a really cool animal.

To obtain the completed projects for this book, go to the author's 
GitHub repository at https://github.com/JoeHowse/
iOSWithOpenCV, or log in to your account on Packt Publishing's 
site at https://www.packtpub.com/.

https://www.packtpub.com/sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_ColorImages.pdf
https://github.com/JoeHowse/iOSWithOpenCV
https://github.com/JoeHowse/iOSWithOpenCV
https://www.packtpub.com/


Setting Up Software and Hardware

[ 8 ]

Creating the project
Open Xcode. Click on the Create new Xcode project button or select the File | 
New | Project… menu item. Now, a dialog asks you to choose a project template. 
Select iOS | Application | Single View Application, as shown in the following 
screenshot:

Single View Application is the simplest template as it just creates an empty GUI 
with no special navigational structure. Click on the Next button to confirm the 
selection. Now, a dialog asks you to pick a few project settings. Fill out the form as 
shown in the following screenshot:



Chapter 1

[ 9 ]

Let's review the items in the form:

• Product Name: This is the application's name, such as CoolPig.
• Organization Name: This is the name of the application's vendor, such as 

Nummist Media Corporation Limited.
• Organization Identifier: This is the vendor's unique identifier. The identifier 

should use reverse domain name notation, such as com.nummist.
• Bundle Identifier: This is the application's unique identifier, which is 

generated based on the Product Name and Organization Identifier. This field 
is non-editable.

• Language: This is the project's high-level programming language, either 
Objective-C or Swift. This book uses Objective-C, which is a pure superset 
of C and interoperable with C++ to a great extent. Swift is not interoperable 
with C++. OpenCV's core language is C++, so Objective-C's interoperability 
makes it an obvious choice.

• Devices: This is the supported hardware, which may be Universal (all iOS 
devices), iPhone (including iPod Touch), or iPad. This book's projects are 
Universal.



Setting Up Software and Hardware

[ 10 ]

• Use Core Data: If this is enabled, the project will contain a database using 
Apple's Core Data framework. For this book's projects, disable it.

• Include Unit Tests: If this is enabled, the project will contain a set of tests 
using the OCUnit framework. For this book's projects, disable it.

• Include UI Tests: If this is enabled, the project will contain a set of tests using 
Apple's UI automation framework for iOS. Disable it for this book's projects.

Click on the Next button to confirm the project options. Now, a file chooser dialog 
asks you to pick a folder for the project. Pick any location, which we will refer to as 
<app_project_path>.

Optionally, you may enable the Create Git repository checkbox if you want to put 
the project under version control using Git. Click on the Create button. Now, Xcode 
creates and opens the project.

Adding files to the project
Use Finder or Terminal to copy files to the following locations:

• <app_project_path>/opencv2.framework: This framework contains 
the standard OpenCV modules. We downloaded or built it previously, as 
described in the Getting the prebuilt framework with standard modules or Building 
the framework from source with extra modules section.

• <app_project_path>/CoolPig/Piggy.png: This may be any cool picture 
of a pig in grayscale or color. Any species of pig is acceptable, be it a swine, 
boar, Muppet, or other variety.

Go back to Xcode to view the project. Navigate to the File | Add Files to 
"CoolPig"… menu item. Now, Xcode opens a file chooser dialog. Select  
opencv2.framework and click on the Add button. Repeat the same steps for 
CoolPig/Piggy.png. Note that these files appear in the project navigator pane, 
which is the leftmost section of the Xcode window. In this pane, drag Piggy.png to 
the CoolPig | Supporting Files group. When you are finished, the navigator pane 
should look similar to the following screenshot:



Chapter 1

[ 11 ]

Configuring the project
First, let's configure our app to run in fullscreen mode with no status bar. Select the 
CoolPig project file at the top of the navigator pane. Now, select the General tab in 
the editor area, which is the central part of the Xcode window. Find the Deployment 
Info group, and enable the Hide status bar and Requires full screen checkboxes, as 
shown in the following screenshot:



Setting Up Software and Hardware

[ 12 ]

The status bar and fullscreen settings are stored in the app's Info.plist file. Select 
CoolPig | CoolPig | Info.plist in the navigator pane. Now, in the editor area, note 
that the UIRequiresFullscreen and Status bar is initially hidden properties both 
have the YES value. However, we still need to add another property to ensure that 
the status bar will not appear. Hover over the last item in the list, and click on the + 
button to insert a new property. Enter View controller-based status bar appearance 
as the property's key and set its value to NO, as shown in the following screenshot:

Next, let's link the project with additional frameworks. OpenCV depends on two 
of Apple's frameworks called CoreGraphics.framework and UIKit.framework. 
Optionally, for optimizations, OpenCV can also use a third Apple framework called 
Accelerate.framework.

The Accelerate framework contains Apple's hardware-accelerated 
implementation of industry-standard APIs for vector mathematics. 
Notably, it implements standards called Basic Linear Algebra 
Subprograms (BLAS) and Linear Algebra Package (LAPACK). 
OpenCV is designed to leverage these standards on various 
platforms including iOS.



Chapter 1

[ 13 ]

Select the CoolPig project file in the navigator pane and then select the Build Phases 
tab in the editor area. Find the Link Binary With Libraries group. Click on the + 
button, select Accelerate.framework from the dialog, and click on the Add button. 
Repeat these steps for CoreGraphics.framework and UIKit.framework. Now, the 
editor area should look similar to the following screenshot:



Setting Up Software and Hardware

[ 14 ]

Now, the linker will be able to find OpenCV's dependencies. However, we need to 
change another setting to ensure that the compiler will understand the C++ code in 
OpenCV's header files. Open the Build Settings tab in the editor area and find the 
Apple LLVM 7.0 - Language group. Set the value of the Compile Sources As item to 
Objective-C++, as seen in the following screenshot:

Alternatively, we could leave the Compile Sources As item at its 
default value, which is According to File Type. Then, we would 
need to rename our source files to give them the extension .mm, 
which Xcode associates with Objective-C++.



Chapter 1

[ 15 ]

We have just one more thing to configure in the Build Settings tab. Remember 
that we consider the opencv2_contrib modules to be an optional dependency 
of our projects, as described earlier in the Making the extra modules optional in our 
code section. If we did build opencv2.framework with these modules and if we do 
want to use their functionality, let's create a preprocessor definition, WITH_OPENCV_
CONTRIB. Find the Apple LLVM 7.0 - Preprocessing group. Edit Preprocessor 
Macros | Debug and Preprocessor Macros | Release to add the WITH_OPENCV_
CONTRIB text. Now, the settings should look like the following screenshot:

As a final, optional step in the configuration, you may want to set the app's icon. Select 
CoolPig | CoolPig | Assets.xcassets in the project navigator pane. Assets.xcassets 
is a bundle, which may contain several variants of the icon for different devices and 
different contexts (the Home screen, Spotlight searches, and the Settings menu).



Setting Up Software and Hardware

[ 16 ]

Click on the AppIcon list item in the editor area and then drag and drop an image 
file into each square of the AppIcon grid. If the image's size is incorrect, Xcode will 
notify you so that you may resize the image and try again. Once you have added your 
images, the editor area might look similar to the following screenshot:



Chapter 1

[ 17 ]

Laying out an interface
Now, our project is fully configured and we are ready to design its graphical user 
interface (GUI). Xcode comes with a built-in tool called Interface Builder, which 
enables us to arrange GUI elements, connect them to variables and events in our 
code, and even define the transitions between scenes (or informally, screens). 
Remember that CoolPig's GUI is just a fullscreen image. However, even our simple 
GUI has a transition between a static loading screen (where the image does not 
change color) and dynamic main screen (where the image changes color every two 
seconds). Let's first configure the loading screen and then the main screen.

Select CoolPig | CoolPig | LaunchScreen.storyboard in the navigator pane. This file 
is a storyboard, which stores the configuration of a set of scenes (or a single scene in 
this case). A scene hierarchy appears in the editor area. Navigate to View Controller 
Scene | View Controller | View. A blank view appears on the right-hand side of 
the editor area, as seen in the following screenshot:



Setting Up Software and Hardware

[ 18 ]

Let's add an image view inside the empty view. Notice the list of available GUI 
widgets in the lower-right corner of the Xcode window. This area is called the library 
pane. Scroll through the library pane's contents. Find the Image View item and drag 
it to the empty view. Now, the editor area should look like this:



Chapter 1

[ 19 ]

Drag the corners of the highlighted rectangle to make the image view fill its parent 
view. The result should look like this:

We still need to take a further step to ensure that the image view scales up or down 
to match the screen size on all devices. Click on the Pin button in the toolbar at the 
bottom of the editor area. The button's icon looks like a rectangle pinned between 
two lines. Now, a pop-up menu appears with the title Add New Constraints. 
Constraints define a widget's position and size relative to other widgets.



Setting Up Software and Hardware

[ 20 ]

Specifically, we want to define the image view's margins relative to its parent view. 
To define a margin on every side, click on the four I-shaped lines that surround the 
square. They turn red. Now, enter 0 for the top and bottom values and -20 for the 
left and right values. Some iOS devices have built-in horizontal margins, and our 
negative values ensure that the image extends to the screen's edge even on these 
devices. The following screenshot shows the settings:

Click on the Add 4 Constraints button to confirm these parameters.



Chapter 1

[ 21 ]

Finally, we want to show an image! Look at the inspector pane, which is in the 
top-right area of the Xcode window. Here, we can configure the currently selected 
widget. Select the Attributes tab. Its icon looks like a slider. From the Image drop-
down list, select Piggy.png. From the Mode drop-down list, select Aspect Fill. This 
mode ensures that the image will fill the image view in both dimensions, without 
appearing stretched. The image may appear cropped in one dimension. Now, the 
editor area and inspector pane should look similar to the following screenshot:

So far, we have completed the loading screen's layout. Now, let's turn our attention 
to the main screen. Select CoolPig | CoolPig | Main.storyboard in the project 
navigator. This storyboard, too, has a single scene. Select its view. Add an image 
view and configure it in exactly the same way as the loading screen's image view. 
Later, in the Connecting an interface element to the code section, we will connect this 
new image view to a variable in our code.



Setting Up Software and Hardware

[ 22 ]

Writing the code
As part of the Single View Application project template, Xcode has already created 
the following code files for us:

• AppDelegate.h: This defines the public interface of an AppDelegate class. This 
class is responsible for managing the application's life cycle.

• AppDelegate.m: This contains the private interface and implementation of the 
AppDelegate class.

• ViewController.h: This defines the public interface of a ViewController 
class. This class is responsible for managing the application's main scene, 
which we saw in Main.Storyboard.

• ViewController.m: This contains the private interface and implementation 
of the ViewController class.

For CoolPig, we simply need to modify ViewController.m. Select CoolPig | 
CoolPig | ViewController.m in the project navigator. The code appears in the editor 
area. At the beginning of the code, let's add more #import statements to include the 
header files for several OpenCV modules, as seen in the following code:

#import <opencv2/core.hpp>
#import <opencv2/imgcodecs/ios.h>
#import <opencv2/imgproc.hpp>

#ifdef WITH_OPENCV_CONTRIB
#import <opencv2/xphoto.hpp>
#endif

#import "ViewController.h"

We will need to generate random numbers to create the image's random tint. For 
convenience, let's define the following macro, which generates a 64-bit floating-point 
number in the range of 0 to 1:

#define RAND_0_1() ((double)arc4random() / 0x100000000)

The arc4random() function returns a random 32-bit integer in the range 
of 0 to 2^32-1 (or 0x100000000). The first time it is called, the function 
automatically seeds the random number generator.



Chapter 1

[ 23 ]

The remainder of ViewController.m deals with the private interface and 
implementation of the ViewController class. Elsewhere, in ViewController.h, the 
class is declared as follows:

@interface ViewController : UIViewController
@end

Note that ViewController is a subclass of UIViewController, which is an important 
class in the iOS SDK. UIViewController manages the life cycle of a set of views and 
provides reasonable default behaviors as well as many methods that may override 
these defaults. If we develop applications according to the model-view-controller 
(MVC) pattern, then UIViewController is the controller or coordinator, which 
enforces good separation between the platform-specific view or GUI and  
platform-independent model or "business logic".

Let's turn our attention back to the private interface of ViewController in 
ViewController.m. The class keeps the original image and updated image as 
member variables. They are instances of OpenCV's cv::Mat class, which can 
represent any kind of image or other multidimensional data. ViewController 
also has a reference to the image view where we will display the image. Another 
of the class's properties is an NSTimer object, which will fire a callback every two 
seconds. Finally, the class has a method, updateImage, which will be responsible 
for displaying a new random variation of the image. Here is the code for 
ViewController's private interface:

@interface ViewController () {
  cv::Mat originalMat;
  cv::Mat updatedMat;
}

@property IBOutlet UIImageView *imageView;
@property NSTimer *timer;

- (void)updateImage;

@end



Setting Up Software and Hardware

[ 24 ]

Now, let's implement the methods of the ViewController class. It inherits many 
methods from its parent class, UIViewController, and we could override any of 
these. First, we want to override the viewDidLoad method, which runs when the 
scene is loaded from its storyboard. Typically, this is an appropriate time to initialize 
the view controller's member variables. Our implementation of viewDidLoad will 
begin by loading Piggy.png from file and converting it to OpenCV's RGB format. 
If the image was not originally grayscale and OpenCV's extra photo module is 
available, we will use a function from this module to adjust the white balance. 
Finally, we will start a timer to invoke our updateImage method every two seconds. 
Here is our code for viewDidLoad:

@implementation ViewController

- (void)viewDidLoad {
  [super viewDidLoad];
  
  // Load a UIImage from a resource file.
  UIImage *originalImage =
      [UIImage imageNamed:@"Piggy.png"];
  
  // Convert the UIImage to a cv::Mat.
  UIImageToMat(originalImage, originalMat);
  
  switch (originalMat.type()) {
    case CV_8UC1:
      // The cv::Mat is in grayscale format.
      // Convert it to RGB format.
      cv::cvtColor(originalMat, originalMat,
          cv::COLOR_GRAY2RGB);
      break;
    case CV_8UC4:
      // The cv::Mat is in RGBA format.
      // Convert it to RGB format.
      cv::cvtColor(originalMat, originalMat,
          cv::COLOR_RGBA2RGB);
#ifdef WITH_OPENCV_CONTRIB
      // Adjust the white balance.
      cv::xphoto::autowbGrayworld(originalMat,
          originalMat);
#endif
      break;
    case CV_8UC3:



Chapter 1

[ 25 ]

      // The cv::Mat is in RGB format.
#ifdef WITH_OPENCV_CONTRIB
      // Adjust the white balance.
      cv::xphoto::autowbGrayworld(originalMat, originalMat);
#endif
      break;
    default:
      break;
  }
  
  // Call an update method every 2 seconds.
  self.timer = [NSTimer scheduledTimerWithTimeInterval:2.0
      target:self selector:@selector(updateImage)
      userInfo:nil repeats:YES];
}

NSTimer only fires callbacks when the app is in the foreground. 
This behavior is convenient for our purposes because we only 
want to update the image when it is visible.

Now, let's implement the updateImage helper method. It will multiply each color 
channel by a random floating-point number. The following table describes the effects 
of multiplying various channels by a coefficient, k:

Value of k Effect of multiplying 
red channel by k

Effect of multiplying 
green channel by k

Effect of multiplying 
blue channel by k

0 <= k < 1 Image becomes darker, 
with a cyan tint

Image becomes darker, 
with a magenta tint

Image becomes 
darker, with a yellow 
tint

k == 1 No change No change No change
k > 1 Image becomes brighter, 

with a red tint
Image becomes brighter, 
with a green tint

Image becomes 
brighter, with a blue 
tint



Setting Up Software and Hardware

[ 26 ]

The following code generates the random color, multiplies it together with the 
original image, and displays the result in the image view:

- (void)updateImage {
  // Generate a random color.
  double r = 0.5 + RAND_0_1() * 1.0;
  double g = 0.6 + RAND_0_1() * 0.8;
  double b = 0.4 + RAND_0_1() * 1.2;
  cv::Scalar randomColor(r, g, b);
  
  // Create an updated, tinted cv::Mat by multiplying the
  // original cv::Mat and the random color.
  cv::multiply(originalMat, randomColor, updatedMat);
  
  // Convert the updated cv::Mat to a UIImage and display
  // it in the UIImageView.
  self.imageView.image = MatToUIImage(updatedMat);
}

@end

Feel free to adjust the range of each random color coefficient to your taste. 
OpenCV clamps the result of the multiplication so that a color channel's 
value cannot overflow the 8-bit range of 0 to 255.

We have implemented all the custom logic of CoolPig in just 50 lines of code! 
The project template, storyboard, iOS SDK, and OpenCV provide many useful 
abstractions and thus enable us to focus on writing concise, application-specific code.

Connecting an interface element to the code
Let's connect the image view in Main.Storyboard to the imageView property 
in ViewController.m. Open Main.Storyboard in the project navigator, hold 
command and click on View Controller in the scene hierarchy. A dialog with a 
dark background appears. Right-click on the Piggy.png image view in the scene 
hierarchy and drag it to the circle beside Outlets | imageView in the dark dialog 
box, as shown in the following screenshot:



Chapter 1

[ 27 ]

Release the mouse button to complete the connection. Close the dark dialog box.



Setting Up Software and Hardware

[ 28 ]

Building and running the application
We are ready to build the app and run it in an iOS simulator or on an iOS device. 
First, if you want to use an iOS device, connect it to the Mac via a USB cable. The 
first time you connect a device, Xcode's top toolbar might show a progress bar and 
message, Processing symbol files. Wait for the message to disappear. Now, click 
on the CoolPig drop-down menu in Xcode's top toolbar and select the device or 
simulator that you want to use, such as Devices | Joseph's iPad or iOS Simulators 
| iPad Pro. Click on the Run button. Its icon is the standard triangular play symbol. 
Xcode builds the app, copies it to the device or simulator, and then launches it. 
Watch the pig change colors! For example, the app might look like this on an iPad 
Mini device:

If you are using a simulator, you might find that its screen is too 
large to fit on your Mac's screen. To scale down the simulator's 
screen, go to the simulator's menu and select Window | Scale | 
50% or another value.

Congratulations! We have built and run our first iOS application, including OpenCV 
for image processing and a pig for artistic reasons.



Chapter 1

[ 29 ]

Distributing to testers and customers
Using the techniques we have learned thus far, we can build an app for iOS 
simulators and local iOS devices. For this, we do not require permission from 
Apple, and we do not need to purchase anything except a Mac for our development 
environment and any iOS devices for our testing.

On the other hand, if we want to distribute an app to other testers or publish it 
on the App Store, we must take a few more steps, spend a bit more money, and 
obtain permission from Apple. For details, see Apple's official App Distribution 
Guide at https://developer.apple.com/library/ios/documentation/IDEs/
Conceptual/AppDistributionGuide. Briefly, a typical distribution process involves 
the following steps:

1. Enroll in the iOS Developer Program at https://developer.apple.com/
programs/enroll. The cost of membership varies depending on where you 
live. It is $99 per year in the United States.

2. Optionally, use the iOS Provisioning Portal at https://developer.
apple.com/account to create the credentials in order to distribute the app. 
Configure the Xcode project to use the credentials. Alternatively, Xcode may 
be able to create the credentials automatically even if you do not use the iOS 
Provisioning Portal.

3. Distribute your app to beta testers via Apple's TestFlight tools, which are 
part of the iTunes Connect tools at https://itunesconnect.apple.com.

4. If necessary, revise the app based on beta testers' feedback and retest.
5. Submit your app for publication via the iTunes Connect tools.
6. If necessary, revise the app based on Apple's feedback and resubmit.
7. Receive Apple's blessing and confirm that you are ready to release your app 

to the App Store. Reap the rewards of app publication!

Publishing an app (or a book!) is a significant undertaking and can be invigorating 
and humbling at the same time. Publication entails an ongoing responsibility to 
validate, fix, and promote your work and support your customers. This book's role 
is to impart valuable technical skills so that you can develop your own publishable 
projects in the field of computer vision!

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide
https://developer.apple.com/programs/enroll
https://developer.apple.com/programs/enroll
https://developer.apple.com/account
https://developer.apple.com/account
https://itunesconnect.apple.com


Setting Up Software and Hardware

[ 30 ]

Finding documentation and support
Outside this book, there is not much documentation or support on how to integrate 
OpenCV 3 into iOS projects. However, if you seek answers about OpenCV 3 
in general or iOS in general, you will find a bigger community and a wealth of 
documentation. Consult the following sites:

• The official OpenCV documentation is available at http://docs.opencv.
org. This includes tutorials as well as API docs.

• OpenCV Answers, the official Q&A site, is available at http://www.
answers.opencv.org.

• Go to OpenCV's GitHub page at https://github.com/Itseez/opencv to 
find the latest source code, report issues, or contribute your own revisions. 
Similarly, see the extra modules' GitHub page at https://github.com/
Itseez/opencv_contrib.

• The iOS Developer Library, including official documentation on Xcode and 
all the frameworks in the iOS SDK, is available at https://developer.
apple.com/library/ios.

• The official iOS Developer Forum is located at https://devforums.apple.
com/community/ios.

• StackOverflow (https://stackoverflow.com) is a Q&A community that 
includes many iOS developers and a few OpenCV developers.

• My website, http://nummist.com/opencv, is a good place to check for 
FAQ, errata, and updates pertaining to my books. Also check my GitHub 
repository for this book at https://github.com/JoeHowse/iOSWithOpenCV. 
Finally, feel free to e-mail me at josephhowse@nummist.com.

Understanding the camera and setting up 
photographic accessories
You have probably taken photos with an iOS device before. Perhaps you are even 
familiar with a variety of apps for image capture and image processing. Photography 
with an iPhone is certainly a popular pass time, and some people even define it as a 
distinct photographic movement called iPhoneography.

If you are entirely new to iPhone photography, take some time now 
to try Apple's Camera and Photo apps, as well as some third-party 
photography apps.

http://docs.opencv.org
http://docs.opencv.org
http://www.answers.opencv.org
http://www.answers.opencv.org
https://github.com/Itseez/opencv
https://github.com/Itseez/opencv_contrib
https://github.com/Itseez/opencv_contrib
https://developer.apple.com/library/ios
https://developer.apple.com/library/ios
https://devforums.apple.com/community/ios
https://devforums.apple.com/community/ios
https://stackoverflow.com
http://nummist.com/opencv
https://github.com/JoeHowse/iOSWithOpenCV


Chapter 1

[ 31 ]

iPhone users are not alone in espousing a brand-centric view of photography. For 
example, another movement called Lomography derives its inspiration from a film 
camera called the LOMO LC-A, released by the Leningrad Optical Mechanical 
Associtaion (LOMO) in 1984. LOMO makes precise optical instruments including 
microscopes, telescopes, night-vision devices, and medical imaging systems, but 
ironically the company entered the consumer market with a cheap and quirky 
camera. By conventional standards, the LC-A and its successors suffer from major 
optical and mechanical flaws, which result in blurry images with uneven brightness 
and coloration. Lomographers like the unconventional appearance of these images.

Likewise, iPhoneographers are not necessarily concerned with the predictability and 
fidelity (true-to-life quality) of the camera's images. Considering that a new iPhone 
costs between $450 and $750, many photographers would find its image quality 
disappointing and its controls very limited. It bears no resemblance to conventional 
cameras in the same price range. On the other hand, iPhoneographers may assign 
greater value to the iPhone's ability to capture photos discretely and edit and share 
them immediately.

Some users may crave the best of both worlds—the brains of an iPhone in the body 
of a slightly more conventional camera. There are many third-party photo accessories 
for iOS devices and these accessories mimic some of the components of a modular, 
professional photo system. Particularly, we will discuss three kinds of accessories: 
lighting, tripods, and lens attachments. To help us appreciate the purpose of these 
accessories, let's establish a baseline of comparison. The following table shows the 
specifications of the built-in lenses and image sensors in iOS devices' rear cameras:

Device Resolution 
(pixels)

Sensor 
diagonal 
(mm)

Focal 
length 
(mm)

Diagonal 
FOV 
(degrees)

Maximum 
aperture

iPhone 4 2592x1936 5.68 3.85 72.8 f/2.8
iPhone 4S 3264x2448 5.68 4.28 67.1 f/2.4
iPhone 5, 5C 3264x2448 5.68 4.10 69.4 f/2.4
iPhone 5S 3264x2448 6.11 4.12 73.1 f/2.2
iPhone 6, 6 Plus 3264x2448 6.11 4.15 72.7 f/2.2
iPhone 6S, 6S Plus 4032x3024 6.11 4.15 72.7 f/2.2
iPad 3, 4 2592x1936 5.68 4.3 66.9 f/2.4
iPad Air 1
iPad Mini 1, 2, 3
iPod Touch 5

2592x1936 4.33 3.3 66.5 f/2.4

iPad Air 2
iPad Mini 4

3264x2448 4.61 3.3 69.9 f/2.4



Setting Up Software and Hardware

[ 32 ]

The field of view (FOV) is the angle formed by the lens's focal point and two points 
at diagonally opposite edges of the visible space. Some authors may specify horizontal 
or vertical FOV instead of diagonal FOV. By convention, FOV implies diagonal FOV 
if not otherwise specified. The focal length is the distance between the image sensor 
and the lens's optical center when the lens is focused on an infinitely distant subject. 
See the following diagram:

The diagonal FOV, the sensor's diagonal size, and the focal length are geometrically 
related according to the following formula:

diagonalFOVDegrees =  
2 * atan(0.5 * sensorDiagonal / focalLength) * 180/pi



Chapter 1

[ 33 ]

Depending on the model of the iOS device, the diagonal FOV ranges from 73.1 to 
66.5 degrees. These values are equivalent to the FOV of a 29 mm to 33 mm lens in 
a traditional 35 mm camera system. Most photographers would characterize this 
FOV as moderately wide. Is moderately wide a good compromise? It depends on the 
use case. A wider angle helps to ensure that the subject literally has nowhere to 
hide. For example, this can be important in security applications. A narrower angle 
helps to ensure that details are captured even at a distance. For example, this can be 
important in product inspection applications, if the constraints of the workspace do 
not allow the camera to be placed close to the subject. If we want to choose the FOV, 
we must modify or accessorize the iOS device's optical system!

All the iOS cameras have small sensors. Their diagonal size ranges from 4.33 mm 
to 6.11 mm. For comparison, the diagonal size of the film or digital sensor in a 35 
mm camera system is 43.3 mm. A smaller sensor has less capacity to gather light. To 
compensate, camera systems with small sensors tend to amplify the sensor's signal 
(the measurement of the light), but at the same time they amplify the random noise. 
Furthermore, to compensate for the noise, the system may blur the image. Thus, if 
we compare two images of the same scene at the same resolution, the image from the 
smaller sensor will tend to be noisier or blurrier. This difference becomes especially 
obvious when the light is dim. To summarize, we must expect that an iOS camera 
will take poor pictures in poor light. Thus, we must find or create good light!

Engineers may refer to the amplification of the sensor's signal 
as gain and photographers may refer to it as ISO speed. The 
latter metric is formally defined by the International Standards 
Organization (ISO).

The ability to gather light is also directly related to the area of the lens's aperture. 
Typically, the aperture is expressed as an f-number or f-stop, which is defined as 
the ratio of the focal length to the aperture's diameter. Typically, an aperture is 
approximately circular and thus its area is proportional to the square of its radius. 
It follows that the intensity of the light passing through the aperture is inversely 
proportional to the square of the f-number. For example, an f/2 lens admits twice 
as much light as an f/2.8 lens. The iOS lenses have maximum apertures of f/2.2 to 
f/2.8, depending on the model. Values in this range are quite typical of wide-angle 
lenses in general, so the iOS lenses have neither an advantage nor disadvantage in  
this respect.



Setting Up Software and Hardware

[ 34 ]

Finally, let's consider an issue of ergonomics. All iOS devices are lightweight and 
smooth and most of them are too small to hold in both hands. Thus, the user's grip 
is not firm. When a typical user holds out an iPhone to take a photo, the user's arm 
is like a long branch and the little iPhone shakes like a leaf. A high proportion of 
the pictures may suffer from motion blur. Comparatively, the design of a more 
traditional camera and lens may permit the user to brace the equipment's weight 
against his or her body in several places. Consider the following photograph:

The man in the background is Bob. Bob is left-handed. He is holding an iPhone in his 
left hand as he taps its camera button with his right hand. The man in the foreground 
is Joe. Joe is right-handed. He is equipped with a photo-sniper kit, which is a long 
lens mounted on two handles and a shoulder stock. The equipment's weight is 
braced against Joe's right knee and right shoulder. For additional stability, Joe's legs 
are folded and he is leaning leftward against a steel post and concrete slab. From 
another angle, the same pose looks like this:



Chapter 1

[ 35 ]

This type of human stabilization can work well for some equipment. However, 
a more reliable approach is to use rigid support such as a tripod and we should 
definitely consider this when we tackle computer vision problems with a smartphone 
or tablet.

Now, let's take stock of the types of accessories that can change the lighting, 
stabilization, and perspective.



Setting Up Software and Hardware

[ 36 ]

Lights
Many iOS devices have a built-in flash, which consists of a white LED light on 
the back of the device. Camera apps may activate the flash during photo capture, 
especially if the scene is dimly lit. Other apps may activate the flash for a long 
duration so that it acts as a flashlight or torch to help the user see. With only a  
single LED, the built-in flash may provide insufficient or uneven illumination in 
some circumstances.

If you need stronger or more evenly distributed illumination, or if your iOS device 
lacks a built-in flash altogether, you may want to purchase an external flash. 
Depending on the design, the external flash may mount as part of a case or may plug 
into the iOS device's audio jack. Typically, the external flash will have multiple white 
LEDs arranged in a line, grid, or ring. The latter design is called a ring flash.

Alternatively, in a controlled environment, you may set up any kind of lighting 
anywhere you please and you do not need to rely on the iOS device as a power 
source. Even a pair of well-placed desk lamps can greatly enhance the clarity 
and beauty of a scene. Normally, it is best to illuminate the subject from multiple 
angles to prevent shadows. Do not shine a light directly into the camera and do 
not illuminate the background more brightly than the subject, as these types of 
lighting tend to give the subject a very murky appearance with low contrast in the 
foreground. Sometimes, murky light can be artistically interesting, but it is not good 
for computer vision.

Tripods and other stabilization
A conventional photo camera has a threaded mount where the user may screw in 
the head of a tripod. Of course, an iOS device has no threaded mount. If we want to 
use a tripod with a standard screw, we may purchase an adapter that consists of a 
threaded mount and clip to hold the iOS device. Alternatively, we may purchase a 
tripod that has a built-in clip instead of a standard screw. Regardless of the type of 
mount, we also need to consider the following characteristics of the tripod:

• Height: How tall is the tripod? Most tripods have extensible legs so that 
their height can vary. To help you decide what tripod height you require 
for a given application, consider how a person would normally look at the 
subject. If the subject is a small object such as a coin, a person might inspect it 
up close and similarly a short tripod might be appropriate. If the subject is a 
large object such as a lineup of cars on a highway, a person might watch it at 
eye level or might even look down on it from higher ground and similarly a 
tall tripod might be appropriate.



Chapter 1

[ 37 ]

• Weight: A heavy tripod is cumbersome to carry, but it may be able to resist a 
destabilizing force such as a gust of wind.

• Material: Plastic may flex and crack. Metal may vibrate. Carbon fiber is less 
prone to these weaknesses, but it is relatively expensive. Some small tripods 
have bendable wire legs so that the user may wrap the tripod around another 
support, such as a branch or post. For example, GorillaPod is a well-known 
brand of tripods with bendable legs.

Typically, a small, lightweight tripod might cost between $10 and $30. This kind is 
often marketed as a mini or travel tripod. A tripod is a useful but optional accessory 
for all chapters in this book.

If you do not have a tripod or there is nowhere to place it, you may want to 
experiment with makeshift forms of stabilization. For example, if you want to monitor 
a room or hallway, you can tape the iOS device to a wall or ceiling. Be careful to 
choose tape that you can remove cleanly, without damaging the device's screen.

Lens attachments
A lens attachment or add-on lens is an additional optical unit that sits in front of 
the iPhone or iPad's built-in lens. Typically, the attachment is designed for the rear 
camera and its mount may consist of a magnet, clip, or case. The types of add-on 
lenses include the following:

• Telephoto attachment: This enables the lens to capture a narrower (zoomed 
in) field of view, comparable to a spyglass. Sometimes, a telephoto 
attachment is called a zoom attachment.

• Wide-angle attachment: This enables the lens to capture a wider (zoomed 
out) field of view.

• Fisheye attachment: This enables the lens to capture an extremely wide field 
of view, between 100 and 180 degrees diagonally. By design, the fisheye 
perspective is distorted such that straight lines appear curved. Sometimes, 
a fisheye attachment is called a panoramic attachment because software can 
convert a fisheye image into a panorama (a perspective-corrected image with 
a wide aspect ratio).

• Macro or close-up attachment: This enables the lens to focus at a short 
distance in order to capture a sharp image at a high level of magnification, 
comparable to a magnifying glass.

• Microscope attachment: This enables a more extreme level of magnification, 
comparable to a microscope. The focus distance is so short that the lens 
attachment may almost touch the subject. Typically, the attachment includes 
a ring of LED lights to illuminate the subject.



Setting Up Software and Hardware

[ 38 ]

Typically, a lens attachment might cost between $20 and $50. The sharpness of the 
optics can vary greatly, so try to compare reviews before you choose a product. A 
fisheye attachment could be a fun accessory for our photographic work in Chapter 2, 
Capturing, Storing, and Sharing Photos. A macro, close-up, or microscope attachment 
could be useful for our work with small objects in Chapter 5, Classifying Coins 
and Commodities. Generally, you can experiment with any lens attachment in any 
chapter's project.

Summary
This chapter has introduced the software and hardware that we will use to make 
computer vision applications for iOS. We set up a development environment, 
including Xcode, the iOS SDK, the Xcode Command Line Tools, a prebuilt version 
of OpenCV's standard modules, and optionally a custom-built version of OpenCV's 
extra modules. Using these tools and libraries, we developed an iOS application that 
performs a basic image processing function and we built it for iOS simulators and 
local devices. We discussed some of the places where we can seek more information 
about Apple's app distribution process, the iOS SDK, and OpenCV. Finally, we 
compared the camera specifications of iOS devices and learned about accessories that 
may help us capture clearer and more specialized images. The next chapter delves 
deeper into the topics of computational photography and image processing as we 
will build an application that can capture, edit, and share photographs.



[ 39 ]

Capturing, Storing, and 
Sharing Photos

For many people, photography is a collaborative and social activity. This is not just 
a new perspective. Even the pioneers of photography spent long hours sharing their 
creative processes with family, students, models, and curious members of the public, 
who hoped to be immortalized in this new art form.

Today's technology enables people to collaborate and socialize in a short time and 
at a great distance. As we discussed in the previous chapter, the iPhone offers a set 
of unobtrusive and intuitive tools to any user who wants to capture, edit, and share 
photos from this small screen. For better or worse, a few taps of the user's fingers 
have replaced all the manual work of the studio, darkroom, print shop, and  
delivery service.

This chapter addresses the technical challenges of developing a mobile workflow for 
the social photographer. We will accomplish the following tasks:

• Configure the camera, including focus and exposure settings
• Process images from the camera
• Show a real-time preview that reflects the current scene, camera settings, and 

image processing settings
• Save an image to the user's Photos library
• Post an image and message to the user's followers on Facebook, Twitter, Sina 

Weibo, or Tencent Weibo
• Use various standard GUI features, including touch interactions, toolbar 

items, alerts, and composition dialogs



Capturing, Storing, and Sharing Photos

[ 40 ]

We will combine this functionality to make a basic photo sharing application. This 
app will also provide a foundation for our work in Chapter 3, Blending Images, where 
we will add more image processing options. As photography allows us to work with 
light as a medium, let's call our app LightWork.

To obtain the completed projects for this book, you can refer to 
my GitHub repository at https://github.com/JoeHowse/
iOSWithOpenCV or log in to your account on Packt Publishing's 
site at https://www.packtpub.com/. The project for Chapter 2, 
Capturing, Storing, and Sharing Photos and Chapter 3, Blending Images, 
is in the LightWork subfolder.

Planning a photo sharing application
When it opens, LightWork will present a vintage photograph and toolbar containing 
a few items. The following screenshot shows it all:

https://github.com/JoeHowse/iOSWithOpenCV
https://github.com/JoeHowse/iOSWithOpenCV
https://www.packtpub.com/


Chapter 2

[ 41 ]

This bucolic image is an early color photograph, shot in 1902 by Adolf Miethe, 
a German photographer, professor, and inventor. The photo almost looks like a 
painting due to its coarse grain and pastel colors. However, it is a true example of a 
color photographic process. Miethe captured a scene on three photographic plates 
behind three different filters: red, green, and blue. Then, to recreate a multicolored 
image, he superimposed the three images using a projection process with different 
colors of light or a printing process with different dyes. Similar techniques are still in 
use today in our digital sensors, monitors, and printers.

LightWork will also be capable of displaying a live preview from a camera. 
However, for our purposes, a static (still) image is also a useful preview. A static 
image (unlike a camera preview) can be displayed in an iPhone simulator, so it 
enables us to test our code without a real device. Moreover, our chosen static image 
contains a variety of hues and brightness levels, so users may treat it as a standard, 
representative scene that helps them study image processing effects.

The leftmost item in the toolbar is a segmented control (a set of mutually exclusive 
buttons) with two options: Color and Gray. If Color is selected, the image will be 
displayed normally. If Gray is selected, the image will be displayed in grayscale.  
We will achieve the grayscale effect through a combination of camera settings and 
image processing.

Next, to the right of the segmented control, is a button with the standard switch 
camera icon. This button lets the user cycle through the static image, front camera, 
and rear camera. The first time the user taps the button, the static image will 
disappear and be replaced with a live preview of the front camera (the selfie camera). 
If the user taps the button a second time, the live preview will switch to the rear 
camera. The third time, the live preview will disappear and the static image will 
reappear, completing the cycle. The following screenshot shows the live preview of 
the rear camera.



Capturing, Storing, and Sharing Photos

[ 42 ]

Note that the app is designed to display the preview in a letterboxed mode,  
meaning that the top and bottom remain black so that the live video's aspect  
ratio is preserved:

Finally, at the center of the toolbar is a Save button. When the user taps it, LightWork 
will temporarily disable all toolbar items and display a spinning busy indicator. 
Meanwhile, the current image will be saved to the Photos library. Later, anytime 
the user opens the Photos app, the image will be visible there. LightWork will also 
display an alert to ask whether the user wants to share the photo via social media. 
Depending on the social media accounts that are set up on the device, the alert may 
offer as many as four sharing options: Facebook, Twitter, Sina Weibo, and Tencent 
Weibo. The following screenshot shows the alert that a user will see if only a Twitter 
account is set up on the device:



Chapter 2

[ 43 ]

If the user opts to share the image, a standard message composition dialog will 
appear, as seen in the following screenshot:



Capturing, Storing, and Sharing Photos

[ 44 ]

The user may type a message and post it along with the image. Alternatively, the 
user may cancel the composition. Either way, the composition dialog will disappear. 
LightWork will re-enable the toolbar items, so, once again, the user may configure 
the camera, select image processing effects, and capture new photos.

I thank my cat, Josephine, for her participation in this 
social experiment.

Our user interface will have one more feature. When the user taps the video, 
LightWork will configure the camera to focus on the tapped point. The exposure  
will also be adjusted so that the point is neither too bright nor too dark.

Configuring the project
Create an Xcode project named LightWork using the Single View Application 
template. Configure the project according to the instructions in the Configuring the 
project section in Chapter 1, Setting Up Software and Hardware. Next, we will take a few 
additional configuration steps because LightWork depends on more frameworks and 
requires a camera.

Adding frameworks
Besides its dependency on opencv2.framework, LightWork also depends on the 
following standard frameworks from the iOS SDK:

• Accelerate.framework: This is optional but recommended because it 
enables OpenCV to use advanced optimizations

• AssetsLibrary.framework

• AVFoundation.framework

• CoreGraphics.framework

• CoreMedia.framework

• CoreVideo.framework

• Photos.framework

• QuartzCore.framework

• Social.framework

• UIKit.framework

Add these frameworks to the Build Phases | Link Binary With Libraries section of 
the project settings.



Chapter 2

[ 45 ]

Specifying the camera requirement
Currently, there is a camera in all devices that support iOS 9. However, perhaps  
in the future, some iOS devices will lack a camera. To cover this possibility and 
prevent the App Store from distributing our app to incompatible devices,  
we should explicitly specify that LightWork requires a camera.

Open Info.plist, expand the Required device capabilities item, add a new 
subitem, and enter the video-camera value. After you do this, the property list 
should look like the following screenshot:

For LightWork, we are specifying video-camera because 
we want to use a live video as a preview. If you have a 
project where you only care about capturing still images, you 
may specify still-camera instead.



Capturing, Storing, and Sharing Photos

[ 46 ]

Defining and laying out the view 
controller
As discussed in the previous chapter, we may declare GUI elements in a view 
controller's source code and lay them out in a storyboard. Thus, to begin, let's 
open ViewController.m and define the private interface of our ViewController class. The 
interface depends on headers from the iOS SDK's Photos and Social frameworks as 
well as the OpenCV framework. Moreover, it depends on headers that define the 
public interfaces of our own classes, ViewController and VideoCamera. The latter class 
will handle many aspects of camera input and video display and we will write it 
later in the Controlling the camera section. Let's import these dependencies by adding 
the following code at the start of ViewController.m:

#import <Photos/Photos.h>
#import <Social/Social.h>

#import <opencv2/core.hpp>
#import <opencv2/imgcodecs.hpp>
#import <opencv2/imgcodecs/ios.h>
#import <opencv2/imgproc.hpp>

#import "ViewController.h"
#import "VideoCamera.h"

Next, let's define the instance variables of the ViewController class. We will use 
several cv::Mat objects to store the static image and camera images in color or 
grayscale format. Our GUI objects will include an image view, activity indicator 
(a busy spinner), and toolbar. We will use an instance of our VideoCamera class to 
control the camera and grab and display video images. Finally, we will use a Boolean 
variable to keep track of whether the user pressed the Save button to save the 
upcoming frame. Here are the relevant variable declarations:

@interface ViewController () <CvVideoCameraDelegate> {
  cv::Mat originalStillMat;
  cv::Mat updatedStillMatGray;
  cv::Mat updatedStillMatRGBA;
  cv::Mat updatedVideoMatGray;
  cv::Mat updatedVideoMatRGBA;
}

@property IBOutlet UIImageView *imageView;
@property IBOutlet UIActivityIndicatorView *activityIndicatorView;
@property IBOutlet UIToolbar *toolbar;

@property VideoCamera *videoCamera;
@property BOOL saveNextFrame;



Chapter 2

[ 47 ]

Note that the class name is followed by <CvVideoCameraDelegate>, meaning that 
the class implements a protocol named CvVideoCameraDelegate. This protocol is 
part of OpenCV and defines a method, - (void)processImage:(cv::Mat &)mat, 
for the handling of video frames. Later, in the Controlling the camera section, we will 
discuss how this callback method relates to our VideoCamera class.

An Objective-C protocol is analogous to a C++ pure virtual 
class or a Java or C# interface. It declares methods but does 
not implement them.

Next, let's define methods of VideoCamera. Some of the methods are callbacks to 
handle a GUI event, such as a button being pressed. We must use the IBAction 
keyword to expose these methods to Interface Builder. Later in this section, when 
we edit the storyboard in Interface Builder, we will connect widgets to the IBOutlet 
properties and IBAction methods. Let's declare the following callbacks for the video 
preview's tap-to-focus feature, the Color or Gray segmented control, the switch 
camera button, and the Save button:

- (IBAction)onTapToSetPointOfInterest:
    (UITapGestureRecognizer *)tapGesture;
- (IBAction)onColorModeSelected:
    (UISegmentedControl *)segmentedControl;
- (IBAction)onSwitchCameraButtonPressed;
- (IBAction)onSaveButtonPressed;

Besides the IBAction callbacks, VideoCamera has several more methods. We will 
call a refresh method to update the display after a change in the camera's state 
or image processing settings. Other methods will facilitate processing, saving, and 
sharing images as well as starting and stopping the app's busy mode. Here are the 
relevant declarations:

- (void)refresh;
- (void)processImage:(cv::Mat &)mat;
- (void)processImageHelper:(cv::Mat &)mat;
- (void)saveImage:(UIImage *)image;
- (void)showSaveImageFailureAlertWithMessage:(NSString *)message;
- (void)showSaveImageSuccessAlertWithImage:(UIImage *)image;
- (UIAlertAction *)shareImageActionWithTitle:(NSString *)title
    serviceType:(NSString *)serviceType image:(UIImage *)image;
- (void)startBusyMode;
- (void)stopBusyMode;

@end



Capturing, Storing, and Sharing Photos

[ 48 ]

Now that we have completed the interface declarations in ViewController.m, let's 
open Main.storyboard. We need to lay out the following widgets:

• A UIImageView filling the background.
• A UIActivityIndicatorView in the center.
• A UIToolbar at the bottom. It should contain the following 

UIBarButtonItem widgets from left to right:
 ° A custom toolbar item containing UISegmentedControl
 ° A button with the standard switch camera icon
 ° A flexible space
 ° A button with the standard Save label
 ° Another flexible space

Refer to the following screenshot as a layout guide (or just download the completed 
storyboard from the book's GitHub repository):

Remember to apply constraints to the widgets so that the 
layout supports any screen resolution and aspect ratio.



Chapter 2

[ 49 ]

After completing the layout, we must make the image view respond to touch 
interactions so that the user can tap to focus. Add a UITapGestureRecognizer by 
dragging a Tap Gesture Recognizer item from the library pane to the image view. 
Select Image View in the scene hierarchy and, in the inspector, ensure that User 
Interaction Enabled is checked.

Next, we must connect the widgets to the IBOutlet and IBAction hooks that we defined 
in ViewController.m. Right-click on View Controller in the scene hierarchy to see 
the list of available outlets and actions. Set the connections so that they match the 
following screenshot:



Capturing, Storing, and Sharing Photos

[ 50 ]

When we connect the onColorModeSelected: action to the Color, Gray segmented 
control, Interface Builder will present a menu of the events that the segmented 
control supports, as seen in the following screenshot:

Choose the Value Changed event, which occurs when the user selects a new option 
in the segmented control.

Standard toolbar buttons support only a single event, so when we connect 
these items, Interface Builder does not present a menu of events.

Controlling the camera
The iOS SDK and OpenCV provide several programming interfaces for camera 
control. Within the iOS SDK, AVFoundation is the general-purpose framework for 
all recording and playback of audiovisual (AV) content. AVFoundation provides 
complete access to the iOS camera's parameters, including the image format, focus, 
exposure, flash, frame rate, and digital zoom (crop factor). However, AVFoundation 
does not solve any GUI problems. The application developer may create a custom 
camera GUI, use a higher-level framework that provides a GUI, or automate the 
camera so that it operates without GUI input. AVFoundation is sufficiently flexible  
to support any of these designs, but this flexibility comes at a price as AVFoundation 
is complex.



Chapter 2

[ 51 ]

The official AVFoundation Programming Guide is located 
at https://developer.apple.com/library/ios/
documentation/AudioVideo/Conceptual/AVFoundationPG.

The iOS SDK implements a standard camera GUI in the UIImagePickerController class, 
which builds atop AVFoundation. This GUI enables the user to configure the camera 
and capture a photo or video. The application developer may handle the photo or 
video after its capture, but the options to customize the controls and  
video preview are somewhat limited. Thus, UIImagePickerController is not 
ideal for our LightWork application, which will provide a custom preview of the 
processed images.

For an official guide to UIImagePickerController, see Camera 
Programming Topics for iOS at https://developer.apple.com/
library/ios/documentation/AudioVideo/Conceptual/
CameraAndPhotoLib_TopicsForIOS.

OpenCV provides a class, CvVideoCamera, which implements high-level camera 
control functions and a preview GUI, but supports a high degree of customization. 
CvVideoCamera builds atop AVFoundation and offers access to some of the 
underlying classes. Thus, the application developer may opt to use a combination of 
high-level CvVideoCamera functionality and lower-level AVFoundation functionality. 
The application developer implements most of the GUI and may either disable 
the video preview or specify a parent view wherein CvVideoCamera will render it. 
Moreover, the application may handle each video frame as it is captured, and, if the 
application edits the captured frame in-place, CvVideoCamera will display the result 
in the preview. Thus, CvVideoCamera is an appropriate starting point for LightWork.

OpenCV also provides a class called CvPhotoCamera, which is designed 
to capture high-quality still images instead of a continuous stream of 
video images. Unlike CvVideoCamera, CvPhotoCamera does not let us 
apply custom image processing to the live preview.

https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundationPG
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundationPG
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/CameraAndPhotoLib_TopicsForIOS
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/CameraAndPhotoLib_TopicsForIOS
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/CameraAndPhotoLib_TopicsForIOS


Capturing, Storing, and Sharing Photos

[ 52 ]

Subclassing CvVideoCamera
CvVideoCamera is an Objective-C class, and Objective-C lets us override any instance 
method or property in a subclass. Moreover, as OpenCV is open source, we 
can study CvVideoCamera's entire implementation. Thus, we have the power and 
knowledge to make a subclass that reimplements pieces of CvVideoCamera with 
modifications. This is a convenient way to tweak or patch an open source class's 
implementation without modifying and rebuilding the library's source code.

You can view CvVideoCamera's latest implementation in 
OpenCV's GitHub repository at https://github.com/Itseez/
opencv/blob/master/modules/videoio/src/cap_ios_
video_camera.mm.

Currently, in OpenCV 3.1, CvVideoCamera has significant bugs, including  
the following:

• Depending on the requested quality settings, the resolution may default to an 
incorrect value

• Depending on the device orientation, the preview and captured image may 
be rotated incorrectly, and the preview may be stretched to an incorrect 
aspect ratio

We will create a subclass called VideoCamera in order to patch these issues and 
provide extra functionality. Add a new header file called VideoCamera.h. Here, we 
will declare the subclass's public interface, including a new property and method, as 
seen in the following code:

#import <opencv2/videoio/cap_ios.h>

@interface VideoCamera : CvVideoCamera

@property BOOL letterboxPreview;

- (void)setPointOfInterestInParentViewSpace:(CGPoint)point;

@end

When the letterboxPreview property is YES, VideoCamera will display the video 
preview in a letterboxed mode. Otherwise, the preview may appear in a cropped 
mode, which is equivalent to the superclass's behavior.

https://github.com/Itseez/opencv/blob/master/modules/videoio/src/cap_ios_video_camera.mm
https://github.com/Itseez/opencv/blob/master/modules/videoio/src/cap_ios_video_camera.mm
https://github.com/Itseez/opencv/blob/master/modules/videoio/src/cap_ios_video_camera.mm


Chapter 2

[ 53 ]

The setPointOfInterestInParentViewSpace: method will set a point of interest for the 
camera's autofocus and autoexposure algorithms. After a brief search for an optimal 
solution, the camera should reconfigure itself so that its focal distance and midtone 
level match the neighborhood of the given point, which is expressed in pixel 
coordinates within the preview's parent view. In other words, after the adjustment, 
the point and its neighborhood should be in focus and approximately as bright 
as 50% gray. However, a good autoexposure algorithm may allow variances in 
brightness depending on the color and the scene's other regions.

The autofocus and autoexposure algorithms are not specified in 
the iOS SDK documentation. They may be device-specific.

Now, let's create the class's implementation file, VideoCamera.m. We will add a private 
interface with a property, customPreviewLayer, as seen in the following code:

#import "VideoCamera.h"

@interface VideoCamera ()

@property (nonatomic, retain) CALayer *customPreviewLayer;

@end

We will implement customPreviewLayer so that it accesses a variable,  
_customPreviewLayer, which is defined in the superclass's private interface.  
This variable is the video preview layer and we will customize its position and  
size in VideoCamera. Here is the code that begins implementation of VideoCamera 
and sets up the relationship between the property and variable:

@implementation VideoCamera

@synthesize customPreviewLayer = _customPreviewLayer;

To customize the layout of the preview layer, we will override the following 
methods of CvVideoCamera:

• (int)imageWidth and (int)imageHeight: These getters should return the 
horizontal and vertical resolution that the camera is currently using. The 
superclass's implementation is buggy (in OpenCV 3.1) because it relies on 
a set of assumptions about the default resolution in various quality modes 
instead of directly querying the current resolution.



Capturing, Storing, and Sharing Photos

[ 54 ]

• (void)updateSize: The superclass uses this method to make its assumptions 
about the camera's resolution. This is actually a counterproductive method. 
As described in the previous bullet point, the assumptions are unreliable and 
unnecessary.

• (void)layoutPreviewLayer: This method should lay out the preview 
in a manner that respects the current device orientation. The superclass's 
implementation is buggy (in OpenCV 3.1). The preview is stretched or 
incorrectly oriented in some cases.

To get the correct resolution, we can query the camera's current capture parameters 
via an AVFoundation class called AVCaptureVideoDataOutput. Refer to the following 
code, which overrides the imageWidth getter:

- (int)imageWidth {
  AVCaptureVideoDataOutput *output =
    [self.captureSession.outputs lastObject];
  NSDictionary *videoSettings = [output videoSettings];
  int videoWidth =
    [[videoSettings objectForKey:@"Width"] intValue];
  return videoWidth;
}

Similarly, let's override the imageHeight getter in the following code:

- (int)imageHeight {
  AVCaptureVideoDataOutput *output =
    [self.captureSession.outputs lastObject];
  NSDictionary *videoSettings = [output videoSettings];
  int videoHeight =
    [[videoSettings objectForKey:@"Height"] intValue];
  return videoHeight;
}

Our implementations of imageWidth and imageHeight will 
return 0 if the camera is not currently running. For LightWork's 
purposes, this behavior does not cause any problems.

At this point, we have adequately solved the problem of querying the camera 
resolution. Thus, we can override the updateSize method with an empty 
implementation:

- (void)updateSize {
  // Do nothing.
}



Chapter 2

[ 55 ]

When laying out the video preview, first we center it within the parent view. Then, 
we find its aspect ratio and choose a preview size that respects the aspect ratio. 
If letterboxPreview is YES, the preview may be smaller than its parent view in one 
of the dimensions. Otherwise, it may be larger than its parent view in one of the 
dimensions, and, in this case, its extremities may be offscreen and therefore cropped. 
The following code shows how we position and size the preview:

- (void)layoutPreviewLayer {
  if (self.parentView != nil) {
    
    // Center the video preview.
    self.customPreviewLayer.position = CGPointMake(
      0.5 * self.parentView.frame.size.width,
      0.5 * self.parentView.frame.size.height);
    
    // Find the video's aspect ratio.
    CGFloat videoAspectRatio = self.imageWidth /
      (CGFloat)self.imageHeight;
    
    // Scale the video preview while maintaining its aspect ratio.
    CGFloat boundsW;
    CGFloat boundsH;
    if (self.imageHeight > self.imageWidth) {
      if (self.letterboxPreview) {
        boundsH = self.parentView.frame.size.height;
        boundsW = boundsH * videoAspectRatio;
      } else {
        boundsW = self.parentView.frame.size.width;
        boundsH = boundsW / videoAspectRatio;
      }
    } else {
      if (self.letterboxPreview) {
        boundsW = self.parentView.frame.size.width;
        boundsH = boundsW / videoAspectRatio;
      } else {
        boundsH = self.parentView.frame.size.height;
        boundsW = boundsH * videoAspectRatio;
      }
    }
    self.customPreviewLayer.bounds = CGRectMake(
      0.0, 0.0, boundsW, boundsH);
  }
}



Capturing, Storing, and Sharing Photos

[ 56 ]

Next, let's consider the setPointOfInterestInParentViewSpace: method. Its implementation 
will involve several cases, yet the concept is rather simple. As an argument, we 
accept a point in the coordinate system of the preview's parent view. This is a 
convenient coordinate system if we assume that the caller is a view controller. 
AVFoundation lets us specify a point of interest for focus and exposure, but it uses 
a proportional landscape-right coordinate system. This means that the upper-left 
corner is (0.0, 0.0), the lower-right corner is (1.0, 1.0), and the axis directions are 
based on the landscape-right orientation regardless of the device's actual orientation. 
Landscape-right orientation means that the device's home button is on the user's 
right-hand side. Thus, positive X points toward the home button and positive 
Y points away from the volume buttons. Here is our method's implementation, 
which checks the camera's autoexposure and autofocus capabilities, performs the 
coordinate conversion, validates the coordinates, and sets the point of interest via 
AVFoundation functionality:

- (void)setPointOfInterestInParentViewSpace:
    (CGPoint)parentViewPoint {
  
  if (!self.running) {
    return;
  }
  
  // Find the current capture device.
  NSArray *captureDevices =
    [AVCaptureDevice devicesWithMediaType:AVMediaTypeVideo];
  AVCaptureDevice *captureDevice;
  for (captureDevice in captureDevices) {
    if (captureDevice.position ==
        self.defaultAVCaptureDevicePosition) {
      break;
    }
  }
  
  BOOL canSetFocus = [captureDevice
      isFocusModeSupported:AVCaptureFocusModeAutoFocus] &&
    captureDevice.isFocusPointOfInterestSupported;
    
  BOOL canSetExposure = [captureDevice
      isExposureModeSupported:AVCaptureExposureModeAutoExpose] &&
    captureDevice.isExposurePointOfInterestSupported;
  
  if (!canSetFocus && !canSetExposure) {



Chapter 2

[ 57 ]

    return;
  }
  
  if (![captureDevice lockForConfiguration:nil]) {
    return;
  }
  
  // Find the preview's offset relative to the parent view.
  CGFloat offsetX = 0.5 * (self.parentView.bounds.size.width –
    self.customPreviewLayer.bounds.size.width);
  CGFloat offsetY = 0.5 * (self.parentView.bounds.size.height –
    self.customPreviewLayer.bounds.size.height);
  
  // Find the focus coordinates, proportional to the preview size.
  CGFloat focusX = (parentViewPoint.x - offsetX) /
    self.customPreviewLayer.bounds.size.width;
  CGFloat focusY = (parentViewPoint.y - offsetY) /
    self.customPreviewLayer.bounds.size.height;
    
  if (focusX < 0.0 || focusX > 1.0 ||
      focusY < 0.0 || focusY > 1.0) {
    // The point is outside the preview.
    return;
  }
  
  // Adjust the focus coordinates based on the orientation.
  // They should be in the landscape-right coordinate system.
  switch (self.defaultAVCaptureVideoOrientation) {
    case AVCaptureVideoOrientationPortraitUpsideDown: {
      CGFloat oldFocusX = focusX;
      focusX = 1.0 - focusY;
      focusY = oldFocusX;
      break;
    }
    case AVCaptureVideoOrientationLandscapeLeft: {
      focusX = 1.0 - focusX;
      focusY = 1.0 - focusY;
      break;
    }
    case AVCaptureVideoOrientationLandscapeRight: {
      // Do nothing.
      break;
    }



Capturing, Storing, and Sharing Photos

[ 58 ]

    default: { // Portrait
      CGFloat oldFocusX = focusX;
      focusX = focusY;
      focusY = 1.0 - oldFocusX;
      break;
    }
  }
  
  if (self.defaultAVCaptureDevicePosition ==
      AVCaptureDevicePositionFront) {
    // De-mirror the X coordinate.
    focusX = 1.0 - focusX;
  }
  
  CGPoint focusPoint = CGPointMake(focusX, focusY);
  
  if (canSetFocus) {
    // Auto-focus on the selected point.
    captureDevice.focusMode = AVCaptureFocusModeAutoFocus;
    captureDevice.focusPointOfInterest = focusPoint;
  }
  
  if (canSetExposure) {
    // Auto-expose for the selected point.
    captureDevice.exposureMode = AVCaptureExposureModeAutoExpose;
    captureDevice.exposurePointOfInterest = focusPoint;
  }
  
  [captureDevice unlockForConfiguration];
}

@end

At this point, we have implemented a class that is capable of configuring a camera 
and capturing frames. However, we still need to implement another class to choose a 
configuration and receive the frames.



Chapter 2

[ 59 ]

Using the CvVideoCamera subclass in the 
view controller
Open ViewController.m and review our declaration of ViewController's  
private interface. Our class implements the CvVideoCameraDelegate protocol  
and has a VideoCamera as a property. It also has a copy of the static image that  
we will use as a placeholder when the camera is not active. As usual, we will 
initialize things in the view controller's viewDidLoad method. First, we will load the 
static image from file and convert it to an appropriate format. Then, we will create 
the instance of VideoCamera with our image view as the preview's parent view. 
We will tell the camera to send its frames to this view controller (delegate) and 
to use a high-resolution mode at 30 FPS, with a letterboxed preview. Here is the 
implementation of viewDidLoad:

- (void)viewDidLoad {
  [super viewDidLoad];
  
  UIImage *originalStillImage = [UIImage imageNamed:@"Fleur.jpg"];
  UIImageToMat(originalStillImage, originalStillMat);
  
  self.videoCamera =  
    [[VideoCamera alloc] initWithParentView:self.imageView];
  self.videoCamera.delegate = self;
  self.videoCamera.defaultAVCaptureSessionPreset =  
    AVCaptureSessionPresetHigh;
  self.videoCamera.defaultFPS = 30;
  self.videoCamera.letterboxPreview = YES;
}

For iPhone 6 and 6 Plus, the rear camera supports a maximum frame 
rate of 240 FPS at 1280x720 resolution. See the specifications in Apple's 
Technical Note TN2409 at https://developer.apple.com/library/
ios/technotes/tn2409/. A high frame rate will make the preview 
look smoother and more responsive and will facilitate the capture of 
fast-moving objects. However, it will also impose a greater burden on the 
device's processors and drain the battery faster.

https://developer.apple.com/library/ios/technotes/tn2409/
https://developer.apple.com/library/ios/technotes/tn2409/


Capturing, Storing, and Sharing Photos

[ 60 ]

We will also override another UIViewController method called viewDidLayoutSubviews. 
This runs after viewDidLoad and after the view controller has assessed all aspects 
of the layout, including the orientation. Note that the method will be called again 
whenever the orientation changes. Here, we will configure the camera's orientation 
to match the device orientation, as seen in the following code:

- (void)viewDidLayoutSubviews {
  [super viewDidLayoutSubviews];
  
  switch ([UIDevice currentDevice].orientation) {
    case UIDeviceOrientationPortraitUpsideDown:
      self.videoCamera.defaultAVCaptureVideoOrientation =
        AVCaptureVideoOrientationPortraitUpsideDown;
      break;
    case UIDeviceOrientationLandscapeLeft:
      self.videoCamera.defaultAVCaptureVideoOrientation =
        AVCaptureVideoOrientationLandscapeLeft;
      break;
    case UIDeviceOrientationLandscapeRight:
      self.videoCamera.defaultAVCaptureVideoOrientation =
        AVCaptureVideoOrientationLandscapeRight;
      break;
    default:
      self.videoCamera.defaultAVCaptureVideoOrientation =
        AVCaptureVideoOrientationPortrait;
      break;
  }
  
  [self refresh];
}

Note that we call a helper method, refresh, after reconfiguring the camera. We will 
implement refresh later in this section. It will ensure that the camera is restarted or 
the static image is reprocessed to reflect the latest configuration.

When the user taps the preview's parent view, we will find the coordinates of  
the tap and pass them to the setPointOfInterestInParentViewSpace: method, 
which we implemented previously in VideoCamera. Here is the relevant callback  
for the tap event:

- (IBAction)onTapToSetPointOfInterest:
    (UITapGestureRecognizer *)tapGesture {
  if (tapGesture.state == UIGestureRecognizerStateEnded) {
    if (self.videoCamera.running) {
      CGPoint tapPoint =



Chapter 2

[ 61 ]

        [tapGesture locationInView:self.imageView];
      [self.videoCamera
        setPointOfInterestInParentViewSpace:tapPoint];
    }
  }
}

When the user selects Gray or Color in the segmented control, we will set the 
VideoCamera's grayscaleMode property to YES or NO. This property is inherited from 
CvVideoCamera. After setting grayscaleMode, we will call our ViewController's 
refresh helper method to restart the camera with the appropriate settings. Here is 
the callback to handle the change in the segmented control's state:

- (IBAction)onColorModeSelected:
    (UISegmentedControl *)segmentedControl {
  switch (segmentedControl.selectedSegmentIndex) {
    case 0:
      self.videoCamera.grayscaleMode = NO;
      break;
    default:
      self.videoCamera.grayscaleMode = YES;
      break;
  }
  [self refresh];
}

When the user taps the switch camera button, we will activate the next camera or 
cycle back to the static image of the lady and gardener. During each transition, 
we must ensure that the previous camera is stopped or the previous static image 
is hidden and the next camera is started or the next static image is processed and 
displayed. Again, our refresh helper method is useful. Here is the implementation 
of the button's callback:

- (IBAction)onSwitchCameraButtonPressed {
  
  if (self.videoCamera.running) {
    switch (self.videoCamera.defaultAVCaptureDevicePosition) {
      case AVCaptureDevicePositionFront:
        self.videoCamera.defaultAVCaptureDevicePosition =
          AVCaptureDevicePositionBack;
        [self refresh];
        break;
      default:
        [self.videoCamera stop];



Capturing, Storing, and Sharing Photos

[ 62 ]

        [self refresh];
        break;
    }
  }
  
  else {
    // Hide the still image.
    self.imageView.image = nil;
    
    self.videoCamera.defaultAVCaptureDevicePosition =
      AVCaptureDevicePositionFront;
    [self.videoCamera start];
  }
}

The refresh helper method will check whether a camera is running. If yes, we will 
ensure that the static image is hidden and we will stop and restart the camera. 
Otherwise (if no camera is running), we will reprocess the static image and display 
the result. The processing consists of converting the image to an appropriate color 
format and passing it to the processImage: method. Remember that CvVideoCamera and 
our VideoCamera subclass likewise pass video frames to the processImage: method of a 
CvVideoCameraDelegate, such as our ViewController class. Here, in refresh, we are reusing 
the same image processing method for the static image instead. Let's look at the 
refresh method's implementation:

- (void)refresh {
  
  if (self.videoCamera.running) {
    // Hide the still image.
    self.imageView.image = nil;
    
    // Restart the video.
    [self.videoCamera stop];
    [self.videoCamera start];
  }
  
  else {
    // Refresh the still image.
    UIImage *image;
    if (self.videoCamera.grayscaleMode) {
      cv::cvtColor(originalStillMat, updatedStillMatGray,
        cv::COLOR_RGBA2GRAY);
      [self processImage:updatedStillMatGray];



Chapter 2

[ 63 ]

      image = MatToUIImage(updatedStillMatGray);
    } else {
      cv::cvtColor(originalStillMat, updatedStillMatRGBA,
        cv::COLOR_RGBA2BGRA);
      [self processImage:updatedStillMatRGBA];
      cv::cvtColor(updatedStillMatRGBA, updatedStillMatRGBA,
        cv::COLOR_BGRA2RGBA);
      image = MatToUIImage(updatedStillMatRGBA);
    }
    self.imageView.image = image;
  }
}

The processImage: method will have several responsibilities. First, it will correct 
another library bug. CvVideoCamera (in OpenCV 3.1) captures the image upside 
down when it is in landscape mode. This is easier to correct in postprocessing (in 
processImage:), rather than in our VideoCamera subclass. After ensuring that the image's 
rotation is correct, we will pass it to another method called processImageHelper:, 
which will be a convenient place to implement the majority of our image processing 
functionality. Finally, if the user has recently clicked on the Save button, we will 
convert the image to an appropriate format and pass it to a saveImage: helper method. 
Here is the relevant code:

- (void)processImage:(cv::Mat &)mat {
  
  if (self.videoCamera.running) {
    switch (self.videoCamera.defaultAVCaptureVideoOrientation) {
      case AVCaptureVideoOrientationLandscapeLeft:
      case AVCaptureVideoOrientationLandscapeRight:
        // The landscape video is captured upside-down.
        // Rotate it by 180 degrees.
        cv::flip(mat, mat, -1);
        break;
      default:
        break;
    }
  }
  
  [self processImageHelper:mat];
  
  if (self.saveNextFrame) {
    // The video frame, 'mat', is not safe for long-running
    // operations such as saving to file. Thus, we copy its
    // data to another cv::Mat first.



Capturing, Storing, and Sharing Photos

[ 64 ]

    UIImage *image;
    if (self.videoCamera.grayscaleMode) {
      mat.copyTo(updatedVideoMatGray);
      image = MatToUIImage(updatedVideoMatGray);
    } else {
      cv::cvtColor(mat, updatedVideoMatRGBA, cv::COLOR_BGRA2RGBA);
      image = MatToUIImage(updatedVideoMatRGBA);
    }
    [self saveImage:image];
    self.saveNextFrame = NO;
  }
}

So far, we have not done much image processing, just some color conversions and 
rotations. Let's add the following stub method, where we will perform additional 
image processing in Chapter 3, Blending Images:

- (void)processImageHelper:(cv::Mat &)mat {
  // TODO: Implement in Chapter 3.
}

Our ViewController class still needs to implement the saveImage: helper method 
as well as GUI functionality related to saving and sharing images. However, we have 
finished implementing the camera control functionality and provided a skeleton 
of an image processing chain, which starts and ends with some necessary color 
conversions.

Working with various color formats
As we have seen, OpenCV and the iOS SDK work with various formats for color and 
grayscale images and sometimes we need to convert between formats. Let's step back 
from the code for a few moments to discuss the differences between formats and the 
problems that can arise if we do not perform the correct conversions.

RGB, BGR, RGBA, and BGRA
You probably learned the 24-bit RGB color format long ago, the first time you picked 
a custom color in a paint program or word processor. A pixel's color is represented 
by a sequence of three values, each with a range of 0 to 255 (that is, 8 bits or 1 byte). 
The first value is the color's red component or channel, followed by green, and lastly 
blue. For example, the color of an amber traffic light is (255, 126, 0), a mixture of lots 
of red and some green, but no blue. A series of pixel data makes an image.



Chapter 2

[ 65 ]

The 24-bit BGR format simply reverses the channel order. For example, the color of 
the amber traffic light is (0, 126, 255) in BGR format.

Using RGB or BGR, 24 bits per pixel (bpp) is enough to represent 
subtle gradations of color. Typical screens and consumer video 
cameras are limited to 24 bpp. However, some high-end cameras and 
screens support 30 bpp or even more. For our projects on iOS, 24 bpp 
is a reasonable limit.

RGBA and BGRA add a fourth channel, alpha, which comes last in both formats. 
Alpha represents transparency, where 0 is fully transparent and 255 is fully 
opaque (assuming 8 bits per channel or 32 bits in total). Of course, "transparent" 
is not a wavelength of light, and an ordinary photo camera does not record any 
data to distinguish between reflected light (which bounces off an opaque surface) 
and transmitted light (which passes through a transparent material). Thus, an 
unprocessed photo may be considered opaque and, if it includes an alpha channel, 
the alpha values will all be 255. Transparency or alpha becomes a more meaningful 
concept if we want to blend portions of images selectively.

Generally, OpenCV uses 24-bit BGR or 32-bit BGRA for color images. CvVideoCamera 
captures images in the BGRA format. However, the iOS SDK generally uses the 
RGBA format, so we must remember to perform conversions or else the red and blue 
channels will be misinterpreted.

Let's visualize the effect of swapping the red and blue channels in a colorful image. 
On the left, we see Miethe's charming rural scene, wherein the elderly gardener gives 
the young lady a rose. On the right, we see a different fantasy, wherein Papa Smurf 
gives a blue cupcake to Goldie:



Capturing, Storing, and Sharing Photos

[ 66 ]

In this book's print version, all images appear in grayscale. To see 
them in color, download them from Packt Publishing's website 
at https://www.packtpub.com/sites/default/files/
downloads/iOSApplicationDevelopmentwithOpenCV3_
ColorImages.pdf or read the eBook.

If we write a program that mistakenly treats RGB images as BGR (or vice versa), we 
will see strange results like the right-hand image!

YUV and grayscale
Suppose that we want to use fewer than 24 bpp so that our images use less memory 
and can be processed in less time. To this end, we must sacrifice some of the subtle 
gradations of color that 24 bpp can represent in RGB or BGR. However, perhaps 
we want retain the ability to represent subtle gradations of brightness. Here, we 
encounter a key limitation of RGB and BGR. The brightness depends on all three 
channels, and when we sacrifice bits in any channel, we lose gradations of brightness!

The YUV color model solves this problem. The Y channel just represents brightness. 
The U channel represents blueness (versus greenness), while the V channel 
represents redness (also versus greenness). Some variants of YUV are planar formats, 
meaning that all the Y data are consecutive in memory, followed by all the U and V 
data. Other variants of YUV are packed formats, meaning that Y, U, and V data are 
interleaved, like R, G, and B data in RGB or BGR.

An example of a planar format is I420, which has 12 bpp. This includes an 8-bit Y 
value for every pixel in the full-resolution image as well as 4-bit U and 4-bit V values 
sampled at half the resolution.

An example of a packed format is YUYV, which has 16 bpp. This includes an 8-bit Y 
value for every pixel in the full-resolution image as well as 8-bit U and 8-bit V values 
sampled at half the resolution. Note that all these values are byte-sized. Each Y byte 
is interleaved with a U or V byte alternately, as the name YUYV suggests.

An 8-bit Y channel captures the same gradations of brightness as 
the three channels of a 24-bit RGB or BGR image.

https://www.packtpub.com/sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/iOSApplicationDevelopmentwithOpenCV3_ColorImages.pdf


Chapter 2

[ 67 ]

Again, in certain circumstances, we must perform conversions or else the channel 
data will be misinterpreted. The left-hand side image shows how an I420 planar 
image might look if we tried to interpret its data as grayscale. The right-hand side 
image shows how a YUVY packed image might look if we tried to interpret its data 
as RGB:

Note that sky and the lady's dress have high Y values. These become misinterpreted 
as high R values in the right-hand side image.

A grayscale image is equivalent to the Y plane of a planar YUV image. Typically, 
a video camera's firmware, or at least its drivers, can efficiently convert the 
captured video to a planar YUV format. Then, if an application just needs 
grayscale data, it can read or copy the Y plane. This approach is more efficient 
than the alternative of capturing RGB frames and converting them to grayscale. 
Thus, when a CvVideoCamera's grayscaleMode property is YES, it grabs a planar 
YUV frame and passes a copy of the Y plane to the processImage: method of 
CvVideoCameraDelegate.



Capturing, Storing, and Sharing Photos

[ 68 ]

Starting and stopping the busy mode
Remember that we want to show an activity indicator and disable all the toolbar 
items while LightWork is busy saving or sharing a photo. Conversely, when 
LightWork is no longer busy with the photo, we want to hide the activity indicator 
and re-enable the toolbar items. As these actions affect the GUI, we must ensure that 
they run on the app's main thread.

If our code is running on a background thread, nothing will happen 
when we try to show or hide the activity indicator.

To run code on a specific thread, we can make a post to the thread's event queue. 
The iOS SDK provides a C function, dispatch_async, which takes a target queue 
and code block as arguments. Another C function, dispatch_get_main_queue(), 
enables us to get the main thread's event queue. Let's use these functions in the 
following helper method, which starts the busy mode:

- (void)startBusyMode {
  dispatch_async(dispatch_get_main_queue(), ^{
    [self.activityIndicatorView startAnimating];
    for (UIBarItem *item in self.toolbar.items) {
      item.enabled = NO;
    }
  });
}

Similarly, the following helper method serves to stop the busy mode:

- (void)stopBusyMode {
  dispatch_async(dispatch_get_main_queue(), ^{
    [self.activityIndicatorView stopAnimating];
    for (UIBarItem *item in self.toolbar.items) {
      item.enabled = YES;
    }
  });
}



Chapter 2

[ 69 ]

Saving an image to the Photos library
When the user presses the Save button, we start the busy mode. Then, if the video 
camera is running, we prepare to save the next frame. Otherwise, we immediately 
save the processed version of the static image. Here is the event handler:

- (IBAction)onSaveButtonPressed {
  [self startBusyMode];
  if (self.videoCamera.running) {
    self.saveNextFrame = YES;
  } else {
    [self saveImage:self.imageView.image];
  }
}

A helper method, saveImage:, is responsible for the transactions with the filesystem 
and Photos library. First, we try to write a PNG file to the application's temporary 
directory. Then, we try to create an asset in the Photos library based on this file. As 
part of this process, the file is automatically copied. We call other helper methods 
to show an alert dialog, which will describe the success or failure of the transaction. 
Here is the method's implementation:

- (void)saveImage:(UIImage *)image {
  
  // Try to save the image to a temporary file.
  NSString *outputPath = [NSString stringWithFormat:@"%@%@",
    NSTemporaryDirectory(), @"output.png"];
  if (![UIImagePNGRepresentation(image) writeToFile:outputPath
      atomically:YES]) {
    
    // Show an alert describing the failure.
    [self showSaveImageFailureAlertWithMessage:@"The image could not 
be saved to the temporary directory."];
    
    return;
  }
  
  // Try to add the image to the Photos library.
  NSURL *outputURL = [NSURL URLWithString:outputPath];
  PHPhotoLibrary *photoLibrary =
    [PHPhotoLibrary sharedPhotoLibrary];
  [photoLibrary performChanges:^{
    [PHAssetChangeRequest
      creationRequestForAssetFromImageAtFileURL:outputURL];



Capturing, Storing, and Sharing Photos

[ 70 ]

  } completionHandler:^(BOOL success, NSError *error) {
    if (success) {
      // Show an alert describing the success, with sharing
      // options.
      [self showSaveImageSuccessAlertWithImage:image];
    } else {
      // Show an alert describing the failure.
      [self showSaveImageFailureAlertWithMessage:
        error.localizedDescription];
    }
  }];
}

Displaying an alert
To build a typical alert, we need a title, a message, and one or more action buttons. 
Each action button has a block of code that runs when the user presses the button.

As an example, let's study a helper method that displays an error popup with an OK 
button. When the user presses the OK button, the alert will be dismissed and the app 
will stop its busy mode. Here is the implementation:

- (void)showSaveImageFailureAlertWithMessage:(NSString *)message {
  UIAlertController* alert = [UIAlertController
    alertControllerWithTitle:@"Failed to save image"
    message:message preferredStyle:UIAlertControllerStyleAlert];
  UIAlertAction* okAction = [UIAlertAction actionWithTitle:@"OK"
    style:UIAlertActionStyleDefault
    handler:^(UIAlertAction * _Nonnull action) {
      [self stopBusyMode];
    }];
  [alert addAction:okAction];
  [self presentViewController:alert animated:YES completion:nil];
}



Chapter 2

[ 71 ]

Sharing an image via social media
If LightWork successfully saved the image to the Photos library, we want to  
show the user another alert with sharing options. The following method checks 
the availability of various social media platforms and builds an alert with an 
action button for each available platform. Despite targeting different social media 
platforms, the action buttons are similar to each other, so we build them in a helper 
method, shareImageActionWithTitle:serviceType:image:. We also provide a 
Do not share action button that does nothing except stop the app's busy mode:

- (void)showSaveImageSuccessAlertWithImage:(UIImage *)image {
  
  // Create a "Saved image" alert.
  UIAlertController* alert = [UIAlertController
    alertControllerWithTitle:@"Saved image"
    message:@"The image has been added to your Photos library.  
    Would you like to share it with your friends?"
    preferredStyle:UIAlertControllerStyleAlert];
  
  // If the user has a Facebook account on this device, add a
  // "Post on Facebook" button to the alert.
  if ([SLComposeViewController
      isAvailableForServiceType:SLServiceTypeFacebook]) {
    UIAlertAction* facebookAction = [self
      shareImageActionWithTitle:@"Post on Facebook"
      serviceType:SLServiceTypeFacebook image:image];
    [alert addAction:facebookAction];
  }
  
  // If the user has a Twitter account on this device, add a
  // "Tweet" button to the alert.
  if ([SLComposeViewController
      isAvailableForServiceType:SLServiceTypeTwitter]) {
    UIAlertAction* twitterAction = [self
      shareImageActionWithTitle:@"Tweet"
      serviceType:SLServiceTypeTwitter image:image];
    [alert addAction:twitterAction];
  }
  
  // If the user has a Sina Weibo account on this device, add a
  // "Post on Sina Weibo" button to the alert.
  if ([SLComposeViewController
      isAvailableForServiceType:SLServiceTypeSinaWeibo]) {
    UIAlertAction* sinaWeiboAction = [self



Capturing, Storing, and Sharing Photos

[ 72 ]

      shareImageActionWithTitle:@"Post on Sina Weibo"
      serviceType:SLServiceTypeSinaWeibo image:image];
    [alert addAction:sinaWeiboAction];
  }
  
  // If the user has a Tencent Weibo account on this device, add a
  // "Post on Tencent Weibo" button to the alert.
  if ([SLComposeViewController
      isAvailableForServiceType:SLServiceTypeTencentWeibo]) {
    UIAlertAction* tencentWeiboAction = [self
      shareImageActionWithTitle:@"Post on Tencent Weibo"
      serviceType:SLServiceTypeTencentWeibo image:image];
    [alert addAction:tencentWeiboAction];
  }
  
  // Add a "Do not share" button to the alert.
  UIAlertAction* doNotShareAction = [UIAlertAction
    actionWithTitle:@"Do not share"
    style:UIAlertActionStyleDefault
    handler:^(UIAlertAction * _Nonnull action) {
      [self stopBusyMode];
    }];
  [alert addAction:doNotShareAction];
  
  // Show the alert.
  [self presentViewController:alert animated:YES completion:nil];
}

When the user presses a sharing action button, we present a standard iOS 
composition dialog that targets the specified social media platform. We also attach 
the image to this composition. When the user cancels or sends the composition, we 
ensure that LightWork stops its busy mode. Here is the relevant helper method to 
build this type of action button:

- (UIAlertAction *)shareImageActionWithTitle:(NSString *)title
    serviceType:(NSString *)serviceType image:(UIImage *)image {
  UIAlertAction* action = [UIAlertAction actionWithTitle:title
    style:UIAlertActionStyleDefault
    handler:^(UIAlertAction * _Nonnull action) {
      SLComposeViewController *composeViewController =
        [SLComposeViewController
          composeViewControllerForServiceType:serviceType];
      [composeViewController addImage:image];
      [self presentViewController:composeViewController



Chapter 2

[ 73 ]

        animated:YES completion:^{
          [self stopBusyMode];
        }];
  return action;
}

Running the application
At runtime, LightWork will prompt the user once for permission to access the 
camera and again for permission to access the Photos library. If the user refuses, 
the app will not function fully. However, the user may grant (or revoke) these 
permissions later in the LightWork section of the Settings application.

Summary
Already, in the LightWork app, we have implemented a custom workflow for mobile 
photographers. Particularly, we have focused on enabling the user to configure 
the camera, select image processing effects, see a preview in real time, and share 
an image via social media. However, we can still do more. We will devote the 
next chapter to the goal of expanding LightWork's repertoire of image processing 
effects. At the same time, we will explore the concepts of multiple exposure, 
image comparisons, and augmented reality. LightWork will become more than a 
photography app; it will also help us visualize the relationship between two scenes 
and thus deepen our appreciation of computer vision.





[ 75 ]

Blending Images
Let's complete our work on the LightWork app, which we started in Chapter 2, 
Capturing, Storing, and Sharing Photos. LightWork can already control the iOS device's 
cameras, capture an image, convert its format, save it, and share it via social media. 
However, the app is missing the ability to load and reprocess old images. We are 
going to change this by enabling the user to achieve the following results:

• Select an image from the user's Photos library.
• Select an algorithm that defines how to blend two images. We will support 

some simple arithmetic algorithms as well as an edge-finding algorithm that 
reduces one of the images to a line drawing.

• Using the selected blending algorithm, blend the selected image with the 
background. The background may be the LightWork app's static background 
image or a frame of live video from the camera.

Compared to the groundwork that we have already done, these additional features 
are simple, so this chapter is shorter. However, we are taking an important 
step toward more advanced projects. Most tasks in computer vision rely on the 
accumulation and comparison of data from multiple images. Blending photos is a 
fun way to begin to visualize this process and by the end of this chapter, we will see 
how even simple blending algorithms can help a user with practical problems.

To obtain the completed projects for this book, you can refer to 
my GitHub repository at https://github.com/JoeHowse/
iOSWithOpenCV or log in to your account on Packt Publishing's 
site at https://www.packtpub.com/. The project for Chapter 2, 
Capturing, Storing, and Sharing Photos, and Chapter 3, Blending Images, 
is in the LightWork subfolder.

https://github.com/JoeHowse/iOSWithOpenCV
https://github.com/JoeHowse/iOSWithOpenCV
https://www.packtpub.com/


Blending Images

[ 76 ]

Thinking about hybrid images
A photograph records the light in a particular slice of time and space. Often, 
in modern photography, the film or digital sensor is exposed for just a few 
milliseconds, and people perceive this time as a single moment. We, as viewers, may 
sometimes feel that a photograph is a testament, a tangible moment of truth, in which 
the facts and elements of a complex case are laid bare.

Consider the following photograph, taken by Kanu Gandhi in February 1940. Between 
1938 and 1948, the photographer documented the private life of his great-uncle, 
Mahatma Gandhi, the Indian independence leader and pacifist philosopher. Here,  
we see the Mahatma (left) meditating with Rabindranath Tagore (right), the Nobel 
Prize-winning poet:



Chapter 3

[ 77 ]

At first glance, we may interpret this as a documentary photo, which appeals to our 
curiosity about a private meeting between two famous men. We may imagine that 
we are simply studying the facts about the men's pose, their expressions, and their 
surroundings as we try to guess their thoughts. Now, look carefully at the bottom of 
the picture. Do you see that the two men are seated above a canopy of trees and the 
hem of Tagore's robe is fading away like a ghost?

The image is a partial double exposure. Between two exposures, the roll of film did 
not advance as far as it normally should. This is a common mechanical glitch and 
causes a section of film to be exposed twice, producing a ghostly double-image. The 
double exposure is probably accidental in this case, but we can imagine that Kanu 
Gandhi was pleased with the result.

Again, look at the whole image and consider how the partial double exposure 
contributes to your impressions. Although the two men are looking down, we may 
imagine that they are aware of the trees and sky above them. The image conveys 
the sense that the canopy is vast and all around. This sense of openness is especially 
unusual in a square photo with a close and low vantage point. The rendition of the 
scene has, quite literally, broken a boundary between two times and places and gives 
us a perspective that is both intimate and grand.

With a film camera and darkroom, the creation of hybrid images is slow and 
thoughtful work. The photographer must have foresight and perseverance and keep 
an open mind about accidental results. Starting in the 1990s, scanners and image 
editing software began to enable a broader audience to create hybrid images. When 
I was 12, my father and I took a course in Photoshop and I was impressed by the 
software's fundamental concept that an image is a mixture of layers. I learned how 
to scan photographs, lay them atop each other, make parts of them transparent, and 
select an algorithm or blending mode to mix the opaque parts. With a 33 MHz CPU, 
this process was not exactly fast, but compared to anything I could do by hand, I 
thought it was amazing!

Today, Photoshop is fast on most hardware, and there are excellent free alternatives 
such as the GNU Image Manipulation Program (GIMP). Moreover, if we use a 
digital camera, we do not need a scanner! We can quickly build a library of photos 
and experiment with ways of blending them.



Blending Images

[ 78 ]

GIMP's documentation describes its blending modes at https://
docs.gimp.org/en/gimp-concepts-layer-modes.html with 
formulae and examples. Photoshop's documentation describes its 
blending modes at https://helpx.adobe.com/photoshop/
using/blending-modes.html with examples but not formulae. 
With OpenCV, these blending modes can be implemented as 
combinations of arithmetic functions such as cv::addWeighted, 
cv::subtract, and cv::multiply, which are described in the API 
documentation at http://docs.opencv.org/3.1.0/d2/de8/
group__core__array.html.

The default blending mode in Photoshop and GIMP is a weighted average of the 
upper layer and lower layer. Another blending mode, called Screen, resembles 
double exposure. Assuming that we are working with 8 bits (256 levels) per color 
channel, Screen applies the following formula to each channel of each pixel:

dst = (255 - (255 - scrUpper) * (255 - srcLower)) / 255

This mode tends to produce a blend that is bright, like a double exposure. 
Conversely, a mode called Multiply tends to produce a dark blend, using the 
following formula:

dst = srcUpper * srcLower / 255

We will implement Screen, Multiply, and a simple Average blending mode in 
LightWork. We will also implement an original blending mode, which we will call 
HUD because it will resemble a heads-up display (HUD). A HUD is a transparent 
screen of the kind used in airplane cockpits. Here is a photo of a HUD in an F/A-18C 
Hornet jet:

https://docs.gimp.org/en/gimp-concepts-layer-modes.html
https://docs.gimp.org/en/gimp-concepts-layer-modes.html
https://helpx.adobe.com/photoshop/using/blending-modes.html
https://helpx.adobe.com/photoshop/using/blending-modes.html
http://docs.opencv.org/3.1.0/d2/de8/group__core__array.html
http://docs.opencv.org/3.1.0/d2/de8/group__core__array.html


Chapter 3

[ 79 ]

If you are viewing the e-book, you will see that the HUD's text and lines have a 
yellowish green color, which is commonly used in HUDs because this color stands 
out against most backgrounds. Our HUD blending mode will find text and other 
sharp lines in the upper layer, tint them yellowish-green, and then superimpose 
them on the lower layer using the same formula as Screen.

To find sharp edges, we will rely on a type of algorithm called a kernel filter or 
convolution matrix. Each pixel in the output image is a weighted average of a 
neighborhood of pixels in the input image. Depending on the weights, a kernel filter 
may achieve various effects. It may blur an image, sharpen it, or even reduce it to a 
high-contrast representation of edge and non-edge regions. Consider the following 
examples of kernel weights for a 3 x 3 input neighborhood:

Blur Sharpen Find edges (Laplacian)
1/9 1/9 1/9 0 -1 0 0 1 0
1/9 1/9 1/9 -1 5 -1 1 -4 1
1/9 1/9 1/9 0 -1 0 0 1 0



Blending Images

[ 80 ]

Photoshop, GIMP, and OpenCV implement a generalized kernel filter and a  
large variety of special cases, including the Gaussian blur effect and Laplacian  
edge-finding effect. Our HUD blending mode will apply a Gaussian blur filter  
to reduce noise and then a Laplacian filter to find edges.

GIMP's documentation describes convolution matrices at 
https://docs.gimp.org/en/plug-in-convmatrix.html, 
and Photoshop's documentation describes them at https://
helpx.adobe.com/photoshop/using/filter-effects-
reference.html. Photoshop's generalized implementation is 
called the "Custom" filter. OpenCV's generalized implementation 
is the cv::filter2d function, while specialized implementations 
include cv::GaussianBlur and cv::Laplacian. See the API 
documentation at http://docs.opencv.org/3.1.0/d4/d86/
group__imgproc__filter.html.

The ability to selectively blend two images in real time is a step toward augmented 
reality (AR). AR includes a broad range of technologies that enable a user to perceive 
a virtual environment as if it were part of the real environment. For example, consider 
the following screenshot from a drone navigation application used by NASA:

https://docs.gimp.org/en/plug-in-convmatrix.html
https://helpx.adobe.com/photoshop/using/filter-effects-reference.html
https://helpx.adobe.com/photoshop/using/filter-effects-reference.html
https://helpx.adobe.com/photoshop/using/filter-effects-reference.html
http://docs.opencv.org/3.1.0/d4/d86/group__imgproc__filter.html
http://docs.opencv.org/3.1.0/d4/d86/group__imgproc__filter.html


Chapter 3

[ 81 ]

Here, we see navigational data and a simple map of a landing strip, superimposed 
on a live video feed from the drone. Due to cloud cover, the landing strip would be 
difficult to see in the original video, but thanks to AR, the strip is clearly marked. 
Thus, the remote pilot can guide the drone to a safe landing.

LightWork will not be a fully-fledged AR application, but the user will be able to 
superimpose images for artistic or practical purposes. We will explore AR further in 
Chapter 4, Detecting and Merging Faces of Mammals.

Planning the blending controls
We will add two more toolbar buttons, Blend Src and Blend Mode, to the lower-
right corner of the app's main view. After launching LightWork, the user will see 
something like the following screenshot:



Blending Images

[ 82 ]

When the user clicks on Blend Src, a standard image picker will appear, as shown in 
the following screenshot:



Chapter 3

[ 83 ]

After the user picks an image, the app's main view will reappear and the user will 
see a blend of the selected foreground image and background image. By default, the 
blending mode will be a simple average of the foreground and background, as seen 
in the following screenshot:



Blending Images

[ 84 ]

When the user clicks on the Blend Mode button, a pop-up list of available blending 
modes will appear, as shown in the following screenshot:



Chapter 3

[ 85 ]

The user may select any blending mode and, as usual, may press the switch camera 
button to select a live video feed as the background. For example, the following 
image was created with the Multiply blend mode and rear camera:



Blending Images

[ 86 ]

Here, the app has blended the face of Josephine (the gray and white cat) onto the 
back of Sanibel (the ginger cat). Both cats look bemused!

For examples of other blending modes and other types of images, see the Using the 
application for practical purposes section near the end of this chapter.

Expanding the view controller's interface
All of the new source code will go in ViewController.m. Open the file. After the import 
statements, let's define the following enumeration to identify the available blending 
modes:

enum BlendMode {
  None,
  Average,
  Multiply,
  Screen,
  HUD
};

Now, we need to add several new variables and methods to the private 
interface of our ViewController class. To provide callbacks to a standard 
image picker, our view controller must implement two protocols, 
UIImagePickerControllerDelegate and UINavigationControllerDelegate. 
We also need two more cv::Mat variables to store the selected foreground image 
in its original format and a converted format that is appropriate for the current 
background and blending mode. The blending mode is a variable, too. Note the 
highlighted changes in this block of code:

@interface ViewController () <CvVideoCameraDelegate,
    UIImagePickerControllerDelegate,
    UINavigationControllerDelegate> {
  cv::Mat originalStillMat;
  cv::Mat updatedStillMatGray;
  cv::Mat updatedStillMatRGBA;
  cv::Mat updatedVideoMatGray;
  cv::Mat updatedVideoMatRGBA;
  cv::Mat originalBlendSrcMat;
  cv::Mat convertedBlendSrcMat;
  
  BlendMode _blendMode;
}



Chapter 3

[ 87 ]

We will treat the blending mode as an Objective-C property with a custom getter and 
setter. Later, in the setter's implementation, we will ensure that a Boolean property is 
also set every time the blending mode changes. Here are the properties' declarations:

@property BlendMode blendMode;
@property BOOL blendSettingsChanged;

Later, we will check the Boolean's value in the implementation of the 
processImageHelper: method to determine whether we need to recompute the 
initial stages of the blend. Remember that we wrote an empty implementation  
of processImageHelper: in Chapter 2, Capturing, Storing, and Sharing Photos.  
The method has the following signature:

- (void)processImageHelper:(cv::Mat &)mat;

For the Blend Src and Blend Mode toolbar buttons, we need two new IBAction 
callbacks. To anchor a pop-up to the Blend Mode button, we need a reference to 
the button, so we will make it an argument to the callback. Here are the callbacks' 
declarations:

- (IBAction)onBlendSrcButtonPressed;
- (IBAction)onBlendModeButtonPressed:(UIBarButtonItem *)sender;

As the pop-up menu will have several action buttons with similar functionality, we 
will use the following helper method to create each button:

- (UIAlertAction *)blendModeActionWithTitle:(NSString *)title
    blendMode:(BlendMode)blendMode;

Finally, let's add the following helper method, which will convert the foreground 
image to the appropriate size and color format:

- (void)convertBlendSrcMatToWidth:(int)dstW height:(int)dstH;

@end



Blending Images

[ 88 ]

Now that we have completed the modifications to the interface in 
ViewController.m, let's open Main.storyboard. We need to add the Blend Src 
and Blend Mode toolbar items after the second flexible space. Refer to the following 
screenshot as a layout guide (or just download the completed storyboard from the 
book's GitHub repository):



Chapter 3

[ 89 ]

After completing the layout, we must connect the new toolbar buttons to the new 
IBAction hooks, which we defined in ViewController.m. Right-click on View 
Controller in the scene hierarchy to see the list of available outlets and actions.  
Set the connections so that they match the following screenshot:



Blending Images

[ 90 ]

Expanding the view controller's 
implementation
Let's reopen ViewController.m to complete the implementation. First, let's add the 
custom getter and setter for the blendMode property. The getter will simply return 
the _blendMode variable, as seen in the following code:

@implementation ViewController

- (BlendMode)blendMode {
  return _blendMode;
}

The setter will check whether the new value differs from the old value. If so, the new 
value will be assigned to _blendMode, and the blendSettingsChanged property will 
be set to YES, as seen in the following code:

- (void)setBlendMode:(BlendMode)blendMode {
  if (blendMode != _blendMode) {
    _blendMode = blendMode;
    self.blendSettingsChanged = YES;
  }
}

Now, let's look at the new implementation of the processImageHelper: method. 
It is quite long, so we will consider it in four blocks. First, if the user has not yet 
selected any foreground image to blend, the method should return early, as shown  
in the following code:

- (void)processImageHelper:(cv::Mat &)mat {
  
  if (originalBlendSrcMat.empty()) {
    // No blending source has been selected.
    // Do nothing.
    return;
  }



Chapter 3

[ 91 ]

Next, we need to ensure that the foreground image has received appropriate 
preprocessing. It must be converted to the same size and format as the background 
image. Also, we can precompute any part of the blending algorithm that depends on 
the foreground image alone. This way, fewer computations will occur on a per-frame 
basis when the background image changes. The following conditional statement 
checks whether new preprocessing is needed: 

  if (convertedBlendSrcMat.rows != mat.rows ||
      convertedBlendSrcMat.cols != mat.cols ||
      convertedBlendSrcMat.type() != mat.type() ||
      self.blendSettingsChanged) {

If new preprocessing is needed, first we call a helper method to resize the foreground 
image and convert its format. Then, we apply the foreground-specific part of the 
blending algorithm, which varies depending on the blending mode that the user has 
selected. At the end of the preprocessing, we set the blendSettingsChanged property 
to NO, as we have handled any change in the settings. Here is the relevant code:

    // Resize the blending source and convert its format.
    [self convertBlendSrcMatToWidth:mat.cols height:mat.rows];
    
    // Apply any mode-dependent operations to the blending source.
    switch (self.blendMode) {
      case Screen:
        /* Pseudocode:
         convertedBlendSrcMat = 255 – convertedBlendSrcMat;
         */
        cv::subtract(255.0, convertedBlendSrcMat,
          convertedBlendSrcMat);
        break;
      case HUD:
        /* Pseudocode:
         convertedBlendSrcMat =
           255 – Laplacian(GaussianBlur(convertedBlendSrcMat));
         */
        cv::GaussianBlur(convertedBlendSrcMat,
          convertedBlendSrcMat, cv::Size(5, 5), 0.0);
        cv::Laplacian(convertedBlendSrcMat, convertedBlendSrcMat,
          -1, 3);
        if (!self.videoCamera.grayscaleMode) {
          // The background is in color.
          // Give the foreground a yellowish green tint, which
          // will stand out against most backgrounds.
          cv::multiply(cv::Scalar(0.0, 1.0, 0.5),



Blending Images

[ 92 ]

            convertedBlendSrcMat, convertedBlendSrcMat);
        }
        cv::subtract(255.0, convertedBlendSrcMat,
          convertedBlendSrcMat);
        break;
      default:
        break;
    }
    
    self.blendSettingsChanged = NO;
  }

To complete the processImageHelper: method, we blend the preprocessed foreground 
with the latest background image. Again, the algorithm varies depending on the 
blending mode that the user has selected. Here is the relevant code:

  // Combine the blending source and the current frame.
  switch (self.blendMode) {
    case Average:
      /* Pseudocode:
       mat = 0.5 * mat + 0.5 * convertedBlendSrcMat;
       */
      cv::addWeighted(mat, 0.5, convertedBlendSrcMat, 0.5, 0.0,
        mat);
      break;
    case Multiply:
      /* Pseudocode:
       mat = mat * convertedBlendSrcMat / 255;
       */
      cv::multiply(mat, convertedBlendSrcMat, mat, 1.0 / 255.0);
      break;
    case Screen:
    case HUD:
      /* Pseudocode:
      mat = 255 – (255 – mat) * convertedBlendSrcMat / 255;
      */
      cv::subtract(255.0, mat, mat);
      cv::multiply(mat, convertedBlendSrcMat, mat, 1.0 / 255.0);
      cv::subtract(255.0, mat, mat);
      break;
    default:
      break;
  }
}



Chapter 3

[ 93 ]

For explanations of the blending algorithms, refer to the Thinking 
about hybrid images section at the beginning of this chapter.

When the user presses the Blend Src button, we will first check whether the  
Photos album is available. If it is unavailable, this probably means that the user 
refused to give LightWork access to Photos, and we will show an error alert and 
return. Otherwise, we will create a standard image picker, which is an instance  
of the UIImagePickerController class. To some extent, the picker is configurable. 
We will specify that our view controller is the picker's delegate, which provides 
callbacks. We will also tell the picker that we want to pick from the Photos album 
and require a still image (not a video). Finally, we will show the picker. Here is the 
Blend Src button's callback:

- (IBAction)onBlendSrcButtonPressed {
  
  if (![UIImagePickerController isSourceTypeAvailable:
      UIImagePickerControllerSourceTypeSavedPhotosAlbum]) {
    // The Photos album is unavailable.
    // Show an error message.
    UIAlertController *alert = [UIAlertController
      alertControllerWithTitle:@"Photos album unavailable"
      message:@"Go to the Settings app and give LightWork  
      permission to access your Photos album."
      preferredStyle:UIAlertControllerStyleAlert];
    UIAlertAction *okAction = [UIAlertAction actionWithTitle:@"OK"
      style:UIAlertActionStyleDefault handler:nil];
    [alert addAction:okAction];
    [self presentViewController:alert animated:YES
      completion:nil];
    return;
  }
  
  UIImagePickerController *picker =  
    [[UIImagePickerController alloc] init];
  picker.delegate = self;
  
  // Pick from the Photos album.
  picker.sourceType =  
    UIImagePickerControllerSourceTypeSavedPhotosAlbum;
  
  // Pick from still images, not movies.
  picker.mediaTypes = [NSArray arrayWithObject:@"public.image"];
  
  [self presentViewController:picker animated:YES completion:nil];
}



Blending Images

[ 94 ]

As the image picker's delegate, our view controller is responsible for handling the 
user's interactions with the picker. We must even tell the picker when to dismiss 
itself. The UIImagePickerControllerDelegate protocol defines a callback to handle the 
user's selection of an image. The callback receives the image and other information 
about the user's choice in a dictionary called info. When the user picks an image, 
we will dismiss the picker. Then, we will get the image from the info dictionary and 
convert it to a cv::Mat. If no blending mode is selected, we will activate the Average 
mode. Finally, we will set our blendSettingsChanged property to YES. Here is the 
callback's implementation:

- (void)imagePickerController:(UIImagePickerController *)picker
    didFinishPickingMediaWithInfo:
      (NSDictionary<NSString *,id> *)info {
  [picker dismissViewControllerAnimated:YES completion:nil];
  
  UIImage *image =  
    [info objectForKey:@"UIImagePickerControllerOriginalImage"];
  UIImageToMat(image, originalBlendSrcMat);
  
  if (self.blendMode == None) {
    // Blending is currently deactivated.
    // Activate "Average" blending so that the user sees some
    // result.
    self.blendMode = Average;
  }
  
  self.blendSettingsChanged = YES;
}

The UIImagePickerControllerDelegate protocol also defines a callback for the 
picker's cancel button. When the button is pressed, we will simply dismiss the picker, 
as seen in the following code:

- (void)imagePickerControllerDidCancel:
    (UIImagePickerController *)picker {
  [picker dismissViewControllerAnimated:YES completion:nil];
}

When the user presses the Blend Mode button, we will display a pop-up menu for 
the selection of a blending mode. The pop-up menu is just an alert that is configured 
to rise from the toolbar button. We will create each button with a helper method. 
Here is the implementation of the Blend Mode button's callback:

- (IBAction)onBlendModeButtonPressed:(UIBarButtonItem *)sender {
  UIAlertController *alert = [UIAlertController



Chapter 3

[ 95 ]

    alertControllerWithTitle:nil message:nil
    preferredStyle:UIAlertControllerStyleActionSheet];
  alert.popoverPresentationController.barButtonItem = sender;
  
  UIAlertAction *averageAction = [self  
    blendModeActionWithTitle:@"Average" blendMode:Average];
  [alert addAction:averageAction];
    
  UIAlertAction *multiplyAction = [self  
    blendModeActionWithTitle:@"Multiply" blendMode:Multiply];
  [alert addAction:multiplyAction];
    
  UIAlertAction *screenAction = [self  
    blendModeActionWithTitle:@"Screen" blendMode:Screen];
  [alert addAction:screenAction];
  
  UIAlertAction *hudAction = [self  
    blendModeActionWithTitle:@"HUD" blendMode:HUD];
  [alert addAction:hudAction];
  
  UIAlertAction *noneAction = [self  
    blendModeActionWithTitle:@"None" blendMode:None];
  [alert addAction:noneAction];
  
  [self presentViewController:alert animated:YES completion:nil];
}

When the user presses a button in the pop-up menu, we set our blendMode property 
to the appropriate value. Also, if the static background is active, we refresh it. Here is 
the helper method that creates a menu button and its callback:

- (UIAlertAction *)blendModeActionWithTitle:(NSString *)title  
    blendMode:(BlendMode)blendMode {
  UIAlertAction *action = [UIAlertAction actionWithTitle:title
    style:UIAlertActionStyleDefault
    handler:^(UIAlertAction * _Nonnull action) {
      self.blendMode = blendMode;
      if (!self.videoCamera.running) {
        [self refresh];
      }
    }];
  return action;
}



Blending Images

[ 96 ]

Finally, let's look at the helper method that converts the foreground image to match 
the size and format of the background image. First, we select a subregion of the 
foreground image to match the background's aspect ratio. Then, we resize this 
subregion using a high-quality interpolation algorithm called Lanczos. We finish 
by converting the resized image to either a grayscale or BGRA format. Here is the 
implementation:

- (void)convertBlendSrcMatToWidth:(int)dstW height:(int)dstH {
  
  double dstAspectRatio = dstW / (double)dstH;
  
  int srcW = originalBlendSrcMat.cols;
  int srcH = originalBlendSrcMat.rows;
  double srcAspectRatio = srcW / (double)srcH;
  cv::Mat subMat;
  if (srcAspectRatio < dstAspectRatio) {
    int subMatH = (int)(srcW / dstAspectRatio);
    int startRow = (srcH - subMatH) / 2;
    int endRow = startRow + subMatH;
    subMat = originalBlendSrcMat.rowRange(startRow, endRow);
  } else {
    int subMatW = (int)(srcH * dstAspectRatio);
    int startCol = (srcW - subMatW) / 2;
    int endCol = startCol + subMatW;
    subMat = originalBlendSrcMat.colRange(startCol, endCol);
  }
  cv::resize(subMat, convertedBlendSrcMat, cv::Size(dstW, dstH),
    0.0, 0.0, cv::INTER_LANCZOS4);
  
  int cvtColorCode;
  if (self.videoCamera.grayscaleMode) {
    cvtColorCode = cv::COLOR_RGBA2GRAY;
  } else {
    cvtColorCode = cv::COLOR_RGBA2BGRA;
  }
  cv::cvtColor(convertedBlendSrcMat, convertedBlendSrcMat,
    cvtColorCode);
}

@end

At this point, the new version of LightWork is complete, and we can build and run it.



Chapter 3

[ 97 ]

Using the application for practical 
purposes
Although LightWork's design and algorithms are rather simple, it is a versatile tool 
in the hands of a crafty user. For example, with the use of our blending filters, we can 
accomplish any task in the following broad categories:

• See how a scene has changed over time
• Before actually building or moving an object, visualize how it would look in 

a scene
• Before actually copying a document or drawing, visualize how it would look 

on a different surface

Let's consider each category in pictures.

Seeing changes in a scene
This requires a few steps of preparation:

1. Set up the smartphone or tablet in a stable position. For example, mount it on 
a tripod.

2. Point the camera at an area where you expect movement to occur.
3. Open the LightWork app, activate the rear-facing camera, and save a picture.
4. Click on Blend Src and select the picture that you just saved.
5. Click on Blend Mode and select Average, Screen, or Multiply.
6. Watch the live video to see a blend of the past and present.



Blending Images

[ 98 ]

Consider the following series of images, which show a construction site on a windy 
winter day. Here, I used the leftmost image as Blend Src and I selected the Average 
blending mode. The second image is a blending result that shows a piece of paper 
blowing in the wind in the middle-right window. The rightmost image is another 
blending result that shows a man moving in the foreground. Note that the moving 
objects appear to be semi-transparent:

Over a longer period of time, we would also start to see the semi-transparent effect in 
slowly moving objects, such as the snowdrifts.

Previewing a new object in a scene
For this, we require a real object, but it may be a scale model. Take a photo of 
the object on a light background and use it with the Multiply blending mode. 
Alternatively, take a photo on a dark background and use it with the Screen 
blending mode. Go to the scene and see how the object looks in the live video.



Chapter 3

[ 99 ]

Let's consider a case study. Jan is an artist and interior decorator. She creates her art 
by hand, not with digital technology. Sometimes, she makes gigantic stuffed animals 
for children and cats. Yes, cats like stuffed animals, too. Suppose that Jan wants to take 
a photo of a child's favorite stuffed animal and show the child and parents how a 
similar creature might look on a bigger scale. With LightWork, she could capture the 
first image in the following pair of images and create the second image as part of a 
live preview:



Blending Images

[ 100 ]

Here, the Multiply blending mode works quite well to produce a coherent 
image, except in the dark region of the bed's headboard. With the real-time video 
preview, the user can work around these localized flaws by moving to get different 
perspectives. Most importantly, this type of visualization is mobile, fast, and does 
not require skill in digital image editing. Jan can use this to give other people an 
immediate preview of the things she imagines.

Previewing a copy of a document or drawing
For this, we require a document or drawing with sharp letters or shapes. Capture a 
photo of the document or drawing and use it with the HUD blending mode. Point 
the camera at a blank surface so that you can see the outlines of the letters or shapes. 
You may want to stabilize the iOS device so that the outlines do not move. For 
example, see the improvised stabilization in the following photo, where an iPad Mini 
is suspended over a sheet of black construction paper:



Chapter 3

[ 101 ]

Now, consider the following two images, which show a verse from a famous Russian 
poem called Ochi chyornye (Black Eyes or Dark Eyes). The author is Yevhen Hrebinka, 
a 19th-century Ukrainian romantic writer. The top image is the original document 
and the bottom image is the virtual stencil with the HUD effect:

Here, the virtual stencil might be particularly useful for an English speaker who is 
just learning the Russian Cyrillic alphabet or a Russian speaker who is just learning 
the Latin alphabet. That is to say, an unfamiliar alphabet could make it more difficult 
for a person to simply imagine how a copy of the document would look.



Blending Images

[ 102 ]

Summary
We have completed the LightWork application by adding a set of image blending 
options. Moreover, we have considered the notion that an image represents a slice 
of time and space, so a blended image creates a hybrid time and hybrid space. 
Photographers might think of this hybridization as multiple exposure, while app 
designers might call it augmented reality (AR). Starting in the next chapter, we  
will explore more sophisticated AR techniques, which involve detecting and tracking 
an object in the live video and superimposing other graphics to precisely fit the 
object's features.



[ 103 ]

Detecting and Merging  
Faces of Mammals

"A cat may look at a king."

                                       —English proverb

This chapter puts a spotlight on two of my favorite subjects: cats and augmented 
reality (AR). We will build an AR application called ManyMasks, which will detect, 
highlight, and merge the faces of humans and cats. Specifically, the app's user will be 
able to do the following things:

• See the boundaries of a human face or cat face in a live camera view as well 
as the centers of the eyes and the tip of the nose. This visualization depends 
on the result of a face detection algorithm.

• Select two detected faces from different camera frames.
• See a hybrid face, which is produced by aligning and blending the two 

selected faces.
• Save and share the hybrid face.

Our face detection algorithm relies on cascade classifiers, which attempt to match 
various patches of the image to a pretrained, generic model of a human face, human 
eye, or cat face. We estimate the positions of other facial features based on a set of 
geometric assumptions about the structure of a face.

Our face merging algorithm relies on a geometric transformation, which may rotate 
and warp one face to align its features with those of another face. Then, we just 
arithmetically blend the pixels of the aligned images.



Detecting and Merging Faces of Mammals

[ 104 ]

Although we will design ManyMasks to work on humans and cats, it may detect and 
merge other mammals too. The following images show you how the app merges me 
with my father Bob (left), my cat Sanibel (upper right), and a red panda (lower right):

To obtain the completed projects for this book, you can refer to 
my GitHub repository at https://github.com/JoeHowse/
iOSWithOpenCV or log in to your account on Packt Publishing's site at 
https://www.packtpub.com/. The project for Chapter 4, Detecting and 
Merging Faces of Mammals, is in the ManyMasks subfolder.

Understanding detection with cascade 
classifiers
A cascade is a series of tests or stages, which differentiate between a positive and 
negative class of objects, such as face and non-face. For a positive classification, a patch 
of an image must pass all stages of the cascade. Conversely, if the patch fails any 
stage, the classifier immediately makes a negative classification.

https://github.com/JoeHowse/iOSWithOpenCV
https://github.com/JoeHowse/iOSWithOpenCV
https://www.packtpub.com/


Chapter 4

[ 105 ]

A patch or window of an image is a sample of pixels around a given position and 
at a given magnification level. A cascade classifier takes windows of the image at 
various positions and various magnification levels, and for each window it runs 
the stages of the cascade. Often, positive detections occur in multiple, overlapping 
windows. These overlapping positive detections are called neighbors, and they 
imply a greater likelihood of a true positive. For example, a real face still looks like a 
face if we move or resize the frame around it slightly.

By now, you might be wondering exactly how we design a cascade's stages. The 
answer is, we do not directly design them. Rather, we let a machine learning meta-
algorithm design the stages based on a set of training images and a set of features. 
Typically, the meta-algorithm is a variant of AdaBoost (adaptive boosting), which is 
a form of linear regression with a specialized exponential error function. The training 
images include positive samples and negative samples, and we must provide the 
metadata about the coordinates of objects in the positive samples. The features 
are templates of local patterns that the classifier may (or may not) find in each 
neighborhood. The training algorithm selects features that are typical of positive 
samples and atypical of negative samples, and it designs the stages based on  
these selections.

Haar-like features
Haar-like features are one of the most popular kinds of features used for face detection, 
and for object detection in general. For each window, a Haar cascade classifier 
subtracts some of the grayscale pixel values from others in order to measure the 
window's similarity to the following features, where a dark region meets a light region:



Detecting and Merging Faces of Mammals

[ 106 ]

Thus, the stages of the Haar cascade represent horizontal or diagonal edges, thin 
lines, or dots that typify an object (versus a non-object). Some variants of the 
algorithm remove features (such as the diagonal features) or add features (such as 
corners where four rectangles meet), but the basic idea is the same.

Haar-like features are not robust with respect to rotation or flipping. For example, 
if a Haar cascade is trained to detect upright faces, it will not detect upside-down 
faces. Similarly, if a Haar cascade is trained for a left eye, it is not ideal for a right eye, 
which is a mirror image of the left eye. Thus, it is better to have separate cascades 
for left and right eyes. We will use four pretrained Haar cascades that come with 
OpenCV, and these cascades will detect an upright human face, an upright cat face, a 
human left eye, and a human right eye.

Local binary pattern features
Local binary pattern (LBP) features are another popular kind of feature. They are 
also called local binary pattern histogram (LBPH) features. As the name suggests, 
an LBPH feature is a histogram or count of brightness values. For each pixel in a 
window, the classifier notes whether each neighboring pixel in a certain radius 
is brighter or darker. The histogram holds a count of the darker pixels in each 
neighboring position. For example, suppose a window contains the following two 
neighborhoods of 1-pixel radius:

Black White Black
White White White
Black White Black

Black Black Black
White White White
White White White

Counting these two neighborhoods (and not yet counting other neighborhoods in the 
window), the histogram can be visualized like this:

2 1 2
0 0 0
1 0 1



Chapter 4

[ 107 ]

Let's review how we arrived at these figures. The first neighborhood has dark 
corners (relative to the center), so we add 1 to each corner cell of the histogram table. 
The second neighborhood has a dark top row (relative to the center), so we add 
another 1 to each cell in the top row of the histogram table.

The stages of the LBP cascade represent gradients or transitions that typify an object 
(versus a non-object).

Like Haar cascades, LBP cascades are not robust with respect to rotation or flipping. 
OpenCV comes with pretrained LBP cascades for an upright human face and upright 
cat face. Optionally, we can use these instead of the Haar cascades.

Compared to Haar cascades, LBP cascades tend to offer faster but less accurate 
detection results. For low-end devices, or in cases where high frame rates are 
required, LBP cascades may be a good choice. However, recent iOS devices are quite 
capable of using Haar cascades with live video.

For information on OpenCV's implementation of cascade classifiers, see 
the official documentation at http://docs.opencv.org/3.1.0/
d5/d54/group__objdetect.html. Specifically, we will use the 
cv::CascadeClassifier class.

Understanding transformations
After we detect two faces and before we blend them, we will try to align the 
faces based on the eye and nose coordinates. This alignment step is a geometric 
transformation, which remaps points (or pixels) from one space to another. For 
example, the following geometric operations are special cases of a transformation:

• Translation: This moves the points laterally. It repositions them around a 
new center.

• Rotation: This spins the points around a center.
• Scale: This moves the points farther from or nearer to a center.

Mathematically, a transformation is a matrix and a point (or pixel position) is a 
vector. We can multiply them together to apply the transformation to the point.  
The output of the multiplication is a new point.

Conversely, given three pairs of points—in our case, the pairs of left eye centers, 
right eye centers, and nose tips—we can solve for the transformation matrix that 
maps one set of points onto the other. This is a problem of linear algebra. After 
finding the matrix, we will apply it to a whole face, not just the eyes and nose.

http://docs.opencv.org/3.1.0/d5/d54/group__objdetect.html
http://docs.opencv.org/3.1.0/d5/d54/group__objdetect.html


Detecting and Merging Faces of Mammals

[ 108 ]

For information on the OpenCV functions that find and apply 
transformation matrices, see the official documentation at 
http://docs.opencv.org/3.1.0/da/d54/group__
imgproc__transform.html. Specifically, we will use the 
cv::getAffineTransformation and cv::warpAffine functions.

Planning a face merging application
When ManyMasks opens, it will present a live camera view, a toolbar, and two small 
images of a masked face in the lower corners. Whenever the application detects a 
human face, it will draw the following shapes:

• A yellow rectangle around the face region
• A red rectangle around the left eye region
• A red circle at the left eye's center or pupil
• A green rectangle around the right eye region
• A green circle at the right eye's center or pupil
• A blue circle at the tip of the nose

Similarly, for a detected cat face, the application will draw the following shapes:

• A white rectangle around the face region
• A red circle at the left eye's center or pupil
• A green circle at the right eye's center or pupil
• A blue circle at the tip of the nose

For our purposes, the left and right directions refer to the viewer's 
perspective, not the subject's perspective. The OpenCV developers, 
and most authors in computer vision, also follow this convention.

http://docs.opencv.org/3.1.0/da/d54/group__imgproc__transform.html
http://docs.opencv.org/3.1.0/da/d54/group__imgproc__transform.html


Chapter 4

[ 109 ]

The following screenshot shows how the application might look at startup if the 
user's face is detected:

The toolbar provides a segmented control to select a color mode and switch camera 
button to select the front or rear camera. These controls are similar to the ones we 
implemented in Chapter 2, Capturing, Storing, and Sharing Photos, so we will not say 
much about them in this chapter.



Detecting and Merging Faces of Mammals

[ 110 ]

Beside the camera controls, the toolbar provides three more buttons. The Face 1 and 
Face 2 buttons enable the user to select the currently detected face. (If there is more 
than one currently detected face, the largest is selected.) The selected faces appear in 
the small image views in the lower corners, as seen in the following screenshot:



Chapter 4

[ 111 ]

After selecting two faces, the user may press the Merge button. Then, the application 
presents a modal view controller, showing a hybrid face and a different toolbar, like 
the following screenshot:



Detecting and Merging Faces of Mammals

[ 112 ]

On the left side, the toolbar contains a standard trash button, which discards the 
image and takes the user back to the camera view. On the right side, there is a Save 
button, which stores the image in the user's Photos album and prompts the user 
about posting the image to a social network. For example, if a user has a Twitter 
account on the device, the following dialog will appear:



Chapter 4

[ 113 ]

If the user opts to share the image, a standard composition dialog will appear, as 
shown in the following screenshot:

Remember that we implemented similar functionality to save and share images in 
Chapter 2, Capturing, Storing, and Sharing Photos. Thus, we will not say much about it 
in this chapter.



Detecting and Merging Faces of Mammals

[ 114 ]

After the user shares the image or opts not to share it, the application will return to 
the camera view. Then, the user may select and merge faces again.

Configuring the project
Create an Xcode project named ManyMasks. Use the Single View Application 
template. Configure the project according to the instructions in Chapter 1, Setting Up 
Software and Hardware and Chapter 2, Capturing, Storing, and Sharing Photos. (See the 
Configuring the project section of each chapter.) The ManyMasks project depends on 
the same frameworks and device capabilities as the LightWork project.

Our face detector will depend on several pretrained cascade files that come with 
OpenCV's source code. If you do not already have the source code, get it as described 
in Chapter 1, Setting Up Software and Hardware, in the Building an additional framework 
from source with extra modules section. Add copies of the following cascade files to the 
Supporting Files folder of the ManyMasks project:

• <opencv_source_path>/data/haarcascades/haarcascade_frontalface_
alt.xml. Alternatively, you may want to try <opencv_source_path>/data/
lbpcascades/lbpcascade_frontalface.xml for faster but less accurate 
results.

• <opencv_source_path>/data/haarcascades/haarcascade_
frontalcatface_extended.xml. Alternatively, you may want to 
try <opencv_source_path>/data/lbpcascades/lbpcascade_
frontalcatface.xml for faster but less accurate results.

• <opencv_source_path>/data/haarcascades/haarcascade_
lefteye_2splits.xml

• <opencv_source_path>/data/haarcascades/haarcascade_
righteye_2splits.xml

After adding the cascade files, select ManyMasks in the project navigator pane. 
Open the Build Phases tab in the editor area, and make sure that the four cascade 
files appear in the Copy Bundle Resources list.

For a detailed description of how the *_frontalcatface*.xml 
cascade files were trained, see Chapter 3, Training a Smart Alarm 
to Recognize the Villain and His Cat in my book, OpenCV for Secret 
Agents, (Packt Publishing, 2015).



Chapter 4

[ 115 ]

Defining faces and a face detector
Let's define faces and a face detector in pure C++ code without using any 
dependencies except OpenCV. This ensures that the computer vision functionality of 
ManyMasks is portable. We could reuse the core of our code on a different platform 
with a different set of UI libraries.

A face has a species. For our purposes, this could be Human, Cat, or Hybrid. Let's 
create a header file, Species.h, and define the following enum in it:

#ifndef SPECIES_H
#define SPECIES_H

enum Species {
  Human,
  Cat,
  Hybrid
};

#endif // !SPECIES_H

A face also has a matrix of image data and three feature points representing the 
centers of the eyes and tip of the nose. We may construct a face in any of the 
following ways:

• Specify a species, matrix, and feature points.
• Create an empty face with default values, including an empty matrix.
• Copy an existing face.
• Merge two existing faces.

Let's create another header file, Face.h, and declare the following public interface of 
a Face class in it:

#ifndef FACE_H
#define FACE_H

#include <opencv2/core.hpp>

#include "Species.h"

class Face {

public:
  Face(Species species, const cv::Mat &mat,



Detecting and Merging Faces of Mammals

[ 116 ]

    const cv::Point2f &leftEyeCenter,
    const cv::Point2f &rightEyeCenter,
    const cv::Point2f &noseTip);
    
  /**
   * Construct an empty face.
   */
  Face();
  
  /**
   * Construct a face by copying another face.
   */
  Face(const Face &other);
  
  /**
   * Construct a face by merging two other faces.
   */
  Face(const Face &face0, const Face &face1);
  
  bool isEmpty() const;
  
  Species getSpecies() const;
  
  const cv::Mat &getMat() const;
  int getWidth() const;
  int getHeight() const;
  
  const cv::Point2f &getLeftEyeCenter() const;
  const cv::Point2f &getRightEyeCenter() const;
  const cv::Point2f &getNoseTip() const;

Note that Face is designed as an immutable type, meaning that its properties shall 
not change after construction. To help enforce this, we add the const keyword at the 
end of method declarations. The use of immutable types can help make code safe, 
predictable, and elegant because an object is stateless (or more precisely, its current 
state remains the same as its initial state). Callers can assign a copy of a face (via the 
copy constructor) but cannot rearrange elements of an existing face. ManyMasks is 
an artistic app, not a gangster movie; we construct faces, we don't rearrange them.

The Face class's private interface defines the expected variables as well as a method 
to help construct merged faces. Here is the relevant code, which completes Face.h:

private:
  void initMergedFace(const Face &biggerFace,



Chapter 4

[ 117 ]

    const Face &smallerFace);
  
  Species species;
  
  cv::Mat mat;
  
  cv::Point2f leftEyeCenter;
  cv::Point2f rightEyeCenter;
  cv::Point2f noseTip;
};

#endif // !FACE_H

Our face detector has cascade classifiers for a human face, left and right human 
eyes, and a cat face. The constructor takes paths to the relevant cascade files. After 
it is constructed, a face detector's role is simply to detect faces! A detect function 
accepts the current image of the scene along with a vector<Face> to populate with 
results. Optionally, the caller may also specify that the detector should process a 
resized image and that it should draw a visualization of the detection results on 
the original image. The optional visualization consists of rectangles and circles that 
show the detected face, eye, and nose positions. Let's create yet another header file, 
FaceDetector.h, and declare the following public interface of the FaceDetector 
class in it:

#ifndef FACE_DETECTOR_H
#define FACE_DETECTOR_H

#include <opencv2/objdetect.hpp>

#include "Face.h"

class FaceDetector {

public:
  FaceDetector(const std::string &humanFaceCascadePath, 
    const std::string &catFaceCascadePath, 
    const std::string &humanLeftEyeCascadePath, 
    const std::string &humanRightEyeCascadePath);
  
  void detect(cv::Mat &image, std::vector<Face> &faces, 
    double resizeFactor = 1.0, bool draw = false);



Detecting and Merging Faces of Mammals

[ 118 ]

The private interface declares several variables as well as helper methods to 
equalize the image (that is, to standardize its contrast) and detect the eyes and nose. 
Equalization helps to ensure consistent detection results under various lighting 
conditions. Here is the relevant code, which completes FaceDetector.h:

private:
  void equalize(const cv::Mat &image);
  void detectInnerComponents(const cv::Mat &image,
    std::vector<Face> &faces, double resizeFactor, bool draw,
    Species species, cv::Rect faceRect);
  
  cv::CascadeClassifier humanFaceClassifier;
  cv::CascadeClassifier catFaceClassifier;
  cv::CascadeClassifier humanLeftEyeClassifier;
  cv::CascadeClassifier humanRightEyeClassifier;
  
#ifdef WITH_CLAHE
  cv::Ptr<cv::CLAHE> clahe;
#endif
  
  cv::Mat resizedImage;
  cv::Mat equalizedImage;
};

#endif // !FACE_DETECTOR_H

Note the use of a preprocessor condition, WITH_CLAHE. If we define 
WITH_CLAHE in the Preprocessor Macros section of our project's 
Build Settings, our face detector will take advantage of an advanced 
equalization algorithm called contrast limited adaptive histogram 
equalization (CLAHE). Otherwise, it will use a cheaper but less 
robust equalization algorithm.

Later in this chapter, in the Detecting a hierarchy of face elements and Aligning and 
blending face elements sections, we will examine noteworthy implementation details 
that belong in other files, Face.cpp and FaceDetector,cpp. First, though, let's 
consider the view controllers that use faces and face detection.



Chapter 4

[ 119 ]

Defining and laying out the view 
controllers
ManyMasks divides its application logic between two view controllers. The first 
view controller enables the user to capture and preview real faces. The second 
enables the user to review, save, and share merged faces. A type of callback method 
called a segue enables the first view controller to instantiate the second and pass a 
merged face to it.

Capturing and previewing real faces
Import copies of the VideoCamera.h and VideoCamera.m files that we created  
in Chapter 2, Capturing, Storing, and Sharing Photos. These files contain our 
VideoCamera class, which extends OpenCV's CvVideoCamera to fix bugs  
and add new functionality.

Rename ViewController.h and ViewController.m to CaptureViewController.h 
and CaptureViewController.m. Edit CaptureViewController.h so that it declares 
a CaptureViewController class, as seen in the following code:

#import <UIKit/UIKit.h>

@interface CaptureViewController : UIViewController

@end

CaptureViewController will have similarities to ViewController Chapter 2, 
Capturing, Storing, and Sharing Photos. Basically, both classes control a camera and 
process images. Edit CaptureViewController.m so that it declares the following 
private interface for CaptureViewController:

#import <opencv2/core.hpp>
#import <opencv2/imgcodecs/ios.h>
#import <opencv2/imgproc.hpp>

#import "CaptureViewController.h"
#import "FaceDetector.h"
#import "ReviewViewController.h"
#import "VideoCamera.h"

const double DETECT_RESIZE_FACTOR = 0.5;

@interface CaptureViewController () <CvVideoCameraDelegate> {



Detecting and Merging Faces of Mammals

[ 120 ]

  FaceDetector *faceDetector;
  std::vector<Face> detectedFaces;
  Face bestDetectedFace;
  Face faceToMerge0;
  Face faceToMerge1;
}

@property IBOutlet UIView *backgroundView;

@property IBOutlet UIBarButtonItem *face0Button;
@property IBOutlet UIBarButtonItem *face1Button;
@property IBOutlet UIBarButtonItem *mergeButton;

@property IBOutlet UIImageView *face0ImageView;
@property IBOutlet UIImageView *face1ImageView;

@property VideoCamera *videoCamera;

- (IBAction)onTapToSetPointOfInterest:
    (UITapGestureRecognizer *)tapGesture;
- (IBAction)onColorModeSelected:
    (UISegmentedControl *)segmentedControl;
- (IBAction)onSwitchCameraButtonPressed;
- (IBAction)onFace0ButtonPressed;
- (IBAction)onFace1ButtonPressed;

- (void)refresh;
- (void)processImage:(cv::Mat &)mat;
- (void)showFace:(Face &)face inImageView:
    (UIImageView *)imageView;
- (UIImage *)imageFromCapturedMat:(const cv::Mat &)mat;

@end

Note that CaptureViewController has a FaceDetector pointer 
and a vector of Face objects representing the currently detected faces. 
It also has three more Face variables to keep track of the best (largest) 
currently detected face and the two previously selected faces. The 
remainder of the private interface pertains to GUI elements, camera 
control, and image processing.



Chapter 4

[ 121 ]

As usual, the viewDidLoad method is responsible for initializing variables.  
The constructor of FaceDetector requires the paths to the four cascade files  
in the application's main resource bundle. Note how we obtain the paths in  
the following code:

- (void)viewDidLoad {
  [super viewDidLoad];
  
  if (faceDetector == NULL) {
    
    NSBundle *bundle = [NSBundle mainBundle];
    
    std::string humanFaceCascadePath = [[bundle
      pathForResource:@"haarcascade_frontalface_alt"
      ofType:@"xml"] UTF8String];
    std::string catFaceCascadePath = [[bundle
      pathForResource:@"haarcascade_frontalcatface_extended"
      ofType:@"xml"] UTF8String];
    std::string leftEyeCascadePath = [[bundle
      pathForResource:@"haarcascade_lefteye_2splits"
      ofType:@"xml"] UTF8String];
    std::string rightEyeCascadePath = [[bundle
      pathForResource:@"haarcascade_righteye_2splits"
      ofType:@"xml"] UTF8String];
    
    faceDetector = new FaceDetector(humanFaceCascadePath,
      catFaceCascadePath, leftEyeCascadePath,
      rightEyeCascadePath);
  }
  
  self.face0Button.enabled = NO;
  self.face1Button.enabled = NO;
  self.mergeButton.enabled = (!faceToMerge0.isEmpty() &&
    !faceToMerge1.isEmpty());
  
  self.videoCamera = [[VideoCamera alloc]
    initWithParentView:self.backgroundView];
  self.videoCamera.delegate = self;
  self.videoCamera.defaultAVCaptureSessionPreset =
    AVCaptureSessionPresetHigh;
  self.videoCamera.defaultFPS = 30;
  self.videoCamera.letterboxPreview = YES;
}



Detecting and Merging Faces of Mammals

[ 122 ]

The FaceDetector object loads the four cascade files into memory, so its resource 
requirements are significant. Moreover, iOS does not provide automatic memory 
management for this dynamically allocated C++ object. Let's override the following 
UIViewController methods to ensure that the face detector is deleted when the 
system is running out of memory or when the view controller itself is deallocated:

- (void)didReceiveMemoryWarning {
  [super didReceiveMemoryWarning];
  
  if (faceDetector != NULL) {
    delete faceDetector;
    faceDetector = NULL;
  }
}

- (void)dealloc {
  if (faceDetector != NULL) {
    delete faceDetector;
    faceDetector = NULL;
  }
}

If the system calls didReceiveMemoryWarning, it will 
subsequently call viewDidLoad before presenting the view 
controller again. Thus, we can be confident that the face 
detector will be recreated in a timely manner.

Every time the camera captures a new frame, we will pass the frame to the face 
detector. We will also specify that the detector should scale down the image to half its 
original size. (We defined this scaling factor at the top of the file as a constant.) If any 
faces are detected, we will keep a copy of the best (largest) detected face and enable 
the Face 0 and Face 1 buttons so that the user may select this face. Otherwise, we will 
disable these buttons. Here is the relevant code in the processImage callback:

- (void)processImage:(cv::Mat &)mat {
  
  switch (self.videoCamera.defaultAVCaptureVideoOrientation) {
    case AVCaptureVideoOrientationLandscapeLeft:
    case AVCaptureVideoOrientationLandscapeRight:
      // The landscape video is captured upside-down.
      // Rotate it by 180 degrees.
      cv::flip(mat, mat, -1);
      break;
    default:



Chapter 4

[ 123 ]

      break;
  }
  
  // Detect and draw any faces.
  faceDetector->detect(mat, detectedFaces, DETECT_RESIZE_FACTOR,
    true);
  
  BOOL didDetectFaces = (detectedFaces.size() > 0);
  
  if (didDetectFaces) {
    if (didDetectFaces) {
      // Find the biggest face.
      int bestFaceIndex = 0;
      for (int i = 0, bestFaceArea = 0;
          i < detectedFaces.size(); i++) {
        Face &detectedFace = detectedFaces[i];
        int faceArea = detectedFace.getWidth() *
          detectedFace.getHeight();
        if (faceArea > bestFaceArea) {
          bestFaceIndex = i;
          bestFaceArea = faceArea;
        }
      }
      bestDetectedFace = detectedFaces[bestFaceIndex];
    }
  }
  
  dispatch_async(dispatch_get_main_queue(), ^{
    self.face0Button.enabled = didDetectFaces;
    self.face1Button.enabled = didDetectFaces;
  });
}

When the user presses the Face 0 or Face 1 button, we will copy the best currently 
detected face to another variable and show a thumbnail of the face. Here is the 
relevant callback for the Face 0 button:

- (IBAction)onFace0ButtonPressed {
    faceToMerge0 = bestDetectedFace;
    [self showFace:faceToMerge0 inImageView:self.face0ImageView];
    if (!faceToMerge1.isEmpty()) {
        dispatch_async(dispatch_get_main_queue(), ^{
            self.mergeButton.enabled = YES;
        });
    }
}



Detecting and Merging Faces of Mammals

[ 124 ]

Of course, the callback for the Face 1 button is similar. The following two helper 
methods actually implement the logic of getting the face's image and converting  
it to an appropriate format:

- (void)showFace:(Face &)face
    inImageView:(UIImageView *)imageView {
  imageView.image = [self imageFromCapturedMat:face.getMat()];
}

- (UIImage *)imageFromCapturedMat:(const cv::Mat &)mat {
  switch (mat.channels()) {
    case 4: {
      cv::Mat rgbMat;
      cv::cvtColor(mat, rgbMat, cv::COLOR_BGRA2RGB);
      return MatToUIImage(rgbMat);
    }
    default:
      // The source is grayscale.
      return MatToUIImage(mat);
  }
}

For the implementation of the Merge button's action, see the Seguing 
between the view controllers section later in this chapter.

Now that we have examined the interface and some of the interesting 
implementation details in CaptureViewController.m, let's open Main.storyboard. 
Select View Controller in the scene hierarchy. Go to the inspector pane's Identity 
tab. (Its icon looks like a document containing a picture and text.) Set the Class of the 
view controller to CaptureViewController, as shown in the following screenshot:



Chapter 4

[ 125 ]

Now, let's add the appropriate GUI widgets as children of the view controller's 
main view. Refer to the following screenshot as a layout guide (or just download the 
completed storyboard from the book's GitHub repository):



Detecting and Merging Faces of Mammals

[ 126 ]

Right-click on Capture View Controller in the scene hierarchy to see the list of 
available outlets and actions, which we defined in CaptureViewController.m.  
Set the connections so that they match the following screenshot:

Reviewing, saving, and sharing hybrid faces
Add two new files, ReviewViewController.h and ReviewViewController.m. Edit 
ReviewViewController.h so that it declares a ReviewViewController class with a 
UIImage as a property. Here is the relevant code:

#import <UIKit/UIKit.h>

@interface ReviewViewController : UIViewController



Chapter 4

[ 127 ]

@property UIImage *image;

@end

Note that the image property is part of the class's public interface. Our other view 
controller, CaptureViewController, will set this property in order to provide an 
image of a merged face.

Now, edit ReviewViewController.m to add the class's private interface. It contains 
callbacks for the trash and Save buttons as well as several helper methods to 
save and share images. We have already seen most of this functionality in the 
ViewController class in Chapter 2, Capturing, Storing, and Sharing Photos. Here  
is the start of the code in ReviewViewController.m:

#import <Photos/Photos.h>
#import <Social/Social.h>

#import "ReviewViewController.h"

@interface ReviewViewController ()

@property IBOutlet UIImageView *imageView;
@property IBOutlet UIActivityIndicatorView *activityIndicatorView;
@property IBOutlet UIToolbar *toolbar;

- (IBAction)onDeleteButtonPressed;
- (IBAction)onSaveButtonPressed;

- (void)saveImage:(UIImage *)image;
- (void)showSaveImageFailureAlertWithMessage:(NSString *)message;
- (void)showSaveImageSuccessAlertWithImage:(UIImage *)image;
- (UIAlertAction *)shareImageActionWithTitle:(NSString *)title
    serviceType:(NSString *)serviceType image:(UIImage *)image;
- (void)startBusyMode;
- (void)stopBusyMode;

@end

By the time ReviewViewController loads its view, the previous view 
controller should have already set the image property. To initialize the view, 
ReviewViewController just needs to show the image. Here is the relevant code:

- (void)viewDidLoad {
  [super viewDidLoad];
  
  self.imageView.image = self.image;
}



Detecting and Merging Faces of Mammals

[ 128 ]

If the user presses the "trash" button, ReviewViewController simply dismisses itself 
without saving or sharing the image:

- (IBAction)onDeleteButtonPressed {
  [self dismissViewControllerAnimated:YES completion:nil];
}

Alternatively, if the user presses the Save button, ReviewViewController shows 
a busy indicator, disables the toolbar items, saves the image, offers options to 
share the image, and finally dismisses itself. The button's callback has a two-line 
implementation, as it relies on helper methods like the ones we implemented in 
Chapter 2, Capturing, Storing, and Sharing Photos:

- (IBAction)onSaveButtonPressed {
  [self startBusyMode];
  [self saveImage:self.image];
}

Now that we have examined the interface and some of the interesting 
implementation details in ReviewViewController.m, let's open Main.storyboard. 
Drag a new view controller from the library pane to the editor area. Select the new 
View Controller in the scene hierarchy. Go to the inspector pane's Identity tab (its 
icon looks like a document containing a picture and text). Set the Class of the view 
controller to ReviewViewController, as shown in the following screenshot:

Now, let's add the appropriate GUI widgets as children of the view controller's  
main view. Refer to the following screenshot as a layout guide (or just download  
the completed storyboard from the book's GitHub repository):



Chapter 4

[ 129 ]

Right-click on Review View Controller in the scene hierarchy to see the list of 
available outlets and actions, which we defined in ReviewViewController.m.  
Set the connections so that they match the following screenshot:



Detecting and Merging Faces of Mammals

[ 130 ]

Seguing between the view controllers
Let's look at the code where our CaptureViewController provides the merged 
face image to the ReviewViewController. The UIViewController class provides 
a method, prepareForSegue:sender:, which enables us to get a segue's identifier 
and destination view controller. Open CaptureViewController.m and override this 
method with the following implementation:

- (void)prepareForSegue:(UIStoryboardSegue *)segue
    sender:(id)sender {
  if ([segue.identifier isEqualToString:@"showReviewModally"]) {
    ReviewViewController *reviewViewController =
      segue.destinationViewController;
    Face mergedFace(faceToMerge0, faceToMerge1);
    reviewViewController.image = [self
      imageFromCapturedMat:mergedFace.getMat()];
  }
}

Note that we are using our Face constructor's merge version, which accepts two 
other Face objects as arguments.

To create a segue and assign its identifier, showReviewModally, let's reopen Main.
storyboard. Right-click and drag from the Merge button to the view beneath 
Review View Controller, as shown in the following screenshot:



Chapter 4

[ 131 ]

A dark context menu should appear. From the menu, select Present Modally, as 
shown in the following screenshot:

Now, in the scene hierarchy, Capture View Controller Scene should have a new 
child, Present Modally segue to Review View Controller. Select it. Open the 
inspector's Attributes pane (its icon looks like a slider). In the Identifier field, enter 
showReviewModally. From the Transition pull-down menu, select Cross Dissolve  
(or your favorite cheesy effect), as shown in the following screenshot:



Detecting and Merging Faces of Mammals

[ 132 ]

Detecting a hierarchy of face elements
As part of our face detection algorithm, we will reject cat faces that intersect with 
human faces. The reason is that the cat face cascade produces more false positives 
than the human face cascade. Thus, if a region is detected as both a human face and 
cat face, it is probably a human face in reality. To help us check for intersections 
between face rectangles, let's write a utility function, intersects. Declare the 
function in a new header file, GeomUtils.h, with the following code:

#ifndef GEOM_UTILS_H
#define GEOM_UTILS_H

#include <opencv2/core.hpp>

namespace GeomUtils {
  bool intersects(const cv::Rect &rect0, const cv::Rect &rect1);
}

#endif // !GEOM_UTILS_H

Two rectangles intersect if (and only if) a corner of one rectangle lies inside the other 
rectangle. Create another file, GeomUtils.cpp, with the following implementation of 
the intersects function in the file:

#include "GeomUtils.h"

bool GeomUtils::intersects(const cv::Rect &rect0,
  const cv::Rect &rect1)
{
  return
    rect0.x                < rect1.x + rect1.width  &&
    rect0.x + rect0.width  > rect1.x                &&
    rect0.y                < rect1.y + rect1.height &&
    rect0.y + rect0.height > rect1.y;
}

Now, let's create a file, FaceDetector.cpp, for the implementation of the 
FaceDetector class. This file begins with the obvious import statements followed by a 
preprocessor macro that defines EQUALIZE(src, dst) as either a cv::CLAHE::apply 
method call or a simple cv::equalizeHist function call, depending on whether we 
set the WITH_CLAHE preprocessor flag. Here is the relevant code:

#include <opencv2/imgproc.hpp>

#include "FaceDetector.h"



Chapter 4

[ 133 ]

#include "GeomUtils.h"

#ifdef WITH_CLAHE
#define EQUALIZE(src, dst) clahe->apply(src, dst)
#else
#define EQUALIZE(src, dst) cv::equalizeHist(src, dst)
#endif

Our face detection algorithm uses many constants. We will define them here, near 
the top of the file, where we can conveniently review and modify them. For the 
cascade classifiers, we will use the following kinds of constants:

• Scale factor: This ratio expresses the change in scale between the levels of the 
search. For example, if the scale factor is 1.4, a classifier might search for faces 
that are 140 x 140 pixels, then 100 x 100 pixels, and so on.

• Minimum neighbors: If this is greater than zero, the classifier merges this 
number of intersecting detection results in a neighborhood. If there are fewer 
intersections, the results in the neighborhood are rejected.

• Minimum size: This is the smallest scale that the classifier will search. We 
express the minimum face size as a proportion of the whole image size, and 
the minimum eye size as a proportion of the face size.

We will define different cascade classification constants for human faces, human 
eyes, and cat faces, as seen in the following code:

const double DETECT_HUMAN_FACE_SCALE_FACTOR = 1.4;
const int DETECT_HUMAN_FACE_MIN_NEIGHBORS = 4;
const int DETECT_HUMAN_FACE_RELATIVE_MIN_SIZE_IN_IMAGE = 0.25;

const double DETECT_HUMAN_EYE_SCALE_FACTOR = 1.2;
const int DETECT_HUMAN_EYE_MIN_NEIGHBORS = 2;
const int DETECT_HUMAN_EYE_RELATIVE_MIN_SIZE_IN_FACE = 0.1;

const double DETECT_CAT_FACE_SCALE_FACTOR = 1.4;
const int DETECT_CAT_FACE_MIN_NEIGHBORS = 6;
const int DETECT_CAT_FACE_RELATIVE_MIN_SIZE_IN_IMAGE = 0.2;



Detecting and Merging Faces of Mammals

[ 134 ]

Some of the other constants represent the layout of eyes and noses in a typical face. 
We will express these layout values as a proportion of the face's or eye's width 
or height, and we will use different values for cats and humans. Here are the 
definitions:

const double ESTIMATE_HUMAN_EYE_CENTER_RELATIVE_X_IN_EYE = 0.5;
const double ESTIMATE_HUMAN_EYE_CENTER_RELATIVE_Y_IN_EYE = 0.65;

const double ESTIMATE_HUMAN_LEFT_EYE_CENTER_RELATIVE_X_IN_FACE =
  0.3;
const double ESTIMATE_HUMAN_RIGHT_EYE_CENTER_RELATIVE_X_IN_FACE =
  1.0 - ESTIMATE_HUMAN_LEFT_EYE_CENTER_RELATIVE_X_IN_FACE;
const double ESTIMATE_HUMAN_EYE_CENTER_RELATIVE_Y_IN_FACE = 0.4;

const double ESTIMATE_HUMAN_NOSE_RELATIVE_LENGTH_IN_FACE = 0.2;

const double ESTIMATE_CAT_LEFT_EYE_CENTER_RELATIVE_X_IN_FACE =
  0.25;
const double ESTIMATE_CAT_RIGHT_EYE_CENTER_RELATIVE_X_IN_FACE =
  1.0 - ESTIMATE_CAT_LEFT_EYE_CENTER_RELATIVE_X_IN_FACE;
const double ESTIMATE_CAT_EYE_CENTER_RELATIVE_Y_IN_FACE = 0.4;

const double ESTIMATE_CAT_NOSE_TIP_RELATIVE_X_IN_FACE = 0.5;
const double ESTIMATE_CAT_NOSE_TIP_RELATIVE_Y_IN_FACE = 0.75;

Finally, the following constants describe the BGR colors and radius that we use to 
draw rectangles and circles around the detected faces, eyes, and noses:

const cv::Scalar DRAW_HUMAN_FACE_COLOR(0, 255, 255); // Yellow
const cv::Scalar DRAW_CAT_FACE_COLOR(255, 255, 255); // White
const cv::Scalar DRAW_LEFT_EYE_COLOR(0, 0, 255); // Red
const cv::Scalar DRAW_RIGHT_EYE_COLOR(0, 255, 0); // Green
const cv::Scalar DRAW_NOSE_COLOR(255, 0, 0); // Blue

const int DRAW_RADIUS = 4;

Remember that a FaceDetector's constructor accepts the paths to four cascade  
files. It initializes the corresponding cascade classifiers for a human face, cat face, 
human left eye, and human right eye. If the WITH_CLAHE preprocessor flag is set,  
the constructor also initializes a CLAHE algorithm. Here is the code:

FaceDetector::FaceDetector(
    const std::string &humanFaceCascadePath,
    const std::string &catFaceCascadePath,
    const std::string &humanLeftEyeCascadePath,



Chapter 4

[ 135 ]

    const std::string &humanRightEyeCascadePath)
: humanFaceClassifier(humanFaceCascadePath)
, catFaceClassifier(catFaceCascadePath)
, humanLeftEyeClassifier(humanLeftEyeCascadePath)
, humanRightEyeClassifier(humanRightEyeCascadePath)
#ifdef WITH_CLAHE
, clahe(cv::createCLAHE())
#endif
{
}

Now, let's consider the detect method's implementation. It is quite long, so  
we will look at it in three chunks. First, we clear any previous contents from the 
vector<Face> of results and we resize and equalize the image. The equalization is 
implemented in a helper method, equalize, which we will examine later. Here is the 
start of the detect method's implementation:

void FaceDetector::detect(cv::Mat &image,
  std::vector<Face> &faces, double resizeFactor, bool draw)
{
  faces.clear();
  
  if (resizeFactor == 1.0)
  {
    equalize(image);
  }
  else
  {
    cv::resize(image, resizedImage, cv::Size(), resizeFactor,
      resizeFactor, cv::INTER_AREA);
    equalize(resizedImage);
  }

Secondly, the method uses two of the cascade classifiers to find the rectangular 
bounds of human faces and cat faces in the resized, equalized image. As part of 
this step, we calculate the minimum face sizes in pixels, based on the constant 
proportions that we defined. The rectangles are stored in vectors, as seen in the 
following code:

  // Detect human faces.
  std::vector<cv::Rect> humanFaceRects;
  int detectHumanFaceMinWidth = MIN(image.cols, image.rows) *
    DETECT_HUMAN_FACE_RELATIVE_MIN_SIZE_IN_IMAGE;
  cv::Size detectHumanFaceMinSize(detectHumanFaceMinWidth,
    detectHumanFaceMinWidth);



Detecting and Merging Faces of Mammals

[ 136 ]

  humanFaceClassifier.detectMultiScale(equalizedImage,
    humanFaceRects, DETECT_HUMAN_FACE_SCALE_FACTOR,
    DETECT_HUMAN_FACE_MIN_NEIGHBORS, 0, detectHumanFaceMinSize);
  
  // Detect cat faces.
  std::vector<cv::Rect> catFaceRects;
  int detectCatFaceMinWidth = MIN(image.cols, image.rows) *
    DETECT_CAT_FACE_RELATIVE_MIN_SIZE_IN_IMAGE;
  cv::Size detectCatFaceMinSize(detectCatFaceMinWidth,
    detectCatFaceMinWidth);
  catFaceClassifier.detectMultiScale(equalizedImage, catFaceRects,
    DETECT_CAT_FACE_SCALE_FACTOR, DETECT_CAT_FACE_MIN_NEIGHBORS,
    0, detectCatFaceMinSize);

Thirdly, we iterate over the rectangles, discard cat faces that intersect human faces, 
and pass the remaining items to the detectInnerComponents helper method. 
Each time we call the helper method, it constructs a Face object and adds it to the 
vector<Face> of results. Here are the relevant loops:

  for (cv::Rect &humanFaceRect : humanFaceRects) {
    // Evaluate the human face.
    detectInnerComponents(image, faces, resizeFactor, draw, Human,
      humanFaceRect);
    
    // Discard cat faces that intersect the human face.
    // (The human face detector is more reliable.)
    catFaceRects.erase(std::remove_if(catFaceRects.begin(),
      catFaceRects.end(),
      [&humanFaceRect](cv::Rect &catFaceRect) {
        return GeomUtils::intersects(humanFaceRect, catFaceRect);
      }), catFaceRects.end());
  }
  
  for (cv::Rect &catFaceRect : catFaceRects) {
    // Evaluate the cat face.
    detectInnerComponents(image, faces, resizeFactor, draw, Cat,
      catFaceRect);
  }
}



Chapter 4

[ 137 ]

The equalize helper method performs grayscale conversion (if the image is not 
already grayscale) and applies either standard equalization or CLAHE, based on our 
EQUALIZE macro. Here is the method's implementation:

void FaceDetector::equalize(const cv::Mat &image)
{
  switch (image.channels()) {
    case 4:
      cv::cvtColor(image, equalizedImage, cv::COLOR_BGRA2GRAY);
      EQUALIZE(equalizedImage, equalizedImage);
      break;
    case 3:
      cv::cvtColor(image, equalizedImage, cv::COLOR_BGR2GRAY);
      EQUALIZE(equalizedImage, equalizedImage);
      break;
    default:
      // Assume the image is already grayscale.
      EQUALIZE(image, equalizedImage);
      break;
  }
}

The detectInnerComponents helper method is long, so we will consider it in eight 
chunks. (If this seems like a lot of chunks, just remember, it is only 2^3 or 1<<3.) 
First, we will define local variables that represent the face sub matrix and the eye  
and nose coordinates. The face sub-matrix has a reference to (not a copy of) the 
image data in the face region. Here is the start of detectInnerComponents:

void FaceDetector::detectInnerComponents(const cv::Mat &image,
  std::vector<Face> &faces, double resizeFactor, bool draw,
  Species species, cv::Rect faceRect)
{
  cv::Range rowRange(faceRect.y, faceRect.y + faceRect.height);
  cv::Range colRange(faceRect.x, faceRect.x + faceRect.width);
  
  bool isHuman = (species == Human);
  
  cv::Mat equalizedFaceMat(equalizedImage, rowRange, colRange);
  
  cv::Rect leftEyeRect;
  cv::Rect rightEyeRect;
  
  cv::Point2f leftEyeCenter;
  cv::Point2f rightEyeCenter;
  cv::Point2f noseTip;



Detecting and Merging Faces of Mammals

[ 138 ]

If the face is human, we use a cascade classifier to search for the left eye in the left 
half of the face. If the classifier fails to detect the eye, we fall back to a naïve estimate 
of the eye's location in the face. Here is the relevant code:

  if (isHuman) {
    int faceWidth = equalizedFaceMat.cols;
    int halfFaceWidth = faceWidth / 2;
    
    int eyeMinWidth = faceWidth *
      DETECT_HUMAN_EYE_RELATIVE_MIN_SIZE_IN_FACE;
    cv::Size eyeMinSize(eyeMinWidth, eyeMinWidth);
    
    // Try to detect the left eye.
    std::vector<cv::Rect> leftEyeRects;
    humanLeftEyeClassifier.detectMultiScale(
      equalizedFaceMat.colRange(0, halfFaceWidth),
      leftEyeRects, DETECT_HUMAN_EYE_SCALE_FACTOR,
      DETECT_HUMAN_EYE_MIN_NEIGHBORS, 0, eyeMinSize);
    if (leftEyeRects.size() > 0) {
      leftEyeRect = leftEyeRects[0];
      leftEyeCenter.x = leftEyeRect.x +  
        ESTIMATE_HUMAN_EYE_CENTER_RELATIVE_X_IN_EYE *  
        leftEyeRect.width;
      leftEyeCenter.y = leftEyeRect.y +  
        ESTIMATE_HUMAN_EYE_CENTER_RELATIVE_Y_IN_EYE *
        leftEyeRect.height;
    } else {
      // Assume the left eye is in a typical location for a human.
      leftEyeCenter.x =  
        ESTIMATE_HUMAN_LEFT_EYE_CENTER_RELATIVE_X_IN_FACE *  
        faceRect.width;
      leftEyeCenter.y =  
        ESTIMATE_HUMAN_EYE_CENTER_RELATIVE_Y_IN_FACE *  
        faceRect.height;
    }

For the right eye, we follow the same approach, except that we search the right half 
of the face and use a different cascade classifier. We must adjust the detection result 
to be relative to the origin of the whole face, not the origin of the right half. Here is 
all the code to detect or naïvely estimate the right eye's coordinates:

    // Try to detect the right eye.
    std::vector<cv::Rect> rightEyeRects;
    humanRightEyeClassifier.detectMultiScale(
      equalizedFaceMat.colRange(halfFaceWidth, faceWidth),
      rightEyeRects, DETECT_HUMAN_EYE_SCALE_FACTOR,



Chapter 4

[ 139 ]

      DETECT_HUMAN_EYE_MIN_NEIGHBORS, 0, eyeMinSize);
    if (rightEyeRects.size() > 0) {
      rightEyeRect = rightEyeRects[0];
      // Adjust the right eye rect to be relative to the whole
      // face.
      rightEyeRect.x += halfFaceWidth;
      rightEyeCenter.x = rightEyeRect.x +
        ESTIMATE_HUMAN_EYE_CENTER_RELATIVE_X_IN_EYE *  
        rightEyeRect.width;
      rightEyeCenter.y = rightEyeRect.y +  
        ESTIMATE_HUMAN_EYE_CENTER_RELATIVE_Y_IN_EYE *  
        rightEyeRect.height;
    } else {
      // Assume the right eye is in a typical location for a
      // human.
      rightEyeCenter.x =  
        ESTIMATE_HUMAN_RIGHT_EYE_CENTER_RELATIVE_X_IN_FACE *  
        faceRect.width;
      rightEyeCenter.y =  
        ESTIMATE_HUMAN_EYE_CENTER_RELATIVE_Y_IN_FACE *  
        faceRect.height;
    }

As we do not have a cascade to detect a nose, we must make a naïve estimate about 
its coordinates. However, we can take advantage of the eye detection results, which 
may tell us that the face is tilted. If this is the case, the nose will be tilted too, and 
its tip will not be horizontally centered in the face rectangle. Instead, let's assume 
that if we find the line segment between the eyes, go to its midpoint, and then go 
down along a perpendicular line segment, we will reach the tip of the nose. This 
assumption is not perfect because it fails to account for perspective, yet it provides a 
useful adjustment for a slightly tilted face. Here is the relevant code:

    // Assume the nose is in a typical location for a human.
    // Consider the location of the eyes.
    cv::Point2f eyeDiff = rightEyeCenter - leftEyeCenter;
    cv::Point2f centerBetweenEyes = leftEyeCenter + 0.5 * eyeDiff;
    cv::Point2f noseNormal = cv::Point2f(-eyeDiff.y, eyeDiff.x) /  
    sqrt(pow(eyeDiff.x, 2.0) + pow(eyeDiff.y, 2.0));
    double noseLength =  
    ESTIMATE_HUMAN_NOSE_RELATIVE_LENGTH_IN_FACE *
    faceRect.height;
    noseTip = centerBetweenEyes + noseNormal * noseLength;
  }



Detecting and Merging Faces of Mammals

[ 140 ]

For a cat, we do not have cascades to detect the eyes and nose. Thus, we always 
make naïve estimates about their coordinates, as seen in the following code:

  else {
    // I haz kitteh! The face is a cat.
    // Assume the eyes and nose are in typical locations for a
    // cat.
    
    leftEyeCenter.x =  
      ESTIMATE_CAT_LEFT_EYE_CENTER_RELATIVE_X_IN_FACE *  
      faceRect.width;
    leftEyeCenter.y = ESTIMATE_CAT_EYE_CENTER_RELATIVE_Y_IN_FACE *  
      faceRect.height;
    
    rightEyeCenter.x =  
      ESTIMATE_CAT_RIGHT_EYE_CENTER_RELATIVE_X_IN_FACE *  
      faceRect.width;
    rightEyeCenter.y =  
      ESTIMATE_CAT_EYE_CENTER_RELATIVE_Y_IN_FACE *  
      faceRect.height;
    
    noseTip.x = ESTIMATE_CAT_NOSE_TIP_RELATIVE_X_IN_FACE *  
      faceRect.width;
    noseTip.y = ESTIMATE_CAT_NOSE_TIP_RELATIVE_Y_IN_FACE *  
      faceRect.height;
  }

At this stage, we have the eye and nose coordinates in the resized face sub-matrix. 
Let's restore the coordinates to the original scale, as seen in the following code: 

  // Restore everything to the original scale.
  
  faceRect.x /= resizeFactor;
  faceRect.y /= resizeFactor;
  faceRect.width /= resizeFactor;
  faceRect.height /= resizeFactor;
  
  rowRange.start /= resizeFactor;
  rowRange.end /= resizeFactor;
  
  colRange.start /= resizeFactor;
  colRange.end /= resizeFactor;
  
  cv::Mat faceMat(image, rowRange, colRange);
  
  leftEyeRect.x /= resizeFactor;



Chapter 4

[ 141 ]

  leftEyeRect.y /= resizeFactor;
  leftEyeRect.width /= resizeFactor;
  leftEyeRect.height /= resizeFactor;
  
  rightEyeRect.x /= resizeFactor;
  rightEyeRect.y /= resizeFactor;
  rightEyeRect.width /= resizeFactor;
  rightEyeRect.height /= resizeFactor;
  
  leftEyeCenter /= resizeFactor;
  rightEyeCenter /= resizeFactor;
  noseTip /= resizeFactor;

Now, using a face sub-matrix at the original scale, let's create a new Face object and 
add it to the vector of results: 

  faces.push_back(Face(species, faceMat, leftEyeCenter,  
  rightEyeCenter, noseTip));

The Face constructor copies the sub-matrix, so now we may draw atop the 
original image without affecting Face. As the face sub-matrix has a different 
origin than the full image, we must adjust the eye and nose coordinates for the 
purpose of the drawing functions. Here is the relevant code, which completes the 
detectInnerComponents method:

  if (draw) {
    cv::rectangle(image, faceRect.tl(), faceRect.br(),
      isHuman ? DRAW_HUMAN_FACE_COLOR : DRAW_CAT_FACE_COLOR);
    cv::circle(image, faceRect.tl() + cv::Point(leftEyeCenter),
      DRAW_RADIUS, DRAW_LEFT_EYE_COLOR);
    cv::circle(image, faceRect.tl() + cv::Point(rightEyeCenter),
      DRAW_RADIUS, DRAW_RIGHT_EYE_COLOR);
    cv::circle(image, faceRect.tl() + cv::Point(noseTip),
      DRAW_RADIUS, DRAW_NOSE_COLOR);
    
    if (leftEyeRect.width > 0) {
      cv::rectangle(image, faceRect.tl() + leftEyeRect.tl(),
        faceRect.tl() + leftEyeRect.br(), DRAW_LEFT_EYE_COLOR);
    }
    if (rightEyeRect.width > 0) {
      cv::rectangle(image, faceRect.tl() + rightEyeRect.tl(),
        faceRect.tl() + rightEyeRect.br(), DRAW_RIGHT_EYE_COLOR);
    }
  }
}



Detecting and Merging Faces of Mammals

[ 142 ]

Phew! That helper method really was long. I am reminded of a very old anecdote 
about a Scottish preacher who emigrated to Nova Scotia with his congregation. He 
prepared a series of sermons for the long sea voyage, and as the ship set sail from 
Aberdeen, he was building up to an interesting point: "Seventeenthly, friends, we 
encounter a great difficulty…"

I am a Nova Scotian with Scots among my ancestors.

Aligning and blending face elements
The rest of our app's functionality is in the implementation of the Face class.  
Create a new file, Face.cpp. Remember that Face has a species, matrix of image 
data, and coordinates for the centers of the eyes and tip of the nose. Also remember 
that we designed Face as an immutable type, and for this reason the constructor 
copies a given matrix rather than storing a reference to external data. At the start of 
Face.cpp, let's implement the constructor that takes a species, matrix, and feature 
points as arguments:

#include <opencv2/imgproc.hpp>

#include "Face.h"

Face::Face(Species species, const cv::Mat &mat,
    const cv::Point2f &leftEyeCenter,
    const cv::Point2f &rightEyeCenter, const cv::Point2f &noseTip)
: species(species)
, leftEyeCenter(leftEyeCenter)
, rightEyeCenter(rightEyeCenter)
, noseTip(noseTip)
{
  mat.copyTo(this->mat);
}

Face also has the following default constructor for an empty face:

Face::Face() {
}



Chapter 4

[ 143 ]

The following constructor copies the species, matrix, and feature points of another 
Face:

Face::Face(const Face &other)
: species(other.species)
, leftEyeCenter(other.leftEyeCenter)
, rightEyeCenter(other.rightEyeCenter)
, noseTip(other.noseTip)
{
  other.mat.copyTo(mat);
}

More interestingly, the Face class has another constructor to merge two given faces 
into a new face. This constructor checks the relative size of the given faces and 
passes them to a helper method with the signature, initMergedFace(const Face 
&biggerFace, const Face &smallerFace). Here is the constructor's code:

Face::Face(const Face &face0, const Face &face1) {
  if (face0.mat.total() > face1.mat.total()) {
    initMergedFace(face0, face1);
  } else {
    initMergedFace(face1, face0);
  }
}

Let's consider the helper method in four chunks. First, what is the species of the 
merged face? We shall say that two humans make a human, two cats make a cat,  
but a human and a cat make a hybrid. Therefore, the initMergedFace method  
starts like this:

void Face::initMergedFace(const Face &biggerFace,
  const Face &smallerFace)
{  
  // Determine the species of the merged face.
  if (biggerFace.species == Human &&
      smallerFace.species == Human) {
    species = Human;
  } else if (biggerFace.species == Cat &&
      smallerFace.species == Cat) {
    species = Cat;
  } else {
    species = Hybrid;
  }



Detecting and Merging Faces of Mammals

[ 144 ]

We want to warp the smaller face to map its eyes and nose to the same positions 
as the eyes and nose in the bigger face. This transformation can counteract many 
differences between the two faces, including differences in scale and rotation. 
OpenCV's cv::getAffineTransformation function can find the transformation 
matrix, and cv::warpAffine can apply it. Here is the relevant code:

  // Warp the smaller face to align the eyes and nose with the
  // bigger face.
  cv::Point2f srcPoints[3] = {
    smallerFace.getLeftEyeCenter(),
    smallerFace.getRightEyeCenter(),
    smallerFace.getNoseTip()
  };
  cv::Point2f dstPoints[3] = {
    biggerFace.leftEyeCenter,
    biggerFace.rightEyeCenter,
    biggerFace.noseTip
  };
  cv::Mat affineTransform = cv::getAffineTransform(srcPoints,
    dstPoints);
  cv::Size dstSize(biggerFace.mat.cols, biggerFace.mat.rows);
  cv::warpAffine(smallerFace.mat, mat, affineTransform, dstSize);

Now, let's convert the warped image and original bigger face to the same color 
format (if they are not already in the same format). Then, we will blend them by 
multiplication. The resulting blend will be a bit darker than the input images, but it 
will be a pleasing effect because it will preserve dark or colorful facial features such 
as hair, fur, lips, freckles, irises, pupils, and the rims of eyeglasses. Here is the code 
for the color conversion and blending:

  // Perform any necessary color conversion.
  // Then, blend the warped face and the original bigger face.
  switch (mat.channels() - biggerFace.mat.channels()) {
    case 3: {
      // The warped face is BGRA and the bigger face is grayscale.
      cv::Mat otherMat;
      cv::cvtColor(biggerFace.mat, otherMat, cv::COLOR_GRAY2BGRA);
      cv::multiply(mat, otherMat, mat, 1.0 / 255.0);
      break;
    }
    case 2: {
      // The warped face is BGR and the bigger face is grayscale.
      cv::Mat otherMat;
      cv::cvtColor(biggerFace.mat, otherMat, cv::COLOR_GRAY2BGR);



Chapter 4

[ 145 ]

      cv::multiply(mat, otherMat, mat, 1.0 / 255.0);
      break;
    }
    case 1: {
      // The warped face is BGRA and the bigger face is BGR.
      cv::Mat otherMat;
      cv::cvtColor(biggerFace.mat, otherMat, cv::COLOR_BGR2BGRA);
      cv::multiply(mat, otherMat, mat, 1.0 / 255.0);
      break;
    }
    case -1:
      // The warped face is BGR and the bigger face is BGRA.
      cv::cvtColor(mat, mat, cv::COLOR_BGR2BGRA);
      cv::multiply(mat, biggerFace.mat, mat, 1.0 / 255.0);
      break;
    case -2:
      // The warped face is grayscale and the bigger face is BGR.
      cv::cvtColor(mat, mat, cv::COLOR_GRAY2BGR);
      cv::multiply(mat, biggerFace.mat, mat, 1.0 / 255.0);
      break;
    case -3:
      // The warped face is grayscale and the bigger face is BGRA.
      cv::cvtColor(mat, mat, cv::COLOR_GRAY2BGRA);
      cv::multiply(mat, biggerFace.mat, mat, 1.0 / 255.0);
      break;
    default:
      // The color formats are the same.
      cv::multiply(mat, biggerFace.mat, mat, 1.0 / 255.0);
      break;
  }

To finish the initialization of the merged face, let's copy the eye and nose coordinates 
from the original bigger face. By design, the warped and merged faces also have eyes 
and a nose at these coordinates. Here is the code to copy them:

  // The points of interest match the original bigger face.
  leftEyeCenter = biggerFace.leftEyeCenter;
  rightEyeCenter = biggerFace.rightEyeCenter;
  noseTip = biggerFace.noseTip;
}



Detecting and Merging Faces of Mammals

[ 146 ]

Finally, for completeness, let's look at the one-line implementations of the Face 
class's getter methods. We define isEmpty() to be true if the Face's matrix is empty, 
and this is the case for a Face constructed with the default constructor. Otherwise, 
the following code should be entirely self-explanatory:

bool Face::isEmpty() {
  return mat.empty();
}
Species Face::getSpecies() const {
  return species;
}
const cv::Mat &Face::getMat() const {
  return mat;
}
int Face::getWidth() const {
  return mat.cols;
}
int Face::getHeight() const {
  return mat.rows;
}
const cv::Point2f &Face::getLeftEyeCenter() const {
  return leftEyeCenter;
}
const cv::Point2f &Face::getRightEyeCenter() const {
  return rightEyeCenter;
}
const cv::Point2f &Face::getNoseTip() const {
  return noseTip;
}

That's all! The ManyMasks app is complete, with the ability to detect, preview, 
merge, save, and share faces.

Using the application and acting like a 
cat
Build ManyMasks and run it on an iOS device. For best results, obey the following 
guidelines:

• Work in an area with bright lighting and no shadows.
• Fill most of the frame with the face so that the image's resolution is not 

wasted on background areas.



Chapter 4

[ 147 ]

• Capture an upright image of the face. This is especially important for a cat 
because our algorithm does not address the problem of locating the eyes and 
nose in a tilted cat face. To entice a cat to look straight at the camera, you 
might need to use a toy or treat.

• Capture a similar expression on the two faces. Like humans, cats have 
expressive faces, and different cats may develop different expressions as a 
form of communication with their humans. Here are some examples of my 
cats' expressions:

 ° Wide eyes: Alert or assertive
 ° Narrow eyes: Relaxed or submissive
 ° Yawn: "Hello, my human."
 ° Meow: "Pay attention, my human."
 ° Tongue between lips: Paying attention to a scent, possibly a pleasant 

scent such as "my human". The tongue contributes to a cat's sense of 
smell.

 ° Licking nose: "Feed me, my human."
 ° Curled lip, like Elvis Presley: Disgust
 ° Compressed forehead: Anger
 ° Hiss: Rage
 ° Mouth hanging open: Stress
 ° Quivering grin: Hunting

Find a friend or a pet, and start blending faces! ManyMasks provides a fun exercise 
in portrait photography and acting.

Learning more about face analysis
Although our model of a face is a good start, we could make it much more 
sophisticated. We could model many feature points in order to accurately represent 
the differences between expressions, such as happiness and sadness. We could 
consider the third dimension and the camera's perspective. We could identify 
specific humans and specific cats based on the details of the face or even just the eye. 
We could train cascades for other species besides humans and cats.



Detecting and Merging Faces of Mammals

[ 148 ]

Packt Publishing offers several more advanced OpenCV books with fascinating 
projects about face analysis. You can consider the following titles:

• OpenCV 3 Blueprints offers chapters on facial expression recognition, cascade 
training, and biometric identification of human faces, eyes, and fingerprints. 
The code is in C++.

• OpenCV for Secret Agents has a chapter on cascade training and biometric 
identification of human and cat faces. The code is in Python.

• Mastering OpenCV with Practical Computer Vision Projects provides chapters 
on face tracking with non-rigid features, 3D head tracking, and biometric 
identification of human faces, with code in C++.

Summary
This chapter has been a big step forward for us because we have focused on 
developing a modular and artificially intelligent solution. Unlike our previous 
apps, ManyMasks has multiple view controllers with a segue, as well as pure C++ 
classes dedicated to computer vision, and it is truly a smart application because 
it can classify things in its environment and perform computations based on their 
geometry. The next chapter will explore other smart approaches to problems of 
classification and geometry.



[ 149 ]

Classifying Coins and 
Commodities

Previously, in Chapter 4, Detecting and Merging Faces of Mammals, we used Haar 
or LBP cascades to classify the faces of humans and cats. We had a very specific 
classification problem because we wanted to blend faces, and conveniently, OpenCV 
provided pretrained cascade files for human and cat faces. Now, in our final chapter, 
we will tackle the broader problem of classifying a variety of objects without a ready-
made classifier. Perhaps we could train a Haar or LBP cascade for each kind of object, 
but this would be a long project, requiring a lot of training images. Instead, we will 
develop a detector that requires no training and a classifier that requires only a few 
training images. Along the way, we will practice the following tasks:

1. Segment an image into foreground and background regions based  
on pixel colors. The result of the segmentation is a binary image called a 
mask. Each pixel in the mask is marked as either foreground (black) or 
background (white).

2. Make the mask smoother by expanding the foreground regions. This process 
is called erosion. It is a special case of morphology, which means morphing 
shapes' boundaries.

3. Detect the edges of the mask's foreground shapes or blobs and cropping out 
a rectangular image of each blob. This is a type of contour analysis.

4. Compare images of blobs based on a count of the colors in each image.  
This process is called histogram analysis.

5. Compare images of blobs based on scale-invariant and rotation-invariant 
descriptions of the textures in each image. This process is known as feature 
matching or keypoint matching.



Classifying Coins and Commodities

[ 150 ]

You will configure the project with your own kinds of objects and your own training 
images. As examples, this chapter will discuss two kinds of dried beans and five 
kinds of Canadian coins, represented in the following set of training images:



Chapter 5

[ 151 ]

Note that these training images vary in terms of scale and rotation. Our classifier will 
be scale-invariant and rotation-invariant. For each coin, we use two training images 
representing the obverse (heads) side and reverse (tails) side. From left to right and 
top to bottom, we have the following objects:

• Pinto bean: It is white with dark brown spots.
• Romano bean: It is brownish orange with dark brown spots.
• Nickel (5-cent piece): It is nickel-plated. On the heads side, it shows Queen 

Elizabeth II. On the tails side, it shows a beaver.
• Dime (10-cent piece): It is nickel-plated. On the heads side, it shows Queen 

Elizabeth II. On the tails side, it shows The Bluenose, a famous sailing ship 
from my province, Nova Scotia.

• Quarter (25-cent piece): It is nickel-plated. On the heads side, it shows Queen 
Elizabeth II. On the tails side, it shows a caribou.

• Loonie (dollar piece): It is brass-plated. On the heads side, it shows Queen 
Elizabeth II. On the tails side, it shows a loon.

• Toonie (two-dollar piece): Its outer ring is nickel-plated and its inner circle 
is brass-plated. On the heads side, it shows Queen Elizabeth II. On the tails 
side, it shows a polar bear.

The nickel, dime, and quarter have very similar designs on the 
heads side, so we expect some false classifications when we view 
these coins' heads.

Let's call our classification app BeanCounter, which is a colloquial term for an 
accountant or person who itemizes everything. By the end of the chapter, perhaps 
BeanCounter will inspire you to examine all the objects in your home or office and 
train a classifier for many of them!

To obtain the completed projects for this book, you can refer to 
my GitHub repository at https://github.com/JoeHowse/
iOSWithOpenCV or log in to your account on Packt Publishing's site 
at www.PacktPub.com. The project for Chapter 5, Classifying Coins and 
Commodities, is in the BeanCounter subfolder.

https://github.com/JoeHowse/iOSWithOpenCV
https://github.com/JoeHowse/iOSWithOpenCV
www.PacktPub.com


Classifying Coins and Commodities

[ 152 ]

Understanding blob detection
A blob is a region that we can discern based on color. Perhaps the blob itself has a 
distinctive color, or perhaps the background does. Unlike the term "object", the term 
"blob" does not necessarily imply something with mass and volume. For example, 
surface variations such as stains can be blobs, even though they have negligible mass 
and volume. Optical effects can also be blobs. For example, a lens's aperture can 
produce bokeh balls or out-of-focus highlights that can make lights or shiny things 
appear strangely large and strangely similar to the aperture's shape. However, in 
BeanCounter, we tend to assume that a blob is a classifiable object.

The term "bokeh" comes from a Japanese word for bamboo. 
Different authors give different stories about the etymology, 
but perhaps someone thought bokeh balls resemble the bright 
rim of a chopped piece of bamboo.

Typically, a blob detector needs to solve the following sequence of problems:

1. Segmentation: Distinguish between the background colors and the 
foreground (blob) colors.

2. Edge detection: Distinguish between edge pixels and non-edge pixels. The 
Canny edge detection algorithm is a popular choice.

3. Contour analysis: Simplify the representation of the edges so that we may 
reason about them as geometric shapes.

Let's look at these steps one by one in the next few subsections.

Segmentation
This step is deceptively simple. We map a color range to the mask's background 
color (white) and the rest of the color ranges to the mask's foreground color 
(black), or vice versa. The cv::inRange function fits this purpose exactly. For 
some applications, we may think we know a priori what the correct color ranges 
will be. This is often a mistake. The lighting or the scene's contents may change 
unexpectedly, or we may just fail to consider a significant color.

Let's consider an example. When developers try to detect a human presence, they 
often rely on assumptions about the range of human skin colors, either in visible 
light or infrared light. These assumptions are often poorly tested, so the detector may 
have an unintended racial bias. Users have complained of such flaws in a wide range 
of computer vision devices, from Xbox Kinect to automatic soap dispensers.



Chapter 5

[ 153 ]

Max Plenke of Tech.Mic has posted an interesting report on 
unintended racial bias in computer vision at http://mic.com/
articles/124899/the-reason-this-racist-soap-
dispenser-doesn-t-work-on-black-skin.

Rather than rely on rigid assumptions, we should consider an adaptive approach. 
We can choose a new background color range for each frame based on an analysis 
of the image. A simple and computationally cheap approach is to estimate the 
background range's center and width based on the mean color and standard 
deviation, respectively. The cv::meanStdDev function computes these statistics. 
More sophisticated approaches can use a history of multiple frames to build up a 
model of the background even as foreground objects move in and out. However, for 
BeanCounter's purposes, we will stay with the simpler approach.

The bgsegm module of opencv_contrib contains implementations 
of advanced segmentation techniques that use a history. See the 
official documentation at http://docs.opencv.org/3.1.0/d2/
d55/group__bgsegm.html.

Canny edge detection
After generating a foreground mask, we want to detect the edges where the 
foreground and background meet. Previously, in my book, OpenCV for Secret Agents 
(Packt Publishing, 2015), I wrote the following description of edge detection in 
general, and the Canny algorithm specifically:

"[A] general approach to shape detection should start with an edge finding 
filter (marking edge regions as white and interior regions as black) and then a 
thresholding process. We define an edge as the discontinuity between neighboring 
regions of different brightness. Thus, an edge pixel has darker neighbors on one 
side and brighter neighbors on the opposite side. An edge-finding filter subtracts 
neighbor values from one side and adds them from the opposite side in order to 
measure how strongly a pixel exhibits this edge-like contrast in a given direction. 
To achieve a measurement that is independent of edges' direction, we can apply 
multiple filters (each oriented for edges of a different direction) and treat each 
filter's output as a dimension of a vector whose magnitude represents the overall 
"edginess" of the pixel. A set of such measurements for all pixels is sometimes 
called the derivative of the image. Having computed the image's derivative, we 
select a threshold value based on the minimum contrast that we require in an edge. 
A high threshold accepts only high-contrast edges while a lower threshold also 
accepts lower-contrast edges.

http://mic.com/articles/124899/the-reason-this-racist-soap-dispenser-doesn-t-work-on-black-skin
http://mic.com/articles/124899/the-reason-this-racist-soap-dispenser-doesn-t-work-on-black-skin
http://mic.com/articles/124899/the-reason-this-racist-soap-dispenser-doesn-t-work-on-black-skin
http://docs.opencv.org/3.1.0/d2/d55/group__bgsegm.html
http://docs.opencv.org/3.1.0/d2/d55/group__bgsegm.html


Classifying Coins and Commodities

[ 154 ]

A popular edge-finding technique is the Canny algorithm. OpenCV's 
implementation, the [cv::Canny function in the imgproc module], performs both 
filtering and thresholding. As arguments, it takes a grayscale image, an output 
image, a low threshold value, and a high threshold value. The low threshold should 
accept all pixels that might be part of a good edge. The high threshold should accept 
only pixels that definitely are part of a good edge. From the set whose members 
might be edge pixels, the Canny algorithm accepts only the members that connect 
to definite edge pixels. The double criteria help to ensure that we can accept thin 
extremities of a major edge while rejecting edges that are altogether faint. For 
example, a pen stroke or the curb of a road extending into the distance can be a 
major edge with thin extremities."

Note that the Canny edge-finding algorithm produces another mask, 
but this is an edge mask instead of a foreground mask. The edge mask 
is black in edge regions and white in non-edge regions.

Contour analysis
Given an edge mask, we can find sets of connected edge pixels by iteratively 
moving from one black pixel to an adjacent black pixel. This process is called border 
following. Then, we can approximate each set of edge pixels with a smaller number 
of points that define a contour. OpenCV implements this general approach in the 
cv::findContours function.

Specifically, cv::findContours implements an algorithm that is 
described in the following paper:
Satoshi Suzuki. Topological Structural Analysis of Digitized Binary Images by 
Border Following. Computer Vision, Graphics, and Image Processing, Vol. 30 
(1985), p. 32-46.

After finding a contour, we can simplify our model even further. We can find a 
simple geometric shape that approximates the contour's bounds. For this purpose, 
OpenCV provides functions such as cv::boundingRect and cv::boundingEllipse. 
A bounding rectangle is convenient because, in BeanCounter, we want to crop out a 
subimage of the blob.

For some applications, we may know a priori that we are only interested in blobs of a 
particular size or shape. Then, we can reject contours or bounding shapes that do not 
match our expectations. For BeanCounter, we reject very small blobs but we do not 
apply any other restrictions because we want to build a general-purpose detector.



Chapter 5

[ 155 ]

Understanding histogram analysis
A histogram is a count of how many times each color occurs in an image. Typically, 
we do not count all possible colors separately; rather, we group similar colors 
together into bins. With a smaller number of bins, the histogram occupies less 
memory and offers a coarser basis of comparison. Typically, we want to choose 
some middle ground between very many bins (as the histograms tend to be highly 
dissimilar) and very few bins (as the histograms tend to be highly similar). For 
BeanCounter, let's start with 32 bins per channel (or 32^3=32678 bins in total), but 
you may change this value in the code to experiment with its effect.

A comparison of histograms can tell us whether two images contain similar colors. 
This kind of similarity alone does not necessarily mean that the images contain 
matching objects. For example, a silver fork and silver coin could have similar 
histograms. OpenCV supports several popular comparison algorithms. We will use 
the Alternative Chi-Square algorithm, which is a distance (dissimilarity) metric that 
heavily penalizes cases where a color is rare in one image but common in the other. 
Here is the algorithm in mathematical notation:

d(H
1
,H

2
)=2*∑

I
[(H

1
(I)−H

2
(I))

2
/(H

1
(I)+H

2
(I))]

Here is the equivalent pseudocode, which iterates over pairs of corresponding bins 
in two one-dimensional histograms:

function altChiSq(hist0, hist1):
  assert(hist0.length == hist1.length)
  dist = 0
  i = 0
  while i < hist0.length:
    dist += (hist0[i]-hist1[i])^2 / (hist0[i]+hist1[i])
    i += 1
  dist *= 2
  return dist

Multidimensional cases are similar, except that they involve multiple indices and 
nested loops.

For a list of all OpenCV's histogram comparison algorithms and their 
formulae, see the official documentation at http://docs.opencv.
org/3.1.0/d6/dc7/group__imgproc__hist.html#ga994f53
817d621e2e4228fc646342d386.

http://docs.opencv.org/3.1.0/d6/dc7/group__imgproc__hist.html#ga994f53817d621e2e4228fc646342d386
http://docs.opencv.org/3.1.0/d6/dc7/group__imgproc__hist.html#ga994f53817d621e2e4228fc646342d386
http://docs.opencv.org/3.1.0/d6/dc7/group__imgproc__hist.html#ga994f53817d621e2e4228fc646342d386


Classifying Coins and Commodities

[ 156 ]

OpenCV provides functions, cv::calcHist and cv::compareHist, to compute 
histograms and measure their similarity. OpenCV represents a histogram as a matrix 
with one dimension per color channel. For example, if we use all three channels in a 
BGR image, the histogram will have three dimensions.

Note that in OpenCV, a multidimensional matrix is not the same as 
a multichannel matrix, and many OpenCV functions cannot handle 
matrices with more than two dimensions.

Understanding keypoint matching
Previously, in the Understanding detection with cascade classifiers section in Chapter 4, 
Detecting and Merging Faces of Mammals, we considered the problem of searching for a 
set of high-contrast features at various positions and various levels of magnification 
or scale. As we saw, Haar and LBP cascade classifiers solve this problem. Thus, we 
may say they are scale-invariant (robust to changes in scale). However, we also 
noted that these solutions are not rotation-invariant (robust to changes in rotation). 
Why? Consider the individual features. Haar-like features include edges, lines, and 
dots, which are all symmetric. LBP features are gradients, which may be symmetric, 
too. A symmetric feature cannot give us a clear indication of the object's rotation.

Now, let's consider solutions that are both scale-invariant and rotation-invariant. 
They must use asymmetric features called corners. A corner has brighter neighbors 
across one range of directions and darker neighbors across the remaining range of 
directions. One range must be bigger than the other, or else the feature is an edge, 
not a corner. For example, a reference image of an object might contain a right-angle 
corner with brighter neighbors ranging from the 12 o'clock to 3 o'clock directions 
and darker neighbors ranging from the 3 o'clock to 12 o'clock directions. If we find 
that a scene contains a right-angle corner with brighter neighbors ranging from the 1 
o'clock to 4 o'clock directions, we may perhaps match this feature (along with others) 
to the reference. Then, we can infer that the scene's object is rotated 30 degrees 
clockwise relative to the reference object. Broadly, this type of scale- and rotation-
invariant comparison has three steps:

1. Detect corners.
2. Extract descriptors, which are statistics about each corner.
3. Match descriptors from different images.

Often, detection and extraction are part of one algorithm, but the matcher is another 
algorithm that can work with many kinds of descriptors. Let's consider two popular 
pairs of algorithms: the SURF detector/extractor with the FLANN matcher and the 
ORB detector/extractor with the brute-force matcher.



Chapter 5

[ 157 ]

OpenCV's official documentation contains an excellent set of tutorials on 
all the supported detection, extraction, and matching algorithms. Visit 
http://docs.opencv.org/3.1.0/db/d27/tutorial_py_table_
of_contents_feature2d.html.
For more great tutorials on extraction, see Gil Levi's blog posts on 
the topic, starting with his A Short introduction to descriptors at 
https://gilscvblog.wordpress.com/2013/08/18/a-short-
introduction-to-descriptors/.

SURF and FLANN
One approach to corner detection is to find the difference between the image's 
original version and a blurred version. This difference will be largest at corners. 
An algorithm called Scale-Invariant Feature Transform (SIFT) popularized 
this approach. For each detected corner, SIFT extracts a descriptor that includes 
128 grayscale histogram bins for various brightness levels and various regions 
surrounding the corner. A newer algorithm, Speeded-up Robust Features (SURF), 
follows the same general approach as SIFT but applies many optimizations.

SIFT and SURF are patented, so I recommend that you only use them for 
non-commercial research purposes or study. They are implemented in the 
cv::xfeatures2d::SIFT and cv::xfeatures2d::SURF classes of the xfeatures2d 
module of opencv_contrib. These are subclasses of cv::Feature2D, which is part 
of the standard features module.

For SIFT and SURF, a popular matcher is Fast Library for Approximate Nearest 
Neighbors (FLANN). FLANN is optimized for nearest-neighbor searches in large 
datasets with high-dimensional spaces, such as the SIFT or SURF descriptors 
with 128 elements. The cv::DescriptorMatcher class implements many 
algorithms including FLANN, and we choose the algorithm via a factory function, 
cv::DescriptorMatcher::create. The cv::DescriptorMatcher class is part of 
the standard features2d module, and the FLANN implementation depends on the 
standard FLANN module.

If opencv_contrib is available, BeanCounter will use SURF and FLANN. This 
combination offers acceptable speed and good reliability and is widely used in 
industry despite the SURF patent.

http://docs.opencv.org/3.1.0/db/d27/tutorial_py_table_of_contents_feature2d.html
http://docs.opencv.org/3.1.0/db/d27/tutorial_py_table_of_contents_feature2d.html
https://gilscvblog.wordpress.com/2013/08/18/a-short-introduction-to-descriptors/
https://gilscvblog.wordpress.com/2013/08/18/a-short-introduction-to-descriptors/


Classifying Coins and Commodities

[ 158 ]

ORB and brute-force Hamming-distance 
matching
Compared to SIFT and SURF, several other algorithms offer the advantages of being 
free, using less memory, and running faster, though they are less reliable.

Features from Accelerated Segment Test (FAST) is a corner detection algorithm 
that does not rely on a blur filter. It just considers differences in brightness within 
neighboring pixels and quickly rejects a neighborhood if the first few pixels do not 
look like a corner. FAST is not rotation-invariant.

Binary Robust Independent Elementary Features (BRIEF) is a descriptor extraction 
algorithm that produces a vector of binary elements (0 or 1). Each element represents 
the relative brightness of a pair of regions surrounding the corner. A value of 1 
indicates that the first region is brighter. BRIEF is not rotation-invariant.

Oriented FAST and Rotated BRIEF (ORB) uses a variant of FAST for detection and 
a BRIEF variant for extraction. ORB is faster than the original FAST and BRIEF, and 
unlike them, it is rotation-invariant.

For details of the ORB algorithm, see the following paper, written by 
some of OpenCV's developers:
Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: 
an efficient alternative to SIFT or SURF. Menlo Park, California: Willow 
Garage, 2011. http://www.willowgarage.com/sites/default/
files/orb_final.pdf

FAST, BRIEF, and ORB are implemented in the cv::FastFeatureDetector, cv
::xfeatures2d::BriefDescriptorExtractor, and cv::ORB classes. These are 
subclasses of cv::Feature2D.

For BRIEF, ORB, and other binary descriptors, it is appropriate to use brute-force 
matching with the Hamming distance as the metric. Brute-force matching simply 
consists of choosing matches that minimize a metric of distance between the pairs of 
matched descriptor vectors. The Hamming distance is a count of the vector elements 
that differ. The cv::DescriptorMatcher class implements many algorithms 
including brute-force Hamming distance, and we choose the algorithm via a factory 
function, cv::DescriptorMatcher::create.

If opencv_contrib is unavailable, BeanCounter will use ORB and brute-force 
matching. This combination offers good speed and acceptable reliability.  
It is widely used, especially for mobile and embedded applications.

http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf


Chapter 5

[ 159 ]

Planning an object classification 
application
At startup, BeanCounter loads a configuration file and set of images and trains the 
classifier. This may take several seconds. While loading, the app displays the text 
Training classifier…, along with a regal image of Queen Elizabeth II and eight  
dried beans:



Classifying Coins and Commodities

[ 160 ]

Next, BeanCounter shows a live view from the rear-facing camera. A blob detection 
algorithm is applied to each frame and a green rectangle is drawn around each 
detected blob. Consider the following screenshot:



Chapter 5

[ 161 ]

Note the controls in the toolbar below the camera view. The Image and Mask 
segmented controls enable the user to toggle between the preceding view of 
detection results in the image and the following view of the mask:

The gray dots in the preceding image are just an artifact of the iOS 
screenshot function, which sometimes shows a faint ghost of a 
previous frame. The mask is really pure black and pure white.



Classifying Coins and Commodities

[ 162 ]

The switch camera button has the usual effect of activating a different camera  
(front-facing or rear-facing).

When the user presses the Classify button, BeanCounter classifies the image of the 
blob. This process may take a few seconds. When the result is ready, the app shows 
a large view of the blob with a caption that describes the classification. Refer to the 
following screenshot:

Again, note the toolbar items. The trash and Save buttons have the same behavior as 
they did in our previous applications, LightWork and ManyMasks. Once again, if the 
user saves an image, the app prompts the user to share it via social media (or not). 
When the user has finished reviewing the classification result and trashed or saved 
the image, BeanCounter returns to its capture and detection mode.

Configuring the project
Create an Xcode project named BeanCounter. As usual, choose the Single View 
Application template. Follow the configuration instructions in Chapter 1, Setting Up 
Software and Hardware and Chapter 2, Capturing, Storing, and Sharing Photos. (See the 
Configuring the project section of each chapter.) BeanCounter depends on the same 
frameworks and device capabilities as LightWork.



Chapter 5

[ 163 ]

Our blob classifier will depend on a configuration file and set of training images that 
we provide. As a starting point, you may want to use the training set of beans and 
Canadian coins, as provided in the book's GitHub repository. Alternatively, under 
the Supporting Files folder, add your own training images and create a new file 
called BlobClassifierTraining.plist. Edit the PLIST file to define labels and 
training images according to the format in the following screenshot:



Classifying Coins and Commodities

[ 164 ]

For example, Item 0 in blobs is a training image with the filename CanadianNickel_
Heads_000.png and the label 2. We can look up the 2 label's description in 
labelDescriptions, where Item 2 is Canadian nickel. Thus, CanadianNickel_
Heads_000.png is a training image for Canadian nickel.

Later, in the Capturing and previewing blobs section, we will parse this configuration 
file and use its values. Item 0 in labelDescriptions should describe an unknown 
or unclassified object, but otherwise you are free to choose any labels and training 
images.

If you use a large training set, you may run into problems 
with slow startup, slow classification, and memory shortages. 
Typically, large-scale classification systems rely on remote servers 
where processing power and memory are relatively plentiful. 
BeanCounter uses a simple approach that works for a small-scale 
classification system on a disconnected mobile device.

After completing the PLIST file, select BeanCounter in the project navigator 
pane. Open the Build Phases tab in the editor area and make sure that 
BlobClassifierTraining.plist and the training images appear in the  
Copy Bundle Resources list.

Defining blobs and a blob detector
For our purposes, a blob simply has an image and label. The image is cv::Mat and 
the label is an unsigned integer. The label's default value is 0, which shall signify that 
the blob has not yet been classified. Create a new header file, Blob.h, and fill it with 
the following declaration of a Blob class:

#ifndef BLOB_H
#define BLOB_H

#include <opencv2/core.hpp>

class Blob
{
public:
  Blob(const cv::Mat &mat, uint32_t label = 0ul);
  
  /**
   * Construct an empty blob.
   */



Chapter 5

[ 165 ]

  Blob();
  
  /**
   * Construct a blob by copying another blob.
   */
  Blob(const Blob &other);
  
  bool isEmpty() const;
  
  uint32_t getLabel() const;
  void setLabel(uint32_t value);
  
  const cv::Mat &getMat() const;
  int getWidth() const;
  int getHeight() const;
  
private:
  uint32_t label;
  
  cv::Mat mat;
};

#endif // BLOB_H

The image of Blob does not change after construction, but the label may change as a 
result of our classification process. Note that most of the methods of Blob have the 
const modifier, but of course, setLabel does not because it changes the label.

Now, let's declare a BlobDetector class in another new header file, 
BlobDetector.h. This class provides a detect public method to analyze a given 
image and populate a vector<Blob> based on detected objects in the image. Another 
public method, getMask, returns a thresholded version of the most recent image that 
the detect method received. Internally, BlobDetector uses several more matrices 
and vectors to hold intermediate results, including the mask, detected edges, 
detected contours, and hierarchy that describes the contours' relationship to each 
other. Here is the detector's declaration:

class BlobDetector
{
public:
  void detect(cv::Mat &image, std::vector<Blob> &blob,



Classifying Coins and Commodities

[ 166 ]

    double resizeFactor = 1.0, bool draw = false);
  
  const cv::Mat &getMask() const;
  
private:
  void createMask(const cv::Mat &image);
  
  cv::Mat resizedImage;
  cv::Mat mask;
  cv::Mat edges;
  std::vector<std::vector<cv::Point>> contours;
  std::vector<cv::Vec4i> hierarchy;
};

#endif // !BLOB_DETECTOR_H

Later, in the Detecting blobs against a plain background section, we will define the 
methods' bodies in new files called Blob.cpp and BlobDetector.cpp.

Defining blob descriptors and a blob 
classifier
Earlier in this chapter, in the Understanding keypoint matching section, we introduced 
the concept that a keypoint has a descriptor or set of descriptive statistics. Similarly, 
we can define a custom descriptor for a blob. As our classifier relies on histogram 
comparison and keypoint matching, let's say that a blob's descriptor consists of a 
normalized histogram and a matrix of keypoint descriptors. The descriptor object is 
also a convenient place to put the label. Create a new header file, BlobDescriptor.h, 
and put the following declaration of a BlobDescriptor class in it:

#ifndef BLOB_DESCRIPTOR_H
#define BLOB_DESCRIPTOR_H

#include <opencv2/core.hpp>

class BlobDescriptor
{
public:
  BlobDescriptor(const cv::Mat &normalizedHistogram,
    const cv::Mat &keypointDescriptors, uint32_t label);
  
  const cv::Mat &getNormalizedHistogram() const;



Chapter 5

[ 167 ]

  const cv::Mat &getKeypointDescriptors() const;
  uint32_t getLabel() const;
  
private:
  cv::Mat normalizedHistogram;
  cv::Mat keypointDescriptors;
  uint32_t label;
};

#endif // !BLOB_DESCRIPTOR_H

Note that BlobDescriptor is designed as an immutable class. All its methods, 
except the constructor, have the const modifier.

Now, let's declare a BlobClassifier class in another new header file, 
BlobClassifier.h. Publicly, this class receives Blob objects via an update method 
(for reference blobs) and a classify method (for blobs that the detector found in the 
scene). Privately, BlobClassifier creates, owns, and compares BlobDescriptor 
objects that pertain to the Blob objects. Thus, BlobClassifier is the only part of 
our program that needs to deal with BlobDescriptor. BlobClassifier also owns 
instances of OpenCV classes that are responsible for keypoint detection, description, 
and matching. Here is our classifier's declaration:

#ifndef BLOB_CLASSIFIER_H
#define BLOB_CLASSIFIER_H

#import "Blob.h"
#import "BlobDescriptor.h"

#include <opencv2/features2d.hpp>

class BlobClassifier
{
public:
  BlobClassifier();
  
  /**
   * Add a reference blob to the classification model.
   */
  void update(const Blob &referenceBlob);
  
  /**
   * Clear the classification model.
   */



Classifying Coins and Commodities

[ 168 ]

  void clear();
  
  /**
   * Classify a blob that was detected in a scene.
   */
  void classify(Blob &detectedBlob) const;
  
private:
  BlobDescriptor createBlobDescriptor(const Blob &blob) const;
  float findDistance(const BlobDescriptor &detectedBlobDescriptor,
    const BlobDescriptor &referenceBlobDescriptor) const;
  
  /**
   * An adaptive equalizer to enhance local contrast.
   */
  cv::Ptr<cv::CLAHE> clahe;
  
  /**
   * A feature detector and descriptor extractor.
   * It finds features in images.
   * Then, it creates descriptors of the features.
   */
  cv::Ptr<cv::Feature2D> featureDetectorAndDescriptorExtractor;
  
  /**
   * A descriptor matcher.
   * It matches features based on their descriptors.
   */
  cv::Ptr<cv::DescriptorMatcher> descriptorMatcher;
  
  /**
   * Descriptors of the reference blobs.
   */
  std::vector<BlobDescriptor> referenceBlobDescriptors;
};

#endif // !BLOB_CLASSIFIER_H

Later, in the Classifying blobs by color and keypoints section, we will write the methods' 
bodies in new files called BlobDescriptor.cpp and BlobClassifier.cpp.



Chapter 5

[ 169 ]

Laying out the splash screen
LaunchScreen.storyboard defines the splash screen's layout, including the 
background image and the Training classifier… label. Refer to the following 
screenshot as a layout guide (or just download the completed storyboard from  
the book's GitHub repository):

Defining and laying out the view 
controllers
BeanCounter uses two view controllers. The first enables the user to capture and 
preview images of blobs. The second enables the user to review a blob's classification 
result and save and share the image of the blob. A segue enables the first view 
controller to instantiate the second and pass a blob and label to it. This is similar 
to how we divided the application logic in the project, ManyMasks, in Chapter 4, 
Detecting and Merging Faces of Mammals, so we are able to reuse some code.

Capturing and previewing blobs
Import copies of the VideoCamera.h and VideoCamera.m files that we created in 
Chapter 2, Capturing, Storing, and Sharing Photos. These files contain our VideoCamera 
class, which extends OpenCV's CvVideoCamera to fix bugs and add new 
functionality.



Classifying Coins and Commodities

[ 170 ]

Also import copies of the CaptureViewController.h and 
CaptureViewController.m files that we created in Chapter 4, Detecting and 
Merging Faces of Mammals. These files contain our CaptureViewController 
class, which is responsible for capture and detection. Of course, our new version 
of CaptureViewController does not depend on our old model of faces and a 
face detector. Instead, it depends on our new model of blobs, a blob detector, 
and a blob classifier. The new version also keeps a list of strings describing 
the possible classification labels. The user interface has changed a bit, too. Edit 
CaptureViewController.m so that it begins with the following import statements 
and private interface:

#import <opencv2/core.hpp>
#import <opencv2/imgcodecs/ios.h>
#import <opencv2/imgproc.hpp>

#import "CaptureViewController.h"
#import "BlobClassifier.h"
#import "BlobDetector.h"
#import "ReviewViewController.h"
#import "VideoCamera.h"

const double DETECT_RESIZE_FACTOR = 0.5;

@interface CaptureViewController () <CvVideoCameraDelegate> {
  BlobClassifier *blobClassifier;
  BlobDetector *blobDetector;
  std::vector<Blob> detectedBlobs;
}

@property IBOutlet UIView *backgroundView;
@property IBOutlet UIBarButtonItem *classifyButton;

@property VideoCamera *videoCamera;
@property BOOL showMask;

@property NSArray<NSString *> *labelDescriptions;

- (IBAction)onTapToSetPointOfInterest:
    (UITapGestureRecognizer *)tapGesture;
- (IBAction)onPreviewModeSelected:
    (UISegmentedControl *)segmentedControl;
- (IBAction)onSwitchCameraButtonPressed;

- (void)refresh;



Chapter 5

[ 171 ]

- (void)processImage:(cv::Mat &)mat;
- (UIImage *)imageFromCapturedMat:(const cv::Mat &)mat;

@end

Our viewDidLoad method is responsible for initializing the detector, classifier, list of 
label descriptions, and camera. As part of this process, we load metadata about our 
classifier's training set from BlobClassiferTraining.plist. (For a description of 
this PLIST file, refer back to the Configuring the project section earlier in this chapter.) 
The iOS SDK makes it easy for us to load PLIST as a dictionary of key-value pairs. 
The keys are strings and the values may be other dictionaries, arrays, strings, 
numbers, Booleans, dates, or raw binary data. For BeanCounter's purposes, the 
PLIST file provides label descriptions as well as pairs of training images and their 
labels. We load each image from file, construct Blob with the image and its label, and 
pass Blob to the update method of BlobClassifier to train the classifier. See the 
highlighted code in the following implementation of viewDidLoad:

@implementation CaptureViewController

- (void)viewDidLoad {
  [super viewDidLoad];
  
  blobDetector = new BlobDetector();
  blobClassifier = new BlobClassifier();
  
  // Load the blob classifier's configuration from file.
  NSBundle *bundle = [NSBundle mainBundle];
  NSString *configPath = [bundle
    pathForResource:@"BlobClassifierTraining"
    ofType:@"plist"];
  NSDictionary *config = [NSDictionary
    dictionaryWithContentsOfFile:configPath];
  
  // Remember the descriptions of the blob labels.
  self.labelDescriptions = config[@"labelDescriptions"];
  
  // Create reference blobs and train the blob classifier.
  NSArray *configBlobs = config[@"blobs"];
  for (NSDictionary *configBlob in configBlobs) {
    uint32_t label = [configBlob[@"label"] unsignedIntValue];
    NSString *imageFilename = configBlob[@"imageFilename"];
    UIImage *image = [UIImage imageNamed:imageFilename];
    if (image == nil) {
      NSLog(@"Image not found in resources: %@", imageFilename);



Classifying Coins and Commodities

[ 172 ]

      continue;
    }
    cv::Mat mat;
    UIImageToMat(image, mat);
    cv::cvtColor(mat, mat, cv::COLOR_RGB2BGR);
    Blob blob(mat, label);
    blobClassifier->update(blob);
  }
  
  self.videoCamera = [[VideoCamera alloc]
    initWithParentView:self.backgroundView];
  self.videoCamera.delegate = self;
  self.videoCamera.defaultAVCaptureSessionPreset =
    AVCaptureSessionPresetHigh;
  self.videoCamera.defaultFPS = 30;
  self.videoCamera.letterboxPreview = YES;
  self.videoCamera.defaultAVCaptureDevicePosition =
    AVCaptureDevicePositionBack;
}

The BlobClassifier and BlobDetector are dynamically allocated C++ objects. 
The classifier uses a lot of memory because it holds the histograms and keypoint 
descriptors of all the reference images. Let's edit the didReceiveMemoryWarning  
and dealloc methods to ensure that these C++ objects get cleaned up:

- (void)didReceiveMemoryWarning {
  [super didReceiveMemoryWarning];
  
  if (blobClassifier != NULL) {
    delete blobClassifier;
    blobClassifier = NULL;
  }
  if (blobDetector != NULL) {
    delete blobDetector;
    blobDetector = NULL;
  }
}

- (void)dealloc {
  if (blobClassifier != NULL) {
    delete blobClassifier;
    blobClassifier = NULL;
  }
  if (blobDetector != NULL) {



Chapter 5

[ 173 ]

    delete blobDetector;
    blobDetector = NULL;
  }
}

When the user selects an option in the Image and Mask segmented controls, we set 
the showMask Boolean property, as shown in the following code:

- (IBAction)onPreviewModeSelected:
    (UISegmentedControl *)segmentedControl {
  switch (segmentedControl.selectedSegmentIndex) {
    case 0:
      self.showMask = NO;
      break;
    default:
      self.showMask = YES;
      break;
  }
  [self refresh];
}

Now, let's consider how BeanCounter handles each frame of camera input. The 
processImage: callback begins with our usual code to correct the orientation. Then, 
we pass the frame and vector<Blob> to the detect method of BlobDetector, 
which populates the vector and draws green rectangles around detected blobs in the 
image. We enable or disable the Classify button, depending on whether any blobs 
were detected. If the showMask property is true, we show the mask by copying it 
to the current frame. Otherwise, the user will see the image with green rectangles 
around the blobs. Here is the callback's implementation:

- (void)processImage:(cv::Mat &)mat {
  
  switch (self.videoCamera.defaultAVCaptureVideoOrientation) {
    case AVCaptureVideoOrientationLandscapeLeft:
    case AVCaptureVideoOrientationLandscapeRight:
      // The landscape video is captured upside-down.
      // Rotate it by 180 degrees.
      cv::flip(mat, mat, -1);
      break;
    default:
      break;
  }
  
  // Detect and draw any blobs.



Classifying Coins and Commodities

[ 174 ]

  blobDetector->detect(mat, detectedBlobs, DETECT_RESIZE_FACTOR,
    true);
  
  BOOL didDetectBlobs = (detectedBlobs.size() > 0);
  dispatch_async(dispatch_get_main_queue(), ^{
    self.classifyButton.enabled = didDetectBlobs;
  });
  
  if (self.showMask) {
    blobDetector->getMask().copyTo(mat);
  }
}

The rest of the methods of CaptureViewController have the same implementations 
as they did in the project, ManyMasks, in Chapter 4, Detecting and Merging Faces of 
Mammals.

Open Main.storyboard and select ViewController in the scene hierarchy. Open the 
inspector's Identity tab and change Class to CaptureViewController. Now, add the 
appropriate GUI widgets as children of the view controller's main view. Refer to the 
following screenshot as a layout guide (or just download the completed storyboard 
from the book's GitHub repository):



Chapter 5

[ 175 ]

Right-click on Capture View Controller in the scene hierarchy to see the list of 
available outlets and actions, which we defined in CaptureViewController.m. Set 
the connections so that they match the following screenshot:



Classifying Coins and Commodities

[ 176 ]

Reviewing, saving, and sharing classified 
blobs
Add copies of the ReviewViewController.h and ReviewViewController.m 
files from the project, ManyMasks, in Chapter 4, Detecting and Merging Faces of 
Mammals. For BeanCounter's purposes, we will edit these files to support a caption, 
which will describe the classification result. First, edit the public interface in 
ReviewViewController.h to add an NSString property, as seen in the following code:

@interface ReviewViewController : UIViewController

@property UIImage *image;
@property NSString *caption;

@end

Edit the private interface in ReviewViewController.m to add a UILabel property, 
as indicated in the following code excerpt:

@interface ReviewViewController ()

@property IBOutlet UIImageView *imageView;
@property IBOutlet UILabel *label;
@property IBOutlet UIActivityIndicatorView *activityIndicatorView;
@property IBOutlet UIToolbar *toolbar;

// ... same methods as in Chapter 4 ...

@end

Finally, edit the implementation of the viewDidLoad method to assign the caption as 
the label's text:

- (void)viewDidLoad {
  [super viewDidLoad];
  
  self.imageView.image = self.image;
  self.label.text = self.caption;
}



Chapter 5

[ 177 ]

The rest of the ReviewViewController class remains unchanged. Notably, the class 
still supports saving and sharing the image.

Let's open Main.storyboard. Drag a new view controller from the library pane to 
the editor area. Open the new view controller's Identity inspector and set Class to 
ReviewViewController. Now, add the appropriate GUI widgets as children of the 
view controller's main view. Refer to the following screenshot as a layout guide (or 
just download the completed storyboard from the book's GitHub repository):



Classifying Coins and Commodities

[ 178 ]

Right-click on Review View Controller in the scene hierarchy to see the list of 
available outlets and actions, which we defined in ReviewViewController.m.  
Set the connections so that they match the following screenshot:

Seguing between the view controllers
Let's examine the prepareForSegue method where our CaptureViewController 
provides a blob and classification result to the ReviewViewController. First, the 
method stops the video camera because we do not want the processImage: method 
to change the vector of blobs on another thread while we are accessing the blobs 
here. Then, prepareForSegue chooses the biggest blob and passes it to the classify 
method of BlobClassifier, which returns a classification label as an integer. We 
look up the label's description, and then finally provide the blob's image and label's 
description to the ReviewViewController. Here is the relevant code:

- (void)prepareForSegue:
    (UIStoryboardSegue *)segue sender:(id)sender {



Chapter 5

[ 179 ]

  if ([segue.identifier isEqualToString:@"showReviewModally"]) {
    ReviewViewController *reviewViewController =
      segue.destinationViewController;
    
    // Stop the camera to prevent conflicting access to the blobs.
    [self.videoCamera stop];
    
    // Find the biggest blob.
    int biggestBlobIndex = 0;
    for (int i = 0, biggestBlobArea = 0;
        i < detectedBlobs.size(); i++) {
      Blob &detectedBlob = detectedBlobs[i];
      int blobArea = detectedBlob.getWidth() *
        detectedBlob.getHeight();
      if (blobArea > biggestBlobArea) {
        biggestBlobIndex = i;
        biggestBlobArea = blobArea;
      }
    }
    Blob &biggestBlob = detectedBlobs[biggestBlobIndex];
    
    // Classify the blob and show the result in the destination
    // view controller.
    blobClassifier->classify(biggestBlob);
    reviewViewController.image = [self
      imageFromCapturedMat:biggestBlob.getMat()];
    reviewViewController.caption =
      self.labelDescriptions[biggestBlob.getLabel()];
  }
}



Classifying Coins and Commodities

[ 180 ]

Reopen Main.storyboard and create a segue by right-clicking and dragging  
from the Classify button to Review View Controller. The segue's Kind should be 
Present Modally, its Identifier should be showReviewModally, and its Transition 
should be Flip Horizontal (or whichever low-budget effect you prefer). Refer to the 
following screenshot:

Detecting blobs against a plain 
background
Let's assume that the background has a distinctive color range, such as "cream to 
snow white". Our blob detector will calculate the image's dominant color range 
and search for large regions whose colors differ from this range. These anomalous 
regions will constitute the detected blobs.

For small objects such as a bean or coin, a user can easily find a plain 
background such as a blank sheet of paper, plain table-top, plain 
piece of clothing, or even the palm of a hand. As our blob detector 
dynamically estimates the background color range, it can cope with 
various backgrounds and lighting conditions; it is not limited to a lab 
environment.



Chapter 5

[ 181 ]

Create a new file, BlobDetector.cpp, for the implementation of our BlobDetector 
class. (To review the header, refer back to the Defining blobs and a blob detector section.) 
At the top of BlobDetector.cpp, we will define several constants that pertain to the 
breadth of the background color range, the size and smoothing of the blobs, and the 
color of the blobs' rectangles in the preview image. Here is the relevant code:

#include <opencv2/imgproc.hpp>

#include "BlobDetector.h"

const double MASK_STD_DEVS_FROM_MEAN = 1.0;
const double MASK_EROSION_KERNEL_RELATIVE_SIZE_IN_IMAGE = 0.005;
const int MASK_NUM_EROSION_ITERATIONS = 8;

const double BLOB_RELATIVE_MIN_SIZE_IN_IMAGE = 0.05;

const cv::Scalar DRAW_RECT_COLOR(0, 255, 0); // Green

Of course, the heart of BlobDetector is its detect method. Optionally, the method 
creates a downsized version of the image for faster processing. Then, we call a 
helper method, createMask, to perform thresholding and erosion on the (resized) 
image. We pass the resulting mask to the cv::Canny function to perform Canny 
edge detection. We pass the edge mask to the cv::findContours function, which 
populates a vector of contours, in the vector<vector<cv::Point>> format. 
That is to say, each contour is a vector of points. For each contour, we find the 
points' bounding rectangle. If we are working with a resized image, we restore the 
bounding rectangle to the original scale. We reject rectangles that are very small. 
Finally, for each accepted rectangle, we put a new Blob object in the output vector 
and optionally draw the rectangle in the original image. Here is the detect method's 
implementation:

void BlobDetector::detect(cv::Mat &image,
  std::vector<Blob> &blobs, double resizeFactor, bool draw)
{
  blobs.clear();
  
  if (resizeFactor == 1.0) {
    createMask(image);
  } else {
    cv::resize(image, resizedImage, cv::Size(), resizeFactor,
      resizeFactor, cv::INTER_AREA);
    createMask(resizedImage);
  }
  
  // Find the edges in the mask.



Classifying Coins and Commodities

[ 182 ]

  cv::Canny(mask, edges, 191, 255);
  
  // Find the contours of the edges.
  cv::findContours(edges, contours, hierarchy, cv::RETR_TREE,
    cv::CHAIN_APPROX_SIMPLE);
  
  std::vector<cv::Rect> rects;
  int blobMinSize = (int)(MIN(image.rows, image.cols) *
    BLOB_RELATIVE_MIN_SIZE_IN_IMAGE);
  for (std::vector<cv::Point> contour : contours) {
    
    // Find the contour's bounding rectangle.
    cv::Rect rect = cv::boundingRect(contour);
    
    // Restore the bounding rectangle to the original scale.
    rect.x /= resizeFactor;
    rect.y /= resizeFactor;
    rect.width /= resizeFactor;
    rect.height /= resizeFactor;
    
    if (rect.width < blobMinSize || rect.height < blobMinSize) {
      continue;
    }
    
    // Create the blob from the sub-image inside the bounding
    // rectangle.
    blobs.push_back(Blob(cv::Mat(image, rect)));
    
    // Remember the bounding rectangle in order to draw it later.
    rects.push_back(rect);
  }
  
  if (draw) {
    // Draw the bounding rectangles.
    for (const cv::Rect &rect : rects) {
      cv::rectangle(image, rect.tl(), rect.br(), DRAW_RECT_COLOR);
    }
  }
}



Chapter 5

[ 183 ]

The getMask method simply returns the mask that we previously computed in the 
detect method:

const cv::Mat &BlobDetector::getMask() const {
  return mask;
}

The createMask helper method begins by finding the image's mean color and 
standard deviation using the cv::meanStdDev function. We calculate a range of 
background colors based on a certain number of standard deviations from the 
mean, as defined by the MASK_STD_DEVS_FROM_MEAN constant near the top of 
BlobDetector.cpp. We deem values outside this range to be foreground colors. 
Using the cv::inRange function, we map the background colors (in the image) 
to white (in the mask) and the foreground colors (in the image) to black (in the 
mask). Then, we create a square kernel using the cv::getStructuringElement 
function. Finally, we use the kernel in the cv::erode function to apply the erosion 
morphological operation to the mask. This has the effect of smoothing the black 
(foreground) regions, so that they swallow up little gaps that are probably just noise. 
Here is the relevant code:

void BlobDetector::createMask(const cv::Mat &image) {
  

  // Find the image's mean color.
  // Presumably, this is the background color.
  // Also find the standard deviation.
  cv::Scalar meanColor;
  cv::Scalar stdDevColor;
  cv::meanStdDev(image, meanColor, stdDevColor);
  

  // Create a mask based on a range around the mean color.
  cv::Scalar halfRange = MASK_STD_DEVS_FROM_MEAN * stdDevColor;
  cv::Scalar lowerBound = meanColor - halfRange;
  cv::Scalar upperBound = meanColor + halfRange;
  cv::inRange(image, lowerBound, upperBound, mask);
  

  // Erode the mask to merge neighboring blobs.
  int kernelWidth = (int)(MIN(image.cols, image.rows) *
    MASK_EROSION_KERNEL_RELATIVE_SIZE_IN_IMAGE);
  if (kernelWidth > 0) {
    cv::Size kernelSize(kernelWidth, kernelWidth);
    cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT,
      kernelSize);
    cv::erode(mask, mask, kernel, cv::Point(-1, -1),
      MASK_NUM_EROSION_ITERATIONS);
  }
}



Classifying Coins and Commodities

[ 184 ]

That is the end of the blob detector's code. As you can see, it uses a general-purpose 
and rather linear approach, unlike the face detector in Chapter 4, Detecting and 
Merging Faces of Mammals, which relied on many special cases in its search for human 
eyes, cat eyes, and so forth. While the face detector also performed the classification 
of human versus cat faces, we are now using a separate blob detector and blob 
classifier, and this separation of responsibilities enables us to keep each class's 
implementation relatively simple.

For completeness, note that the Blob class's constructors have straightforward 
implementations that copy the arguments. For the blob's image, we make a deep 
copy because the original may change. (Remember, the original may be a subimage 
in a frame of video, and after detection, we draw rectangles atop the frame of video.) 
Similarly, the getter and setter methods of Blob are self-explanatory. Create a new 
file, Blop.cpp, and fill it with the following implementation:

#import "Blob.h"

Blob::Blob(const cv::Mat &mat, uint32_t label)
: label(label)
{
  mat.copyTo(this->mat);
}

Blob::Blob() {
}

Blob::Blob(const Blob &other)
: label(other.label)
{
  other.mat.copyTo(mat);
}

bool Blob::isEmpty() const {
  return mat.empty();
}
uint32_t Blob::getLabel() const {
  return label;
}
void Blob::setLabel(uint32_t value) {
  label = value;
}
const cv::Mat &Blob::getMat() const {
  return mat;
}



Chapter 5

[ 185 ]

int Blob::getWidth() const {
  return mat.cols;
}
int Blob::getHeight() const {
  return mat.rows;
}

Classifying blobs by color and keypoints
Our classifier operates on the assumption that a blob contains distinctive colors, 
distinctive keypoints, or both. To conserve memory and precompute as much 
relevant information as possible, we do not store images of the reference blobs, but 
instead we store histograms and keypoint descriptors.

Create a new file, BlobClassifier.cpp, for the implementation of our 
BlobClassifier class. (To review the header, refer back to the Defining blob 
descriptors and a blob classifier section.) At the top of BlobDetector.cpp, we will 
define several constants that pertain to the number of histogram bins, the histogram 
comparison method, and the relative importance of the histogram comparison versus 
the keypoint comparison. Here is the relevant code:

#include <opencv2/imgproc.hpp>

#include "BlobClassifier.h"

#ifdef WITH_OPENCV_CONTRIB
#include <opencv2/xfeatures2d.hpp>
#endif

const int HISTOGRAM_NUM_BINS_PER_CHANNEL = 32;
const int HISTOGRAM_COMPARISON_METHOD = cv::HISTCMP_CHISQR_ALT;

const float HISTOGRAM_DISTANCE_WEIGHT = 0.98f;
const float KEYPOINT_MATCHING_DISTANCE_WEIGHT = 1.0f -
  HISTOGRAM_DISTANCE_WEIGHT;



Classifying Coins and Commodities

[ 186 ]

Beware that the HISTOGRAM_NUM_BINS_PER_CHANNEL constant has 
a cubic relationship to the memory usage of BeanCounter. For each 
blob descriptor, we store a three-dimensional (BGR) histogram with 
HISTOGRAM_NUM_BINS_PER_CHANNEL^3 elements, and each element is 
a 32-bit floating point number. If the constant is 32, each histogram's size 
in megabytes is (32^3)*32/(10^6)=1.0. This is fine for a small set of 
reference descriptors. If the constant is 256 (the maximum number of bins 
for an 8-bit color channel), the histogram's size goes up to a whopping 
value of (256^3)*32/(10^6)=536.9 megabytes! This is unacceptable, 
given the memory constraints of an iOS application.
At best, in a high-end iOS device, one gigabyte of RAM might be available 
to each application. Conservatively, you should worry if your app's 
memory usage approaches 100 megabytes.

Remember that OpenCV's SURF implementation is in the xfeatures2d module, 
which is part of opencv_contrib. If opencv_contrib is available (as indicated 
by the WITH_OPENCV_CONTRIB preprocessor flag), we import the <opencv/
xfeatures2d.hpp> header and use SURF. Otherwise, we use ORB. This selection 
also affects the implementation of the constructor of BlobClassifier. OpenCV 
provides factory methods for various feature detectors, descriptors, and matchers, 
so we simply have to use the right combination of factory methods for SURF with 
FLANN matching, or ORB with brute-force matching based on the Hamming 
distance. Here is the constructor's implementation:

BlobClassifier::BlobClassifier()
: clahe(cv::createCLAHE())
#ifdef WITH_OPENCV_CONTRIB
, featureDetectorAndDescriptorExtractor(
    cv::xfeatures2d::SURF::create())
, descriptorMatcher(cv::DescriptorMatcher::create("FlannBased"))
#else
, featureDetectorAndDescriptorExtractor(cv::ORB::create())
, descriptorMatcher(
    cv::DescriptorMatcher::create("BruteForce-HammingLUT"))
#endif
{
}



Chapter 5

[ 187 ]

The update method's implementation calls a helper method, 
createBlobDescriptor, and adds the resulting BlobDescriptor to a vector of 
reference descriptors:

void BlobClassifier::update(const Blob &referenceBlob) {
  referenceBlobDescriptors.push_back(
    createBlobDescriptor(referenceBlob));
}

The clear method's implementation discards all the reference descriptors, so that 
BlobClassifier reverts to its initial, untrained state:

void BlobClassifier::clear() {
  referenceBlobDescriptors.clear();
}

The implementation of the classify method relies on another helper method, 
findDistance. For each reference descriptor, classify calls findDistance to 
obtain a measure of dissimilarity between the query blob's descriptor and reference 
descriptor. We find the reference descriptor with the least distance (best similarity) 
and return its label as the classification result. If there are no reference descriptors, 
classify returns 0, the unknown label. Here is the implementation of classify:

void BlobClassifier::classify(Blob &detectedBlob) const {
  BlobDescriptor detectedBlobDescriptor =
    createBlobDescriptor(detectedBlob);
  float bestDistance = FLT_MAX;
  uint32_t bestLabel = 0;
  for (const BlobDescriptor &referenceBlobDescriptor :
      referenceBlobDescriptors) {
    float distance = findDistance(detectedBlobDescriptor,
      referenceBlobDescriptor);
    if (distance < bestDistance) {
      bestDistance = distance;
      bestLabel = referenceBlobDescriptor.getLabel();
    }
  }
  detectedBlob.setLabel(bestLabel);
}



Classifying Coins and Commodities

[ 188 ]

The createBlobDescriptor helper method is responsible for calculating a 
normalized histogram and keypoint descriptors for Blob and using them to build 
a new BlobDescriptor. To calculate the (non-normalized) histogram, we use the 
cv::calcHist function. Among its arguments, it requires three arrays to specify 
the channels we want to use, the number of bins per channel, and the range of each 
channel's values. To normalize the resulting histogram, we divide by the number of 
pixels in the blob's image. The following code, pertaining to the histogram, is the first 
half of the implementation of createBlobDescriptor:

BlobDescriptor BlobClassifier::createBlobDescriptor(
  const Blob &blob) const
{  
  const cv::Mat &mat = blob.getMat();
  int numChannels = mat.channels();
  
  // Calculate the histogram of the blob's image.
  cv::Mat histogram;
  int channels[] = { 0, 1, 2 };
  int numBins[] = { HISTOGRAM_NUM_BINS_PER_CHANNEL,
    HISTOGRAM_NUM_BINS_PER_CHANNEL,
    HISTOGRAM_NUM_BINS_PER_CHANNEL };
  float range[] = { 0.0f, 256.0f };
  const float *ranges[] = { range, range, range };
  cv::calcHist(&mat, 1, channels, cv::Mat(), histogram, 3,
    numBins, ranges);
  
  // Normalize the histogram.
  histogram *= (1.0f / (mat.rows * mat.cols));

Before computing the color histogram, we could adjust the white 
balance as we did in the project, CoolPig, in Chapter 1, Setting 
Up Software and Hardware. This additional step might make the 
descriptor more robust with respect to variations in lighting 
conditions. On the other hand, the iOS camera system already 
evaluates the white balance, so we might do better to trust its result 
(and not apply an additional step). Feel free to experiment.



Chapter 5

[ 189 ]

Now, we must convert the blob's image to grayscale and obtain keypoints and 
keypoint descriptors using the detect and compute methods of cv::Feature2D. 
With the normalized histogram and keypoint descriptors, we have everything we 
need to construct and return a new BlobDescriptor. Here is the remainder of the 
implementation of createBlobDescriptor:

  // Convert the blob's image to grayscale.
  cv::Mat grayMat;
  switch (numChannels) {
    case 4:
      cv::cvtColor(mat, grayMat, cv::COLOR_BGRA2GRAY);
      break;
    default:
      cv::cvtColor(mat, grayMat, cv::COLOR_BGR2GRAY);
      break;
  }
  
  // Adaptively equalize the grayscale image to enhance local
  // contrast.
  clahe->apply(grayMat, grayMat);
  
  // Detect features in the grayscale image.
  std::vector<cv::KeyPoint> keypoints;
  featureDetectorAndDescriptorExtractor->detect(grayMat,
    keypoints);
  
  // Extract descriptors of the features.
  cv::Mat keypointDescriptors;
  featureDetectorAndDescriptorExtractor->compute(grayMat,
    keypoints, keypointDescriptors);
  
  return BlobDescriptor(histogram, keypointDescriptors,
    blob.getLabel());
}



Classifying Coins and Commodities

[ 190 ]

The findDistance helper method performs histogram comparison using the 
cv::compareHist function, and keypoint matching using the match method of 
cv::DescriptorMatcher. Each of the resulting keypoint matches has a distance, and 
we sum these distances. Then, as an overall measure of distance between the two 
blob descriptors, we return a weighted average of the histogram distance and the 
total keypoint matching distance. Here is the relevant code:

float BlobClassifier::findDistance(
  const BlobDescriptor &detectedBlobDescriptor,
  const BlobDescriptor &referenceBlobDescriptor) const
{  
  // Calculate the histogram distance.
  float histogramDistance = (float)cv::compareHist(
    detectedBlobDescriptor.getNormalizedHistogram(),
    referenceBlobDescriptor.getNormalizedHistogram(),
    HISTOGRAM_COMPARISON_METHOD);
  
  // Calculate the keypoint matching distance.
  float keypointMatchingDistance = 0.0f;
  std::vector<cv::DMatch> keypointMatches;
  descriptorMatcher->match(
    detectedBlobDescriptor.getKeypointDescriptors(),
    referenceBlobDescriptor.getKeypointDescriptors(),
    keypointMatches);
  for (const cv::DMatch &keypointMatch : keypointMatches) {
    keypointMatchingDistance += keypointMatch.distance;
  }
  
  return histogramDistance * HISTOGRAM_DISTANCE_WEIGHT +
    keypointMatchingDistance * KEYPOINT_MATCHING_DISTANCE_WEIGHT;
}

That is the end of the blob classifier's code. Again, we see that a single class can 
provide useful, general-purpose computer vision functionality without a terribly 
complicated implementation. Perhaps this is a Zen moment; our work has been a 
path to (some kind of) simplicity! Of course, OpenCV hides a lot of complexity for us 
in its implementations of histogram-related functions and keypoint-related classes, 
and in this way, the library offers us a relatively gentle path.



Chapter 5

[ 191 ]

For completeness, note that the BlobDescriptor class has a straightforward 
implementation. Create a new file, BlobDescriptor.cpp, and fill it with the 
following bodies for a constructor and getters:

#include "BlobDescriptor.h"

BlobDescriptor::BlobDescriptor(const cv::Mat &normalizedHistogram, 
const cv::Mat &keypointDescriptors, uint32_t label)
: normalizedHistogram(normalizedHistogram)
, keypointDescriptors(keypointDescriptors)
, label(label)
{
}

const cv::Mat &BlobDescriptor::getNormalizedHistogram() const {
  return normalizedHistogram;
}
const cv::Mat &BlobDescriptor::getKeypointDescriptors() const {
  return keypointDescriptors;
}
uint32_t BlobDescriptor::getLabel() const {
  return label;
}

Now, we have finished all the code for BeanCounter!

Using the application and testing the 
tough cases
Gather your collection of objects, run BeanCounter, and observe your classifier's 
successes and failures. Also, check whether the detector is doing a good job.  
For the best results, obey the following guidelines:

• Work in a well-lit area, such as a sunny room.
• Use a flat, white background, such as a clean sheet of paper.
• View one object at a time.
• Keep the iOS device stable. If necessary, use a tripod or other support.
• Ensure that the object is in focus. If necessary, tap the screen to focus.
• If the object is shiny, ensure that it does not catch reflections.



Classifying Coins and Commodities

[ 192 ]

Under these ideal conditions, what is your classifier's accuracy? Use BeanCounter 
to save some images of objects, and then select a few of them to add to the Xcode 
project as reference images. Rebuild and repeat. By training the classifier, can you 
achieve an accuracy of 80%, 90%, or even 95%?

Now, break the rules! See how the detector and classifier perform under less-than-
ideal conditions. The following subsections illustrate some cases where BeanCounter 
proves to be robust.

An unevenly-lit background
Sometimes, a combination of the lighting conditions and background material 
may create a shift in brightness between background regions. For example, in the 
following screenshots, the background is a wrinkled piece of paper:

Here, the detector finds many small blobs that are really just subtle highlights and 
shadows around the wrinkles. Even so, the largest detected blob is the coin, which 
the classifier correctly labels as loonie, Canadian dollar.



Chapter 5

[ 193 ]

The following screenshots illustrate a more extreme case. The background is the 
aluminum case of a laptop. Dim light comes from the laptop's screen and creates a 
gradient effect on the metallic surface:

Again, the detector finds many small blobs that are really just variations in lighting 
(and perhaps noise). The coin lies in a region where the light visibly starts to fall 
off. Nonetheless, the detector finds most of the coin, and the classifier produces the 
correct label, Canadian nickel. This is a good achievement for both the detector and 
classifier because we might expect them to struggle with the similar metallic colors of 
the coin and background.



Classifying Coins and Commodities

[ 194 ]

Motion blur
If the user's hands are shaky or if the exposure is slow due to dim light, the image 
may suffer from motion blur. However, even with a noticeable amount of motion 
blur, the image may still yield useful keypoints. Moreover, the blur has no significant 
effect on the histogram. The following screenshot shows a nickel with motion blur:

Despite the moderately bad motion blur, the nickel's features are visible. 
BeanCounter displays the correct classification, Canadian nickel.



Chapter 5

[ 195 ]

Out of focus
Sometimes, the camera fails to focus on the target. Then, the image may be too 
blurry to produce useful keypoints. However, again, the blur has little effect on the 
histogram. The following screenshot shows a loonie that is extremely out of focus:

Despite the poor autofocus result, the loonie is still classifiable because of its 
distinctive color. Within the limits of our classification set, it is the only object  
that is entirely gold-colored. BeanCounter correctly labels it loonie, Canadian dollar.



Classifying Coins and Commodities

[ 196 ]

Of course, a bean is thicker than a coin. A bean may be out of focus while the 
background is in focus. Consider the following screenshot of a romano bean that is 
slightly out of focus:

As usual, we see the distinctive colors of the bean and its bounced light. BeanCounter 
correctly reports that we are looking at a romano bean.



Chapter 5

[ 197 ]

Reflection
Sometimes, a coin may catch the reflection of the iOS device, the user's hand,  
or another object. The reflection may create unusual variations in brightness or 
color—in other words, a distortion of the histogram. However, the reflection is 
unlikely to obscure the coin's keypoints and it may even help illuminate them.  
The following screenshot shows a reflection of my hand in a dime:

Note the bright, pinkish region on the right-hand side of the dime. Despite this 
anomaly, BeanCounter produces a correct classification, Canadian dime.



Classifying Coins and Commodities

[ 198 ]

Overlapping blobs
Sometimes, an object may be close to another object or to a disturbing element of the 
background. Then, the blob detector cannot crop out a lone object on a plain region 
of the background. Consider the following screenshots of a pinto bean near a toonie:

The detector has correctly cropped the bean and its bounced light. However, 
the rectangular crop also includes a corner of the toonie. Despite this extraneous 
element, the classifier produces the correct result, pinto bean.



Chapter 5

[ 199 ]

The following screenshots show a more difficult case. The background contains text 
that intersects with the outline of a romano bean:

Here, the blob detector misses half of the bean, yet it detects the lower half and 
bounced light amid a plain white region of the background. Even based on this 
partial detection, the blob classifier produces the correct result, romano bean.



Classifying Coins and Commodities

[ 200 ]

Taking your study of OpenCV to the next 
level
So far, you have learned several ways to control the camera, blend images, detect 
and classify objects, compare images, and apply geometric transformations. These 
skills can help you solve countless problems in your iOS applications.

Next, you might want to study a collection of advanced OpenCV projects. As of May 
2016, there are no other books on OpenCV 3 for iOS. However, with your iOS skills, 
you can adapt code from any OpenCV 3 book that uses C++. Consider the following 
options from Packt Publishing:

• OpenCV 3 Computer Vision Application Programming Cookbook, Third Edition: 
This new edition will be published later in 2016. The book provides extensive 
coverage of OpenCV's C++ API with more than 100 practical samples of 
reusable code.

• Learning Image Processing with OpenCV: This book is a great choice if you are 
specifically interested in computational photography or videography. The 
projects use C++ and OpenCV 3.

• OpenCV 3 Blueprints: This book teaches a healthy mix of theory and practice, 
with tools and sample applications based on recent research and industry 
experience. Most of the projects use C++. You will also learn to develop 
Android apps using Android Studio, Java, and C++. Thus, you will expand 
your skill set to cover a second mobile platform!

Summary
This chapter has demonstrated a general-purpose approach to blob detection and 
classification. Specifically, we have applied OpenCV functionality to thresholding, 
morphology, contour analysis, histogram analysis, and keypoint matching.

You have also learned how to load and parse a PLIST file from an application's 
resource bundle. As Xcode provides a visual editor for PLIST files, they are a 
convenient way to configure an iOS app. Specifically, in our case, a configuration  
file lets us separate the classifier's training data from the application code.

We have seen that our detector and classifier work on different kinds of objects, 
namely beans and coins. We have also seen that the detector and classifier are 
somewhat robust with respect to variations in lighting, background, blur, reflections, 
and the presence of neighboring objects.



Chapter 5

[ 201 ]

Finally, we have identified some further reading that may help you take your 
knowledge of computer vision and mobile app development to the next level.

This concludes our tour of iOS and OpenCV 3. Thank you for reading the book and 
for joining our informal community of computer vision learners! If you have any 
queries, you can visit the support site for my books at http://nummist.com/opencv, 
or feel free to contact me at josephhowse@nummist.com. I hope our paths will cross 
again in another book. Meanwhile, pick up your iPhone and go try some more visual 
experiments in this beautiful, sunlit world!





[ 203 ]

Index
A
AdaBoost (adaptive boosting)  105
add-on lenses

Fisheye attachment  37
Macro or close-up attachment  37
Microscope attachment  37
Telephone attachment  37
Wide-angle attachment  37

alpha  65
Alternative Chi-Square algorithm  155
Apple's developer tools

setting up  2, 3
application

using  191
application distribution

reference link  29
to customers  29
to testers  29

arc4random() function  22
audiovisual (AV)  50
augmented reality (AR)  80, 103
AVFoundation  50

B
Basic Linear Algebra  

Subprograms (BLAS)  12
BeanCounter

blobs, overlapping  198, 199
defining  191
motion blur  194
out of focus  195, 196
reflection  196, 197
unevenly-lit background  192, 193

BGR  64-66

BGRA  64-66
bgsegm module

URL  153
Binary Robust Independent Elementary 

Features (BRIEF)  158
bits per pixel (bpp)  65
blending controls

creating  81-86
blob  152
blob classifier

defining  166-168
blob descriptors

defining  166-168
blob detection

canny edge detection  153, 154
contour analysis  154
defining  152, 164, 165
problems  152
segmentation  152, 153

blobs
about  149
classifying, by color and keypoints  185-191
defining  164, 165
detecting, against plain  

background  180-184
bokeh balls  152
border following  154
Brute-force matching  158

C
camera

controlling  50, 51
CvVideoCamera, subclassing  52-58
CvVideoCamera subclass, using in view 

controller  59-64



[ 204 ]

lens attachment  37, 38
lights, setting up  36
requirement specifying, for LightWork  45
stabilization  36, 37
tripods  36, 37
using  30-35

cascade  104
cascade classifiers

haar-like features  103-106
local binary pattern (LBP)  106, 107
on GitHub, reference link  104
reference link  107
used, for detection  104, 105

cats' expression
examples  147

code files
AppDelegate.h  22
AppDelegate.m  22
ViewController.h  22
ViewController.m  22

color formats
about  64
BGR  64-66
BGRA  64-66
RGB  64
RGBA  64-66

constants, cascade classifiers
minimum neighbors  133
minimum size  133
scale factor  133

contour analysis  149
contrast limited adaptive histogram 

equalization (CLAHE)  118
convolution matrices

reference link  80
convolution matrix  79
CoolPig application

building  28
code, writing  22-26
configuring  11-16
developing  6, 7
executing  28
files, adding  10
interface element, connecting  26, 27
interface, laying out  17-21
project, creating  8-10

corners  156

CvVideoCamera
(int)imageHeight method  53
(int)imageWidth method  53
(void)layoutPreviewLayer method  54
(void)updateSize method  54

D
derivative  153

E
erosion  149

F
face analysis  147
face detector

defining  115-118
face elements

aligning  142-146
blending  142-146

face merging application
planning  108-113

faces
defining  115-118

Fast Library for Approximate Nearest 
Neighbors (FLANN)  157

feature matching  149
Features from Accelerated Segment Test 

(FAST)  158
field of view (FOV)  32

G
Gaussian blur effect  80
GNU Image Manipulation Program (GIMP)

about  77
URL  78

grayscale  66, 67

H
Hamming distance  158
hierarchy of face elements

detecting  132-142
histogram analysis

about  149
defining  155



[ 205 ]

hybrid images
creating  76-81

I
immutable type  116
integrated development  

environment (IDE)  2
International Standards  

Organization (ISO)  33
iOS Developer Program

URL  29
iOS Provisioning Portal

URL  29
iPhoneography  30
ISO speed  33
iTunes Connect

URL  29

K
kernel filter  79
keypoint matching

about  149
brute-force Hamming-distance  

matching  158
defining  156
FLANN  157
ORB  158
SURF  157

L
Lanczos  96
Landscape-right orientation  56
Laplacian edge-finding effect  80
Leningrad Optical Mechanical Association 

(LOMO)  31
lights

setting up  36
LightWork

alert, displaying  70
blending controls, creating  81-86
busy mode, starting  68
busy mode, stopping  68
camera requirement, specifying  45
document copy, previewing  100, 101
drawing copy, previewing  100, 101

executing  73
frameworks, adding  44
image, saving to Photos library  69
image, sharing via social media  71, 72
new object, previewing in scene  98-100
project, configuring  44
scene changes, viewing  97, 98
using  97
view controller, defining  46-50
view controller, laying out  46-50
view controller's implementation, 

expanding  90-96
view controller's interface, expanding  86-89

Linear Algebra Package (LAPACK)  12
local binary pattern histogram (LBPH)  106
Lomography  31

M
ManyMasks project

building  146, 147
configuring  114
running, on iOS  146, 147

mask  149
model-view-controller (MVC) pattern  23
morphology  149

N
neighbors  105

O
object classification application

planning  159-162
OpenCV

defining  200
references  157
URL  3

OpenCV 3
references, for documentation  30

OpenCV framework
building, from source with  

extra modules  4-6
extra modules, creating as optional  6
prebuilt framework, obtaining with 

standard modules  3, 4
setting up  3



[ 206 ]

OpenCV functions
reference link  108

ORB algorithm
URL  158

Oriented FAST and Rotated  
BRIEF (ORB)  158

P
packed formats  66
panoramic attachment  37
photographic accessories

setting up  30-35
photo sharing application

planning  40-44
Photoshop

reference link  78
Photos library

image, saving  69
planar formats  66
project

configuring  162-164

R
RGB  64-66
RGBA  64-66
ring flash  36
rotation-invariant  156

S
scale-invariant  156
Scale-Invariant Feature  

Transform (SIFT)  157
segmentation  149
segue  119
Speeded-up Robust Features (SURF)  157
splash screen

laying out  169
StackOverflow

URL  30
standard modules

used, for obtaining prebuilt OpenCV 
framework  3, 4

stateless  116

T
transformations

about  107
rotation  107
scale  107
translation  107

U
unintended racial bias, in computer vision

URL  153

V
view controllers

blobs, capturing  169-174
blobs, previewing  169-174
classified blobs, reviewing  176-178
classified blobs, saving  176-178
classified blobs, sharing  176-178
defining  119, 169
hybrid faces, reviewing  126-129
hybrid faces, saving  127, 128
hybrid faces, sharing  127-129
laying out  119, 169
real faces, capturing  119-125
real faces, previewing  119-125
seguing between  130, 131, 178

W
window  105

X
Xcode

URL  2
xfeatures2d  5
xphoto  5

Y
YUV  66, 67




	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Software 
and Hardware
	Setting up Apple's developer tools
	Setting up the OpenCV framework
	Getting the prebuilt framework with standard modules
	Building the framework from source with extra modules
	Making the extra modules optional in our code

	Developing a minimal application
	Creating the project
	Adding files to the project
	Configuring the project
	Laying out an interface
	Writing the code
	Connecting an interface element to the code
	Building and running the application

	Distributing to testers and customers
	Finding documentation and support
	Understanding the camera and setting up photographic accessories
	Lights
	Tripods and other stabilization
	Lens attachments

	Summary

	Chapter 2: Capturing, Storing, and Sharing Photos
	Planning a photo sharing application
	Configuring the project
	Adding frameworks
	Specifying the camera requirement

	Defining and laying out the view controller
	Controlling the camera
	Subclassing CvVideoCamera
	Using the CvVideoCamera subclass in the view controller

	Working with various color formats
	RGB, BGR, RGBA, and BGRA
	YUV and grayscale

	Starting and stopping the busy mode
	Saving an image to the Photos library
	Displaying an alert
	Sharing an image via social media
	Running the application
	Summary

	Chapter 3: Blending Images
	Thinking about hybrid images
	Planning the blending controls
	Expanding the view controller's interface
	Expanding the view controller's implementation
	Using the application for practical purposes
	Seeing changes in a scene
	Previewing a new object in a scene
	Previewing a copy of a document or drawing

	Summary

	Chapter 4: Detecting and Merging 
Faces of Mammals
	Understanding detection with cascade classifiers
	Haar-like features
	Local binary pattern features

	Understanding transformations
	Planning a face merging application
	Configuring the project
	Defining faces and a face detector
	Defining and laying out the view controllers
	Capturing and previewing real faces
	Reviewing, saving, and sharing hybrid faces
	Seguing between the view controllers

	Detecting a hierarchy of face elements
	Aligning and blending face elements
	Using the application and acting like a cat
	Learning more about face analysis
	Summary

	Chapter 5: Classifying Coins and Commodities
	Understanding blob detection
	Segmentation
	Canny edge detection
	Contour analysis

	Understanding histogram analysis
	Understanding keypoint matching
	SURF and FLANN
	ORB and brute-force Hamming-distance matching

	Planning an object classification application
	Configuring the project
	Defining blobs and a blob detector
	Defining blob descriptors and a blob classifier
	Laying out the splash screen
	Defining and laying out the view controllers
	Capturing and previewing blobs
	Reviewing, saving, and sharing classified blobs
	Seguing between the view controllers

	Detecting blobs against a plain background
	Classifying blobs by color and keypoints
	Using the application and testing the tough cases
	An unevenly-lit background
	Motion blur
	Out of focus
	Reflection
	Overlapping blobs

	Taking your study of OpenCV to the next level
	Summary

	Index



