
Advanced R
Data Programming and the Cloud
—
Matt Wiley
Joshua F. Wiley

www.allitebooks.com

http://www.allitebooks.org


     Advanced R 
 Data Programming and the Cloud   

  

   

     Matt Wiley

             Joshua F. Wiley   

www.allitebooks.com

http://www.allitebooks.org


Advanced R: Data Programming and the Cloud

Matt Wiley    Joshua F. Wiley
Elkhart Group Ltd. & Victoria College  Elkhart Group Ltd. & Victoria College
Columbia City, Indiana    Columbia City, Indiana
USA     USA

ISBN-13 (pbk): 978-1-4842-2076-4  ISBN-13 (electronic): 978-1-4842-2077-1
DOI 10.1007/978-1-4842-2077-1

Library of Congress Control Number: 2016959581

Copyright © 2016 by Matt Wiley and Joshua F. Wiley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Andrew Moskowitz
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan, 

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, 
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail   orders-ny@springer-sbm.com    , 
or visit   www.springeronline.com    . Apress Media, LLC is a California LLC and the sole member (owner) is Springer 
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail   rights@apress.com    , or visit   www.apress.com    . 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our Special 
Bulk Sales–eBook Licensing web page at   www.apress.com/bulk-sales    .

 Any source code or other supplementary materials referenced by the author in this text are available to 
readers at    www.apress.com     . For detailed information about how to locate your book’s source code, go to    
www.apress.com/source-code/      . Readers can also access source code at SpringerLink in the Supplementary 
Material section for each chapter. 

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.apress.com/source-code/
http://www.allitebooks.org


   To Family.  

www.allitebooks.com

http://www.allitebooks.org


v

Contents at a Glance

About the Authors .................................................................................................. xiii

About the Technical Reviewer .................................................................................xv

Acknowledgments .................................................................................................xvii

Introduction ............................................................................................................xix

 ■Chapter 1: Programming Basics ............................................................................ 1

 ■Chapter 2: Programming Utilities ........................................................................ 17

 ■Chapter 3: Programming Automation .................................................................. 29

 ■Chapter 4: Writing Functions ............................................................................... 43

 ■Chapter 5: Writing Classes and Methods............................................................. 61

 ■Chapter 6: Writing a Package .............................................................................. 83

 ■Chapter 7: Introduction to Data Management Using data.table ........................ 115

 ■Chapter 8: Data Munging with data.table .......................................................... 141

 ■Chapter 9: Other Tools for Data Management .................................................... 159

 ■Chapter 10: Reading Big Data(bases) ................................................................ 181

 ■Chapter 11: Getting a Cloud ............................................................................... 199

 ■Chapter 12: Cloud Ubuntu for Windows Users ................................................... 211

 ■Chapter 13: Every Cloud has a Shiny Lining ...................................................... 225

 ■Chapter 14: Shiny Dashboard Sampler .............................................................. 239

 ■Chapter 15: Dynamic Reports and the Cloud ..................................................... 253

 ■References ......................................................................................................... 271

Index ..................................................................................................................... 275

www.allitebooks.com

http://www.allitebooks.org


vii

Contents

About the Authors .................................................................................................. xiii

About the Technical Reviewer .................................................................................xv

Acknowledgments .................................................................................................xvii

Introduction ............................................................................................................xix

 ■Chapter 1: Programming Basics ............................................................................ 1

Advanced R Software Choices ......................................................................................... 1

Reproducing Results ........................................................................................................ 2

Types of Objects ............................................................................................................... 2

Base Operators and Functions ......................................................................................... 5

Mathematical Operators and Functions ......................................................................... 11

References ..................................................................................................................... 15

 ■Chapter 2: Programming Utilities ........................................................................ 17

Help and Documentation ................................................................................................ 17

System and Files ............................................................................................................ 18

Input ............................................................................................................................... 23

Output ............................................................................................................................. 25

References ..................................................................................................................... 27

 ■Chapter 3: Programming Automation .................................................................. 29

Loops .............................................................................................................................. 29

Flow Control ................................................................................................................... 32

*apply Family of Functions ............................................................................................. 35

Final Thoughts ................................................................................................................ 42

www.allitebooks.com

http://www.allitebooks.org


 ■ CONTENTS

viii

 ■Chapter 4: Writing Functions ............................................................................... 43

Components of a Function ............................................................................................. 43

Scoping .......................................................................................................................... 44

Functions for Functions .................................................................................................. 47

Debugging ...................................................................................................................... 52

Summary ........................................................................................................................ 59

 ■Chapter 5: Writing Classes and Methods............................................................. 61

S3 System ...................................................................................................................... 61

S3 Classes ............................................................................................................................................ 61

S3 Methods ........................................................................................................................................... 64

S4 System ...................................................................................................................... 71

S4 Classes ............................................................................................................................................ 72

S4 Class Inheritance ............................................................................................................................. 76

S4 Methods ........................................................................................................................................... 77

Summary ........................................................................................................................ 80

 ■Chapter 6: Writing a Package .............................................................................. 83

Before You Get Started ................................................................................................... 83

Version Control ..................................................................................................................................... 84

R Package Basics ........................................................................................................... 89

Starting a Package by Using DevTools ................................................................................................. 90

Adding R Code ...................................................................................................................................... 92

Tests ..................................................................................................................................................... 93

Documentation Using roxygen2 ..................................................................................... 98

Functions .............................................................................................................................................. 99

Data .................................................................................................................................................... 102

Classes ............................................................................................................................................... 103

Methods .............................................................................................................................................. 104

Building, Installing, and Distributing an R Package ...................................................... 107

Summary ...................................................................................................................... 112

www.allitebooks.com

http://www.allitebooks.org


 ■ CONTENTS

ix

 ■Chapter 7: Introduction to Data Management Using data.table ........................ 115

Introduction to data.table ............................................................................................. 115

Selecting and Subsetting Data ..................................................................................... 120

Using the First Formal ........................................................................................................................ 120

Using the Second Formal ................................................................................................................... 122

Using the Second and Third Formals .................................................................................................. 123

Variable Renaming and Ordering.................................................................................. 125

Computing on Data and Creating Variables .................................................................. 127

Merging and Reshaping Data ....................................................................................... 130

Merging Data ...................................................................................................................................... 130

Reshaping Data .................................................................................................................................. 136

Summary ...................................................................................................................... 140

 ■Chapter 8: Data Munging with data.table .......................................................... 141

Data Munging / Cleaning .............................................................................................. 142

Recoding Data .................................................................................................................................... 143

Recoding Numeric Values ................................................................................................................... 148

Creating New Variables ................................................................................................ 150

Fuzzy Matching ............................................................................................................ 152

Summary ...................................................................................................................... 157

 ■Chapter 9: Other Tools for Data Management .................................................... 159

Sorting .......................................................................................................................... 160

Selecting and Subsetting ............................................................................................. 162

Variable Renaming and Ordering.................................................................................. 168

Computing on Data and Creating Variables .................................................................. 170

Merging and Reshaping Data ....................................................................................... 173

Summary ...................................................................................................................... 178

www.allitebooks.com

http://www.allitebooks.org


 ■ CONTENTS

x

 ■Chapter 10: Reading Big Data(bases) ................................................................ 181

SQLite ........................................................................................................................... 182

Installing SQLite on Windows ............................................................................................................. 182

SQLite and R ....................................................................................................................................... 183

PostgreSQL ................................................................................................................... 186

Installing PostgreSQL on Windows ..................................................................................................... 186

PostgreSQL and R ............................................................................................................................... 187

MongoDB ...................................................................................................................... 190

Installing MongoDB on Windows ........................................................................................................ 190

MongoDB and R .................................................................................................................................. 192

Summary ...................................................................................................................... 196

 ■Chapter 11: Getting a Cloud ............................................................................... 199

Disclaimers .................................................................................................................. 199

Starting Amazon Web Services .................................................................................... 200

Accessing Your Instance’s Command Line ................................................................... 205

Uploading Files to Your Instance .................................................................................. 207

Final Thoughts .............................................................................................................. 209

 ■Chapter 12: Cloud Ubuntu for Windows Users ................................................... 211

Common Commands .................................................................................................... 211

Superuser and Security ................................................................................................ 213

Installing and Using R ................................................................................................... 215

Installing and Using RStudio Server ............................................................................. 218

Installing Microsoft R ................................................................................................... 222

Installing Java .............................................................................................................. 224

Installing Shiny on Your Cloud ...................................................................................... 224

Final Thoughts .............................................................................................................. 224

www.allitebooks.com

http://www.allitebooks.org


 ■ CONTENTS

xi

 ■Chapter 13: Every Cloud has a Shiny Lining ...................................................... 225

The Basics of Shiny ...................................................................................................... 225

Shiny in Motion ............................................................................................................ 232

Uploading a User File into Shiny .................................................................................. 234

Hosting Shiny in the Cloud  .......................................................................................... 236

Final Thoughts .............................................................................................................. 238

 ■Chapter 14: Shiny Dashboard Sampler .............................................................. 239

A Dashboard’s Bones ................................................................................................... 239

Dashboard Header .............................................................................................................................. 241

Dashboard Sidebar ............................................................................................................................. 241

Dashboard Body ................................................................................................................................. 243

Dashboard in the Cloud ................................................................................................ 245

Complete Sampler Code ............................................................................................... 247

References ................................................................................................................... 251

 ■Chapter 15: Dynamic Reports and the Cloud ..................................................... 253

Needed Software .......................................................................................................... 253

Local Machine .................................................................................................................................... 253

Cloud Instance .................................................................................................................................... 254

Dynamic Documents .................................................................................................... 254

Dynamic Documents and Shiny ................................................................................... 258

server.R ............................................................................................................................................... 258

ui.R ..................................................................................................................................................... 261

report.Rmd .......................................................................................................................................... 263

Uploading to the Cloud ................................................................................................. 269

Summary ...................................................................................................................... 269

 ■References ......................................................................................................... 271

Index ..................................................................................................................... 275

www.allitebooks.com

http://www.allitebooks.org


xiii

   About the Authors 

     Matt   Wiley       is a tenured, associate professor of mathematics with awards 
in both mathematics education and honor student engagement. He 
earned degrees in pure mathematics, computer science, and business 
administration through the University of California and Texas A&M 
systems. He serves as director for Victoria College’s quality enhancement 
plan and managing partner at Elkhart Group Limited, a statistical 
consultancy. With programming experience in R, C++, Ruby, Fortran, and 
JavaScript, he has always found ways to meld his passion for writing with 
his joy of logical problem solving and data science. From the boardroom 
to the classroom, Matt enjoys finding dynamic ways to partner with 
interdisciplinary and diverse teams to make complex ideas and projects 
understandable and solvable.        

          Joshua   F.   Wiley       is a lecturer in the Monash Institute for Cognitive and 
Clinical Neurosciences and School of Psychological Sciences at Monash 
University and a senior partner at Elkhart Group Limited, a statistical 
consultancy. He earned his PhD from the University of California, 
Los Angeles, and his research focuses on using advanced quantitative 
methods to understand the complex interplays of psychological, social, 
and physiological processes in relation to psychological and physical 
health. In statistics and data science, Joshua focuses on biostatistics and 
is interested in reproducible research and graphical displays of data and 
statistical models. Through consulting at Elkhart Group Limited and 
former work at the UCLA Statistical Consulting Group, he has supported 
a wide array of clients ranging from graduate students, to experienced 
researchers, to biotechnology companies. He also develops or co-develops 
a number of R packages including  varian , a package to conduct Bayesian 
scale-location structural equation models, and  MplusAutomation , 
a popular package that links R to the commercial Mplus software. 



xv

               About the Technical Reviewer 

     Andrew   Moskowitz       is a doctoral candidate in quantitative psychology at 
the University of California, Los Angeles, and a self-employed statistical 
consultant. His quantitative research focuses mainly on hypothesis testing 
and effect sizes in mixed-effects models. While at UCLA, Andrew has 
collaborated with a number of faculty, students, and enterprises to help 
them derive meaning from data across an array of fields ranging from 
psychological services and health care delivery to marketing. 

       

      



xvii

  Acknowledgments  

 We would like to profusely thank our technical reviewer, Andrew Moskowitz. Through direct comments in 
chapters, e-mails about proper explanations, and Skype calls, Andrew gave us a lot of thoughtful feedback. 
If our readers feel that any portion explains a technique well, that is thanks to his efforts; the errors of course 
remain ours alone. 

 Mark Powers has been extraordinarily kind to us, and this book would not be here without his advocacy 
and support. Steve Anglin also deserves thanks for working with us to start this project. Truly, if you look at 
the very front of this book, there is an entire team at Apress who deserve rich and warm thanks.  



xix

   Introduction 

   R has become one of the most popular programming languages in an era where data science is increasingly 
prevalent. As R and data science have become more mainstream, there is a growing number of R users 
without dedicated training in statistical computing or data science, and thus a growing demand for books 
and resources to bridge the gap between applied users who may have only an introductory background 
in statistics or programming and advanced and sophisticated data analytics. This book focuses on how to 
use advanced programming in R to speed up everyday tasks in data analysis and data science. This book is 
also unique in its coverage of how to set up R in the cloud and generate dynamic reports for analyses that 
are regularly repeated, such as monthly analysis of company sales or quarterly analysis of student grades, 
enrollment, and dropout numbers in schools with projections for future enrollment rates. 

 Chapters   1     through   6     focus on more advanced programming techniques than the Apress offering of 
 Beginning R . 

 Chapters   7    –  10     develop powerful data management measures including the exciting and 
(comparatively) new  data.table . 

 From here, we delve into the modern (and slightly edgy) world of cloud computing with R. From the 
ground up, we walk you through getting R started on an Amazon cloud in chapters   11    –  14    . 

 Finally, Chapter   15     provides you with solid techniques in dynamic documents and reports.  

http://dx.doi.org/10.1007/978-1-4842-2077-1_1
http://dx.doi.org/10.1007/978-1-4842-2077-1_6
http://dx.doi.org/10.1007/978-1-4842-2077-1_7
http://dx.doi.org/10.1007/978-1-4842-2077-1_10
http://dx.doi.org/10.1007/978-1-4842-2077-1_11
http://dx.doi.org/10.1007/978-1-4842-2077-1_14
http://dx.doi.org/10.1007/978-1-4842-2077-1_15
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    CHAPTER 1   

 Programming Basics                          

 As with most languages, more advanced usage requires delving into the underlying structure. This chapter 
covers such programming basics, and this first section of the book (through Chapter   6    ), develops some 
advanced programming techniques. We start with R’s basic building blocks, which create our foundation for 
programming, data management, and cloud analytics. 

 Before we dig too deeply into R, some general principles to follow may well be in order. First, 
experimentation is good. It is much more powerful to learn hands-on than it is simply to read. Download the 
source files that come with this text, and try new things! 

 Second, it can help quite a bit to become familiar with the  ?  function. Simply type  ?  immediately 
followed by text in your R console to call up help of some kind. We cover more on functions later, but this is 
too useful to ignore until that time. 

 Finally, just before we dive into the real reason you bought this book, a word of caution: this is an 
applied text. There may be topics and areas of R we skip or ignore. While we, the authors, like to imagine this 
is due to careful pruning of ideas, it may well be due to ignorance. There are likely other ways to perform 
these tasks or additional good topics to learn. Our goal is to get you up and running as quickly as possible 
toward some useful skills. Good luck! 

     Advanced R Software Choices 
 This book is written for advanced users of the R language. We should note that for most of our examples, 
we continue using  RStudio   (   www.rstudio.com/products/rstudio/download/     ) as in  Beginning R: An 
Introduction to Statistical Programming  (Apress, 2015). We also assume you are using a Microsoft Windows 
(   www.microsoft.com     ) operating system, except for the later chapters, where we delve into using R in the 
cloud via Ubuntu (   www.ubuntu.com     ). What is different is the underlying R distribution. 

 We are going to use  Microsoft R Open (MRO)   ,  which is fully aligned with the current version(s) of R. 
This provides performance enhancements that happen behind the scenes. We also use  Intel Math Kernel 
Library (Intel MKL)  , which is available for download at the same site as  MRO    (    https://mran.microsoft.
com/download/      ) . In fact, as this book goes to print, these two software programs combined in their latest 
release. It would be wonderful if that trend continues. These downloads are very straightforward, and we 
anticipate that our readers, familiar with using R and RStudio already, find this a seamless installation. On 
Windows (and Linux-based operating systems), the  MKL   replaces the default linear algebra system with 
an optimized system and allows implicit parallel processing for linear algebra operations, such as matrix 
multiplication and decomposition that are used in many statistical algorithms. 

Electronic supplementary material The online version of this chapter (doi:   10.1007/978-1-4842-2077-1    ) contains 
supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2077-1_6
http://www.rstudio.com/products/rstudio/download/
http://www.microsoft.com/
http://www.ubuntu.com/
https://mran.microsoft.com/download/
https://mran.microsoft.com/download/
http://dx.doi.org/10.1007/978-1-4842-2077-1
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 In case it is not already, you also need Java installed. We used Java Version 8 Update 91 for 64 bit in this 
book. Java may be downloaded at    www.oracle.com/technetwork/java/javase/     ; specifically, get the Java 
Development  Kit   ( JDK  ). 

 While these choices may have minor consequences, our goal is to provide universal guidance that 
remains true enough regardless of environmental specifics. Nevertheless, some packages and prebuilt 
functions on occasion have quirks. We turn our attention to ensuring that you can readily reproduce our 
results.  

     Reproducing Results 
 One useful feature of R is the abundance of packages written by experts worldwide. This is also potentially 
the Achilles’ heel of using R: from the version of R itself to the version of particular packages, lots of code 
specifics are in flux. Your code has the potential to not work from day to day, let alone our code written 
months before this book was published. To solve this, we use the Revolution Analytics  checkpoint  package 
(Microsoft Corporation, 2016), which uses server-stored snapshots from the  Comprehensive R Archive 
Network (CRAN)   to “lock” our code to a specific version and date. To learn the technical specifics of how 
this is done, visit the link in the “References” section at the end of this chapter. We’ll get you started with the 
basics. 

 For this book, we used R version 3.3.1, Bug in Your Hair, along with Windows 10 Professional x64. As this 
version moves from the current version to historical, CRAN maintains an archive of past releases. Thus, the 
 checkpoint  package has ready access to previous versions of R, and indeed all packages. What you need to 
do is add the following code to the top of your Chapter   1     R file in your project directory: 

   ## uncomment to install the checkpoint package 
 ## install.packages("checkpoint") 
 library(checkpoint) 
 checkpoint("2016-09-04", R.version = "3.3.1") 
 library(data.table) 

   We place all library calls at the start of each chapter’s project file, after the call to the  checkpoint  library. 
By including the date of September 4, 2016, we ensure that the latest version of all packages up to that cutoff 
is installed and run by  checkpoint . The first time it is run, after asking permission,  checkpoint  creates a 
folder to host the needed versions of the packages used. Thus, as long as you start each chapter’s code file 
with the correct library calls, you use the same versions of the packages we use.  

     Types of Objects 
 First of all, we need things to build our language, and in R, these are called  objects . We start with five very 
common types of objects. 

   Logical     objects  take on just two values:  TRUE  or  FALSE . Computers are binary machines, and data often 
may be recorded and modeled in an all-or-nothing world. These logical values can be helpful, where  TRUE  
has a value of  1 , and  FALSE  has a value of  0 : 

   TRUE 
 [1] TRUE 
 FALSE 
 [1] FALSE 

http://www.oracle.com/technetwork/java/javase/
http://dx.doi.org/10.1007/978-1-4842-2077-1_1
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   As you may remember from the quickly muttered  comments   of your algebra professor, there are many 
types, or flavors, of numbers. Whole numbers, which include zero as well as negative values, are called 
  integers   . In set notation, {…,-2, -1, 0, 1, 2, …}, these numbers are helpful for headcounts or other indexes 
(as well as other things, naturally). In R, integers have the capital  L  suffix. If decimal numbers are needed, 
then   double  numeric   objects are in order. These are the numbers suited for even-ratio data types.   Complex 
numbers    have useful properties as well and are understood precisely as you might expect, with an  i  suffix on 
the imaginary portion. R is quite friendly in using all of these numbers, and you simply type in the desired 
numbers (remember to add the  L  or  i  suffix as needed): 

   42L 
 [1] 42 
 1.5 
 [1] 1.5 
 2+3i 
 [1] 2+3i 

   Nominal-level data may be stored via the  character  class and is designated with quotation marks: 

   "a" ## character 
 [1] "a" 

   Of course, numerical data may have missing values. These  missing values   are of the type that the rest of 
the data in that set would be (we discuss data storage shortly). Nevertheless, it can be helpful to know how to 
hand-code logical, integer, double, complex, or character missing values: 

   NA 
 [1] NA 
 NA_integer_ 
 [1] NA 
 NA_real_ 
 [1] NA 
 NA_character_ 
 [1] NA 
 NA_complex_ 
 [1] NA 

     Factors    are a special kind of object, not so useful for general programming, but used a fair amount 
in statistics. A factor variable indicates that a variable should be treated discretely. Factors are stored as 
integers, with labels to indicate the original value: 

   factor(1:3) 
 [1] 1 2 3 
 Levels: 1 2 3 
 factor(c("a", "b", "c")) 
 [1] a b c 
 Levels: a b c 
 factor(letters[1:3]) 
 [1] a b c 
 Levels: a b c 
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   We turn now to data structures, which can store objects of the types we have discussed (and of 
course more). A  vector  is a relatively simple data storage object. A simple way to create a vector is with the 
concatenate function  c() : 

   c(1, 2, 3) 
 [1] 1 2 3 

   Just as in mathematics, a   scalar    is a vector of just length 1. Toward the opposite end of the continuum, a 
  matrix    is a vector with dimensions for both rows and columns. Notice the way the matrix is populated with 
the numbers 1 through 6, counting down each column: 

    c(1) 
 [1] 1 

   matrix(c(1:6), nrow = 3, ncol = 2) 
      [,1] [,2] 
 [1,]    1    4 
 [2,]    2    5 
 [3,]    3    6 

    All vectors, be they scalar, vector, or matrix, can have only one data type (for example, integer, logical, 
or complex). If more than one type of data is needed, it may make sense to store the data in a list. A  list  is 
a vector of objects, in which each element of the list may be a different type. In the following example, we 
build a list that has character, vector, and matrix elements: 

    list( 
 +   c("a"), 
 +   c(1, 2, 3), 
 +   matrix(c(1:6), nrow = 3, ncol = 2) 
 +   ) 
 [[1]] 
 [1] "a" 

   [[2]] 
 [1] 1 2 3 

   [[3]] 
      [,1] [,2] 
 [1,]    1    4 
 [2,]    2    5 
 [3,]    3    6 

    A particular type of list is the   data frame   , in which each element of the list is identical in length 
(although not necessarily in object type). Take a look at the following instructive examples with output: 

    data.frame(1:3, 4:6) 
   X1.3 X4.6 
 1    1    4 
 2    2    5 
 3    3    6 
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   ## using non equal length objects causes problems 
 data.frame( 1:3, 4:5) 
 Error in data.frame(1:3, 4:5) :  
   arguments imply differing number of rows: 3, 2 

   data.frame( 1:3, letters[1:3]) 
   X1.3 letters.1.3. 
 1    1            a 
 2    2            b 
 3    3            c 

    Because of their superior speed, we use data table objects in R from the  data.table  package. Data 
tables are similar to data frames, but are designed to be more memory efficient and faster. Even though we 
recommend data tables, we show some examples with data frames as well because when you work with R, 
many other people’s code includes data frames, and indeed data tables inherit many methods from data 
frames. 

   library(data.table) 
 data.table( 1:3, 4:6) 
    V1 V2 
 1:  1  4 
 2:  2  5 
 3:  3  6 

   Having explored several types of  objects  , we turn our attention to ways of manipulating those objects 
with operators and functions.  

     Base Operators and Functions 
 Objects are not enough for a language; some things require actions.  Operators  and  functions  are the verbs 
of the programming world. We start with assignment, which can be done in two ways. Much like written 
languages, more-elegant turns of phrase can be more helpful than simpler prose. So although  =  and  <-  are 
both assignment operators and do the same thing, because  =  is used within functions to set arguments, 
we recommend for clarity’s sake to use  <-  for general assignment. We nevertheless demonstrate both 
assignment techniques.  Assignments   allow objects to be given sensible names; this can significantly 
enhance code readability (for your future self as well as for other users). 

 In addition to assigning names to variables, you can check specifics by using functions. Functions in R 
take the general format of function name, followed by parentheses, with input inside the parentheses, and 
then R provides output. Here are examples: 

    x <- 5 
 y = 3 
 x 
 [1] 5 
 y 
 [1] 3 

   is.integer(x) 
 [1] FALSE 
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   is.double(y) 
 [1] TRUE 

   is.vector(x) 
 [1] TRUE 

    Once an object is  assigned  , you can access specific object elements by using brackets. Most computer 
languages start their indexing at either  0  or  1 . R starts indexing at  1 . Also, note that you can readily change 
old assignments with little trouble and no warning; it is wise to watch names cautiously and comment code 
carefully. 

    x <- c("a", "b", "c") 
 x[1] 
 [1] "a" 

   is.vector(x) 
 [1] TRUE 

   is.vector(x[1]) 
 [1] TRUE 

   is.character(x[1]) 
 [1] TRUE 

    While a vector may take only a single index, more-complex structures require more indices. For the 
matrix you met earlier, the first index is the row, and the second is for column position. Notice that after 
building a matrix and assigning it, there are many ways to access various combinations of elements. This 
process of accessing just some of the elements is sometimes called   subsetting   : 

    x2 <- matrix(c(1:6), nrow = 3, ncol = 2) 
 x2  
      [,1] [,2] 
 [1,]    1    4 
 [2,]    2    5 
 [3,]    3    6 

   x2[1, 2] ## row 1, column 2 
 [1] 4 

   x2[1, ] ## all row 1 
 [1] 1 4 

   x2[, 1] ## all column 1 
 [1] 1 2 3 

   x2[c(1, 2), ] ## rows 1 and 2 
      [,1] [,2] 
 [1,]    1    4 
 [2,]    2    5 
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   x2[c(1, 3), ] ## rows 1 and 3 
      [,1] [,2] 
 [1,]    1    4 
 [2,]    3    6 

   x[-2] ## drop element two 
 [1] "a" "c" 

   x2[, -2] ## drop column two 
 [1] 1 2 3 

   x2[-1, ] ## drop row 1 
      [,1] [,2] 
 [1,]    2    5 
 [2,]    3    6 

   is.vector(x2) 
 [1] FALSE 

   is.matrix(x2) 
 [1] TRUE 

    Accessing and  subsetting   lists is perhaps a trifle more complex, yet all the more essential to learn and 
master for later techniques. A single index in a single bracket returns the entire element at that spot (recall 
that for a list, each element may be a vector or just a single object). Using double brackets returns the object 
within that element of the list—nothing more. 

 Thus, the following code is, in fact, a vector with the element  a  inside. Again, using the  data-type-checking 
functions   can be helpful in learning how to interpret various pieces of code. 

    y <- list( c("a"), c(1:3)) 
 y[1] 
 [[1]] 
 [1] "a" 

   is.vector(y[1]) 
 [1] TRUE 

   is.list(y[1]) 
 [1] TRUE 

   is.character(y[1]) 
 [1] FALSE 

    Contrast that with this code, which is simply the element  a:  

    y[[1]] 
 [1] "a" 

   is.vector(y[[1]]) 
 [1] TRUE 
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   is.list(y[[1]]) 
 [1] FALSE 

   is.character(y[[1]]) 
 [1] TRUE 

    You can, in fact, chain brackets together, so the second element of the list (a vector with the numbers 1 
through 3) can be accessed, and then, within that vector, the third element can be  accessed  : 

    y[[2]][3] 
  [1] 3 

   Brackets almost always work, depending on the type of object, but there may be additional ways to 
access components. Named data frames and lists can use the  $  operator. Notice in the following code how 
the bracket or dollar sign ends up being equivalent: 

    x3 <- data.frame( A = 1:3, B = 4:6) 
 y2 <- list( C = c("a"), D = c(1, 2, 3)) 

   x3$A 
 [1] 1 2 3 
 y2$C 
 [1] "a" 
 x3[["A"]] 
 [1] 1 2 3 
 y2[["C"]] 
 [1] "a" 

    Notice that although both data frames and lists are both lists, neither is a matrix: 

    is.list(x3) 
 [1] TRUE 

   is.list(y2) 
 [1] TRUE 

   is.matrix(x3) 
 [1] FALSE 

   is.matrix(y2) 
 [1] FALSE 

    Moreover, despite not being matrices, because of their special nature (that is, all elements have equal 
length), data frames and data tables can be indexed similarly to  matrices  : 

    x3[1, 1] 
 [1] 1 

   x3[1, ] 
   A B 
 1 1 4 
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   x3[, 1] 
 [1] 1 2 3 

    Any named object can be indexed by using the  names   rather than the positional numbers, provided 
those names have been set: 

    x3[1, "A"] 
 [1] 1 

   x3[, "A"] 
 [1] 1 2 3 

    This applies to both column and row names, and these names can be established after building the 
matrix: 

    rownames(x3) <- c("first", "second", "third") 

   x3["second", "B"] 
 [1] 5 

    Data tables use a slightly different approach. Selecting rows works almost identically but selecting 
columns does not require quotes. Additionally, you can select multiples by name without quotes by 
using the  .()  operator. Should you need to use quotes, the data table can be accessed by using the option 
 with = FALSE  such as follows: 

    x4 <- data.table( A = 1:3, B = 4:6) 

   x4[1, ] 
    A B 
 1: 1 4 

   x4[, A] 
 [1] 1 2 3 
 x4[1, A] 
 [1] 1 

   x4[1:2, .(A, B)] 
    A B 
 1: 1 4 
 2: 2 5 

   x4[1, "A", with = FALSE] 
    A 
 1: 1 

    Technically, the bracket operators are functions. Although they’re not used as functions, they can be. 
Most functions are named, but the brackets are a particular case and require using single quotes in the 
regular function format, as in the following example: 
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    ̀[`(x, 1) 
 [1] "a" 

   ̀[`(x3, "second", "A") 
 [1] 2 

    Although we have been using the  is.datatype()  function to better illustrate what an object is, you can 
do more. Specifically, you can  check   whether a value is missing an element by using the  is.na()  function: 

   is.na(NA) ## works 
 [1] TRUE 

   Of course, the preceding code snippet usually has a vector or matrix element argument whose 
populated status is up for debate. Our last (for now) exploratory function is the  inherits()  function. It is 
helpful when no  is.class()  function exists, which can occur when specific classes outside the core ones 
you have seen presented so far are developed: 

   inherits(x3, "data.frame") 
 [1] TRUE 
 inherits(x2, "matrix") 
 [1] TRUE 

   You can also force lower types into higher types. This  coercion  can be helpful but may have unintended 
consequences. It can be particularly risky if you have a more advanced data object being coerced to a lesser 
type (pay close attention to the attempt to  coerce   an integer). 

    as.integer(3.8) 
 [1] 3 

   as.character(3) 
 [1] "3" 

   as.numeric(3) 
 [1] 3 

   as.complex(3) 
 [1] 3+0i 

   as.factor(3) 
 [1] 3 
 Levels: 3 

   as.matrix(3) 
      [,1] 
 [1,]    3 

   as.data.frame(3) 
   3 
 1 3 
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   as.list(3) 
 [[1]] 
 [1] 3 

   > as.logical("a") 
 [1] NA 

   as.logical(3) 
 [1] TRUE 

   as.numeric("a") 
 [1] NA 
 Warning message: 
 NAs introduced by coercion 

    Coercion can be helpful. All the  same  , it must be used cautiously. Before you move on from this section, 
if any of this is new, be sure to experiment with different inputs than the ones we tried in the preceding 
example! Experimenting never hurts, and it can be a powerful way to learn. 

 Let’s turn our attention now to mathematical and logical operators and functions.  

      Mathematical   Operators and Functions 
 Several operators can be used for comparison. These will be helpful later, once we get into  loops   and 
building our own functions. Equally useful are  symbolic logic forms  . We start with some basic comparisons 
and admit to a strange predilection for the number 4: 

   4 > 4 
 [1] FALSE 
 4 >= 4 
 [1] TRUE 
 4 < 4 
 [1] FALSE 
 4 <= 4 
 [1] TRUE 
 4 == 4 
 [1] TRUE 
 4 != 4 
 [1] FALSE 

   It is sensible now to mention that although the preceding code may be helpful, often numbers differ 
from one another only slightly—particularly in the programming environment, which relies on the computer 
representation of floating-point (irrational) numbers. Therefore, we often check that things are close within 
a tolerance: 

   all.equal(1, 1.00000002, tolerance = .00001) 
 [1] TRUE 
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   In symbolic logic, AND as well as OR are useful comparisons between two objects. In R, we use  &  for 
AND, as well as  |  for OR.  Complex logic tests   can be constructed from these simple structures: 

   TRUE | FALSE 
 [1] TRUE 
 FALSE | TRUE 
 [1] TRUE 
 TRUE & TRUE 
 [1] TRUE 
 TRUE & FALSE 
 [1] FALSE 

   All of the logic tests mentioned so far  apply   just as well to vectors as they apply to single objects: 

    1:3 >= 3:1 
 [1] FALSE  TRUE  TRUE 

   c(TRUE, TRUE) | c(TRUE, FALSE) 
 [1] TRUE TRUE 

   c(TRUE, TRUE) & c(TRUE, FALSE) 
 [1]  TRUE FALSE 

    If you want only a single response, such as for  if-else flow control  , you can use  &&  or  || , which stop 
evaluating as soon as they have determined the final result. Work through the following code and output 
carefully: 

    W 
 Error: object 'W' not found 

   TRUE | W 
 Error: object 'W' not found 

   TRUE || W 
 [1] TRUE 

   W || TRUE 
 Error: object 'W' not found 

   FALSE & W 

   Error: object 'W' not found 

   FALSE && W 
 [1] FALSE 

    Note that the double operators are not, in fact, vectorized. They simply use the first element of any 
vectors: 

    c(TRUE, TRUE) || c(TRUE, FALSE) 
 [1] TRUE 
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   c(TRUE, TRUE) && c(TRUE, FALSE) 
 [1] TRUE 

    The  any()  and  all()  functions are helpful as well in these contexts for similar reasons: 

    any(c(TRUE, FALSE, FALSE)) 
 [1] TRUE 

   all(c(TRUE, FALSE, TRUE)) 
 [1] FALSE 

   all(c(TRUE, TRUE, TRUE)) 
 [1] TRUE 

    We turn our attention now to mathematical, rather than logical, operators. R is powerful mathematically 
and can perform most mathematical calculations. So although we introduce some functions, we are leaving 
many out of the mix. For more details,  ?Arithmetic  can be your friend. It is (as always) important to be 
aware of the way computers perform mathematical  calculations  . Being able to code bespoke solutions 
directly is powerful, yet with the freedom to customize comes a corresponding amount of responsibility. 
Take a careful look at the following mathematical operations (which can behave differently than expected 
because of implementation choices): 

   3 + 3 
 [1] 6 
 3 - 3 
 [1] 0 
 3 * 3 
 [1] 9 
 3 / 3 
 [1] 1 
 (-27) ^ (1/3) 
 [1] NaN 
 4 %/% .7 
 [1] 5 
 4 %% .3 
 [1] 0.1 

   R also has some common functions that have straightforward names: 

   sqrt(3) 
 [1] 1.732051 
 abs(-3) 
 [1] 3 
 exp(1) 
 [1] 2.718282 
 log(2.71) 
 [1] 0.9969486 

    Trigonometric functions   also have their part, and  ?Trig  can bring up a nice list of these. We show 
cosine’s function call  cos()  for brevity. Note the slight inaccuracy again on the cosine function’s output: 
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   cos(3.1415) 
 [1] -1 

   We close this section and this chapter with a brief selection of matrix operations.  Scalar operations   use 
the basic arithmetic operators. To perform matrix multiplication, we use  %*% : 

    x2 
      [,1] [,2] 
 [1,]    1    4 
 [2,]    2    5 
 [3,]    3    6 

   x2 * 3 
      [,1] [,2] 
 [1,]    3   12 
 [2,]    6   15 
 [3,]    9   18 

   x2 + 3 
      [,1] [,2] 
 [1,]    4    7 
 [2,]    5    8 
 [3,]    6    9 

   x2 %*% matrix(c(1, 1), 2) 
      [,1] 
 [1,]    5 
 [2,]    7 
 [3,]    9 

     Matrices   have a few other fairly common operations that are helpful in linear algebra. We suppose 
you have some idea about the mathematics behind some of the applications in modeling we cover, and we 
discuss an appropriate amount of mathematics as needed in the following chapters. Still, this seems a good 
place to show how the transpose, cross product, and transpose cross product might be coded. We show both 
the raw code to make the cross product and transpose cross product occur, as well as easier function calls 
that may be used. This is a relatively common occurrence in R, incidentally. Through packages, quite a few 
techniques are implemented in fairly clear function calls. Here are the examples: 

    t(x2) 
      [,1] [,2] [,3] 
 [1,]    1    2    3 
 [2,]    4    5    6 

   t(x2) %*% x2 
      [,1] [,2] 
 [1,]   14   32 
 [2,]   32   77 

   crossprod(x2) 
      [,1] [,2] 
 [1,]   14   32 
 [2,]   32   77 



CHAPTER 1 ■ PROGRAMMING BASICS

15

   x2 %*% t(x2) 
      [,1] [,2] [,3] 
 [1,]   17   22   27 
 [2,]   22   29   36 
 [3,]   27   36   45 

   tcrossprod(x2) 
      [,1] [,2] [,3] 
 [1,]   17   22   27 
 [2,]   22   29   36 
 [3,]   27   36   45 

    We end this chapter with some final  thoughts   . First, as you have just seen, it is common in R for 
someone else to have done the heavy lifting by making a function that simply creates the desired outcome. 
Of course, these friendly programmers’ work is subjected to only the underlying constraints of R itself as 
well as the ability to acquire a free GitHub account. Thus, it can be helpful to understand at least some of the 
base commands and operators that make R work. Second, R runs on computers, and for those who have not 
yet met computer logic, there are differences due to the hardware structure and (and consequent software 
implementation choices). 

 Next, let’s focus on understanding implementation nuances as well as quickly getting data in and out of R.  
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    CHAPTER 2   

 Programming Utilities                          

 Using R to perform more-advanced operations requires creating something that may never have existed. 
To create new things takes a nuanced understanding of precisely how prebuilt functions work. This chapter 
discusses how and where to find help and documentation for existing capabilities, how R operates with your 
computer system and files, and the ins and outs of data input and output. As before, please feel free to pick 
and choose which parts of this chapter you need. We start with the help files and documentation. 

 ■   Note    Throughout this book, the code in bold is meant to be run. The nonbolded code represents either 
output results of command lines or code that is intended to inform without necessarily being run.  

     Help and Documentation 
 The R community has many resources to help users. From prebuilt functions to whole collections of 
themed functions in packages, there are many types of support. Both  ?  and  help  are useful ways to access 
information about an object or function. For more common objects, R has not only extensive documentation 
about specifics such as input (for functions), but also detailed notes on what those inputs are expected to 
receive. Furthermore, often detailed examples showcase just what can be done. Figure  2-1  shows the output 
of using these two functions with the addition  operator  :  

   ?'+' 
 help("+") 

www.allitebooks.com

http://www.allitebooks.org
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   Notice at the bottom of Figure  2-1  that the documentation for arithmetic operators is even kind 
enough to provide specific information about the fact that there can be differences in output depending on 
the platform. It is important to note that not all functions have this fully complete documentation readily 
available, but for many of the most common functions and packages, an extraordinary level of information is 
available. Writing code that reproduces the desired results, independent of platform and environment, is not 
always possible. Later, when we discuss debugging, it is this sort of advanced knowledge of various functions 
that can be helpful to know. 

 Of course, this kind of help is more useful when you already know the object or function you want 
to use and simply need more details. When seeking the ability to do something entirely new, referring to 
the manuals can help. One such site is    https://cran.r-project.org/manuals.html      maintained by the  R  
  Development Core Team   . 

 We turn our attention now to the ways that R can access system files.  

     System and Files 
 In a Windows environment, R may be a very effective way to automate file manipulation. Most IT 
departments are willing to install R, and it has the same file permission privileges you do. From  creating   files 
to moving them about and checking dates, R has a variety of functions that are handy for getting information 
from the system and  automating file management  . Our observation is that Unix-based systems might have 
more-elegant ways of handling such scenarios from the command line. 

  Figure 2-1.    Help documentation for arithmetic  operators         

 

https://cran.r-project.org/manuals.html
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 One helpful feature of R accessing the system is that it is possible to discover the current date, time, 
and time zone of the system on which R is being run. This can help detect new files or can be used to put 
timestamps into files (more on that later). It should be noted that these are, of course, dependent on the 
system environment being accurate, so caution may be in order before using these in  high-stakes projects  . 

    Sys.Date() 
 [1] "2016-02-13" 

   Sys.time() 
 [1] "2016-02-13 16:58:36 CST" 

   Sys.timezone() 
 [1] "America/Chicago" 

    The help documentation for these commands makes useful suggestions to increase the  accuracy   of the 
output, up to potentially millisecond or microsecond precision. 

 Let’s turn our attention now to a variety file management functions. These all share the format  file.*  
and have as their first argument a character vector that should be either a filename for the current working 
directory or a path and filename. We start with a text file  ch02_text.txt  in our working directory. 

 The function   file.exists()    takes only a character string input, which is a filename or a path and 
filename. If it is simply a filename, it checks only the working directory. This working directory is verified 
by the   getwd()    function. If a check is desired for a file in another directory, this may be done by giving a full 
file path inside the string. This function returns a logical value of either   TRUE  or  FALSE   . Depending on user 
permissions for a particular file, you may not get the expected result for a particular file. 

    getwd() 
 [1] "C:/Books/Apress_AdvancedR/RFiles" 
  file.exists("ch02_text.txt") 
 [1] TRUE 
  file.exists("NOSUCHFILE.FAKE") 
 [1] FALSE 
  file.exists("C:/Books/Apress_AdvancedR/Apress_AdvancedR_Proposal.docx") 
 [1] TRUE 

   While the preceding function checks for existence, another function tests for whether we have access 
to a file. The function   file.access    takes similar input, except it also takes a second argument. To test 
for existence, the second argument is  0 . To test for executable  permissions , use  1 ; and to test for writing 
permission, use  2 . If you want to test your ability to read a file, use  4 . This function returns an integer vector 
of  0  to indicate that permissions are given, and  -1  to indicate permissions are not given. Notice that the 
default for the function is to test for simple existence. Examples of  file.access  are shown here: 

   file.access("ch02_text.txt") 
 ch02_text.txt  
             0  
 file.access("ch02_text.txt", mode = 0) 
 ch02_text.txt  
             0  
 file.access("ch02_text.txt", mode = 1) 
 ch02_text.txt  
            -1  
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 file.access("ch02_text.txt", mode = 2) 
 ch02_text.txt  
             0  
 file.access("ch02_text.txt", mode = 4) 
 ch02_text.txt  
             0  

   We next turn our attention to more detailed information about when a  file   was modified, changed, 
or accessed with the   file.info  function  . This function takes in character strings as well. The output gives 
information about the file size; whether it is a directory; a file permissions integer in read, write, and execute 
order; the last modified time; the last change time; the last accessed time; and finally, whether the file is 
executable: 

   file.info("ch02_text.txt", "chapter01.R") 
               size isdir mode               mtime               ctime               atime exe 
 ch02_text.txt   31 FALSE  666 2016-02-13 17:00:16 2016-02-13 16:59:57 2016-02-13 16:59:57  no 
 chapter01.R   7983 FALSE  666 2016-01-01 02:53:17 2016-01-05 12:26:39 2016-01-01 02:53:17  no 

   Notice that you can edit the modified time through the   sys.setFileTime  function  . This can be helpful on 
occasion, although the precise accuracy and precision are dependent on the environment. Here’s an example: 

    newTime<-Sys.time()-20 
 newTime 
 [1] "2016-02-13 20:25:53 CST" 

   file.info("ch02_text.txt") 
               size isdir mode               mtime               ctime               atime exe 
 ch02_text.txt   31 FALSE  666 2016-02-13 17:00:16 2016-02-13 16:59:57 2016-02-13 16:59:57  no 

   Sys.setFileTime("ch02_text.txt", newTime) 
 file.info("ch02_text.txt") 
               size isdir mode               mtime               ctime               atime exe 
 ch02_text.txt   31 FALSE  666 2016-02-13 20:25:53 2016-02-13 16:59:57 2016-02-13 16:59:57  no 

    Turning our attention to creation and removal of files, the functions   file.create    and   file.remove    do 
precisely what you would hope. These do return logically  TRUE  or  FALSE  and can even give more details: 

   file.create("ch02_created.docx", showWarnings = TRUE) 
 [1] TRUE 
 file.remove("ch02_created.docx") 
 [1] TRUE 
 file.remove("NOSUCHFILE.FAKE") 
 [1] FALSE 
 Warning message: 
 In file.remove("NOSUCHFILE.FAKE") : 
  cannot remove file 'NOSUCHFILE.FAKE', reason 'No such file or directory' 
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   Files may also be copied and renamed. The function   file.copy    can be given overwrite permission, and 
could even be set up to copy entire folders and subfolders with the   recursive=TRUE  option  . Furthermore, it 
has options to copy over mode or file permissions as well as to copy the file date data (or, of course, letting 
the copy have a new modified date). The following code example shows how that might all work: 

   Sys.time() 
 [1] "2016-02-13 21:05:29 CST" 
 file.copy("ch02_text.txt", "ch02_copy.txt", overwrite = TRUE, recursive = FALSE, copy.mode = 
TRUE, copy.date = TRUE) 
 [1] TRUE 
 file.info("ch02_copy.txt") 
               size isdir mode               mtime               ctime               atime exe 
 ch02_copy.txt   31 FALSE  666 2016-02-13 20:25:53 2016-02-13 21:05:30 2016-02-13 21:05:30  no 
 file.rename("ch02_copy.txt", "ch02.txt") 
 [1] TRUE 

   The   file.append  function   joins two files together. This can work well for some files types. Used naively, 
there can be unfortunate consequences. While the code to perform this follows, pay careful attention to Figure  2-
2  and Figure  2-3 . In the case of the text files, the process worked well enough. In the case of Microsoft PowerPoint 
files, not so much. Keep in mind that the  PowerPoint   files are less about the files themselves (neither author 
imagines using R for such files genuinely), and more about the fact that the nuances of file manipulation, in 
general, deserve treatment with due caution. Notice that R believes both operations are successful:   

   file.append("ch02_text.txt", "ch02.txt") 
 [1] TRUE 
 file.append("ch02_pp.pptx", "ch02_pp2.pptx") 
 [1] TRUE 

  Figure 2-2.    The first operation was successful according to R and worked upon opening the file       

  Figure 2-3.    The second operation was successful according to R yet did not work upon opening the file       
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   You can not only manipulate files with R, but also create directories, or file folders, as well. The function 
is  dir.create , which behaves as you might now expect. We show an example of the function here, and the 
resulting director in Figure  2-4 : 

   dir.create("folder1") 

    These commands work on any files that a user has permission to access and manipulate. One of the 
authors uses these commands to move data from various shared drives owned by different departments to 
eventually post result files on a website. Once you understand loops and functions from future chapters, 
you’ll be able to automate most file management.  

  Figure 2-4.    The created folder1 directory       
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      Input   
 Getting new data into R becomes the next challenge. Data sets tend to be quite large, although 
effective techniques may be used on smaller sets. Text files with tab or comma separation are the most 
straightforward to import into R. Next, common data file types include Microsoft Excel, SPSS, SAS, and Stata. 
More generally, it is fairly safe to say that there likely exists an R package that can handle the type of file 
import you want. Even PDF and Microsoft Word files may be input should the need arise (text analytics from 
word clouds to more predictive applications come to mind). For most of these records, the input process is 
similar, so there is perhaps less of a need to be exhaustive and more of a need to set up sound principles. Be 
sure to visit the Apress website for this text to download the code packets for this book. We use files in the 
chapter   02     folder in our next examples; the  Counties in Illinois  files (All Counties in Illinois, 2016) and 
the  rscfp2013  files (DADS, 2016) are used. 

 We start with a function in R,  read.table(),  which can take in several of the more basic file types and 
read them in as a data frame. As with most input functions, this has several options, not all of which are 
required for any particular circumstance. Depending on the type of data read into R, it may take more than 
one try to successfully read in the data in a way convenient to use and manipulate. The  View  function can be 
of help in this case, with the output shown in Figure  2-5 .  

   countiesILCSV<-read.table("Ch02/Counties_in_Illinois.csv", header = TRUE, sep = ",") 
 View(countiesILCSV) 

   We use three packages— Hmisc  (Harrell, 2016),  xlsx  (Dragulescu, 2014) ,  and  foreign  (R Core Team, 
2015)—to showcase input from various file types. One observation is that file types may, in fact, be quite 
large. With over 30,000 entries, as shown in Figure  2-6 ,  read.dta  quickly and handily imports Stata  files  .  

   library(checkpoint) 
 checkpoint("2016-09-04", R.version = "3.3.1") 
 library(Hmisc) 
 library(foreign) 
 library(xlsx) 
 rscfpData <- read.dta("Ch02/rscfp2013.dta") 
 View(rscfpData) 

  Figure 2-5.    The output of the View() function       

 

http://dx.doi.org/10.1007/978-1-4842-2077-1_02
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   We can also import  SPSS   files through the  spss.get  function. Even if there are warnings, it can often be 
the case that data is still successfully imported. If the data is not imported successfully, search the warning 
message for specifics. In this case, it seems from our header view that all is well. For brevity’s sake, we 
truncated part of the header output: 

    countiesILSPSS <- spss.get("Ch02/Counties_in_Illinois.sav") 
 Warning message: 
 In read.spss(file, use.value.labels = use.value.labels, to.data.frame = to.data.frame,  : 
   Ch02/Counties_in_Illinois.sav: Unrecognized record type 7, subtype 18 encountered in 
system file 

   head(countiesILSPSS) 
                    county.name total.population median.income 
 1 Adams County, Illinois                  67030         43824 
 2 Alexander County, Illinois               8449         28833 
 3 Bond County, Illinois                   17904         51946 
 4 Boone County, Illinois                  53567         61210 
 5 Brown County, Illinois                   6897         38696 
 6 Bureau County, Illinois                 35083         45692 
   less.than.high.school high.school some.college bachelors.or.higher 
 1            0.06938496   0.3663752    0.3155484          0.24869141 
 2            0.17821309   0.3999044    0.3251314          0.09675108 
 3            0.08590590   0.3386204    0.3054077          0.27006600 
 4            0.12358696   0.3577536    0.2985507          0.22010870 
 5            0.24846045   0.3012790    0.3270962          0.12316438 
 6            0.09044028   0.3910391    0.3542198          0.16430076 

  Figure 2-6.    A larger Stata .dta file successfully imported into R with thousands of entries       
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    We’ll do one final example with Excel, which uses our last package,  xlsx . This package has  rJava  
(Urbanek, 2016) as a dependency, and that is relevant depending on which R version you use. Your mostly 
fearless authors stick to 64-bit as often as possible, and this requires a 64-bit version of Java installed. R was 
liberal with its complaints when this had not been done. Notice that sheet names can be specifically called, 
making the function  read.xlsx  handy for extracting specific pieces of data. 

   countiesILExcel <- read.xlsx("Ch02/Counties_in_Illinois.xlsx", sheetName = 
"Counties_in_Illinois") 

   These three packages, along with R’s more inherent ability to read in tabular data stored in text files 
with various delimiters, allow for easy enough input of most data that might be presorted or collected. It is 
not difficult to direct R to look directly online for files either, so that one researcher may update records and 
those results can be readily percolated to others. Later, as part of other examples, we have some files that are 
downloaded live from the Internet. For now, we turn our attention to output.  

     Output 
  Output   comes in many forms. Perhaps because of collaboration with other researchers or partners, 
accommodating one of the other software systems is needed. Much like the preceding section on input, R 
can readily output to several file types. Of more interest is setting up R to send specific console output to 
certain files. This allows one machine to view the results of an analysis run on another computer. In this 
section, we demonstrate a couple of outputs of data to SPSS, Stata, and Excel. Then we work with console 
outputs. We ask you to keep in mind that there are many other ways and types of files to create, and as part of 
larger examples, we demonstrate several types including various document files and graphics. 

 To output files to Excel, SPSS, or Stata, simply use the correct invocation of either the  xlsx  or  foreign  
packages. As shown in Figure  2-7 , R creates the output handily.  

    write.xlsx(countiesILExcel, "Ch02/Output1.xlsx")  

   write.foreign(countiesILExcel, "Ch02/Output2.txt", "Ch02/Output2.sps",   package="SPSS")  
 Warning message: 
 In writeForeignSPSS(df = list(county_name = c(1L, 2L, 3L, 4L, 5L,  : 
   some variable names were abbreviated 

   write.dta(countiesILExcel, "Ch02/Output3.dta") 
 Warning message: 
 In write.dta(countiesILExcel, "Ch02/Output3.dta") : 
   abbreviating variable names 
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    The  sink  function takes console output and directs it to a file. Thus, the results of an R process may be 
stored for later observation or saved to a shared drive for perusal by others. The console sends only output 
to the file, not the input. Look carefully at the difference between the code that follows and the screenshot of 
 Output4.txt  shown in Figure  2-8 :  

   sink("Ch02/Output4.txt", append = TRUE, split = TRUE) 
 x <- 10 
 xSquared <- x^2 
 x 
 [1] 10 
 xSquared 
 [1] 100 
 unlink("Ch02/Output4.txt") 

   We turn our attention away from the output for a little while, knowing that we’ll revisit this topic in 
several more chapters. Output of various types are necessary, and they tend to depend on objectives and 
circumstances. 

  Figure 2-7.    Output in Excel,  SPSS  , and Stata file formats is created from R       

  Figure 2-8.    The  output   of the sink() function to a text file       
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 The next chapter provides tools for quickly repeating similar operations again and again as well as 
handling course corrections based on the environment. Those techniques combine with these methods to 
quite handily automate file management on a relatively large scale.  

      References 
 References are given once and not repeated for packages. Data files found online are cited when used. Our 
goal is to give credit where it is due, without overloading the text.     
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    CHAPTER 3   

 Programming Automation                          

 It has been said that performing the same action and expecting a different result is a definition of   insanity   . 
While a brief search of Oxford’s dictionary does not turn up that definition, we have a similar premise: to 
prevent insanity, leave it to your computer to perform the same action repeatedly, and expect the same results! 

 The goal of this chapter is for you to begin to build automation into your code. Part of the power of 
code is that it cheerfully performs the same action as often as required without stumbling or tiring. The 
other useful feature of code is the capability to stitch logic into the flow of the programming. Humans, at our 
best, naturally use such logic. For example, if father’s keys are on the hook, he must be home. Otherwise, 
father must still be out and about. Here’s another example: if  p  is less than  alpha , reject the null hypothesis; 
otherwise, do not reject the null hypothesis. 

 Because such automation allows an enormous number of  repeats  , care must be given to efficiency. How 
long does it take the code to run? Could the code be written differently to make the operations occur faster? 
In programming, as in life itself perhaps, we often have fewer perfect answers and more trade-offs between 
choices and consequences. We live in a brave new world in which new and more powerful hardware often 
is cheaper than the human cost required to squeeze out a bit more efficiency. On the other hand, our brave 
new world also has data sets with billions of entries; shaving a millisecond off each calculation could save 
hundreds of hours of compute time. We do our best to take a balanced approach, demonstrating some of the 
easier-to-understand constructs first and then presenting faster methods. 

 As we look at the first of these automation methods, we remind you that  coding   is as much an art as it is 
a science. The cleaner, more readable code may not be the fastest. The only essential definition of  fast  is  fast 
enough . If a particular type of code makes more sense to you and thus makes you more likely to remember and 
use it, that may be good enough. Of course, if it is not, a bit of research is in order to uncover quicker alternatives. 

     Loops 
   Loops    repeat the code inside them. The concern is to avoid getting into a case of an  infinite   loop—one that 
lasts forever. Most loops have a built-in means to attempt a stop (not that those always work as planned). 
In the next section, we discuss ways to exit a loop manually. Another concern with loops has to do with the 
fact that they are functions. Although we have used that word already, we are postponing a frank discussion 
of  functions   until the next chapter. For now, just keep in mind that anything created inside a function may 
disappear when that function ends. In the case of loops, this happens when they stop repeating. So, if you 
want to hold onto results, you need to build the container for those results outside the loop. Again, we go 
deeper into specifics in the next chapter. 

 The  for  loop is the first (and perhaps most controversial in R) automator we discuss. In many computer 
languages,   for()    is considered rather fast, but not so in R. Nevertheless, this function is easy to understand 
and use. Human-readable code is not something to eschew needlessly. However, there is usually more than 
one way to do things, and it would be silly to ignore those. We use the function   proc.time()    in our code to 
measure different times; we will calculate the runtime by finding the difference between the stop and start 
time. Take a look at the following code and output: 



CHAPTER 3 ■ PROGRAMMING AUTOMATION

30

   x <- seq(1,100000,1) 
 head(x) 
 [1] 1 2 3 4 5 6 
 forTime<- proc.time() 
 xCube <- NULL 
 for (i in 1:length(x) ) { 
 +   xCube[i] = x[i]^3 
 + } 
 forTime <- proc.time()-forTime 
 head(xCube) 
 [1]   1   8  27  64 125 216 
 forTime 
    user  system elapsed  
   11.04    0.17   11.25 

   You can see that the numbers  1  through  100,000  are in the variable  x  (the first six display by calling the 
  head()    function). Next, we create a variable to hold the cubes of all those variables. We also store the current 
time in a variable so that we can time the operation. Now comes the magic of the  for()  function! This 
function takes an index, which is often called  i , and a range that the index operates over. We start  i  at  1 , and 
the loop runs. At the end of the loop,  i  is automatically incremented by  1 , and the loop is repeated. The loop 
repeats until it reaches the last part of the range. Notice that we do not choose a hard limit; rather, we make 
our loop adaptable based on the length of  x . You can see that the loop does, in fact, result in each term of  x  
being cubed. It takes  11.25  seconds on our system. 

 This time, though, can be improved. Notice that although we created a variable   xCube   , it is a null variable. 
Each iteration of our  for  loop not only needs to cube  x , but also has to increase the size of the  xCube  variable by 
1. This turns out to not be a trivial task. If we were to create  xCube  to be already the size we need, performance 
would significantly improve. We first remove  xCube , so that we are not being deceived by any prior data: 

   rm(xCube) 
 forTime2<- proc.time() 
 xCube <- vector(mode = "numeric", length = length(x)) 
 for (i in 1:length(x) ) { 
 +   xCube[i] = x[i]^3 
 + } 
 forTime2 <- proc.time()-forTime2 
 head(xCube) 
 [1]   1   8  27  64 125 216 
 forTime2 
    user  system elapsed  
    0.15    0.00    0.15 

   Notice that now our time is only  0.15  seconds—much improved! Of note is that even if we had created 
a dummy   xCube    that wasn’t quite long enough, or if we made one that was too long and needed some null 
entries deleted off the end, this would still be faster. Thus, even when it may not be possible or convenient to 
know the size of the variable needed before running the loop, it may be beneficial to create a container that 
is likely large enough to store the data in first. 

 Now, for this particular example, a  for  loop is the wrong way to go. R has powerful and fast underlying 
code for some of its simplest functions. Notice that there is almost no elapsed time at all (of course, there is 
some, but depending on the operating system, some differences are not noticeable). Also, notice that the 
  head()    function can take negative numbers, to count backward from the end, to show the following: 
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   xCube <- NULL 
 vTime <- proc.time() 
 xCube <- x^3 
 vTime <- proc.time()-vTime 
 head(xCube, -99994) 
 [1]   1   8  27  64 125 216 
 vTime 
    user  system elapsed  
       0       0       0 

   Other  types   of loops exist. The   for  loop   is best suited to running a process a certain number of times, 
and, when it gets to the end, stopping. The   while    loop, on the other hand, is best suited to running a process 
an uncertain number of times until a stop condition happens. Often, it is possible to gain the same results 
with different types of loops (or as you have just seen, without a loop at all). All the same, each type of loop 
tends to have a more natural use under certain conditions. As an exercise on your own, after studying the 
 while  loop example we give, see if you can duplicate the previous cubing results. 

 Perhaps an example near and dear to the heart of researchers everywhere is  simulation  . After all, 
if we can simulate data, that may be the first step to understanding what our real-world results may be. 
Statistics are baked into R, and the function  rnorm()  takes up to three inputs. The first controls the number 
of elements we want to return for our sample. The second and third control the population-level mean and 
standard deviation from which the sample is randomly selected. Let us a look at what   rnorm    gives us: 

   for (i in 1:5 ) { 
 +   x <- rnorm(5,4,2) 
 +   print(x) 
 +   print(paste0("Xbar: ",mean(x))) 
 +   print(paste0("StdDev: ",sd(x))) 
 + } 
 [1] 2.0287126 4.5664489 0.1310789 3.6347667 4.2465319 
 [1] "Xbar: 2.92150781627209" 
 [1] "StdDev: 1.84077667180739" 
 [1] 5.806652 2.707348 4.673238 4.646211 6.496605 
 [1] "Xbar: 4.86601066066082" 
 [1] "StdDev: 1.43952629897616" 
 [1] 1.6476375 0.8618630 0.2519337 0.6902068 1.0062915 
 [1] "Xbar: 0.8915864810408" 
 [1] "StdDev: 0.508764053558126" 
 [1] 5.162450 3.513966 6.503733 3.736576 5.503810 
 [1] "Xbar: 4.88410690747199" 
 [1] "StdDev: 1.25287757407054" 
 [1] 4.719578 1.197946 2.751889 4.451728 2.487819 
 [1] "Xbar: 3.12179207747434" 
 [1] "StdDev: 1.46300892878659" 

   What we find are  5  samples  randomly   pulled from the same population with a mean of  4  and a standard 
deviation of  2 . However, notice that each sample has means ranging from  0.89  to  4.88 . Suppose we need a 
pseudorandom sample such as this, but want to demonstrate to our students how random sampling-point 
estimators require caution. Let us say we want to find a random sample pulled from our population, but 
whose sample mean is in fact  10  or higher. Well, a  while  loop might be just the answer: 
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   y <- 3 
 while(mean(y)< 10){y <- rnorm(5, mean = 4.0, sd = 2)} 

   We allowed this code to run for about a minute before we put a stop to it. The reason, of course, is 
that this type of search could take a while, and runs dangerously close to being an infinite loop. Normal 
populations whose means are  4  with standard deviations of  2  tend to have few elements that are  10  or higher. 
Randomly sampling enough of those elements that the sample mean is  10  or higher starts to be unlikely. We 
set  y  to  3  just so that the  while  code would run at least once. Here we repeat our loop with something more 
reasonable—a mean of  6 : 

   y <- 3 
 while(mean(y)< 6){y <- rnorm(5, mean = 4.0, sd = 2)} 
 mean(y) 
 [1] 6.188268 
 y 
 [1] 11.126657  4.807775  3.703673  3.966180  7.337056 

   Notice that  y  is now a rather strange sample, compared to what we know the population to be. This is, 
of course, an argument for larger sample sizes, but it also gives us data that both fits our facts and tests our 
assumptions. Counterexamples and odd data can be quite useful to stress test code or models. 

 The last loop we will look at for the moment is   repeat()    which can be different from  while  and  for  
loops. In particular,  repeat , unlike  while  or  for , does not take any arguments that would ever have a 
chance to stop it. This function keeps repeating over and over. Of course, there has to be a way to stop this. 
Otherwise, we are in trouble. We discuss such techniques in the next section, “Flow Control.” However, first, 
some observations about loops. 

 Loops are meant to perform a task as many times as required. In R, we  control   these tasks in three ways. 
If the task should be done to a certain count, a  for  loop is likely best. An integer iterator controls the start and 
stop of the  for  loop.If the task is one that we want to be done until a certain condition occurs, a  while  loop may 
be best. In particular, a  while  loop tests the condition that determines whether the loop runs, before the loop 
runs. This is critical! If the condition is already met, the  while  loop never runs. In the short examples you’ve 
seen so far, this may not seem possible or apparent, and that is okay. Our goal here is to introduce these in a 
way that easily brings them to mind when you are facing a new problem. All the same, it bears repeating: a 
 while  loop first checks whether it needs to run, and only then will it run once, and check again, until the check 
stop condition happens. The last loop we discuss,  repeat() , is different. It simply runs. Now, we have to stop it 
somehow, and we do that manually in the next section. The point is,  repeat  never checks whether it needs to 
run; it just runs. So if you want to run a process at least once,  repeat  may be the function you seek. 

 We hold off on giving an example of a  repeat  for now, mostly to avoid infinite loops. We’ll show an 
example soon. First, we need a way to control the flow of our code.  

      Flow Control   
 Code  flow control   happens in several ways, but our interests lie in four of them (and just three). This control 
works by performing tests to decide whether one action or another should be taken, or by modifying the 
behavior of the loops you have just seen. We present each of the commands in turn, and, at the end of this 
section, we’ll get back to that function mentioned in the prior section. 

 If/else statements are a standard part of logic, and they make up a standard part of programming as 
well. In fact, if/else is used so often that it comes in two flavors. When the  else  part is to carry on as usual, it is 
standard practice not to include that part in the code at all. 

 Let us take that sample of values for which we forced a sample mean greater than  6 . Say we want to see a 
box plot and whisker plot for that if we are successful, but otherwise want to see a histogram. We might start 
off with the following broken code, along with its Figure  3-1  output:  
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    if(y>6){ 
 +   boxplot(y) 
 + } 
 Warning message: 
 In if (y > 6) { : 
   the condition has length > 1 and only the first element will be used 

   else{ 
 Error: unexpected 'else' in "else" 
    histogram(y) 
 } 
 Error: unexpected '}' in "}" 

    We broke this code for two reasons. The first is to demonstrate that although flow control can be a useful 
feature, it is only as good as your logic. We meant to test for  mean(y) > 6 , and instead have tested something 
else. R is helpful enough to warn us that all may not be well. All the same, we should be cautious. The second 
reason is to note that this if/else statement is coded incorrectly. The  else  portion always runs; R does its best 
to warn us again that the  else  was not expected, and thus we should take heed. This modified set of code 
creates two images, shown in Figure  3-1  and Figure  3-2 . We show the code as follows, along with Figure  3-2 , 
which is the output of the successfully executed  if  portion:  

    if(mean(y)>6){ 
 +   boxplot(y) 
 + } 

   else{ 
 Error: unexpected 'else' in "else" 
    histogram(y) 
 } 
 Error: unexpected '}' in "}" 

  Figure 3-1.    The else output of both the preceding and the following  code         
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    This is interesting for three reasons. First, as you can see in our first broken  example  ,  if  is fully able 
to be a stand-alone piece of flow control. The control portion evaluates, and if  true , the code is run, and if 
 false,  the code is not run. Second, although less usefully,  else  is also a stand-alone piece of code (which 
controls nothing when used solo). Third, it is a good object lesson that both the logic of the flow control and 
the structure of the code must be set up correctly to work properly. Next, we show the code as we originally 
envisioned it. It outputs only the box plot and whisker plot of Figure  3-2 . Notice that the  else  needs to be on 
the same line as the closing  }  of the  if : 

   if(mean(y)>6){ 
 +   boxplot(y) 
 + } else{ 
 +   histogram(y) 
 + } 

   The other two functions we use are somewhat similar to each other. We use  next  to skip one pass 
through a loop, and we  break  to end the loop entirely. Both of these keep the code running; they just 
control what happens inside the loop in which they are called. Take a look at the following code to see what 
happens: 

   i <- 0 
 while(i < 5){ 
 +   i <- i + 1 
 +   if(i ==2) {next()} 
 +   print(i) 
 + } 
 [1] 1 
 [1] 3 
 [1] 4 
 [1] 5 

   It is important to recognize that the location of  next  is significant.. We could order those three lines of 
code inside the  while  function in six ways. At least one way creates an infinite loop, and at least one way 
has no noticeable influence whatsoever. Of course, as you just saw, there is also a way that makes it skip the 
number  2 . This also demonstrates that  while  can be a lot like a  for  function. 

  Figure 3-2.    The if output of the preceding code, which has been fixed on the control level but not the else 
portion       
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 We close this section with a real look at the  repeat   function  . This function is ideal when it is unclear 
how many times an action may need to be repeated. Again,  repeat  is similar to  while , with the exception 
that the code runs at least once. It is also easier perhaps to have more than one exit criteria. Granted,  break  
can be used in  while  as well to create more than one exit rule. However, for human-readable code, it may be 
easier to have multiple  break  statements near each other. In the following code, we also recycle our iterator  i  
so that it is easy to see that it takes  377  attempts to find our randomly drawn value that is over three standard 
deviations away from mean: 

   z <- NULL 
 i <-1 
 repeat{ 
 +   z <- rnorm(1,4,2) 
 +   i <- i + 1 
 +   if(z > 10){break} 
 + } 
 z 
 [1] 10.69076 
 i 
 [1] 378 

        *apply Family of Functions 
 Our last set of functions for this chapter are the  *apply   functions  . Generally speaking, these functions take 
two primary  types   of input. One is an input that has several  elements  , and the second is a function applied 
to the elements in turn. The various flavors handle different use cases, and we also introduce some  error 
checking   where possible. 

 We start with   lapply ,   which takes a list input and applies the function given to each element. As its 
prefix suggests, this function returns a list with the results of the application of the entered function: 

    xL <- 1:5 
 xL 
 [1] 1 2 3 4 5 

   ## returns a list 
 lapply(xL, is.integer) 
 [[1]] 
 [1] TRUE 

   [[2]] 
 [1] TRUE 

   [[3]] 
 [1] TRUE 

   [[4]] 
 [1] TRUE 

   [[5]] 
 [1] TRUE 
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    As you can see, this is fairly messy. To simplify, we use almost the same function call, but with the  s  
prefix (for  simple ) as follows: 

   sapply(xL, is.integer) 
 [1] TRUE TRUE TRUE TRUE TRUE 

   Although both of these are helpful enough in their own right, they depend on correct input. Of course, 
our code depends on such correct input (the phrase  garbage in, garbage out  comes to mind). Nevertheless, 
we can signal to R the type of results we are expecting with the   vapply    function. It takes a third input, which 
is set to the type of output we are expecting. What happens when the function does not return the correct 
type of value? Here we run two lines of code, telling our function to expect  logical  level inputs because by 
default  NA  is a  logical . In our second attempt, R still expects the same type, but gets a  double  instead: 

    vapply(xL, is.integer, FUN.VALUE = NA) 
 [1] TRUE TRUE TRUE TRUE TRUE 

   vapply(xL, mean, FUN.VALUE = NA) 
 Error in vapply(xL, mean, FUN.VALUE = NA) :  
   values must be type 'logical', 
  but FUN(X[[1]]) result is type 'double' 

    We run a similar set of code, this time telling R to expect each result to be a vector of length  2 . Instead, it 
gets a vector of length  1 , which is the correct type, yet wrong length: 

   vapply(xL, is.integer, FUN.VALUE = c(NA, NA)) 
 Error in vapply(xL, is.integer, FUN.VALUE = c(NA, NA)) :  
   values must be length 2, 
  but FUN(X[[1]]) result is length 1 

   Let us take a look at a more interesting list. Notice that we have both integers and characters in this list  yL : 

    yL <- list(  a = 1:5,  b = c("6", "7", "8"),  c = c(9:10)) 
 yL 
 $a 
 [1] 1 2 3 4 5 

   $b 
 [1] "6" "7" "8" 

   $c 
 [1]  9 10 
 yL$b[2] 
 [1] "7" 
 is.character(yL$b[2]) 
 [1] TRUE 
 is.integer(yL$b[2]) 
 [1] FALSE 
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    Suppose we are interested in summary statistics information for each element in our list. We could 
certainly apply the   summary()    function to each element, and R would cheerfully do so, and not even throw 
an error at us! 

    lapply(yL, summary) 
 $a 
    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
       1       2       3       3       4       5  

   $b 
    Length     Class      Mode  
         3 character character  

   $c 
    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
    9.00    9.25    9.50    9.50    9.75   10.00  

    Notice, however, that there are some  issues  . This is an easy sort of data-collection typo to have, 
depending on how information was collected in the field and coded. Luckily, if we use a better  *apply  
function and give R a heads-up on what to expect, we can potentially save ourselves some grief later. 
Building some form of data validation into code can be helpful. Of course, this does not prevent all issues, by 
any means; it simply tends to make life a bit safer. 

   vapply(yL, summary, c(Min. = 0, `1st Qu.` = 0, Median = 0, Mean = 0, `3rd Qu.` = 0, Max. = 
0)) 
 Error in vapply(yL, summary, c(Min. = 0, `1st Qu.` = 0, Median = 0, Mean = 0,  :  
   values must be length 6, 
  but FUN(X[[2]]) result is length 3 

   The   mtcars    data frame comes from a 1974 magazine. We are interested in the miles per gallon and the 
number of cylinders. Using this data set is a useful way to understand various functions in R, as it is readily 
accessible in R. Here we take a look at the first six entries to see and better understand our raw data: 

   head(mtcars[, c("mpg", "cyl")]) 
                    mpg cyl 
 Mazda RX4         21.0   6 
 Mazda RX4 Wag     21.0   6 
 Datsun 710        22.8   4 
 Hornet 4 Drive    21.4   6 
 Hornet Sportabout 18.7   8 
 Valiant           18.1   6 

   We run  tapply  on the  mtcars  data frame, and we factor by cylinders. In Figure  3-3 , we show what this 
looks like as a bar plot.  
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 Notice that in our function call this time, we are explicitly stating each of the inputs by name. That is to 
say,   X ,  INDEX , and  FUN    are the original names of the data, the factor input, and the function that is applied, 
respectively. We also show almost the same code with the  simplify = FALSE  option, which returns a list: 

    tapply( 
 +   X = mtcars$mpg, 
 +   INDEX = mtcars$cyl, 
 +   FUN = mean) 
        4        6        8  
 26.66364 19.74286 15.10000  

   tapply( 
 +   X = mtcars$mpg, 
 +   INDEX = mtcars$cyl, 
 +   FUN = mean, 
 +   simplify = FALSE) 
 $`4` 
 [1] 26.66364 

   $`6` 
 [1] 19.74286 

   $`8` 
 [1] 15.1 

    When our data structure is a data  frame, matrix, or array  , the  apply()  function is often a good choice. 
Because these tend to have more dimensions, this function takes three inputs of the data, the  margin  we are 
interested in applying, and of course, the function to be implemented. We perform this on the entire  mtcars  
data set first by columns and then by rows to get the standard deviation. We also first show what the   mtcars  
data   looks like in its entirety. Notice that it perhaps makes more sense to perform this by columns. Because 
we are neither car enthusiasts nor particularly mechanically inclined, this last set of code and output may 
not make much  sense  : 

  Figure 3-3.     mtcars data frame   broken out by number of cylinders       
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    head(mtcars) 
                    mpg cyl disp  hp drat    wt  qsec vs am gear carb 
 Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4 
 Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4 
 Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1 
 Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1 
 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2 
 Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1  
 apply(mtcars, MARGIN = 2, FUN = sd) 
         mpg         cyl        disp          hp        drat          wt        qsec          
vs          am        gear        carb  
   6.0269481   1.7859216 123.9386938  68.5628685   0.5346787   0.9784574   1.7869432   
0.5040161   0.4989909   0.7378041   1.6152000  

   apply(mtcars, MARGIN = 1, FUN = sd) 
           Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive   Hornet 
Sportabout             Valiant  
            53.53888            53.51210            38.86999            79.40933           
113.70330            69.95729  
          Duster 360           Merc 240D            Merc 230            Merc 280           
Merc 280C          Merc 450SE  
           122.86626            44.43599            46.68811            57.31739            
57.33609            92.42901  
          Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental   Chrysler 
Imperial            Fiat 128  
            92.40957            92.46342           147.34689           145.04382           
141.16366            28.06702  
         Honda Civic      Toyota Corolla       Toyota Corona    Dodge Challenger         AMC 
Javelin          Camaro Z28  
            25.10753            26.43470            42.34211            99.84844            
96.05271           120.45178  
    Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa      Ford 
Pantera L        Ferrari Dino  
           124.56688            27.95293            41.26033            40.34473           
123.53038            62.68824  
       Maserati Bora          Volvo 142E  
           126.32051            44.49888  

    When we want to apply the same function to more than one set of data, we manage a multivariate 
scenario. In this case,   mapply()    is our function call. Unlike the prior examples, this one takes the function we 
want to apply as our first variable, and from there takes inputs of strictly positive length. We show the plotted 
results of the following code in Figure  3-4 . As you may recall from  Beginning R , the   par()    function provides a 
way to fit multiple graphs into a single image:  

    par(mfrow = c(2, 1)) 
 mapply(plot, mtcars[, c("mpg", "hp")], mtcars[, c("disp", "qsec")]) 
 $mpg 
 NULL 

   $hp 
 NULL 
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     Recursion   is a powerful programming idea, and we explore it further in later chapters. For now, 
consider this example: Suppose a line of people wraps around the corner of a building; you are not sure how 
long the line stretches. You could step out of your place in line and walk slowly to the front, counting the 
number of people. This is  regular iteration —which just like the loops, the  apply  functions have been mostly 
doing for us. On the other hand, you could keep your place in line and ask the person in front of you, “How 
many people are in front of you?” If that person repeats your question, eventually it would reach the front of 
the line, and that person might turn around and say, “Zero!” Moving back through the line to you, it would 
be possible to get an answer. 

 Let’s Take a look at list  zL . What if we try  lapply()  on it? This would not be good, because  lapply()  
passes each element to  mean() , and   mean()  cannot   handle lists! We show this in the following code, which 
shows both our list and our first effort to find the arithmetic average: 

    zL <- list( a = list(1, 2, 3:5), b = list(8:12)) 
 zL 
 $a 
 $a[[1]] 
 [1] 1 

   $a[[2]] 
 [1] 2 

   $a[[3]] 
 [1] 3 4 5 

   $b 
 $b[[1]] 
 [1]  8  9 10 11 12 

   lapply(zL, FUN = mean) 
 $a 
 [1] NA 

   $b 
 [1] NA 

  Figure 3-4.    The function plot applied to two subsets of mtcars       
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   Warning messages: 
 1: In mean.default(X[[i]], ...) : 
   argument is not numeric or logical: returning NA 
 2: In mean.default(X[[i]], ...) : 
   argument is not numeric or logical: returning NA 

    The recursive apply function,   rapply()   , is the solution. Depending on the particular results wanted, 
this function has some interesting options. A check of the help files is highly suggested, although we do not 
delve deeper into this function at this time. 

   rapply(zL, f = mean) 
 a1 a2 a3  b  
  1  2  4 10  

   It is possible to use “fancier” functions than just   mean()  or  sd()   . In the next chapter, we delve more 
deeply into what these functions might look like and what they might do. For now, let’s take a moment to 
discuss environment. 

  Environment  is the “world” in which our functions and variables live. We have been mostly residing 
in the global environment. It is true that our loops have created mini-environments after a fashion. This is 
why, if we want to keep information available to us after a loop is done, we create those null placeholder 
variables. We can take a look at our environment and list the variables that are currently in play by using 
the   environment()    and   ls()    functions. Notice that we are living in the global environment, and most the 
variables we have been using are present: 

    environment() 
 <environment: R_GlobalEnv> 

   ls() 
  [1] "forTime"  "forTime2" "i"        "vTime"    "x"        "xCube"    "xL"       "y"        
"yL"       "z"        "zL"       

    But of course, this is simply one more list. At times, it may be convenient to manipulate and use this as 
well. Thus, our last function is   eapply()   . Here we take a look at the class of all objects in our environment; 
these types should be familiar from prior chapters: 

    eapply(env = environment(), FUN = class) 
 $xCube 
 [1] "numeric" 

   $x 
 [1] "numeric" 

   $forTime2 
 [1] "proc_time" 

   $y 
 [1] "numeric" 

   $z 
 [1] "numeric" 
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   $forTime 
 [1] "proc_time" 

   $yL 
 [1] "list" 

   $vTime 
 [1] "proc_time" 

   $i 
 [1] "numeric" 

   $xL 
 [1] "integer" 

   $zL 
 [1] "list" 

         Final Thoughts 
 You have seen several powerful  tools   for automation—from loops of various sorts that control what happens 
repeatedly (and indeed, how often), to more specialized tools that are streamlined to cope with the usual 
suspects in data sets that we are likely to encounter. These techniques are helpful and are often used. 
However, they are not enough. What if new techniques are developed? How does  mean()  work? What if we 
need to create our own functions? In the next chapter, we explore functions both in terms of their theoretical 
framework and their practical applications. The combination of custom functions and loops is the bread and 
butter of coercing computers to do the busy work for us.     
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    CHAPTER 4   

 Writing Functions                          

 Writing your own functions in R enables you to combine a set of  R commands   into a function that is easy to 
call and can be generalized. Functions are foundational to R. To become a more advanced user or developer 
of R, a good understanding of what functions are and how to write them is crucial. Broadly speaking, a 
 function  takes one or more inputs and processes them to produce and return output. 

 Not every programming task should be converted to a function. However, whenever you find yourself 
copying and pasting a particular line of your code for the third time, you should likely write a function. 
Another “no question about it” time to write a function is when your code is over 100 lines or so. Long 
chunks of code can become almost impossible to read through and understand. Instead, we write functions 
with good, descriptive names that make our code more readable. Then, on a separate pass, we write code 
using the functions. The beauty of such a system is that it becomes easier to write focused code inside each 
function that solves one particular part of your challenge. Another benefit of this approach is that, should 
greater efficiency ever be required, it is possible to determine which functions are costing you the most 
processing power or take the longest time to complete. Then research can be done on how to be more 
efficient in just that spot. 

 In this chapter, we use the   Hmisc  R package      (Harrell Jr, 2016). The following code loads the  checkpoint  
(Microsoft Corporation, 2016) package to control the exact version of R packages used and then loads the 
 Hmisc  package: 

   ## load checkpoint and required packages 
 library(checkpoint) 
 checkpoint("2016-09-04", R.version = "3.3.1") 
 library(Hmisc) 
 options(width = 70) # only 70 characters per line 

       Components of a Function 
 With some exceptions, most functions in R have three  components  :

•     Formals : The arguments, or inputs, to the function  

•    Body : The commands that process the input  

•    Environment : The location or context of a function, which determines where it looks 
for variables    

 Each can be examined using dedicated functions. First, we write an example function: 

   ## create new function, f() 
 f <- function(x, y = 5) { 
   x + y 
 } 
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   The function accepts two  arguments  :  x  and  y . The first argument,  x , has no default, but the second argument, 
 y , defaults to a value of  5 . Although we can see these easily (in part because we’ve written the function), the 
formals, or arguments, of the function can be examined using the  formals()  and  args()  functions: 

    formals(f) 
 $x 

   $y 
 [1] 5 

   args(f) 
 function (x, y = 5)  
 NULL 

    To see the actual R code or the commands used to process the formals, we use the  body()  function: 

   body(f) 
 { 
     x + y 
 } 

   The commands are always enclosed in opening and closing brackets,  { } . In this case, the R code is 
simply  x + y , but some functions have hundreds of lines. The last key part of a function is its environment. 
The environment of a function determines where it looks for variables or objects, which can include both 
data as well as functions. To see the environment of a function, we use the  environment()  function: 

   environment(f) 
 <environment: R_GlobalEnv> 

   In this case, the function is in the global environment, where we created the function. For other 
functions, this would vary. For example, if we look at the environment for the  install.packages()  function, 
it is the namespace for the  utils  package: 

   environment(install.packages) 
 <environment: namespace:utils> 

   This provides a common language for discussing R functions. In the remainder of the chapter, we delve 
deeper into writing functions, and the special code and tools available for use with functions.  

     Scoping 
 In R,   scoping    is what determines where to look for a particular variable. Consider, for example, when we type  plot , 
how does R translate that code? Where does R look it up? Scope is R’s answer for the language idea of context. 
If I say, “I bought a new bat,” you would likely suppose I mean a cricket bat rather than a flying mammal. For R, 
context comes from the scope and environment. Thus, different environments can lead to different results. 

 Most aspects of writing R  functions   are no different than using R interactively. However, one difference 
is that functions have their own environment. Further, functions often are located in various environments. 
For instance, when using R interactively, almost all commands are executed from the global environment. 
In contrast, many functions are written as part of R packages, in which case the function’s environment 
is defined by the R package. Therefore, before jumping in to writing functions, it is helpful to understand 
scoping. Consider these two examples: 
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    plot 
 function (x, y, ...)  
 UseMethod("plot") 
 <bytecode: 0x00000000190621d0> 
 <environment: namespace:graphics> 

   plot <- 5 

   plot 
 [1] 5 

    In the first instance, R finds  plot  in the  graphics  package. In the second instance,  R  finds  plot  
in the global environment. Note that assigning  5  to the variable,  plot , does not overwrite the  plot()  
function. Instead, it creates another R object with the same name as the function. After creating the new 
variable, when we type  plot  at the console, R returns the numeric value rather than the function because 
the assignment,  plot <- 5 , occurs in the  global environment , which R searches before it checks the 
environments of different packages. The  search()  function returns the environments in the order that R 
searches them. Your environment may be different, although there are likely some similarities: 

   search() 
  [1] ".GlobalEnv"            "package:Hmisc"         
  [3] "package:ggplot2"       "package:Formula"       
  [5] "package:survival"      "package:lattice"       
  [7] "package:devEMF"        "package:checkpoint"    
  [9] "ESSR"                  "package:stats"         
 [11] "package:graphics"      "package:grDevices"     
 [13] "package:utils"         "package:datasets"      
 [15] "package:RevoUtilsMath" "package:methods"       
 [17] "Autoloads"             "package:base"          

   From the output, we see that R first looks in the global environment ( .GlobalEnv ), then in the package  Hmisc  , 
and so on until it reaches the  base  package. We can see the current environment by again using the  environment()  
function. R always begins looking in the current or local environment. From there, it progresses to the parent 
environment. We can find the parent environment for a given environment by using the   parent.env()  function  : 

    environment() 
 <environment: R_GlobalEnv> 

   parent.env(.GlobalEnv) 
 <environment: package:Hmisc> 
 attr(,"name") 
 [1] "package:Hmisc" 
 attr(,"path") 
 [1] "C:/Users/Authors/.checkpoint/2016-09-04/lib/x86_64-w64-mingw32/3.3.1/Hmisc" 

    Coming back to  functions  , each function has its local environment in addition to the function 
itself being in an environment. The following code shows the local function environment and its parent 
environment. We can roughly classify variables in functions into one of three types:

•    Formal variables  

•   Local variables defined within the function  

•   Free or other variables that are neither formals nor local variables    
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 Each is demonstrated in turn with the following code: 

    a <- "free variable" 
 f <- function(x = "formal variable") { 
   y <- "local variable" 

     e <- environment() 
   print(e) 
   print(parent.env(e)) 

     print(a) 
   print(x) 
   print(y) 
 } 

   f() 
 <environment: 0x0000000017c846b0> 
 <environment: R_GlobalEnv> 
 [1] "free variable" 
 [1] "formal variable" 
 [1] "local variable" 

    The variable  x  is a formal defined as its default value,  y  is a local variable defined in the body of the 
function, and  a  is a variable defined in the function’s parent environment. Although it is possible to rely on 
objects in the search path for a function rather than identified in the formals or as a local variable, it is not a 
wise idea. Coding to depend on a function’s parent environment or the search path can lead to particularly 
tricky bugs and unexpected behavior. This creates chaos for users or yourself later, when something in the 
environment seemingly unrelated to the function is changed, and even though it appears the function’s code 
and inputs have not changed, suddenly the output is different. 

 Although the examples so far have been relatively straightforward, scoping becomes trickier when using 
nested function calls. In the following code, it may be harder to predict the results of each piece of evaluated 
code. The next examples set up two functions and then use the functions with three different variables in the 
global environment: 

    f1 <- function(y = "f1 var") { 
   x <- y 
   a1 <- f2(x) 
   rm(x) 
   a2 <- f2(x) 
 } 

   f2 <- function(x) { 
   if (nchar(x) < 10) { 
     x <- "f2 local var" 
   } 
   print(x) 
   return(x) 
 } 

   x <- "global var" 
 f1() 
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 [1] "f2 local var" 
 [1] "global var" 

   x <- "g var" 
 f1() 
 [1] "f2 local var" 
 [1] "f2 local var" 

   rm(x) 
 f1() 
 [1] "f2 local var" 
 Error in nchar(x) (from #2) : object 'x' not found 

    It is worth  experimenting   with scoping until it makes sense, because it is necessary for ensuring that the 
correct object is found. This can be a particular challenge when writing and developing a package or when 
using functions that appear in multiple packages.  

     Functions for Functions 
 In addition to the usual R code and functions that you may use within a function you write, some special 
functions exist. These are only, or primarily, used within other functions. Even if you are an experienced R 
user, these may be unfamiliar if you have not previously written functions. 

 The   match.arg()  function      is useful for performing fuzzy matching of arguments. This also has the 
benefit that if an argument does not match one of the valid options (that is, is invalid), it throws an error. 
The following code shows two functions that are similar, except one uses the  match.arg()  function. The 
examples demonstrate fuzzy matching and what happens when an invalid argument is used: 

    f1 <- function(type = c("first", "second")) { 
   type 
 } 
 f2 <- function(type = c("first", "second")) { 
   type <- match.arg(type) 
   type 
 } 

   f1("fi") 
 [1] "fi" 
 f2("fi") 
 [1] "first" 

   f1("test") 
 [1] "test" 
 f2("test") 
 Error in match.arg(type) : 'arg' should be one of "first", "second" 

    Argument matching is also useful for ensuring that when a text string is passed, only a valid option 
is used, and that if it is not, an informative error is thrown. The following code expands on the function 
we built without  match.arg()        to calculate a mean if  type = "first" , and a standard deviation if  type = 
"second" . However, when an invalid option is passed to the type argument, we get the relatively cryptic error 
message that  x  is not found: 
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    f1b <- function(type = c("first", "second")) { 
   if (type == "first") { 
     x <- mean(1:5) 
   } else if (type == "second") { 
     x <- sd(1:5) 
   } 
   return(x) 
 } 

   f1b("test") 
 Error in f1b("test"): object 'x' not found 

    Another function specific to function arguments is  missing() . It returns a logical value indicating 
whether a specific argument is missing from the function call. This is helpful when writing functions that may 
be used in different ways. The following is an example of a function that calculates Cohen’s  d  effect size, which 
for a single group is defined as the mean of a variable divided by the standard deviation. Cohen’s  d  can also be 
calculated for repeated measures, such as a group measured before and after an intervention. This is done by 
calculating the difference of the two variables, and then proceeding as before. We use the   missing()  function   
to determine whether the user passes a single variable,  x , or two variables,  x  and  y , so that our function can 
elegantly handle calculating Cohen’s  d  for both one sample and repeated-measures data: 

    cohend <- function(x, y) { 
   if (!missing(y)) { 
     x <- y - x 
   } 

     mean(x) / sd(x) 
 } 

   cohend(x = c(0.61, 0.99, 1.47, 1.52, 0.45, 
              3.34, 1.05, -1.47, 1.3, 0.33), 
        y = c(-0.69, 1.6, 0.44, 1, 0.88, 
              1.17, 2.4, 1.21, 0.87, 2.15)) 
 [1] 0.09522249 
 cohend(x = c(0.61, 0.99, 1.47, 1.52, 0.45, 
              3.34, 1.05, -1.47, 1.3, 0.33)) 
 [1] 0.796495 

    Also related to determining characteristics of the function call is the function   match.call()   . Whereas 
 missing()  determines whether a specific argument is missing, and  match.arg()  determines whether an 
argument matches one of the valid options,  match.call()  captures the entire function call. This might be 
easier to demonstrate than to explain. The following little function calculates the coefficient of variation, 
the sample standard deviation divided by the sample mean. It also captures and returns the function call by 
using   match.call()   : 

    cv <- function(x, na.rm = FALSE) { 
   fcall <- match.call() 

     est <- sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm) 

     return(list(CV = est, Call = fcall)) 
 } 
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   cv(1:5) 
 $CV 
 [1] 0.5270463 

   $Call 
 cv(x = 1:5) 

   cv(1:8, na.rm = TRUE) 
 $CV 
 [1] 0.5443311 

   $Call 
 cv(x = 1:8, na.rm = TRUE) 

    In the output from those two examples,  match.call()  captures exactly the call to the function, though 
it adds explicit argument names. This can sometimes be useful for keeping a record of exactly what the call 
was that created particular output. Perhaps the most common place where this is used is in the output from 
regression models in R. For example, the following code shows a linear model in which the output echoes 
the function call, which is done using  match.call() : 

    lm(mpg ~ hp, data = mtcars) 

   Call: 
 lm(formula = mpg ~ hp, data = mtcars) 

   Coefficients: 
 (Intercept)           hp   
    30.09886     -0.06823   

    The   return()  function   is typically used at the end of functions to return a specific object, as you have 
already seen in some of the previous examples, though it was not explicitly discussed. However,  return()  
can also be used to return values from any point within a function, thus ending execution of the function. 
The following function has an  if  statement that, if true, results in early termination of the function. Notice 
that the final result, if not true, is not even wrapped in  return() . R returns the last object in a function by 
default, so an explicit call to  return()  is not strictly necessary: 

    f <- function(x) { 
   if (x < 4) return("I'm done!") 

     paste(x, "- Fin!") 
 } 

   f(10) 
 [1] "10 - Fin!" 
 f(3) 
 [1] "I'm done!" 

    Even though you can use  return()     earlier in a function, this is discouraged, because it can be surprising 
to users and anyone else reading or debugging code. The same effect as in the preceding code can be 
accomplished by using flow control: 
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    f <- function(x) { 
   if (x < 4) { 
     "I'm done!" 
   } else { 
     paste(x, "- Fin!") 
   } 
 } 

   f(10) 
 [1] "10 - Fin!" 
 f(3) 
 [1] "I'm done!" 

    In addition to not using  return()  midway in functions, some argue that an explicit call to  return()  
should not be used at the end of functions either, as it is unnecessary. This remains a point of preference, as 
it can help draw attention to exactly what is returned at the end of a function. 

 Although not exclusively used in functions, the   invisible()  function      is often used with the object 
returned by a function. Earlier we made a function that calculates the coefficient of variation and returns the 
function call. We can modify the function to print the coefficient of variation and invisibly return the rest, 
as shown in the following code. The use of  invisible()  means that even though the function returns the 
same object it did before, that object is not shown. The  invisible()  function is perhaps most often used in 
functions that are designed to create attractive output, such as calls to  summary()     or plotting functions. The 
function’s primary purpose is to show a summary or graph, but in case anyone wants or needs to edit the 
object, the actual object is invisibly returned and thus can be captured and saved for later use: 

    cv <- function(x, na.rm = FALSE) { 
   fcall <- match.call() 

     est <- sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm) 

     print(est) 
   return(invisible(list(CV = est, Call = fcall))) 
 } 

   cv(1:8, na.rm = TRUE) 
 [1] 0.5443311 

   res <- cv(1:8, na.rm = TRUE) 
 [1] 0.5443311 
 res$Call 
 cv(x = 1:8, na.rm = TRUE) 

    The   on.exit()  function      can be used to guarantee that a certain set of commands is executed when the 
function exits or completes. Expressions in  on.exit()  do execute, even if the function has an error or does 
not properly complete as expected. An example is shown in the second use case of the little function in the 
following code. An error causes the function to terminate, and once that happens, the expression in  on.
exit()  is executed. Using  on.exit()  is particularly valuable when a function modifies any values outside 
itself. For example, sometimes a plotting function modifies the default plot parameters and returns them to 
whatever their original state was on completion. Using  on.exit()  ensures that even if something goes wrong 
and the function fails or has an error, the user still has all of the original settings: 
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    f <- function(x) { 
   on.exit(print("Game over")) 
   x + 5 
 } 

   f(3) 
 [1] "Game over" 
 [1] 8 

   f("a") 
 Error in x + 5 (from #3) : non-numeric argument to binary operator 
 [1] "Game over" 

    The last set of function-specific functions we cover is related to giving the software or user a signal. In 
order of severity, they are  stop() ,   warning()   , and  message() . The next example is slightly more realistic 
and calculates the mean of a variable, either on its original scale or on a transformed scale, and then back-
transforms the mean. The log scale can be relatively more resistant to outliers. If a log transformation is 
used, the example code checks whether the variable has any negative values, which are undefined and result 
in a full error, by using the   stop()  function  . The argument passed to  stop()  is the error message to display. 
A similar process is followed for  warning() , again with the message to be displayed in the warning. Warnings 
are different from errors. An  error , via   stop()   , causes the function to stop being evaluated and terminate. A 
 warning  is issued at the end, but the function is allowed to continue its evaluation. Finally,   message()    can 
be used to send a message or signal to the user, but without indicating a real or likely problem, as a warning 
does. Although not demonstrated, a related convenience function is   stopifnot()   , which allows a logical 
expression to be passed and issues an error if the expression does not evaluate to a true value. Although this 
option has the benefit of saving some code, a disadvantage is that you cannot write a custom error message 
to indicate exactly what went wrong. 

 One of the reasons it is helpful to use warnings or messages, rather than just calling  print()  or  cat()  
to have the function print a message, is that warnings and messages can be (optionally) suppressed by 
using the aptly named functions   suppressWarnings()    and   suppressMessages()   . All of these functions are 
demonstrated in the code immediately following: 

    f <- function(x, trans = c("identity", "log")) { 
   trans <- match.arg(trans) 

     if (trans == "log") { 
     if (any(x < 0)) stop("Log is not defined for negative values") 
     if (any(x < 1e-16)) warning("Some x values close or equal to zero, results may be 
unstable") 

       x <- log(x) 
     message("x successfully log transformed") 

       exp(mean(x)) 
   } else { 
     mean(x) 
   } 
 } 

   f(c(1, 2, 100)) 
 [1] 34.33333 
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   f(c(1, 2, 100), trans = "log") 
 x successfully log transformed 
 [1] 5.848035 

   suppressMessages(f(c(1, 2, 100), trans = "log")) 
 [1] 5.848035 

   f(c(0, 1, 2, 100), trans = "log") 
 x successfully log transformed 
 [1] 0 
 Warning message: 
 In f(c(0, 1, 2, 100), trans = "log") : 
   Some x values close or equal to zero, results may be unstable 

   suppressWarnings(f(c(0, 1, 2, 100), trans = "log")) 
 x successfully log transformed 
 [1] 0 

   f(c(-1, 1, 2, 100), trans = "log") 
 Error in f(c(-1, 1, 2, 100), trans = "log") (from chapter04.R!79246pw#5) :  
   Log is not defined for negative valuesFunctionssuppressWarnings()
FunctionssuppressMessages() 

         Debugging 
 The functions demonstrated so far have all worked or have had purposeful errors that are obvious to spot. 
Sometimes the process of finding the error, or debugging the code and functions written, takes longer. 
Fortunately, there are some tools to help the process and some practices to narrow the issues. 

 Although debugging can apply to any code, not just functions, functions can be particularly tricky to 
debug without additional tools, because normally all of their code executes without interruption or any 
chance to see what is happening along the way. In this section, we write a function that uses a formula 
to calculate the means of a variable by levels of another variable, using   tapply()    ,  which you previously 
examined in Chapter   3    ; the function then plots the raw data with dots for the means, using the following 
 code  , as shown in Figure  4-1 :  

    meanPlot <- function(formula, d) { 
   v <- all.vars(formula) 
   m <- tapply(d[, v[1]], d[, v[2]], 
               FUN = mean, na.rm = TRUE) 

     plot(formula, data = d, type = "p") 
   points(x = unique(d[, v[2]]), y = m, 
          col = "blue", pch = 16, cex = 2) 
 } 

   meanPlot(mpg ~ cyl, d = mtcars) 

http://dx.doi.org/10.1007/978-1-4842-2077-1_3
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    Something does not look correct about the means. The mean for the points when  cyl = 8  looks okay, 
but the other two seem to fall at extremes. The   debug()  function   allows us to debug a function and step 
through the lines as they are executed. To use it, we first call  debug()  on the function we want to debug: 

   debug(meanPlot) 

   Then when we use the original function, it triggers R to enter debugging. At the first step, R tells us the 
function call we are debugging in, and where: 

   meanPlot(mpg ~ cyl, d = mtcars) 
 debugging in: meanPlot(mpg ~ cyl, d = mtcars) 
 debug at c:/Temp/chapter04.R!79246wk#1: { 
     v <- all.vars(formula) 
     m <- tapply(d[, v[1]], d[, v[2]], mean, na.rm = TRUE) 
     plot(formula, data = d, type = "p") 
     points(x = unique(d[, v[2]]), y = m, col = "blue", pch = 16,  
         cex = 2) 
 } 
 Browse[2]>  
 debug at #2: v <- all.vars(formula) 
 Browse[2]>  
 debug at #3: m <- tapply(d[, v[1]], d[, v[2]], mean, na.rm = TRUE) 
 Browse[2]>  
 debug at #5: plot(formula, data = d, type = "p") 
 Browse[2]> m 
        4        6        8  
 26.66364 19.74286 15.10000  
 Browse[2]> unique(d[, v[2]]) 
 [1] 6 4 8 
 Browse[2]> Q 

  Figure 4-1.     Scatter plot   with data in unfilled points, and means in large blue points, showing the incorrect 
results       
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   Now that we know where the problem occurs, we can fix the function by first sorting the data, so that 
  tapply()  and  unique()    give the results in the same order. The code is shown here, and the result is in 
Figure  4-2 :  

    meanPlot <- function(formula, d) { 
   v <- all.vars(formula) 
   d <- d[order(d[, v[2]]), ] ## sorting first 
   m <- tapply(d[, v[1]], d[, v[2]], 
               FUN = mean, na.rm = TRUE) 

     plot(formula, data = d, type = "p") 
   points(x = unique(d[, v[2]]), y = m, 
          col = "blue", pch = 16, cex = 2) 
 } 

   meanPlot(mpg ~ cyl, d = mtcars) 

    If you are debugging your function and do not want to step through each line of code, the   browser()  
function   can be inserted into the function code. Then, when the function reaches that point, a browser 
is invoked, and you can examine the current state of variables in the function’s local environment. In the 
following example code, we add a call to  browser()  in the function,examine the current objects available by 
using  ls() , examine the contents of the object,  v , and again type a capital  Q  to quit debugging: 

    meanPlot <- function(formula, d) { 
   v <- all.vars(formula) 
   d <- d[order(d[, v[2]]), ] ## sorting first 

  Figure 4-2.    Scatter plot with data in unfilled points, and means in large blue points, showing the corrected 
results       
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   m <- tapply(d[, v[1]], d[, v[2]], 
               FUN = mean, na.rm = TRUE) 

     browser() 

     plot(formula, data = d, type = "p") 
   points(x = unique(d[, v[2]]), y = m, 
          col = "blue", pch = 16, cex = 2) 
 } 

   meanPlot(mpg ~ cyl, d = mtcars) 
 Called from: meanPlot(mpg ~ cyl, d = mtcars) 
 Browse[1]>  
 debug at #9: plot(formula, data = d, type = "p") 
 Browse[2]> ls() 
 [1] "d"       "formula" "m"       "v"       
 Browse[2]> v 
 [1] "mpg" "cyl" 
 Browse[2]> Q 

    A useful function for debugging when working interactively is   traceback()   . For example, if you call a 
function such as  lm()  and then get an error message, it can sometimes be difficult to know exactly where or 
why that mistake occurred. The error is often not even directly from the function you called, as the functions 
you frequently use may in turn call many other functions internally. The following example shows how 
this is done by using  traceback()  immediately after the code that resulted in error. The output shows the 
call stack tracing the path from the initial call to the final code that generated the error. This can be useful 
information if you need to look at the code to determine why the error occurred: 

    lm(mpg ~ jack, data = mtcars) 
 Error in eval(expr, envir, enclos) : object 'jack' not found 

   traceback() 
 7: eval(expr, envir, enclos) 
 6: eval(predvars, data, env) 
 5: model.frame.default(formula = mpg ~ jack, data = mtcars, drop.unused.levels = TRUE) 
 4: stats::model.frame(formula = mpg ~ jack, data = mtcars, drop.unused.levels = TRUE) 
 3: eval(expr, envir, enclos) 
 2: eval(mf, parent.frame()) 
 1: lm(mpg ~ jack, data = mtcars) 

    Finally, sometimes code bugs are not in your code, but in other code you are using, such as from another 
R package. Although it is rare to find bugs in recommended R packages, it is more frequent in the thousands 
of other R packages. Also, sometimes problems are not a bug per se, but a difference in how you want to use a 
function vs. how the original writer envisioned its use. Although the source code for all R packages on CRAN 
is publicly available for download and editing, it can be a hassle to download an entire package’s source code, 
edit, and reinstall, just to see if doing something slightly different in one function fixes the problem. 

 Consider the following challenge. Suppose you are using data that sometimes includes infinity for 
some reason, but you want to include only finite cases. The following code shows an example using the   wtd.
quantile()  function   from the   Hmisc  package  : 
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   wtd.quantile(c(1, 2, 3, Inf, NA), 
           weights = c(.6, .9, .4, .2, .6)) 
   0%  25%  50%  75% 100%  
  NaN  Inf  Inf  Inf  Inf 

   If we look at the code for   wtd.quantile()   , by typing it into the R console without parentheses, we can 
see that another function does the main calculations,  wtd.table() , as shown here: 

   wtd.quantile 
 function (x, weights = NULL, probs = c(0, 0.25, 0.5, 0.75, 1),  
     type = c("quantile", "(i-1)/(n-1)", "i/(n+1)", "i/n"), normwt = FALSE,  
     na.rm = TRUE)  
 { 
     if (!length(weights))  
         return(quantile(x, probs = probs, na.rm = na.rm)) 
     type <- match.arg(type) 
     if (any(probs < 0 | probs > 1))  
         stop("Probabilities must be between 0 and 1 inclusive") 
     nams <- paste(format(round(probs * 100, if (length(probs) >  
         1) 2 - log10(diff(range(probs))) else 2)), "%", sep = "") 
     if (type == "quantile") { 
         w <- wtd.table(x, weights, na.rm = na.rm, normwt = normwt,  
             type = "list") 
         x <- w$x 
         wts <- w$sum.of.weights 
         n <- sum(wts) 
         order <- 1 + (n - 1) * probs 
         low <- pmax(floor(order), 1) 
         high <- pmin(low + 1, n) 
         order <- order%%1 
         allq <- approx(cumsum(wts), x, xout = c(low, high), method = "constant",  
             f = 1, rule = 2)$y 
         k <- length(probs) 
         quantiles <- (1 - order) * allq[1:k] + order * allq[-(1:k)] 
         names(quantiles) <- nams 
         return(quantiles) 
     } 
     w <- wtd.Ecdf(x, weights, na.rm = na.rm, type = type, normwt = normwt) 
     structure(approx(w$ecdf, w$x, xout = probs, rule = 2)$y,  
         names = nams) 
 } 
 <environment: namespace:Hmisc> 

   Using the same approach, we can examine the   wtd.table()  function  . When doing so, we see that 
although it can automatically remove missing values, it has no check or way to remove nonfinite values. It 
may seem easier just to change your data, but sometimes data is generated automatically and passed on, so 
that it is simpler to change a function than it is to modify the data. We can readily copy and paste the code for 
 wtd.table()     into our R editor and revise it, as shown here: 

   revised.wtd.table <- function (x, weights = NULL, type = c("list", "table"), normwt = FALSE, 
     na.rm = TRUE) 
 { 
     type <- match.arg(type) 
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     if (!length(weights)) 
         weights <- rep(1, length(x)) 
     isdate <- testDateTime(x) 
     ax <- attributes(x) 
     ax$names <- NULL 
     if (is.character(x)) 
         x <- as.factor(x) 
     lev <- levels(x) 
     x <- unclass(x) 
     if (na.rm) { 
         s <- !is.na(x + weights) & is.finite(x + weights) 
         x <- x[s, drop = FALSE] 
         weights <- weights[s] 
     } 
     n <- length(x) 
     if (normwt) 
         weights <- weights * length(x)/sum(weights) 
     i <- order(x) 
     x <- x[i] 
     weights <- weights[i] 
     if (anyDuplicated(x)) { 
         weights <- tapply(weights, x, sum) 
         if (length(lev)) { 
             levused <- lev[sort(unique(x))] 
             if ((length(weights) > length(levused)) && any(is.na(weights))) 
                 weights <- weights[!is.na(weights)] 
             if (length(weights) != length(levused)) 
                 stop("program logic error") 
             names(weights) <- levused 
         } 
         if (!length(names(weights))) 
             stop("program logic error") 
         if (type == "table") 
             return(weights) 
         x <- all.is.numeric(names(weights), "vector") 
         if (isdate) 
             attributes(x) <- c(attributes(x), ax) 
         names(weights) <- NULL 
         return(list(x = x, sum.of.weights = weights)) 
     } 
     xx <- x 
     if (isdate) 
         attributes(xx) <- c(attributes(xx), ax) 
     if (type == "list") 
         list(x = if (length(lev)) lev[x] else xx, sum.of.weights = weights) 
     else { 
         names(weights) <- if (length(lev)) 
             lev[x] 
         else xx 
         weights 
     } 
 } 
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   Unlike the original   wtd.table()  function  , the revised function works exactly as we want: 

    wtd.table(c(1, 2, 3, Inf, NA), 
           weights = c(.6, .9, .4, .2, .6)) 
 $x 
 [1]   1   2   3 Inf 

   $sum.of.weights 
 [1] 0.6 0.9 0.4 0.2 

   revised.wtd.table(c(1, 2, 3, Inf, NA), 
           weights = c(.6, .9, .4, .2, .6)) 
 $x 
 [1] 1 2 3 

   $sum.of.weights 
 [1] 0.6 0.9 0.4 

    However, the challenge is that the  wtd.quantile()  function and other  Hmisc  functions that use  wtd.
table()  still do not work as we hope, because they do not use our revised function. Assigning our function 
to the name  wtd.table()  in the global environment is not sufficient, because scoping rules mean that 
 Hmisc  functions access the  wtd.table()  function first from the  Hmisc  environment, not from our global 
environment. It is like having a file of the same name on your computer, but in two different folders. For 
all the  Hmisc  functions that utilize  wtd.table()  to use our revised function, we need not only to name it 
correctly, but also to put it in the correct place. We can assign an object to a specific namespace by using the 
  assignInNamespace()  function     : 

    assignInNamespace(x = "wtd.table", 
                   value = revised.wtd.table, 
                   ns = "Hmisc") 

   wtd.quantile(c(1, 2, 3, Inf, NA), 
           weights = c(.6, .9, .4, .2, .6)) 
    0%   25%   50%   75%  100%  
 2.000 2.225 2.450 2.675 2.900 

   wtd.Ecdf(c(1, 2, 3, Inf, NA), 
           weights = c(.6, .9, .4, .2, .6)) 
 $x 
 [1] 1 1 2 3 

   $ecdf 
 [1] 0.0000000 0.3157895 0.7894737 1.0000000 
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    Although the   assignInNamespace()  function      has no output, we can see that afterward the  wtd.
quantile()  function and others that depend on  wtd.table() , such as  wtd.Ecdf() , are now working as we 
hoped. A caveat about  assignInNamespace()  is that you cannot assign any object to an object that does not 
already exist in that namespace (that is, you can overwrite only existing objects). You also are not allowed 
to use  assignInNamespace()  in any packages you may want to submit to CRAN. Even if it is sometimes the 
convenient approach, it would become confusing if people did this as a general rule. Were this to happen, 
the definition of functions in package A would depend on whether you had loaded package B, because 
package B could overwrite (not just mask) the function definition in package A. Note that any changes you 
make in this way are temporary and vanish when you restart R. However, this can be a helpful technique 
for debugging an existing package, as it is a relatively easy way to make sure that the issue encountered 
using  wtd.quantile()  was indeed “fixed” by the suggested change to  wtd.table() . At this point, if it were 
truly a bug or even if it was just a desirable feature, you could e-mail the package maintainer to suggest 
the change, confident that the suggested code works. To see the current maintainer, you can just type 
 maintainer("Hmisc") , or whatever the package of interest is called.  

     Summary 
 We covered a lot of functions and a lot about functions in this chapter! In case you need to refresh your 
memory about any specific functions, Table  4-1  lists the key functions introduced in this chapter and 
provides a brief description of each. Of course, you can look up more in the official help files.  

 Although the formal names of various parts of a function are not necessarily critical, learning how to 
use and write functions efficiently may be one of the best investments in learning R you ever make. Writing 
functions provides a way out of writing repetitive code. There are no strict rules, but if you find yourself 
doing the same task often, there is a good chance it is worth writing a function to do that. It might be a big 
task involving many pieces, or it might be a small task. For example, in psychology, it is common to report 
values at “high” and “low” values of a continuous variable, which are often defined as mean +/– 1 standard 
deviation. This is easy to do in R by using the  mean()  and  sd()  functions. If you do it a lot, it may be worth 
writing a short, one-line function so that rather than type  mean(x) + sd(x) , you just type  msd(x) , or 
whatever you call your function. If you do not feel comfortable playing with functions and writing your own, 
it would be a good idea to get some more practice before moving on to Chapters   5     and   6    , where we assume 
you are comfortable with functions.     

http://dx.doi.org/10.1007/978-1-4842-2077-1_5
http://dx.doi.org/10.1007/978-1-4842-2077-1_6
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   Table 4-1.    Key Functions Described in This Chapter   

 Function  What It Does 

  formals()   Allows you to see the formal arguments of a function you build. 

  args()   Shows default values and names for a created function’s arguments. 

  body()   Shows the body of a function (the code between  {  and  }  ). 

  environment()   Shows the environment your function lives in (often the global 
environment, so far). 

  search()   Shows the search order for functions. Remember, people may have 
already used your function name! 

  parent.env()   Takes an environment and tracks it up one level. 

  match.arg()   Allows for fuzzy matching of function arguments. 

  missing()   Tests whether a value was passed to the function. Note that this will 
be false after  match.arg() . 

  match.call()   Captures the entire function call; used often in regression. 

  return()   Not required, possibly contentious, and for sure, if used be the last 
part of a new function. 

  invisible()   Suppresses output. 

  on.exit()   Regardless of a successful or failed function attempt, this executes 
its argument. 

  stop(), stopifnot(), warning(), 
message()  

 These are errors of various levels of severity, from full-on stop and 
an error, to a milder warning, to a mostly polite message. 

  suppressWarnings(), 
suppressMessages()  

 These two do precisely what they say. Once you’re familiar with a 
function, warnings or messages may be tedious or safely ignored. 

  debug()   Use this to start debugging a function that is not working properly. 

  browser()   This goes into a function body, right before the part you want to 
debug. 

  traceback()   Provides a list of expressions leading to the source of an error. 

  assignInNamespace()   Allows for the temporary replacement of a function with a locally 
crafted function. 

  maintainer()   Called on a package, shows a contact name and e-mail to go to for 
troubleshooting. 
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    CHAPTER 5   

 Writing Classes and Methods                          

 It is often helpful to have a function behave differently depending on the type of object passed. For example, 
when summarizing a variable, it makes sense to create a different summary for numeric or string data. It is 
possible to have a different function for every type of object, but then users would have to remember many 
function names, and to remain unique, function names may be longer.  Object-oriented programming (OOP)   
is based on objects and is implemented in R (as in most programming languages) by using two concepts: 
classes and methods. A  class  defines a template, or blueprint, describing the variables and features of an 
object as well as determining what methods work for it. For example, a house may be defined as having a 
floor, four walls, a roof, and a door. Specific data represents these properties, such as the dimensions and 
color of each wall. The  methods  are behaviors or actions that can be performed on a particular object type. 
For instance, a house can be painted, which changes its color, but a house cannot be eaten. R has three 
object-oriented systems: S3, S4, and R5. This chapter covers the S3 and S4 systems, which are the most 
common. 

 In this chapter, we use the   ggplot2  R package   (Wickham, 2009). The following code loads the 
 checkpoint  (Microsoft Corporation, 2016) package to control the exact version of R packages used and then 
loads the  ggplot2  package: 

   ## load checkpoint and required packages 
 library(checkpoint) 
 checkpoint("2016-09-04", R.version = "3.3.1") 
 library(ggplot2) 
 options(width = 70) # only 70 characters per line 

       S3 System 
 The  S3 system  is the most common object-oriented system. It is also the easiest to start using and the 
simplest of the systems. The S3 system is easy to use in part because it is quite informal, and mostly focused 
on the functions or methods. These advantages are also limitations, as the S3 system provides no formal 
framework for ensuring that objects meet the requirements for a class. For a more in-depth guide to R 
programming using the S3 system, see  S Programming  by W.N. Venables and B.D. Ripley (Springer, 2004). 

     S3 Classes 
 In R, some types, or  classes , of objects are available by default, and almost all can be thought of as  vectors 
or generic vectors  . For example, matrices and arrays are essentially vectors with attributes indicating the 
dimensions. Lists are generic vectors, in which each element of the vector may contain another vector.  Data 
frames   are lists in which each item is a vector, but all with equal length, and thus have a tabular format. 
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Vectors can hold specific types of data, such as logical, integer, numeric (real numbers), or character strings. 
These fundamental objects and classes are provided by the base package. S3 classes are created by building 
on the objects and classes provided by the base package. 

 ■   Note   S3 classes are created by using regular R objects (for example, vectors or lists) and classes (for 
example, logical or numeric). S3 classes are defined by setting the class name via  class(object) <- "class 
name" . Elements of S3 objects are typically accessed by using  ̀ $` ,  ̀ [` , or  ̀ [[` .  

 The practical creation of S3 classes is simple. First, create an R object that meets the requirements 
or characteristics of the class, and then define the S3 classes by labeling the object with the class name. 
Because S3 classes differ from other R objects only in having special names or attributes, they are accessed 
and manipulated the same way as other basic R objects, by using  ̀ $` ,  ̀ [` , and  ̀ [[` . To check the class of an 
object, we can use the  class()  function. In the following example, the  mtcars  object is queried to determine 
that it has a data frame class: 

   class(mtcars) 
 [1] "data.frame" 

   To see how the class of an object is set, we can look at many of the functions from base R, such as 
 table() . Here, we print the source code for the  table()  function, leaving some of the middle off to save 
space: 

   table 
 function (..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no",  
     "ifany", "always"), dnn = list.names(...), deparse.level = 1)  
 { 
 [ommitted for space] 
     y <- array(tabulate(bin, pd), dims, dimnames = dn) 
     class(y) <- "table" 
     y 
 } 
 <bytecode: 0x0000000017fa8180> 
 <environment: namespace:base> 

   The object returned at the end,  y , is an array, but has a  table  class. The  object class   is set using the 
idiom  class(object) <- "class name" . It is also possible to assign more than one class to an object. This 
is done in the much the same fashion as assigning a single class and in order of preference. The following 
example stores the results from calling  table()  in the object  x , and then sets two classes, first  newclass  and 
then the original  table  class: 

   x <- table(mtcars$cyl) 
 class(x) <- c("newclass", "table") 
 class(x) 
 [1] "newclass" "table"    

   The value of assigning  multiple classes   is a sort of backup, primarily for methods. For example, if you 
create a new class that is a variant of a table or data frame, you may write a dedicated method for printing, 
but rely on methods the original class for other functions, such as plotting or summaries. 
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 The types of classes you can write are virtually endless. A simple way to start is by creating special or 
augmented cases of existing classes. In the following example, we make a special case of a data frame, with 
x and y coordinates and text labels, called  textplot . The simplest way to “create” the class is to create a data 
frame and then change its class. If we use only our new class label, calling the  print()  function results in 
the default method, but if we label it with both our new  textplot  label and as a data frame secondly, then 
calling  print()  falls back to the method for  data frames  : 

    d <- data.frame( 
   x = c(1, 3, 5), 
   y = c(1, 2, 4), 
   labels = c("First", "Second", "Third") 
 ) 
 class(d) <- "textplot" 

   print(d) 
 $x 
 [1] 1 3 5 

   $y 
 [1] 1 2 4 

   $labels 
 [1] First  Second Third  
 Levels: First Second Third 

   attr(,"row.names") 
 [1] 1 2 3 
 attr(,"class") 
 [1] "textplot" 

   class(d) <- c("textplot", "data.frame") 

   print(d) 
   x y labels 
 1 1 1  First 
 2 3 2 Second 
 3 5 4  Third 

    In the S3 system, there is no formal way to create an object from a particular class. However, the most 
common way to create objects of a specific class is as the output from a function. Dedicated functions can be 
written to create an object of a specific class, or functions can be written that perform operations and output 
results as an object of a specific class. The latter approach is more typical in R when using the S3 system. 

 When you are creating a new class, some of the desired features or elements may be present in an 
existing class. If this is the case, it may make sense to build on, or extend, an existing class. For instance, 
data frames build on lists, requiring that each element of the list be a vector with the same length. Likewise, 
the  textplot  class we created previously builds on data frames, requiring three elements named  x ,  y , and 
 labels . In this instance, we would say that  textplot   inherits  from  data.frame . That is,  textplot  is a child of 
the parent class,  data.frame  (note that parent classes are also referred to as the  super class , or  base class ). If 
a class inherits from only one other class, it is called   single inheritance       (that is, it has only one parent class). 
If a class inherits from multiple classes, it is called   multiple inheritance       (that is, it has more than one parent 
class). If a class inherits from another class, it may inherit features of the data stored, and it may inherit 
methods, the functions that operate on objects of a specific class. Inheriting methods are especially useful to 
avoid re-creating the wheel. 
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 ■   Note    Inheritance  refers to creating a new class by building on the features and methods of an existing 
class. The new class is known as the  child class , and the classes from which the new class is derived are 
the  parent , or  super , classes. A child class may inherit both features of the parent class and use of the parent 
class’s methods.  

 In the next example, we write a little function to use the formula interface to build a   textplot  object   
from a data frame. The function has two arguments: the formula, called  f , and the data, called  d . The first 
part of the code uses the   stopifnot()  function   introduced in Chapter   4     to check that the classes of the 
objects passed to the function match what is expected. To test the classes, we use the  inherits()  function, 
which assesses whether a particular object is, or inherits from, the specified class. For example, our  textplot  
class is secondly a data frame, and so testing that uses  inherits(object, "data.frame")  would evaluate to 
 TRUE . When we build S4 classes, we see a more formal definition and system for class inheritance. The next 
part of the function gets all the variables from the formula, in order, from the specified data frame, renames 
the columns, applies our  textplot  class, and returns the object: 

    textplot_data <- functions(f, d) { 
   stopifnot(inherits(d, "data.frame")) 
   stopifnot(inherits(f, "formula")) 

     newdata <- get_all_vars(formula = f, data = d) 
   colnames(newdata) <- c("y", "x", "labels") 
   class(newdata) <- c("textplot", "data.frame") 

     return(newdata) 
 } 

   ## example use 
 textplot_data(f = mpg ~ hp | cyl, d = mtcars[1:10, ]) 
                      y   x labels 
 Mazda RX4         21.0 110      6 
 Mazda RX4 Wag     21.0 110      6 
 Datsun 710        22.8  93      4 
 Hornet 4 Drive    21.4 110      6 
 Hornet Sportabout 18.7 175      8 
 Valiant           18.1 105      6 
 Duster 360        14.3 245      8 
 Merc 240D         24.4  62      4 
 Merc 230          22.8  95      4 
 Merc 280          19.2 123      6 

    These examples show how easy it is to use the S3 system to create classes. Next, we explore how to write 
methods for existing or new classes.  

     S3 Methods 
  Methods  are functions or operations that can be performed on objects of specific classes. Even if you do not 
write your own classes, you may write your own methods. Writing S3 methods is like writing functions as 
we did in Chapter   4    . The only difference is that S3 methods have a special naming convention and require a 
generic function for users, which takes care of dispatching to the appropriate method. 

http://dx.doi.org/10.1007/978-1-4842-2077-1_4
http://dx.doi.org/10.1007/978-1-4842-2077-1_4
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 ■   Note   S3 methods are regular R functions that follow a specific naming convention:  foo.classname() . 
Users call the generic function,  foo() , which dispatches to the appropriate method based on the class of 
object passed in as an argument. If no generic function exists, a generic must be written that includes a call to 
 UseMethods() , which handles the actual method dispatch.  

 To start, let’s write a simple plotting method for the   textplot  object class   we developed. To make an S3 
plot method, we use the function name—here,  plot —followed by the class name— function.classname()  
or, in this case,  plot.textplot() . As long as we name our function in that way, it works as an S3 method, as 
long as a generic   plot()  function   exists, a topic we discuss shortly. 

 Our plot function is shown in the following code. The call to the   par()  function   adjusts the default 
margins for a graph, to reduce excess white space on the top and right of our graph. The results are stored in 
the object,  op , as this stores the original graphical parameters. Then the user’s original graphical parameter 
state can be restored when the function exits by calling  par(op)  on exit, a function you learned about in 
Chapter   4    . Next, we create a new plot area by calling  plot.new() , and set the dimensions of our new plot by 
calling  plot.window()  with the x and y limits determined by the range of the data. Next, we plot the labels 
by using the  text()  function, which takes the coordinates and labels. Finally, we add an axis on the bottom, 
 side = 1 , and left,  side = 2 . The original  textplot  data object is returned invisibly at the end. 

    plot.textplot <- function(d) { 
   op <- par(mar = c(4, 4, 1, 1)) 
   on.exit(par(op)) 

     plot.new() 
   plot.window(xlim = range(d$x, na.rm = TRUE), 
               ylim = range(d$y, na.rm = TRUE)) 
   text(d$x, d$y, labels = d$labels) 

     axis(side = 1, range(d$x, na.rm = TRUE)) 
   axis(side = 2, range(d$y, na.rm = TRUE)) 

     invisible(d) 
 } 

    Next, we need to make some data and then  plot()  it. Note that because it is a method, we do not 
need to call our function by its full name,   plot.textplot()   . We can simply call  plot() , and R takes care of 
dispatching the data object to the correct method based on the object class,  textplot . The result is shown in 
Figure  5-1 , and the code is shown here:  

   dat <- textplot_data(f = mpg ~ hp | cyl, d = mtcars[1:10, ]) 
 plot(dat) 

http://dx.doi.org/10.1007/978-1-4842-2077-1_4
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   This example shows just how easy it is to use the S3 system. Almost no special functions or effort is 
required. Just create a regular R object however you want, add a custom class label, write a function, and 
give it a special name—and that is essentially all that is required. However, there are a few special functions 
and tools for S3 methods. To start, let us see what happens when we look at the source code for  plot() . This 
generic function contains just three arguments. The body consists only of a call to   UseMethod()   , which is what 
tells R to check the argument classes and dispatch to an appropriate method. If you are writing methods and a 
generic function does not exist, you also need to write the generic function. Writing a  generic function   in the S3 
system is a straightforward task that requires only considering the default arguments to include: 

   plot 
 function (x, y, ...)  
 UseMethod("plot") 
 <bytecode: 0x0000000017ee3bd0> 
 <environment: namespace:graphics> 

   To see the methods available, we use the   methods()  function  . The result shows many specific methods 
available for  plot() , including our newly written  plot.textplot : 

   methods(plot) 
  [1] plot,ANY-method               plot,color-method             
 [omitted for space] 
  [71] plot.table*                   plot.textplot                 
 [omitted for space] 
  [81] plot.varclus                  plot.xyVector*                
 see '?methods' for accessing help and source code 

  Figure 5-1.    The plot of text labels at specific coordinates, demonstrating the use of  custom methods   for 
custom classes       
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   Some of the functions are followed by an asterisk, indicating that these methods are not public or 
cannot be directly accessed, such as   plot.table()   . For example, if we type its name, we get an error that it 
cannot be found: 

   plot.table 
 Error: object 'plot.table' not found 

 ■     Note   The  ::  operator is used to refer to publicly exported functions from a specific package, primarily 
when multiple packages export functions with the same name:  package::foo() . The  :::  operator is used to 
access functions from a package’s namespace that are not exported. Use nonpublic functions with caution, as 
they are subject to change without notice.  

 Functions that are not public or have not been exported from a package namespace can still be 
accessed as methods. These function also can be accessed directly by specifying the package they are from 
and using the  :::   operator  , revealing the function source code: 

   graphics:::plot.table 
 function (x, type = "h", ylim = c(0, max(x)), lwd = 2, xlab = NULL,  
     ylab = NULL, frame.plot = is.num, ...)  
 { 
     xnam <- deparse(substitute(x)) 
     rnk <- length(dim(x)) 
     if (rnk == 0L)  
         stop("invalid table 'x'") 
     if (rnk == 1L) { 
         dn <- dimnames(x) 
         nx <- dn[[1L]] 
         if (is.null(xlab))  
             xlab <- names(dn) 
         if (is.null(xlab))  
             xlab <- "" 
         if (is.null(ylab))  
             ylab <- xnam 
         is.num <- suppressWarnings(!any(is.na(xx <- as.numeric(nx)))) 
         x0 <- if (is.num)  
             xx 
         else seq_along(x) 
         plot(x0, unclass(x), type = type, ylim = ylim, xlab = xlab,  
             ylab = ylab, frame.plot = frame.plot, lwd = lwd,  
             ..., xaxt = "n") 
         localaxis <- function(..., col, bg, pch, cex, lty) axis(...) 
         if (!identical(list(...)$axes, FALSE))  
             localaxis(1, at = x0, labels = nx, ...) 
     } 
     else { 
         if (length(dots <- list(...)) && !is.null(dots$main))  
             mosaicplot(x, xlab = xlab, ylab = ylab, ...) 
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         else mosaicplot(x, xlab = xlab, ylab = ylab, main = xnam,  
             ...) 
     } 
 } 
 <bytecode: 0x0000000053765058> 
 <environment: namespace:graphics> 

   In addition to writing methods for new classes, it is sometimes helpful to write methods for existing 
classes. For example, the popular  ggplot2  package has no default method for working with a linear model 
or regression objects. To start, we set up a simple regression model by using the  built-in  mtcars  data  . From 
there, we are predicting  mpg  from  hp ,  vs , their interaction (all of which are created from  hp * vs , which 
expands to the two main effects and their interaction or product term), and  cyl  dummy coded, through the 
call to  factor() . The results are shown here by calling   summary()    on the object: 

    m <- lm(mpg ~ hp * vs + factor(cyl), data = mtcars) 
 summary(m) 
 Call: 
 lm(formula = mpg ~ hp * vs + factor(cyl), data = mtcars) 

   Residuals: 
     Min      1Q  Median      3Q     Max  
 -4.7640 -1.4424 -0.1703  1.5882  6.9382  

   Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
 (Intercept)  26.92908    2.71758   9.909 2.56e-10 *** 
 hp           -0.01519    0.01554  -0.978  0.33718     
 vs            8.53352    4.95297   1.723  0.09678 .   
 factor(cyl)6 -4.21121    1.93887  -2.172  0.03916 *   
 factor(cyl)8 -8.65096    2.69738  -3.207  0.00354 **  
 hp:vs        -0.09101    0.04363  -2.086  0.04692 *   
 --- 
 Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

   Residual standard error: 3.007 on 26 degrees of freedom 
 Multiple R-squared:  0.7913,  Adjusted R-squared:  0.7511  
 F-statistic: 19.71 on 5 and 26 DF,  p-value: 4.181e-08 

    We can check the class of the object and that there is no current   ggplot()  method   by using the 
following code: 

   class(m) 
 [1] "lm" 
 methods(ggplot) 
 [1] ggplot.data.frame* ggplot.default*    ggplot.summaryP    
 [4] ggplot.transcan    
 see '?methods' for accessing help and source code 

   Although the   fortify()  function   has a method for linear models that creates a data frame suitable for 
use with  ggplot() , it extracts only the raw data, fitted values, and residuals. To show the effects of a model, it 
can be helpful to plot predicted values as a function of one variable holding other variables at specific values. 
The method that follows implements a system to do this. 
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 It takes the same basic arguments as   ggplot()    but adds the  vars  argument, and each variable used 
in the model is passed with a specific set of values to hold it at for prediction. All possible combinations of 
these are created by passing the list as arguments to the  expand.grid()  function by using the  do.call()  
function. The dependent variable, or  yvar , is then extracted from the model formula and converted to 
a character. New predictions along with standard errors for the predictions are generated. A 95 percent 
confidence interval is generated with the lower limit, LL, and upper limit, UL, based on the fit or predicted 
value and the normal quantiles times the standard error of the fit. Finally, the column name is changed 
from  fit  to whatever the dependent variable’s actual name was, and then the data for prediction and the 
predicted values are combined into a new data frame. This is passed to  ggplot() , which dispatches to the 
 ggplot()  method for data frames. 

   ggplot.lm <- function(data, mapping, vars, ...) { 
   newdat <- do.call(expand.grid, vars) 
   yvar <- as.character(formula(data)[[2]]) 
   d <- as.data.frame(predict(data, newdata = newdat, se.fit = TRUE)) 
   d <- within(d, { 
     LL <- fit + qnorm(.025) * se.fit 
     UL <- fit + qnorm(.975) * se.fit 
   }) 
   colnames(d)[1] <- yvar 
   data <- cbind(newdat, d[, c(yvar, "LL", "UL")]) 
   ggplot(data = data, mapping = mapping, ...) 
 } 

   With this method in place, we can easily make some graphs from our  linear regression model  . The 
following code uses our new method, specifying the exact values to hold predictor variables, adds a line by 
using  geom_line(),  and uses a black-and-white theme with  theme_bw() . The result is shown in Figure  5-2 ; 
the code is as follows:  

   ggplot(m, aes(hp, mpg), vars = list( 
                           hp = min(mtcars$hp):max(mtcars$hp), 
                           vs = mean(mtcars$vs), 
                           cyl = 8)) + 
   geom_line(size=2) + 
   theme_bw() 
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  Figure 5-2.    Predicted regression line from the model, using the  ggplot.lm() method         

   Because all possible combinations of the predictor values are created by using   expand.grid()    in our 
method, we can make several predicted lines, such as holding  vs  at  0  and  1 , shown in the following example 
code and in Figure  5-3 :     

   ggplot(m, aes(hp, mpg, linetype = factor(vs), group = factor(vs)), vars = list( 
                           hp = min(mtcars$hp):max(mtcars$hp), 
                           vs = c(0, 1), 
                           cyl = 8)) + 
   geom_ribbon(aes(ymin = LL, ymax = UL), alpha = .25) + 
   geom_line(size=2) + 
   theme_bw() 
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   These examples provide a simple introduction to what can be done when writing new classes and 
methods or extending existing classes and methods. Because the S3 system is the most commonly used 
in R, it may be the single most important system to learn; it can be used so widely and can extend many 
classes of objects.   

     S4 System 
 In contrast with the S3 system, the  S4 system  is a formal system. The benefit of this formality is a greater 
assurance that objects of a particular class contain exactly what is expected. The downside of the formality is 
a greater complexity: more functions required to set up classes and methods, and more-rigid requirements 
in the programming. Whereas the S3 system allows for writing quick-and-dirty code, the S4 system requires 
more careful planning and comes with higher overhead. 

 Objects have three components: classes, slots, and methods. The name and structure of the object—
what it contains—is the  class . The variables or other objects stored in the object are  slots . Finally, the 
functions that can operate on an object are its  methods . Throughout this section, we go over each of these 
components. For further reading on the S4 system, one excellent guide is  Software for Data Analysis: 
Programming with R  by John Chambers (Springer, 2010). 

  Figure 5-3.    Predicted regression lines from the model, with confidence intervals, using the  ggplot.lm() method         
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     S4 Classes 
 Because S4 classes are more formal, planning is required before writing a new class. Unlike S3 classes, 
in S4 the names and types of every variable to be included must be specified. Previously we defined a 
class,  textplot , by using the S3 system. We can define the same class by using the S4 system. The  x  and  y  
arguments should both be numeric type, and the  labels  argument should be a character string. We also 
know that the length of all the arguments should be the same. Finally, we may want to assert that although it 
is okay to have a missing label, a blank label is not allowed. All of this needs to be considered and specified 
in advance—because although in the S3 system none of this could be controlled, in the S4 system we can 
define everything when we create the class. To create our first S4 class, we use  the  setClass()  function  , 
shown in the next example. Not every argument is required, but it is considered a good practice to be as 
explicit as possible when defining a new class. 

 ■   Note    S4 classes are created by calling  setClass() . The  Class  and  slots  arguments are required. The 
class name is specified as a character string, and slots (holding variables) are defined as a named character 
vector; names correspond to slot names, and values correspond to the class of each slot. An “empty” object can 
be specified by using the  prototype  argument, and validity checking can be set by passing a function to the 
 validity  argument.  

 The first argument,  Class , provides the name of the class. Next, the  slots  are defined by using a 
named vector in which the names indicate the slot names and the values indicate the type of each slot. The 
 prototype  argument is not required, but it is helpful to define, as it determines how to create an “empty” 
object, or how an object of that class is created when no specific data is specified. The  validity  argument 
is also not required, but allows explicit checks to be run that the object conforms to expectations. R by 
default ensures the appropriate type of objects is passed to the slots, but many other tests and validity checks 
can be added to reduce the chances of an object being created that does not work as intended. Here is the 
  setClass()    example: 

   setClass( 
   Class = "textplot", 
   slots = c( 
     x = "numeric", 
     y = "numeric", 
     labels = "character"), 
   prototype = list( 
     x = numeric(0), 
     y = numeric(0), 
     labels = character(0)), 
   validity = function(object) { 
     stopifnot( 
       length(object@x) == length(object@y), 
       length(object@x) == length(object@labels)) 
     if (!all(nchar(object@labels) > 0, na.rm = TRUE)) { 
       stop("All labels must be missing or non zero length characters") 
     } 
     return(TRUE) 
   } 
 ) 
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   To create new objects of a particular class in the S4 system, we use the function   new()   . In the code that 
follows, we examine three attempts to create a new object. First, we make a correct and valid object. Then we 
look at what happens if we try to use the wrong type of argument. Finally, we look at an example that tests 
the validity function we created. 

    new("textplot", 
     x = c(1, 3, 5), 
     y = c(1, 2, 4), 
     labels = c("First", "Second", "Third")) 

   An object of class "textplot" 
 Slot "x": 
 [1] 1 3 5 

   Slot "y": 
 [1] 1 2 4 

   Slot "labels": 
 [1] "First"  "Second" "Third" 

   new("textplot", 
     x = c(1, 3, 5), 
     y = c(1, 2, 4), 
     labels = 1:3) 

   Error in validObject(.Object) :  
   invalid class "textplot" object: invalid object for slot "labels" in class "textplot": got 
class "integer", should be or extend class "character" 

   new("textplot", 
     x = c(1, 3, 5), 
     y = c(1, 2, 4), 
     labels = c("First", "Second", "")) 

   Error in validityMethod(object) (from #16) :  
   All labels must be missing or non zero length characters 

    These errors would not happen if we were using the S3 system to define a class, as no such type 
checking nor validity checking occur. In the previous examples, each attempt to create a new object had at 
most one error. The next example has two errors: the vector passed to the  y  slot is not the same length as 
the other two, and there is a zero-length character label. However, as currently written, only the first error is 
caught, because the validity function stops as soon as there are any problems: 

   new("textplot", 
     x = c(1, 3, 5), 
     y = c(1, 2), 
     labels = c("First", "Second", "")) 
 Error: length(object@x) == length(object@y) is not TRUE 

   Another way to write the  validity function   is so that, rather than throwing errors for any problems, the 
function collects them and returns all at the end. While revising the validity function, we could also think 
about how to make the error messages more informative. As it stands, it is fairly straightforward to see what the 
problem is, but perhaps not to see  exactly  what the problem is. For example, it is evident that the lengths are 
not equal, but is it that  x  is too long or  y  is too short? This is implemented in the revised code to define a class. 
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 However, before diving into improving the  validity function  , we need a brief diversion on creating and 
formatting character strings in R. First, when writing text, new lines can be inserted by including the special 
character,  \n . To see the examples, we use the  cat()  function, which stands for  concatenate , and print, 
and writes text out to the R console (or other locations if a file is specified). The following two examples are 
identical except for the line break between the  a  and  b  in the second example: 

    cat("ab", fill = TRUE) 
 ab 

   cat("a\nb", fill = TRUE) 
 a 
 b 

    One commonly used function is   paste()   , which can combine vectors or collapse them. Combining is 
shown in the first example that follows. The two vectors are combined by using the separator, defined by the 
 sep  argument, an empty string in our case. In the second example, a single vector with multiple elements 
is collapsed into a single character string. How the elements of the vectors are combined into one string is 
determined by the argument to  collapse —in our example, the line break character. 

    paste(c("a", "b"), c(1, 2), sep = "") 
 [1] "a1" "b2" 

   paste(c("a", "b"), collapse = "\n") 
 [1] "a\nb" 

    These are useful functions for us when writing a validity-checking function, as they allow us to combine 
multiple errors into one string with line breaks as needed. 

 The other key function we use is   sprintf()   . Its first argument is a user-defined string, with special 
symbols that always start with the percentage sign ( % ) where values should be substituted. The subsequent 
arguments are the values to substitute. An example may be the clearest way to show it. Here,  %d  is used to 
indicate that an integer is substituted, and then R substitutes in 98, 80, and 75. The order of substitution is 
the order of appearance. 

   sprintf("First (%d), Second (%d), Third (%d)", 98, 80, 75) 
 [1] "First (98), Second (80), Third (75)" 

   Commonly used format options for substitutions are  %d  for integers,  %f  for fixed-point decimals, 
 %s  for strings, and  %  for a literal percentage sign. Each is demonstrated in this next example, and further 
documentation is available in the help pages,  ?sprintf . For the numeric value, we use  0.2  to specify that the 
number should be rounded to two decimal places. 

   sprintf("Integer %d, Numeric %0.2f, String %s, They won by 58%%",t 
         5, 3.141593, "some text") 
 [1] "Integer 5, Numeric 3.14, String some text, They won by 58%" 

   Armed with  paste()  and  sprintf() , we can proceed to revise the validity function for our  textplot  
class to provide more-informative errors, and to run all checks, collecting errors along the way and returning 
all of them at the end. One final note: previously, we used the idiom  new("classname", arguments)  to 
create a new object of a particular class. While this is perfectly acceptable, there is a shortcut. The function 
 setClass()  is primarily called for its side effect of defining a new class, but it also invisibly returns a 
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constructor function. If we save the results from our call to   setClass()   , by convention in an object with the 
same name as the class, we can use the resulting object to create a new object of that class: 

    textplot <- setClass( 
   Class = "textplot", 
   slots = c( 
     x = "numeric", 
     y = "numeric", 
     labels = "character"), 
   prototype = list( 
     x = numeric(0), 
     y = numeric(0), 
     labels = character(0)), 
   validity = function(object) { 
     errors <- character() 
     if (length(object@x) != length(object@y)) { 
       errors <- c(errors, 
                   sprintf("x (length %d) and y (length %d) are not equal", 
                           length(object@x), length(object@y))) 
     } 
     if (length(object@x) != length(object@labels)) { 
       errors <- c(errors, 
                   sprintf("x (length %d) and labels (length %d) are not equal", 
                           length(object@x), length(object@labels))) 
     } 
     if (!all(nchar(object@labels) > 0, na.rm = TRUE)) { 
       errors <- c(errors, sprintf( 
         "%d label(s) are zero length. All labels must be missing or non zero length", 
         sum(nchar(object@labels) == 0, na.rm = TRUE))) 
     } 

       if (length(errors)) { 
       stop(paste(c("\n", errors), collapse = "\n")) 
     } else { 
       return(TRUE) 
     } 
   } 
 ) 

    Now when we create the same object with multiple problems, we get far more information and save 
some keystrokes. We can see the lengths of  x  and  y , and also learn that there are problems with the labels: 

    textplot( 
   x = c(1, 3, 5), 
   y = c(1, 2), 
   labels = c("First", "Second", "")) 
 Error in validityMethod(object) (from #30) :  

   x (length 3) and y (length 2) are not equal 
 1 label(s) are zero length. All labels must be missing or non zero length 
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         S4  Class Inheritance   
 So far, you have seen how to define new S4 classes. It may still seem like using the S4 system requires much 
more work than the S3 system, and with little benefit, aside from more formal validation and error checking. 
One of the powerful features of the S4 system is inheritance. 

 ■   Note   S4 classes can inherit from existing S4 classes by calling  setClass()  with the additional argument 
 contains = "S4 Class to Inherit" . Existing slots, prototype, and validity checking are inherited. Only new 
slots and corresponding prototypes/validity checking need to be specified in the new  setClass()  call.  

 We previously created a simple  textplot  class. Now suppose that although sometimes our simple class 
is sufficient, at other times we may need more. For example, at times we may want to drill down into the 
data and create a panel of plots for different subsets of the data by some grouping variable. To this end, we 
want a  groupedtextplot  class. However, the only additional data we need is one more slot. One option is to 
copy and paste our old code and then modify it as needed. In this section, we explore how using inheritance 
lets us reuse and extend existing classes. When a class inherits from another class, all of the slots from the 
previous class are also inherited, as is validity checking. Next, we create our  groupedtextplot  class. It is 
similar to creating a new class, but we define only new slots, and then specify the inheritance by using the 
argument  contains . Because the validity checking is also inherited, we need to specify only validity checks 
for the new slots. 

   groupedtextplot <- setClass( 
   Class = "groupedtextplot", 
   slots = c( 
     group = "factor"), 
   prototype = list( 
     group = factor()), 
   contains = "textplot", 
   validity = function(object) { 
     if (length(object@x) != length(object@group)) { 
       stop(sprintf("x (length %d) and group (length %d) are not equal", 
                    length(object@x), length(object@group))) 
     } 
     return(TRUE) 
   } 
 ) 

   With that small amount of code, we are ready to use our new class. In the following two examples, the 
first shows a correctly created new object, and the latter shows the familiar error messages when we attempt 
to create an invalid object: 

    gdat <- groupedtextplot( 
     group = factor(c(1, 1, 1, 1, 2, 2, 2, 2)), 
     x = 1:8, 
     y = c(1, 3, 4, 2, 6, 8, 7, 10), 
     labels = letters[1:8]) 
 gdat 
 An object of class "groupedtextplot" 
 Slot "group": 
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 [1] 1 1 1 1 2 2 2 2 
 Levels: 1 2 

   Slot "x": 
 [1] 1 2 3 4 5 6 7 8 

   Slot "y": 
 [1]  1  3  4  2  6  8  7 10 

   Slot "labels": 
 [1] "a" "b" "c" "d" "e" "f" "g" "h" 

   groupedtextplot( 
     group = factor(c(1, 1, 1, 1, 2, 2, 2, 2)), 
     x = 1:8, 
     y = c(1, 3, 4, 2, 6, 8, 7), 
     labels = c(letters[1:7], "")) 
 Error in validityMethod(as(object, superClass)) (from #30) :  

   x (length 8) and y (length 7) are not equal 
 1 label(s) are zero length. All labels must be missing or non zero length 

    In this case,  textplot  would be called the  parent    class   , and  groupedtextplot  would be called the 
 child class . This relationship can be diagrammed (and sometimes for complex inheritance, diagramming is 
helpful). By convention, the relationship is shown graphically with an arrow pointing from the child to the 
parent(s), such as  textplot <- groupedtextplot . Also by convention, parents are typically on the left, or 
above if graphing from top to bottom. Although we cover inheritance from only a single parent in this book, 
classes can inherit from multiple parents, and those parents can inherit from parents, and so on. It is in these 
cases where a visual diagram is particularly helpful. Another benefit of using inheritance, rather than writing 
a whole new class, is that methods are also inherited. This means that we can reuse both the slots from the 
parent as well as the methods written for the parent class, a topic we turn to in the next section.  

     S4  Methods   
 In addition to the  methods()  function you saw earlier to display the methods available for a given function, 
in the S4 system we can find methods by using   showMethods()   . Because of the more formal class system, 
 showMethods()  can be used to show all methods for a specific function, or to show all methods (for any 
function) for a particular class by using the  classes = "class name"  argument. This can be helpful if you 
are working with a new class and want to know what methods have already been written and are available. 

 ■   Note   Available S4 methods can be examined by using  showMethods("generic function") . New S4 
methods are defined by calling  setMethod() . The main three arguments are  f ,  signature , and  definition , 
containing the name of the generic function (string), the S4 class name that will dispatch to this method (string), 
and a function that is the actual method, respectively.  

 To write new methods in the S3 system, we simply write functions with a special naming convention. To 
define S4 methods, we use the function   setMethod()   . It is possible to write new methods for existing classes, 
as well as writing methods for new classes, of course. For a new class, a method is needed for  show() . When 
an object is simply typed at the console, R shows it by calling  show() . Without a  show()  method for a new 
class, the default printing is quite ugly, as you have seen in our example so far. 
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 In the following code, we define a new method for our  textplot  class. The first argument is the function 
name for which we create a method. The next argument, the signature, is the name of the class. In this 
case, because  show()  takes a single argument, only one class name needs to be specified. For functions 
with multiple arguments, the signature can become more complex, with different methods depending on 
the class of multiple arguments. Finally, we write our function, the definition of the method. The code is 
relatively simple, using the  cat()  function to display the values. The argument  fill =    TRUE    has the effect 
of adding a line feed so that each line starts with  X:  or the variable label, and then the values. The  head()  
function is used to get at most the first five values, or less if there are fewer values. 

   setMethod( 
   f = "show", 
   signature = "textplot", 
   definition = function(object) { 
     cat("     X: ") 
     cat(head(object@x, 5), fill = TRUE) 
     cat("     Y: ") 
     cat(head(object@y, 5), fill = TRUE) 
     cat("Labels: ") 
     cat(head(object@labels, 5), fill = TRUE) 
   }) 
 [1] "show" 

   R echoes the name of the generic function,  show() , for which we just created a method. Now we get 
some nicer output when we create a  textplot  class object: 

    dat <- textplot( 
   x = 1:4, 
   y = c(1, 3, 5, 2), 
   labels = letters[1:4]) 

   dat 
      X: 1 2 3 4 
      Y: 1 3 5 2 
 Labels: a b c d 

    Once we start defining methods, the benefits of class inheritance become even greater. Because 
 groupedtextplot  inherits from  textplot , if no method is defined for   groupedtextplot   , it falls back to the 
method for  textplot , if available. Although not perfect, because the grouping is not shown, this is still nicer 
than the default: 

   gdat 
      X: 1 2 3 4 5 
      Y: 1 3 4 2 6 
 Labels: a b c d e 

   Next, we define a method for the  [  function, which is used to subset data. This function is more 
complex, as we must build a logic tree allowing several possible combinations of arguments. The first 
argument of the function,  x , is for the object to be subset. By convention,  i  refers to rows or observations, 
and  j  to columns or variables. If only  i  is not missing (that is, rows or observations are specified), typically 
all variables are included. If only  j (variables) is specified, typically all observations are included. If both are 
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specified, only select variables and select observations are included. This is accomplished by using a series 
of  if  and  else if  statements. There are three new functions:

•     validObject()  is a generic function that executes the validity check, if present, for a 
specific object class.  

•    slotNames()  returns a character vector giving the names of each slot.  

•    slot()  works similarly to the  @  operator, but can use character strings to 
extract slots by name.    

 After the  method   is set, several examples of its uses are shown: 

    setMethod( 
   f = "[", 
   signature = "textplot", 
   definition = function(x, i, j, drop) { 
     if (missing(i) & missing(j)) { 
       out <- x 
       validObject(out) 
     } else if (!missing(i) & missing(j)) { 
       out <- textplot( 
         x = x@x[i], 
         y = x@y[i], 
         labels = x@labels[i]) 
       validObject(out) 
     } else if (!missing(j)) { 
       if (missing(i)) { 
         i <- seq_along(x@x) 
       } 

         if (is.character(j)) { 
         out <- lapply(j, function(n) { 
           slot(x, n)[i] 
         }) 
         names(out) <- j 
       } else if (is.numeric(j)) { 
         n <- slotNames(x) 
         out <- lapply(j, function(k) { 
           slot(x, n[j])[i] 
         }) 
         names(out) <- n[j] 
       } else { 
         stop("j is not a valid type") 
       } 
     } 

       return(out) 
   }) 

   dat[] 
      X: 1 2 3 4 
      Y: 1 3 5 2 
 Labels: a b c d 
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   dat[i = 1:2] 
      X: 1 2 
      Y: 1 3 
 Labels: a b 

   dat[j = 1] 
 $x 
 [1] 1 2 3 4 

   dat[j = "y"] 
 $y 
 [1] 1 3 5 2 

   dat[i = 1:2, j = c("x", "y")] 
 $x 
 [1] 1 2 

   $y 
 [1] 1 3 

    With a  show  and  subsetting  method defined for our  textplot  class, we can easily leverage those to 
make a  show  method for our   groupedtextplot       class by looping through the object by group, subsetting, and 
showing each subset: 

    setMethod( 
   f = "show", 
   signature = "groupedtextplot", 
   definition = function(object) { 
     n <- unique(object@group) 
     i <- lapply(n, function(index) { 
       cat("Group: ", index, fill = TRUE) 
       show(object[which(object@group == index)]) 
     }) 
   }) 

   gdat 
 Group:  1 
      X: 1 2 3 4 
      Y: 1 3 4 2 
 Labels: a b c d 
 Group:  2 
      X: 5 6 7 8 
      Y: 6 8 7 10 
 Labels: e f g h 

          Summary 
 This chapter has introduced the S3 and S4 systems in R for developing new classes and methods. The S4 
system, in particular, can be complicated, with inheritance from multiple parent classes and methods that 
are specialized to the class of more than one argument. Even if you use and develop in R, you may only 
rarely develop new classes, as there are already classes for most data types. However, it can often be helpful 
to develop or extend existing methods, and at the very least, understanding how classes and methods work 
makes it easier to use existing ones. 
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 Hopefully, this chapter is enough to get you started using these systems and to see their capabilities. 
Table  5-1  describes key functions covered in this chapter. In Chapter   6    , we bundle functions and classes and 
methods together to make our own R package. The focus is on making an R package, so you do not need to 
be too comfortable with classes and methods. If your work would benefit from the use of the S4 system, you 
can get slightly more in-depth coverage from, “How S4 Methods Work” by John Chambers (available online 
at    http://developer.r-project.org/howMethodsWork.pdf     ). If you intend to work with the S4 system and 
need an in-depth dive, we recommend  Software for Data Analysis: Programming with R . Another good book 
more focused on general R programming and the older S3 system is  S Programming .      

   Table 5-1.    Key Functions Described in This Chapter   

 Function  What It Does 

  class()   Returns the class of an object (S3/S4). 

  inherits()   Checks whether an object is of a certain class or inherits from that class. 

  methods()   Returns a list of the available methods for a given function. 

  showMethods()   Returns a list of the available methods for a given function or, if using the  classes  
argument, available methods for any function for a given class. 

  :::   Operator that allows access to nonexported (nonpublic) functions from a package. 

  function.class()   Generic scheme for naming an S3 method, using the function name, followed by a 
period, followed by the class of object it should be applied to. 

  setClass()   Defines a new S4 class. 

  setMethod()   Defines a method for a particular function for a particular S4 class. 

  @   Low-level way to access slots by name in objects in the S4 system, similar to  $  for 
other R objects or S3 class objects. 

  new()   Creates a new S4 object of a specific class. 

  paste()   Pastes strings together. Can operate on several vectors or collapse together all the 
elements of a single vector. 

  sprintf()   Formats strings and allows for substituting numbers and other strings into a defined 
template. Useful for making informative error messages or other messages to users. 

  show()   Generic function to show an R object. Also, the default function that is called when 
you type an object name at the R console. 

  ̀ [`()   Operator/generic function used to subset data or to access specific variables or rows. 
In the S4 system for a new class, methods must be defined, or the function is not 
usable. 

  head()   Lists the first few elements or rows of an object. 

  validObject()   Generic function that checks when an object with an S4 class is valid by using the 
validity checks specified when the class was created (if any). Called by default when 
an object is created, but can also be called explicitly after modifying an object to 
check whether it is still valid. 

  slotNames()   Returns all the slot names of an S4 class object, similar to  names()  for other R objects 
or S3 class objects. 

  slot()   Can be used to access a specific slot of an S4 object. 

http://dx.doi.org/10.1007/978-1-4842-2077-1_6
http://developer.r-project.org/howMethodsWork.pdf
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    CHAPTER 6   

 Writing a Package                          

 Packages are the fundamental way to document, share, and distribute R code and data. Our goal is to write 
our own packages, and our fair warning is that this chapter is particularly complex because of the many 
software tools that are employed during R package development. 

 In this chapter, we make sure of four packages. The   devtools  package   (Wickham and Chang, 2016) 
provides functions to help set up, document, and manage the development of an R package. The   roxygen2  
package   (Wickham, Danenberg, and Eugster, 2015) greatly eases writing documentation for R packages by 
allowing the function documentation to be written inline next to functions by using comments. We also use 
two other, less critical packages. The   testthat    package (Wickham, 2011) is not required but has functions 
that facilitate quality control by testing that functions return expected values. Similarly, the   covr    package 
(Hester, 2016) facilitates quality control by testing the percentage of package code that is executed (covered) 
by tests. Ideally, 100 percent of code would be covered by tests, though in practice, many R packages have no 
tests, so any coverage is better than average. In the package, we use one of the methods from Chapter   5     for 
 ggplot2 , so we also include the now familiar   ggplot2    (Wickham, 2009) package. 

 Writing packages can be a complex process. It may be helpful to familiarize yourself with the final 
product, available online at    https://github.com/ElkhartGroup/AdvancedRPkg     . We also recommend 
referring to our official GitHub record of the package as you go through this chapter, if you are unsure 
whether a file is in the correct location or set up correctly. The following code loads the   checkpoint    
(Microsoft Corporation, 2016) package to control the exact version of R packages used and then loads the 
required package: 

   ## load checkpoint and required packages 
 library(checkpoint) 
 checkpoint("2016-09-04", R.version = "3.3.1") 
 library(testthat) 
 library(devtools) 
 library(roxygen2) 
 library(covr) 
 library(ggplot2) 
 options(width = 70) # only 70 characters per line 

       Before You Get Started 
 This chapter covers some of the basics of writing an  R package  , and also introduces tools to facilitate the 
processes not included in the official manual,  Writing R Extensions , available online at    https://cran.r-
project.org/doc/manuals/R-exts.html     . The manual can be quite technical, but it is the definitive guide. It 
is required reading if you plan to submit R packages to CRAN, and a good idea to read even if you just plan to 
develop packages for your own use or a more limited user base such as your company or lab group. 

http://dx.doi.org/10.1007/978-1-4842-2077-1_5
https://github.com/ElkhartGroup/AdvancedRPkg
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/doc/manuals/R-exts.html
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 Many  R packages   contain code from other programming languages such as C, C++, Fortran, or Java. 
Often this is because other languages, such as C, can be compiled and optimized to run much faster than R, 
so package developers may choose to write computationally intensive parts of their code in a compiled and 
highly efficient language. However, for this chapter, we discuss how to write only R packages containing pure 
R code or data, as the process is nearly identical, with most differences being idiosyncratic to the language 
included (for example, makefiles). 

 Before developing R packages, some tools are required. Indeed, for those not used to software 
development, writing R packages can require a rather daunting toolchain. If you are using a Linux system, 
chances are you have many of these already or can readily install them. In Windows and Mac OS, it can take 
a bit more setup. Regardless of the system, the tools need to be accessible, and this means adding them to 
the system path so that when called from a command line, they can be found. 

 If using Windows, the main tools required (some command-line tools as well as compilers) are 
available from a binary installer at    https://cran.r-project.org/bin/windows/Rtools/     . Before the final 
next of the install, there are two check boxes, one of which may be unchecked and adds this to your system 
path. Just select both. Also, you need LaTeX, a typesetting system.  MiKTeX      is a popular choice (   www.miktex.
org/      );  be sure to select the 64-bit option if your system is 64 bit. While the default options for these two 
pieces are enough in most situations, we suggest that MiKTeX users change to Yes the option for installing 
default packages on the fly. Further details on the required toolchain are available from the R manual at 
   https://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset     . 

 If using Mac OS, get Xcode, developer tools, from the App Store. You may also need to get  XQuartz      
(   https://xquartz.macosforge.org/     ). As on Windows, you need LaTeX. MacTeX is one choice (   www.tug.
org/mactex/     ). Additional details are available from the R manual (   https://cran.r-project.org/doc/
manuals/R-admin.html#OS-X     ). 

 Two more decisions need to be made to progress to writing our first R package. First, what to name the 
R package? This seemingly simple task is complicated by the fact that over 8,000 R packages are currently 
on CRAN, and the number is growing rapidly (   https://cloud.r-project.org/web/packages/available_
packages_by_name.html     ). Although you can give a package that is not to be uploaded to CRAN the same 
name as one on CRAN, doing so is problematic if you ever use the CRAN package or any other package that 
depends on it. Even if your package is not to be submitted to CRAN, someone else in the future might write a 
package with the same name and submit it to CRAN. For these reasons, choosing the package name requires 
some thought. Throughout this chapter, all the examples are to build one R package, called  AdvancedRPkg . 
The second decision is what license to use for the package. If you’re planning to submit to CRAN, the license 
must be compatible with CRAN. Even if the package is never sent to  CRAN     , a license may still be relevant. 
For this chapter, we use the GPLv3 license. 

     Version Control 
 Up until now, we have discussed relatively casual code development, some basic programming, functions, 
and classes. Developing new R packages is more complex, with many more files to manage. With this 
greater complexity, it is helpful to have an efficient system for backing up files and for going back to earlier 
versions. Version control systems provide an excellent way both to back up code and to roll back changes to 
a prior version (for example, if changes to implement a new feature break an old feature or introduce a bug). 
Various version control systems exist, but perhaps the most popular now is the open source Git originally 
developed to provide version control for the  Linux kernel  . Git can be used directly from the command line or 
through a graphical interface, of which there are several. Many people use  GitHub      (   https://github.com/     ), 
a service that uses Git and hosts repositories online, freely for public projects.  GitHub      also provides a 
graphical interface for Windows and Mac OS (   https://desktop.github.com/     ). However, if you do not want 
to learn or use Git or another version control system, feel free to ignore this section as well as any commands 
related only to version control throughout this chapter. 

https://cran.r-project.org/bin/windows/Rtools/
http://www.miktex.org/
http://www.miktex.org/
https://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset
https://xquartz.macosforge.org/
http://www.tug.org/mactex/
http://www.tug.org/mactex/
https://cran.r-project.org/doc/manuals/R-admin.html#OS-X
https://cran.r-project.org/doc/manuals/R-admin.html#OS-X
https://cloud.r-project.org/web/packages/available_packages_by_name.html
https://cloud.r-project.org/web/packages/available_packages_by_name.html
https://github.com/
https://desktop.github.com/
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 We use Git (and GitHub) for Windows in this chapter to provide version control for the example R 
package we develop. Specifically, this book uses the Windows GitHub desktop client v3.3.0. Git repositories 
can be used solely on a local computer, but using them with GitHub makes it easy to collaborate on 
packages, and share early package code with others. 

 Setting up a Git repository is possible from the command line, but perhaps the most intuitive way for 
new users to create a new Git repository is online, directly through GitHub. We make a new repository for the 
R package we develop in this chapter and call it   AdvancedRPkg      . The repository is initialized with a  README  file, 
which we’ll edit shortly. We can tell Git to ignore certain files or files with particular extensions by adding 
them to a file called  .gitignore . Each file or extension is listed on its own line. We can edit it later, but for 
now, we just have GitHub create one. Figure  6-1  shows the steps to do this.  

 If all works as planned, the results should look something like Figure  6-2 . The repository is empty, 
except for the   README  and  .gitignore  files  .  

  Figure 6-1.    GitHub page for creating the AdvancedRPkg repository       
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 From here, we can clone the repository to our local computer. Essentially, this creates a local copy, 
where we do our package writing. To do this, open the GitHub desktop client, click the + sign, select Clone, 
and then pick the repository, as shown in Figure  6-3 .  

  Figure 6-2.    GitHub page showing the created AdvancedRPkg  repository         
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 After clicking Clone, we see an option to select a directory into which the repository should be cloned. 
Note that whatever directory you choose, a new directory is created for the repository with the same name 
as the repository (that is,  AdvancedRPkg ). Settings for the repository can be managed via the terminal, or by 
clicking the gear icon in the GitHub desktop client and choosing Repository Settings. One of them shows 
the currently ignored files. Files are ignored based on the  .gitignore   file  , and because we selected R earlier 
when creating the repository, some default file extensions that are often desirable to ignore have been 
included by default (Figure  6-4 ).  

  Figure 6-3.    GitHub desktop client cloning the  AdvancedRPkg repository         
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 Windows often creates temporary (sometimes hidden) files,  desktop.ini , in directories. To avoid 
including these, we can edit the Repository settings by adding a new line at the end and typing   desktop.ini   . 
Then these files are ignored.  Ignored  files are those that the Git repository does not track and store changes 
in over time. They continue to exist in the directory; Git simply does not monitor and version them. 

 Aside from setting up a new Git repository, the tasks you are likely to do with Git are to commit changes 
to a repository and sync your local copy of the repository with the online (GitHub) version. Commits can be 
thought of as taking a snapshot of the state of files at the time of the commit. To avoid redundancy commits, 
snapshot only the changes made to files since the previous commit. Although even a slightly modified binary 
file may be difficult to compare, plain-text files, like R code, are easy to compare. Git is extremely efficient at 
tracking changes in text files over time and allowing you to either see what changes were made or go back to 
specific points in the past. Access to this history of a project (repository) is particularly helpful if errors or bugs 
are introduced into the code, so it can be pinpointed exactly when the bug was introduced (for example, how 
many results based on the code may be impacted?) and see previous working versions of code. 

 In slightly more complex use cases, Git can be effectively used to manage different versions of the code. 
For example, it is common to have a project and periodically release stable or production-ready versions 
of the code, while at the same time continuing development. This is accomplished in Git by using different 
branches of the same repository, and periodically merging some of the changes from one branch (say, the 
development branch) into the stable branch. 

  Figure 6-4.     GitHub desktop   client showing settings for the AdvancedRPkg repository, including various file 
extensions that are ignored by the Git repository       
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 We show a few more relevant Git commands throughout this chapter. For more background on using 
Git, a great and free resource is  Pro Git  by Scott Chacon and Ben Straub (Apress, 2014), available at    https://
progit.org/     . For questions and answers, Stack Overflow (   http://stackoverflow.com     ) is a good resource. It 
is likely someone else has already asked a question similar to yours, and if not, you can ask and get answers. 
Also note that if you use RStudio for your R code, it has some integration with Git built in. For more on this, 
see RStudio Support at    https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-
with-Git-and-SVN     . Finally, note that you can access the online repository publicly at    https://github.com/
ElkhartGroup/AdvancedRPkg     .   

     R Package Basics 
 An  R package  is just a directory with a particular set of files. Although the core of an R package is, of course, R 
code, many of the files are not strictly R code. Table  6-1  lists the primary files that may be in the root of an R 
package directory. Not all of these files are required, depending on other characteristics of the package. We’ll 
get help creating some of these files by using the  devtools  package later in this chapter.  

 In addition to the root-level files, numerous subdirectories can be included in an R package. These 
are listed in Table  6-2 , along with brief descriptions. For our relatively simple package, we work with only a 
handful of these, including  R ,  man , and  tests .  

   Table 6-1.    Files That May Be Used in the  Root Directory   of an R Package.   

 File  Description 

  DESCRIPTION *  Provides general information about the package. Required fields include Package 
(package name), Version, License, Title (package description), Author, and 
Maintainer (may be the same or different from the author). Also often includes 
information on dependencies, unless the package is stand-alone. 

  NAMESPACE *  Controls the package namespace, including which objects to export and which to 
import from other packages. Although required, we generate this automatically 
by using the  roxygen2  package. 

  README / README.md   Not required and ignored by R, but helpful for readers and users. Provides 
general information on the package (where to get help, a brief overview, 
installation guidance, or whatever else would be useful in a brief document). 

  NEWS   Provides information on changes or news about the package. Commonly 
includes new features and bug fixes as well as any other major changes compared 
to previous versions. 

  LICENSE   A license file if one of the common licenses is not used or if additional 
information is required. 

  INDEX   Optional, as generated automatically from the documentation files. But if 
specified, provides a listing of all interesting/useful objects as a name and 
description on each line. 

  configure ,  cleanup   Optional Bourne shell scripts that are run before and after installation, 
respectively, on Unix systems (for example, Linux, Unix). 

   * indicates a required file   

www.allitebooks.com

https://progit.org/
https://progit.org/
http://stackoverflow.com/
https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://github.com/ElkhartGroup/AdvancedRPkg
https://github.com/ElkhartGroup/AdvancedRPkg
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     Starting a Package by Using  DevTools      
 At a minimum, at the root directory of your package, you need  DESCRIPTION  and  NAMESPACE  files. You also 
need a subdirectory,  R , which, sensibly, is where you put your R code. This is not enough for a package to 
submit to CRAN, but it is sufficient to start a functional package for private use. However, even for private 
use, proper documentation is incredibly helpful. The directory and file structure of packages is regrettably 
complex, especially to describe in text. Thus as a reference, the following is the final directory structure of 
our package that you should have by the end of this chapter, obtained from the within the  AdvancedRPkg  
directory: 

   Table 6-2.     R Package Subdirectories     

 Subdirectory  Description 

  R *  Directory that contains all the R source code for functions, classes, methods, and so 
forth. 

  man *  Directory that contains the R documentation files. We generate these automatically by 
using the  roxygen2  package. 

  tests   Optional directory containing R code used to test that the package works as expected. 

  data   Optional directory containing data to be shipped with the package. Typically, included 
data sets are small and used to illustrate a package’s features, rather than as a primary 
means of sharing data. 

  demo   Optional directory containing demonstrations of the R package, as R source code files. 

  exec   Can contain additional required executable scripts. Only files are included, not 
subdirectories. 

  inst   Can contain additional files that are copied to the installation directory when the 
package is installed. For example, may be used to share a  NEWS  file with users or to 
include images or other nonstandard documentation. 

  po   Used to add translations of C and R error messages and other localization-related 
tasks. 

  src   Typically, source code from other languages, such as C, C++, or Fortran. This code is 
usually compiled; and if you use it, it often requires specifying a makefile. 

  tools   Not commonly used, but can be used to provide additional files required for 
configuration.     

  vignettes   Used to provide one or more vignettes or guides to using the package. Vignettes 
typically have more introductory background and complete examples of how you 
might use a package overall, compared with function documentation, which is 
generally unique to that function. Though not required, can be very helpful for users. 

   * indicates a required subdirectory   
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    . 
 ├── data 
   │   └── sampleData.rda 
 ├── DESCRIPTION 
 ├── man 
   │   ├── ggplot.lm.Rd 
   │   ├── meanPlot.Rd 
   │   ├── sampleData.Rd 
   │   └── textplot-class.Rd 
 ├── NAMESPACE 
 ├── R 
   │   ├── plot_functions.R 
   │   ├── sampledata.R 
   │   └── textplot.R 
 ├── README.md 
 └── tests 
     ├── testthat 
       │   └── test_textplot.R 
     └── testthat.R 

   5 directories, 13 files 

    For the initial setup, we use the function,  setup() . We can specify more information, but the minimum 
is the path. We also set  rstudio = FALSE  so that the code works with any editor, not just RStudio. To 
see what has been created, we can use the  list.files()  function, which shows that  DESCRIPTION  and 
 NAMESPACE  files and an  R  directory have been created. For the following code, either run it from the R 
command line or make a new R file (we called ours  chapter    06      .R ). Note that it is important to adjust the path 
argument to point to the directory with the Git repository, wherever you cloned that on your local machine. 
In our case, R’s working directory (which you can check by calling the  getwd()  function) is in the directory 
directly above the  AdvancedRPkg  directory. If your R session is not there, either adjust the path argument or 
change R’s working directory to be in the parent directory to   AdvancedRPkg       by using the  setwd()  function: 

    setup( 
   path = "AdvancedRPkg/", 
   rstudio = FALSE) 
 Creating package 'AdvancedRPkg' in '~/Apress_AdvancedR/RFiles' 
 No DESCRIPTION found. Creating with values: 

   Package: AdvancedRPkg 
 Title: What the Package Does (one line, title case) 
 Version: 0.0.0.9000 
 Authors@R: person("First", "Last", email = "first.last@example.com", role = c("aut", "cre")) 
 Description: What the package does (one paragraph). 
 Depends: R (>= 3.3.1) 
 License: What license is it under? 
 Encoding: UTF-8 
 LazyData: true 

   list.files("AdvancedRPkg") 
 [1] "DESCRIPTION" "NAMESPACE"   "R"           "README.md"   

http://dx.doi.org/10.1007/978-1-4842-2077-1_06
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    The output also shows some of the fields and the information used to fill them in. Since most of these 
are placeholders, we want to open the files by using a text editor (any should be fine, including RStudio) 
and modify them. From the directory,  setup()  guesses the package name, but the rest need to be filled out. 
Using the editor, we change those fields to the following: 

   Package: AdvancedRPkg 
 Title: An Example R Package for the Book Advanced R 
 Version: 0.0.0.9000 
 Authors@R: c( 
   person("Matt", "Wiley", email = "matt@elkhartgroup.com", role = c("aut")), 
   person("Joshua F.", "Wiley", email = "josh@elkhartgroup.com", role = c("aut", "cre")), 
   person("Elkhart Group Ltd.", role = "cph") 
   ) 
 Description: This package will demonstrate the basics of an R 
   package including documentation and tests. 
 Depends: R (>= 3.3.1) 
 License: GPL (>= 3) 
 Encoding: UTF-8 
 LazyData: true 

   Note the version number, which is designed in the format  Major.Minor.Patch.   DevelopmentVersi
on      . A good overview of the considerations in determining software versions is described at the Semantic 
Versioning specification at    http://semver.org/     . It is quite prescriptive in its recommendations, but it is 
often helpful to have a fixed set of rules in place for determining a major or minor version of the software. 
The final piece, the  DevelopmentVersion , is present only in development versions and is dropped for release. 
Despite these rules and guides, the reality of many R packages is far more heterogeneous and inconsistent 
(not everyone agrees on these rules, and even those who agree do not always strictly follow them). 

 Next up are the authors, described using the  person()  function. In addition to each individual’s name 
and e-mail, three-letter abbreviations are used to describe roles and relations. All possibilities are outlined 
in the MARC Code List for Relators at    www.loc.gov/marc/relators/relaterm.html     . However, the most 
commonly used ones are  aut  for the author,  cre  for a creator who is the person responsible for the project 
(or in R terms, the person to complain to if there are problems—the maintainer), and  cph  for the copyright 
holder. Then we provide a few sentences for a description of the package, specify the R version our package 
depends on, the license, and that data can be loaded on demand (saving startup time).  

      Adding R Code   
 With the basics of a package in place, it is time to start adding some R code, the whole point of a package! 
Since the focus of this chapter is on packaging the code, we reuse some functions and classes from previous 
chapters. As a first step, we create two files located in the  AdvancedRPkg/R/  directory:  plot_functions.R  and 
 textplot.R . 

 Next, we copy the final   meanPlot()  function   from Chapter   4     to make a plot with means. We add the 
code for this function along with the S3 method,  ggplot.lm() , that we wrote in Chapter   5     and put both in 
 plot_functions.R . Then, we copy the classes and methods (show and subset, which is the bracket operator, 
 [ ) for the  textplot  class from Chapter   5     into  textplot.R . Because it is easy to copy the wrong code, we 
suggest copying and pasting the code from our GitHub repository (   https://github.com/ElkhartGroup/
AdvancedRPkg     ). If everything works, it should look like this: 

   list.files("AdvancedRPkg/R") 
 [1] "plot_functions.R" "textplot.R"  

http://semver.org/
http://www.loc.gov/marc/relators/relaterm.html
http://dx.doi.org/10.1007/978-1-4842-2077-1_4
http://dx.doi.org/10.1007/978-1-4842-2077-1_5
http://dx.doi.org/10.1007/978-1-4842-2077-1_5
https://github.com/ElkhartGroup/AdvancedRPkg
https://github.com/ElkhartGroup/AdvancedRPkg
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   As a side note, it can be difficult to decide how many separate files to have. It does not matter for R, but 
it does make a difference for development. It is not good to have all your code in one file, nor to split every 
function, class, and method into a separate file. If the result is not too long, we try to group related functions 
(such as plotting functions) and to group related classes and methods. As common sense, even if you can, do 
not give files the same names differentiated only by use of lowercase or uppercase letters; it is also generally 
a bad idea to use special characters or symbols in file names. 

 Now that we have a basic package template, we can load the functions by using the  load_all()  function 
from   devtools   . All we have to do is specify the path to the package. We can now see that some of our 
functions are available in the package namespace, which we do by using the  ls()  function and specifying 
where we want it to list available objects: 

   load_all("AdvancedRPkg") 
 Loading AdvancedRPkg 
 ls(name = "package:AdvancedRPkg") 
 [1] "ggplot.lm" "meanPlot"  "textplot" 

   In Chapter   4    , we briefly discussed scoping. Scoping becomes more important to understand when 
writing packages. Package authors can write functions with the same names as functions in other packages. 
Although these functions do not overwrite each other, it can be confusing to be clear about which function 
you intend to call. This is where the package namespace can be helpful. The  namespace  controls which 
functions from other packages are imported (and therefore used by code from within that package), and 
which functions from a package are exported so that they are publicly available to users of the package. You 
can import specific functions from other packages, using the import feature. If you want many functions 
from another package, you may decide to make your package depend on that other package, in which case 
all public functions are available to your package. Another difference between importing and depending on 
another package is what happens when your package is loaded. If package B depends on package A when 
a user calls  library(B) , package B and package A are both loaded and attached. If package B imports from 
package A, when a user calls  library(B) , package B gets loaded and attached, and package A is loaded but 
not attached. Because package A is loaded, its functions are available to code within package B, but they are 
not exposed directly to the user because package A was not attached. Even when package A (or package B) 
are loaded and attached, only the exported functions are publicly available to users. This is beneficial, as it 
allows package developers to write and document functions that are for internal use only. If you do not need 
to export a function, it is a good idea not to. If two R packages export functions of the same name, and a user 
loads and attaches both packages, the function from whichever package is loaded later masks the earlier one. 
For a user, the only choice then is to either not load and attach one package, or to be explicit with the function 
calls, using the double colon operator,  PkgA::foo() ,  PkgB::foo() . With thousands of R packages and even 
more functions, exporting only necessary functions helps avoid such conflicts and masking of names. 

 All of this is controlled via the  NAMESPACE  file of a package. Although we did not look at it, our package 
does have a   NAMESPACE  file  , which was created when we ran  setup() . However, the  load_all()  function is 
unique in that by default when it loads a package, it exports all objects. This is because during development, 
it is often convenient to be able to call all functions whether they are exported or not.  

      Tests   
 With functions and methods added to our new package and working in R, we can begin to think about 
quality control. It is great to write code that runs, but it is also crucial that the code does what is intended. 
Now, what is intended and expected are not always the same (that is where documentation plays a critical 
role, which we cover next). Still, even for the developer, tests ensure that what is written does what it is 
supposed to do. 

http://dx.doi.org/10.1007/978-1-4842-2077-1_4
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 Tests may be written at any stage of package development. If functions, names, and features are 
radically changing, perhaps it is too early to start writing many tests. However, even if a package is not done, 
if some functions are relatively stable, writing tests early can be helpful. Writing tests earlier rather than later 
is helpful because it is often easier to write a test immediately after writing a function, when its purpose 
and the way it works are still fresh in your memory. (If you do not know or have forgotten how a function 
works, it is hard to test it adequately!). It is also helpful because if later functions build on earlier functions, 
testing along the way can help ensure that problems are due to the newly written functions and not to some 
previous building block. 

 Benefits aside, the practicalities of writing tests are made easier by the  testthat  package. First, we need 
to create a new subdirectory in our package called  tests , located at  AdvancedRPkg/tests/ . Next, we create a 
second subdirectory inside the first named  testthat  (that is,,  AdvancedRPkg/tests/testthat/ ), into which 
we create R source files that run a variety of tests. Note there are other ways to test a package. Here we focus 
on doing so by using the  testthat  package paradigm. 

 It is rather difficult to test graphing functions properly, so for our tests, we check whether the subset 
method for  textplot  works as intended. We can make a file called   test_textplot.R       located under 
 AdvancedRPkg/tests/testthat/ . We begin with a call to  context() , which indicates that the tests that follow 
test related functionality, and we provide the overall name for a suite of tests,  textplot . Next we set up a 
simple  textplot  class object, and then run a series of tests. The tests have two components. First, an outer call 
to  test_that() . The first argument is a description of the test, and the second is code to do the tests. The code 
can consist of anything, but commonly includes calls to one of the  expect_*()  functions, of which there are 
many. We use the  apropos()  function call to show all the options for  expect_*()  before we make our choices: 

   apropos("expect_") 
  [1] "expect_cpp_tests_pass"     "expect_equal"              
  [3] "expect_equal_to_reference" "expect_equivalent"         
  [5] "expect_error"              "expect_failure"            
  [7] "expect_false"              "expect_gt"                 
  [9] "expect_gte"                "expect_identical"          
 [11] "expect_is"                 "expect_length"             
 [13] "expect_less_than"          "expect_lt"                 
 [15] "expect_lte"                "expect_match"              
 [17] "expect_message"            "expect_more_than"          
 [19] "expect_named"              "expect_null"               
 [21] "expect_output"             "expect_output_file"        
 [23] "expect_s3_class"           "expect_s4_class"           
 [25] "expect_silent"             "expect_success"            
 [27] "expect_that"               "expect_true"               
 [29] "expect_type"               "expect_warning"            

   We choose  expect_is()  to check the class of the object and  expect_equal()  to check other features. It 
is also possible to check that your error checking is working, using  expect_error()  or  expect_warning() , 
which “pass” if the code creates an error. We place the following code into our  test_textplot.R  file: 

    context("textplot") 

   dat <- textplot( 
   x = 1:4, 
   y = c(1, 3, 5, 2), 
   labels = letters[1:4]) 
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   test_that("textplot subset method works with rows only", { 
   tmp <- dat[i = 1:2, ] 
   expect_is(tmp, "textplot") 
   expect_equal(length(tmp@x), 2) 
 }) 

   test_that("textplot subset method works with variables only", { 
   tmp <- dat[, j = c("x", "y")] 
   expect_is(tmp, "list") 
   expect_equal(length(tmp), 2) 
   expect_equal(length(tmp$x), 4) 
 }) 

   test_that("textplot subset method works with rows and variables", { 
   tmp <- dat[1:2, j = c("x", "y")] 
   expect_is(tmp, "list") 
   expect_equal(length(tmp), 2) 
   expect_equal(length(tmp$x), 2) 
 }) 

    We can run the code tests directly. If everything works, there is no output. Output is created only when 
something does not pass the checks. However, typically, this code is not run directly; it is run in batches. We run 
all tests by using the  devtools  function,  test() ,    and our package name/path. The  devtools  package knows 
the directory structure for the  testthat  package, and so they play nicely together. To run the tests,  test()  
first loads the package by using  load_all()  and then executes the tests. Back in the folder above the package 
directory, from our chapter-level R file,  chapter06.R , we run all the tests by executing the code that follows: 

    test("AdvancedRPkg") 
 Loading AdvancedRPkg 
 Testing AdvancedRPkg 
 textplot: ........ 

   DONE ================================================================= 

    Errors would be noted, if present. Although we can run the tests as is by using the  devtools  package, 
for R to run them, we need to add a short file in the  tests  directory (that is,  AdvancedRPkg/tests/ ), called 
 testthat.R . Into this file, we just need to add a few lines of code, shown next. We do not run this code; this is 
run by R: 

    library(testthat) 
 library(AdvancedRPkg) 

   test_check("AdvancedRPkg") 

    Now, we can use the  covr  package to check code coverage. The  covr  package (   https://github.com/
jimhester/covr     ) checks whether different parts of the code are run when a test is executed. For example, a 
function that contains if/else statements may have only part of its code executed by one test, unless additional 
tests are derived to check the other conditions. Again, although not required to develop a package, it is a 
helpful tool to see how well the current tests cover the package functionality. A high level of coverage (aiming 
toward 100 percent) is a good way to catch bugs and to ensure that new code development does not break old 
features and functionality; and all of this can also help to assure users that your package is a good choice. 

https://github.com/jimhester/covr
https://github.com/jimhester/covr
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 While we used the  checkpoint  library to allow code reproducibility, the nature of testing precludes 
such library usage from being effective. Thus, installing both  covr  and  testthat  is required. Back in our 
top-level  chapter06.R  file, we run the   package_coverage()  function   to test how well our tests cover our 
small package’s code. The only argument required is the directory where the package is located. In our case, 
R’s working directory is the parent directory,  AdvancedRPkg/ . If the working directory for your R instance is 
different, you need to specify the appropriate path to get to the  AdvancedRPkg/  directory on your machine: 

   install.packages(c("covr", "testthat")) 
 cov <- package_coverage("AdvancedRPkg") 

   The output (shown next) indicates that current testing coverage is about 36 percent, and this is driven 
by coverage of code from  textplot.R . It is also possible to get a more detailed analysis, using  as.data.
frame(cov) . The output is substantial, so we show just a few rows and columns, but it is an invaluable 
resource if you think you have tests covering everything and need to figure out what aspects of your code are 
not being tested yet: 

    cov 
 AdvancedRPkg Coverage: 35.85% 
 R/plot_functions.R: 0.00% 
 R/textplot.R: 52.78% 

   as.data.frame(cov)[1:3, c(1, 2, 3, 11)] 
             filename functions first_line value 
 1 R/plot_functions.R  meanPlot          2     0 
 2 R/plot_functions.R  meanPlot          3     0 
 3 R/plot_functions.R  meanPlot          4     0 

    To have the tests run, we need to indicate that our package requires the  testthat  package. The core 
functionality of the package does not depend on  testthat , so instead we add it to the  DESCRIPTION  file 
under a new section,  Suggests . Again, using any text editor, we revise  DESCRIPTION  to the following: 

   Package: AdvancedRPkgPackagetests 
 Title: An Example R Package for the Book Advanced R 
 Version: 0.0.0.9000 
 Authors@R: c( 
   person("Matt", "Wiley", email = "matt@elkhartgroup.com", role = c("aut")), 
   person("Joshua F.", "Wiley", email = "josh@elkhartgroup.com", role = c("aut", "cre")), 
   person("Elkhart Group Ltd.", role = "cph") 
   ) 
 Description: This package will demonstrate the basics of an R 
   package including documentation and tests. 
 Depends: R (>= 3.3.1) 
 Suggests: 
   testthat 
 License: GPL (>= 3) 
 Encoding: UTF-8 
 LazyData: true 
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   Finally, with all the changes we have made to our package, it is time to check in with version control. It is 
possible to do this from the command line, but we use the GitHub desktop client. By default, all changed files 
are selected, but rather than commit all changes at once, we do them in related batches of files, along with 
meaningful messages. The commit messages are added along with each commit and serve to remind you or 
to let others know a high-level summary of what changes were made or why. It is not necessary to detail every 
change, as Git takes care of tracking exactly which files changed and how their contents changed. 

 To begin, we select the  DESCRIPTION ,  NAMESPACE , and  .gitignore  files and add the message:  initiate R 
package with DESCRIPTION and NAMESPACE . The process is shown in Figure  6-5 .  

  Figure 6-5.    GitHub desktop client selecting changed files, adding a commit message, and committing to the 
master branch       

 Next, we add  plot_functions.R  and  textplot.   R    and add the commit message:  initial commit of R 
functions . Finally, we add  testthat.R  and  test_textplot.R  and add the commit message:  adding testing 
for quality control . Of course, you also could have committed files along the way as they were created. If we 
switch over to the History tab of the GitHub desktop client, we can see the changes made. If we are happy 
for them to go public, we click the Sync button, which pulls changes from the GitHub repository to the local 
repository, and pushes all committed changes from the local repository to the GitHub repository. Note that 
before you sync, all changes should be committed, because what gets synced are not the actual files in the 
directory but the Git repositories. Changes to files get added to the local Git repository only when they are 
committed, so if you do not commit, the updates are not added to the local repository and so do not get 
pushed to the remote (GitHub) repository. Figure  6-6  shows what this looks like.  
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 We have only scratched the surface of  testing  , and obviously our package has a long way to go before 
it is thoroughly tested. However, these tools should get you started on the right track (and ahead of the 
majority of the R packages on CRAN) regarding testing and quality control. The next crucial piece is the 
documentation, a topic we turn to next.   

     Documentation Using roxygen2 
 R documentation for functions, data, classes, and methods is located in the  man  subdirectory of a package, 
and is done by using special R documentation files with the extension  .Rd . However, for the programmer, 
this can be harder because the documentation is separated from the actual R code. There is also quite 
a bit of markup that must be written that is just part of the standard template. The  roxygen2  package, 
fully automates this process, including the subdirectory creation, and provides an easier way to write 
documentation by using specially formatted comments next to the R code. Running the  roxygen2  package 
then converts these particular comments into appropriately formatted  .Rd  files in the  man  directory, so that R 
has everything it needs to create the help files for the package functions. In this section, we are going to look 
at how to document several types of objects including functions, data, classes, and methods. 

  Figure 6-6.    GitHub desktop client showing the history of commits and the Sync button at the top right       
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      Functions   
 To document objects using  roxygen2 , documentation is added after a special comment lead:  ##'  or 
 #' . Because  #  is R’s comment, R ignores it, but the special single quote indicates to  roxygen2  that this 
information should be processed into the documentation. Note that this syntax precludes commenting this 
code. All of this code is added to  plot_functions.R  above the  meanPlot()  function code. 

 As stated, comments are precluded because of syntax; thus the order becomes vital. To see which part 
maps to which formal, just keep in mind that there are three sections simply separated by line breaks:  title , 
 description , and  details . The  details  section is optional. We add spaces between line breaks for reader 
clarity. Function arguments are indicated by using  @param argument_name brief description of the 
argument . The argument names listed here must exactly match the named arguments in the function. The 
 @return  section is where we can indicate what sort of object is returned by the function. In this case, the 
function is called for the side effect of producing a plot, and the value it returns is not important. Any text 
can come after  @author  to indicate who wrote the function. Typically, the  @author  section is not required 
if the author is the same as the overall package author. For the function to be publicly available, it must be 
exported. This is accomplished by using the directive  @export . The  roxygen2  package translates this into 
additional lines of code in the  NAMESPACE  file,    indicating it should be exported. The  @keywords  section is 
optional. Finally, one of the most useful sections for your readers is the  @examples  section, which gives 
readers executable examples and is one of the easiest ways to show how to use a function. 

    ##' Function to plot data and mean summary 
 ##' 

   ##' This is a simple function designed to facilitate plotting raw 
 ##' data along with dots indicating the mean at each x-axis value. 
 ##' 

   ##' Although this function can be used with any type of data that works 
 ##' with \code{plot}, it works best when the x-axis values are discrete, 
 ##' so that there are several y-values at the same x-axis value so that 
 ##' the mean of multiple values is taken. 
 ##' 

   ##' @param formula A formula specifying the variable to be used on the 
 ##'   y-axis and the variable to be used on the x-axis. 
 ##' @param d A data.frame class object containing the variables specified 
 ##'   in the \code{formula}. 

   ##' @return Called for the side effect of creating a plot. 
 ##' @author Wiley 
 ##' @export 
 ##' @keywords plot 
 ##' @examples 
 ##' # example usage of meanPlot 
 ##' meanPlot(mpg ~ factor(cyl), d = mtcars) 
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    Now to make the documentation, we can run the  roxygen2  package. This can be done directly by using 
the  roxygenize()  function and giving it the path to the directory of our package, or it can be done by using 
the  document()  function from the  devtools  package. We specify the package directory, and the rest happens 
automatically. The output shows that a documentation file was written ( meanPlot.Rd ) and the  NAMESPACE  file 
was written: 

   document("AdvancedRPkg") 
 Updating AdvancedRPkg documentation 
 Loading AdvancedRPkg 
 Updating roxygen version in  ~\RFiles\AdvancedRPkg/DESCRIPTION  
 Writing NAMESPACE 
 Writing meanPlot.Rd 

   When built or installed, the R documentation file is converted to HTML and PDF. However, already you 
can preview the development version of the documentation. From the R console, the usual way of getting 
help for a function should now work: 

   ?meanPlot 

   If you use RStudio, you can also open the file and preview it. The resulting HTML file (after building the 
package) is shown in Figure  6-7 . Because of the simplicity of this function and also for the sake of space, we 
wrote fairly minimal documentation. Often, it is helpful for users and future reference to document more 
extensively and to carefully explain what each argument can and cannot take. If functions implement new 
procedures or statistical methods, it is also common to include some references by using the  @   references    
section.   
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  Figure 6-7.    HTML output of the R documentation file for the meanPlot() function       
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      Data   
 Before we can document data, we need to add some to our package. First, we make a  data  subdirectory in 
our package folder, located at  AdvancedRPkg/data/ . Then we make a small sample data frame and save it as 
an  .rda  file by using the code that follows in our  chapter06.R  file. Note again that the file needs to give the 
correct path to  AdvacedRPkg/data/  based on R’s current working directory: 

   sampleData <- data.frame( 
   Num = 1:10, 
   Letter = LETTERS[1:10]) 
 save(sampleData, file = "AdvancedRPkg/data/sampleData.rda") 

   We add the following code to document the data in a new file called  sampledata.R  located in the  R  
subdirectory (that is,  AdvancedRPkg/R/sampledata.R ). This provides a title and details on the data, along 
with the special parameters  @format  to indicate the format or type of data and  @source  to indicate where it is 
from. In quotes at the end, the name of the object is given. 

   ##' Numbers and letters. 
 ##' 
 ##' A sample data set containing 10 numbers and letters with two variables: 
 ##' 
 ##' \itemize{ 
 ##'   \item Num. A number. 
 ##'   \item Letter. An upper case letter (A to J) 
 ##' } 
 ##' 
 ##' @format A data frame with 10 rows and 2 variables 
 ##' @source Created as a sample 
 "sampleData" 

   After re-roxygenizing the package by using the  document()  function, the resulting HTML is shown in 
Figure  6-8 , again by using the help utilities from the fully built package or by using preview from RStudio.   
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      Classes   
 S3 classes are not formal and are not typically documented. S4 classes are straightforward to 
document. Their documentation goes immediately above the call to  setClass()  in our  textplot.R  file 
( AdvancedRPkg/R/textplot.R ) with a title, a details section, and then some parameters— one  @slot  for 
each slot name, detailing the name and function of the slot. To use the S4 system in a package, we also need 
to add the  methods  package, which we do by adding  @import   methods  and also adding it to the  Imports  field 
of the  DESCRIPTION  file. The updated  DESCRIPTION  file with the new  Imports  field is shown here; typically, 
the  Imports  section immediately follows the  Depends  section: 

   Imports: 
   methods 

  Figure 6-8.    HTML output of the R documentation file for the sample Data data   set       
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   The full documentation for the class is shown in the following code: 

   ##' An S4 class to hold text and Cartesian coordinates for plotting 
 ##' 
 ##' A class designed to hold the data required to create a textplot 
 ##' where character strings are plotted based on x and y coordinates. 
 ##' 
 ##' @slot x A numeric value with the x axis coordinates. 
 ##' @slot y A numeric value with the y axis coordinates. 
 ##' @slot labels A character string with the text to be plotted 
 ##' @import methods 

   After re-roxygenizing the package by using the  document()  function, the resulting HTML is shown in 
Figure  6-9 .   

      Methods   
 Documenting methods is similar to documenting regular functions. S3 methods can be undocumented or 
documented as a function. The following is the  roxygen2 -style documentation added for the  ggplot.lm  
method. The code is added immediately above the function definition in  AdvancedRPkg/R/plot_functions.R . 

  Figure 6-9.    HTML output of the R documentation file for the S4 class  textplot         
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Note that here we import the  ggplot2  package so that it is available. We also add the  ggplot2  package under 
the  Imports  section in the  DESCRIPTION  file, separated by a comma from the R version on which the package 
depends. The new  DESCRIPTION  file  Depends  section is shown here: 

   Imports: 
   methods, 
   ggplot2 

   By importing it,  roxygen2  will automatically add the appropriate import codes to the  NAMESPACE  file: 

   ##' Method for plotting linear models 
 ##' 
 ##' Simple method to plot a linear model using ggplot 
 ##' along with 95% confidence intervals. 
 ##' 
 ##' @param data The linear model object from \code{lm} 
 ##' @param mapping Regular mapping, see \code{ggplot} and \code{aes} for details. 
 ##' @param vars A list of variable values used for prediction. 
 ##' @param \ldots Additional arguments passed to \code{ggplot} 
 ##' @return A ggplot class object. 
 ##' @export 
 ##' @import ggplot2 
 ##' @examples 
 ##' ggplot( 
 ##'   lm(mpg ~ hp * qsec, data = mtcars), 
 ##'   aes(hp, mpg, linetype = factor(qsec)), 
 ##'   vars = list( 
 ##'     hp = min(mtcars$hp):max(mtcars$hp), 
 ##'     qsec = round(mean(mtcars$qsec) + c(-1, 1) * sd(mtcars$qsec)), 1)) + 
 ##'   geom_ribbon(aes(ymin = LL, ymax = UL), alpha = .2) + 
 ##'   geom_line() + 
 ##'   theme_bw() 

   S4 methods can be documented alone, documented with the generic function, or documented with the 
class. This can be accomplished by using the  @describeIn  parameter, which is used in place of the title. For 
our S4 methods, we document them along with the class. The  roxygen2  code is relatively brief. We could add 
details but do not need to. The  roxygen2  package takes care of registering the methods, so all we really need 
to do is add any special notes and document use of parameters. The documentation for the  show()  method 
is as follows: 

   ##' @describeIn textplot show method 
 ##' 
 ##' @param object The object to be shown 

   We follow this with the  documentation   for the  [  operator method. Note that we also export the  [  
method and add an alias, which is just another way that users can look up the method: 

   ##' @describeIn textplot extract method 
 ##' 
 ##' @param x the object to subset 
 ##' @param i the rows to subset (optional) 
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 ##' @param j the columns to subset (optional) 
 ##' @param drop should be missing 
 ##' @export 
 ##' @aliases [,textplot-method 

   After re-roxygenizing by using  document() , the updated HTML help file is shown in Figure  6-10 , 
including the class and additional methods documentation.    

  Figure 6-10.    HTML output of the R documentation  file   for the S4 class textplot with added methods 
documentation       
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     Building, Installing, and Distributing an R Package 
 Much as with Git, when building an R package, it can be helpful to ignore some of the files in the directory. 
We create a file called  .Rbuildignore  containing the following code in our main directory  AdvancedRPkg/ . 
This file should be located at the same level as the   DESCRIPTION  file  : 

   desktop.ini 
 .Rhistory 
 .RData 

   After ensuring that the documentation is up-to-date by running  document("   AdvancedRPkg    ")  again, we 
are almost set. At this point, we have made some changes, so it would be a good idea to add and commit 
the changes to the Git repository (if you opted into that at the beginning). Although you could add all 
files at once by running  git add , it is more informative and easier to revert later (if needed) if changes 
are committed in chunks based on similar topics. For example, we used separate commits for each of the 
following, which are shown in the code that follows in chunks:

•    The updated code files (every file in the  AdvancedRPkg/R/  directory),  DESCRIPTION , 
and  NAMESPACE , with the commit message  added roxygen style documentation   

•   The sample data, with the commit message  added sample data   

•   The updated documentation files (every file in the  AdvancedRPkg/man/  directory), 
with commit message  re-roxygenized package   

•    .Rbuildignore  file, with the commit message  adding file to ignore files during 
package build     

 Now we can build the package into a compressed source tar ball by using the  build()  function from 
the  devtools  package in our  chapter06.R  file. The output shows the build process and that a   .tar.gz  file   is 
produced at the end: 

    build("AdvancedRPkg") 
 "c:/usr/MRO/MRO-3.3.1/bin/x64/R" --no-site-file --no-environ  \ 
   --no-save --no-restore --quiet CMD build "~\Apress_AdvancedR\RFiles\AdvancedRPkg"  \ 
   --no-resave-data --no-manual  

   * checking for file '~\Apress_AdvancedR\RFiles\AdvancedRPkg/DESCRIPTION' ... OK 
 * preparing 'AdvancedRPkg': 
 * checking DESCRIPTION meta-information ... OK 
 * checking for LF line-endings in source and make files 
 * checking for empty or unneeded directories 
 * looking to see if a 'data/datalist' file should be added 
 * building 'AdvancedRPkg_0.0.0.9000.tar.gz' 

   [1] "~/Apress_AdvancedR/RFiles/AdvancedRPkg_0.0.0.9000.tar.gz" 

    We could install and use this. However, it can be helpful to run one more set of checks. The   check()  
function   in the  devtools  package runs  Rcmd check  on the package. The argument  cran = TRUE  uses the 
tests for CRAN. The following code should be run from our  chapter06.R  file. The output is extensive, so we 
omit many sections that work as intended, and highlight some of the checks that would indicate problems 
we should address. Omitted output is indicated by  [. . .] . 
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    check("AdvancedRPkg", cran = TRUE) 
 Updating AdvancedRPkg documentation 
 Loading AdvancedRPkg 
 [. . .] 
 * using R version 3.3.1 (2016-06-21) 
 [. . .] 
 * checking R code for possible problems ... NOTE 
 ggplot.lm: no visible global function definition for 'formula' 
 ggplot.lm: no visible global function definition for 'predict' 
 ggplot.lm: no visible binding for global variable 'fit' 
 ggplot.lm: no visible global function definition for 'qnorm' 
 ggplot.lm: no visible binding for global variable 'se.fit' 
 meanPlot: no visible global function definition for 'plot' 
 meanPlot: no visible global function definition for 'points' 
 show,textplot: no visible global function definition for 'head' 
 Undefined global functions or variables: 
   fit formula head plot points predict qnorm se.fit 
 Consider adding 
   importFrom("graphics", "plot", "points") 
   importFrom("stats", "formula", "predict", "qnorm") 
   importFrom("utils", "head") 
 to your NAMESPACE file. 
 [. . .] 
 * checking examples ... ERROR 
 Running examples in 'AdvancedRPkg-Ex.R' failed 
 The error most likely occurred in: 

   > base::assign(".ptime", proc.time(), pos = "CheckExEnv") 
 > ### Name: ggplot.lm 
 > ### Title: Method for plotting linear models 
 > ### Aliases: ggplot.lm 
 >  
 > ### ** Examples 
 >  
 > ggplot( 
 +   lm(mpg ~ hp * qsec, data = mtcars), 
 +   aes(hp, mpg, linetype = factor(qsec)), 
 +   vars = list( 
 +     hp = min(mtcars$hp):max(mtcars$hp), 
 +     qsec = round(mean(mtcars$qsec) + c(-1, 1) * sd(mtcars$qsec)), 1)) + 
 +   geom_ribbon(aes(ymin = LL, ymax = UL), alpha = .2) + 
 +   geom_line() + 
 +   theme_bw() 
 Error: could not find function "ggplot" 
 Execution halted 
 * checking for unstated dependencies in 'tests' ... OK 
 * checking tests ... 
   Running 'testthat.R' 
  OK 
 * DONE 
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   Status: 1 ERROR, 1 NOTE 
 See 
   '~ /Temp/RtmpEnhRD4/AdvancedRPkg.Rcheck/00check.log'R Packagecheck() function 
 for details. 

   R CMD check results 
 1 error  | 0 warnings | 1 note  
 checking examples ... ERROR 
 Running examples in 'AdvancedRPkg-Ex.R' failed 
 The error most likely occurred in: 

   > base::assign(".ptime", proc.time(), pos = "CheckExEnv") 
 > ### Name: ggplot.lm 
 > ### Title: Method for plotting linear models 
 > ### Aliases: ggplot.lm 
 >  
 > ### ** Examples 
 >  
 > ggplot( 
 +   lm(mpg ~ hp * qsec, data = mtcars), 
 +   aes(hp, mpg, linetype = factor(qsec)), 
 +   vars = list( 
 +     hp = min(mtcars$hp):max(mtcars$hp), 
 +     qsec = round(mean(mtcars$qsec) + c(-1, 1) * sd(mtcars$qsec)), 1)) + 
 +   geom_ribbon(aes(ymin = LL, ymax = UL), alpha = .2) + 
 +   geom_line() + 
 +   theme_bw() 
 Error: could not find function "ggplot" 
 Execution halted 

   checking R code for possible problems ... NOTER Packagecheck() function 
 ggplot.lm: no visible global function definition for 'formula' 
 ggplot.lm: no visible global function definition for 'predict' 
 ggplot.lm: no visible binding for global variable 'fit' 
 ggplot.lm: no visible global function definition for 'qnorm' 
 ggplot.lm: no visible binding for global variable 'se.fit' 
 meanPlot: no visible global function definition for 'plot' 
 meanPlot: no visible global function definition for 'points' 
 show,textplot: no visible global function definition for 'head' 
 Undefined global functions or variables: 
   fit formula head plot points predict qnorm se.fit 
 Consider adding 
   importFrom("graphics", "plot", "points") 
   importFrom("stats", "formula", "predict", "qnorm") 
   importFrom("utils", "head") 
 to your NAMESPACE file. 

    The  check()  function includes several steps. It first ensures that the documentation is up-to-date, 
then builds a source package tar ball, and then runs  Rcmd check  on it. We can see here that quite a few 
issues are caught by the checks. All of them essentially boil down to not telling R exactly what functions or 
packages are imported or required. Most issues arise because of differences between how packages and 
interactive R work. During an interactive session, the  base ,  methods ,  graphics ,  utils , and  stats  packages 
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are loaded by default, even without calling  library(stats) , for example. This means that by default in an 
interactive session, many functions are available on the search path. In packages, R has become stricter in 
recent versions and requires required functions outside the  base  package to be explicitly imported. The 
checks even suggest what we could add to our namespace. We use the  roxygen2  package, so rather than 
adding those to our namespace, we add them to the R code files. Specifically, to  AdvancedRPkg/R/plot_
functions.R , right after the  @export roxygen2  statements, we add this for   meanPlot()   : 

   ##' @importFrom graphics plot points 
 ##' @importFrom stats formula 

   And this for the  ggplot.lm()  method in the same file: 

   ##' @importFrom stats predict qnorm 

   To  AdvancedRPkg/R/textplot.R , right after the  @param object roxygen2  statement, we add this for the 
  show()  method  : 

   ##' @importFrom utils head 

   In addition, a similar problem occurs with no visible bindings for some global variables. This comes 
from the  ggplot.lm()  method; because it uses  within() , R cannot tell that the variables have been defined, 
even though they are looked up within a data frame environment that contains them. Although this is a 
somewhat spurious note, it is good to get rid of all notes. One solution is to add a call to  globalVariables()  
into our R files somewhere. At the top of  AdvancedRPkg/R/plot_functions.R  , we add the following: 

   globalVariables(c("fit", "se.fit")) 

   The last issue noted is that  ggplot()  could not be found in one of the examples. Because our package 
imports the  ggplot2  package, the   ggplot()  function   is available to code within our package. However, if 
a user loads only our package,  ggplot2  functions are not loaded for the user’s search path. Examples for 
functions are run as users, and so the function is not available, and R throws an error. The best path forward 
here is complex. We could omit the example, but then the documentation is less helpful. We could move 
 ggplot2  from the  Imports  field of the  DESCRIPTION  field to the  Depends  field. Packages depended on are 
loaded before loading a package. The downside of this approach is that it forces users of our package to have 
 ggplot2  loaded. This increases the odds of function masking for users because it forces many packages to 
be loaded. We could also ensure that the code is not run. Finally, we could explicitly point to the  ggplot2  
package, by adding  ggplot2::function() . This is cumbersome, as we use several  ggplot2  functions in that 
example, and it needs to be added throughout. However, this ensures that the example works and avoids 
loading  ggplot2  onto users’ search path. Users are, of course, free to load  ggplot2  should they wish by 
explicitly calling  library(ggplot2)  themselves. In the  AdvancedRPkg/R/plot_functions.R  file, we edit the 
 roxygen2  code for the example for  ggplot.lm() , as shown here: 

   ##' @examples 
 ##' ggplot2::ggplot( 
 ##'   lm(mpg ~ hp * qsec, data = mtcars), 
 ##'   ggplot2::aes(hp, mpg, linetype = factor(qsec)), 
 ##'   vars = list( 
 ##'     hp = min(mtcars$hp):max(mtcars$hp), 
 ##'     qsec = round(mean(mtcars$qsec) + c(-1, 1) * sd(mtcars$qsec)), 1)) + 
 ##'   ggplot2::geom_ribbon(ggplot2::aes(ymin = LL, ymax = UL), alpha = .2) + 
 ##'   ggplot2::geom_line() + 
 ##'   ggplot2::theme_bw() 
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   Next we rerun the  check()  function. If all goes well, we should get a status of OK, as shown here: 

    check("AdvancedRPkg", cran = TRUE) 
 Updating AdvancedRPkg documentation 
 [. . .] 
 * DONE 

   Status: OK 

   R CMD check results 
 0 errors | 0 warnings | 0 notes 

    At this point, we can commit all our changes to the Git repository and sync it with GitHub. We can also 
install the package. First, open a terminal and navigate to the folder containing our package (not the package 
directory itself, but the directory containing the package directory). From the terminal, we can run   R CMD 
INSTALL    at an R-enabled terminal such as the Windows command prompt (this can be any terminal, if you 
have ensured that when you installed R, it was added to the system path): 

   R CMD INSTALL AdvancedRPkg 

   Now, should you wish,  library(AdvancedRPkg)  works in R: 

   library(AdvancedRPkg) 

   You can also share the compressed tar ball created from the  devtools  package from  build() . If you 
put the package on GitHub, it can alternately be installed readily by running the following code, replacing 
 ElkhartGroup  with your username and running this code at the R console (not the OS terminal!): 

   library(devtools) 
 install_github("ElkhartGroup/AdvancedRPkg") 

   If you want, you can edit the   README  file   for the package. It is not required, but can be a useful reference. 
It is written using the Markdown markup language. If edited, it also shows up on GitHub. We edit the 
 README.md  file and add the text and markup that follows. Briefly, Markdown uses various numbers of 
hashes ( # ) to indicate header levels:  #  for level 1, and  ##  for level 2, for example. Text between asterisks,  * , is 
emphasized (italicized). Brackets,  [ ] , and parentheses,  ( ) , are used to add URL links, and triple back ticks 
(```) are used to show the start and end of a block of code. 

    # AdvancedRPkg 

   This is a sample R package that acompanies Chapter 6 of *Advanced R: Data Programming and 
the Cloud*. 
 To learn more, check out the [book](http://www.apress.com/9781484220764) 

   ## Installation 

   You can install and test the package by running: 

   ̀``r 
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   library(devtools) 
 install_github("ElkhartGroup/AdvancedRPkg") 

   ̀`` 

    Finally, you can submit your package to CRAN should you wish. The first step is to carefully attend to 
all of their current policies, located at the  CRAN   Repository Policy site (   https://cran.r-project.org/web/
packages/policies.html     ). Once you have checked that your package complies and have corrected any 
noncompliance, you can submit it to CRAN at    https://cran.r-project.org/submit.html     . CRAN is huge, 
with thousands of packages and a tremendous number of updates daily. It is a free service to the community 
run by volunteers. Thus, even if some of the requirements are tedious, if you want your package on CRAN, it 
is only fair to play by their rules and do whatever makes it easiest for them. Otherwise, GitHub is a relatively 
easy place to host and distribute package source code.  

     Summary 
 This chapter has covered the logistics of developing, testing, documenting, and releasing an R package. 
Although the process does not necessarily involve complex R code, handling the many aspects and getting 
all pieces to interact properly can be challenging. The payoff for the work is ease of installation and use 
for users, along with high-quality documentation and assurances that the code works as intended. If you 
plan to continue developing packages, useful resources for further reading are the official manual,  Writing 
R Extensions (   https://cran.r-project.org/doc/manuals/R-exts.html     ), and documentation for using 
 roxygen2  (   https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html     ). The 
vignettes for  roxygen2  are especially useful for topics not covered in this chapter, such as formatting the 
documentation and collation order (required when some classes or functions have to be loaded before 
others in your package). A brief summary of the functions used in this chapter is shown in Table  6-3 .  

 This chapter is also the last chapter focused specifically on R programming and the tools around 
software development in R. The remainder of this book focuses on using R for data management and 
applied analysis at an advanced level. Although we utilize many aspects of the R programming you’ve 
learned in this section of the book and write many functions, we do not develop any new packages in the 
upcoming chapters.     

https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/submit.html
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html
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   Table 6-3.    Key Functions Described in This Chapter   

 Function  What It Does 

  setup()   Creates a new package (in our case,  AdvancedRPkg ). 

  list.files()   Does what it says—the R equivalent of the Unix or Windows  ls . 

  load_all()   Before a package is built or installed,  library()  does not work; this simulates that 
in the meantime. 

  context()   Part of the  testthat  package we used in  test_textplot.R . 

  test_that()   Part of the  testthat  package we used in  test_textplot.R . 

  expect_*()   A family of functions useful for testing code. These functions check that output 
matches a certain expectation, such as the class of output, whether the code 
returns an error or warning, and many others. For a full list, after loading the 
 testthat  package, run  apropos("expect_")  at the console. 

  apropos()   Useful to search for partially remembered function calls. 

  test()   Runs the  testthat  tests; run from our  chapter06.R  file. 

  package_coverage()   Calculates how much of the package has been tested; usually, the goal is 100 
percent. 

  document()   Used to build the  roxygen2  documentation for an R package. 

  build()   Used to build the R package. 

  check()   Used to check the R package; we used the CRAN option in ours. 
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    CHAPTER 7   

 Introduction to Data Management 
Using data.table                          

 We already briefly introduced the  data.table  package. This package is the heart of this chapter, which 
covers the basics of accessing, editing, and manipulating data under the broad term   data management   . 
Although not glamorous, data management is a critical first step to data visualization or analysis. 
Furthermore, the majority of time on a particular analysis project may come from the data management. 
For example, running a linear model in R can take one line of code, once the data is clean and in the format 
that the  lm()  function in R expects. Data management can be challenging, because raw data come in all 
types, shapes, and formats; missing data is common; and you may also have to combine or merge separate 
data sources. In this chapter, we introduce both mechanical and philosophical techniques to approach data 
management. All packages used in this chapter are already in our  checkpoint.R  file. Thus you need only 
source the file to get started. 

 In this chapter, we use the  data.table  R package (Dowle, Srinivasan, Short, and Lianoglou, 2015). The 
following code loads the  checkpoint  ( Microsoft Corporation, 2016  ) package to control the exact version of R 
packages used and then loads the  data.table  package: 

   ## load checkpoint and required packages 
 library(checkpoint) 
 checkpoint("2016-09-04", R.version = "3.3.1") 
 library(data.table) 
 options(width = 70) # only 70 characters per line 

       Introduction to data.table 
 One of the benefits of using data tables, rather than the  built-in data frame class objects  , is that data tables 
are more memory efficient and faster to manipulate and modify. The  data.table  package accomplishes 
this to a large extent by altering data tables in place in memory, whereas with data frames, R typically makes 
a copy of the data, modifies it, and stores it. Making a full copy happens regardless of whether all columns 
of the data are being changed or, for example, 1 of 100 columns. Consequently, operations on data frames 
tend to take more time and use up more memory than comparable operations with data tables. To show the 
concepts of data management, we work with small data, so memory and processor time are not an issue. 
However, we highlight the use of data tables, rather than data frames, because data tables scale gracefully 
to far larger amounts of data than do data frames. There are other benefits of data tables as well, including 
not requiring all variable names to be quoted, that we show throughout the chapter. In contrast, the major 
advantage of data frames is that they live in base R, and more people are familiar with working with them 
(which is helpful, for example, if you share your code). 
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 Data tables can be quite large. Rather than viewing all your data, it is often helpful to view just the 
 head()  and the  tail()    . When you show a data table in R by typing its name, the first and last five rows 
are returned by default. R also defaults to printing seven significant digits, which can make our numerical 
entries messy. For cleanness, we use the  options()  function to control some of the global options so that 
only the first and last three rows print (if the data table has more than 20 rows total—otherwise, all are 
shown); in addition, only two significant digits display for our numerical entries. While we set this, we also 
introduce  Edgar Anderson’s iris data . This data involves sepal and petal lengths and widths in centimeters of 
three species of iris flowers. 

 Before we convert the iris data into a data table, we are going to convert our species’ names to 
a character rather factor class. In the following code, we set our options, force the species’ names to 
characters, and create our data table,   diris   : 

     options(stringsAsFactors = FALSE, 
          datatable.print.nrows = 20, ## if over 20 rows 
          datatable.print.topn = 3, ## print first and last 3 
          digits = 2) ## reduce digits printed by R 

    iris$Species <- as.character(iris$Species) 
  diris <- as.data.table(iris) 

    diris 
      Sepal.Length Sepal.Width Petal.Length Petal.Width   Species 
   1:          5.1         3.5          1.4         0.2    setosa 
   2:          4.9         3.0          1.4         0.2    setosa 
   3:          4.7         3.2          1.3         0.2    setosa 
  ---                                                             
 148:          6.5         3.0          5.2         2.0 virginica 
 149:          6.2         3.4          5.4         2.3 virginica 
 150:          5.9         3.0          5.1         1.8 virginica  

    There are  150  rows of data comprising our three species:   setosa ,  versicolor , and  virginica   . Each 
species has  50  measurement sets. R lives in memory, and for huge data tables, this may cause issues. The 
 tables()  command shows all the data tables in memory, as well as their sizes. In fact,  tables()  is itself 
a data table. Notice that the function gives information as to the name of our data table(s), the number of 
rows, columns, the size in  MB , and if there is a  key . We discuss data tables with a key in just a few paragraphs. 
For now, notice that  1MB  is not likely to give us memory issues: 

   tables() 
      NAME  NROW NCOL MB 
 [1,] diris  150    5  1 
      COLS                                                      KEY 
 [1,] Sepal.Length,Sepal.Width,Petal.Length,Petal.Width,Species     
 Total: 1MB 

   If we need more information about the types of data in each column, calling the   sapply()    command on 
a data table of interest along with the  class()  function works. Recall that the  *apply  functions return results 
from calling the function named in the second formal on the elements from the first formal argument. In our 
case,  class()  is called on   diris    ,  and we see what types of values are stored in the columns of  diris : 

   sapply(diris, class) 
 Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species  
    "numeric"    "numeric"    "numeric"    "numeric"  "character" 
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   Data tables have a powerful conceptual advantage over other data formats. Namely, data tables may be 
keyed. With a key, it is possible to use binary search. For those new to binary search, imagine needing to find 
a name in a phone book. It would take quite some time to read every name. However, because we know that 
the telephone directory sorts alphabetically, we can instantly find a middle-of-the-alphabet name, determine 
whether our search name belongs before or after that name, and remove half the phone book from our search in 
the process. Our algorithm may be repeated with the remaining half, leaving only a quarter of the original data 
to search after just two accesses! More mathematically, while a search through all terms of a data frame would 
be linear based on the number of rows,  n , in a data table, it is at worse  log n . In a few new tables we, the authors, 
used, doubling our data added only minutes to code runtime rather than doubling runtime. A major win. 

 ■   Note    In  data.table , a  key  is an index that may or may not be unique, created from one or more columns 
in the data. The data is sorted by the key, allowing very fast operations using the key. Example operations 
include subsetting or filtering, performing a calculation (for example, the mean of a variable) for every unique 
key value, and merging two or more data sets.  

 Of course, it does take time to key a data table, so it depends on how often you access your data before 
making this sort of choice. Another consideration is what to use as the key. A table has only one key, 
although that key may consist of more than one column. The function   setkey()    takes a data table as the 
first formal and then takes an unspecified number of column names after that to set a key. To see whether a 
data table has a key, simply call  haskey()  on the data table you wish to test. Finally, if you want to know what 
columns built the key, the function  key()  called on the data table provides that information. We show these 
commands on our data table  diris  in the following code lines: 

   haskey(diris) 
 [1] FALSE 
 setkey(diris, Species) 
 key(diris) 
 [1] "Species" 
 haskey(diris) 
 [1] TRUE 

   Keys often are created based on identification variables. For instance, in research, each participant in a 
study may be assigned a unique ID. In business cases, every customer may have an ID number. Data tables 
often are keyed by IDs like these, because often operations are performed by those IDs. For example, when 
conducting research in a medical setting, you may have two data tables, one containing questionnaires 
completed by participants and another containing data from medical records. The two tables can be joined 
by participant ID. In business, every time a customer makes a new purchase, an additional row may be 
added to a data set containing the purchase amount and customer ID. In addition to knowing individual 
purchases, however, it may also be helpful to know how much each customer has purchased in total—the 
sum purchase amount for each customer ID. 

 It is not required to set a key; the essence of binary sort simply requires a logical order. The function call 
  order()    does this. It is important to note that data tables have another nice feature. Going back to our phone 
book analogy, imagine that we want to sort by first name instead of last name. Now, the complicated way to 
do this would be to line up every person in the phone book and then have them move into the new order. 
In this example, the people are the data. However, it would be much easier simply to reorganize the phone 
book—much less data. The telephone directory is a reference to the physical location of the people. We can 
simply move some of those entries higher up in our reference table, without ever changing anyone’s physical 
address. It is again a faster technique that avoids deleting and resaving data in memory. So too, when we 
impose order on a data table, it is by reference. Note that this new order unsets our key, since a critical aspect 
of a key is that the data is sorted by that key: 
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   diris <- diris[order(Sepal.Length)] 
 diris 
      Sepal.Length Sepal.Width Petal.Length Petal.Width   Species 
   1:          4.3         3.0          1.1         0.1    setosa 
   2:          4.4         2.9          1.4         0.2    setosa 
   3:          4.4         3.0          1.3         0.2    setosa 
  ---                                                             
 148:          7.7         3.0          6.1         2.3 virginica 
 149:          7.7         3.8          6.7         2.2 virginica 
 150:          7.9         3.8          6.4         2.0 virginica 
 haskey(diris) 
 [1] FALSE 

   Alternatively, we may order a data table by using multiple variables and even change from the default 
increasing order to decreasing order. To use more than one column, simply call   order()    on more than 
column. Adding  -  before a column name sorts in decreasing order. The following code sorts  diris  based on 
increasing sepal length and then decreasing sepal width: 

   diris <- diris[order(Sepal.Length, -Sepal.Width)] 
 diris 
      Sepal.Length Sepal.Width Petal.Length Petal.Width   Species 
   1:          4.3         3.0          1.1         0.1    setosa 
   2:          4.4         3.2          1.3         0.2    setosa 
   3:          4.4         3.0          1.3         0.2    setosa 
  ---                                                             
 148:          7.7         2.8          6.7         2.0 virginica 
 149:          7.7         2.6          6.9         2.3 virginica 
 150:          7.9         3.8          6.4         2.0 virginica 

   If we reset our key, it destroys our order. While this would not be apparent with our normal call to   diris   , 
if we take a look at just the correct rows, we lose the strict increasing order on sepal length: 

   setkey(diris, Species) 
 diris[49:52] 
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
 1:          5.7         3.8          1.7         0.3     setosa 
 2:          5.8         4.0          1.2         0.2     setosa 
 3:          4.9         2.4          3.3         1.0 versicolor 
 4:          5.0         2.3          3.3         1.0 versicolor 

   What this teaches us is that decisions about order and keys come with a cost. Part of the improved 
speed of a data table comes with being able to perform fast searches. Choosing a key comes with a one-time 
computation cost, so it behoves us to make sensible choices for our key. The iris data set is small enough to 
make such costs irrelevant while we learn, but real-life data sets are not as likely to be so forgiving. Choosing 
a key also influences some of the default choices for functions we use to understand aspects of our data 
table. Setting a key is about not only providing a sort of our data, but also asserting our intent to make the 
key the determining aspect of that data. An example of this is shown with the   anyDuplicated()  function   call, 
which gives the index of the first duplicated row. As we have set our key to  Species , it defaults to look in just 
that column. Notice that the first duplicate for   Species    occurs in the second row, while the first duplicated 
sepal length entry takes place in the third row: 
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   anyDuplicated(diris) 
 [1] 2 
 anyDuplicated(diris$Sepal.Length) 
 [1] 3 

   Other functions in the  duplication family   of functions that are influenced by  key  include  duplicated()  
itself, which returns a Boolean value for each row. In our case, such a call on  diris  would give us  FALSE  
values for each of the rows  1 ,  51 , and  101 , since we have  50  of each species and are sorting by species. That 
is many values to get, so we instead put that into a nice table. If we had not set a key,  duplicated()  would 
consider a row duplicated only if it was a full copy. Contrast the code with our key to an example without a 
key (we temporarily broke the key for the latter half of the code): 

    haskey(diris) 
 [1] TRUE 
 table(duplicated(diris)) 

   FALSE  TRUE  
     3   147 

   ##Code With Key Removed 
 haskey(diris) 
 [1] FALSE 
 table(duplicated(diris)) 

   FALSE  TRUE  
   149     1  
 anyDuplicated(diris) 
 [1] 79 
 diris[77:80] 
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
 1:          5.8         2.7          3.9         1.2 versicolor 
 2:          5.8         2.7          5.1         1.9  virginica 
 3:          5.8         2.7          5.1         1.9  virginica 
 4:          5.8         2.6          4.0         1.2 versicolor  

    If we return our  key  to our data set, the last function we discuss shows just those three rows that are 
  unique()   . If the data set were unkeyed, the unique function would remove only row  79 : 

   unique(diris) 
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
 1:          4.3         3.0          1.1         0.1     setosa 
 2:          4.9         2.4          3.3         1.0 versicolor 
 3:          4.9         2.5          4.5         1.7  virginica 

   As we have shown in this section, one of the benefits of having a data table is the ability to define a key. 
The key should be chosen to represent the true uniqueness of a data table. Now, in some types of data, the 
 key  might be obvious. Analysis of employee records would likely use employee identity numbers or perhaps 
social security numbers. However, in other scenarios such as this one, the key might not be so obvious. 
Indeed, as we see in the preceding results of the  unique()  call on our keyed  diris  data table, we get only 
three rows returned. That may not truly represent any genuine uniqueness. In that case, it may benefit us to 
have more than one column used to create the key, although which columns are relevant depends entirely 
on the data available and the goals of our final analysis. We leave such musings behind for the moment, as 
we turn our attention to accessing specific parts of our data.  
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      Selecting and Subsetting Data   
     Using the First Formal 
 Data tables were built to easily and quickly access data. Part of the way we achieve this is by not having 
formal row names. Indeed, part of what a key does could be considered providing a useful row name rather 
than an arbitrary index. The overall format for data table objects is of the form  Data.Table[i, j, by] , 
where  i  expects row information. In particular, data tables are somewhat self-aware, in that they understand 
their column names as variables without using the  $  operator. If a column variable is not named, then it is 
imagined that we are attempting to call by row, such as in the following bit of code: 

 ■   Note    Rows from a data table are commonly selected by passing a vector containing one of the following: 
(1) numbers indicating the rows to choose,  d[1:5] , (2) negative numbers indicating the rows to exclude, 
 d[-(1:5)] , (3) a logical vector  TRUE / FALSE  indicating whether each row should be included,  d[v == 1] , often 
as a logical test using a column,  v , from the data set.  

   diris[1:5] 
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
 1:          4.3         3.0          1.1         0.1  setosa 
 2:          4.4         3.2          1.3         0.2  setosa 
 3:          4.4         3.0          1.3         0.2  setosa 
 4:          4.4         2.9          1.4         0.2  setosa 
 5:          4.5         2.3          1.3         0.3  setosa 

   Notice that if this were a   data frame   , we would have gotten the entire data frame, because we would 
have been calling for columns and we have only five columns. Here, in  data table  world, because we have 
not called for a specific column name, we get the first five rows instead. As with increasing or decreasing, 
we can also perform an opposite selection via the  -  operator. In this case, by asserting that we want the 
complement of rows  1:148 , we get just the last two rows. Notice the row numbers on the left side. These are 
rows  149  and  150 , yet, because the data table is not concerned with row names, they are renumbered on the 
fly as they print to our screen. It is wise to use caution when selecting rows in a data table. 

   diris[-(1:148)] 
    Sepal.Length Sepal.Width Petal.Length Petal.Width   Species 
 1:          7.7         2.6          6.9         2.3 virginica 
 2:          7.9         3.8          6.4         2.0 virginica 

   More typically, we select by column names or by key. As we have set our key to   Species   , it becomes 
very easy to select just one species. We simply ask for the character string to match. Now, at the start of this 
chapter, we made sure that species were character strings. The reason for that choice is clear in the following 
code, where being able to readily select our desired key values is quite handy. Notice that the second 
command uses the negation operator,  ! , to assert that we want to select all key elements that are not part of 
the character string we typed: 

    diris["setosa"] 
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
  1:          4.3         3.0          1.1         0.1  setosa 
  2:          4.4         3.2          1.3         0.2  setosa 
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  3:          4.4         3.0          1.3         0.2  setosa 
 ---                                                           
 48:          5.7         4.4          1.5         0.4  setosa 
 49:          5.7         3.8          1.7         0.3  setosa 
 50:          5.8         4.0          1.2         0.2  setosa 

   diris[!"setosa"] 
      Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
   1:          4.9         2.4          3.3         1.0 versicolor 
   2:          5.0         2.3          3.3         1.0 versicolor 
   3:          5.0         2.0          3.5         1.0 versicolor 
  ---                                                              
  98:          7.7         2.8          6.7         2.0  virginica 
  99:          7.7         2.6          6.9         2.3  virginica 
 100:          7.9         3.8          6.4         2.0  virginica 

    Of course, while we have chosen so far to use key elements, that is by no  means   required. Logical 
indexing is quite natural with any of our columns. The overall format compares elements of the named 
column to the logical tests set up. The final result shows only the subset of rows that evaluated to  TRUE . For 
inequalities, multiple arguments, and strict equality (in essence, the usual comparison operators), data 
tables work as you would expect. Also, note again with data tables, we do not need to reference in which 
object the variable  Sepal.   Length       is. It evaluates within the data table by default. 

    diris[Sepal.Length < 5] 
     Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
  1:          4.3         3.0          1.1         0.1     setosa 
  2:          4.4         3.2          1.3         0.2     setosa 
  3:          4.4         3.0          1.3         0.2     setosa 
 ---                                                              
 20:          4.9         3.0          1.4         0.2     setosa 
 21:          4.9         2.4          3.3         1.0 versicolor 
 22:          4.9         2.5          4.5         1.7  virginica 

   diris[Sepal.Length < 5 & Petal.Width < .2] 
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
 1:          4.3         3.0          1.1         0.1  setosa 
 2:          4.8         3.0          1.4         0.1  setosa 
 3:          4.9         3.6          1.4         0.1  setosa 
 4:          4.9         3.1          1.5         0.1  setosa 

   diris[Sepal.Length == 4.3 | Sepal.Length == 4.4] 
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
 1:          4.3         3.0          1.1         0.1  setosa 
 2:          4.4         3.2          1.3         0.2  setosa 
 3:          4.4         3.0          1.3         0.2  setosa 
 4:          4.4         2.9          1.4         0.2  setosa 

    There are, however, some new operators. In the preceding code, we typed a bit too much because we 
repeated  Sepal.Length . Thinking forward to what data tables store, imagine that we have a list of employees 
that we occasionally modify. We might simply store an employee’s unique identifier to that list, and pull from 
our data table as needed. Of course, in our example here, we have sepal lengths rather than employees, and 
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we want just the rows that have the lengths of interest in our list. The command is  %in%  and takes a column 
name on the left and a vector on the right. Naturally, we may want the complement of such a group, in which 
case we use the negation operator. We show both results in the following code: 

   interest <- c(4.3, 4.4) 
 diris[Sepal.Length %in% interest] 
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
 1:          4.3         3.0          1.1         0.1  setosa 
 2:          4.4         3.2          1.3         0.2  setosa 
 3:          4.4         3.0          1.3         0.2  setosa 
 4:          4.4         2.9          1.4         0.2  setosa 
 diris[!Sepal.Length %in% interest] 
      Sepal.Length Sepal.Width Petal.Length Petal.Width   Species 
   1:          4.5         2.3          1.3         0.3    setosa 
   2:          4.6         3.6          1.0         0.2    setosa 
   3:          4.6         3.4          1.4         0.3    setosa 
  ---                                                             
 144:          7.7         2.8          6.7         2.0 virginica 
 145:          7.7         2.6          6.9         2.3 virginica 
 146:          7.9         3.8          6.4         2.0 virginica 

        Using the Second Formal 
 Thus far, we have mentioned that data tables do not have native row names, and yet, we have essentially 
been selecting specific rows in a variety of ways. Recall that our generic layout  Data.Table[i, j, by]        allows 
us to select objects of columns in the first formal. We turn our attention to the second formal location of  j , 
with a goal to select only some columns rather than all columns. Keep in mind, data tables presuppose that 
variables passed within them exist in the environment of the data table. Thus, it becomes quite easy to ask 
for all the variables in a single column. 

 ■   Note    Variables are selected by typing the unquoted variable name,  d[, variable] , or multiple variables 
separated by commas within,  .() ,  d[, .(v1, v2)] .  

    diris[,Sepal.Length] 
   [1] 4.3 4.4 4.4 4.4 4.5 4.6 4.6 4.6 4.6 4.7 4.7 4.8 4.8 4.8 4.8 4.8 
  [17] 4.9 4.9 4.9 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.1 
  [33] 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.3 5.4 5.4 5.4 5.4 5.4 5.5 5.5 5.7 
  [49] 5.7 5.8 4.9 5.0 5.0 5.1 5.2 5.4 5.5 5.5 5.5 5.5 5.5 5.6 5.6 5.6 
  [65] 5.6 5.6 5.7 5.7 5.7 5.7 5.7 5.8 5.8 5.8 5.9 5.9 6.0 6.0 6.0 6.0 
  [81] 6.1 6.1 6.1 6.1 6.2 6.2 6.3 6.3 6.3 6.4 6.4 6.5 6.6 6.6 6.7 6.7 
  [97] 6.7 6.8 6.9 7.0 4.9 5.6 5.7 5.8 5.8 5.8 5.9 6.0 6.0 6.1 6.1 6.2 
 [113] 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.4 6.4 6.4 6.4 6.4 6.5 6.5 6.5 6.5 
 [129] 6.7 6.7 6.7 6.7 6.7 6.8 6.8 6.9 6.9 6.9 7.1 7.2 7.2 7.2 7.3 7.4 
 [145] 7.6 7.7 7.7 7.7 7.7 7.9 

   is.data.table(diris[,Sepal.Length]) 
 [1] FALSE 
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    On the other hand, as you can see in the preceding vector return, entering a single column name does not 
return a data table. If a data table return is required, this may be solved in more than one way. Recall that the data 
table strives to be both computationally fast and programmatically fast. We extract single or multiple columns 
while retaining the data table structure by accessing them in a list. This common desire to pass a  list()  as an 
argument for data has a clear, shorthand function call in the data table of  .()    . We show in the following code that 
we may pass a list with one or more elements calling out specific column names. Both return data tables. 

    diris[, .(Sepal.Length)] 
      Sepal.Length 
   1:          4.3 
   2:          4.4 
   3:          4.4 
  ---              
 148:          7.7 
 149:          7.7 
 150:          7.9 

   diris[, .(Sepal.Length, Sepal.Width)] 
      Sepal.Length Sepal.Width 
   1:          4.3         3.0 
   2:          4.4         3.2 
   3:          4.4         3.0 
  ---                          
 148:          7.7         2.8 
 149:          7.7         2.6 
 150:          7.9         3.8 

         Using the  Second and Third Formals   
 We have been using the column names as variables that may be directly accessed. They evaluate within 
the frame of our data table  diris . This feature may be turned on or off by the  with  argument that is one of 
our options for the last formal in our generic layout  Data.Table[i, j, by] . The default value is  with = 
TRUE , where default behavior is to evaluate the  j  formal within the frame of our data table  diris . Changing 
the value to  with = FALSE  changes the default behavior. This difference is similar to what happens when 
working with R interactively. We assign the text,  example , to a variable,  x . If we type  x  without quotes at the 
R console, R looks for an object named  x . If we type  "x"  in quotes, R treats it not as the name of an R object 
but as a character string. 

    x <- "example" 

   x 
 [1] "example" 

   "x" 
 [1] "x" 

    When  with = TRUE  (the default), data tables behave like the interactive R console. Unquoted variable 
names are searched for as variables within the data table. Quoted variable names or numbers are evaluated 
literally as vectors in their own right. When  with = FALSE , data tables behave more like data frames, and 
instead of treating numbers or characters as vectors in their own right, search for the column name or 
position that matches them. In this context then, our data table expects  j  to be either a  column   position in 
numeric form or a character vector of the column name(s). In both cases, data tables are still returned. 
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    diris[, 1, with = FALSE] 
      Sepal.Length 
   1:          4.3 
   2:          4.4 
   3:          4.4 
  ---              
 148:          7.7 
 149:          7.7 
 150:          7.9 

   diris[, "Sepal.Length", with = FALSE] 
      Sepal.Length 
   1:          4.3 
   2:          4.4 
   3:          4.4 
  ---              
 148:          7.7 
 149:          7.7 
 150:          7.9 

    This becomes a very useful feature if columns need to be selected dynamically. Character strings pass to 
data table via variables, such as in the following code:    

   v <- "Sepal.Length" 
 diris[, v, with = FALSE] 
      Sepal.Length 
   1:          4.3 
   2:          4.4 
   3:          4.4 
  ---              
 148:          7.7 
 149:          7.7 
 150:          7.9 

   Of course, if we do not turn off the default behavior via the third formal, this may lead to unexpected 
results. Caution is required to ensure that you get the data you seek. However, remember what each of these 
return; the results that follow are not, in fact, unfortunate or mistakes. They prove to be quite useful. 

   diris[, v] 
 [1] "Sepal.Length" 
 diris[, 1] 
 [1] 1 

   As you have seen, we may call out one or more columns in a variety of ways, depending on our needs. 
Recalling the useful notation of  -  to  subtract  from the data table, we are also able to remove one or more 
columns from our data table, giving us access to all the rest. Notice in particular that we could use our 
variable  v  to hold multiple columns if necessary, thus allowing us to readily keep a list of columns that need 
removing. For instance, this can be used to remove sensitive information in data that goes from being for 
internal use only to being available for external. In the following subtraction examples, we ask for the first 
row in all cases to save space and ink: 
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   diris[1, -"Sepal.Length", with=FALSE] 
    Sepal.Width Petal.Length Petal.Width Species 
 1:           3          1.1         0.1  setosa 
 diris[1, !"Sepal.Length", with=FALSE] 
    Sepal.Width Petal.Length Petal.Width Species 
 1:           3          1.1         0.1  setosa 
 diris[1, -c("Sepal.Length", "Petal.Width"), with=FALSE] 
    Sepal.Width Petal.Length Species 
 1:           3          1.1  setosa 
 diris[1, -v, with=FALSE] 
    Sepal.Width Petal.Length Petal.Width Species 
 1:           3          1.1         0.1  setosa 

   Contrastingly, on occasion, we do want to return our column as a vector as with  diris[,Sepal.
Length].  In that case, there are easy-enough ways to gain access to that vector. Here, we combine all our 
function call examples with the  head()  function to truncate output. Notice that the  second   example is 
convenient if you need variable access to that column as a vector, while the last reminds us that data tables 
 build   on data frames: 

   head(diris[["Sepal.Length"]]) # easy if you have a R variable 
 [1] 4.3 4.4 4.4 4.4 4.5 4.6 
 head(diris[[v]]) # easy if you have a R variable 
 [1] 4.3 4.4 4.4 4.4 4.5 4.6 
 head(diris[, Sepal.Length]) # easy to type 
 [1] 4.3 4.4 4.4 4.4 4.5 4.6 
 head(diris$Sepal.Length) # easy to type 
 [1] 4.3 4.4 4.4 4.4 4.5 4.6 

          Variable Renaming and Ordering   
 Data tables come with variables and a column order. On occasion, it may be desirable to change that order 
or rename variables. In this section, we show some techniques to do precisely that, keeping our comments 
brief and letting the code do the talking. 

 ■   Note    Variable names in data tables can be viewed by using  names(data) , changed by using 
 setnames(data, oldnames, newnames) , and reordered by using  setnames(data, neworder) .  

 While we have not yet used this function in this book,  names()  is part of R’s base code and is a generic 
function. Data tables have only column names, so the function call  colnames()  in the  base  package is also 
going to return the same results: 

   names(diris) 
 [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width" "Species"      
 colnames(diris) 
 [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width" "Species"    
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   For objects in the base code of R, such as a data frame,  names()  can even be used to set new values. 
However, data tables work differently and use a different function to be memory efficient. Remember, data 
tables avoid copying data whenever possible and instead simply change the reference pointers. Normally, 
renaming an object in R would copy the data, which both takes time to accomplish and takes up space in 
memory. The function call for data tables is  setnames() , which takes formal arguments of the data table, the 
old column name(s), and the new column name(s): 

   setnames(diris, old = "Sepal.Length", new = "SepalLength") 
 names(diris) 
 [1] "SepalLength"  "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"   

   We could have also referred to the old column by numeric position rather than variable name. This can 
be convenient when names are long, or the data’s position is known in advance: 

   setnames(diris, old = 1, new = "SepalL") 
 names(diris) 
 [1] "SepalL"       "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"      

   Additionally, columns may be fully  reordered  . Again, we prefix our command with  set , as the 
command  setcolorder()  sets the column order while avoiding any copying of the underlying data. All 
that changes is the order of the pointers to each column. Thus, this is a fast command for data tables that 
depends on only the number of columns rather than on the number of elements within a column. 

   setcolorder(diris, c("SepalL", "Petal.Length", "Sepal.Width", "Petal.Width", "Species")) 
 diris 
      SepalL Petal.Length Sepal.Width Petal.Width   Species 
   1:    4.3          1.1         3.0         0.1    setosa 
   2:    4.4          1.3         3.2         0.2    setosa 
   3:    4.4          1.3         3.0         0.2    setosa 
  ---                                                       
 148:    7.7          6.7         2.8         2.0 virginica 
 149:    7.7          6.9         2.6         2.3 virginica 
 150:    7.9          6.4         3.8         2.0 virginica 

   As with  setnames() ,  setcolorder()  may be used with numeric positions rather than variable names. 
We mention here as well that these are all done via reference changes, and our data table  diris  remains 
keyed throughout all of this. 

   v <- c(1, 3, 2, 4, 5) 
 setcolorder(diris, v) 
 diris 
      SepalL Sepal.Width Petal.Length Petal.Width   Species 
   1:    4.3         3.0          1.1         0.1    setosa 
   2:    4.4         3.2          1.3         0.2    setosa 
   3:    4.4         3.0          1.3         0.2    setosa 
  ---                                                       
 148:    7.7         2.8          6.7         2.0 virginica 
 149:    7.7         2.6          6.9         2.3 virginica 
 150:    7.9         3.8          6.4         2.0 virginica 



CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

127

        Computing on  Data and Creating Variables   
 We next turn our attention to creating new variables within the data table. Thinking back to a  for  loop 
structure, the goal would be to step through each row of our data table and make some analysis or change. 
Data table has very efficient code to do precisely this without formally calling a  for  loop or even using the 
 *apply()  functions. By  efficient , we mean faster than either of those two methods in all, or almost all, cases. 
To get us started on solid ground, we go ahead and re-create and rekey our data table based on the original 
iris data set to remove any changes we made in the prior sections: 

   diris <- as.data.table(iris) 
 setkey(diris, Species) 

 ■     Note    New variables are created in a data table by using the  :=  operator in the  j  formal,  data[, newvar 
:= value] . Variables from the data set can be used as well as using functions.  

 Creating a new variable in a data table is creating a new column. Because of that, we operate in the 
second formal, or  j , area of our generic structure  Data.Table[i, j, by] . Column creation involves using 
the assignment by reference  :=  operator. Column creation can take different forms depending on what we 
wish to create. We may create just a single column and populate it with zeros, create multiple columns with 
different variables, or even create a new column based on calculations on existing columns. Notice that all 
these are in the second formal argument location in our data table call, and pay special attention to the way 
we create multiple columns at once, named  X1  and  X2,  by using  .()  to pass a vector of column names on the 
left and a list of column values on the right-hand side: 

   diris[, V0 := 0] 
 diris[, Sepal.Length := NULL] 
 diris[, c("X1", "X2") := .(1L, 2L)] 
 diris[, V := Petal.Length * Petal.Width] 
 diris 
      Sepal.Width Petal.Length Petal.Width   Species V0 X1 X2     V 
   1:         3.5          1.4         0.2    setosa  0  1  2  0.28 
   2:         3.0          1.4         0.2    setosa  0  1  2  0.28 
   3:         3.2          1.3         0.2    setosa  0  1  2  0.26 
  ---                                                               
 148:         3.0          5.2         2.0 virginica  0  1  2 10.40 
 149:         3.4          5.4         2.3 virginica  0  1  2 12.42 
 150:         3.0          5.1         1.8 virginica  0  1  2  9.18 

   Assignment to  NULL  deletes columns. Full deletion in this way removes any practical ability to restore 
that column, but it is fast. Another option, of course, would be to use  -  to generate a subset of the original 
data table and then copy that to a second data table. The difference is in speed and memory usage. Making 
a copy may almost double your memory usage and takes linear time to copy based on total elements, but 
making a copy keeps the original around if you want or need to go back. It is possible to delete more than 
one column at a time via assignment to  NULL . We show just the first row to verify that the deletion was 
successful: 

    diris[, c("V", "V0") := NULL]  
  diris[1]  
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    Sepal.Width Petal.Length Petal.Width Species X1 X2 
 1:         3.5          1.4         0.2  setosa  1  2 

   It is of great benefit to be able to generate new columns based on computations involving current 
columns. Additionally, this process can be readily modified by commands in the first formal area that allows 
us to select key data results. Recall that our key is of species, one of which is   setosa   . We re-create our deleted 
 V  column with the multiplication of two current columns and do so only for rows with the  setosa Species  
key. Notice that rows not matching the key get  NA  as filler. 

   diris["setosa", V := Petal.Length * Petal.Width] 
 unique(diris) 
    Sepal.Width Petal.Length Petal.Width    Species X1 X2    V 
 1:         3.5          1.4         0.2     setosa  1  2 0.28 
 2:         3.2          4.7         1.4 versicolor  1  2   NA 
 3:         3.3          6.0         2.5  virginica  1  2   NA 

   However, if we later decide that  virginica  also deserves some values in the  V  column, that can be done, 
and it need not involve the same calculation as used for  setosa . We again use the  unique()  function call 
to look only at the first example of each species. While this example is artificial, imagine a  distance  column 
being created based on coordinates already stored in the data. Based on key values, perhaps some distance 
calculations ought to be in Manhattan length, while others might naturally be in Euclidean length. 

   diris["virginica", V := sqrt(Petal.Length * Petal.Width)] 
 unique(diris) 
    Sepal.Width Petal.Length Petal.Width    Species X1 X2    V 
 1:         3.5          1.4         0.2     setosa  1  2 0.28 
 2:         3.2          4.7         1.4 versicolor  1  2   NA 
 3:         3.3          6.0         2.5  virginica  1  2 3.87 

   Such calculations are not limited to column creation. Suppose we want to know the mean of all values 
in  Sepal.Width . That calculation can be performed in several ways, each of which may be advantageous 
depending on your final goal. Recalling that data tables are data frames as well, we could call our arithmetic 
mean function on a suitable data-frame-style call. However, because we want to find the arithmetic mean 
of the values of a particular column, we could also call it from the second formal. Remember when we 
mentioned caution was required for items in this  j  location? It is possible to access values from  j  as vectors. 
Contrastingly, should we wish to return a data table, we, of course, can. All three of these return the same 
mean, after all. However, it is the last that may be the most instructive. 

   mean(diris$Sepal.Width) 
 [1] 3.1 
 diris[, mean(Sepal.Width)] 
 [1] 3.1 
 diris[, .(M = mean(Sepal.Width))] 
      M 
 1: 3.1 

   The last is perhaps best, because it can readily expand. Suppose we want to know the arithmetic mean 
as in the preceding code, but segregated across our species. This would call for using both the second and 
third formals. Suppose we also want to know more than just one column’s mean. Well, the  .()  notation 
would allow us to have a convenient way to store that new information in a data table format, thus making it 
ready to be used for analysis. Notice that we now have the intra-species means, and in the second bit of our 
code, we have it for more than one column, and in both cases, the returned results are data tables. Thus, we 
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could access information from these new constructs just as we have been doing all along with  diris . Much 
like the hole Alice falls down to reach Wonderland, it becomes a question of “How deep do you want to go?” 
rather than “How deep can we go?” 

   diris[, .(M = mean(Sepal.Width)), by = Species] 
       Species   M 
 1:     setosa 3.4 
 2: versicolor 2.8 
 3:  virginica 3.0 
 diris[, .(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)), by = Species] 
       Species  M1   M2 
 1:     setosa 3.4 0.25 
 2: versicolor 2.8 1.33 
 3:  virginica 3.0 2.03 

   To see the full power of these new data tables we are building, suppose we want to see whether there’s 
any correlation between the means of species’ sepal and petal widths. Further imagine that we might find 
a use for the mean data at some future point beyond the correlation. We can treat the second data table in 
the preceding code snippet as a data table (because it is), and use the second formal to run correlation. This 
code follows a  Data.Table[ i, j, by] [ i, j, by]  layout, which sounds rather wordy written out; take a 
look at the following code to see how it works: 

   diris[, .(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)), by = Species][, .(r = cor(M1, 
M2))] 
        r 
 1: -0.76 

   Variables may create variables. In other words, a new variable may be created that indicates whether 
a petal width is greater or smaller than the median petal width for that particular species. In the code that 
follows,  median(Petal.Width)  is calculated by  Species , and the   TRUE    or  FALSE  values are stored in the newly 
created column  MedPW  for all 150 rows: 

   diris[, MedPW := Petal.Width > median(Petal.Width), by = Species] 
 diris 
      Sepal.Width Petal.Length Petal.Width   Species X1 X2    V MedPW 
   1:         3.5          1.4         0.2    setosa  1  2 0.28 FALSE 
   2:         3.0          1.4         0.2    setosa  1  2 0.28 FALSE 
   3:         3.2          1.3         0.2    setosa  1  2 0.26 FALSE 
  ---                                                                 
 148:         3.0          5.2         2.0 virginica  1  2 3.22 FALSE 
 149:         3.4          5.4         2.3 virginica  1  2 3.52  TRUE 
 150:         3.0          5.1         1.8 virginica  1  2 3.03 FALSE 

   Just as it was possible to have multiple arguments passed to the second formal, it is possible to have 
multiple arguments passed to the third via the same  .()  list function call. Again, because what is returned is a 
data table, we can also treat it as one with the brackets and perform another layer of calculations on our results: 

    diris[, .(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)), by = .(Species, MedPW)] 
       Species MedPW  M1   M2 
 1:     setosa FALSE 3.4 0.19 
 2:     setosa  TRUE 3.5 0.38 
 3: versicolor  TRUE 3.0 1.50 
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 4: versicolor FALSE 2.6 1.19 
 5:  virginica  TRUE 3.1 2.27 
 6:  virginica FALSE 2.8 1.81 

   diris[, .(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)), by = .(Species, MedPW)] 
               [, .(r = cor(M1, M2)), by = MedPW] 
    MedPW     r 
 1: FALSE -0.78 
 2:  TRUE -0.76 

    Performing computations in the  j  argument is one of the most powerful features of data tables. For 
example, we have shown relatively simple computations of means, medians, and correlations. However, nearly 
any function can be used. The only caveat is that if you want the output also to be a data table, the function 
should return or be manipulated to return output appropriate for a data table. For instance, a linear model 
object that is a list of varying length elements would be messy to coerce into a data table, as it is not tabular 
data. However, you could easily extract regression coefficients as a vector, and that could  become   a data table.  

     Merging and Reshaping Data 
 Managing data often involves a desire to combine data from different sources into a single object or to 
reshape data in one object to a different format. When combining data, there are three distinct types of  data 
merge : one-to-one, one-to-many (or many-to-one), and many-to-many. You’ll learn about these types in this 
section. The general process is to look at data from two or more collections and then compare keys, with a 
goal to successfully connect information by row. This is called  horizontal merging  because it increases the 
horizontal length of the target data set. 

      Merging Data   
 Merges in which each key is unique per data set are of the  one-to-one  form. An example is merging data sets 
keyed by  social security number (SSN)   that contain official mailing addresses in one and preferred e-mails 
in another. In that case, we would expect the real-world data set to have one address per SSN, and the 
preferred e-mail data set to have only one row per SSN. Contrastingly, a  one-to-many  or  many-to-one  merge 
might occur if we had our official mailing address data set as well as all known e-mail addresses, where each 
new e-mail address tied to one SSN had its row. If the goal were to append all e-mails to a single real-world 
address row, it would be many-to-one, and column names such as  Email001  and  Email002  might collapse to 
a single row. On the other hand, if the goal were to append a real-world address to each e-mail, then perhaps 
only one new column would be added, although the data copies to each row of the e-mail address. Finally, 
there can be  many-to many- merges, in which multiple rows of data append to multiple rows. Figure  7-1  
shows examples of these three types of data merges.  
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 It is worth noting that the difficulty with merging may well be in understanding what is being done 
rather than understanding the code itself. For data tables, the function call is  merge() , and arguments 
control the type of merge that is performed. Due to the keyed nature of data tables, merging by the key 
choice can be quite efficient. Choosing to merge by nonkey columns is also possible, but will not be as 
efficient computationally. 

 Before getting into the first merge code  example  , we generate four data tables with information 
unique to each. All are keyed by  Species  from the iris data set. In real life, such code is not required 
because normally data tables come already separated. This code is included only for reproducibility of the 
merge results. Also note that these are very short data sets; the goal here is for them to be viewed and fully 
understood independently. This provides the best environment from which to understand the final merge 
results. 

    diris <- diris[, .(Sepal.Width = Sepal.Width[1:3]), keyby = Species] 

   diris2 <- unique(diris) 

  Figure 7-1.    Some imaginary data showing how various merges might occur       
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   dalt1 <- data.table( 
   Species = c("setosa", "setosa", "versicolor", "versicolor", 
               "virginica", "virginica", "other", "other"), 
   Type = c("wide", "wide", "wide", "wide", 
            "narrow", "narrow", "moderate", "moderate"), 
   MedPW = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE)) 
 setkey(dalt1, Species) 

   dalt2 <- unique(dalt1)[1:2] 

   diris 
       Species Sepal.Width 
 1:     setosa         3.5 
 2:     setosa         3.0 
 3:     setosa         3.2 
 4: versicolor         3.2 
 5: versicolor         3.2 
 6: versicolor         3.1 
 7:  virginica         3.3 
 8:  virginica         2.7 
 9:  virginica         3.0 

   diris2 
       Species Sepal.Width 
 1:     setosa         3.5 
 2: versicolor         3.2 
 3:  virginica         3.3 

   dalt1 
       Species     Type MedPW 
 1:      other moderate  TRUE 
 2:      other moderate FALSE 
 3:     setosa     wide  TRUE 
 4:     setosa     wide FALSE 
 5: versicolor     wide  TRUE 
 6: versicolor     wide FALSE 
 7:  virginica   narrow  TRUE 
 8:  virginica   narrow FALSE 

   dalt2 
    Species     Type MedPW 
 1:   other moderate  TRUE 
 2:  setosa     wide  TRUE 

 ■  Note A one-to-one merge requires two keyed data tables, with each row having a unique key:  

     merge(x = dataset1, y = dataset2) . The merge exactly matches a row from one data table to the other, 
and the result includes all the columns (variables) from both data tables. Whether nonmatching keys are 
included is controlled by the  all  argument, which defaults to  FALSE  to include only matching keys, but may be 
set to  TRUE  to include nonmatching keys as well. 
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 In a  one-to-one merge ,    there is at most one row per key. In the case of  diris2,  there are three rows, and 
each has a unique species. Similarly, in  dalt2 , there are two rows, and each has a unique species. The only 
common key between these two data sets is  setosa . A  merge()  call on this one-to-one data compares keys 
and by default creates a new data table that combines only those rows that have matching keys. In this case, 
merging yields a tiny data table with one row. The original two data tables are not changed in this operation. 
The call to  merge()  takes a minimum of two arguments; the first is  x , and the second is  y , which represent 
the two data sets to be merged. 

   merge(diris2, dalt2) 
    Species Sepal.Width Type MedPW 
 1:  setosa         3.5 wide  TRUE 

   Notice that what has been created is a complete data set. However, it is quite small, because the only 
results returned were those for which full and complete matches were possible. Depending on the situation, 
different results may be desired from a one-to-one merge. Perhaps all rows of  diris2  are wanted regardless 
of whether they match  dalt2 . Conversely, the opposite may be the case, and all rows of  dalt2  may be 
desired regardless of whether they match  diris2 . Finally, to get all possible data, it may be desirable to keep 
all rows that appear in either data set. These objectives may be accomplished by variations of the  all = 
TRUE  formal argument. In particular, note how to control which single data set is designated as essential to 
keep via the  .x  or  .y  suffix to  all . If data is not available for a specific row or variable, the cell is filled with a 
missing value ( NA ). 

   merge(diris2, dalt2, all.x = TRUE) 
       Species Sepal.Width Type MedPW 
 1:     setosa         3.5 wide  TRUE 
 2: versicolor         3.2   NA    NA 
 3:  virginica         3.3   NA    NA 
 merge(diris2, dalt2, all.y = TRUE) 
    Species Sepal.Width     Type MedPW 
 1:   other          NA moderate  TRUE 
 2:  setosa         3.5     wide  TRUE 
 merge(diris2, dalt2, all = TRUE) 
       Species Sepal.Width     Type MedPW 
 1:      other          NA moderate  TRUE 
 2:     setosa         3.5     wide  TRUE 
 3: versicolor         3.2       NA    NA 
 4:  virginica         3.3       NA    NA 

 ■     Note    A one-to-many or many-to-one merge involves one data table in which each row has a unique key 
and another data table in which multiple rows may share the same key. Rows from the data table with unique 
keys are repeated as needed to match the data table with repeated keys. In R, identical code is used as for a 
one-to-one merge:  merge(x = dataset1, y = dataset2) .  

 Merges involving  diris  and   dalt2    are of the one-to-many or many-to-one variety. Again, the behavior 
wanted in the returned results may be controlled when it comes to keeping only full matches or allowing 
various flavors of incomplete data to persist through the merge. The three examples provided are not 
exhaustive, yet they are representative of the different possibilities. The last two cases may not be desirable, 
as  other  has only one row, whereas most species have three. 
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    merge(diris, dalt2) 
    Species Sepal.Width Type MedPW 
 1:  setosa         3.5 wide  TRUE 
 2:  setosa         3.0 wide  TRUE 
 3:  setosa         3.2 wide  TRUE 

   merge(diris, dalt2, all.y = TRUE) 
    Species Sepal.Width     Type MedPW 
 1:   other          NA moderate  TRUE 
 2:  setosa         3.5     wide  TRUE 
 3:  setosa         3.0     wide  TRUE 
 4:  setosa         3.2     wide  TRUE 

   merge(diris, dalt2, all = TRUE) 
        Species Sepal.Width     Type MedPW 
  1:      other          NA moderate  TRUE 
  2:     setosa         3.5     wide  TRUE 
  3:     setosa         3.0     wide  TRUE 
  4:     setosa         3.2     wide  TRUE 
  5: versicolor         3.2       NA    NA 
  6: versicolor         3.2       NA    NA 
  7: versicolor         3.1       NA    NA 
  8:  virginica         3.3       NA    NA 
  9:  virginica         2.7       NA    NA 
 10:  virginica         3.0       NA    NA 

    So far, one-to-one and one-to-many merges have been demonstrated. These types of merges, or joins, 
have a final, merged number of rows that is at most the sum of the rows of the two data tables. As long as at 
least one of the dimensions of the merge are capped to one, there is no concern. However, in a  many-to-many  
scenario, the upper limit of size becomes the product of the row count of the two data tables. In many research 
contexts, many-to-many merges are comparatively rare. Thus, the default behavior of a merge for data tables is 
to prevent such a result, and  allow.cartesian = FALSE  is the mechanism through which this is enforced as a 
formal argument of  merge() . The same is not true for other data structures but is unique to data tables. 

 Attempting to merge  diris  and  dalt1  results in errors from this default setting, which disallows merged 
table rows to be larger than the total  sum  of the rows. With three  setosa  keys in  diris  and two  setosa  keys 
in  dalt1 , a merged table would result with  3 x 2 = 6  total rows for  setosa  alone. As many-to-many merges 
involve a multiplication of the total number of rows, it is easy to end up with a very large database. Allowing 
this would yield the following results. Notice that this result has only complete rows. 

   merge(diris, dalt1, allow.cartesian = TRUE) 
        Species Sepal.Width   Type MedPW 
  1:     setosa         3.5   wide  TRUE 
  2:     setosa         3.5   wide FALSE 
  3:     setosa         3.0   wide  TRUE 
  4:     setosa         3.0   wide FALSE 
  5:     setosa         3.2   wide  TRUE 
  6:     setosa         3.2   wide FALSE 
  7: versicolor         3.2   wide  TRUE 
  8: versicolor         3.2   wide FALSE 
  9: versicolor         3.2   wide  TRUE 
 10: versicolor         3.2   wide FALSE 
 11: versicolor         3.1   wide  TRUE 
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 12: versicolor         3.1   wide FALSE 
 13:  virginica         3.3 narrow  TRUE 
 14:  virginica         3.3 narrow FALSE 
 15:  virginica         2.7 narrow  TRUE 
 16:  virginica         2.7 narrow FALSE 
 17:  virginica         3.0 narrow  TRUE 
 18:  virginica         3.0 narrow FALSE 

   The preceding has only complete rows and is  missing   the  other  species. Allowing all possible 
combinations nets two more rows, for a total of 20. It is an entirely different conversation if the resulting data 
is useful. When merging data, it always pays to consider what types of information are available, and what 
might be needed for a particular bit of analysis. We suppress rows 4 through 19 here:. 

   merge(diris, dalt1, all = TRUE, allow.cartesian = TRUE) 
        Species Sepal.Width     Type MedPW 
  1:      other          NA moderate  TRUE 
  2:      other          NA moderate FALSE 
  3:     setosa         3.5     wide  TRUE 
 --- 
 20:  virginica         3.0   narrow FALSE 

   For all of these, the key is  Species , and that is only one column. Furthermore, it is nonunique. It is also 
possible to have keys based on multiple columns. Recognize that key choice may make all the difference 
between a one-to-one versus a many-to-many merge. Consider the following instructive example, in which 
only a single column is used as the key and the data is merged: 

    d2key1 <- data.table(ID1 = c(1, 1, 2, 2), ID2 = c(1, 2, 1, 2),  X = letters[1:4]) 
 d2key2 <- data.table(ID1 = c(1, 1, 2, 2), ID2 = c(1, 2, 1, 2),  Y = LETTERS[1:4]) 

   d2key1 
    ID1 ID2 X 
 1:   1   1 a 
 2:   1   2 b 
 3:   2   1 c 
 4:   2   2 d 

   d2key2 
    ID1 ID2 Y 
 1:   1   1 A 
 2:   1   2 B 
 3:   2   1 C 
 4:   2   2 D 

   setkey(d2key1, ID1) 
 setkey(d2key2, ID1) 

   merge(d2key1, d2key2) 
    ID1 ID2.x X ID2.y Y 
 1:   1     1 a     1 A 
 2:   1     1 a     2 B 
 3:   1     2 b     1 A 
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 4:   1     2 b     2 B 
 5:   2     1 c     1 C 
 6:   2     1 c     2 D 
 7:   2     2 d     1 C 
 8:   2     2 d     2 D 

    For the merge to be successful with its duplicated column  names  ,  ID2.x  and  ID2.y  were created. The 
fact is, this data should have resulted in only four rows, once merged, because the data in those two columns 
is identical! By setting the key for both data sets to involve both columns  ID1  and  ID2 , not only is the many-
to-many merge reduced to a one-to-one merge, but the data is of a more practical nature. Multiple columns 
being used to key can be especially useful when merging multiple long data sets. For instance, with repeated 
measures on multiple people over time, there could be an ID column for participants and another time 
variable, but both would be used to merge properly. We discuss reshaping data next. 

    setkey(d2key1, ID1, ID2) 
 setkey(d2key2, ID1, ID2) 

   merge(d2key1, d2key2) 
    ID1 ID2 X Y 
 1:   1   1 a A 
 2:   1   2 b B 
 3:   2   1 c C 
 4:   2   2 d D 

          Reshaping Data   
 In addition to being merged, data may be reshaped. Consider our  iris  data set: each row represents a 
unique flower measurement, yet many columns are used for each flower measured. This is an example of 
 wide data . Despite not having a unique key, there are a variety of measurements for each flower (row). Wide 
data may be reshaped to  long data , in which each key appears multiple times and stores variables in fewer 
columns. First, we reset our data to the  iris  data set and create a unique ID to be our key based on the row 
position. Recall that data tables suppress rows, so we add those into their  ID  column by using another useful 
shorthand of data tables, namely  .N  for number of rows: 

   diris <- as.data.table(iris) 
 diris[, ID := 1:.N] 
 setkey(diris, ID) 
 diris 
      Sepal.Length Sepal.Width Petal.Length Petal.Width   Species  ID 
   1:          5.1         3.5          1.4         0.2    setosa   1 
   2:          4.9         3.0          1.4         0.2    setosa   2 
   3:          4.7         3.2          1.3         0.2    setosa   3 
  ---                                                                 
 148:          6.5         3.0          5.2         2.0 virginica 148 
 149:          6.2         3.4          5.4         2.3 virginica 149 
 150:          5.9         3.0          5.1         1.8 virginica 150 
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 ■     Note    Reshaping is used to transform data from wide to long or from long to wide format. In  wide  format, a 
repeatedly measured variable has separate columns, with the column name indicating the assessment. In  long  
format, a repeated variable has only one column, and a second column indicates the assessment or “time.” 
Wide-to-long reshaping is accomplished by using the  melt()  function, which requires several arguments.  

 To reshape long, we  melt()     the data table measure variables into a stacked format, which is based on 
the  reshape2  and  reshape  packages (Wickham, 2007), although there is a  data.table  method for  melt() , 
which is what is dispatched in this case. This function takes several arguments, which we’ll discuss in order. 
To see all the arguments, examine the help:  ?melt.data.table . Note that it is important to specify the exact 
method,  melt.data.table , because the arguments for the generic  melt()  function are different. 

 The first formal,  data , is the name of the data table to be melted, followed by  id.vars , which is where 
the ID variables and any other variable that should not be reshaped long. By default,  id.vars  is any column 
name not explicitly called out in the next formal. Any column name assigned to  id.vars  is not reshaped into 
long form; it is repeated, but left as is. The third formal is for the measure variables, and  measure.vars  uses 
these column names to stack the data. Typically, this is a list with separate character vectors to indicate which 
variables should be stacked together in the long data. The fourth formal is  variable.name , which is the name of 
the new variable that will be created to indicate which level of the  measure.vars  a specific row in the new long 
data set belongs to. In the following example, the first level is for length measurements, while the second level 
corresponds to width measurements of iris flowers. Finally,  value.name  is the name of the  molten  (or long) 
column(s), which are the names of the columns in our long data containing the original wide variables’ values. 

 Describing reshaping and the required arguments is rather complex. It may be easier to compare output 
between the now familiar iris data set and the reshaped, long iris data set, shown here: 

   diris.long <- melt(diris, measure.vars = 
                     list( c("Sepal.Length", "Sepal.Width"), c("Petal.Length", "Petal.

Width")), 
              variable.name = "Type", value.name = c("Sepal", "Petal"), 
              id.vars = c("ID", "Species")) 
 diris.long 
       ID   Species Type Sepal Petal 
   1:   1    setosa    1   5.1   1.4 
   2:   2    setosa    1   4.9   1.4 
   3:   3    setosa    1   4.7   1.3 
  ---                                
 298: 148 virginica    2   3.0   2.0 
 299: 149 virginica    2   3.4   2.3 
 300: 150 virginica    2   3.0   1.8 

   Notice that our data now takes  300  rows because of being melted. The  Type 1  versus  2  may be confusing 
to equate with length versus width measurements for sepals and petals. The  melt()  method for data tables 
defaults to just creating an integer value indicating whether it is the first, second, or third (and so forth) level. 
To make the labels more informative, we use  factor() . Because factor will operate on a column and change 
the row elements of the column, it belongs in the second formal  j  argument of the data table. 



CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

138

   diris.long[, Type := factor(Type, levels = 1:2, labels = c("Length", "Width"))] 
 diris.long 
       ID   Species   Type Sepal Petal 
   1:   1    setosa Length   5.1   1.4 
   2:   2    setosa Length   4.9   1.4 
   3:   3    setosa Length   4.7   1.3 
  ---                                  
 298: 148 virginica  Width   3.0   2.0 
 299: 149 virginica  Width   3.4   2.3 
 300: 150 virginica  Width   3.0   1.8 

   The data set  diris.   long    is a good example of a long data set. It is not, however, the longest possible data 
set from  diris— not that such a thing is necessarily a goal, by any means. However, should  melt()  be called 
on just  diris  along with calling out  id.vars , the resulting data table is perhaps the longest possible form 
of the  iris  data. Just as  id.vars  defaults to any values not in  measure.vars , so too  measure.vars  defaults 
to any values not in  id.vars . As you can also see,  variable.name  and  value.name  default to  variable  and 
 value , respectively. Notice that  diris.long2  has  600  rows, and what were formerly the four columns of sepal 
and petal lengths and widths are now two columns. Also note that when this is done,  melt()  automatically 
sets the values of  variable  to the initial variable names from the data set. 

   diris.long2 <- melt(diris, id.vars = c("ID", "Species")) 
 diris.long2 
       ID   Species     variable value 
   1:   1    setosa Sepal.Length   5.1 
   2:   2    setosa Sepal.Length   4.9 
   3:   3    setosa Sepal.Length   4.7 
  ---                                  
 598: 148 virginica  Petal.Width   2.0 
 599: 149 virginica  Petal.Width   2.3 
 600: 150 virginica  Petal.Width   1.8 

 ■     Note    To reshape data from long to wide, the  dcast()  function is used. Two required arguments are  data  
and  formula , which indicate how the data should be reshaped from long to wide. The formula must indicate 
unique values in a cell, or the data needs to be aggregated within a cell.  

 While  melt()  is used to make wide data long,  dcast()  is used to make long data wide. Without unique 
identifiers for data, multiple values must be aggregated to fit in one cell. Thus, calling our casting function 
without some thought may create unwanted results (although sometimes aggregating multiple values is 
exactly what is desired). Notice that in the second formal,  Species  is called out as the identity key, and 
 variable  is named as the location to find our new column names: 

   dcast(diris.long2, Species ~ variable) 
 Aggregate function missing, defaulting to 'length' 
       Species Sepal.Length Sepal.Width Petal.Length Petal.Width 
 1:     setosa           50          50           50          50 
 2: versicolor           50          50           50          50 
 3:  virginica           50          50           50          50 
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   If this long data is to be better cast to wide, a unique identifier is needed so that the formula creates 
unique cells that contain only one value. Unless aggregating results is desired, for a given variable, the 
 formula  argument should result in a single value, not multiple values. 

 In this case, since there are four possible values that the variable column takes on in the long data, 
as long as there is a unique key that is never duplicated over a specific variable such as  Sepal.Length , the 
cast works out. In other words, if the wide data has a unique key, we can combine that unique key with the 
variable names in the long data, which together will exactly map cells from the long data set back to the wide 
data. The left side of the formula contains the key or ID variable. This side of the formula (left of the tilde, ~) 
may also contain any other variable that does not vary (such as would have been specified using the  id.
vars  argument to  melt()  if the data had initially been reshaped from wide to long). The right-hand side of 
the formula (after the tilde, ~) contains the variable or variables that indicate which row of the long data set 
belongs in which column of the new wide data set. 

 In our long iris data set example, the  ID  and   Species    variables do not vary and so belong on the left 
side. The variable called  variable  indicates whether a particular value in the long data set represents  Sepal.
Length ,  Sepal.Width ,  Petal.Length , or  Petal.Width . Thus, for this example, the formula looks like  ID + 
Species ~ variable : 

   diris.wide2 <- dcast(diris.long2, ID + Species ~ variable) 
 diris.wide2 
       ID   Species Sepal.Length Sepal.Width Petal.Length Petal.Width 
   1:   1    setosa          5.1         3.5          1.4         0.2 
   2:   2    setosa          4.9         3.0          1.4         0.2 
   3:   3    setosa          4.7         3.2          1.3         0.2 
  ---                                                                 
 148: 148 virginica          6.5         3.0          5.2         2.0 
 149: 149 virginica          6.2         3.4          5.4         2.3 
 150: 150 virginica          5.9         3.0          5.1         1.8 

   Going back to the first  diris.long  data with the two-level factor for length and width of sepals and 
petals, it is also possible to cast this back to wide. The call to  dcast()  begins similarly to our previous 
example. We specify the long data set, a formula indicating the  ID  and  Species  variables that are not stacked, 
and the variable,  Type , that indicates what each row of the data set belongs to. 

 In such not-so-long (for lack of a better word) data, we require an additional argument, the  value.var  
formal, to let  dcast()  know which variables in the long data are repeated measures. This can be a character 
vector of every variable in the long data set that will correspond to multiple variables in the wide data set—
in our case,  Sepal  and  Petal , which in the long data contain both lengths and widths, as indicated in the 
 Type  variable. Additionally, the separator must be chosen, as data table column names may have different 
separators. This is selected via the  sep =  formal, and here we use the full stop for continuity’s sake, as that is 
how the variables were labeled in the original wide iris data set. We show merely the  dcast()  command, and 
check that regardless of method, the wide data is recovered via the  all.equal()  function, which checks for 
precisely what it states. To view the results, type  diris.wide  at the console: 

   diris.wide <- dcast(diris.long, ID + Species ~ Type,  
                      value.var = list("Sepal", "Petal"), sep = ".") 
 all.equal(diris.wide2, diris.wide) 
 [1] TRUE 
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         Summary 
 In this chapter, you met one of the two powerful (and more modern) ways of managing data in R. In 
particular, the type of data we manipulate with  data.table  is column and row, or table, data. In the next 
chapter, we delve more deeply into data manipulation. From there, you’ll meet  dplyr , which is the other 
modern way of managing data in R. We will close out this section with a look at databases outside R. Table  7-1  
provides a summary of key functions used in this chapter.      

   Table 7-1.    Key Functions Described in This Chapter   

 Function  What It Does 

  d[i, j, by]   General structure of a call to subset, compute in, or modify a data table. 

  as.data.table()   Coerces a data structure to a data table. 

  setkey()   Takes a data table in the first formal and then creates a key based on the column 
name arguments next passed to the function. 

  haskey()   This function is called on a data table and returns a Boolean value. 

  key()   Returns the data table’s key if it exists. 

  order()   Controls the order to be ascending or descending for the data of a column. 

  tables()   Returns any current data tables currently active. 

  anyDuplicated()   Returns the location of the first duplicated entry. 

  duplicated()   Returns  TRUE  or  FALSE  for all rows to show duplication. Can take a key. 
Otherwise, it is by all columns. 

  unique()   Returns a data table that has only unique rows. Again, these may be specified 
to be specific rows. If there is a key, it is based on the key. If there is no key, it is 
based on all columns. 

  setnames()   Allows column names to be changed. 

  setcolorder()   Allows column order to be adjusted. 

  :=   Assignment operator within a data table. 

  .()   Shorthand for  list() . 

  .N   Shorthand for number of rows in a data table, or number of rows in a subset, 
such as when a compute operation is performed by a grouping variable. 

  merge()   Merges two data tables based on matching key columns. 

  melt()   Converts wide data to long data. 

  dcast()   Converts long data to wide data. 
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    CHAPTER 8   

 Data Munging with data.table                          

 We already introduced the  data.table  package (Dowle, Srinivasan, Short, and Lianoglou, 2015). The 
 data.table  package is the heart of this chapter, covering the basics of accessing, editing, and manipulating 
data under the broad term  data management . Although not glamorous, data management is a critical first 
step to data visualization or analysis. Furthermore, the majority of time on a particular analysis project 
often comes from data management. For example, running a linear model in R takes one line of code, once 
the data is clean and in the expected format.  Data management   is challenging because raw data comes in 
all types, shapes, and formats, and missing data is common. In addition, you may also have to combine or 
merge separate data sources. In this chapter, we go beyond the basic use of  data.table  to more-complex 
data management tasks. 

 There tend to be two stages to this sort of data wrangling.  One-time conversions   are often manual, as 
writing code often is not efficient if it is not reused (for example, changing one or two variable names, or 
renaming a data file to be consistent). For operations needing repetition (for example, renaming or labeling 
hundreds of variables) or working with larger data, more programming is used for data management. Add 
the  stringdist  package (van der Loo, 2014) to your  checkpoint  (Microsoft, 2016); another needed library is 
 foreign  (R Core Team, 2015). We run   checkpoint    as well as code to make data tables print in a neat fashion: 

    library(checkpoint) 
 checkpoint("2016-09-04", R.version = "3.3.1") 

   library(stringsdist) 
 library(data.table) 
 library(foreign) 
 options(width = 70) # only 70 characters per line 

   options(stringsAsFactors = FALSE, 
         datatable.print.nrows = 20, 
         datatable.print.topn = 3,  
         digits = 2)  
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        Data Munging /  Cleaning   
 To obtain data that is of the second stage of munging, we download data from the National Survey of 
Children’s Health, 2003 (ICPSR 4691) at    www.icpsr.umich.edu/icpsrweb/ICPSR/studies/4691     , where 
we chose the Stata data format. We place the file in our working directory and use   read.dta()       to input the 
data to R. After converting it to a data table, we set the key to be the identification number column  IDNUMR : 

   d <- read.dta("ICPSR_04691/DS0001/04691-0001-Data.dta") 
 Warning message: 
 In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels,  : 
   duplicated levels in factors are deprecated 
 d <- as.data.table(d) 
 setkey(d, IDNUMR) 

   To get a sense of the structure of this much data (there are over 300 variables), we use the   str()  
function  . We suppress attributes in order to focus on the column names and the types of data inside each 
column. Setting  strict.width = "cut"  enforces the options we set earlier, and we look at only the first  20  
columns. 

   str(d, give.attr = FALSE, strict.width = "cut", list.len = 20) 
 Classes ‘data.table’ and 'data.frame': 102353 obs. of  301 variables: 
  $ IDNUMR  : int  1 2 3 4 5 6 7 8 9 10 ... 
  $ STATE   : Factor w/ 51 levels "1-AK","2-AL",..: 35 25 45 18 36 37.. 
  $ MSA_STAT: Factor w/ 4 levels "-2 - MISSING",..: 4 4 4 4 4 4 4 4 4.. 
  $ AGEYR_CH: int  12 1 10 7 9 11 9 15 17 1 ... 
  $ TOTKIDS4: Factor w/ 4 levels "1 - 1 CHILD",..: 1 1 1 3 4 2 3 3 1 .. 
  $ AGEPOS4 : Factor w/ 5 levels "1 - ONLY CHILD",..: 1 1 1 4 2 2 3 2.. 
  $ S1Q01   : Factor w/ 8 levels "-4 - PARTIAL INTERVIEW",..: 6 5 6 5.. 
  $ RELATION: Factor w/ 6 levels "-2 - MISSING",..: 3 2 3 3 2 2 2 4 3.. 
  $ TOTADULT: Factor w/ 6 levels "-2 - MISSING",..: 4 3 2 3 2 3 3 2 4.. 
  $ EDUCATIO: Factor w/ 6 levels "-2 - MISSING",..: 4 4 4 4 3 4 4 3 4.. 
  $ PLANGUAG: Factor w/ 5 levels "-2 - MISSING",..: 2 2 2 2 2 2 2 2 2.. 
  $ S2Q01   : Factor w/ 11 levels "-4 - PARTIAL INTERVIEW",..: 5 5 5 .. 
  $ S2Q02R  : int  59 29 49 45 96 64 51 64 65 33 ... 
  $ HGHT_FLG: int  0 0 0 0 0 0 0 0 0 0 ... 
  $ S2Q03R  : int  100 20 55 60 98 115 64 135 115 26 ... 
  $ WGHT_FLG: int  0 0 0 0 0 0 0 0 0 0 ... 
  $ BMICLASS: Factor w/ 5 levels "-2 - MISSING",..: 3 1 3 5 1 3 3 3 3.. 
  $ S2Q04   : Factor w/ 8 levels "-4 - PARTIAL INTERVIEW",..: 5 5 5 5.. 
  $ S2Q05   : Factor w/ 8 levels "-4 - PARTIAL INTERVIEW",..: 4 4 4 4.. 
  $ S2Q06   : Factor w/ 8 levels "-4 - PARTIAL INTERVIEW",..: 4 4 4 4.. 
   [list output truncated] 

   Many columns contain missing data that is currently stored as levels of a factor, rather than as R’s  NA  
to indicate to R that the values are missing. With over 100,000 rows, we definitely need to automate any 
changes. From the study’s documentation, we can find the values used that we will recode to missing. These 
values have consistent labels, but their numbers change depending on the number of legitimate levels in 
a variable. We use the   table()    function to generate a frequency table of the unique values in a variable. 
This is useful both as a way to see the unique values and to become familiar with the data and how much is 
missing (relatively little for variables such as education, and more for BMI class). We want to recode partial 
interview, not in universe, missing, legitimate skip, don’t know, and refused to  NA  in R. However, the labels 
are not identical— EDUCATIO  has the number  97  for refused, whereas  S1Q01  has  7  for refused. 

http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/4691
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    table(d[, EDUCATIO]) 

                         -2 - MISSING          1 - LESS THAN HIGH SCHOOL  
                                  3                               4661  
 2 - 12 YEARS, HIGH SCHOOL GRADUATE          3 - MORE THAN HIGH SCHOOL  
                              21238                              76022  
                    96 - DON'T KNOW                       97 - REFUSED  
                                324                                105  
 table(d[, PLANGUAG]) 

             -2 - MISSING            1 - ENGLISH 2 - ANY OTHER LANGUAGE         3 - DON'T KNOW  
                      1                  94380                   7912                     51  
            4 - REFUSED  
                      9  
 table(d[, BMICLASS]) 

              -2 - MISSING           1-UNDERWEIGHT         2-NORMAL WEIGHT 3-AT RISK OF OVERWEIGHT  
                   19963                    5921                   45650                   12207  
            4-OVERWEIGHT  
                   18612  
 table(d[, S1Q01]) 

   -4 - PARTIAL INTERVIEW   -3 - NOT IN UNIVERSE           -2 - MISSING   -1 - LEGITIMATE SKIP  
                      0                      0                      1                      0  
               1 - MALE             2 - FEMALE         6 - DON'T KNOW            7 - REFUSED  
                  52554                  49719                     14                     65 

         Recoding Data   
 In addition to programmatically finding cases with values to recode to missing (for example,  7 - REFUSED  
in  S1Q01 , and  97 - REFUSED  in  EDUCATIO ), we also want to drop those levels from the factor after converting 
them to missing. We can solve this by using regular expressions to search for the character strings we know. 
For example, we know that  REFUSED  always ends in that regardless of whether it starts with  7 -  or  97 -  or 
anything else. We can search using regular expressions via the  grep()  function, which returns the value or 
the numeric position of matches, or the  grepl()  function, which returns a logical (hence the  l ) vector of 
whether each element matched or not. 

 ■   Note    Regular expressions are a powerful tool for finding and matching character string patterns. In R, 
 grep()  and  grepl()  return the positions or a logical vector of which vector elements match the expected 
pattern. Combined with replacement, regular expressions help recode data.  

 We show these two functions in action with a simple example. The first formal,  pattern , is the regular 
expression used for matching, while  x  is the data to search through. Notice the difference between logical 
vector versus numeric position. Either way, the second and fourth locations of  x  contain our matching letters 
of  abc : 
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   grep( pattern = "abc",  x = c("a", "abc", "def", "abc", "d")) 
 [1] 2 4 
 grepl( pattern = "abc", x = c("a", "abc", "def", "abc", "d")) 
 [1] FALSE  TRUE FALSE  TRUE FALSE 

   So far, we have a basic regular expression. We could use this for our data, searching for  REFUSED  instead 
of  abc , although it is good to be as accurate as possible. For example, what if one variable has  1 - REFUSED 
TREATMENT ,  2 - DID NOT REFUSED TREATMENT ,  3 - REFUSED  (ignoring the grammar), where  1  and  2  are 
valid responses and  3  indicates a refusal to answer the question. A search for   REFUSED    would match all of 
those. We ultimately want to use  grepl() , as logical values are useful indexes to set specific cases to  NA . To 
ensure that we are grabbing the right values while checking that our regular expression is accurate, though, 
we use  grep()  with  value = TRUE , which returns the matching strings. This makes it easy to see what we are 
matching. 

   grep( pattern = "REFUSED", 
       x = c( "1 - REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", "3 - REFUSED"), 
       value = TRUE) 
 [1] "1 - REFUSED TREATMENT"    "2 - DID NOT REFUSED TREATMENT"        "3 - REFUSED" 

   To make it more specific, we could add the hyphen( -),  which, although more precise, still gives us a 
false positive: 

   grep( pattern = "- REFUSED", 
        x = c( "1 - REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", "3 - REFUSED"), 
        value = TRUE) 
 [1] "1 - REFUSED TREATMENT" "3 - REFUSED"   

   To go further, we specify that  -    REFUSED    must be the last part of the string. That is, nothing can come 
after  - REFUSED . This is done by using the  $  in regular expressions to signify the end of the pattern string: 

   grep( pattern = "- REFUSED$", 
       x = c( "1 - REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", "3 - REFUSED"), 
       value = TRUE) 
 [1] "3 - REFUSED" 

   Now, your data may be different, so what we need is a variety of ways to refine just what type of 
matching we need to have. Regular expressions allow us to specify what we expect to find. The following 
pattern, although short, contains much information. The  [0-9]  signifies the digits  0  to  9,  and the  +  means 
the previous expression should occur one or more times (but not zero times). This code allows for both 1 
and 97 but not a blank, and not anything but a number. After one or more numbers, the regular expression 
indicates that we expect to find  - REFUSED  and then the end of the string, which we specify using the dollar 
sign. We extend our possible values to match for our x value and specify our pattern precisely, with the 
results shown here: 

   grep( pattern = "[0-9]+ - REFUSED$", 
       x = c( "1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", 
             "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "- REFUSED"), 
       value = TRUE) 
 [1] "4 - REFUSED"  "97 - REFUSED" 
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   As a final step, we know that if we want  REFUSED , the string starts with a number as well. Because it may 
be a negative number, we expand our previous expression to search for a negative operator zero or more 
times at the start of the string, followed by a number one or more times. We indicate the start of the string 
by using  ̂  , and we indicate zero or more times by using  * . By using this regular expression, we help protect 
against matching legitimate values in the data and errantly converting them to  NA . We are quite specific in 
what we want, and anything that does not match our pattern is rejected. 

   grep( pattern = "^[-]*[0-9]+ - REFUSED$", 
       x = c( "1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", 
              "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "-97 - REFUSED", 
              "- REFUSED", "TRICK CASE 4 - REFUSED"), 
       value = TRUE) 
 [1] "4 - REFUSED"   "97 - REFUSED"  "-97 - REFUSED" 

   By default, regular expressions are also case sensitive. In-depth coverage of using regular expressions 
is beyond the scope of this book, but we explain some examples throughout this chapter. We recommend 
 Mastering Regular Expressions  by Jeffrey Friedl (O’Reilly Media, 2006) for readers who are interested in 
comprehensive coverage of regular expressions. Regular expressions are quite useful for matching and 
working with string data because they allow us to encode very specific searches. 

 Going back to our data, we want to match more than just   REFUSED      . One option would be to create 
individual regular expressions for each and loop through, but this is cumbersome and inefficient. Instead, 
we can modify our regular expression to indicate different options in some positions. This is done by using 
a pipe,  | , which functions as  or , to separate options. In the following code, we keep the specifics about the 
 start  of the string but allow  REFUSED  or  MISSING  to be the  ending  text: 

   grep( pattern = "^[-]*[0-9]+ - REFUSED$|MISSING$", 
       x = c( "1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", 
              "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "-97 - REFUSED", 
              "-2 - MISSING", "- REFUSED", "TRICK CASE 4 - REFUSED", "4 - REFUSED HELP"), 
       value = TRUE) 
 [1] "4 - REFUSED"   "97 - REFUSED"  "-97 - REFUSED" "-2 - MISSING" 

   Now we are ready to replace responses with  NA  for the patterns we want. As you see, the regular 
expression has become something rather complex. A word of caution is that many symbols have special 
meanings in regular expressions. Searching for special symbols requires special care. For instance, you 
have seen that  *  is used to indicate zero or more times, not a literal asterisk. To search for a literal character, 
it must be escaped by using a backslash ( \ ). We now build our pattern that ought to identify all missing 
values we would like to see in our data set on child health. We pull our  pattern  out as a separate piece for 
readability and run one last test on our made-up  x  data. It is important to note that although the regular 
expression has a line break in order to fit in the book, it should be written as a single line with no space or 
line break before the  NOT IN UNIVERSE$  portion. 
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    p <- "^[-]*[0-9]+ - REFUSED$|MISSING$|DON'T KNOW$|LEGITIMATE SKIP$|PARTIAL INTERVIEW$| 
       NOT IN UNIVERSE$" 

   grep( pattern = p, 
      x = c( "1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", 
             "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "-97 - REFUSED", 
              "-2 - MISSING", "96 - DON'T KNOW", "-4 - LEGITIMATE SKIP", "-3 - PARTIAL 

INTERVIEW", 
             "-2 - NOT IN UNIVERSE", "- REFUSED", "TRICK CASE 4 - REFUSED", 
             "4 - PARTIAL INTERVIEW OF DOCTOR"), 
      value = TRUE) 
 [1] "4 - REFUSED"          "97 - REFUSED"        "-97 - REFUSED"       "-2 - MISSING"           
 [5] "96 - DON'T KNOW"        "-4 - LEGITIMATE SKIP"   "-3 - PARTIAL INTERVIEW" "-2 - NOT IN UNIVERSE"   

    Now that we can find cases we want to set to missing, let’s do it! Rather than type each variable, we loop 
through them in  data.table , setting matching cases to  NA . If it is a factor, we use  droplevels()  to remove 
unused factor levels and otherwise return them as is. To replace each variable, we use the  :=  operator 
introduced in the previous chapter in a new way. Previously, you saw how to create a variable in a data table 
as  dat[, NewVar := value] . Now we are going to replace multiple variables at once. To do this, we pass a 
vector of variable names on the left of the assignment operator,  := , and a list of the values on the right-hand 
side. Because the variables already exist in the data set, we are overwriting them rather than creating new 
ones. The variable names are stored in the vector,  v . We wrap  v  in parentheses so that  data.table  evaluates 
 v  as an R object name containing a vector of variable names. If we did not wrap  v  in parentheses,  data.table  
would try to assign the results to a variable named  v . 

 The next challenge is selecting the variables. We normally type unquoted variable names in a data table, 
but our variable names are stored in the vector  v . To accomplish this, we leverage an internal object in  data.
table ,  .SD , which is essentially a list version of the data table. However, we do not want to loop through 
every single variable in the data table. Although  .SD  defaults to being all variables in the data table, we can 
make  .SD  contain only a subset of the variables in the data table by using the  .SDcols  argument.  .SDcols  is a 
formal argument that takes a character vector and uses that to control the variables included in the internal 
 .SD  object in a data table. Thus, we specify the variables to include in  .SD  by writing  .SDcols = v . This 
operation does not return any easy-to-read values, so instead we return to   EDUCATIO       and  S1Q01 : 

    v <- c("EDUCATIO", "PLANGUAG", "BMICLASS", "S1Q01", "S2Q01") 
 d[, (v) := lapply(.SD, function(x) { 
    x[grepl(pattern = p, x)] <- NA 
   if (is.factor(x)) droplevels(x) else x }), .SDcols = v] 

   table(d[, EDUCATIO]) 

            1 - LESS THAN HIGH SCHOOL 2 - 12 YEARS, HIGH SCHOOL GRADUATE  
                               4661                              21238  
          3 - MORE THAN HIGH SCHOOL  
                              76022  
 table(d[, S1Q01]) 

     1 - MALE 2 - FEMALE  
      52554      49719 
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    Note that there is some inefficiency because the data is copied each time for the function run in data 
table. It would be more efficient to select the relevant rows in  data.table  and then set those as missing. 
The difficulty here is that our results are factors, and we want to drop the excess levels or coerce them to 
characters. We did not coerce them to factors in the first place; the data came that way from the  Stata  data 
file. This is simply part of dealing with the data that we get. If we had all character data, we might have used 
a slightly more efficient idiom. If we wished, we might also have converted all factors to the character class at 
the beginning. 

 ■   Note    The  gsub()  function combines matching with regular expressions, and replaces the portions of a 
string that match the regular expression with new text in this form: 

  gsub(pattern = "regex", replacement = "new values", x = "original data") .  

 Another recoding task we may want to do is to drop the numbers so that only the labels remain. This 
can be accomplished using the  gsub()  function, which performs regular expression matching within a string 
and then replaces matches with specified values (which can be a zero-length string). We first look at the 
following simple example: 

   gsub( pattern = "abc", replacement = "",  x = c("a", "abcd", "123abc456")) 
 [1] "a"      "d"      "123456" 

   Because it just uses regular expressions to match and remove numbers, we can reuse our pattern from 
before to test this out: 

   p.remove <- "^[-]*[0-9]+ - " 
 gsub( pattern = p.remove, replacement = "", 
       x = c( "1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", 
              "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "-97 - REFUSED", 
              "-2 - MISSING", "96 - DON'T KNOW", "-4 - LEGITIMATE SKIP", 
              "-3 - PARTIAL INTERVIEW", "-2 - NOT IN UNIVERSE", "- REFUSED", 
              "TRICK CASE 4 - REFUSED", "4 - PARTIAL INTERVIEW OF DOCTOR")) 
  [1] "TREATMENT REFUSED TREATMENT" "DID NOT REFUSED TREATMENT"   "JACK - REFUSED"  
  [4] "REFUSED"                     "REFUSED"                     "REFUSED"  
  [7] "MISSING"                     "DON'T KNOW"                  "LEGITIMATE SKIP"  
 [10] "PARTIAL INTERVIEW"           "NOT IN UNIVERSE"             "- REFUSED" 
 [13] "TRICK CASE 4 - REFUSED"      "PARTIAL INTERVIEW OF DOCTOR" 

   For efficiency, we can combine this with our previous code to set some cases to missing. Doing it in one 
step avoids repetitive processing. First, though, we read the data back in so we have the raw data: 

   d <- read.dta("ICPSR_04691/DS0001/04691-0001-Data.dta") 
 d <- as.data.table(d) 
 setkey(d, IDNUMR) 
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   Because   gsub()       coerces the input to characters regardless of whether we pass factors or characters to 
it, we will get characters out. So to know whether the input was a factor or not, we create an object,  f , which 
is a logical indicating whether  x  started off as a factor. Then, rather than drop levels, we just convert them to 
factor if appropriate. Other than that change, we meld our earlier code with our removal code: 

    d[, (v) := lapply(.SD, function(x) { 
    f <- is.factor(x) 
    x[grepl(pattern = p, x)] <- NA 
    x <- gsub(pattern = p.remove, replacement = "", x) 
    if (f) factor(x) else x }), .SDcols = v] 

   table(d[, EDUCATIO]) 

   12 YEARS, HIGH SCHOOL GRADUATE          LESS THAN HIGH SCHOOL          MORE THAN HIGH SCHOOL  
                          21238                           4661                          76022  
 table(d[, S1Q01]) 

   FEMALE   MALE  
  49719  52554  

   table(d[, S2Q01]) 

   EXCELLENT      FAIR      GOOD      POOR VERY GOOD  
     65252      2189     10680       297     23903 

          Recoding Numeric Values   
 Because they have a more systematic structure, recoding  numeric  values is easier than recoding string data. 
To indicate different types of “missingness” in numeric data, people often use out-of-bounds values, such as 
a negative number or very high numbers (for example, 999). Coding different types of missing values makes 
sense from a data perspective, as the codes provide additional information (for example, skipped a question, 
not an applicable question). However, from a practical use perspective, we typically want to ignore all 
missing data (for example, when calculating the mean, it makes no sense to include -2 as a child’s age when 
the parent refused to report it or -3 if a parent forgot). We can find values that fall between a range by using 
the  %between%  operator in the  data.table  package, and we can locate the complement by using  !  as before. 

 For example, for height, the documentation indicates that  values   zero or below, and above 90, are used 
to code various types of  missing . Similarly, for weight, values zero or below, as well as above 900, are used to 
code different types of missing values. To tell R that these values indicate missing, we need to recode them. 
We see from our  table()  data that follows that there are indeed some missing values, and we can see exactly 
what values are used to code them ( -2 ,  96 ,  96 ,  996 ,  997 ): 

    table(d[!S2Q02R %between% c(0, 90), S2Q02R]) 

     -2   96   97  
    4 8096  131  
 table(d[!S2Q03R %between% c(0, 900), S2Q03R]) 

     -2  996  997  
    4 2375   80 

    Again we could operate on these variables individually. However, that becomes cumbersome for many 
variables. The pattern often is that if valid values are less than 9, then 9 is missing. If values go into double 
digits, then >90 is missing, and so on. We recode programmatically by examining the maximum value and 
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setting the bounds accordingly. We see what the variable was like originally with the following code and in 
Figure  8-1 . To select a single variable while maintaining a data table, rather than a numeric vector, we wrap 
the variable name as a list by using the  .()  shorthand for the  list()  function. The result is that the   hist()  
function   dispatches to methods for a data table, resulting in somewhat more elegant histograms:  

   hist(d[, .(S2Q03R)]) 
 hist(d[, .(S2Q02R)]) 

  Figure 8-1.    Outliers that are near >900 and >90       

   We focus on three columns that need numeric recoding. For each variable, we loop through calling the 
column name in our list. Designating  m  as our maximum, we start off with  j  and  i  set equal to  1 . As long as  j  
is equal to  1  and  i  is less than or equal to the number of values to try (for example, 9, 99, 999), we keep doing 
the next calculation. If the maximum (ignoring missing) of the variable,  k , is less than the maximum of the 
 i th  m  value, then set  j  to  0  (which breaks the loop) and replace any values outside the range of  0  and the  i th 
 m . If the  i th  m  is greater than  90  or minus some minuscule number, set the variable to missing ( NA_integer_ ). 
In essence, we are counting through our list by columns, and we check whether the maximum value in our 
entire column is one of our maximum  m  values. Once it is there, we make sure that, effectively, values from 9 
to 10, or 90 to 100, or 900 to 1000, are set to missing. Note that we use  NA_integer_  rather than  NA  because we 
are replacing a subset of values in an existing variable.  data.table  expects that the class of data being used 
to replace values within an existing variable match the class of that variable. We could use   NA    earlier because 
we overwrote the entire variable rather than replacing select values from within the variable. 

    v2 <- c("S2Q02R", "S2Q03R", "AGEYR_CH") 
 m <- sort(c(9, 99, 999)) 

   for (k in v2) { 
    j <- i <- 1 
    while(j == 1 & i <= length(m)) { 
      if (max(d[[k]], na.rm = TRUE) < m[i]) { 
       j <- 0 
       d[!(get(k) %between% c(0, ifelse(m[i] > 90, 
         m[i] - 9, m[i] - 1e-9))), (k) := NA_integer_] 
     } else { i <- i + 1   } 
   } 
 } 

    We show the result of this after recoding by using the same histogram function as before and in 
Figure  8-2 . Notice the  n  has been lowered a fair bit in both cases, and naturally the x-axis is much tighter.  
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  Figure 8-2.    The outliers are gone because histograms ignore missing values       

 With this, we conclude our section about data hygiene. Next, we show how to create new variables to 
simplify the analysis process. In a data science perspective, variable creation is sometimes called  feature 
creation . In many domains of social and behavioral research, questionnaires or surveys are commonly 
employed. In education, tests are administered. Regardless of whether the data is from tests, questionnaires, 
or surveys, a common task is to aggregate responses to individual items or variables to create a scale score, 
the overall test score, or some other aggregate index.   

     Creating New  Variables   
 A questionnaire asks whether a doctor or health professional ever told the respondent that the focal child 
had any of nine possible conditions (for example, asthma, ADD or ADHD, depression or anxiety problems, 
diabetes, developmental delay, or physical impairment). Composite variable creation is the goal, to capture 
a number of issues. Some problems apply only to older children, and some respondents may not know the 
answer or may have refused to answer. Thus, we might take the average number of yes responses to calculate 
the proportion of yes responses out of all valid responses per respondent. 

 We first create a list of variables that pulls these nine columns’ worth of data. From there, to get our 
actual variables, we   unlist()    them from our data table to see all possible responses that may require 
cleanup to reduce to a  Yes / No  scenario. Notice in the following code that there are several cases of missing 
data, legitimate skips, don’t know, and refused: 

    v.health <- paste0("S2Q", c(19, 20, 21, 22, 23, 24, 26, 35, 37)) 
 v.health 
 [1] "S2Q19" "S2Q20" "S2Q21" "S2Q22" "S2Q23" "S2Q24" "S2Q26" "S2Q35" "S2Q37" 
 table(unlist(d[, v.health, with = FALSE])) 

   -4 - PARTIAL INTERVIEW   -3 - NOT IN UNIVERSE           -2 - MISSING  
                      0                      0                    120  
   -1 - LEGITIMATE SKIP                 0 - NO                1 - YES  
                  48388                 833454                  37720  
         6 - DON'T KNOW            7 - REFUSED  
                   1362                    133  

    We already know how to clean these sorts of variables by using regular expressions and  grep() . After 
cleanup, we check all the responses again, including  NA s in our table with the argument  useNA = "ifany" . 
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It is important to note that although the regular expression has a line break to fit in this book, it should be 
written as a single line with no space or line break before the  NOT IN UNIVERSE$  portion. 

    p <- "^[-]*[0-9]+ - REFUSED$|MISSING$|DON'T KNOW$|LEGITIMATE SKIP$|PARTIAL INTERVIEW$| 
       NOT IN UNIVERSE$" 

   d[, (v.health) := lapply(.SD, function(x) { 
    x[grepl(pattern = p, x)] <- NA 
    if (is.factor(x)) droplevels(x) else x 
 }), .SDcols = v.health] 

   table(unlist(d[, v.health, with = FALSE]), useNA = "ifany") 

    0 - NO 1 - YES    <NA>  
  833454   37720   50003 

    Now we can create a new variable that is the average of yes responses. To calculate the average by row, 
we use the   rowMeans()  function  . We leverage the fact that logical values are stored as  FALSE = 0  and  TRUE 
= 1 . Thus, we test whether the character data is equal to  1 - YES , which will return  TRUE  or  FALSE , and then 
take the row means of those logical values. We ignore (drop) missing values by setting  na.rm = TRUE . 

    d[, HealthConditions := rowMeans(d[, v.health, with = FALSE] == "1 - YES", na.rm = TRUE)] 

   table(round(d$HealthConditions, 2), useNA = 'ifany') 

       0  0.11  0.12  0.14  0.17   0.2  0.22  0.25  0.29  0.33  0.38   0.4  0.43  0.44  
 77426 16116   239    20     5   676  4386   156    11  1933    75    81    12   768  
   0.5  0.56  0.57   0.6  0.62  0.67  0.71  0.75  0.78  0.88  0.89   NaN  
    51   264     3     3    13    80     1     5    19     1     3     6 

    We could follow a similar process to get the row counts. Looking at the counts, something has 
happened, though. There are no missing values! This is because with  rowSums() , when  na.rm = TRUE  and a 
row has no valid data, its sum is zero, not a missing value. To correct this, we need to manually set to missing 
any cases/rows where all are missing: 

    d[, NHealthConditions := rowSums(d[, v.health, with = FALSE] == "1 - YES", na.rm = TRUE)] 
 table(d$NHealthConditions, useNA = 'ifany') 

       0     1     2     3     4     5     6     7     8  
 77432 17068  4630  2018   820   278    84    20     3 

    We count the number of missing  responses   per respondent, select rows where the number missing 
equals the total, and set those to missing. Again note that when replacing a subset of values from a variable 
in  data.table , match the class of missing to the class of the variable (for example,  NA_integer_  for integer, 
 NA_real_  for numeric,  NA_character_  for character,  NA  for logical). That gives us a better count: 

    d[, NMissHealthConditions := rowSums(is.na(d[, v.health, with = FALSE]))] 
 d[NMissHealthConditions == length(v.health), NHealthConditions := NA_integer_] 
 table(d$NHealthConditions, useNA = 'ifany') 

       0     1     2     3     4     5     6     7     8  <NA>  
 77426 17068  4630  2018   820   278    84    20     3     6 
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    Using   rowMeans()    or  r   owSums()    to create new variables is a relatively elegant solution. However, it is not 
a very  data.table  approach. The calculation occurs outside the original  data.table;  we call the object,  d , 
a second time and subset the columns for use. When calling the data object a second time, we lose access 
to many features of  data.table , such as performing operations for only certain subsets of the data, or 
performing an operation by some grouping factor. 

 If ignoring missing values is not an issue, we can easily work directly with  data.table  by using the 
 Reduce()  function.   Reduce()    takes a function (typically, a binary operator) as its first argument, and a vector 
or list of arguments. We show examples here of a vector and of a list with addition, division, and powers: 

   Reduce(`+`, c(1, 2, 3)) 
 [1] 6 
 Reduce(`+`, list(1:3, 4:6, 7:9)) 
 [1] 12 15 18 
 Reduce(`/`, list(1:3, 4:6, 7:9)) 
 [1] 0.036 0.050 0.056 
 Reduce(`^`, list(1:3, 4:6, 3:1)) 
 [1]    1 1024  729 

   This can then easily be applied to variables in a  data.table . We cannot directly add the health 
variables, because they are factor class data. However, we could write a function to deal with it: 

   fplus <- function(e1, e2) { 
    if (is.factor(e1)) { 
      e1 <- as.numeric(e1) - 1 } 
    if (is.factor(e2)) { 
      e2 <- as.numeric(e2) - 1 } 
    e1 + e2 
 } 

   We select the columns by using  .   SDcols   , and then  .SD  will be a list of variables that we can reduce and 
store results in a new variable: 

    d[, NHealthConditions2 := Reduce(fplus, .SD), .SDcols = v.health] 
 table(d$NHealthConditions2) 

       0     1     2     3     4     5     6     7     8  
 65459 16116  4386  1927   768   264    79    19     3 

          Fuzzy Matching      
  Approximate string matching , or  fuzzy matching , is a technique whereby observations link to a reference 
list. For example, you may have a list of registered users, and then individuals write their names on an 
attendance sheet. Alternately, you may be working with filenames that are supposed to match certain pieces 
of information. 

 We start with two lists; the reference names are our registered user list. These are the names we believe 
in and want to match to the observed names that were written in quickly on our hypothetical attendance 
sheets. Users may have attended more than one event and thus show up multiple times, or may not show up 
at all. Also note that some of these words have double spaces between them, which are required to match 
our later output. 
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   reference.Names <- c("This Test", "Test Thas", 
   "Jane Mary", "Jack Dun-Dee") 
 observed.Names <- c("this test", "test this", "test that", 
   "JaNe  Mary.", "Mary Sou", "Jack Dee", "Jane Jack") 

   The challenge is to find out the number of events that registered users attended (that is, signed). A 
first pass can be done by using the  stringdistmatrix()  function from the  stringdist  package. We use 
the Damerau-Levenshtein distance method, which essentially counts the number of characters that have 
to change to go from one string to another. From this, we can see for each observed name the minimum 
number of characters that must be changed to match one of our reference names. For  this test , it takes 
two character changes to match the first reference name, eight for the second reference name, and so on. 
Note that by default,  stringdistmatrix()  is case sensitive, so switching cases counts as one change. Notice 
that this matrix gives us a grid of those matches, where the matrix elements are the distance: 

   stringdistmatrix(reference.Names, observed.Names, method = "dl") 
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
 [1,]    2    8    7   10    8    7    8 
 [2,]    8    3    3    9    8    8    8 
 [3,]    8    8    8    3    7    6    3 
 [4,]   11   11   11    9   10    4    9 

   If we want only matches, we can use approximate matching. It takes similar arguments, but also the 
maximum distance allowed before calling nothing a match. Notice that it returns positions in the reference 
name vector: 

   amatch(observed.Names, reference.Names, method = "dl", maxDist = 4) 
 [1]  1  2  2  3 NA  4  3 

   We can expand a bit and make it non-case-sensitive by converting to lowercase via   tolower()   , or to 
uppercase via   toupper()         . Additionally, we can remove some things we do not care about, such as various 
punctuation marks. Notice that both of these methods have a chance to give us lower distances overall 
(although in our case, there are no periods to remove): 

    stringdistmatrix( tolower(reference.Names), tolower(observed.Names), method = "dl") 
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
 [1,]    0    6    5   10    8    7    8 
 [2,]    6    1    1    9    8    8    8 
 [3,]    8    8    8    2    7    6    3 
 [4,]   11   11   11    9   10    4    9 

   stringdistmatrix( tolower(gsub("\\.", "", reference.Names)), 
                  tolower(gsub("\\.", "", observed.Names)), method = "dl") 
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] 
 [1,]    0    6    5    9    8    7    8 
 [2,]    6    1    1    8    8    8    8 
 [3,]    8    8    8    1    7    6    3 
 [4,]   11   11   11    9   10    4    9 
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    We can split a character string by a particular character by using   strsplit()   . Any pattern or character 
can be used, but we use spaces. We use  backslash s  ( \s ) as a special character in regular expressions to mean 
any type of space. A second backslash is required in order to escape the first backslash. That is because the 
special character is not  s , which would be escaped as  \s , but rather the special character is the compound 
 \s , thus the escaped version is  \\s . We demonstrate the result of  strsplit()  in the following code: 

    strsplit( x = reference.Names[1], split = "\\s")[[1]] 
 [1] "This" "Test" 

   strsplit( x = observed.Names[2], split = "\\s")[[1]] 
 [1] "test" "this" 

    Now we can use   stringdistmatrix()    again. The result shows that each subchunk of the second 
observed name is one character manipulation away from one of the subchunks from the first reference 
name: 

   stringdistmatrix( 
    strsplit( x = reference.Names[1], split = "\\s")[[1]], 
    strsplit( x = observed.Names[2],  split = "\\s")[[1]], 
    method = "dl") 
      [,1] [,2] 
 [1,]    4    1 
 [2,]    1    4 

   If we ignore case, we get perfect matches. The second chunk of observed name 2 matches the first 
chunk of reference name 1, and the first chunk of observed name 2 perfectly matches the second chunk of 
the reference name 1: 

   stringdistmatrix( 
    strsplit( x = tolower(reference.Names[1]), split = "\\s")[[1]], 
    strsplit( x = tolower(observed.Names[2]),  split = "\\s")[[1]], 
    method = "dl") 
      [,1] [,2] 
 [1,]    3    0 
 [2,]    0    3 

   To return the sum of the best  matches     , we can pick the minimum and sum. The results show us that 
ignoring case and ignoring ordering makes the second observed name a perfect match for the first reference 
name. We would never have gotten this result if we tested it as an overall string. 

   sum(apply(stringdistmatrix( 
    strsplit( x = tolower(reference.Names[1]), split = "\\s")[[1]], 
    strsplit( x = tolower(observed.Names[2]),  split = "\\s")[[1]], 
    method = "dl"), 1, min)) 
 [1] 0 

   Combining everything you have learned, yields a list of techniques to use for string matching. We find 
values to ignore (for example, punctuation), split strings (for example, on spaces), and ignore case. We write 
a function to help with matching names. To this, we also add an optional argument,  fuzz , to control whether 
to include close matches within a certain degree of tolerance. We also count exact matches. This code is not 
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optimized for speed or efficiency, but is an example combining many aspects of what you’ve learned. It also 
applies that knowledge to a set of names, where each written name (index argument) compares against a 
vector of possible candidates (the pool). We comment the function inline to explain the pieces, rather than 
write a wall of text at the beginning. We also do not bold this code because of its length. 

    matchIt <- function(index, pool, ignore = c("\\.", "-"), split = FALSE, 
                     ignore.case = TRUE, fuzz = .05, method = "dl") { 

   ## for those things we want to ignore, drop them, e.g., remove spaces, periods, dashes 
   rawpool <- pool 

     for (v in ignore) { 
     index <- gsub(v, "", index) 
     pool <- gsub(v, "", pool) 
   } 

   ## if ignore case, convert to lowercase 
   if (ignore.case) { 
     index <- tolower(index) 
     pool <- tolower(pool)  } 

     if (!identical(split, FALSE)) { 
     index2 <- strsplit(index, split = split)[[1]] 
     index2 <- index2[nzchar(index2)] 
     pool2 <- strsplit(pool, split = split) 
     pool2 <- lapply(pool2, function(x) x[nzchar(x)]) 

   ## calculate distances defaults to the Damerau-Levenshtein distance 
     distances <- sapply(pool2, function(x) { 
       sum(apply(stringdistmatrix(index2, x, method = method), 
                 1, min, na.rm = TRUE)) 
     }) 
   } else { 
     ## calculate distances defaults to the Damerau-Levenshtein distance 
     distances <- stringdist(index, pool, method = method) 
   } 

   ## some methods result in Infinity answers, set these missing 
   distances[!is.finite(distances)] <- NA 

   ## get best and worst 
   best <- min(distances, na.rm = TRUE) 
   worst <- max(distances, na.rm = TRUE) 

   ## if fuzz, grab all distances within fuzz percent of the difference between best and worst 
   if (fuzz) { 
     usedex <- which(distances <= (best + ((worst - best) * fuzz))) 
   } else { 
     usedex <- which(distances == best)  } 
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   ## define a distance below which it is considered a perfect or exact match 
   perfect <- distances[usedex] < .01 
   out <- rawpool[usedex] 

   ## count the number of perfect matches 
   count <- sum(perfect) 

   ##the function continues onto the next page## 
   if (any(perfect)) { 
   ## if there are perfect matches, use just one 
     match <- out[perfect][1] 
 ## return a data table of the perfect match and number of perfect matches (probably 1) 
     data.table( 
       Match = match, 
       N = count, 
       Written = NA_character_) 
   } else { 
 ## if no perfect match, return list of close matches, comma separated and exactly as written 
     data.table( 
       Match = paste(out, collapse = ", "), 
       N = count, 
       Written = index) 
   } 
 } 

    Now we loop through each observed name and try to match it to reference names within 5 percent of 
the best match ( .05 ). Since the output is always the same, we can combine it row-wise. 

    output <- lapply(observed.Names, function(n) { 
   matchIt( index = n, pool = reference.Names, ignore = c("\\.", "-"), split = "\\s", fuzz = .05) 
 }) 

   output <- do.call(rbind, output) 
 output 
                      Match N   Written 
 1:               This Test 1        NA 
 2:               This Test 1        NA 
 3:               Test Thas 0 test that 
 4:               Jane Mary 1        NA 
 5:               Jane Mary 0  mary sou 
 6:            Jack Dun-Dee 0  jack dee 
 7: Jane Mary, Jack Dun-Dee 0 jane jack 

    We can see that  This    Test       shows up in two rows, so we aggregate up and print the final output. There 
are two perfect matches for  This Test . There is no perfect match for  Test Thas , although there is a close 
one listed under the  Uncertain  column. Finally,  jack dee  is a close but uncertain match for  Jack Dun-Dee , 
and  jane jack  is an uncertain match for  Jane Mary  or  Jack Dun-Dee . 
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   finaloutput <- output[, .( 
   N = sum(N), 
   Uncertain = paste(na.omit(Written), collapse = ", ")), 
   by = Match] 
 finaloutput 
                      Match N Uncertain 
 1:               This Test 2           
 2:               Test Thas 0 test that 
 3:               Jane Mary 1  mary sou 
 4:            Jack Dun-Dee 0  jack dee 
 5: Jane Mary, Jack Dun-Dee 0 jane jack  

   Although it is challenging to cover every example and use case, these basic tools should be enough to 
cover many types of data management tasks when used in combination.  

     Summary 
 In this chapter, you saw how to locate text based on either exact regular expressions or fuzzy matching. 
Additionally, you learned how to substitute new string pieces for old. Finally, we discussed ways of creating 
new variables in  data.table . Table  8-1  summarizes the key functions presented in this chapter.      

   Table 8-1.    Key Functions Described in This Chapter   

 Function  What It Does 

  read.dta()   Reads Stata files 

  str()   Displays R object structure 

  grep()   Pattern matching that returns a vector showing which elements match 

  grepl()   Pattern matching that returns a vector showing Boolean for all values in  x  

  gsub()   Matches a pattern and makes a substitution by returning the original vector 
after making changes 

  rowMeans(), rowSums()   Calculates the average or sum of values for each row of a data table or matrix 

  Reduce()   Takes a binary function as its first argument and applies that to its remaining 
argument 

  .SD   Reserved name within  data.table  that can be used to refer to all the 
variables within the data table as a list 

  .SDcols   Argument to  data.table  that allows specification of the variables to be 
included in  .SD  

  strsplit()   Splits a string based on a particular splitting character 

  stringdistmatrix()   Creates a matrix that has distances between observations and expected 
values 

  amatch()   Provides a vector that shows which index in the expected values most closely 
matches the observed values 

  tolower()   Coerces all characters in the given string to lowercase 
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    CHAPTER 9   

 Other Tools for Data Management                          

 Comparing data frames and data tables leads to an interesting question. What if there were more types of 
data? Particularly, what if there were different ways to store data that are all, at their heart, tables of some 
sort? In addition to data frames or tables, there are many ways to store data, many of which are just tables. 
The idea behind  dplyr  (Wickham and Francois, 2015) is that regardless of what the data back end might 
be, our experience should be the same. To allow this,  dplyr  implements generic functions for common 
data management tasks. For each of these generic functions, specific methods are written that translate 
the generic operation into whatever code or language is required for a specific back end. Using a layer of 
abstraction ensures that users get a consistent experience, regardless of the specific data format, or back end, 
being used. It also makes  dplyr  extensible, in that support for a new format can be added by simply writing 
additional functions or methods. The user experience need not change. For this chapter, our  checkpoint  
header needs to have both the  tibble  and the   dplyr  packages   installed and added: 

   library(checkpoint) 
 checkpoint("2016-09-04", R.version = "3.3.1") 
 library(dplyr) 
 library(tibble) 

   The  dplyr  package names functions after verbs that accomplish a specific action. That is, rather than 
have a few functions that each perform many tasks,  dplyr  has many functions that typically accomplish 
only a specific task. Unlike  data.table  (Dowle, Srinivasan, Short, and Lianoglou, 2015),  dplyr  is  functional  
in that it always takes input and returns output, in this case, data. It does not modify the data in place in 
memory as  data.table  does. However, it is still quite fast, because many of the functions are optimized, 
written in C++, and  dplyr  tries not to make unnecessary copies. 

 As before, we set some options to reduce the number of rows printed. The default data format for 
 dplyr  is a  tibble  (Wickham, Francois, and Müller, 2016). Tibbles are implemented in the  tibble  package. 
Essentially  tibbles  are an extension of data frames, which have some additional restrictions (such as 
defaulting to character strings rather than coercing character strings to factors) and nicer methods for 
printing or displaying on the screen. Data manipulation is handled by  dplyr , while  tibble  handles the 
actual storage of data. In technical terms, the  tibble  package implements the R object  class  as well as some 
basic methods for tibbles. 

    options(stringsAsFactors = FALSE, 
          tibble.print_max = 20, ## if over 20 rows 
          tibble.print_min = 5, ## print first 5 
          digits = 2) ## reduce digits printed by R 
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   iris$Species <- as.character(iris$Species) 
 diris <- as_tibble(iris) 
 diris 
 # A tibble: 150 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          5.1         3.5          1.4         0.2  setosa 
 2          4.9         3.0          1.4         0.2  setosa 
 3          4.7         3.2          1.3         0.2  setosa 
 4          4.6         3.1          1.5         0.2  setosa 
 5          5.0         3.6          1.4         0.2  setosa 
 # ... with 145 more rows 

    For  data.table , we use   sapply()    to get a vector of classes for each column or variable. Although we 
could do the same with tibbles, tibbles automatically provide information about the types or classes of data 
in each column as well as total number of columns and rows (for example,  <dbl>  indicating a double or 
numeric value, with  <chr>  indicating character class data). We turn our attention to the common goals of 
working with data: sorting, subsetting, ordering, computing, and reshaping. A helpful way to think of  dplyr  
is that it uses verbs to describe actions on the data. 

      Sorting   
 We sort in  dplyr  by the   arrange()  function  , which takes a data set as its first argument. Additional 
arguments after the first argument provide sorting by those other columns. The default is an increasing 
order, and this is modified with a second function call of   desc()    to provide  desc ending order. 

   diris <- arrange(diris, Sepal.Length) 
 diris 
 # A tibble: 150 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          4.3         3.0          1.1         0.1  setosa 
 2          4.4         2.9          1.4         0.2  setosa 
 3          4.4         3.0          1.3         0.2  setosa 
 4          4.4         3.2          1.3         0.2  setosa 
 5          4.5         2.3          1.3         0.3  setosa 
 # ... with 145 more rows 
 diris <- arrange(diris, Sepal.Length, desc(Sepal.Width)) 
 diris 
 # A tibble: 150 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          4.3         3.0          1.1         0.1  setosa 
 2          4.4         3.2          1.3         0.2  setosa 
 3          4.4         3.0          1.3         0.2  setosa 
 4          4.4         2.9          1.4         0.2  setosa 
 5          4.5         2.3          1.3         0.3  setosa 
 # ... with 145 more rows 
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   It is possible to see the first-row index when a duplicate occurs for either the entire data set or for just 
a particular column, via   anyDuplicated()   . When calling this function on the entire data set, it looks for a 
match between all columns, which occurs for rows  78  and  79  in this data set. A duplicated variable in sepal 
length occurs in the third row, as shown in the following code: 

    anyDuplicated(diris) 
 [1] 79 

   anyDuplicated(diris$Sepal.Length) 
 [1] 3 

    Whereas   anyDuplicated()       returns the row index of the first duplication,  duplicated  simply tells us how 
many such duplications occur in our table. Looking at our code, we see that for a full match in all columns, 
row  79  is the only time that occurs. On the other hand, duplicated sepal lengths may happen for the first time 
in row  3 , but there are many more duplicates. 

   table(duplicated(diris)) 
 FALSE  TRUE  
   149     1  
 table(duplicated(diris$Sepal.Length)) 
 FALSE  TRUE  
    35   115 

   If we want to see table results with only distinct values,   distinct()    works much like  arrange() . The 
first formal is for data, while the rest specify column name variables. If no column names are specified, 
 distinct()  operates on all columns. Recall from the  duplicated()  call that there are  149  unique rows. 

   distinct(diris) 
 # A tibble: 149 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          4.3         3.0          1.1         0.1  setosa 
 2          4.4         3.2          1.3         0.2  setosa 
 3          4.4         3.0          1.3         0.2  setosa 
 4          4.4         2.9          1.4         0.2  setosa 
 5          4.5         2.3          1.3         0.3  setosa 
 # ... with 144 more rows 

   Similarly, recall that there are only  35  unique rows if we consider only sepal length. Consequently, using 
the second formal of  distinct()  to hold the  Sepal.Length  column yields only  35  rows in our  tibble . We 
show the first five of those rows here: 

   distinct(diris, Sepal.Length) 
 # A tibble: 35 x 1 
   Sepal.Length 
          <dbl> 
 1          4.3 
 2          4.4 
 3          4.5 
 4          4.6 
 5          4.7 
 # ... with 30 more rows 
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   This section closes with one last call to  distinct() , showing more than one column called in the 
second and third formal arguments. Here, a row is unique provided both  Sepal.Length  and  Sepal.Width  do 
not duplicate. Pay special attention to rows  2  through  4 , which have the same   Sepal.Length   , yet those rows 
are not duplicated because their  Sepal.Widths  are different: 

   distinct(diris, Sepal.Length, Sepal.Width) 
 # A tibble: 117 x 2 
   Sepal.Length Sepal.Width 
          <dbl>       <dbl> 
 1          4.3         3.0 
 2          4.4         3.2 
 3          4.4         3.0 
 4          4.4         2.9 
 5          4.5         2.3 
 # ... with 112 more rows  

         Selecting and Subsetting   
 Selecting portions of the stored data in  dplyr  is different from the  data.table  methodology. Remember, 
 dplyr  works via function calls. These functions are designed to be independent of the underlying data 
structure. Nevertheless, we do want the same end results. Selecting rows by position is accomplished using 
 slice() , which takes two formal arguments. The first is the data object, in our case  diris , and the second 
allows us to select specific rows. We first select just the first five rows: 

   slice(diris, 1:5) 
 # A tibble: 5 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          4.3         3.0          1.1         0.1  setosa 
 2          4.4         3.2          1.3         0.2  setosa 
 3          4.4         3.0          1.3         0.2  setosa 
 4          4.4         2.9          1.4         0.2  setosa 
 5          4.5         2.3          1.3         0.3  setosa 

   As seen before,  -  can be used for negation. Therefore, we could also drop all rows but the last five rows 
by dropping rows  1  to  145 : 

   slice(diris, -(1:145)) 
 # A tibble: 5 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width   Species 
          <dbl>       <dbl>        <dbl>       <dbl>     <chr> 
 1          7.7         3.8          6.7         2.2 virginica 
 2          7.7         3.0          6.1         2.3 virginica 
 3          7.7         2.8          6.7         2.0 virginica 
 4          7.7         2.6          6.9         2.3 virginica 
 5          7.9         3.8          6.4         2.0 virginica 
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   Rather than select rows directly, we may set logical conditions on them. Again, these types of arguments 
belong in the second formal of our function call. However, in this case, we use  filter()  rather than 
 slice().  The  filter()  function uses logical indexing. It is easy enough to select either all the rows in which 
 Species  either is (or is not)  setosa  by writing a logical test: 

   filter(diris, Species == "setosa") 
 # A tibble: 50 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          4.3         3.0          1.1         0.1  setosa 
 2          4.4         3.2          1.3         0.2  setosa 
 3          4.4         3.0          1.3         0.2  setosa 
 4          4.4         2.9          1.4         0.2  setosa 
 5          4.5         2.3          1.3         0.3  setosa 
 # ... with 45 more rows 
  filter(diris, Species != "setosa") 
 # A tibble: 100 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
          <dbl>       <dbl>        <dbl>       <dbl>      <chr> 
 1          4.9         2.5          4.5         1.7  virginica 
 2          4.9         2.4          3.3         1.0 versicolor 
 3          5.0         2.3          3.3         1.0 versicolor 
 4          5.0         2.0          3.5         1.0 versicolor 
 5          5.1         2.5          3.0         1.1 versicolor 
 # ... with 95 more rows 

   It is also possible to select  rows   based on numeric values with inequalities, equality, or nonequality in 
addition to logical indexes. Both numeric and character tests may be mixed and matched to extract precisely 
the rows desired: 

   filter(iris, Sepal.Length < 5 & Petal.Width > .2) 
   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
 1          4.6         3.4          1.4         0.3     setosa 
 2          4.5         2.3          1.3         0.3     setosa 
 3          4.8         3.0          1.4         0.3     setosa 
 4          4.9         2.4          3.3         1.0 versicolor 
 5          4.9         2.5          4.5         1.7  virginica 
 filter(diris, Sepal.Length == 4.3 | Sepal.Width != 4.4) 
 # A tibble: 149 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          4.3         3.0          1.1         0.1  setosa 
 2          4.4         3.2          1.3         0.2  setosa 
 3          4.4         3.0          1.3         0.2  setosa 
 4          4.4         2.9          1.4         0.2  setosa 
 5          4.5         2.3          1.3         0.3  setosa 
 # ... with 144 more rows 
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   If we seek multiple matches, the  %in%  operator may be used along with a list of interest to us. This allows 
us to separate the coding that indicates our choice of interest, and then filter based on that interest: 

   interest <- c(4.3, 4.4) 
 filter(diris, Sepal.Length %in% interest) 
 # A tibble: 4 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          4.3         3.0          1.1         0.1  setosa 
 2          4.4         3.2          1.3         0.2  setosa 
 3          4.4         3.0          1.3         0.2  setosa 
 4          4.4         2.9          1.4         0.2  setosa 

   Alternately, if we wish to exclude any rows that have a certain characteristic, that may be done via 
negation. This is useful to remove outliers or erroneous data points: 

   filter(diris, !Sepal.Length %in% interest) 
 # A tibble: 146 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          4.5         2.3          1.3         0.3  setosa 
 2          4.6         3.6          1.0         0.2  setosa 
 3          4.6         3.4          1.4         0.3  setosa 
 4          4.6         3.2          1.4         0.2  setosa 
 5          4.6         3.1          1.5         0.2  setosa 
 # ... with 141 more rows 

   The last filter example we show uses several  arguments  . Using multiple arguments is not required, but 
can be a helpful way to break code into human-readable chunks. Multiple arguments are logically equivalent 
to  & . 

   filter(diris, 
        Sepal.Length == 4.3 | Sepal.Length == 4.4, 
        Petal.Width < .2) 
 # A tibble: 1 x 5 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1          4.3           3          1.1         0.1  setosa 

   So far, we’ve selected rows from all columns. If we wish to select only specific columns, the   select()  
function   takes a database as its first formal, and column information in the rest of the formals. For named 
columns in your table data structure, selecting one or more columns is as simple as listing the column 
names. It is also possible to select by position. Contrast these named versus position column arguments and 
also recognize that both can make the column selections in any order needed: 

   select(diris, Sepal.Length, Sepal.Width) 
 # A tibble: 150 x 2 
   Sepal.Length Sepal.Width 
          <dbl>       <dbl> 
 1          4.3         3.0 
 2          4.4         3.2 
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 3          4.4         3.0 
 4          4.4         2.9 
 5          4.5         2.3 
 # ... with 145 more rows 
 select(diris, 1, 5, 2) 
 # A tibble: 150 x 3 
   Sepal.Length Species Sepal.Width 
          <dbl>   <chr>       <dbl> 
 1          4.3  setosa         3.0 
 2          4.4  setosa         3.2 
 3          4.4  setosa         3.0 
 4          4.4  setosa         2.9 
 5          4.5  setosa         2.3 
 # ... with 145 more rows 

   So far, specific columns are directly named. What if the columns need to be variable depending on the 
program or the user’s needs? In that case, character string references are desirable, as strings easily convert 
to variables. We show both a direct call to  select_()  and the use of a variable  v  to achieve the same results. 
Be sure to notice the underscore added to the name of the function! When using  select   _()   , multiple 
variable names as strings can be passed as separate arguments. 

   select_(diris, "Sepal.Length", "Sepal.Width") 
 # A tibble: 150 × 2 
   Sepal.Length Sepal.Width 
          <dbl>       <dbl> 
 1          5.1         3.5 
 2          4.9         3.0 
 3          4.7         3.2 
 4          4.6         3.1 
 5          5.0         3.6 
 # ... with 145 more rows 

   Our variable,  v , could contain more than one column name. However, if used in the  default   way, only 
the first variable from the list will be returned. To get all the variables to be returned, when passing an object 
holding a vector of variable names, it should be passed to the  .dots  formal argument, shown in the second 
example that follows: 

    v <- c("Sepal.Length", "Sepal.Width") 
 select_(diris, v) 
 # A tibble: 150 x 1 
   Sepal.Length 
          <dbl> 
 1          4.3 
 2          4.4 
 3          4.4 
 4          4.4 
 5          4.5 
 # ... with 145 more rows 
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   select_(diris, .dots = v) 
 # A tibble: 150 × 2 
   Sepal.Length Sepal.Width 
          <dbl>       <dbl> 
 1          5.1         3.5 
 2          4.9         3.0 
 3          4.7         3.2 
 4          4.6         3.1 
 5          5.0         3.6 
 # ... with 145 more rows 

    Another way of achieving the same result with our original  select()  function is by using one of the 
select helper functions. There are seven of these helper functions, and the one we presently want is  one_
of() , which manages character vectors: 

   select(diris, one_of(v)) 
 # A tibble: 150 x 1 
   Sepal.Length 
          <dbl> 
 1          4.3 
 2          4.4 
 3          4.4 
 4          4.4 
 5          4.5 
 # ... with 145 more rows 

   When using the  dplyr  data structure   tibble   , approaches like those used in data tables work. These are 
not guaranteed to translate as smoothly throughout the  dplyr  experience. It seems best to engage  dplyr  in 
its native language. However, the next two function calls are given for completeness: 

   diris[, v] 
 # A tibble: 150 x 1 
   Sepal.Length 
          <dbl> 
 1          4.3 
 2          4.4 
 3          4.4 
 4          4.4 
 5          4.5 
 # ... with 145 more rows 
 diris[, 1] 
 # A tibble: 150 x 1 
   Sepal.Length 
          <dbl> 
 1          4.3 
 2          4.4 
 3          4.4 
 4          4.4 
 5          4.5 
 # ... with 145 more rows 
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   So far, all our work returns another  tibble  as output. Extracting the raw data as a vector uses several 
techniques. If we know the column name containing the data we want, it is easy to type the name directly. 
If our column may be variable, we reuse our variable  v  for the third method. Regardless of the method, the 
console prints the same data. Notice that these data are vectors, not data table structures. We marked the 
code to access the column data as a vector in bold only for emphasis. 

   head(diris[["Sepal.Length"]]) 
 [1] 4.3 4.4 4.4 4.4 4.5 4.6 
 head(diris$Sepal.Length)       # easy to type 
 [1] 4.3 4.4 4.4 4.4 4.5 4.6 
 head(diris[[v]])               # easy if you have a R variable 
 [1] 4.3 4.4 4.4 4.4 4.5 4.6 

   Excluding a column or columns may be of more interest than selecting certain columns. Exclusion uses 
negation in several formats. Particularly, either the column(s) to be excluded may be named or referenced 
via position: 

   select(diris, -1) 
 # A tibble: 150 x 4 
   Sepal.Width Petal.Length Petal.Width Species 
         <dbl>        <dbl>       <dbl>   <chr> 
 1         3.0          1.1         0.1  setosa 
 2         3.2          1.3         0.2  setosa 
 3         3.0          1.3         0.2  setosa 
 4         2.9          1.4         0.2  setosa 
 5         2.3          1.3         0.3  setosa 
 # ... with 145 more rows 
 select(diris, -Sepal.Length, -Petal.Width) 
 # A tibble: 150 x 3 
   Sepal.Width Petal.Length Species 
         <dbl>        <dbl>   <chr> 
 1         3.0          1.1  setosa 
 2         3.2          1.3  setosa 
 3         3.0          1.3  setosa 
 4         2.9          1.4  setosa 
 5         2.3          1.3  setosa 
 # ... with 145 more rows 

   Again, when variable exclusion is needed, we set a  variable   to hold the vector, and we may paste 
negation to the front of that by using   paste0()    and then using the  select_()  call to use character strings. 
Alternately, we may use negation with the select helper function  one_of()  in our usual  select()  function. 
Either way, we get the same results: 

   ex <- paste0("-", v) 
 select_(diris, ex) 
 # A tibble: 150 x 4 
   Sepal.Width Petal.Length Petal.Width Species 
         <dbl>        <dbl>       <dbl>   <chr> 
 1         3.0          1.1         0.1  setosa 
 2         3.2          1.3         0.2  setosa 
 3         3.0          1.3         0.2  setosa 
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 4         2.9          1.4         0.2  setosa 
 5         2.3          1.3         0.3  setosa 
 # ... with 145 more rows 
 select(diris, -one_of(v)) 
 # A tibble: 150 x 4 
   Sepal.Width Petal.Length Petal.Width Species 
         <dbl>        <dbl>       <dbl>   <chr> 
 1         3.0          1.1         0.1  setosa 
 2         3.2          1.3         0.2  setosa 
 3         3.0          1.3         0.2  setosa 
 4         2.9          1.4         0.2  setosa 
 5         2.3          1.3         0.3  setosa 
 # ... with 145 more rows 

   Having now used this select convenience function a couple of times, we look briefly at four more of 
these. The goal of these four is that they help us choose variables without typing out an entire column 
name. In no particular order,  starts_with(), ends_with(), contains(), and matches()  all use regular 
expressions, default to looking in the current variable list, and ignore letter case by default, although this is a 
feature that may be turned off. Rather than demonstrate all of these, the following code shows two examples 
using  starts_with() . One benefit of the  dplyr  approach of making focused functions named after verbs 
that accomplish one specific task is that it is easy to tell what a function does from its name. The remaining 
helper functions operate similarly to  starts_with()  and do exactly what their names indicate: 

   select(diris, starts_with("s")) 
 # A tibble: 150 x 3 
   Sepal.Length Sepal.Width Species 
          <dbl>       <dbl>   <chr> 
 1          4.3         3.0  setosa 
 2          4.4         3.2  setosa 
 3          4.4         3.0  setosa 
 4          4.4         2.9  setosa 
 5          4.5         2.3  setosa 
 # ... with 145 more rows 
 select(diris, starts_with("s", ignore.case = FALSE)) 
 # A tibble: 150 x 0 

   With this last bit of code, our journey through   dplyr    subsetting ends. We turn our attention to variable 
renaming and ordering.  

      Variable Renaming and Ordering   
 It is a regrettably routine part of data hygiene that column names require renaming or reordering. What 
made sense (or is ”legal”) in one database may not work in another data bank. Many proprietary data 
management systems have fixed names that are unwieldy. 
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 Viewing the names associated with a  dplyr  object requires the usual  names()  or  colnames()  functions 
called on our data set  diris . Either way, we get the same results with the current column order: 

   names(diris) 
 [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"      
 colnames(diris) 
 [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"   

   To change a name, call the  rename()  function on the data object and set the new name in the second 
formal by using the following format:  new name = old name . Multiple columns can be renamed at once by 
passing them as additional arguments (for example, in the third, fourth formal). Confirm that the change 
took place by comparing the results of  name()  with the old results. In the following code, we remove the full 
stop between  Sepal  and  Length  in our data: 

   diris <- rename(diris, SepalLength = Sepal.Length) 
 names(diris) 
 [1] "SepalLength"  "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species" 

   To reorder the columns to pair the lengths and the widths together, simply use the  select()  function 
and reassign a name to your data object. Be sure to remember that we renamed   SepalLength    to no longer 
have a full stop in the middle! 

   diris <- select(diris, SepalLength, Petal.Length, Sepal.Width, Petal.Width, Species) 
 diris 
 # A tibble: 150 x 5 
   SepalLength Petal.Length Sepal.Width Petal.Width Species 
         <dbl>        <dbl>       <dbl>       <dbl>   <chr> 
 1         4.3          1.1         3.0         0.1  setosa 
 2         4.4          1.3         3.2         0.2  setosa 
 3         4.4          1.3         3.0         0.2  setosa 
 4         4.4          1.4         2.9         0.2  setosa 
 5         4.5          1.3         2.3         0.3  setosa 
 # ... with 145 more rows 

   Earlier, you saw that numeric select calls could reorder columns, so we close out this section with one 
last reordering example. Here, we use a variable to hold numeric positions, although we could just as well 
use character names in place of numbers. Then we use the  select_()   function   to reorganize our columns 
back to their original order. 

   v <- c(1, 3, 2, 4, 5) 
 diris <- select_(diris, .dots = as.list(v)) 
 diris 
 # A tibble: 150 x 5 
   SepalLength Sepal.Width Petal.Length Petal.Width Species 
         <dbl>       <dbl>        <dbl>       <dbl>   <chr> 
 1         4.3         3.0          1.1         0.1  setosa 
 2         4.4         3.2          1.3         0.2  setosa 
 3         4.4         3.0          1.3         0.2  setosa 
 4         4.4         2.9          1.4         0.2  setosa 
 5         4.5         2.3          1.3         0.3  setosa 
 # ... with 145 more rows 
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        Computing on  Data and Creating Variables   
 Now that you have a good sense of how to manage original data in  dplyr , we’ll start to focus on how to create 
new data from old data. For simplicity’s sake, we re-create our  diris  data set from the original  iris  data set. 
Then we’ll be ready to use the new function   mutate()    to create or replace columns. This function takes the 
usual first argument, and the latter formals express what is done to create new columns. Whether it is one or 
many, simply create expressions that let  dplyr  know what to append to the  tibble : 

   diris <- mutate(diris, V0 = 0, X1 = 1L, X2 = 2L) 
 diris 
 # A tibble: 150 x 8 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species    V0    X1    X2 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> <dbl> <int> <int> 
 1          5.1         3.5          1.4         0.2  setosa     0     1     2 
 2          4.9         3.0          1.4         0.2  setosa     0     1     2 
 3          4.7         3.2          1.3         0.2  setosa     0     1     2 
 4          4.6         3.1          1.5         0.2  setosa     0     1     2 
 5          5.0         3.6          1.4         0.2  setosa     0     1     2 
 # ... with 145 more rows 

   Of course, new data might not be about creating wholly new columns. Instead, we may create new 
calculated columns based on existing information. Perhaps we want a new column named  V  that is the 
multiplication of  Petal.Length  and  Petal.Width . For clarity’s sake, we first remove the three columns just 
added previously: 

   diris <- select(diris, -V0, -X1, -X2) 
 diris <- mutate(diris, V = Petal.Length * Petal.Width) 
 diris 
 # A tibble: 150 x 6 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species     V 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> <dbl> 
 1          5.1         3.5          1.4         0.2  setosa  0.28 
 2          4.9         3.0          1.4         0.2  setosa  0.28 
 3          4.7         3.2          1.3         0.2  setosa  0.26 
 4          4.6         3.1          1.5         0.2  setosa  0.30 
 5          5.0         3.6          1.4         0.2  setosa  0.28 
 # ... with 145 more rows 

   More exotic calculations are performed by doing them only when certain conditions occur. In this case, 
 if_else()     takes three arguments. The first is the logical condition on which to test the if/else statement. 
The second and third formals indicate what to do on the  if  or the  else . Additionally,  mutate()  allows us not 
only to create a column with data, but also to change existing column data. Thus, if it was not enough in our 
first pass to create a column  V2  that took on a multiplicative relationship between petal widths and lengths 
for  setosa  species, we could extend that to a square-root operation for  virginica . To make sure we see a 
sample of each species, we use the  slice()  function to look at just three specific rows: 

   diris <- mutate(diris, V2 = if_else(Species == "setosa", Petal.Length * Petal.Width, NA_
real_)) 
 diris <- mutate(diris, V2 = if_else(Species == "virginica", 
                                     sqrt(Petal.Length * Petal.Width), V2)) 
 slice(diris, c(1, 51, 101)) 
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 # A tibble: 3 x 7 
   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species     V    V2 
          <dbl>       <dbl>        <dbl>       <dbl>      <chr> <dbl> <dbl> 
 1          5.1         3.5          1.4         0.2     setosa  0.28  0.28 
 2          7.0         3.2          4.7         1.4 versicolor  6.58    NA 
 3          6.3         3.3          6.0         2.5  virginica 15.00  3.87 

   It is not necessary to create a new column; it is possible to simply calculate information on a table by 
using the  summarise()  function. The first formal, as always, tells the function which data to use, while the 
rest are used to hold individual calculations. Note that one or many calculations might be coded. Here, we 
demonstrate two such calculations for arithmetic mean and standard deviation: 

   summarise(diris, M = mean(Sepal.Width), SD = sd(Sepal.Width)) 
 # A tibble: 1 x 2 
       M    SD 
   <dbl> <dbl> 
 1   3.1  0.44 

   Unlike  data.table ,  dplyr  works via functions. Moreover, while your mathematics professor may have 
spent some time lecturing about function composition (and that technique of nesting functions inside each 
other has its place), there is a cleaner look in  dplyr . Chaining together several functions leaves us with the 
desired results when using the  %>%  operator. Suppose we want to take our data, use only the  virginica  
species, and calculate the mean of the sepal widths. The result should be a  tibble  of just one variable, the 
mean we seek. Note that when the  %>%  operator is used, the data set is passed to the first argument. Thus, 
even though it looks like we specify the first formal argument to  filter()  in the following code, because we 
used the  %>%  operator, the function is modified so that the data set is passed as the first argument, and what 
we wrote,  Species == "virginica" , is passed as the second argument: 

   diris  %>%  filter(Species == "virginica") %>%  summarise(M = mean(Sepal.Width)) 
 # A tibble: 1 x 1 
       M 
   <dbl> 
 1     3 

   This idea of taking it one step at a time can be modified to manage all sorts of data manipulations. 
Thinking back to our study of  data.table , the third formal of that structure,  by =     , allowed us to organize 
by elements of a column. For  dplyr , we use   group_by()    on a column name to accomplish the same task. 
Expanding our mean example to all three species, we now have a two-column  tibble  with one row for each 
species. We could also get means for more than one of our original columns. Notice that  virginica ’s sepal 
width mean is  3 , regardless of how we calculate it. 

   diris %>%  group_by(Species) %>%  summarise(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)) 
 # A tibble: 3 x 3 
      Species    M1    M2 
        <chr> <dbl> <dbl> 
 1     setosa   3.4  0.25 
 2 versicolor   2.8  1.33 
 3  virginica   3.0  2.03 
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   This chaining structure, just like the data table chaining structure, can be done indefinitely (or close to 
it). To find a correlation in the preceding data, we simply add one more step to the end of our chain: 

   diris %>% 
   group_by(Species) %>% 
   summarise( M1 = mean(Sepal.Width),  M2 = mean(Petal.Width)) %>% 
   summarise(r = cor(M1, M2)) 
 # A tibble: 1 x 1 
       r 
   <dbl> 
 1 -0.76 

   Variables can create other variables as well. We create a new variable based on whether a petal width is 
greater or smaller than the median petal width for that species. This may have changed its appearance a bit, 
but this is still a  tibble : 

    diris <- diris %>% 
   group_by(Species) %>% 
   mutate(MedPW = Petal.Width > median(Petal.Width)) 
 diris 
 Source: local data frame [150 x 8] 
 Groups: Species [3] 

     Sepal.Length Sepal.Width Petal.Length Petal.Width Species     V    V2 MedPW 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> <dbl> <dbl> <lgl> 
 1          5.1         3.5          1.4         0.2  setosa  0.28  0.28 FALSE 
 2          4.9         3.0          1.4         0.2  setosa  0.28  0.28 FALSE 
 3          4.7         3.2          1.3         0.2  setosa  0.26  0.26 FALSE 
 4          4.6         3.1          1.5         0.2  setosa  0.30  0.30 FALSE 
 5          5.0         3.6          1.4         0.2  setosa  0.28  0.28 FALSE 
 # ... with 145 more rows 

    It is also easy to group by multiple variables. Grouping by both species and median petal width 
Booleans, we recalculate means for sepal and petal widths: 

    diris  %>% 
   group_by(Species, MedPW) %>% 
   summarise( M1 = mean(Sepal.Width),  M2 = mean(Petal.Width)) 
 Source: local data frame [6 x 4] 
 Groups: Species [?] 

        Species MedPW    M1    M2 
        <chr> <lgl> <dbl> <dbl> 
 1     setosa FALSE   3.4  0.19 
 2     setosa  TRUE   3.5  0.38 
 3 versicolor FALSE   2.6  1.19 
 4 versicolor  TRUE   3.0  1.50 
 5  virginica FALSE   2.8  1.81 
 6  virginica  TRUE   3.1  2.27 
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    Again, it is always possible to  chain   on more operations: 

   diris %>% 
   group_by(Species, MedPW) %>% 
   summarise( 
      M1 = mean(Sepal.Width), 
      M2 = mean(Petal.Width)) %>% 
   group_by(MedPW) %>% 
   summarise(r = cor(M1, M2)) 
 # A tibble: 2 x 2 
   MedPW     r 
   <lgl> <dbl> 
 1 FALSE -0.78 
 2  TRUE -0.76 

         Merging and Reshaping Data   
 Without repeating what we said about merging and reshaping data in the  data.table  chapter, we note that 
the function call to  merge()  still works, after a fashion. This function is the same function from  data.table , 
and because we used  dplyr  to operate on  tibbles , which are built on data frames, it works. However, when 
this is done, they lose their  tibble  status. Thus, we also introduce the  *join()  functions, which are much 
closer to some of the more traditional database languages. 

 Once again, we first run a bit of code to make four separate data objects. Please note again that this is 
not likely to be needed in real life, as our data usually comes from different databases: 

    diris <- diris  %>%  group_by(Species) %>%  select(Species, Sepal.Width) %>%  slice(1:3) 
 diris 
 Source: local data frame [9 x 2] 
 Groups: Species [3] 

        Species Sepal.Width 
        <chr>       <dbl> 
 1     setosa         3.5 
 2     setosa         3.0 
 3     setosa         3.2 
 4 versicolor         3.2 
 5 versicolor         3.2 
 6 versicolor         3.1 
 7  virginica         3.3 
 8  virginica         2.7 
 9  virginica         3.0 

   diris2 <- slice(diris, c(1, 4, 7)) 
 diris2 
 Source: local data frame [3 x 2] 
 Groups: Species [3] 
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        Species Sepal.Width 
        <chr>       <dbl> 
 1     setosa         3.5 
 2 versicolor         3.2 
 3  virginica         3.3 

   dalt1 <- tibble( 
    Species = c("setosa", "setosa", "versicolor", "versicolor",Data managementmerging and 
reshaping Data 
                "virginica", "virginica", "other", "other"), 
    Type = c("wide", "wide", "wide", "wide", 
             "narrow", "narrow", "moderate", "moderate"), 
    MedPW = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE)) 
 dalt1 
 # A tibble: 8 x 3 
      Species     Type MedPW 
        <chr>    <chr> <lgl> 
 1     setosa     wide  TRUE 
 2     setosa     wide FALSE 
 3 versicolor     wide  TRUE 
 4 versicolor     wide FALSE 
 5  virginica   narrow  TRUE 
 6  virginica   narrow FALSE 
 7      other moderate  TRUE 
 8      other moderate FALSE 

   dalt2 <- slice(dalt1, c(1, 3)) 
 dalt2 
 # A tibble: 2 x 3 
      Species  Type MedPW 
        <chr> <chr> <lgl> 
 1     setosa  wide  TRUE 
 2 versicolor  wide  TRUE 

    The   merge()  function   operates on two data sets. For one-to-one data such as  diris2  and  dalt2 , 
the merge by itself keeps only the rows that match both data sets. We can see that for these two objects, 
 virginica  row in  diris2  is dropped: 

   merge(diris2, dalt2) 
      Species Sepal.Width Type MedPW 
 1     setosa         3.5 wide  TRUE 
 2 versicolor         3.2 wide  TRUE 

   If we wish to keep all three rows of  diris2 ,    then there is some missing data after the merge. Now, in this 
case, since we arbitrarily choose  diris2  to be our first formal,  all.x = TRUE  keeps all of the  diris2  rows: 

   merge(diris2, dalt2, all.x = TRUE) 
      Species Sepal.Width Type MedPW 
 1     setosa         3.5 wide  TRUE 
 2 versicolor         3.2 wide  TRUE 
 3  virginica         3.3 <NA>    NA 
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   It is also possible to set the second value, or  all.y = TRUE , although in this case that has no noticeable 
difference. Depending on how good a match two particular tables are, there might be a different pattern 
of missing variables. Similarly, it is also possible to say that we want all rows from all tables. This has the 
potential to give the most missing data locations; in our example, such a merge would be identical to our 
three rows shown in the preceding example. 

 As mentioned, these are not  tibbles . Now, we may wrap them in  as_tibble()  if we wish to merge 
and coerce back to a  tibble . However,  dplyr  also operates on database-style objects, as you’ll see in our 
database chapter. In particular, Structured Query Language (SQL) can be accessed through  dplyr . SQL has 
joins, and we’ll look at four types of joins now. To generalize greatly,  merge()  focuses on matching in some 
way. Joins focus on rows versus columns of object 1 and object 2. 

 All rows of the first object are returned in a  left_join()  as well as all columns of both the first and 
second objects. Because this is a  dplyr  function call, we get a  tibble  as our output. As you can see, this is 
similar (although not a perfect match in all cases) to  all.x=TRUE : 

    left_join(diris2,dalt2) 
 Joining, by = "Species" 
 Source: local data frame [3 x 4] 
 Groups: Species [?] 

        Species Sepal.Width  Type MedPW 
        <chr>       <dbl> <chr> <lgl> 
 1     setosa         3.5  wide  TRUE 
 2 versicolor         3.2  wide  TRUE 
 3  virginica         3.3  <NA>    NA 

    A   right_join()    is much like a left, except it returns all rows from the second object. Still, all columns 
from both objects return. In this case, there is no major difference between this type of join and the  merge()  
function. However, this case is not all cases. Many charts on the internet claim to speak the truth about how 
joins work. In our experience, the accuracy of those explanations can be hit or miss. Our advice is to grab 
several small data tables, or cook up your own as we did here. Then start joining things. Somewhere along 
the way, after doing it often, you’ll gain a sense of which technique gets you closest to having the data you 
want. 

    right_join(diris2,dalt2) 
 Joining, by = "Species" 
 Source: local data frame [2 x 4] 
 Groups: Species [?] 

        Species Sepal.Width  Type MedPW 
        <chr>       <dbl> <chr> <lgl> 
 1     setosa         3.5  wide  TRUE 
 2 versicolor         3.2  wide  TRUE 

    The closest match to the basic  merge()  function is the  inner_join()  function, which in this case would 
yield the same results as the previous right join. Contrastingly, from a merge point of view, the weirdest join 
is the  anti-join() . The  anti_join()  returns all rows in the first database that do not have matching values 
in the second data object. As for columns, it returns only the first object’s columns. 

    anti_join(diris2,dalt2) 
 Joining, by = "Species" 
 Source: local data frame [1 x 2] 
 Groups: Species [3] 
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       Species Sepal.Width 
       <chr>       <dbl> 
 1 virginica         3.3 

    Between joins and merges, there are plenty of options for combining data into a single object. 
Remember, your goal is to eventually get just the data needed for analysis. Sometimes it makes sense to first 
combine one or more collections of data into a single table, and from there use the techniques from earlier 
in this chapter to reduce that to your desired data set. Of course, if merges are more familiar, they often work 
just fine. If you truly require  dplyr, as_tibble()  always works as a wrapper function to coerce your object 
back to what it should be. After all,  data.table  and  dplyr ’s   tibbles    are both extensions of data frames. 

 Our last goal is reshaping, which works better if there is a unique ID per row. We start by refreshing our 
data set one more time. From there, we introduce  n() , which is a special way to refer to the number of rows, 
much like  .N  is in data tables: 

   diris <- as_tibble(iris) 
 diris <- mutate(diris, ID = 1:n() ) 
 diris 
 # A tibble: 150 x 6 
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species    ID 
          <dbl>       <dbl>        <dbl>       <dbl>   <chr> <int> 
 1          5.1         3.5          1.4         0.2  setosa     1 
 2          4.9         3.0          1.4         0.2  setosa     2 
 3          4.7         3.2          1.3         0.2  setosa     3 
 4          4.6         3.1          1.5         0.2  setosa     4 
 5          5.0         3.6          1.4         0.2  setosa     5 
 # ... with 145 more rows 

   To   reshape()    long, we use the base R function. From there, we call out repeatedly measured variables 
or variables we wish to stack in the long data set with the  varying  label. The label  timevar  takes the name 
of the variable indicating to which stack a row belongs. It is so named because often these are sorted based 
on time. Specify names for the newly stacked variables with  v.names  and use  idvar  for the ID variable. Any 
variables not listed in  varying  will be assumed to be not varying and will simply be repeated. 

    diris.long <- as_tibble(reshape(as.data.frame(diris), 
   varying = list( 
     c("Sepal.Length", "Sepal.Width"), 
     c("Petal.Length", "Petal.Width")), 
   timevar = "Type", 
   v.names = c("Sepal", "Petal"), 
   idvar = c("ID"), 
   direction = "long")) 

   diris.long 
 # A tibble: 300 x 5 
   Species    ID  Type Sepal Petal 
 *   <chr> <int> <int> <dbl> <dbl> 
 1  setosa     1     1   5.1   1.4 
 2  setosa     2     1   4.9   1.4 
 3  setosa     3     1   4.7   1.3 
 4  setosa     4     1   4.6   1.5 
 5  setosa     5     1   5.0   1.4 
 # ... with 295 more rows 
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    At this point, it might not be clear what   Type    is.  Type  tells us whether we are in the length or width of 
sepals and petals. When our data stacks long from wide, it doubles in length. Now, the  Sepal  and  Petal  
columns must do double duty, and  Type  is there to let us know which. Take a look at this  slice()  of our data: 

   slice(diris.long, c(1, 151)) 
 # A tibble: 2 x 5 
   Species    ID  Type Sepal Petal 
     <chr> <int> <int> <dbl> <dbl> 
 1  setosa     1     1   5.1   1.4 
 2  setosa     1     2   3.5   0.2 

    Type  varies from  1  to  2  depending on whether it is length or width. However, that information is not 
coded into our data, so we  mutate()  our  tibble  to make sure it understands  Type  is a factor of two levels, 
one of which is  Length  and the other  Width . Notice that our slice now makes much more sense after this 
cleanup. 

    diris.long <- mutate(diris.long, Type = factor(Type, levels = 1:2, 
                             labels = c("Length", "Width"))) 
 diris.long 
 # A tibble: 300 x 5 
   Species    ID   Type Sepal Petal 
     <chr> <int> <fctr> <dbl> <dbl> 
 1  setosa     1 Length   5.1   1.4 
 2  setosa     2 Length   4.9   1.4 
 3  setosa     3 Length   4.7   1.3 
 4  setosa     4 Length   4.6   1.5 
 5  setosa     5 Length   5.0   1.4 
 # ... with 295 more rows 

   slice(diris.long, c(1, 151)) 
 # A tibble: 2 x 5 
   Species    ID   Type Sepal Petal 
     <chr> <int> <fctr> <dbl> <dbl> 
 1  setosa     1 Length   5.1   1.4 
 2  setosa     1  Width   3.5   0.2 

    We took wide data and made it long. We now reverse the process by using   reshape()       again, this time 
with the  direction  formal set  wide . Since we are going wide, we do not need  varying , as we are about to get 
those through this process. We do need  ids = diris.long$ID  so that rows  1  and  151  are combined into the 
same single, wide row. 

   diris.wide2 <- as_tibble(reshape(as.data.frame(diris.long), 
                                  v.names = c("Sepal", "Petal"), 
                                  timevar = "Type", 
                                  idvar = "ID", 
                                  ids = diris.long$ID, 
                                  direction = "wide")) 
 diris.wide2 
 # A tibble: 150 x 6 
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   Species    ID Sepal.Length Petal.Length Sepal.Width Petal.Width 
 *   <chr> <int>        <dbl>        <dbl>       <dbl>       <dbl> 
 1  setosa     1          5.1          1.4         3.5         0.2 
 2  setosa     2          4.9          1.4         3.0         0.2 
 3  setosa     3          4.7          1.3         3.2         0.2 
 4  setosa     4          4.6          1.5         3.1         0.2 
 5  setosa     5          5.0          1.4         3.6         0.2 
 # ... with 145 more rows 

   At this point, you can see that  reshape()  is part of base R and is not a very  dplyr  way of doing things. 
However, it is perhaps more powerful and versatile. Hence we decided to showcase how to use it rather than 
more  dplyr -type approaches such as  tidyr . The truth is,  tidyr  is around two years old, and it likely will 
become the new way of managing such conversions. Given the speed at which technology progresses, by the 
time you, our gentle reader, have this book in hand, all of us will be ready for an update to this chapter.  

     Summary 
 The  dplyr  and  tibble  packages make working with data easier. By separating what we do to data from the 
data itself, we can learn a comparatively limited number of manipulations that we can apply to any data. 
Behind the scenes,  dplyr  translates those function calls to modify the data. In the next chapter, you’ll see 
how this allows us to quickly access big data. Table  9-1  describes the key functions used in this chapter.      

   Table 9-1.    Key Functions Described in This Chapter   

 Function  What It Does 

  as_tibble()   Converts a data object (for example, a data frame) to a  tibble . 

  arrange()   Arranges a named column in increasing order, or descending order if  desc()  is used 
on the column name. 

  distinct()   This is  dplyr ’s answer for  unique() . It gives just those rows that are not the same. 

  slice()   Slices out the rows asked for from a tibble. 

  filter()   Filters out rows based on matched characteristics. 

  select()   Selects specific columns based on name. Functionality can be expanded by using the 
helper functions:  one_of() ,  starts_with() ,  ends_with() ,  contains() ,  matches() , 
 num_range() , and  everything() . 

  select_()   A more programming-friendly version of  select()  that takes character strings or R 
objects containing character strings. 

  rename()   Renames columns. 

  mutate()   Allows for changes or mutations to existing tibbles. Adding/deleting/modifying 
column data is a popular use. 

  summarise()   Creates a new tibble based on calculations from an original tibble. 

  %>%   Piping avoids function composition and allows for cleaner code to chain up multiple 
functions. 

  group_by()   Allows grouping by columns. Corresponds to the third formal ( by =  ) of  data.table . 

  left_join()   Joins are a SQL way of dealing with data. A left-join keeps the first object’s rows. 

(continued)
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 Function  What It Does 

  right_join()   Keeps the second object’s rows. 

  inner_join()   Returns all columns of both variables and all rows from the first that have matches in 
the second data object. 

  anti_join()   Returns just the unique, unlinkable part of the first data object. This is quite helpful if 
the second object is meant to extend information on the first, as it gives a fast way to 
see what is left. 

  reshape()   Depending on whether  direction = "wide"  or  direction = "long"  is chosen, 
reshapes data wide or long. This is a base R function and to keep a tibble requires 
 as_tibble() . 

Table 9-1. (continued)
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    CHAPTER 10   

 Reading Big Data(bases)                          

 Now that you understand how to manage data inside R, let’s consider where data is found. While smaller 
data is found in comma-separated values (CSV)  files      or files easily converted to such, larger data tends to live 
in other places. This chapter deals with big data, or at least data that may be big. What is the  challenge   with 
big data? R works in memory, random access memory, not hard drives. A quick check of your system settings 
should reveal the amount of memory you have. We, the authors, use between 4 and 32 gigabytes in our 
real-world systems, with the larger number being a somewhat expensive habit. R cannot analyze data larger 
than available RAM. 

 This leads to two possibilities. While it is possible to save  R data objects and load   them one at a time, R 
is not designed to be a full-time database. Furthermore, large data is often managed by other groups besides 
analysts. Big data is a reality, and most of it lives inside a database of some sort. Now, while most databases 
have the capability to export files to CSV, this is not always convenient. Our goal is to provide you with just 
enough information to allow you access to some popular and common databases. If you are a data user, 
you’ll be able to access data from several common databases by the end of this chapter. If you are a big data 
owner, you’ll gain the ability to write newly collected data into a database. Along the way, we’ll show the 
commands allowing you to load into R a subset of your data. We also discuss read versus write privileges. 
Finally, (actually, first), we install these databases with you, so you are ready to practice using large data. 
Fair warning: Our goal is not to provide expertise in database management. We do have some book 
recommendations we make throughout the chapter for more details. 

 This chapter has three main sections that each follow the same pattern:  installation   of database software 
followed by interacting with that database via R. The first two database systems are SQLite and PostgreSQL, 
which are both relational databases. As such, they fit nicely with the previous chapters discussing data, 
because so far we’ve used tabular data. Tabular data is fixed columns and variable rows. New data is slotted 
neatly into a new row, and thus most data has a  rigid format  . Additionally, while there may be more than 
one table, there tend to be common keys that allow us to match tables to each other (and rows within those 
tables to each other). The last database we demonstrate is MongoDB, which is an example of a document 
store. In a document store, each piece, or  blob , of data may be unique. There is no reason to believe that any 
keys or relations exist; of course, there is no reason to believe that there aren’t any similarities either. 

 In this chapter, we use the following  packages  :  devEMF  (Johnson, 2015),  DBI  (R-SIG-DB, Wickham, and 
Kirill, 2016),  RSQLite  (Wickham, James, and Falcon 2014),  jsonlite  (Ooms, 2014),  tm  (Feinerer and Hornik, 
2015),  wordcloud  (Fellows, 2014),  RMongo  (Cheng, 2013),  RPostgreSQL  (Conway, Eddelbuettel, Nishiyama, 
Prayaga, and Tiffin, 2016), and  data.table  (Dowle, Srinivasan, Short, and Lianoglou, 2015). The following 
code loads the  checkpoint  (Microsoft Corporation, 2016) package to control the exact version of R packages 
used and then loads the packages: 

    ## load checkpoint and required packages 
 library(checkpoint) 
 checkpoint("2016-09-04", R.version = "3.3.1") 
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   library(devEMF) 
 library(RPostgreSQL) 
 library(DBI) 
 library(RSQLite) 
 library(jsonlite) 
 library(tm) 
 library(wordcloud) 
 library(RMongo) 
 library(data.table) 
 options(width = 70) # only 70 characters per line 

    This chapter is not about curating big data and certainly is not about curating big data in R. Instead, 
this chapter gets you learning the ins and outs of using R with some popular open source databases. Before 
moving into specific databases, a word of advice: should you wish to learn all three of these databases, go to 
each section for installation instructions. Follow those, and, after you are finished, just to be safe, restart your 
computer. 

     SQLite 
   SQLite    is both extraordinarily small and exceptionally efficient. It is also freely available (as of this writing 
and for the last 16 years). While we recommend reading  The    Definitive Guide     to SQLite  by Grant Allen and 
Mike Owens (Apress, 2010), there are five main data types recognized (compare this with R): null, integer, 
real, text, and blob. 

 Each SQLite database exists as just one file and is thus quite portable. These databases have no users, 
no need for passwords, and there is a simple connection structure.  Disadvantages   are a consequence 
of some of those same advantages. Without user privileges, there is no distinction between just reading 
information and being able to modify data. 

 This lack of user privileges deserves an important warning. We build the databases we use in this 
chapter with mock data. In real-life work, databases are not for practice. There is a healthy amount of fear 
when directly connecting to a live database for the first time, especially if you are one wrong drop call away 
from deleting your team’s or client’s data. Because SQLite is just one file, it is wise to try on a copy of the 
actual data first if at all possible. Alternatively, as in our case, practice first on something completely safe. 

      Installing   SQLite on Windows 
 Installing does not happen with SQLite. Rather, the file(s) are simply downloaded. A visit to SQLite at 
   www.sqlite.org/download.html      is enough; we downloaded the  sqlite-tools-win32-VERSION.zip  file, 
where  VERSION  maps to the current product and version. Next, extract  sqliteV.exe , where  V  is the version to 
a folder on the disk where you want your data to live. We extracted to  C:/sqlite  as our folder. Make sure you 
have free space on the disk; this database eventually takes up some space. 

 That is all it takes to get SQLite up and running on your system. Now, in real life, perhaps someone else 
created the SQLite database, and you have a database copy or access via a network share drive. Our goals are 
to use data from the database and to store data to the database from R. This is not the same, nor as efficient, 
as managing an SQLite database by using the “proper” techniques. All the same, it gets us using the database 
quickly!     

https://www.sqlite.org/download.html
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     SQLite and R 
 Our first task is connecting to our database. Connections use the   DBI  package library   and build a link to our 
database. In the case of SQLite, there is no need for a username or password. We do need to tell the link the 
location of our database as well as the type of database. Recall that we made some choices about where to 
locate SQLite, and that location must match up with our current location. We call this first connection 
 con1  and then use the   dbIsValid()    function from the   RSQLite  library   to test whether it started correctly. 
Ours returns as valid, so we are ready to go: 

   con1 = dbConnect(SQLite(), dbname = "C:/sqlite/LiteDB.db") 
 dbIsValid(con1) 
 [1] TRUE 

   Our goal is to get you connecting to this database quickly. We push our familiar  iris data   to SQLite, 
which allows us to see that the system is working correctly. Data in SQLite lives in tables, and inside a table 
are fields. This corresponds to a data table in R, which has a name and columns. We assume that you are 
already overly familiar with iris and show the result of writing the data table version of iris to SQLite. The 
  dbWriteTable()    function takes three required arguments: the connection, the name of the new table, and 
the name of the R object to write into that table. The R object should be a data frame. Additional arguments 
may be passed, including settings determining whether we overwrite or append, should a table already be in 
the database with the same name. For this first attempt, we set both to their defaults of  FALSE : 

   dbWriteTable(con1, name = "Iris", diris, overwrite = FALSE, append = FALSE) 
 [1] TRUE 
 dbListTables(con1) 
 [1] "Iris" 
 dbListFields(con1, "Iris") 
 [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width" "Species"      

   Now this data is in our SQLite  Iris  table; we can read it back into R. Our goal is for you to learn how 
to read an entire table into R and to confirm that our storage was lossless or accurate. Using the function 
 dbReadTable()  on our  con1  connection and our  Iris  table inside SQLite gives us access to our data. This 
function returns a data frame: 

   diris_lite1 <- dbReadTable(con1, "Iris") 
 diris_lite1 <- as.data.table(diris_lite1) 
 all.equal(diris, diris_lite1) 
 [1] TRUE 

   The   all.equal()    function confirms that there was no loss. This opens up an easy way to store large 
data. Data tables from R easily store, and through proper use of  overwrite ,  append , or  name , we have a 
good-enough way to curate that data with minimal direct knowledge of SQLite. Should you find yourself in 
possession of large tabular data, this is admittedly an easy way to keep track of it. One of the authors has a 
series of tabular data that changes over time on occasion but is highly similar. An extra column of the current 
date allows large chunks to be readily written to SQLite into a sort of permanent archive. Now, the main 
reason this might be useful is to read into R not an entire table, but merely part of one. 

 Reading part of a table is our goal, and it is not quite so easy as what we did previously. Depending on 
your familiarity with Structured Query  Language   ( SQL  ), this step may be more or less easy. If you are less 
familiar with SQL, that is perfectly fine. Our advice, in that case, is first to cast a broad net into your SQLite 
table, and then use R to remove more rows or columns you neither need nor want. On the other hand, if you 
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are more comfortable with SQL, there is no reason not to select precisely just the parts you want. Here, we 
give a few examples that ought to be enough for beginning levels of  SQL   comfort. Again, we recommend 
other books for moving deeper into SQL. 

 A basic SQL query  SELECT s specific columns,  FROM  a specific table,  WHERE  specific rows of specific 
columns have a certain feature. We use  dbSendQuery()  to send and execute our query to and in SQLite. 
Then, we use  dbFetch()  to get our results into R. In the end, we use   dbClearResult()    to clear the buffer in 
SQLite in preparation for any future queries. 

   query <- dbSendQuery(con1, "SELECT [Sepal.Length] FROM Iris WHERE Species = 'setosa'") 
 diris_lite2 <- dbFetch(query, n=-1) 
 head(diris_lite2) 
   Sepal.Length 
 1          5.1 
 2          4.9 
 3          4.7 
 4          4.6 
 5          5.0 
 6          5.4 
 dbClearResult(query) 
 [1] TRUE 

   The preceding code returns  50  observations of sepal length of the   setosa    species. In  dbFetch(),  
we reference the already executed query, and the  n  argument tells us the number of rows to select. In this 
case, we ask for all rows. Contrastingly, we might have asked for all  100  rows that do not have  setosa . 
The command would be similar, as shown in the following code: 

   query <- dbSendQuery(con1, "SELECT [Sepal.Length], Species FROM Iris WHERE Species <> 
'setosa'") 
 diris_lite3 <- dbFetch(query, n=-1) 
 head(diris_lite3) 
 Sepal.Length    Species 
 1          7.0 versicolor 
 2          6.4 versicolor 
 3          6.9 versicolor 
 4          5.5 versicolor 
 5          6.5 versicolor 
 6          5.7 versicolor 
 dbClearResult(query) 
 [1] TRUE 

   Notice that because of the full stop between   Sepal  and  Length   , we have to encase that variable in a 
bracket, unlike species. It is worth mentioning that SQL has some linguistic quirks and reserved characters 
(much as R does, to some degree). In fact, this could well be the biggest risk for those of us less experienced 
in SQL. Remember, as soon as you use   dbSendQuery   , SQLite cheerfully receives and executes that query. 
Since SQLite has no user authentication, there is no way to use minimal, read-only privileges. In the 
best case, the wrong commands simply have no effect. In the worst case,, you could delete, overwrite, or 
otherwise damage data. Our hard-earned advice is always to work on a local copy of your data, especially if 
you are reading this to start your big data project. Otherwise, talk to the database owner or administrator if 
you are new to SQL. 
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 Our last iris example returns all columns by using the * wildcard rather than listing out all columns. 
Again, we ask for all rows that are not   setosa   : 

   query <- dbSendQuery(con1, "SELECT * FROM Iris WHERE Species <> 'setosa'") 
 diris_lite4 <- dbFetch(query, n=-1) 
 diris_lite4 <- as.data.table(diris_lite4) 
 diris_lite4 
      Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
   1:          7.0         3.2          4.7         1.4 versicolor 
   2:          6.4         3.2          4.5         1.5 versicolor 
   3:          6.9         3.1          4.9         1.5 versicolor 
  ---                                                              
  98:          6.5         3.0          5.2         2.0  virginica 
  99:          6.2         3.4          5.4         2.3  virginica 
 100:          5.9         3.0          5.1         1.8  virginica 
 dbClearResult(query) 

   The purpose perhaps of SQLite is to allow for data larger than  RAM   might physically allow. It can be 
read in chunks as we’ve demonstrated, or we can push large amounts of data from R to free up memory. Our 
next example comes with a choice. If you have enough available free space in your system RAM, go ahead 
and do the example of 200 million rows. Otherwise, either change the number of variables in   rnorm()    to 
something lower, or use our code online to run the smaller example of 70 million rows. 

 This code creates 200 million entirely made-up data observations with a mean of 1 and a default 
standard deviation of 1. As you see, it is about 1.6 gigabytes in size. Certainly, data can be and is larger, but 
this is good enough as a test case for you to see the effects on your system. It likely takes about 5 minutes to 
run on your system, so be prepared for a bit of a wait. 

   BiggerData <- rnorm(200000000, 1) 
 BiggerData <-as.data.table(BiggerData) 
 object.size(BiggerData) 
 1600001088 bytes 
 dbWriteTable(con1, "BiggerData", BiggerData) 
 [1] TRUE 
 dbListTables(con1) 
 [1] "BiggerData" "Iris"       

   Dropping a table from SQLite is possible from R. Notice that we have two tables listed in our database. 
 BiggerData  is a large table, so it is not instant. Still, the operation is fairly quick. SQLite does not reduce the 
size of the database file on your hard disk as a result of this operation. Now, it does internally free up that 
space, so it needs not grow again. However, it is not free to use outside SQLite. In SQL parlance, what is 
needed is a   VACUUM    of the database. This procedure could require up to twice the size of the file, and again, 
the space has been released for new use—just not outside the database. Either way, this seems, to us, better 
done outside R. 

   dbRemoveTable(con1, "BiggerData") 
 [1] TRUE 
 dbListTables(con1) 
 [1] "Iris" 
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   Our final bit of code shuts down our connection to our database. The function call is   dbDisconnect()   , 
and we call that on our connection,  con1 . A successful call returns  TRUE , and we also see with   dbIsValid()    
that it is indeed shut down. We also remove some unneeded data before we move on to the next database. 

   dbDisconnect(con1) 
 [1] TRUE 
 dbIsValid(con1) 
 [1] FALSE 
 rm(diris_lite1, diris_lite2, diris_lite3, diris_lite4) 

   We said that our space was not freed up. Since this is invented data, to free up your system, simply 
use Windows Explorer after we are done to delete the  LiteDB.db  file in your  C:/sqlite  folder. It bears 
repeating that database management should not be done through R. Rather, R can natively store some data if 
necessary or access subsets of data for analysis.   

      PostgreSQL   
  PostgreSQL  is both open source and popular (ranking fifth of all databases according to some sources). 
Highly advanced, this  database   has over 30 types of data it understands internally. We recommend 
 Beginning Databases with PostgreSQL  by Neil Matthew and Richard Stones (Apress, 2005). As with SQLite, 
we walk you through installing a practice version on your local machine. Our goal is to get you using R on 
data inside this database as soon as possible. More-advanced database operations most likely ought not to 
be done in R. 

 This format is recommended when data integrity,  reliability  , and a need for various levels of user access 
may be useful. On the other hand, if you just need fast read speed for more static yet large data, this might 
not be the best choice. Of course, we admit that often the choice of a database has much less to do with what 
we want and more to do with where data is found. A warning about PostgreSQL is that it does have users, 
and these users have certain privileges. For our example, we have one superuser. From a security standpoint, 
this is unwise, and from a real-life perspective, a database owner is unlikely to grant analysts such privileges. 
If you intend to be working extensively in this environment and want more practice, an easy way to get it is 
to create more levels of users than we do in our brief installation. Then, practice accessing your database by 
using those usernames and passwords in R. 

     Installing PostgreSQL on  Windows   
 Visit the PostgreSQL website (   www.postgresql.org/download/windows/     ) and choose one of the installer 
options. We chose the latest stable release (not a beta) for 64-bit architecture. After downloading, you should 
have a file named something like  postgresql-9.5.4-windows-x64.exe , which is your installation program. 
Of course, your version number likely is higher than 9.5.4, as that is our edition as of the writing of this 
chapter. 

 Go ahead and install the program, clicking the Next button as needed, and accepting the default 
settings for the installation directory. The installer asks for a password for the database superuser named 
 postgres , which we set to  advancedr . If you select a different password, please be sure to record it securely. 
Incidentally, this also creates a database with the same name as the superuser. PostgreSQL defaults to port 
5432, and if that is not showing as the default option, you likely have another version of PostgreSQL living 
on your computer. While we configure the port in R, we highly recommend at first practice to go with as 
many defaults as possible. Clicking Next a few more times, accepting the defaults, should lead you to the 
installation event. You may be asked on the final screen about Stack Builder; it is not required, and you may 
uncheck that option before clicking Finish. 

https://www.postgresql.org/download/windows/
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 At this point, PostgreSQL’s installation is over, and it is running on your computer. If you are familiar 
with this database, you could add data to it directly (and likely would not have needed this primer). We add 
data via R and quickly get to accessing subsets of that  data  .  

     PostgreSQL  and R   
 Our first task is connecting to our database. This uses the  DBI  package library and builds a link to our 
database. In the case of PostgreSQL, we need a username and password. We also need to tell the link the 
location of our database as well as the type of database. This database is a server, and we do not need to tell it 
the file location so much as the host location and the port. We call this second connection  con2  and then use 
the  dbGetInfo()  function from the  RPostgreSQL  library to test whether it started correctly. Ours returns with 
quite a bit of information, so we are ready to go: 

    drv <- dbDriver("PostgreSQL") 
 con2 <- dbConnect(drv, dbname = "postgres", host = "localhost", 
 +                  port = 5432, user = "postgres", password = "advancedr") 
 dbGetInfo(con2) 
 $host 
 [1] "localhost" 

   $port 
 [1] "5432" 

   $user 
 [1] "postgres" 

   $dbname 
 [1] "postgres" 

   $serverVersion 
 [1] "9.5.4" 

   $protocolVersion 
 [1] 3 

   $backendPId 
 [1] 14220 

   $rsId 
 list() 

    It may be worth mentioning that we included the password directly in the code in plain text for 
 dbConnect()  this time. It might not be the most secure methodology, and care should be taken (particularly 
in this case, since this is our superuser). All the same, our connection is working, it is properly connected to 
port  5432  (while this is the default port for this database, it is not always this port), and our host is  localhost . 
Should you connect to a database online, you would change the address to that database. Now that our 
connection is working, we see which tables are in the database and add the familiar iris data  set  : 

   dbListTables(con2) 
 character(0) 
 diris <- as.data.table(iris) 
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 dbWriteTable(con2, "iris", diris, overwrite = TRUE) 
 [1] TRUE 
 dbListTables(con2) 
 [1] "iris" 
 dbListFields(con2, "iris") 
 [1] "row.names"    "Sepal.Length" "Sepal.Width"  "Petal.Length"  "Petal.Width"  "Species"      

   A nice feature of these functions is they do what they say. All the same, we draw your attention to the 
 dbWriteTable()  function. Although writing is not our main focus, this function takes both an  overwrite  and 
an  append  option set to  FALSE  or  TRUE . Both are convenient in the right situation. We turn our attention to 
reading from this database, and confirm that we successfully pull into R data from PostgreSQL with a visual 
inspection of our data: 

   diris_gre1 <- dbReadTable(con2, "iris") 
 diris_gre1 <- as.data.table(diris_gre1) 
 diris_gre1 
      Sepal.Length Sepal.Width Petal.Length Petal.Width   Species 
   1:          5.1         3.5          1.4         0.2    setosa 
   2:          4.9         3.0          1.4         0.2    setosa 
   3:          4.7         3.2          1.3         0.2    setosa 
  ---                                                             
 148:          6.5         3.0          5.2         2.0 virginica 
 149:          6.2         3.4          5.4         2.3 virginica 
 150:          5.9         3.0          5.1         1.8 virginica 

   A basic SQL query  SELECT s specific columns,  FROM  a specific table,  WHERE  specific rows of specific 
columns have a certain feature. We use  dbSendQuery()  to send our query to and execute it in PostgreSQL. 
Then, we use  dbFetch()  to get our results into R. Notice that when we fetch, we select only the first three 
rows that have this feature. At the end, we use  dbClearResult()  to clear the buffer in PostgreSQL in 
preparation for future queries.    

   query <- dbSendQuery(con2, statement = 'SELECT * FROM iris WHERE "Petal.Length" > 2') 
 diris_gre2 <- dbFetch(query, n=3) 
 head(diris_gre2) 
    row.names Sepal.Length Sepal.Width Petal.Length Petal.Width    Species 
 1        51          7.0         3.2          4.7         1.4 versicolor 
 2        52          6.4         3.2          4.5         1.5 versicolor 
 3        53          6.9         3.1          4.9         1.5 versicolor 
 dbClearResult(query) 
 [1] TRUE 

   This is highly similar to what we did earlier with SQLite, because both databases are SQL databases that 
store tabular data. Alternately, if we needed only one column of data, we would  SELECT  that specific column 
rather than using a wildcard value: 

   query <- dbSendQuery(con2, 'SELECT "Petal.Length" FROM iris') 
 diris_gre3 <- dbFetch(query, n=6) 
 head(diris_gre3) 
   Petal.Length 
 1          1.4 
 2          1.4 
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 3          1.3 
 4          1.5 
 5          1.4 
 6          1.7 
 dbClearResult(query) 
 [1] TRUE 

   The next query returns both  Sepal.Length  and  Species  columns from our  iris  data set, where the 
sepal width does not equal  2.2  ( an arbitrary number). Of note is that this returns only  147  rows instead of 
the full  150 , and of course only two columns instead of five. Scaling this idea up, you readily see how big 
data might be broken into relevant chunks for analysis. We changed from  query  to  qu  simply to save a few 
characters, to improve the readability of the line in the  query   text. 

   qu <- dbSendQuery(con2, 'SELECT "Sepal.Length", "Species" FROM iris WHERE "Sepal.Width" <> 
2.2') 
 diris_gre5 <- dbFetch(qu, n=-1) 
 head(diris_gre5) 
   Sepal.Length Species 
 1          5.1  setosa 
 2          4.9  setosa 
 3          4.7  setosa 
 4          4.6  setosa 
 5          5.0  setosa 
 6          5.4  setosa 
 dbClearResult(qu) 
 [1] TRUE 

   The purpose perhaps of PostgreSQL is to allow for data larger than RAM might physically allow. It can 
be read in chunks as we’ve demonstrated, or we can push large amounts of data from R to free up memory. 
Our next example comes with a choice. If you have enough available free space in your system RAM, go 
ahead and do the example of 200 million rows as written. Otherwise, either change the number of variables 
in  rnorm()  to something lower, or use our code online to run the smaller example of 70 million rows. 

 This code creates 200 million entirely made-up data observations with a mean of 1 and a default 
standard deviation of 1. As you see, it is about 1.6 gigabytes in size. Certainly, data can be larger, but this 
might be good enough as a test case to see how it works on your system. It likely takes around 5 minutes 
to run, so be prepared for a bit of a wait. If you have already run this in an earlier step, there is no need to 
repeat it. 

    BiggerData <- rnorm(200000000, 1) 
 BiggerData <-as.data.table(BiggerData) 

   dbWriteTable(con2, "BiggerData", BiggerData) 
 [1] TRUE 
 dbListTables(con2) 
 [1] "iris"       "BiggerData" 

    Once again, while we are (at least with superuser privileges) able to  DROP  a table, it does not release 
space to us in PostgreSQL (and hence on our hard drive). Also once again, we recommend saving  VACUUM  
commands for actual database management (and thus recommend using SQL on the database directly 
rather than in R). 
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   dbListTables(con2) 
 [1] "iris"       "BiggerData" 
 dbRemoveTable(con2, "BiggerData") 
 [1] TRUE 
 dbListTables(con2) 
 [1] "iris" 

   To close this connection, there are two steps rather than one, because we must disconnect from 
PostgreSQL and unload our driver that allows  DBI  to make that connection. If successful, they will both 
return  TRUE . 

   dbDisconnect(con2) 
 [1] TRUE 
 dbUnloadDriver(drv) 
 [1] TRUE 

   This concludes our demonstration of both PostgreSQL and tabular databases. The real way to make the 
knowledge you now have more powerful is to delve further into SQL syntax to use  dbSendQuery()  on ever 
more exotic quests. For now, though, a small-enough quantity of data ought to be readable into R that some 
analytics can happen. We turn our attention to a different  sort   of database.   

     MongoDB 
 As mentioned earlier,   MongoDB    is different. This is a  document store database  , which is a type of 
nonrelational database. This avoids tables for documents called objects. These documents are binary 
versions of JavaScript Object Notation (JSON); since they are binary versions, MongoDB calls them BSON 
objects. This type of database is used for data that may be semistructured or unstructured. This tends to be 
closer to the concept of a  data lake  (an increasingly popular buzzword in data science), which suggests that 
diverse types of data may need to be stored and accessed. 

 One powerful feature of  JSON and semistructured data   is the ability to collect all the information in 
one place for one particular instance. For example, suppose we had all patient records in one place. Rather 
than dozens of tables in which each patient occupies a row, and each table is something along the lines 
of Address or Diagnosis, we instead store all records for one patient in one blob. Of course, most patients 
have an address, but perhaps not all need three types of blood panels in their diagnosis section. This is 
semistructured data. On the other hand, if you are simply collecting data from the Web about a favorite 
company—including news articles, social media posts or likes, and stock market performance figures—there 
may be almost no similarity between elements of that data. Regardless, MongoDB can store it, and we can 
access it. 

     Installing MongoDB on Windows 
 A visit to the MongoDB  website   (   www.mongodb.com/download-center     ) shows an option to download 
the 64-bit version of MongoDB with SSL support (version 3.2.8 as of this writing). See Figure  10-1 . Once 
that is downloaded, go ahead and start the  installation process  . Select Next, read and agree to the license 
documentation, and proceed. We used the complete installation and then clicked the Install button. A short 
time later, please click Finish.  

http://www.mongodb.com/download-center
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 We also need to download the sample database for MongoDB. We will use the restaurants data set 
available at MongoDB’s Import Example Dataset page at    https://docs.mongodb.com/getting-started/
shell/import-data/      under step 1 ( primer-dataset.json ). We will also use  Ch10_MOCK_DATA.json  as 
another data set. Both are also available as part of the code packet for this chapter from this book’s site. Go 
ahead and download both files, and store them in  C:\Program Files\MongoDB\Server\3.2\bin . Keep in 
mind that you may be using version 3.3 or later, so be sure to change the version number in this file path as 
needed. With that, MongoDB is installed, and we have our data sets. Figure  10-2  shows the  folder  .  

  Figure 10-1.     Downloading   MongoDB       

  Figure 10-2.    The MongoDB\Server\3.2\bin folder       

 

 

https://docs.mongodb.com/getting-started/shell/import-data/
https://docs.mongodb.com/getting-started/shell/import-data/
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 Now press the Windows key, and while holding it down, then press the R key. This opens the Run 
dialog box. Type  cmd  and then press Enter/Return. There needs to be a  data directory   for your database. 
By default, this is in the main file path (for example, usually the C drive for Windows). In the command 
prompt, type  md \data\db  to make the default directory. Note the space between  md  and  \data\db . Next, 
still in the command prompt, type  cd C:\Program Files\MongoDB\Server\3.2\bin  and hit Enter/Return. 
Should version 3.3 release before the printing of this book, change the 3.2 in the preceding file path to 3.3. 
From here, type  mongod.exe  and hit Enter/Return. If all goes well, the last line should be  waiting for 
connections on port 27017 . Keep this window open (otherwise, our server is not serving files). 

 Next, again keeping the first console open, press and hold the Windows key and press the letter key 
to open a second Run dialog box. This time, most likely  cmd  is already filled in, so press Enter/Return to 
open a second command prompt. In the command prompt, again type  cd C:\Program Files\MongoDB\
Server\3.2\bin  and hit Enter/Return. We now use MongoDB itself to import these two data sets. Run the 
code shown in bold, and the following output shows the results: 

    mongoimport --db test --collection restaurants --drop --file primer-dataset.json 
 2016-09-25T11:11:24    connected to: localhost 
 2016-09-25T11:11:24    dropping: test.restaurants 
 2016-09-25T11:11:26    imported 25359 documents 

   mongoimport --db test --collection mock --drop --file Ch10_MOCK_DATA.json 
 2016-09-25T11:19:45    connected to: localhost 
 2016-09-25T11:19:45    dropping: test.mock 
 2016-09-25T11:19:45    imported 1000 documents 

    Note that this database has a database named  test , and inside that database there are now two 
collections. These collections, namely  restaurants  and  mock , were created by importing  JSON files  . 
Had those two collections existed already in our  test  database, then the  --drop  command would have 
purged them. It is somewhat standard to use a database named  test  or  temp  as a way of signaling that 
experimentation is expected in such a place. 

 Go ahead and close this second command prompt window (be careful—you must keep the first 
window, which should be giving you server  COMMAND  and  NETWORK  feedback, open). After closing just this 
second window, we turn our attention to  R .  

     MongoDB and R 
 MongoDB does have the option to have usernames, passwords, and multiple databases. As we have not set 
up any of these, we go ahead and simply connect to our local server on our third connection,  con3 . Unlike 
our first two connections, this uses a new command,   mongoDbConnect()    from the   RMongo  package   . Also, 
notice that this calls for a host to be the localhost, and the port is specified as well. If you are connecting to 
a MongoDB instance over the Web, be sure to identify the IP address as well as its port. Of course, also find 
out from the administrator the name of the database you wish to access. Finally, find out whether you would 
have only read permissions or more. It does not do to experiment on other people’s databases! 

   con3<-mongoDbConnect("test", host = "127.0.0.1", port=27017) 

   Should authentication be required, you need to run a second command. Type and run 
  dbAuthenticate(con3, username, password)    into your R session. A word of caution is needed here: 
depending on the version of MongoDB being accessed, the version of Java installed on your local machine, 
and the authentication protocol set up by the database administrator, this functionality may or may not 
work. We realize that this is a vague statement. As of the writing of this book, authentication seems possible, 
but there seem to be signs that this is not always true for all users. 
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 To add to the bad news, at this time, the function call   dbShowCollections()    does not work on the most 
recent versions of MongoDB. If you are connecting to a mature database, chances are it may be using an 
older version, and you may be able to see the collections. The   RMongo  package   is approximately three years 
old, and we have hopes for an update. For now, we simply provide the heartless wisdom that connecting to 
databases and data munging, in general, is rarely easy. Fortunately, we know that our collections are stored 
in  restaurants and mock . 

 Thus, we may proceed to access some data from our collections to confirm that we can, in fact, read 
data from MongoDB into R. Notice that the function call   dbGetQuery()    takes at least three arguments. First, 
it requires the connection, and second, it requires a text string that has  collection  information. The third 
argument is the search terms used to access our data. In this first case, we do not define any search terms 
and thus merely have the wrapper of  {}  for that formal. The last two arguments are optional. The  0  tells us 
we are starting at the beginning of the list, and the  8  says we want the next eight entries only. In other words, 
we are skipping no entries, and we are limiting the ones returned to eight. We have edited the final output for 
readability and show just a portion of the   View()    in Figure  10-3 .  

    output1 <- dbGetQuery(con3, 'restaurants' , "{}", 0,8 ) 
 is.data.frame(output1) 
 [1] TRUE 
 names(output1) 
 [1] "address"  "restaurant_id"  "name"  "cuisine"      "X_id"  "borough"      "grades"        
 output1[1,] 
                                                                                                                 
address 
 { "building" : "2206" , "coord" : [ -74.1377286 , 40.6119572] , "street" : "Victory 
Boulevard" , "zipcode" : "10314"} 

   restaurant_id   name           cuisine        X_id                            borough 
 40356442        Kosher Island  Jewish/Kosher  57e7f9a275bec64c417b9ab2        Staten Island 
                                                                                                                                                      
                                                                                                                                                      
                                   grades 
 [ { "date" : { "$date" : "2014-10-06T00:00:00.000Z"} , "grade" : "A" , "score" : 9} , 

    { "date" : { "$date" : "2014-05-20T00:00:00.000Z"} , "grade" : "A" , "score" : 12} , 

  Figure 10-3.    Part of the results of the View(output1) command       
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    { "date" : { "$date" : "2013-04-04T00:00:00.000Z"} , "grade" : "A" , "score" : 12} , 

    { "date" : { "$date" : "2012-01-24T00:00:00.000Z"} , "grade" : "A" , "score" : 9}] 
 View(output1) 

    This data seems to contain  information   about locations, types of food, and names of restaurants. 
Using that knowledge, we refine our search criteria to types of  American  cuisine. This is interesting because 
what we do is remove the start and limit arguments, and adjust the query criteria. Here is where data 
hygiene becomes so crucial. Naively, we attempted  dbGetQuery(con3, 'restaurants' , '{"cuisine": 
"American"}')  at first. This did not work. Because we already had to rewrite this section because our former 
favorite package for this database was removed from CRAN, this seemed somber. Many things were tried; 
many things failed. In the end, a careful inspection of the data set in the raw downloaded  JSON file   revealed 
that for whatever reason, there is a space at the end of  American . Not the other food types, mind you, just 
that one. If we had selected any other option, we would not have had this story to tell. The lesson learned 
that we want to share is that this process takes time. Expect things to go not so well. Keep persevering, and 
the data will come eventually. 

 After correcting our query, we can get the results. Rather than simply view those  results  , we decided 
to put the restaurant names into a word cloud, to see whether we could detect a pattern. Be sure to note 
the space after our cuisine type! Also note that if you search for a  Bakery , this is not necessary. We show the 
 results   of the word cloud in Figure  10-4 .  

   output2 <- dbGetQuery(con3, 'restaurants' , '{"cuisine": "American "}') 
 output2 <- as.data.table(output2) 
 rNames <- Corpus(VectorSource(output2$name)) 
 wordcloud(rNames, max.words = 20) 

   Our other,   mock  data   came with an ID value already, and MongoDB gives each document or blob an  id . 
Thus, to avoid name conflicts,  X_id  was made by MongoDB. This is a rather important point; most SQL or 
NoSQL databases tend to have some reserved names. While we did our best to ignorey that in this chapter, 
if you intend to store data yourself on such a database rather than simply read it into R, we recommend 
reading more on the topic and having healthy caution. We also formatted this output a bit to clean it up. 

  Figure 10-4.    A word cloud comprising the names of 1,000 American cuisine restaurants       
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    dbGetQuery(con3, 'mock', '{}', 0,1) 

   gender 
    Male 
                                                                                                  
financial 
 { "account1" : "DO56 T7LH 5884 0956 8784 3936 1833" , 

    "account2" : "197VPF5XPA13ngPwAmSiWsSMoUUPoWFQpa"} 

   last_name       X_id                          id       ip_address     first_name 
 Lawson          57e7f92175bec64c417b96ca      1        255.61.75.176  Jesse 

   diagnoses 
 Manic affective disorder, recurrent episode, moderate 

   email 
 jlawson0@faux.com 

    As you can see from our first bit of  mock data  , we seem to have patient information. We hasten to assure 
you that this is all imaginary data. Of note in blobs is that while this first one did, in fact, have all known bits 
of data, there is no reason for each item to be present. Thus, if only one financial account were available, we 
would simply not include the second account. Unlike tabular data, which requires  NA  entries of some sort, 
in semistructured data, we can simply not include elements that are unknown. These data are thus highly 
flexible (and more efficient in storage, because unknowns are not included at all). 

 The downside is that searching through such  unstructured data   can be fairly difficult without a strong 
knowledge of the data set and naming conventions. All the same, we can find all documents in our collection 
that have a specific feature in common. The function call   dbGetQuery()    can take many things in the third 
formal. Here we have just passed it a list that finds only documents in which the gender is  male . Again, 
additional formals include  skip,  which skips the first  x  rows, and  limit , which limits the results to an 
upper cap. 

   mfound<-mongo.find.all(con3, "test.ch10data", list(gender="Male")) 

   For readers more familiar with MongoDB queries, the third formal can, in fact, contain  BSON query 
language   directly. To learn more about queries in MongoDB, we recommend  The Definitive Guide to 
MongoDB, Third Edition  by David Hows et al. (Apress, 2015), particularly Chapter   8    . For now, we take our 
records indicating male gender and pull out the first names to do a bit of analysis on semistructured data. 
The types of data stored in such blobs are often less suited to traditional statistical tests, and perhaps more 
related to modern analytics. For simplicity’s sake, after extracting the male gender blobs, we access the first-
name component and store that in a  corpus  called   fNames   . From there, we build a word cloud on the first 20, 
as shown in Figure  10-5 .  

   output3 <- dbGetQuery(con3, 'mock', '{"gender": "Male"}') 
 fNames <- Corpus(VectorSource(output3$first_name)) 
 wordcloud(fNames, max.words = 20) 

http://dx.doi.org/10.1007/978-1-4842-2077-1_8
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   Our final bit of code shuts down our connection to our database. The function call is   dbDisconnect()   , 
and we call that on our third connection,  con3 . This call both disconnects and frees up client and server 
resources: 

   dbDisconnect(con3) 

   Quite a bit more could be said about unstructured documents and the exciting possibilities of this type 
of data. The ability to store and then access chaotic information becomes ever more routine. This is an area 
where we anticipate much room for growth, as fuzzy matching allows machines to sort through quickly and 
return near matches—perhaps a topic for other authors, and certainly a topic for another book. The last step 
to take in this section is to close the command-prompt window that is still open.   

     Summary 
 This chapter gave you direct access to three databases with R. While many of the features are not designed 
for curating data, R nevertheless provides a quick way to get a handle on big data. Such data sets seem to 
be becoming ever more common, and while it may not be feasible for researchers to be familiar with every 
database, that is not required. Using R, it is entirely possible to pull out a subset of data that contains all 
items of interest and is small enough to fit into working memory. Skilled users of R, such as this book’s 
readers, can prune the data in R itself further, and from there perform desired analytics. Table  10-1  provides 
a summary of the key functions in this chapter.      

  Figure 10-5.    Word cloud of first names, where gender = male       
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   Table 10-1.    Key  Functions   Described in This Chapter   

 Function  What It Does 

  dbConnect()   Uses the DBI package plus a driver to connect to a SQLite or PostgreSQL 
database. 

  dbDriver()   Driver needed for PostgreSQL (and others). 

  dbIsValid()   Tests a SQLite connection for validity and returns a Boolean. 

  dbWriteTable()   Writes data from R to SQLite or PostgreSQL (you must be a user with write 
privileges). 

  dbListTables()   Lists all tables in a SQLite database. 

  dbListFields()   Lists all fields (column names) in a SQLite database. 

  dbSendQuery()   Sends an SQL query to a SQLite or PostgreSQL database and executes the query 
there. 

  dbFetch()   Fetches the results from the last sent query in SQLite or PostgreSQL. 

  dbClearResult()   Sets SQLite or PostgreSQL back to neutral for the next query. 

  dbRemoveTable()   Drops a table from SQLite or PostgreSQL (user must have privileges); does not 
 VACUUM . 

  dbDisconnect()   Closes the DBI package connection to SQLite or PostgreSQL. 

  dbUnloadDriver()   Unloads the PostgreSQL (and other) drivers. 

  mongoDbConnect()   Creates a connection to a MongoDB server and a specific database on that 
server. 

  dbInsertDocument()   Inserts a record into a MongoDB collection; takes second formal collection. 

  dbGetQuery()   Finds all blobs that match a query; this has several possibilities we only briefly 
explored. 

  dbDisconnect()   Destroys a MongoDB connection.    
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    CHAPTER 11   

 Getting a Cloud                          

 Depending on your needs and uses for R, it can be convenient to have a reasonable amount of memory 
and processor capability. Often this power is necessary only on occasion, and it may not be cost-effective to 
own the hardware. This is where hosting R on the cloud may be helpful. Cloud instances bring on-demand 
resources that are readily scaled up or down as each situation requires. These days, there are several 
tolerable outfits that provide such services at very reasonable prices. The challenge we face is threefold, and 
we walk through those steps over the next three chapters. We need to get a cloud, we need to administer our 
cloud’s  operating system,   and we need to do some fun things with R. 

 This chapter focuses on getting a cloud. To do that, we need to choose a provider, start up a compute 
instance in a location we will not ever physically access, and successfully connect to our instance. We are 
going to make some assumptions along the way, and, given the quickly evolving nature of technology, this 
may well be obsolete even as we write. 

 Our first claim is that you, our gentle readers, have access to a Windows-based computer and are most 
familiar with a  Windows environment  . We do not suppose you have administrative privileges on your local 
machine, although it requires a network connection. You also need access to a credit card. Although your 
work in this chapter doesn’t incur a cost , a credit card is required. Finally, and apologies for those for whom 
this is not true, we are going to assume that you have no prior knowledge of clouds, networks, or Unix-
flavored operating systems. 

     Disclaimers 
 There are a few  disclaimers   we should make at this point. We are in no way endorsing Amazon Web Services 
(Setting Up with Amazon AWS EC2, 2016) just as we are in no way endorsing Windows. Nevertheless, AWS is 
convenient, popular, and, as of this writing, offers a free tier of service for 12 months (   http://aws.amazon.
com/free/     ). Please be careful with data you place in the cloud; without proper attention to security, it might 
be easy for that information to find its way to the wrong minds. While we give some brief suggestions on 
digital safety, these are not enough. The topic of Internet security can and does fill several books; if you have 
data that should not be faxed or e-mailed, there is much more to be learned before processing that data on a 
cloud. 

 With luck, we have not scared you away from this convenient and powerful method of bringing just the 
right resources to your research and data. We also recommend reading this chapter and the one following 
first, and dedicating an afternoon or more to the process if you are, like us, cloud novices. We should 
also mention that we use Google’s Chrome browser; your choice of browser may change the screenshots 
shown in this chapter. Indeed, AWS itself has semiregular layout changes as new features are added or old 
functionalities merge. Nevertheless, what you see should look quite close to what we  show  .  

http://aws.amazon.com/free/
http://aws.amazon.com/free/
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     Starting  Amazon Web Services   
 Very few people are polymaths, and living in the cloud can be a bit difficult conceptually. In our experience, 
being good at mathematical programming does not instantly translate into cloud expertise. Fortunately, the 
system is fairly well designed to start up quickly after some legwork is done. What you want is access to an 
 Elastic Compute Cloud (EC2)   instance. EC2 is a virtual computer that can be customized to have whatever 
processing power and memory combination you may wish. That is an overly bold statement. However, at 
the time of this writing, anywhere from 1 processor at 2.4 GHz and 0.5 GiB of memory, to 40 processors at 2.4 
GHz and 160 GiB of memory, can constitute a single computer instance. 

 The first step we take is visiting the Amazon Web Services site (   http://aws.amazon.com/free/     ) and 
getting a new account, as shown in Figure  11-1 . Follow the steps to create a new account, being sure to 
generate a secure password. This step requires both a credit card and a phone number. Again, we use the 
Google Chrome browser, and your browser’s view may differ from ours on occasion.  

 The account you have just created is your top-level account. The recommendation is to create a 
subaccount that does not have the full rights this one does. In fact, Amazon goes to some pains to convince 
you to use  identity and access management (IAM)   to create a secondary account. If you are just a single 
user who never needs someone else to access this, a secondary account is still beneficial. If you are ever 
going to have other users, it is a no-brainer decision. From adding a graduate student, to adding a colleague, 
to adding employees or consultants, it can be helpful to not give away the master key to the castle. Do not 
be shocked by the plethora of options available; simply scroll down to the Security and Identity portion of 
AWS and select  IAMS   from near the end of the middle column, as shown in Figure  11-2 . Depending on your 
browser, IAM may have a key icon or may have no icon at all. There are enough options present that pressing 
Ctrl+F and then typing  Identity & Access Management  into the search box may help highlight the text for 
IAMS. Do not be shy about searching, clicking, and exploring to find it. You can’t hurt anything, and Amazon 
updates the interface on  occasion  .  

  Figure 11-1.     Creating   a new AWS account       

 

http://aws.amazon.com/free/
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 Inside  IAMS  , you need to create both a new group and your first user. Groups are convenient because 
they allow you to create multiple users who have only certain privileges. On the left side of the screen, 
select the Groups option and create a new group. We called ours   AdvancedR   , although yours might be 
more sensibly named CloudAdmin or something similar. When asked which policy, we recommend 
 AmazonEC2FullAccess  , as shown in Figure  11-3 .  

 Next, we create a  user  . While following directions on the establishment of the user, we recommend 
using your first name so that you see that account as  you  and using a different password from your AWS 
account. Start by selecting the Users tab on the left side. Once there, create your username. Also, this is the 
stage where, if you are going to have a consultant help you build your cloud, you can create a second user 
account for them. Be sure the settings are as in Figure  11-4 , including deselecting access-key  generation  .  

  Figure 11-2.    The AWS management console with highlighted boxes for the three parts we use in this chapter       

  Figure 11-3.    IAMS group policy selection—your view may differ       
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 After creating your user(s), select your username(s) by clicking the check box (not clicking the 
username) and the User Actions tab. From there, add them to your new group. Also from there, select your 
user(s). From the User  Actions   drop-down list, select Manage Passwords and then assign a custom password 
or autogenerate a password. See Figure  11-5 .  

 When you created your account initially,  AWS   gave you an account identification number. To see this 
number and link again, click the IAM Dashboard at the top left, as shown in Figure  11-5 . The  Dashboard   has 
an IAM users sign-in link as well as an option to customize that to a name. Sign out of AWS. Go to your AWS 
address that follows this pattern:  https://YOUR_ID_HERE.signin.aws.amazon.com/console ; sign in using 
your new username and password. 

 Taking a look at Figure  11-2  again, notice in the top-left corner the link for EC2. Click this link; at the 
top-right, you can select a region such as Oregon or Sydney. Different regions tend to have variations in cost, 
and of course, the closer you are geographically to a region, the more likely network upload and download 
speeds are efficient. As is often the case, there are trade-offs to consider; we recommend selecting the region 
nearest to you. One warning is that after you select a region, some of what we do is regionally specific. In 
particular, key pairs (used to access your cloud server) tie to particular regions. 

 Once you have your region selected, it is time to create a key pair. On the left side is a menu list, and 
under Network & Security is the Key Pairs link. Select that link, and then click the Create Key Pair button. 
Give your key pair a name. If you are likely to need cloud instances in different regions, Amazon’s advice to 

  Figure 11-4.    Creating a  user   on the AWS IAMS       

  Figure 11-5.     User Actions   tab and drop-down box       
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add your region name to the key pair name is sound. Your browser should automatically download the key 
pair file. Remember where this is saved and keep it safe; this is your only chance to download this file. We 
use it later in the next section, but for now, we move on to creating a virtual private cloud (VPC). Return to 
the home screen of Figure  11-2 . 

 One last look at Figure  11-2  shows that in the first column, near the end, under Networking, is VPC. 
There are several options here; we go with the simplest, one with a single public subnet. Select the Start VPC 
Wizard and give your VPC a name such as  AdvancedR . Stick with the default options and then select Create 
VPC. As you can see from these options, if you were interested in creating a more advanced structure, that is 
readily done. 

 Your cloud is not safe without a firewall, which is called a   security group   . We are very cautious with our 
security group. On the left in the VPC Dashboard, notice the Security tab and the Security Groups link. Click 
that link and then click the Create Security Group button. Give the group a name tag and a name such as 
AdvancedR, as well as a description. Be sure to select your VPC from that-drop down list at the end and then 
click the Yes, Create button. 

 Now, select your  AdvancedR security group      and notice the options that are at the end of your browser 
screen, shown in Figure  11-6 . What we are about to do is configure which IP addresses are allowed to visit 
your future cloud instance. This is, of course, not ironclad; however, IP spoofing is way beyond the scope of 
this chapter. Certainly, this is a good first step, ensuring that you are the only one who knows your server is 
there. Be sure to select the Inbound Rules tab, select Edit, and add SSH (22) with TCP (6) protocol; you want 
to put your IP address for the source. Amazon has links to an IP detector, but a simple Google search of 
 ip address  returns your public IP address as the top hit. It should be in valid Classless Inter-Domain Routing 
(CIDR) notation, which means that if your address is  72.18.154.27 , you want to type in  72.18.154.27/32  for 
Source. While we are here, we create rules for ports 80, 443, and 8787—which are HTTP, HTTPS, Shiny, and 
RStudio Server, respectively. However, we also lock these to just your IP address. This likely prevents others 
from accessing your server until you are ready. Go ahead and leave the Outbound Rules to allow all traffic to 
destination  0.0.0.0/0 .  

 If your IP address changes often, you may need to relax your rules. We recommend doing so as 
cautiously as possible, and only after you are through with the basic operating system and safety updates 
we discuss in Chapter   21    . Also notice that as of now, if you were to host a web server on your cloud instance, 
that website would be visible only from your local computer or network. Later, after we have installed a site, 
we’ll go back to this screen and make some edits to allow certain parts of our server to be visible to a wider 
audience. 

 While a full lesson on  CIDR   is beyond the scope of this book, a little knowledge makes sense here. 
The Internet does not use word addresses such as    www.elkhartgroup.com     . Rather, it uses a series of 32-bit 
numbers; try typing  72.18.154.27  into your web browser. Computers use binary numbers rather than 

  Figure 11-6.     Security group’s inbound rules   with CIDR notation       
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base 10; they see our website as  01001000.00010010.10011010.00011011 . That unique address connects 
us to a particular machine. The  /32  tells AWS that only that machine is allowed; all 32 bits are fixed. 
Contrastingly, for outbound rules, we need our instance to be able to browse the Web at will. Thus, we use  /0  
to let it know that none of the bits is fixed. If you are in a corporate or university environment and want some 
coworkers to be able to access your instance, talk to your IT department to see what the size of your address 
space is. If we found our IP addresses changed frequently, we might try  72.18.154.0/24 , which would allow 
the range of addresses  72.18.154.0-255  (and would nicely include the  .27 ). 

 We turn our attention now to creating an EC2 instance. Select the VPC Dashboard  link   at the top left, 
and then click the Launch EC2 Instances button. Select the Ubuntu server that is free tier eligible, as shown 
in Figure  11-7 .  

 Next, select the  t2.micro  type. On the next screen, be sure to select your VPC as the Network setting, 
and set the Auto-assign Public IP to Enable. You always have the option to Review and Launch or to go 
through the entire start wizard by selecting Next. Keep selecting Next, and, in the following steps, there is no 
need to change the storage settings for Root volume; as of this writing, up to 30 GiB are free. For tags, a good 
name is AdvancedR again (admittedly, the name is getting a shade overused, yet it continues to work). Also, 
for the security group, be sure to select an existing security group as well as your AdvancedR group before 
clicking Review and Launch. From there, launch! 

 Your last step is to select your key pair. Remember, we already downloaded this earlier. Be sure you have 
that file, and be sure to have the settings of choosing that existing key pair and selecting your AdvancedR key 
pair. Next, select the acknowledgment check box. Finally, click the Launch Instances button, as in Figure  11-8 .  

 From here you may view your  instances  , which take you to the EC2 dashboard. It does take some time 
for the instance to spin up, so, while we are waiting, we’ll go ahead and meet you in the next section.  

  Figure 11-8.     Instance key pair settings and final launch         

  Figure 11-7.     Ubuntu server selection   for starting your first EC2 instance       
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     Accessing Your Instance’s Command Line 
 You have an instance on AWS ,  and it is starting and waiting for you to connect to it. Before that can happen, 
there are some steps to take on Windows. 

 You need to download both   PuTTY    (Tatham, 2016) and  PuTTYgen,  and you want to download the 
installer for Windows for all files except  PuTTYtel  from    www.chiark.greenend.org.uk/~sgtatham/putty/
download.html     . Once that is done, run the file to install. If your local machine does not grant you the 
privileges to install, you may download each of these one at a time. 

 It is the   PuTTYgen    we want as well as the  *.pem  file we downloaded as our key pair file earlier. You want 
the settings as in Figure  11-9 . In particular, as you are loading your existing private-key file, you want to 
change to All Files (*.*) and open your key pair file. You also want SSH-2 RSA as the parameter setting. Once 
you click to open your key pair file, you see some information appear in the generator. It is safe to ignore 
all of it and click Save Private Key.  PuTTYgen  asks if you are willing to save without a passphrase, and after 
agreeing to that, you may now save the file as a  *.ppk  file. Keep this file safe! It is your access pass to your 
server instance.  

 We may now connect to our instance. Going back to the EC2 Dashboard, the instance should be 
running, and there is some information we need from Figure  11-10 . The  Public IP address   is necessary, and 
of course, the fact that it is running. Be sure to copy the address for your instance.  

 Click the Actions drop-down menu, and under Instance Settings go to Get System Log. At the end of the 
log file, there should be the server’s fingerprint, as shown in Figure  11-11 . The first time we connect to our 
server, we want to check that we successfully connected to the server we were expecting rather than a fake. 
For safety, remember this or keep that window open and be ready to make a comparison.  

  Figure 11-9.    PuTTYgen key generator       

  Figure 11-10.    EC2 Dashboard view of our instance with Public IP address and the Actions drop-down menu       
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 Now we finally connect to our server for the first time. Go ahead and start  PuTTY . On the navigation 
menu on the left, choose the SSH option, then the Auth option, and browse for your  *.ppk  key, as pictured 
in Figure  11-12 .  

 Go back to Session in the navigation menu on the left, and enter  ubuntu@54.201.117.64  or more 
generally  ubuntu@YOUR_EC2_PublicIP_HERE . Make sure that the Port is set to 22 and that the 
Connection type is SSH. We recommend saving your session by writing AdvancedR into the Saved Sessions 
text and clicking Save before proceeding. This makes it easy to access your  t2.micro  instance in the future. 
Go ahead and open the connection, and  PuTTY  gives you a security alert, as in Figure  11-13 ; you should 
compare this favorably to Figure  11-10  before proceeding by selecting Yes. If these two fingerprints do not 
match, something not good at all is probably afoot.  

  Figure 11-11.     Server fingerprint (RSA)         

  Figure 11-12.     PuTTY configuration   for *.ppk key file       

  Figure 11-13.     PuTTY security alert   for server fingerprint       
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 You are now connected to your cloud instance, and you are in the  Ubuntu command line  ! As shown in 
Figure  11-14 , you have access to the command line and are now ready to move on to using your server as 
shown in Chapter   21     if you wish.  

 We wait just a bit before we get to using our server. While we need to take some more steps to get R 
functional on the cloud, we take on one more section here to allow ourselves the luxury of uploading files to 
our cloud. There is one command we should teach you before we upload files. It is the  exit  command, and 
it is simply the word  exit  followed by Enter/return. This closes your  PuTTY  session. 

   ubuntu@ip-10-0-0-244:~$ exit 

        Uploading Files to Your Instance 
 We use   WinSCP       (Prikryl, 2007) to upload files to the cloud. This program may be downloaded from 
   https://winscp.net/eng/download.php      (we used the Portable Executables link). We unzipped the files 
to our desktop and clicked the  WinSCP.exe  files to open our initial window, which we filled in as shown in 
Figure  11-15 . Specifically, we entered our IP address for the hostname, ensured we were set up to connect to 
port 22, and entered  ubuntu  as the username.  

  Figure 11-14.    Seeing the command line through PuTTY’s eyes       

 

http://dx.doi.org/10.1007/978-1-4842-2077-1_21
https://winscp.net/eng/download.php
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 For the password, select Advanced, and in the new window that opens, in the SSH tab and under 
Authentication, navigate to the same  *.ppk  file you used for  PuTTY . We show the results in Figure  11-16 . 
After clicking OK and then Save, you are ready to log in.  

 When you saved, you had the option to create a desktop shortcut, which can be quite convenient if you 
regularly have files to transfer. At your first login, you see your server’s key fingerprint. Again, just as with 
 PuTTY , be sure to check that against the fingerprint in Figure  11-10 . We go ahead and upload that old Chapter   2     
file called  ch02_link.txt  to our  /home/ubuntu  folder on our server. To do this, on the left side navigate to 
where you are storing the files you downloaded from our online code packet. Then, drag and drop that text 
file to the right-hand side. Once it has uploaded, we go ahead and disconnect from the session and close out 
of the program. Remember the file name, though; we use that file in the next chapter.  

  Figure 11-16.    WinSCP Advanced key file screen       

  Figure 11-15.     WinSCP      start screen with correct settings       

 

 

http://dx.doi.org/10.1007/978-1-4842-2077-1_2
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     Final Thoughts 
 Both  PuTTY  and  WinSCP  have versions that work without installation. Thus, even on a computer on which you 
do not have administrative rights, you can still access your instance and  transfer files   back and forth. This 
can be helpful in the corporate or academic environment, where technology services departments often rule 
local computer rights with an abundance of caution. 

 Speaking of caution, you should be cautious with your cloud server. While we build things in a 
reasonably secure fashion, this is not entirely safe. It is likely somewhat safer than  e-mail  . Often, research 
data may have either economic or privacy value. In that case, you undoubtedly want to consider some 
Internet security texts. Proceed at your risk; this is not a book about securing your cloud!     
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    CHAPTER 12   

 Cloud Ubuntu for Windows Users                          

 As you saw in the last chapter, using the cloud does not always allow for using Windows. This is not entirely 
true; Windows can certainly be utilized in the cloud. However, this tends to approximately double the cost in 
high-performance environments, making it impractical for some occasions. Additionally, it is not impossible 
to use the Ubuntu environment, and many of the same skills advanced R users have translate readily. All in 
all, using Ubuntu as your server instance operating system is not difficult with a little guidance to get started. 

 Our goals for this chapter include understanding the basic Ubuntu command line, updating and 
installing any operating system or packages required, installing both R and RStudio Server, and using R on 
both the command line and via the server. In particular, you’ll learn how to get an R process running on 
the server regardless of whether it’s connected to that server. Thus, we can use  PuTTY  to check in as needed 
(along with AWS warning signals) to detect when a process has finished. 

     Common Commands 
 Several of the  commands   we use in Ubuntu have counterparts in R. Others are more operating system 
specific rather than program specific. Many of the techniques we use to manage files in R can be done faster 
and more naturally via the command line. In this section, we explore the usual sorts of commands that are 
helpful to know and understand. 

 The first useful command is  clear , a counterpart to Ctrl+L in R. This clears your viewing screen and 
allows you to easily see current commands and their results. We pair this command with  ls , which is the 
list directory comments command. Right away the file we uploaded in the last chapter  ch02_link.txt  
shows up. 

   clear 
 ls 
 ch02_link.txt 

   Now that we can see which files are in our directory, let’s get a little bit more information about those 
files. The  ls  command can be modified with several letters. The  -l  modification is the long format, and it 
gives information about the file rights ( -rw-rw-r-- ), about the user and the user group (both  ubuntu , as 
we have a simple user set up currently), file size, as well as the date modified (notice this preserved our 
file’s original modified date from before we uploaded it). Of particular note is the usage of file rights that 
relate to file security and safety. In Unix systems such as Ubuntu, all objects come with rights. The pattern 
is  -ooogggppp- , where  o  refers to file owner,  g  relates to the group membership of the owner, and  p  is for 
public. Furthermore, each level of user can either Read, Write, or eXecute a particular object. This becomes 
quite important later, when we create some public-facing utilities that are accessible from the Web. It is 
important that we check the permissions, to ensure that the public can read files, yet not write or modify 
them. In our code that follows, both the user  ubuntu  as well as any future members of the group  ubuntu  
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are allowed both read and write access to our text file. The general public, if this directory were ever made 
public, would be able to only read our file. 

   ls -l 
 total 4 
 -rw-rw-r-- 1 ubuntu ubuntu 14 Feb 14 05:16 ch02_link.txtCloud Ubuntu, Windows userscommands 

   We said the word  directory , so we may as well see where we live in our system. Folders, or directories, 
also come with the same access permissions (they are objects), and we can create new directories and 
change directories. To present the working directory, we use  pwd;  to make a directory, we use  mkdir ; and to 
change the directory, we use  cd . We show these commands and their results in the code that follows. Note 
that the  ..  command returns us one level up in the directory structure, back to our original user directory. 

    pwd 
 /home/ubuntu 

   mkdir MyFolder 
 cd MyFolder 
 ubuntu@ip-10-0-0-244:~/MyFolder$ pwd 
 /home/ubuntu/MyFolder 

   ubuntu@ip-10-0-0-244:~/MyFolder$ cd .. 
 ubuntu@ip-10-0-0-244:~$ 

    Having discussed making and navigating directories, we turn our attention to removing files. To remove 
a file, we use the command  rm . We go ahead and do that to our text file that we uploaded; there was never 
any need for it other than as an example file. We show the removal in the following code, along with a full 
view of our user folder. Showing our list command with the full view allows us to see that our text file has 
been removed in the before and after views. 

    ls -hl 
 total 8.0K 
 -rw-rw-r-- 1 ubuntu ubuntu   14 Mar 16 02:29 ch02_link.txt 
 drwxrwxr-x 2 ubuntu ubuntu 4.0K Mar 16 14:09 MyFolder 

   rm ch02_link.txt 
 ls -hal 
 total 4.0K 
 drwxrwxr-x 2 ubuntu ubuntu 4.0K Mar 16 14:09 MyFolder 

    The values of these access permissions may be modified. The command  chmod  takes three number 
inputs after it in the pattern  chmod ogp . We create a file and give three levels of access to the user, to the 
user’s group, and to the public. Execute permission is given by  1 , write is provided by  2 , and read is given by 
 4 . Additionally, numbers may be added to give more permission. See the example that follows:  7 = 1 + 2 + 
4  gives the user full access, and  6 = 2 + 4  gives the group read and write access only. Finally, the public has 
only write access. 

   touch permissionsFile 
 ls -hl 
 total 4.0K 
 drwxrwxr-x 2 ubuntu ubuntu 4.0K Mar 16 14:09 MyFolder 
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 -rw-rw-r-- 1 ubuntu ubuntu    0 Mar 16 15:38 permissionsFile 
 chmod 762 permissionsFile 
 ls -hl 
 total 4.0K 
 drwxrwxr-x 2 ubuntu ubuntu 4.0K Mar 16 14:09 MyFolder 
 -rwxrw--w- 1 ubuntu ubuntu    0 Mar 16 15:38 permissionsFile 

   We end this section discussing two terminal commands,  sudo  and  whoami . In the next section, we 
are going to start updating and maintaining our operating system. This requires root-level privileges. For 
security, our Ubuntu instance does not have a permanent root user, exactly. Instead, when we need elevated 
privileges, we give them to our  ubuntu  user by prefacing a command with  sudo . This command stands for 
 superuser do  and is always followed by another command. The system temporarily escalates privileges for 
the command that follows. 

    whoami 
 ubuntu 

   sudo whoami 
 root 

    Now that we have the ability to run various commands as  root , we turn to the next section, where we 
make sure that our cloud instance is up-to-date with the latest patches and packages.  

      Superuser and Security   
 Just as in any operating system and software suite, often updates should occur. Some may add new or 
improved functionality, while others may be more security related. While comprehensive cloud and server 
security is far beyond the scope of this text, a few steps make sense to do directly. Looking at Figure  12-1 , it is 
clear we have some work to do.  

  Figure 12-1.    The first screen shows 33 security updates       

 



CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

214

 The update process involves three steps. We first run  sudo apt-get update  with the following 
abbreviated code output: 

   sudo apt-get update 
 .... 
 Fetched 3,451 kB in 3s (1,097 kB/s) 
 Reading package lists... Done 

   Next, we upgrade our current files so that we are ready to install new ones if we so desire. This takes 
some time, as we have quite a few to download! Again, we abbreviate some of the output. Of interest is to 
note that we did agree to continue when asked. 

   sudo apt-get upgrade 
 Reading package lists... Done 
 Building dependency tree 
 Reading state information... DoneCloud Ubuntu, Windows userssuperuser and security 
 Calculating upgrade... Done 
 .... 
 62 upgraded, 0 newly installed, 0 to remove and 4 not upgraded. 
 Need to get 23.5 MB of archives. 
 After this operation, 209 kB of additional disk space will be used. 
 Do you want to continue? [Y/n] Y 
 ....done. 

   Now that our files are upgraded, we can install our new packages. We run the command  sudo apt-
get dist-upgrade  at the command line, agreeing to the prompts when asked. While it is not necessarily 
required, we also  reboot  the system. This exits us from our session, and we have to re-access our cloud via 
 PuTTY . We show both the abbreviated code to perform these commands as well as the Figure  12-2  screenshot 
showing no more updates possible.  

    sudo apt-get dist-upgrade 
 ... 
 sudo reboot 
 ubuntu@ip-10-0-0-244:~$ 
 Broadcast message from ubuntu@ip-10-0-0-244 
         (/dev/pts/0) at 16:40 ... 

   The system is going down for reboot NOW! 
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    Depending on when you read this, AWS may or may not have updated the version of Ubuntu from 
version 14.04 to 16.04. It is not required to upgrade. In fact, it is usually more convenient to wait until 
Amazon takes care of such things. However, should you wish to run on the latest version, run the command 
 do-release-upgrade . Now, you are warned that upgrading via remote access is not advised and that 
additional access  ssh  scripts are being run to ports that are not likely open to the public. In particular, our 
security settings would prevent access to this backup access port. Since you have just created this instance, 
and can readily terminate from the AWS website, there is no need for such a backup access route. Hence, we 
simply ran the update, agreed to all the options when asked, and restarted. 

 If you do choose to upgrade the distribution, be sure to run the  sudo  update and upgrade the preceding 
commands one last time.    

 Now that our instance, or at least our packages on our instance, are updated, and we have a better sense 
of how to navigate in the Ubuntu file structure, we may turn our attention to installing R on our cloud server.  

     Installing and Using R 
 Our main goal so far in the last chapter and this one is to prepare a server to host R for us. We are very close 
to being there and have just a few more steps to perform. Our first step is to modify our package sources list 
so that Ubuntu knows where to find R: 

   cd /etc/apt/ 
 ubuntu@ip-10-0-0-244:/etc/apt$ ls 
 apt.conf.d     sources.list    trusted.gpg 
 preferences.d  sources.list.d  trusted.gpg.d 
 sudo nano sources.list 

   Now that the  nano  text editor is open, arrow down to the end of the file and add the following line of 
code. Then press Ctrl+O to save; you see your filename and hit Enter/Return. From there, press Ctrl+X to exit 
to the command line. We should note that  trusty  and  xenial  are the version 14 and 16 names for Ubuntu, 
so in one go we ensure that either one will work. 

  Figure 12-2.    Ubuntu startup screen showing no needed updates or upgrades       
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    #Add R File server 
 deb http://cran.rstudio.com/bin/linux/ubuntu trusty/ 

   deb http://cran.rstudio.com/bin/linux/ubuntu xenial/ 

    We should mention that we are using RStudio’s kindly hosted mirror. Now, we move back into our home 
directory, and we also add the signature key  E084DAB9  to our package utility. This allows us to confirm that 
any downloads we make are likely safe to download and install. 

    ubuntu@ip-10-0-0-244:/etc/apt$ cd /home/ubuntu 
 sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E084DAB9 

   Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --homedir /tmp/
tmp.jYANiNzPMT --no-auto-check-trustdb --trust-model always --keyring /etc/apt/trusted.gpg 
--primary-keyring /etc/apt/trusted.gpg --keyserver keyserver.ubuntu.com --recv-keys E084DAB9 
 gpg: requesting key E084DAB9 from hkp server keyserver.ubuntu.com 
 gpg: key E084DAB9: public key "Michael Rutter <marutter@gmail.com>" imported 
 gpg: Total number processed: 1 
 gpg:               imported: 1  (RSA: 1) 

    From here,  installing R   is simple. In fact, it simply takes two commands. We have to update the packages 
list and then we need to install base R. In the setup process, you need to agree to some options once or twice. 

   sudo apt-get update 
 sudo apt-get install r-base 

   Now that we have installed R on our cloud, we can run R and see what happens. We use the command 
 R  to start our program. We run one of our scripts from Chapter   1     to see what happens. The following code 
shows both the start screen of R as well as the familiar results of running our code:    

    R 

   R version 3.3.1 (2016-06-21) -- "Bug in Your Hair" 
 Copyright (C) 2016 The R Foundation for Statistical Computing 
 Platform: x86_64-pc-linux-gnu (64-bit) 

   R is free software and comes with ABSOLUTELY NO WARRANTY. 
 You are welcome to redistribute it under certain conditions. 
 Type 'license()' or 'licence()' for distribution details. 

     Natural language support but running in an English locale 

   R is a collaborative project with many contributors. 
 Type 'contributors()' for more information and 
 'citation()' on how to cite R or R packages in publications. 

   Type 'demo()' for some demos, 'help()' for on-line help, or 
 'help.start()' for an HTML browser interface to help. 
 Type 'q()' to quit R. 

http://dx.doi.org/10.1007/978-1-4842-2077-1_1
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   x <- c("a", "b", "c") 
 x[1] 
 [1] "a" 
 is.vector(x) 
 [1] TRUE 
 is.vector(x[1]) 
 [1] TRUE 
 is.character(x[1]) 
 [1] TRUE 

    Inside R, all the commands we regularly use work as expected. We can install packages or run code. 
However, we would like to improve three aspects. The first is that we are running R as a user, namely, the 
user  ubuntu . It may well be that we wish other users of our server to be able to use R without needing to 
have  sudo  or  root  privileges. In that case, it may be helpful to install packages not just for our user, but for 
the entire machine. Second, running code from files that we have created on our local machines would 
be convenient. Third, our connection to our server lives at the mercy of the Internet. If there is a glitch, we 
would lose our work. Thus, it is also convenient to get to the point where we can set our R commands to run 
from the command line so that even if we disconnect, our server is still calculating away. 

 To install packages for just a particular user, you use the  install.packages("")  function inside the R 
console as usual. However, to install a package for any user (including future users you may invite to your 
cloud), use the following command. What you need to do is pass a command from the command line to R. 
We also need to run this as  root , and we need root privileges to do so, which  sudo  and  su -  provide. The  -c  
option executes the code directly following it. Finally, we call R and set it to install the package. 

   sudo su - -c "R -e \"install.packages('pscore', repos = 'http://cran.rstudio.com/')\"" 

   To run code already created, we use the command  R CMD BATCH . It can help to write the commands we 
want to use in RStudio on our local computer, use  WinSCP  to upload that  *.R  file to our instance, and then 
run the file as follows: 

   R CMD BATCH chapter21.R 
 ls 
 chapter21.R  chapter21.Rout  MyFolder  permissionsFile 

   While the file  chapter21.R  may be downloaded from our code repository with Apress, it is simply the 
snippet of loop code from a preceding chapter that cubes several numbers. We can see the output in the file 
 chapter21.Rout  and we can view it by using the  nano  editor we used earlier in this chapter. Remember that 
Ctrl+X exits from that editor. We show both the command to open the file as well as an abbreviated output to 
demonstrate that the code ran successfully: 

    nano chapter21.Rout 

   .... 
 > head(xCube) 
 [1]   1   8  27  64 125 216 
 > forTime 
    user  system elapsed 
  11.468   1.013  12.487 
 .... 
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    We may now run R commands on our instance at will. This includes the parallel-processing techniques 
you learned in earlier chapters. Provided our code is built not to require user input, it may be readily left to 
run, provided you have a solid connection. We do this with the  screen  command. Essentially, this opens 
another terminal from which we can detach. This allows that terminal to keep running even if our  PuTTY  
terminal session ends (either because we wish it to end or because network vagrancies force our hand). We 
can see when our process is done running as well. The command we run after our  screen  command with 
modifiers is familiar; should you wish more details about  screen , the command  man screen  gives plenty of 
information. 

    screen -A -d -m R CMD BATCH chapter21.R 
 screen -ls 
 There is a screen on: 
         1525..ip-10-0-0-244     (03/17/2016 04:43:40 AM)        (Detached) 
 1 Socket in /var/run/screen/S-ubuntu. 

   screen -ls 
 No Sockets found in /var/run/screen/S-ubuntu. 

    As you can see from the second listing, no more processes are running. Thus it is safe to access our 
output file to see the results. For a process that took longer to run, rather than enter  screen -ls , we might 
type  exit  and go rest. For processes that run on pricier instances, it is possible to set up AWS to e-mail an 
alert when processor use drops below a certain threshold. 

 We now have installed R on our server instance, can set up packages that are accessible to all users, 
and can run files without maintaining a steady network connection. If we design code on one machine that 
seems to take too long to run, we can upload those files to a more powerful machine and run it. However, we 
are still using the command line. In the next section, we install RStudio on our instance, so that we can use 
the familiar look and feel of RStudio while still gaining the power of a cloud instance.  

     Installing and Using  RStudio Server   
 While we have shown that it is relatively straightforward to upload a file that was running too slowly on a 
local machine to our cloud instance, the format does leave something to be desired.  RStudio  (RStudio Team, 
2015) is a wonderful, intuitive environment in which to code R, and we can get that same graphic interface. 
What is more, this can be accessible from a browser rather than from the command line. This can be quite 
convenient, as just about any Internet-capable device with a browser can access your instance and use R. 

 The risk, of course, is some security concerns.  RStudio Server   is protected by only a password rather 
than a key file. Recall from Chapter   2     how many system administrative tasks, such as file moving and 
deletion, may be done by R. Access to RStudio Server may enable a dedicated attacker more access to 
your system than desirable. We, of course, continue to keep our security group on AWS set up to allow 
connections only from our local IP address, although this rather curtails the promise of use of R from any 
device. We remind you again that data security is worth a closer look than we give here. We turn to our cloud 
and installation. 

 Since we have already installed R, we need only a little bit of work after accessing our command line 
again via  PuTTY . To ensure proper package authentication, it helps to update, just as when we were installing 
system and security updates. As a side note, while installations often require a yes or no input, if asked to 
install packages without verification, there is likely a better way that involves verification. After each of the 
following  apt-get  commands, much text prints to your console, and you may be prompted to agree to some 
disk space usage. 

http://dx.doi.org/10.1007/978-1-4842-2077-1_2
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   sudo apt-get update 
 ... 
 sudo apt-get install gdebi-core 
 ... 

   Once you have the ability to install the server, you need to download it from the Web. Run the following 
command, and expect to download a file about 51 M in size. We show the code and some of the output here; 
be sure to note the saved name of the file as well as a full download being complete: 

   wget https://download2.rstudio.org/rstudio-server-0.99.903-amd64.deb 
 ... 
 2016-10-02 15:09:44 (10.5 MB/s) - 'rstudio-server-0.99.903-amd64.deb' saved 
[53985492/53985492] 

   Now we install the server. This should require one yes agreement during the installation process: 

   sudo gdebi rstudio-server-0.99.903-amd64.deb 
 Reading package lists... Done 
 Building dependency tree 
 Reading state information... Done 
 Building data structures... Done 
 Building data structures... Done 
 ... 
 Do you want to install the software package? [y/N]:y 
 Selecting previously unselected package rstudio-server. 
 (Reading database ... 86981 files and directories currently installed.) 
 Preparing to unpack rstudio-server-0.99.892-amd64.deb ... 
 Unpacking rstudio-server (0.99.892) ... 
 Setting up rstudio-server (0.99.892) ... 
 groupadd: group 'rstudio-server' already exists 
 rsession: no process found 
 rstudio-server start/running, process 2445 

   To confirm that the server is running, run the verification commands as follows: 

   sudo rstudio-server verify-installation 
 rstudio-server stop/waiting 
 rstudio-server start/running, process 2605Cloud Ubuntu, Windows usersRStudio Server 

   Now that we know our server is running, we want more confirmation that it is working. Remember 
in the last chapter that we set our security group to allow access to RStudio Server on port 8787. Open a 
web browser to your server’s web address at the needed port, namely,  54.201.117.64:8787  (or for you, 
 YOUR_INSTANCE_IP_HERE:8787 ). As you can see in Figure  12-3 , it does indeed visually appear that the server 
is working.  
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 We need a username and password to gain further access. The user is also a user of your Ubuntu server 
and has a password. It is wise to have a password logon to the server disabled by default, which our instance 
does in fact have. The command we use to create a new user is  adduser,  and this runs the script shown for 
us. We need to type these commands back in our command line. It is not necessary to fill in information for 
your new user beyond the username and password. You can simply press Enter/Return to move to the next 
line. Also, note that the password field has suppressed keystrokes so that nothing populates there. 

   sudo adduser advancedr 
 Adding user `advancedr' ... 
 Adding new group `advancedr' (1001) ... 
 Adding new user `advancedr' (1001) with group `advancedr' ... 
 Creating home directory `/home/advancedr' ... 
 Copying files from `/etc/skel' ... 
 Enter new UNIX password: 
 Retype new UNIX password: 
 passwd: password updated successfully 
 Changing the user information for advancedr 
 Enter the new value, or press ENTER for the default 
         Full Name []: Advanced R 
         Room Number []: RStudio Server 
         Work Phone []: 
         Home Phone []: 
         Other []: 
 Is the information correct? [Y/n] Y 

   Going back to our browser, we use our new username and password to access RStudio Server. Enter the 
username and password just created, as in Figure  12-4 , and you should be into RStudio on the Web.  

  Figure 12-3.     RStudio Server         
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 This should feel just like the RStudio we have been using all along, as shown in Figure  12-5 .  

 RStudio now exists on your cloud instance. While this is helpful for a more intuitive way to work with R, 
the ability to more natively use and see graphical output is something we, the authors, would like to stress. 
Such output may be readily saved to  *.pdf  files and downloaded via  WinSCP  from the  /home/advancedr  
folder. More generally,  /home/YOUR_USERNAME  accesses a particular RStudio user folder. 

 This completes our setup of RStudio Server. More could be done, but this is enough for starters. You 
now have access to a potentially powerful system, and indeed are free to have several duplicates of such 
systems if you wish. On AWS, it is possible to set up warnings that alert you via e-mail when your instance(s) 
drop below a certain CPU utilization rate. Thus, an R process may be configured to run, and instance 
space need not be paid for much beyond actual use time. Our final suggestion is to spend some time with 
the RStudio Server documentation if you intend to use it more than occasionally. There are some useful 
customizations, convenient features, and good-to-know caveats. We include the link in the reference section 
of this chapter.     

  Figure 12-4.    Sign into RStudio       

  Figure 12-5.    RStudio on your cloud       
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      Installing Microsoft R   
 Our cloud instance is  t2.micro . As such, it has only one virtual CPU and gains no benefit from parallel-
processing techniques. We have also already installed base R, so R is of course working. However, on the 
chance you choose to spin up more-powerful instances, we also install  Microsoft R Open (MRO)   and  MKL  
(Microsoft, 2016). These files need to be installed after downloading them. We are going to give two options 
here. First, we install the latest version of Microsoft R Open, which is version 3.3.1 as of this writing. We also 
show how to install an earlier version, should you happen to have code you intend to run that requires older 
versions of R. 

 The main difference is that in the past, MRO and MKL were two separate installations. Now, starting 
with version 3.3.1, it is a single installation process. Type the following command in bold; the output follows: 

    wget "https://mran.microsoft.com/install/mro/3.3.1/microsoft-r-open-3.3.1.tar.gz" 
 --2016-10-02 16:52:02--  https://mran.microsoft.com/install/mro/3.3.1/microsoft-r-open-
3.3.1.tar.gz 
 Resolving mran.microsoft.com (mran.microsoft.com)... 166.78.134.173, 2001:4800:7813:516:be7
6:4eff:fe04:4c9b 
 Connecting to mran.microsoft.com (mran.microsoft.com)|166.78.134.173|:443... connected. 
 HTTP request sent, awaiting response... 200 OK 
 Length: 268235803 (256M) [application/octet-stream] 
 Saving to: ‘microsoft-r-open-3.3.1.tar.gz’ 

   microsoft-r-open-3.3.1.tar.gz 100%[================================================>] 
255.81M  18.8MB/s    in 13s 

   2016-10-02 16:52:15 (20.1 MB/s) - ‘microsoft-r-open-3.3.1.tar.gz’ saved 
[268235803/268235803]   

    Once the file has been downloaded, we must decompress our downloaded file. This requires privileges, 
so we use  sudo . Using  tar , we e x tract and ung z ip our  f ile: 

   sudo tar -xzf microsoft-r-open-3.3.1.tar.gz 

   Next, we change our directory to our newly unzipped files by using the change directory command: 

   cd microsoft-r-open 
 ~/microsoft-r-open$ ls 
 deb  install.sh  MKL_EULA.txt  MRO_EULA.txt  rpm 

   When installing, be sure to carefully note when to type  q  and when to type  y . Again, the installation 
using the  install.sh  file will require  sudo  privileges: 

    ~/microsoft-r-open$ sudo ./install.sh 

   Press [Enter] key to display the Microsoft R Open license. When finished reading, press q to 
continue: 

   Do you wish to install the Intel MKL libraries? 
 Choose [y]es|[n]o y 

   Press [Enter] key to display the Intel MKL license. When finished reading, press q to 
continue: 
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 Do you agree to the terms of the previously displayed license? 
 Choose [y]es|[n]o y 

   Updating apt package repositories...done 
 Installing apt package dependencies libxt6 libsm6 libpango1.0-0 libgomp1 curl...done 
 Installing /home/ubuntu/microsoft-r-open/deb/microsoft-r-open-mro-3.3.deb...done 
 Installing /home/ubuntu/microsoft-r-open/deb/microsoft-r-open-foreachiterators-3.3.deb...
done 
 Installing /home/ubuntu/microsoft-r-open/deb/microsoft-r-open-mkl-3.3.deb...done 

   Thank you for installing Microsoft R Open. 
 You will find logs for this installation in 
 /home/ubuntu/microsoft-r-open/logs 

    This completes the installation, and if you were on an instance that allowed for multiple threads, 
you would have access. This bundle of MRO and MKL is new, and thus, for completeness for backward 
compatibility, we include instructions for the older file type as well. To install older versions such as 3.2.4, in 
the command line, use the  wget  command: 

   wget "https://mran.microsoft.com/install/mro/3.2.4/MRO-3.2.4-Ubuntu-14.4.x86_64.deb" 

   Then type the following: 

   wget "https://mran.microsoft.com/install/mro/3.2.4/RevoMath-3.2.4.tar.gz" 

   After those have downloaded, use the  ls  command to see that it worked: 

   ls 
 chapter21.R                       permissionsFile  RevoMath-3.2.4.tar.gz              
slider_time 
 MRO-3.2.4-Ubuntu-14.4.x86_64.deb  PieChart_Time    rstudio-server-0.99.892-amd64.deb  
Upload_hist 
 MyFolder                          R                shiny-server-1.4.2.786-amd64.deb 

   Next, enter the following code into the command line: 

   sudo dpkg -i MRO-3.2.4-Ubuntu-14.4.x86_64.deb 

   Now that Microsoft R Open is installed, we add the parallel-processing support: 

   sudo tar -xzf RevoMath-3.2.4.tar.gz 
 cd RevoMath 
 ubuntu@ip-10-0-0-244:~/RevoMath$ ls 
 mkl  mklLicense.txt  RevoMath.sh  RevoUtilsMath.tar.gz 
 ubuntu@ip-10-0-0-244:~/RevoMath$ sudo ./RevoMath.sh 

   After that last line, you want to select option 1 by typing  1  and then pressing Enter/Return. Hit Enter/
Return a few times to get through the license agreement text (depending on screen size), but not too many 
times or you negate the agreement. When prompted, type  y  and hit Enter/Return. That’s it! Should you have 
more than one core, the cloud now works as MRO has been working for us on Windows.  
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     Installing Java 
 Next, we install  Java  . It is quite easy; just run the following three lines of code, one at a time, in the command 
line. Agree to things as needed. 

   sudo apt-get update 
 sudo apt-get install default-jre 
 sudo apt-get install default-jdk 

         Installing Shiny   on Your Cloud 
 Bringing statistics to information consumers is the main use for Shiny. Because we are in installation mode, 
we’ll go ahead and install the needed resources on our cloud instance to host a Shiny application. 

 To install Shiny, we need to run the following code. An agreement is required to confirm an installation, 
and we suppress the system’s output to the command line. Run each line by itself. 

 This line installs the  shiny  package (Chang, Cheng, Allaire, Xie, and McPherson, 2016) into R. In 
addition, we also install  xlsx  (Dragulescu, 2014) and  shinydashboard  (Chang, 2015). You notice that 
between the inner parentheses, there are commands that make lots of sense to R users. However, in 
this case, we are running R from the command line, specifically, so we can execute the process with 
administrative privileges and thus have access to these libraries from any Ubuntu user account rather than 
just the main user account. When a Shiny server hosts applications, it hosts them by using the username 
 shiny . Hence, the following three lines of code install these packages for all users: 

    sudo su - -c "R -e \"install.packages('shiny', repos='https://cran.rstudio.com/')\"" 

   sudo su - -c "R -e \"install.packages('xlsx', repos='https://cran.rstudio.com/')\"" 

   sudo su - -c "R -e \"install.packages('shinydashboard', repos='https://cran.rstudio.
com/')\"" 

    From here, now that R itself can use Shiny, we install the server so that our cloud instance can serve 
Shiny apps to the Internet. We have to download a file with the  wget  command and then install that file. We 
do that with the following lines of code, and there are some installation disclaimers. 

    wget https://download3.rstudio.org/ubuntu-12.04/x86_64/shiny-server-1.4.6.809-amd64.deb 

   sudo gdebi shiny-server-1.4.6.809-amd64.deb 

         Final Thoughts 
 You now have access to a cloud instance that has RStudio Server (which can be quite convenient). In 
particular, you have the ability to upload files to and from a local machine in a way that does not require 
superuser local privileges. If you opened up permission access by unrestricting more IP addresses, this is a 
way to use R from a smartphone. Also, we installed several packages and applications on our Ubuntu server. 
In the next chapters, we use those features to make some absorbing analytics happen. More important, 
because they are served on the cloud, these data and results are accessible to anyone. Thus, sharing results 
has never been easier.     
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    CHAPTER 13   

 Every Cloud has a Shiny Lining                          

 When serving data to the public, easy access and interactive information make a real difference in 
comprehension. In this chapter, our goal is to provide access and some interesting uses for a more recent 
application,  shiny  (Chang, Cheng, Allaire, Xie, and McPherson, 2016). 

  Shiny  is a  web application framework   for R. What it does is allow information consumers to interact 
with live data and analytics in R . This framework does not require knowledge of any web-based languages. 
All the same, surprisingly complex and interactive data models can be released to your clients, decision 
makers, or consumers. 

 Do you have data your customers should explore? Are there performance metrics that, transformed 
from static to interactive, might support your story to a board or a boss? Do your users have data they 
need to upload and understand better? Would you like to easily update next quarter’s data into a common 
dashboard? All these questions can be answered with Shiny—and since Shiny is served via a web page, if we 
can get Shiny onto our cloud, then anyone can benefit from the power of R. 

 Now, for simplicity’s sake, in this chapter we are going to live entirely on Windows inside RStudio. In the 
previous chapter, we got Shiny Server running on our cloud, but for now, you’ll learn on your local machine. 
In the next chapter, we put all the building blocks we had in this chapter into one dashboard, and we upload 
that to our cloud. 

     The Basics of Shiny 
 Think of Shiny as a web interface for R code. If you can do it in R, Shiny can push those results to a nice page 
that is viewable via Internet browsers. Even more awesomely, if a data consumer wants to interact with 
information, their input can be incorporated into R code. 

 In   RStudio    (RStudio Team, 2015), select File ➤ New File ➤ Shiny Web App. Name your file  PieChart_
Time , and under Application choose the single file option ( app.R ). Delete all code and type in the following 
code (or download from the Apress site). As you type it in, you want to notice three things. First, there is a 
user-interface portion of the code. Second, there is a server side to the code. Finally, the application must 
be run. Another aspect to notice (and this is why we recommend typing it all in manually) is where pieces of 
the user side and the server side mesh. In fact, in our code, there are exactly four places this happens. From 
the user side, variables of a number between  0  and  100 , a text string, and a check box are input. The server 
receives those values and creates plots. It puts those plots into the output. The user side gets that output in 
  mainPanel()   . 
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    library(shiny) 

   # user interface drawing a pie chartShinymainPanel() 
 ui <- shinyUI(fluidPage( 

      # Page title 
    titlePanel("User Controlled Chart"), 

      # Sidebar with numeric, text, and check box inputs controlled by user 
    sidebarLayout( 
       sidebarPanel( 
          numericInput("pie", 
                      "Percent of Pie Chart", 
                      min = 0, 
                      max = 100,  
                      value = 50), 

            textInput("pietext", "Text Input", value = "Default Title", 
                    placeholder = "Enter Your Title Here"), 

            checkboxInput("pieChoice", 
                        "  I want a Pie Chart instead.", value = FALSE) 
       ), 

         # Show the plot(s) 
       mainPanel( 
          plotOutput("piePlot") 
       ) 
    ) 
 )) 

   # server side R code creating Pie Chart or barplot hidden from user 
 server <- shinyServer(function(input, output) { 

      output$piePlot <- renderPlot({ 
       # generate Pie chart ratios based on input$pie from user 
       y <- c(input$pie, 100-input$pie) 

         # draw the pie chart or barplot with the specified ratio and label 

       if(input$pieChoice == FALSE){ 
       barplot(y, ylim = c(0,100), 
               names.arg = c(input$pietext, paste0("Complement of ", input$pietext)))  

       }else{ 
       pie(y, labels = c(input$pietext, paste0("Complement of ", input$pietext)))} 

      }) 
 }) 
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   # Run the application  
 shinyApp(ui = ui, server = server) 

    Before we delve into that code, let’s see it in action. Type and run the code that follows from the RStudio 
console to install Shiny on your local Windows machine: 

   install.packages("shiny") 

   Now, go into your  app.R  file you carefully typed and run that code in one block. There should even be a 
 Run App play button   near the top right of the code area. Either way, something along the lines of Figure  13-1  
should appear.  

 Go ahead and enter various numbers and text values. Play with Shiny and see what it can do. While you 
do so, recognize that what Shiny has done is provide an interface between you and R. Now, this particular 
run is hosted by  RStudio   on your local machine. Notice that in the console it indicates listening, and you may 
need to select a Stop button before you can enter any new code. 

 So what happened? Suppose you changed the Percent of Pie Chart number to  75 . Well, that 
 numericInput()  is a reactive value. When you change it, behind the scenes, a signal is sent alerting the 
server that  input$pie  has changed. The server then notifies any reactive functions that use  input$pie  
that something has changed. In our case,   renderPlot()    is a reactive function. It now knows  input$pie  is 
different, so it queries that value, gets the new value, and runs all its code again. Since that is an output value, 
this whole cycle repeats in reverse with  output$piePlot , with the result that   plotOutput()    on the user side 
refreshes. 

 There are some important things to notice about all this. The process we just described runs all the 
code again inside   renderPlot()   —all of it. Now, ceteris paribus, there is no need to look up  input$pietext  
and  input$pieChoice . Our reactive function knows its values, for those are up-to-date, and while they are 
used again, they are not called again. Still, if we had something a little more intensive than a subtraction and 
some plots inside  renderPlot() , we might find ourselves with a relatively steep performance cost to making 
any changes. While this set of code is quite compact, nevertheless you can see three places where you might 
put R code. One is where  library(shiny)  is. This is on the outside of our   shinyServer()   . Code that is here, 

  Figure 13-1.    A locally hosted Shiny App to see just what we are gaining       
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such as our library call, is run once each session. A single session can have more than one user interacting 
with it (although that gets a bit esoteric at the moment). Still, each new user executes all the code inside the 
 shinyServer()  at least once. Finally, as we just saw, the code inside reactive functions such as  renderPlot()  
are run once each update from any connected reactive input values. What this means is that for efficiency, 
consider placing as much code as possible outside the reactive functions. Moreover, if you anticipate heavy 
user traffic, place as much outside the server as possible too. 

 For now, let’s introduce some new functions. Remember, there is the user input side, there is the server 
side, and there is the entire Shiny app. Deep down inside, Shiny is just those three pieces. In fact, here is a 
rather bare-bones Shiny  application  : 

    library(shiny) 

   # Define user interface 
 ui <- shinyUI(fluidPage()) 

   # Define server  
 server <- shinyServer(function(input, output) {}) 

   # Run the application  
 shinyApp(ui = ui, server = server) 

    You can run this code and get a nice blank page. While that is perhaps less inspiring than the previous 
code, this helps you get coding in this interface quickly. In the user-interface section, what we see is the 
  fluidPage()  function   call, inside of which we place all our user-facing text. This area of the code is the most 
unfamiliar part of Shiny, because this is the code that creates the HTML seen by users. In the reference 
section, we place links to all the Shiny UI functions. However, for this chapter, we keep to the same basic 
layout inside a page that is fairly self-adjusting, or fluid, depending on the browser viewing area. Notice 
this is an R function, and functions in R take arguments that are separated by commas. Every aspect of our 
growing application is contained inside this wrapper function, which takes care of all the conversion to web-
ready markup. For our first app from Figure  13-1 , we used a sidebar layout. This function, in turn, wants two 
 arguments  : the sidebar panel where we control our application and then the main panel where we draw it. 
Editing our user interface gives us the following code: 

   # Define user interface 
 ui <- shinyUI(fluidPage( 
   sidebarLayout( 
     sidebarPanel(), 
     mainPanel() 
   ) 
   )) 

   This code is a wonderful example of the power of the mathematical notion of function composition. 
Our goal is to eventually have something the user inputs to our R code, such as the text or check box of our 
example in Figure  13-1 . The user inputs those values into as-yet-to-be-named functions, which give visual 
output, which is input into the   sidebarPanel()  function  , which provides web output, which is input to 
 fluidPage() , which outputs the final web user interface. We can see the results, blank though they be, in 
Figure  13-2 .  
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 From this point, we can quickly build our user’s inputs with three  input functions  . Each of these input 
functions follows a specific format, namely  blargInput(input identification, text label for user 
readability, settings relating to the specific type of input for which blarg is a stand-in) . 
Formally, our three input functions have these layouts, and please notice the similarities! 

   numericInput(inputId, label, value, min = NA, max = NA, step = NA,  width = NULL) 
 textInput(inputId, label, value = "", width = NULL, placeholder = NULL) 
 checkboxInput(inputId, label, value = FALSE, width = NULL) 

   Proceeding to fill in some specifics for our code, we can set the input identities for each to be useful 
variables for us to use later in our server code. Since we do plan to build a pie chart (and please, gentle 
readers, do not hate us for that choice), it makes sense to limit our numeric input to between  0  and  100 . 
Because our server code runs once on start, it also makes sense to provide a default value for the numeric 
input and, indeed, the text input. Building further on our burgeoning  user-interface code  , we now have this: 

    # user interface drawing a pie chart 
 ui <- shinyUI(fluidPage( 
   # Sidebar with numeric, text, and check box inputs controlled by user 
   sidebarLayout( 
     sidebarPanel( 
       numericInput("pie", "Percent of Pie Chart", 
                    min = 0, max = 100, value = 50), 
       textInput("pietext", "Text Input", value = "Default Title", 
                 placeholder = "Enter Your Title Here"), 

         checkboxInput("pieChoice",  "  I want a Pie Chart instead.", value = FALSE) 
               ), 

       mainPanel() 
 ) 
 )) 

    Again, after making those modifications, it makes sense to run the whole app again, and we see the new 
result in Figure  13-3 . Notice that the   mainPanel()    is currently empty in our code, and, indeed, in Figure  13-3  
we do not see anything on the right-hand side.  

  Figure 13-2.    A mostly blank Shiny app, with a sidebarPanel()       
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 Now that we have our user input captured, we are ready to use it on the server side. Remember, Shiny 
is an R wrapper that takes input, and when that input changes, alerts a reactive function on the server side 
that something is different. Behind the scenes, Shiny is taking care of knowing when the input changes, 
and alerting the correct reactive functions on the server; we need not worry about such things. Our server 
defines a new function that takes both input and output as formals, and uses those in its body. If needed, 
take a quick look back at Chapter   4     to refresh your memory on just what a function is. Since all we want to do 
is draw either a bar plot or a pie chart, the majority of our code does precisely that in very common R code. 
In fact, the only part that is not fairly normal R code is our reactive  function  renderPlot()   . Since we wish to 
give graphical outputs, we use that function. 

 Reactive functions are always waiting for Shiny to alert them to any changes in the inputs from the 
user-interface side. When an input changes, the reactive functions are notified if they have at least one of the 
changed values in their body. If they do, then the reactive functions run their code again, this time with the 
new value(s). We see this in the following code. The only other part of this is that the output of   renderPlot()    
is stored in an output variable, and we choose that name to be  piePlot  (even though it might not output a 
pie chart, depending on the check box choice—which is wholly our fault for selecting a poor name). 

    # server side R code creating Pie Chart or Bar plot 
 server <- shinyServer(function(input, output) { 

      output$piePlot <- renderPlot({ 
       # generate Pie chart ratios based on input$pie from user 
       y <- c(input$pie, 100-input$pie) 

         # draw the pie chart or barplot with the specified ratio and label 

       if(input$pieChoice == FALSE){ 
       barplot(y, ylim = c(0,100), 
               names.arg = c(input$pietext, paste0("Complement of ", input$pietext)))  

       }else{ 
       pie(y, labels = c(input$pietext, paste0("Complement of ", input$pietext)))} 

      }) 
 }) 

    That is essentially it. When our server runs, it alerts the user-interface function   plotOutput("piePlot")    
to the new image. This function lives in the  mainPanel()  region. Under this simple model of Shiny, the 

  Figure 13-3.    The user interface is almost done, and the input portion in the sidebar is indeed done       
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sidebar is where user input is received, the server side is where it is processed behind the scenes by R, and 
the main panel is where the processed output is viewed by the user. Just this once, we show the full HTML 
 code   that Shiny creates for us to serve in Figure  13-1 : 

   <html> 
 <head> 
   <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>  <script 
type="application/shiny-singletons"></script>  <script type="application/html-dependencies">
json2[2014.02.04];jquery[1.11.3];shiny[0.13.1];bootstrap[3.3.5]</script><script src="shared/
json2-min.js"></script> 
 <script src="shared/jquery.min.js"></script> 
 <link href="shared/shiny.css" rel="stylesheet" /> 
 <script src="shared/shiny.min.js"></script> 
 <meta name="viewport" content="width=device-width, initial-scale=1" /> 
 <link href="shared/bootstrap/css/bootstrap.min.css" rel="stylesheet" /> 
 <script src="shared/bootstrap/js/bootstrap.min.js"></script> 
 <script src="shared/bootstrap/shim/html5shiv.min.js"></script> 
 <script src="shared/bootstrap/shim/respond.min.js"></script>  <title>User Controlled Chart
</title> 
 </head> 
 <body> 
   <div class="container-fluid"> 
     <h2>User Controlled Chart</h2>ShinyHTML code, creation 
     <div class="row"> 
       <div class="col-sm-4"> 
         <form class="well"> 
           <div class="form-group shiny-input-container"> 
             <label for="pie">Percent of Pie Chart</label> 
             < input id="pie" type="number" class="form-control" value="50" min="0" 

max="100"/> 
           </div> 
           <div class="form-group shiny-input-container"> 
             <label for="pietext">Text Input</label> 
             <input id="pietext" type="text" class="form-control" value="Default Title" 
placeholder="Enter Your Title Here"/> 
           </div> 
           <div class="form-group shiny-input-container"> 
             <div class="checkbox"> 
               <label> 
                 <input id="pieChoice" type="checkbox"/> 
                 <span>  I want a Pie Chart instead.</span> 
               </label> 
             </div> 
           </div> 
         </form> 
       </div> 
       <div class="col-sm-8"> 
          <div id="piePlot" class="shiny-plot-output" style="width: 100% ; height: 400px">

</div> 
       </div> 
     </div> 
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   </div> 
 </body> 
 </html>  

   So now, go back and carefully look through the very first block of code we showed in this section that was 
the entire Shiny app and realize that code creates all of the preceding HTML and JavaScript. That is all there is 
to Shiny. Now, in this example, our R code was not particularly impressive. All the same, it is the principle that 
counts. Users can now interact with data, and it is not impossible to imagine more-interesting applications. 

 In the next few sections, we introduce a handful of other interesting and useful Shiny input functions 
along with some essential reactive functions. Finally, in the end, we upload all of them to our cloud so that 
you can see them live on the Web.  

     Shiny in Motion 
 Now that we have a better appreciation for what Shiny does, it is important to appreciate the dynamic 
potential of a web page over print reports. One of the authors is a mathematics professor, and one of the 
challenges in teaching mathematics is that once data goes beyond three dimensions, it becomes difficult for 
students to conceptualize that information. Naturally, students, being people, are not unique in their high-
dimensional blindness. Time can provide a fourth dimension, and Shiny can provide us that time. 

 Another feature of Shiny we mentioned earlier, is that R code makes sense to place in three distinct 
locations. The first is at the beginning of all the code, before user-interface or server-side code is written. Code 
placed in this area runs once per instance. While the value of this may not be as clear on a local machine, 
when your code is hosted on a cloud, a particular R session may have more than one user interacting with 
it. That is the way the Shiny server we installed in the preceding chapter works. This is a great place to read 
in any static data or perform any once-only calculations. It is the most computationally efficient. While we 
do not do so in this example, the code may also be placed inside the server code but outside any reactive 
functions that would be run once per user connection to a session. Finally, the code inside reactive functions, 
inside the server function, is executed once every time any input data that the function references is changed. 

 Let’s take a look at how to change data with respect to time. From the user-interface side, there is an 
input function that is a number-line slider bar. As with all input functions, we need to give it a name so that 
our reactive functions can know where to look for input updates. As with our   numericInput()    from the 
prior section, we give this function some minimum and maximum values in years. Finally, we are going to 
animate our   sliderInput()  function  . Take a look at the code we use inside our user interface. Our code uses 
an animate option that includes an  interval  in milliseconds and also has the animation keep on looping. 

   sliderInput("ayear", "Academic Year:", 
                      min = 2014, max = 2017, 
                      value = 2014, step = 1, 
                      animate = animationOptions(interval=600, loop=T) ) 

   While this application also shows how to perform  R calculations   on both static data and user inputs, it 
really is quite simple again from the R code perspective. In fact, other than the   titlePanel()  command   and 
of course our slider code, this is quite a bit like our first Shiny  application  . We show both the code and the 
end result in Figure  13-4 .  

    library(shiny) 
 slider_data<-read.csv("slider_data.csv", header = TRUE, sep = ",") 
 Phase1    <- slider_data[,2] 
 Phase2    <- slider_data[,3] 
 Phase3    <- slider_data[,4] 
 Phase4    <- slider_data[,5] 
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   # Define UI for application that draws Bar Plot 
 ui <- shinyUI(fluidPage( 

      # Application title 
    titlePanel("Training Programme Results"), 

      # Sidebar with a slider input for number of bins  
    sidebarLayout( 
       sidebarPanel( 
 sliderInput("ayear", "Academic Year:", 
                      min = 2014, max = 2017, 
                      value = 2014, step = 1, 
                      animate = animationOptions(interval=600, loop=T) )  ), 

         # Show the bar plot 
       mainPanel(plotOutput("barPlot") )               )               )) 

   # Define server logic required to draw a barplot 
 server <- shinyServer(function(input, output) { 

      output$barPlot <- renderPlot({ 
       # Count values in each phase that match the correct date. 
      cap<-input$ayear*100 
      x <- c(sum(Phase1<cap), sum(Phase2<cap), sum(Phase3<cap), sum(Phase4<cap)) 

         # draw the barplot for the correct year. 
       barplot(x, names.arg = c("Phase I", "Phase II", "Phase III", "Fellows"), 
               col = c("deeppink1","deeppink2","deeppink3","deeppink4"),  ylim=c(0,50)) 
    })           }) 

   # Run the application  
 shinyApp(ui = ui, server = server) 

  Figure 13-4.    A slider bar input that has a  Play button feature   showing data in motion       
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         Uploading a User  File   into Shiny 
 Our last example for this chapter indicates that users can upload files via Shiny that can then be processed 
via R. Of course, unlike our first two examples, this is a shade riskier because such uploaded files are not 
under our control. The data might be any file and not truly work with our results. It is possible to build 
various error-checking features into code; in fact, we mentioned such techniques in part while discussing 
functions. However, to focus our code on strictly new features, we pretend for a moment that we live in a 
perfect world. We have a sample file on the Apress website for this book that is just a comma-separated 
values file with the numbers 1 through 10. 

 Perhaps unsurprisingly, to receive a file input, the command in Shiny is  fileInput(). Other than 
 inputId , maybe the most interesting feature is that this could even accept  multiple  uploads, although in 
our example we leave that to its default value of  FALSE . Uploading more than one file might not be supported 
in all browsers. Also in the user-interface area, we use a new output function,  tableOutput() , which along 
with  plotOutput()  allows us to have both chart and graphical outputs for our users. Before we talk about the 
server-side code that enables us to interact with our user’s file, we take a look at what our CSV file upload gives 
us. Figure  13-5  is the view after we uploaded our CSV file, and we show the code for just the user interface:  

    ui <- shinyUI(fluidPage( 

         fileInput("file", label = h3("Histogram Data File input")), 
       tableOutput("tabledf"), 
       tableOutput("tabledf2"), 
       plotOutput("histPlot1")  )) 

  Figure 13-5.    File upload  results         
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    First of all, notice the first table. It contains four variables that are the results of directly accessing the 
 input$file  variable. This might be counterintuitive based on our other examples, where the user inputs 
could be directly accessed from their  input$inputId . However, it does show that our user input is, in fact, a 
data frame, and the temporary data path is available to access just as any file location might be. Fair warning: 
If a user uploads another file, since we are in a temp directory, our old file might well be overwritten. Next, 
notice that our file’s actual data is in the second table, and as shown in the histogram, that information is 
available for any R computations we might choose to code. 

 Let’s next focus on the server side, because this is not as simple as our prior examples. Sometimes, you 
have input that takes a little more managing than a single numeric or text value. Because that data is input 
data, it needs a reactive function to be alerted if it has changed. However, you might prefer to use fairly 
clean code. Fortunately, Shiny offers a basic reactive function named, well,  reactive() . In the following 
code, we create our own reactive function to cope with a new scenario, namely, the one we wanted. When a 
file is uploaded, Shiny alerts our reactive function  reactive()  that  input$file  has changed. The function 
naturally queries the input to see what it is now, and stores that data frame into the variable  file1 . We would 
like access to the data inside our CSV file, so we need to call  read.csv()  on that file, which naturally needs to 
know the file’s location. That is stored in the last column, named  datapath . What we get is an object that we 
can treat like a data frame later in our code. 

   histData<-reactive({ 
   file1<-input$file 
   read.csv(file1$datapath,header=TRUE ,sep = ",")      }) 

   Other than this, we can use our data now inside other reactive functions, familiar ones even. We show 
one more new reactive function,  renderTable() , as well as a familiar one,  renderPlot() . You should also 
draw your attention to  histData()$X1 . Notice that this has function parentheses, yet elements are still 
accessed via the familiar  $ . This is built with a reactive function, and as such, we must acknowledge that it is 
both a function that takes input from the user as well as a data storage object with data to access.    

    output$tabledf2<-renderTable({ 
   histData()            }) 

   output$histPlot1<-renderPlot({ 
   hist(as.numeric(histData()$X1))              }) 

    That wraps up our analysis of the code. For completeness, we end this section with the entire code, but 
now you have the techniques to be up and running in Shiny. Before this section ends, we point out that the 
references section has as its first link a reference site for most or many Shiny functions. If there is something 
you want to do, check there first. It is quite intuitive. Also of note is that the next section of this chapter shows 
how to upload an application file to the cloud and get it working live. Finally, notice the  h3()  function inside 
the  fileInput()  function in the user interface. Shiny has a whole collection of functions that duplicate various 
common HTML features such as headers. For this chapter, we consider those adiaphora. In Chapter   14    , 
we focus more on making our user interface, for lack of a better word, pretty. 

    library(shiny) 

   ui <- shinyUI(fluidPage( 

         # Copy the line below to make a file upload manager 
       fileInput("file", label = h3("Histogram Data File input"), multiple = FALSE), 
       tableOutput("tabledf"), 

http://dx.doi.org/10.1007/978-1-4842-2077-1_14
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       tableOutput("tabledf2"), 
       plotOutput("histPlot1") 

   )) 

   # Define server logic required to draw a 
 server <- shinyServer(function(input, output) { 

     output$tabledf<-renderTable({ 
     input$file 
   }) 

   histData<-reactive({ 
   file1<-input$file 
   read.csv(file1$datapath, header=TRUE ,sep = ",")     }) 

   output$tabledf2<-renderTable({ 
   histData()           }) 

   output$histPlot1<-renderPlot({ 
   hist(as.numeric(histData()$X1))               }) 

   }) 

   # Run the application  
 shinyApp(ui = ui, server = server) 

    Notice that in this code, we did not focus on distinctions such as side panels or main panels; instead, we 
had our user-interface side (both the requested input and the generated output) all in one hodgepodge. It 
is worth noting that if you have a side panel, a main panel is needed to hold any output that is not hosted by 
the side panel.     

     Hosting Shiny in the  Cloud    
 Our last task is to get our files from a local machine to the cloud instance. Remember, in previous chapters, 
we have used not only  PuTTY  (Tatham, 2016) to install Shiny Server on our cloud, but also  WinSCP  (Prikryl, 
2007) to move files up to our cloud. We start  WinSCP , reconnect, and ensure that on the left, local side we are 
in our Shiny application folder, while on our right, cloud server side, we are in  /home/ubuntu . We show the 
result of that process in Figure  13-6 .  
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 From here, we access  PuTTY  and run the following code from the command line, one at a time: 

   sudo cp -R ~/PieChart_Time /srv/shiny-server/ 
 sudo cp -R ~/slider_time /srv/shiny-server/ 
 sudo cp -R ~/Upload_hist /srv/shiny-server/ 

   Which leaves us with one final step. Recall, back when we first set up our cloud instance, we carefully 
allowed just a few ports to work for just a few IP addresses. You need to log back into AWS and get into the 
EC2 Dashboard again. From there, on the left navigation menu, go back to Security Groups and select your 
AdvancedR group. Once that group is selected, click the Inbound tab and then click Edit ä Add Rule. You 
want to use a Custom TCP Rule, and add port 3838, and finally lock it to your IP address. Then click Save. 
The result looks like Figure  13-7 .  

 You may now verify that your apps work by typing the following URLs into any browser: 

 http://Your.Instance.IP.Address:3838/PieChart_Time/ 
 http://Your.Instance.IP.Address:3838/slider_time/ 
 http://Your.Instance.IP.Address:3838/Upload_hist/ 

 Should you wish to allow others or the world to access your applications, change the Inbound source 
IP address to  0.0.0.0/0  only for port  3838 . It is a security measure not to allow the world access to your SSH 
port. Of course, if you are now hosting an open-to-the-world port 3838, your server is visible and known. It 
can be beneficial to have different cloud instances for individual activities. We recommend against having 
confidential data on public-accessible servers. Again, cloud security is beyond the scope of this book.  

  Figure 13-6.    WinSCP with PieChart_Time, slider_time, and Upload_hist Shiny applications all uploaded       

  Figure 13-7.    The AWS Inbound table with Shiny Server port 3838 open to one single local IP  address         

 

 



CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

238

     Final Thoughts 
 We seem to have spent some time discussing cloud security. There are two reasons behind this. The first is 
simply our paranoid natures. However, a fair bit of data can contain confidential information. The ethical 
use of data, including reasonable safeguards, is important. In recent months, AWS has taken great strides 
to create safer environments for EC2. As always, security is a matter of reasonableness. The more vital your 
data, the better steps may be warranted to protect that information. 

 Those concerns aside, this is truly an unprecedented capability, to allow users to interact with data 
analytics in such an open fashion. Yes, in our experience, this can lead some data consumers to make 
uneducated decisions. Still, the benefit of the transparency possible through techniques such as Shiny far 
outweigh the disadvantages. It is an exciting world, one we are eager to explore.     
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    CHAPTER 14   

 Shiny Dashboard Sampler                          

 This chapter is not required in order to understand other chapters in this book. While we introduce some 
new techniques, what you primarily find here is one entire dashboard sample ready to be modified to suit 
your needs. 

 Just what does this sampler do? It takes the applications we used in the preceding chapter and presents 
them in an engaging, interactive format. It is important to keep in mind that while we often present 
these applications with a graphical output, any R process can be done to these data. The goal is to allow 
information consumers the capability to naturally interact with live data, whether those consumers are 
research reviewers, next-level directors, or board members. 

 Similarly to the last chapter, we introduce this on Windows inside  RStudio  (RStudio Team, 2015). We 
provide both a framework to understand this dashboard, as well as some pro tips. It is important to see this 
sampler as a creativity incubator of sorts. It is our hope that you see something you like, and more vitally, 
realize just how you can best showcase your data. 

 We will start with the underlying structure of a dashboard. 

     A Dashboard’s Bones 
 Recall our littlest  shiny  (Chang, Cheng, Allaire, Xie, and McPherson, 2016) application from the preceding 
chapter: 

    library(shiny) 

   # Define user interface 
 ui <- shinyUI(fluidPage()) 

   # Define server  
 server <- shinyServer(function(input, output) {}) 

   # Run the application  
 shinyApp(ui = ui, server = server) 

    This code was good to look at from the beginning, because it highlights how all Shiny applications 
comprise a user interface, and a server side where the R code logic lives—and these are both run as an R 
process themselves (possibly on a cloud server). All we intend to add to this structure is some code on the 
user-interface side. This should make sense, because a dashboard is more about user interface than any 
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new code logic. The goal is to make analytics and statistical inferences readily available to users. There is a 
new library to install for this, but it is just one,  shinydashboard  (Chang, 2015). From the command line of 
RStudio, go ahead and run the following code: 

   install.packages("shinydashboard") 

   With this new package installed, we may now take a look at the littlest Shiny  dashboard  application. 
Dashboards include a header, a sidebar with various menu items, and the main body in which the different 
objects of the applications exist. Compare and contrast this dashboard code layout to the single application 
code. The two versions are almost the same. After the code, see what they generate in Figure  14-1 .  

    library(shiny) 
 library(shinydashboard) 

   # Define user interface 
 ui <- dashboardPage( 
                  dashboardHeader(), 
                  dashboardSidebar(), 
                  dashboardBody() 
                 ) 

   # Define server  
 server <- shinyServer(function(input, output) {}) 

   # Run the application 
 shinyApp(ui = ui, server = server) 

    As you can see in the preceding code, we have three functions:  dashboardHeader() , 
 dashboardSidebar() , and  dashboardBody() . These provide a nice structure for our dashboard. These all 
reside inside  dashboardPage()  as the first three of five formal arguments for the page function. The final two 
formals include  title  (which defaults to  NULL ) as well as  skin  (which takes on one of  blue ,  black ,  purple , 

  Figure 14-1.    The  littlest Shiny dashboard   is quite empty       
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 green ,  red , or  yellow  color). As you can see for yourself with the  formals(dashboardPage)  command, the 
page function is indeed simple enough. The  title  argument controls the heading in the browser itself (or 
on the browser tab, if multiple tabs are open in most popular browsers). The  skin  color options control 
the overall color palette of the dashboard. Now, the first three formals are functions in their own right and 
become quite complex. Nevertheless, we will get to all three in turn. 

     Dashboard  Header      
 The   dashboardHeader()  function   also takes a  title  formal that adds user-defined text into the header area 
as well as a  titleWidth  argument controlling the width of that text. The header also accepts several other 
Shiny user-interface-style functions to control page navigation along with a handful of more specialized 
functions that allow for more interactive navigation. In this chapter, and indeed this book, we essentially 
ignore these functions to promote  shiny  and  shinydashboard  as ways of serving already familiar R code to 
data consumers rather than learning too many new features all at once. In fact, the last formal we mention 
for this function is  disable , which defaults to  FALSE  and on  TRUE  hides the header entirely. In our sampler, 
we will preserve the header in a mostly tabula rasa state.  

     Dashboard  Sidebar      
 Moving on to the   dashboardSidebar()  function  , the only explicitly called-out formals are again a  disable  
option along with a  width  argument. However, there are more functions possible here beyond the called-out 
ones. The first thing to know is that any of the user-interface functions from  shiny  works in the sidebar. Thus, 
if it makes sense to place a slider bar or drop-down input functions in your menu, that is possible. There are, 
however, some functions unique to the dashboard library that make sense to place inside the sidebar area. 

 The first of these is the   sidebarMenu()  function  . Much like  dashboardSidebar()  itself, this function 
primarily takes other inputs and handles the organization of them in an efficient fashion. Of particular note 
is the   menuItem()  function  , which is called from inside  sidebarMenu() . In this sampler, we house each of the 
applications created in the previous chapter in their own call to  menuItem() . As you can see in the following 
code, this function has several formals: 

    formals(menuItem) 
 $text 

   $... 

   $icon 
 NULL 

   $badgeLabel 
 NULL 

   $badgeColor 
 [1] "green" 

   $tabName 
 NULL 

   $href 
 NULL 
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   $newtab 
 [1] TRUE 

   $selected 
 NULL 

    In the preceding function and formal arguments, the  text  takes a text string in quotes that provides 
the text information or link name for that particular item on the menu. The  icon  formal is given a name for 
a  Font-Awesome  icon. We provide a link to the online library, showcasing all possible icon choices in the 
references section of this chapter. We may also switch to a different icon library; we save such explorations 
for you. The  badgelabel  call puts an inline badge on the far right of the sidebar, which fits a short bit of 
text. Badges do a good job of calling viewers’ attention to a particular menu item and, consequently, to 
the underlying application. Many of these formals are somewhat optional; however, there must be either 
a  tabName  linked to a related  tabItem () in the dashboard’s body or there must be a  URL  given to the  href  
command. If a  URL  is given rather than a  tabName , then  newtab  can be changed from a default of  TRUE  to 
 FALSE  should you wish your viewer to leave your site when visiting that page. Finally, it is possible to force 
the default to a particular tab, away from the first  menuItem() , by setting selected to  TRUE .       

 As we turn our attention to the main body of our dashboard, we remind you that the sidebar can also 
receive any Shiny function—such as the   img()  function   which points to an image that must be contained in 
a folder named  www  inside your dashboard application’s folder. We show a code snippet (which should not 
be run yet) of our sampler’s menu along with the result in Figure  14-2 . The names of the first three menu 
items should be familiar from the prior chapter.  

   sidebarMenu( 
       menuItem("Pie Charts!", tabName = "PieChart_Time", icon = icon("pie-chart")), 
        menuItem("Use a Slider", tabName = "slider_time", icon = icon("sliders"), badgeLabel = 

"New"), 
        menuItem("Upload a Histogram File", tabName = "Upload_hist", icon = icon("bar-

chart")), 
        menuItem("Labour Data Dates", tabName = "labour", icon = icon("cloud-download"), 

badgeLabel = "Live") 
     ) 

  Figure 14-2.    The result of some  sidebarMenu()   and  menuItem() functions         
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        Dashboard  Body      
 As you can see in the preceding code, each menu item has  tabName . We will now discuss the code inside 
the   dashboardBody()  function   that will catch that  tabName . Take a look at the little, although not the littlest, 
Shiny dashboard in the following code and Figure  14-3 , and then we will walk through the new lines.  

    library(shiny) 
 library(shinydashboard) 

   # Define user interface 
 ui <- dashboardPage( 
     dashboardHeader(), 
     dashboardSidebar(sidebarMenu(menuItem("Demo", tabName = "First"))), 
     dashboardBody(tabItems(tabItem(tabName = "First", "test"))), 
     skin = "yellow") 

   # Define server  
 server <- shinyServer(function(input, output) {}) 

   # Run the application  
 shinyApp(ui = ui, server = server) 

    Many items might be placed inside the body of our dashboard. However, if we want to use the tabs that 
we coded back in the sidebar section, we do a general call to  tabItems() . This function takes no arguments 
except individual  tabItem()  function calls; each of those  tabItems()  needs to have a unique  tabName  
matching a unique  tabName  from the   sidebarMenu()   . 

 What goes inside each  tabItem() ? Well, just as in Shiny, there is a benefit to making the layout fluid 
enough that your dashboard can cope with various-sized browser windows. Thus, the common function 
 fluidRow()  makes a reappearance. Recall that  fluidRow()  is set up to have a row width of at most 12. 
Remembering that fact, keep a sharp lookout at the default widths for each of the three box objects we 
discuss to fill those rows. Now, there are more than these three objects; again, our goal is to get you quickly 
to the point where you may serve your data via the cloud to your users or stakeholders. 

 The most basic input element to go in a row is  box() . Inside this function, we place any of the 
application code we used in the preceding chapter to either solicit input from users or to output reactive 
content. However,  box()  also takes nine specific arguments. Naturally, each  box()  may take a  title  value, 
a user-defined text string that should succinctly describe the contents of the box or the action required. At 
the bottom of the box, there is a  footer , which may also take a text string. Boxes also have a  status  that may 

  Figure 14-3.    A dashboard with a menuItem() in the sidebar and a tabItem() in the body. Notice the matching 
First.       
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be set to take on values of  primary ,  success ,  info ,  warning , or  danger . Each of those status values has an 
associated color that is part of the default Cascading Style Sheets structure that makes  shinydashboard  look 
rather pretty. The colors are fairly consistent, although they may have some variance depending on which 
color you selected for the whole dashboard. The default value for  solidHeader  is  FALSE , although this, of 
course, may be changed to  TRUE . The positive choice simply enhances the color of the status to become a 
narrow banner background to the  title  text. Should you wish the main area of your box to have a specific 
color,  background  can be set from approximately 15 valid colo choices. Any input code and any output code 
lives on top of that  background , as the name suggests. The default  width  for a box is  6 , so two boxes fill up a 
row unless you take steps to narrow them. Failure to keep the total  fluidRow()  width of  12  in mind can lead 
to some odd layouts. Box  height  can also be set to a fixed height. This can be helpful if you require very even 
rows. Finally, boxes are  collapsible  and may be already  collapsed , although both options default to  FALSE . 
Figure  14-4  shows some results of these various settings.     

 Another type of box is   valueBox()   , which takes six formal arguments. The first is  value , which is usually 
a short text string or value, as shown in Figure  14-5 . The  valueBox()  also takes a  subtitle  argument, which 
is again a text string. You can choose an  icon , although the default value is  NULL . These boxes come with 
a default  color  of  aqua  and are rather short with a default  width  of only  4 . Finally,  valueBox()  also takes a 
value for  href , which defaults to  NULL . We show the code we used in our sampler’s value box here:  

   valueBox(endYear-startYear, "Days of Data", icon = icon("calendar")) 

  Figure 14-4.    A familiar application in two boxes with various options—see Complete Sampler Code for 
 details         
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   We finish out our discussion of the  dashboardBody()  boxes with a box similar to the  valueBox (): the 
 infoBox() . This box comes with a  title  that takes a text string, a  value  to highlight and display in the box, 
optional  subtitle  text, and a default  icon  of a bar chart. It also features defaults for  color  of  aqua ,  width 4 , 
and a  NULL href . What is different is that the  icon  is smaller, and there is a  fill  option, which is usually 
 FALSE , that can change the way the background color displays. We do not show this box, but it does look 
quite similar to the small box in Figure  14-5 . In our experience, these boxes are not significantly different 
other than in their appearance.   

     Dashboard in the  Cloud   
 We do want to serve this dashboard into our cloud instance, and this is a  slightly  more complex set of 
code. Again, we created this in a standard Shiny folder by using RStudio, so it comes in its own file. The file 
structure on Windows looks like Figure  14-6 . There are three files in our  shinydashboard_cloud  folder. Note 
the  www  folder, which hosts our sampler’s image, followed by the  app.R  file, which holds our entire Shiny 
application as well as our CSV file.  

  Figure 14-5.    Sample valueBox() showing the number of days of data that were pulled live from a  website            

  Figure 14-6.    The file structure for shinydashboard_cloud       
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 We use  WinSCP  to upload our files and folders to our Ubuntu cloud instance, as shown in Figure  14-7 .  

 Logging into  PuTTY , we do have some work to do. Our sampler uses some new libraries, and, of course, 
the file needs to be moved from our user’s folder to where the Shiny server expects it to live. For brevity, we 
install only the packages we have not yet installed on our cloud instance. 

 The first of the new packages is  XML  (Lang, D. et al., 2016), and this package provides the ability to read 
in an HTML table live from the Web. Various government and nonprofit agencies store data in such tables for 
easy access by the public. We also install the  zoo  package (Zeileis and Grothendieck, 2005), which provides 
convenient functions for time series. Already familiar packages are  ggplot2  (Wickham, 2009) and  data.table  
(Dowle, Srinivasan, Short, and Lianoglou, 2015), which handle graphical plotting and provide a more 
advanced data frame structure. 

 The following commands run one at a time on our instance installation for all users’ five new libraries 
and then copy the files so they are accessible via a browser. We also install some software onto Ubuntu that 
is required to allow the XML package to run. For readability, we group some of the following commands 
together. They should be run one line at a time in  PuTTY , and some text prints to the screen after each 
command. 

    sudo su - -c "R -e \"install.packages('shinydashboard', repos='https://cran.rstudio.
com/')\"" 

   sudo apt-get install libcurl4-openssl-dev libxml2-dev 
 sudo su - -c "R -e \"install.packages('XML', repos='https://cran.rstudio.com/')\"" 

   sudo su - -c "R -e \"install.packages('zoo', repos='https://cran.rstudio.com/')\"" 
 sudo su - -c "R -e \"install.packages('data.table', repos='https://cran.rstudio.com/')\"" 
 sudo su - -c "R -e \"install.packages('ggplot2', repos='https://cran.rstudio.com/')\"" 

   sudo cp -R ~/shinydashboard_cloud /srv/shiny-server/ 

    This completes our work with Shiny and the Shiny dashboard. Your dashboard should be live at 
http://Your.Instance.IP.Address:3838/shinydashboard_cloud/ and viewable from your web browser. 
We have a few more comments to make before we close out the chapter. 

 First, we highly suggest that you visit the Apress site for this textbook and download the code bundle 
for this chapter. It contains the complete, working files and folders shown in Figure  14-6  and uploaded in 
Figure  14-7 . There is no need to manually type all this code to see whether a dashboard might be something 
you would like to have. 

  Figure 14-7.     WinSCP upload folder view            
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 Second, we have in no way throughout this chapter given our full sample code. We saved that for the 
end to keep it all in a single, cohesive whole and to focus your attention on the specific structure you want to 
be looking for in that sampler code. 

 Third, we remind you that if you have followed our security-minded advice about inbound policy 
settings on the AWS servers, you may need to change those settings to allow more people than just yourself 
to view your final dashboard project. Remember, the setting you need to change on the inbound side is to 
allow port  3838  to be accessed from  0.0.0.0/0 , which is the entire Internet. Keep in mind that the entire 
Internet is then able to access your dashboard. If you have sensitive data, or even information that just does 
not need to be out and about, please consider partnering with an IT professional or at least an IT power user.    

 Finally, we hope you enjoyed this chapter and the results as much as we have. Be sure to explore the 
links in the “References” section. You will find valuable information ranging from additional functions, a 
whole list of icons, a whole second icon library, and the very latest in  shiny  and  shinydashboard  package 
information. These packages are updating fairly regularly, and new features can often provide awesome 
results.  

     Complete Sampler  Code      
    library(shiny) 
 library(shinydashboard) 
 library(XML) 
 library(zoo) 
 library(data.table) 
 library(ggplot2) 

   #this code will run just once each time a session is instantiated - there may be multiple 
viewers in the same session. 

   slider_data<-read.csv("slider_data.csv", header = TRUE, sep = ",") 
 Phase1    <- slider_data[,2] 
 Phase2    <- slider_data[,3] 
 Phase3    <- slider_data[,4] 
 Phase4    <- slider_data[,5] 

   bls <-readHTMLTable("http://data.bls.gov/timeseries/LAUMT484702000000006?data_tool=XGtable", 
stringsAsFactors = FALSE) 

   bls <- as.data.table(bls[[2]]) 
 bls[, names(bls):= lapply(.SD, function(x) { 
   x <- gsub("\\(.*\\)", "", x) 
   type.convert(x) 
   } 
   )] 

   setnames(bls,names(bls), gsub("\\s","",names(bls))) 
 bls[, Date := as.Date(paste0(Year, "-", Period, "-01"), format="%Y-%b-%d")] 
 startYear<-min(bls$Date) 
 endYear<-max(bls$Date) 
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   ### We now define the user interface to be a dashboard page  
 ui <- dashboardPage( 
   dashboardHeader(title = "Advanced R"),  

     dashboardSidebar( 
     img(src = "egl_logo_full_3448x678.png", height = 43, width = 216), 
     sidebarMenu( 
       menuItem("Pie Charts!", tabName = "PieChart_Time", icon = icon("pie-chart")), 
       menuItem("Use a Slider", tabName = "slider_time", icon = icon("sliders"), 
                                                        badgeLabel = "New"), 
        menuItem("Upload a Histogram File", tabName = "Upload_hist", icon = icon("bar-

chart")), 
       menuItem("Labour Data Dates", tabName = "labour", icon = icon("cloud-download"), 
                                                        badgeLabel = "Live") 
     ) ), 

   dashboardBody( 
     tabItems( 
       # PieChart_Time Content which should be familiar 
       tabItem(tabName = "PieChart_Time", 
               fluidRow( 
                 box( title = "PieChart_Time", status = "warning", 
                  numericInput("pie", "Percent of Pie Chart", min = 0, max = 100,  value = 50), 

                                 textInput("pietext", "Text Input", value = "Default Title", 
placeholder = "Enter Your Title Here"), 

                                checkboxInput("pieChoice", 
                                            "  I want a Pie Chart instead.", value = FALSE) 
                 ), 

                   box( title = "Graphical Output", solidHeader = TRUE, status = "warning", 
                   plotOutput("piePlot")))), 

         # Slider Tab Content which should be familiar 
       tabItem(tabName = "slider_time", 
               h2("Training Programme Results"), 
                box( title = "Control the Academic Year", status = "primary", solidHeader = 

TRUE, 
                          sliderInput("ayear", "Academic Year:", min = 2014, max = 2017, value 

= 2014, step = 1, 
                                        animate = animationOptions(interval=600, loop=T))), 

                 box(plotOutput("barPlot"))), 

   ##Histogram from an Uploaded CSV which should be familiar 
       tabItem( tabName = "Upload_hist", 

                  fluidRow( 
                         box(   title = "File Input", 
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                           # Copy the line below to make a file upload manager 
                           fileInput("file", label = h3("Histogram Data File input"), 
                                     multiple = FALSE) 
                         ), 
                         box( title = "Data from file input", collapsible = TRUE, 
                           tableOutput("tabledf"))), 

                  fluidRow( 
                  box(tableOutput("tabledf2")), 
                  box( background = "blue", 
                    plotOutput("histPlot1")) 
                ) 

               ), 

   ###This Labour plot Tab is new and uses data pulled fresh from the web each time an R 
instance ##is created. 
       tabItem(tabName = "labour", 

                 fluidRow( 
                 box( dateRangeInput("labourDates", min = startYear,max = endYear, 
                                     start = startYear, end = endYear, 
                                     label = h3("Date range")), 

                        selectInput("labourYvalue", label = h3("Select box"),  
                                  choices = list("LaborForce" = 3, 
                                                 "Employement" = 4, 
                                                 "Unemployement" = 5),  
                                  selected = 3), 

                        radioButtons("labourRadio", "Rolling Average", selected = FALSE, 
                                   choices = list("Yes"=TRUE, "No"=FALSE))), 
                 box(title = "Test",  plotOutput("labourPlot"))), 

                  fluidRow( valueBox(endYear-startYear, "Days of Data", icon = 
icon("calendar")))))), 

   title = "Dashboard Sampler",  skin = "yellow") 

   #### Define server logic required to draw a histogram##### 
 server <- shinyServer(function(input, output) { 

     output$piePlot <- renderPlot({ 
 # generate Pie chart ratios based on input$pie from user 
     y <- c(input$pie, 100-input$pie) 

   # draw the pie chart or bar plot with the specified ratio and label     
     if(input$pieChoice == FALSE){ 
        barplot(y, ylim = c(0,100), names.arg = c(input$pietext, paste0("Complement of ", 

input$pietext)))  
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       }else{ 
       pie(y, labels = c(input$pietext, paste0("Complement of ", input$pietext)))} 
   }) 

     output$barPlot <- renderPlot({ 
     # Count values in each phase that match the correct date. 
     cap<-input$ayear*100 
     x <- c(sum(Phase1<cap), sum(Phase2<cap),  sum(Phase3<cap),  sum(Phase4<cap)) 

       # draw the bar plot for the correct year. 
     barplot(x, 
             names.arg = c("Phase I", "Phase II", "Phase III", "Fellows"), 
             col = c("deeppink1","deeppink2","deeppink3","deeppink4"), ylim=c(0,50)) 
   }) 

     ####Here is where the input of a file happens   
   output$tabledf<-renderTable({  input$file  }) 

     histData<-reactive({ 
     file1<-input$file 
     read.csv(file1$datapath,header=TRUE ,sep = ",") 
   }) 

     output$tabledf2<-renderTable({  histData()  }) 

     output$histPlot1<-renderPlot({    hist(as.numeric(histData()$X1))  }) 

     ##############labour plot#################### 
   output$labourPlot<-renderPlot({ 
     xlow<-input$labourDates[1] 
     xhigh<-input$labourDates[2] 
     blsSub <- bls[Date<=xhigh&Date>=xlow] 
     yValue <- names(blsSub)[as.numeric(input$labourYvalue)] 

        if(input$labourRadio == TRUE && nrow(blsSub)>=4){  blsSub[,(yValue):=rollmean(get(yValue), 
k=3, na.pad = TRUE)] } 

       ggplot(data = blsSub, mapping = aes_string("Date", yValue)) + 
       geom_line()+ 
      xlab("Years & Months")+ 
      ylab("People")+ 
      xlim(xlow, xhigh)+ 
       ggtitle(yValue)+ 
       scale_x_date(date_labels = "%b %y") 
   }) }) 

   # Run the application  
 shinyApp(ui = ui, server = server) 
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    CHAPTER 15   

 Dynamic Reports and the Cloud                          

 In the preceding chapters, you saw how Shiny delivers interactive environments based on dynamic data. 
Dynamic reports and the live dashboards have many similarities. On the other hand, this chapter, because 
the reports end up as PDFs, is less interactive. Reports are a fact of life in many fields, and stakeholders tend 
to require snapshots in time rather than fully interactive environments. Through the  knitr  and  rmarkdown  
packages, we create documents (for example, PDF, HTML, or Microsoft Word) based on data input. For 
regular reports that build on continuously changing data, yet that have the same structure overall, this is a 
great time-saver. 

 The  rmarkdown  package (Xie, 2015) adds the capability to embed R processes into such documents, 
allowing one-click analytics that are beautifully formatted using a variety of styles. The LaTeX interface 
achieves almost any formatting required, although there are options besides PDF. From boardroom reports 
on enrollment based on live pulls from a student information system database, to strategic plan action-
sheets drawn from key performance indicators, dynamic reports work best when variable input needs 
shaping into standardized output. This is also facilitated via  knitr  and  formatR  packages (Xie, 2015). 

 Additionally, in this chapter, we use the  evaluate  package (Wickham, 2016) and  tufte  package (Xie, 
2016). These packages allow us to organize the layout and format of our date more elegantly. We also use the 
 ltm  package (Rizopoulos, 2006) for the psychometric tests. 

 Our goals for this chapter are to enhance our software environment both on our local and cloud 
machines to allow the dynamic documents to compile, explore the structure of standalone  rmarkdown , 
develop a Shiny page that allows a user to upload data and then download a PDF report, and finally to push 
this all to our cloud instance. We start with needed software. 

     Needed Software 
 We already have a great deal of the software needed, namely R, the Shiny packages (Chang, Cheng, Allaire, 
Xie, and McPherson, 2016), PuTTY, and our cloud instance on Ubuntu. We need a handful of new packages 
installed—both on the local machine as well as the cloud server. 

      Local Machine      
 First, in your R console, it is important to run the following code independent of any R file: 

   install.packages("rmarkdown") 
 install.packages("tufte") 
 install.packages("knitr") 
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 install.packages("evaluate") 
 install.packages("ltm") 
 install.packages("formatR")Dynamic documentlocal machine 

   After those packages install, we turn our attention to installing  MiKTeX  (Schenk, 2009), which allows the 
creation of PDF files. A brief visit to the MiKTeX site (   http://miktex.org/download     ) allows you to obtain 
either the recommended basic installer (which is 32-bit) or the other basic installer (which is 64-bit). We 
use the 64-bit version for our systems, although in this chapter there is not likely to be a major difference 
between the versions. After download, accept all the defaults during installation. After installation, there 
may be updates to the  MiKTeX  package. To perform these updates, go to your start files. In a folder titled 
 MiKTeX , you’ll find an option for  Update  near the end. Follow the default options and then select all packages 
to update to the latest. While not required, we do recommend a restart after this installation.  

      Cloud Instance      
 Using  PuTTY , access your cloud instance console. We need to run each line of code that follows individually 
at the console. Recall from an earlier chapter that these install the packages for all users of that server, not 
just your user. This is key to allow the Shiny server access to the correct packages. 

   sudo su - -c "R -e \"install.packages('rmarkdown', repos = 'http://cran.rstudio.com/')\"" 
 sudo su - -c "R -e \"install.packages('tufte', repos = 'http://cran.rstudio.com/')\"" 
 sudo su - -c "R -e \"install.packages('knitr', repos = 'http://cran.rstudio.com/')\"" 
 sudo su - -c "R -e \"install.packages('ltm', repos = 'http://cran.rstudio.com/')\"" 
 sudo su - -c "R -e \"install.packages('formatR', repos = 'http://cran.rstudio.com/')\"" 
 sudo su - -c "R -e \"install.packages('data.table', repos = 'http://cran.rstudio.com/')\"" 

   The preceding code does not take very long. However, installing  texlive  (the Ubuntu solution for 
LaTeX used instead of MiKTeX), may take some time. It also demands a fair bit of disk space, so be sure you 
have room. In our trials, the full version is required. 

   sudo apt-get install texlive-full 

   After this, we recommend a  sudo reboot  to restart your cloud instance. This is a good place to do 
that and then close  PuTTY  for a bit. While your server restarts, you may use your local machine to explore 
dynamic documents.   

     Dynamic Documents 
 It is not required to link dynamic documents to the Internet in any way. Indeed, most reports may be 
internal. Inside RStudio, selecting File ➤ New File ➤ R Markdown opens a wizard. Notice that there are 
options for documents (for example, HTML, PDF, or Word) as well as presentations (for example, HTML or 
PDF). A title is customary, as is listing the author(s). Of course, RStudio is not required; creating a new file in 
R with the  .Rmd  suffix suffices. 

http://miktex.org/download
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 We intend to create a  hybrid approach   to this introduction to dynamic documents. That is, we first give 
a straightforward and informative example of what such code looks like, and then we follow up with a more 
in-depth analysis of each piece of that code. We start with a new file titled   ch15_html.Rmd    and fill it with the 
following code: 

    --- 
 title: "ch15_html" 
 author: "Matt & Joshua Wiley" 
 date: "18 September 2016" 
 output: html_document 
 --- 

   ̀``{r echo=FALSE} 
 ##notice the 'echo=FALSE' 
 ##it means the following code will never make it to our knited html 
 library(data.table) 
 diris <- as.data.table(iris) 
 ##it is still run, however, so we do have access to it. 
 ̀`` 

   #This is the top-level header; it is not a comment. 

   This is plain text that is not code. 

   If we wish *italics*  or **bold**, we can easily add those to these documents. Of course, we 
may need to mention `rmarkdown` is the package used, and inline code is nice for that. If 
mathematics are required, then perhaps x~1~^2^ + x~2~^2^ = 1 is wanted.  

   ##calling out mathematics with a header 2 
 On the other hand, we may need the mathematics called out explicitly, in which case  $x^{2} 
+ y^{2}= \pi$ is the way to make that happen. 

   ###I like strikeouts; I am less clear about level 3 headers. 
 I often find when writing reports that I want to say something is ~~absolutely foolish~~ 
obviously relevant to key stakeholders. 

   ######If you ever write something that needs Header 6 
 Then I believe, as this unordered list suggests: 

   * You need to embrace less order starting now 

       - Have you considered other careers? 

   ̀``{r echo=FALSE} 
 summary(diris) 
 ̀`` 

   However, notice that one can include both the code and the console output: 

   ̀``{r} 
 hist(diris$Sepal.Length) 
 ̀`` 
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    The results of knitting the preceding code are shown in Figure  15-1 .  

 As you can imagine, it is the summary data or the graph that is easily regenerated based on any input. In 
fact, one of the authors uses dynamic documents to create  case studies   (and a case study key) for students in an 
introductory statistics course. It is easy enough to generate pseudorandom data with different seeds that allow 
each student to have a unique data set (and several topics). It also allows for solution keys for fast marking. 

  Figure 15-1.    The  HTML output   of a simple  dynamic document         
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 Now that you have an overview of   Rmarkdown   , let’s explore the previous code in sensible blocks. The 
first block is  YAML , which stands for  Yet Another Markup Language  or possibly the recursively defined 
 YAML Ain’t Markup Language  (YAML, 2016) header. At its simplest, it may contain only information 
about the title, author, date, and the output type. Here, for this document, we selected  html_document . 
However, as stated previously, there are more options such as  pdf_document ,  word_document ,  odt_document , 
 rtf_document , and  beamer_presentation  (to name a few—there are in fact more). These types create, 
respectively, HTML pages, PDFs, Microsoft Word files, OpenDocument or rich text, and Beamer PDF slides. 
Both Beamer and PDFs require the  MiKTeX  installation we did earlier. To change the type of document 
compiled, simply change the output! It is worth noting that the first time you use  MiKTeX , it may take longer 
to compile, as there may need to be a package or two installed behind the scenes. This does not take any 
user intervention; it simply takes time. It is also worth noting that if you use   beamer_presentation   , then 
what can and cannot fit on one slide needs to be considered. In that case, a carriage return followed by  ---- , 
followed by another carriage return, signals new slides in your deck. 

   --- 
 title: "ch15_html" 
 author: "Matt & Joshua Wiley" 
 date: "18 September 2016" 
 output: html_document 
 --- 

   Headers can, be more complex than this. R code can be injected inline, using  ̀ r code goes here`  
formatting. Thus, we could change the date to be more dynamic by swapping out  date: "18 September 
2016"  for  date: "`r Sys.Date()`"  in our code. Dozens of render options work with the YAML header, and 
wiser heads than ours have created templates that use variants of those headers as well as set several nice 
options. As in Shiny, there is a nearly limitless ability to customize precisely how a document outputs and 
displays. 

 The next region of our markdown code is a code chunk. Code chunks start with  ̀ ``{r }  and end with 
 ̀ `` . Between those lives your code. Now, inside the  {r }  there are several useful options. If you have part 
of your code that is intensive to create and mostly static, you may want to set  cache = TRUE  instead of the 
default  FALSE . This stores the results. We use  echo=FALSE  often, which prevents the code itself, yet not the 
results of that code, from displaying. Notice that in the first chunk that follows, there is no sign in our final 
document that the code ran. However, the second chunk still shows the results of  summary(diris) . 

    ̀``{r echo=FALSE} 
 library(data.table) 
 diris <- as.data.table(iris) 
 ̀`` 

   ̀``{r echo=FALSE} 
 summary(diris) 
 ̀`` 

    For  code chunks   that involve plots or figures, there are many options too. The  fig.align  option may 
be set to  right ,  centre , or  left . There are height and width settings for plots with  fig.height  or  fig.width  
that default to inches. 

   ̀``{r fig.align="right"} 
 hist(diris$Sepal.Length) 
 ̀`` 
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   Finally, there is the text itself, which we do not repeat here because that is of less interest. We do note 
that code can be written inline as well as just as in the header. You’ll see that this option becomes very useful 
later, when we want to provide different narrative text depending on our computation results.  

     Dynamic Documents and Shiny 
 We turn our attention now to providing not only a dynamic document but one that others may control via 
their dynamic input. What we build is a simple Shiny environment that allows for a user to upload a CSV file 
with quiz score data for students. The data is coded as follows: the columns represent specific questions on 
the quiz; the rows represent individual students; and the quiz is multiple choice, with  1  coded in for correct 
responses, and  0  coded in for incorrect options. 

 As in the preceding section, we look at all our code for each of the three files it takes to make this work. 
Then, we break that code down line by line. For readers already comfortable with Shiny, please feel free 
to skip to the last portion. We build this code in a folder named  Chapter15 . Later, when we upload to our 
Ubuntu server, we upload that entire folder. 

      server.R   
 On the Shiny server side, we call our libraries and then build the systems needed to upload our CSV file, 
provide confirmation for users that their file is uploaded, read that file into R, pass the needed information 
along to our markup document, and then allow our users to download that document as a PDF. It takes just 
the following 55 lines of code: 

    ##Dynamic Reports and the Cloud 

   library(shiny) 
 library(ltm) 
 library(data.table) 
 library(rmarkdown) 
 library(tufte) 
 library(formatR) 
 library(knitr) 
 library(evaluate) 

     function(input, output) { 

       output$contents <- renderTable({ 

         inFile <- input$file1 

         if (is.null(inFile)) 
         return(NULL) 

         read.csv(inFile$datapath, header = input$header, 
                sep = input$sep, quote = input$quote) 
     }) 

       scores <- reactive({ 
       inFile <- input$file1 
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         if (is.null(inFile)) 
         return(NULL) 

         read.csv(inFile$datapath, header = input$header, 
                sep = input$sep, quote = input$quote) 
     }) 

       output$downloadReport <- downloadHandler( 
       filename = function() { 
         paste('quiz-report', sep = '.', 'pdf') 
       }, 

         content = function(file) { 
         src <- normalizePath('report.Rmd') 

           owd <- setwd(tempdir()) 
         on.exit(setwd(owd)) 
         file.copy(src, 'report.Rmd', overwrite = TRUE) 

           knitr::opts_chunk$set(tidy = FALSE, cache.extra = packageVersion('tufte')) 
         options(htmltools.dir.version = FALSE) 

           out <- render('report.Rmd') 
         file.rename(out, file) 
       }    )  } 

    The preceding code started with a call to all our libraries, and then quickly got into Shiny’s 
 function(input, output) {}  server-side wrapper. After that, there are just three main blocks of code. In 
turn, we look at each of these, starting with the  renderTable({})  call. This generates output used in our 
user-interface side. In particular, it is creating a table. It is an interactive function, and when a user uploads 
a file on the user side, Shiny alerts this function that one of its inputs has changed. This triggers a run of the 
code. From the side of entry,  input$datapath  is the location on the server where Shiny stores an uploaded 
file. Provided there is, in fact, a file,  read.csv  can access the file’s data path, and also gets information about 
whether the data has a header, what type of separator was used, and some other information set by the user. 
In fact, much more could be asked of the user that may allow for more customized analytics. Here, we keep 
the example simple yet efficacious. The result of this read creates a table and stores that table inside the 
output variable named  contents . This has a net effect of Shiny now alerting the user-interface side that there 
is possible output. We see where that output goes later in this chapter. 

    output$contents <- renderTable({ 

         inFile <- input$file1 

         if (is.null(inFile)) 
         return(NULL) 

         read.csv(inFile$datapath, header = input$header, 
                sep = input$sep, quote = input$quote) 
     }) 
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    In addition to creating a table so that our user may immediately see whether their file upload is 
successful (and we envision in a live scenario perhaps adding comments to the user interface to allow a user 
to spot a poor upload), we must also read the data in a format that will allow our markdown file to use that 
data. We read the data into a variable named  scores . This is a reactive function that is always on the alert for 
changes in the relevant input variables (in this case, the uploading of a file). 

    scores <- reactive({ 
       inFile <- input$file1 

         if (is.null(inFile)) 
         return(NULL) 

         read.csv(inFile$datapath, header = input$header, 
                sep = input$sep, quote = input$quote) 
     }) 

    The last piece of the server side is the most advanced. This is what controls the download file the user 
can access. The first part of this block controls the name of the report the user downloads. We named ours 
 quiz-report.pdf , which only looks complex. That code gives us future flexibility should we change the 
type or nature of the report; it is easy to change our file type or name. Note that if you use RStudio’s internal 
browser, the report downloads with a different name. Next, we call   normalizePath()    on our markdown file, 
which returns the file path of the current working directory with the filename in the argument appended. 
In particular, it returns this based on the operating system environment in which the code exists. This is 
important for two reasons. First, it allows portability of the code from Windows to Ubuntu (or any operating 
system). Second, we are about to change our working directory. Thus, a direct call to  report.Rmd  will no 
longer work. 

 It is important we change our working directory; we are about to create a new PDF file. Now, on a 
local machine we own and have administrative privileges to use, creating a new file is no trouble at all. 
However, our goal is to upload to the cloud, and we are not assured such privileges on all servers. Thus, we 
change our working directory to the temporary directory of the server. In R,  setwd(tempdir())  does two 
things. It both copies and returns the current working directory and then, after that, it changes the directory 
to the argument. Thus,  owd  is the old working directory. We set an   on.exit()  parameter   so that, once 
 downloadHandler  is done, the working directory returns to what it ought to be, so that our Shiny site does not 
break. 

 We now copy our markdown file from its original location in the old working directory to our temp area, 
thereby allowing it to run and generate the PDF in that temp directory. We also set some environmental 
options for  knitr  (which creates the markdown PDF) that makes it possible to use the  tufte  format (named 
for Edward Tufte,    http://rmarkdown.rstudio.com/tufte_handout_format.html      ). All that remains is to 
 render()  our markdown document and rename our file to what we wanted. 

    output$downloadReport <- downloadHandler( 
   filename = function() { 
     paste('quiz-report', sep = '.', 'pdf') 
   }, 

     content = function(file) { 
     src <- normalizePath('report.Rmd') 

       owd <- setwd(tempdir()) 
     on.exit(setwd(owd)) 
     file.copy(src, 'report.Rmd', overwrite = TRUE) 

http://rmarkdown.rstudio.com/tufte_handout_format.html
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       knitr::opts_chunk$set(tidy = FALSE, cache.extra = packageVersion('tufte')) 
     options(htmltools.dir.version = FALSE) 

       out <- render('report.Rmd') 
     file.rename(out, file) 
   }    ) 

    What we have seen is that the Shiny server side needs to be able to read in the user’s uploaded file with 
the appropriate input information, such as the existence of a header, and then is responsible for starting the 
  Rmarkdown  process  . Admittedly, getting that process to work on any computer involves changing the working 
directory as well as some fiddling with layout and formatting options. We conclude this section by noting 
that a simple PDF would be easier to set up (although we admit to having a preference for the cleaner  tufte  
layout. We turn our attention to the user interface.     

      ui.R   
 The user has a fairly clean view for this very simple Shiny application. In just 40 lines of code (and we could 
have removed several options, really), the user can upload the CSV file, view the rendered table from that 
file, and download the analysis of the file. As before, we first give the entire code and then describe each 
block in turn: 

    #Dynamic Reports and the Cloud User Interface 
 shinyUI( 

     fluidPage( 
     title = 'Score Control Panel', 
     sidebarLayout( 
       sidebarPanel( 
         helpText("Upload a wide CSV file where 
                  each column is 0 or 1 based on whether the student 
                  got that question incorrect or correct."), 

           fileInput('file1', 'Choose file to upload', 
                   accept = c( 
                     'text/csv', 
                     'text/comma-separated-values', 
                     'text/tab-separated-values', 
                     'text/plain', 
                     '.csv', 
                     '.tsv' 
                   ) 
         ), 
         tags$hr(), 
         checkboxInput('header', 'Header', TRUE), 
         radioButtons('sep', 'Separator', 
                      c(Comma=',', 
                        Semicolon=';', 
                        Tab='\t'), 
                      ','), 
         radioButtons('quote', 'Quote', 
                      c(None='', 
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                        'Double Quote'='"', 
                        'Single Quote'="'"), 
                      '"'), 
         tags$hr(), 
         helpText("This is where helpertext goes"), 
         downloadButton('downloadReport') 
       ), 
       mainPanel( 
         tableOutput('contents') 
       )))) 

    As usual for the user interface, we have  fluidPage()  along with   sidebarPanel()    and   mainPanel()   . It is 
inside the sidebar that the main events occur, and thus we look there first. The  fileInput()  function takes 
our input file. We can control the types of files accepted, and we limit ourselves to comma- or tab-separated 
values. We name the upload  file1 , recalling that on the server side we used  input$file1  to read in the file. 

   fileInput('file1', 'Choose file to upload', 
           accept = c( 
             'text/csv', 
             'text/comma-separated-values', 
             'text/tab-separated-values', 
             'text/plain', 
             '.csv', 
             '.tsv' 
           ) 
 ), 

   The only other line of major interest to us is the download area. It is not particularly complex to 
understand: 

   downloadButton('downloadReport') 

   Although there are helper text boxes to explain to the user, and we do recommend in real life setting 
up sample layouts so your users understand the acceptable inputs, we opted to keep this user interface as 
streamlined as possible. Before we turn our attention to the actual report file, we show the Shiny  application   
in Figure  15-2  after uploading our  scores.csv  file (which is available on the Apress website for this book).   
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      report.Rmd   
 This report is about student scores per question for a quiz or other test. Our goal is to take the input shown 
in Figure  15-2  and convert it to actionable, summary information about question and test validity. Before 
reading past this first show of all the code, take a moment to compare and contrast the code to a stand-alone 
markdown file. There are no major differences. In fact, the only way to know that this file rendered from a 
Shiny application is a single line of code that reads  scores <- scores() . 

    --- 
 title: "Example Scoring Report" 
 subtitle: "Item-Level Analysis" 
 date: "`r Sys.Date()`" 
 output: 
   tufte::tufte_handout: default 
 --- 

  Figure 15-2.    Shiny  user interface  , live on a locally hosted  website         
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   # Raw Data 

   Here is a sample of the data uploaded including the first few and last 
 rows, and first few and last columns: 

   ̀``{r echo=FALSE, include = FALSE} 
 scores <- scores() 
 scores <- as.data.table(scores) 
 setnames(scores, 1, "Student") 

   ̀`` 

   ̀``{r, echo = FALSE, results = 'asis'} 
 if (nrow(scores) > 6) { 
  row.index <- c(1:3, (nrow(scores)-2):nrow(scores)) 
 } 

   if (ncol(scores) > 6) { 
  col.index <- c(1:3, (ncol(scores)-2):ncol(scores)) 
 } 

   kable(scores[row.index, col.index, with = FALSE]) 
 ̀`` 

   ̀``{r, include = FALSE} 
 items <- names(scores)[-1] 

   scores[, SUM := rowSums(scores[, items, with = FALSE])] 

   ## now calculate biserial correlations 
 ## first melt data to be long 
 scores.long <- melt(scores, id.vars = c("Student", "SUM")) 

   ## calculate biserial correlation, by item 
 ## order from high to low 
 biserial.results <- scores.long[, .( 
   r = round(biserial.cor(SUM, value, level = 2), 3), 
   Correct = round(mean(value) * 100, 1) 
   ), by = variable][order(r, decreasing = TRUE)] 

   alpha.results <- cronbach.alpha(scores[, !c("Student", "SUM"), with=FALSE]) 

   rasch.results <- rasch(scores[,!c("Student", "SUM"), with=FALSE]) 

   ̀`` 

   The test overall had `r ifelse(alpha.results$alpha > .6, "acceptable 
 reliability", "low reliability")` of 
 alpha = `r format(alpha.results$alpha, FALSE, 2, 2)`.^[Alpha ranges from 0 to 1, with one 
indicating a perfectly reliable test.] 
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   The graph shows the measurement error by level of 
 ability.^[Higher values indicate more measurement error, indicating the test is less 
reliable at very low and very high ability levels (scores).] 

   ̀``{r, echo = FALSE, fig.width = 5, fig.height = 4} 

   ## The Standard Error of Measurement can be plotted by 
 vals <- plot(rasch.results, type = "IIC", items = 0, plot = FALSE) 
 plot(vals[, "z"], 1 / sqrt(vals[, "info"]), 
      type = "l", lwd = 2, xlab = "Ability", ylab = "Standard Error", 
      main = "Standard Error of Measurement") 

   ̀`` 

   # Item Analysis 

   Results for individual items are shown in the following 
 table.^[*r* indicates the point biserial correlation of an item with the total score. 
*Correct* indicates the percent of correct responses to a particular item. The items are 
sorted from highest to lowest correlation.] 

   ̀``{r, echo = FALSE, results = 'asis'} 
 kable(biserial.results) 
 ̀`` 

    We now break down and explain each block of this markdown file. This header is a trifle more advanced 
than the first. Notice that we use inline R code to set the date to the current date. Also, our output is no longer just 
a  pdf_document . Instead, we use the default  tufte_handout  style (which is a PDF along with style information). 
We call that formally from its package (recall that  library(tufte)  was called back on the server side). 

   --- 
 title: "Example Scoring Report" 
 subtitle: "Item Level Analysis" 
 date: "`r Sys.Date()`" 
 output: 
   tufte::tufte_handout: default 
 --- 

   Next up is the read into the markdown file of our score data. We are already familiar with  echo=FALSE , 
which prevents the code from displaying. However, we also set  include=FALSE , which prevents any output 
from the code from displaying. As noted earlier, we use the variable  scores()  from our Shiny server side, 
which is where we  read.csv()  our scores. Recall that there, on the Shiny server, we called that variable 
simply  scores . However, in the  rmarkdown  file, we call it as a function (it does update dynamically, after all). 
Rather than continue calling a variable as a function, we rename it here with a local environment variable of 
the same name,  scores : 

    ̀``{r echo=FALSE, include = FALSE} 
 scores <- scores() 
 scores <- as.data.table(scores) 
 setnames(scores, 1, "Student") 

   ̀`` 
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    Our next code chunk has  results='asis'  to prevent further processing of our  knitr  table (called 
 kable ). Additionally, this code will output the first three and the last two rows and columns into a small 
sample  kable . It will do this only if there are more than six rows or columns. 

    ̀``{r, echo = FALSE, results = 'asis'} 
 if (nrow(scores) > 6) { 
  row.index <- c(1:3, (nrow(scores)-2):nrow(scores)) 
 } 

   if (ncol(scores) > 6) { 
  col.index <- c(1:3, (ncol(scores)-2):ncol(scores)) 
 } 

   kable(scores[row.index, col.index, with = FALSE]) 
 ̀`` 

    From here, we can calculate several measures of quiz or question reliability by using the  ltm  package. 
The point biserial correlation is essential; it uses the more familiar Pearson correlation adjusted for the fact 
that there is binary data for the quiz questions. It allows a comparison between students’ performance on 
a particular question and their performance on the quiz overall (hence our comparison to the  rowSums ). By 
ordering this data from high to low, we may read off the quiz questions that have the lowest score. Those are 
the questions that may not be measuring the main theme of our quiz (admittedly, a vast oversimplification—
psychometrics is a science well beyond the scope of this text). Additionally, we calculate both the Cronbach’s 
alpha and Rasch model, which we use later. Again, we do not seek to include these results directly in our 
dynamic document; we can access them, though, for later use. 

    ̀``{r, include = FALSE} 
 items <- names(scores)[-1] 

   scores[, SUM := rowSums(scores[, items, with = FALSE])] 

   ## now calculate biserial correlations 
 ## first melt data to be long 
 scores.long <- melt(scores, id.vars = c("Student", "SUM")) 

   ## calculate biserial correlation, by item 
 ## order from high to low 
 biserial.results <- scores.long[, .( 
   r = round(biserial.cor(SUM, value, level = 2), 3), 
   Correct = round(mean(value) * 100, 1) 
   ), by = variable][order(r, decreasing = TRUE)] 

   alpha.results <- cronbach.alpha(scores[, !c("Student", "SUM"), with=FALSE]) 

   rasch.results <- rasch(scores[,!c("Student", "SUM"), with=FALSE]) 

   ̀`` 

    Not all code needs be inside the formal code blocks; code may be inline with the text of the document. 
This is helpful because we can set cutoff scores (in this case, semi-arbitrarily set at  0.6 ) and generate 
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different text printed in the final report based on those scores. The  tufte  package allows for side column 
notes designated by  ̂ [] . 

    The test overall had `r ifelse(alpha.results$alpha > .6, "acceptable 
 reliability", "low reliability")` of 
 alpha = `r format(alpha.results$alpha, FALSE, 2, 2)`.^[Alpha ranges from 0 to 1, with one 
indicating a perfectly reliable test.] 

   The graph shows the measurement error by level of 
 ability.^[Higher values indicate more measurement error, indicating the test is less 
reliable at very low and very high ability levels (scores).] 

    Recall from our earlier discussion that figure size may be controlled in the code blocks. Here, we plot 
the Rasch model and see that high-performing and low-performing students are measured less precisely: 

    ̀``{r, echo = FALSE, fig.width = 5, fig.height = 4} 

   ## The Standard Error of Measurement can be plotted by 
 vals <- plot(rasch.results, type = "IIC", items = 0, plot = FALSE) 
 plot(vals[, "z"], 1 / sqrt(vals[, "info"]), 
      type = "l", lwd = 2, xlab = "Ability", ylab = "Standard Error", 
      main = "Standard Error of Measurement") 

   ̀`` 

    The code does end with one last  kable , but we have seen that already and need not belabor the point. 
What we show now in Figure  15-3  is the final result of a download. Notice that all the suppressed code does 
not show up. Also, notice the sample of the data, since we know from Figure  15-2  that there were more than 
six rows or columns. Finally, notice the automatically numbered side comments that provide more detail. 
Those were built using the  ̂ []  code inside the text area of the document. These make it very easy to provide 
detailed, yet not vital, insight.    
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  Figure 15-3.    The PDF that  downloads         
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      Uploading   to the Cloud 
 Our last task is to get our files from a local machine to the cloud instance. Remember, in prior chapters, we 
have not only used  PuTTY  to install Shiny Server on our cloud, but also used  WinSCP  to move files up to our 
cloud. We start  WinSCP , reconnect, and ensure that on the left, local side we are in our Shiny application 
folder, while on our right, cloud server side we are in  /home/ubuntu . We recall the result of that process in 
Figure  15-4 .  

 From here, we access  PuTTY  and run the following code from the command line: 

   sudo cp -R ~/Chapter15 /srv/shiny-server/ 

   Remember, in an earlier chapter we adjusted our instance to allow access to certain ports from certain 
addresses. You may now verify that your application works by typing the following URL into any browser: 

 http://Your.Instance.IP.Address:3838/Chapter15/  

     Summary 
 In this, our last chapter, we built a dynamic document that can rapidly update based on new data. This 
update can even extend to graphics and inline  ifelse  statements, which allow the very narrative to morph 
based on new data. Additionally, we built a Shiny application that allows users with an Internet connection 
to upload a file to feed new data into such a report. Such reports can be download in many formats, although 
we chose PDF. 

 Throughout this text, we provided techniques for advanced data management, including connecting to 
various databases. Those techniques merge well with dynamic documents, and the ability to easily translate 
information in a data warehouse to actionable intelligence. Our final observation is that as data becomes 
more extensive, successful filtration and presentation of useful data become more vital skills in any field. 
Happy coding!     

  Figure 15-4.    WinSCP with PieChart_Time, slider_time, and Upload_hist Shiny applications all uploaded       
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