


				

	



A	Beginners’	Guide	To	2D	Platform	Games	With	Unity

Create	a	simple	2D	platform	game	and	learn	to	code	in	the	process

	

	

	

	

Patrick	Felicia





Copyright



A	Beginners’	Guide	To	2D	Platform	Games	With	Unity

	

Copyright	©	2016	Patrick	Felicia

	

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	retrieval	systems,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher
(Patrick	Felicia),	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

	

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,
either	expressed	or	implied.	Neither	the	author	and	its	dealers	and	distributors	will	be	held	liable
for	any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

	

First	published:	December	2016

Published	by	Patrick	Felicia

	

	



	





Credits

	

Author:	Patrick	Felicia

	



	





About	the	Author

Patrick	Felicia	is	a	lecturer	and	researcher	at	Waterford	Institute	of	Technology,	where	he
teaches	and	supervises	undergraduate	and	postgraduate	students.	He	obtained	his	MSc	in
Multimedia	Technology	in	2003	and	PhD	in	Computer	Science	in	2009	from	University	College
Cork,	Ireland.	He	has	published	several	books	and	articles	on	the	use	of	video	games	for
educational	purposes,	including	the	Handbook	of	Research	on	Improving	Learning	and	Motivation
through	Educational	Games:	Multidisciplinary	Approaches	(published	by	IGI),	and	Digital
Games	in	Schools:	a	Handbook	for	Teachers,	published	by	European	Schoolnet.	Patrick	is	also
the	Editor-in-chief	of	the	International	Journal	of	Game-Based	Learning	(IJGBL),	and	the
Conference	Director	of	the	Irish	Conference	on	Game-Based	Learning,	a	popular	conference	on
games	and	learning	organized	throughout	Ireland.

https://www.linkedin.com/in/patrickfelicia
http://www.igi-global.com/ijgbl/
http://www.igbl-conference.com/




Support	and	Resources	for	this	Book

To	complete	the	activities	presented	in	this	book	you	need	to	download	the	start-up	pack	on	the
companion	website;	it	consists	of	free	resources	that	you	will	need	to	complete	your	projects,
including	bonus	material	that	will	help	you	along	the	way	(e.g.,	cheat	sheets,	introductory	videos,
code	samples,	and	much	more).

Please	open	the	following	link:
http://learntocreategames.com/2d-platform-games/
In	the	section	called	“Download	your	Free	Resource	Pack”,	enter	your	email	address	and
your	first	name,	and	click	on	the	button	labeled	“Yes,	I	want	to	receive	my	bonus	pack”.
After	a	few	seconds,	you	should	receive	a	link	to	your	free	start-up	pack.
When	you	receive	the	link,	you	can	download	all	the	resources	to	your	computer.

http://learntocreategames.com/2d-platform-games/


	

	

	

	

	

	

	

	

	

	

	

	

	

		

This	book	is	dedicated	to	Helena

	

	

	







Table	of	Contents

Chapter	1:	Creating	a	Simple	Level

Chapter	2:	Managing	Score,	Lives	and	Levels

Chapter	3:	Adding	Sound	and	Displaying	Values	Onscreen

Chapter	4:	Adding	Challenging	Gameplay

Chapter	5:	Frequently-Asked	Questions

Chapter	6:	Thank	You!





Preface

After	teaching	Unity	for	over	5	years,	I	always	thought	it	could	be	great	to	find	a	book	that	could
get	my	students	started	with	Unity	in	a	few	hours	and	that	showed	them	how	to	master	the	core
functionalities	offered	by	this	fantastic	software.

Many	of	the	books	that	I	found	were	too	short	and	did	not	provide	enough	details	on	the	why
behind	the	actions	recommended	and	taken;	other	books	were	highly	theoretical,	and	I	found	that
they	lacked	practicality	and	that	they	would	not	get	my	students’	full	attention.	In	addition,	I	often
found	that	game	development	may	be	preferred	by	those	with	a	programming	background	but	that
those	with	an	Arts	background,	even	if	they	wanted	to	get	to	know	how	to	create	games,	often	had
to	face	the	issue	of	learning	to	code	for	the	first	time.

As	a	result,	I	started	to	consider	a	format	that	would	cover	both:	be	approachable	(even	to	the
students	with	no	programming	background),	keep	students	highly	motivated	and	involved	using	an
interesting	project,	cover	the	core	functionalities	available	in	Unity	to	get	started	with	game
programming,	provide	answers	to	common	questions,	and	also	provide,	if	need	be,	a
considerable	amount	of	details	for	some	topics.

I	then	created	a	book	series	entitled	Unity	From	Zero	to	Proficiency	that	did	just	this.	It	gave
readers	the	opportunity	to	play	around	with	Unity’s	core	features,	and	essentially	those	that	will
make	it	possible	to	create	an	interesting	3D	game	rapidly.	After	reading	this	book	series,	many
readers	emailed	me	to	let	me	know	how	the	book	series	helped	them;	however,	they	also
mentioned	that	what	they	also	wanted	was	to	be	able	to	create	a	simple	game	from	start	to	finish,
publish	it	and	share	it	with	their	friends,	or	learn	more	about	other	features	such	as	Artificial
Intelligence,	Animations,	or	Shaders.

This	is	the	reason	why	I	created	this	new	book	series	entitled	“A	Beginner’s	Guide”;	it	is	for
people	who	already	have	completed	the	first	four	books	in	the	series	called	Unity	From	Zero	to
Proficiency,	and	who	would	like	to	focus	on	a	particular	aspect	of	their	game	development.	This
being	said,	this	new	book	series	assumes	no	prior	knowledge	on	the	part	of	the	reader,	and	it	will
get	you	started	quickly	on	a	particular	aspect	of	Unity.

In	this	book,	focused	on	2D	platformers,	you	will	be	completing	a	2D	platformer	game	and	also
code	in	C#.	By	completing	each	chapter,	and	by	following	step-by-step	instructions,	you	will
progressively	create	a	complete	2D	platformer	game.

You	will	also	create	a	2D	game	that	includes	many	of	the	common	techniques	found	in	platformers
including:	level	design,	object	creation,	moving	platforms,	magic	doors,	simple	artificial
intelligence,	and	a	user	interface.





Content	Covered	by	this	Book

Chapter	1,	Creating	a	Simple	Level,		shows	you	how	to	create	a	simple	level	for	a
platformer	game	including	a	main	character,	platforms,	cameras	following	the	player,	and
sprites	that	you	can	collect	or	avoid.
Chapter	2,	Managing	Score,	Lives	and	Levels,	explains	how	it	is	possible	to	manage	the
score	and	the	number	of	lives	across	your	scenes;	you	will	also	learn	how	to	load	a	new
scene	based	on	conditions,	and	to	also	minimize	your	development	time	by	using	prefabs.
Chapter	3,	Adding	Sound	and	Displaying	Values	Onscreen,	explains	how	you	can	simply
add	audio	to	your	game	and	display	or	update	information	onscreen	(e.g.,	number	of	lives	or
score).
Chapter	4,	Adding	Challenging	Gameplay,	shows	and	explains	how	to	make	your	platform
game	more	challenging	by	adding	common	game	mechanics	(e.g.,	platforms,	magic	doors,
escalator,	etc.).
Chapter	5	provides	answers	to	Frequently	Asked	Questions	(FAQs)	related	to	the	topics
covered	in	this	book.
Chapter	6	summarizes	the	topics	covered	in	the	book	and	provides	you	with	more
information	on	the	next	steps	to	follow.





What	you	Need	to	Use	this	Book

To	complete	the	project	presented	in	this	book,	you	only	need	Unity	5.0	(or	a	more	recent
version)	and	to	also	ensure	that	your	computer	and	its	operating	system	comply	with	Unity’s
requirements.	Unity	can	be	downloaded	from	the	official	website
(http://www.unity3d.com/download),	and	before	downloading	it,	you	can	check	that	your
computer	is	up	to	scratch	on	the	following	page:	http://www.unity3d.com/unity/system-
requirements.	At	the	time	of	writing	this	book,	the	following	operating	systems	are	supported	by
Unity	for	development:	Windows	XP	(i.e.,	SP2+,	7	SP1+),	Windows	8,	and	Mac	OS	X	10.6+.	In
terms	of	graphics	card,	most	cards	produced	after	2004	should	be	suitable.

In	terms	of	computer	skills,	all	knowledge	introduced	in	this	book	will	assume	no	prior
programming	experience	from	the	reader.	So	for	now,	you	only	need	to	be	able	to	perform
common	computer	tasks,	such	as	downloading	items,	opening	and	saving	files,	be	comfortable
with	dragging	and	dropping	items	and	typing,	and	be	relatively	comfortable	with	Unity’s
interface.	This	being	said,	because	the	focus	of	this	book	is	on	creating	2D	platform	games,	and
while	all	instructions	are	explained	step-by-step,	you	may	need	to	be	relatively	comfortable	with
Unity’s	interface,	and	coding	in	C#,	as	well	as	creating	and	transforming	objects	(e.g.,	moving	or
rotating).

So,	if	you	would	prefer	to	become	more	comfortable	with	Unity	and	C#	programming	prior	to
starting	this	book,	you	can	download	the	books	in	the	series	called	Unity	5	From	Zero	to
Proficiency	(Foundations,	Beginner,	Intermediate,	or	Advanced).	These	books	cover	most	of	the
shortcuts	and	views	available	in	Unity,	as	well	as	how	to	perform	common	tasks	in	Unity,	such	as
creating	objects,	transforming	objects,	importing	assets,	using	navigation	controllers,	creating
scripts	or	exporting	the	game	to	the	web.	They	also	explain	how	to	code	your	game	using	both
UnityScript	or	C#	along	with	good	coding	practices.

http://www.unity3d.com/download
http://www.unity3d.com/unity/system-requirements
http://learntocreategames.com/learn-unity-ebook/






Who	this	Book	is	for

If	you	can	answer	yes	to	all	these	questions,	then	this	book	is	for	you:

1.	 Would	you	like	to	learn	how	to	create	a	2D	platformer?
2.	 Would	you	like	to	know	how	to	create	reusable	objects	and	save	yourself	some	time?
3.	 Can	you	already	code	in	C#?
4.	 Would	you	like	to	discover	how	to	create	a	menu	and	levels?
5.	 Although	you	may	have	had	some	prior	exposure	to	Unity	and	coding,	would	you	like	to

delve	more	into	2D	platformer	games?







Who	this	Book	is	not	for

If	you	can	answer	yes	to	all	these	questions,	then	this	book	is	not	for	you:

1.	 Can	you	already	create	2D	platformers?
2.	 Can	you	create	menus	and	levels	for	2D	games?
3.	 Are	you	looking	for	a	reference	book	on	Unity	programming?
4.	 Are	you	an	experienced	(or	at	least	advanced)	Unity	user?

If	you	can	answer	yes	to	all	four	questions,	you	may	instead	look	for	the	next	book	in	the	series	on
the	official	website.

http://www.learntocreategames.com




How	you	will	Learn	from	this	Book

Because	all	students	learn	differently	and	have	different	expectations	of	a	course,	this	book	is
designed	to	ensure	that	all	readers	find	a	learning	mode	that	suits	them.	Therefore,	it	includes	the
following:

A	list	of	the	learning	objectives	at	the	start	of	each	chapter	so	that	readers	have	a	snapshot	of
the	skills	that	will	be	covered.
Each	section	includes	an	overview	of	the	activities	covered.
Many	of	the	activities	are	step-by-step,	and	learners	are	also	given	the	opportunity	to	engage
in	deeper	learning	and	problem-solving	skills	through	the	challenges	offered	at	the	end	of
each	chapter.
Each	chapter	ends-up	with	a	quiz	and	challenges	through	which	you	can	put	your	skills	(and
knowledge	acquired)	into	practice,	and	see	how	much	you	know.	Challenges	consist	in
coding,	debugging,	or	creating	new	features	based	on	the	knowledge	that	you	have	acquired
in	the	chapter.
The	book	focuses	on	the	core	skills	that	you	need;	some	sections	also	go	into	more	detail;
however,	once	concepts	have	been	explained,	links	are	provided	to	additional	resources,
where	necessary.
The	code	is	introduced	progressively	and	is	explained	in	detail.
You	also	gain	access	to	several	videos	that	help	you	along	the	way,	especially	for	the	most
challenging	topics.







Format	of	each	Chapter	and	Writing	Conventions

Throughout	this	book,	and	to	make	reading	and	learning	easier,	text	formatting	and	icons	will	be
used	to	highlight	parts	of	the	information	provided	and	to	make	it	more	readable.

The	full	solution	for	the	project	presented	in	this	book	is	available	for	download	on	the	official
website	(http://learntocreategames.com/2d-platform-games/).

http://learntocreategames.com/2d-platform-games/




	Special	Notes

Each	chapter	includes	resource	sections,	so	that	you	can	further	your	understanding	and	mastery	of
Unity;	these	include:

A	quiz	for	each	chapter:	these	quizzes	usually	include	10	questions	that	test	your	knowledge
of	the	topics	covered	throughout	the	chapter.	The	solutions	are	provided	on	the	companion
website.
A	checklist:	it	consists	of	between	5	and	10	key	concepts	and	skills	that	you	need	to	be
comfortable	with	before	progressing	to	the	next	chapter.
Challenges:	each	chapter	includes	a	challenge	section	where	you	are	asked	to	combine	your
skills	to	solve	a	particular	problem.

Author’s	notes	appear	as	described	below:

Author’s	suggestions	appear	in	this	box.

Code	appears	as	described	below:

public	int	score;

public	string	playersName	=	“Sam”;

Checklists	that	include	the	important	points	covered	in	the	chapter	appear	as	described	below:

·	Item1	for	check	list

·	Item2	for	check	list

·	Item3	for	check	list

	





How	Can	You	Learn	Best	from	this	Book

Talk	to	your	friends	about	what	you	are	doing.

We	often	think	that	we	understand	a	topic	until	we	have	to	explain	it	to	friends	and	answer
their	questions.	By	explaining	your	different	projects,	what	you	just	learned	will	become
clearer	to	you.

Do	the	exercises.

All	chapters	include	exercises	that	will	help	you	to	learn	by	doing.	In	other	words,	by
completing	these	exercises,	you	will	be	able	to	better	understand	the	topic	and	gain	practical
skills	(i.e.,	rather	than	just	reading).

Don’t	be	afraid	of	making	mistakes.

I	usually	tell	my	students	that	making	mistakes	is	part	of	the	learning	process;	the	more
mistakes	you	make	and	the	more	opportunities	you	have	for	learning.	At	the	start,	you	may
find	the	errors	disconcerting,	or	that	the	engine	does	not	work	as	expected	until	you
understand	what	went	wrong.

Export	your	games	early.

It	is	always	great	to	build	and	export	your	first	game.	Even	if	it	is	rather	simple,	it	is	always
good	to	see	it	in	a	browser	and	to	be	able	to	share	it	with	you	friends.

Learn	in	chunks.

It	may	be	disconcerting	to	go	through	five	or	six	chapters	straight,	as	it	may	lower	your
motivation.	Instead,	give	yourself	enough	time	to	learn,	go	at	your	own	pace,	and	learn	in
small	units	(e.g.,	between	15	and	20	minutes	per	day).	This	will	do	at	least	two	things	for
you:	it	will	give	your	brain	the	time	to	“digest”	the	information	that	you	have	just	learned,	so
that	you	can	start	fresh	the	following	day.	It	will	also	make	sure	that	you	don’t	“burn-out”
and	that	you	keep	your	motivation	levels	high.





Feedback

While	I	have	done	everything	possible	to	produce	a	book	of	high	quality	and	value,	I	always
appreciate	feedback	from	readers	so	that	the	book	can	be	improved	accordingly.	If	you	would	like
to	give	feedback,	you	can	email	me	at	learntocreategames@gmail.com.

mailto:learntocreategames@gmail.com




Downloading	the	Solutions	for	the	Book

You	can	download	the	solutions	for	this	book	after	creating	a	free	online	account	at
http://learntocreategames.com/2d-platform-games/.	Once	you	have	registered,	a	link	to	the	files
will	be	sent	to	you	automatically.

http://learntocreategames.com/2d-platform-games/




Improving	the	Book

Although	great	care	was	taken	in	checking	the	content	of	this	book,	I	am	human,	and	some	errors
could	remain	in	the	book.	As	a	result,	it	would	be	great	if	you	could	let	me	know	of	any	issue	or
error	you	may	have	come	across	in	this	book,	so	that	it	can	be	solved	and	the	book	updated
accordingly.	To	report	an	error,	you	can	email	me	(learntocreategames@gmail.com)	with	the
following	information:

1.	 Name	of	the	book.
2.	 The	page	or	section	where	the	error	was	detected.
3.	 Describe	the	error	and	also	what	you	think	the	correction	should	be.

Once	your	email	is	received,	the	error	will	be	checked,	and,	in	the	case	of	a	valid	error,	it	will	be
corrected	and	the	book	page	will	be	updated	to	reflect	the	changes	accordingly.

mailto:learntocreategames@gmail.com




Supporting	the	Author

A	lot	of	work	has	gone	into	this	book	and	it	is	the	fruit	of	long	hours	of	preparation,
brainstorming,	and	finally	writing.	As	a	result,	I	would	ask	that	you	do	not	distribute	any	illegal
copies	of	this	book.

This	means	that	if	a	friend	wants	a	copy	of	this	book,	s/he	will	have	to	buy	it	through	the	official
channels	(i.e.,	through	Amazon,	lulu.com,	or	the	book’s	official	website:
www.learntocreategames.com/learn-unity-ebook).

If	some	of	your	friends	are	interested	in	the	book,	you	can	refer	them	to	the	book’s	official
website	(http://www.learntocreategames.com/learn-unity-ebook)	where	they	can	either	buy	the
book,	enter	a	monthly	draw	to	be	in	for	a	chance	of	receiving	a	free	copy	of	the	book,	or	to	be
notified	of	future	promotional	offers.

	

	

http://www.learntocreategames.com/learn-unity-ebook
http://www.learntocreategames.com/learn-unity-ebook




1	
Creating	a	Simple	Level
In	this	section,	we	will	start	by	creating	a	simple	level,	including:

A	2D	character	that	will	be	able	to	jump	and	walk.
Simple	platforms.
A	camera	that	follows	the	player.
A	mini-map	that	displays	the	layout	of	the	level.
Objects	that	you	can	collect.
Objects	that	bounce	indefinitely.

	

So,	after	completing	this	chapter,	you	will	be	able	to:

Use	a	character	that	can	jump	and	walk.
Create	2D	objects.
Create	a	C#	script.
Detect	collisions	between	objects.
Destroy	objects	upon	collision.





Introduction

In	this	chapter	we	will	create	a	simple	level	with	a	2D	character	that	can	walk	and	bounce	off
platforms;	we	will	also	create	objects	that	the	character	has	to	collect	or	to	avoid,	and	some	of
them	will	also	have	physics	properties,	which	will	make	it	possible	for	them	to	bounce.





Adding	the	main	character

The	very	first	thing	that	we	will	do	is	to	create	a	simple	2D	scene	that	includes	a	2D	character
along	with	several	platforms.

Luckily,	Unity	includes	a	set	of	2D	assets	that	we	can	use	for	this	purpose.	So	we	will	proceed	as
follows:

Import	the	2D	assets	(including	a	2D	character).
Create	platforms	from	basic	shapes	(i.e.,	boxes).
Create	a	camera	that	follows	the	main	character.
Create	a	mini-map.

So	let’s	get	started:

Please	launch	Unity.
Create	a	new	project	(File	|	New	Project).
Once	the	new	project	is	open,	please	select	the	2D	mode	for	the	scene,	by	clicking	on	the	2D
button	located	in	the	top	left	corner	of	the	Scene	view.

Figure	1:	Using	the	2D	mode

Next,	we	will	import	some	of	the	necessary	assets	to	create	our	scene.

Please	select:	Assets	|	Import	Package	|	2D	from	the	top	menu.
A	new	window	called	Import	Unity	Package	will	appear.
Please	click	on	the	button	called	Import	to	import	all	2D	assets.
This	will	create	a	new	folder	called	Standard	Assets	 in	 the	Project	window,	and	within
this	folder,	another	folder	called	2D	which	includes	several	2D	assets	that	we	will	use.

Figure	2:	The	new	folder	for	2D	assets

Once	this	is	done,	it	is	time	to	add	our	2D	character:

In	the	Project	window,	from	the	folder	Standard	Assets	|	2D	|	Prefabs,	drag	and	drop	the
prefab	called	CharacterRobotBoy	 to	 the	Scene	 view	 (if	 you	don't	 feel	 comfortable	with
navigating	through	the	different	views	and	windows	in	Unity,	you	may	consider	reading	the
book	Unity	from	Zero	to	Proficiency	-	Foundations).



Figure	3:	Adding	the	character

As	you	will	see,	this	will	create	a	new	object	called	CharacterRobotBoy	in	the	Hierarchy
view.	It	will	also	add	a	character	to	the	scene,	as	illustrated	on	the	next	figure.

Figure	4:	The	game	object	CharacterRobotBoy

You	can	set	the	position	of	this	character	to	(0,	2,	0)	using	the	Inspector.

Note	that	if	your	background	does	not	look	like	the	one	illustrated	on	the	previous	figure,
it	is	probably	because	a	background	image	was	not	added	automatically	by	Unity;	you	can
change	the	background	of	your	scene	using	the	window:	Window	|	Lightings

If	you	click	on	this	character	in	the	Scene	view,	and	then	look	at	the	Inspector,	you	should
see	that	it	includes	several	components,	including	a	Sprite	Renderer	(to	display	the
character),	an	Animator	component	(for	the	walking	or	jumping	animations),	two	colliders
(circle	and	box	colliders),	a	Rigidbody	component	(so	that	it	is	subject	to	forces,	including
gravity)	along	with	two	scripts	used	to	control	the	character.	We	don’t	need	to	know	the
content	of	the	scripts	for	now;	however,	it	is	always	good	to	have	an	idea	of	the	different
necessary	component	for	this	character.

Figure	5:	Components	for	the	RobotBoy	character



Once	this	is	done,	you	can	play	the	scene	and	you	will	see	that	the	character	will	fall	indefinitely;
this	is	because	of	its	Rigidbody	component	which	exerts	gravity	on	this	character	and	also	due	to
the	fact	that	there	is	no	ground	or	platform	under	the	character;	so	the	next	thing	we	will	do	is	to
create	a	simple	platform	on	which	the	player	can	walk.

Note	that	to	play	and	stop	the	scene,	you	can	press	the	shortcut	CTRL	+	P,	or	use	the	black
triangle	located	at	the	top	of	the	window.

Please	create	a	new	box:	from	the	Project	window,	select	Create	|	Sprites	|	Square.

Figure	6:	Creating	a	new	sprite	(square)	–	part	1

This	will	create	a	Sprite	asset;
Please	rename	it	platform.

Note	that	because	this	is	an	asset,	it	will	be	accessible	throughout	the	project,	irrespective	of
the	scene	that	is	open.

Figure	7:	Creating	a	new	sprite	(square)	–	part	2

Once	this	is	done,	you	can	drag	and	drop	this	asset	(i.e.,	the	platform)	to	the	Scene	view.

This	will	create	a	new	object	called	platform.
You	can	 then	 resize	 this	object	 so	 that	 it	 looks	 like	a	platform	and	place	 it	 just	below	 the
character;	for	example,	you	could	set	its	scale	property	to	(18,	1,	1)	and	its	position	to	(-6,



-1.5,	0).

Figure	8:	Adding	a	platform

Next,	we	need	to	add	a	collider	to	this	object	so	that	the	player	effectively	collides	with	it	(and
stops	falling).

Please	select	the	object	called	platform	(i.e.,	the	object	that	you	have	just	created).
From	the	top	menu,	select	Component	|	Physics2D	|	BoxCollider2D.
This	will	add	a	2DCollider	(shaped	as	a	box)	to	our	platform	object.
You	can	then	duplicate	this	platform	and	move	the	duplicate	to	its	right;	you	may	also	change
the	scale	attribute	of	the	duplicate	to	(33,	1,	1)	so	that	your	scene	looks	like	the	following
figure.

Figure	9:	The	character	and	two	platforms

Note	that	you	can,	if	you	wish,	modify	the	color	of	each	platform	by	selecting	(and	modifying)
the	attribute	called	color	that	is	accessible	within	the	component	called	Sprite	Renderer	for
each	platform.

You	can	now	test	the	scene;	you	can	move	the	character	using	the	arrow	keys	(to	go	left	and
right),	the	space	bar	(to	jump),	or	the	CTRL	key	(to	crouch).

	





Following	the	player	with	cameras

Perfect.	So	we	have	a	character	that	can	move	around	the	scene	and	jump	on	platforms;	the	only
thing	is	that,	whenever	this	character	is	outside	the	screen,	we	can’t	see	it	anymore;	so	we	will
need	to	make	sure	that	it	is	onscreen	all	the	time;	and	this	can	be	achieved	by	setting	the	main
camera	to	follow	this	character.	Luckily,	as	part	of	the	2D	assets,	Unity	provides	a	simple	script,
that	can	be	applied	to	any	camera,	so	that	it	follows	a	specific	target.	So	we	will	use	this	script
on	the	main	camera	so	that	it	follows	the	character.

So	let’s	do	the	following:

In	the	Hierarchy	window,	please	select	the	object	called	MainCamera.
Then,	after	locating	the	folder	Standard	Assets	|	2D	|	Scripts	in	the	Project	view,	drag	and
drop	the	script	called	Camera2DFollow	from	this	folder	to	the	object	called	MainCamera.

Figure	10:	Adding	the	Camera2DFollow	script

Once	this	is	done,	please	select	the	object	called	MainCamera,	in	the	Hierarchy	window.
As	 you	 do	 so,	 you	will	 see,	 in	 the	 Inspector	window,	 that	 it	 includes	 a	 new	 component,
which	is	our	script,	and	that	this	component	also	includes	an	empty	field	called	target;	this
field	will	be	used	to	specify	the	target	for	this	camera	(in	our	case,	this	will	be	the	object
CharacterRobotBoy).

Figure	11:	Setting	the	target	for	the	camera	(part	1)

Please	drag	and	drop	the	object	called	CharacerRobotBoy	from	the	Hierarchy	window	to
this	field	(to	the	right	of	the	label	Target).

Figure	12:	Setting	the	target		for	the	camera	(part	2)

Once	this	is	done,	please	test	the	scene,	and	check	that	the	camera	is	now	focusing	on	your
character.



Figure	13:	Following	the	character	with	the	camera





Creating	a	mini-map

OK,	so	now	our	character	is	in	focus	and	we	can	move	it	around	the	scene;	however,	wouldn’t	it
be	great	to	be	able	to	see	the	overall	scene	(or	what’s	ahead	of	the	character)	in	the	form	of	a
mini-map;	we	could	create	a	map	displayed	in	the	top	right-corner	of	the	window	that	shows	a
global	view	of	the	level;	so	let’s	do	just	that.

Please	create	a	new	camera	(GameObject	|	Camera)	and	rename	it	mini-map.
Using	the	Inspector,	change	its	z	position	value	to	-20	(this	is	its	depth	and	it	indicates	how
close/far	the	camera	will	be	from	the	player).
Using	the	Inspector,	change	its	Viewport	Rect	options	to:	X	=	.75,	Y=	.75,	W=.25,	H=.25,
and	depth	=1.

The	ViewportRect	defines	where	the	image	captured	by	the	camera	is	displayed;	all	these
parameters	are	expressed	as	a	proportion	of	the	screen	and	range	from	0	to	1.	So	in	our	case
the	top-left	corner	of	this	view	port	is	located	at	75%	of	the	screen’s	height	and	75%	of	the
screen’s	width	(i.e.,	X	=	.75	and	Y	=	.75);	its	width	is	25%	of	the	screen’s	width	and	its	height
is	25%	of	the	screen’s	height.

Please	 add	 (i.e.,	 drag	 and	 drop)	 the	 2DCameraFollow	 script	 (from	 the	 folder	 Standard
Assets	|	2D	|	Scripts)	to	the	new	camera	(i.e.,	mini-map).
Using	the	Inspector,	set	the	target	of	the	camera	to	the	CharacterRobotBoy	object,	as	we
have	 done	 previously	 for	 the	 other	 camera:	 drag	 and	 drop	 the	 object	 called
CharacerRobotBoy	from	the	Hierarchy	window	to	the	field	called	target	for	this	script.

Figure	14:	Setting	the	target		for	the	second	camera

Please	test	the	scene,	and	you	should	see	an	overview	of	the	level	in	the	top-right	corner	of
the	screen.



Figure	15:	Displaying	the	mini-map





Adding	objects	to	collect

In	this	section,	we	will	learn	how	to	detect	collisions;	this	will	be	used	for	our	character	to	be
able	to	collect	objects,	but	to	also	to	detect	when	it	collides	with	dangerous	objects.

The	process	will	be	as	follows,	we	will:

Create	new	sprites	that	will	be	used	as	objects	to	collect	or	avoid.
Create	and	apply	tags	to	these	objects	(i.e.,	labels).
Create	a	script,	linked	to	the	player,	that	will	detect	collisions	and	that	will	also	detect	the
tag	of	the	object	we	are	colliding	with.
Depending	on	the	tag	of	this	object,	we	will	trigger	different	actions	(e.g.,	restart	the	current
level	or	increase	the	score).

So	let’s	get	started.

Please	 create	 a	 new	 circular	 sprite:	 from	 the	Project	 window,	 select	Create	 |	 Sprites	 |
Circle.

Figure	16:	Creating	a	new	sprite	for	coins

In	 the	 Project	 window,	 rename	 this	 object	 coin	 (i.e.,	 right-click	 +	 select	 the	 option
Rename),	and	drag	and	drop	it	to	the	Scene	view;	this	will	create	an	object	called	coin.
Zoom-in	on	the	coin:	select	SHIFT	+	F.
Using	the	Inspector,	we	can	change	its	color	to	yellow	(i.e.,	using	the	color	attribute	for	the
component	Sprite	Renderer).
You	may	also	ensure	that	its	z	coordinate	is	0.

We	will	also	need	to	add	a	collider	to	this	object	(i.e.,	the	coin),	so	that	the	player	can	collide
with	(and	eventually	collect)	this	object:

Please	 select	 the	 object	 called	 coin	 in	 the	Hierarchy	 window;	 then,	 using	 the	 top	menu,
select	Component	|	Physics2D	|	Circle	Collider	2D.	This	will	create	a	collider	for	our	coin,
so	that	collisions	between	the	player	and	this	object	can	be	detected



We	can	now	create	the	mechanisms	to	collect	the	coin;	it	will	consist	of	a	script	that	will	detect
collision	between	the	player	and	the	objects,	and,	in	the	case	of	a	collision	with	a	coin,	remove	or
destroy	the	coin.

First,	we	will	create	what	is	called	a	tag;	it	will	help	to	identify	each	object	in	the	scene,	and	to
see	what	object	the	player	is	colliding	with.

Please	select	the	object	called	coin	in	the	Hierarchy.
In	the	Inspector	window,	select	the	option	Add	Tag…

Figure	17:	Adding	a	tag	(part	1)

In	 the	 new	 window,	 click	 on	 the	 +	 button	 and	 then	 specify	 a	 name	 for	 your	 tag	 (i.e.,
pick_me),	using	the	field	to	the	right	of	the	label	Tag	0.

Figure	18:	Adding	a	tag	(part	2)

Press	Return	on	your	keyboard	to	save	your	new	tag.
Select	 the	 object	 coin	 in	 the	Hierarchy	 again,	 and,	 using	 the	 Inspector,	 select	 the	 tag
pick_me,	that	you	have	just	created.

Figure	19:	Adding	a	tag	(part	3)

Once	the	tag	has	been	created,	we	can	now	create	our	new	script	and	detect	whether	we	have
collided	with	an	object	tagged	as	pick_me.



Creating	the	collision	script

Please	create	a	new	script	called	DetectCollision	(i.e.,	select	Create	|	C#	from	the	Project
window)
Open	this	script	by	double-clicking	on	it	in	the	Project	view.
Add	the	following	code	(new	code	in	bold)	to	this	script.

using	UnityEngine;

public	class	DetectCollision	:	MonoBehaviour

{

					void	Start	()	{	}

					void	Update	()	{}

					void	OnCollisionEnter2D	(Collision2D	coll)

					{

										string	tag	=	coll.collider.gameObject.tag;

									if	(tag	==	"pick_me")

									{

										Destroy(coll.collider.gameObject);

										}

					}

}

In	the	previous	code:

We	declare	a	function	called	OnCollisionEnter2D.
This	function	is	called	by	Unity	whenever	a	collision	occurs	with	 the	object	 linked	to	 this
script.



Please	note	that	the	name	of	this	function	is	case-sensitive	which	means	that	when	a	collision
occurs,	Unity	will	call	a	function	called	OnCollisionEnter2D;	however,	if	you	name	your
function	with	a	different	spelling	or	case,	let’s	say	onCollisionEnter2D,	this	function	will	not
be	called	upon	collision;	so	it	is	important	that	you	use	this	exact	spelling.	Interestingly,	if	you
make	a	spelling	mistake,	it	will	still	compile	as	Unity	will	assume	that	you	have	created	your
own	custom	function.

When	a	collision	occurs	and	that	this	function	has	been	defined	properly,	Unity	provides	an
object	of	type	Collision2D	that	includes	information	about	the	collision;	we	have	named	this
object	coll	here,	but	any	other	name	could	have	been	used	instead.
We	then	check	the	tag	of	the	object	that	we	have	collided	with	using	the	following	code:

coll.collider.object.tag;

If	the	tag	is	pick_me	we	then	destroy	the	other	object	using	the	following	code:

Destroy(coll.collider.gameObject);

Once	this	is	done,	please	save	your	script,	and	check	that	it	is	error-free.
Drag	and	drop	this	script	(DetectCollision)	on	the	object	CharacterRobotBoy.
Test	 the	 scene	 by	moving	 the	 character	 so	 that	 it	 collides	 with	 the	 coin	 that	 should	 now
disappear.

	





Adding	obstacles

Ok,	so	now	that	we	have	created	coins	to	collect,	we	could	also	create	objects	to	avoid;	in	our
case,	we	will	code	the	game,	for	the	time-being,	so	that	colliding	with	these	objects	(i.e.,	the
object	to	be	avoided)	will	cause	the	player	to	restart	the	level.

Using	 the	Hierarchy	 window,	 please	 duplicate	 the	 object	 called	 coin,	 and	 rename	 the
duplicate	boulder.	 To	 duplicate	 this	 object,	 you	 can	 right-click	 on	 it,	 and	 select	Rename
from	the	contextual	menu,	or	select	the	object	and	use	the	shortcut	CTRL	+	D.
Move	this	object	(boulder)	to	the	right	of	the	coin.
Change	the	label	of	the	object	called	boulder	to	avoid_me,	by	creating	(and	applying)	a	new
tag	called	avoid_me	to	it,	as	we	have	done	in	the	previous	section.
We	will	also	change	its	color	to	red	using	the	Inspector.

Figure	20:	Changing	the	properties	of	the	boulder

Next,	we	will	add	some	physics	properties	to	this	object	so	that	it	bounces	on	the	ground.



Adding	Physics	properties

Please	select	the	object	called	boulder	in	the	Hierarchy.
Then,	from	the	top	menu,	select	Component	|	Physics2D	|	Rigidbody2D;	 this	will	create	a
Rigidbody2D	component	for	the	boulder	object,	which	will	now	be	subject	to	forces	(e.g.,
gravity	or	push	from	the	player).
In	 the	Project	 window,	 navigate	 to	 the	 folder	Assets	 |	 Standard	 Assets	 |	 2D	 |	 Physics
Material	and	drag	and	drop	the	asset	called	Bouncy	Box	to	the	object	called	boulder.

Figure	21:	Adding	a	Physics	Material	component	(part	1)

This	will	change	the	Material	attribute	of	the	Circle	Collider	for	this	object	to	Bouncy	Box.

Figure	22:	Adding	a	Physics	Material	component	(part	2)

You	can	now	test	the	scene,	and	you	should	see	that	the	boulder	is	bouncing;	however,	it	is	not
bouncing	for	long;	this	is	because	the	Physics	material	that	we	have	applied	includes	some
frictions	to	the	boulder;	this	means	that	the	bouncing	will	eventually	stop	as	the	energy	of	the	ball
is	progressively	absorbed	(or	dissipated).	You	can	see	this	by	selecting	the	Physics	Material
Bouncy	Box	in	the	folder	Assets|	Standard	Assets|2D|Physics	Material	and	by	looking	at	the
Inspector	window.

Figure	23:	Checking	the	attributes	of		the	BouncyBox	material

As	illustrated	on	the	previous	figure,	we	can	see	that	frictions	are	applied	to	the	boulder	when	we



use	this	Physics	Material;	so	what	we	will	do	is	to	create	our	own	Physics	Material,	and	set	it
up	so	that	no	frictions	are	applied.

Using	the	Project	window,	duplicate	the	material	called	Bouncy	Box	that	is	currently	in	the
folder	Assets	|	Standard	Assets	|	2D	|	Physics	Material	(left-click	on	the	material	to	select
it,	then	press	CTRL	+	D).
Rename	the	duplicate:	MyBouncyBox.
Select	this	new	Physics	Material	(i.e.,	MyBouncyBox)	by	clicking	once	on	it.
Using	the	Inspector,	change	both	its	Friction	and	Bounciness	to	1.
Last	 but	 not	 least,	 please	 drag	 and	 drop	 this	 new	 material	 (i.e.,	MyBouncyBox)	 on	 the
object	boulder	that	is	in	the	Scene	view,	so	that	this	new	material	is	applied	instead	of	the
previous	one.

Figure	24:	Applying	our	new	Physics	Material

You	can	now	test	the	game	again	and	see	that	the	boulder	is	bouncing	indefinitely.

Restarting	the	level

Once	this	is	done,	we	just	need	to	modify	our	collision	script	so	that	we	restart	the	current	level	if
we	collide	with	the	red	boulder.

Please	open	the	script	DetectCollision	and	modify	the	code	as	follows.
Add	the	following	code	at	the	start	of	the	script:

using	System.Collections;

using	UnityEngine.SceneManagement;

In	the	previous	code,	we	add	the	path	to	the	class	called	SceneManagement;	this	is	because,	in
the	next	code,	we	will	be	using	this	class	to	reload	the	current	scene.

Add	the	next	code	within	the	method	OnCollisionEnter2D	(new	code	in	bold).

if	(tag	==	"pick_me")



{

					Destroy(coll.collider.gameObject);

}

if	(tag	==	"avoid_me")

{

		Destroy(coll.collider.gameObject);

		SceneManager.LoadScene(SceneManager.GetActiveScene().name);

}

In	the	previous	code:

We	check	that	the	tag	of	the	object	that	we	are	colliding	with	is	avoid_me.
We	then	destroy	this	object	and	reload	the	current	scene.
We	use	the	class	SceneManager	to	obtain	the	name	of	the	current	scene,	and	to	load	it.

Once	this	is	done,	please	save	your	script,	check	that	it	is	error-free,	and	run	the	game.

Please	test	the	game	and	check	that,	upon	collision	with	the	boulder,	the	scene	is	restarted
accordingly.





Level	Roundup

In	this	chapter,	we	have	learnt	how	to	create	a	simple	level	with	platforms,	a	main	character,	and
objects	that	need	to	be	collected	or	avoided.	We	also	managed	to	create	a	camera	that	follows	the
player,	and	a	mini-map,	along	with	a	script	that	detects	the	tags	applied	to	some	of	the	objects	in
the	scene.	Finally,	we	also	learned	to	apply	physics	materials	so	that	some	of	the	objects	(the
boulder),	could	bounce	indefinitely.	So,		we	have	covered	considerable	ground	to	get	you	started
with	the	first	level	of	your	platformer.



Checklist

You	can	consider	moving	to	the	next	stage	if	you	can	do	the	following:

Know	how	to	import	the	2D	Asset	package.
Import	the	asset	CharaterRobotBoy.
Use	built-in	scripts	so	that	a	camera	can	follow	a	particular	target.
Apply	a	tag	to	an	object.
Detect	collision	from	a	script.
Detect	the	name	of	a	tag	from	a	script.



Quiz

Now,	let’s	check	your	knowledge!	Please	answer	the	following	questions	(the	answers	are
included	in	the	resource	pack)	or	specify	if	these	statements	are	either	correct	or	incorrect.

1.	 The	method	OnCollisonEnter2D	is	used	when	a	collision	has	been	detected	between	two
sprites.

2.	 The	script	Camera2DFollow,	can	be	used	so	that	a	camera	follows	a	target.
3.	 Physics	materials	can	be	used	to	paint	a	sprite.
4.	 A	View	Port	can	be	used	to	specify	where	a	camera	can	be	added	to	the	scene.
5.	 The	following	code	opens	the	scene	called	level1.

Scenemanager.OpenScene(“level1”);

6.	 Only	one	camera	at	a	time	can	be	used	for	a	scene.
7.	 When	specifying	a	viewport	for	a	camera,	the	values	usually	range	between	0	and	100.
8.	 It	is	possible	to	change	the	color	of	a	sprite	using	the	component	Sprite	Render.
9.	 A	new	sprite	can	be	created	using	the	Create	menu	available	in	the	Project	view.
10.	 Only	square	sprites	can	be	created	in	Unity.

	



	



Challenge	1

Now	that	you	have	managed	to	complete	this	chapter	and	that	you	have	created	your	first	level,
you	could	improve	the	level	by	doing	the	following:

Create	additional	platforms	(e.g.,	using	duplication).
Change	their	colors.
Create	other	objects	to	collect	with	other	shapes	(e.g.,	triangle	or	square)	and	apply	the	tag
pick_me	to	them.
Create	additional	physics	materials	and	apply	them	to	new	objects	that	need	to	be	avoided.



	





2	
Managing	Score,	Lives	and	Levels
In	this	section,	we	will	learn	how	to	create	and	keep	track	of	the	score,	and	the	player’s	number
of	lives.	We	will	also	get	to	use	specific	conditions	to	load	a	new	level.

After	completing	this	chapter,	you	will	be	able	to:

Understand	the	importance	of	(and	use)	prefabs.
Create	variables	to	track	the	score	and	the	number	of	lives.
Understand	how	to	load	a	new	level.
Create	buttons	and	manage	events	(i.e.,	users’	clicks).
Create	a	simple	splash-screen.





Introduction

In	this	chapter	we	will	learn	how	to	maximize	your	time	and	avoid	repeating	yourself	by	using
prefabs,	which	are	extremely	useful	once	you	start	adding	them	to	your	games.	We	will	also	get	to
keep	track	of	the	score	and	the	number	of	lives,	and	complete	the	structure	of	our	game	by
creating	a	splash-screen	(displayed	at	the	start	of	the	game),	a	win	screen	(displayed	when	the
player	has	won)	and	an	end	screen	(displayed	when	the	player	has	lost).





Adding	and	managing	the	score

At	present,	we	can	pick-up	objects,	and	it	would	be	great	to	be	able	to	add	a	scoring	feature,
whereby	our	score	is	increased	by	1	every	time	we	collect	a	coin.

So	let’s	just	add	this	feature:

Please	open	the	script	DetectCollision.
Add	a	declaration	for	a	variable	score	as	follows	(new	code	in	bold):

public	class	DetectCollision	:	MonoBehaviour	{

		int	score;

Modify	the	method	OnCollisionEnter2D	as	follows:

if	(tag	==	"pick_me")

{

					Destroy(coll.collider.gameObject);

		score++;

		print	("score"	+	score);

	

}

In	the	previous	code	we	increase	the	score	by	one	every	time	we	collide	with	a	coin;	we	also
print	the	value	of	the	score	in	the	Console	window.

Once	this	is	done,	please	save	your	script,	and	check	that	it	is	error-free.
You	can	also	duplicate	the	object	coin	three	times,	so	that	the	player	can	collect	more	than
one	object.
Please	run	the	game	and	look	at	the	Console	window	to	make	sure	that	the	score	is	increased
by	one	every	time	you	collect	a	coin.



Figure	25:	Collecting	coins





Using	Prefabs

At	the	moment,	we	have	the	basic	skeleton	for	a	game	with	platforms,	objects	to	collect	and	also
objects	to	avoid;	in	fact,	we	could	just	duplicate	one	of	these	two	objects	several	times	to
complete	our	level;	however,	let's	say	that	we	want	to	have	100	coins	in	the	level,	and	that	at
some	stage	we	want	to	modify	their	attributes	(e.g.,	color,	or	size);	in	this	case,	we	would	need	to
modify	all	these	100	objects,	which	would	be	time-consuming;	one	solution	for	this,	is	to	create
prefabs;	prefabs	are	comparable	to	templates;	you	can	create	a	prefab	(i.e.,	a	template),	create
objects	based	on	this	template,	and	modify	all	these	objects	at	once	by	only	modifying	the
template;	in	other	words,	any	change	applied	to	the	template	will	also	be	applied	to	the	objects
based	on	this	template.	So	let’s	see	how	this	can	be	done.

Please	remove	the	duplicate	coins	that	you	have	in	your	scene	to	keep	only	one	object	called
coin.
Select	this	object	(i.e.,	coin).
Drag	and	drop	it	to	the	Project	window.
This	will	create	an	asset	called	coin,	but	this	time,	it	is	symbolized	by	a	blue	box;	this	is	the
usual	symbol	for	a	prefab	in	Unity.	If	you	click	on	this	prefab,	you	will	see	in	the	Inspector
window	that	it	has	the	exact	same	properties	as	the	object	called	coin	that	is	present	in	the
Hierarchy.

Figure	26:	Creating	a	prefab	for	the	coins

We	can	now	delete	the	object	called	coin	in	the	Hierarchy.
Please	drag	and	drop	the	coin	prefab	from	the	Project	window	to	 the	Hierarchy	window
three	times.
This	will	create	three	coins.

Figure	27:	Creating	objects	from	a	prefab

Once	 this	 is	 done,	 please	 move	 these	 coins	 a	 few	 pixels	 apart	 in	 the	 Scene	 view,	 as
described	in	the	next	figure.



Figure	28:	Spacing	out	the	new	coins

We	will	now	see	how	to	modify	their	properties	at	once:

Please	click	on	the	coin	prefab	in	the	Project	window.
Change	its	color	to	blue,	as	described	in	the	next	figure.

Figure	29:	Changing	the	color	of	the	coin	prefab

You	should	see	that	all	three	coins	are	now	blue.	This	is	because	all	three	are	based	on	the
same	prefab	that	we	just	modified.

Figure	30:	Applying	the	changes	to	the		coin	objects

You	can	also	change	the	prefab’s	properties	from	one	of	the	individual	coins,	for	example:

Select	the	first	coin	(object	called	coin)	in	the	Hierarchy.
Change	its	color	to	green	using	the	Inspector	window.



Figure	31:	Changing	the	color	of	one	of	the	coins

At	this	stage	only	this	coin	will	be	green.

Figure	32:	Changes	applied	to	one	the	coins

However,	 to	apply	 this	green	color	 to	all	 the	other	coins,	you	can	select	 the	option	called
Apply	(top-right	corner	of	the	Inspector),	as	described	in	the	next	figure.

Figure	33:	Applying	changes	to	the	prefab

This	will	apply	the	properties	of	this	particular	object	to	all	the	other	objects	based	on	the
same	template	(i.e.,	prefab).

	

Figure	34:	Generalizing	the	properties	to	other	objects

So,	prefabs	are	very	important	because	they	will	save	you	a	lot	of	time,	and	whenever	you
create	a	new	feature	or	object	that	will	probably	be	duplicated	in	your	game,	it	is	good	practice
to	make	it	a	prefab	early	in	the	development	process.

So,	let’s	apply	this	principle	to	the	boulder:

Please	drag	and	drop	 the	boulder	object	 to	 the	Project	window	to	create	a	prefab	named
boulder.
Delete	the	boulder	object	from	the	Hierarchy.
Drag	 and	 drop	 the	boulder	 prefab	 to	 the	Scene	 to	 create	 a	boulder	 object	 based	 on	 this



prefab.
Please	duplicate	 this	object	 three	times,	 to	 roughly	have	 the	 layout	 illustrated	 in	 the	next
figure.

Figure	35:	Including	additional	boulders

Also	add	two	new	coins	(either	duplicates	of	an	existing	coin	or	by	dragging	and	dropping
the	coin	prefab	to	the	scene	twice)	to	the	right	of	the	boulders.

Figure	36:	Including	additional	coins

Please	 test	 the	 scene	 and	 check	 that	 all	 boulders	 and	 coins	 behave	 as	 expected	 (i.e.,	 the
score	is	increased	by	one	after	collecting	a	coin,	or	the	level	is	restarted	after	colliding	with
a	boulder	or	falling).

Last	but	not	least,	we	will	also	create	a	prefab	from	our	main	character	so	that	it	can	be	reused	in
the	next	levels	(yes,	we	will	be	creating	several	levels	:-)).

Please	select	the	object	CharacterRobotBoy	in	the	Hierarchy	window	and	drag	and	drop	it
to	the	Project	window;	this	will	create	a	prefab	called	CharacterRobotBoy.

Figure	37:	Creating	a	prefab	from	the	character

Once	this	 is	done,	rename	this	prefab	player	 (i.e.,	 select	 the	prefab,	 left-click	once	on	 the
name	of	the	prefab	and	then	modify	its	name,	or	right-click	on	the	prefab	and	select	Rename
from	 the	 contextual	 menu);	 this	 will	 also	 rename	 the	 object	 automatically	 from
CharacterRobotBoy	 to	player	 in	 the	Hierarchy	 (since	 this	 object	 is	 now	 based	 on	 the
prefab	called	player).



Figure	38:	The	character	and	its	new	name	(player)

	





Creating	a	new	scene

Ok,	so	at	this	stage	we	have	a	level	with	objects	to	collect,	and	a	score;	what	we	will	do	next	is
to	get	the	player	to	change	level	after	collecting	five	coins	or	when	the	score	is	5.

First	let’s	save	our	current	scene:	select	the	folder	Assets	in	the	Project	window,	and	then
select	File	|	Save	Scene	as	from	the	top	menu,	and	rename	the	scene	level1.

The	new	scene	is	saved	in	the	active	folder;	so	by	selecting	a	particular	folder	in	the	Project
window	before	saving	a	scene,	this	scene	will	be	saved	in	this	particular	folder.

Then,	we	can	create	a	new	scene	by	duplicating	the	current	scene.

Please	navigate	to	the	folder	Assets	in	the	Project	window.
Select	the	scene	that	we	have	just	saved	(level1).
Press	CTRL	+D	or	 (APPLE	+	D);	 this	will	duplicate	 the	current	scene	and	 the	duplicate
will	be	automatically	named	level2.
You	can	now	open	the	second	level	by	double-clicking	on	the	scene	called	level2	from	the
Project	window.
Unity	may	ask	you	if	you	want	to	save	the	current	scene	(since	there	were	changes	since	the
last	time	we	save	the	scene).

Figure	39:	Saving	changes	made	to	the	scene

You	can	click	on	Save,	to	save	your	changes.
You	can	now	check	that	the	current	scene	is	level2	by	looking	at	the	top	of	the	window:	the
name	level2	should	now	appear.

Figure	40:	Checking	the	name	of	the	current	scene



Once	this	is	done,	we	can	just	remove	all	coins	and	boulders	from	this	scene,	to	only	leave	the
player,	the	mini-map,	and	the	platforms,	for	the	time	being.

To	 select	 all	 the	 coins	 and	 boulders,	 you	 can	 drag	 and	 drop	 your	 mouse	 to	 select	 a
rectangular	area	that	encompasses	all	these	objects;	this	will	save	you	some	time.
You	can	then	see	that	they	are	all	selected	either	in	the	Hierarchy	view,	or	the	Scene	view.

Figure	41:	Selecting	multiple	objects

Once	this	is	done,	you	can	select	and	delete	these	(e.g.,	Edit	|	Delete).

Figure	42:	The	scene	without	the	coins	or	boulders





Changing	Level

Next,	we	will	need	to	design	a	mechanism	by	which	we	can	change	level	(from	level1	to	level2)
when	we	have	collected	five	coins;	this	will	be	done	using	scripting.

Please	save	the	current	scene	(CTRL	+	S)	and	then	open	the	scene	level1.	(i.e.,	double	click
on	it	in	the	Project	view)
Open	the	script	DetectCollision.
Modify	the	first	line	of	the	class	as	follows:

int	score,	nbCoinsCollectedPerLevel;

Add	the	following	line	to	the	Start	function:

nbCoinsCollectedPerLevel	=	0;

Modify	the	function	OnCollisonEnter2D	as	follows	(new	code	in	bold):

if	(tag	==	"pick_me")

{

					Destroy(coll.collider.gameObject);

					score++;

					nbCoinsCollectedPerLevel++;

					if	(SceneManager.GetActiveScene	().name	==	"level1"	&&	nbCoinsCollectedPerLevel
>=	5)

					{

					SceneManager.LoadScene	("level2");

					}

					print	("score"	+	score);

	

}



In	the	previous	code,	we	increase	the	number	of	coins	collected	by	one,	and	test	whether	we
have	 collected	 five	 coins;	 in	 this	 case,	 if	 the	 current	 level	 is	 level1,	 we	 load	 the	 scene
level2.
Please	save	the	code,	and	check	that	it	is	error-free.

Next,	while	the	code	is	correct,	there	is	a	last	thing	we	need	to	do;	that	is:	we	need	to	declare	the
scenes	that	will	be	used	in	our	game,	so	that	Unity	can	load	them	when	we	need	them;	so	this	will
be	done	using	what	is	called	the	Build	Settings.

Please	select	File	|	Build	Settings	from	the	top	menu.
This	will	open	a	new	window	with	this	same	name.
You	can	 then	drag	and	drop	 the	scenes	 level1	and	 level2	 from	the	Project	window	 to	 the
Build	Settings	window,	as	illustrated	in	the	next	figure.

Figure	43:	Modifying	the	build	settings

Once	this	is	done,	you	can	close	the	Build	Settings	window,	and	test	the	scene;	as	you	manage	to
collect	five	coins,	you	should	transition	to	the	next	level	(i.e.,	level2).





Managing	the	number	of	lives

At	present	we	have	a	score	and	we	can	also	count	the	number	of	coins	collected;	it	would	also	be
nice	to	be	able	to	use	the	number	of	lives,	so	that	the	player	starts	with,	for	example,	three	lives,
and	loses	a	life	whenever	s/he	falls	or	hits	a	boulder.

First,	we	will	create	code	to	check	when	the	player	falls;	we	will	then	create	a	mechanism
through	which	the	lives	are	initialized	to	three,	and	then	decreased	after	a	wrong	move	was	made.

Please	create	a	new	sprite;	from	the	Project	view,	select:	Create	|	Sprites	|	Square.
Rename	this	sprite	reStarter,	and	drag	and	drop	it	to	the	Scene	view;	this	will	create	a	new
object	called	reStarter.
Select	this	new	object	(resSarter)	and,	using	the	Inspector,	change	its	position	to	(0,	-50,	0)
and	 its	 scale	 to	 (1000,	1,	1).	You	might	 need	 to	 lower	 the	 y-coordinate	 depending	 on	 the
starting	position	of	your	character.
You	can	also	deactivate	its	SpriteRenderer	component,	as	illustrated	on	the	next	figure.

Figure	44:	Deactivating	the	Sprite	Renderer

Please	create	a	new	tag	called	reStarter	and	apply	it	to	this	object.

Figure	45:	Adding	a	new	tag	reStarter

The	last	thing	will	be	to	add	a	collider	to	this	object:	please	select	Component	|	Physics2D	|
BoxCollider2D.

So	this	object,	although	it	won’t	be	visible,	will	be	collidable,	and	will	be	used	to	detect	when
the	player	is	low	enough	that	we	can	assume	that	it	is	falling.

The	last	thing	we	need	to	do	is	to	modify	our	collision	detection	script	to	detect	when	the	player
collides	with	this	object	reStarter;	in	this	case,	we	will	restart	the	current	level,	as	we	have
done	for	the	collision	with	the	boulders.

Please	open	the	script	DetectCollision.



Add	the	following	code	to	it	(new	code	in	bold).

if	(tag	==	"avoid_me")

{

					Destroy(coll.collider.gameObject);

					SceneManager.LoadScene(SceneManager.GetActiveScene().name);

}

if	(tag	==	"reStarter")

{

					SceneManager.LoadScene(SceneManager.GetActiveScene().name);

}

In	the	previous	code,	if	we	collide	with	an	object	with	the	tag	reStarter,	we	then	reload	the
current	scene.
Once	 this	 is	done,	 check	your	 code,	 and	play	 the	 scene.	Get	 the	 character	 to	 jump	 from	a
platform,	and	see	as	it	is	falling,	that	the	level	restarts	automatically.

Once	you	have	checked	that	this	feature	is	working,	you	can	create	a	prefab	from	the	object
reStarter	by	dragging	and	dropping	this	object	to	the	Project	window.

	





Completing	the	structure	of	our	game

In	the	next	sections,	we	will	get	to	complete	the	skeleton	of	our	game,	by	including,	a	splash-
screen,	level1,	level2	and	a	game-over	or	win	screen.	If	the	player	manages	to	collect	five
coins,	s/he	will	evolve	to	level2;	then	in	level2,	if	s/he	reaches	the	end	of	the	level	by	jumping	on
platforms,	s/he	will	win.	The	player	will	lose	if	s/he	runs	out	of	lives.

So	let’s	complete	the	second	scene,	it	will	be	a	simple	scene	with	platforms,	a	few	pixels	apart,
that	the	player	has	to	reach	to	complete	the	level.

Please	open	the	scene	level2.

Drag	and	drop	the	prefab	restarter	from	the	Project	window	to	the	Scene	view;	this	will
create	a	new	object	called	reStarter

Change	its	position	to	(0,	-50,	0).

We	will	now	create	a	succession	of	small	platforms	that	the	player	will	need	to	jump	on.

Please	select	the	platform	to	the	right	of	the	player	(platform1).

Change	its	scale	to	(3.5,	1,	1).

Rename	it	small_platform,	and	create	a	prefab	with	it,	by	dragging	and	dropping	this	object
to	the	Project	window.

Once	this	is	done,	you	can	duplicate	this	object	seven	times	to	create	seven	additional	platforms
that	you	can	place	side	by	side	with	some	space	in	between,	as	illustrated	on	the	next	figure.

Figure	45:	Adding	small	platforms

We	can	then	do	the	following:

Select	 the	 platform	 just	 below	 the	 player	 (i.e.,	 the	 long	 platform)	 and	 rename	 it
long_platform.

Create	a	prefab	from	it	(as	we	have	done	previously).



Duplicate	 the	 object	 long_platform	 and	move	 the	 duplicate	 to	 the	 right	 of	 the	 last	 small
platform	to	obtain	the	layout	that	we	have	illustrated	in	the	next	figure.

Figure	46:	Completing	the	second	level

To	add	some	rewards,	we	can	also	include	a	few	coins	to	the	scene,	above	every	small
platform,	by	dragging	and	dropping	the	prefab	called	coin	from	the	Project	window	to	the
Scene	view	several	times.

Figure	47:	Adding	coins

The	last	thing	is	to	is	to	create	an	object	that	symbolizes	the	end	of	level2;	it	will	be	used	to
transfer	the	user	to	the	win	screen	(that	we	yet	have	to	create).

Please	do	the	following:

Create	a	new	triangle	sprite:	from	the	Project	view,	select	Create	|	Sprites	|	Triangle.

This	will	create	a	new	sprite	in	the	Project	view.

Rename	it	endOfLevel2.

Once	this	is	done,	you	can	drag	and	drop	it	to	the	Scene	view	so	that	it	appears	to	the	right
of	the	second	long	platform.

This	will	create	a	new	object	called	endOfLevelTwo.

You	can	then	change	the	color	of	this	object	to	green,	using	the	Inspector	by	modifying	 its
component	called	Sprite	Renderer.

We	can	also	change	its	rotation	to	(0,	0,	-90)	and	its	scale	to	(3,	3,	1).



Figure	48:	Creating	the	end	of	the	level

Finally,	 we	 will	 add	 a	 collider	 to	 this	 object	 by	 selecting	 Component	 |	 Physics2D	 |
BoxCollider2D.
You	can	now	test	your	scene.	As	you	reach	 the	end	of	 the	 level,	you	will	collide	with	 the
object	endOfLevel2;	however,	nothing	will	happen	(no	transition	to	the	win	screen)	since
we	have	not	coded	this	feature	yet.

To	finish	the	basic	structure	of	our	game,	we	will	be	adding	a	splash-screen	and	an	end	screen.





Creating	a	Splash	Screen

Our	splash	screen	will	be	the	first	screen	displayed	for	our	game;	it	will	consist	of	a	background
image	and	a	button.

Please	save	the	current	scene	(File	|	Save	Scene).

Create	 a	 new	Scene	 (File	 |	New	Scene)	 and	 rename	 it	 splashScreen	 (File	 |	 Save	 Scene
As…).

By	default,	this	new	scene	will	include	a	camera	and	a	light.

First	we	will	create	a	button	that	will	be	used	to	load	the	first	scene.

So	let’s	create	this	button:

Please	 select:	GameObject	 |	 UI	 |	 Button.	 This	 will	 create	 a	 new	 button	 along	 with	 an
object	called	canvas.

Figure	49:	Creating	a	new	button

You	can	focus	the	view	on	this	button	by	double-clicking	on	the	button	in	the	Hierarchy	(or
by	selecting	the	button	and	then	pressing	CTRL	+	F).

This	should	display	the	button,	along	with	a	white	rectangle	that	marks	the	boundary	of	the
screen	view.

Figure	50:	Focusing	on	the	button



Please	move	the	button	to	the	center	of	 the	white	rectangle	or,	using	the	Inspector,	change
the	PosX,	PosY	and	PosZ	properties	of	its	Rect	Transform	component	to	(0,0,0).

Figure	51:	Changing	the	position	of	the	button	(part	1)

The	button	should	now	be	in	the	middle	of	the	screen.

Figure	52:	Changing	the	position	of	the	button	(part	2)

We	can	now	change	the	text	displayed	on	the	button:

Using	 the	Hierarchy,	 select	 the	 object	 called	 Text	 that	 is	 a	 child	 of	 the	 object	 called
Button.

Figure	53:	Selecting	the	text	of	the	button

Using	 the	 Inspector,	 you	 can	 change	 the	Text	 property	 of	 the	 component	 called	Text	 to
“Start”.

Figure	54:	Changing	the	label	of	the	button



Once	this	is	done,	we	will	start	to	create	a	script	that	will	be	used	to	change	levels.

Please	create	a	new	C#	script	and	name	it	ControlButtons.

Open	this	script.

Add	this	code	at	the	start	of	the	file.

using	UnityEngine.SceneManagement;

Add	the	following	code	within	the	class.

public	void	startLevel1()

{

					SceneManager.LoadScene("level1");

}

In	the	previous	code,	we	create	a	new	function	called	startLevel1;	when	this	function	is	called,	it
will	load	the	scene	called	level1.

Once	this	is	done:

Please	save	your	code.

Check	that	it	is	error-free.

Create	a	new	empty	object	(GameObject	|	Create	Empty)	and	rename	it	manageButtons.

Drag	 and	 drop	 the	 script	 ControlButtons	 to	 this	 empty	 object	 (i.e.,	 the	 object
manageButtons).

Last,	we	will	select	an	action	to	be	performed	whenever	the	user	clicks	on	the	button.

Click	once	on	the	button	(called	Button)	in	the	Hierarchy.

In	the	Inspector	window,	scroll	down	to	the	section	called	Button	(i.e.,	at	the	bottom	of	the
Inspector	window).

Click	on	the	+	sign	below	the	text	“List	is	Empty”.



Figure	55:	Adding	a	new	event	handler

This	will	reveal	new	attributes.

Figure	56:	Displaying	new	attributes	for	the	button

You	can	now	drag	and	drop	the	object	called	manageButtons,	from	the	Hierarchy	view,	to
the	field	labelled	as	“None	(Object)”.

Figure	57:	Adding	the	empty	object	to	the	button

For	this	to	work,	you	need	to	drag	the	empty	object	to	the	field	None	(Object),	but	NOT
the	script.	In	other	words,	if	you	drag	and	drop	the	script	to	this	field,	you	will	not	be	able
to	access	it	functions;	instead,	you	need	to	drag	and	drop	an	empty	object	that	includes	the
script	ControlButtons.	This	will	then	give	access	to	the	functions	within	the	script.

Once	 this	 is	 done,	 click	 on	 the	 label	 “No	 function”	 and	 select	 ControlButtons	 |
StartLevel1	from	the	drop	down	menu.

Figure	58:	Selecting	the	function	to	be	called	(part	1)



By	doing	 this,	we	effectively	 tell	 the	 system	 that	 in	case	 the	user	 clicks	on	 the	button,	 the
function	 startLevel1,	 that	 is	 included	 in	 the	 script	 (or	 class)	ControlButtons,	 should	 be
called.

Figure	59:	Selecting	the	function	to	be	called	(part	2)

Last,	but	not	least,	we	just	need	to	include	this	scene	to	the	Build	Settings,	by	opening	the
corresponding	window	(File	|	Build	Settings)	and	clicking	on	the	button	Add	Open	Scenes.

Figure	60:	Adding	the	current	scene	to	the	Build	Settings

In	the	previous	figure,	you	can	see	that	all	the	scenes	listed	have	an	associated	number	(to	the
right)	that	indicates	the	order	in	which	they	will	appear	in	the	game;	so	we	could	also	drag	and
drop	the	splash-screen	scene	in	this	view	from	the	third	to	the	first	position	in	this	list,	as
described	in	the	next	figure.

Figure	61:	Moving	the	splash-screen	to	the	first	position

We	can	now	close	the	Build	Settings	window,	and	test	our	button.	As	you	play	the	scene	and
click	on	the	button,	the	first	level	(level1)	should	be	loaded.





Creating	the	end	screens	(win	and	lose)

We	will	now	create	the	last	two	screens	for	the	skeleton	of	our	game:	a	screen	when	the	player
wins	(after	reaching	the	end	of	the	second	level)	and	a	screen	for	when	the	player	loses	after	s/he
has	no	more	lives.	Note	that	we	have	not	dealt	with	the	management	of	lives	yet,	and	this	will	be
done	just	after	this	section.

Please	save	the	current	scene	(Files	|	Save	Scene).

Create	a	new	Scene	(File	|	New	Scene).

Save	this	scene	as	win	(File	|	Save	Scene	As).

Add	a	new	UI	Text	object	(GameObject	|	UI	|	Text).	This	will	create	a	new	object	called
Text,	as	illustrated	on	the	next	figure.

Figure	62:	Adding	a	text	UI	object

Select	this	new	object	called	Text,	and,	using	the	Inspector,	change	its	attributes	as	follows:

Component	RectTransform:	width	=	500;	height	=	200;	Anchor	Preset	(the	box	just	below
the	label	Rect	Transform)	=	Middle	-	center.

Figure	63:	Modifying	the	RectTransform	component

Component	 Text	 Script:	 Text	 =	 “Well	 Done!”;	 Font-Style	 =	 Bold;	 Font-Size	 =	 91;
Color=Green;	paragraph	alignment	(middle-center).

Figure	64:	Modifying	the	Paragraph	component



Figure	65:	Displaying	the	text	after	the	changes

Once	this	is	done,	we	will	just	create	a	button	that	will	be	used	to	restart	the	game.

Please	create	a	button	as	we	have	done	previously	(GameObject	|	UI	|	Button).

Using	the	Move	tool,	move	this	button	below	the	text	that	you	have	just	created.

Select	the	Text	object	that	is	a	child	of	this	button	in	the	Hierarchy.

Figure	66:	Selecting	the	label	for	the	button

Using	 the	Inspector,	 change	 the	 text	 attribute	of	 the	Text	 component	 for	 this	 object	 to	>>
Restart	Game<<.

Once	this	is	done,	we	just	need	to	modify	our	previous	class	ControlButtons,	to	include	a
function	that	loads	the	splash-screen,	and	we	can	then	attach	this	script	to	an	empty	object.

Please	open	the	script	ControlButtons.

Add	the	following	code	to	the	class	(at	the	end).

public	void	loadSplashScreen()

{

					SceneManager.LoadScene("splashScreen");

}



In	 the	 previous	 code,	we	 declare	 the	 function	 loadSplashScreen	 that	will	 load	 the	 scene
called	splashScreen	when	it	is	called.

Please	save	your	code.

Create	an	empty	object	called	manageButtons.

Drag	and	drop	the	script	called	ControlButtons	to	this	empty	object.

Add	this	scene	(i.e.,	win)	to	the	Build	Settings.

Figure	67:	Adding	the	scene	to	the	Build	Settings

Next,	we	will	define	the	function	that	is	called	when	this	button	is	pressed.

Click	once	on	the	button	in	the	Hierarchy.

In	 the	 Inspector	 window,	 scroll	 down	 to	 the	 section	 called	Button	 (i.e.,	 bottom	 of	 the
Inspector	window).

Click	on	the	+	sign	below	the	text	“List	is	Empty”.

Figure	68:	Selecting	an	event	handler	(part	1)

This	will	reveal	new	attributes.

Figure	69:	Selecting	an	event	handler	(part	2)



You	can	now	drag	and	drop	the	object	called	manageButtons,	from	the	Hierachy	view,	to
the	field	labelled	as	“None	(Object)”.

Figure	70:	Selecting	a	function	(part	1)

Once	 this	 is	 done,	 click	 on	 the	 label	 “No	 function”	 and	 select	 ControlButtons	 |
LoadSplashScreen.

By	doing	this,	we	effectively	tell	the	system	that	in	case	the	user	clicks	on	the	button,	the	function
loadSplashScreen,	that	is	included	in	the	script	(or	class)	should	be	called.

Figure	71:	Selecting	a	function	(part	2)

You	can	now	test	the	scene	and	check	that	by	clicking	on	the	button,	you	are	redirected	to	the
splash-screen.

We	can	now	create	a	prefab	from	the	object	manageButtons,	as	the	scripts	within	will	be	used
later	on:

Please	 drag	 and	 drop	 the	 object	manageButtons	 to	 the	Project	 view,	 this	 will	 create	 a
prefab	called	manageButtons.

Figure	72:	The	new	prefab	manageButtons

Once	this	is	done,	we	just	need	to	create	a	new	scene	for	when	the	player	loses;	this	will	be	quite
identical	to	the	win	scene,	except	from	the	message	displayed	onscreen.

Please	save	the	current	scene	(File	|	Save	Scene).



Duplicate	this	scene	(i.e.,	the	win	scene):	from	the	Project	view,	select	the	scene	called	win
and	duplicate	it	(CTRL	+	D	or	APPLE	+	D);	rename	the	duplicate	lose	(i.e.,	click	once	on	it
then	 change	 its	 name,	 or	 select	 it	 and	press	Enter),	 this	will	 be	 the	 scene	 used	when	 the
player	loses.

In	the	Project	view,	double-click	on	the	scene	called	lose	to	open	it.

Once	the	scene	is	open,	using	the	Hierarchy,	select	the	object	called	Text,	that	is	a	child	of
the	object	canvas.

Figure	73:	Selecting	the	Text	object

Using	the	Inspector,	change	its	text	to	“You	lost!”

The	button’s	label	does	not	need	to	be	changed	since	it	will	also	ask	the	player	to	restart	the
game.

The	only	thing	that	we	need	to	do	now	is	to	add	this	scene	to	the	Build	Settings	by	opening	the
Build	Settings	window	(File|	Build	Settings),	and	by	then	selecting	the	option	Add	Open
Scenes.

Figure	74:	Adding	a	new	scene	to	the	Build	Settings

That’s	it.	We	can	now	close	the	Build	Settings	window,	and	the	last	thing	we	can	do	is	to	make
sure	that	the	win	scene	is	displayed	when	the	player	reaches	the	end	of	the	second	level.

So	let’s	proceed:

Please	open	the	scene	called	level2.



Select	the	object	endOfLevelTwo.

Create	a	new	tag	(as	we	have	done	previously)	called	endOfLevelTwo	and	apply	it	to	this
object.

Open	the	script	DetectCollision.

Add	this	code	at	the	end	of	the	function	OnCollisionEnter2D.

if	(tag	==	"endOfLevelTwo")

{

					SceneManager.LoadScene("win");

}

Please	save	your	code.

Play	 the	 scene	 (level2)	 and	 make	 sure	 that	 the	win	 screen	 is	 displayed	 once	 the	 player
reaches	the	end	of	the	level.





Level	Roundup

Well,	this	is	it!

In	this	chapter,	we	have	learnt	about	creating	a	simple	splash-screen,	adding	buttons,	processing
clicks	on	buttons,	and	changing	levels;	in	the	process,	we	also	learned	how	to	use	prefabs	to
optimize	your	time.	We	have,	by	now,	a	very	simple,	but	almost	complete,	platform	game	with
two	levels,	along	with	the	out-of-game	screens	(i.e.,	win,	lose,	and	splash-screen).



Checklist

You	can	consider	moving	to	the	next	chapter	if	you	can	do	the	following:

Duplicate	a	scene.
Create	a	prefab.
Create	an	object	based	on	a	prefab.
Create	a	button	and	the	corresponding	code	to	detect	a	click	on	it.
Know	how	to	access	and	use	the	Build	Settings.



	



	



Quiz

It’s	now	time	to	check	your	knowledge	with	a	quiz.	So	please	try	to	answer	the	following
questions	(or	specify	whether	the	statements	are	correct	or	incorrect).	The	solutions	are	included
in	your	resource	pack.	Good	luck!

1.	 You	can	duplicate	a	scene	by	selecting	it	in	the	Project	view	and	by	then	pressing	CTRL	+
D.

2.	 If	a	scene	is	called	level1,	its	duplicate	will	automatically	be	renamed	level2	(unless	level2
exists	already).

3.	 A	prefab	can	be	created	by	selecting	an	object	in	the	Hierarchy	and	by	then	pressing	CTRL
+	P.

4.	 You	can	create	a	new	button,	by	selecting	GameObject	|	Button	from	the	top	menu.
5.	 You	can	create	a	new	button,	by	selecting	GameObject	|	Text	from	the	top	menu.
6.	 In	the	Build-Settings	window,	 the	number	 to	 the	 right	of	each	scene	 indicates	 the	order	 in

which	it	would	usually	appear	in	the	game.
7.	 For	a	scene	to	be	loaded	from	a	script,	this	scene	has	to	be	included	in	the	Build	Settings.
8.	 So	that	something	happens	when	a	button	is	clicked,	a	function	needs	to	be	selected	using	the

Inspector.
9.	 To	modify	the	label	of	a	button,	you	can	change	the	text	object	that	is	a	child	of	this	button.
10.	 Whenever	the	first	UI	object	of	a	scene	 is	added	to	 this	scene,	an	object	called	canvas	 is

also	created.



Challenge	1

Now	that	you	have	managed	to	complete	this	chapter	and	that	you	have	improved	your	skills,	let’s
do	the	following.

Add	a	Text	UI	object	to	the	splash-screen,	above	the	Start	button,	with	the	title	of	the	game.
Create	a	new	scene	called	Instructions	(e.g.,	duplicate	the	splash-screen	scene).
Add	a	button	called	<<Back	to	this	scene.	Upon	clicking	on	this	button	the	player	should	go
back	to	the	splash-screen.
Add	 a	 button	 called	 Instructions	 to	 the	 splash-screen.	 Upon	 clicking	 on	 this	 button	 the
player	should	go	to	the	scene	called	Instructions.

Challenge	2

In	this	challenge,	you	will	be	adding	a	new	background	to	the	splash-screen

Import	 the	 texture	 called	RobotBoy	 from	 the	 resource	 pack	 (or	 use	 any	 texture	 of	 your
choice).
Create	a	new	canvas:	select	GameObject	|	UI	|	Canvas.
Select	this	canvas.
Using	 the	Inspector,	change	 its	Sort	Order	attribute	 (in	 the	component	called	Canvas)	 to
-1;	this	will	ensure	that	any	UI	object	within	this	canvas	is	displayed	behind	the	button	(the
Sort	Order	of	the	canvas	used	for	the	button	is	0	by	default).
Create	a	new	RawImage:	 select	GameObject	 |	UI	 |	Raw	Image,	 from	the	 top	menu,	and
make	sure	that	this	image	is	a	child	of	the	new	canvas	that	you	have	created.
Modify	the	position	and	scale	of	this	image,	so	that	it	fills	the	screen.
Test	your	scene.

	





3	
Adding	Sound	and	Displaying	Values
Onscreen
In	this	section.	we	will	discover	how	to	display	the	score	and	the	number	of	lives	onscreen,	as
well	as	how	to	be	able	to	access	these	variables	throughout	the	game.

After	completing	this	chapter,	you	will	be	able	to:

Display	and	update	text	onscreen.

Store	and	access	information	saved	in	the	player	preferences.

Keep	objects	across	scenes.

Display	or	hide	text	depending	on	the	current	scene.

Create	a	background	music	and	sound	effects.

Playing	one	or	multiple	sounds.

	





Introduction

In	this	chapter	we	will	improve	the	current	game	by	adding	a	few	tweaks	that	will	make	it	more
enjoyable	and	easy-to-play.	We	will	start	by	keeping	the	score	(and	the	number	of	lives)	between
scenes,	so	that	the	game	does	not	reset	these	values	at	the	start	of	every	level;	instead	of
displaying	the	score	and	the	number	of	lives	in	the	Console	window,	we	will	get	to	display	them
onscreen	thanks	to	UI	Text	objects,	so	that	the	user	can	see	this	information	at	a	glance.	Finally,
we	will	add	some	background	music	to	our	scenes.





Managing	Lives	and	score	throughout	the	game

Ok,	so	at	this	point	we	have	several	levels,	and	the	skeleton	of	our	platform	game,	including	a
splash-screen,	a	win	screen	and	a	lose	screen;	we	also	keep	track	of	the	score	and	the	number	of
lives.

Now,	about	these	two:	although	we	have	created	variables	to	keep	track	of	the	number	of	lives
and	the	score,	the	following	issue	remains:	the	score	is	usually	reset	at	the	start	of	each	level
because	it	is	declared	and	initialised	in	the	Start	function	which	is	called	whenever	the	scene
starts;	so	we	need	to	keep	track	of	these	variables	throughout	the	game.

The	first	way	we	could	do	this	is	to	create	an	nbLives	variable	in	the	DetectCollision	script,
initialize	it	to	three	in	the	Start	function,	and	then	decrease	its	value	every	time	we	restart	the
level;	however,	there	are	two	issues	with	this	approach:	whenever	we	go	to	the	next	scene,	this
number	of	lives	will	be	reset	to	zero;	in	fact,	this	would	be	the	same	for	the	score;	so	we	need	to
find	a	way	to	be	able	to	store	data	that	will	be	kept	as	we	move	from	one	scene	to	the	next.

This	can	be	done	with	what	is	called	the	Player	Preferences.	Using	Player	Preferences,	you
can	store	information	in	variables	of	types	integer,	boolean,	or	string,	that	will	be	accessible	(and
maintained)	throughout	the	game.

So,	using	the	Player	Preference,	we	will	do	the	following:

Set	 the	 score	 (in	 the	 player	 preferences)	 to	 0	 and	 the	 number	 of	 lives	 to	 3	 in	 the	 splash-
screen.

The	 score	 (in	 the	 player	 preferences)	 and	 the	 number	 of	 lives	 will	 be	 updated	 in	 every
scene,	by	accessing	the	player	preferences,	reading	the	current	number	of	lives	or	the	score,
and	modifying	this	value.

So	let’s	get	started:

Please	open	the	splashScreen	scene.

Create	an	empty	object	called	initGame.

Then	 create	 a	 new	 C#	 script	 called	 initGame:	 from	 the	 Project	 window,	 please	 select
Create	|	C#	Script	and	rename	this	script	initGame.

Open	this	script	and	modify	the	Start	function	as	follows:

void	Start	()

{



					PlayerPrefs.SetInt("score",0);

					PlayerPrefs.SetInt("nbLives",3);

}

In	the	previous	code:

We	create	the	variable	score	that	is	stored	in	the	player	preferences;	it	can	be	considered	as
a	global	variable	as	it	is	accessible	throughout	the	game;	it	is	set	to	0.

The	same	is	done	with	the	variable	nbLives	that	is	set	to	3.

Once	you	have	saved	your	script	and	checked	that	it	is	error-free,	you	can	drag	and	drop	it	to
the	object	initGame.

Next,	we	need	to	use	these	variables	throughout	the	game,	especially	when	the	player	collects
items	or	loses	a	life	by	falling	or	colliding	with	dangerous	objects.

Please	save	your	scene,	and	then	open	the	scene	called	level1.

Open	the	script	called	DetectCollision.

Replace	this	line…

int	score,	nbCoinsCollectedPerLevel;

with	this	line…

int	score,	nbLives,	nbCoinsCollectedPerLevel;

Then,	in	the	Start	function,	you	can	comment	the	line	that	sets	the	score	to	0,	as	follows:

//score	=	0;

We	can	then	modify	the	code	that	deals	with	the	score	as	follows	(new	code	in	bold):

if	(tag	==	"pick_me")



{

					Destroy(coll.collider.gameObject);

					//score++;

		score	=	PlayerPrefs.GetInt("score");

		score++;

		PlayerPrefs.SetInt("score",	score)

In	the	previous	code:

We	comment	the	line	that	used	to	increase	the	local	score	by	1.

We	then	fetch	the	value	of	the	score	that	is	stored	in	the	player	preferences.

We	increase	this	value	by	one,	and	save	the	new	value	in	the	player	preferences.

We	now	need	to	modify	the	code	that	deals	with	the	number	of	lives;	please	add	the	following
code	to	the	script	DetectCollision:

if	(tag	==	"avoid_me"	||	tag	==	"reStarter")

{

					Destroy(coll.collider.gameObject);

					nbLives	=	PlayerPrefs.GetInt("nbLives");

					nbLives--;

					PlayerPrefs.SetInt("nbLives",	nbLives);

					if	(nbLives	>=	0)	SceneManager.LoadScene(SceneManager.GetActiveScene().name);

					else	SceneManager.LoadScene("lose");

					print	("lives"	+	nbLives);

}

/*if	(tag	==	"reStarter")



{

					SceneManager.LoadScene(SceneManager.GetActiveScene().name);

	

}*/

In	the	previous	code:

We	have	grouped	the	two	conditional	statements	that	checked	for	collision	with	a	reStarter
object	or	a	boulder	(i.e.,	tag	=	avoid_me).

In	this	case,	we	decrease	the	current	number	of	lives	by	accessing	its	value	from	the	player
preferences,	decreasing	the	value,	and	updating	the	play	preferences	accordingly.
We	also	commented	the	code	that	used	to	be	employed	to	detect	the	tag	reStarter,	since	this
is	now	done	in	the	code	just	above	(i.e.,	in	the	combined	conditional	statement).

Once	this	has	been	done,	please	save	your	code,	check	that	it	is	error-free,	and	test	the	game	as
follows:

Save	the	current	scene.

Open	the	scene	called	splashScreen.

Play	the	game	and	proceed	to	the	first	level.

Test	that	if	you	fall,	the	number	of	lives	displayed	in	the	Console	window	is	correct	and	that
after	3	falls,	you	are	redirected	to	the	scene	called	lose.

Check	that	your	score	is	kept	when	you	go	from	the	first	scene	to	the	second	scene.

Removing	erroneous	messages

As	it	is,	you	may	have	noticed	that	every	time	you	play	the	scene,	there	is	a	message	in	the
Console	window	saying	“There	are	two	audio	listeners	in	the	scene…”;	this	is	because	we	use
two	cameras,	each	using	one	Audio	Listener;	however,	we	only	need	to	have	one	audio	listener
in	each	scene;	so	we	just	need	to	deactivate	one	of	these	audio	listeners	as	follows:

Please	open	the	scene	called	level1.

Please	select	the	camera	called	mini-map	in	the	Hierarchy

Using	the	Inspector	window,	deactivate	its	Audio	Listener	component.



Figure	75:	Deactivating	the	Audio	Listener	component

Please	do	the	same	in	the	scene	called	level2.

If	you	play	the	game	again,	this	error	message	should	have	disappeared.

	

	





Adding	a	User	Interface

Ok;	so	far	so	good;	we	can	keep	our	score	and	number	of	lives	between	scenes.	The	next	step
will	be	to	display	the	number	of	lives	and	the	score	onscreen	for	the	player.	For	this,	we	will
create	what	are	called	UI	elements	and	update	them	accordingly	when	the	score	or	number	of
lives	have	been	changed;	and	since	these	(the	UI	for	the	score	and	the	number	of	lives)	will	be
used	across	all	scenes,	we	will	also	learn	how	to	create	them	once	and	then	keep	them	for	all	the
out-of-game	scenes	(i.e.,	the	scenes	where	there	is	no	game	play	and	that	consist	of	menu	and
buttons).

So	let’s	get	started:

Please	open	the	scene	level1.

Select:	GameObject	|	UI	|	Text;	this	will	create	a	text	object,	that	we	can	use	for	the	score,
named	Text.

Figure	76:	Adding	a	Text	UI

You	can	rename	it	scoreUI	and	move	it	in	the	top-left	corner	of	the	white	rectangle	that	defines
the	game	window.

Figure	77:	Adding	a	UI	for	the	score

Once	 this	 is	 done,	 you	 can	 select	 this	 object	 in	 the	Hierarchy,	 duplicate	 it,	 rename	 the
duplicate	 livesUI,	 and	 move	 the	 duplicate	 (i.e.,	 livesUI)	 just	 below	 the	 previous	 Text
object,	as	illustrated	in	the	next	figure.



Figure	78:	Adding	a	UI	for	the	number	of	lives

You	should	now	have	two	TextUI	elements	in	your	Hierarchy:	scoreUI	and	livesUI.

Figure	79:	The	two	UI	elements

Once	this	is	done,	using	the	Inspector,	you	can	change	the	font	color	of	each	of	these	Text	objects
also,	for	more	visibility,	using	their	Text	Component.

Figure	80:	Changing	the	color	of	the	text

Next,	we	need	to	update	these	text	objects	from	our	scripts,	at	the	start	of	the	game,	and	also
whenever	the	score	or	the	number	of	lives	change.

Please	open	the	script	DetectCollision.

Add	the	following	code	at	the	beginning	of	the	script.

using	UnityEngine.UI;

Add	the	following	code	just	before	the	end	of	the	script.

void	updateUI();

{



					score	=	PlayerPrefs.GetInt("score");

					nbLives	=	PlayerPrefs.GetInt("nbLives");

					GameObject.Find("scoreUI").GetComponent<Text>().text	=	"Score:	"+score;

					GameObject.Find("livesUI").GetComponent<Text>().text	=	"Lives:	"	+nbLives;

}

In	the	previous	code:

We	create	a	new	function	called	updateUI.

We	access	the	score	and	the	number	of	lives	from	the	player	preferences.

We	then	update	the	two	UI	objects	scoreUI	and	livesUI	with	these	values.

Now,	we	just	need	to	initialise	these	Text	fields:

Please	modify	the	function	Start,	in	the	script	DetectCollision,	as	follows:

void	Start	()

{

					updateUI	();

					nbCoinsCollectedPerLevel	=	0;

}

In	the	previous	code	we	call	the	function	updateUI	and	also	set	the	value	of	the	variable
nbCoinsCollectedPerLevel	to	0.

Please	add	the	following	code	at	the	end	of	the	function	OnCollsionEnter2D,	so	that	the	UI
elements	 (i.e.,	 scoreUI	 and	 livesUI)	 are	 updated	 after	 colliding	 with	 boulders	 or	 after
falling.

updateUI();

Save	 your	 script	 and	 play	 the	 scene	 (i.e.,	 level1);	 you	 should	 see	 that	 the	 score	 and	 the



number	of	lives	are	displayed	at	the	start,	and	updated	as	you	fall	or	when	you	collect	items.

Figure	81:	The	UI	with	the	score	and	number	of	lives

As	you	test	the	scene,	and	if	you	complete	this	level	(i.e.,	level1)	and	proceed	to	the	next	level,
you	will	also	see	that	the	score	is	not	displayed	in	level2;	this	is	because,	at	present,	there	are	no
UI	elements	added	to	this	scene	that	can	display	this	information;	so	we	could	do	two	things:

Create	new	UI	elements	with	the	exact	same	name	as	in	the	first	scene.

OR

Keep	the	UI	elements	created	in	the	first	scene.

We	will	opt	for	the	second	option;	although	the	first	one	is	also	viable,	the	second	solution
decreases	the	workload	(on	the	long	run)	as	we	don’t	have	to	recreate	UI	elements	for	the
subsequent	scenes.

So	let’s	implement	this	solution.

Create	a	new	C#	script	called	KeepUI.

Add	the	following	function	to	it.

void	Awake()

{

					DontDestroyOnLoad(transform.gameObject);

}

In	the	previous	code:



We	use	the	function	Awake	that	is	called	once	at	the	start	of	the	game.

We	specify	that	the	object	linked	to	this	script	should	not	be	destroyed	(this	is	usually	done
by	 default	 in	 Unity	 when	 a	 new	 scene	 is	 loaded);	 since	 this	 script	 will	 be	 linked	 to	 the
canvas	that	includes	both	UI	elements	(scoreUI	and	livesUI),	we	make	sure	that	these	will
be	kept	for	the	next	scene(s).

Please	save	this	script,	and	drag	and	drop	it	on	the	object	called	Canvas.

Test	the	scene,	you	should	see	that	after	completing	the	first	scene,	the	second	scene	includes
the	UI	elements	and	displays	the	score	and	the	number	of	lives.

The	only	thing	is	that:

When	you	reload	the	first	scene	(after	falling)	the	UI	is	displayed	twice.

These	UI	elements	(scoreUI	and	livesUI)	should	not	be	displayed	in	the	out-of-game	scenes
such	as	the	splashScreen	or	the	lose	or	win	screen;	so	we	just	need	to	change	our	code	to	be
able	to	specify	when	these	UI	elements	should	be	displayed.

	

So	let’s	solve	these	issues	one	by	one;	first,	by	removing	duplicate	UI	elements.

Please	open	the	scene	level1.

Select	the	object	Canvas.

Using	the	Inspector,	create	a	new	label	called	player_ui	as	we	have	done	before.

Apply	this	label	to	the	object	called	Canvas.

Figure	82:	Setting	a	label	for	the	canvas

Once	this	is	done,	open	the	script	called	KeepUI.

Add	this	line	at	the	beginning	of	the	script.

using	UnityEngine.UI;



Add	this	code	to	the	function	Start.

int	nbUIs	=	GameObject.FindGameObjectsWithTag	("player_ui").Length;

if	(FindObjectsOfType	(GetType	()).Length	>	1)	Destroy	(gameObject);

In	the	previous	code:

We	count	the	number	of	objects	with	the	tag	player_ui;	we	effectively	check	whether	there	is
more	 than	 one	 object	 called	 canvas	 (i.e.,	 the	 object	 that	 includes	 the	UI	 elements	 for	 the
score	and	the	number	of	lives).

	 Since	 the	 function	 GameObject.FindGameObjectsWithTag	 ("player_ui")	 returns	 an
array,	 GameObject.FindGameObjectsWithTag	 ("player_ui").Length	 will	 return	 the
number	of	objects	in	this	array.

If	we	 find	 a	 duplicate	 and	 if	we	 are	 in	 the	 scene	 level1	 (which	 is	 bound	 to	 happen)	we
destroy	the	duplicate.

Note	that	the	function	GameObject.FindGameObjectsWithTag	returns	an	array	that	includes
all	objects	with	a	specific	tag;	so	using	the	code	GameObject.FindGameObjectsWithTag[0]
will	return	the	first	object	in	the	array.

Last	but	not	least,	we	will	hide	the	text	that	is	in	the	UI	text	fields	whenever	we	are	in	a	scene	that
includes	a	button	(e.g.,	win,	lose,	or	splash-screen).

Now,	ideally,	we	could	use	the	Start	function	in	the	KeepUI	script	to	do	that;	however,	because
this	script	is	linked	to	an	object	that	is	persistent	(thanks	to	the	method	DontDesroyOnLoad),	the
Start	method	will	only	be	called	in	the	scene	level1;	this	is	because	it	is	called	only	when	the
script	is	loaded;	however,	because	of	the	function	DontDestroyOnLoad,	the	script	is	loaded
only	once	(in	the	scene	level1)	and	then	kept	throughout	the	game;	so	the	Start	function	for	the
script	KeepUI	is	loaded	once;	hence	its	Start	function	is	only	called	once	(throughout	the	game);
so,	for	this	purpose,	we	will	use	the	Start	method	of	an	object	that	is	loaded	in	the	menu	scenes,
that	is,	the	script	called	ControlButtons;	this	script	is	loaded	every	time	an	out-of-game	scene	is
loaded;	this	means	that	we	will	be	able	to	check	whether	the	UI	elements	should	be	displayed
every	time	a	new	scene	is	loaded;	we	will	therefore	be	using	the	Start	function	of	the	script
ControButtons	as	follows.

Please	open	the	script	ControButtons.

Add	this	code	at	the	beginning	of	the	script.



using	UnityEngine.UI;

using	UnityEngine.SceneManagement;

Add	this	code	in	the	Start	function.

if	(SceneManager.GetActiveScene	().name	==	"win"	||	currentScene	==	"lose")

{

					GameObject.Find	("scoreUI").GetComponent<Text>().text	=	"";

					GameObject.Find	("livesUI").GetComponent<Text>().text	=	"";

}

In	the	previous	code:

We	test	whether	we	are	in	the	win	or	lose	scene.
If	this	is	the	case,	we	then	set	the	text	of	both	UI	elements	to	an	empty	string

Once	this	is	done,	we	can	save	and	use	this	script.

Please	save	the	script	ControlButtons.

Open	the	splashScreen	scene	(so	that	the	game	starts	with	this	scene).

Test	 the	 scene,	 and	 check	 that	 the	 UI	 elements	 for	 the	 score	 and	 number	 of	 lives	 are
displayed	only	in	the	in-game	scenes	(i.e.,	level1	and	level2).

Finally,	you	can	also	modify	the	DetectCollision	script	to	update	the	UI	whenever	objects	are
collected:

Open	the	script	DetectCollison>
Replace	the	code...

print	("score"	+	score);

with...



//print	("score"	+	score);

updateUI();

	

You	may	also	notice	the	text	“New	Text”	in	both	UI	fields	at	the	start	of	each	scene,	as	you	play
them;	to	remove	this	text,	you	can	do	the	following:

Open	the	scene	level1.

Select	each	UI	elements	(i.e.,	uiScore	and	uiLives).

Using	the	Inspector,	please	delete	the	text	in	the	Text	Component	of	these	objects.

Figure	83:	Deleting	the	text	in	each	UI	Text	object

Please	test	the	scene	and	check	that	the	text	“New	Text”	has	disappeared.





Adding	sound

Ok,	so	far,	the	game	runs	as	expected	and	it	could	be	used	as	it	is;	however,	we	will,	in	this	and
the	next	sections,	add	some	features	that	will	make	it	more	enjoyable	and	challenging.	This	will
consist	of	audio	clips	and	additional	game	mechanics.

We	will	add	Audio	components	to	the	game	in	two	forms:	a	background	music	that	will	be	played
in	every	scene,	along	with	sound	effects	played	when	objects	are	collected	or	when	the	player
falls.

So	first	let’s	add	a	background	sound:

Please	import	the	audio	tracks	Rainbows,	On-My_Way,	and	collect_coin	from	the	resource
pack	by	dragging	and	dropping	them	from	their	folder	to	the	Project	folder	in	Unity.

The	first	two	audio	file	were	created	by	Kevin	McLeod	and	are	available	on	the	site:
http://incompetech.com/music/royalty-free/music.html;	the	other	audio	file	called	collect_coin,
present	in	the	resource	folder,	was	created	using	the	site	http://www.bfxr.net/,	which	is	a	free
tool	to	create	your	own	sound	effects	for	your	game.

You	can,	for	the	time	being,	create	a	folder	called	Audio	 in	the	Project	window,	and	 then
add	the	audio	files	to	this	folder;	this	will	make	it	easier	to	find	them	later.

The	two	first	files	will	be	used	for	the	background	music,	while	the	last	file	will	be	used	for
when	coins	have	been	collected.

Please	open	the	splashScreen	scene.

Create	an	empty	object	called	bg_sound	(select	GameObject	|	Create	Empty).

Drag	and	drop	 the	audio	fileOn_My_Way	on	 this	empty	object;	 this	will	create	an	Audio
Source	component	for	this	object	with	the	option	playOnAwake	set	to	true	by	default.

Please	 select	 the	 empty	 object	bg_sound,	 and,	 using	 the	 Inspector	 view,	 set	 the	 attribute
Loop	for	the	component	Audio	Source,	to	true.

http://incompetech.com/music/royalty-free/music.html
http://www.bfxr.net/


Figure	84:	Setting	the	attributes	of	the	background	sound

Once	this	is	done,	you	can	play	the	scene	and	check	that	the	background	sound	is	played.

When	 you	 have	 checked	 that	 it	 is	working,	 you	 can	 repeat	 the	 last	 steps	 to	 add	 the	 same
background	sound	to	the	scenes	win,	and	lose,	and	the	background	sound	called	Rainbows	to
the	scenes	level1	and	level2.

Once	 this	 is	 done,	 please	 check	 that	 the	background	music	plays	 as	 expected;	 you	 can,	 of
course,	use	other	types	of	background	sounds	of	your	choice	if	you	wish,	using	wav	or	mp3
files,	for	example.

Next,	we	will	add	sound	effects	when	objects	are	collected.

Please	open	the	scene	level1.

Select	the	object	player	in	the	Hierarchy.

From	 the	 top	 menu,	 select	Component	 |	 Audio	 |	 Audio	 Source;	 this	 will	 add	 an	Audio
Source	component	to	your	object;

Whenever	you	need	to	play	a	sound,	an	Audio	Source	is	needed,	and	it	is	comparable	to	an
mp3	player	in	the	sense	that	it	plays	audio	clips	that	you	need	to	select,	the	same	way	you
would	select	a	particular	track	on	your	mp3	player	(hoping	mp3	player	are	still	popular	when
this	book	comes	out	:-))

Please,	 drag	 and	 drop	 the	 audio	 file	 called	collect_coin	 from	 the	Project	window	 to	 the
Audio	Clip	attribute	of	the	Audio	Source	and	set	the	attribute	Play	on	Awake	to	false	(i.e.,
unchecked)	 so	 that	 this	 sound	 is	 not	 played	 automatically	 at	 the	 start	 of	 the	 scene,	 as
illustrated	on	the	next	figure.



Figure	85:	Setting	the	attributes	of	the	sound	effect

Next,	we	will	write	code	that	will	access	this	Audio	Source	and	play	the	clip,	whenever	we
collect	an	object.

Please	open	the	script	called	DetectCollision.

Add	the	following	code	to	the	function	OnCollisionEnter2D	(new	cold	in	bold).

if	(tag	==	"pick_me")

{

					GetComponent<AudioSource>	().Play	();

In	the	previous	code,	we	access	the	AudioSource	component	that	is	linked	to	the	object	player
(i.e.,	the	object	linked	to	this	script),	and	we	play	the	clip	that	is	included	in	this	AudioSource
(i.e.,	collect_coins).

Please	save	your	code,	test	the	scene,	and	check	that	the	audio	clip	is	played	whenever	you
collect	an	object.

	





Playing	multiple	sounds

As	you	know,	feedback	is	very	important	in	video	games,	as	it	provides	additional	information	to
the	users	on	their	progress;	using	audio	is	one	of	the	ways	to	provide	feedback	and	to	make	sure
that	the	experience	is	entertaining	and	interactive.

Since	we	are	adding	audio	for	collecting	coins,	we	could	also	add	audio	when	the	user	has	made
a	wrong	move;	this	is,	again,	for	feedback.

Now,	because	the	Audio	Source	will	need	to	play	several	sounds	(a	different	sound	depending	on
whether	the	player	collects	a	coin	or	hits	a	boulder),	we	will	need	to	specify	which	track	needs	to
be	played,	so	we	will	modify	our	script	accordingly.

Please	import	the	audio	file	called	hurt.wav	from	the	resource	pack	(i.e.,	drag	and	drop	this
file	to	the	Project	window).

Figure	86:	Importing	the	hurt.wav	audio	file

Please	open	the	script	DetectCollision.

Add	the	following	lines	at	the	beginning	of	the	script:

public	AudioClip	collect,	hurt;

This	code	declares	two	audio	clips;	because	they	are	public,	 they	will	be	accessible	from
the	 Inspector,	 and	 as	 a	 result,	 we	 will	 be	 able	 to	 set	 (or	 initialize)	 these	 variables	 by
dragging	and	dropping	objects	to	their	placeholders	in	the	Inspector	window.

Please	save	your	script,	switch	to	Unity,	select	the	player	object	and	display	the	Inspector
window.
You	should	see	that	two	variables,	that	act	as	placeholders,	are	now	available.

Figure	87:	Initializing	the	audio	clips	(part1)



Please	drag	and	drop	the	sound	hurt.wav	from	the	Project	view,	to	the	variable	hurt	in	the
Inspector,	and	the	sound	collect_coin	from	the	Project	view	to	the	variable	collect	 in	 the
Inspector	view,	as	illustrated	in	the	next	figure.

Figure	88:	Initializing	the	audio	clips	(part	2)

Now,	it’s	time	to	modify	the	script	further	to	tell	the	system	which	audio	clip	to	play	and	when.

Please	open	the	script	DetectCollision.

Add	the	following	code	(new	code	in	bold):

if	(tag	==	"pick_me")

{

GetComponent<AudioSource>	().clip	=	collect;

GetComponent<AudioSource>	().Play	();

In	the	previous	code:

We	specify	that	the	new	clip	to	be	played	is	the	clip	called	collect	(which	contains	the	audio
collect-coin.wav);	this	track	is	now	the	default	track	for	the	Audio	Source.

We	then	play	the	track	that	we	have	selected.

We	will	also	use	similar	code	to	play	a	different	sound	when	the	player	is	hurt.

Please	add	the	following	code	in	the	function	OnCollisionEnter2D	(new	code	in	bold).

if	(tag	==	"avoid_me"	||	tag	==	"reStarter")

{

					GetComponent<AudioSource>	().clip	=	hurt;

		GetComponent<AudioSource>	().Play	();



In	the	previous	code,	following	the	same	principle,	we	select	the	clip	that	contains	the	audio	file
hurt.wav	and	we	then	play	this	clip.

You	can	now	save	your	script	and	test	the	scene	level1;	you	should	hear	a	different	sound	every
time	you	collect	an	object	or	collide	with	a	boulder.

Now,	this	code	works	well	in	the	first	level,	however,	we	may	obtain	an	error	message	after
progressing	to	the	second	level	whenever	you	collide	with	a	coin;	the	message	may	read	“There
is	no	Audio	Source	attached	to	the	player”;	this	is	because	the	player	that	we	are	using	in
level2	is	different	to	the	one	used	in	level1	as	it	has	no	AudioSource	component	yet;	to	avoid	this
issue,	we	will	update	our	player	prefab	in	the	scene	level1	(so	that	the	prefab	for	the	player
object	includes	an	Audio	Source)	and	then	use	the	same	prefab	in	the	scene	level2	(or	any	other
subsequent	in-game	scene).

Please	open	the	scene	level1.

Select	the	object	called	player.

Using	the	Inspector,	click	on	the	button	called	Apply,	as	illustrated	on	the	next	figure.

Figure	89:	Applying	changes	to	the	player	prefab

This	will	apply	the	changes	to	the	player	prefab;	and	since	level2	 includes	a	player	based
on	the	same	prefab,	the	error	mentioned	earlier	should	now	disappear	if	we	play	the	game
again.

Please	play	the	second	scene	and	check	that	the	error	has	disappeared.





Level	Roundup



Summary

In	this	chapter,	we	have	managed	to	use	the	player	preferences	to	store	information	that	is	now
accessible	throughout	the	level;	we	also	created	a	mechanism	by	which	the	UI	for	the	score	and
the	number	of	lives	is	created	only	once	but	displayed	in	every	in-game	scene.	Finally	we	also
learned	to	import	and	to	play	sound	either	as	a	background	music	or	as	a	sound	effect.



Checklist

You	can	consider	moving	to	the	next	stage	if	you	can	do	the	following:

Understand	when	the	function	Awake	is	called.
Understand	how	to	create	and	access	variables	stored	in	the	player	preferences.
Understand	the	difference	between	the	components	Audio	Clip	and	Audio	Source.



Quiz

Now,	let’s	check	your	knowledge!	Please	answer	the	following	questions	(the	answers	are
included	in	the	resource	pack)	or	specify	whether	they	are	correct	or	incorrect.

1.	 It	is	possible	to	store	integers,	booleans	or	strings	in	the	player	preferences.
2.	 The	following	code	will	create	a	new	variable	called	score	in	the	player	preferences.

PlayerPrefs.SetInt(“score”,10);

3.	 The	following	code	will	read	a	variable	called	score	from	the	player	preferences.

int	s	=	PlayerPrefs.ReadInt(“score”);

4.	 Provided	 that	 this	 code	 is	 attached	 to	an	object	with	an	Audio	Source	 component,	 it	will
play	its	default	clip.

GetCOmponent<AudioSource>().Play();

5.	 In	Unity,	it	is	possible	to	play	several	Audio	Clips	using	just	one	Audio	Source.
6.	 By	default,	the	attribute	Play	on	Awake	for	an	Audio	Clip	is	set	to	true.
7.	 By	default,	the	attribute	Loop	for	an	Audio	Clip	is	set	to	true.
8.	 The	following	code,	when	attached	to	an	object,	will	ensure	that	it	is	not	destroyed	when	the

next	scene	loads.

void	Awake()

{

					DontDestroyOnLoad(transform.gameObject);

}

9.	 For	a	particular	script,	the	function	Start	is	called	when	the	script	is	loaded.
10.	 For	a	particular	script,	the	function	Start	is	called	only	when	the	game	is	loaded.



Challenge	1

For	this	chapter,	your	challenge	will	be	to	mute	the	sound	when	the	player	presses	the	key	M,	and
you	could	do	as	follows:

Detect	when	 the	 key	M	 has	 been	 pressed;	 you	 can	 use	 the	 following	 code	 in	 the	Update
function:

If	(Input.GetKeyDown(KeyCode.M))	{}

Whenever	this	happens,	access	the	Audio	Source	attached	to	this	object.

Then,	access	the	mute	option	of	the	audio	source	using	the	following	code,	and	set	it	to	true
or	false,	or	to	the	opposite	of	the	current	value	using	the	operator	!:

GetComponent<AudioSource>.mute

For	more	information	about	the	mute>	attribute,	you	can	look	at	the	official	documentation	using
the	following	link:	https://docs.unity3d.com/ScriptReference/AudioSource-mute.html





4	
Adding	Challenging	Gameplay
In	this	section,	we	will	start	to	include	game	mechanics	that	improve	the	gameplay	for	the
platform	game	that	we	have	been	creating	so	far;	after	completing	this	chapter,	you	will	be	able
to:

Create	moving	platforms.

Create	a	shaky	bridge	for	which	the	steps	fall	down	as	you	walk	on	them.

Create	a	timer.

Teleport	the	character.

Some	of	the	skills	you	will	learn	in	the	process	include:

Using	Time.deltaTime.

Enabling	or	disabling	gravity	for	Rigidbody2D	components.

Animate	objects.





Introduction

At	present,	the	scenes	that	we	have	created	include	some	simple	game	mechanics	that	may
challenge	the	player;	however,	as	you	will	expand	your	game,	it	is	always	a	good	idea	to	change
and	vary	the	types	of	challenges	that	the	player	has	to	overcome;	so,	in	the	next	sections,	we	will
create	a	series	of	game	mechanics	or	challenges,	that	you	will	be	able	to	save	as	prefabs	and	to
reuse	in	any	level	of	your	choice;	these	will	consist	of:

A	time	challenge:	the	player	has	to	complete	the	level	before	the	time	is	up.

Moving	platforms:	these	include	platforms	moving	horizontally	or	vertically.

A	shaky	Bridge:	a	bridge	for	which	the	steps	progressively	fall	as	the	player	walks	on	them,
forcing	the	player	to	keep	moving	forward,	and	fast.

Magic	 doors	 (i.e.,	 teleportation):	 this	 consists	 of	 a	 door	 that	 teleports	 the	 player	 to	 a
different	part	of	the	game	when	reached	by	the	player.





The	time	challenge

So,	let’s	start	with	the	time	challenge,	it	will	consist	of	a	timer	that	counts	down	from	30	seconds;
whenever	the	timer	reaches	0,	the	player	loses	a	life	and	the	level	needs	to	be	restarted;	the	time
is	displayed	onscreen.

So	let’s	get	started:

Please	open	the	first	scene	(level1).

Create	an	empty	object,	and	rename	it	timer.

Create	a	new	C#	script	(from	the	Project	window,	select	Create	|	C#	Script).

Rename	this	script	Timer.

Add	the	following	code	at	the	beginning	of	the	script.

using	UnityEngine.SceneManagement;

Add	the	following	code	at	the	beginning	of	the	class.

float	timer;

int	seconds;

In	the	previous	code

We	declare	a	variable	called	timer	that	will	be	used	to	calculate	the	time;	it	is	declared	as	a
float.
We	also	declare	an	 integer	variable	called	seconds	 (used	 to	 store	 the	number	of	 seconds
remaining).

Please	modify	the	Start	function	as	follows:

void	Start	()

{

					timer	=	30;

					seconds	=	0;



}

In	 the	 previous,	 code	 we	 initialize	 the	 variable	 timer	 to	 30	 and	 the	 number	 of	 seconds
elapsed	to	0.

Please	modify	the	function	Update	as	follows:

void	Update	()

{

					timer	-=	Time.deltaTime;

					seconds	=	(int)	(timer);

					print	("Seconds"+seconds);

					if	(seconds	<=	0)

					{

					int	nbLives	=	PlayerPrefs.GetInt("nbLives");

										nbLives--;

					PlayerPrefs.SetInt("nbLives",	nbLives);

					if	(nbLives	>=	0)	SceneManager.LoadScene(SceneManager.GetActiveScene().name);

					else	SceneManager.LoadScene("lose");

					}

}

In	the	previous	code:

We	use	the	variable	Time.deltaTime	 to	update	 the	variable	 timer;	Time.deltaTime	 is	 the
number	 of	 seconds	 elapsed	 since	 the	 last	 frame;	 so	 it	 effectively	 returns	 the	 number	 of
seconds,	regardless	of	the	computer	where	the	game	is	played;	this	solves	any	possible	issue
(or	differences)	linked	to	frame	rate,	so	that	the	time	is	consistent	across	players.

We	decrease	the	value	of	the	variable	timer.

We	then	convert	the	timer	from	a	float	type	to	an	integer;	this	is	because	we	don’t	need	the



decimals	values;	this	will	also	be	useful	if	we	want	to	display	the	time	onscreen	without	the
decimals.

We	then	check	for	the	value	of	the	variable	seconds.

If	it	is	0	or	less	(i.e.,	if	the	time	is	up)	we	update	the	number	of	lives	and	restart	the	current
level	or	load	the	scene	called	lose.

That’s	it!

You	can	now	drag	and	drop	the	script	Timer	to	the	object	timer	and	play	the	scene;	please	check
that	you	can	see	the	time	displayed	in	the	Console	window	and	that	the	scene	restarts	if	the	time	is
up.

	

You	may	notice	that	the	last	part	of	the	code	is	identical	to	the	code	included	in	the	script
DetectCollision;	in	fact,	it	is	an	exact	copy/paste	from	it:

int	nbLives	=	PlayerPrefs.GetInt("nbLives");

nbLives--;

PlayerPrefs.SetInt("nbLives",	nbLives);

if	(nbLives	>=	0)	SceneManager.LoadScene(SceneManager.GetActiveScene().name);

else	SceneManager.LoadScene("lose");

So	what	we	could	do,	instead	of	repeating	this	code,	and	also	to	have	it	in	only	one	place	(this	is
neater	and	more	practical)	is	the	following:

Create	a	function	in	the	script	DetectCollsion,	that	executes	this	code.

Call	this	function	from	the	script	Timer	when	needed.

	

So	let’s	do	just	that:

Please	open	the	script	called	DetectCollision.

Locate	the	following	code.



int	nbLives	=	PlayerPrefs.GetInt("nbLives");

nbLives--;

PlayerPrefs.SetInt("nbLives",	nbLives);

if	(nbLives	>=	0)	SceneManager.LoadScene(SceneManager.GetActiveScene().name);

else	SceneManager.LoadScene("lose");

Cut	(CTRL	+	C)	this	code.

Type	the	following	code	exactly	where	you	removed	the	previous	code	(new	code	in	bold).

if	(tag	==	"avoid_me"	||	tag	==	"reStarter")

{

					DecreaseLives	();

					GetComponent<AudioSource>	().clip	=	hurt;

					GetComponent<AudioSource>	().Play	();

	

Then	create	a	new	function	in	the	same	script,	and	called	DecreaseLives.

Paste	the	code	that	you	have	just	copied	inside	this	function.

public	void	DecreaseLives()

{

					nbLives	=	PlayerPrefs.GetInt	("nbLives");

					nbLives--;

					PlayerPrefs.SetInt	("nbLives",	nbLives);

					if	(nbLives	>=	0)

					SceneManager.LoadScene	(SceneManager.GetActiveScene	().name);



					else

					SceneManager.LoadScene	("lose");

}

	

Note	that	this	function	is	public,	so	it	is	accessible	from	outside	the	class	DetectCollision;	this
is	important	as	we	will	need	to	access	it	from	the	script	called	Timer.

Finally,	we	can	now	call	this	function	from	the	script	Timer.

Please	open	the	script	called	Timer.

Replace	this	code….

if	(seconds	<=	0)

{

					int	nbLives	=	PlayerPrefs.GetInt("nbLives");

					nbLives--;

					PlayerPrefs.SetInt("nbLives",	nbLives);

					if	(nbLives	>=	0)	SceneManager.LoadScene(SceneManager.GetActiveScene().name);

					else	SceneManager.LoadScene("lose");

	

}

	

with	this	code…

if	(seconds	<=	0)



{

					GameObject.Find	("player").GetComponent<DetectCollision>	().DecreaseLives	();

}

In	the	previous	code,	we	access	the	function	called	DecreaseLives,	from	the	script	called
DetectCollosion,	that	is	attached	to	the	object	player.

	

That’s	it.

Please	save	both	scripts	(DetectCollision	and	Timer)	and	test	the	game.

Check	the	time	in	the	Console	window,	and	that	when	it	has	elapsed	the	player	restarts	the
level	or	that	the	scene	called	lose	is	played.

The	last	thing	we	need	for	this	game	mechanic	is	to	display	the	time	onscreen;	so	we	will	use	UI
elements.

Please	open	the	scene	level1,	and	duplicate	the	object	livesUI	(that	is	a	child	of	the	object
called	canvas).

Rename	it	timerUI.

Figure	90:	Creating	a	UI	object	for	the	timer

Once	this	is	done,	it	is	time	to	update	the	content	of	the	timerUI	object	from	our	Timer	script.

Please	open	the	script	called	Timer.

Add	the	following	code	to	the	beginning	of	the	script.

using	UnityEngine.UI;

In	the	Udpate	function,	replace	the	code

print	("Seconds"+seconds);



with…

GameObject.Find	("timerUI").GetComponent<Text>	().text	=	"time:	"	+	seconds;

In	the	previous	code,	we	set	the	text	of	the	UI	Text	component	to	include	the	message	"time:
"	followed	by	the	time	in	seconds.

Please	save	your	script.

Last	but	not	least,	so	that	the	timer	does	not	appear	on	the	menu	scenes,	we	just	need	to	modify	the
script	called	ControlButtons.

Please	open	the	script	ControlButtons.

Add	the	following	line	to	the	Start	function	(new	code	in	bold).

GameObject.Find	("scoreUI").GetComponent<Text>().text	=	"";

GameObject.Find	("livesUI").GetComponent<Text>().text	=	"";

GameObject.Find	("timerUI").GetComponent<Text>().text	=	"";

Please	save	your	script	and	test	the	scene.

That’s	it;	so	our	time	is	working	fairly	well;	we	just	need	to	make	a	prefab	from	it	so	that	it	can	be
reused	in	other	scenes:

Please	drag	and	drop	the	object	called	timer	from	the	Hierarchy	to	the	Project	window.

This	will	create	a	prefab	called	timer.

Figure	91:	Creating	a	timer	prefab

You	can	now	keep	the	object	called	timer	in	the	Hierarchy	or	deleted	it	to	use	it	only	in	other
levels.





Creating	moving	platforms.

Moving	platforms	are	also	great	gameplay	elements;	they	are	challenging	as	the	player	needs	to
adjust	the	jump	to	the	changing	position	of	the	platform.	So,	in	this	section:

We	will	create	both	horizontal	and	vertical	platforms.

Each	of	these	platforms	will	move	forth	and	back	or	up	and	down	from	their	initial	position;
we	will	also	ensure	that	the	player,	once	s/he	has	reached	the	platform,	sticks	to	it,	until	s/he
jumps	again.

We	will	 then	 create	 prefabs	 from	 these	 platforms	 so	 that	 they	 can	 be	 reused	 in	 different
scenes.

So	let’s	create	these	platforms.

Please	open	the	scene	level2.

As	you	can	see	on	the	next	figure,	it	consists	of	simple	static	platforms;	so	we	will	modify	some
of	these	so	that	they	start	moving	indefinitely.

Figure	92:	An	overview	of	level2

Please	select	 the	first	small	platform	(the	closest	 to	the	character),	as	indicated	in	the	next
figure.

Figure	93:	An	overview	of	level2

Drag	and	drop	it	to	the	Project	view,	to	create	a	new	prefab.

Call	this	prefab	moving_platform_horizontal.

Delete	the	first	small	platform	in	the	Scene	view	(i.e.,	the	platform	that	was	used	to	create



the	prefab).

Drag	and	drop	the	prefab	moving_platform_horizontal	at	the	same	location.

	

You	should	now	have	an	object	called	moving_platform_horizontal	in	the	Hierarchy,	and	we
will	now	create	a	script	that	will	manage	the	movement	of	this	platform.

Please	create	a	new	C#	script	named	MovingPlatformHorizontal.

Open	this	script.

Add	the	following	code	to	it	(new	code	in	bold).

float	timer,	direction;

void	Start	()

{

		direction	=	0.1f;			

}

In	the	previous	code:

We	 declare	 a	 variable	 timer,	 used	 to	 time	 the	 movement	 of	 the	 platform,	 as	 well	 as	 a
variable	direction	that	will	be	used	to	set	the	direction	of	the	platform	(i.e.,	left	or	right).

We	then	initialize	the	direction;	1	will	be	for	right	and	-1	will	be	for	 left;	 so	 initially,	 the
platform	will	be	moving	to	the	right.

Please	add	the	following	code	(new	code	in	bold):

void	Update	()

{

		timer	+=	Time.deltaTime;

		transform.Translate	(Vector3.right	*	direction);

		if	(timer	>=	1)



		{

				direction	*=	-1;

				timer	=	0;

		}

}

In	the	previous	code:

We	use	a	timer,	as	we	have	done	in	the	past;	this	timer	will	tick	and	once	it	reaches	1	(i.e.,
one	 second)	 we	will	 then	 change	 the	 direction	 of	 the	 platform	 (to	 the	 opposite	 direction
using	-1).

We	set	the	direction	of	the	platform	to	the	right	(Vector3.right	multiplied	by	one).

If	the	timer	reaches	1	then	we	change	the	variable	direction	to	-1;	this	will	result	in	changing
the	overall	direction	to	its	opposite	(i.e.,	left),	and	we	then	initialize	the	timer	again.

Please	save	the	script	and	check	that	it	is	error-free.

	

Once	this	is	done,	we	can	attach	this	script	to	the	object	moving_platform_horizontal:

Please	 drag	 and	 drop	 the	 script	 called	 moving_platform_horizontal	 from	 the	 Project
window	to	the	object	called	moving_platform_horizontal	in	the	Hierarchy.

Select	 the	 object	 moving_platform_horizontal	 and	 click	 on	 the	 button	 Apply	 (in	 the
Inspector),	to	apply	the	changes	to	the	corresponding	prefab.

Figure	94:	Applying	changes	to	the	prefab

Please	play	the	scene	and	check	that	the	platform	is	moving.

As	you	play	the	scene,	you	may	also	notice	that	when	you	are	moving	on	the	platform,	the
character	slides	on	it;	so,	while	this	could	be	an	extra	challenge,	we	could,	for	the	time	being
improve	this	behaviour	so	that	the	player,	just	after	landing	on	the	platform,	does	not	slide	(i.e.,	so



that	it	sticks	to	it).

Please	select	the	object	called	moving_platform_horizontal	in	the	Hierarchy.

Create	a	new	tag	called	moving_platform	and	apply	it	to	this	object.

Figure	95:	Applying	a	new	tag

Once	this	is	done,	please	open	the	script	DetectCollision.

Add	this	code	at	the	beginning	of	the	class.

bool	isOnMovingPlatform	=	false;

This	variable	will	be	used	to	check	whether	we	are	on	the	moving	platform.

Please	add	the	following	code	to	the	function	OnCollsionEnter2D.

if	(tag	==	"moving_platform")

{

					transform.parent	=	coll.gameObject.transform;

					isOnMovingPlatform	=	true;

}

In	 the	previous	code,	 if	we	collide	with	 the	moving	platform	 (i.e.,	 the	object	with	 the	 tag
moving_platform),	 then	 the	 player	 becomes	 a	 child	 of	 this	 object;	 this	 means	 that	 any
movement	applied	to	the	platform	(e.g.,	translating	to	the	right	or	left)	will	also	be	applied	to
the	player.

We	also	set	the	variable	isOnMovingPlatform	to	true.

You	can	save	your	script	and	test	the	scene;	you	will	see	that	when	the	player	jumps	on	the
platforms,	it	will,	without	any	further	action	from	the	payer,	move	with	the	platform.



Figure	96:	The	player	moving	with	the	platform

This	being	said,	if	you	try	to	jump	again	from	the	platform,	the	movement	will	not	be	smooth	and
it	will	be	difficult	to	reach	the	other	edge;	this	is	because	your	movement	is	then	calculated	based
on	the	platform	which	is	now	the	parent	of	the	player;	so	to	remove	this	issue,	we	can,	specify	that
the	platform	is	no	longer	a	parent	of	the	player	object	when	the	player	jumps	from	(or	off)	the
platform;

Please	open	the	script	DetectCollision.

Add	the	following	function.

void	OnCollisionExit2D	(Collision2D	coll)

{

					if	(isOnMovingPlatform)

					{

					transform.parent	=	null;

					isOnMovingPlatform	=	false;

					}

}

In	the	previous	code:

We	 use	 the	 function	 OnCollisionExit2D	 which	 is	 called	 when	 the	 player	 is	 exiting	 a



collision	with	an	object;	in	our	case,	whenever	s/he	jumps	off	the	platform.

In	this	case	we	specify	that	the	platform	is	no	longer	its	parent,	using	the	null	object.

We	also	set	the	variable	isOnMovingPlatform	to	false.

That’s	it!

Please	save	your	code	and	test	the	scene	again.

Note:	you	may	notice	errors	in	the	Console	window	saying	“Object	reference	not	set..”;	this
is	because	the	script	DetectCollision	is	looking	for	one	of	the	UI	elements	that	is	not	present	in
the	scene	yet;	these	elements	would	usually	be	created	in	level1	and	then	kept	(remember,	the
score	and	live	UI	objects	are	created	in	the	first	scene	and	then	kept);	so	you	may	ignore	these
messages	for	the	time	being,	as	you	are	testing	this	scene	independently.

So	that	is	working	well;	we	can	now	update	and	save	our	moving	platform	prefab.

Select	the	object	moving_platform_horizontal	and,	using	the	Inspector,	click	on	the	button
Apply,	located	in	the	top-right	corner	of	the	Inspector	window,	to	apply	the	changes	to	the
corresponding	prefab.

Figure	97:	Applying	changes	to	the	prefab

Last	but	not	least,	we	could	create	moving	platforms	that	move,	this	time,	vertically,	just	like	an
escalator.	The	principle	will	be	the	exact	same	as	what	we	have	done	so	far,	except	that	the
movement	will	be	using	the	up	and	down	directions.	For	this	we	will	duplicate	both	the	prefab
and	the	script	used	for	the	horizontal	moving	platform	and	modify	these	slightly.

Using	 the	 Project	 window,	 please	 duplicate	 the	 prefab	 called
moving_platform_horizontal,	and	rename	it	moving_platform_vertical.

Figure	98:	Duplicating	the	platform	prefab



Duplicate	the	script	MovingPlatformHorizontal	and	rename	it	MovingPlatformVertical.

As	you	do	so,	Unity	may	let	you	know	of	an	error;	this	is	because	the	name	of	the	new	script
(MovingPlatformVertical)	 does	 not	 match	 the	 name	 of	 the	 class	 inside	 this	 script
(MovingPlatformHorizontal).

Please	open	the	script	MovingPlatformVertical	and	modify	the	first	line	as	follows.

Change	this	code...

public	class	MovingPlatformHorizontal:	MonoBehaviour	{

to...

public	class	MovingPlatformVertical	:	MonoBehaviour	{

This	will	remove	the	error	due	to	the	clash	between	the	name	of	the	class	and	the	name	of	the
script.

We	can	now	change	the	movement	of	the	platform:

Please	change	the	line…

transform.Translate	(Vector3.right	*	direction);

to	…

transform.Translate	(Vector3.up	*	direction);

You	can	now	save	the	script.

We	just	need	to	link	this	new	script	to	the	corresponding	prefab.

Please	select	the	prefab	moving_platform_vertical	from	the	Project	window.

Using	 the	 Inspector	 window,	 remove	 the	 script	 component	MovingPlatformHorizontal
from	 this	 prefab:	 right-click	 on	 the	 component	MovingPlatformHorizontal,	 and	 select
Remove	Component.



Figure	99:	Removing	the	previous	script	component

Now	 that	 the	 previous	 script	 has	 been	 removed,	 please	 drag	 and	 drop	 the	 script
MovingPlatformVertical	 to	 this	 object	 from	 the	Project	window;	 this	will	 create	 a	 new
script	component	called	MovingPlatformVertical,	as	illustrated	on	the	next	figure.

Figure	100:	Adding	a	new	script

Once	this	is	done,	we	can	drag	and	drop	the	prefab	moving_platform_vertical	to	the	Scene
view;	this	will	create	a	new	object	called	moving_platform_vertical	in	the	Hierarchy.

Please	save	your	scene	and	test	it;	you	should	see	both	the	horizontal	and	vertical	platforms
moving	at	the	same	time.

Note	that	you	can	use	and	modify	this	game	mechanic	to	create	a	moving	character	from	left	to
right.	In	this	case,	every	time	you	change	the	direction	of	this	character,	you	can	also	flip	the
image	horizontally,	so	that	the	image	matches	the	direction	where	this	character	is	going.	This
can	be	achieved	using	GetComponent().flipX.	For	more	information	on	this	function,	you	can
check	the	official	documentation	on	the	following	page:
https://docs.unity3d.com/ScriptReference/SpriteRenderer-flipX.html

Using	this	same	game	mechanic,	you	could	also	create	two	spikes	moving	vertically,	one
moving	up	and	one	moving	down	at	the	same	time;	these	could	be	made	of	triangles,	for
example.





Creating	magic	doors

So	our	platforms	are	working	well,	and	it	would	be	great	to	add	another	interesting	gameplay
element	called	magic	door;	put	simply,	if	you	collide	with	(or	walk	through)	a	special	object,
your	player	will	be	teleported	to	a	different	part	of	the	level.

Let’s	create	this	feature:

Please	open	the	first	level	(level1).

Create	a	new	sprite	(i.e.,	square),	using	the	Project	window	(Create	|	Sprites	|	Square),
and	rename	it	door.

Figure	101:	Creating	a	new	sprite

Once	this	is	done,	you	can	drag	and	drop	this	asset	to	the	scene,	it	will	create	an	object
called	door.

Please	rename	this	new	object	magic_door_entrance.

Duplicate	this	object	and	rename	the	duplicate	magic_door_exit.

Move	the	first	one	(i.e.,	the	object	magic_door_entrance)	just	before	the	boulders	and	the
second	one	just	after	the	boulders;	the	idea	will	be	that	the	player	will	be	able	to	avoid
going	through	the	boulders	by	just	entering	the	magic	door,	as	described	on	the	next	figure.

Figure	102:	Adding	the	magic	entrance

Once	this	is	done,	we	will	modify	the	properties	of	these	objects:

Please	select	the	object	magic_door_entrance	in	the	Hierarchy.

Add	a	Box	Collider2D	to	it:	select	Component	|	Physics2D	|	Box	Collider2D.

Using	the	Inspector,	modify	the	attribute	Is	Triger	to	true	for	the	component	Box



Collider2D	for	this	object.

Figure	103:	Setting	the	collider	as	a	trigger

So,	what	is	the	difference	between	a	trigger	and	a	collider?

Well,	when	a	collider	is	added	to	an	object,	it	will	collide	with	the	other	objects;	in	this	case,
the	function	OnCollisionEnter2D	will	be	called;	however,	when	the	attribute	called	Is	Trigger
is	set	to	true,	this	object	becomes	a	trigger;	this	means	that	the	object	no	longer	has	the	ability
to	collide	with	other	objects;	however,	its	shape	is	used	to	define	a	space	that	is	used	as	a
trigger;	in	other	words,	by	entering	this	space	the	trigger	is	set	(i.e.,	we	detect	that	an	object	has
entered	this	area);	in	this	case,	the	function	OnTriggerEnter2D	is	called	instead.

Next,	we	will	make	sure	that	the	exit	is	not	visible,	as	we	just	want	the	player	to	be	teleported	to
the	location	defined	by	the	object	magic_door_exit.

Please	select	the	object	called	magic_door_exit.

Using	the	Inspector	window,	please	deactivate	its	Sprite	Renderer	component	(i.e.,	for	the
object	magic_door_entrance>).

Figure	104:	Deactivating	the	Sprite	Renderer

Once	this	is	done,	we	can	then	modify	the	code	in	the	script	called	DetectCollision,	so	that	our
player	is	teleported	to	the	second	door	upon	entering	the	trigger	defined	by	the	first	one.

Please	open	the	script	DetectCollision,	and	add	the	following	function:

void	OnTriggerEnter2D(Collider2D	coll)



{

					if	(coll.gameObject.name	==	"magic_door_entrance")

					{

					transform.position	=	GameObject.Find	("magic_door_exit").transform.position;

					}

}

In	the	previous	code:

We	use	the	function	OnTriggerEnter2D.

We	check	for	the	name	of	the	trigger	that	we	are	entering.

If	it	is	the	entrance,	we	then	move	our	player	to	the	position	of	the	exit.

Please	save	this	script	and	test	the	scene.	As	the	character	walks	through	the	entrance,	it	will	then
appear	directly	at	the	exit.

Once	you	have	checked	that	the	magic	doors	are	working,	we	can	create	a	prefab	accordingly	by
doing	the	following:

Create	an	empty	object	called	magic_doors.

Using	the	Hierarchy	window,	drag	and	drop	the	objects	magic_door_entrance	and
magic_door_exit	on	the	empty	object	magic_doors,	so	that	they	become	children	of	this
object.

Figure	105:	Grouping	the	two	doors

We	can	then	drag	and	drop	the	object	called	magic_doors	to	the	Project	window,	to	create	a
corresponding	prefab	that	can	be	used	in	other	scenes.

Figure	106:	Creating	a	prefab	for	the	doors



Note	that,	when	reusing	this	prefab,	you	can	move	each	door	separately	to	different	locations	to
match	your	level	and	design.





Creating	a	shaky	bridge

In	this	section,	we	will	create	a	shaky	bridge,	a	bridge	that	collapses	as	the	player	walks	on	it.
For	this,	we	will	reuse	the	small_platform	prefab	and	modify	it	by	adding	a	Rigidbody2D
component	to	it.	We	will	then	either	activate	or	deactivate	the	gravity	on	this	object	so	that	it
starts	to	fall	only	when	the	player	collides	with	it.

So	let’s	get	started:

Please	duplicate	the	scene	level2:	in	the	Project	window,	select	the	scene	level2	and	then
press	CTRL	+	D	(or	APPLE	+	D).

This	will	create	a	new	scene	called	scene3.

Remove	all	the	objects	present	in	the	scene	except	from	the	player,	the	mini-camera,	and	the
platform	that	is	underneath	the	player.

In	the	Project	window,	locate	the	prefab	called	small_platform	(to	make	things	easier,	you
can	use	the	search	window	located	in	the	Project	view).

Duplicate	the	prefab	small_platform	and	rename	the	duplicate	shaky_step.

Drag	and	drop	this	new	prefab	(shaky_step)	to	the	Scene	view	three	times	to	create	three
steps	as	per	the	next	figure.

Figure	107:	Creating	more	steps

Once	this	is	done,	we	will	modify	these	objects:

Please	select	thee	three	steps	in	the	Hierarchy.

Note	that	you	can	select	several	objects	by	pressing	the	CTRL	key,	as	you	click	on	these	items
individually	in	the	Hierarchy.

From	the	top	menu,	select	Component	|	Physics2D	|	RigidBody2D;	this	will	add	a



Rigidbody	component	to	these	objects	so	that	they	can	fall	(i.e.,	subject	to	gravity).

Once	this	is	done,	we	just	need	to	make	sure	that	these	start	to	fall	only	when	the	player	collides
with	them.

Please	create	a	new	C#	script	called	ShakyStep.

Add	the	following	code	to	it	(new	code	in	bold).

void	Start	()	{

					GetComponent<Rigidbody2D>	().isKinematic	=	true;

}

void	Update	()	{

	

}

void	OnCollisionEnter2D	(Collision2D	coll)

{

		GetComponent<Rigidbody2D>	().isKinematic	=	false;

		Destroy	(gameObject,	3.0f);

}

In	the	previous	code:

In	the	Start	function,	we	access	the	Rigidbody2D	component	of	the	object	linked	to	the
script	(this	will	be	the	shaky	step),	and	we	set	the	variable	isKinematic	to	true;	this	will
have	the	effects	of	keeping	the	object	in	place	(i.e.,	removing	gravity)	for	the	time-being).

Then,	whenever	a	collision	is	detected	(we	assume	that	only	the	player	will	collide	with
these	steps,	but	we	could	also	have	checked	for	the	name	of	the	object	colliding	with	the
step),	we	set	the	variable	isKinematic	to	false,	so	that	the	step	can	start	to	fall;	we	also
destroy	the	step	after	3	seconds.

We	can	now	save	our	script	and	prefab:

Please	save	this	script	and	drag	and	drop	it	on	all	the	three	steps.



You	can	also	update	the	corresponding	prefab	by	selecting	one	of	these	steps	and	by	then	on
clicking	the	button	called	Apply	located	in	the	top	right	corner	of	the	Inspector.

After	this,	you	can	test	the	scene	and	check	that	the	steps	fall	when	the	player	jumps	on	them.

Figure	108:	Falling	step	from	the	bridge

Once	we	know	that	this	is	working,	we	could	also	create	a	prefab	called	shaky_bridge	that
includes	a	series	of	10	shaky	steps;	again,	this	will	make	future	levels	creation	much	easier.

Please	duplicate	one	of	the	shaky	steps	seven	times	and	arrange	all	the	steps	so	that	the	10
steps	form	a	bridge,	with	some	small	gaps	between	the	steps.

Figure	109:	Creating	a	bridge

Create	an	empty	object	called	shaky_bridge.

In	the	Hierarchy,	drag	and	drop	all	the	shaky	steps	to	this	empty	object	so	that	they	become
children	of	this	object,	as	illustrated	on	the	next	figure.

You	can	then	drag	and	drop	the	object	shaky_bridge	to	the	Project	window	to	create	a
corresponding	prefab.



Last	but	not	least,	we	will	complete	this	level:

Please	duplicate	the	long	platform	and	place	the	duplicate	just	after	the	last	step	(to	the	right
of	the	scene).

This	will	be	useful	so	that	you	can	reuse	this	level	later	on	if	you	wish,	as	part	of	your	game,
or	simply	re-use	the	prefabs	shaky_step	and	shaky_bridge	to	add	more	challenge	to	your
game.

Please	note	that,	if	the	steps	are	very	close,	they	might	start	to	fall	even	if	the	player	is	not
walking	on	them;	this	is	because	of	the	Rigidbody2D	component	on	each	of	the	steps;	to	avoid
this	issue,	you	could,	for	example,	modify	the	script	ShakyStep,	so	that	we	test	first	if	the
collision	is	with	the	player	(and	not	with	other	steps)	as	follows.

void	OnCollisionEnter2D	(Collision2D	coll)
{
		if	(coll.gameObject.tag	==	"	Player")	
		{
				GetComponent	().isKinematic	=	false;
				Destroy	(gameObject,	3.0f);
		}
}

In	this	case,	you	would	also	need	to	ensure	that	the	player	object	has	been	assigned	a	tag	called
Player.



Including	level3	in	the	game

As	it	is,	you	may	notice	that	level3	is	in	isolation,	as	it	is	not	linked	to	any	of	the	other	levels;	so
if	you'd	like	it	to	be	accessed	through	the	other	levels,	you	could	do	the	following:

Add	the	scene	level3	to	the	Build	Settings.

Once	this	is	done,	we	will	need	to	change	the	script	DetectCollision,	so	that	upon	completing	the
second	level,	the	player	goes	to	the	level3	scene;

Please	open	the	script	DetectCollision.
Modify	the	line	that	detects	the	end	of	level2	as	follows	(new	code	in	bold).

public	int	score;
if	(tag	==	"endOfLevel2")	
{
		//SceneManager.LoadScene	("win");
		//SceneManager.LoadScene	("level3");
}

Once	this	is	done,	you	can	save	the	script	DetectCollision.	The	next	step	will	be	to	create	an
object	that	will	symbolize	the	end	of	level3	and	upon	collision	with	this	object,	the	player	will	be
redirected	to	the	win	screen.

Open	the	scene	level3.
In	the	Project	window,	look	for	the	object	called	endOfLevel2	(i.e.,	the	white	square).
Duplicate	this	object	and	call	it	endOfLevel3.



Drag	and	drop	the	asset	endOfLevel3	(i.e.,	the	white	square)	from	the	Project	window	to
the	Scene	view,	towards	the	end	of	the	level.

This	will	create	a	new	object	called	enOfLevel3	in	the	Hierarchy	window.
Add	 a	 Polygon	 Collider2D	 component	 to	 this	 object	 (Component	 |	 Physics2D	 |
PolygonCollider2D).
Create	a	new	tag	called	endOfLevel3	and	apply	this	tag	to	the	object	endOflevel3.

Last	but	not	least,	we	just	need	to	modify	the	script	DetectCollision,	so	that	we	can	detect	when
we	have	reached	the	end	of	the	third	level:

Please	open	the	script	DetectCollision.
Add	the	following	code	(new	cold	in	bold).

if	(tag	==	"endOfLevel2")	
{
		SceneManager.LoadScene	("level3");
}
if	(tag	==	"endOfLevel3")	
{



		SceneManager.LoadScene	("win");
}

If	you	want	the	collection	of	the	coins	to	be	smoother,	you	could	set	the	objects	to	collect	to
triggers,	and	use	the	function	OnTriggerEnter2D	in	the	script	DetectCollision.	In	this	case,	to
destroy	the	object	collected,	from	the	script,	you	will	need	to	replace	this	code,	in	the	function
OnTriggerEnter2D:

Destroy	(coll.collider.gameObject);

With	this	code...

Destroy	(coll.GetComponent<CircleCollider2D>().gameObject);

If	you	would	like	the	coins	to	rotate,	you	could	create	a	new	script	attached	to	each	coin	(or	the
prefab	called	coin),	with	the	following	code:

void	Update	()	
{			transform.Rotate	(new	Vector3(0,	1,	0));
}

In	the	previous	code,	we	rotate	the	object	around	the	y-axis	every	frame.

	

	

	





Level	Roundup

In	this	chapter,	we	have	learned	how	to	improve	the	game	by	adding	some	challenging	gameplay
components,	all	stored	as	prefabs,	so	that	they	can	be	reused	in	other	levels.



Checklist

You	can	consider	moving	to	the	next	stage	if	you	can	do	the	following:

Understand	how	the	option	isKinetic	can	be	used	for	Rigidbody	components.
Understand	how	Time.deltaTime	can	be	used.
Understand	how	to	modify	the	position	of	an	object	from	a	script.

	



Quiz

Now,	let’s	check	your	knowledge!	Please	answer	the	following	questions	(the	answers	are
included	in	the	resource	pack)	or	specify	whether	they	are	correct	or	incorrect.

1.	 An	object	can	be	moved	from	a	script	using	its	transform	component.
2.	 Time.deltaTime	can	be	used	to	calculate	the	delta	(difference),	in	minutes,	between	two

different	times.
3.	 By	default,	an	object	with	a	Rigidbody2D	component	will	fall.
4.	 Using	the	attribute	isKinematic,	it	is	possible	to	ensure	that	gravity	is	(temporarily)	not

applied	to	an	object	that	includes	a	Rigidbody2D	component.
5.	 To	be	used	as	a	trigger,	an	object	needs	a	collider.
6.	 When	an	object	is	used	as	a	trigger,	entering	its	collider	will	cause	the	function

OnTriggerEnter2D	to	be	called.
7.	 Triggers	only	apply	to	square	sprites.
8.	 A	scene	can	be	duplicated	using	the	shortcut	CRTL	+	D.
9.	 To	copy	and	paste	an	object,	you	can	use	the	shortcut	CTRL	+	D.
10.	 To	update	a	prefab,	you	can	select	an	object	based	on	this	prefab,	select	the	Inspector

window,	and	click	the	Apply	button.



Challenge	1

For	this	chapter,	you	can	improve	and	expand	your	existing	scenes	by	adding	some	of	the	game
mechanics	that	we	have	just	created;	these	include:

Horizontal	moving	platforms.
Elevators	made	of	vertical	moving	platforms.
Magic	doors.
Shaky	bridges.



Challenge	2

You	can	also	try	to	export	your	game	for	the	web	or	as	a	standalone	application:

Open	the	Build	Settings.

Select	the	type	of	export	(e.g.,	Mac/PC/WebGL).

Click	Build	and	Run.

	





5	
Frequently	Asked	Questions
This	chapter	provides	answers	to	the	most	frequently	asked	questions	about	the	features	that	we
have	covered	in	this	book.	Please	also	note	that	some	videos	are	also	available	on	the	companion
site	to	help	you	with	some	of	the	concepts	covered	in	this	book.

	

http://learntocreategames.com/book-videos/




Scenes

How	can	I	create	a	scene?

You	can	create	a	scene	by	selecting:	File	|	New	Scene	or	by	duplicating	an	existing	scene	(CTRL
+	D).

How	can	I	load	a	new	scene	from	a	script?

This	scene	will	need	to	be	added	to	the	Build	Settings	first;	then,	you	can	use	a	code	similar	to
the	following	to	load	this	scene.

Using	UnityEngine.UI;

...

...

SceneManager.LoadScene(“nameofTheScene”);

How	can	I	know	the	name	of	the	current	scene	from	a	script?

This	can	be	done	by	using	the	following	code.

SceneManager.GetActiveScene().name;





Collisions

What	do	I	need	to	detect	collision?

All	objects	involved	in	a	collision	need	to	have	a	Collider2D	component.	Then,	you	can
implement	a	script	that	includes	the	function	OnCollisionEnter2D.

How	do	I	detect	(check	the	name	or	the	tag	of)	the	object	I	collided	with?

When	a	collision	occurs,	the	function	OnCollisionEnter2D	will	return	an	object	that	includes
information	about	the	collision;	you	can	use	it	to	access	information	about	the	object	that	you	have
just	collided	with,	as	illustrated	in	the	next	code	snippet.

void	OnCollisionEnter2D	(Collision2D	coll)

{

					string	tag	=	coll.collider.gameObject.tag;

					...

}

What	is	the	difference	between	a	trigger	and	a	collider?

When	a	collider	has	been	added	to	a	sprite,	it	can	also	be	set	as	a	trigger;	as	a	collider,	it	will
ensure	that	the	object	collides	with	other	objects;	in	this	case,		the	collision	will	be	detected	and
processed	through	the	script	OnCollisionEnter2D;	however,	in	the	case	of	a	trigger,	this	sprite
will	not	collide	with	other	sprites;	instead	its	shape	will	determine	an	area	that	acts	as	a	trigger
when	entered	by	another	object;	in	this	particular	case	the	function	OntriggerEnter2D	will	be
called.

How	can	I	make	the	collection	of	the	coins	smoother?

If	you	want	the	collection	of	the	coins	to	be	smoother,	you	could	set	the	objects	to	collect	to
triggers,	and	use	the	function	OnTriggerEnter2D	in	the	script	DetectCollision.	This	will	ensure
that	the	player	does	not	bounce	off	the	objects	to	be	collected,	and	that	they	disappear	as	the
player	is	very	close	to	them	(thanks	to	the	trigger).

	





Saving	data	or	objects	across	scenes

What	are	player	preferences?

Player	preferences	are	data	that	can	be	stored	and	access	throughout	the	game	as	integers,
booleans	or	strings.	They	can	be	compared	to	global	variables	because	their	scope	(i.e.,	where
they	can	be	used	and	accessed)	is	the	entire	game;	so	using	this	concept,	data	can	be	saved
between	scenes.

How	do	I	store	or	access	player	preferences?

Player	preferences	can	be	accessed	and	stored	easily	using	a	code	similar	to	the	following
snippet.

int	score	=	PlayerPrefs.GetInt("score");");//we	write	information	to	the	player	preferences

PlayerPrefs.SetInt("score",	10);//we	read	information	from	the	player	preferences

How	can	I	keep	objects	from	being	destroyed	every-time	a	new	scene	is	loaded?

You	can	specify,	using	the	function	Awake	that	the	object	linked	to	a	particular	script	should	not
be	destroyed	in	the	next	scene;	this	can	be	done	as	follows:

void	Awake()

{

					DontDestroyOnLoad(transform.gameObject);

}

What	is	the	difference	between	the	functions	Awake	and	Start?

The	function	Start	is	called	whenever	the	script	is	loaded;	so	this	is	usually	done	at	the	start	of
the	scene;	the	function	Awake,	on	the	other	hand,	is	loaded	only	once,	when	the	game	starts.

	

	





Sprites

Can	I	create	my	own	sprites	in	Unity?

Yes,	while	the	2D	assets	provided	by	Unity	includes	built-in	sprites,	you	can	create	(and
subsequently	modify)	your	own	sprites	by	using	the	menu	Create	|	Sprites	from	the	Project
window.	This	makes	it	possible	to	create	sprites	of	different	shapes	including:	triangles,	circles,
or	squares.	You	can	also	add	color	to	these	sprites.

Can	I	create	animated	sprites?

Yes,	although	this	is	not	covered	in	this	book,	you	can	create	animated	sprites;	for	this	you	will
need	to	import	several	sprites,	and	then	drag	and	drop	the	sprites	that	make-up	the	animation	to
the	scene	view,	this	will	create	an	animated	sprite.

Can	I	create	invisible	sprites?

Yes,	this	can	be	done	by	deactivating	the	Sprite	Renderer	component	for	a	particular	sprite.





6	
Thank	you

I	would	like	to	thank	you	for	completing	this	book;	I	trust	that	you	are	now	comfortable	with
creating	a	simple	platform	game.	This	book	is	the	first	in	the	series	“Beginner’s	Guide”	that	will
cover	particular	aspects	of	Unity,	so	it	may	be	time	to	move	on	to	the	next	books	where	you	will
get	started	with	more	specific	features	such	as	Virtual	reality,	2D	shooters,	or	Character
Animation.	You	can	find	a	description	of	these	forthcoming	books	on	the	official	page
http://www.learntocreategames.com/beginners-guide-to-unity/.

In	case	you	have	not	seen	it	yet,	you	can	subscribe	to	our	Facebook	group	using	the	following
link;	it	includes	a	community	of	like-minded	game	creators	who	share	ideas	and	are	ready	to	help
you	with	your	game	projects.

http://facebook.com/groups/learntocreategames/

You	may	also	subscribe	to	our	mailing	list	to	receive	weekly	updates	and	information	on	how	to
create	games	and	improve	your	skills,	using	the	following	page:

http://learntocreategames.com/2d-platform-games/

Finally,	if	you	would	like	to	take	some	of	my	online	video	courses,	you	can	head	over	to
http://learntocreategames.usefedora.com;	it	includes	several	courses	on	Unity	2D	and	3D
games,	with	plenty	of	free	tutorials	that	you	can	access	after	a	free	registration.	

So	that	the	book	can	be	constantly	improved,	I	would	really	appreciate	your	feedback.	So,	please
leave	me	a	helpful	review	on	Amazon	letting	me	know	what	you	thought	of	the	book	and	also	send
me	an	email	(learntocreategames@gmail.com)	with	any	suggestions	you	may	have.	I	read	and
reply	to	every	email.

Thanks	so	much!!

http://www.learntocreategames.com/beginners-guide-to-unity/
mailto:learntocreategames@gmail.com


	


	Copyright
	Credits
	About the author
	Support and resources for this book
	Table of Contents
	Preface
	Content covered by this book
	How can you learn best from this book
	Feedback
	Chapter 1: Creating a Simple Level
	Chapter 2: Managing Score, Lives and Levels
	Chapter 3: Adding Sound and Displaying Values Onscreen
	Chapter 4: Adding Challenging Gameplay
	Chapter 5: Frequently Asked Questions
	Chapter 6: Thank You!

