
Advanced R
Data Programming and the Cloud
—
Matt Wiley
Joshua F. Wiley

www.allitebooks.com

http://www.allitebooks.org

 Advanced R
 Data Programming and the Cloud

 Matt Wiley

 Joshua F. Wiley

www.allitebooks.com

http://www.allitebooks.org

Advanced R: Data Programming and the Cloud

Matt Wiley Joshua F. Wiley
Elkhart Group Ltd. & Victoria College Elkhart Group Ltd. & Victoria College
Columbia City, Indiana Columbia City, Indiana
USA USA

ISBN-13 (pbk): 978-1-4842-2076-4 ISBN-13 (electronic): 978-1-4842-2077-1
DOI 10.1007/978-1-4842-2077-1

Library of Congress Control Number: 2016959581

Copyright © 2016 by Matt Wiley and Joshua F. Wiley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Andrew Moskowitz
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Sharon Wilkey
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.apress.com/source-code/
http://www.allitebooks.org

 To Family.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors .. xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Chapter 1: Programming Basics .. 1

 ■Chapter 2: Programming Utilities .. 17

 ■Chapter 3: Programming Automation .. 29

 ■Chapter 4: Writing Functions ... 43

 ■Chapter 5: Writing Classes and Methods... 61

 ■Chapter 6: Writing a Package .. 83

 ■Chapter 7: Introduction to Data Management Using data.table 115

 ■Chapter 8: Data Munging with data.table .. 141

 ■Chapter 9: Other Tools for Data Management .. 159

 ■Chapter 10: Reading Big Data(bases) .. 181

 ■Chapter 11: Getting a Cloud ... 199

 ■Chapter 12: Cloud Ubuntu for Windows Users ... 211

 ■Chapter 13: Every Cloud has a Shiny Lining .. 225

 ■Chapter 14: Shiny Dashboard Sampler .. 239

 ■Chapter 15: Dynamic Reports and the Cloud ... 253

 ■References ... 271

Index ... 275

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors .. xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Chapter 1: Programming Basics .. 1

Advanced R Software Choices ... 1

Reproducing Results .. 2

Types of Objects ... 2

Base Operators and Functions ... 5

Mathematical Operators and Functions ... 11

References ... 15

 ■Chapter 2: Programming Utilities .. 17

Help and Documentation .. 17

System and Files .. 18

Input ... 23

Output ... 25

References ... 27

 ■Chapter 3: Programming Automation .. 29

Loops .. 29

Flow Control ... 32

*apply Family of Functions ... 35

Final Thoughts .. 42

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

 ■Chapter 4: Writing Functions ... 43

Components of a Function ... 43

Scoping .. 44

Functions for Functions .. 47

Debugging .. 52

Summary .. 59

 ■Chapter 5: Writing Classes and Methods... 61

S3 System .. 61

S3 Classes .. 61

S3 Methods ... 64

S4 System .. 71

S4 Classes .. 72

S4 Class Inheritance ... 76

S4 Methods ... 77

Summary .. 80

 ■Chapter 6: Writing a Package .. 83

Before You Get Started ... 83

Version Control ... 84

R Package Basics ... 89

Starting a Package by Using DevTools ... 90

Adding R Code .. 92

Tests ... 93

Documentation Using roxygen2 ... 98

Functions .. 99

Data .. 102

Classes ... 103

Methods .. 104

Building, Installing, and Distributing an R Package .. 107

Summary .. 112

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

 ■Chapter 7: Introduction to Data Management Using data.table 115

Introduction to data.table ... 115

Selecting and Subsetting Data ... 120

Using the First Formal .. 120

Using the Second Formal ... 122

Using the Second and Third Formals .. 123

Variable Renaming and Ordering.. 125

Computing on Data and Creating Variables .. 127

Merging and Reshaping Data ... 130

Merging Data .. 130

Reshaping Data .. 136

Summary .. 140

 ■Chapter 8: Data Munging with data.table .. 141

Data Munging / Cleaning .. 142

Recoding Data .. 143

Recoding Numeric Values ... 148

Creating New Variables .. 150

Fuzzy Matching .. 152

Summary .. 157

 ■Chapter 9: Other Tools for Data Management .. 159

Sorting .. 160

Selecting and Subsetting ... 162

Variable Renaming and Ordering.. 168

Computing on Data and Creating Variables .. 170

Merging and Reshaping Data ... 173

Summary .. 178

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

 ■Chapter 10: Reading Big Data(bases) .. 181

SQLite ... 182

Installing SQLite on Windows ... 182

SQLite and R ... 183

PostgreSQL ... 186

Installing PostgreSQL on Windows ... 186

PostgreSQL and R ... 187

MongoDB .. 190

Installing MongoDB on Windows .. 190

MongoDB and R .. 192

Summary .. 196

 ■Chapter 11: Getting a Cloud ... 199

Disclaimers .. 199

Starting Amazon Web Services .. 200

Accessing Your Instance’s Command Line ... 205

Uploading Files to Your Instance .. 207

Final Thoughts .. 209

 ■Chapter 12: Cloud Ubuntu for Windows Users ... 211

Common Commands .. 211

Superuser and Security .. 213

Installing and Using R ... 215

Installing and Using RStudio Server ... 218

Installing Microsoft R ... 222

Installing Java .. 224

Installing Shiny on Your Cloud .. 224

Final Thoughts .. 224

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

xi

 ■Chapter 13: Every Cloud has a Shiny Lining .. 225

The Basics of Shiny .. 225

Shiny in Motion .. 232

Uploading a User File into Shiny .. 234

Hosting Shiny in the Cloud .. 236

Final Thoughts .. 238

 ■Chapter 14: Shiny Dashboard Sampler .. 239

A Dashboard’s Bones ... 239

Dashboard Header .. 241

Dashboard Sidebar ... 241

Dashboard Body ... 243

Dashboard in the Cloud .. 245

Complete Sampler Code ... 247

References ... 251

 ■Chapter 15: Dynamic Reports and the Cloud ... 253

Needed Software .. 253

Local Machine .. 253

Cloud Instance .. 254

Dynamic Documents .. 254

Dynamic Documents and Shiny ... 258

server.R ... 258

ui.R ... 261

report.Rmd .. 263

Uploading to the Cloud ... 269

Summary .. 269

 ■References ... 271

Index ... 275

www.allitebooks.com

http://www.allitebooks.org

xiii

 About the Authors

 Matt Wiley is a tenured, associate professor of mathematics with awards
in both mathematics education and honor student engagement. He
earned degrees in pure mathematics, computer science, and business
administration through the University of California and Texas A&M
systems. He serves as director for Victoria College’s quality enhancement
plan and managing partner at Elkhart Group Limited, a statistical
consultancy. With programming experience in R, C++, Ruby, Fortran, and
JavaScript, he has always found ways to meld his passion for writing with
his joy of logical problem solving and data science. From the boardroom
to the classroom, Matt enjoys finding dynamic ways to partner with
interdisciplinary and diverse teams to make complex ideas and projects
understandable and solvable.

 Joshua F. Wiley is a lecturer in the Monash Institute for Cognitive and
Clinical Neurosciences and School of Psychological Sciences at Monash
University and a senior partner at Elkhart Group Limited, a statistical
consultancy. He earned his PhD from the University of California,
Los Angeles, and his research focuses on using advanced quantitative
methods to understand the complex interplays of psychological, social,
and physiological processes in relation to psychological and physical
health. In statistics and data science, Joshua focuses on biostatistics and
is interested in reproducible research and graphical displays of data and
statistical models. Through consulting at Elkhart Group Limited and
former work at the UCLA Statistical Consulting Group, he has supported
a wide array of clients ranging from graduate students, to experienced
researchers, to biotechnology companies. He also develops or co-develops
a number of R packages including varian , a package to conduct Bayesian
scale-location structural equation models, and MplusAutomation ,
a popular package that links R to the commercial Mplus software.

xv

 About the Technical Reviewer

 Andrew Moskowitz is a doctoral candidate in quantitative psychology at
the University of California, Los Angeles, and a self-employed statistical
consultant. His quantitative research focuses mainly on hypothesis testing
and effect sizes in mixed-effects models. While at UCLA, Andrew has
collaborated with a number of faculty, students, and enterprises to help
them derive meaning from data across an array of fields ranging from
psychological services and health care delivery to marketing.

xvii

 Acknowledgments

 We would like to profusely thank our technical reviewer, Andrew Moskowitz. Through direct comments in
chapters, e-mails about proper explanations, and Skype calls, Andrew gave us a lot of thoughtful feedback.
If our readers feel that any portion explains a technique well, that is thanks to his efforts; the errors of course
remain ours alone.

 Mark Powers has been extraordinarily kind to us, and this book would not be here without his advocacy
and support. Steve Anglin also deserves thanks for working with us to start this project. Truly, if you look at
the very front of this book, there is an entire team at Apress who deserve rich and warm thanks.

xix

 Introduction

 R has become one of the most popular programming languages in an era where data science is increasingly
prevalent. As R and data science have become more mainstream, there is a growing number of R users
without dedicated training in statistical computing or data science, and thus a growing demand for books
and resources to bridge the gap between applied users who may have only an introductory background
in statistics or programming and advanced and sophisticated data analytics. This book focuses on how to
use advanced programming in R to speed up everyday tasks in data analysis and data science. This book is
also unique in its coverage of how to set up R in the cloud and generate dynamic reports for analyses that
are regularly repeated, such as monthly analysis of company sales or quarterly analysis of student grades,
enrollment, and dropout numbers in schools with projections for future enrollment rates.

 Chapters 1 through 6 focus on more advanced programming techniques than the Apress offering of
 Beginning R .

 Chapters 7 – 10 develop powerful data management measures including the exciting and
(comparatively) new data.table .

 From here, we delve into the modern (and slightly edgy) world of cloud computing with R. From the
ground up, we walk you through getting R started on an Amazon cloud in chapters 11 – 14 .

 Finally, Chapter 15 provides you with solid techniques in dynamic documents and reports.

http://dx.doi.org/10.1007/978-1-4842-2077-1_1
http://dx.doi.org/10.1007/978-1-4842-2077-1_6
http://dx.doi.org/10.1007/978-1-4842-2077-1_7
http://dx.doi.org/10.1007/978-1-4842-2077-1_10
http://dx.doi.org/10.1007/978-1-4842-2077-1_11
http://dx.doi.org/10.1007/978-1-4842-2077-1_14
http://dx.doi.org/10.1007/978-1-4842-2077-1_15

1© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_1

 CHAPTER 1

 Programming Basics

 As with most languages, more advanced usage requires delving into the underlying structure. This chapter
covers such programming basics, and this first section of the book (through Chapter 6), develops some
advanced programming techniques. We start with R’s basic building blocks, which create our foundation for
programming, data management, and cloud analytics.

 Before we dig too deeply into R, some general principles to follow may well be in order. First,
experimentation is good. It is much more powerful to learn hands-on than it is simply to read. Download the
source files that come with this text, and try new things!

 Second, it can help quite a bit to become familiar with the ? function. Simply type ? immediately
followed by text in your R console to call up help of some kind. We cover more on functions later, but this is
too useful to ignore until that time.

 Finally, just before we dive into the real reason you bought this book, a word of caution: this is an
applied text. There may be topics and areas of R we skip or ignore. While we, the authors, like to imagine this
is due to careful pruning of ideas, it may well be due to ignorance. There are likely other ways to perform
these tasks or additional good topics to learn. Our goal is to get you up and running as quickly as possible
toward some useful skills. Good luck!

 Advanced R Software Choices
 This book is written for advanced users of the R language. We should note that for most of our examples,
we continue using RStudio (www.rstudio.com/products/rstudio/download/) as in Beginning R: An
Introduction to Statistical Programming (Apress, 2015). We also assume you are using a Microsoft Windows
(www.microsoft.com) operating system, except for the later chapters, where we delve into using R in the
cloud via Ubuntu (www.ubuntu.com). What is different is the underlying R distribution.

 We are going to use Microsoft R Open (MRO) , which is fully aligned with the current version(s) of R.
This provides performance enhancements that happen behind the scenes. We also use Intel Math Kernel
Library (Intel MKL) , which is available for download at the same site as MRO (https://mran.microsoft.
com/download/) . In fact, as this book goes to print, these two software programs combined in their latest
release. It would be wonderful if that trend continues. These downloads are very straightforward, and we
anticipate that our readers, familiar with using R and RStudio already, find this a seamless installation. On
Windows (and Linux-based operating systems), the MKL replaces the default linear algebra system with
an optimized system and allows implicit parallel processing for linear algebra operations, such as matrix
multiplication and decomposition that are used in many statistical algorithms.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2077-1) contains
supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2077-1_6
http://www.rstudio.com/products/rstudio/download/
http://www.microsoft.com/
http://www.ubuntu.com/
https://mran.microsoft.com/download/
https://mran.microsoft.com/download/
http://dx.doi.org/10.1007/978-1-4842-2077-1

CHAPTER 1 ■ PROGRAMMING BASICS

2

 In case it is not already, you also need Java installed. We used Java Version 8 Update 91 for 64 bit in this
book. Java may be downloaded at www.oracle.com/technetwork/java/javase/ ; specifically, get the Java
Development Kit (JDK).

 While these choices may have minor consequences, our goal is to provide universal guidance that
remains true enough regardless of environmental specifics. Nevertheless, some packages and prebuilt
functions on occasion have quirks. We turn our attention to ensuring that you can readily reproduce our
results.

 Reproducing Results
 One useful feature of R is the abundance of packages written by experts worldwide. This is also potentially
the Achilles’ heel of using R: from the version of R itself to the version of particular packages, lots of code
specifics are in flux. Your code has the potential to not work from day to day, let alone our code written
months before this book was published. To solve this, we use the Revolution Analytics checkpoint package
(Microsoft Corporation, 2016), which uses server-stored snapshots from the Comprehensive R Archive
Network (CRAN) to “lock” our code to a specific version and date. To learn the technical specifics of how
this is done, visit the link in the “References” section at the end of this chapter. We’ll get you started with the
basics.

 For this book, we used R version 3.3.1, Bug in Your Hair, along with Windows 10 Professional x64. As this
version moves from the current version to historical, CRAN maintains an archive of past releases. Thus, the
 checkpoint package has ready access to previous versions of R, and indeed all packages. What you need to
do is add the following code to the top of your Chapter 1 R file in your project directory:

 ## uncomment to install the checkpoint package
 ## install.packages("checkpoint")
 library(checkpoint)
 checkpoint("2016-09-04", R.version = "3.3.1")
 library(data.table)

 We place all library calls at the start of each chapter’s project file, after the call to the checkpoint library.
By including the date of September 4, 2016, we ensure that the latest version of all packages up to that cutoff
is installed and run by checkpoint . The first time it is run, after asking permission, checkpoint creates a
folder to host the needed versions of the packages used. Thus, as long as you start each chapter’s code file
with the correct library calls, you use the same versions of the packages we use.

 Types of Objects
 First of all, we need things to build our language, and in R, these are called objects . We start with five very
common types of objects.

 Logical objects take on just two values: TRUE or FALSE . Computers are binary machines, and data often
may be recorded and modeled in an all-or-nothing world. These logical values can be helpful, where TRUE
has a value of 1 , and FALSE has a value of 0 :

 TRUE
 [1] TRUE
 FALSE
 [1] FALSE

http://www.oracle.com/technetwork/java/javase/
http://dx.doi.org/10.1007/978-1-4842-2077-1_1

CHAPTER 1 ■ PROGRAMMING BASICS

3

 As you may remember from the quickly muttered comments of your algebra professor, there are many
types, or flavors, of numbers. Whole numbers, which include zero as well as negative values, are called
 integers . In set notation, {…,-2, -1, 0, 1, 2, …}, these numbers are helpful for headcounts or other indexes
(as well as other things, naturally). In R, integers have the capital L suffix. If decimal numbers are needed,
then double numeric objects are in order. These are the numbers suited for even-ratio data types. Complex
numbers have useful properties as well and are understood precisely as you might expect, with an i suffix on
the imaginary portion. R is quite friendly in using all of these numbers, and you simply type in the desired
numbers (remember to add the L or i suffix as needed):

 42L
 [1] 42
 1.5
 [1] 1.5
 2+3i
 [1] 2+3i

 Nominal-level data may be stored via the character class and is designated with quotation marks:

 "a" ## character
 [1] "a"

 Of course, numerical data may have missing values. These missing values are of the type that the rest of
the data in that set would be (we discuss data storage shortly). Nevertheless, it can be helpful to know how to
hand-code logical, integer, double, complex, or character missing values:

 NA
 [1] NA
 NA_integer_
 [1] NA
 NA_real_
 [1] NA
 NA_character_
 [1] NA
 NA_complex_
 [1] NA

 Factors are a special kind of object, not so useful for general programming, but used a fair amount
in statistics. A factor variable indicates that a variable should be treated discretely. Factors are stored as
integers, with labels to indicate the original value:

 factor(1:3)
 [1] 1 2 3
 Levels: 1 2 3
 factor(c("a", "b", "c"))
 [1] a b c
 Levels: a b c
 factor(letters[1:3])
 [1] a b c
 Levels: a b c

CHAPTER 1 ■ PROGRAMMING BASICS

4

 We turn now to data structures, which can store objects of the types we have discussed (and of
course more). A vector is a relatively simple data storage object. A simple way to create a vector is with the
concatenate function c() :

 c(1, 2, 3)
 [1] 1 2 3

 Just as in mathematics, a scalar is a vector of just length 1. Toward the opposite end of the continuum, a
 matrix is a vector with dimensions for both rows and columns. Notice the way the matrix is populated with
the numbers 1 through 6, counting down each column:

 c(1)
 [1] 1

 matrix(c(1:6), nrow = 3, ncol = 2)
 [,1] [,2]
 [1,] 1 4
 [2,] 2 5
 [3,] 3 6

 All vectors, be they scalar, vector, or matrix, can have only one data type (for example, integer, logical,
or complex). If more than one type of data is needed, it may make sense to store the data in a list. A list is
a vector of objects, in which each element of the list may be a different type. In the following example, we
build a list that has character, vector, and matrix elements:

 list(
 + c("a"),
 + c(1, 2, 3),
 + matrix(c(1:6), nrow = 3, ncol = 2)
 +)
 [[1]]
 [1] "a"

 [[2]]
 [1] 1 2 3

 [[3]]
 [,1] [,2]
 [1,] 1 4
 [2,] 2 5
 [3,] 3 6

 A particular type of list is the data frame , in which each element of the list is identical in length
(although not necessarily in object type). Take a look at the following instructive examples with output:

 data.frame(1:3, 4:6)
 X1.3 X4.6
 1 1 4
 2 2 5
 3 3 6

CHAPTER 1 ■ PROGRAMMING BASICS

5

 ## using non equal length objects causes problems
 data.frame(1:3, 4:5)
 Error in data.frame(1:3, 4:5) :
 arguments imply differing number of rows: 3, 2

 data.frame(1:3, letters[1:3])
 X1.3 letters.1.3.
 1 1 a
 2 2 b
 3 3 c

 Because of their superior speed, we use data table objects in R from the data.table package. Data
tables are similar to data frames, but are designed to be more memory efficient and faster. Even though we
recommend data tables, we show some examples with data frames as well because when you work with R,
many other people’s code includes data frames, and indeed data tables inherit many methods from data
frames.

 library(data.table)
 data.table(1:3, 4:6)
 V1 V2
 1: 1 4
 2: 2 5
 3: 3 6

 Having explored several types of objects , we turn our attention to ways of manipulating those objects
with operators and functions.

 Base Operators and Functions
 Objects are not enough for a language; some things require actions. Operators and functions are the verbs
of the programming world. We start with assignment, which can be done in two ways. Much like written
languages, more-elegant turns of phrase can be more helpful than simpler prose. So although = and <- are
both assignment operators and do the same thing, because = is used within functions to set arguments,
we recommend for clarity’s sake to use <- for general assignment. We nevertheless demonstrate both
assignment techniques. Assignments allow objects to be given sensible names; this can significantly
enhance code readability (for your future self as well as for other users).

 In addition to assigning names to variables, you can check specifics by using functions. Functions in R
take the general format of function name, followed by parentheses, with input inside the parentheses, and
then R provides output. Here are examples:

 x <- 5
 y = 3
 x
 [1] 5
 y
 [1] 3

 is.integer(x)
 [1] FALSE

CHAPTER 1 ■ PROGRAMMING BASICS

6

 is.double(y)
 [1] TRUE

 is.vector(x)
 [1] TRUE

 Once an object is assigned , you can access specific object elements by using brackets. Most computer
languages start their indexing at either 0 or 1 . R starts indexing at 1 . Also, note that you can readily change
old assignments with little trouble and no warning; it is wise to watch names cautiously and comment code
carefully.

 x <- c("a", "b", "c")
 x[1]
 [1] "a"

 is.vector(x)
 [1] TRUE

 is.vector(x[1])
 [1] TRUE

 is.character(x[1])
 [1] TRUE

 While a vector may take only a single index, more-complex structures require more indices. For the
matrix you met earlier, the first index is the row, and the second is for column position. Notice that after
building a matrix and assigning it, there are many ways to access various combinations of elements. This
process of accessing just some of the elements is sometimes called subsetting :

 x2 <- matrix(c(1:6), nrow = 3, ncol = 2)
 x2
 [,1] [,2]
 [1,] 1 4
 [2,] 2 5
 [3,] 3 6

 x2[1, 2] ## row 1, column 2
 [1] 4

 x2[1,] ## all row 1
 [1] 1 4

 x2[, 1] ## all column 1
 [1] 1 2 3

 x2[c(1, 2),] ## rows 1 and 2
 [,1] [,2]
 [1,] 1 4
 [2,] 2 5

CHAPTER 1 ■ PROGRAMMING BASICS

7

 x2[c(1, 3),] ## rows 1 and 3
 [,1] [,2]
 [1,] 1 4
 [2,] 3 6

 x[-2] ## drop element two
 [1] "a" "c"

 x2[, -2] ## drop column two
 [1] 1 2 3

 x2[-1,] ## drop row 1
 [,1] [,2]
 [1,] 2 5
 [2,] 3 6

 is.vector(x2)
 [1] FALSE

 is.matrix(x2)
 [1] TRUE

 Accessing and subsetting lists is perhaps a trifle more complex, yet all the more essential to learn and
master for later techniques. A single index in a single bracket returns the entire element at that spot (recall
that for a list, each element may be a vector or just a single object). Using double brackets returns the object
within that element of the list—nothing more.

 Thus, the following code is, in fact, a vector with the element a inside. Again, using the data-type-checking
functions can be helpful in learning how to interpret various pieces of code.

 y <- list(c("a"), c(1:3))
 y[1]
 [[1]]
 [1] "a"

 is.vector(y[1])
 [1] TRUE

 is.list(y[1])
 [1] TRUE

 is.character(y[1])
 [1] FALSE

 Contrast that with this code, which is simply the element a:

 y[[1]]
 [1] "a"

 is.vector(y[[1]])
 [1] TRUE

CHAPTER 1 ■ PROGRAMMING BASICS

8

 is.list(y[[1]])
 [1] FALSE

 is.character(y[[1]])
 [1] TRUE

 You can, in fact, chain brackets together, so the second element of the list (a vector with the numbers 1
through 3) can be accessed, and then, within that vector, the third element can be accessed :

 y[[2]][3]
 [1] 3

 Brackets almost always work, depending on the type of object, but there may be additional ways to
access components. Named data frames and lists can use the $ operator. Notice in the following code how
the bracket or dollar sign ends up being equivalent:

 x3 <- data.frame(A = 1:3, B = 4:6)
 y2 <- list(C = c("a"), D = c(1, 2, 3))

 x3$A
 [1] 1 2 3
 y2$C
 [1] "a"
 x3[["A"]]
 [1] 1 2 3
 y2[["C"]]
 [1] "a"

 Notice that although both data frames and lists are both lists, neither is a matrix:

 is.list(x3)
 [1] TRUE

 is.list(y2)
 [1] TRUE

 is.matrix(x3)
 [1] FALSE

 is.matrix(y2)
 [1] FALSE

 Moreover, despite not being matrices, because of their special nature (that is, all elements have equal
length), data frames and data tables can be indexed similarly to matrices :

 x3[1, 1]
 [1] 1

 x3[1,]
 A B
 1 1 4

CHAPTER 1 ■ PROGRAMMING BASICS

9

 x3[, 1]
 [1] 1 2 3

 Any named object can be indexed by using the names rather than the positional numbers, provided
those names have been set:

 x3[1, "A"]
 [1] 1

 x3[, "A"]
 [1] 1 2 3

 This applies to both column and row names, and these names can be established after building the
matrix:

 rownames(x3) <- c("first", "second", "third")

 x3["second", "B"]
 [1] 5

 Data tables use a slightly different approach. Selecting rows works almost identically but selecting
columns does not require quotes. Additionally, you can select multiples by name without quotes by
using the .() operator. Should you need to use quotes, the data table can be accessed by using the option
 with = FALSE such as follows:

 x4 <- data.table(A = 1:3, B = 4:6)

 x4[1,]
 A B
 1: 1 4

 x4[, A]
 [1] 1 2 3
 x4[1, A]
 [1] 1

 x4[1:2, .(A, B)]
 A B
 1: 1 4
 2: 2 5

 x4[1, "A", with = FALSE]
 A
 1: 1

 Technically, the bracket operators are functions. Although they’re not used as functions, they can be.
Most functions are named, but the brackets are a particular case and require using single quotes in the
regular function format, as in the following example:

CHAPTER 1 ■ PROGRAMMING BASICS

10

 ̀[`(x, 1)
 [1] "a"

 ̀[`(x3, "second", "A")
 [1] 2

 Although we have been using the is.datatype() function to better illustrate what an object is, you can
do more. Specifically, you can check whether a value is missing an element by using the is.na() function:

 is.na(NA) ## works
 [1] TRUE

 Of course, the preceding code snippet usually has a vector or matrix element argument whose
populated status is up for debate. Our last (for now) exploratory function is the inherits() function. It is
helpful when no is.class() function exists, which can occur when specific classes outside the core ones
you have seen presented so far are developed:

 inherits(x3, "data.frame")
 [1] TRUE
 inherits(x2, "matrix")
 [1] TRUE

 You can also force lower types into higher types. This coercion can be helpful but may have unintended
consequences. It can be particularly risky if you have a more advanced data object being coerced to a lesser
type (pay close attention to the attempt to coerce an integer).

 as.integer(3.8)
 [1] 3

 as.character(3)
 [1] "3"

 as.numeric(3)
 [1] 3

 as.complex(3)
 [1] 3+0i

 as.factor(3)
 [1] 3
 Levels: 3

 as.matrix(3)
 [,1]
 [1,] 3

 as.data.frame(3)
 3
 1 3

CHAPTER 1 ■ PROGRAMMING BASICS

11

 as.list(3)
 [[1]]
 [1] 3

 > as.logical("a")
 [1] NA

 as.logical(3)
 [1] TRUE

 as.numeric("a")
 [1] NA
 Warning message:
 NAs introduced by coercion

 Coercion can be helpful. All the same , it must be used cautiously. Before you move on from this section,
if any of this is new, be sure to experiment with different inputs than the ones we tried in the preceding
example! Experimenting never hurts, and it can be a powerful way to learn.

 Let’s turn our attention now to mathematical and logical operators and functions.

 Mathematical Operators and Functions
 Several operators can be used for comparison. These will be helpful later, once we get into loops and
building our own functions. Equally useful are symbolic logic forms . We start with some basic comparisons
and admit to a strange predilection for the number 4:

 4 > 4
 [1] FALSE
 4 >= 4
 [1] TRUE
 4 < 4
 [1] FALSE
 4 <= 4
 [1] TRUE
 4 == 4
 [1] TRUE
 4 != 4
 [1] FALSE

 It is sensible now to mention that although the preceding code may be helpful, often numbers differ
from one another only slightly—particularly in the programming environment, which relies on the computer
representation of floating-point (irrational) numbers. Therefore, we often check that things are close within
a tolerance:

 all.equal(1, 1.00000002, tolerance = .00001)
 [1] TRUE

CHAPTER 1 ■ PROGRAMMING BASICS

12

 In symbolic logic, AND as well as OR are useful comparisons between two objects. In R, we use & for
AND, as well as | for OR. Complex logic tests can be constructed from these simple structures:

 TRUE | FALSE
 [1] TRUE
 FALSE | TRUE
 [1] TRUE
 TRUE & TRUE
 [1] TRUE
 TRUE & FALSE
 [1] FALSE

 All of the logic tests mentioned so far apply just as well to vectors as they apply to single objects:

 1:3 >= 3:1
 [1] FALSE TRUE TRUE

 c(TRUE, TRUE) | c(TRUE, FALSE)
 [1] TRUE TRUE

 c(TRUE, TRUE) & c(TRUE, FALSE)
 [1] TRUE FALSE

 If you want only a single response, such as for if-else flow control , you can use && or || , which stop
evaluating as soon as they have determined the final result. Work through the following code and output
carefully:

 W
 Error: object 'W' not found

 TRUE | W
 Error: object 'W' not found

 TRUE || W
 [1] TRUE

 W || TRUE
 Error: object 'W' not found

 FALSE & W

 Error: object 'W' not found

 FALSE && W
 [1] FALSE

 Note that the double operators are not, in fact, vectorized. They simply use the first element of any
vectors:

 c(TRUE, TRUE) || c(TRUE, FALSE)
 [1] TRUE

CHAPTER 1 ■ PROGRAMMING BASICS

13

 c(TRUE, TRUE) && c(TRUE, FALSE)
 [1] TRUE

 The any() and all() functions are helpful as well in these contexts for similar reasons:

 any(c(TRUE, FALSE, FALSE))
 [1] TRUE

 all(c(TRUE, FALSE, TRUE))
 [1] FALSE

 all(c(TRUE, TRUE, TRUE))
 [1] TRUE

 We turn our attention now to mathematical, rather than logical, operators. R is powerful mathematically
and can perform most mathematical calculations. So although we introduce some functions, we are leaving
many out of the mix. For more details, ?Arithmetic can be your friend. It is (as always) important to be
aware of the way computers perform mathematical calculations . Being able to code bespoke solutions
directly is powerful, yet with the freedom to customize comes a corresponding amount of responsibility.
Take a careful look at the following mathematical operations (which can behave differently than expected
because of implementation choices):

 3 + 3
 [1] 6
 3 - 3
 [1] 0
 3 * 3
 [1] 9
 3 / 3
 [1] 1
 (-27) ^ (1/3)
 [1] NaN
 4 %/% .7
 [1] 5
 4 %% .3
 [1] 0.1

 R also has some common functions that have straightforward names:

 sqrt(3)
 [1] 1.732051
 abs(-3)
 [1] 3
 exp(1)
 [1] 2.718282
 log(2.71)
 [1] 0.9969486

 Trigonometric functions also have their part, and ?Trig can bring up a nice list of these. We show
cosine’s function call cos() for brevity. Note the slight inaccuracy again on the cosine function’s output:

CHAPTER 1 ■ PROGRAMMING BASICS

14

 cos(3.1415)
 [1] -1

 We close this section and this chapter with a brief selection of matrix operations. Scalar operations use
the basic arithmetic operators. To perform matrix multiplication, we use %*% :

 x2
 [,1] [,2]
 [1,] 1 4
 [2,] 2 5
 [3,] 3 6

 x2 * 3
 [,1] [,2]
 [1,] 3 12
 [2,] 6 15
 [3,] 9 18

 x2 + 3
 [,1] [,2]
 [1,] 4 7
 [2,] 5 8
 [3,] 6 9

 x2 %*% matrix(c(1, 1), 2)
 [,1]
 [1,] 5
 [2,] 7
 [3,] 9

 Matrices have a few other fairly common operations that are helpful in linear algebra. We suppose
you have some idea about the mathematics behind some of the applications in modeling we cover, and we
discuss an appropriate amount of mathematics as needed in the following chapters. Still, this seems a good
place to show how the transpose, cross product, and transpose cross product might be coded. We show both
the raw code to make the cross product and transpose cross product occur, as well as easier function calls
that may be used. This is a relatively common occurrence in R, incidentally. Through packages, quite a few
techniques are implemented in fairly clear function calls. Here are the examples:

 t(x2)
 [,1] [,2] [,3]
 [1,] 1 2 3
 [2,] 4 5 6

 t(x2) %*% x2
 [,1] [,2]
 [1,] 14 32
 [2,] 32 77

 crossprod(x2)
 [,1] [,2]
 [1,] 14 32
 [2,] 32 77

CHAPTER 1 ■ PROGRAMMING BASICS

15

 x2 %*% t(x2)
 [,1] [,2] [,3]
 [1,] 17 22 27
 [2,] 22 29 36
 [3,] 27 36 45

 tcrossprod(x2)
 [,1] [,2] [,3]
 [1,] 17 22 27
 [2,] 22 29 36
 [3,] 27 36 45

 We end this chapter with some final thoughts . First, as you have just seen, it is common in R for
someone else to have done the heavy lifting by making a function that simply creates the desired outcome.
Of course, these friendly programmers’ work is subjected to only the underlying constraints of R itself as
well as the ability to acquire a free GitHub account. Thus, it can be helpful to understand at least some of the
base commands and operators that make R work. Second, R runs on computers, and for those who have not
yet met computer logic, there are differences due to the hardware structure and (and consequent software
implementation choices).

 Next, let’s focus on understanding implementation nuances as well as quickly getting data in and out of R.

 References
• https://mran.microsoft.com/open/

• https://cran.r-project.org/web/packages/checkpoint/vignettes/checkpoint.html

https://mran.microsoft.com/open/
https://cran.r-project.org/web/packages/checkpoint/vignettes/checkpoint.html

17© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_2

 CHAPTER 2

 Programming Utilities

 Using R to perform more-advanced operations requires creating something that may never have existed.
To create new things takes a nuanced understanding of precisely how prebuilt functions work. This chapter
discusses how and where to find help and documentation for existing capabilities, how R operates with your
computer system and files, and the ins and outs of data input and output. As before, please feel free to pick
and choose which parts of this chapter you need. We start with the help files and documentation.

 ■ Note Throughout this book, the code in bold is meant to be run. The nonbolded code represents either
output results of command lines or code that is intended to inform without necessarily being run.

 Help and Documentation
 The R community has many resources to help users. From prebuilt functions to whole collections of
themed functions in packages, there are many types of support. Both ? and help are useful ways to access
information about an object or function. For more common objects, R has not only extensive documentation
about specifics such as input (for functions), but also detailed notes on what those inputs are expected to
receive. Furthermore, often detailed examples showcase just what can be done. Figure 2-1 shows the output
of using these two functions with the addition operator :

 ?'+'
 help("+")

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ PROGRAMMING UTILITIES

18

 Notice at the bottom of Figure 2-1 that the documentation for arithmetic operators is even kind
enough to provide specific information about the fact that there can be differences in output depending on
the platform. It is important to note that not all functions have this fully complete documentation readily
available, but for many of the most common functions and packages, an extraordinary level of information is
available. Writing code that reproduces the desired results, independent of platform and environment, is not
always possible. Later, when we discuss debugging, it is this sort of advanced knowledge of various functions
that can be helpful to know.

 Of course, this kind of help is more useful when you already know the object or function you want
to use and simply need more details. When seeking the ability to do something entirely new, referring to
the manuals can help. One such site is https://cran.r-project.org/manuals.html maintained by the R
 Development Core Team .

 We turn our attention now to the ways that R can access system files.

 System and Files
 In a Windows environment, R may be a very effective way to automate file manipulation. Most IT
departments are willing to install R, and it has the same file permission privileges you do. From creating files
to moving them about and checking dates, R has a variety of functions that are handy for getting information
from the system and automating file management . Our observation is that Unix-based systems might have
more-elegant ways of handling such scenarios from the command line.

 Figure 2-1. Help documentation for arithmetic operators

https://cran.r-project.org/manuals.html

CHAPTER 2 ■ PROGRAMMING UTILITIES

19

 One helpful feature of R accessing the system is that it is possible to discover the current date, time,
and time zone of the system on which R is being run. This can help detect new files or can be used to put
timestamps into files (more on that later). It should be noted that these are, of course, dependent on the
system environment being accurate, so caution may be in order before using these in high-stakes projects .

 Sys.Date()
 [1] "2016-02-13"

 Sys.time()
 [1] "2016-02-13 16:58:36 CST"

 Sys.timezone()
 [1] "America/Chicago"

 The help documentation for these commands makes useful suggestions to increase the accuracy of the
output, up to potentially millisecond or microsecond precision.

 Let’s turn our attention now to a variety file management functions. These all share the format file.*
and have as their first argument a character vector that should be either a filename for the current working
directory or a path and filename. We start with a text file ch02_text.txt in our working directory.

 The function file.exists() takes only a character string input, which is a filename or a path and
filename. If it is simply a filename, it checks only the working directory. This working directory is verified
by the getwd() function. If a check is desired for a file in another directory, this may be done by giving a full
file path inside the string. This function returns a logical value of either TRUE or FALSE . Depending on user
permissions for a particular file, you may not get the expected result for a particular file.

 getwd()
 [1] "C:/Books/Apress_AdvancedR/RFiles"
 file.exists("ch02_text.txt")
 [1] TRUE
 file.exists("NOSUCHFILE.FAKE")
 [1] FALSE
 file.exists("C:/Books/Apress_AdvancedR/Apress_AdvancedR_Proposal.docx")
 [1] TRUE

 While the preceding function checks for existence, another function tests for whether we have access
to a file. The function file.access takes similar input, except it also takes a second argument. To test
for existence, the second argument is 0 . To test for executable permissions , use 1 ; and to test for writing
permission, use 2 . If you want to test your ability to read a file, use 4 . This function returns an integer vector
of 0 to indicate that permissions are given, and -1 to indicate permissions are not given. Notice that the
default for the function is to test for simple existence. Examples of file.access are shown here:

 file.access("ch02_text.txt")
 ch02_text.txt
 0
 file.access("ch02_text.txt", mode = 0)
 ch02_text.txt
 0
 file.access("ch02_text.txt", mode = 1)
 ch02_text.txt
 -1

CHAPTER 2 ■ PROGRAMMING UTILITIES

20

 file.access("ch02_text.txt", mode = 2)
 ch02_text.txt
 0
 file.access("ch02_text.txt", mode = 4)
 ch02_text.txt
 0

 We next turn our attention to more detailed information about when a file was modified, changed,
or accessed with the file.info function . This function takes in character strings as well. The output gives
information about the file size; whether it is a directory; a file permissions integer in read, write, and execute
order; the last modified time; the last change time; the last accessed time; and finally, whether the file is
executable:

 file.info("ch02_text.txt", "chapter01.R")
 size isdir mode mtime ctime atime exe
 ch02_text.txt 31 FALSE 666 2016-02-13 17:00:16 2016-02-13 16:59:57 2016-02-13 16:59:57 no
 chapter01.R 7983 FALSE 666 2016-01-01 02:53:17 2016-01-05 12:26:39 2016-01-01 02:53:17 no

 Notice that you can edit the modified time through the sys.setFileTime function . This can be helpful on
occasion, although the precise accuracy and precision are dependent on the environment. Here’s an example:

 newTime<-Sys.time()-20
 newTime
 [1] "2016-02-13 20:25:53 CST"

 file.info("ch02_text.txt")
 size isdir mode mtime ctime atime exe
 ch02_text.txt 31 FALSE 666 2016-02-13 17:00:16 2016-02-13 16:59:57 2016-02-13 16:59:57 no

 Sys.setFileTime("ch02_text.txt", newTime)
 file.info("ch02_text.txt")
 size isdir mode mtime ctime atime exe
 ch02_text.txt 31 FALSE 666 2016-02-13 20:25:53 2016-02-13 16:59:57 2016-02-13 16:59:57 no

 Turning our attention to creation and removal of files, the functions file.create and file.remove do
precisely what you would hope. These do return logically TRUE or FALSE and can even give more details:

 file.create("ch02_created.docx", showWarnings = TRUE)
 [1] TRUE
 file.remove("ch02_created.docx")
 [1] TRUE
 file.remove("NOSUCHFILE.FAKE")
 [1] FALSE
 Warning message:
 In file.remove("NOSUCHFILE.FAKE") :
 cannot remove file 'NOSUCHFILE.FAKE', reason 'No such file or directory'

CHAPTER 2 ■ PROGRAMMING UTILITIES

21

 Files may also be copied and renamed. The function file.copy can be given overwrite permission, and
could even be set up to copy entire folders and subfolders with the recursive=TRUE option . Furthermore, it
has options to copy over mode or file permissions as well as to copy the file date data (or, of course, letting
the copy have a new modified date). The following code example shows how that might all work:

 Sys.time()
 [1] "2016-02-13 21:05:29 CST"
 file.copy("ch02_text.txt", "ch02_copy.txt", overwrite = TRUE, recursive = FALSE, copy.mode =
TRUE, copy.date = TRUE)
 [1] TRUE
 file.info("ch02_copy.txt")
 size isdir mode mtime ctime atime exe
 ch02_copy.txt 31 FALSE 666 2016-02-13 20:25:53 2016-02-13 21:05:30 2016-02-13 21:05:30 no
 file.rename("ch02_copy.txt", "ch02.txt")
 [1] TRUE

 The file.append function joins two files together. This can work well for some files types. Used naively,
there can be unfortunate consequences. While the code to perform this follows, pay careful attention to Figure 2-
2 and Figure 2-3 . In the case of the text files, the process worked well enough. In the case of Microsoft PowerPoint
files, not so much. Keep in mind that the PowerPoint files are less about the files themselves (neither author
imagines using R for such files genuinely), and more about the fact that the nuances of file manipulation, in
general, deserve treatment with due caution. Notice that R believes both operations are successful:

 file.append("ch02_text.txt", "ch02.txt")
 [1] TRUE
 file.append("ch02_pp.pptx", "ch02_pp2.pptx")
 [1] TRUE

 Figure 2-2. The first operation was successful according to R and worked upon opening the file

 Figure 2-3. The second operation was successful according to R yet did not work upon opening the file

CHAPTER 2 ■ PROGRAMMING UTILITIES

22

 You can not only manipulate files with R, but also create directories, or file folders, as well. The function
is dir.create , which behaves as you might now expect. We show an example of the function here, and the
resulting director in Figure 2-4 :

 dir.create("folder1")

 These commands work on any files that a user has permission to access and manipulate. One of the
authors uses these commands to move data from various shared drives owned by different departments to
eventually post result files on a website. Once you understand loops and functions from future chapters,
you’ll be able to automate most file management.

 Figure 2-4. The created folder1 directory

CHAPTER 2 ■ PROGRAMMING UTILITIES

23

 Input
 Getting new data into R becomes the next challenge. Data sets tend to be quite large, although
effective techniques may be used on smaller sets. Text files with tab or comma separation are the most
straightforward to import into R. Next, common data file types include Microsoft Excel, SPSS, SAS, and Stata.
More generally, it is fairly safe to say that there likely exists an R package that can handle the type of file
import you want. Even PDF and Microsoft Word files may be input should the need arise (text analytics from
word clouds to more predictive applications come to mind). For most of these records, the input process is
similar, so there is perhaps less of a need to be exhaustive and more of a need to set up sound principles. Be
sure to visit the Apress website for this text to download the code packets for this book. We use files in the
chapter 02 folder in our next examples; the Counties in Illinois files (All Counties in Illinois, 2016) and
the rscfp2013 files (DADS, 2016) are used.

 We start with a function in R, read.table(), which can take in several of the more basic file types and
read them in as a data frame. As with most input functions, this has several options, not all of which are
required for any particular circumstance. Depending on the type of data read into R, it may take more than
one try to successfully read in the data in a way convenient to use and manipulate. The View function can be
of help in this case, with the output shown in Figure 2-5 .

 countiesILCSV<-read.table("Ch02/Counties_in_Illinois.csv", header = TRUE, sep = ",")
 View(countiesILCSV)

 We use three packages— Hmisc (Harrell, 2016), xlsx (Dragulescu, 2014) , and foreign (R Core Team,
2015)—to showcase input from various file types. One observation is that file types may, in fact, be quite
large. With over 30,000 entries, as shown in Figure 2-6 , read.dta quickly and handily imports Stata files .

 library(checkpoint)
 checkpoint("2016-09-04", R.version = "3.3.1")
 library(Hmisc)
 library(foreign)
 library(xlsx)
 rscfpData <- read.dta("Ch02/rscfp2013.dta")
 View(rscfpData)

 Figure 2-5. The output of the View() function

http://dx.doi.org/10.1007/978-1-4842-2077-1_02

CHAPTER 2 ■ PROGRAMMING UTILITIES

24

 We can also import SPSS files through the spss.get function. Even if there are warnings, it can often be
the case that data is still successfully imported. If the data is not imported successfully, search the warning
message for specifics. In this case, it seems from our header view that all is well. For brevity’s sake, we
truncated part of the header output:

 countiesILSPSS <- spss.get("Ch02/Counties_in_Illinois.sav")
 Warning message:
 In read.spss(file, use.value.labels = use.value.labels, to.data.frame = to.data.frame, :
 Ch02/Counties_in_Illinois.sav: Unrecognized record type 7, subtype 18 encountered in
system file

 head(countiesILSPSS)
 county.name total.population median.income
 1 Adams County, Illinois 67030 43824
 2 Alexander County, Illinois 8449 28833
 3 Bond County, Illinois 17904 51946
 4 Boone County, Illinois 53567 61210
 5 Brown County, Illinois 6897 38696
 6 Bureau County, Illinois 35083 45692
 less.than.high.school high.school some.college bachelors.or.higher
 1 0.06938496 0.3663752 0.3155484 0.24869141
 2 0.17821309 0.3999044 0.3251314 0.09675108
 3 0.08590590 0.3386204 0.3054077 0.27006600
 4 0.12358696 0.3577536 0.2985507 0.22010870
 5 0.24846045 0.3012790 0.3270962 0.12316438
 6 0.09044028 0.3910391 0.3542198 0.16430076

 Figure 2-6. A larger Stata .dta file successfully imported into R with thousands of entries

CHAPTER 2 ■ PROGRAMMING UTILITIES

25

 We’ll do one final example with Excel, which uses our last package, xlsx . This package has rJava
(Urbanek, 2016) as a dependency, and that is relevant depending on which R version you use. Your mostly
fearless authors stick to 64-bit as often as possible, and this requires a 64-bit version of Java installed. R was
liberal with its complaints when this had not been done. Notice that sheet names can be specifically called,
making the function read.xlsx handy for extracting specific pieces of data.

 countiesILExcel <- read.xlsx("Ch02/Counties_in_Illinois.xlsx", sheetName =
"Counties_in_Illinois")

 These three packages, along with R’s more inherent ability to read in tabular data stored in text files
with various delimiters, allow for easy enough input of most data that might be presorted or collected. It is
not difficult to direct R to look directly online for files either, so that one researcher may update records and
those results can be readily percolated to others. Later, as part of other examples, we have some files that are
downloaded live from the Internet. For now, we turn our attention to output.

 Output
 Output comes in many forms. Perhaps because of collaboration with other researchers or partners,
accommodating one of the other software systems is needed. Much like the preceding section on input, R
can readily output to several file types. Of more interest is setting up R to send specific console output to
certain files. This allows one machine to view the results of an analysis run on another computer. In this
section, we demonstrate a couple of outputs of data to SPSS, Stata, and Excel. Then we work with console
outputs. We ask you to keep in mind that there are many other ways and types of files to create, and as part of
larger examples, we demonstrate several types including various document files and graphics.

 To output files to Excel, SPSS, or Stata, simply use the correct invocation of either the xlsx or foreign
packages. As shown in Figure 2-7 , R creates the output handily.

 write.xlsx(countiesILExcel, "Ch02/Output1.xlsx")

 write.foreign(countiesILExcel, "Ch02/Output2.txt", "Ch02/Output2.sps", package="SPSS")
 Warning message:
 In writeForeignSPSS(df = list(county_name = c(1L, 2L, 3L, 4L, 5L, :
 some variable names were abbreviated

 write.dta(countiesILExcel, "Ch02/Output3.dta")
 Warning message:
 In write.dta(countiesILExcel, "Ch02/Output3.dta") :
 abbreviating variable names

CHAPTER 2 ■ PROGRAMMING UTILITIES

26

 The sink function takes console output and directs it to a file. Thus, the results of an R process may be
stored for later observation or saved to a shared drive for perusal by others. The console sends only output
to the file, not the input. Look carefully at the difference between the code that follows and the screenshot of
 Output4.txt shown in Figure 2-8 :

 sink("Ch02/Output4.txt", append = TRUE, split = TRUE)
 x <- 10
 xSquared <- x^2
 x
 [1] 10
 xSquared
 [1] 100
 unlink("Ch02/Output4.txt")

 We turn our attention away from the output for a little while, knowing that we’ll revisit this topic in
several more chapters. Output of various types are necessary, and they tend to depend on objectives and
circumstances.

 Figure 2-7. Output in Excel, SPSS , and Stata file formats is created from R

 Figure 2-8. The output of the sink() function to a text file

CHAPTER 2 ■ PROGRAMMING UTILITIES

27

 The next chapter provides tools for quickly repeating similar operations again and again as well as
handling course corrections based on the environment. Those techniques combine with these methods to
quite handily automate file management on a relatively large scale.

 References
 References are given once and not repeated for packages. Data files found online are cited when used. Our
goal is to give credit where it is due, without overloading the text.

29© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_3

 CHAPTER 3

 Programming Automation

 It has been said that performing the same action and expecting a different result is a definition of insanity .
While a brief search of Oxford’s dictionary does not turn up that definition, we have a similar premise: to
prevent insanity, leave it to your computer to perform the same action repeatedly, and expect the same results!

 The goal of this chapter is for you to begin to build automation into your code. Part of the power of
code is that it cheerfully performs the same action as often as required without stumbling or tiring. The
other useful feature of code is the capability to stitch logic into the flow of the programming. Humans, at our
best, naturally use such logic. For example, if father’s keys are on the hook, he must be home. Otherwise,
father must still be out and about. Here’s another example: if p is less than alpha , reject the null hypothesis;
otherwise, do not reject the null hypothesis.

 Because such automation allows an enormous number of repeats , care must be given to efficiency. How
long does it take the code to run? Could the code be written differently to make the operations occur faster?
In programming, as in life itself perhaps, we often have fewer perfect answers and more trade-offs between
choices and consequences. We live in a brave new world in which new and more powerful hardware often
is cheaper than the human cost required to squeeze out a bit more efficiency. On the other hand, our brave
new world also has data sets with billions of entries; shaving a millisecond off each calculation could save
hundreds of hours of compute time. We do our best to take a balanced approach, demonstrating some of the
easier-to-understand constructs first and then presenting faster methods.

 As we look at the first of these automation methods, we remind you that coding is as much an art as it is
a science. The cleaner, more readable code may not be the fastest. The only essential definition of fast is fast
enough . If a particular type of code makes more sense to you and thus makes you more likely to remember and
use it, that may be good enough. Of course, if it is not, a bit of research is in order to uncover quicker alternatives.

 Loops
 Loops repeat the code inside them. The concern is to avoid getting into a case of an infinite loop—one that
lasts forever. Most loops have a built-in means to attempt a stop (not that those always work as planned).
In the next section, we discuss ways to exit a loop manually. Another concern with loops has to do with the
fact that they are functions. Although we have used that word already, we are postponing a frank discussion
of functions until the next chapter. For now, just keep in mind that anything created inside a function may
disappear when that function ends. In the case of loops, this happens when they stop repeating. So, if you
want to hold onto results, you need to build the container for those results outside the loop. Again, we go
deeper into specifics in the next chapter.

 The for loop is the first (and perhaps most controversial in R) automator we discuss. In many computer
languages, for() is considered rather fast, but not so in R. Nevertheless, this function is easy to understand
and use. Human-readable code is not something to eschew needlessly. However, there is usually more than
one way to do things, and it would be silly to ignore those. We use the function proc.time() in our code to
measure different times; we will calculate the runtime by finding the difference between the stop and start
time. Take a look at the following code and output:

CHAPTER 3 ■ PROGRAMMING AUTOMATION

30

 x <- seq(1,100000,1)
 head(x)
 [1] 1 2 3 4 5 6
 forTime<- proc.time()
 xCube <- NULL
 for (i in 1:length(x)) {
 + xCube[i] = x[i]^3
 + }
 forTime <- proc.time()-forTime
 head(xCube)
 [1] 1 8 27 64 125 216
 forTime
 user system elapsed
 11.04 0.17 11.25

 You can see that the numbers 1 through 100,000 are in the variable x (the first six display by calling the
 head() function). Next, we create a variable to hold the cubes of all those variables. We also store the current
time in a variable so that we can time the operation. Now comes the magic of the for() function! This
function takes an index, which is often called i , and a range that the index operates over. We start i at 1 , and
the loop runs. At the end of the loop, i is automatically incremented by 1 , and the loop is repeated. The loop
repeats until it reaches the last part of the range. Notice that we do not choose a hard limit; rather, we make
our loop adaptable based on the length of x . You can see that the loop does, in fact, result in each term of x
being cubed. It takes 11.25 seconds on our system.

 This time, though, can be improved. Notice that although we created a variable xCube , it is a null variable.
Each iteration of our for loop not only needs to cube x , but also has to increase the size of the xCube variable by
1. This turns out to not be a trivial task. If we were to create xCube to be already the size we need, performance
would significantly improve. We first remove xCube , so that we are not being deceived by any prior data:

 rm(xCube)
 forTime2<- proc.time()
 xCube <- vector(mode = "numeric", length = length(x))
 for (i in 1:length(x)) {
 + xCube[i] = x[i]^3
 + }
 forTime2 <- proc.time()-forTime2
 head(xCube)
 [1] 1 8 27 64 125 216
 forTime2
 user system elapsed
 0.15 0.00 0.15

 Notice that now our time is only 0.15 seconds—much improved! Of note is that even if we had created
a dummy xCube that wasn’t quite long enough, or if we made one that was too long and needed some null
entries deleted off the end, this would still be faster. Thus, even when it may not be possible or convenient to
know the size of the variable needed before running the loop, it may be beneficial to create a container that
is likely large enough to store the data in first.

 Now, for this particular example, a for loop is the wrong way to go. R has powerful and fast underlying
code for some of its simplest functions. Notice that there is almost no elapsed time at all (of course, there is
some, but depending on the operating system, some differences are not noticeable). Also, notice that the
 head() function can take negative numbers, to count backward from the end, to show the following:

CHAPTER 3 ■ PROGRAMMING AUTOMATION

31

 xCube <- NULL
 vTime <- proc.time()
 xCube <- x^3
 vTime <- proc.time()-vTime
 head(xCube, -99994)
 [1] 1 8 27 64 125 216
 vTime
 user system elapsed
 0 0 0

 Other types of loops exist. The for loop is best suited to running a process a certain number of times,
and, when it gets to the end, stopping. The while loop, on the other hand, is best suited to running a process
an uncertain number of times until a stop condition happens. Often, it is possible to gain the same results
with different types of loops (or as you have just seen, without a loop at all). All the same, each type of loop
tends to have a more natural use under certain conditions. As an exercise on your own, after studying the
 while loop example we give, see if you can duplicate the previous cubing results.

 Perhaps an example near and dear to the heart of researchers everywhere is simulation . After all,
if we can simulate data, that may be the first step to understanding what our real-world results may be.
Statistics are baked into R, and the function rnorm() takes up to three inputs. The first controls the number
of elements we want to return for our sample. The second and third control the population-level mean and
standard deviation from which the sample is randomly selected. Let us a look at what rnorm gives us:

 for (i in 1:5) {
 + x <- rnorm(5,4,2)
 + print(x)
 + print(paste0("Xbar: ",mean(x)))
 + print(paste0("StdDev: ",sd(x)))
 + }
 [1] 2.0287126 4.5664489 0.1310789 3.6347667 4.2465319
 [1] "Xbar: 2.92150781627209"
 [1] "StdDev: 1.84077667180739"
 [1] 5.806652 2.707348 4.673238 4.646211 6.496605
 [1] "Xbar: 4.86601066066082"
 [1] "StdDev: 1.43952629897616"
 [1] 1.6476375 0.8618630 0.2519337 0.6902068 1.0062915
 [1] "Xbar: 0.8915864810408"
 [1] "StdDev: 0.508764053558126"
 [1] 5.162450 3.513966 6.503733 3.736576 5.503810
 [1] "Xbar: 4.88410690747199"
 [1] "StdDev: 1.25287757407054"
 [1] 4.719578 1.197946 2.751889 4.451728 2.487819
 [1] "Xbar: 3.12179207747434"
 [1] "StdDev: 1.46300892878659"

 What we find are 5 samples randomly pulled from the same population with a mean of 4 and a standard
deviation of 2 . However, notice that each sample has means ranging from 0.89 to 4.88 . Suppose we need a
pseudorandom sample such as this, but want to demonstrate to our students how random sampling-point
estimators require caution. Let us say we want to find a random sample pulled from our population, but
whose sample mean is in fact 10 or higher. Well, a while loop might be just the answer:

CHAPTER 3 ■ PROGRAMMING AUTOMATION

32

 y <- 3
 while(mean(y)< 10){y <- rnorm(5, mean = 4.0, sd = 2)}

 We allowed this code to run for about a minute before we put a stop to it. The reason, of course, is
that this type of search could take a while, and runs dangerously close to being an infinite loop. Normal
populations whose means are 4 with standard deviations of 2 tend to have few elements that are 10 or higher.
Randomly sampling enough of those elements that the sample mean is 10 or higher starts to be unlikely. We
set y to 3 just so that the while code would run at least once. Here we repeat our loop with something more
reasonable—a mean of 6 :

 y <- 3
 while(mean(y)< 6){y <- rnorm(5, mean = 4.0, sd = 2)}
 mean(y)
 [1] 6.188268
 y
 [1] 11.126657 4.807775 3.703673 3.966180 7.337056

 Notice that y is now a rather strange sample, compared to what we know the population to be. This is,
of course, an argument for larger sample sizes, but it also gives us data that both fits our facts and tests our
assumptions. Counterexamples and odd data can be quite useful to stress test code or models.

 The last loop we will look at for the moment is repeat() which can be different from while and for
loops. In particular, repeat , unlike while or for , does not take any arguments that would ever have a
chance to stop it. This function keeps repeating over and over. Of course, there has to be a way to stop this.
Otherwise, we are in trouble. We discuss such techniques in the next section, “Flow Control.” However, first,
some observations about loops.

 Loops are meant to perform a task as many times as required. In R, we control these tasks in three ways.
If the task should be done to a certain count, a for loop is likely best. An integer iterator controls the start and
stop of the for loop.If the task is one that we want to be done until a certain condition occurs, a while loop may
be best. In particular, a while loop tests the condition that determines whether the loop runs, before the loop
runs. This is critical! If the condition is already met, the while loop never runs. In the short examples you’ve
seen so far, this may not seem possible or apparent, and that is okay. Our goal here is to introduce these in a
way that easily brings them to mind when you are facing a new problem. All the same, it bears repeating: a
 while loop first checks whether it needs to run, and only then will it run once, and check again, until the check
stop condition happens. The last loop we discuss, repeat() , is different. It simply runs. Now, we have to stop it
somehow, and we do that manually in the next section. The point is, repeat never checks whether it needs to
run; it just runs. So if you want to run a process at least once, repeat may be the function you seek.

 We hold off on giving an example of a repeat for now, mostly to avoid infinite loops. We’ll show an
example soon. First, we need a way to control the flow of our code.

 Flow Control
 Code flow control happens in several ways, but our interests lie in four of them (and just three). This control
works by performing tests to decide whether one action or another should be taken, or by modifying the
behavior of the loops you have just seen. We present each of the commands in turn, and, at the end of this
section, we’ll get back to that function mentioned in the prior section.

 If/else statements are a standard part of logic, and they make up a standard part of programming as
well. In fact, if/else is used so often that it comes in two flavors. When the else part is to carry on as usual, it is
standard practice not to include that part in the code at all.

 Let us take that sample of values for which we forced a sample mean greater than 6 . Say we want to see a
box plot and whisker plot for that if we are successful, but otherwise want to see a histogram. We might start
off with the following broken code, along with its Figure 3-1 output:

CHAPTER 3 ■ PROGRAMMING AUTOMATION

33

 if(y>6){
 + boxplot(y)
 + }
 Warning message:
 In if (y > 6) { :
 the condition has length > 1 and only the first element will be used

 else{
 Error: unexpected 'else' in "else"
 histogram(y)
 }
 Error: unexpected '}' in "}"

 We broke this code for two reasons. The first is to demonstrate that although flow control can be a useful
feature, it is only as good as your logic. We meant to test for mean(y) > 6 , and instead have tested something
else. R is helpful enough to warn us that all may not be well. All the same, we should be cautious. The second
reason is to note that this if/else statement is coded incorrectly. The else portion always runs; R does its best
to warn us again that the else was not expected, and thus we should take heed. This modified set of code
creates two images, shown in Figure 3-1 and Figure 3-2 . We show the code as follows, along with Figure 3-2 ,
which is the output of the successfully executed if portion:

 if(mean(y)>6){
 + boxplot(y)
 + }

 else{
 Error: unexpected 'else' in "else"
 histogram(y)
 }
 Error: unexpected '}' in "}"

 Figure 3-1. The else output of both the preceding and the following code

CHAPTER 3 ■ PROGRAMMING AUTOMATION

34

 This is interesting for three reasons. First, as you can see in our first broken example , if is fully able
to be a stand-alone piece of flow control. The control portion evaluates, and if true , the code is run, and if
 false, the code is not run. Second, although less usefully, else is also a stand-alone piece of code (which
controls nothing when used solo). Third, it is a good object lesson that both the logic of the flow control and
the structure of the code must be set up correctly to work properly. Next, we show the code as we originally
envisioned it. It outputs only the box plot and whisker plot of Figure 3-2 . Notice that the else needs to be on
the same line as the closing } of the if :

 if(mean(y)>6){
 + boxplot(y)
 + } else{
 + histogram(y)
 + }

 The other two functions we use are somewhat similar to each other. We use next to skip one pass
through a loop, and we break to end the loop entirely. Both of these keep the code running; they just
control what happens inside the loop in which they are called. Take a look at the following code to see what
happens:

 i <- 0
 while(i < 5){
 + i <- i + 1
 + if(i ==2) {next()}
 + print(i)
 + }
 [1] 1
 [1] 3
 [1] 4
 [1] 5

 It is important to recognize that the location of next is significant.. We could order those three lines of
code inside the while function in six ways. At least one way creates an infinite loop, and at least one way
has no noticeable influence whatsoever. Of course, as you just saw, there is also a way that makes it skip the
number 2 . This also demonstrates that while can be a lot like a for function.

 Figure 3-2. The if output of the preceding code, which has been fixed on the control level but not the else
portion

CHAPTER 3 ■ PROGRAMMING AUTOMATION

35

 We close this section with a real look at the repeat function . This function is ideal when it is unclear
how many times an action may need to be repeated. Again, repeat is similar to while , with the exception
that the code runs at least once. It is also easier perhaps to have more than one exit criteria. Granted, break
can be used in while as well to create more than one exit rule. However, for human-readable code, it may be
easier to have multiple break statements near each other. In the following code, we also recycle our iterator i
so that it is easy to see that it takes 377 attempts to find our randomly drawn value that is over three standard
deviations away from mean:

 z <- NULL
 i <-1
 repeat{
 + z <- rnorm(1,4,2)
 + i <- i + 1
 + if(z > 10){break}
 + }
 z
 [1] 10.69076
 i
 [1] 378

 *apply Family of Functions
 Our last set of functions for this chapter are the *apply functions . Generally speaking, these functions take
two primary types of input. One is an input that has several elements , and the second is a function applied
to the elements in turn. The various flavors handle different use cases, and we also introduce some error
checking where possible.

 We start with lapply , which takes a list input and applies the function given to each element. As its
prefix suggests, this function returns a list with the results of the application of the entered function:

 xL <- 1:5
 xL
 [1] 1 2 3 4 5

 ## returns a list
 lapply(xL, is.integer)
 [[1]]
 [1] TRUE

 [[2]]
 [1] TRUE

 [[3]]
 [1] TRUE

 [[4]]
 [1] TRUE

 [[5]]
 [1] TRUE

CHAPTER 3 ■ PROGRAMMING AUTOMATION

36

 As you can see, this is fairly messy. To simplify, we use almost the same function call, but with the s
prefix (for simple) as follows:

 sapply(xL, is.integer)
 [1] TRUE TRUE TRUE TRUE TRUE

 Although both of these are helpful enough in their own right, they depend on correct input. Of course,
our code depends on such correct input (the phrase garbage in, garbage out comes to mind). Nevertheless,
we can signal to R the type of results we are expecting with the vapply function. It takes a third input, which
is set to the type of output we are expecting. What happens when the function does not return the correct
type of value? Here we run two lines of code, telling our function to expect logical level inputs because by
default NA is a logical . In our second attempt, R still expects the same type, but gets a double instead:

 vapply(xL, is.integer, FUN.VALUE = NA)
 [1] TRUE TRUE TRUE TRUE TRUE

 vapply(xL, mean, FUN.VALUE = NA)
 Error in vapply(xL, mean, FUN.VALUE = NA) :
 values must be type 'logical',
 but FUN(X[[1]]) result is type 'double'

 We run a similar set of code, this time telling R to expect each result to be a vector of length 2 . Instead, it
gets a vector of length 1 , which is the correct type, yet wrong length:

 vapply(xL, is.integer, FUN.VALUE = c(NA, NA))
 Error in vapply(xL, is.integer, FUN.VALUE = c(NA, NA)) :
 values must be length 2,
 but FUN(X[[1]]) result is length 1

 Let us take a look at a more interesting list. Notice that we have both integers and characters in this list yL :

 yL <- list(a = 1:5, b = c("6", "7", "8"), c = c(9:10))
 yL
 $a
 [1] 1 2 3 4 5

 $b
 [1] "6" "7" "8"

 $c
 [1] 9 10
 yL$b[2]
 [1] "7"
 is.character(yL$b[2])
 [1] TRUE
 is.integer(yL$b[2])
 [1] FALSE

CHAPTER 3 ■ PROGRAMMING AUTOMATION

37

 Suppose we are interested in summary statistics information for each element in our list. We could
certainly apply the summary() function to each element, and R would cheerfully do so, and not even throw
an error at us!

 lapply(yL, summary)
 $a
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1 2 3 3 4 5

 $b
 Length Class Mode
 3 character character

 $c
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 9.00 9.25 9.50 9.50 9.75 10.00

 Notice, however, that there are some issues . This is an easy sort of data-collection typo to have,
depending on how information was collected in the field and coded. Luckily, if we use a better *apply
function and give R a heads-up on what to expect, we can potentially save ourselves some grief later.
Building some form of data validation into code can be helpful. Of course, this does not prevent all issues, by
any means; it simply tends to make life a bit safer.

 vapply(yL, summary, c(Min. = 0, `1st Qu.` = 0, Median = 0, Mean = 0, `3rd Qu.` = 0, Max. =
0))
 Error in vapply(yL, summary, c(Min. = 0, `1st Qu.` = 0, Median = 0, Mean = 0, :
 values must be length 6,
 but FUN(X[[2]]) result is length 3

 The mtcars data frame comes from a 1974 magazine. We are interested in the miles per gallon and the
number of cylinders. Using this data set is a useful way to understand various functions in R, as it is readily
accessible in R. Here we take a look at the first six entries to see and better understand our raw data:

 head(mtcars[, c("mpg", "cyl")])
 mpg cyl
 Mazda RX4 21.0 6
 Mazda RX4 Wag 21.0 6
 Datsun 710 22.8 4
 Hornet 4 Drive 21.4 6
 Hornet Sportabout 18.7 8
 Valiant 18.1 6

 We run tapply on the mtcars data frame, and we factor by cylinders. In Figure 3-3 , we show what this
looks like as a bar plot.

CHAPTER 3 ■ PROGRAMMING AUTOMATION

38

 Notice that in our function call this time, we are explicitly stating each of the inputs by name. That is to
say, X , INDEX , and FUN are the original names of the data, the factor input, and the function that is applied,
respectively. We also show almost the same code with the simplify = FALSE option, which returns a list:

 tapply(
 + X = mtcars$mpg,
 + INDEX = mtcars$cyl,
 + FUN = mean)
 4 6 8
 26.66364 19.74286 15.10000

 tapply(
 + X = mtcars$mpg,
 + INDEX = mtcars$cyl,
 + FUN = mean,
 + simplify = FALSE)
 $`4`
 [1] 26.66364

 $`6`
 [1] 19.74286

 $`8`
 [1] 15.1

 When our data structure is a data frame, matrix, or array , the apply() function is often a good choice.
Because these tend to have more dimensions, this function takes three inputs of the data, the margin we are
interested in applying, and of course, the function to be implemented. We perform this on the entire mtcars
data set first by columns and then by rows to get the standard deviation. We also first show what the mtcars
data looks like in its entirety. Notice that it perhaps makes more sense to perform this by columns. Because
we are neither car enthusiasts nor particularly mechanically inclined, this last set of code and output may
not make much sense :

 Figure 3-3. mtcars data frame broken out by number of cylinders

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ PROGRAMMING AUTOMATION

39

 head(mtcars)
 mpg cyl disp hp drat wt qsec vs am gear carb
 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
 apply(mtcars, MARGIN = 2, FUN = sd)
 mpg cyl disp hp drat wt qsec
vs am gear carb
 6.0269481 1.7859216 123.9386938 68.5628685 0.5346787 0.9784574 1.7869432
0.5040161 0.4989909 0.7378041 1.6152000

 apply(mtcars, MARGIN = 1, FUN = sd)
 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet
Sportabout Valiant
 53.53888 53.51210 38.86999 79.40933
113.70330 69.95729
 Duster 360 Merc 240D Merc 230 Merc 280
Merc 280C Merc 450SE
 122.86626 44.43599 46.68811 57.31739
57.33609 92.42901
 Merc 450SL Merc 450SLC Cadillac Fleetwood Lincoln Continental Chrysler
Imperial Fiat 128
 92.40957 92.46342 147.34689 145.04382
141.16366 28.06702
 Honda Civic Toyota Corolla Toyota Corona Dodge Challenger AMC
Javelin Camaro Z28
 25.10753 26.43470 42.34211 99.84844
96.05271 120.45178
 Pontiac Firebird Fiat X1-9 Porsche 914-2 Lotus Europa Ford
Pantera L Ferrari Dino
 124.56688 27.95293 41.26033 40.34473
123.53038 62.68824
 Maserati Bora Volvo 142E
 126.32051 44.49888

 When we want to apply the same function to more than one set of data, we manage a multivariate
scenario. In this case, mapply() is our function call. Unlike the prior examples, this one takes the function we
want to apply as our first variable, and from there takes inputs of strictly positive length. We show the plotted
results of the following code in Figure 3-4 . As you may recall from Beginning R , the par() function provides a
way to fit multiple graphs into a single image:

 par(mfrow = c(2, 1))
 mapply(plot, mtcars[, c("mpg", "hp")], mtcars[, c("disp", "qsec")])
 $mpg
 NULL

 $hp
 NULL

CHAPTER 3 ■ PROGRAMMING AUTOMATION

40

 Recursion is a powerful programming idea, and we explore it further in later chapters. For now,
consider this example: Suppose a line of people wraps around the corner of a building; you are not sure how
long the line stretches. You could step out of your place in line and walk slowly to the front, counting the
number of people. This is regular iteration —which just like the loops, the apply functions have been mostly
doing for us. On the other hand, you could keep your place in line and ask the person in front of you, “How
many people are in front of you?” If that person repeats your question, eventually it would reach the front of
the line, and that person might turn around and say, “Zero!” Moving back through the line to you, it would
be possible to get an answer.

 Let’s Take a look at list zL . What if we try lapply() on it? This would not be good, because lapply()
passes each element to mean() , and mean() cannot handle lists! We show this in the following code, which
shows both our list and our first effort to find the arithmetic average:

 zL <- list(a = list(1, 2, 3:5), b = list(8:12))
 zL
 $a
 $a[[1]]
 [1] 1

 $a[[2]]
 [1] 2

 $a[[3]]
 [1] 3 4 5

 $b
 $b[[1]]
 [1] 8 9 10 11 12

 lapply(zL, FUN = mean)
 $a
 [1] NA

 $b
 [1] NA

 Figure 3-4. The function plot applied to two subsets of mtcars

CHAPTER 3 ■ PROGRAMMING AUTOMATION

41

 Warning messages:
 1: In mean.default(X[[i]], ...) :
 argument is not numeric or logical: returning NA
 2: In mean.default(X[[i]], ...) :
 argument is not numeric or logical: returning NA

 The recursive apply function, rapply() , is the solution. Depending on the particular results wanted,
this function has some interesting options. A check of the help files is highly suggested, although we do not
delve deeper into this function at this time.

 rapply(zL, f = mean)
 a1 a2 a3 b
 1 2 4 10

 It is possible to use “fancier” functions than just mean() or sd() . In the next chapter, we delve more
deeply into what these functions might look like and what they might do. For now, let’s take a moment to
discuss environment.

 Environment is the “world” in which our functions and variables live. We have been mostly residing
in the global environment. It is true that our loops have created mini-environments after a fashion. This is
why, if we want to keep information available to us after a loop is done, we create those null placeholder
variables. We can take a look at our environment and list the variables that are currently in play by using
the environment() and ls() functions. Notice that we are living in the global environment, and most the
variables we have been using are present:

 environment()
 <environment: R_GlobalEnv>

 ls()
 [1] "forTime" "forTime2" "i" "vTime" "x" "xCube" "xL" "y"
"yL" "z" "zL"

 But of course, this is simply one more list. At times, it may be convenient to manipulate and use this as
well. Thus, our last function is eapply() . Here we take a look at the class of all objects in our environment;
these types should be familiar from prior chapters:

 eapply(env = environment(), FUN = class)
 $xCube
 [1] "numeric"

 $x
 [1] "numeric"

 $forTime2
 [1] "proc_time"

 $y
 [1] "numeric"

 $z
 [1] "numeric"

CHAPTER 3 ■ PROGRAMMING AUTOMATION

42

 $forTime
 [1] "proc_time"

 $yL
 [1] "list"

 $vTime
 [1] "proc_time"

 $i
 [1] "numeric"

 $xL
 [1] "integer"

 $zL
 [1] "list"

 Final Thoughts
 You have seen several powerful tools for automation—from loops of various sorts that control what happens
repeatedly (and indeed, how often), to more specialized tools that are streamlined to cope with the usual
suspects in data sets that we are likely to encounter. These techniques are helpful and are often used.
However, they are not enough. What if new techniques are developed? How does mean() work? What if we
need to create our own functions? In the next chapter, we explore functions both in terms of their theoretical
framework and their practical applications. The combination of custom functions and loops is the bread and
butter of coercing computers to do the busy work for us.

43© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_4

 CHAPTER 4

 Writing Functions

 Writing your own functions in R enables you to combine a set of R commands into a function that is easy to
call and can be generalized. Functions are foundational to R. To become a more advanced user or developer
of R, a good understanding of what functions are and how to write them is crucial. Broadly speaking, a
 function takes one or more inputs and processes them to produce and return output.

 Not every programming task should be converted to a function. However, whenever you find yourself
copying and pasting a particular line of your code for the third time, you should likely write a function.
Another “no question about it” time to write a function is when your code is over 100 lines or so. Long
chunks of code can become almost impossible to read through and understand. Instead, we write functions
with good, descriptive names that make our code more readable. Then, on a separate pass, we write code
using the functions. The beauty of such a system is that it becomes easier to write focused code inside each
function that solves one particular part of your challenge. Another benefit of this approach is that, should
greater efficiency ever be required, it is possible to determine which functions are costing you the most
processing power or take the longest time to complete. Then research can be done on how to be more
efficient in just that spot.

 In this chapter, we use the Hmisc R package (Harrell Jr, 2016). The following code loads the checkpoint
(Microsoft Corporation, 2016) package to control the exact version of R packages used and then loads the
 Hmisc package:

 ## load checkpoint and required packages
 library(checkpoint)
 checkpoint("2016-09-04", R.version = "3.3.1")
 library(Hmisc)
 options(width = 70) # only 70 characters per line

 Components of a Function
 With some exceptions, most functions in R have three components :

• Formals : The arguments, or inputs, to the function

• Body : The commands that process the input

• Environment : The location or context of a function, which determines where it looks
for variables

 Each can be examined using dedicated functions. First, we write an example function:

 ## create new function, f()
 f <- function(x, y = 5) {
 x + y
 }

CHAPTER 4 ■ WRITING FUNCTIONS

44

 The function accepts two arguments : x and y . The first argument, x , has no default, but the second argument,
 y , defaults to a value of 5 . Although we can see these easily (in part because we’ve written the function), the
formals, or arguments, of the function can be examined using the formals() and args() functions:

 formals(f)
 $x

 $y
 [1] 5

 args(f)
 function (x, y = 5)
 NULL

 To see the actual R code or the commands used to process the formals, we use the body() function:

 body(f)
 {
 x + y
 }

 The commands are always enclosed in opening and closing brackets, { } . In this case, the R code is
simply x + y , but some functions have hundreds of lines. The last key part of a function is its environment.
The environment of a function determines where it looks for variables or objects, which can include both
data as well as functions. To see the environment of a function, we use the environment() function:

 environment(f)
 <environment: R_GlobalEnv>

 In this case, the function is in the global environment, where we created the function. For other
functions, this would vary. For example, if we look at the environment for the install.packages() function,
it is the namespace for the utils package:

 environment(install.packages)
 <environment: namespace:utils>

 This provides a common language for discussing R functions. In the remainder of the chapter, we delve
deeper into writing functions, and the special code and tools available for use with functions.

 Scoping
 In R, scoping is what determines where to look for a particular variable. Consider, for example, when we type plot ,
how does R translate that code? Where does R look it up? Scope is R’s answer for the language idea of context.
If I say, “I bought a new bat,” you would likely suppose I mean a cricket bat rather than a flying mammal. For R,
context comes from the scope and environment. Thus, different environments can lead to different results.

 Most aspects of writing R functions are no different than using R interactively. However, one difference
is that functions have their own environment. Further, functions often are located in various environments.
For instance, when using R interactively, almost all commands are executed from the global environment.
In contrast, many functions are written as part of R packages, in which case the function’s environment
is defined by the R package. Therefore, before jumping in to writing functions, it is helpful to understand
scoping. Consider these two examples:

CHAPTER 4 ■ WRITING FUNCTIONS

45

 plot
 function (x, y, ...)
 UseMethod("plot")
 <bytecode: 0x00000000190621d0>
 <environment: namespace:graphics>

 plot <- 5

 plot
 [1] 5

 In the first instance, R finds plot in the graphics package. In the second instance, R finds plot
in the global environment. Note that assigning 5 to the variable, plot , does not overwrite the plot()
function. Instead, it creates another R object with the same name as the function. After creating the new
variable, when we type plot at the console, R returns the numeric value rather than the function because
the assignment, plot <- 5 , occurs in the global environment , which R searches before it checks the
environments of different packages. The search() function returns the environments in the order that R
searches them. Your environment may be different, although there are likely some similarities:

 search()
 [1] ".GlobalEnv" "package:Hmisc"
 [3] "package:ggplot2" "package:Formula"
 [5] "package:survival" "package:lattice"
 [7] "package:devEMF" "package:checkpoint"
 [9] "ESSR" "package:stats"
 [11] "package:graphics" "package:grDevices"
 [13] "package:utils" "package:datasets"
 [15] "package:RevoUtilsMath" "package:methods"
 [17] "Autoloads" "package:base"

 From the output, we see that R first looks in the global environment (.GlobalEnv), then in the package Hmisc ,
and so on until it reaches the base package. We can see the current environment by again using the environment()
function. R always begins looking in the current or local environment. From there, it progresses to the parent
environment. We can find the parent environment for a given environment by using the parent.env() function :

 environment()
 <environment: R_GlobalEnv>

 parent.env(.GlobalEnv)
 <environment: package:Hmisc>
 attr(,"name")
 [1] "package:Hmisc"
 attr(,"path")
 [1] "C:/Users/Authors/.checkpoint/2016-09-04/lib/x86_64-w64-mingw32/3.3.1/Hmisc"

 Coming back to functions , each function has its local environment in addition to the function
itself being in an environment. The following code shows the local function environment and its parent
environment. We can roughly classify variables in functions into one of three types:

• Formal variables

• Local variables defined within the function

• Free or other variables that are neither formals nor local variables

CHAPTER 4 ■ WRITING FUNCTIONS

46

 Each is demonstrated in turn with the following code:

 a <- "free variable"
 f <- function(x = "formal variable") {
 y <- "local variable"

 e <- environment()
 print(e)
 print(parent.env(e))

 print(a)
 print(x)
 print(y)
 }

 f()
 <environment: 0x0000000017c846b0>
 <environment: R_GlobalEnv>
 [1] "free variable"
 [1] "formal variable"
 [1] "local variable"

 The variable x is a formal defined as its default value, y is a local variable defined in the body of the
function, and a is a variable defined in the function’s parent environment. Although it is possible to rely on
objects in the search path for a function rather than identified in the formals or as a local variable, it is not a
wise idea. Coding to depend on a function’s parent environment or the search path can lead to particularly
tricky bugs and unexpected behavior. This creates chaos for users or yourself later, when something in the
environment seemingly unrelated to the function is changed, and even though it appears the function’s code
and inputs have not changed, suddenly the output is different.

 Although the examples so far have been relatively straightforward, scoping becomes trickier when using
nested function calls. In the following code, it may be harder to predict the results of each piece of evaluated
code. The next examples set up two functions and then use the functions with three different variables in the
global environment:

 f1 <- function(y = "f1 var") {
 x <- y
 a1 <- f2(x)
 rm(x)
 a2 <- f2(x)
 }

 f2 <- function(x) {
 if (nchar(x) < 10) {
 x <- "f2 local var"
 }
 print(x)
 return(x)
 }

 x <- "global var"
 f1()

CHAPTER 4 ■ WRITING FUNCTIONS

47

 [1] "f2 local var"
 [1] "global var"

 x <- "g var"
 f1()
 [1] "f2 local var"
 [1] "f2 local var"

 rm(x)
 f1()
 [1] "f2 local var"
 Error in nchar(x) (from #2) : object 'x' not found

 It is worth experimenting with scoping until it makes sense, because it is necessary for ensuring that the
correct object is found. This can be a particular challenge when writing and developing a package or when
using functions that appear in multiple packages.

 Functions for Functions
 In addition to the usual R code and functions that you may use within a function you write, some special
functions exist. These are only, or primarily, used within other functions. Even if you are an experienced R
user, these may be unfamiliar if you have not previously written functions.

 The match.arg() function is useful for performing fuzzy matching of arguments. This also has the
benefit that if an argument does not match one of the valid options (that is, is invalid), it throws an error.
The following code shows two functions that are similar, except one uses the match.arg() function. The
examples demonstrate fuzzy matching and what happens when an invalid argument is used:

 f1 <- function(type = c("first", "second")) {
 type
 }
 f2 <- function(type = c("first", "second")) {
 type <- match.arg(type)
 type
 }

 f1("fi")
 [1] "fi"
 f2("fi")
 [1] "first"

 f1("test")
 [1] "test"
 f2("test")
 Error in match.arg(type) : 'arg' should be one of "first", "second"

 Argument matching is also useful for ensuring that when a text string is passed, only a valid option
is used, and that if it is not, an informative error is thrown. The following code expands on the function
we built without match.arg() to calculate a mean if type = "first" , and a standard deviation if type =
"second" . However, when an invalid option is passed to the type argument, we get the relatively cryptic error
message that x is not found:

CHAPTER 4 ■ WRITING FUNCTIONS

48

 f1b <- function(type = c("first", "second")) {
 if (type == "first") {
 x <- mean(1:5)
 } else if (type == "second") {
 x <- sd(1:5)
 }
 return(x)
 }

 f1b("test")
 Error in f1b("test"): object 'x' not found

 Another function specific to function arguments is missing() . It returns a logical value indicating
whether a specific argument is missing from the function call. This is helpful when writing functions that may
be used in different ways. The following is an example of a function that calculates Cohen’s d effect size, which
for a single group is defined as the mean of a variable divided by the standard deviation. Cohen’s d can also be
calculated for repeated measures, such as a group measured before and after an intervention. This is done by
calculating the difference of the two variables, and then proceeding as before. We use the missing() function
to determine whether the user passes a single variable, x , or two variables, x and y , so that our function can
elegantly handle calculating Cohen’s d for both one sample and repeated-measures data:

 cohend <- function(x, y) {
 if (!missing(y)) {
 x <- y - x
 }

 mean(x) / sd(x)
 }

 cohend(x = c(0.61, 0.99, 1.47, 1.52, 0.45,
 3.34, 1.05, -1.47, 1.3, 0.33),
 y = c(-0.69, 1.6, 0.44, 1, 0.88,
 1.17, 2.4, 1.21, 0.87, 2.15))
 [1] 0.09522249
 cohend(x = c(0.61, 0.99, 1.47, 1.52, 0.45,
 3.34, 1.05, -1.47, 1.3, 0.33))
 [1] 0.796495

 Also related to determining characteristics of the function call is the function match.call() . Whereas
 missing() determines whether a specific argument is missing, and match.arg() determines whether an
argument matches one of the valid options, match.call() captures the entire function call. This might be
easier to demonstrate than to explain. The following little function calculates the coefficient of variation,
the sample standard deviation divided by the sample mean. It also captures and returns the function call by
using match.call() :

 cv <- function(x, na.rm = FALSE) {
 fcall <- match.call()

 est <- sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm)

 return(list(CV = est, Call = fcall))
 }

CHAPTER 4 ■ WRITING FUNCTIONS

49

 cv(1:5)
 $CV
 [1] 0.5270463

 $Call
 cv(x = 1:5)

 cv(1:8, na.rm = TRUE)
 $CV
 [1] 0.5443311

 $Call
 cv(x = 1:8, na.rm = TRUE)

 In the output from those two examples, match.call() captures exactly the call to the function, though
it adds explicit argument names. This can sometimes be useful for keeping a record of exactly what the call
was that created particular output. Perhaps the most common place where this is used is in the output from
regression models in R. For example, the following code shows a linear model in which the output echoes
the function call, which is done using match.call() :

 lm(mpg ~ hp, data = mtcars)

 Call:
 lm(formula = mpg ~ hp, data = mtcars)

 Coefficients:
 (Intercept) hp
 30.09886 -0.06823

 The return() function is typically used at the end of functions to return a specific object, as you have
already seen in some of the previous examples, though it was not explicitly discussed. However, return()
can also be used to return values from any point within a function, thus ending execution of the function.
The following function has an if statement that, if true, results in early termination of the function. Notice
that the final result, if not true, is not even wrapped in return() . R returns the last object in a function by
default, so an explicit call to return() is not strictly necessary:

 f <- function(x) {
 if (x < 4) return("I'm done!")

 paste(x, "- Fin!")
 }

 f(10)
 [1] "10 - Fin!"
 f(3)
 [1] "I'm done!"

 Even though you can use return() earlier in a function, this is discouraged, because it can be surprising
to users and anyone else reading or debugging code. The same effect as in the preceding code can be
accomplished by using flow control:

CHAPTER 4 ■ WRITING FUNCTIONS

50

 f <- function(x) {
 if (x < 4) {
 "I'm done!"
 } else {
 paste(x, "- Fin!")
 }
 }

 f(10)
 [1] "10 - Fin!"
 f(3)
 [1] "I'm done!"

 In addition to not using return() midway in functions, some argue that an explicit call to return()
should not be used at the end of functions either, as it is unnecessary. This remains a point of preference, as
it can help draw attention to exactly what is returned at the end of a function.

 Although not exclusively used in functions, the invisible() function is often used with the object
returned by a function. Earlier we made a function that calculates the coefficient of variation and returns the
function call. We can modify the function to print the coefficient of variation and invisibly return the rest,
as shown in the following code. The use of invisible() means that even though the function returns the
same object it did before, that object is not shown. The invisible() function is perhaps most often used in
functions that are designed to create attractive output, such as calls to summary() or plotting functions. The
function’s primary purpose is to show a summary or graph, but in case anyone wants or needs to edit the
object, the actual object is invisibly returned and thus can be captured and saved for later use:

 cv <- function(x, na.rm = FALSE) {
 fcall <- match.call()

 est <- sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm)

 print(est)
 return(invisible(list(CV = est, Call = fcall)))
 }

 cv(1:8, na.rm = TRUE)
 [1] 0.5443311

 res <- cv(1:8, na.rm = TRUE)
 [1] 0.5443311
 res$Call
 cv(x = 1:8, na.rm = TRUE)

 The on.exit() function can be used to guarantee that a certain set of commands is executed when the
function exits or completes. Expressions in on.exit() do execute, even if the function has an error or does
not properly complete as expected. An example is shown in the second use case of the little function in the
following code. An error causes the function to terminate, and once that happens, the expression in on.
exit() is executed. Using on.exit() is particularly valuable when a function modifies any values outside
itself. For example, sometimes a plotting function modifies the default plot parameters and returns them to
whatever their original state was on completion. Using on.exit() ensures that even if something goes wrong
and the function fails or has an error, the user still has all of the original settings:

CHAPTER 4 ■ WRITING FUNCTIONS

51

 f <- function(x) {
 on.exit(print("Game over"))
 x + 5
 }

 f(3)
 [1] "Game over"
 [1] 8

 f("a")
 Error in x + 5 (from #3) : non-numeric argument to binary operator
 [1] "Game over"

 The last set of function-specific functions we cover is related to giving the software or user a signal. In
order of severity, they are stop() , warning() , and message() . The next example is slightly more realistic
and calculates the mean of a variable, either on its original scale or on a transformed scale, and then back-
transforms the mean. The log scale can be relatively more resistant to outliers. If a log transformation is
used, the example code checks whether the variable has any negative values, which are undefined and result
in a full error, by using the stop() function . The argument passed to stop() is the error message to display.
A similar process is followed for warning() , again with the message to be displayed in the warning. Warnings
are different from errors. An error , via stop() , causes the function to stop being evaluated and terminate. A
 warning is issued at the end, but the function is allowed to continue its evaluation. Finally, message() can
be used to send a message or signal to the user, but without indicating a real or likely problem, as a warning
does. Although not demonstrated, a related convenience function is stopifnot() , which allows a logical
expression to be passed and issues an error if the expression does not evaluate to a true value. Although this
option has the benefit of saving some code, a disadvantage is that you cannot write a custom error message
to indicate exactly what went wrong.

 One of the reasons it is helpful to use warnings or messages, rather than just calling print() or cat()
to have the function print a message, is that warnings and messages can be (optionally) suppressed by
using the aptly named functions suppressWarnings() and suppressMessages() . All of these functions are
demonstrated in the code immediately following:

 f <- function(x, trans = c("identity", "log")) {
 trans <- match.arg(trans)

 if (trans == "log") {
 if (any(x < 0)) stop("Log is not defined for negative values")
 if (any(x < 1e-16)) warning("Some x values close or equal to zero, results may be
unstable")

 x <- log(x)
 message("x successfully log transformed")

 exp(mean(x))
 } else {
 mean(x)
 }
 }

 f(c(1, 2, 100))
 [1] 34.33333

CHAPTER 4 ■ WRITING FUNCTIONS

52

 f(c(1, 2, 100), trans = "log")
 x successfully log transformed
 [1] 5.848035

 suppressMessages(f(c(1, 2, 100), trans = "log"))
 [1] 5.848035

 f(c(0, 1, 2, 100), trans = "log")
 x successfully log transformed
 [1] 0
 Warning message:
 In f(c(0, 1, 2, 100), trans = "log") :
 Some x values close or equal to zero, results may be unstable

 suppressWarnings(f(c(0, 1, 2, 100), trans = "log"))
 x successfully log transformed
 [1] 0

 f(c(-1, 1, 2, 100), trans = "log")
 Error in f(c(-1, 1, 2, 100), trans = "log") (from chapter04.R!79246pw#5) :
 Log is not defined for negative valuesFunctionssuppressWarnings()
FunctionssuppressMessages()

 Debugging
 The functions demonstrated so far have all worked or have had purposeful errors that are obvious to spot.
Sometimes the process of finding the error, or debugging the code and functions written, takes longer.
Fortunately, there are some tools to help the process and some practices to narrow the issues.

 Although debugging can apply to any code, not just functions, functions can be particularly tricky to
debug without additional tools, because normally all of their code executes without interruption or any
chance to see what is happening along the way. In this section, we write a function that uses a formula
to calculate the means of a variable by levels of another variable, using tapply() , which you previously
examined in Chapter 3 ; the function then plots the raw data with dots for the means, using the following
 code , as shown in Figure 4-1 :

 meanPlot <- function(formula, d) {
 v <- all.vars(formula)
 m <- tapply(d[, v[1]], d[, v[2]],
 FUN = mean, na.rm = TRUE)

 plot(formula, data = d, type = "p")
 points(x = unique(d[, v[2]]), y = m,
 col = "blue", pch = 16, cex = 2)
 }

 meanPlot(mpg ~ cyl, d = mtcars)

http://dx.doi.org/10.1007/978-1-4842-2077-1_3

CHAPTER 4 ■ WRITING FUNCTIONS

53

 Something does not look correct about the means. The mean for the points when cyl = 8 looks okay,
but the other two seem to fall at extremes. The debug() function allows us to debug a function and step
through the lines as they are executed. To use it, we first call debug() on the function we want to debug:

 debug(meanPlot)

 Then when we use the original function, it triggers R to enter debugging. At the first step, R tells us the
function call we are debugging in, and where:

 meanPlot(mpg ~ cyl, d = mtcars)
 debugging in: meanPlot(mpg ~ cyl, d = mtcars)
 debug at c:/Temp/chapter04.R!79246wk#1: {
 v <- all.vars(formula)
 m <- tapply(d[, v[1]], d[, v[2]], mean, na.rm = TRUE)
 plot(formula, data = d, type = "p")
 points(x = unique(d[, v[2]]), y = m, col = "blue", pch = 16,
 cex = 2)
 }
 Browse[2]>
 debug at #2: v <- all.vars(formula)
 Browse[2]>
 debug at #3: m <- tapply(d[, v[1]], d[, v[2]], mean, na.rm = TRUE)
 Browse[2]>
 debug at #5: plot(formula, data = d, type = "p")
 Browse[2]> m
 4 6 8
 26.66364 19.74286 15.10000
 Browse[2]> unique(d[, v[2]])
 [1] 6 4 8
 Browse[2]> Q

 Figure 4-1. Scatter plot with data in unfilled points, and means in large blue points, showing the incorrect
results

CHAPTER 4 ■ WRITING FUNCTIONS

54

 Now that we know where the problem occurs, we can fix the function by first sorting the data, so that
 tapply() and unique() give the results in the same order. The code is shown here, and the result is in
Figure 4-2 :

 meanPlot <- function(formula, d) {
 v <- all.vars(formula)
 d <- d[order(d[, v[2]]),] ## sorting first
 m <- tapply(d[, v[1]], d[, v[2]],
 FUN = mean, na.rm = TRUE)

 plot(formula, data = d, type = "p")
 points(x = unique(d[, v[2]]), y = m,
 col = "blue", pch = 16, cex = 2)
 }

 meanPlot(mpg ~ cyl, d = mtcars)

 If you are debugging your function and do not want to step through each line of code, the browser()
function can be inserted into the function code. Then, when the function reaches that point, a browser
is invoked, and you can examine the current state of variables in the function’s local environment. In the
following example code, we add a call to browser() in the function,examine the current objects available by
using ls() , examine the contents of the object, v , and again type a capital Q to quit debugging:

 meanPlot <- function(formula, d) {
 v <- all.vars(formula)
 d <- d[order(d[, v[2]]),] ## sorting first

 Figure 4-2. Scatter plot with data in unfilled points, and means in large blue points, showing the corrected
results

CHAPTER 4 ■ WRITING FUNCTIONS

55

 m <- tapply(d[, v[1]], d[, v[2]],
 FUN = mean, na.rm = TRUE)

 browser()

 plot(formula, data = d, type = "p")
 points(x = unique(d[, v[2]]), y = m,
 col = "blue", pch = 16, cex = 2)
 }

 meanPlot(mpg ~ cyl, d = mtcars)
 Called from: meanPlot(mpg ~ cyl, d = mtcars)
 Browse[1]>
 debug at #9: plot(formula, data = d, type = "p")
 Browse[2]> ls()
 [1] "d" "formula" "m" "v"
 Browse[2]> v
 [1] "mpg" "cyl"
 Browse[2]> Q

 A useful function for debugging when working interactively is traceback() . For example, if you call a
function such as lm() and then get an error message, it can sometimes be difficult to know exactly where or
why that mistake occurred. The error is often not even directly from the function you called, as the functions
you frequently use may in turn call many other functions internally. The following example shows how
this is done by using traceback() immediately after the code that resulted in error. The output shows the
call stack tracing the path from the initial call to the final code that generated the error. This can be useful
information if you need to look at the code to determine why the error occurred:

 lm(mpg ~ jack, data = mtcars)
 Error in eval(expr, envir, enclos) : object 'jack' not found

 traceback()
 7: eval(expr, envir, enclos)
 6: eval(predvars, data, env)
 5: model.frame.default(formula = mpg ~ jack, data = mtcars, drop.unused.levels = TRUE)
 4: stats::model.frame(formula = mpg ~ jack, data = mtcars, drop.unused.levels = TRUE)
 3: eval(expr, envir, enclos)
 2: eval(mf, parent.frame())
 1: lm(mpg ~ jack, data = mtcars)

 Finally, sometimes code bugs are not in your code, but in other code you are using, such as from another
R package. Although it is rare to find bugs in recommended R packages, it is more frequent in the thousands
of other R packages. Also, sometimes problems are not a bug per se, but a difference in how you want to use a
function vs. how the original writer envisioned its use. Although the source code for all R packages on CRAN
is publicly available for download and editing, it can be a hassle to download an entire package’s source code,
edit, and reinstall, just to see if doing something slightly different in one function fixes the problem.

 Consider the following challenge. Suppose you are using data that sometimes includes infinity for
some reason, but you want to include only finite cases. The following code shows an example using the wtd.
quantile() function from the Hmisc package :

CHAPTER 4 ■ WRITING FUNCTIONS

56

 wtd.quantile(c(1, 2, 3, Inf, NA),
 weights = c(.6, .9, .4, .2, .6))
 0% 25% 50% 75% 100%
 NaN Inf Inf Inf Inf

 If we look at the code for wtd.quantile() , by typing it into the R console without parentheses, we can
see that another function does the main calculations, wtd.table() , as shown here:

 wtd.quantile
 function (x, weights = NULL, probs = c(0, 0.25, 0.5, 0.75, 1),
 type = c("quantile", "(i-1)/(n-1)", "i/(n+1)", "i/n"), normwt = FALSE,
 na.rm = TRUE)
 {
 if (!length(weights))
 return(quantile(x, probs = probs, na.rm = na.rm))
 type <- match.arg(type)
 if (any(probs < 0 | probs > 1))
 stop("Probabilities must be between 0 and 1 inclusive")
 nams <- paste(format(round(probs * 100, if (length(probs) >
 1) 2 - log10(diff(range(probs))) else 2)), "%", sep = "")
 if (type == "quantile") {
 w <- wtd.table(x, weights, na.rm = na.rm, normwt = normwt,
 type = "list")
 x <- w$x
 wts <- w$sum.of.weights
 n <- sum(wts)
 order <- 1 + (n - 1) * probs
 low <- pmax(floor(order), 1)
 high <- pmin(low + 1, n)
 order <- order%%1
 allq <- approx(cumsum(wts), x, xout = c(low, high), method = "constant",
 f = 1, rule = 2)$y
 k <- length(probs)
 quantiles <- (1 - order) * allq[1:k] + order * allq[-(1:k)]
 names(quantiles) <- nams
 return(quantiles)
 }
 w <- wtd.Ecdf(x, weights, na.rm = na.rm, type = type, normwt = normwt)
 structure(approx(w$ecdf, w$x, xout = probs, rule = 2)$y,
 names = nams)
 }
 <environment: namespace:Hmisc>

 Using the same approach, we can examine the wtd.table() function . When doing so, we see that
although it can automatically remove missing values, it has no check or way to remove nonfinite values. It
may seem easier just to change your data, but sometimes data is generated automatically and passed on, so
that it is simpler to change a function than it is to modify the data. We can readily copy and paste the code for
 wtd.table() into our R editor and revise it, as shown here:

 revised.wtd.table <- function (x, weights = NULL, type = c("list", "table"), normwt = FALSE,
 na.rm = TRUE)
 {
 type <- match.arg(type)

CHAPTER 4 ■ WRITING FUNCTIONS

57

 if (!length(weights))
 weights <- rep(1, length(x))
 isdate <- testDateTime(x)
 ax <- attributes(x)
 ax$names <- NULL
 if (is.character(x))
 x <- as.factor(x)
 lev <- levels(x)
 x <- unclass(x)
 if (na.rm) {
 s <- !is.na(x + weights) & is.finite(x + weights)
 x <- x[s, drop = FALSE]
 weights <- weights[s]
 }
 n <- length(x)
 if (normwt)
 weights <- weights * length(x)/sum(weights)
 i <- order(x)
 x <- x[i]
 weights <- weights[i]
 if (anyDuplicated(x)) {
 weights <- tapply(weights, x, sum)
 if (length(lev)) {
 levused <- lev[sort(unique(x))]
 if ((length(weights) > length(levused)) && any(is.na(weights)))
 weights <- weights[!is.na(weights)]
 if (length(weights) != length(levused))
 stop("program logic error")
 names(weights) <- levused
 }
 if (!length(names(weights)))
 stop("program logic error")
 if (type == "table")
 return(weights)
 x <- all.is.numeric(names(weights), "vector")
 if (isdate)
 attributes(x) <- c(attributes(x), ax)
 names(weights) <- NULL
 return(list(x = x, sum.of.weights = weights))
 }
 xx <- x
 if (isdate)
 attributes(xx) <- c(attributes(xx), ax)
 if (type == "list")
 list(x = if (length(lev)) lev[x] else xx, sum.of.weights = weights)
 else {
 names(weights) <- if (length(lev))
 lev[x]
 else xx
 weights
 }
 }

CHAPTER 4 ■ WRITING FUNCTIONS

58

 Unlike the original wtd.table() function , the revised function works exactly as we want:

 wtd.table(c(1, 2, 3, Inf, NA),
 weights = c(.6, .9, .4, .2, .6))
 $x
 [1] 1 2 3 Inf

 $sum.of.weights
 [1] 0.6 0.9 0.4 0.2

 revised.wtd.table(c(1, 2, 3, Inf, NA),
 weights = c(.6, .9, .4, .2, .6))
 $x
 [1] 1 2 3

 $sum.of.weights
 [1] 0.6 0.9 0.4

 However, the challenge is that the wtd.quantile() function and other Hmisc functions that use wtd.
table() still do not work as we hope, because they do not use our revised function. Assigning our function
to the name wtd.table() in the global environment is not sufficient, because scoping rules mean that
 Hmisc functions access the wtd.table() function first from the Hmisc environment, not from our global
environment. It is like having a file of the same name on your computer, but in two different folders. For
all the Hmisc functions that utilize wtd.table() to use our revised function, we need not only to name it
correctly, but also to put it in the correct place. We can assign an object to a specific namespace by using the
 assignInNamespace() function :

 assignInNamespace(x = "wtd.table",
 value = revised.wtd.table,
 ns = "Hmisc")

 wtd.quantile(c(1, 2, 3, Inf, NA),
 weights = c(.6, .9, .4, .2, .6))
 0% 25% 50% 75% 100%
 2.000 2.225 2.450 2.675 2.900

 wtd.Ecdf(c(1, 2, 3, Inf, NA),
 weights = c(.6, .9, .4, .2, .6))
 $x
 [1] 1 1 2 3

 $ecdf
 [1] 0.0000000 0.3157895 0.7894737 1.0000000

CHAPTER 4 ■ WRITING FUNCTIONS

59

 Although the assignInNamespace() function has no output, we can see that afterward the wtd.
quantile() function and others that depend on wtd.table() , such as wtd.Ecdf() , are now working as we
hoped. A caveat about assignInNamespace() is that you cannot assign any object to an object that does not
already exist in that namespace (that is, you can overwrite only existing objects). You also are not allowed
to use assignInNamespace() in any packages you may want to submit to CRAN. Even if it is sometimes the
convenient approach, it would become confusing if people did this as a general rule. Were this to happen,
the definition of functions in package A would depend on whether you had loaded package B, because
package B could overwrite (not just mask) the function definition in package A. Note that any changes you
make in this way are temporary and vanish when you restart R. However, this can be a helpful technique
for debugging an existing package, as it is a relatively easy way to make sure that the issue encountered
using wtd.quantile() was indeed “fixed” by the suggested change to wtd.table() . At this point, if it were
truly a bug or even if it was just a desirable feature, you could e-mail the package maintainer to suggest
the change, confident that the suggested code works. To see the current maintainer, you can just type
 maintainer("Hmisc") , or whatever the package of interest is called.

 Summary
 We covered a lot of functions and a lot about functions in this chapter! In case you need to refresh your
memory about any specific functions, Table 4-1 lists the key functions introduced in this chapter and
provides a brief description of each. Of course, you can look up more in the official help files.

 Although the formal names of various parts of a function are not necessarily critical, learning how to
use and write functions efficiently may be one of the best investments in learning R you ever make. Writing
functions provides a way out of writing repetitive code. There are no strict rules, but if you find yourself
doing the same task often, there is a good chance it is worth writing a function to do that. It might be a big
task involving many pieces, or it might be a small task. For example, in psychology, it is common to report
values at “high” and “low” values of a continuous variable, which are often defined as mean +/– 1 standard
deviation. This is easy to do in R by using the mean() and sd() functions. If you do it a lot, it may be worth
writing a short, one-line function so that rather than type mean(x) + sd(x) , you just type msd(x) , or
whatever you call your function. If you do not feel comfortable playing with functions and writing your own,
it would be a good idea to get some more practice before moving on to Chapters 5 and 6 , where we assume
you are comfortable with functions.

http://dx.doi.org/10.1007/978-1-4842-2077-1_5
http://dx.doi.org/10.1007/978-1-4842-2077-1_6

CHAPTER 4 ■ WRITING FUNCTIONS

60

 Table 4-1. Key Functions Described in This Chapter

 Function What It Does

 formals() Allows you to see the formal arguments of a function you build.

 args() Shows default values and names for a created function’s arguments.

 body() Shows the body of a function (the code between { and }).

 environment() Shows the environment your function lives in (often the global
environment, so far).

 search() Shows the search order for functions. Remember, people may have
already used your function name!

 parent.env() Takes an environment and tracks it up one level.

 match.arg() Allows for fuzzy matching of function arguments.

 missing() Tests whether a value was passed to the function. Note that this will
be false after match.arg() .

 match.call() Captures the entire function call; used often in regression.

 return() Not required, possibly contentious, and for sure, if used be the last
part of a new function.

 invisible() Suppresses output.

 on.exit() Regardless of a successful or failed function attempt, this executes
its argument.

 stop(), stopifnot(), warning(),
message()

 These are errors of various levels of severity, from full-on stop and
an error, to a milder warning, to a mostly polite message.

 suppressWarnings(),
suppressMessages()

 These two do precisely what they say. Once you’re familiar with a
function, warnings or messages may be tedious or safely ignored.

 debug() Use this to start debugging a function that is not working properly.

 browser() This goes into a function body, right before the part you want to
debug.

 traceback() Provides a list of expressions leading to the source of an error.

 assignInNamespace() Allows for the temporary replacement of a function with a locally
crafted function.

 maintainer() Called on a package, shows a contact name and e-mail to go to for
troubleshooting.

61© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_5

 CHAPTER 5

 Writing Classes and Methods

 It is often helpful to have a function behave differently depending on the type of object passed. For example,
when summarizing a variable, it makes sense to create a different summary for numeric or string data. It is
possible to have a different function for every type of object, but then users would have to remember many
function names, and to remain unique, function names may be longer. Object-oriented programming (OOP)
is based on objects and is implemented in R (as in most programming languages) by using two concepts:
classes and methods. A class defines a template, or blueprint, describing the variables and features of an
object as well as determining what methods work for it. For example, a house may be defined as having a
floor, four walls, a roof, and a door. Specific data represents these properties, such as the dimensions and
color of each wall. The methods are behaviors or actions that can be performed on a particular object type.
For instance, a house can be painted, which changes its color, but a house cannot be eaten. R has three
object-oriented systems: S3, S4, and R5. This chapter covers the S3 and S4 systems, which are the most
common.

 In this chapter, we use the ggplot2 R package (Wickham, 2009). The following code loads the
 checkpoint (Microsoft Corporation, 2016) package to control the exact version of R packages used and then
loads the ggplot2 package:

 ## load checkpoint and required packages
 library(checkpoint)
 checkpoint("2016-09-04", R.version = "3.3.1")
 library(ggplot2)
 options(width = 70) # only 70 characters per line

 S3 System
 The S3 system is the most common object-oriented system. It is also the easiest to start using and the
simplest of the systems. The S3 system is easy to use in part because it is quite informal, and mostly focused
on the functions or methods. These advantages are also limitations, as the S3 system provides no formal
framework for ensuring that objects meet the requirements for a class. For a more in-depth guide to R
programming using the S3 system, see S Programming by W.N. Venables and B.D. Ripley (Springer, 2004).

 S3 Classes
 In R, some types, or classes , of objects are available by default, and almost all can be thought of as vectors
or generic vectors . For example, matrices and arrays are essentially vectors with attributes indicating the
dimensions. Lists are generic vectors, in which each element of the vector may contain another vector. Data
frames are lists in which each item is a vector, but all with equal length, and thus have a tabular format.

CHAPTER 5 ■ WRITING CLASSES AND METHODS

62

Vectors can hold specific types of data, such as logical, integer, numeric (real numbers), or character strings.
These fundamental objects and classes are provided by the base package. S3 classes are created by building
on the objects and classes provided by the base package.

 ■ Note S3 classes are created by using regular R objects (for example, vectors or lists) and classes (for
example, logical or numeric). S3 classes are defined by setting the class name via class(object) <- "class
name" . Elements of S3 objects are typically accessed by using ̀ $` , ̀ [` , or ̀ [[` .

 The practical creation of S3 classes is simple. First, create an R object that meets the requirements
or characteristics of the class, and then define the S3 classes by labeling the object with the class name.
Because S3 classes differ from other R objects only in having special names or attributes, they are accessed
and manipulated the same way as other basic R objects, by using ̀ $` , ̀ [` , and ̀ [[` . To check the class of an
object, we can use the class() function. In the following example, the mtcars object is queried to determine
that it has a data frame class:

 class(mtcars)
 [1] "data.frame"

 To see how the class of an object is set, we can look at many of the functions from base R, such as
 table() . Here, we print the source code for the table() function, leaving some of the middle off to save
space:

 table
 function (..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no",
 "ifany", "always"), dnn = list.names(...), deparse.level = 1)
 {
 [ommitted for space]
 y <- array(tabulate(bin, pd), dims, dimnames = dn)
 class(y) <- "table"
 y
 }
 <bytecode: 0x0000000017fa8180>
 <environment: namespace:base>

 The object returned at the end, y , is an array, but has a table class. The object class is set using the
idiom class(object) <- "class name" . It is also possible to assign more than one class to an object. This
is done in the much the same fashion as assigning a single class and in order of preference. The following
example stores the results from calling table() in the object x , and then sets two classes, first newclass and
then the original table class:

 x <- table(mtcars$cyl)
 class(x) <- c("newclass", "table")
 class(x)
 [1] "newclass" "table"

 The value of assigning multiple classes is a sort of backup, primarily for methods. For example, if you
create a new class that is a variant of a table or data frame, you may write a dedicated method for printing,
but rely on methods the original class for other functions, such as plotting or summaries.

CHAPTER 5 ■ WRITING CLASSES AND METHODS

63

 The types of classes you can write are virtually endless. A simple way to start is by creating special or
augmented cases of existing classes. In the following example, we make a special case of a data frame, with
x and y coordinates and text labels, called textplot . The simplest way to “create” the class is to create a data
frame and then change its class. If we use only our new class label, calling the print() function results in
the default method, but if we label it with both our new textplot label and as a data frame secondly, then
calling print() falls back to the method for data frames :

 d <- data.frame(
 x = c(1, 3, 5),
 y = c(1, 2, 4),
 labels = c("First", "Second", "Third")
)
 class(d) <- "textplot"

 print(d)
 $x
 [1] 1 3 5

 $y
 [1] 1 2 4

 $labels
 [1] First Second Third
 Levels: First Second Third

 attr(,"row.names")
 [1] 1 2 3
 attr(,"class")
 [1] "textplot"

 class(d) <- c("textplot", "data.frame")

 print(d)
 x y labels
 1 1 1 First
 2 3 2 Second
 3 5 4 Third

 In the S3 system, there is no formal way to create an object from a particular class. However, the most
common way to create objects of a specific class is as the output from a function. Dedicated functions can be
written to create an object of a specific class, or functions can be written that perform operations and output
results as an object of a specific class. The latter approach is more typical in R when using the S3 system.

 When you are creating a new class, some of the desired features or elements may be present in an
existing class. If this is the case, it may make sense to build on, or extend, an existing class. For instance,
data frames build on lists, requiring that each element of the list be a vector with the same length. Likewise,
the textplot class we created previously builds on data frames, requiring three elements named x , y , and
 labels . In this instance, we would say that textplot inherits from data.frame . That is, textplot is a child of
the parent class, data.frame (note that parent classes are also referred to as the super class , or base class). If
a class inherits from only one other class, it is called single inheritance (that is, it has only one parent class).
If a class inherits from multiple classes, it is called multiple inheritance (that is, it has more than one parent
class). If a class inherits from another class, it may inherit features of the data stored, and it may inherit
methods, the functions that operate on objects of a specific class. Inheriting methods are especially useful to
avoid re-creating the wheel.

CHAPTER 5 ■ WRITING CLASSES AND METHODS

64

 ■ Note Inheritance refers to creating a new class by building on the features and methods of an existing
class. The new class is known as the child class , and the classes from which the new class is derived are
the parent , or super , classes. A child class may inherit both features of the parent class and use of the parent
class’s methods.

 In the next example, we write a little function to use the formula interface to build a textplot object
from a data frame. The function has two arguments: the formula, called f , and the data, called d . The first
part of the code uses the stopifnot() function introduced in Chapter 4 to check that the classes of the
objects passed to the function match what is expected. To test the classes, we use the inherits() function,
which assesses whether a particular object is, or inherits from, the specified class. For example, our textplot
class is secondly a data frame, and so testing that uses inherits(object, "data.frame") would evaluate to
 TRUE . When we build S4 classes, we see a more formal definition and system for class inheritance. The next
part of the function gets all the variables from the formula, in order, from the specified data frame, renames
the columns, applies our textplot class, and returns the object:

 textplot_data <- functions(f, d) {
 stopifnot(inherits(d, "data.frame"))
 stopifnot(inherits(f, "formula"))

 newdata <- get_all_vars(formula = f, data = d)
 colnames(newdata) <- c("y", "x", "labels")
 class(newdata) <- c("textplot", "data.frame")

 return(newdata)
 }

 ## example use
 textplot_data(f = mpg ~ hp | cyl, d = mtcars[1:10,])
 y x labels
 Mazda RX4 21.0 110 6
 Mazda RX4 Wag 21.0 110 6
 Datsun 710 22.8 93 4
 Hornet 4 Drive 21.4 110 6
 Hornet Sportabout 18.7 175 8
 Valiant 18.1 105 6
 Duster 360 14.3 245 8
 Merc 240D 24.4 62 4
 Merc 230 22.8 95 4
 Merc 280 19.2 123 6

 These examples show how easy it is to use the S3 system to create classes. Next, we explore how to write
methods for existing or new classes.

 S3 Methods
 Methods are functions or operations that can be performed on objects of specific classes. Even if you do not
write your own classes, you may write your own methods. Writing S3 methods is like writing functions as
we did in Chapter 4 . The only difference is that S3 methods have a special naming convention and require a
generic function for users, which takes care of dispatching to the appropriate method.

http://dx.doi.org/10.1007/978-1-4842-2077-1_4
http://dx.doi.org/10.1007/978-1-4842-2077-1_4

CHAPTER 5 ■ WRITING CLASSES AND METHODS

65

 ■ Note S3 methods are regular R functions that follow a specific naming convention: foo.classname() .
Users call the generic function, foo() , which dispatches to the appropriate method based on the class of
object passed in as an argument. If no generic function exists, a generic must be written that includes a call to
 UseMethods() , which handles the actual method dispatch.

 To start, let’s write a simple plotting method for the textplot object class we developed. To make an S3
plot method, we use the function name—here, plot —followed by the class name— function.classname()
or, in this case, plot.textplot() . As long as we name our function in that way, it works as an S3 method, as
long as a generic plot() function exists, a topic we discuss shortly.

 Our plot function is shown in the following code. The call to the par() function adjusts the default
margins for a graph, to reduce excess white space on the top and right of our graph. The results are stored in
the object, op , as this stores the original graphical parameters. Then the user’s original graphical parameter
state can be restored when the function exits by calling par(op) on exit, a function you learned about in
Chapter 4 . Next, we create a new plot area by calling plot.new() , and set the dimensions of our new plot by
calling plot.window() with the x and y limits determined by the range of the data. Next, we plot the labels
by using the text() function, which takes the coordinates and labels. Finally, we add an axis on the bottom,
 side = 1 , and left, side = 2 . The original textplot data object is returned invisibly at the end.

 plot.textplot <- function(d) {
 op <- par(mar = c(4, 4, 1, 1))
 on.exit(par(op))

 plot.new()
 plot.window(xlim = range(d$x, na.rm = TRUE),
 ylim = range(d$y, na.rm = TRUE))
 text(dx, dy, labels = d$labels)

 axis(side = 1, range(d$x, na.rm = TRUE))
 axis(side = 2, range(d$y, na.rm = TRUE))

 invisible(d)
 }

 Next, we need to make some data and then plot() it. Note that because it is a method, we do not
need to call our function by its full name, plot.textplot() . We can simply call plot() , and R takes care of
dispatching the data object to the correct method based on the object class, textplot . The result is shown in
Figure 5-1 , and the code is shown here:

 dat <- textplot_data(f = mpg ~ hp | cyl, d = mtcars[1:10,])
 plot(dat)

http://dx.doi.org/10.1007/978-1-4842-2077-1_4

CHAPTER 5 ■ WRITING CLASSES AND METHODS

66

 This example shows just how easy it is to use the S3 system. Almost no special functions or effort is
required. Just create a regular R object however you want, add a custom class label, write a function, and
give it a special name—and that is essentially all that is required. However, there are a few special functions
and tools for S3 methods. To start, let us see what happens when we look at the source code for plot() . This
generic function contains just three arguments. The body consists only of a call to UseMethod() , which is what
tells R to check the argument classes and dispatch to an appropriate method. If you are writing methods and a
generic function does not exist, you also need to write the generic function. Writing a generic function in the S3
system is a straightforward task that requires only considering the default arguments to include:

 plot
 function (x, y, ...)
 UseMethod("plot")
 <bytecode: 0x0000000017ee3bd0>
 <environment: namespace:graphics>

 To see the methods available, we use the methods() function . The result shows many specific methods
available for plot() , including our newly written plot.textplot :

 methods(plot)
 [1] plot,ANY-method plot,color-method
 [omitted for space]
 [71] plot.table* plot.textplot
 [omitted for space]
 [81] plot.varclus plot.xyVector*
 see '?methods' for accessing help and source code

 Figure 5-1. The plot of text labels at specific coordinates, demonstrating the use of custom methods for
custom classes

CHAPTER 5 ■ WRITING CLASSES AND METHODS

67

 Some of the functions are followed by an asterisk, indicating that these methods are not public or
cannot be directly accessed, such as plot.table() . For example, if we type its name, we get an error that it
cannot be found:

 plot.table
 Error: object 'plot.table' not found

 ■ Note The :: operator is used to refer to publicly exported functions from a specific package, primarily
when multiple packages export functions with the same name: package::foo() . The ::: operator is used to
access functions from a package’s namespace that are not exported. Use nonpublic functions with caution, as
they are subject to change without notice.

 Functions that are not public or have not been exported from a package namespace can still be
accessed as methods. These function also can be accessed directly by specifying the package they are from
and using the ::: operator , revealing the function source code:

 graphics:::plot.table
 function (x, type = "h", ylim = c(0, max(x)), lwd = 2, xlab = NULL,
 ylab = NULL, frame.plot = is.num, ...)
 {
 xnam <- deparse(substitute(x))
 rnk <- length(dim(x))
 if (rnk == 0L)
 stop("invalid table 'x'")
 if (rnk == 1L) {
 dn <- dimnames(x)
 nx <- dn[[1L]]
 if (is.null(xlab))
 xlab <- names(dn)
 if (is.null(xlab))
 xlab <- ""
 if (is.null(ylab))
 ylab <- xnam
 is.num <- suppressWarnings(!any(is.na(xx <- as.numeric(nx))))
 x0 <- if (is.num)
 xx
 else seq_along(x)
 plot(x0, unclass(x), type = type, ylim = ylim, xlab = xlab,
 ylab = ylab, frame.plot = frame.plot, lwd = lwd,
 ..., xaxt = "n")
 localaxis <- function(..., col, bg, pch, cex, lty) axis(...)
 if (!identical(list(...)$axes, FALSE))
 localaxis(1, at = x0, labels = nx, ...)
 }
 else {
 if (length(dots <- list(...)) && !is.null(dots$main))
 mosaicplot(x, xlab = xlab, ylab = ylab, ...)

CHAPTER 5 ■ WRITING CLASSES AND METHODS

68

 else mosaicplot(x, xlab = xlab, ylab = ylab, main = xnam,
 ...)
 }
 }
 <bytecode: 0x0000000053765058>
 <environment: namespace:graphics>

 In addition to writing methods for new classes, it is sometimes helpful to write methods for existing
classes. For example, the popular ggplot2 package has no default method for working with a linear model
or regression objects. To start, we set up a simple regression model by using the built-in mtcars data . From
there, we are predicting mpg from hp , vs , their interaction (all of which are created from hp * vs , which
expands to the two main effects and their interaction or product term), and cyl dummy coded, through the
call to factor() . The results are shown here by calling summary() on the object:

 m <- lm(mpg ~ hp * vs + factor(cyl), data = mtcars)
 summary(m)
 Call:
 lm(formula = mpg ~ hp * vs + factor(cyl), data = mtcars)

 Residuals:
 Min 1Q Median 3Q Max
 -4.7640 -1.4424 -0.1703 1.5882 6.9382

 Coefficients:
 Estimate Std. Error t value Pr(>|t|)
 (Intercept) 26.92908 2.71758 9.909 2.56e-10 ***
 hp -0.01519 0.01554 -0.978 0.33718
 vs 8.53352 4.95297 1.723 0.09678 .
 factor(cyl)6 -4.21121 1.93887 -2.172 0.03916 *
 factor(cyl)8 -8.65096 2.69738 -3.207 0.00354 **
 hp:vs -0.09101 0.04363 -2.086 0.04692 *

 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Residual standard error: 3.007 on 26 degrees of freedom
 Multiple R-squared: 0.7913, Adjusted R-squared: 0.7511
 F-statistic: 19.71 on 5 and 26 DF, p-value: 4.181e-08

 We can check the class of the object and that there is no current ggplot() method by using the
following code:

 class(m)
 [1] "lm"
 methods(ggplot)
 [1] ggplot.data.frame* ggplot.default* ggplot.summaryP
 [4] ggplot.transcan
 see '?methods' for accessing help and source code

 Although the fortify() function has a method for linear models that creates a data frame suitable for
use with ggplot() , it extracts only the raw data, fitted values, and residuals. To show the effects of a model, it
can be helpful to plot predicted values as a function of one variable holding other variables at specific values.
The method that follows implements a system to do this.

CHAPTER 5 ■ WRITING CLASSES AND METHODS

69

 It takes the same basic arguments as ggplot() but adds the vars argument, and each variable used
in the model is passed with a specific set of values to hold it at for prediction. All possible combinations of
these are created by passing the list as arguments to the expand.grid() function by using the do.call()
function. The dependent variable, or yvar , is then extracted from the model formula and converted to
a character. New predictions along with standard errors for the predictions are generated. A 95 percent
confidence interval is generated with the lower limit, LL, and upper limit, UL, based on the fit or predicted
value and the normal quantiles times the standard error of the fit. Finally, the column name is changed
from fit to whatever the dependent variable’s actual name was, and then the data for prediction and the
predicted values are combined into a new data frame. This is passed to ggplot() , which dispatches to the
 ggplot() method for data frames.

 ggplot.lm <- function(data, mapping, vars, ...) {
 newdat <- do.call(expand.grid, vars)
 yvar <- as.character(formula(data)[[2]])
 d <- as.data.frame(predict(data, newdata = newdat, se.fit = TRUE))
 d <- within(d, {
 LL <- fit + qnorm(.025) * se.fit
 UL <- fit + qnorm(.975) * se.fit
 })
 colnames(d)[1] <- yvar
 data <- cbind(newdat, d[, c(yvar, "LL", "UL")])
 ggplot(data = data, mapping = mapping, ...)
 }

 With this method in place, we can easily make some graphs from our linear regression model . The
following code uses our new method, specifying the exact values to hold predictor variables, adds a line by
using geom_line(), and uses a black-and-white theme with theme_bw() . The result is shown in Figure 5-2 ;
the code is as follows:

 ggplot(m, aes(hp, mpg), vars = list(
 hp = min(mtcars$hp):max(mtcars$hp),
 vs = mean(mtcars$vs),
 cyl = 8)) +
 geom_line(size=2) +
 theme_bw()

CHAPTER 5 ■ WRITING CLASSES AND METHODS

70

 Figure 5-2. Predicted regression line from the model, using the ggplot.lm() method

 Because all possible combinations of the predictor values are created by using expand.grid() in our
method, we can make several predicted lines, such as holding vs at 0 and 1 , shown in the following example
code and in Figure 5-3 :

 ggplot(m, aes(hp, mpg, linetype = factor(vs), group = factor(vs)), vars = list(
 hp = min(mtcars$hp):max(mtcars$hp),
 vs = c(0, 1),
 cyl = 8)) +
 geom_ribbon(aes(ymin = LL, ymax = UL), alpha = .25) +
 geom_line(size=2) +
 theme_bw()

CHAPTER 5 ■ WRITING CLASSES AND METHODS

71

 These examples provide a simple introduction to what can be done when writing new classes and
methods or extending existing classes and methods. Because the S3 system is the most commonly used
in R, it may be the single most important system to learn; it can be used so widely and can extend many
classes of objects.

 S4 System
 In contrast with the S3 system, the S4 system is a formal system. The benefit of this formality is a greater
assurance that objects of a particular class contain exactly what is expected. The downside of the formality is
a greater complexity: more functions required to set up classes and methods, and more-rigid requirements
in the programming. Whereas the S3 system allows for writing quick-and-dirty code, the S4 system requires
more careful planning and comes with higher overhead.

 Objects have three components: classes, slots, and methods. The name and structure of the object—
what it contains—is the class . The variables or other objects stored in the object are slots . Finally, the
functions that can operate on an object are its methods . Throughout this section, we go over each of these
components. For further reading on the S4 system, one excellent guide is Software for Data Analysis:
Programming with R by John Chambers (Springer, 2010).

 Figure 5-3. Predicted regression lines from the model, with confidence intervals, using the ggplot.lm() method

CHAPTER 5 ■ WRITING CLASSES AND METHODS

72

 S4 Classes
 Because S4 classes are more formal, planning is required before writing a new class. Unlike S3 classes,
in S4 the names and types of every variable to be included must be specified. Previously we defined a
class, textplot , by using the S3 system. We can define the same class by using the S4 system. The x and y
arguments should both be numeric type, and the labels argument should be a character string. We also
know that the length of all the arguments should be the same. Finally, we may want to assert that although it
is okay to have a missing label, a blank label is not allowed. All of this needs to be considered and specified
in advance—because although in the S3 system none of this could be controlled, in the S4 system we can
define everything when we create the class. To create our first S4 class, we use the setClass() function ,
shown in the next example. Not every argument is required, but it is considered a good practice to be as
explicit as possible when defining a new class.

 ■ Note S4 classes are created by calling setClass() . The Class and slots arguments are required. The
class name is specified as a character string, and slots (holding variables) are defined as a named character
vector; names correspond to slot names, and values correspond to the class of each slot. An “empty” object can
be specified by using the prototype argument, and validity checking can be set by passing a function to the
 validity argument.

 The first argument, Class , provides the name of the class. Next, the slots are defined by using a
named vector in which the names indicate the slot names and the values indicate the type of each slot. The
 prototype argument is not required, but it is helpful to define, as it determines how to create an “empty”
object, or how an object of that class is created when no specific data is specified. The validity argument
is also not required, but allows explicit checks to be run that the object conforms to expectations. R by
default ensures the appropriate type of objects is passed to the slots, but many other tests and validity checks
can be added to reduce the chances of an object being created that does not work as intended. Here is the
 setClass() example:

 setClass(
 Class = "textplot",
 slots = c(
 x = "numeric",
 y = "numeric",
 labels = "character"),
 prototype = list(
 x = numeric(0),
 y = numeric(0),
 labels = character(0)),
 validity = function(object) {
 stopifnot(
 length(object@x) == length(object@y),
 length(object@x) == length(object@labels))
 if (!all(nchar(object@labels) > 0, na.rm = TRUE)) {
 stop("All labels must be missing or non zero length characters")
 }
 return(TRUE)
 }
)

CHAPTER 5 ■ WRITING CLASSES AND METHODS

73

 To create new objects of a particular class in the S4 system, we use the function new() . In the code that
follows, we examine three attempts to create a new object. First, we make a correct and valid object. Then we
look at what happens if we try to use the wrong type of argument. Finally, we look at an example that tests
the validity function we created.

 new("textplot",
 x = c(1, 3, 5),
 y = c(1, 2, 4),
 labels = c("First", "Second", "Third"))

 An object of class "textplot"
 Slot "x":
 [1] 1 3 5

 Slot "y":
 [1] 1 2 4

 Slot "labels":
 [1] "First" "Second" "Third"

 new("textplot",
 x = c(1, 3, 5),
 y = c(1, 2, 4),
 labels = 1:3)

 Error in validObject(.Object) :
 invalid class "textplot" object: invalid object for slot "labels" in class "textplot": got
class "integer", should be or extend class "character"

 new("textplot",
 x = c(1, 3, 5),
 y = c(1, 2, 4),
 labels = c("First", "Second", ""))

 Error in validityMethod(object) (from #16) :
 All labels must be missing or non zero length characters

 These errors would not happen if we were using the S3 system to define a class, as no such type
checking nor validity checking occur. In the previous examples, each attempt to create a new object had at
most one error. The next example has two errors: the vector passed to the y slot is not the same length as
the other two, and there is a zero-length character label. However, as currently written, only the first error is
caught, because the validity function stops as soon as there are any problems:

 new("textplot",
 x = c(1, 3, 5),
 y = c(1, 2),
 labels = c("First", "Second", ""))
 Error: length(object@x) == length(object@y) is not TRUE

 Another way to write the validity function is so that, rather than throwing errors for any problems, the
function collects them and returns all at the end. While revising the validity function, we could also think
about how to make the error messages more informative. As it stands, it is fairly straightforward to see what the
problem is, but perhaps not to see exactly what the problem is. For example, it is evident that the lengths are
not equal, but is it that x is too long or y is too short? This is implemented in the revised code to define a class.

CHAPTER 5 ■ WRITING CLASSES AND METHODS

74

 However, before diving into improving the validity function , we need a brief diversion on creating and
formatting character strings in R. First, when writing text, new lines can be inserted by including the special
character, \n . To see the examples, we use the cat() function, which stands for concatenate , and print,
and writes text out to the R console (or other locations if a file is specified). The following two examples are
identical except for the line break between the a and b in the second example:

 cat("ab", fill = TRUE)
 ab

 cat("a\nb", fill = TRUE)
 a
 b

 One commonly used function is paste() , which can combine vectors or collapse them. Combining is
shown in the first example that follows. The two vectors are combined by using the separator, defined by the
 sep argument, an empty string in our case. In the second example, a single vector with multiple elements
is collapsed into a single character string. How the elements of the vectors are combined into one string is
determined by the argument to collapse —in our example, the line break character.

 paste(c("a", "b"), c(1, 2), sep = "")
 [1] "a1" "b2"

 paste(c("a", "b"), collapse = "\n")
 [1] "a\nb"

 These are useful functions for us when writing a validity-checking function, as they allow us to combine
multiple errors into one string with line breaks as needed.

 The other key function we use is sprintf() . Its first argument is a user-defined string, with special
symbols that always start with the percentage sign (%) where values should be substituted. The subsequent
arguments are the values to substitute. An example may be the clearest way to show it. Here, %d is used to
indicate that an integer is substituted, and then R substitutes in 98, 80, and 75. The order of substitution is
the order of appearance.

 sprintf("First (%d), Second (%d), Third (%d)", 98, 80, 75)
 [1] "First (98), Second (80), Third (75)"

 Commonly used format options for substitutions are %d for integers, %f for fixed-point decimals,
 %s for strings, and % for a literal percentage sign. Each is demonstrated in this next example, and further
documentation is available in the help pages, ?sprintf . For the numeric value, we use 0.2 to specify that the
number should be rounded to two decimal places.

 sprintf("Integer %d, Numeric %0.2f, String %s, They won by 58%%",t
 5, 3.141593, "some text")
 [1] "Integer 5, Numeric 3.14, String some text, They won by 58%"

 Armed with paste() and sprintf() , we can proceed to revise the validity function for our textplot
class to provide more-informative errors, and to run all checks, collecting errors along the way and returning
all of them at the end. One final note: previously, we used the idiom new("classname", arguments) to
create a new object of a particular class. While this is perfectly acceptable, there is a shortcut. The function
 setClass() is primarily called for its side effect of defining a new class, but it also invisibly returns a

CHAPTER 5 ■ WRITING CLASSES AND METHODS

75

constructor function. If we save the results from our call to setClass() , by convention in an object with the
same name as the class, we can use the resulting object to create a new object of that class:

 textplot <- setClass(
 Class = "textplot",
 slots = c(
 x = "numeric",
 y = "numeric",
 labels = "character"),
 prototype = list(
 x = numeric(0),
 y = numeric(0),
 labels = character(0)),
 validity = function(object) {
 errors <- character()
 if (length(object@x) != length(object@y)) {
 errors <- c(errors,
 sprintf("x (length %d) and y (length %d) are not equal",
 length(object@x), length(object@y)))
 }
 if (length(object@x) != length(object@labels)) {
 errors <- c(errors,
 sprintf("x (length %d) and labels (length %d) are not equal",
 length(object@x), length(object@labels)))
 }
 if (!all(nchar(object@labels) > 0, na.rm = TRUE)) {
 errors <- c(errors, sprintf(
 "%d label(s) are zero length. All labels must be missing or non zero length",
 sum(nchar(object@labels) == 0, na.rm = TRUE)))
 }

 if (length(errors)) {
 stop(paste(c("\n", errors), collapse = "\n"))
 } else {
 return(TRUE)
 }
 }
)

 Now when we create the same object with multiple problems, we get far more information and save
some keystrokes. We can see the lengths of x and y , and also learn that there are problems with the labels:

 textplot(
 x = c(1, 3, 5),
 y = c(1, 2),
 labels = c("First", "Second", ""))
 Error in validityMethod(object) (from #30) :

 x (length 3) and y (length 2) are not equal
 1 label(s) are zero length. All labels must be missing or non zero length

CHAPTER 5 ■ WRITING CLASSES AND METHODS

76

 S4 Class Inheritance
 So far, you have seen how to define new S4 classes. It may still seem like using the S4 system requires much
more work than the S3 system, and with little benefit, aside from more formal validation and error checking.
One of the powerful features of the S4 system is inheritance.

 ■ Note S4 classes can inherit from existing S4 classes by calling setClass() with the additional argument
 contains = "S4 Class to Inherit" . Existing slots, prototype, and validity checking are inherited. Only new
slots and corresponding prototypes/validity checking need to be specified in the new setClass() call.

 We previously created a simple textplot class. Now suppose that although sometimes our simple class
is sufficient, at other times we may need more. For example, at times we may want to drill down into the
data and create a panel of plots for different subsets of the data by some grouping variable. To this end, we
want a groupedtextplot class. However, the only additional data we need is one more slot. One option is to
copy and paste our old code and then modify it as needed. In this section, we explore how using inheritance
lets us reuse and extend existing classes. When a class inherits from another class, all of the slots from the
previous class are also inherited, as is validity checking. Next, we create our groupedtextplot class. It is
similar to creating a new class, but we define only new slots, and then specify the inheritance by using the
argument contains . Because the validity checking is also inherited, we need to specify only validity checks
for the new slots.

 groupedtextplot <- setClass(
 Class = "groupedtextplot",
 slots = c(
 group = "factor"),
 prototype = list(
 group = factor()),
 contains = "textplot",
 validity = function(object) {
 if (length(object@x) != length(object@group)) {
 stop(sprintf("x (length %d) and group (length %d) are not equal",
 length(object@x), length(object@group)))
 }
 return(TRUE)
 }
)

 With that small amount of code, we are ready to use our new class. In the following two examples, the
first shows a correctly created new object, and the latter shows the familiar error messages when we attempt
to create an invalid object:

 gdat <- groupedtextplot(
 group = factor(c(1, 1, 1, 1, 2, 2, 2, 2)),
 x = 1:8,
 y = c(1, 3, 4, 2, 6, 8, 7, 10),
 labels = letters[1:8])
 gdat
 An object of class "groupedtextplot"
 Slot "group":

CHAPTER 5 ■ WRITING CLASSES AND METHODS

77

 [1] 1 1 1 1 2 2 2 2
 Levels: 1 2

 Slot "x":
 [1] 1 2 3 4 5 6 7 8

 Slot "y":
 [1] 1 3 4 2 6 8 7 10

 Slot "labels":
 [1] "a" "b" "c" "d" "e" "f" "g" "h"

 groupedtextplot(
 group = factor(c(1, 1, 1, 1, 2, 2, 2, 2)),
 x = 1:8,
 y = c(1, 3, 4, 2, 6, 8, 7),
 labels = c(letters[1:7], ""))
 Error in validityMethod(as(object, superClass)) (from #30) :

 x (length 8) and y (length 7) are not equal
 1 label(s) are zero length. All labels must be missing or non zero length

 In this case, textplot would be called the parent class , and groupedtextplot would be called the
 child class . This relationship can be diagrammed (and sometimes for complex inheritance, diagramming is
helpful). By convention, the relationship is shown graphically with an arrow pointing from the child to the
parent(s), such as textplot <- groupedtextplot . Also by convention, parents are typically on the left, or
above if graphing from top to bottom. Although we cover inheritance from only a single parent in this book,
classes can inherit from multiple parents, and those parents can inherit from parents, and so on. It is in these
cases where a visual diagram is particularly helpful. Another benefit of using inheritance, rather than writing
a whole new class, is that methods are also inherited. This means that we can reuse both the slots from the
parent as well as the methods written for the parent class, a topic we turn to in the next section.

 S4 Methods
 In addition to the methods() function you saw earlier to display the methods available for a given function,
in the S4 system we can find methods by using showMethods() . Because of the more formal class system,
 showMethods() can be used to show all methods for a specific function, or to show all methods (for any
function) for a particular class by using the classes = "class name" argument. This can be helpful if you
are working with a new class and want to know what methods have already been written and are available.

 ■ Note Available S4 methods can be examined by using showMethods("generic function") . New S4
methods are defined by calling setMethod() . The main three arguments are f , signature , and definition ,
containing the name of the generic function (string), the S4 class name that will dispatch to this method (string),
and a function that is the actual method, respectively.

 To write new methods in the S3 system, we simply write functions with a special naming convention. To
define S4 methods, we use the function setMethod() . It is possible to write new methods for existing classes,
as well as writing methods for new classes, of course. For a new class, a method is needed for show() . When
an object is simply typed at the console, R shows it by calling show() . Without a show() method for a new
class, the default printing is quite ugly, as you have seen in our example so far.

CHAPTER 5 ■ WRITING CLASSES AND METHODS

78

 In the following code, we define a new method for our textplot class. The first argument is the function
name for which we create a method. The next argument, the signature, is the name of the class. In this
case, because show() takes a single argument, only one class name needs to be specified. For functions
with multiple arguments, the signature can become more complex, with different methods depending on
the class of multiple arguments. Finally, we write our function, the definition of the method. The code is
relatively simple, using the cat() function to display the values. The argument fill = TRUE has the effect
of adding a line feed so that each line starts with X: or the variable label, and then the values. The head()
function is used to get at most the first five values, or less if there are fewer values.

 setMethod(
 f = "show",
 signature = "textplot",
 definition = function(object) {
 cat(" X: ")
 cat(head(object@x, 5), fill = TRUE)
 cat(" Y: ")
 cat(head(object@y, 5), fill = TRUE)
 cat("Labels: ")
 cat(head(object@labels, 5), fill = TRUE)
 })
 [1] "show"

 R echoes the name of the generic function, show() , for which we just created a method. Now we get
some nicer output when we create a textplot class object:

 dat <- textplot(
 x = 1:4,
 y = c(1, 3, 5, 2),
 labels = letters[1:4])

 dat
 X: 1 2 3 4
 Y: 1 3 5 2
 Labels: a b c d

 Once we start defining methods, the benefits of class inheritance become even greater. Because
 groupedtextplot inherits from textplot , if no method is defined for groupedtextplot , it falls back to the
method for textplot , if available. Although not perfect, because the grouping is not shown, this is still nicer
than the default:

 gdat
 X: 1 2 3 4 5
 Y: 1 3 4 2 6
 Labels: a b c d e

 Next, we define a method for the [function, which is used to subset data. This function is more
complex, as we must build a logic tree allowing several possible combinations of arguments. The first
argument of the function, x , is for the object to be subset. By convention, i refers to rows or observations,
and j to columns or variables. If only i is not missing (that is, rows or observations are specified), typically
all variables are included. If only j (variables) is specified, typically all observations are included. If both are

CHAPTER 5 ■ WRITING CLASSES AND METHODS

79

specified, only select variables and select observations are included. This is accomplished by using a series
of if and else if statements. There are three new functions:

• validObject() is a generic function that executes the validity check, if present, for a
specific object class.

• slotNames() returns a character vector giving the names of each slot.

• slot() works similarly to the @ operator, but can use character strings to
extract slots by name.

 After the method is set, several examples of its uses are shown:

 setMethod(
 f = "[",
 signature = "textplot",
 definition = function(x, i, j, drop) {
 if (missing(i) & missing(j)) {
 out <- x
 validObject(out)
 } else if (!missing(i) & missing(j)) {
 out <- textplot(
 x = x@x[i],
 y = x@y[i],
 labels = x@labels[i])
 validObject(out)
 } else if (!missing(j)) {
 if (missing(i)) {
 i <- seq_along(x@x)
 }

 if (is.character(j)) {
 out <- lapply(j, function(n) {
 slot(x, n)[i]
 })
 names(out) <- j
 } else if (is.numeric(j)) {
 n <- slotNames(x)
 out <- lapply(j, function(k) {
 slot(x, n[j])[i]
 })
 names(out) <- n[j]
 } else {
 stop("j is not a valid type")
 }
 }

 return(out)
 })

 dat[]
 X: 1 2 3 4
 Y: 1 3 5 2
 Labels: a b c d

CHAPTER 5 ■ WRITING CLASSES AND METHODS

80

 dat[i = 1:2]
 X: 1 2
 Y: 1 3
 Labels: a b

 dat[j = 1]
 $x
 [1] 1 2 3 4

 dat[j = "y"]
 $y
 [1] 1 3 5 2

 dat[i = 1:2, j = c("x", "y")]
 $x
 [1] 1 2

 $y
 [1] 1 3

 With a show and subsetting method defined for our textplot class, we can easily leverage those to
make a show method for our groupedtextplot class by looping through the object by group, subsetting, and
showing each subset:

 setMethod(
 f = "show",
 signature = "groupedtextplot",
 definition = function(object) {
 n <- unique(object@group)
 i <- lapply(n, function(index) {
 cat("Group: ", index, fill = TRUE)
 show(object[which(object@group == index)])
 })
 })

 gdat
 Group: 1
 X: 1 2 3 4
 Y: 1 3 4 2
 Labels: a b c d
 Group: 2
 X: 5 6 7 8
 Y: 6 8 7 10
 Labels: e f g h

 Summary
 This chapter has introduced the S3 and S4 systems in R for developing new classes and methods. The S4
system, in particular, can be complicated, with inheritance from multiple parent classes and methods that
are specialized to the class of more than one argument. Even if you use and develop in R, you may only
rarely develop new classes, as there are already classes for most data types. However, it can often be helpful
to develop or extend existing methods, and at the very least, understanding how classes and methods work
makes it easier to use existing ones.

CHAPTER 5 ■ WRITING CLASSES AND METHODS

81

 Hopefully, this chapter is enough to get you started using these systems and to see their capabilities.
Table 5-1 describes key functions covered in this chapter. In Chapter 6 , we bundle functions and classes and
methods together to make our own R package. The focus is on making an R package, so you do not need to
be too comfortable with classes and methods. If your work would benefit from the use of the S4 system, you
can get slightly more in-depth coverage from, “How S4 Methods Work” by John Chambers (available online
at http://developer.r-project.org/howMethodsWork.pdf). If you intend to work with the S4 system and
need an in-depth dive, we recommend Software for Data Analysis: Programming with R . Another good book
more focused on general R programming and the older S3 system is S Programming .

 Table 5-1. Key Functions Described in This Chapter

 Function What It Does

 class() Returns the class of an object (S3/S4).

 inherits() Checks whether an object is of a certain class or inherits from that class.

 methods() Returns a list of the available methods for a given function.

 showMethods() Returns a list of the available methods for a given function or, if using the classes
argument, available methods for any function for a given class.

 ::: Operator that allows access to nonexported (nonpublic) functions from a package.

 function.class() Generic scheme for naming an S3 method, using the function name, followed by a
period, followed by the class of object it should be applied to.

 setClass() Defines a new S4 class.

 setMethod() Defines a method for a particular function for a particular S4 class.

 @ Low-level way to access slots by name in objects in the S4 system, similar to $ for
other R objects or S3 class objects.

 new() Creates a new S4 object of a specific class.

 paste() Pastes strings together. Can operate on several vectors or collapse together all the
elements of a single vector.

 sprintf() Formats strings and allows for substituting numbers and other strings into a defined
template. Useful for making informative error messages or other messages to users.

 show() Generic function to show an R object. Also, the default function that is called when
you type an object name at the R console.

 ̀ [`() Operator/generic function used to subset data or to access specific variables or rows.
In the S4 system for a new class, methods must be defined, or the function is not
usable.

 head() Lists the first few elements or rows of an object.

 validObject() Generic function that checks when an object with an S4 class is valid by using the
validity checks specified when the class was created (if any). Called by default when
an object is created, but can also be called explicitly after modifying an object to
check whether it is still valid.

 slotNames() Returns all the slot names of an S4 class object, similar to names() for other R objects
or S3 class objects.

 slot() Can be used to access a specific slot of an S4 object.

http://dx.doi.org/10.1007/978-1-4842-2077-1_6
http://developer.r-project.org/howMethodsWork.pdf

83© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_6

 CHAPTER 6

 Writing a Package

 Packages are the fundamental way to document, share, and distribute R code and data. Our goal is to write
our own packages, and our fair warning is that this chapter is particularly complex because of the many
software tools that are employed during R package development.

 In this chapter, we make sure of four packages. The devtools package (Wickham and Chang, 2016)
provides functions to help set up, document, and manage the development of an R package. The roxygen2
package (Wickham, Danenberg, and Eugster, 2015) greatly eases writing documentation for R packages by
allowing the function documentation to be written inline next to functions by using comments. We also use
two other, less critical packages. The testthat package (Wickham, 2011) is not required but has functions
that facilitate quality control by testing that functions return expected values. Similarly, the covr package
(Hester, 2016) facilitates quality control by testing the percentage of package code that is executed (covered)
by tests. Ideally, 100 percent of code would be covered by tests, though in practice, many R packages have no
tests, so any coverage is better than average. In the package, we use one of the methods from Chapter 5 for
 ggplot2 , so we also include the now familiar ggplot2 (Wickham, 2009) package.

 Writing packages can be a complex process. It may be helpful to familiarize yourself with the final
product, available online at https://github.com/ElkhartGroup/AdvancedRPkg . We also recommend
referring to our official GitHub record of the package as you go through this chapter, if you are unsure
whether a file is in the correct location or set up correctly. The following code loads the checkpoint
(Microsoft Corporation, 2016) package to control the exact version of R packages used and then loads the
required package:

 ## load checkpoint and required packages
 library(checkpoint)
 checkpoint("2016-09-04", R.version = "3.3.1")
 library(testthat)
 library(devtools)
 library(roxygen2)
 library(covr)
 library(ggplot2)
 options(width = 70) # only 70 characters per line

 Before You Get Started
 This chapter covers some of the basics of writing an R package , and also introduces tools to facilitate the
processes not included in the official manual, Writing R Extensions , available online at https://cran.r-
project.org/doc/manuals/R-exts.html . The manual can be quite technical, but it is the definitive guide. It
is required reading if you plan to submit R packages to CRAN, and a good idea to read even if you just plan to
develop packages for your own use or a more limited user base such as your company or lab group.

http://dx.doi.org/10.1007/978-1-4842-2077-1_5
https://github.com/ElkhartGroup/AdvancedRPkg
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/doc/manuals/R-exts.html

CHAPTER 6 ■ WRITING A PACKAGE

84

 Many R packages contain code from other programming languages such as C, C++, Fortran, or Java.
Often this is because other languages, such as C, can be compiled and optimized to run much faster than R,
so package developers may choose to write computationally intensive parts of their code in a compiled and
highly efficient language. However, for this chapter, we discuss how to write only R packages containing pure
R code or data, as the process is nearly identical, with most differences being idiosyncratic to the language
included (for example, makefiles).

 Before developing R packages, some tools are required. Indeed, for those not used to software
development, writing R packages can require a rather daunting toolchain. If you are using a Linux system,
chances are you have many of these already or can readily install them. In Windows and Mac OS, it can take
a bit more setup. Regardless of the system, the tools need to be accessible, and this means adding them to
the system path so that when called from a command line, they can be found.

 If using Windows, the main tools required (some command-line tools as well as compilers) are
available from a binary installer at https://cran.r-project.org/bin/windows/Rtools/ . Before the final
next of the install, there are two check boxes, one of which may be unchecked and adds this to your system
path. Just select both. Also, you need LaTeX, a typesetting system. MiKTeX is a popular choice (www.miktex.
org/); be sure to select the 64-bit option if your system is 64 bit. While the default options for these two
pieces are enough in most situations, we suggest that MiKTeX users change to Yes the option for installing
default packages on the fly. Further details on the required toolchain are available from the R manual at
 https://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset .

 If using Mac OS, get Xcode, developer tools, from the App Store. You may also need to get XQuartz
(https://xquartz.macosforge.org/). As on Windows, you need LaTeX. MacTeX is one choice (www.tug.
org/mactex/). Additional details are available from the R manual (https://cran.r-project.org/doc/
manuals/R-admin.html#OS-X).

 Two more decisions need to be made to progress to writing our first R package. First, what to name the
R package? This seemingly simple task is complicated by the fact that over 8,000 R packages are currently
on CRAN, and the number is growing rapidly (https://cloud.r-project.org/web/packages/available_
packages_by_name.html). Although you can give a package that is not to be uploaded to CRAN the same
name as one on CRAN, doing so is problematic if you ever use the CRAN package or any other package that
depends on it. Even if your package is not to be submitted to CRAN, someone else in the future might write a
package with the same name and submit it to CRAN. For these reasons, choosing the package name requires
some thought. Throughout this chapter, all the examples are to build one R package, called AdvancedRPkg .
The second decision is what license to use for the package. If you’re planning to submit to CRAN, the license
must be compatible with CRAN. Even if the package is never sent to CRAN , a license may still be relevant.
For this chapter, we use the GPLv3 license.

 Version Control
 Up until now, we have discussed relatively casual code development, some basic programming, functions,
and classes. Developing new R packages is more complex, with many more files to manage. With this
greater complexity, it is helpful to have an efficient system for backing up files and for going back to earlier
versions. Version control systems provide an excellent way both to back up code and to roll back changes to
a prior version (for example, if changes to implement a new feature break an old feature or introduce a bug).
Various version control systems exist, but perhaps the most popular now is the open source Git originally
developed to provide version control for the Linux kernel . Git can be used directly from the command line or
through a graphical interface, of which there are several. Many people use GitHub (https://github.com/),
a service that uses Git and hosts repositories online, freely for public projects. GitHub also provides a
graphical interface for Windows and Mac OS (https://desktop.github.com/). However, if you do not want
to learn or use Git or another version control system, feel free to ignore this section as well as any commands
related only to version control throughout this chapter.

https://cran.r-project.org/bin/windows/Rtools/
http://www.miktex.org/
http://www.miktex.org/
https://cran.r-project.org/doc/manuals/R-admin.html#The-Windows-toolset
https://xquartz.macosforge.org/
http://www.tug.org/mactex/
http://www.tug.org/mactex/
https://cran.r-project.org/doc/manuals/R-admin.html#OS-X
https://cran.r-project.org/doc/manuals/R-admin.html#OS-X
https://cloud.r-project.org/web/packages/available_packages_by_name.html
https://cloud.r-project.org/web/packages/available_packages_by_name.html
https://github.com/
https://desktop.github.com/

CHAPTER 6 ■ WRITING A PACKAGE

85

 We use Git (and GitHub) for Windows in this chapter to provide version control for the example R
package we develop. Specifically, this book uses the Windows GitHub desktop client v3.3.0. Git repositories
can be used solely on a local computer, but using them with GitHub makes it easy to collaborate on
packages, and share early package code with others.

 Setting up a Git repository is possible from the command line, but perhaps the most intuitive way for
new users to create a new Git repository is online, directly through GitHub. We make a new repository for the
R package we develop in this chapter and call it AdvancedRPkg . The repository is initialized with a README file,
which we’ll edit shortly. We can tell Git to ignore certain files or files with particular extensions by adding
them to a file called .gitignore . Each file or extension is listed on its own line. We can edit it later, but for
now, we just have GitHub create one. Figure 6-1 shows the steps to do this.

 If all works as planned, the results should look something like Figure 6-2 . The repository is empty,
except for the README and .gitignore files .

 Figure 6-1. GitHub page for creating the AdvancedRPkg repository

CHAPTER 6 ■ WRITING A PACKAGE

86

 From here, we can clone the repository to our local computer. Essentially, this creates a local copy,
where we do our package writing. To do this, open the GitHub desktop client, click the + sign, select Clone,
and then pick the repository, as shown in Figure 6-3 .

 Figure 6-2. GitHub page showing the created AdvancedRPkg repository

CHAPTER 6 ■ WRITING A PACKAGE

87

 After clicking Clone, we see an option to select a directory into which the repository should be cloned.
Note that whatever directory you choose, a new directory is created for the repository with the same name
as the repository (that is, AdvancedRPkg). Settings for the repository can be managed via the terminal, or by
clicking the gear icon in the GitHub desktop client and choosing Repository Settings. One of them shows
the currently ignored files. Files are ignored based on the .gitignore file , and because we selected R earlier
when creating the repository, some default file extensions that are often desirable to ignore have been
included by default (Figure 6-4).

 Figure 6-3. GitHub desktop client cloning the AdvancedRPkg repository

CHAPTER 6 ■ WRITING A PACKAGE

88

 Windows often creates temporary (sometimes hidden) files, desktop.ini , in directories. To avoid
including these, we can edit the Repository settings by adding a new line at the end and typing desktop.ini .
Then these files are ignored. Ignored files are those that the Git repository does not track and store changes
in over time. They continue to exist in the directory; Git simply does not monitor and version them.

 Aside from setting up a new Git repository, the tasks you are likely to do with Git are to commit changes
to a repository and sync your local copy of the repository with the online (GitHub) version. Commits can be
thought of as taking a snapshot of the state of files at the time of the commit. To avoid redundancy commits,
snapshot only the changes made to files since the previous commit. Although even a slightly modified binary
file may be difficult to compare, plain-text files, like R code, are easy to compare. Git is extremely efficient at
tracking changes in text files over time and allowing you to either see what changes were made or go back to
specific points in the past. Access to this history of a project (repository) is particularly helpful if errors or bugs
are introduced into the code, so it can be pinpointed exactly when the bug was introduced (for example, how
many results based on the code may be impacted?) and see previous working versions of code.

 In slightly more complex use cases, Git can be effectively used to manage different versions of the code.
For example, it is common to have a project and periodically release stable or production-ready versions
of the code, while at the same time continuing development. This is accomplished in Git by using different
branches of the same repository, and periodically merging some of the changes from one branch (say, the
development branch) into the stable branch.

 Figure 6-4. GitHub desktop client showing settings for the AdvancedRPkg repository, including various file
extensions that are ignored by the Git repository

CHAPTER 6 ■ WRITING A PACKAGE

89

 We show a few more relevant Git commands throughout this chapter. For more background on using
Git, a great and free resource is Pro Git by Scott Chacon and Ben Straub (Apress, 2014), available at https://
progit.org/ . For questions and answers, Stack Overflow (http://stackoverflow.com) is a good resource. It
is likely someone else has already asked a question similar to yours, and if not, you can ask and get answers.
Also note that if you use RStudio for your R code, it has some integration with Git built in. For more on this,
see RStudio Support at https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-
with-Git-and-SVN . Finally, note that you can access the online repository publicly at https://github.com/
ElkhartGroup/AdvancedRPkg .

 R Package Basics
 An R package is just a directory with a particular set of files. Although the core of an R package is, of course, R
code, many of the files are not strictly R code. Table 6-1 lists the primary files that may be in the root of an R
package directory. Not all of these files are required, depending on other characteristics of the package. We’ll
get help creating some of these files by using the devtools package later in this chapter.

 In addition to the root-level files, numerous subdirectories can be included in an R package. These
are listed in Table 6-2 , along with brief descriptions. For our relatively simple package, we work with only a
handful of these, including R , man , and tests .

 Table 6-1. Files That May Be Used in the Root Directory of an R Package.

 File Description

 DESCRIPTION * Provides general information about the package. Required fields include Package
(package name), Version, License, Title (package description), Author, and
Maintainer (may be the same or different from the author). Also often includes
information on dependencies, unless the package is stand-alone.

 NAMESPACE * Controls the package namespace, including which objects to export and which to
import from other packages. Although required, we generate this automatically
by using the roxygen2 package.

 README / README.md Not required and ignored by R, but helpful for readers and users. Provides
general information on the package (where to get help, a brief overview,
installation guidance, or whatever else would be useful in a brief document).

 NEWS Provides information on changes or news about the package. Commonly
includes new features and bug fixes as well as any other major changes compared
to previous versions.

 LICENSE A license file if one of the common licenses is not used or if additional
information is required.

 INDEX Optional, as generated automatically from the documentation files. But if
specified, provides a listing of all interesting/useful objects as a name and
description on each line.

 configure , cleanup Optional Bourne shell scripts that are run before and after installation,
respectively, on Unix systems (for example, Linux, Unix).

 * indicates a required file

www.allitebooks.com

https://progit.org/
https://progit.org/
http://stackoverflow.com/
https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://github.com/ElkhartGroup/AdvancedRPkg
https://github.com/ElkhartGroup/AdvancedRPkg
http://www.allitebooks.org

CHAPTER 6 ■ WRITING A PACKAGE

90

 Starting a Package by Using DevTools
 At a minimum, at the root directory of your package, you need DESCRIPTION and NAMESPACE files. You also
need a subdirectory, R , which, sensibly, is where you put your R code. This is not enough for a package to
submit to CRAN, but it is sufficient to start a functional package for private use. However, even for private
use, proper documentation is incredibly helpful. The directory and file structure of packages is regrettably
complex, especially to describe in text. Thus as a reference, the following is the final directory structure of
our package that you should have by the end of this chapter, obtained from the within the AdvancedRPkg
directory:

 Table 6-2. R Package Subdirectories

 Subdirectory Description

 R * Directory that contains all the R source code for functions, classes, methods, and so
forth.

 man * Directory that contains the R documentation files. We generate these automatically by
using the roxygen2 package.

 tests Optional directory containing R code used to test that the package works as expected.

 data Optional directory containing data to be shipped with the package. Typically, included
data sets are small and used to illustrate a package’s features, rather than as a primary
means of sharing data.

 demo Optional directory containing demonstrations of the R package, as R source code files.

 exec Can contain additional required executable scripts. Only files are included, not
subdirectories.

 inst Can contain additional files that are copied to the installation directory when the
package is installed. For example, may be used to share a NEWS file with users or to
include images or other nonstandard documentation.

 po Used to add translations of C and R error messages and other localization-related
tasks.

 src Typically, source code from other languages, such as C, C++, or Fortran. This code is
usually compiled; and if you use it, it often requires specifying a makefile.

 tools Not commonly used, but can be used to provide additional files required for
configuration.

 vignettes Used to provide one or more vignettes or guides to using the package. Vignettes
typically have more introductory background and complete examples of how you
might use a package overall, compared with function documentation, which is
generally unique to that function. Though not required, can be very helpful for users.

 * indicates a required subdirectory

CHAPTER 6 ■ WRITING A PACKAGE

91

 .
 ├── data
 │ └── sampleData.rda
 ├── DESCRIPTION
 ├── man
 │ ├── ggplot.lm.Rd
 │ ├── meanPlot.Rd
 │ ├── sampleData.Rd
 │ └── textplot-class.Rd
 ├── NAMESPACE
 ├── R
 │ ├── plot_functions.R
 │ ├── sampledata.R
 │ └── textplot.R
 ├── README.md
 └── tests
 ├── testthat
 │ └── test_textplot.R
 └── testthat.R

 5 directories, 13 files

 For the initial setup, we use the function, setup() . We can specify more information, but the minimum
is the path. We also set rstudio = FALSE so that the code works with any editor, not just RStudio. To
see what has been created, we can use the list.files() function, which shows that DESCRIPTION and
 NAMESPACE files and an R directory have been created. For the following code, either run it from the R
command line or make a new R file (we called ours chapter 06 .R). Note that it is important to adjust the path
argument to point to the directory with the Git repository, wherever you cloned that on your local machine.
In our case, R’s working directory (which you can check by calling the getwd() function) is in the directory
directly above the AdvancedRPkg directory. If your R session is not there, either adjust the path argument or
change R’s working directory to be in the parent directory to AdvancedRPkg by using the setwd() function:

 setup(
 path = "AdvancedRPkg/",
 rstudio = FALSE)
 Creating package 'AdvancedRPkg' in '~/Apress_AdvancedR/RFiles'
 No DESCRIPTION found. Creating with values:

 Package: AdvancedRPkg
 Title: What the Package Does (one line, title case)
 Version: 0.0.0.9000
 Authors@R: person("First", "Last", email = "first.last@example.com", role = c("aut", "cre"))
 Description: What the package does (one paragraph).
 Depends: R (>= 3.3.1)
 License: What license is it under?
 Encoding: UTF-8
 LazyData: true

 list.files("AdvancedRPkg")
 [1] "DESCRIPTION" "NAMESPACE" "R" "README.md"

http://dx.doi.org/10.1007/978-1-4842-2077-1_06

CHAPTER 6 ■ WRITING A PACKAGE

92

 The output also shows some of the fields and the information used to fill them in. Since most of these
are placeholders, we want to open the files by using a text editor (any should be fine, including RStudio)
and modify them. From the directory, setup() guesses the package name, but the rest need to be filled out.
Using the editor, we change those fields to the following:

 Package: AdvancedRPkg
 Title: An Example R Package for the Book Advanced R
 Version: 0.0.0.9000
 Authors@R: c(
 person("Matt", "Wiley", email = "matt@elkhartgroup.com", role = c("aut")),
 person("Joshua F.", "Wiley", email = "josh@elkhartgroup.com", role = c("aut", "cre")),
 person("Elkhart Group Ltd.", role = "cph")
)
 Description: This package will demonstrate the basics of an R
 package including documentation and tests.
 Depends: R (>= 3.3.1)
 License: GPL (>= 3)
 Encoding: UTF-8
 LazyData: true

 Note the version number, which is designed in the format Major.Minor.Patch. DevelopmentVersi
on . A good overview of the considerations in determining software versions is described at the Semantic
Versioning specification at http://semver.org/ . It is quite prescriptive in its recommendations, but it is
often helpful to have a fixed set of rules in place for determining a major or minor version of the software.
The final piece, the DevelopmentVersion , is present only in development versions and is dropped for release.
Despite these rules and guides, the reality of many R packages is far more heterogeneous and inconsistent
(not everyone agrees on these rules, and even those who agree do not always strictly follow them).

 Next up are the authors, described using the person() function. In addition to each individual’s name
and e-mail, three-letter abbreviations are used to describe roles and relations. All possibilities are outlined
in the MARC Code List for Relators at www.loc.gov/marc/relators/relaterm.html . However, the most
commonly used ones are aut for the author, cre for a creator who is the person responsible for the project
(or in R terms, the person to complain to if there are problems—the maintainer), and cph for the copyright
holder. Then we provide a few sentences for a description of the package, specify the R version our package
depends on, the license, and that data can be loaded on demand (saving startup time).

 Adding R Code
 With the basics of a package in place, it is time to start adding some R code, the whole point of a package!
Since the focus of this chapter is on packaging the code, we reuse some functions and classes from previous
chapters. As a first step, we create two files located in the AdvancedRPkg/R/ directory: plot_functions.R and
 textplot.R .

 Next, we copy the final meanPlot() function from Chapter 4 to make a plot with means. We add the
code for this function along with the S3 method, ggplot.lm() , that we wrote in Chapter 5 and put both in
 plot_functions.R . Then, we copy the classes and methods (show and subset, which is the bracket operator,
 [) for the textplot class from Chapter 5 into textplot.R . Because it is easy to copy the wrong code, we
suggest copying and pasting the code from our GitHub repository (https://github.com/ElkhartGroup/
AdvancedRPkg). If everything works, it should look like this:

 list.files("AdvancedRPkg/R")
 [1] "plot_functions.R" "textplot.R"

http://semver.org/
http://www.loc.gov/marc/relators/relaterm.html
http://dx.doi.org/10.1007/978-1-4842-2077-1_4
http://dx.doi.org/10.1007/978-1-4842-2077-1_5
http://dx.doi.org/10.1007/978-1-4842-2077-1_5
https://github.com/ElkhartGroup/AdvancedRPkg
https://github.com/ElkhartGroup/AdvancedRPkg

CHAPTER 6 ■ WRITING A PACKAGE

93

 As a side note, it can be difficult to decide how many separate files to have. It does not matter for R, but
it does make a difference for development. It is not good to have all your code in one file, nor to split every
function, class, and method into a separate file. If the result is not too long, we try to group related functions
(such as plotting functions) and to group related classes and methods. As common sense, even if you can, do
not give files the same names differentiated only by use of lowercase or uppercase letters; it is also generally
a bad idea to use special characters or symbols in file names.

 Now that we have a basic package template, we can load the functions by using the load_all() function
from devtools . All we have to do is specify the path to the package. We can now see that some of our
functions are available in the package namespace, which we do by using the ls() function and specifying
where we want it to list available objects:

 load_all("AdvancedRPkg")
 Loading AdvancedRPkg
 ls(name = "package:AdvancedRPkg")
 [1] "ggplot.lm" "meanPlot" "textplot"

 In Chapter 4 , we briefly discussed scoping. Scoping becomes more important to understand when
writing packages. Package authors can write functions with the same names as functions in other packages.
Although these functions do not overwrite each other, it can be confusing to be clear about which function
you intend to call. This is where the package namespace can be helpful. The namespace controls which
functions from other packages are imported (and therefore used by code from within that package), and
which functions from a package are exported so that they are publicly available to users of the package. You
can import specific functions from other packages, using the import feature. If you want many functions
from another package, you may decide to make your package depend on that other package, in which case
all public functions are available to your package. Another difference between importing and depending on
another package is what happens when your package is loaded. If package B depends on package A when
a user calls library(B) , package B and package A are both loaded and attached. If package B imports from
package A, when a user calls library(B) , package B gets loaded and attached, and package A is loaded but
not attached. Because package A is loaded, its functions are available to code within package B, but they are
not exposed directly to the user because package A was not attached. Even when package A (or package B)
are loaded and attached, only the exported functions are publicly available to users. This is beneficial, as it
allows package developers to write and document functions that are for internal use only. If you do not need
to export a function, it is a good idea not to. If two R packages export functions of the same name, and a user
loads and attaches both packages, the function from whichever package is loaded later masks the earlier one.
For a user, the only choice then is to either not load and attach one package, or to be explicit with the function
calls, using the double colon operator, PkgA::foo() , PkgB::foo() . With thousands of R packages and even
more functions, exporting only necessary functions helps avoid such conflicts and masking of names.

 All of this is controlled via the NAMESPACE file of a package. Although we did not look at it, our package
does have a NAMESPACE file , which was created when we ran setup() . However, the load_all() function is
unique in that by default when it loads a package, it exports all objects. This is because during development,
it is often convenient to be able to call all functions whether they are exported or not.

 Tests
 With functions and methods added to our new package and working in R, we can begin to think about
quality control. It is great to write code that runs, but it is also crucial that the code does what is intended.
Now, what is intended and expected are not always the same (that is where documentation plays a critical
role, which we cover next). Still, even for the developer, tests ensure that what is written does what it is
supposed to do.

http://dx.doi.org/10.1007/978-1-4842-2077-1_4

CHAPTER 6 ■ WRITING A PACKAGE

94

 Tests may be written at any stage of package development. If functions, names, and features are
radically changing, perhaps it is too early to start writing many tests. However, even if a package is not done,
if some functions are relatively stable, writing tests early can be helpful. Writing tests earlier rather than later
is helpful because it is often easier to write a test immediately after writing a function, when its purpose
and the way it works are still fresh in your memory. (If you do not know or have forgotten how a function
works, it is hard to test it adequately!). It is also helpful because if later functions build on earlier functions,
testing along the way can help ensure that problems are due to the newly written functions and not to some
previous building block.

 Benefits aside, the practicalities of writing tests are made easier by the testthat package. First, we need
to create a new subdirectory in our package called tests , located at AdvancedRPkg/tests/ . Next, we create a
second subdirectory inside the first named testthat (that is,, AdvancedRPkg/tests/testthat/), into which
we create R source files that run a variety of tests. Note there are other ways to test a package. Here we focus
on doing so by using the testthat package paradigm.

 It is rather difficult to test graphing functions properly, so for our tests, we check whether the subset
method for textplot works as intended. We can make a file called test_textplot.R located under
 AdvancedRPkg/tests/testthat/ . We begin with a call to context() , which indicates that the tests that follow
test related functionality, and we provide the overall name for a suite of tests, textplot . Next we set up a
simple textplot class object, and then run a series of tests. The tests have two components. First, an outer call
to test_that() . The first argument is a description of the test, and the second is code to do the tests. The code
can consist of anything, but commonly includes calls to one of the expect_*() functions, of which there are
many. We use the apropos() function call to show all the options for expect_*() before we make our choices:

 apropos("expect_")
 [1] "expect_cpp_tests_pass" "expect_equal"
 [3] "expect_equal_to_reference" "expect_equivalent"
 [5] "expect_error" "expect_failure"
 [7] "expect_false" "expect_gt"
 [9] "expect_gte" "expect_identical"
 [11] "expect_is" "expect_length"
 [13] "expect_less_than" "expect_lt"
 [15] "expect_lte" "expect_match"
 [17] "expect_message" "expect_more_than"
 [19] "expect_named" "expect_null"
 [21] "expect_output" "expect_output_file"
 [23] "expect_s3_class" "expect_s4_class"
 [25] "expect_silent" "expect_success"
 [27] "expect_that" "expect_true"
 [29] "expect_type" "expect_warning"

 We choose expect_is() to check the class of the object and expect_equal() to check other features. It
is also possible to check that your error checking is working, using expect_error() or expect_warning() ,
which “pass” if the code creates an error. We place the following code into our test_textplot.R file:

 context("textplot")

 dat <- textplot(
 x = 1:4,
 y = c(1, 3, 5, 2),
 labels = letters[1:4])

CHAPTER 6 ■ WRITING A PACKAGE

95

 test_that("textplot subset method works with rows only", {
 tmp <- dat[i = 1:2,]
 expect_is(tmp, "textplot")
 expect_equal(length(tmp@x), 2)
 })

 test_that("textplot subset method works with variables only", {
 tmp <- dat[, j = c("x", "y")]
 expect_is(tmp, "list")
 expect_equal(length(tmp), 2)
 expect_equal(length(tmp$x), 4)
 })

 test_that("textplot subset method works with rows and variables", {
 tmp <- dat[1:2, j = c("x", "y")]
 expect_is(tmp, "list")
 expect_equal(length(tmp), 2)
 expect_equal(length(tmp$x), 2)
 })

 We can run the code tests directly. If everything works, there is no output. Output is created only when
something does not pass the checks. However, typically, this code is not run directly; it is run in batches. We run
all tests by using the devtools function, test() , and our package name/path. The devtools package knows
the directory structure for the testthat package, and so they play nicely together. To run the tests, test()
first loads the package by using load_all() and then executes the tests. Back in the folder above the package
directory, from our chapter-level R file, chapter06.R , we run all the tests by executing the code that follows:

 test("AdvancedRPkg")
 Loading AdvancedRPkg
 Testing AdvancedRPkg
 textplot:

 DONE ===

 Errors would be noted, if present. Although we can run the tests as is by using the devtools package,
for R to run them, we need to add a short file in the tests directory (that is, AdvancedRPkg/tests/), called
 testthat.R . Into this file, we just need to add a few lines of code, shown next. We do not run this code; this is
run by R:

 library(testthat)
 library(AdvancedRPkg)

 test_check("AdvancedRPkg")

 Now, we can use the covr package to check code coverage. The covr package (https://github.com/
jimhester/covr) checks whether different parts of the code are run when a test is executed. For example, a
function that contains if/else statements may have only part of its code executed by one test, unless additional
tests are derived to check the other conditions. Again, although not required to develop a package, it is a
helpful tool to see how well the current tests cover the package functionality. A high level of coverage (aiming
toward 100 percent) is a good way to catch bugs and to ensure that new code development does not break old
features and functionality; and all of this can also help to assure users that your package is a good choice.

https://github.com/jimhester/covr
https://github.com/jimhester/covr

CHAPTER 6 ■ WRITING A PACKAGE

96

 While we used the checkpoint library to allow code reproducibility, the nature of testing precludes
such library usage from being effective. Thus, installing both covr and testthat is required. Back in our
top-level chapter06.R file, we run the package_coverage() function to test how well our tests cover our
small package’s code. The only argument required is the directory where the package is located. In our case,
R’s working directory is the parent directory, AdvancedRPkg/ . If the working directory for your R instance is
different, you need to specify the appropriate path to get to the AdvancedRPkg/ directory on your machine:

 install.packages(c("covr", "testthat"))
 cov <- package_coverage("AdvancedRPkg")

 The output (shown next) indicates that current testing coverage is about 36 percent, and this is driven
by coverage of code from textplot.R . It is also possible to get a more detailed analysis, using as.data.
frame(cov) . The output is substantial, so we show just a few rows and columns, but it is an invaluable
resource if you think you have tests covering everything and need to figure out what aspects of your code are
not being tested yet:

 cov
 AdvancedRPkg Coverage: 35.85%
 R/plot_functions.R: 0.00%
 R/textplot.R: 52.78%

 as.data.frame(cov)[1:3, c(1, 2, 3, 11)]
 filename functions first_line value
 1 R/plot_functions.R meanPlot 2 0
 2 R/plot_functions.R meanPlot 3 0
 3 R/plot_functions.R meanPlot 4 0

 To have the tests run, we need to indicate that our package requires the testthat package. The core
functionality of the package does not depend on testthat , so instead we add it to the DESCRIPTION file
under a new section, Suggests . Again, using any text editor, we revise DESCRIPTION to the following:

 Package: AdvancedRPkgPackagetests
 Title: An Example R Package for the Book Advanced R
 Version: 0.0.0.9000
 Authors@R: c(
 person("Matt", "Wiley", email = "matt@elkhartgroup.com", role = c("aut")),
 person("Joshua F.", "Wiley", email = "josh@elkhartgroup.com", role = c("aut", "cre")),
 person("Elkhart Group Ltd.", role = "cph")
)
 Description: This package will demonstrate the basics of an R
 package including documentation and tests.
 Depends: R (>= 3.3.1)
 Suggests:
 testthat
 License: GPL (>= 3)
 Encoding: UTF-8
 LazyData: true

CHAPTER 6 ■ WRITING A PACKAGE

97

 Finally, with all the changes we have made to our package, it is time to check in with version control. It is
possible to do this from the command line, but we use the GitHub desktop client. By default, all changed files
are selected, but rather than commit all changes at once, we do them in related batches of files, along with
meaningful messages. The commit messages are added along with each commit and serve to remind you or
to let others know a high-level summary of what changes were made or why. It is not necessary to detail every
change, as Git takes care of tracking exactly which files changed and how their contents changed.

 To begin, we select the DESCRIPTION , NAMESPACE , and .gitignore files and add the message: initiate R
package with DESCRIPTION and NAMESPACE . The process is shown in Figure 6-5 .

 Figure 6-5. GitHub desktop client selecting changed files, adding a commit message, and committing to the
master branch

 Next, we add plot_functions.R and textplot. R and add the commit message: initial commit of R
functions . Finally, we add testthat.R and test_textplot.R and add the commit message: adding testing
for quality control . Of course, you also could have committed files along the way as they were created. If we
switch over to the History tab of the GitHub desktop client, we can see the changes made. If we are happy
for them to go public, we click the Sync button, which pulls changes from the GitHub repository to the local
repository, and pushes all committed changes from the local repository to the GitHub repository. Note that
before you sync, all changes should be committed, because what gets synced are not the actual files in the
directory but the Git repositories. Changes to files get added to the local Git repository only when they are
committed, so if you do not commit, the updates are not added to the local repository and so do not get
pushed to the remote (GitHub) repository. Figure 6-6 shows what this looks like.

CHAPTER 6 ■ WRITING A PACKAGE

98

 We have only scratched the surface of testing , and obviously our package has a long way to go before
it is thoroughly tested. However, these tools should get you started on the right track (and ahead of the
majority of the R packages on CRAN) regarding testing and quality control. The next crucial piece is the
documentation, a topic we turn to next.

 Documentation Using roxygen2
 R documentation for functions, data, classes, and methods is located in the man subdirectory of a package,
and is done by using special R documentation files with the extension .Rd . However, for the programmer,
this can be harder because the documentation is separated from the actual R code. There is also quite
a bit of markup that must be written that is just part of the standard template. The roxygen2 package,
fully automates this process, including the subdirectory creation, and provides an easier way to write
documentation by using specially formatted comments next to the R code. Running the roxygen2 package
then converts these particular comments into appropriately formatted .Rd files in the man directory, so that R
has everything it needs to create the help files for the package functions. In this section, we are going to look
at how to document several types of objects including functions, data, classes, and methods.

 Figure 6-6. GitHub desktop client showing the history of commits and the Sync button at the top right

CHAPTER 6 ■ WRITING A PACKAGE

99

 Functions
 To document objects using roxygen2 , documentation is added after a special comment lead: ##' or
 #' . Because # is R’s comment, R ignores it, but the special single quote indicates to roxygen2 that this
information should be processed into the documentation. Note that this syntax precludes commenting this
code. All of this code is added to plot_functions.R above the meanPlot() function code.

 As stated, comments are precluded because of syntax; thus the order becomes vital. To see which part
maps to which formal, just keep in mind that there are three sections simply separated by line breaks: title ,
 description , and details . The details section is optional. We add spaces between line breaks for reader
clarity. Function arguments are indicated by using @param argument_name brief description of the
argument . The argument names listed here must exactly match the named arguments in the function. The
 @return section is where we can indicate what sort of object is returned by the function. In this case, the
function is called for the side effect of producing a plot, and the value it returns is not important. Any text
can come after @author to indicate who wrote the function. Typically, the @author section is not required
if the author is the same as the overall package author. For the function to be publicly available, it must be
exported. This is accomplished by using the directive @export . The roxygen2 package translates this into
additional lines of code in the NAMESPACE file, indicating it should be exported. The @keywords section is
optional. Finally, one of the most useful sections for your readers is the @examples section, which gives
readers executable examples and is one of the easiest ways to show how to use a function.

 ##' Function to plot data and mean summary
 ##'

 ##' This is a simple function designed to facilitate plotting raw
 ##' data along with dots indicating the mean at each x-axis value.
 ##'

 ##' Although this function can be used with any type of data that works
 ##' with \code{plot}, it works best when the x-axis values are discrete,
 ##' so that there are several y-values at the same x-axis value so that
 ##' the mean of multiple values is taken.
 ##'

 ##' @param formula A formula specifying the variable to be used on the
 ##' y-axis and the variable to be used on the x-axis.
 ##' @param d A data.frame class object containing the variables specified
 ##' in the \code{formula}.

 ##' @return Called for the side effect of creating a plot.
 ##' @author Wiley
 ##' @export
 ##' @keywords plot
 ##' @examples
 ##' # example usage of meanPlot
 ##' meanPlot(mpg ~ factor(cyl), d = mtcars)

CHAPTER 6 ■ WRITING A PACKAGE

100

 Now to make the documentation, we can run the roxygen2 package. This can be done directly by using
the roxygenize() function and giving it the path to the directory of our package, or it can be done by using
the document() function from the devtools package. We specify the package directory, and the rest happens
automatically. The output shows that a documentation file was written (meanPlot.Rd) and the NAMESPACE file
was written:

 document("AdvancedRPkg")
 Updating AdvancedRPkg documentation
 Loading AdvancedRPkg
 Updating roxygen version in ~\RFiles\AdvancedRPkg/DESCRIPTION
 Writing NAMESPACE
 Writing meanPlot.Rd

 When built or installed, the R documentation file is converted to HTML and PDF. However, already you
can preview the development version of the documentation. From the R console, the usual way of getting
help for a function should now work:

 ?meanPlot

 If you use RStudio, you can also open the file and preview it. The resulting HTML file (after building the
package) is shown in Figure 6-7 . Because of the simplicity of this function and also for the sake of space, we
wrote fairly minimal documentation. Often, it is helpful for users and future reference to document more
extensively and to carefully explain what each argument can and cannot take. If functions implement new
procedures or statistical methods, it is also common to include some references by using the @ references
section.

CHAPTER 6 ■ WRITING A PACKAGE

101

 Figure 6-7. HTML output of the R documentation file for the meanPlot() function

CHAPTER 6 ■ WRITING A PACKAGE

102

 Data
 Before we can document data, we need to add some to our package. First, we make a data subdirectory in
our package folder, located at AdvancedRPkg/data/ . Then we make a small sample data frame and save it as
an .rda file by using the code that follows in our chapter06.R file. Note again that the file needs to give the
correct path to AdvacedRPkg/data/ based on R’s current working directory:

 sampleData <- data.frame(
 Num = 1:10,
 Letter = LETTERS[1:10])
 save(sampleData, file = "AdvancedRPkg/data/sampleData.rda")

 We add the following code to document the data in a new file called sampledata.R located in the R
subdirectory (that is, AdvancedRPkg/R/sampledata.R). This provides a title and details on the data, along
with the special parameters @format to indicate the format or type of data and @source to indicate where it is
from. In quotes at the end, the name of the object is given.

 ##' Numbers and letters.
 ##'
 ##' A sample data set containing 10 numbers and letters with two variables:
 ##'
 ##' \itemize{
 ##' \item Num. A number.
 ##' \item Letter. An upper case letter (A to J)
 ##' }
 ##'
 ##' @format A data frame with 10 rows and 2 variables
 ##' @source Created as a sample
 "sampleData"

 After re-roxygenizing the package by using the document() function, the resulting HTML is shown in
Figure 6-8 , again by using the help utilities from the fully built package or by using preview from RStudio.

CHAPTER 6 ■ WRITING A PACKAGE

103

 Classes
 S3 classes are not formal and are not typically documented. S4 classes are straightforward to
document. Their documentation goes immediately above the call to setClass() in our textplot.R file
(AdvancedRPkg/R/textplot.R) with a title, a details section, and then some parameters— one @slot for
each slot name, detailing the name and function of the slot. To use the S4 system in a package, we also need
to add the methods package, which we do by adding @import methods and also adding it to the Imports field
of the DESCRIPTION file. The updated DESCRIPTION file with the new Imports field is shown here; typically,
the Imports section immediately follows the Depends section:

 Imports:
 methods

 Figure 6-8. HTML output of the R documentation file for the sample Data data set

CHAPTER 6 ■ WRITING A PACKAGE

104

 The full documentation for the class is shown in the following code:

 ##' An S4 class to hold text and Cartesian coordinates for plotting
 ##'
 ##' A class designed to hold the data required to create a textplot
 ##' where character strings are plotted based on x and y coordinates.
 ##'
 ##' @slot x A numeric value with the x axis coordinates.
 ##' @slot y A numeric value with the y axis coordinates.
 ##' @slot labels A character string with the text to be plotted
 ##' @import methods

 After re-roxygenizing the package by using the document() function, the resulting HTML is shown in
Figure 6-9 .

 Methods
 Documenting methods is similar to documenting regular functions. S3 methods can be undocumented or
documented as a function. The following is the roxygen2 -style documentation added for the ggplot.lm
method. The code is added immediately above the function definition in AdvancedRPkg/R/plot_functions.R .

 Figure 6-9. HTML output of the R documentation file for the S4 class textplot

CHAPTER 6 ■ WRITING A PACKAGE

105

Note that here we import the ggplot2 package so that it is available. We also add the ggplot2 package under
the Imports section in the DESCRIPTION file, separated by a comma from the R version on which the package
depends. The new DESCRIPTION file Depends section is shown here:

 Imports:
 methods,
 ggplot2

 By importing it, roxygen2 will automatically add the appropriate import codes to the NAMESPACE file:

 ##' Method for plotting linear models
 ##'
 ##' Simple method to plot a linear model using ggplot
 ##' along with 95% confidence intervals.
 ##'
 ##' @param data The linear model object from \code{lm}
 ##' @param mapping Regular mapping, see \code{ggplot} and \code{aes} for details.
 ##' @param vars A list of variable values used for prediction.
 ##' @param \ldots Additional arguments passed to \code{ggplot}
 ##' @return A ggplot class object.
 ##' @export
 ##' @import ggplot2
 ##' @examples
 ##' ggplot(
 ##' lm(mpg ~ hp * qsec, data = mtcars),
 ##' aes(hp, mpg, linetype = factor(qsec)),
 ##' vars = list(
 ##' hp = min(mtcars$hp):max(mtcars$hp),
 ##' qsec = round(mean(mtcars$qsec) + c(-1, 1) * sd(mtcars$qsec)), 1)) +
 ##' geom_ribbon(aes(ymin = LL, ymax = UL), alpha = .2) +
 ##' geom_line() +
 ##' theme_bw()

 S4 methods can be documented alone, documented with the generic function, or documented with the
class. This can be accomplished by using the @describeIn parameter, which is used in place of the title. For
our S4 methods, we document them along with the class. The roxygen2 code is relatively brief. We could add
details but do not need to. The roxygen2 package takes care of registering the methods, so all we really need
to do is add any special notes and document use of parameters. The documentation for the show() method
is as follows:

 ##' @describeIn textplot show method
 ##'
 ##' @param object The object to be shown

 We follow this with the documentation for the [operator method. Note that we also export the [
method and add an alias, which is just another way that users can look up the method:

 ##' @describeIn textplot extract method
 ##'
 ##' @param x the object to subset
 ##' @param i the rows to subset (optional)

CHAPTER 6 ■ WRITING A PACKAGE

106

 ##' @param j the columns to subset (optional)
 ##' @param drop should be missing
 ##' @export
 ##' @aliases [,textplot-method

 After re-roxygenizing by using document() , the updated HTML help file is shown in Figure 6-10 ,
including the class and additional methods documentation.

 Figure 6-10. HTML output of the R documentation file for the S4 class textplot with added methods
documentation

CHAPTER 6 ■ WRITING A PACKAGE

107

 Building, Installing, and Distributing an R Package
 Much as with Git, when building an R package, it can be helpful to ignore some of the files in the directory.
We create a file called .Rbuildignore containing the following code in our main directory AdvancedRPkg/ .
This file should be located at the same level as the DESCRIPTION file :

 desktop.ini
 .Rhistory
 .RData

 After ensuring that the documentation is up-to-date by running document(" AdvancedRPkg ") again, we
are almost set. At this point, we have made some changes, so it would be a good idea to add and commit
the changes to the Git repository (if you opted into that at the beginning). Although you could add all
files at once by running git add , it is more informative and easier to revert later (if needed) if changes
are committed in chunks based on similar topics. For example, we used separate commits for each of the
following, which are shown in the code that follows in chunks:

• The updated code files (every file in the AdvancedRPkg/R/ directory), DESCRIPTION ,
and NAMESPACE , with the commit message added roxygen style documentation

• The sample data, with the commit message added sample data

• The updated documentation files (every file in the AdvancedRPkg/man/ directory),
with commit message re-roxygenized package

• .Rbuildignore file, with the commit message adding file to ignore files during
package build

 Now we can build the package into a compressed source tar ball by using the build() function from
the devtools package in our chapter06.R file. The output shows the build process and that a .tar.gz file is
produced at the end:

 build("AdvancedRPkg")
 "c:/usr/MRO/MRO-3.3.1/bin/x64/R" --no-site-file --no-environ \
 --no-save --no-restore --quiet CMD build "~\Apress_AdvancedR\RFiles\AdvancedRPkg" \
 --no-resave-data --no-manual

 * checking for file '~\Apress_AdvancedR\RFiles\AdvancedRPkg/DESCRIPTION' ... OK
 * preparing 'AdvancedRPkg':
 * checking DESCRIPTION meta-information ... OK
 * checking for LF line-endings in source and make files
 * checking for empty or unneeded directories
 * looking to see if a 'data/datalist' file should be added
 * building 'AdvancedRPkg_0.0.0.9000.tar.gz'

 [1] "~/Apress_AdvancedR/RFiles/AdvancedRPkg_0.0.0.9000.tar.gz"

 We could install and use this. However, it can be helpful to run one more set of checks. The check()
function in the devtools package runs Rcmd check on the package. The argument cran = TRUE uses the
tests for CRAN. The following code should be run from our chapter06.R file. The output is extensive, so we
omit many sections that work as intended, and highlight some of the checks that would indicate problems
we should address. Omitted output is indicated by [. . .] .

CHAPTER 6 ■ WRITING A PACKAGE

108

 check("AdvancedRPkg", cran = TRUE)
 Updating AdvancedRPkg documentation
 Loading AdvancedRPkg
 [. . .]
 * using R version 3.3.1 (2016-06-21)
 [. . .]
 * checking R code for possible problems ... NOTE
 ggplot.lm: no visible global function definition for 'formula'
 ggplot.lm: no visible global function definition for 'predict'
 ggplot.lm: no visible binding for global variable 'fit'
 ggplot.lm: no visible global function definition for 'qnorm'
 ggplot.lm: no visible binding for global variable 'se.fit'
 meanPlot: no visible global function definition for 'plot'
 meanPlot: no visible global function definition for 'points'
 show,textplot: no visible global function definition for 'head'
 Undefined global functions or variables:
 fit formula head plot points predict qnorm se.fit
 Consider adding
 importFrom("graphics", "plot", "points")
 importFrom("stats", "formula", "predict", "qnorm")
 importFrom("utils", "head")
 to your NAMESPACE file.
 [. . .]
 * checking examples ... ERROR
 Running examples in 'AdvancedRPkg-Ex.R' failed
 The error most likely occurred in:

 > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: ggplot.lm
 > ### Title: Method for plotting linear models
 > ### Aliases: ggplot.lm
 >
 > ### ** Examples
 >
 > ggplot(
 + lm(mpg ~ hp * qsec, data = mtcars),
 + aes(hp, mpg, linetype = factor(qsec)),
 + vars = list(
 + hp = min(mtcars$hp):max(mtcars$hp),
 + qsec = round(mean(mtcars$qsec) + c(-1, 1) * sd(mtcars$qsec)), 1)) +
 + geom_ribbon(aes(ymin = LL, ymax = UL), alpha = .2) +
 + geom_line() +
 + theme_bw()
 Error: could not find function "ggplot"
 Execution halted
 * checking for unstated dependencies in 'tests' ... OK
 * checking tests ...
 Running 'testthat.R'
 OK
 * DONE

CHAPTER 6 ■ WRITING A PACKAGE

109

 Status: 1 ERROR, 1 NOTE
 See
 '~ /Temp/RtmpEnhRD4/AdvancedRPkg.Rcheck/00check.log'R Packagecheck() function
 for details.

 R CMD check results
 1 error | 0 warnings | 1 note
 checking examples ... ERROR
 Running examples in 'AdvancedRPkg-Ex.R' failed
 The error most likely occurred in:

 > base::assign(".ptime", proc.time(), pos = "CheckExEnv")
 > ### Name: ggplot.lm
 > ### Title: Method for plotting linear models
 > ### Aliases: ggplot.lm
 >
 > ### ** Examples
 >
 > ggplot(
 + lm(mpg ~ hp * qsec, data = mtcars),
 + aes(hp, mpg, linetype = factor(qsec)),
 + vars = list(
 + hp = min(mtcars$hp):max(mtcars$hp),
 + qsec = round(mean(mtcars$qsec) + c(-1, 1) * sd(mtcars$qsec)), 1)) +
 + geom_ribbon(aes(ymin = LL, ymax = UL), alpha = .2) +
 + geom_line() +
 + theme_bw()
 Error: could not find function "ggplot"
 Execution halted

 checking R code for possible problems ... NOTER Packagecheck() function
 ggplot.lm: no visible global function definition for 'formula'
 ggplot.lm: no visible global function definition for 'predict'
 ggplot.lm: no visible binding for global variable 'fit'
 ggplot.lm: no visible global function definition for 'qnorm'
 ggplot.lm: no visible binding for global variable 'se.fit'
 meanPlot: no visible global function definition for 'plot'
 meanPlot: no visible global function definition for 'points'
 show,textplot: no visible global function definition for 'head'
 Undefined global functions or variables:
 fit formula head plot points predict qnorm se.fit
 Consider adding
 importFrom("graphics", "plot", "points")
 importFrom("stats", "formula", "predict", "qnorm")
 importFrom("utils", "head")
 to your NAMESPACE file.

 The check() function includes several steps. It first ensures that the documentation is up-to-date,
then builds a source package tar ball, and then runs Rcmd check on it. We can see here that quite a few
issues are caught by the checks. All of them essentially boil down to not telling R exactly what functions or
packages are imported or required. Most issues arise because of differences between how packages and
interactive R work. During an interactive session, the base , methods , graphics , utils , and stats packages

CHAPTER 6 ■ WRITING A PACKAGE

110

are loaded by default, even without calling library(stats) , for example. This means that by default in an
interactive session, many functions are available on the search path. In packages, R has become stricter in
recent versions and requires required functions outside the base package to be explicitly imported. The
checks even suggest what we could add to our namespace. We use the roxygen2 package, so rather than
adding those to our namespace, we add them to the R code files. Specifically, to AdvancedRPkg/R/plot_
functions.R , right after the @export roxygen2 statements, we add this for meanPlot() :

 ##' @importFrom graphics plot points
 ##' @importFrom stats formula

 And this for the ggplot.lm() method in the same file:

 ##' @importFrom stats predict qnorm

 To AdvancedRPkg/R/textplot.R , right after the @param object roxygen2 statement, we add this for the
 show() method :

 ##' @importFrom utils head

 In addition, a similar problem occurs with no visible bindings for some global variables. This comes
from the ggplot.lm() method; because it uses within() , R cannot tell that the variables have been defined,
even though they are looked up within a data frame environment that contains them. Although this is a
somewhat spurious note, it is good to get rid of all notes. One solution is to add a call to globalVariables()
into our R files somewhere. At the top of AdvancedRPkg/R/plot_functions.R , we add the following:

 globalVariables(c("fit", "se.fit"))

 The last issue noted is that ggplot() could not be found in one of the examples. Because our package
imports the ggplot2 package, the ggplot() function is available to code within our package. However, if
a user loads only our package, ggplot2 functions are not loaded for the user’s search path. Examples for
functions are run as users, and so the function is not available, and R throws an error. The best path forward
here is complex. We could omit the example, but then the documentation is less helpful. We could move
 ggplot2 from the Imports field of the DESCRIPTION field to the Depends field. Packages depended on are
loaded before loading a package. The downside of this approach is that it forces users of our package to have
 ggplot2 loaded. This increases the odds of function masking for users because it forces many packages to
be loaded. We could also ensure that the code is not run. Finally, we could explicitly point to the ggplot2
package, by adding ggplot2::function() . This is cumbersome, as we use several ggplot2 functions in that
example, and it needs to be added throughout. However, this ensures that the example works and avoids
loading ggplot2 onto users’ search path. Users are, of course, free to load ggplot2 should they wish by
explicitly calling library(ggplot2) themselves. In the AdvancedRPkg/R/plot_functions.R file, we edit the
 roxygen2 code for the example for ggplot.lm() , as shown here:

 ##' @examples
 ##' ggplot2::ggplot(
 ##' lm(mpg ~ hp * qsec, data = mtcars),
 ##' ggplot2::aes(hp, mpg, linetype = factor(qsec)),
 ##' vars = list(
 ##' hp = min(mtcars$hp):max(mtcars$hp),
 ##' qsec = round(mean(mtcars$qsec) + c(-1, 1) * sd(mtcars$qsec)), 1)) +
 ##' ggplot2::geom_ribbon(ggplot2::aes(ymin = LL, ymax = UL), alpha = .2) +
 ##' ggplot2::geom_line() +
 ##' ggplot2::theme_bw()

CHAPTER 6 ■ WRITING A PACKAGE

111

 Next we rerun the check() function. If all goes well, we should get a status of OK, as shown here:

 check("AdvancedRPkg", cran = TRUE)
 Updating AdvancedRPkg documentation
 [. . .]
 * DONE

 Status: OK

 R CMD check results
 0 errors | 0 warnings | 0 notes

 At this point, we can commit all our changes to the Git repository and sync it with GitHub. We can also
install the package. First, open a terminal and navigate to the folder containing our package (not the package
directory itself, but the directory containing the package directory). From the terminal, we can run R CMD
INSTALL at an R-enabled terminal such as the Windows command prompt (this can be any terminal, if you
have ensured that when you installed R, it was added to the system path):

 R CMD INSTALL AdvancedRPkg

 Now, should you wish, library(AdvancedRPkg) works in R:

 library(AdvancedRPkg)

 You can also share the compressed tar ball created from the devtools package from build() . If you
put the package on GitHub, it can alternately be installed readily by running the following code, replacing
 ElkhartGroup with your username and running this code at the R console (not the OS terminal!):

 library(devtools)
 install_github("ElkhartGroup/AdvancedRPkg")

 If you want, you can edit the README file for the package. It is not required, but can be a useful reference.
It is written using the Markdown markup language. If edited, it also shows up on GitHub. We edit the
 README.md file and add the text and markup that follows. Briefly, Markdown uses various numbers of
hashes (#) to indicate header levels: # for level 1, and ## for level 2, for example. Text between asterisks, * , is
emphasized (italicized). Brackets, [] , and parentheses, () , are used to add URL links, and triple back ticks
(```) are used to show the start and end of a block of code.

 # AdvancedRPkg

 This is a sample R package that acompanies Chapter 6 of *Advanced R: Data Programming and
the Cloud*.
 To learn more, check out the [book](http://www.apress.com/9781484220764)

 ## Installation

 You can install and test the package by running:

 ̀``r

CHAPTER 6 ■ WRITING A PACKAGE

112

 library(devtools)
 install_github("ElkhartGroup/AdvancedRPkg")

 ̀``

 Finally, you can submit your package to CRAN should you wish. The first step is to carefully attend to
all of their current policies, located at the CRAN Repository Policy site (https://cran.r-project.org/web/
packages/policies.html). Once you have checked that your package complies and have corrected any
noncompliance, you can submit it to CRAN at https://cran.r-project.org/submit.html . CRAN is huge,
with thousands of packages and a tremendous number of updates daily. It is a free service to the community
run by volunteers. Thus, even if some of the requirements are tedious, if you want your package on CRAN, it
is only fair to play by their rules and do whatever makes it easiest for them. Otherwise, GitHub is a relatively
easy place to host and distribute package source code.

 Summary
 This chapter has covered the logistics of developing, testing, documenting, and releasing an R package.
Although the process does not necessarily involve complex R code, handling the many aspects and getting
all pieces to interact properly can be challenging. The payoff for the work is ease of installation and use
for users, along with high-quality documentation and assurances that the code works as intended. If you
plan to continue developing packages, useful resources for further reading are the official manual, Writing
R Extensions (https://cran.r-project.org/doc/manuals/R-exts.html), and documentation for using
 roxygen2 (https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html). The
vignettes for roxygen2 are especially useful for topics not covered in this chapter, such as formatting the
documentation and collation order (required when some classes or functions have to be loaded before
others in your package). A brief summary of the functions used in this chapter is shown in Table 6-3 .

 This chapter is also the last chapter focused specifically on R programming and the tools around
software development in R. The remainder of this book focuses on using R for data management and
applied analysis at an advanced level. Although we utilize many aspects of the R programming you’ve
learned in this section of the book and write many functions, we do not develop any new packages in the
upcoming chapters.

https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/web/packages/policies.html
https://cran.r-project.org/submit.html
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

CHAPTER 6 ■ WRITING A PACKAGE

113

 Table 6-3. Key Functions Described in This Chapter

 Function What It Does

 setup() Creates a new package (in our case, AdvancedRPkg).

 list.files() Does what it says—the R equivalent of the Unix or Windows ls .

 load_all() Before a package is built or installed, library() does not work; this simulates that
in the meantime.

 context() Part of the testthat package we used in test_textplot.R .

 test_that() Part of the testthat package we used in test_textplot.R .

 expect_*() A family of functions useful for testing code. These functions check that output
matches a certain expectation, such as the class of output, whether the code
returns an error or warning, and many others. For a full list, after loading the
 testthat package, run apropos("expect_") at the console.

 apropos() Useful to search for partially remembered function calls.

 test() Runs the testthat tests; run from our chapter06.R file.

 package_coverage() Calculates how much of the package has been tested; usually, the goal is 100
percent.

 document() Used to build the roxygen2 documentation for an R package.

 build() Used to build the R package.

 check() Used to check the R package; we used the CRAN option in ours.

115© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_7

 CHAPTER 7

 Introduction to Data Management
Using data.table

 We already briefly introduced the data.table package. This package is the heart of this chapter, which
covers the basics of accessing, editing, and manipulating data under the broad term data management .
Although not glamorous, data management is a critical first step to data visualization or analysis.
Furthermore, the majority of time on a particular analysis project may come from the data management.
For example, running a linear model in R can take one line of code, once the data is clean and in the format
that the lm() function in R expects. Data management can be challenging, because raw data come in all
types, shapes, and formats; missing data is common; and you may also have to combine or merge separate
data sources. In this chapter, we introduce both mechanical and philosophical techniques to approach data
management. All packages used in this chapter are already in our checkpoint.R file. Thus you need only
source the file to get started.

 In this chapter, we use the data.table R package (Dowle, Srinivasan, Short, and Lianoglou, 2015). The
following code loads the checkpoint (Microsoft Corporation, 2016) package to control the exact version of R
packages used and then loads the data.table package:

 ## load checkpoint and required packages
 library(checkpoint)
 checkpoint("2016-09-04", R.version = "3.3.1")
 library(data.table)
 options(width = 70) # only 70 characters per line

 Introduction to data.table
 One of the benefits of using data tables, rather than the built-in data frame class objects , is that data tables
are more memory efficient and faster to manipulate and modify. The data.table package accomplishes
this to a large extent by altering data tables in place in memory, whereas with data frames, R typically makes
a copy of the data, modifies it, and stores it. Making a full copy happens regardless of whether all columns
of the data are being changed or, for example, 1 of 100 columns. Consequently, operations on data frames
tend to take more time and use up more memory than comparable operations with data tables. To show the
concepts of data management, we work with small data, so memory and processor time are not an issue.
However, we highlight the use of data tables, rather than data frames, because data tables scale gracefully
to far larger amounts of data than do data frames. There are other benefits of data tables as well, including
not requiring all variable names to be quoted, that we show throughout the chapter. In contrast, the major
advantage of data frames is that they live in base R, and more people are familiar with working with them
(which is helpful, for example, if you share your code).

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

116

 Data tables can be quite large. Rather than viewing all your data, it is often helpful to view just the
 head() and the tail() . When you show a data table in R by typing its name, the first and last five rows
are returned by default. R also defaults to printing seven significant digits, which can make our numerical
entries messy. For cleanness, we use the options() function to control some of the global options so that
only the first and last three rows print (if the data table has more than 20 rows total—otherwise, all are
shown); in addition, only two significant digits display for our numerical entries. While we set this, we also
introduce Edgar Anderson’s iris data . This data involves sepal and petal lengths and widths in centimeters of
three species of iris flowers.

 Before we convert the iris data into a data table, we are going to convert our species’ names to
a character rather factor class. In the following code, we set our options, force the species’ names to
characters, and create our data table, diris :

 options(stringsAsFactors = FALSE,
 datatable.print.nrows = 20, ## if over 20 rows
 datatable.print.topn = 3, ## print first and last 3
 digits = 2) ## reduce digits printed by R

 iris$Species <- as.character(iris$Species)
 diris <- as.data.table(iris)

 diris
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 5.1 3.5 1.4 0.2 setosa
 2: 4.9 3.0 1.4 0.2 setosa
 3: 4.7 3.2 1.3 0.2 setosa

 148: 6.5 3.0 5.2 2.0 virginica
 149: 6.2 3.4 5.4 2.3 virginica
 150: 5.9 3.0 5.1 1.8 virginica

 There are 150 rows of data comprising our three species: setosa , versicolor , and virginica . Each
species has 50 measurement sets. R lives in memory, and for huge data tables, this may cause issues. The
 tables() command shows all the data tables in memory, as well as their sizes. In fact, tables() is itself
a data table. Notice that the function gives information as to the name of our data table(s), the number of
rows, columns, the size in MB , and if there is a key . We discuss data tables with a key in just a few paragraphs.
For now, notice that 1MB is not likely to give us memory issues:

 tables()
 NAME NROW NCOL MB
 [1,] diris 150 5 1
 COLS KEY
 [1,] Sepal.Length,Sepal.Width,Petal.Length,Petal.Width,Species
 Total: 1MB

 If we need more information about the types of data in each column, calling the sapply() command on
a data table of interest along with the class() function works. Recall that the *apply functions return results
from calling the function named in the second formal on the elements from the first formal argument. In our
case, class() is called on diris , and we see what types of values are stored in the columns of diris :

 sapply(diris, class)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 "numeric" "numeric" "numeric" "numeric" "character"

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

117

 Data tables have a powerful conceptual advantage over other data formats. Namely, data tables may be
keyed. With a key, it is possible to use binary search. For those new to binary search, imagine needing to find
a name in a phone book. It would take quite some time to read every name. However, because we know that
the telephone directory sorts alphabetically, we can instantly find a middle-of-the-alphabet name, determine
whether our search name belongs before or after that name, and remove half the phone book from our search in
the process. Our algorithm may be repeated with the remaining half, leaving only a quarter of the original data
to search after just two accesses! More mathematically, while a search through all terms of a data frame would
be linear based on the number of rows, n , in a data table, it is at worse log n . In a few new tables we, the authors,
used, doubling our data added only minutes to code runtime rather than doubling runtime. A major win.

 ■ Note In data.table , a key is an index that may or may not be unique, created from one or more columns
in the data. The data is sorted by the key, allowing very fast operations using the key. Example operations
include subsetting or filtering, performing a calculation (for example, the mean of a variable) for every unique
key value, and merging two or more data sets.

 Of course, it does take time to key a data table, so it depends on how often you access your data before
making this sort of choice. Another consideration is what to use as the key. A table has only one key,
although that key may consist of more than one column. The function setkey() takes a data table as the
first formal and then takes an unspecified number of column names after that to set a key. To see whether a
data table has a key, simply call haskey() on the data table you wish to test. Finally, if you want to know what
columns built the key, the function key() called on the data table provides that information. We show these
commands on our data table diris in the following code lines:

 haskey(diris)
 [1] FALSE
 setkey(diris, Species)
 key(diris)
 [1] "Species"
 haskey(diris)
 [1] TRUE

 Keys often are created based on identification variables. For instance, in research, each participant in a
study may be assigned a unique ID. In business cases, every customer may have an ID number. Data tables
often are keyed by IDs like these, because often operations are performed by those IDs. For example, when
conducting research in a medical setting, you may have two data tables, one containing questionnaires
completed by participants and another containing data from medical records. The two tables can be joined
by participant ID. In business, every time a customer makes a new purchase, an additional row may be
added to a data set containing the purchase amount and customer ID. In addition to knowing individual
purchases, however, it may also be helpful to know how much each customer has purchased in total—the
sum purchase amount for each customer ID.

 It is not required to set a key; the essence of binary sort simply requires a logical order. The function call
 order() does this. It is important to note that data tables have another nice feature. Going back to our phone
book analogy, imagine that we want to sort by first name instead of last name. Now, the complicated way to
do this would be to line up every person in the phone book and then have them move into the new order.
In this example, the people are the data. However, it would be much easier simply to reorganize the phone
book—much less data. The telephone directory is a reference to the physical location of the people. We can
simply move some of those entries higher up in our reference table, without ever changing anyone’s physical
address. It is again a faster technique that avoids deleting and resaving data in memory. So too, when we
impose order on a data table, it is by reference. Note that this new order unsets our key, since a critical aspect
of a key is that the data is sorted by that key:

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

118

 diris <- diris[order(Sepal.Length)]
 diris
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.4 2.9 1.4 0.2 setosa
 3: 4.4 3.0 1.3 0.2 setosa

 148: 7.7 3.0 6.1 2.3 virginica
 149: 7.7 3.8 6.7 2.2 virginica
 150: 7.9 3.8 6.4 2.0 virginica
 haskey(diris)
 [1] FALSE

 Alternatively, we may order a data table by using multiple variables and even change from the default
increasing order to decreasing order. To use more than one column, simply call order() on more than
column. Adding - before a column name sorts in decreasing order. The following code sorts diris based on
increasing sepal length and then decreasing sepal width:

 diris <- diris[order(Sepal.Length, -Sepal.Width)]
 diris
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.4 3.2 1.3 0.2 setosa
 3: 4.4 3.0 1.3 0.2 setosa

 148: 7.7 2.8 6.7 2.0 virginica
 149: 7.7 2.6 6.9 2.3 virginica
 150: 7.9 3.8 6.4 2.0 virginica

 If we reset our key, it destroys our order. While this would not be apparent with our normal call to diris ,
if we take a look at just the correct rows, we lose the strict increasing order on sepal length:

 setkey(diris, Species)
 diris[49:52]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 5.7 3.8 1.7 0.3 setosa
 2: 5.8 4.0 1.2 0.2 setosa
 3: 4.9 2.4 3.3 1.0 versicolor
 4: 5.0 2.3 3.3 1.0 versicolor

 What this teaches us is that decisions about order and keys come with a cost. Part of the improved
speed of a data table comes with being able to perform fast searches. Choosing a key comes with a one-time
computation cost, so it behoves us to make sensible choices for our key. The iris data set is small enough to
make such costs irrelevant while we learn, but real-life data sets are not as likely to be so forgiving. Choosing
a key also influences some of the default choices for functions we use to understand aspects of our data
table. Setting a key is about not only providing a sort of our data, but also asserting our intent to make the
key the determining aspect of that data. An example of this is shown with the anyDuplicated() function call,
which gives the index of the first duplicated row. As we have set our key to Species , it defaults to look in just
that column. Notice that the first duplicate for Species occurs in the second row, while the first duplicated
sepal length entry takes place in the third row:

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

119

 anyDuplicated(diris)
 [1] 2
 anyDuplicated(diris$Sepal.Length)
 [1] 3

 Other functions in the duplication family of functions that are influenced by key include duplicated()
itself, which returns a Boolean value for each row. In our case, such a call on diris would give us FALSE
values for each of the rows 1 , 51 , and 101 , since we have 50 of each species and are sorting by species. That
is many values to get, so we instead put that into a nice table. If we had not set a key, duplicated() would
consider a row duplicated only if it was a full copy. Contrast the code with our key to an example without a
key (we temporarily broke the key for the latter half of the code):

 haskey(diris)
 [1] TRUE
 table(duplicated(diris))

 FALSE TRUE
 3 147

 ##Code With Key Removed
 haskey(diris)
 [1] FALSE
 table(duplicated(diris))

 FALSE TRUE
 149 1
 anyDuplicated(diris)
 [1] 79
 diris[77:80]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 5.8 2.7 3.9 1.2 versicolor
 2: 5.8 2.7 5.1 1.9 virginica
 3: 5.8 2.7 5.1 1.9 virginica
 4: 5.8 2.6 4.0 1.2 versicolor

 If we return our key to our data set, the last function we discuss shows just those three rows that are
 unique() . If the data set were unkeyed, the unique function would remove only row 79 :

 unique(diris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.9 2.4 3.3 1.0 versicolor
 3: 4.9 2.5 4.5 1.7 virginica

 As we have shown in this section, one of the benefits of having a data table is the ability to define a key.
The key should be chosen to represent the true uniqueness of a data table. Now, in some types of data, the
 key might be obvious. Analysis of employee records would likely use employee identity numbers or perhaps
social security numbers. However, in other scenarios such as this one, the key might not be so obvious.
Indeed, as we see in the preceding results of the unique() call on our keyed diris data table, we get only
three rows returned. That may not truly represent any genuine uniqueness. In that case, it may benefit us to
have more than one column used to create the key, although which columns are relevant depends entirely
on the data available and the goals of our final analysis. We leave such musings behind for the moment, as
we turn our attention to accessing specific parts of our data.

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

120

 Selecting and Subsetting Data
 Using the First Formal
 Data tables were built to easily and quickly access data. Part of the way we achieve this is by not having
formal row names. Indeed, part of what a key does could be considered providing a useful row name rather
than an arbitrary index. The overall format for data table objects is of the form Data.Table[i, j, by] ,
where i expects row information. In particular, data tables are somewhat self-aware, in that they understand
their column names as variables without using the $ operator. If a column variable is not named, then it is
imagined that we are attempting to call by row, such as in the following bit of code:

 ■ Note Rows from a data table are commonly selected by passing a vector containing one of the following:
(1) numbers indicating the rows to choose, d[1:5] , (2) negative numbers indicating the rows to exclude,
 d[-(1:5)] , (3) a logical vector TRUE / FALSE indicating whether each row should be included, d[v == 1] , often
as a logical test using a column, v , from the data set.

 diris[1:5]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.4 3.2 1.3 0.2 setosa
 3: 4.4 3.0 1.3 0.2 setosa
 4: 4.4 2.9 1.4 0.2 setosa
 5: 4.5 2.3 1.3 0.3 setosa

 Notice that if this were a data frame , we would have gotten the entire data frame, because we would
have been calling for columns and we have only five columns. Here, in data table world, because we have
not called for a specific column name, we get the first five rows instead. As with increasing or decreasing,
we can also perform an opposite selection via the - operator. In this case, by asserting that we want the
complement of rows 1:148 , we get just the last two rows. Notice the row numbers on the left side. These are
rows 149 and 150 , yet, because the data table is not concerned with row names, they are renumbered on the
fly as they print to our screen. It is wise to use caution when selecting rows in a data table.

 diris[-(1:148)]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 7.7 2.6 6.9 2.3 virginica
 2: 7.9 3.8 6.4 2.0 virginica

 More typically, we select by column names or by key. As we have set our key to Species , it becomes
very easy to select just one species. We simply ask for the character string to match. Now, at the start of this
chapter, we made sure that species were character strings. The reason for that choice is clear in the following
code, where being able to readily select our desired key values is quite handy. Notice that the second
command uses the negation operator, ! , to assert that we want to select all key elements that are not part of
the character string we typed:

 diris["setosa"]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.4 3.2 1.3 0.2 setosa

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

121

 3: 4.4 3.0 1.3 0.2 setosa

 48: 5.7 4.4 1.5 0.4 setosa
 49: 5.7 3.8 1.7 0.3 setosa
 50: 5.8 4.0 1.2 0.2 setosa

 diris[!"setosa"]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.9 2.4 3.3 1.0 versicolor
 2: 5.0 2.3 3.3 1.0 versicolor
 3: 5.0 2.0 3.5 1.0 versicolor

 98: 7.7 2.8 6.7 2.0 virginica
 99: 7.7 2.6 6.9 2.3 virginica
 100: 7.9 3.8 6.4 2.0 virginica

 Of course, while we have chosen so far to use key elements, that is by no means required. Logical
indexing is quite natural with any of our columns. The overall format compares elements of the named
column to the logical tests set up. The final result shows only the subset of rows that evaluated to TRUE . For
inequalities, multiple arguments, and strict equality (in essence, the usual comparison operators), data
tables work as you would expect. Also, note again with data tables, we do not need to reference in which
object the variable Sepal. Length is. It evaluates within the data table by default.

 diris[Sepal.Length < 5]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.4 3.2 1.3 0.2 setosa
 3: 4.4 3.0 1.3 0.2 setosa

 20: 4.9 3.0 1.4 0.2 setosa
 21: 4.9 2.4 3.3 1.0 versicolor
 22: 4.9 2.5 4.5 1.7 virginica

 diris[Sepal.Length < 5 & Petal.Width < .2]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.8 3.0 1.4 0.1 setosa
 3: 4.9 3.6 1.4 0.1 setosa
 4: 4.9 3.1 1.5 0.1 setosa

 diris[Sepal.Length == 4.3 | Sepal.Length == 4.4]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.4 3.2 1.3 0.2 setosa
 3: 4.4 3.0 1.3 0.2 setosa
 4: 4.4 2.9 1.4 0.2 setosa

 There are, however, some new operators. In the preceding code, we typed a bit too much because we
repeated Sepal.Length . Thinking forward to what data tables store, imagine that we have a list of employees
that we occasionally modify. We might simply store an employee’s unique identifier to that list, and pull from
our data table as needed. Of course, in our example here, we have sepal lengths rather than employees, and

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

122

we want just the rows that have the lengths of interest in our list. The command is %in% and takes a column
name on the left and a vector on the right. Naturally, we may want the complement of such a group, in which
case we use the negation operator. We show both results in the following code:

 interest <- c(4.3, 4.4)
 diris[Sepal.Length %in% interest]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.4 3.2 1.3 0.2 setosa
 3: 4.4 3.0 1.3 0.2 setosa
 4: 4.4 2.9 1.4 0.2 setosa
 diris[!Sepal.Length %in% interest]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 4.5 2.3 1.3 0.3 setosa
 2: 4.6 3.6 1.0 0.2 setosa
 3: 4.6 3.4 1.4 0.3 setosa

 144: 7.7 2.8 6.7 2.0 virginica
 145: 7.7 2.6 6.9 2.3 virginica
 146: 7.9 3.8 6.4 2.0 virginica

 Using the Second Formal
 Thus far, we have mentioned that data tables do not have native row names, and yet, we have essentially
been selecting specific rows in a variety of ways. Recall that our generic layout Data.Table[i, j, by] allows
us to select objects of columns in the first formal. We turn our attention to the second formal location of j ,
with a goal to select only some columns rather than all columns. Keep in mind, data tables presuppose that
variables passed within them exist in the environment of the data table. Thus, it becomes quite easy to ask
for all the variables in a single column.

 ■ Note Variables are selected by typing the unquoted variable name, d[, variable] , or multiple variables
separated by commas within, .() , d[, .(v1, v2)] .

 diris[,Sepal.Length]
 [1] 4.3 4.4 4.4 4.4 4.5 4.6 4.6 4.6 4.6 4.7 4.7 4.8 4.8 4.8 4.8 4.8
 [17] 4.9 4.9 4.9 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1 5.1 5.1
 [33] 5.1 5.1 5.1 5.1 5.2 5.2 5.2 5.3 5.4 5.4 5.4 5.4 5.4 5.5 5.5 5.7
 [49] 5.7 5.8 4.9 5.0 5.0 5.1 5.2 5.4 5.5 5.5 5.5 5.5 5.5 5.6 5.6 5.6
 [65] 5.6 5.6 5.7 5.7 5.7 5.7 5.7 5.8 5.8 5.8 5.9 5.9 6.0 6.0 6.0 6.0
 [81] 6.1 6.1 6.1 6.1 6.2 6.2 6.3 6.3 6.3 6.4 6.4 6.5 6.6 6.6 6.7 6.7
 [97] 6.7 6.8 6.9 7.0 4.9 5.6 5.7 5.8 5.8 5.8 5.9 6.0 6.0 6.1 6.1 6.2
 [113] 6.2 6.3 6.3 6.3 6.3 6.3 6.3 6.4 6.4 6.4 6.4 6.4 6.5 6.5 6.5 6.5
 [129] 6.7 6.7 6.7 6.7 6.7 6.8 6.8 6.9 6.9 6.9 7.1 7.2 7.2 7.2 7.3 7.4
 [145] 7.6 7.7 7.7 7.7 7.7 7.9

 is.data.table(diris[,Sepal.Length])
 [1] FALSE

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

123

 On the other hand, as you can see in the preceding vector return, entering a single column name does not
return a data table. If a data table return is required, this may be solved in more than one way. Recall that the data
table strives to be both computationally fast and programmatically fast. We extract single or multiple columns
while retaining the data table structure by accessing them in a list. This common desire to pass a list() as an
argument for data has a clear, shorthand function call in the data table of .() . We show in the following code that
we may pass a list with one or more elements calling out specific column names. Both return data tables.

 diris[, .(Sepal.Length)]
 Sepal.Length
 1: 4.3
 2: 4.4
 3: 4.4

 148: 7.7
 149: 7.7
 150: 7.9

 diris[, .(Sepal.Length, Sepal.Width)]
 Sepal.Length Sepal.Width
 1: 4.3 3.0
 2: 4.4 3.2
 3: 4.4 3.0

 148: 7.7 2.8
 149: 7.7 2.6
 150: 7.9 3.8

 Using the Second and Third Formals
 We have been using the column names as variables that may be directly accessed. They evaluate within
the frame of our data table diris . This feature may be turned on or off by the with argument that is one of
our options for the last formal in our generic layout Data.Table[i, j, by] . The default value is with =
TRUE , where default behavior is to evaluate the j formal within the frame of our data table diris . Changing
the value to with = FALSE changes the default behavior. This difference is similar to what happens when
working with R interactively. We assign the text, example , to a variable, x . If we type x without quotes at the
R console, R looks for an object named x . If we type "x" in quotes, R treats it not as the name of an R object
but as a character string.

 x <- "example"

 x
 [1] "example"

 "x"
 [1] "x"

 When with = TRUE (the default), data tables behave like the interactive R console. Unquoted variable
names are searched for as variables within the data table. Quoted variable names or numbers are evaluated
literally as vectors in their own right. When with = FALSE , data tables behave more like data frames, and
instead of treating numbers or characters as vectors in their own right, search for the column name or
position that matches them. In this context then, our data table expects j to be either a column position in
numeric form or a character vector of the column name(s). In both cases, data tables are still returned.

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

124

 diris[, 1, with = FALSE]
 Sepal.Length
 1: 4.3
 2: 4.4
 3: 4.4

 148: 7.7
 149: 7.7
 150: 7.9

 diris[, "Sepal.Length", with = FALSE]
 Sepal.Length
 1: 4.3
 2: 4.4
 3: 4.4

 148: 7.7
 149: 7.7
 150: 7.9

 This becomes a very useful feature if columns need to be selected dynamically. Character strings pass to
data table via variables, such as in the following code:

 v <- "Sepal.Length"
 diris[, v, with = FALSE]
 Sepal.Length
 1: 4.3
 2: 4.4
 3: 4.4

 148: 7.7
 149: 7.7
 150: 7.9

 Of course, if we do not turn off the default behavior via the third formal, this may lead to unexpected
results. Caution is required to ensure that you get the data you seek. However, remember what each of these
return; the results that follow are not, in fact, unfortunate or mistakes. They prove to be quite useful.

 diris[, v]
 [1] "Sepal.Length"
 diris[, 1]
 [1] 1

 As you have seen, we may call out one or more columns in a variety of ways, depending on our needs.
Recalling the useful notation of - to subtract from the data table, we are also able to remove one or more
columns from our data table, giving us access to all the rest. Notice in particular that we could use our
variable v to hold multiple columns if necessary, thus allowing us to readily keep a list of columns that need
removing. For instance, this can be used to remove sensitive information in data that goes from being for
internal use only to being available for external. In the following subtraction examples, we ask for the first
row in all cases to save space and ink:

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

125

 diris[1, -"Sepal.Length", with=FALSE]
 Sepal.Width Petal.Length Petal.Width Species
 1: 3 1.1 0.1 setosa
 diris[1, !"Sepal.Length", with=FALSE]
 Sepal.Width Petal.Length Petal.Width Species
 1: 3 1.1 0.1 setosa
 diris[1, -c("Sepal.Length", "Petal.Width"), with=FALSE]
 Sepal.Width Petal.Length Species
 1: 3 1.1 setosa
 diris[1, -v, with=FALSE]
 Sepal.Width Petal.Length Petal.Width Species
 1: 3 1.1 0.1 setosa

 Contrastingly, on occasion, we do want to return our column as a vector as with diris[,Sepal.
Length]. In that case, there are easy-enough ways to gain access to that vector. Here, we combine all our
function call examples with the head() function to truncate output. Notice that the second example is
convenient if you need variable access to that column as a vector, while the last reminds us that data tables
 build on data frames:

 head(diris[["Sepal.Length"]]) # easy if you have a R variable
 [1] 4.3 4.4 4.4 4.4 4.5 4.6
 head(diris[[v]]) # easy if you have a R variable
 [1] 4.3 4.4 4.4 4.4 4.5 4.6
 head(diris[, Sepal.Length]) # easy to type
 [1] 4.3 4.4 4.4 4.4 4.5 4.6
 head(diris$Sepal.Length) # easy to type
 [1] 4.3 4.4 4.4 4.4 4.5 4.6

 Variable Renaming and Ordering
 Data tables come with variables and a column order. On occasion, it may be desirable to change that order
or rename variables. In this section, we show some techniques to do precisely that, keeping our comments
brief and letting the code do the talking.

 ■ Note Variable names in data tables can be viewed by using names(data) , changed by using
 setnames(data, oldnames, newnames) , and reordered by using setnames(data, neworder) .

 While we have not yet used this function in this book, names() is part of R’s base code and is a generic
function. Data tables have only column names, so the function call colnames() in the base package is also
going to return the same results:

 names(diris)
 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
 colnames(diris)
 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

126

 For objects in the base code of R, such as a data frame, names() can even be used to set new values.
However, data tables work differently and use a different function to be memory efficient. Remember, data
tables avoid copying data whenever possible and instead simply change the reference pointers. Normally,
renaming an object in R would copy the data, which both takes time to accomplish and takes up space in
memory. The function call for data tables is setnames() , which takes formal arguments of the data table, the
old column name(s), and the new column name(s):

 setnames(diris, old = "Sepal.Length", new = "SepalLength")
 names(diris)
 [1] "SepalLength" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

 We could have also referred to the old column by numeric position rather than variable name. This can
be convenient when names are long, or the data’s position is known in advance:

 setnames(diris, old = 1, new = "SepalL")
 names(diris)
 [1] "SepalL" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

 Additionally, columns may be fully reordered . Again, we prefix our command with set , as the
command setcolorder() sets the column order while avoiding any copying of the underlying data. All
that changes is the order of the pointers to each column. Thus, this is a fast command for data tables that
depends on only the number of columns rather than on the number of elements within a column.

 setcolorder(diris, c("SepalL", "Petal.Length", "Sepal.Width", "Petal.Width", "Species"))
 diris
 SepalL Petal.Length Sepal.Width Petal.Width Species
 1: 4.3 1.1 3.0 0.1 setosa
 2: 4.4 1.3 3.2 0.2 setosa
 3: 4.4 1.3 3.0 0.2 setosa

 148: 7.7 6.7 2.8 2.0 virginica
 149: 7.7 6.9 2.6 2.3 virginica
 150: 7.9 6.4 3.8 2.0 virginica

 As with setnames() , setcolorder() may be used with numeric positions rather than variable names.
We mention here as well that these are all done via reference changes, and our data table diris remains
keyed throughout all of this.

 v <- c(1, 3, 2, 4, 5)
 setcolorder(diris, v)
 diris
 SepalL Sepal.Width Petal.Length Petal.Width Species
 1: 4.3 3.0 1.1 0.1 setosa
 2: 4.4 3.2 1.3 0.2 setosa
 3: 4.4 3.0 1.3 0.2 setosa

 148: 7.7 2.8 6.7 2.0 virginica
 149: 7.7 2.6 6.9 2.3 virginica
 150: 7.9 3.8 6.4 2.0 virginica

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

127

 Computing on Data and Creating Variables
 We next turn our attention to creating new variables within the data table. Thinking back to a for loop
structure, the goal would be to step through each row of our data table and make some analysis or change.
Data table has very efficient code to do precisely this without formally calling a for loop or even using the
 *apply() functions. By efficient , we mean faster than either of those two methods in all, or almost all, cases.
To get us started on solid ground, we go ahead and re-create and rekey our data table based on the original
iris data set to remove any changes we made in the prior sections:

 diris <- as.data.table(iris)
 setkey(diris, Species)

 ■ Note New variables are created in a data table by using the := operator in the j formal, data[, newvar
:= value] . Variables from the data set can be used as well as using functions.

 Creating a new variable in a data table is creating a new column. Because of that, we operate in the
second formal, or j , area of our generic structure Data.Table[i, j, by] . Column creation involves using
the assignment by reference := operator. Column creation can take different forms depending on what we
wish to create. We may create just a single column and populate it with zeros, create multiple columns with
different variables, or even create a new column based on calculations on existing columns. Notice that all
these are in the second formal argument location in our data table call, and pay special attention to the way
we create multiple columns at once, named X1 and X2, by using .() to pass a vector of column names on the
left and a list of column values on the right-hand side:

 diris[, V0 := 0]
 diris[, Sepal.Length := NULL]
 diris[, c("X1", "X2") := .(1L, 2L)]
 diris[, V := Petal.Length * Petal.Width]
 diris
 Sepal.Width Petal.Length Petal.Width Species V0 X1 X2 V
 1: 3.5 1.4 0.2 setosa 0 1 2 0.28
 2: 3.0 1.4 0.2 setosa 0 1 2 0.28
 3: 3.2 1.3 0.2 setosa 0 1 2 0.26

 148: 3.0 5.2 2.0 virginica 0 1 2 10.40
 149: 3.4 5.4 2.3 virginica 0 1 2 12.42
 150: 3.0 5.1 1.8 virginica 0 1 2 9.18

 Assignment to NULL deletes columns. Full deletion in this way removes any practical ability to restore
that column, but it is fast. Another option, of course, would be to use - to generate a subset of the original
data table and then copy that to a second data table. The difference is in speed and memory usage. Making
a copy may almost double your memory usage and takes linear time to copy based on total elements, but
making a copy keeps the original around if you want or need to go back. It is possible to delete more than
one column at a time via assignment to NULL . We show just the first row to verify that the deletion was
successful:

 diris[, c("V", "V0") := NULL]
 diris[1]

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

128

 Sepal.Width Petal.Length Petal.Width Species X1 X2
 1: 3.5 1.4 0.2 setosa 1 2

 It is of great benefit to be able to generate new columns based on computations involving current
columns. Additionally, this process can be readily modified by commands in the first formal area that allows
us to select key data results. Recall that our key is of species, one of which is setosa . We re-create our deleted
 V column with the multiplication of two current columns and do so only for rows with the setosa Species
key. Notice that rows not matching the key get NA as filler.

 diris["setosa", V := Petal.Length * Petal.Width]
 unique(diris)
 Sepal.Width Petal.Length Petal.Width Species X1 X2 V
 1: 3.5 1.4 0.2 setosa 1 2 0.28
 2: 3.2 4.7 1.4 versicolor 1 2 NA
 3: 3.3 6.0 2.5 virginica 1 2 NA

 However, if we later decide that virginica also deserves some values in the V column, that can be done,
and it need not involve the same calculation as used for setosa . We again use the unique() function call
to look only at the first example of each species. While this example is artificial, imagine a distance column
being created based on coordinates already stored in the data. Based on key values, perhaps some distance
calculations ought to be in Manhattan length, while others might naturally be in Euclidean length.

 diris["virginica", V := sqrt(Petal.Length * Petal.Width)]
 unique(diris)
 Sepal.Width Petal.Length Petal.Width Species X1 X2 V
 1: 3.5 1.4 0.2 setosa 1 2 0.28
 2: 3.2 4.7 1.4 versicolor 1 2 NA
 3: 3.3 6.0 2.5 virginica 1 2 3.87

 Such calculations are not limited to column creation. Suppose we want to know the mean of all values
in Sepal.Width . That calculation can be performed in several ways, each of which may be advantageous
depending on your final goal. Recalling that data tables are data frames as well, we could call our arithmetic
mean function on a suitable data-frame-style call. However, because we want to find the arithmetic mean
of the values of a particular column, we could also call it from the second formal. Remember when we
mentioned caution was required for items in this j location? It is possible to access values from j as vectors.
Contrastingly, should we wish to return a data table, we, of course, can. All three of these return the same
mean, after all. However, it is the last that may be the most instructive.

 mean(diris$Sepal.Width)
 [1] 3.1
 diris[, mean(Sepal.Width)]
 [1] 3.1
 diris[, .(M = mean(Sepal.Width))]
 M
 1: 3.1

 The last is perhaps best, because it can readily expand. Suppose we want to know the arithmetic mean
as in the preceding code, but segregated across our species. This would call for using both the second and
third formals. Suppose we also want to know more than just one column’s mean. Well, the .() notation
would allow us to have a convenient way to store that new information in a data table format, thus making it
ready to be used for analysis. Notice that we now have the intra-species means, and in the second bit of our
code, we have it for more than one column, and in both cases, the returned results are data tables. Thus, we

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

129

could access information from these new constructs just as we have been doing all along with diris . Much
like the hole Alice falls down to reach Wonderland, it becomes a question of “How deep do you want to go?”
rather than “How deep can we go?”

 diris[, .(M = mean(Sepal.Width)), by = Species]
 Species M
 1: setosa 3.4
 2: versicolor 2.8
 3: virginica 3.0
 diris[, .(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)), by = Species]
 Species M1 M2
 1: setosa 3.4 0.25
 2: versicolor 2.8 1.33
 3: virginica 3.0 2.03

 To see the full power of these new data tables we are building, suppose we want to see whether there’s
any correlation between the means of species’ sepal and petal widths. Further imagine that we might find
a use for the mean data at some future point beyond the correlation. We can treat the second data table in
the preceding code snippet as a data table (because it is), and use the second formal to run correlation. This
code follows a Data.Table[i, j, by] [i, j, by] layout, which sounds rather wordy written out; take a
look at the following code to see how it works:

 diris[, .(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)), by = Species][, .(r = cor(M1,
M2))]
 r
 1: -0.76

 Variables may create variables. In other words, a new variable may be created that indicates whether
a petal width is greater or smaller than the median petal width for that particular species. In the code that
follows, median(Petal.Width) is calculated by Species , and the TRUE or FALSE values are stored in the newly
created column MedPW for all 150 rows:

 diris[, MedPW := Petal.Width > median(Petal.Width), by = Species]
 diris
 Sepal.Width Petal.Length Petal.Width Species X1 X2 V MedPW
 1: 3.5 1.4 0.2 setosa 1 2 0.28 FALSE
 2: 3.0 1.4 0.2 setosa 1 2 0.28 FALSE
 3: 3.2 1.3 0.2 setosa 1 2 0.26 FALSE

 148: 3.0 5.2 2.0 virginica 1 2 3.22 FALSE
 149: 3.4 5.4 2.3 virginica 1 2 3.52 TRUE
 150: 3.0 5.1 1.8 virginica 1 2 3.03 FALSE

 Just as it was possible to have multiple arguments passed to the second formal, it is possible to have
multiple arguments passed to the third via the same .() list function call. Again, because what is returned is a
data table, we can also treat it as one with the brackets and perform another layer of calculations on our results:

 diris[, .(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)), by = .(Species, MedPW)]
 Species MedPW M1 M2
 1: setosa FALSE 3.4 0.19
 2: setosa TRUE 3.5 0.38
 3: versicolor TRUE 3.0 1.50

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

130

 4: versicolor FALSE 2.6 1.19
 5: virginica TRUE 3.1 2.27
 6: virginica FALSE 2.8 1.81

 diris[, .(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)), by = .(Species, MedPW)]
 [, .(r = cor(M1, M2)), by = MedPW]
 MedPW r
 1: FALSE -0.78
 2: TRUE -0.76

 Performing computations in the j argument is one of the most powerful features of data tables. For
example, we have shown relatively simple computations of means, medians, and correlations. However, nearly
any function can be used. The only caveat is that if you want the output also to be a data table, the function
should return or be manipulated to return output appropriate for a data table. For instance, a linear model
object that is a list of varying length elements would be messy to coerce into a data table, as it is not tabular
data. However, you could easily extract regression coefficients as a vector, and that could become a data table.

 Merging and Reshaping Data
 Managing data often involves a desire to combine data from different sources into a single object or to
reshape data in one object to a different format. When combining data, there are three distinct types of data
merge : one-to-one, one-to-many (or many-to-one), and many-to-many. You’ll learn about these types in this
section. The general process is to look at data from two or more collections and then compare keys, with a
goal to successfully connect information by row. This is called horizontal merging because it increases the
horizontal length of the target data set.

 Merging Data
 Merges in which each key is unique per data set are of the one-to-one form. An example is merging data sets
keyed by social security number (SSN) that contain official mailing addresses in one and preferred e-mails
in another. In that case, we would expect the real-world data set to have one address per SSN, and the
preferred e-mail data set to have only one row per SSN. Contrastingly, a one-to-many or many-to-one merge
might occur if we had our official mailing address data set as well as all known e-mail addresses, where each
new e-mail address tied to one SSN had its row. If the goal were to append all e-mails to a single real-world
address row, it would be many-to-one, and column names such as Email001 and Email002 might collapse to
a single row. On the other hand, if the goal were to append a real-world address to each e-mail, then perhaps
only one new column would be added, although the data copies to each row of the e-mail address. Finally,
there can be many-to many- merges, in which multiple rows of data append to multiple rows. Figure 7-1
shows examples of these three types of data merges.

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

131

 It is worth noting that the difficulty with merging may well be in understanding what is being done
rather than understanding the code itself. For data tables, the function call is merge() , and arguments
control the type of merge that is performed. Due to the keyed nature of data tables, merging by the key
choice can be quite efficient. Choosing to merge by nonkey columns is also possible, but will not be as
efficient computationally.

 Before getting into the first merge code example , we generate four data tables with information
unique to each. All are keyed by Species from the iris data set. In real life, such code is not required
because normally data tables come already separated. This code is included only for reproducibility of the
merge results. Also note that these are very short data sets; the goal here is for them to be viewed and fully
understood independently. This provides the best environment from which to understand the final merge
results.

 diris <- diris[, .(Sepal.Width = Sepal.Width[1:3]), keyby = Species]

 diris2 <- unique(diris)

 Figure 7-1. Some imaginary data showing how various merges might occur

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

132

 dalt1 <- data.table(
 Species = c("setosa", "setosa", "versicolor", "versicolor",
 "virginica", "virginica", "other", "other"),
 Type = c("wide", "wide", "wide", "wide",
 "narrow", "narrow", "moderate", "moderate"),
 MedPW = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE))
 setkey(dalt1, Species)

 dalt2 <- unique(dalt1)[1:2]

 diris
 Species Sepal.Width
 1: setosa 3.5
 2: setosa 3.0
 3: setosa 3.2
 4: versicolor 3.2
 5: versicolor 3.2
 6: versicolor 3.1
 7: virginica 3.3
 8: virginica 2.7
 9: virginica 3.0

 diris2
 Species Sepal.Width
 1: setosa 3.5
 2: versicolor 3.2
 3: virginica 3.3

 dalt1
 Species Type MedPW
 1: other moderate TRUE
 2: other moderate FALSE
 3: setosa wide TRUE
 4: setosa wide FALSE
 5: versicolor wide TRUE
 6: versicolor wide FALSE
 7: virginica narrow TRUE
 8: virginica narrow FALSE

 dalt2
 Species Type MedPW
 1: other moderate TRUE
 2: setosa wide TRUE

 ■ Note A one-to-one merge requires two keyed data tables, with each row having a unique key:

 merge(x = dataset1, y = dataset2) . The merge exactly matches a row from one data table to the other,
and the result includes all the columns (variables) from both data tables. Whether nonmatching keys are
included is controlled by the all argument, which defaults to FALSE to include only matching keys, but may be
set to TRUE to include nonmatching keys as well.

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

133

 In a one-to-one merge , there is at most one row per key. In the case of diris2, there are three rows, and
each has a unique species. Similarly, in dalt2 , there are two rows, and each has a unique species. The only
common key between these two data sets is setosa . A merge() call on this one-to-one data compares keys
and by default creates a new data table that combines only those rows that have matching keys. In this case,
merging yields a tiny data table with one row. The original two data tables are not changed in this operation.
The call to merge() takes a minimum of two arguments; the first is x , and the second is y , which represent
the two data sets to be merged.

 merge(diris2, dalt2)
 Species Sepal.Width Type MedPW
 1: setosa 3.5 wide TRUE

 Notice that what has been created is a complete data set. However, it is quite small, because the only
results returned were those for which full and complete matches were possible. Depending on the situation,
different results may be desired from a one-to-one merge. Perhaps all rows of diris2 are wanted regardless
of whether they match dalt2 . Conversely, the opposite may be the case, and all rows of dalt2 may be
desired regardless of whether they match diris2 . Finally, to get all possible data, it may be desirable to keep
all rows that appear in either data set. These objectives may be accomplished by variations of the all =
TRUE formal argument. In particular, note how to control which single data set is designated as essential to
keep via the .x or .y suffix to all . If data is not available for a specific row or variable, the cell is filled with a
missing value (NA).

 merge(diris2, dalt2, all.x = TRUE)
 Species Sepal.Width Type MedPW
 1: setosa 3.5 wide TRUE
 2: versicolor 3.2 NA NA
 3: virginica 3.3 NA NA
 merge(diris2, dalt2, all.y = TRUE)
 Species Sepal.Width Type MedPW
 1: other NA moderate TRUE
 2: setosa 3.5 wide TRUE
 merge(diris2, dalt2, all = TRUE)
 Species Sepal.Width Type MedPW
 1: other NA moderate TRUE
 2: setosa 3.5 wide TRUE
 3: versicolor 3.2 NA NA
 4: virginica 3.3 NA NA

 ■ Note A one-to-many or many-to-one merge involves one data table in which each row has a unique key
and another data table in which multiple rows may share the same key. Rows from the data table with unique
keys are repeated as needed to match the data table with repeated keys. In R, identical code is used as for a
one-to-one merge: merge(x = dataset1, y = dataset2) .

 Merges involving diris and dalt2 are of the one-to-many or many-to-one variety. Again, the behavior
wanted in the returned results may be controlled when it comes to keeping only full matches or allowing
various flavors of incomplete data to persist through the merge. The three examples provided are not
exhaustive, yet they are representative of the different possibilities. The last two cases may not be desirable,
as other has only one row, whereas most species have three.

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

134

 merge(diris, dalt2)
 Species Sepal.Width Type MedPW
 1: setosa 3.5 wide TRUE
 2: setosa 3.0 wide TRUE
 3: setosa 3.2 wide TRUE

 merge(diris, dalt2, all.y = TRUE)
 Species Sepal.Width Type MedPW
 1: other NA moderate TRUE
 2: setosa 3.5 wide TRUE
 3: setosa 3.0 wide TRUE
 4: setosa 3.2 wide TRUE

 merge(diris, dalt2, all = TRUE)
 Species Sepal.Width Type MedPW
 1: other NA moderate TRUE
 2: setosa 3.5 wide TRUE
 3: setosa 3.0 wide TRUE
 4: setosa 3.2 wide TRUE
 5: versicolor 3.2 NA NA
 6: versicolor 3.2 NA NA
 7: versicolor 3.1 NA NA
 8: virginica 3.3 NA NA
 9: virginica 2.7 NA NA
 10: virginica 3.0 NA NA

 So far, one-to-one and one-to-many merges have been demonstrated. These types of merges, or joins,
have a final, merged number of rows that is at most the sum of the rows of the two data tables. As long as at
least one of the dimensions of the merge are capped to one, there is no concern. However, in a many-to-many
scenario, the upper limit of size becomes the product of the row count of the two data tables. In many research
contexts, many-to-many merges are comparatively rare. Thus, the default behavior of a merge for data tables is
to prevent such a result, and allow.cartesian = FALSE is the mechanism through which this is enforced as a
formal argument of merge() . The same is not true for other data structures but is unique to data tables.

 Attempting to merge diris and dalt1 results in errors from this default setting, which disallows merged
table rows to be larger than the total sum of the rows. With three setosa keys in diris and two setosa keys
in dalt1 , a merged table would result with 3 x 2 = 6 total rows for setosa alone. As many-to-many merges
involve a multiplication of the total number of rows, it is easy to end up with a very large database. Allowing
this would yield the following results. Notice that this result has only complete rows.

 merge(diris, dalt1, allow.cartesian = TRUE)
 Species Sepal.Width Type MedPW
 1: setosa 3.5 wide TRUE
 2: setosa 3.5 wide FALSE
 3: setosa 3.0 wide TRUE
 4: setosa 3.0 wide FALSE
 5: setosa 3.2 wide TRUE
 6: setosa 3.2 wide FALSE
 7: versicolor 3.2 wide TRUE
 8: versicolor 3.2 wide FALSE
 9: versicolor 3.2 wide TRUE
 10: versicolor 3.2 wide FALSE
 11: versicolor 3.1 wide TRUE

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

135

 12: versicolor 3.1 wide FALSE
 13: virginica 3.3 narrow TRUE
 14: virginica 3.3 narrow FALSE
 15: virginica 2.7 narrow TRUE
 16: virginica 2.7 narrow FALSE
 17: virginica 3.0 narrow TRUE
 18: virginica 3.0 narrow FALSE

 The preceding has only complete rows and is missing the other species. Allowing all possible
combinations nets two more rows, for a total of 20. It is an entirely different conversation if the resulting data
is useful. When merging data, it always pays to consider what types of information are available, and what
might be needed for a particular bit of analysis. We suppress rows 4 through 19 here:.

 merge(diris, dalt1, all = TRUE, allow.cartesian = TRUE)
 Species Sepal.Width Type MedPW
 1: other NA moderate TRUE
 2: other NA moderate FALSE
 3: setosa 3.5 wide TRUE

 20: virginica 3.0 narrow FALSE

 For all of these, the key is Species , and that is only one column. Furthermore, it is nonunique. It is also
possible to have keys based on multiple columns. Recognize that key choice may make all the difference
between a one-to-one versus a many-to-many merge. Consider the following instructive example, in which
only a single column is used as the key and the data is merged:

 d2key1 <- data.table(ID1 = c(1, 1, 2, 2), ID2 = c(1, 2, 1, 2), X = letters[1:4])
 d2key2 <- data.table(ID1 = c(1, 1, 2, 2), ID2 = c(1, 2, 1, 2), Y = LETTERS[1:4])

 d2key1
 ID1 ID2 X
 1: 1 1 a
 2: 1 2 b
 3: 2 1 c
 4: 2 2 d

 d2key2
 ID1 ID2 Y
 1: 1 1 A
 2: 1 2 B
 3: 2 1 C
 4: 2 2 D

 setkey(d2key1, ID1)
 setkey(d2key2, ID1)

 merge(d2key1, d2key2)
 ID1 ID2.x X ID2.y Y
 1: 1 1 a 1 A
 2: 1 1 a 2 B
 3: 1 2 b 1 A

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

136

 4: 1 2 b 2 B
 5: 2 1 c 1 C
 6: 2 1 c 2 D
 7: 2 2 d 1 C
 8: 2 2 d 2 D

 For the merge to be successful with its duplicated column names , ID2.x and ID2.y were created. The
fact is, this data should have resulted in only four rows, once merged, because the data in those two columns
is identical! By setting the key for both data sets to involve both columns ID1 and ID2 , not only is the many-
to-many merge reduced to a one-to-one merge, but the data is of a more practical nature. Multiple columns
being used to key can be especially useful when merging multiple long data sets. For instance, with repeated
measures on multiple people over time, there could be an ID column for participants and another time
variable, but both would be used to merge properly. We discuss reshaping data next.

 setkey(d2key1, ID1, ID2)
 setkey(d2key2, ID1, ID2)

 merge(d2key1, d2key2)
 ID1 ID2 X Y
 1: 1 1 a A
 2: 1 2 b B
 3: 2 1 c C
 4: 2 2 d D

 Reshaping Data
 In addition to being merged, data may be reshaped. Consider our iris data set: each row represents a
unique flower measurement, yet many columns are used for each flower measured. This is an example of
 wide data . Despite not having a unique key, there are a variety of measurements for each flower (row). Wide
data may be reshaped to long data , in which each key appears multiple times and stores variables in fewer
columns. First, we reset our data to the iris data set and create a unique ID to be our key based on the row
position. Recall that data tables suppress rows, so we add those into their ID column by using another useful
shorthand of data tables, namely .N for number of rows:

 diris <- as.data.table(iris)
 diris[, ID := 1:.N]
 setkey(diris, ID)
 diris
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species ID
 1: 5.1 3.5 1.4 0.2 setosa 1
 2: 4.9 3.0 1.4 0.2 setosa 2
 3: 4.7 3.2 1.3 0.2 setosa 3

 148: 6.5 3.0 5.2 2.0 virginica 148
 149: 6.2 3.4 5.4 2.3 virginica 149
 150: 5.9 3.0 5.1 1.8 virginica 150

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

137

 ■ Note Reshaping is used to transform data from wide to long or from long to wide format. In wide format, a
repeatedly measured variable has separate columns, with the column name indicating the assessment. In long
format, a repeated variable has only one column, and a second column indicates the assessment or “time.”
Wide-to-long reshaping is accomplished by using the melt() function, which requires several arguments.

 To reshape long, we melt() the data table measure variables into a stacked format, which is based on
the reshape2 and reshape packages (Wickham, 2007), although there is a data.table method for melt() ,
which is what is dispatched in this case. This function takes several arguments, which we’ll discuss in order.
To see all the arguments, examine the help: ?melt.data.table . Note that it is important to specify the exact
method, melt.data.table , because the arguments for the generic melt() function are different.

 The first formal, data , is the name of the data table to be melted, followed by id.vars , which is where
the ID variables and any other variable that should not be reshaped long. By default, id.vars is any column
name not explicitly called out in the next formal. Any column name assigned to id.vars is not reshaped into
long form; it is repeated, but left as is. The third formal is for the measure variables, and measure.vars uses
these column names to stack the data. Typically, this is a list with separate character vectors to indicate which
variables should be stacked together in the long data. The fourth formal is variable.name , which is the name of
the new variable that will be created to indicate which level of the measure.vars a specific row in the new long
data set belongs to. In the following example, the first level is for length measurements, while the second level
corresponds to width measurements of iris flowers. Finally, value.name is the name of the molten (or long)
column(s), which are the names of the columns in our long data containing the original wide variables’ values.

 Describing reshaping and the required arguments is rather complex. It may be easier to compare output
between the now familiar iris data set and the reshaped, long iris data set, shown here:

 diris.long <- melt(diris, measure.vars =
 list(c("Sepal.Length", "Sepal.Width"), c("Petal.Length", "Petal.

Width")),
 variable.name = "Type", value.name = c("Sepal", "Petal"),
 id.vars = c("ID", "Species"))
 diris.long
 ID Species Type Sepal Petal
 1: 1 setosa 1 5.1 1.4
 2: 2 setosa 1 4.9 1.4
 3: 3 setosa 1 4.7 1.3

 298: 148 virginica 2 3.0 2.0
 299: 149 virginica 2 3.4 2.3
 300: 150 virginica 2 3.0 1.8

 Notice that our data now takes 300 rows because of being melted. The Type 1 versus 2 may be confusing
to equate with length versus width measurements for sepals and petals. The melt() method for data tables
defaults to just creating an integer value indicating whether it is the first, second, or third (and so forth) level.
To make the labels more informative, we use factor() . Because factor will operate on a column and change
the row elements of the column, it belongs in the second formal j argument of the data table.

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

138

 diris.long[, Type := factor(Type, levels = 1:2, labels = c("Length", "Width"))]
 diris.long
 ID Species Type Sepal Petal
 1: 1 setosa Length 5.1 1.4
 2: 2 setosa Length 4.9 1.4
 3: 3 setosa Length 4.7 1.3

 298: 148 virginica Width 3.0 2.0
 299: 149 virginica Width 3.4 2.3
 300: 150 virginica Width 3.0 1.8

 The data set diris. long is a good example of a long data set. It is not, however, the longest possible data
set from diris— not that such a thing is necessarily a goal, by any means. However, should melt() be called
on just diris along with calling out id.vars , the resulting data table is perhaps the longest possible form
of the iris data. Just as id.vars defaults to any values not in measure.vars , so too measure.vars defaults
to any values not in id.vars . As you can also see, variable.name and value.name default to variable and
 value , respectively. Notice that diris.long2 has 600 rows, and what were formerly the four columns of sepal
and petal lengths and widths are now two columns. Also note that when this is done, melt() automatically
sets the values of variable to the initial variable names from the data set.

 diris.long2 <- melt(diris, id.vars = c("ID", "Species"))
 diris.long2
 ID Species variable value
 1: 1 setosa Sepal.Length 5.1
 2: 2 setosa Sepal.Length 4.9
 3: 3 setosa Sepal.Length 4.7

 598: 148 virginica Petal.Width 2.0
 599: 149 virginica Petal.Width 2.3
 600: 150 virginica Petal.Width 1.8

 ■ Note To reshape data from long to wide, the dcast() function is used. Two required arguments are data
and formula , which indicate how the data should be reshaped from long to wide. The formula must indicate
unique values in a cell, or the data needs to be aggregated within a cell.

 While melt() is used to make wide data long, dcast() is used to make long data wide. Without unique
identifiers for data, multiple values must be aggregated to fit in one cell. Thus, calling our casting function
without some thought may create unwanted results (although sometimes aggregating multiple values is
exactly what is desired). Notice that in the second formal, Species is called out as the identity key, and
 variable is named as the location to find our new column names:

 dcast(diris.long2, Species ~ variable)
 Aggregate function missing, defaulting to 'length'
 Species Sepal.Length Sepal.Width Petal.Length Petal.Width
 1: setosa 50 50 50 50
 2: versicolor 50 50 50 50
 3: virginica 50 50 50 50

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

139

 If this long data is to be better cast to wide, a unique identifier is needed so that the formula creates
unique cells that contain only one value. Unless aggregating results is desired, for a given variable, the
 formula argument should result in a single value, not multiple values.

 In this case, since there are four possible values that the variable column takes on in the long data,
as long as there is a unique key that is never duplicated over a specific variable such as Sepal.Length , the
cast works out. In other words, if the wide data has a unique key, we can combine that unique key with the
variable names in the long data, which together will exactly map cells from the long data set back to the wide
data. The left side of the formula contains the key or ID variable. This side of the formula (left of the tilde, ~)
may also contain any other variable that does not vary (such as would have been specified using the id.
vars argument to melt() if the data had initially been reshaped from wide to long). The right-hand side of
the formula (after the tilde, ~) contains the variable or variables that indicate which row of the long data set
belongs in which column of the new wide data set.

 In our long iris data set example, the ID and Species variables do not vary and so belong on the left
side. The variable called variable indicates whether a particular value in the long data set represents Sepal.
Length , Sepal.Width , Petal.Length , or Petal.Width . Thus, for this example, the formula looks like ID +
Species ~ variable :

 diris.wide2 <- dcast(diris.long2, ID + Species ~ variable)
 diris.wide2
 ID Species Sepal.Length Sepal.Width Petal.Length Petal.Width
 1: 1 setosa 5.1 3.5 1.4 0.2
 2: 2 setosa 4.9 3.0 1.4 0.2
 3: 3 setosa 4.7 3.2 1.3 0.2

 148: 148 virginica 6.5 3.0 5.2 2.0
 149: 149 virginica 6.2 3.4 5.4 2.3
 150: 150 virginica 5.9 3.0 5.1 1.8

 Going back to the first diris.long data with the two-level factor for length and width of sepals and
petals, it is also possible to cast this back to wide. The call to dcast() begins similarly to our previous
example. We specify the long data set, a formula indicating the ID and Species variables that are not stacked,
and the variable, Type , that indicates what each row of the data set belongs to.

 In such not-so-long (for lack of a better word) data, we require an additional argument, the value.var
formal, to let dcast() know which variables in the long data are repeated measures. This can be a character
vector of every variable in the long data set that will correspond to multiple variables in the wide data set—
in our case, Sepal and Petal , which in the long data contain both lengths and widths, as indicated in the
 Type variable. Additionally, the separator must be chosen, as data table column names may have different
separators. This is selected via the sep = formal, and here we use the full stop for continuity’s sake, as that is
how the variables were labeled in the original wide iris data set. We show merely the dcast() command, and
check that regardless of method, the wide data is recovered via the all.equal() function, which checks for
precisely what it states. To view the results, type diris.wide at the console:

 diris.wide <- dcast(diris.long, ID + Species ~ Type,
 value.var = list("Sepal", "Petal"), sep = ".")
 all.equal(diris.wide2, diris.wide)
 [1] TRUE

CHAPTER 7 ■ INTRODUCTION TO DATA MANAGEMENT USING DATA.TABLE

140

 Summary
 In this chapter, you met one of the two powerful (and more modern) ways of managing data in R. In
particular, the type of data we manipulate with data.table is column and row, or table, data. In the next
chapter, we delve more deeply into data manipulation. From there, you’ll meet dplyr , which is the other
modern way of managing data in R. We will close out this section with a look at databases outside R. Table 7-1
provides a summary of key functions used in this chapter.

 Table 7-1. Key Functions Described in This Chapter

 Function What It Does

 d[i, j, by] General structure of a call to subset, compute in, or modify a data table.

 as.data.table() Coerces a data structure to a data table.

 setkey() Takes a data table in the first formal and then creates a key based on the column
name arguments next passed to the function.

 haskey() This function is called on a data table and returns a Boolean value.

 key() Returns the data table’s key if it exists.

 order() Controls the order to be ascending or descending for the data of a column.

 tables() Returns any current data tables currently active.

 anyDuplicated() Returns the location of the first duplicated entry.

 duplicated() Returns TRUE or FALSE for all rows to show duplication. Can take a key.
Otherwise, it is by all columns.

 unique() Returns a data table that has only unique rows. Again, these may be specified
to be specific rows. If there is a key, it is based on the key. If there is no key, it is
based on all columns.

 setnames() Allows column names to be changed.

 setcolorder() Allows column order to be adjusted.

 := Assignment operator within a data table.

 .() Shorthand for list() .

 .N Shorthand for number of rows in a data table, or number of rows in a subset,
such as when a compute operation is performed by a grouping variable.

 merge() Merges two data tables based on matching key columns.

 melt() Converts wide data to long data.

 dcast() Converts long data to wide data.

141© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_8

 CHAPTER 8

 Data Munging with data.table

 We already introduced the data.table package (Dowle, Srinivasan, Short, and Lianoglou, 2015). The
 data.table package is the heart of this chapter, covering the basics of accessing, editing, and manipulating
data under the broad term data management . Although not glamorous, data management is a critical first
step to data visualization or analysis. Furthermore, the majority of time on a particular analysis project
often comes from data management. For example, running a linear model in R takes one line of code, once
the data is clean and in the expected format. Data management is challenging because raw data comes in
all types, shapes, and formats, and missing data is common. In addition, you may also have to combine or
merge separate data sources. In this chapter, we go beyond the basic use of data.table to more-complex
data management tasks.

 There tend to be two stages to this sort of data wrangling. One-time conversions are often manual, as
writing code often is not efficient if it is not reused (for example, changing one or two variable names, or
renaming a data file to be consistent). For operations needing repetition (for example, renaming or labeling
hundreds of variables) or working with larger data, more programming is used for data management. Add
the stringdist package (van der Loo, 2014) to your checkpoint (Microsoft, 2016); another needed library is
 foreign (R Core Team, 2015). We run checkpoint as well as code to make data tables print in a neat fashion:

 library(checkpoint)
 checkpoint("2016-09-04", R.version = "3.3.1")

 library(stringsdist)
 library(data.table)
 library(foreign)
 options(width = 70) # only 70 characters per line

 options(stringsAsFactors = FALSE,
 datatable.print.nrows = 20,
 datatable.print.topn = 3,
 digits = 2)

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

142

 Data Munging / Cleaning
 To obtain data that is of the second stage of munging, we download data from the National Survey of
Children’s Health, 2003 (ICPSR 4691) at www.icpsr.umich.edu/icpsrweb/ICPSR/studies/4691 , where
we chose the Stata data format. We place the file in our working directory and use read.dta() to input the
data to R. After converting it to a data table, we set the key to be the identification number column IDNUMR :

 d <- read.dta("ICPSR_04691/DS0001/04691-0001-Data.dta")
 Warning message:
 In `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, :
 duplicated levels in factors are deprecated
 d <- as.data.table(d)
 setkey(d, IDNUMR)

 To get a sense of the structure of this much data (there are over 300 variables), we use the str()
function . We suppress attributes in order to focus on the column names and the types of data inside each
column. Setting strict.width = "cut" enforces the options we set earlier, and we look at only the first 20
columns.

 str(d, give.attr = FALSE, strict.width = "cut", list.len = 20)
 Classes ‘data.table’ and 'data.frame': 102353 obs. of 301 variables:
 $ IDNUMR : int 1 2 3 4 5 6 7 8 9 10 ...
 $ STATE : Factor w/ 51 levels "1-AK","2-AL",..: 35 25 45 18 36 37..
 $ MSA_STAT: Factor w/ 4 levels "-2 - MISSING",..: 4 4 4 4 4 4 4 4 4..
 $ AGEYR_CH: int 12 1 10 7 9 11 9 15 17 1 ...
 $ TOTKIDS4: Factor w/ 4 levels "1 - 1 CHILD",..: 1 1 1 3 4 2 3 3 1 ..
 $ AGEPOS4 : Factor w/ 5 levels "1 - ONLY CHILD",..: 1 1 1 4 2 2 3 2..
 $ S1Q01 : Factor w/ 8 levels "-4 - PARTIAL INTERVIEW",..: 6 5 6 5..
 $ RELATION: Factor w/ 6 levels "-2 - MISSING",..: 3 2 3 3 2 2 2 4 3..
 $ TOTADULT: Factor w/ 6 levels "-2 - MISSING",..: 4 3 2 3 2 3 3 2 4..
 $ EDUCATIO: Factor w/ 6 levels "-2 - MISSING",..: 4 4 4 4 3 4 4 3 4..
 $ PLANGUAG: Factor w/ 5 levels "-2 - MISSING",..: 2 2 2 2 2 2 2 2 2..
 $ S2Q01 : Factor w/ 11 levels "-4 - PARTIAL INTERVIEW",..: 5 5 5 ..
 $ S2Q02R : int 59 29 49 45 96 64 51 64 65 33 ...
 $ HGHT_FLG: int 0 0 0 0 0 0 0 0 0 0 ...
 $ S2Q03R : int 100 20 55 60 98 115 64 135 115 26 ...
 $ WGHT_FLG: int 0 0 0 0 0 0 0 0 0 0 ...
 $ BMICLASS: Factor w/ 5 levels "-2 - MISSING",..: 3 1 3 5 1 3 3 3 3..
 $ S2Q04 : Factor w/ 8 levels "-4 - PARTIAL INTERVIEW",..: 5 5 5 5..
 $ S2Q05 : Factor w/ 8 levels "-4 - PARTIAL INTERVIEW",..: 4 4 4 4..
 $ S2Q06 : Factor w/ 8 levels "-4 - PARTIAL INTERVIEW",..: 4 4 4 4..
 [list output truncated]

 Many columns contain missing data that is currently stored as levels of a factor, rather than as R’s NA
to indicate to R that the values are missing. With over 100,000 rows, we definitely need to automate any
changes. From the study’s documentation, we can find the values used that we will recode to missing. These
values have consistent labels, but their numbers change depending on the number of legitimate levels in
a variable. We use the table() function to generate a frequency table of the unique values in a variable.
This is useful both as a way to see the unique values and to become familiar with the data and how much is
missing (relatively little for variables such as education, and more for BMI class). We want to recode partial
interview, not in universe, missing, legitimate skip, don’t know, and refused to NA in R. However, the labels
are not identical— EDUCATIO has the number 97 for refused, whereas S1Q01 has 7 for refused.

http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/4691

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

143

 table(d[, EDUCATIO])

 -2 - MISSING 1 - LESS THAN HIGH SCHOOL
 3 4661
 2 - 12 YEARS, HIGH SCHOOL GRADUATE 3 - MORE THAN HIGH SCHOOL
 21238 76022
 96 - DON'T KNOW 97 - REFUSED
 324 105
 table(d[, PLANGUAG])

 -2 - MISSING 1 - ENGLISH 2 - ANY OTHER LANGUAGE 3 - DON'T KNOW
 1 94380 7912 51
 4 - REFUSED
 9
 table(d[, BMICLASS])

 -2 - MISSING 1-UNDERWEIGHT 2-NORMAL WEIGHT 3-AT RISK OF OVERWEIGHT
 19963 5921 45650 12207
 4-OVERWEIGHT
 18612
 table(d[, S1Q01])

 -4 - PARTIAL INTERVIEW -3 - NOT IN UNIVERSE -2 - MISSING -1 - LEGITIMATE SKIP
 0 0 1 0
 1 - MALE 2 - FEMALE 6 - DON'T KNOW 7 - REFUSED
 52554 49719 14 65

 Recoding Data
 In addition to programmatically finding cases with values to recode to missing (for example, 7 - REFUSED
in S1Q01 , and 97 - REFUSED in EDUCATIO), we also want to drop those levels from the factor after converting
them to missing. We can solve this by using regular expressions to search for the character strings we know.
For example, we know that REFUSED always ends in that regardless of whether it starts with 7 - or 97 - or
anything else. We can search using regular expressions via the grep() function, which returns the value or
the numeric position of matches, or the grepl() function, which returns a logical (hence the l) vector of
whether each element matched or not.

 ■ Note Regular expressions are a powerful tool for finding and matching character string patterns. In R,
 grep() and grepl() return the positions or a logical vector of which vector elements match the expected
pattern. Combined with replacement, regular expressions help recode data.

 We show these two functions in action with a simple example. The first formal, pattern , is the regular
expression used for matching, while x is the data to search through. Notice the difference between logical
vector versus numeric position. Either way, the second and fourth locations of x contain our matching letters
of abc :

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

144

 grep(pattern = "abc", x = c("a", "abc", "def", "abc", "d"))
 [1] 2 4
 grepl(pattern = "abc", x = c("a", "abc", "def", "abc", "d"))
 [1] FALSE TRUE FALSE TRUE FALSE

 So far, we have a basic regular expression. We could use this for our data, searching for REFUSED instead
of abc , although it is good to be as accurate as possible. For example, what if one variable has 1 - REFUSED
TREATMENT , 2 - DID NOT REFUSED TREATMENT , 3 - REFUSED (ignoring the grammar), where 1 and 2 are
valid responses and 3 indicates a refusal to answer the question. A search for REFUSED would match all of
those. We ultimately want to use grepl() , as logical values are useful indexes to set specific cases to NA . To
ensure that we are grabbing the right values while checking that our regular expression is accurate, though,
we use grep() with value = TRUE , which returns the matching strings. This makes it easy to see what we are
matching.

 grep(pattern = "REFUSED",
 x = c("1 - REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", "3 - REFUSED"),
 value = TRUE)
 [1] "1 - REFUSED TREATMENT" "2 - DID NOT REFUSED TREATMENT" "3 - REFUSED"

 To make it more specific, we could add the hyphen(-), which, although more precise, still gives us a
false positive:

 grep(pattern = "- REFUSED",
 x = c("1 - REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", "3 - REFUSED"),
 value = TRUE)
 [1] "1 - REFUSED TREATMENT" "3 - REFUSED"

 To go further, we specify that - REFUSED must be the last part of the string. That is, nothing can come
after - REFUSED . This is done by using the $ in regular expressions to signify the end of the pattern string:

 grep(pattern = "- REFUSED$",
 x = c("1 - REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT", "3 - REFUSED"),
 value = TRUE)
 [1] "3 - REFUSED"

 Now, your data may be different, so what we need is a variety of ways to refine just what type of
matching we need to have. Regular expressions allow us to specify what we expect to find. The following
pattern, although short, contains much information. The [0-9] signifies the digits 0 to 9, and the + means
the previous expression should occur one or more times (but not zero times). This code allows for both 1
and 97 but not a blank, and not anything but a number. After one or more numbers, the regular expression
indicates that we expect to find - REFUSED and then the end of the string, which we specify using the dollar
sign. We extend our possible values to match for our x value and specify our pattern precisely, with the
results shown here:

 grep(pattern = "[0-9]+ - REFUSED$",
 x = c("1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT",
 "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "- REFUSED"),
 value = TRUE)
 [1] "4 - REFUSED" "97 - REFUSED"

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

145

 As a final step, we know that if we want REFUSED , the string starts with a number as well. Because it may
be a negative number, we expand our previous expression to search for a negative operator zero or more
times at the start of the string, followed by a number one or more times. We indicate the start of the string
by using ̂ , and we indicate zero or more times by using * . By using this regular expression, we help protect
against matching legitimate values in the data and errantly converting them to NA . We are quite specific in
what we want, and anything that does not match our pattern is rejected.

 grep(pattern = "^[-]*[0-9]+ - REFUSED$",
 x = c("1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT",
 "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "-97 - REFUSED",
 "- REFUSED", "TRICK CASE 4 - REFUSED"),
 value = TRUE)
 [1] "4 - REFUSED" "97 - REFUSED" "-97 - REFUSED"

 By default, regular expressions are also case sensitive. In-depth coverage of using regular expressions
is beyond the scope of this book, but we explain some examples throughout this chapter. We recommend
 Mastering Regular Expressions by Jeffrey Friedl (O’Reilly Media, 2006) for readers who are interested in
comprehensive coverage of regular expressions. Regular expressions are quite useful for matching and
working with string data because they allow us to encode very specific searches.

 Going back to our data, we want to match more than just REFUSED . One option would be to create
individual regular expressions for each and loop through, but this is cumbersome and inefficient. Instead,
we can modify our regular expression to indicate different options in some positions. This is done by using
a pipe, | , which functions as or , to separate options. In the following code, we keep the specifics about the
 start of the string but allow REFUSED or MISSING to be the ending text:

 grep(pattern = "^[-]*[0-9]+ - REFUSED$|MISSING$",
 x = c("1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT",
 "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "-97 - REFUSED",
 "-2 - MISSING", "- REFUSED", "TRICK CASE 4 - REFUSED", "4 - REFUSED HELP"),
 value = TRUE)
 [1] "4 - REFUSED" "97 - REFUSED" "-97 - REFUSED" "-2 - MISSING"

 Now we are ready to replace responses with NA for the patterns we want. As you see, the regular
expression has become something rather complex. A word of caution is that many symbols have special
meanings in regular expressions. Searching for special symbols requires special care. For instance, you
have seen that * is used to indicate zero or more times, not a literal asterisk. To search for a literal character,
it must be escaped by using a backslash (\). We now build our pattern that ought to identify all missing
values we would like to see in our data set on child health. We pull our pattern out as a separate piece for
readability and run one last test on our made-up x data. It is important to note that although the regular
expression has a line break in order to fit in the book, it should be written as a single line with no space or
line break before the NOT IN UNIVERSE$ portion.

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

146

 p <- "^[-]*[0-9]+ - REFUSED$|MISSING$|DON'T KNOW$|LEGITIMATE SKIP$|PARTIAL INTERVIEW$|
 NOT IN UNIVERSE$"

 grep(pattern = p,
 x = c("1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT",
 "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "-97 - REFUSED",
 "-2 - MISSING", "96 - DON'T KNOW", "-4 - LEGITIMATE SKIP", "-3 - PARTIAL

INTERVIEW",
 "-2 - NOT IN UNIVERSE", "- REFUSED", "TRICK CASE 4 - REFUSED",
 "4 - PARTIAL INTERVIEW OF DOCTOR"),
 value = TRUE)
 [1] "4 - REFUSED" "97 - REFUSED" "-97 - REFUSED" "-2 - MISSING"
 [5] "96 - DON'T KNOW" "-4 - LEGITIMATE SKIP" "-3 - PARTIAL INTERVIEW" "-2 - NOT IN UNIVERSE"

 Now that we can find cases we want to set to missing, let’s do it! Rather than type each variable, we loop
through them in data.table , setting matching cases to NA . If it is a factor, we use droplevels() to remove
unused factor levels and otherwise return them as is. To replace each variable, we use the := operator
introduced in the previous chapter in a new way. Previously, you saw how to create a variable in a data table
as dat[, NewVar := value] . Now we are going to replace multiple variables at once. To do this, we pass a
vector of variable names on the left of the assignment operator, := , and a list of the values on the right-hand
side. Because the variables already exist in the data set, we are overwriting them rather than creating new
ones. The variable names are stored in the vector, v . We wrap v in parentheses so that data.table evaluates
 v as an R object name containing a vector of variable names. If we did not wrap v in parentheses, data.table
would try to assign the results to a variable named v .

 The next challenge is selecting the variables. We normally type unquoted variable names in a data table,
but our variable names are stored in the vector v . To accomplish this, we leverage an internal object in data.
table , .SD , which is essentially a list version of the data table. However, we do not want to loop through
every single variable in the data table. Although .SD defaults to being all variables in the data table, we can
make .SD contain only a subset of the variables in the data table by using the .SDcols argument. .SDcols is a
formal argument that takes a character vector and uses that to control the variables included in the internal
 .SD object in a data table. Thus, we specify the variables to include in .SD by writing .SDcols = v . This
operation does not return any easy-to-read values, so instead we return to EDUCATIO and S1Q01 :

 v <- c("EDUCATIO", "PLANGUAG", "BMICLASS", "S1Q01", "S2Q01")
 d[, (v) := lapply(.SD, function(x) {
 x[grepl(pattern = p, x)] <- NA
 if (is.factor(x)) droplevels(x) else x }), .SDcols = v]

 table(d[, EDUCATIO])

 1 - LESS THAN HIGH SCHOOL 2 - 12 YEARS, HIGH SCHOOL GRADUATE
 4661 21238
 3 - MORE THAN HIGH SCHOOL
 76022
 table(d[, S1Q01])

 1 - MALE 2 - FEMALE
 52554 49719

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

147

 Note that there is some inefficiency because the data is copied each time for the function run in data
table. It would be more efficient to select the relevant rows in data.table and then set those as missing.
The difficulty here is that our results are factors, and we want to drop the excess levels or coerce them to
characters. We did not coerce them to factors in the first place; the data came that way from the Stata data
file. This is simply part of dealing with the data that we get. If we had all character data, we might have used
a slightly more efficient idiom. If we wished, we might also have converted all factors to the character class at
the beginning.

 ■ Note The gsub() function combines matching with regular expressions, and replaces the portions of a
string that match the regular expression with new text in this form:

 gsub(pattern = "regex", replacement = "new values", x = "original data") .

 Another recoding task we may want to do is to drop the numbers so that only the labels remain. This
can be accomplished using the gsub() function, which performs regular expression matching within a string
and then replaces matches with specified values (which can be a zero-length string). We first look at the
following simple example:

 gsub(pattern = "abc", replacement = "", x = c("a", "abcd", "123abc456"))
 [1] "a" "d" "123456"

 Because it just uses regular expressions to match and remove numbers, we can reuse our pattern from
before to test this out:

 p.remove <- "^[-]*[0-9]+ - "
 gsub(pattern = p.remove, replacement = "",
 x = c("1 - TREATMENT REFUSED TREATMENT", "2 - DID NOT REFUSED TREATMENT",
 "3 - JACK - REFUSED", "4 - REFUSED", "97 - REFUSED", "-97 - REFUSED",
 "-2 - MISSING", "96 - DON'T KNOW", "-4 - LEGITIMATE SKIP",
 "-3 - PARTIAL INTERVIEW", "-2 - NOT IN UNIVERSE", "- REFUSED",
 "TRICK CASE 4 - REFUSED", "4 - PARTIAL INTERVIEW OF DOCTOR"))
 [1] "TREATMENT REFUSED TREATMENT" "DID NOT REFUSED TREATMENT" "JACK - REFUSED"
 [4] "REFUSED" "REFUSED" "REFUSED"
 [7] "MISSING" "DON'T KNOW" "LEGITIMATE SKIP"
 [10] "PARTIAL INTERVIEW" "NOT IN UNIVERSE" "- REFUSED"
 [13] "TRICK CASE 4 - REFUSED" "PARTIAL INTERVIEW OF DOCTOR"

 For efficiency, we can combine this with our previous code to set some cases to missing. Doing it in one
step avoids repetitive processing. First, though, we read the data back in so we have the raw data:

 d <- read.dta("ICPSR_04691/DS0001/04691-0001-Data.dta")
 d <- as.data.table(d)
 setkey(d, IDNUMR)

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

148

 Because gsub() coerces the input to characters regardless of whether we pass factors or characters to
it, we will get characters out. So to know whether the input was a factor or not, we create an object, f , which
is a logical indicating whether x started off as a factor. Then, rather than drop levels, we just convert them to
factor if appropriate. Other than that change, we meld our earlier code with our removal code:

 d[, (v) := lapply(.SD, function(x) {
 f <- is.factor(x)
 x[grepl(pattern = p, x)] <- NA
 x <- gsub(pattern = p.remove, replacement = "", x)
 if (f) factor(x) else x }), .SDcols = v]

 table(d[, EDUCATIO])

 12 YEARS, HIGH SCHOOL GRADUATE LESS THAN HIGH SCHOOL MORE THAN HIGH SCHOOL
 21238 4661 76022
 table(d[, S1Q01])

 FEMALE MALE
 49719 52554

 table(d[, S2Q01])

 EXCELLENT FAIR GOOD POOR VERY GOOD
 65252 2189 10680 297 23903

 Recoding Numeric Values
 Because they have a more systematic structure, recoding numeric values is easier than recoding string data.
To indicate different types of “missingness” in numeric data, people often use out-of-bounds values, such as
a negative number or very high numbers (for example, 999). Coding different types of missing values makes
sense from a data perspective, as the codes provide additional information (for example, skipped a question,
not an applicable question). However, from a practical use perspective, we typically want to ignore all
missing data (for example, when calculating the mean, it makes no sense to include -2 as a child’s age when
the parent refused to report it or -3 if a parent forgot). We can find values that fall between a range by using
the %between% operator in the data.table package, and we can locate the complement by using ! as before.

 For example, for height, the documentation indicates that values zero or below, and above 90, are used
to code various types of missing . Similarly, for weight, values zero or below, as well as above 900, are used to
code different types of missing values. To tell R that these values indicate missing, we need to recode them.
We see from our table() data that follows that there are indeed some missing values, and we can see exactly
what values are used to code them (-2 , 96 , 96 , 996 , 997):

 table(d[!S2Q02R %between% c(0, 90), S2Q02R])

 -2 96 97
 4 8096 131
 table(d[!S2Q03R %between% c(0, 900), S2Q03R])

 -2 996 997
 4 2375 80

 Again we could operate on these variables individually. However, that becomes cumbersome for many
variables. The pattern often is that if valid values are less than 9, then 9 is missing. If values go into double
digits, then >90 is missing, and so on. We recode programmatically by examining the maximum value and

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

149

setting the bounds accordingly. We see what the variable was like originally with the following code and in
Figure 8-1 . To select a single variable while maintaining a data table, rather than a numeric vector, we wrap
the variable name as a list by using the .() shorthand for the list() function. The result is that the hist()
function dispatches to methods for a data table, resulting in somewhat more elegant histograms:

 hist(d[, .(S2Q03R)])
 hist(d[, .(S2Q02R)])

 Figure 8-1. Outliers that are near >900 and >90

 We focus on three columns that need numeric recoding. For each variable, we loop through calling the
column name in our list. Designating m as our maximum, we start off with j and i set equal to 1 . As long as j
is equal to 1 and i is less than or equal to the number of values to try (for example, 9, 99, 999), we keep doing
the next calculation. If the maximum (ignoring missing) of the variable, k , is less than the maximum of the
 i th m value, then set j to 0 (which breaks the loop) and replace any values outside the range of 0 and the i th
 m . If the i th m is greater than 90 or minus some minuscule number, set the variable to missing (NA_integer_).
In essence, we are counting through our list by columns, and we check whether the maximum value in our
entire column is one of our maximum m values. Once it is there, we make sure that, effectively, values from 9
to 10, or 90 to 100, or 900 to 1000, are set to missing. Note that we use NA_integer_ rather than NA because we
are replacing a subset of values in an existing variable. data.table expects that the class of data being used
to replace values within an existing variable match the class of that variable. We could use NA earlier because
we overwrote the entire variable rather than replacing select values from within the variable.

 v2 <- c("S2Q02R", "S2Q03R", "AGEYR_CH")
 m <- sort(c(9, 99, 999))

 for (k in v2) {
 j <- i <- 1
 while(j == 1 & i <= length(m)) {
 if (max(d[[k]], na.rm = TRUE) < m[i]) {
 j <- 0
 d[!(get(k) %between% c(0, ifelse(m[i] > 90,
 m[i] - 9, m[i] - 1e-9))), (k) := NA_integer_]
 } else { i <- i + 1 }
 }
 }

 We show the result of this after recoding by using the same histogram function as before and in
Figure 8-2 . Notice the n has been lowered a fair bit in both cases, and naturally the x-axis is much tighter.

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

150

 Figure 8-2. The outliers are gone because histograms ignore missing values

 With this, we conclude our section about data hygiene. Next, we show how to create new variables to
simplify the analysis process. In a data science perspective, variable creation is sometimes called feature
creation . In many domains of social and behavioral research, questionnaires or surveys are commonly
employed. In education, tests are administered. Regardless of whether the data is from tests, questionnaires,
or surveys, a common task is to aggregate responses to individual items or variables to create a scale score,
the overall test score, or some other aggregate index.

 Creating New Variables
 A questionnaire asks whether a doctor or health professional ever told the respondent that the focal child
had any of nine possible conditions (for example, asthma, ADD or ADHD, depression or anxiety problems,
diabetes, developmental delay, or physical impairment). Composite variable creation is the goal, to capture
a number of issues. Some problems apply only to older children, and some respondents may not know the
answer or may have refused to answer. Thus, we might take the average number of yes responses to calculate
the proportion of yes responses out of all valid responses per respondent.

 We first create a list of variables that pulls these nine columns’ worth of data. From there, to get our
actual variables, we unlist() them from our data table to see all possible responses that may require
cleanup to reduce to a Yes / No scenario. Notice in the following code that there are several cases of missing
data, legitimate skips, don’t know, and refused:

 v.health <- paste0("S2Q", c(19, 20, 21, 22, 23, 24, 26, 35, 37))
 v.health
 [1] "S2Q19" "S2Q20" "S2Q21" "S2Q22" "S2Q23" "S2Q24" "S2Q26" "S2Q35" "S2Q37"
 table(unlist(d[, v.health, with = FALSE]))

 -4 - PARTIAL INTERVIEW -3 - NOT IN UNIVERSE -2 - MISSING
 0 0 120
 -1 - LEGITIMATE SKIP 0 - NO 1 - YES
 48388 833454 37720
 6 - DON'T KNOW 7 - REFUSED
 1362 133

 We already know how to clean these sorts of variables by using regular expressions and grep() . After
cleanup, we check all the responses again, including NA s in our table with the argument useNA = "ifany" .

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

151

It is important to note that although the regular expression has a line break to fit in this book, it should be
written as a single line with no space or line break before the NOT IN UNIVERSE$ portion.

 p <- "^[-]*[0-9]+ - REFUSED$|MISSING$|DON'T KNOW$|LEGITIMATE SKIP$|PARTIAL INTERVIEW$|
 NOT IN UNIVERSE$"

 d[, (v.health) := lapply(.SD, function(x) {
 x[grepl(pattern = p, x)] <- NA
 if (is.factor(x)) droplevels(x) else x
 }), .SDcols = v.health]

 table(unlist(d[, v.health, with = FALSE]), useNA = "ifany")

 0 - NO 1 - YES <NA>
 833454 37720 50003

 Now we can create a new variable that is the average of yes responses. To calculate the average by row,
we use the rowMeans() function . We leverage the fact that logical values are stored as FALSE = 0 and TRUE
= 1 . Thus, we test whether the character data is equal to 1 - YES , which will return TRUE or FALSE , and then
take the row means of those logical values. We ignore (drop) missing values by setting na.rm = TRUE .

 d[, HealthConditions := rowMeans(d[, v.health, with = FALSE] == "1 - YES", na.rm = TRUE)]

 table(round(d$HealthConditions, 2), useNA = 'ifany')

 0 0.11 0.12 0.14 0.17 0.2 0.22 0.25 0.29 0.33 0.38 0.4 0.43 0.44
 77426 16116 239 20 5 676 4386 156 11 1933 75 81 12 768
 0.5 0.56 0.57 0.6 0.62 0.67 0.71 0.75 0.78 0.88 0.89 NaN
 51 264 3 3 13 80 1 5 19 1 3 6

 We could follow a similar process to get the row counts. Looking at the counts, something has
happened, though. There are no missing values! This is because with rowSums() , when na.rm = TRUE and a
row has no valid data, its sum is zero, not a missing value. To correct this, we need to manually set to missing
any cases/rows where all are missing:

 d[, NHealthConditions := rowSums(d[, v.health, with = FALSE] == "1 - YES", na.rm = TRUE)]
 table(d$NHealthConditions, useNA = 'ifany')

 0 1 2 3 4 5 6 7 8
 77432 17068 4630 2018 820 278 84 20 3

 We count the number of missing responses per respondent, select rows where the number missing
equals the total, and set those to missing. Again note that when replacing a subset of values from a variable
in data.table , match the class of missing to the class of the variable (for example, NA_integer_ for integer,
 NA_real_ for numeric, NA_character_ for character, NA for logical). That gives us a better count:

 d[, NMissHealthConditions := rowSums(is.na(d[, v.health, with = FALSE]))]
 d[NMissHealthConditions == length(v.health), NHealthConditions := NA_integer_]
 table(d$NHealthConditions, useNA = 'ifany')

 0 1 2 3 4 5 6 7 8 <NA>
 77426 17068 4630 2018 820 278 84 20 3 6

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

152

 Using rowMeans() or r owSums() to create new variables is a relatively elegant solution. However, it is not
a very data.table approach. The calculation occurs outside the original data.table; we call the object, d ,
a second time and subset the columns for use. When calling the data object a second time, we lose access
to many features of data.table , such as performing operations for only certain subsets of the data, or
performing an operation by some grouping factor.

 If ignoring missing values is not an issue, we can easily work directly with data.table by using the
 Reduce() function. Reduce() takes a function (typically, a binary operator) as its first argument, and a vector
or list of arguments. We show examples here of a vector and of a list with addition, division, and powers:

 Reduce(`+`, c(1, 2, 3))
 [1] 6
 Reduce(`+`, list(1:3, 4:6, 7:9))
 [1] 12 15 18
 Reduce(`/`, list(1:3, 4:6, 7:9))
 [1] 0.036 0.050 0.056
 Reduce(`^`, list(1:3, 4:6, 3:1))
 [1] 1 1024 729

 This can then easily be applied to variables in a data.table . We cannot directly add the health
variables, because they are factor class data. However, we could write a function to deal with it:

 fplus <- function(e1, e2) {
 if (is.factor(e1)) {
 e1 <- as.numeric(e1) - 1 }
 if (is.factor(e2)) {
 e2 <- as.numeric(e2) - 1 }
 e1 + e2
 }

 We select the columns by using . SDcols , and then .SD will be a list of variables that we can reduce and
store results in a new variable:

 d[, NHealthConditions2 := Reduce(fplus, .SD), .SDcols = v.health]
 table(d$NHealthConditions2)

 0 1 2 3 4 5 6 7 8
 65459 16116 4386 1927 768 264 79 19 3

 Fuzzy Matching
 Approximate string matching , or fuzzy matching , is a technique whereby observations link to a reference
list. For example, you may have a list of registered users, and then individuals write their names on an
attendance sheet. Alternately, you may be working with filenames that are supposed to match certain pieces
of information.

 We start with two lists; the reference names are our registered user list. These are the names we believe
in and want to match to the observed names that were written in quickly on our hypothetical attendance
sheets. Users may have attended more than one event and thus show up multiple times, or may not show up
at all. Also note that some of these words have double spaces between them, which are required to match
our later output.

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

153

 reference.Names <- c("This Test", "Test Thas",
 "Jane Mary", "Jack Dun-Dee")
 observed.Names <- c("this test", "test this", "test that",
 "JaNe Mary.", "Mary Sou", "Jack Dee", "Jane Jack")

 The challenge is to find out the number of events that registered users attended (that is, signed). A
first pass can be done by using the stringdistmatrix() function from the stringdist package. We use
the Damerau-Levenshtein distance method, which essentially counts the number of characters that have
to change to go from one string to another. From this, we can see for each observed name the minimum
number of characters that must be changed to match one of our reference names. For this test , it takes
two character changes to match the first reference name, eight for the second reference name, and so on.
Note that by default, stringdistmatrix() is case sensitive, so switching cases counts as one change. Notice
that this matrix gives us a grid of those matches, where the matrix elements are the distance:

 stringdistmatrix(reference.Names, observed.Names, method = "dl")
 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
 [1,] 2 8 7 10 8 7 8
 [2,] 8 3 3 9 8 8 8
 [3,] 8 8 8 3 7 6 3
 [4,] 11 11 11 9 10 4 9

 If we want only matches, we can use approximate matching. It takes similar arguments, but also the
maximum distance allowed before calling nothing a match. Notice that it returns positions in the reference
name vector:

 amatch(observed.Names, reference.Names, method = "dl", maxDist = 4)
 [1] 1 2 2 3 NA 4 3

 We can expand a bit and make it non-case-sensitive by converting to lowercase via tolower() , or to
uppercase via toupper() . Additionally, we can remove some things we do not care about, such as various
punctuation marks. Notice that both of these methods have a chance to give us lower distances overall
(although in our case, there are no periods to remove):

 stringdistmatrix(tolower(reference.Names), tolower(observed.Names), method = "dl")
 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
 [1,] 0 6 5 10 8 7 8
 [2,] 6 1 1 9 8 8 8
 [3,] 8 8 8 2 7 6 3
 [4,] 11 11 11 9 10 4 9

 stringdistmatrix(tolower(gsub("\\.", "", reference.Names)),
 tolower(gsub("\\.", "", observed.Names)), method = "dl")
 [,1] [,2] [,3] [,4] [,5] [,6] [,7]
 [1,] 0 6 5 9 8 7 8
 [2,] 6 1 1 8 8 8 8
 [3,] 8 8 8 1 7 6 3
 [4,] 11 11 11 9 10 4 9

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

154

 We can split a character string by a particular character by using strsplit() . Any pattern or character
can be used, but we use spaces. We use backslash s (\s) as a special character in regular expressions to mean
any type of space. A second backslash is required in order to escape the first backslash. That is because the
special character is not s , which would be escaped as \s , but rather the special character is the compound
 \s , thus the escaped version is \\s . We demonstrate the result of strsplit() in the following code:

 strsplit(x = reference.Names[1], split = "\\s")[[1]]
 [1] "This" "Test"

 strsplit(x = observed.Names[2], split = "\\s")[[1]]
 [1] "test" "this"

 Now we can use stringdistmatrix() again. The result shows that each subchunk of the second
observed name is one character manipulation away from one of the subchunks from the first reference
name:

 stringdistmatrix(
 strsplit(x = reference.Names[1], split = "\\s")[[1]],
 strsplit(x = observed.Names[2], split = "\\s")[[1]],
 method = "dl")
 [,1] [,2]
 [1,] 4 1
 [2,] 1 4

 If we ignore case, we get perfect matches. The second chunk of observed name 2 matches the first
chunk of reference name 1, and the first chunk of observed name 2 perfectly matches the second chunk of
the reference name 1:

 stringdistmatrix(
 strsplit(x = tolower(reference.Names[1]), split = "\\s")[[1]],
 strsplit(x = tolower(observed.Names[2]), split = "\\s")[[1]],
 method = "dl")
 [,1] [,2]
 [1,] 3 0
 [2,] 0 3

 To return the sum of the best matches , we can pick the minimum and sum. The results show us that
ignoring case and ignoring ordering makes the second observed name a perfect match for the first reference
name. We would never have gotten this result if we tested it as an overall string.

 sum(apply(stringdistmatrix(
 strsplit(x = tolower(reference.Names[1]), split = "\\s")[[1]],
 strsplit(x = tolower(observed.Names[2]), split = "\\s")[[1]],
 method = "dl"), 1, min))
 [1] 0

 Combining everything you have learned, yields a list of techniques to use for string matching. We find
values to ignore (for example, punctuation), split strings (for example, on spaces), and ignore case. We write
a function to help with matching names. To this, we also add an optional argument, fuzz , to control whether
to include close matches within a certain degree of tolerance. We also count exact matches. This code is not

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

155

optimized for speed or efficiency, but is an example combining many aspects of what you’ve learned. It also
applies that knowledge to a set of names, where each written name (index argument) compares against a
vector of possible candidates (the pool). We comment the function inline to explain the pieces, rather than
write a wall of text at the beginning. We also do not bold this code because of its length.

 matchIt <- function(index, pool, ignore = c("\\.", "-"), split = FALSE,
 ignore.case = TRUE, fuzz = .05, method = "dl") {

 ## for those things we want to ignore, drop them, e.g., remove spaces, periods, dashes
 rawpool <- pool

 for (v in ignore) {
 index <- gsub(v, "", index)
 pool <- gsub(v, "", pool)
 }

 ## if ignore case, convert to lowercase
 if (ignore.case) {
 index <- tolower(index)
 pool <- tolower(pool) }

 if (!identical(split, FALSE)) {
 index2 <- strsplit(index, split = split)[[1]]
 index2 <- index2[nzchar(index2)]
 pool2 <- strsplit(pool, split = split)
 pool2 <- lapply(pool2, function(x) x[nzchar(x)])

 ## calculate distances defaults to the Damerau-Levenshtein distance
 distances <- sapply(pool2, function(x) {
 sum(apply(stringdistmatrix(index2, x, method = method),
 1, min, na.rm = TRUE))
 })
 } else {
 ## calculate distances defaults to the Damerau-Levenshtein distance
 distances <- stringdist(index, pool, method = method)
 }

 ## some methods result in Infinity answers, set these missing
 distances[!is.finite(distances)] <- NA

 ## get best and worst
 best <- min(distances, na.rm = TRUE)
 worst <- max(distances, na.rm = TRUE)

 ## if fuzz, grab all distances within fuzz percent of the difference between best and worst
 if (fuzz) {
 usedex <- which(distances <= (best + ((worst - best) * fuzz)))
 } else {
 usedex <- which(distances == best) }

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

156

 ## define a distance below which it is considered a perfect or exact match
 perfect <- distances[usedex] < .01
 out <- rawpool[usedex]

 ## count the number of perfect matches
 count <- sum(perfect)

 ##the function continues onto the next page##
 if (any(perfect)) {
 ## if there are perfect matches, use just one
 match <- out[perfect][1]
 ## return a data table of the perfect match and number of perfect matches (probably 1)
 data.table(
 Match = match,
 N = count,
 Written = NA_character_)
 } else {
 ## if no perfect match, return list of close matches, comma separated and exactly as written
 data.table(
 Match = paste(out, collapse = ", "),
 N = count,
 Written = index)
 }
 }

 Now we loop through each observed name and try to match it to reference names within 5 percent of
the best match (.05). Since the output is always the same, we can combine it row-wise.

 output <- lapply(observed.Names, function(n) {
 matchIt(index = n, pool = reference.Names, ignore = c("\\.", "-"), split = "\\s", fuzz = .05)
 })

 output <- do.call(rbind, output)
 output
 Match N Written
 1: This Test 1 NA
 2: This Test 1 NA
 3: Test Thas 0 test that
 4: Jane Mary 1 NA
 5: Jane Mary 0 mary sou
 6: Jack Dun-Dee 0 jack dee
 7: Jane Mary, Jack Dun-Dee 0 jane jack

 We can see that This Test shows up in two rows, so we aggregate up and print the final output. There
are two perfect matches for This Test . There is no perfect match for Test Thas , although there is a close
one listed under the Uncertain column. Finally, jack dee is a close but uncertain match for Jack Dun-Dee ,
and jane jack is an uncertain match for Jane Mary or Jack Dun-Dee .

CHAPTER 8 ■ DATA MUNGING WITH DATA.TABLE

157

 finaloutput <- output[, .(
 N = sum(N),
 Uncertain = paste(na.omit(Written), collapse = ", ")),
 by = Match]
 finaloutput
 Match N Uncertain
 1: This Test 2
 2: Test Thas 0 test that
 3: Jane Mary 1 mary sou
 4: Jack Dun-Dee 0 jack dee
 5: Jane Mary, Jack Dun-Dee 0 jane jack

 Although it is challenging to cover every example and use case, these basic tools should be enough to
cover many types of data management tasks when used in combination.

 Summary
 In this chapter, you saw how to locate text based on either exact regular expressions or fuzzy matching.
Additionally, you learned how to substitute new string pieces for old. Finally, we discussed ways of creating
new variables in data.table . Table 8-1 summarizes the key functions presented in this chapter.

 Table 8-1. Key Functions Described in This Chapter

 Function What It Does

 read.dta() Reads Stata files

 str() Displays R object structure

 grep() Pattern matching that returns a vector showing which elements match

 grepl() Pattern matching that returns a vector showing Boolean for all values in x

 gsub() Matches a pattern and makes a substitution by returning the original vector
after making changes

 rowMeans(), rowSums() Calculates the average or sum of values for each row of a data table or matrix

 Reduce() Takes a binary function as its first argument and applies that to its remaining
argument

 .SD Reserved name within data.table that can be used to refer to all the
variables within the data table as a list

 .SDcols Argument to data.table that allows specification of the variables to be
included in .SD

 strsplit() Splits a string based on a particular splitting character

 stringdistmatrix() Creates a matrix that has distances between observations and expected
values

 amatch() Provides a vector that shows which index in the expected values most closely
matches the observed values

 tolower() Coerces all characters in the given string to lowercase

159© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_9

 CHAPTER 9

 Other Tools for Data Management

 Comparing data frames and data tables leads to an interesting question. What if there were more types of
data? Particularly, what if there were different ways to store data that are all, at their heart, tables of some
sort? In addition to data frames or tables, there are many ways to store data, many of which are just tables.
The idea behind dplyr (Wickham and Francois, 2015) is that regardless of what the data back end might
be, our experience should be the same. To allow this, dplyr implements generic functions for common
data management tasks. For each of these generic functions, specific methods are written that translate
the generic operation into whatever code or language is required for a specific back end. Using a layer of
abstraction ensures that users get a consistent experience, regardless of the specific data format, or back end,
being used. It also makes dplyr extensible, in that support for a new format can be added by simply writing
additional functions or methods. The user experience need not change. For this chapter, our checkpoint
header needs to have both the tibble and the dplyr packages installed and added:

 library(checkpoint)
 checkpoint("2016-09-04", R.version = "3.3.1")
 library(dplyr)
 library(tibble)

 The dplyr package names functions after verbs that accomplish a specific action. That is, rather than
have a few functions that each perform many tasks, dplyr has many functions that typically accomplish
only a specific task. Unlike data.table (Dowle, Srinivasan, Short, and Lianoglou, 2015), dplyr is functional
in that it always takes input and returns output, in this case, data. It does not modify the data in place in
memory as data.table does. However, it is still quite fast, because many of the functions are optimized,
written in C++, and dplyr tries not to make unnecessary copies.

 As before, we set some options to reduce the number of rows printed. The default data format for
 dplyr is a tibble (Wickham, Francois, and Müller, 2016). Tibbles are implemented in the tibble package.
Essentially tibbles are an extension of data frames, which have some additional restrictions (such as
defaulting to character strings rather than coercing character strings to factors) and nicer methods for
printing or displaying on the screen. Data manipulation is handled by dplyr , while tibble handles the
actual storage of data. In technical terms, the tibble package implements the R object class as well as some
basic methods for tibbles.

 options(stringsAsFactors = FALSE,
 tibble.print_max = 20, ## if over 20 rows
 tibble.print_min = 5, ## print first 5
 digits = 2) ## reduce digits printed by R

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

160

 iris$Species <- as.character(iris$Species)
 diris <- as_tibble(iris)
 diris
 # A tibble: 150 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 5.1 3.5 1.4 0.2 setosa
 2 4.9 3.0 1.4 0.2 setosa
 3 4.7 3.2 1.3 0.2 setosa
 4 4.6 3.1 1.5 0.2 setosa
 5 5.0 3.6 1.4 0.2 setosa
 # ... with 145 more rows

 For data.table , we use sapply() to get a vector of classes for each column or variable. Although we
could do the same with tibbles, tibbles automatically provide information about the types or classes of data
in each column as well as total number of columns and rows (for example, <dbl> indicating a double or
numeric value, with <chr> indicating character class data). We turn our attention to the common goals of
working with data: sorting, subsetting, ordering, computing, and reshaping. A helpful way to think of dplyr
is that it uses verbs to describe actions on the data.

 Sorting
 We sort in dplyr by the arrange() function , which takes a data set as its first argument. Additional
arguments after the first argument provide sorting by those other columns. The default is an increasing
order, and this is modified with a second function call of desc() to provide desc ending order.

 diris <- arrange(diris, Sepal.Length)
 diris
 # A tibble: 150 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 3.0 1.1 0.1 setosa
 2 4.4 2.9 1.4 0.2 setosa
 3 4.4 3.0 1.3 0.2 setosa
 4 4.4 3.2 1.3 0.2 setosa
 5 4.5 2.3 1.3 0.3 setosa
 # ... with 145 more rows
 diris <- arrange(diris, Sepal.Length, desc(Sepal.Width))
 diris
 # A tibble: 150 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 3.0 1.1 0.1 setosa
 2 4.4 3.2 1.3 0.2 setosa
 3 4.4 3.0 1.3 0.2 setosa
 4 4.4 2.9 1.4 0.2 setosa
 5 4.5 2.3 1.3 0.3 setosa
 # ... with 145 more rows

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

161

 It is possible to see the first-row index when a duplicate occurs for either the entire data set or for just
a particular column, via anyDuplicated() . When calling this function on the entire data set, it looks for a
match between all columns, which occurs for rows 78 and 79 in this data set. A duplicated variable in sepal
length occurs in the third row, as shown in the following code:

 anyDuplicated(diris)
 [1] 79

 anyDuplicated(diris$Sepal.Length)
 [1] 3

 Whereas anyDuplicated() returns the row index of the first duplication, duplicated simply tells us how
many such duplications occur in our table. Looking at our code, we see that for a full match in all columns,
row 79 is the only time that occurs. On the other hand, duplicated sepal lengths may happen for the first time
in row 3 , but there are many more duplicates.

 table(duplicated(diris))
 FALSE TRUE
 149 1
 table(duplicated(diris$Sepal.Length))
 FALSE TRUE
 35 115

 If we want to see table results with only distinct values, distinct() works much like arrange() . The
first formal is for data, while the rest specify column name variables. If no column names are specified,
 distinct() operates on all columns. Recall from the duplicated() call that there are 149 unique rows.

 distinct(diris)
 # A tibble: 149 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 3.0 1.1 0.1 setosa
 2 4.4 3.2 1.3 0.2 setosa
 3 4.4 3.0 1.3 0.2 setosa
 4 4.4 2.9 1.4 0.2 setosa
 5 4.5 2.3 1.3 0.3 setosa
 # ... with 144 more rows

 Similarly, recall that there are only 35 unique rows if we consider only sepal length. Consequently, using
the second formal of distinct() to hold the Sepal.Length column yields only 35 rows in our tibble . We
show the first five of those rows here:

 distinct(diris, Sepal.Length)
 # A tibble: 35 x 1
 Sepal.Length
 <dbl>
 1 4.3
 2 4.4
 3 4.5
 4 4.6
 5 4.7
 # ... with 30 more rows

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

162

 This section closes with one last call to distinct() , showing more than one column called in the
second and third formal arguments. Here, a row is unique provided both Sepal.Length and Sepal.Width do
not duplicate. Pay special attention to rows 2 through 4 , which have the same Sepal.Length , yet those rows
are not duplicated because their Sepal.Widths are different:

 distinct(diris, Sepal.Length, Sepal.Width)
 # A tibble: 117 x 2
 Sepal.Length Sepal.Width
 <dbl> <dbl>
 1 4.3 3.0
 2 4.4 3.2
 3 4.4 3.0
 4 4.4 2.9
 5 4.5 2.3
 # ... with 112 more rows

 Selecting and Subsetting
 Selecting portions of the stored data in dplyr is different from the data.table methodology. Remember,
 dplyr works via function calls. These functions are designed to be independent of the underlying data
structure. Nevertheless, we do want the same end results. Selecting rows by position is accomplished using
 slice() , which takes two formal arguments. The first is the data object, in our case diris , and the second
allows us to select specific rows. We first select just the first five rows:

 slice(diris, 1:5)
 # A tibble: 5 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 3.0 1.1 0.1 setosa
 2 4.4 3.2 1.3 0.2 setosa
 3 4.4 3.0 1.3 0.2 setosa
 4 4.4 2.9 1.4 0.2 setosa
 5 4.5 2.3 1.3 0.3 setosa

 As seen before, - can be used for negation. Therefore, we could also drop all rows but the last five rows
by dropping rows 1 to 145 :

 slice(diris, -(1:145))
 # A tibble: 5 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 7.7 3.8 6.7 2.2 virginica
 2 7.7 3.0 6.1 2.3 virginica
 3 7.7 2.8 6.7 2.0 virginica
 4 7.7 2.6 6.9 2.3 virginica
 5 7.9 3.8 6.4 2.0 virginica

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

163

 Rather than select rows directly, we may set logical conditions on them. Again, these types of arguments
belong in the second formal of our function call. However, in this case, we use filter() rather than
 slice(). The filter() function uses logical indexing. It is easy enough to select either all the rows in which
 Species either is (or is not) setosa by writing a logical test:

 filter(diris, Species == "setosa")
 # A tibble: 50 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 3.0 1.1 0.1 setosa
 2 4.4 3.2 1.3 0.2 setosa
 3 4.4 3.0 1.3 0.2 setosa
 4 4.4 2.9 1.4 0.2 setosa
 5 4.5 2.3 1.3 0.3 setosa
 # ... with 45 more rows
 filter(diris, Species != "setosa")
 # A tibble: 100 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.9 2.5 4.5 1.7 virginica
 2 4.9 2.4 3.3 1.0 versicolor
 3 5.0 2.3 3.3 1.0 versicolor
 4 5.0 2.0 3.5 1.0 versicolor
 5 5.1 2.5 3.0 1.1 versicolor
 # ... with 95 more rows

 It is also possible to select rows based on numeric values with inequalities, equality, or nonequality in
addition to logical indexes. Both numeric and character tests may be mixed and matched to extract precisely
the rows desired:

 filter(iris, Sepal.Length < 5 & Petal.Width > .2)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1 4.6 3.4 1.4 0.3 setosa
 2 4.5 2.3 1.3 0.3 setosa
 3 4.8 3.0 1.4 0.3 setosa
 4 4.9 2.4 3.3 1.0 versicolor
 5 4.9 2.5 4.5 1.7 virginica
 filter(diris, Sepal.Length == 4.3 | Sepal.Width != 4.4)
 # A tibble: 149 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 3.0 1.1 0.1 setosa
 2 4.4 3.2 1.3 0.2 setosa
 3 4.4 3.0 1.3 0.2 setosa
 4 4.4 2.9 1.4 0.2 setosa
 5 4.5 2.3 1.3 0.3 setosa
 # ... with 144 more rows

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

164

 If we seek multiple matches, the %in% operator may be used along with a list of interest to us. This allows
us to separate the coding that indicates our choice of interest, and then filter based on that interest:

 interest <- c(4.3, 4.4)
 filter(diris, Sepal.Length %in% interest)
 # A tibble: 4 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 3.0 1.1 0.1 setosa
 2 4.4 3.2 1.3 0.2 setosa
 3 4.4 3.0 1.3 0.2 setosa
 4 4.4 2.9 1.4 0.2 setosa

 Alternately, if we wish to exclude any rows that have a certain characteristic, that may be done via
negation. This is useful to remove outliers or erroneous data points:

 filter(diris, !Sepal.Length %in% interest)
 # A tibble: 146 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.5 2.3 1.3 0.3 setosa
 2 4.6 3.6 1.0 0.2 setosa
 3 4.6 3.4 1.4 0.3 setosa
 4 4.6 3.2 1.4 0.2 setosa
 5 4.6 3.1 1.5 0.2 setosa
 # ... with 141 more rows

 The last filter example we show uses several arguments . Using multiple arguments is not required, but
can be a helpful way to break code into human-readable chunks. Multiple arguments are logically equivalent
to & .

 filter(diris,
 Sepal.Length == 4.3 | Sepal.Length == 4.4,
 Petal.Width < .2)
 # A tibble: 1 x 5
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 3 1.1 0.1 setosa

 So far, we’ve selected rows from all columns. If we wish to select only specific columns, the select()
function takes a database as its first formal, and column information in the rest of the formals. For named
columns in your table data structure, selecting one or more columns is as simple as listing the column
names. It is also possible to select by position. Contrast these named versus position column arguments and
also recognize that both can make the column selections in any order needed:

 select(diris, Sepal.Length, Sepal.Width)
 # A tibble: 150 x 2
 Sepal.Length Sepal.Width
 <dbl> <dbl>
 1 4.3 3.0
 2 4.4 3.2

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

165

 3 4.4 3.0
 4 4.4 2.9
 5 4.5 2.3
 # ... with 145 more rows
 select(diris, 1, 5, 2)
 # A tibble: 150 x 3
 Sepal.Length Species Sepal.Width
 <dbl> <chr> <dbl>
 1 4.3 setosa 3.0
 2 4.4 setosa 3.2
 3 4.4 setosa 3.0
 4 4.4 setosa 2.9
 5 4.5 setosa 2.3
 # ... with 145 more rows

 So far, specific columns are directly named. What if the columns need to be variable depending on the
program or the user’s needs? In that case, character string references are desirable, as strings easily convert
to variables. We show both a direct call to select_() and the use of a variable v to achieve the same results.
Be sure to notice the underscore added to the name of the function! When using select _() , multiple
variable names as strings can be passed as separate arguments.

 select_(diris, "Sepal.Length", "Sepal.Width")
 # A tibble: 150 × 2
 Sepal.Length Sepal.Width
 <dbl> <dbl>
 1 5.1 3.5
 2 4.9 3.0
 3 4.7 3.2
 4 4.6 3.1
 5 5.0 3.6
 # ... with 145 more rows

 Our variable, v , could contain more than one column name. However, if used in the default way, only
the first variable from the list will be returned. To get all the variables to be returned, when passing an object
holding a vector of variable names, it should be passed to the .dots formal argument, shown in the second
example that follows:

 v <- c("Sepal.Length", "Sepal.Width")
 select_(diris, v)
 # A tibble: 150 x 1
 Sepal.Length
 <dbl>
 1 4.3
 2 4.4
 3 4.4
 4 4.4
 5 4.5
 # ... with 145 more rows

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

166

 select_(diris, .dots = v)
 # A tibble: 150 × 2
 Sepal.Length Sepal.Width
 <dbl> <dbl>
 1 5.1 3.5
 2 4.9 3.0
 3 4.7 3.2
 4 4.6 3.1
 5 5.0 3.6
 # ... with 145 more rows

 Another way of achieving the same result with our original select() function is by using one of the
select helper functions. There are seven of these helper functions, and the one we presently want is one_
of() , which manages character vectors:

 select(diris, one_of(v))
 # A tibble: 150 x 1
 Sepal.Length
 <dbl>
 1 4.3
 2 4.4
 3 4.4
 4 4.4
 5 4.5
 # ... with 145 more rows

 When using the dplyr data structure tibble , approaches like those used in data tables work. These are
not guaranteed to translate as smoothly throughout the dplyr experience. It seems best to engage dplyr in
its native language. However, the next two function calls are given for completeness:

 diris[, v]
 # A tibble: 150 x 1
 Sepal.Length
 <dbl>
 1 4.3
 2 4.4
 3 4.4
 4 4.4
 5 4.5
 # ... with 145 more rows
 diris[, 1]
 # A tibble: 150 x 1
 Sepal.Length
 <dbl>
 1 4.3
 2 4.4
 3 4.4
 4 4.4
 5 4.5
 # ... with 145 more rows

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

167

 So far, all our work returns another tibble as output. Extracting the raw data as a vector uses several
techniques. If we know the column name containing the data we want, it is easy to type the name directly.
If our column may be variable, we reuse our variable v for the third method. Regardless of the method, the
console prints the same data. Notice that these data are vectors, not data table structures. We marked the
code to access the column data as a vector in bold only for emphasis.

 head(diris[["Sepal.Length"]])
 [1] 4.3 4.4 4.4 4.4 4.5 4.6
 head(diris$Sepal.Length) # easy to type
 [1] 4.3 4.4 4.4 4.4 4.5 4.6
 head(diris[[v]]) # easy if you have a R variable
 [1] 4.3 4.4 4.4 4.4 4.5 4.6

 Excluding a column or columns may be of more interest than selecting certain columns. Exclusion uses
negation in several formats. Particularly, either the column(s) to be excluded may be named or referenced
via position:

 select(diris, -1)
 # A tibble: 150 x 4
 Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <chr>
 1 3.0 1.1 0.1 setosa
 2 3.2 1.3 0.2 setosa
 3 3.0 1.3 0.2 setosa
 4 2.9 1.4 0.2 setosa
 5 2.3 1.3 0.3 setosa
 # ... with 145 more rows
 select(diris, -Sepal.Length, -Petal.Width)
 # A tibble: 150 x 3
 Sepal.Width Petal.Length Species
 <dbl> <dbl> <chr>
 1 3.0 1.1 setosa
 2 3.2 1.3 setosa
 3 3.0 1.3 setosa
 4 2.9 1.4 setosa
 5 2.3 1.3 setosa
 # ... with 145 more rows

 Again, when variable exclusion is needed, we set a variable to hold the vector, and we may paste
negation to the front of that by using paste0() and then using the select_() call to use character strings.
Alternately, we may use negation with the select helper function one_of() in our usual select() function.
Either way, we get the same results:

 ex <- paste0("-", v)
 select_(diris, ex)
 # A tibble: 150 x 4
 Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <chr>
 1 3.0 1.1 0.1 setosa
 2 3.2 1.3 0.2 setosa
 3 3.0 1.3 0.2 setosa

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

168

 4 2.9 1.4 0.2 setosa
 5 2.3 1.3 0.3 setosa
 # ... with 145 more rows
 select(diris, -one_of(v))
 # A tibble: 150 x 4
 Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <chr>
 1 3.0 1.1 0.1 setosa
 2 3.2 1.3 0.2 setosa
 3 3.0 1.3 0.2 setosa
 4 2.9 1.4 0.2 setosa
 5 2.3 1.3 0.3 setosa
 # ... with 145 more rows

 Having now used this select convenience function a couple of times, we look briefly at four more of
these. The goal of these four is that they help us choose variables without typing out an entire column
name. In no particular order, starts_with(), ends_with(), contains(), and matches() all use regular
expressions, default to looking in the current variable list, and ignore letter case by default, although this is a
feature that may be turned off. Rather than demonstrate all of these, the following code shows two examples
using starts_with() . One benefit of the dplyr approach of making focused functions named after verbs
that accomplish one specific task is that it is easy to tell what a function does from its name. The remaining
helper functions operate similarly to starts_with() and do exactly what their names indicate:

 select(diris, starts_with("s"))
 # A tibble: 150 x 3
 Sepal.Length Sepal.Width Species
 <dbl> <dbl> <chr>
 1 4.3 3.0 setosa
 2 4.4 3.2 setosa
 3 4.4 3.0 setosa
 4 4.4 2.9 setosa
 5 4.5 2.3 setosa
 # ... with 145 more rows
 select(diris, starts_with("s", ignore.case = FALSE))
 # A tibble: 150 x 0

 With this last bit of code, our journey through dplyr subsetting ends. We turn our attention to variable
renaming and ordering.

 Variable Renaming and Ordering
 It is a regrettably routine part of data hygiene that column names require renaming or reordering. What
made sense (or is ”legal”) in one database may not work in another data bank. Many proprietary data
management systems have fixed names that are unwieldy.

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

169

 Viewing the names associated with a dplyr object requires the usual names() or colnames() functions
called on our data set diris . Either way, we get the same results with the current column order:

 names(diris)
 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
 colnames(diris)
 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

 To change a name, call the rename() function on the data object and set the new name in the second
formal by using the following format: new name = old name . Multiple columns can be renamed at once by
passing them as additional arguments (for example, in the third, fourth formal). Confirm that the change
took place by comparing the results of name() with the old results. In the following code, we remove the full
stop between Sepal and Length in our data:

 diris <- rename(diris, SepalLength = Sepal.Length)
 names(diris)
 [1] "SepalLength" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

 To reorder the columns to pair the lengths and the widths together, simply use the select() function
and reassign a name to your data object. Be sure to remember that we renamed SepalLength to no longer
have a full stop in the middle!

 diris <- select(diris, SepalLength, Petal.Length, Sepal.Width, Petal.Width, Species)
 diris
 # A tibble: 150 x 5
 SepalLength Petal.Length Sepal.Width Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 1.1 3.0 0.1 setosa
 2 4.4 1.3 3.2 0.2 setosa
 3 4.4 1.3 3.0 0.2 setosa
 4 4.4 1.4 2.9 0.2 setosa
 5 4.5 1.3 2.3 0.3 setosa
 # ... with 145 more rows

 Earlier, you saw that numeric select calls could reorder columns, so we close out this section with one
last reordering example. Here, we use a variable to hold numeric positions, although we could just as well
use character names in place of numbers. Then we use the select_() function to reorganize our columns
back to their original order.

 v <- c(1, 3, 2, 4, 5)
 diris <- select_(diris, .dots = as.list(v))
 diris
 # A tibble: 150 x 5
 SepalLength Sepal.Width Petal.Length Petal.Width Species
 <dbl> <dbl> <dbl> <dbl> <chr>
 1 4.3 3.0 1.1 0.1 setosa
 2 4.4 3.2 1.3 0.2 setosa
 3 4.4 3.0 1.3 0.2 setosa
 4 4.4 2.9 1.4 0.2 setosa
 5 4.5 2.3 1.3 0.3 setosa
 # ... with 145 more rows

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

170

 Computing on Data and Creating Variables
 Now that you have a good sense of how to manage original data in dplyr , we’ll start to focus on how to create
new data from old data. For simplicity’s sake, we re-create our diris data set from the original iris data set.
Then we’ll be ready to use the new function mutate() to create or replace columns. This function takes the
usual first argument, and the latter formals express what is done to create new columns. Whether it is one or
many, simply create expressions that let dplyr know what to append to the tibble :

 diris <- mutate(diris, V0 = 0, X1 = 1L, X2 = 2L)
 diris
 # A tibble: 150 x 8
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species V0 X1 X2
 <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <int> <int>
 1 5.1 3.5 1.4 0.2 setosa 0 1 2
 2 4.9 3.0 1.4 0.2 setosa 0 1 2
 3 4.7 3.2 1.3 0.2 setosa 0 1 2
 4 4.6 3.1 1.5 0.2 setosa 0 1 2
 5 5.0 3.6 1.4 0.2 setosa 0 1 2
 # ... with 145 more rows

 Of course, new data might not be about creating wholly new columns. Instead, we may create new
calculated columns based on existing information. Perhaps we want a new column named V that is the
multiplication of Petal.Length and Petal.Width . For clarity’s sake, we first remove the three columns just
added previously:

 diris <- select(diris, -V0, -X1, -X2)
 diris <- mutate(diris, V = Petal.Length * Petal.Width)
 diris
 # A tibble: 150 x 6
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species V
 <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
 1 5.1 3.5 1.4 0.2 setosa 0.28
 2 4.9 3.0 1.4 0.2 setosa 0.28
 3 4.7 3.2 1.3 0.2 setosa 0.26
 4 4.6 3.1 1.5 0.2 setosa 0.30
 5 5.0 3.6 1.4 0.2 setosa 0.28
 # ... with 145 more rows

 More exotic calculations are performed by doing them only when certain conditions occur. In this case,
 if_else() takes three arguments. The first is the logical condition on which to test the if/else statement.
The second and third formals indicate what to do on the if or the else . Additionally, mutate() allows us not
only to create a column with data, but also to change existing column data. Thus, if it was not enough in our
first pass to create a column V2 that took on a multiplicative relationship between petal widths and lengths
for setosa species, we could extend that to a square-root operation for virginica . To make sure we see a
sample of each species, we use the slice() function to look at just three specific rows:

 diris <- mutate(diris, V2 = if_else(Species == "setosa", Petal.Length * Petal.Width, NA_
real_))
 diris <- mutate(diris, V2 = if_else(Species == "virginica",
 sqrt(Petal.Length * Petal.Width), V2))
 slice(diris, c(1, 51, 101))

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

171

 # A tibble: 3 x 7
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species V V2
 <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
 1 5.1 3.5 1.4 0.2 setosa 0.28 0.28
 2 7.0 3.2 4.7 1.4 versicolor 6.58 NA
 3 6.3 3.3 6.0 2.5 virginica 15.00 3.87

 It is not necessary to create a new column; it is possible to simply calculate information on a table by
using the summarise() function. The first formal, as always, tells the function which data to use, while the
rest are used to hold individual calculations. Note that one or many calculations might be coded. Here, we
demonstrate two such calculations for arithmetic mean and standard deviation:

 summarise(diris, M = mean(Sepal.Width), SD = sd(Sepal.Width))
 # A tibble: 1 x 2
 M SD
 <dbl> <dbl>
 1 3.1 0.44

 Unlike data.table , dplyr works via functions. Moreover, while your mathematics professor may have
spent some time lecturing about function composition (and that technique of nesting functions inside each
other has its place), there is a cleaner look in dplyr . Chaining together several functions leaves us with the
desired results when using the %>% operator. Suppose we want to take our data, use only the virginica
species, and calculate the mean of the sepal widths. The result should be a tibble of just one variable, the
mean we seek. Note that when the %>% operator is used, the data set is passed to the first argument. Thus,
even though it looks like we specify the first formal argument to filter() in the following code, because we
used the %>% operator, the function is modified so that the data set is passed as the first argument, and what
we wrote, Species == "virginica" , is passed as the second argument:

 diris %>% filter(Species == "virginica") %>% summarise(M = mean(Sepal.Width))
 # A tibble: 1 x 1
 M
 <dbl>
 1 3

 This idea of taking it one step at a time can be modified to manage all sorts of data manipulations.
Thinking back to our study of data.table , the third formal of that structure, by = , allowed us to organize
by elements of a column. For dplyr , we use group_by() on a column name to accomplish the same task.
Expanding our mean example to all three species, we now have a two-column tibble with one row for each
species. We could also get means for more than one of our original columns. Notice that virginica ’s sepal
width mean is 3 , regardless of how we calculate it.

 diris %>% group_by(Species) %>% summarise(M1 = mean(Sepal.Width), M2 = mean(Petal.Width))
 # A tibble: 3 x 3
 Species M1 M2
 <chr> <dbl> <dbl>
 1 setosa 3.4 0.25
 2 versicolor 2.8 1.33
 3 virginica 3.0 2.03

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

172

 This chaining structure, just like the data table chaining structure, can be done indefinitely (or close to
it). To find a correlation in the preceding data, we simply add one more step to the end of our chain:

 diris %>%
 group_by(Species) %>%
 summarise(M1 = mean(Sepal.Width), M2 = mean(Petal.Width)) %>%
 summarise(r = cor(M1, M2))
 # A tibble: 1 x 1
 r
 <dbl>
 1 -0.76

 Variables can create other variables as well. We create a new variable based on whether a petal width is
greater or smaller than the median petal width for that species. This may have changed its appearance a bit,
but this is still a tibble :

 diris <- diris %>%
 group_by(Species) %>%
 mutate(MedPW = Petal.Width > median(Petal.Width))
 diris
 Source: local data frame [150 x 8]
 Groups: Species [3]

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species V V2 MedPW
 <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <lgl>
 1 5.1 3.5 1.4 0.2 setosa 0.28 0.28 FALSE
 2 4.9 3.0 1.4 0.2 setosa 0.28 0.28 FALSE
 3 4.7 3.2 1.3 0.2 setosa 0.26 0.26 FALSE
 4 4.6 3.1 1.5 0.2 setosa 0.30 0.30 FALSE
 5 5.0 3.6 1.4 0.2 setosa 0.28 0.28 FALSE
 # ... with 145 more rows

 It is also easy to group by multiple variables. Grouping by both species and median petal width
Booleans, we recalculate means for sepal and petal widths:

 diris %>%
 group_by(Species, MedPW) %>%
 summarise(M1 = mean(Sepal.Width), M2 = mean(Petal.Width))
 Source: local data frame [6 x 4]
 Groups: Species [?]

 Species MedPW M1 M2
 <chr> <lgl> <dbl> <dbl>
 1 setosa FALSE 3.4 0.19
 2 setosa TRUE 3.5 0.38
 3 versicolor FALSE 2.6 1.19
 4 versicolor TRUE 3.0 1.50
 5 virginica FALSE 2.8 1.81
 6 virginica TRUE 3.1 2.27

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

173

 Again, it is always possible to chain on more operations:

 diris %>%
 group_by(Species, MedPW) %>%
 summarise(
 M1 = mean(Sepal.Width),
 M2 = mean(Petal.Width)) %>%
 group_by(MedPW) %>%
 summarise(r = cor(M1, M2))
 # A tibble: 2 x 2
 MedPW r
 <lgl> <dbl>
 1 FALSE -0.78
 2 TRUE -0.76

 Merging and Reshaping Data
 Without repeating what we said about merging and reshaping data in the data.table chapter, we note that
the function call to merge() still works, after a fashion. This function is the same function from data.table ,
and because we used dplyr to operate on tibbles , which are built on data frames, it works. However, when
this is done, they lose their tibble status. Thus, we also introduce the *join() functions, which are much
closer to some of the more traditional database languages.

 Once again, we first run a bit of code to make four separate data objects. Please note again that this is
not likely to be needed in real life, as our data usually comes from different databases:

 diris <- diris %>% group_by(Species) %>% select(Species, Sepal.Width) %>% slice(1:3)
 diris
 Source: local data frame [9 x 2]
 Groups: Species [3]

 Species Sepal.Width
 <chr> <dbl>
 1 setosa 3.5
 2 setosa 3.0
 3 setosa 3.2
 4 versicolor 3.2
 5 versicolor 3.2
 6 versicolor 3.1
 7 virginica 3.3
 8 virginica 2.7
 9 virginica 3.0

 diris2 <- slice(diris, c(1, 4, 7))
 diris2
 Source: local data frame [3 x 2]
 Groups: Species [3]

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

174

 Species Sepal.Width
 <chr> <dbl>
 1 setosa 3.5
 2 versicolor 3.2
 3 virginica 3.3

 dalt1 <- tibble(
 Species = c("setosa", "setosa", "versicolor", "versicolor",Data managementmerging and
reshaping Data
 "virginica", "virginica", "other", "other"),
 Type = c("wide", "wide", "wide", "wide",
 "narrow", "narrow", "moderate", "moderate"),
 MedPW = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE))
 dalt1
 # A tibble: 8 x 3
 Species Type MedPW
 <chr> <chr> <lgl>
 1 setosa wide TRUE
 2 setosa wide FALSE
 3 versicolor wide TRUE
 4 versicolor wide FALSE
 5 virginica narrow TRUE
 6 virginica narrow FALSE
 7 other moderate TRUE
 8 other moderate FALSE

 dalt2 <- slice(dalt1, c(1, 3))
 dalt2
 # A tibble: 2 x 3
 Species Type MedPW
 <chr> <chr> <lgl>
 1 setosa wide TRUE
 2 versicolor wide TRUE

 The merge() function operates on two data sets. For one-to-one data such as diris2 and dalt2 ,
the merge by itself keeps only the rows that match both data sets. We can see that for these two objects,
 virginica row in diris2 is dropped:

 merge(diris2, dalt2)
 Species Sepal.Width Type MedPW
 1 setosa 3.5 wide TRUE
 2 versicolor 3.2 wide TRUE

 If we wish to keep all three rows of diris2 , then there is some missing data after the merge. Now, in this
case, since we arbitrarily choose diris2 to be our first formal, all.x = TRUE keeps all of the diris2 rows:

 merge(diris2, dalt2, all.x = TRUE)
 Species Sepal.Width Type MedPW
 1 setosa 3.5 wide TRUE
 2 versicolor 3.2 wide TRUE
 3 virginica 3.3 <NA> NA

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

175

 It is also possible to set the second value, or all.y = TRUE , although in this case that has no noticeable
difference. Depending on how good a match two particular tables are, there might be a different pattern
of missing variables. Similarly, it is also possible to say that we want all rows from all tables. This has the
potential to give the most missing data locations; in our example, such a merge would be identical to our
three rows shown in the preceding example.

 As mentioned, these are not tibbles . Now, we may wrap them in as_tibble() if we wish to merge
and coerce back to a tibble . However, dplyr also operates on database-style objects, as you’ll see in our
database chapter. In particular, Structured Query Language (SQL) can be accessed through dplyr . SQL has
joins, and we’ll look at four types of joins now. To generalize greatly, merge() focuses on matching in some
way. Joins focus on rows versus columns of object 1 and object 2.

 All rows of the first object are returned in a left_join() as well as all columns of both the first and
second objects. Because this is a dplyr function call, we get a tibble as our output. As you can see, this is
similar (although not a perfect match in all cases) to all.x=TRUE :

 left_join(diris2,dalt2)
 Joining, by = "Species"
 Source: local data frame [3 x 4]
 Groups: Species [?]

 Species Sepal.Width Type MedPW
 <chr> <dbl> <chr> <lgl>
 1 setosa 3.5 wide TRUE
 2 versicolor 3.2 wide TRUE
 3 virginica 3.3 <NA> NA

 A right_join() is much like a left, except it returns all rows from the second object. Still, all columns
from both objects return. In this case, there is no major difference between this type of join and the merge()
function. However, this case is not all cases. Many charts on the internet claim to speak the truth about how
joins work. In our experience, the accuracy of those explanations can be hit or miss. Our advice is to grab
several small data tables, or cook up your own as we did here. Then start joining things. Somewhere along
the way, after doing it often, you’ll gain a sense of which technique gets you closest to having the data you
want.

 right_join(diris2,dalt2)
 Joining, by = "Species"
 Source: local data frame [2 x 4]
 Groups: Species [?]

 Species Sepal.Width Type MedPW
 <chr> <dbl> <chr> <lgl>
 1 setosa 3.5 wide TRUE
 2 versicolor 3.2 wide TRUE

 The closest match to the basic merge() function is the inner_join() function, which in this case would
yield the same results as the previous right join. Contrastingly, from a merge point of view, the weirdest join
is the anti-join() . The anti_join() returns all rows in the first database that do not have matching values
in the second data object. As for columns, it returns only the first object’s columns.

 anti_join(diris2,dalt2)
 Joining, by = "Species"
 Source: local data frame [1 x 2]
 Groups: Species [3]

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

176

 Species Sepal.Width
 <chr> <dbl>
 1 virginica 3.3

 Between joins and merges, there are plenty of options for combining data into a single object.
Remember, your goal is to eventually get just the data needed for analysis. Sometimes it makes sense to first
combine one or more collections of data into a single table, and from there use the techniques from earlier
in this chapter to reduce that to your desired data set. Of course, if merges are more familiar, they often work
just fine. If you truly require dplyr, as_tibble() always works as a wrapper function to coerce your object
back to what it should be. After all, data.table and dplyr ’s tibbles are both extensions of data frames.

 Our last goal is reshaping, which works better if there is a unique ID per row. We start by refreshing our
data set one more time. From there, we introduce n() , which is a special way to refer to the number of rows,
much like .N is in data tables:

 diris <- as_tibble(iris)
 diris <- mutate(diris, ID = 1:n())
 diris
 # A tibble: 150 x 6
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species ID
 <dbl> <dbl> <dbl> <dbl> <chr> <int>
 1 5.1 3.5 1.4 0.2 setosa 1
 2 4.9 3.0 1.4 0.2 setosa 2
 3 4.7 3.2 1.3 0.2 setosa 3
 4 4.6 3.1 1.5 0.2 setosa 4
 5 5.0 3.6 1.4 0.2 setosa 5
 # ... with 145 more rows

 To reshape() long, we use the base R function. From there, we call out repeatedly measured variables
or variables we wish to stack in the long data set with the varying label. The label timevar takes the name
of the variable indicating to which stack a row belongs. It is so named because often these are sorted based
on time. Specify names for the newly stacked variables with v.names and use idvar for the ID variable. Any
variables not listed in varying will be assumed to be not varying and will simply be repeated.

 diris.long <- as_tibble(reshape(as.data.frame(diris),
 varying = list(
 c("Sepal.Length", "Sepal.Width"),
 c("Petal.Length", "Petal.Width")),
 timevar = "Type",
 v.names = c("Sepal", "Petal"),
 idvar = c("ID"),
 direction = "long"))

 diris.long
 # A tibble: 300 x 5
 Species ID Type Sepal Petal
 * <chr> <int> <int> <dbl> <dbl>
 1 setosa 1 1 5.1 1.4
 2 setosa 2 1 4.9 1.4
 3 setosa 3 1 4.7 1.3
 4 setosa 4 1 4.6 1.5
 5 setosa 5 1 5.0 1.4
 # ... with 295 more rows

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

177

 At this point, it might not be clear what Type is. Type tells us whether we are in the length or width of
sepals and petals. When our data stacks long from wide, it doubles in length. Now, the Sepal and Petal
columns must do double duty, and Type is there to let us know which. Take a look at this slice() of our data:

 slice(diris.long, c(1, 151))
 # A tibble: 2 x 5
 Species ID Type Sepal Petal
 <chr> <int> <int> <dbl> <dbl>
 1 setosa 1 1 5.1 1.4
 2 setosa 1 2 3.5 0.2

 Type varies from 1 to 2 depending on whether it is length or width. However, that information is not
coded into our data, so we mutate() our tibble to make sure it understands Type is a factor of two levels,
one of which is Length and the other Width . Notice that our slice now makes much more sense after this
cleanup.

 diris.long <- mutate(diris.long, Type = factor(Type, levels = 1:2,
 labels = c("Length", "Width")))
 diris.long
 # A tibble: 300 x 5
 Species ID Type Sepal Petal
 <chr> <int> <fctr> <dbl> <dbl>
 1 setosa 1 Length 5.1 1.4
 2 setosa 2 Length 4.9 1.4
 3 setosa 3 Length 4.7 1.3
 4 setosa 4 Length 4.6 1.5
 5 setosa 5 Length 5.0 1.4
 # ... with 295 more rows

 slice(diris.long, c(1, 151))
 # A tibble: 2 x 5
 Species ID Type Sepal Petal
 <chr> <int> <fctr> <dbl> <dbl>
 1 setosa 1 Length 5.1 1.4
 2 setosa 1 Width 3.5 0.2

 We took wide data and made it long. We now reverse the process by using reshape() again, this time
with the direction formal set wide . Since we are going wide, we do not need varying , as we are about to get
those through this process. We do need ids = diris.long$ID so that rows 1 and 151 are combined into the
same single, wide row.

 diris.wide2 <- as_tibble(reshape(as.data.frame(diris.long),
 v.names = c("Sepal", "Petal"),
 timevar = "Type",
 idvar = "ID",
 ids = diris.long$ID,
 direction = "wide"))
 diris.wide2
 # A tibble: 150 x 6

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

178

 Species ID Sepal.Length Petal.Length Sepal.Width Petal.Width
 * <chr> <int> <dbl> <dbl> <dbl> <dbl>
 1 setosa 1 5.1 1.4 3.5 0.2
 2 setosa 2 4.9 1.4 3.0 0.2
 3 setosa 3 4.7 1.3 3.2 0.2
 4 setosa 4 4.6 1.5 3.1 0.2
 5 setosa 5 5.0 1.4 3.6 0.2
 # ... with 145 more rows

 At this point, you can see that reshape() is part of base R and is not a very dplyr way of doing things.
However, it is perhaps more powerful and versatile. Hence we decided to showcase how to use it rather than
more dplyr -type approaches such as tidyr . The truth is, tidyr is around two years old, and it likely will
become the new way of managing such conversions. Given the speed at which technology progresses, by the
time you, our gentle reader, have this book in hand, all of us will be ready for an update to this chapter.

 Summary
 The dplyr and tibble packages make working with data easier. By separating what we do to data from the
data itself, we can learn a comparatively limited number of manipulations that we can apply to any data.
Behind the scenes, dplyr translates those function calls to modify the data. In the next chapter, you’ll see
how this allows us to quickly access big data. Table 9-1 describes the key functions used in this chapter.

 Table 9-1. Key Functions Described in This Chapter

 Function What It Does

 as_tibble() Converts a data object (for example, a data frame) to a tibble .

 arrange() Arranges a named column in increasing order, or descending order if desc() is used
on the column name.

 distinct() This is dplyr ’s answer for unique() . It gives just those rows that are not the same.

 slice() Slices out the rows asked for from a tibble.

 filter() Filters out rows based on matched characteristics.

 select() Selects specific columns based on name. Functionality can be expanded by using the
helper functions: one_of() , starts_with() , ends_with() , contains() , matches() ,
 num_range() , and everything() .

 select_() A more programming-friendly version of select() that takes character strings or R
objects containing character strings.

 rename() Renames columns.

 mutate() Allows for changes or mutations to existing tibbles. Adding/deleting/modifying
column data is a popular use.

 summarise() Creates a new tibble based on calculations from an original tibble.

 %>% Piping avoids function composition and allows for cleaner code to chain up multiple
functions.

 group_by() Allows grouping by columns. Corresponds to the third formal (by =) of data.table .

 left_join() Joins are a SQL way of dealing with data. A left-join keeps the first object’s rows.

(continued)

CHAPTER 9 ■ OTHER TOOLS FOR DATA MANAGEMENT

179

 Function What It Does

 right_join() Keeps the second object’s rows.

 inner_join() Returns all columns of both variables and all rows from the first that have matches in
the second data object.

 anti_join() Returns just the unique, unlinkable part of the first data object. This is quite helpful if
the second object is meant to extend information on the first, as it gives a fast way to
see what is left.

 reshape() Depending on whether direction = "wide" or direction = "long" is chosen,
reshapes data wide or long. This is a base R function and to keep a tibble requires
 as_tibble() .

Table 9-1. (continued)

181© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_10

 CHAPTER 10

 Reading Big Data(bases)

 Now that you understand how to manage data inside R, let’s consider where data is found. While smaller
data is found in comma-separated values (CSV) files or files easily converted to such, larger data tends to live
in other places. This chapter deals with big data, or at least data that may be big. What is the challenge with
big data? R works in memory, random access memory, not hard drives. A quick check of your system settings
should reveal the amount of memory you have. We, the authors, use between 4 and 32 gigabytes in our
real-world systems, with the larger number being a somewhat expensive habit. R cannot analyze data larger
than available RAM.

 This leads to two possibilities. While it is possible to save R data objects and load them one at a time, R
is not designed to be a full-time database. Furthermore, large data is often managed by other groups besides
analysts. Big data is a reality, and most of it lives inside a database of some sort. Now, while most databases
have the capability to export files to CSV, this is not always convenient. Our goal is to provide you with just
enough information to allow you access to some popular and common databases. If you are a data user,
you’ll be able to access data from several common databases by the end of this chapter. If you are a big data
owner, you’ll gain the ability to write newly collected data into a database. Along the way, we’ll show the
commands allowing you to load into R a subset of your data. We also discuss read versus write privileges.
Finally, (actually, first), we install these databases with you, so you are ready to practice using large data.
Fair warning: Our goal is not to provide expertise in database management. We do have some book
recommendations we make throughout the chapter for more details.

 This chapter has three main sections that each follow the same pattern: installation of database software
followed by interacting with that database via R. The first two database systems are SQLite and PostgreSQL,
which are both relational databases. As such, they fit nicely with the previous chapters discussing data,
because so far we’ve used tabular data. Tabular data is fixed columns and variable rows. New data is slotted
neatly into a new row, and thus most data has a rigid format . Additionally, while there may be more than
one table, there tend to be common keys that allow us to match tables to each other (and rows within those
tables to each other). The last database we demonstrate is MongoDB, which is an example of a document
store. In a document store, each piece, or blob , of data may be unique. There is no reason to believe that any
keys or relations exist; of course, there is no reason to believe that there aren’t any similarities either.

 In this chapter, we use the following packages : devEMF (Johnson, 2015), DBI (R-SIG-DB, Wickham, and
Kirill, 2016), RSQLite (Wickham, James, and Falcon 2014), jsonlite (Ooms, 2014), tm (Feinerer and Hornik,
2015), wordcloud (Fellows, 2014), RMongo (Cheng, 2013), RPostgreSQL (Conway, Eddelbuettel, Nishiyama,
Prayaga, and Tiffin, 2016), and data.table (Dowle, Srinivasan, Short, and Lianoglou, 2015). The following
code loads the checkpoint (Microsoft Corporation, 2016) package to control the exact version of R packages
used and then loads the packages:

 ## load checkpoint and required packages
 library(checkpoint)
 checkpoint("2016-09-04", R.version = "3.3.1")

CHAPTER 10 ■ READING BIG DATA(BASES)

182

 library(devEMF)
 library(RPostgreSQL)
 library(DBI)
 library(RSQLite)
 library(jsonlite)
 library(tm)
 library(wordcloud)
 library(RMongo)
 library(data.table)
 options(width = 70) # only 70 characters per line

 This chapter is not about curating big data and certainly is not about curating big data in R. Instead,
this chapter gets you learning the ins and outs of using R with some popular open source databases. Before
moving into specific databases, a word of advice: should you wish to learn all three of these databases, go to
each section for installation instructions. Follow those, and, after you are finished, just to be safe, restart your
computer.

 SQLite
 SQLite is both extraordinarily small and exceptionally efficient. It is also freely available (as of this writing
and for the last 16 years). While we recommend reading The Definitive Guide to SQLite by Grant Allen and
Mike Owens (Apress, 2010), there are five main data types recognized (compare this with R): null, integer,
real, text, and blob.

 Each SQLite database exists as just one file and is thus quite portable. These databases have no users,
no need for passwords, and there is a simple connection structure. Disadvantages are a consequence
of some of those same advantages. Without user privileges, there is no distinction between just reading
information and being able to modify data.

 This lack of user privileges deserves an important warning. We build the databases we use in this
chapter with mock data. In real-life work, databases are not for practice. There is a healthy amount of fear
when directly connecting to a live database for the first time, especially if you are one wrong drop call away
from deleting your team’s or client’s data. Because SQLite is just one file, it is wise to try on a copy of the
actual data first if at all possible. Alternatively, as in our case, practice first on something completely safe.

 Installing SQLite on Windows
 Installing does not happen with SQLite. Rather, the file(s) are simply downloaded. A visit to SQLite at
 www.sqlite.org/download.html is enough; we downloaded the sqlite-tools-win32-VERSION.zip file,
where VERSION maps to the current product and version. Next, extract sqliteV.exe , where V is the version to
a folder on the disk where you want your data to live. We extracted to C:/sqlite as our folder. Make sure you
have free space on the disk; this database eventually takes up some space.

 That is all it takes to get SQLite up and running on your system. Now, in real life, perhaps someone else
created the SQLite database, and you have a database copy or access via a network share drive. Our goals are
to use data from the database and to store data to the database from R. This is not the same, nor as efficient,
as managing an SQLite database by using the “proper” techniques. All the same, it gets us using the database
quickly!

https://www.sqlite.org/download.html

CHAPTER 10 ■ READING BIG DATA(BASES)

183

 SQLite and R
 Our first task is connecting to our database. Connections use the DBI package library and build a link to our
database. In the case of SQLite, there is no need for a username or password. We do need to tell the link the
location of our database as well as the type of database. Recall that we made some choices about where to
locate SQLite, and that location must match up with our current location. We call this first connection
 con1 and then use the dbIsValid() function from the RSQLite library to test whether it started correctly.
Ours returns as valid, so we are ready to go:

 con1 = dbConnect(SQLite(), dbname = "C:/sqlite/LiteDB.db")
 dbIsValid(con1)
 [1] TRUE

 Our goal is to get you connecting to this database quickly. We push our familiar iris data to SQLite,
which allows us to see that the system is working correctly. Data in SQLite lives in tables, and inside a table
are fields. This corresponds to a data table in R, which has a name and columns. We assume that you are
already overly familiar with iris and show the result of writing the data table version of iris to SQLite. The
 dbWriteTable() function takes three required arguments: the connection, the name of the new table, and
the name of the R object to write into that table. The R object should be a data frame. Additional arguments
may be passed, including settings determining whether we overwrite or append, should a table already be in
the database with the same name. For this first attempt, we set both to their defaults of FALSE :

 dbWriteTable(con1, name = "Iris", diris, overwrite = FALSE, append = FALSE)
 [1] TRUE
 dbListTables(con1)
 [1] "Iris"
 dbListFields(con1, "Iris")
 [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

 Now this data is in our SQLite Iris table; we can read it back into R. Our goal is for you to learn how
to read an entire table into R and to confirm that our storage was lossless or accurate. Using the function
 dbReadTable() on our con1 connection and our Iris table inside SQLite gives us access to our data. This
function returns a data frame:

 diris_lite1 <- dbReadTable(con1, "Iris")
 diris_lite1 <- as.data.table(diris_lite1)
 all.equal(diris, diris_lite1)
 [1] TRUE

 The all.equal() function confirms that there was no loss. This opens up an easy way to store large
data. Data tables from R easily store, and through proper use of overwrite , append , or name , we have a
good-enough way to curate that data with minimal direct knowledge of SQLite. Should you find yourself in
possession of large tabular data, this is admittedly an easy way to keep track of it. One of the authors has a
series of tabular data that changes over time on occasion but is highly similar. An extra column of the current
date allows large chunks to be readily written to SQLite into a sort of permanent archive. Now, the main
reason this might be useful is to read into R not an entire table, but merely part of one.

 Reading part of a table is our goal, and it is not quite so easy as what we did previously. Depending on
your familiarity with Structured Query Language (SQL), this step may be more or less easy. If you are less
familiar with SQL, that is perfectly fine. Our advice, in that case, is first to cast a broad net into your SQLite
table, and then use R to remove more rows or columns you neither need nor want. On the other hand, if you

CHAPTER 10 ■ READING BIG DATA(BASES)

184

are more comfortable with SQL, there is no reason not to select precisely just the parts you want. Here, we
give a few examples that ought to be enough for beginning levels of SQL comfort. Again, we recommend
other books for moving deeper into SQL.

 A basic SQL query SELECT s specific columns, FROM a specific table, WHERE specific rows of specific
columns have a certain feature. We use dbSendQuery() to send and execute our query to and in SQLite.
Then, we use dbFetch() to get our results into R. In the end, we use dbClearResult() to clear the buffer in
SQLite in preparation for any future queries.

 query <- dbSendQuery(con1, "SELECT [Sepal.Length] FROM Iris WHERE Species = 'setosa'")
 diris_lite2 <- dbFetch(query, n=-1)
 head(diris_lite2)
 Sepal.Length
 1 5.1
 2 4.9
 3 4.7
 4 4.6
 5 5.0
 6 5.4
 dbClearResult(query)
 [1] TRUE

 The preceding code returns 50 observations of sepal length of the setosa species. In dbFetch(),
we reference the already executed query, and the n argument tells us the number of rows to select. In this
case, we ask for all rows. Contrastingly, we might have asked for all 100 rows that do not have setosa .
The command would be similar, as shown in the following code:

 query <- dbSendQuery(con1, "SELECT [Sepal.Length], Species FROM Iris WHERE Species <>
'setosa'")
 diris_lite3 <- dbFetch(query, n=-1)
 head(diris_lite3)
 Sepal.Length Species
 1 7.0 versicolor
 2 6.4 versicolor
 3 6.9 versicolor
 4 5.5 versicolor
 5 6.5 versicolor
 6 5.7 versicolor
 dbClearResult(query)
 [1] TRUE

 Notice that because of the full stop between Sepal and Length , we have to encase that variable in a
bracket, unlike species. It is worth mentioning that SQL has some linguistic quirks and reserved characters
(much as R does, to some degree). In fact, this could well be the biggest risk for those of us less experienced
in SQL. Remember, as soon as you use dbSendQuery , SQLite cheerfully receives and executes that query.
Since SQLite has no user authentication, there is no way to use minimal, read-only privileges. In the
best case, the wrong commands simply have no effect. In the worst case,, you could delete, overwrite, or
otherwise damage data. Our hard-earned advice is always to work on a local copy of your data, especially if
you are reading this to start your big data project. Otherwise, talk to the database owner or administrator if
you are new to SQL.

CHAPTER 10 ■ READING BIG DATA(BASES)

185

 Our last iris example returns all columns by using the * wildcard rather than listing out all columns.
Again, we ask for all rows that are not setosa :

 query <- dbSendQuery(con1, "SELECT * FROM Iris WHERE Species <> 'setosa'")
 diris_lite4 <- dbFetch(query, n=-1)
 diris_lite4 <- as.data.table(diris_lite4)
 diris_lite4
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 7.0 3.2 4.7 1.4 versicolor
 2: 6.4 3.2 4.5 1.5 versicolor
 3: 6.9 3.1 4.9 1.5 versicolor

 98: 6.5 3.0 5.2 2.0 virginica
 99: 6.2 3.4 5.4 2.3 virginica
 100: 5.9 3.0 5.1 1.8 virginica
 dbClearResult(query)

 The purpose perhaps of SQLite is to allow for data larger than RAM might physically allow. It can be
read in chunks as we’ve demonstrated, or we can push large amounts of data from R to free up memory. Our
next example comes with a choice. If you have enough available free space in your system RAM, go ahead
and do the example of 200 million rows. Otherwise, either change the number of variables in rnorm() to
something lower, or use our code online to run the smaller example of 70 million rows.

 This code creates 200 million entirely made-up data observations with a mean of 1 and a default
standard deviation of 1. As you see, it is about 1.6 gigabytes in size. Certainly, data can be and is larger, but
this is good enough as a test case for you to see the effects on your system. It likely takes about 5 minutes to
run on your system, so be prepared for a bit of a wait.

 BiggerData <- rnorm(200000000, 1)
 BiggerData <-as.data.table(BiggerData)
 object.size(BiggerData)
 1600001088 bytes
 dbWriteTable(con1, "BiggerData", BiggerData)
 [1] TRUE
 dbListTables(con1)
 [1] "BiggerData" "Iris"

 Dropping a table from SQLite is possible from R. Notice that we have two tables listed in our database.
 BiggerData is a large table, so it is not instant. Still, the operation is fairly quick. SQLite does not reduce the
size of the database file on your hard disk as a result of this operation. Now, it does internally free up that
space, so it needs not grow again. However, it is not free to use outside SQLite. In SQL parlance, what is
needed is a VACUUM of the database. This procedure could require up to twice the size of the file, and again,
the space has been released for new use—just not outside the database. Either way, this seems, to us, better
done outside R.

 dbRemoveTable(con1, "BiggerData")
 [1] TRUE
 dbListTables(con1)
 [1] "Iris"

CHAPTER 10 ■ READING BIG DATA(BASES)

186

 Our final bit of code shuts down our connection to our database. The function call is dbDisconnect() ,
and we call that on our connection, con1 . A successful call returns TRUE , and we also see with dbIsValid()
that it is indeed shut down. We also remove some unneeded data before we move on to the next database.

 dbDisconnect(con1)
 [1] TRUE
 dbIsValid(con1)
 [1] FALSE
 rm(diris_lite1, diris_lite2, diris_lite3, diris_lite4)

 We said that our space was not freed up. Since this is invented data, to free up your system, simply
use Windows Explorer after we are done to delete the LiteDB.db file in your C:/sqlite folder. It bears
repeating that database management should not be done through R. Rather, R can natively store some data if
necessary or access subsets of data for analysis.

 PostgreSQL
 PostgreSQL is both open source and popular (ranking fifth of all databases according to some sources).
Highly advanced, this database has over 30 types of data it understands internally. We recommend
 Beginning Databases with PostgreSQL by Neil Matthew and Richard Stones (Apress, 2005). As with SQLite,
we walk you through installing a practice version on your local machine. Our goal is to get you using R on
data inside this database as soon as possible. More-advanced database operations most likely ought not to
be done in R.

 This format is recommended when data integrity, reliability , and a need for various levels of user access
may be useful. On the other hand, if you just need fast read speed for more static yet large data, this might
not be the best choice. Of course, we admit that often the choice of a database has much less to do with what
we want and more to do with where data is found. A warning about PostgreSQL is that it does have users,
and these users have certain privileges. For our example, we have one superuser. From a security standpoint,
this is unwise, and from a real-life perspective, a database owner is unlikely to grant analysts such privileges.
If you intend to be working extensively in this environment and want more practice, an easy way to get it is
to create more levels of users than we do in our brief installation. Then, practice accessing your database by
using those usernames and passwords in R.

 Installing PostgreSQL on Windows
 Visit the PostgreSQL website (www.postgresql.org/download/windows/) and choose one of the installer
options. We chose the latest stable release (not a beta) for 64-bit architecture. After downloading, you should
have a file named something like postgresql-9.5.4-windows-x64.exe , which is your installation program.
Of course, your version number likely is higher than 9.5.4, as that is our edition as of the writing of this
chapter.

 Go ahead and install the program, clicking the Next button as needed, and accepting the default
settings for the installation directory. The installer asks for a password for the database superuser named
 postgres , which we set to advancedr . If you select a different password, please be sure to record it securely.
Incidentally, this also creates a database with the same name as the superuser. PostgreSQL defaults to port
5432, and if that is not showing as the default option, you likely have another version of PostgreSQL living
on your computer. While we configure the port in R, we highly recommend at first practice to go with as
many defaults as possible. Clicking Next a few more times, accepting the defaults, should lead you to the
installation event. You may be asked on the final screen about Stack Builder; it is not required, and you may
uncheck that option before clicking Finish.

https://www.postgresql.org/download/windows/

CHAPTER 10 ■ READING BIG DATA(BASES)

187

 At this point, PostgreSQL’s installation is over, and it is running on your computer. If you are familiar
with this database, you could add data to it directly (and likely would not have needed this primer). We add
data via R and quickly get to accessing subsets of that data .

 PostgreSQL and R
 Our first task is connecting to our database. This uses the DBI package library and builds a link to our
database. In the case of PostgreSQL, we need a username and password. We also need to tell the link the
location of our database as well as the type of database. This database is a server, and we do not need to tell it
the file location so much as the host location and the port. We call this second connection con2 and then use
the dbGetInfo() function from the RPostgreSQL library to test whether it started correctly. Ours returns with
quite a bit of information, so we are ready to go:

 drv <- dbDriver("PostgreSQL")
 con2 <- dbConnect(drv, dbname = "postgres", host = "localhost",
 + port = 5432, user = "postgres", password = "advancedr")
 dbGetInfo(con2)
 $host
 [1] "localhost"

 $port
 [1] "5432"

 $user
 [1] "postgres"

 $dbname
 [1] "postgres"

 $serverVersion
 [1] "9.5.4"

 $protocolVersion
 [1] 3

 $backendPId
 [1] 14220

 $rsId
 list()

 It may be worth mentioning that we included the password directly in the code in plain text for
 dbConnect() this time. It might not be the most secure methodology, and care should be taken (particularly
in this case, since this is our superuser). All the same, our connection is working, it is properly connected to
port 5432 (while this is the default port for this database, it is not always this port), and our host is localhost .
Should you connect to a database online, you would change the address to that database. Now that our
connection is working, we see which tables are in the database and add the familiar iris data set :

 dbListTables(con2)
 character(0)
 diris <- as.data.table(iris)

CHAPTER 10 ■ READING BIG DATA(BASES)

188

 dbWriteTable(con2, "iris", diris, overwrite = TRUE)
 [1] TRUE
 dbListTables(con2)
 [1] "iris"
 dbListFields(con2, "iris")
 [1] "row.names" "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

 A nice feature of these functions is they do what they say. All the same, we draw your attention to the
 dbWriteTable() function. Although writing is not our main focus, this function takes both an overwrite and
an append option set to FALSE or TRUE . Both are convenient in the right situation. We turn our attention to
reading from this database, and confirm that we successfully pull into R data from PostgreSQL with a visual
inspection of our data:

 diris_gre1 <- dbReadTable(con2, "iris")
 diris_gre1 <- as.data.table(diris_gre1)
 diris_gre1
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1: 5.1 3.5 1.4 0.2 setosa
 2: 4.9 3.0 1.4 0.2 setosa
 3: 4.7 3.2 1.3 0.2 setosa

 148: 6.5 3.0 5.2 2.0 virginica
 149: 6.2 3.4 5.4 2.3 virginica
 150: 5.9 3.0 5.1 1.8 virginica

 A basic SQL query SELECT s specific columns, FROM a specific table, WHERE specific rows of specific
columns have a certain feature. We use dbSendQuery() to send our query to and execute it in PostgreSQL.
Then, we use dbFetch() to get our results into R. Notice that when we fetch, we select only the first three
rows that have this feature. At the end, we use dbClearResult() to clear the buffer in PostgreSQL in
preparation for future queries.

 query <- dbSendQuery(con2, statement = 'SELECT * FROM iris WHERE "Petal.Length" > 2')
 diris_gre2 <- dbFetch(query, n=3)
 head(diris_gre2)
 row.names Sepal.Length Sepal.Width Petal.Length Petal.Width Species
 1 51 7.0 3.2 4.7 1.4 versicolor
 2 52 6.4 3.2 4.5 1.5 versicolor
 3 53 6.9 3.1 4.9 1.5 versicolor
 dbClearResult(query)
 [1] TRUE

 This is highly similar to what we did earlier with SQLite, because both databases are SQL databases that
store tabular data. Alternately, if we needed only one column of data, we would SELECT that specific column
rather than using a wildcard value:

 query <- dbSendQuery(con2, 'SELECT "Petal.Length" FROM iris')
 diris_gre3 <- dbFetch(query, n=6)
 head(diris_gre3)
 Petal.Length
 1 1.4
 2 1.4

CHAPTER 10 ■ READING BIG DATA(BASES)

189

 3 1.3
 4 1.5
 5 1.4
 6 1.7
 dbClearResult(query)
 [1] TRUE

 The next query returns both Sepal.Length and Species columns from our iris data set, where the
sepal width does not equal 2.2 (an arbitrary number). Of note is that this returns only 147 rows instead of
the full 150 , and of course only two columns instead of five. Scaling this idea up, you readily see how big
data might be broken into relevant chunks for analysis. We changed from query to qu simply to save a few
characters, to improve the readability of the line in the query text.

 qu <- dbSendQuery(con2, 'SELECT "Sepal.Length", "Species" FROM iris WHERE "Sepal.Width" <>
2.2')
 diris_gre5 <- dbFetch(qu, n=-1)
 head(diris_gre5)
 Sepal.Length Species
 1 5.1 setosa
 2 4.9 setosa
 3 4.7 setosa
 4 4.6 setosa
 5 5.0 setosa
 6 5.4 setosa
 dbClearResult(qu)
 [1] TRUE

 The purpose perhaps of PostgreSQL is to allow for data larger than RAM might physically allow. It can
be read in chunks as we’ve demonstrated, or we can push large amounts of data from R to free up memory.
Our next example comes with a choice. If you have enough available free space in your system RAM, go
ahead and do the example of 200 million rows as written. Otherwise, either change the number of variables
in rnorm() to something lower, or use our code online to run the smaller example of 70 million rows.

 This code creates 200 million entirely made-up data observations with a mean of 1 and a default
standard deviation of 1. As you see, it is about 1.6 gigabytes in size. Certainly, data can be larger, but this
might be good enough as a test case to see how it works on your system. It likely takes around 5 minutes
to run, so be prepared for a bit of a wait. If you have already run this in an earlier step, there is no need to
repeat it.

 BiggerData <- rnorm(200000000, 1)
 BiggerData <-as.data.table(BiggerData)

 dbWriteTable(con2, "BiggerData", BiggerData)
 [1] TRUE
 dbListTables(con2)
 [1] "iris" "BiggerData"

 Once again, while we are (at least with superuser privileges) able to DROP a table, it does not release
space to us in PostgreSQL (and hence on our hard drive). Also once again, we recommend saving VACUUM
commands for actual database management (and thus recommend using SQL on the database directly
rather than in R).

CHAPTER 10 ■ READING BIG DATA(BASES)

190

 dbListTables(con2)
 [1] "iris" "BiggerData"
 dbRemoveTable(con2, "BiggerData")
 [1] TRUE
 dbListTables(con2)
 [1] "iris"

 To close this connection, there are two steps rather than one, because we must disconnect from
PostgreSQL and unload our driver that allows DBI to make that connection. If successful, they will both
return TRUE .

 dbDisconnect(con2)
 [1] TRUE
 dbUnloadDriver(drv)
 [1] TRUE

 This concludes our demonstration of both PostgreSQL and tabular databases. The real way to make the
knowledge you now have more powerful is to delve further into SQL syntax to use dbSendQuery() on ever
more exotic quests. For now, though, a small-enough quantity of data ought to be readable into R that some
analytics can happen. We turn our attention to a different sort of database.

 MongoDB
 As mentioned earlier, MongoDB is different. This is a document store database , which is a type of
nonrelational database. This avoids tables for documents called objects. These documents are binary
versions of JavaScript Object Notation (JSON); since they are binary versions, MongoDB calls them BSON
objects. This type of database is used for data that may be semistructured or unstructured. This tends to be
closer to the concept of a data lake (an increasingly popular buzzword in data science), which suggests that
diverse types of data may need to be stored and accessed.

 One powerful feature of JSON and semistructured data is the ability to collect all the information in
one place for one particular instance. For example, suppose we had all patient records in one place. Rather
than dozens of tables in which each patient occupies a row, and each table is something along the lines
of Address or Diagnosis, we instead store all records for one patient in one blob. Of course, most patients
have an address, but perhaps not all need three types of blood panels in their diagnosis section. This is
semistructured data. On the other hand, if you are simply collecting data from the Web about a favorite
company—including news articles, social media posts or likes, and stock market performance figures—there
may be almost no similarity between elements of that data. Regardless, MongoDB can store it, and we can
access it.

 Installing MongoDB on Windows
 A visit to the MongoDB website (www.mongodb.com/download-center) shows an option to download
the 64-bit version of MongoDB with SSL support (version 3.2.8 as of this writing). See Figure 10-1 . Once
that is downloaded, go ahead and start the installation process . Select Next, read and agree to the license
documentation, and proceed. We used the complete installation and then clicked the Install button. A short
time later, please click Finish.

http://www.mongodb.com/download-center

CHAPTER 10 ■ READING BIG DATA(BASES)

191

 We also need to download the sample database for MongoDB. We will use the restaurants data set
available at MongoDB’s Import Example Dataset page at https://docs.mongodb.com/getting-started/
shell/import-data/ under step 1 (primer-dataset.json). We will also use Ch10_MOCK_DATA.json as
another data set. Both are also available as part of the code packet for this chapter from this book’s site. Go
ahead and download both files, and store them in C:\Program Files\MongoDB\Server\3.2\bin . Keep in
mind that you may be using version 3.3 or later, so be sure to change the version number in this file path as
needed. With that, MongoDB is installed, and we have our data sets. Figure 10-2 shows the folder .

 Figure 10-1. Downloading MongoDB

 Figure 10-2. The MongoDB\Server\3.2\bin folder

https://docs.mongodb.com/getting-started/shell/import-data/
https://docs.mongodb.com/getting-started/shell/import-data/

CHAPTER 10 ■ READING BIG DATA(BASES)

192

 Now press the Windows key, and while holding it down, then press the R key. This opens the Run
dialog box. Type cmd and then press Enter/Return. There needs to be a data directory for your database.
By default, this is in the main file path (for example, usually the C drive for Windows). In the command
prompt, type md \data\db to make the default directory. Note the space between md and \data\db . Next,
still in the command prompt, type cd C:\Program Files\MongoDB\Server\3.2\bin and hit Enter/Return.
Should version 3.3 release before the printing of this book, change the 3.2 in the preceding file path to 3.3.
From here, type mongod.exe and hit Enter/Return. If all goes well, the last line should be waiting for
connections on port 27017 . Keep this window open (otherwise, our server is not serving files).

 Next, again keeping the first console open, press and hold the Windows key and press the letter key
to open a second Run dialog box. This time, most likely cmd is already filled in, so press Enter/Return to
open a second command prompt. In the command prompt, again type cd C:\Program Files\MongoDB\
Server\3.2\bin and hit Enter/Return. We now use MongoDB itself to import these two data sets. Run the
code shown in bold, and the following output shows the results:

 mongoimport --db test --collection restaurants --drop --file primer-dataset.json
 2016-09-25T11:11:24 connected to: localhost
 2016-09-25T11:11:24 dropping: test.restaurants
 2016-09-25T11:11:26 imported 25359 documents

 mongoimport --db test --collection mock --drop --file Ch10_MOCK_DATA.json
 2016-09-25T11:19:45 connected to: localhost
 2016-09-25T11:19:45 dropping: test.mock
 2016-09-25T11:19:45 imported 1000 documents

 Note that this database has a database named test , and inside that database there are now two
collections. These collections, namely restaurants and mock , were created by importing JSON files .
Had those two collections existed already in our test database, then the --drop command would have
purged them. It is somewhat standard to use a database named test or temp as a way of signaling that
experimentation is expected in such a place.

 Go ahead and close this second command prompt window (be careful—you must keep the first
window, which should be giving you server COMMAND and NETWORK feedback, open). After closing just this
second window, we turn our attention to R .

 MongoDB and R
 MongoDB does have the option to have usernames, passwords, and multiple databases. As we have not set
up any of these, we go ahead and simply connect to our local server on our third connection, con3 . Unlike
our first two connections, this uses a new command, mongoDbConnect() from the RMongo package . Also,
notice that this calls for a host to be the localhost, and the port is specified as well. If you are connecting to
a MongoDB instance over the Web, be sure to identify the IP address as well as its port. Of course, also find
out from the administrator the name of the database you wish to access. Finally, find out whether you would
have only read permissions or more. It does not do to experiment on other people’s databases!

 con3<-mongoDbConnect("test", host = "127.0.0.1", port=27017)

 Should authentication be required, you need to run a second command. Type and run
 dbAuthenticate(con3, username, password) into your R session. A word of caution is needed here:
depending on the version of MongoDB being accessed, the version of Java installed on your local machine,
and the authentication protocol set up by the database administrator, this functionality may or may not
work. We realize that this is a vague statement. As of the writing of this book, authentication seems possible,
but there seem to be signs that this is not always true for all users.

CHAPTER 10 ■ READING BIG DATA(BASES)

193

 To add to the bad news, at this time, the function call dbShowCollections() does not work on the most
recent versions of MongoDB. If you are connecting to a mature database, chances are it may be using an
older version, and you may be able to see the collections. The RMongo package is approximately three years
old, and we have hopes for an update. For now, we simply provide the heartless wisdom that connecting to
databases and data munging, in general, is rarely easy. Fortunately, we know that our collections are stored
in restaurants and mock .

 Thus, we may proceed to access some data from our collections to confirm that we can, in fact, read
data from MongoDB into R. Notice that the function call dbGetQuery() takes at least three arguments. First,
it requires the connection, and second, it requires a text string that has collection information. The third
argument is the search terms used to access our data. In this first case, we do not define any search terms
and thus merely have the wrapper of {} for that formal. The last two arguments are optional. The 0 tells us
we are starting at the beginning of the list, and the 8 says we want the next eight entries only. In other words,
we are skipping no entries, and we are limiting the ones returned to eight. We have edited the final output for
readability and show just a portion of the View() in Figure 10-3 .

 output1 <- dbGetQuery(con3, 'restaurants' , "{}", 0,8)
 is.data.frame(output1)
 [1] TRUE
 names(output1)
 [1] "address" "restaurant_id" "name" "cuisine" "X_id" "borough" "grades"
 output1[1,]

address
 { "building" : "2206" , "coord" : [-74.1377286 , 40.6119572] , "street" : "Victory
Boulevard" , "zipcode" : "10314"}

 restaurant_id name cuisine X_id borough
 40356442 Kosher Island Jewish/Kosher 57e7f9a275bec64c417b9ab2 Staten Island

 grades
 [{ "date" : { "$date" : "2014-10-06T00:00:00.000Z"} , "grade" : "A" , "score" : 9} ,

 { "date" : { "$date" : "2014-05-20T00:00:00.000Z"} , "grade" : "A" , "score" : 12} ,

 Figure 10-3. Part of the results of the View(output1) command

CHAPTER 10 ■ READING BIG DATA(BASES)

194

 { "date" : { "$date" : "2013-04-04T00:00:00.000Z"} , "grade" : "A" , "score" : 12} ,

 { "date" : { "$date" : "2012-01-24T00:00:00.000Z"} , "grade" : "A" , "score" : 9}]
 View(output1)

 This data seems to contain information about locations, types of food, and names of restaurants.
Using that knowledge, we refine our search criteria to types of American cuisine. This is interesting because
what we do is remove the start and limit arguments, and adjust the query criteria. Here is where data
hygiene becomes so crucial. Naively, we attempted dbGetQuery(con3, 'restaurants' , '{"cuisine":
"American"}') at first. This did not work. Because we already had to rewrite this section because our former
favorite package for this database was removed from CRAN, this seemed somber. Many things were tried;
many things failed. In the end, a careful inspection of the data set in the raw downloaded JSON file revealed
that for whatever reason, there is a space at the end of American . Not the other food types, mind you, just
that one. If we had selected any other option, we would not have had this story to tell. The lesson learned
that we want to share is that this process takes time. Expect things to go not so well. Keep persevering, and
the data will come eventually.

 After correcting our query, we can get the results. Rather than simply view those results , we decided
to put the restaurant names into a word cloud, to see whether we could detect a pattern. Be sure to note
the space after our cuisine type! Also note that if you search for a Bakery , this is not necessary. We show the
 results of the word cloud in Figure 10-4 .

 output2 <- dbGetQuery(con3, 'restaurants' , '{"cuisine": "American "}')
 output2 <- as.data.table(output2)
 rNames <- Corpus(VectorSource(output2$name))
 wordcloud(rNames, max.words = 20)

 Our other, mock data came with an ID value already, and MongoDB gives each document or blob an id .
Thus, to avoid name conflicts, X_id was made by MongoDB. This is a rather important point; most SQL or
NoSQL databases tend to have some reserved names. While we did our best to ignorey that in this chapter,
if you intend to store data yourself on such a database rather than simply read it into R, we recommend
reading more on the topic and having healthy caution. We also formatted this output a bit to clean it up.

 Figure 10-4. A word cloud comprising the names of 1,000 American cuisine restaurants

CHAPTER 10 ■ READING BIG DATA(BASES)

195

 dbGetQuery(con3, 'mock', '{}', 0,1)

 gender
 Male

financial
 { "account1" : "DO56 T7LH 5884 0956 8784 3936 1833" ,

 "account2" : "197VPF5XPA13ngPwAmSiWsSMoUUPoWFQpa"}

 last_name X_id id ip_address first_name
 Lawson 57e7f92175bec64c417b96ca 1 255.61.75.176 Jesse

 diagnoses
 Manic affective disorder, recurrent episode, moderate

 email
 jlawson0@faux.com

 As you can see from our first bit of mock data , we seem to have patient information. We hasten to assure
you that this is all imaginary data. Of note in blobs is that while this first one did, in fact, have all known bits
of data, there is no reason for each item to be present. Thus, if only one financial account were available, we
would simply not include the second account. Unlike tabular data, which requires NA entries of some sort,
in semistructured data, we can simply not include elements that are unknown. These data are thus highly
flexible (and more efficient in storage, because unknowns are not included at all).

 The downside is that searching through such unstructured data can be fairly difficult without a strong
knowledge of the data set and naming conventions. All the same, we can find all documents in our collection
that have a specific feature in common. The function call dbGetQuery() can take many things in the third
formal. Here we have just passed it a list that finds only documents in which the gender is male . Again,
additional formals include skip, which skips the first x rows, and limit , which limits the results to an
upper cap.

 mfound<-mongo.find.all(con3, "test.ch10data", list(gender="Male"))

 For readers more familiar with MongoDB queries, the third formal can, in fact, contain BSON query
language directly. To learn more about queries in MongoDB, we recommend The Definitive Guide to
MongoDB, Third Edition by David Hows et al. (Apress, 2015), particularly Chapter 8 . For now, we take our
records indicating male gender and pull out the first names to do a bit of analysis on semistructured data.
The types of data stored in such blobs are often less suited to traditional statistical tests, and perhaps more
related to modern analytics. For simplicity’s sake, after extracting the male gender blobs, we access the first-
name component and store that in a corpus called fNames . From there, we build a word cloud on the first 20,
as shown in Figure 10-5 .

 output3 <- dbGetQuery(con3, 'mock', '{"gender": "Male"}')
 fNames <- Corpus(VectorSource(output3$first_name))
 wordcloud(fNames, max.words = 20)

http://dx.doi.org/10.1007/978-1-4842-2077-1_8

CHAPTER 10 ■ READING BIG DATA(BASES)

196

 Our final bit of code shuts down our connection to our database. The function call is dbDisconnect() ,
and we call that on our third connection, con3 . This call both disconnects and frees up client and server
resources:

 dbDisconnect(con3)

 Quite a bit more could be said about unstructured documents and the exciting possibilities of this type
of data. The ability to store and then access chaotic information becomes ever more routine. This is an area
where we anticipate much room for growth, as fuzzy matching allows machines to sort through quickly and
return near matches—perhaps a topic for other authors, and certainly a topic for another book. The last step
to take in this section is to close the command-prompt window that is still open.

 Summary
 This chapter gave you direct access to three databases with R. While many of the features are not designed
for curating data, R nevertheless provides a quick way to get a handle on big data. Such data sets seem to
be becoming ever more common, and while it may not be feasible for researchers to be familiar with every
database, that is not required. Using R, it is entirely possible to pull out a subset of data that contains all
items of interest and is small enough to fit into working memory. Skilled users of R, such as this book’s
readers, can prune the data in R itself further, and from there perform desired analytics. Table 10-1 provides
a summary of the key functions in this chapter.

 Figure 10-5. Word cloud of first names, where gender = male

CHAPTER 10 ■ READING BIG DATA(BASES)

197

 Table 10-1. Key Functions Described in This Chapter

 Function What It Does

 dbConnect() Uses the DBI package plus a driver to connect to a SQLite or PostgreSQL
database.

 dbDriver() Driver needed for PostgreSQL (and others).

 dbIsValid() Tests a SQLite connection for validity and returns a Boolean.

 dbWriteTable() Writes data from R to SQLite or PostgreSQL (you must be a user with write
privileges).

 dbListTables() Lists all tables in a SQLite database.

 dbListFields() Lists all fields (column names) in a SQLite database.

 dbSendQuery() Sends an SQL query to a SQLite or PostgreSQL database and executes the query
there.

 dbFetch() Fetches the results from the last sent query in SQLite or PostgreSQL.

 dbClearResult() Sets SQLite or PostgreSQL back to neutral for the next query.

 dbRemoveTable() Drops a table from SQLite or PostgreSQL (user must have privileges); does not
 VACUUM .

 dbDisconnect() Closes the DBI package connection to SQLite or PostgreSQL.

 dbUnloadDriver() Unloads the PostgreSQL (and other) drivers.

 mongoDbConnect() Creates a connection to a MongoDB server and a specific database on that
server.

 dbInsertDocument() Inserts a record into a MongoDB collection; takes second formal collection.

 dbGetQuery() Finds all blobs that match a query; this has several possibilities we only briefly
explored.

 dbDisconnect() Destroys a MongoDB connection.

199© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_11

 CHAPTER 11

 Getting a Cloud

 Depending on your needs and uses for R, it can be convenient to have a reasonable amount of memory
and processor capability. Often this power is necessary only on occasion, and it may not be cost-effective to
own the hardware. This is where hosting R on the cloud may be helpful. Cloud instances bring on-demand
resources that are readily scaled up or down as each situation requires. These days, there are several
tolerable outfits that provide such services at very reasonable prices. The challenge we face is threefold, and
we walk through those steps over the next three chapters. We need to get a cloud, we need to administer our
cloud’s operating system, and we need to do some fun things with R.

 This chapter focuses on getting a cloud. To do that, we need to choose a provider, start up a compute
instance in a location we will not ever physically access, and successfully connect to our instance. We are
going to make some assumptions along the way, and, given the quickly evolving nature of technology, this
may well be obsolete even as we write.

 Our first claim is that you, our gentle readers, have access to a Windows-based computer and are most
familiar with a Windows environment . We do not suppose you have administrative privileges on your local
machine, although it requires a network connection. You also need access to a credit card. Although your
work in this chapter doesn’t incur a cost , a credit card is required. Finally, and apologies for those for whom
this is not true, we are going to assume that you have no prior knowledge of clouds, networks, or Unix-
flavored operating systems.

 Disclaimers
 There are a few disclaimers we should make at this point. We are in no way endorsing Amazon Web Services
(Setting Up with Amazon AWS EC2, 2016) just as we are in no way endorsing Windows. Nevertheless, AWS is
convenient, popular, and, as of this writing, offers a free tier of service for 12 months (http://aws.amazon.
com/free/). Please be careful with data you place in the cloud; without proper attention to security, it might
be easy for that information to find its way to the wrong minds. While we give some brief suggestions on
digital safety, these are not enough. The topic of Internet security can and does fill several books; if you have
data that should not be faxed or e-mailed, there is much more to be learned before processing that data on a
cloud.

 With luck, we have not scared you away from this convenient and powerful method of bringing just the
right resources to your research and data. We also recommend reading this chapter and the one following
first, and dedicating an afternoon or more to the process if you are, like us, cloud novices. We should
also mention that we use Google’s Chrome browser; your choice of browser may change the screenshots
shown in this chapter. Indeed, AWS itself has semiregular layout changes as new features are added or old
functionalities merge. Nevertheless, what you see should look quite close to what we show .

http://aws.amazon.com/free/
http://aws.amazon.com/free/

CHAPTER 11 ■ GETTING A CLOUD

200

 Starting Amazon Web Services
 Very few people are polymaths, and living in the cloud can be a bit difficult conceptually. In our experience,
being good at mathematical programming does not instantly translate into cloud expertise. Fortunately, the
system is fairly well designed to start up quickly after some legwork is done. What you want is access to an
 Elastic Compute Cloud (EC2) instance. EC2 is a virtual computer that can be customized to have whatever
processing power and memory combination you may wish. That is an overly bold statement. However, at
the time of this writing, anywhere from 1 processor at 2.4 GHz and 0.5 GiB of memory, to 40 processors at 2.4
GHz and 160 GiB of memory, can constitute a single computer instance.

 The first step we take is visiting the Amazon Web Services site (http://aws.amazon.com/free/) and
getting a new account, as shown in Figure 11-1 . Follow the steps to create a new account, being sure to
generate a secure password. This step requires both a credit card and a phone number. Again, we use the
Google Chrome browser, and your browser’s view may differ from ours on occasion.

 The account you have just created is your top-level account. The recommendation is to create a
subaccount that does not have the full rights this one does. In fact, Amazon goes to some pains to convince
you to use identity and access management (IAM) to create a secondary account. If you are just a single
user who never needs someone else to access this, a secondary account is still beneficial. If you are ever
going to have other users, it is a no-brainer decision. From adding a graduate student, to adding a colleague,
to adding employees or consultants, it can be helpful to not give away the master key to the castle. Do not
be shocked by the plethora of options available; simply scroll down to the Security and Identity portion of
AWS and select IAMS from near the end of the middle column, as shown in Figure 11-2 . Depending on your
browser, IAM may have a key icon or may have no icon at all. There are enough options present that pressing
Ctrl+F and then typing Identity & Access Management into the search box may help highlight the text for
IAMS. Do not be shy about searching, clicking, and exploring to find it. You can’t hurt anything, and Amazon
updates the interface on occasion .

 Figure 11-1. Creating a new AWS account

http://aws.amazon.com/free/

CHAPTER 11 ■ GETTING A CLOUD

201

 Inside IAMS , you need to create both a new group and your first user. Groups are convenient because
they allow you to create multiple users who have only certain privileges. On the left side of the screen,
select the Groups option and create a new group. We called ours AdvancedR , although yours might be
more sensibly named CloudAdmin or something similar. When asked which policy, we recommend
 AmazonEC2FullAccess , as shown in Figure 11-3 .

 Next, we create a user . While following directions on the establishment of the user, we recommend
using your first name so that you see that account as you and using a different password from your AWS
account. Start by selecting the Users tab on the left side. Once there, create your username. Also, this is the
stage where, if you are going to have a consultant help you build your cloud, you can create a second user
account for them. Be sure the settings are as in Figure 11-4 , including deselecting access-key generation .

 Figure 11-2. The AWS management console with highlighted boxes for the three parts we use in this chapter

 Figure 11-3. IAMS group policy selection—your view may differ

CHAPTER 11 ■ GETTING A CLOUD

202

 After creating your user(s), select your username(s) by clicking the check box (not clicking the
username) and the User Actions tab. From there, add them to your new group. Also from there, select your
user(s). From the User Actions drop-down list, select Manage Passwords and then assign a custom password
or autogenerate a password. See Figure 11-5 .

 When you created your account initially, AWS gave you an account identification number. To see this
number and link again, click the IAM Dashboard at the top left, as shown in Figure 11-5 . The Dashboard has
an IAM users sign-in link as well as an option to customize that to a name. Sign out of AWS. Go to your AWS
address that follows this pattern: https://YOUR_ID_HERE.signin.aws.amazon.com/console ; sign in using
your new username and password.

 Taking a look at Figure 11-2 again, notice in the top-left corner the link for EC2. Click this link; at the
top-right, you can select a region such as Oregon or Sydney. Different regions tend to have variations in cost,
and of course, the closer you are geographically to a region, the more likely network upload and download
speeds are efficient. As is often the case, there are trade-offs to consider; we recommend selecting the region
nearest to you. One warning is that after you select a region, some of what we do is regionally specific. In
particular, key pairs (used to access your cloud server) tie to particular regions.

 Once you have your region selected, it is time to create a key pair. On the left side is a menu list, and
under Network & Security is the Key Pairs link. Select that link, and then click the Create Key Pair button.
Give your key pair a name. If you are likely to need cloud instances in different regions, Amazon’s advice to

 Figure 11-4. Creating a user on the AWS IAMS

 Figure 11-5. User Actions tab and drop-down box

CHAPTER 11 ■ GETTING A CLOUD

203

add your region name to the key pair name is sound. Your browser should automatically download the key
pair file. Remember where this is saved and keep it safe; this is your only chance to download this file. We
use it later in the next section, but for now, we move on to creating a virtual private cloud (VPC). Return to
the home screen of Figure 11-2 .

 One last look at Figure 11-2 shows that in the first column, near the end, under Networking, is VPC.
There are several options here; we go with the simplest, one with a single public subnet. Select the Start VPC
Wizard and give your VPC a name such as AdvancedR . Stick with the default options and then select Create
VPC. As you can see from these options, if you were interested in creating a more advanced structure, that is
readily done.

 Your cloud is not safe without a firewall, which is called a security group . We are very cautious with our
security group. On the left in the VPC Dashboard, notice the Security tab and the Security Groups link. Click
that link and then click the Create Security Group button. Give the group a name tag and a name such as
AdvancedR, as well as a description. Be sure to select your VPC from that-drop down list at the end and then
click the Yes, Create button.

 Now, select your AdvancedR security group and notice the options that are at the end of your browser
screen, shown in Figure 11-6 . What we are about to do is configure which IP addresses are allowed to visit
your future cloud instance. This is, of course, not ironclad; however, IP spoofing is way beyond the scope of
this chapter. Certainly, this is a good first step, ensuring that you are the only one who knows your server is
there. Be sure to select the Inbound Rules tab, select Edit, and add SSH (22) with TCP (6) protocol; you want
to put your IP address for the source. Amazon has links to an IP detector, but a simple Google search of
 ip address returns your public IP address as the top hit. It should be in valid Classless Inter-Domain Routing
(CIDR) notation, which means that if your address is 72.18.154.27 , you want to type in 72.18.154.27/32 for
Source. While we are here, we create rules for ports 80, 443, and 8787—which are HTTP, HTTPS, Shiny, and
RStudio Server, respectively. However, we also lock these to just your IP address. This likely prevents others
from accessing your server until you are ready. Go ahead and leave the Outbound Rules to allow all traffic to
destination 0.0.0.0/0 .

 If your IP address changes often, you may need to relax your rules. We recommend doing so as
cautiously as possible, and only after you are through with the basic operating system and safety updates
we discuss in Chapter 21 . Also notice that as of now, if you were to host a web server on your cloud instance,
that website would be visible only from your local computer or network. Later, after we have installed a site,
we’ll go back to this screen and make some edits to allow certain parts of our server to be visible to a wider
audience.

 While a full lesson on CIDR is beyond the scope of this book, a little knowledge makes sense here.
The Internet does not use word addresses such as www.elkhartgroup.com . Rather, it uses a series of 32-bit
numbers; try typing 72.18.154.27 into your web browser. Computers use binary numbers rather than

 Figure 11-6. Security group’s inbound rules with CIDR notation

http://dx.doi.org/10.1007/978-1-4842-2077-1_21
http://www.elkhartgroup.com/

CHAPTER 11 ■ GETTING A CLOUD

204

base 10; they see our website as 01001000.00010010.10011010.00011011 . That unique address connects
us to a particular machine. The /32 tells AWS that only that machine is allowed; all 32 bits are fixed.
Contrastingly, for outbound rules, we need our instance to be able to browse the Web at will. Thus, we use /0
to let it know that none of the bits is fixed. If you are in a corporate or university environment and want some
coworkers to be able to access your instance, talk to your IT department to see what the size of your address
space is. If we found our IP addresses changed frequently, we might try 72.18.154.0/24 , which would allow
the range of addresses 72.18.154.0-255 (and would nicely include the .27).

 We turn our attention now to creating an EC2 instance. Select the VPC Dashboard link at the top left,
and then click the Launch EC2 Instances button. Select the Ubuntu server that is free tier eligible, as shown
in Figure 11-7 .

 Next, select the t2.micro type. On the next screen, be sure to select your VPC as the Network setting,
and set the Auto-assign Public IP to Enable. You always have the option to Review and Launch or to go
through the entire start wizard by selecting Next. Keep selecting Next, and, in the following steps, there is no
need to change the storage settings for Root volume; as of this writing, up to 30 GiB are free. For tags, a good
name is AdvancedR again (admittedly, the name is getting a shade overused, yet it continues to work). Also,
for the security group, be sure to select an existing security group as well as your AdvancedR group before
clicking Review and Launch. From there, launch!

 Your last step is to select your key pair. Remember, we already downloaded this earlier. Be sure you have
that file, and be sure to have the settings of choosing that existing key pair and selecting your AdvancedR key
pair. Next, select the acknowledgment check box. Finally, click the Launch Instances button, as in Figure 11-8 .

 From here you may view your instances , which take you to the EC2 dashboard. It does take some time
for the instance to spin up, so, while we are waiting, we’ll go ahead and meet you in the next section.

 Figure 11-8. Instance key pair settings and final launch

 Figure 11-7. Ubuntu server selection for starting your first EC2 instance

CHAPTER 11 ■ GETTING A CLOUD

205

 Accessing Your Instance’s Command Line
 You have an instance on AWS , and it is starting and waiting for you to connect to it. Before that can happen,
there are some steps to take on Windows.

 You need to download both PuTTY (Tatham, 2016) and PuTTYgen, and you want to download the
installer for Windows for all files except PuTTYtel from www.chiark.greenend.org.uk/~sgtatham/putty/
download.html . Once that is done, run the file to install. If your local machine does not grant you the
privileges to install, you may download each of these one at a time.

 It is the PuTTYgen we want as well as the *.pem file we downloaded as our key pair file earlier. You want
the settings as in Figure 11-9 . In particular, as you are loading your existing private-key file, you want to
change to All Files (*.*) and open your key pair file. You also want SSH-2 RSA as the parameter setting. Once
you click to open your key pair file, you see some information appear in the generator. It is safe to ignore
all of it and click Save Private Key. PuTTYgen asks if you are willing to save without a passphrase, and after
agreeing to that, you may now save the file as a *.ppk file. Keep this file safe! It is your access pass to your
server instance.

 We may now connect to our instance. Going back to the EC2 Dashboard, the instance should be
running, and there is some information we need from Figure 11-10 . The Public IP address is necessary, and
of course, the fact that it is running. Be sure to copy the address for your instance.

 Click the Actions drop-down menu, and under Instance Settings go to Get System Log. At the end of the
log file, there should be the server’s fingerprint, as shown in Figure 11-11 . The first time we connect to our
server, we want to check that we successfully connected to the server we were expecting rather than a fake.
For safety, remember this or keep that window open and be ready to make a comparison.

 Figure 11-9. PuTTYgen key generator

 Figure 11-10. EC2 Dashboard view of our instance with Public IP address and the Actions drop-down menu

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

CHAPTER 11 ■ GETTING A CLOUD

206

 Now we finally connect to our server for the first time. Go ahead and start PuTTY . On the navigation
menu on the left, choose the SSH option, then the Auth option, and browse for your *.ppk key, as pictured
in Figure 11-12 .

 Go back to Session in the navigation menu on the left, and enter ubuntu@54.201.117.64 or more
generally ubuntu@YOUR_EC2_PublicIP_HERE . Make sure that the Port is set to 22 and that the
Connection type is SSH. We recommend saving your session by writing AdvancedR into the Saved Sessions
text and clicking Save before proceeding. This makes it easy to access your t2.micro instance in the future.
Go ahead and open the connection, and PuTTY gives you a security alert, as in Figure 11-13 ; you should
compare this favorably to Figure 11-10 before proceeding by selecting Yes. If these two fingerprints do not
match, something not good at all is probably afoot.

 Figure 11-11. Server fingerprint (RSA)

 Figure 11-12. PuTTY configuration for *.ppk key file

 Figure 11-13. PuTTY security alert for server fingerprint

CHAPTER 11 ■ GETTING A CLOUD

207

 You are now connected to your cloud instance, and you are in the Ubuntu command line ! As shown in
Figure 11-14 , you have access to the command line and are now ready to move on to using your server as
shown in Chapter 21 if you wish.

 We wait just a bit before we get to using our server. While we need to take some more steps to get R
functional on the cloud, we take on one more section here to allow ourselves the luxury of uploading files to
our cloud. There is one command we should teach you before we upload files. It is the exit command, and
it is simply the word exit followed by Enter/return. This closes your PuTTY session.

 ubuntu@ip-10-0-0-244:~$ exit

 Uploading Files to Your Instance
 We use WinSCP (Prikryl, 2007) to upload files to the cloud. This program may be downloaded from
 https://winscp.net/eng/download.php (we used the Portable Executables link). We unzipped the files
to our desktop and clicked the WinSCP.exe files to open our initial window, which we filled in as shown in
Figure 11-15 . Specifically, we entered our IP address for the hostname, ensured we were set up to connect to
port 22, and entered ubuntu as the username.

 Figure 11-14. Seeing the command line through PuTTY’s eyes

http://dx.doi.org/10.1007/978-1-4842-2077-1_21
https://winscp.net/eng/download.php

CHAPTER 11 ■ GETTING A CLOUD

208

 For the password, select Advanced, and in the new window that opens, in the SSH tab and under
Authentication, navigate to the same *.ppk file you used for PuTTY . We show the results in Figure 11-16 .
After clicking OK and then Save, you are ready to log in.

 When you saved, you had the option to create a desktop shortcut, which can be quite convenient if you
regularly have files to transfer. At your first login, you see your server’s key fingerprint. Again, just as with
 PuTTY , be sure to check that against the fingerprint in Figure 11-10 . We go ahead and upload that old Chapter 2
file called ch02_link.txt to our /home/ubuntu folder on our server. To do this, on the left side navigate to
where you are storing the files you downloaded from our online code packet. Then, drag and drop that text
file to the right-hand side. Once it has uploaded, we go ahead and disconnect from the session and close out
of the program. Remember the file name, though; we use that file in the next chapter.

 Figure 11-16. WinSCP Advanced key file screen

 Figure 11-15. WinSCP start screen with correct settings

http://dx.doi.org/10.1007/978-1-4842-2077-1_2

CHAPTER 11 ■ GETTING A CLOUD

209

 Final Thoughts
 Both PuTTY and WinSCP have versions that work without installation. Thus, even on a computer on which you
do not have administrative rights, you can still access your instance and transfer files back and forth. This
can be helpful in the corporate or academic environment, where technology services departments often rule
local computer rights with an abundance of caution.

 Speaking of caution, you should be cautious with your cloud server. While we build things in a
reasonably secure fashion, this is not entirely safe. It is likely somewhat safer than e-mail . Often, research
data may have either economic or privacy value. In that case, you undoubtedly want to consider some
Internet security texts. Proceed at your risk; this is not a book about securing your cloud!

211© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_12

 CHAPTER 12

 Cloud Ubuntu for Windows Users

 As you saw in the last chapter, using the cloud does not always allow for using Windows. This is not entirely
true; Windows can certainly be utilized in the cloud. However, this tends to approximately double the cost in
high-performance environments, making it impractical for some occasions. Additionally, it is not impossible
to use the Ubuntu environment, and many of the same skills advanced R users have translate readily. All in
all, using Ubuntu as your server instance operating system is not difficult with a little guidance to get started.

 Our goals for this chapter include understanding the basic Ubuntu command line, updating and
installing any operating system or packages required, installing both R and RStudio Server, and using R on
both the command line and via the server. In particular, you’ll learn how to get an R process running on
the server regardless of whether it’s connected to that server. Thus, we can use PuTTY to check in as needed
(along with AWS warning signals) to detect when a process has finished.

 Common Commands
 Several of the commands we use in Ubuntu have counterparts in R. Others are more operating system
specific rather than program specific. Many of the techniques we use to manage files in R can be done faster
and more naturally via the command line. In this section, we explore the usual sorts of commands that are
helpful to know and understand.

 The first useful command is clear , a counterpart to Ctrl+L in R. This clears your viewing screen and
allows you to easily see current commands and their results. We pair this command with ls , which is the
list directory comments command. Right away the file we uploaded in the last chapter ch02_link.txt
shows up.

 clear
 ls
 ch02_link.txt

 Now that we can see which files are in our directory, let’s get a little bit more information about those
files. The ls command can be modified with several letters. The -l modification is the long format, and it
gives information about the file rights (-rw-rw-r--), about the user and the user group (both ubuntu , as
we have a simple user set up currently), file size, as well as the date modified (notice this preserved our
file’s original modified date from before we uploaded it). Of particular note is the usage of file rights that
relate to file security and safety. In Unix systems such as Ubuntu, all objects come with rights. The pattern
is -ooogggppp- , where o refers to file owner, g relates to the group membership of the owner, and p is for
public. Furthermore, each level of user can either Read, Write, or eXecute a particular object. This becomes
quite important later, when we create some public-facing utilities that are accessible from the Web. It is
important that we check the permissions, to ensure that the public can read files, yet not write or modify
them. In our code that follows, both the user ubuntu as well as any future members of the group ubuntu

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

212

are allowed both read and write access to our text file. The general public, if this directory were ever made
public, would be able to only read our file.

 ls -l
 total 4
 -rw-rw-r-- 1 ubuntu ubuntu 14 Feb 14 05:16 ch02_link.txtCloud Ubuntu, Windows userscommands

 We said the word directory , so we may as well see where we live in our system. Folders, or directories,
also come with the same access permissions (they are objects), and we can create new directories and
change directories. To present the working directory, we use pwd; to make a directory, we use mkdir ; and to
change the directory, we use cd . We show these commands and their results in the code that follows. Note
that the .. command returns us one level up in the directory structure, back to our original user directory.

 pwd
 /home/ubuntu

 mkdir MyFolder
 cd MyFolder
 ubuntu@ip-10-0-0-244:~/MyFolder$ pwd
 /home/ubuntu/MyFolder

 ubuntu@ip-10-0-0-244:~/MyFolder$ cd ..
 ubuntu@ip-10-0-0-244:~$

 Having discussed making and navigating directories, we turn our attention to removing files. To remove
a file, we use the command rm . We go ahead and do that to our text file that we uploaded; there was never
any need for it other than as an example file. We show the removal in the following code, along with a full
view of our user folder. Showing our list command with the full view allows us to see that our text file has
been removed in the before and after views.

 ls -hl
 total 8.0K
 -rw-rw-r-- 1 ubuntu ubuntu 14 Mar 16 02:29 ch02_link.txt
 drwxrwxr-x 2 ubuntu ubuntu 4.0K Mar 16 14:09 MyFolder

 rm ch02_link.txt
 ls -hal
 total 4.0K
 drwxrwxr-x 2 ubuntu ubuntu 4.0K Mar 16 14:09 MyFolder

 The values of these access permissions may be modified. The command chmod takes three number
inputs after it in the pattern chmod ogp . We create a file and give three levels of access to the user, to the
user’s group, and to the public. Execute permission is given by 1 , write is provided by 2 , and read is given by
 4 . Additionally, numbers may be added to give more permission. See the example that follows: 7 = 1 + 2 +
4 gives the user full access, and 6 = 2 + 4 gives the group read and write access only. Finally, the public has
only write access.

 touch permissionsFile
 ls -hl
 total 4.0K
 drwxrwxr-x 2 ubuntu ubuntu 4.0K Mar 16 14:09 MyFolder

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

213

 -rw-rw-r-- 1 ubuntu ubuntu 0 Mar 16 15:38 permissionsFile
 chmod 762 permissionsFile
 ls -hl
 total 4.0K
 drwxrwxr-x 2 ubuntu ubuntu 4.0K Mar 16 14:09 MyFolder
 -rwxrw--w- 1 ubuntu ubuntu 0 Mar 16 15:38 permissionsFile

 We end this section discussing two terminal commands, sudo and whoami . In the next section, we
are going to start updating and maintaining our operating system. This requires root-level privileges. For
security, our Ubuntu instance does not have a permanent root user, exactly. Instead, when we need elevated
privileges, we give them to our ubuntu user by prefacing a command with sudo . This command stands for
 superuser do and is always followed by another command. The system temporarily escalates privileges for
the command that follows.

 whoami
 ubuntu

 sudo whoami
 root

 Now that we have the ability to run various commands as root , we turn to the next section, where we
make sure that our cloud instance is up-to-date with the latest patches and packages.

 Superuser and Security
 Just as in any operating system and software suite, often updates should occur. Some may add new or
improved functionality, while others may be more security related. While comprehensive cloud and server
security is far beyond the scope of this text, a few steps make sense to do directly. Looking at Figure 12-1 , it is
clear we have some work to do.

 Figure 12-1. The first screen shows 33 security updates

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

214

 The update process involves three steps. We first run sudo apt-get update with the following
abbreviated code output:

 sudo apt-get update

 Fetched 3,451 kB in 3s (1,097 kB/s)
 Reading package lists... Done

 Next, we upgrade our current files so that we are ready to install new ones if we so desire. This takes
some time, as we have quite a few to download! Again, we abbreviate some of the output. Of interest is to
note that we did agree to continue when asked.

 sudo apt-get upgrade
 Reading package lists... Done
 Building dependency tree
 Reading state information... DoneCloud Ubuntu, Windows userssuperuser and security
 Calculating upgrade... Done

 62 upgraded, 0 newly installed, 0 to remove and 4 not upgraded.
 Need to get 23.5 MB of archives.
 After this operation, 209 kB of additional disk space will be used.
 Do you want to continue? [Y/n] Y
done.

 Now that our files are upgraded, we can install our new packages. We run the command sudo apt-
get dist-upgrade at the command line, agreeing to the prompts when asked. While it is not necessarily
required, we also reboot the system. This exits us from our session, and we have to re-access our cloud via
 PuTTY . We show both the abbreviated code to perform these commands as well as the Figure 12-2 screenshot
showing no more updates possible.

 sudo apt-get dist-upgrade
 ...
 sudo reboot
 ubuntu@ip-10-0-0-244:~$
 Broadcast message from ubuntu@ip-10-0-0-244
 (/dev/pts/0) at 16:40 ...

 The system is going down for reboot NOW!

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

215

 Depending on when you read this, AWS may or may not have updated the version of Ubuntu from
version 14.04 to 16.04. It is not required to upgrade. In fact, it is usually more convenient to wait until
Amazon takes care of such things. However, should you wish to run on the latest version, run the command
 do-release-upgrade . Now, you are warned that upgrading via remote access is not advised and that
additional access ssh scripts are being run to ports that are not likely open to the public. In particular, our
security settings would prevent access to this backup access port. Since you have just created this instance,
and can readily terminate from the AWS website, there is no need for such a backup access route. Hence, we
simply ran the update, agreed to all the options when asked, and restarted.

 If you do choose to upgrade the distribution, be sure to run the sudo update and upgrade the preceding
commands one last time.

 Now that our instance, or at least our packages on our instance, are updated, and we have a better sense
of how to navigate in the Ubuntu file structure, we may turn our attention to installing R on our cloud server.

 Installing and Using R
 Our main goal so far in the last chapter and this one is to prepare a server to host R for us. We are very close
to being there and have just a few more steps to perform. Our first step is to modify our package sources list
so that Ubuntu knows where to find R:

 cd /etc/apt/
 ubuntu@ip-10-0-0-244:/etc/apt$ ls
 apt.conf.d sources.list trusted.gpg
 preferences.d sources.list.d trusted.gpg.d
 sudo nano sources.list

 Now that the nano text editor is open, arrow down to the end of the file and add the following line of
code. Then press Ctrl+O to save; you see your filename and hit Enter/Return. From there, press Ctrl+X to exit
to the command line. We should note that trusty and xenial are the version 14 and 16 names for Ubuntu,
so in one go we ensure that either one will work.

 Figure 12-2. Ubuntu startup screen showing no needed updates or upgrades

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

216

 #Add R File server
 deb http://cran.rstudio.com/bin/linux/ubuntu trusty/

 deb http://cran.rstudio.com/bin/linux/ubuntu xenial/

 We should mention that we are using RStudio’s kindly hosted mirror. Now, we move back into our home
directory, and we also add the signature key E084DAB9 to our package utility. This allows us to confirm that
any downloads we make are likely safe to download and install.

 ubuntu@ip-10-0-0-244:/etc/apt$ cd /home/ubuntu
 sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E084DAB9

 Executing: gpg --ignore-time-conflict --no-options --no-default-keyring --homedir /tmp/
tmp.jYANiNzPMT --no-auto-check-trustdb --trust-model always --keyring /etc/apt/trusted.gpg
--primary-keyring /etc/apt/trusted.gpg --keyserver keyserver.ubuntu.com --recv-keys E084DAB9
 gpg: requesting key E084DAB9 from hkp server keyserver.ubuntu.com
 gpg: key E084DAB9: public key "Michael Rutter <marutter@gmail.com>" imported
 gpg: Total number processed: 1
 gpg: imported: 1 (RSA: 1)

 From here, installing R is simple. In fact, it simply takes two commands. We have to update the packages
list and then we need to install base R. In the setup process, you need to agree to some options once or twice.

 sudo apt-get update
 sudo apt-get install r-base

 Now that we have installed R on our cloud, we can run R and see what happens. We use the command
 R to start our program. We run one of our scripts from Chapter 1 to see what happens. The following code
shows both the start screen of R as well as the familiar results of running our code:

 R

 R version 3.3.1 (2016-06-21) -- "Bug in Your Hair"
 Copyright (C) 2016 The R Foundation for Statistical Computing
 Platform: x86_64-pc-linux-gnu (64-bit)

 R is free software and comes with ABSOLUTELY NO WARRANTY.
 You are welcome to redistribute it under certain conditions.
 Type 'license()' or 'licence()' for distribution details.

 Natural language support but running in an English locale

 R is a collaborative project with many contributors.
 Type 'contributors()' for more information and
 'citation()' on how to cite R or R packages in publications.

 Type 'demo()' for some demos, 'help()' for on-line help, or
 'help.start()' for an HTML browser interface to help.
 Type 'q()' to quit R.

http://dx.doi.org/10.1007/978-1-4842-2077-1_1

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

217

 x <- c("a", "b", "c")
 x[1]
 [1] "a"
 is.vector(x)
 [1] TRUE
 is.vector(x[1])
 [1] TRUE
 is.character(x[1])
 [1] TRUE

 Inside R, all the commands we regularly use work as expected. We can install packages or run code.
However, we would like to improve three aspects. The first is that we are running R as a user, namely, the
user ubuntu . It may well be that we wish other users of our server to be able to use R without needing to
have sudo or root privileges. In that case, it may be helpful to install packages not just for our user, but for
the entire machine. Second, running code from files that we have created on our local machines would
be convenient. Third, our connection to our server lives at the mercy of the Internet. If there is a glitch, we
would lose our work. Thus, it is also convenient to get to the point where we can set our R commands to run
from the command line so that even if we disconnect, our server is still calculating away.

 To install packages for just a particular user, you use the install.packages("") function inside the R
console as usual. However, to install a package for any user (including future users you may invite to your
cloud), use the following command. What you need to do is pass a command from the command line to R.
We also need to run this as root , and we need root privileges to do so, which sudo and su - provide. The -c
option executes the code directly following it. Finally, we call R and set it to install the package.

 sudo su - -c "R -e \"install.packages('pscore', repos = 'http://cran.rstudio.com/')\""

 To run code already created, we use the command R CMD BATCH . It can help to write the commands we
want to use in RStudio on our local computer, use WinSCP to upload that *.R file to our instance, and then
run the file as follows:

 R CMD BATCH chapter21.R
 ls
 chapter21.R chapter21.Rout MyFolder permissionsFile

 While the file chapter21.R may be downloaded from our code repository with Apress, it is simply the
snippet of loop code from a preceding chapter that cubes several numbers. We can see the output in the file
 chapter21.Rout and we can view it by using the nano editor we used earlier in this chapter. Remember that
Ctrl+X exits from that editor. We show both the command to open the file as well as an abbreviated output to
demonstrate that the code ran successfully:

 nano chapter21.Rout

 > head(xCube)
 [1] 1 8 27 64 125 216
 > forTime
 user system elapsed
 11.468 1.013 12.487

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

218

 We may now run R commands on our instance at will. This includes the parallel-processing techniques
you learned in earlier chapters. Provided our code is built not to require user input, it may be readily left to
run, provided you have a solid connection. We do this with the screen command. Essentially, this opens
another terminal from which we can detach. This allows that terminal to keep running even if our PuTTY
terminal session ends (either because we wish it to end or because network vagrancies force our hand). We
can see when our process is done running as well. The command we run after our screen command with
modifiers is familiar; should you wish more details about screen , the command man screen gives plenty of
information.

 screen -A -d -m R CMD BATCH chapter21.R
 screen -ls
 There is a screen on:
 1525..ip-10-0-0-244 (03/17/2016 04:43:40 AM) (Detached)
 1 Socket in /var/run/screen/S-ubuntu.

 screen -ls
 No Sockets found in /var/run/screen/S-ubuntu.

 As you can see from the second listing, no more processes are running. Thus it is safe to access our
output file to see the results. For a process that took longer to run, rather than enter screen -ls , we might
type exit and go rest. For processes that run on pricier instances, it is possible to set up AWS to e-mail an
alert when processor use drops below a certain threshold.

 We now have installed R on our server instance, can set up packages that are accessible to all users,
and can run files without maintaining a steady network connection. If we design code on one machine that
seems to take too long to run, we can upload those files to a more powerful machine and run it. However, we
are still using the command line. In the next section, we install RStudio on our instance, so that we can use
the familiar look and feel of RStudio while still gaining the power of a cloud instance.

 Installing and Using RStudio Server
 While we have shown that it is relatively straightforward to upload a file that was running too slowly on a
local machine to our cloud instance, the format does leave something to be desired. RStudio (RStudio Team,
2015) is a wonderful, intuitive environment in which to code R, and we can get that same graphic interface.
What is more, this can be accessible from a browser rather than from the command line. This can be quite
convenient, as just about any Internet-capable device with a browser can access your instance and use R.

 The risk, of course, is some security concerns. RStudio Server is protected by only a password rather
than a key file. Recall from Chapter 2 how many system administrative tasks, such as file moving and
deletion, may be done by R. Access to RStudio Server may enable a dedicated attacker more access to
your system than desirable. We, of course, continue to keep our security group on AWS set up to allow
connections only from our local IP address, although this rather curtails the promise of use of R from any
device. We remind you again that data security is worth a closer look than we give here. We turn to our cloud
and installation.

 Since we have already installed R, we need only a little bit of work after accessing our command line
again via PuTTY . To ensure proper package authentication, it helps to update, just as when we were installing
system and security updates. As a side note, while installations often require a yes or no input, if asked to
install packages without verification, there is likely a better way that involves verification. After each of the
following apt-get commands, much text prints to your console, and you may be prompted to agree to some
disk space usage.

http://dx.doi.org/10.1007/978-1-4842-2077-1_2

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

219

 sudo apt-get update
 ...
 sudo apt-get install gdebi-core
 ...

 Once you have the ability to install the server, you need to download it from the Web. Run the following
command, and expect to download a file about 51 M in size. We show the code and some of the output here;
be sure to note the saved name of the file as well as a full download being complete:

 wget https://download2.rstudio.org/rstudio-server-0.99.903-amd64.deb
 ...
 2016-10-02 15:09:44 (10.5 MB/s) - 'rstudio-server-0.99.903-amd64.deb' saved
[53985492/53985492]

 Now we install the server. This should require one yes agreement during the installation process:

 sudo gdebi rstudio-server-0.99.903-amd64.deb
 Reading package lists... Done
 Building dependency tree
 Reading state information... Done
 Building data structures... Done
 Building data structures... Done
 ...
 Do you want to install the software package? [y/N]:y
 Selecting previously unselected package rstudio-server.
 (Reading database ... 86981 files and directories currently installed.)
 Preparing to unpack rstudio-server-0.99.892-amd64.deb ...
 Unpacking rstudio-server (0.99.892) ...
 Setting up rstudio-server (0.99.892) ...
 groupadd: group 'rstudio-server' already exists
 rsession: no process found
 rstudio-server start/running, process 2445

 To confirm that the server is running, run the verification commands as follows:

 sudo rstudio-server verify-installation
 rstudio-server stop/waiting
 rstudio-server start/running, process 2605Cloud Ubuntu, Windows usersRStudio Server

 Now that we know our server is running, we want more confirmation that it is working. Remember
in the last chapter that we set our security group to allow access to RStudio Server on port 8787. Open a
web browser to your server’s web address at the needed port, namely, 54.201.117.64:8787 (or for you,
 YOUR_INSTANCE_IP_HERE:8787). As you can see in Figure 12-3 , it does indeed visually appear that the server
is working.

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

220

 We need a username and password to gain further access. The user is also a user of your Ubuntu server
and has a password. It is wise to have a password logon to the server disabled by default, which our instance
does in fact have. The command we use to create a new user is adduser, and this runs the script shown for
us. We need to type these commands back in our command line. It is not necessary to fill in information for
your new user beyond the username and password. You can simply press Enter/Return to move to the next
line. Also, note that the password field has suppressed keystrokes so that nothing populates there.

 sudo adduser advancedr
 Adding user `advancedr' ...
 Adding new group `advancedr' (1001) ...
 Adding new user `advancedr' (1001) with group `advancedr' ...
 Creating home directory `/home/advancedr' ...
 Copying files from `/etc/skel' ...
 Enter new UNIX password:
 Retype new UNIX password:
 passwd: password updated successfully
 Changing the user information for advancedr
 Enter the new value, or press ENTER for the default
 Full Name []: Advanced R
 Room Number []: RStudio Server
 Work Phone []:
 Home Phone []:
 Other []:
 Is the information correct? [Y/n] Y

 Going back to our browser, we use our new username and password to access RStudio Server. Enter the
username and password just created, as in Figure 12-4 , and you should be into RStudio on the Web.

 Figure 12-3. RStudio Server

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

221

 This should feel just like the RStudio we have been using all along, as shown in Figure 12-5 .

 RStudio now exists on your cloud instance. While this is helpful for a more intuitive way to work with R,
the ability to more natively use and see graphical output is something we, the authors, would like to stress.
Such output may be readily saved to *.pdf files and downloaded via WinSCP from the /home/advancedr
folder. More generally, /home/YOUR_USERNAME accesses a particular RStudio user folder.

 This completes our setup of RStudio Server. More could be done, but this is enough for starters. You
now have access to a potentially powerful system, and indeed are free to have several duplicates of such
systems if you wish. On AWS, it is possible to set up warnings that alert you via e-mail when your instance(s)
drop below a certain CPU utilization rate. Thus, an R process may be configured to run, and instance
space need not be paid for much beyond actual use time. Our final suggestion is to spend some time with
the RStudio Server documentation if you intend to use it more than occasionally. There are some useful
customizations, convenient features, and good-to-know caveats. We include the link in the reference section
of this chapter.

 Figure 12-4. Sign into RStudio

 Figure 12-5. RStudio on your cloud

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

222

 Installing Microsoft R
 Our cloud instance is t2.micro . As such, it has only one virtual CPU and gains no benefit from parallel-
processing techniques. We have also already installed base R, so R is of course working. However, on the
chance you choose to spin up more-powerful instances, we also install Microsoft R Open (MRO) and MKL
(Microsoft, 2016). These files need to be installed after downloading them. We are going to give two options
here. First, we install the latest version of Microsoft R Open, which is version 3.3.1 as of this writing. We also
show how to install an earlier version, should you happen to have code you intend to run that requires older
versions of R.

 The main difference is that in the past, MRO and MKL were two separate installations. Now, starting
with version 3.3.1, it is a single installation process. Type the following command in bold; the output follows:

 wget "https://mran.microsoft.com/install/mro/3.3.1/microsoft-r-open-3.3.1.tar.gz"
 --2016-10-02 16:52:02-- https://mran.microsoft.com/install/mro/3.3.1/microsoft-r-open-
3.3.1.tar.gz
 Resolving mran.microsoft.com (mran.microsoft.com)... 166.78.134.173, 2001:4800:7813:516:be7
6:4eff:fe04:4c9b
 Connecting to mran.microsoft.com (mran.microsoft.com)|166.78.134.173|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 268235803 (256M) [application/octet-stream]
 Saving to: ‘microsoft-r-open-3.3.1.tar.gz’

 microsoft-r-open-3.3.1.tar.gz 100%[==>]
255.81M 18.8MB/s in 13s

 2016-10-02 16:52:15 (20.1 MB/s) - ‘microsoft-r-open-3.3.1.tar.gz’ saved
[268235803/268235803]

 Once the file has been downloaded, we must decompress our downloaded file. This requires privileges,
so we use sudo . Using tar , we e x tract and ung z ip our f ile:

 sudo tar -xzf microsoft-r-open-3.3.1.tar.gz

 Next, we change our directory to our newly unzipped files by using the change directory command:

 cd microsoft-r-open
 ~/microsoft-r-open$ ls
 deb install.sh MKL_EULA.txt MRO_EULA.txt rpm

 When installing, be sure to carefully note when to type q and when to type y . Again, the installation
using the install.sh file will require sudo privileges:

 ~/microsoft-r-open$ sudo ./install.sh

 Press [Enter] key to display the Microsoft R Open license. When finished reading, press q to
continue:

 Do you wish to install the Intel MKL libraries?
 Choose [y]es|[n]o y

 Press [Enter] key to display the Intel MKL license. When finished reading, press q to
continue:

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

223

 Do you agree to the terms of the previously displayed license?
 Choose [y]es|[n]o y

 Updating apt package repositories...done
 Installing apt package dependencies libxt6 libsm6 libpango1.0-0 libgomp1 curl...done
 Installing /home/ubuntu/microsoft-r-open/deb/microsoft-r-open-mro-3.3.deb...done
 Installing /home/ubuntu/microsoft-r-open/deb/microsoft-r-open-foreachiterators-3.3.deb...
done
 Installing /home/ubuntu/microsoft-r-open/deb/microsoft-r-open-mkl-3.3.deb...done

 Thank you for installing Microsoft R Open.
 You will find logs for this installation in
 /home/ubuntu/microsoft-r-open/logs

 This completes the installation, and if you were on an instance that allowed for multiple threads,
you would have access. This bundle of MRO and MKL is new, and thus, for completeness for backward
compatibility, we include instructions for the older file type as well. To install older versions such as 3.2.4, in
the command line, use the wget command:

 wget "https://mran.microsoft.com/install/mro/3.2.4/MRO-3.2.4-Ubuntu-14.4.x86_64.deb"

 Then type the following:

 wget "https://mran.microsoft.com/install/mro/3.2.4/RevoMath-3.2.4.tar.gz"

 After those have downloaded, use the ls command to see that it worked:

 ls
 chapter21.R permissionsFile RevoMath-3.2.4.tar.gz
slider_time
 MRO-3.2.4-Ubuntu-14.4.x86_64.deb PieChart_Time rstudio-server-0.99.892-amd64.deb
Upload_hist
 MyFolder R shiny-server-1.4.2.786-amd64.deb

 Next, enter the following code into the command line:

 sudo dpkg -i MRO-3.2.4-Ubuntu-14.4.x86_64.deb

 Now that Microsoft R Open is installed, we add the parallel-processing support:

 sudo tar -xzf RevoMath-3.2.4.tar.gz
 cd RevoMath
 ubuntu@ip-10-0-0-244:~/RevoMath$ ls
 mkl mklLicense.txt RevoMath.sh RevoUtilsMath.tar.gz
 ubuntu@ip-10-0-0-244:~/RevoMath$ sudo ./RevoMath.sh

 After that last line, you want to select option 1 by typing 1 and then pressing Enter/Return. Hit Enter/
Return a few times to get through the license agreement text (depending on screen size), but not too many
times or you negate the agreement. When prompted, type y and hit Enter/Return. That’s it! Should you have
more than one core, the cloud now works as MRO has been working for us on Windows.

CHAPTER 12 ■ CLOUD UBUNTU FOR WINDOWS USERS

224

 Installing Java
 Next, we install Java . It is quite easy; just run the following three lines of code, one at a time, in the command
line. Agree to things as needed.

 sudo apt-get update
 sudo apt-get install default-jre
 sudo apt-get install default-jdk

 Installing Shiny on Your Cloud
 Bringing statistics to information consumers is the main use for Shiny. Because we are in installation mode,
we’ll go ahead and install the needed resources on our cloud instance to host a Shiny application.

 To install Shiny, we need to run the following code. An agreement is required to confirm an installation,
and we suppress the system’s output to the command line. Run each line by itself.

 This line installs the shiny package (Chang, Cheng, Allaire, Xie, and McPherson, 2016) into R. In
addition, we also install xlsx (Dragulescu, 2014) and shinydashboard (Chang, 2015). You notice that
between the inner parentheses, there are commands that make lots of sense to R users. However, in
this case, we are running R from the command line, specifically, so we can execute the process with
administrative privileges and thus have access to these libraries from any Ubuntu user account rather than
just the main user account. When a Shiny server hosts applications, it hosts them by using the username
 shiny . Hence, the following three lines of code install these packages for all users:

 sudo su - -c "R -e \"install.packages('shiny', repos='https://cran.rstudio.com/')\""

 sudo su - -c "R -e \"install.packages('xlsx', repos='https://cran.rstudio.com/')\""

 sudo su - -c "R -e \"install.packages('shinydashboard', repos='https://cran.rstudio.
com/')\""

 From here, now that R itself can use Shiny, we install the server so that our cloud instance can serve
Shiny apps to the Internet. We have to download a file with the wget command and then install that file. We
do that with the following lines of code, and there are some installation disclaimers.

 wget https://download3.rstudio.org/ubuntu-12.04/x86_64/shiny-server-1.4.6.809-amd64.deb

 sudo gdebi shiny-server-1.4.6.809-amd64.deb

 Final Thoughts
 You now have access to a cloud instance that has RStudio Server (which can be quite convenient). In
particular, you have the ability to upload files to and from a local machine in a way that does not require
superuser local privileges. If you opened up permission access by unrestricting more IP addresses, this is a
way to use R from a smartphone. Also, we installed several packages and applications on our Ubuntu server.
In the next chapters, we use those features to make some absorbing analytics happen. More important,
because they are served on the cloud, these data and results are accessible to anyone. Thus, sharing results
has never been easier.

225© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_13

 CHAPTER 13

 Every Cloud has a Shiny Lining

 When serving data to the public, easy access and interactive information make a real difference in
comprehension. In this chapter, our goal is to provide access and some interesting uses for a more recent
application, shiny (Chang, Cheng, Allaire, Xie, and McPherson, 2016).

 Shiny is a web application framework for R. What it does is allow information consumers to interact
with live data and analytics in R . This framework does not require knowledge of any web-based languages.
All the same, surprisingly complex and interactive data models can be released to your clients, decision
makers, or consumers.

 Do you have data your customers should explore? Are there performance metrics that, transformed
from static to interactive, might support your story to a board or a boss? Do your users have data they
need to upload and understand better? Would you like to easily update next quarter’s data into a common
dashboard? All these questions can be answered with Shiny—and since Shiny is served via a web page, if we
can get Shiny onto our cloud, then anyone can benefit from the power of R.

 Now, for simplicity’s sake, in this chapter we are going to live entirely on Windows inside RStudio. In the
previous chapter, we got Shiny Server running on our cloud, but for now, you’ll learn on your local machine.
In the next chapter, we put all the building blocks we had in this chapter into one dashboard, and we upload
that to our cloud.

 The Basics of Shiny
 Think of Shiny as a web interface for R code. If you can do it in R, Shiny can push those results to a nice page
that is viewable via Internet browsers. Even more awesomely, if a data consumer wants to interact with
information, their input can be incorporated into R code.

 In RStudio (RStudio Team, 2015), select File ➤ New File ➤ Shiny Web App. Name your file PieChart_
Time , and under Application choose the single file option (app.R). Delete all code and type in the following
code (or download from the Apress site). As you type it in, you want to notice three things. First, there is a
user-interface portion of the code. Second, there is a server side to the code. Finally, the application must
be run. Another aspect to notice (and this is why we recommend typing it all in manually) is where pieces of
the user side and the server side mesh. In fact, in our code, there are exactly four places this happens. From
the user side, variables of a number between 0 and 100 , a text string, and a check box are input. The server
receives those values and creates plots. It puts those plots into the output. The user side gets that output in
 mainPanel() .

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

226

 library(shiny)

 # user interface drawing a pie chartShinymainPanel()
 ui <- shinyUI(fluidPage(

 # Page title
 titlePanel("User Controlled Chart"),

 # Sidebar with numeric, text, and check box inputs controlled by user
 sidebarLayout(
 sidebarPanel(
 numericInput("pie",
 "Percent of Pie Chart",
 min = 0,
 max = 100,
 value = 50),

 textInput("pietext", "Text Input", value = "Default Title",
 placeholder = "Enter Your Title Here"),

 checkboxInput("pieChoice",
 " I want a Pie Chart instead.", value = FALSE)
),

 # Show the plot(s)
 mainPanel(
 plotOutput("piePlot")
)
)
))

 # server side R code creating Pie Chart or barplot hidden from user
 server <- shinyServer(function(input, output) {

 output$piePlot <- renderPlot({
 # generate Pie chart ratios based on input$pie from user
 y <- c(input$pie, 100-input$pie)

 # draw the pie chart or barplot with the specified ratio and label

 if(input$pieChoice == FALSE){
 barplot(y, ylim = c(0,100),
 names.arg = c(input$pietext, paste0("Complement of ", input$pietext)))

 }else{
 pie(y, labels = c(input$pietext, paste0("Complement of ", input$pietext)))}

 })
 })

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

227

 # Run the application
 shinyApp(ui = ui, server = server)

 Before we delve into that code, let’s see it in action. Type and run the code that follows from the RStudio
console to install Shiny on your local Windows machine:

 install.packages("shiny")

 Now, go into your app.R file you carefully typed and run that code in one block. There should even be a
 Run App play button near the top right of the code area. Either way, something along the lines of Figure 13-1
should appear.

 Go ahead and enter various numbers and text values. Play with Shiny and see what it can do. While you
do so, recognize that what Shiny has done is provide an interface between you and R. Now, this particular
run is hosted by RStudio on your local machine. Notice that in the console it indicates listening, and you may
need to select a Stop button before you can enter any new code.

 So what happened? Suppose you changed the Percent of Pie Chart number to 75 . Well, that
 numericInput() is a reactive value. When you change it, behind the scenes, a signal is sent alerting the
server that input$pie has changed. The server then notifies any reactive functions that use input$pie
that something has changed. In our case, renderPlot() is a reactive function. It now knows input$pie is
different, so it queries that value, gets the new value, and runs all its code again. Since that is an output value,
this whole cycle repeats in reverse with output$piePlot , with the result that plotOutput() on the user side
refreshes.

 There are some important things to notice about all this. The process we just described runs all the
code again inside renderPlot() —all of it. Now, ceteris paribus, there is no need to look up input$pietext
and input$pieChoice . Our reactive function knows its values, for those are up-to-date, and while they are
used again, they are not called again. Still, if we had something a little more intensive than a subtraction and
some plots inside renderPlot() , we might find ourselves with a relatively steep performance cost to making
any changes. While this set of code is quite compact, nevertheless you can see three places where you might
put R code. One is where library(shiny) is. This is on the outside of our shinyServer() . Code that is here,

 Figure 13-1. A locally hosted Shiny App to see just what we are gaining

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

228

such as our library call, is run once each session. A single session can have more than one user interacting
with it (although that gets a bit esoteric at the moment). Still, each new user executes all the code inside the
 shinyServer() at least once. Finally, as we just saw, the code inside reactive functions such as renderPlot()
are run once each update from any connected reactive input values. What this means is that for efficiency,
consider placing as much code as possible outside the reactive functions. Moreover, if you anticipate heavy
user traffic, place as much outside the server as possible too.

 For now, let’s introduce some new functions. Remember, there is the user input side, there is the server
side, and there is the entire Shiny app. Deep down inside, Shiny is just those three pieces. In fact, here is a
rather bare-bones Shiny application :

 library(shiny)

 # Define user interface
 ui <- shinyUI(fluidPage())

 # Define server
 server <- shinyServer(function(input, output) {})

 # Run the application
 shinyApp(ui = ui, server = server)

 You can run this code and get a nice blank page. While that is perhaps less inspiring than the previous
code, this helps you get coding in this interface quickly. In the user-interface section, what we see is the
 fluidPage() function call, inside of which we place all our user-facing text. This area of the code is the most
unfamiliar part of Shiny, because this is the code that creates the HTML seen by users. In the reference
section, we place links to all the Shiny UI functions. However, for this chapter, we keep to the same basic
layout inside a page that is fairly self-adjusting, or fluid, depending on the browser viewing area. Notice
this is an R function, and functions in R take arguments that are separated by commas. Every aspect of our
growing application is contained inside this wrapper function, which takes care of all the conversion to web-
ready markup. For our first app from Figure 13-1 , we used a sidebar layout. This function, in turn, wants two
 arguments : the sidebar panel where we control our application and then the main panel where we draw it.
Editing our user interface gives us the following code:

 # Define user interface
 ui <- shinyUI(fluidPage(
 sidebarLayout(
 sidebarPanel(),
 mainPanel()
)
))

 This code is a wonderful example of the power of the mathematical notion of function composition.
Our goal is to eventually have something the user inputs to our R code, such as the text or check box of our
example in Figure 13-1 . The user inputs those values into as-yet-to-be-named functions, which give visual
output, which is input into the sidebarPanel() function , which provides web output, which is input to
 fluidPage() , which outputs the final web user interface. We can see the results, blank though they be, in
Figure 13-2 .

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

229

 From this point, we can quickly build our user’s inputs with three input functions . Each of these input
functions follows a specific format, namely blargInput(input identification, text label for user
readability, settings relating to the specific type of input for which blarg is a stand-in) .
Formally, our three input functions have these layouts, and please notice the similarities!

 numericInput(inputId, label, value, min = NA, max = NA, step = NA, width = NULL)
 textInput(inputId, label, value = "", width = NULL, placeholder = NULL)
 checkboxInput(inputId, label, value = FALSE, width = NULL)

 Proceeding to fill in some specifics for our code, we can set the input identities for each to be useful
variables for us to use later in our server code. Since we do plan to build a pie chart (and please, gentle
readers, do not hate us for that choice), it makes sense to limit our numeric input to between 0 and 100 .
Because our server code runs once on start, it also makes sense to provide a default value for the numeric
input and, indeed, the text input. Building further on our burgeoning user-interface code , we now have this:

 # user interface drawing a pie chart
 ui <- shinyUI(fluidPage(
 # Sidebar with numeric, text, and check box inputs controlled by user
 sidebarLayout(
 sidebarPanel(
 numericInput("pie", "Percent of Pie Chart",
 min = 0, max = 100, value = 50),
 textInput("pietext", "Text Input", value = "Default Title",
 placeholder = "Enter Your Title Here"),

 checkboxInput("pieChoice", " I want a Pie Chart instead.", value = FALSE)
),

 mainPanel()
)
))

 Again, after making those modifications, it makes sense to run the whole app again, and we see the new
result in Figure 13-3 . Notice that the mainPanel() is currently empty in our code, and, indeed, in Figure 13-3
we do not see anything on the right-hand side.

 Figure 13-2. A mostly blank Shiny app, with a sidebarPanel()

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

230

 Now that we have our user input captured, we are ready to use it on the server side. Remember, Shiny
is an R wrapper that takes input, and when that input changes, alerts a reactive function on the server side
that something is different. Behind the scenes, Shiny is taking care of knowing when the input changes,
and alerting the correct reactive functions on the server; we need not worry about such things. Our server
defines a new function that takes both input and output as formals, and uses those in its body. If needed,
take a quick look back at Chapter 4 to refresh your memory on just what a function is. Since all we want to do
is draw either a bar plot or a pie chart, the majority of our code does precisely that in very common R code.
In fact, the only part that is not fairly normal R code is our reactive function renderPlot() . Since we wish to
give graphical outputs, we use that function.

 Reactive functions are always waiting for Shiny to alert them to any changes in the inputs from the
user-interface side. When an input changes, the reactive functions are notified if they have at least one of the
changed values in their body. If they do, then the reactive functions run their code again, this time with the
new value(s). We see this in the following code. The only other part of this is that the output of renderPlot()
is stored in an output variable, and we choose that name to be piePlot (even though it might not output a
pie chart, depending on the check box choice—which is wholly our fault for selecting a poor name).

 # server side R code creating Pie Chart or Bar plot
 server <- shinyServer(function(input, output) {

 output$piePlot <- renderPlot({
 # generate Pie chart ratios based on input$pie from user
 y <- c(input$pie, 100-input$pie)

 # draw the pie chart or barplot with the specified ratio and label

 if(input$pieChoice == FALSE){
 barplot(y, ylim = c(0,100),
 names.arg = c(input$pietext, paste0("Complement of ", input$pietext)))

 }else{
 pie(y, labels = c(input$pietext, paste0("Complement of ", input$pietext)))}

 })
 })

 That is essentially it. When our server runs, it alerts the user-interface function plotOutput("piePlot")
to the new image. This function lives in the mainPanel() region. Under this simple model of Shiny, the

 Figure 13-3. The user interface is almost done, and the input portion in the sidebar is indeed done

http://dx.doi.org/10.1007/978-1-4842-2077-1_4

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

231

sidebar is where user input is received, the server side is where it is processed behind the scenes by R, and
the main panel is where the processed output is viewed by the user. Just this once, we show the full HTML
 code that Shiny creates for us to serve in Figure 13-1 :

 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <script
type="application/shiny-singletons"></script> <script type="application/html-dependencies">
json2[2014.02.04];jquery[1.11.3];shiny[0.13.1];bootstrap[3.3.5]</script><script src="shared/
json2-min.js"></script>
 <script src="shared/jquery.min.js"></script>
 <link href="shared/shiny.css" rel="stylesheet" />
 <script src="shared/shiny.min.js"></script>
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <link href="shared/bootstrap/css/bootstrap.min.css" rel="stylesheet" />
 <script src="shared/bootstrap/js/bootstrap.min.js"></script>
 <script src="shared/bootstrap/shim/html5shiv.min.js"></script>
 <script src="shared/bootstrap/shim/respond.min.js"></script> <title>User Controlled Chart
</title>
 </head>
 <body>
 <div class="container-fluid">
 <h2>User Controlled Chart</h2>ShinyHTML code, creation
 <div class="row">
 <div class="col-sm-4">
 <form class="well">
 <div class="form-group shiny-input-container">
 <label for="pie">Percent of Pie Chart</label>
 < input id="pie" type="number" class="form-control" value="50" min="0"

max="100"/>
 </div>
 <div class="form-group shiny-input-container">
 <label for="pietext">Text Input</label>
 <input id="pietext" type="text" class="form-control" value="Default Title"
placeholder="Enter Your Title Here"/>
 </div>
 <div class="form-group shiny-input-container">
 <div class="checkbox">
 <label>
 <input id="pieChoice" type="checkbox"/>
 I want a Pie Chart instead.
 </label>
 </div>
 </div>
 </form>
 </div>
 <div class="col-sm-8">
 <div id="piePlot" class="shiny-plot-output" style="width: 100% ; height: 400px">

</div>
 </div>
 </div>

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

232

 </div>
 </body>
 </html>

 So now, go back and carefully look through the very first block of code we showed in this section that was
the entire Shiny app and realize that code creates all of the preceding HTML and JavaScript. That is all there is
to Shiny. Now, in this example, our R code was not particularly impressive. All the same, it is the principle that
counts. Users can now interact with data, and it is not impossible to imagine more-interesting applications.

 In the next few sections, we introduce a handful of other interesting and useful Shiny input functions
along with some essential reactive functions. Finally, in the end, we upload all of them to our cloud so that
you can see them live on the Web.

 Shiny in Motion
 Now that we have a better appreciation for what Shiny does, it is important to appreciate the dynamic
potential of a web page over print reports. One of the authors is a mathematics professor, and one of the
challenges in teaching mathematics is that once data goes beyond three dimensions, it becomes difficult for
students to conceptualize that information. Naturally, students, being people, are not unique in their high-
dimensional blindness. Time can provide a fourth dimension, and Shiny can provide us that time.

 Another feature of Shiny we mentioned earlier, is that R code makes sense to place in three distinct
locations. The first is at the beginning of all the code, before user-interface or server-side code is written. Code
placed in this area runs once per instance. While the value of this may not be as clear on a local machine,
when your code is hosted on a cloud, a particular R session may have more than one user interacting with
it. That is the way the Shiny server we installed in the preceding chapter works. This is a great place to read
in any static data or perform any once-only calculations. It is the most computationally efficient. While we
do not do so in this example, the code may also be placed inside the server code but outside any reactive
functions that would be run once per user connection to a session. Finally, the code inside reactive functions,
inside the server function, is executed once every time any input data that the function references is changed.

 Let’s take a look at how to change data with respect to time. From the user-interface side, there is an
input function that is a number-line slider bar. As with all input functions, we need to give it a name so that
our reactive functions can know where to look for input updates. As with our numericInput() from the
prior section, we give this function some minimum and maximum values in years. Finally, we are going to
animate our sliderInput() function . Take a look at the code we use inside our user interface. Our code uses
an animate option that includes an interval in milliseconds and also has the animation keep on looping.

 sliderInput("ayear", "Academic Year:",
 min = 2014, max = 2017,
 value = 2014, step = 1,
 animate = animationOptions(interval=600, loop=T))

 While this application also shows how to perform R calculations on both static data and user inputs, it
really is quite simple again from the R code perspective. In fact, other than the titlePanel() command and
of course our slider code, this is quite a bit like our first Shiny application . We show both the code and the
end result in Figure 13-4 .

 library(shiny)
 slider_data<-read.csv("slider_data.csv", header = TRUE, sep = ",")
 Phase1 <- slider_data[,2]
 Phase2 <- slider_data[,3]
 Phase3 <- slider_data[,4]
 Phase4 <- slider_data[,5]

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

233

 # Define UI for application that draws Bar Plot
 ui <- shinyUI(fluidPage(

 # Application title
 titlePanel("Training Programme Results"),

 # Sidebar with a slider input for number of bins
 sidebarLayout(
 sidebarPanel(
 sliderInput("ayear", "Academic Year:",
 min = 2014, max = 2017,
 value = 2014, step = 1,
 animate = animationOptions(interval=600, loop=T))),

 # Show the bar plot
 mainPanel(plotOutput("barPlot")))))

 # Define server logic required to draw a barplot
 server <- shinyServer(function(input, output) {

 output$barPlot <- renderPlot({
 # Count values in each phase that match the correct date.
 cap<-input$ayear*100
 x <- c(sum(Phase1<cap), sum(Phase2<cap), sum(Phase3<cap), sum(Phase4<cap))

 # draw the barplot for the correct year.
 barplot(x, names.arg = c("Phase I", "Phase II", "Phase III", "Fellows"),
 col = c("deeppink1","deeppink2","deeppink3","deeppink4"), ylim=c(0,50))
 }) })

 # Run the application
 shinyApp(ui = ui, server = server)

 Figure 13-4. A slider bar input that has a Play button feature showing data in motion

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

234

 Uploading a User File into Shiny
 Our last example for this chapter indicates that users can upload files via Shiny that can then be processed
via R. Of course, unlike our first two examples, this is a shade riskier because such uploaded files are not
under our control. The data might be any file and not truly work with our results. It is possible to build
various error-checking features into code; in fact, we mentioned such techniques in part while discussing
functions. However, to focus our code on strictly new features, we pretend for a moment that we live in a
perfect world. We have a sample file on the Apress website for this book that is just a comma-separated
values file with the numbers 1 through 10.

 Perhaps unsurprisingly, to receive a file input, the command in Shiny is fileInput(). Other than
 inputId , maybe the most interesting feature is that this could even accept multiple uploads, although in
our example we leave that to its default value of FALSE . Uploading more than one file might not be supported
in all browsers. Also in the user-interface area, we use a new output function, tableOutput() , which along
with plotOutput() allows us to have both chart and graphical outputs for our users. Before we talk about the
server-side code that enables us to interact with our user’s file, we take a look at what our CSV file upload gives
us. Figure 13-5 is the view after we uploaded our CSV file, and we show the code for just the user interface:

 ui <- shinyUI(fluidPage(

 fileInput("file", label = h3("Histogram Data File input")),
 tableOutput("tabledf"),
 tableOutput("tabledf2"),
 plotOutput("histPlot1")))

 Figure 13-5. File upload results

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

235

 First of all, notice the first table. It contains four variables that are the results of directly accessing the
 input$file variable. This might be counterintuitive based on our other examples, where the user inputs
could be directly accessed from their input$inputId . However, it does show that our user input is, in fact, a
data frame, and the temporary data path is available to access just as any file location might be. Fair warning:
If a user uploads another file, since we are in a temp directory, our old file might well be overwritten. Next,
notice that our file’s actual data is in the second table, and as shown in the histogram, that information is
available for any R computations we might choose to code.

 Let’s next focus on the server side, because this is not as simple as our prior examples. Sometimes, you
have input that takes a little more managing than a single numeric or text value. Because that data is input
data, it needs a reactive function to be alerted if it has changed. However, you might prefer to use fairly
clean code. Fortunately, Shiny offers a basic reactive function named, well, reactive() . In the following
code, we create our own reactive function to cope with a new scenario, namely, the one we wanted. When a
file is uploaded, Shiny alerts our reactive function reactive() that input$file has changed. The function
naturally queries the input to see what it is now, and stores that data frame into the variable file1 . We would
like access to the data inside our CSV file, so we need to call read.csv() on that file, which naturally needs to
know the file’s location. That is stored in the last column, named datapath . What we get is an object that we
can treat like a data frame later in our code.

 histData<-reactive({
 file1<-input$file
 read.csv(file1$datapath,header=TRUE ,sep = ",") })

 Other than this, we can use our data now inside other reactive functions, familiar ones even. We show
one more new reactive function, renderTable() , as well as a familiar one, renderPlot() . You should also
draw your attention to histData()$X1 . Notice that this has function parentheses, yet elements are still
accessed via the familiar $. This is built with a reactive function, and as such, we must acknowledge that it is
both a function that takes input from the user as well as a data storage object with data to access.

 output$tabledf2<-renderTable({
 histData() })

 output$histPlot1<-renderPlot({
 hist(as.numeric(histData()$X1)) })

 That wraps up our analysis of the code. For completeness, we end this section with the entire code, but
now you have the techniques to be up and running in Shiny. Before this section ends, we point out that the
references section has as its first link a reference site for most or many Shiny functions. If there is something
you want to do, check there first. It is quite intuitive. Also of note is that the next section of this chapter shows
how to upload an application file to the cloud and get it working live. Finally, notice the h3() function inside
the fileInput() function in the user interface. Shiny has a whole collection of functions that duplicate various
common HTML features such as headers. For this chapter, we consider those adiaphora. In Chapter 14 ,
we focus more on making our user interface, for lack of a better word, pretty.

 library(shiny)

 ui <- shinyUI(fluidPage(

 # Copy the line below to make a file upload manager
 fileInput("file", label = h3("Histogram Data File input"), multiple = FALSE),
 tableOutput("tabledf"),

http://dx.doi.org/10.1007/978-1-4842-2077-1_14

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

236

 tableOutput("tabledf2"),
 plotOutput("histPlot1")

))

 # Define server logic required to draw a
 server <- shinyServer(function(input, output) {

 output$tabledf<-renderTable({
 input$file
 })

 histData<-reactive({
 file1<-input$file
 read.csv(file1$datapath, header=TRUE ,sep = ",") })

 output$tabledf2<-renderTable({
 histData() })

 output$histPlot1<-renderPlot({
 hist(as.numeric(histData()$X1)) })

 })

 # Run the application
 shinyApp(ui = ui, server = server)

 Notice that in this code, we did not focus on distinctions such as side panels or main panels; instead, we
had our user-interface side (both the requested input and the generated output) all in one hodgepodge. It
is worth noting that if you have a side panel, a main panel is needed to hold any output that is not hosted by
the side panel.

 Hosting Shiny in the Cloud
 Our last task is to get our files from a local machine to the cloud instance. Remember, in previous chapters,
we have used not only PuTTY (Tatham, 2016) to install Shiny Server on our cloud, but also WinSCP (Prikryl,
2007) to move files up to our cloud. We start WinSCP , reconnect, and ensure that on the left, local side we are
in our Shiny application folder, while on our right, cloud server side, we are in /home/ubuntu . We show the
result of that process in Figure 13-6 .

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

237

 From here, we access PuTTY and run the following code from the command line, one at a time:

 sudo cp -R ~/PieChart_Time /srv/shiny-server/
 sudo cp -R ~/slider_time /srv/shiny-server/
 sudo cp -R ~/Upload_hist /srv/shiny-server/

 Which leaves us with one final step. Recall, back when we first set up our cloud instance, we carefully
allowed just a few ports to work for just a few IP addresses. You need to log back into AWS and get into the
EC2 Dashboard again. From there, on the left navigation menu, go back to Security Groups and select your
AdvancedR group. Once that group is selected, click the Inbound tab and then click Edit ä Add Rule. You
want to use a Custom TCP Rule, and add port 3838, and finally lock it to your IP address. Then click Save.
The result looks like Figure 13-7 .

 You may now verify that your apps work by typing the following URLs into any browser:

 http://Your.Instance.IP.Address:3838/PieChart_Time/
 http://Your.Instance.IP.Address:3838/slider_time/
 http://Your.Instance.IP.Address:3838/Upload_hist/

 Should you wish to allow others or the world to access your applications, change the Inbound source
IP address to 0.0.0.0/0 only for port 3838 . It is a security measure not to allow the world access to your SSH
port. Of course, if you are now hosting an open-to-the-world port 3838, your server is visible and known. It
can be beneficial to have different cloud instances for individual activities. We recommend against having
confidential data on public-accessible servers. Again, cloud security is beyond the scope of this book.

 Figure 13-6. WinSCP with PieChart_Time, slider_time, and Upload_hist Shiny applications all uploaded

 Figure 13-7. The AWS Inbound table with Shiny Server port 3838 open to one single local IP address

CHAPTER 13 ■ EVERY CLOUD HAS A SHINY LINING

238

 Final Thoughts
 We seem to have spent some time discussing cloud security. There are two reasons behind this. The first is
simply our paranoid natures. However, a fair bit of data can contain confidential information. The ethical
use of data, including reasonable safeguards, is important. In recent months, AWS has taken great strides
to create safer environments for EC2. As always, security is a matter of reasonableness. The more vital your
data, the better steps may be warranted to protect that information.

 Those concerns aside, this is truly an unprecedented capability, to allow users to interact with data
analytics in such an open fashion. Yes, in our experience, this can lead some data consumers to make
uneducated decisions. Still, the benefit of the transparency possible through techniques such as Shiny far
outweigh the disadvantages. It is an exciting world, one we are eager to explore.

239© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_14

 CHAPTER 14

 Shiny Dashboard Sampler

 This chapter is not required in order to understand other chapters in this book. While we introduce some
new techniques, what you primarily find here is one entire dashboard sample ready to be modified to suit
your needs.

 Just what does this sampler do? It takes the applications we used in the preceding chapter and presents
them in an engaging, interactive format. It is important to keep in mind that while we often present
these applications with a graphical output, any R process can be done to these data. The goal is to allow
information consumers the capability to naturally interact with live data, whether those consumers are
research reviewers, next-level directors, or board members.

 Similarly to the last chapter, we introduce this on Windows inside RStudio (RStudio Team, 2015). We
provide both a framework to understand this dashboard, as well as some pro tips. It is important to see this
sampler as a creativity incubator of sorts. It is our hope that you see something you like, and more vitally,
realize just how you can best showcase your data.

 We will start with the underlying structure of a dashboard.

 A Dashboard’s Bones
 Recall our littlest shiny (Chang, Cheng, Allaire, Xie, and McPherson, 2016) application from the preceding
chapter:

 library(shiny)

 # Define user interface
 ui <- shinyUI(fluidPage())

 # Define server
 server <- shinyServer(function(input, output) {})

 # Run the application
 shinyApp(ui = ui, server = server)

 This code was good to look at from the beginning, because it highlights how all Shiny applications
comprise a user interface, and a server side where the R code logic lives—and these are both run as an R
process themselves (possibly on a cloud server). All we intend to add to this structure is some code on the
user-interface side. This should make sense, because a dashboard is more about user interface than any

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

240

new code logic. The goal is to make analytics and statistical inferences readily available to users. There is a
new library to install for this, but it is just one, shinydashboard (Chang, 2015). From the command line of
RStudio, go ahead and run the following code:

 install.packages("shinydashboard")

 With this new package installed, we may now take a look at the littlest Shiny dashboard application.
Dashboards include a header, a sidebar with various menu items, and the main body in which the different
objects of the applications exist. Compare and contrast this dashboard code layout to the single application
code. The two versions are almost the same. After the code, see what they generate in Figure 14-1 .

 library(shiny)
 library(shinydashboard)

 # Define user interface
 ui <- dashboardPage(
 dashboardHeader(),
 dashboardSidebar(),
 dashboardBody()
)

 # Define server
 server <- shinyServer(function(input, output) {})

 # Run the application
 shinyApp(ui = ui, server = server)

 As you can see in the preceding code, we have three functions: dashboardHeader() ,
 dashboardSidebar() , and dashboardBody() . These provide a nice structure for our dashboard. These all
reside inside dashboardPage() as the first three of five formal arguments for the page function. The final two
formals include title (which defaults to NULL) as well as skin (which takes on one of blue , black , purple ,

 Figure 14-1. The littlest Shiny dashboard is quite empty

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

241

 green , red , or yellow color). As you can see for yourself with the formals(dashboardPage) command, the
page function is indeed simple enough. The title argument controls the heading in the browser itself (or
on the browser tab, if multiple tabs are open in most popular browsers). The skin color options control
the overall color palette of the dashboard. Now, the first three formals are functions in their own right and
become quite complex. Nevertheless, we will get to all three in turn.

 Dashboard Header
 The dashboardHeader() function also takes a title formal that adds user-defined text into the header area
as well as a titleWidth argument controlling the width of that text. The header also accepts several other
Shiny user-interface-style functions to control page navigation along with a handful of more specialized
functions that allow for more interactive navigation. In this chapter, and indeed this book, we essentially
ignore these functions to promote shiny and shinydashboard as ways of serving already familiar R code to
data consumers rather than learning too many new features all at once. In fact, the last formal we mention
for this function is disable , which defaults to FALSE and on TRUE hides the header entirely. In our sampler,
we will preserve the header in a mostly tabula rasa state.

 Dashboard Sidebar
 Moving on to the dashboardSidebar() function , the only explicitly called-out formals are again a disable
option along with a width argument. However, there are more functions possible here beyond the called-out
ones. The first thing to know is that any of the user-interface functions from shiny works in the sidebar. Thus,
if it makes sense to place a slider bar or drop-down input functions in your menu, that is possible. There are,
however, some functions unique to the dashboard library that make sense to place inside the sidebar area.

 The first of these is the sidebarMenu() function . Much like dashboardSidebar() itself, this function
primarily takes other inputs and handles the organization of them in an efficient fashion. Of particular note
is the menuItem() function , which is called from inside sidebarMenu() . In this sampler, we house each of the
applications created in the previous chapter in their own call to menuItem() . As you can see in the following
code, this function has several formals:

 formals(menuItem)
 $text

 $...

 $icon
 NULL

 $badgeLabel
 NULL

 $badgeColor
 [1] "green"

 $tabName
 NULL

 $href
 NULL

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

242

 $newtab
 [1] TRUE

 $selected
 NULL

 In the preceding function and formal arguments, the text takes a text string in quotes that provides
the text information or link name for that particular item on the menu. The icon formal is given a name for
a Font-Awesome icon. We provide a link to the online library, showcasing all possible icon choices in the
references section of this chapter. We may also switch to a different icon library; we save such explorations
for you. The badgelabel call puts an inline badge on the far right of the sidebar, which fits a short bit of
text. Badges do a good job of calling viewers’ attention to a particular menu item and, consequently, to
the underlying application. Many of these formals are somewhat optional; however, there must be either
a tabName linked to a related tabItem () in the dashboard’s body or there must be a URL given to the href
command. If a URL is given rather than a tabName , then newtab can be changed from a default of TRUE to
 FALSE should you wish your viewer to leave your site when visiting that page. Finally, it is possible to force
the default to a particular tab, away from the first menuItem() , by setting selected to TRUE .

 As we turn our attention to the main body of our dashboard, we remind you that the sidebar can also
receive any Shiny function—such as the img() function which points to an image that must be contained in
a folder named www inside your dashboard application’s folder. We show a code snippet (which should not
be run yet) of our sampler’s menu along with the result in Figure 14-2 . The names of the first three menu
items should be familiar from the prior chapter.

 sidebarMenu(
 menuItem("Pie Charts!", tabName = "PieChart_Time", icon = icon("pie-chart")),
 menuItem("Use a Slider", tabName = "slider_time", icon = icon("sliders"), badgeLabel =

"New"),
 menuItem("Upload a Histogram File", tabName = "Upload_hist", icon = icon("bar-

chart")),
 menuItem("Labour Data Dates", tabName = "labour", icon = icon("cloud-download"),

badgeLabel = "Live")
)

 Figure 14-2. The result of some sidebarMenu() and menuItem() functions

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

243

 Dashboard Body
 As you can see in the preceding code, each menu item has tabName . We will now discuss the code inside
the dashboardBody() function that will catch that tabName . Take a look at the little, although not the littlest,
Shiny dashboard in the following code and Figure 14-3 , and then we will walk through the new lines.

 library(shiny)
 library(shinydashboard)

 # Define user interface
 ui <- dashboardPage(
 dashboardHeader(),
 dashboardSidebar(sidebarMenu(menuItem("Demo", tabName = "First"))),
 dashboardBody(tabItems(tabItem(tabName = "First", "test"))),
 skin = "yellow")

 # Define server
 server <- shinyServer(function(input, output) {})

 # Run the application
 shinyApp(ui = ui, server = server)

 Many items might be placed inside the body of our dashboard. However, if we want to use the tabs that
we coded back in the sidebar section, we do a general call to tabItems() . This function takes no arguments
except individual tabItem() function calls; each of those tabItems() needs to have a unique tabName
matching a unique tabName from the sidebarMenu() .

 What goes inside each tabItem() ? Well, just as in Shiny, there is a benefit to making the layout fluid
enough that your dashboard can cope with various-sized browser windows. Thus, the common function
 fluidRow() makes a reappearance. Recall that fluidRow() is set up to have a row width of at most 12.
Remembering that fact, keep a sharp lookout at the default widths for each of the three box objects we
discuss to fill those rows. Now, there are more than these three objects; again, our goal is to get you quickly
to the point where you may serve your data via the cloud to your users or stakeholders.

 The most basic input element to go in a row is box() . Inside this function, we place any of the
application code we used in the preceding chapter to either solicit input from users or to output reactive
content. However, box() also takes nine specific arguments. Naturally, each box() may take a title value,
a user-defined text string that should succinctly describe the contents of the box or the action required. At
the bottom of the box, there is a footer , which may also take a text string. Boxes also have a status that may

 Figure 14-3. A dashboard with a menuItem() in the sidebar and a tabItem() in the body. Notice the matching
First.

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

244

be set to take on values of primary , success , info , warning , or danger . Each of those status values has an
associated color that is part of the default Cascading Style Sheets structure that makes shinydashboard look
rather pretty. The colors are fairly consistent, although they may have some variance depending on which
color you selected for the whole dashboard. The default value for solidHeader is FALSE , although this, of
course, may be changed to TRUE . The positive choice simply enhances the color of the status to become a
narrow banner background to the title text. Should you wish the main area of your box to have a specific
color, background can be set from approximately 15 valid colo choices. Any input code and any output code
lives on top of that background , as the name suggests. The default width for a box is 6 , so two boxes fill up a
row unless you take steps to narrow them. Failure to keep the total fluidRow() width of 12 in mind can lead
to some odd layouts. Box height can also be set to a fixed height. This can be helpful if you require very even
rows. Finally, boxes are collapsible and may be already collapsed , although both options default to FALSE .
Figure 14-4 shows some results of these various settings.

 Another type of box is valueBox() , which takes six formal arguments. The first is value , which is usually
a short text string or value, as shown in Figure 14-5 . The valueBox() also takes a subtitle argument, which
is again a text string. You can choose an icon , although the default value is NULL . These boxes come with
a default color of aqua and are rather short with a default width of only 4 . Finally, valueBox() also takes a
value for href , which defaults to NULL . We show the code we used in our sampler’s value box here:

 valueBox(endYear-startYear, "Days of Data", icon = icon("calendar"))

 Figure 14-4. A familiar application in two boxes with various options—see Complete Sampler Code for
 details

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

245

 We finish out our discussion of the dashboardBody() boxes with a box similar to the valueBox (): the
 infoBox() . This box comes with a title that takes a text string, a value to highlight and display in the box,
optional subtitle text, and a default icon of a bar chart. It also features defaults for color of aqua , width 4 ,
and a NULL href . What is different is that the icon is smaller, and there is a fill option, which is usually
 FALSE , that can change the way the background color displays. We do not show this box, but it does look
quite similar to the small box in Figure 14-5 . In our experience, these boxes are not significantly different
other than in their appearance.

 Dashboard in the Cloud
 We do want to serve this dashboard into our cloud instance, and this is a slightly more complex set of
code. Again, we created this in a standard Shiny folder by using RStudio, so it comes in its own file. The file
structure on Windows looks like Figure 14-6 . There are three files in our shinydashboard_cloud folder. Note
the www folder, which hosts our sampler’s image, followed by the app.R file, which holds our entire Shiny
application as well as our CSV file.

 Figure 14-5. Sample valueBox() showing the number of days of data that were pulled live from a website

 Figure 14-6. The file structure for shinydashboard_cloud

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

246

 We use WinSCP to upload our files and folders to our Ubuntu cloud instance, as shown in Figure 14-7 .

 Logging into PuTTY , we do have some work to do. Our sampler uses some new libraries, and, of course,
the file needs to be moved from our user’s folder to where the Shiny server expects it to live. For brevity, we
install only the packages we have not yet installed on our cloud instance.

 The first of the new packages is XML (Lang, D. et al., 2016), and this package provides the ability to read
in an HTML table live from the Web. Various government and nonprofit agencies store data in such tables for
easy access by the public. We also install the zoo package (Zeileis and Grothendieck, 2005), which provides
convenient functions for time series. Already familiar packages are ggplot2 (Wickham, 2009) and data.table
(Dowle, Srinivasan, Short, and Lianoglou, 2015), which handle graphical plotting and provide a more
advanced data frame structure.

 The following commands run one at a time on our instance installation for all users’ five new libraries
and then copy the files so they are accessible via a browser. We also install some software onto Ubuntu that
is required to allow the XML package to run. For readability, we group some of the following commands
together. They should be run one line at a time in PuTTY , and some text prints to the screen after each
command.

 sudo su - -c "R -e \"install.packages('shinydashboard', repos='https://cran.rstudio.
com/')\""

 sudo apt-get install libcurl4-openssl-dev libxml2-dev
 sudo su - -c "R -e \"install.packages('XML', repos='https://cran.rstudio.com/')\""

 sudo su - -c "R -e \"install.packages('zoo', repos='https://cran.rstudio.com/')\""
 sudo su - -c "R -e \"install.packages('data.table', repos='https://cran.rstudio.com/')\""
 sudo su - -c "R -e \"install.packages('ggplot2', repos='https://cran.rstudio.com/')\""

 sudo cp -R ~/shinydashboard_cloud /srv/shiny-server/

 This completes our work with Shiny and the Shiny dashboard. Your dashboard should be live at
http://Your.Instance.IP.Address:3838/shinydashboard_cloud/ and viewable from your web browser.
We have a few more comments to make before we close out the chapter.

 First, we highly suggest that you visit the Apress site for this textbook and download the code bundle
for this chapter. It contains the complete, working files and folders shown in Figure 14-6 and uploaded in
Figure 14-7 . There is no need to manually type all this code to see whether a dashboard might be something
you would like to have.

 Figure 14-7. WinSCP upload folder view

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

247

 Second, we have in no way throughout this chapter given our full sample code. We saved that for the
end to keep it all in a single, cohesive whole and to focus your attention on the specific structure you want to
be looking for in that sampler code.

 Third, we remind you that if you have followed our security-minded advice about inbound policy
settings on the AWS servers, you may need to change those settings to allow more people than just yourself
to view your final dashboard project. Remember, the setting you need to change on the inbound side is to
allow port 3838 to be accessed from 0.0.0.0/0 , which is the entire Internet. Keep in mind that the entire
Internet is then able to access your dashboard. If you have sensitive data, or even information that just does
not need to be out and about, please consider partnering with an IT professional or at least an IT power user.

 Finally, we hope you enjoyed this chapter and the results as much as we have. Be sure to explore the
links in the “References” section. You will find valuable information ranging from additional functions, a
whole list of icons, a whole second icon library, and the very latest in shiny and shinydashboard package
information. These packages are updating fairly regularly, and new features can often provide awesome
results.

 Complete Sampler Code
 library(shiny)
 library(shinydashboard)
 library(XML)
 library(zoo)
 library(data.table)
 library(ggplot2)

 #this code will run just once each time a session is instantiated - there may be multiple
viewers in the same session.

 slider_data<-read.csv("slider_data.csv", header = TRUE, sep = ",")
 Phase1 <- slider_data[,2]
 Phase2 <- slider_data[,3]
 Phase3 <- slider_data[,4]
 Phase4 <- slider_data[,5]

 bls <-readHTMLTable("http://data.bls.gov/timeseries/LAUMT484702000000006?data_tool=XGtable",
stringsAsFactors = FALSE)

 bls <- as.data.table(bls[[2]])
 bls[, names(bls):= lapply(.SD, function(x) {
 x <- gsub("\\(.*\\)", "", x)
 type.convert(x)
 }
)]

 setnames(bls,names(bls), gsub("\\s","",names(bls)))
 bls[, Date := as.Date(paste0(Year, "-", Period, "-01"), format="%Y-%b-%d")]
 startYear<-min(bls$Date)
 endYear<-max(bls$Date)

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

248

 ### We now define the user interface to be a dashboard page
 ui <- dashboardPage(
 dashboardHeader(title = "Advanced R"),

 dashboardSidebar(
 img(src = "egl_logo_full_3448x678.png", height = 43, width = 216),
 sidebarMenu(
 menuItem("Pie Charts!", tabName = "PieChart_Time", icon = icon("pie-chart")),
 menuItem("Use a Slider", tabName = "slider_time", icon = icon("sliders"),
 badgeLabel = "New"),
 menuItem("Upload a Histogram File", tabName = "Upload_hist", icon = icon("bar-

chart")),
 menuItem("Labour Data Dates", tabName = "labour", icon = icon("cloud-download"),
 badgeLabel = "Live")
)),

 dashboardBody(
 tabItems(
 # PieChart_Time Content which should be familiar
 tabItem(tabName = "PieChart_Time",
 fluidRow(
 box(title = "PieChart_Time", status = "warning",
 numericInput("pie", "Percent of Pie Chart", min = 0, max = 100, value = 50),

 textInput("pietext", "Text Input", value = "Default Title",
placeholder = "Enter Your Title Here"),

 checkboxInput("pieChoice",
 " I want a Pie Chart instead.", value = FALSE)
),

 box(title = "Graphical Output", solidHeader = TRUE, status = "warning",
 plotOutput("piePlot")))),

 # Slider Tab Content which should be familiar
 tabItem(tabName = "slider_time",
 h2("Training Programme Results"),
 box(title = "Control the Academic Year", status = "primary", solidHeader =

TRUE,
 sliderInput("ayear", "Academic Year:", min = 2014, max = 2017, value

= 2014, step = 1,
 animate = animationOptions(interval=600, loop=T))),

 box(plotOutput("barPlot"))),

 ##Histogram from an Uploaded CSV which should be familiar
 tabItem(tabName = "Upload_hist",

 fluidRow(
 box(title = "File Input",

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

249

 # Copy the line below to make a file upload manager
 fileInput("file", label = h3("Histogram Data File input"),
 multiple = FALSE)
),
 box(title = "Data from file input", collapsible = TRUE,
 tableOutput("tabledf"))),

 fluidRow(
 box(tableOutput("tabledf2")),
 box(background = "blue",
 plotOutput("histPlot1"))
)

),

 ###This Labour plot Tab is new and uses data pulled fresh from the web each time an R
instance ##is created.
 tabItem(tabName = "labour",

 fluidRow(
 box(dateRangeInput("labourDates", min = startYear,max = endYear,
 start = startYear, end = endYear,
 label = h3("Date range")),

 selectInput("labourYvalue", label = h3("Select box"),
 choices = list("LaborForce" = 3,
 "Employement" = 4,
 "Unemployement" = 5),
 selected = 3),

 radioButtons("labourRadio", "Rolling Average", selected = FALSE,
 choices = list("Yes"=TRUE, "No"=FALSE))),
 box(title = "Test", plotOutput("labourPlot"))),

 fluidRow(valueBox(endYear-startYear, "Days of Data", icon =
icon("calendar")))))),

 title = "Dashboard Sampler", skin = "yellow")

 #### Define server logic required to draw a histogram#####
 server <- shinyServer(function(input, output) {

 output$piePlot <- renderPlot({
 # generate Pie chart ratios based on input$pie from user
 y <- c(input$pie, 100-input$pie)

 # draw the pie chart or bar plot with the specified ratio and label
 if(input$pieChoice == FALSE){
 barplot(y, ylim = c(0,100), names.arg = c(input$pietext, paste0("Complement of ",

input$pietext)))

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

250

 }else{
 pie(y, labels = c(input$pietext, paste0("Complement of ", input$pietext)))}
 })

 output$barPlot <- renderPlot({
 # Count values in each phase that match the correct date.
 cap<-input$ayear*100
 x <- c(sum(Phase1<cap), sum(Phase2<cap), sum(Phase3<cap), sum(Phase4<cap))

 # draw the bar plot for the correct year.
 barplot(x,
 names.arg = c("Phase I", "Phase II", "Phase III", "Fellows"),
 col = c("deeppink1","deeppink2","deeppink3","deeppink4"), ylim=c(0,50))
 })

 ####Here is where the input of a file happens
 output$tabledf<-renderTable({ input$file })

 histData<-reactive({
 file1<-input$file
 read.csv(file1$datapath,header=TRUE ,sep = ",")
 })

 output$tabledf2<-renderTable({ histData() })

 output$histPlot1<-renderPlot({ hist(as.numeric(histData()$X1)) })

 ##############labour plot####################
 output$labourPlot<-renderPlot({
 xlow<-input$labourDates[1]
 xhigh<-input$labourDates[2]
 blsSub <- bls[Date<=xhigh&Date>=xlow]
 yValue <- names(blsSub)[as.numeric(input$labourYvalue)]

 if(input$labourRadio == TRUE && nrow(blsSub)>=4){ blsSub[,(yValue):=rollmean(get(yValue),
k=3, na.pad = TRUE)] }

 ggplot(data = blsSub, mapping = aes_string("Date", yValue)) +
 geom_line()+
 xlab("Years & Months")+
 ylab("People")+
 xlim(xlow, xhigh)+
 ggtitle(yValue)+
 scale_x_date(date_labels = "%b %y")
 }) })

 # Run the application
 shinyApp(ui = ui, server = server)

CHAPTER 14 ■ SHINY DASHBOARD SAMPLER

251

 References
• https://rstudio.github.io/shinydashboard/

• http://fontawesome.io/icons/

• http://shiny.rstudio.com/reference/shiny/latest/

• http://docs.rstudio.com/shiny-server/

• http://shiny.rstudio.com/gallery/

• https://cran.r-project.org/web/packages/shiny/shiny.pdf

https://rstudio.github.io/shinydashboard/
http://fontawesome.io/icons/
http://shiny.rstudio.com/reference/shiny/latest/
http://docs.rstudio.com/shiny-server/
http://shiny.rstudio.com/gallery/
https://cran.r-project.org/web/packages/shiny/shiny.pdf

253© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1_15

 CHAPTER 15

 Dynamic Reports and the Cloud

 In the preceding chapters, you saw how Shiny delivers interactive environments based on dynamic data.
Dynamic reports and the live dashboards have many similarities. On the other hand, this chapter, because
the reports end up as PDFs, is less interactive. Reports are a fact of life in many fields, and stakeholders tend
to require snapshots in time rather than fully interactive environments. Through the knitr and rmarkdown
packages, we create documents (for example, PDF, HTML, or Microsoft Word) based on data input. For
regular reports that build on continuously changing data, yet that have the same structure overall, this is a
great time-saver.

 The rmarkdown package (Xie, 2015) adds the capability to embed R processes into such documents,
allowing one-click analytics that are beautifully formatted using a variety of styles. The LaTeX interface
achieves almost any formatting required, although there are options besides PDF. From boardroom reports
on enrollment based on live pulls from a student information system database, to strategic plan action-
sheets drawn from key performance indicators, dynamic reports work best when variable input needs
shaping into standardized output. This is also facilitated via knitr and formatR packages (Xie, 2015).

 Additionally, in this chapter, we use the evaluate package (Wickham, 2016) and tufte package (Xie,
2016). These packages allow us to organize the layout and format of our date more elegantly. We also use the
 ltm package (Rizopoulos, 2006) for the psychometric tests.

 Our goals for this chapter are to enhance our software environment both on our local and cloud
machines to allow the dynamic documents to compile, explore the structure of standalone rmarkdown ,
develop a Shiny page that allows a user to upload data and then download a PDF report, and finally to push
this all to our cloud instance. We start with needed software.

 Needed Software
 We already have a great deal of the software needed, namely R, the Shiny packages (Chang, Cheng, Allaire,
Xie, and McPherson, 2016), PuTTY, and our cloud instance on Ubuntu. We need a handful of new packages
installed—both on the local machine as well as the cloud server.

 Local Machine
 First, in your R console, it is important to run the following code independent of any R file:

 install.packages("rmarkdown")
 install.packages("tufte")
 install.packages("knitr")

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

254

 install.packages("evaluate")
 install.packages("ltm")
 install.packages("formatR")Dynamic documentlocal machine

 After those packages install, we turn our attention to installing MiKTeX (Schenk, 2009), which allows the
creation of PDF files. A brief visit to the MiKTeX site (http://miktex.org/download) allows you to obtain
either the recommended basic installer (which is 32-bit) or the other basic installer (which is 64-bit). We
use the 64-bit version for our systems, although in this chapter there is not likely to be a major difference
between the versions. After download, accept all the defaults during installation. After installation, there
may be updates to the MiKTeX package. To perform these updates, go to your start files. In a folder titled
 MiKTeX , you’ll find an option for Update near the end. Follow the default options and then select all packages
to update to the latest. While not required, we do recommend a restart after this installation.

 Cloud Instance
 Using PuTTY , access your cloud instance console. We need to run each line of code that follows individually
at the console. Recall from an earlier chapter that these install the packages for all users of that server, not
just your user. This is key to allow the Shiny server access to the correct packages.

 sudo su - -c "R -e \"install.packages('rmarkdown', repos = 'http://cran.rstudio.com/')\""
 sudo su - -c "R -e \"install.packages('tufte', repos = 'http://cran.rstudio.com/')\""
 sudo su - -c "R -e \"install.packages('knitr', repos = 'http://cran.rstudio.com/')\""
 sudo su - -c "R -e \"install.packages('ltm', repos = 'http://cran.rstudio.com/')\""
 sudo su - -c "R -e \"install.packages('formatR', repos = 'http://cran.rstudio.com/')\""
 sudo su - -c "R -e \"install.packages('data.table', repos = 'http://cran.rstudio.com/')\""

 The preceding code does not take very long. However, installing texlive (the Ubuntu solution for
LaTeX used instead of MiKTeX), may take some time. It also demands a fair bit of disk space, so be sure you
have room. In our trials, the full version is required.

 sudo apt-get install texlive-full

 After this, we recommend a sudo reboot to restart your cloud instance. This is a good place to do
that and then close PuTTY for a bit. While your server restarts, you may use your local machine to explore
dynamic documents.

 Dynamic Documents
 It is not required to link dynamic documents to the Internet in any way. Indeed, most reports may be
internal. Inside RStudio, selecting File ➤ New File ➤ R Markdown opens a wizard. Notice that there are
options for documents (for example, HTML, PDF, or Word) as well as presentations (for example, HTML or
PDF). A title is customary, as is listing the author(s). Of course, RStudio is not required; creating a new file in
R with the .Rmd suffix suffices.

http://miktex.org/download

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

255

 We intend to create a hybrid approach to this introduction to dynamic documents. That is, we first give
a straightforward and informative example of what such code looks like, and then we follow up with a more
in-depth analysis of each piece of that code. We start with a new file titled ch15_html.Rmd and fill it with the
following code:

 title: "ch15_html"
 author: "Matt & Joshua Wiley"
 date: "18 September 2016"
 output: html_document

 ̀``{r echo=FALSE}
 ##notice the 'echo=FALSE'
 ##it means the following code will never make it to our knited html
 library(data.table)
 diris <- as.data.table(iris)
 ##it is still run, however, so we do have access to it.
 ̀``

 #This is the top-level header; it is not a comment.

 This is plain text that is not code.

 If we wish *italics* or **bold**, we can easily add those to these documents. Of course, we
may need to mention `rmarkdown` is the package used, and inline code is nice for that. If
mathematics are required, then perhaps x~1~^2^ + x~2~^2^ = 1 is wanted.

 ##calling out mathematics with a header 2
 On the other hand, we may need the mathematics called out explicitly, in which case $x^{2}
+ y^{2}= \pi$ is the way to make that happen.

 ###I like strikeouts; I am less clear about level 3 headers.
 I often find when writing reports that I want to say something is ~~absolutely foolish~~
obviously relevant to key stakeholders.

 ######If you ever write something that needs Header 6
 Then I believe, as this unordered list suggests:

 * You need to embrace less order starting now

 - Have you considered other careers?

 ̀``{r echo=FALSE}
 summary(diris)
 ̀``

 However, notice that one can include both the code and the console output:

 ̀``{r}
 hist(diris$Sepal.Length)
 ̀``

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

256

 The results of knitting the preceding code are shown in Figure 15-1 .

 As you can imagine, it is the summary data or the graph that is easily regenerated based on any input. In
fact, one of the authors uses dynamic documents to create case studies (and a case study key) for students in an
introductory statistics course. It is easy enough to generate pseudorandom data with different seeds that allow
each student to have a unique data set (and several topics). It also allows for solution keys for fast marking.

 Figure 15-1. The HTML output of a simple dynamic document

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

257

 Now that you have an overview of Rmarkdown , let’s explore the previous code in sensible blocks. The
first block is YAML , which stands for Yet Another Markup Language or possibly the recursively defined
 YAML Ain’t Markup Language (YAML, 2016) header. At its simplest, it may contain only information
about the title, author, date, and the output type. Here, for this document, we selected html_document .
However, as stated previously, there are more options such as pdf_document , word_document , odt_document ,
 rtf_document , and beamer_presentation (to name a few—there are in fact more). These types create,
respectively, HTML pages, PDFs, Microsoft Word files, OpenDocument or rich text, and Beamer PDF slides.
Both Beamer and PDFs require the MiKTeX installation we did earlier. To change the type of document
compiled, simply change the output! It is worth noting that the first time you use MiKTeX , it may take longer
to compile, as there may need to be a package or two installed behind the scenes. This does not take any
user intervention; it simply takes time. It is also worth noting that if you use beamer_presentation , then
what can and cannot fit on one slide needs to be considered. In that case, a carriage return followed by ---- ,
followed by another carriage return, signals new slides in your deck.

 title: "ch15_html"
 author: "Matt & Joshua Wiley"
 date: "18 September 2016"
 output: html_document

 Headers can, be more complex than this. R code can be injected inline, using ̀ r code goes here`
formatting. Thus, we could change the date to be more dynamic by swapping out date: "18 September
2016" for date: "`r Sys.Date()`" in our code. Dozens of render options work with the YAML header, and
wiser heads than ours have created templates that use variants of those headers as well as set several nice
options. As in Shiny, there is a nearly limitless ability to customize precisely how a document outputs and
displays.

 The next region of our markdown code is a code chunk. Code chunks start with ̀ ``{r } and end with
 ̀ `` . Between those lives your code. Now, inside the {r } there are several useful options. If you have part
of your code that is intensive to create and mostly static, you may want to set cache = TRUE instead of the
default FALSE . This stores the results. We use echo=FALSE often, which prevents the code itself, yet not the
results of that code, from displaying. Notice that in the first chunk that follows, there is no sign in our final
document that the code ran. However, the second chunk still shows the results of summary(diris) .

 ̀``{r echo=FALSE}
 library(data.table)
 diris <- as.data.table(iris)
 ̀``

 ̀``{r echo=FALSE}
 summary(diris)
 ̀``

 For code chunks that involve plots or figures, there are many options too. The fig.align option may
be set to right , centre , or left . There are height and width settings for plots with fig.height or fig.width
that default to inches.

 ̀``{r fig.align="right"}
 hist(diris$Sepal.Length)
 ̀``

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

258

 Finally, there is the text itself, which we do not repeat here because that is of less interest. We do note
that code can be written inline as well as just as in the header. You’ll see that this option becomes very useful
later, when we want to provide different narrative text depending on our computation results.

 Dynamic Documents and Shiny
 We turn our attention now to providing not only a dynamic document but one that others may control via
their dynamic input. What we build is a simple Shiny environment that allows for a user to upload a CSV file
with quiz score data for students. The data is coded as follows: the columns represent specific questions on
the quiz; the rows represent individual students; and the quiz is multiple choice, with 1 coded in for correct
responses, and 0 coded in for incorrect options.

 As in the preceding section, we look at all our code for each of the three files it takes to make this work.
Then, we break that code down line by line. For readers already comfortable with Shiny, please feel free
to skip to the last portion. We build this code in a folder named Chapter15 . Later, when we upload to our
Ubuntu server, we upload that entire folder.

 server.R
 On the Shiny server side, we call our libraries and then build the systems needed to upload our CSV file,
provide confirmation for users that their file is uploaded, read that file into R, pass the needed information
along to our markup document, and then allow our users to download that document as a PDF. It takes just
the following 55 lines of code:

 ##Dynamic Reports and the Cloud

 library(shiny)
 library(ltm)
 library(data.table)
 library(rmarkdown)
 library(tufte)
 library(formatR)
 library(knitr)
 library(evaluate)

 function(input, output) {

 output$contents <- renderTable({

 inFile <- input$file1

 if (is.null(inFile))
 return(NULL)

 read.csv(inFile$datapath, header = input$header,
 sep = input$sep, quote = input$quote)
 })

 scores <- reactive({
 inFile <- input$file1

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

259

 if (is.null(inFile))
 return(NULL)

 read.csv(inFile$datapath, header = input$header,
 sep = input$sep, quote = input$quote)
 })

 output$downloadReport <- downloadHandler(
 filename = function() {
 paste('quiz-report', sep = '.', 'pdf')
 },

 content = function(file) {
 src <- normalizePath('report.Rmd')

 owd <- setwd(tempdir())
 on.exit(setwd(owd))
 file.copy(src, 'report.Rmd', overwrite = TRUE)

 knitr::opts_chunk$set(tidy = FALSE, cache.extra = packageVersion('tufte'))
 options(htmltools.dir.version = FALSE)

 out <- render('report.Rmd')
 file.rename(out, file)
 }) }

 The preceding code started with a call to all our libraries, and then quickly got into Shiny’s
 function(input, output) {} server-side wrapper. After that, there are just three main blocks of code. In
turn, we look at each of these, starting with the renderTable({}) call. This generates output used in our
user-interface side. In particular, it is creating a table. It is an interactive function, and when a user uploads
a file on the user side, Shiny alerts this function that one of its inputs has changed. This triggers a run of the
code. From the side of entry, input$datapath is the location on the server where Shiny stores an uploaded
file. Provided there is, in fact, a file, read.csv can access the file’s data path, and also gets information about
whether the data has a header, what type of separator was used, and some other information set by the user.
In fact, much more could be asked of the user that may allow for more customized analytics. Here, we keep
the example simple yet efficacious. The result of this read creates a table and stores that table inside the
output variable named contents . This has a net effect of Shiny now alerting the user-interface side that there
is possible output. We see where that output goes later in this chapter.

 output$contents <- renderTable({

 inFile <- input$file1

 if (is.null(inFile))
 return(NULL)

 read.csv(inFile$datapath, header = input$header,
 sep = input$sep, quote = input$quote)
 })

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

260

 In addition to creating a table so that our user may immediately see whether their file upload is
successful (and we envision in a live scenario perhaps adding comments to the user interface to allow a user
to spot a poor upload), we must also read the data in a format that will allow our markdown file to use that
data. We read the data into a variable named scores . This is a reactive function that is always on the alert for
changes in the relevant input variables (in this case, the uploading of a file).

 scores <- reactive({
 inFile <- input$file1

 if (is.null(inFile))
 return(NULL)

 read.csv(inFile$datapath, header = input$header,
 sep = input$sep, quote = input$quote)
 })

 The last piece of the server side is the most advanced. This is what controls the download file the user
can access. The first part of this block controls the name of the report the user downloads. We named ours
 quiz-report.pdf , which only looks complex. That code gives us future flexibility should we change the
type or nature of the report; it is easy to change our file type or name. Note that if you use RStudio’s internal
browser, the report downloads with a different name. Next, we call normalizePath() on our markdown file,
which returns the file path of the current working directory with the filename in the argument appended.
In particular, it returns this based on the operating system environment in which the code exists. This is
important for two reasons. First, it allows portability of the code from Windows to Ubuntu (or any operating
system). Second, we are about to change our working directory. Thus, a direct call to report.Rmd will no
longer work.

 It is important we change our working directory; we are about to create a new PDF file. Now, on a
local machine we own and have administrative privileges to use, creating a new file is no trouble at all.
However, our goal is to upload to the cloud, and we are not assured such privileges on all servers. Thus, we
change our working directory to the temporary directory of the server. In R, setwd(tempdir()) does two
things. It both copies and returns the current working directory and then, after that, it changes the directory
to the argument. Thus, owd is the old working directory. We set an on.exit() parameter so that, once
 downloadHandler is done, the working directory returns to what it ought to be, so that our Shiny site does not
break.

 We now copy our markdown file from its original location in the old working directory to our temp area,
thereby allowing it to run and generate the PDF in that temp directory. We also set some environmental
options for knitr (which creates the markdown PDF) that makes it possible to use the tufte format (named
for Edward Tufte, http://rmarkdown.rstudio.com/tufte_handout_format.html). All that remains is to
 render() our markdown document and rename our file to what we wanted.

 output$downloadReport <- downloadHandler(
 filename = function() {
 paste('quiz-report', sep = '.', 'pdf')
 },

 content = function(file) {
 src <- normalizePath('report.Rmd')

 owd <- setwd(tempdir())
 on.exit(setwd(owd))
 file.copy(src, 'report.Rmd', overwrite = TRUE)

http://rmarkdown.rstudio.com/tufte_handout_format.html

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

261

 knitr::opts_chunk$set(tidy = FALSE, cache.extra = packageVersion('tufte'))
 options(htmltools.dir.version = FALSE)

 out <- render('report.Rmd')
 file.rename(out, file)
 })

 What we have seen is that the Shiny server side needs to be able to read in the user’s uploaded file with
the appropriate input information, such as the existence of a header, and then is responsible for starting the
 Rmarkdown process . Admittedly, getting that process to work on any computer involves changing the working
directory as well as some fiddling with layout and formatting options. We conclude this section by noting
that a simple PDF would be easier to set up (although we admit to having a preference for the cleaner tufte
layout. We turn our attention to the user interface.

 ui.R
 The user has a fairly clean view for this very simple Shiny application. In just 40 lines of code (and we could
have removed several options, really), the user can upload the CSV file, view the rendered table from that
file, and download the analysis of the file. As before, we first give the entire code and then describe each
block in turn:

 #Dynamic Reports and the Cloud User Interface
 shinyUI(

 fluidPage(
 title = 'Score Control Panel',
 sidebarLayout(
 sidebarPanel(
 helpText("Upload a wide CSV file where
 each column is 0 or 1 based on whether the student
 got that question incorrect or correct."),

 fileInput('file1', 'Choose file to upload',
 accept = c(
 'text/csv',
 'text/comma-separated-values',
 'text/tab-separated-values',
 'text/plain',
 '.csv',
 '.tsv'
)
),
 tags$hr(),
 checkboxInput('header', 'Header', TRUE),
 radioButtons('sep', 'Separator',
 c(Comma=',',
 Semicolon=';',
 Tab='\t'),
 ','),
 radioButtons('quote', 'Quote',
 c(None='',

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

262

 'Double Quote'='"',
 'Single Quote'="'"),
 '"'),
 tags$hr(),
 helpText("This is where helpertext goes"),
 downloadButton('downloadReport')
),
 mainPanel(
 tableOutput('contents')
))))

 As usual for the user interface, we have fluidPage() along with sidebarPanel() and mainPanel() . It is
inside the sidebar that the main events occur, and thus we look there first. The fileInput() function takes
our input file. We can control the types of files accepted, and we limit ourselves to comma- or tab-separated
values. We name the upload file1 , recalling that on the server side we used input$file1 to read in the file.

 fileInput('file1', 'Choose file to upload',
 accept = c(
 'text/csv',
 'text/comma-separated-values',
 'text/tab-separated-values',
 'text/plain',
 '.csv',
 '.tsv'
)
),

 The only other line of major interest to us is the download area. It is not particularly complex to
understand:

 downloadButton('downloadReport')

 Although there are helper text boxes to explain to the user, and we do recommend in real life setting
up sample layouts so your users understand the acceptable inputs, we opted to keep this user interface as
streamlined as possible. Before we turn our attention to the actual report file, we show the Shiny application
in Figure 15-2 after uploading our scores.csv file (which is available on the Apress website for this book).

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

263

 report.Rmd
 This report is about student scores per question for a quiz or other test. Our goal is to take the input shown
in Figure 15-2 and convert it to actionable, summary information about question and test validity. Before
reading past this first show of all the code, take a moment to compare and contrast the code to a stand-alone
markdown file. There are no major differences. In fact, the only way to know that this file rendered from a
Shiny application is a single line of code that reads scores <- scores() .

 title: "Example Scoring Report"
 subtitle: "Item-Level Analysis"
 date: "`r Sys.Date()`"
 output:
 tufte::tufte_handout: default

 Figure 15-2. Shiny user interface , live on a locally hosted website

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

264

 # Raw Data

 Here is a sample of the data uploaded including the first few and last
 rows, and first few and last columns:

 ̀``{r echo=FALSE, include = FALSE}
 scores <- scores()
 scores <- as.data.table(scores)
 setnames(scores, 1, "Student")

 ̀``

 ̀``{r, echo = FALSE, results = 'asis'}
 if (nrow(scores) > 6) {
 row.index <- c(1:3, (nrow(scores)-2):nrow(scores))
 }

 if (ncol(scores) > 6) {
 col.index <- c(1:3, (ncol(scores)-2):ncol(scores))
 }

 kable(scores[row.index, col.index, with = FALSE])
 ̀``

 ̀``{r, include = FALSE}
 items <- names(scores)[-1]

 scores[, SUM := rowSums(scores[, items, with = FALSE])]

 ## now calculate biserial correlations
 ## first melt data to be long
 scores.long <- melt(scores, id.vars = c("Student", "SUM"))

 ## calculate biserial correlation, by item
 ## order from high to low
 biserial.results <- scores.long[, .(
 r = round(biserial.cor(SUM, value, level = 2), 3),
 Correct = round(mean(value) * 100, 1)
), by = variable][order(r, decreasing = TRUE)]

 alpha.results <- cronbach.alpha(scores[, !c("Student", "SUM"), with=FALSE])

 rasch.results <- rasch(scores[,!c("Student", "SUM"), with=FALSE])

 ̀``

 The test overall had `r ifelse(alpha.results$alpha > .6, "acceptable
 reliability", "low reliability")` of
 alpha = `r format(alpha.results$alpha, FALSE, 2, 2)`.^[Alpha ranges from 0 to 1, with one
indicating a perfectly reliable test.]

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

265

 The graph shows the measurement error by level of
 ability.^[Higher values indicate more measurement error, indicating the test is less
reliable at very low and very high ability levels (scores).]

 ̀``{r, echo = FALSE, fig.width = 5, fig.height = 4}

 ## The Standard Error of Measurement can be plotted by
 vals <- plot(rasch.results, type = "IIC", items = 0, plot = FALSE)
 plot(vals[, "z"], 1 / sqrt(vals[, "info"]),
 type = "l", lwd = 2, xlab = "Ability", ylab = "Standard Error",
 main = "Standard Error of Measurement")

 ̀``

 # Item Analysis

 Results for individual items are shown in the following
 table.^[*r* indicates the point biserial correlation of an item with the total score.
Correct indicates the percent of correct responses to a particular item. The items are
sorted from highest to lowest correlation.]

 ̀``{r, echo = FALSE, results = 'asis'}
 kable(biserial.results)
 ̀``

 We now break down and explain each block of this markdown file. This header is a trifle more advanced
than the first. Notice that we use inline R code to set the date to the current date. Also, our output is no longer just
a pdf_document . Instead, we use the default tufte_handout style (which is a PDF along with style information).
We call that formally from its package (recall that library(tufte) was called back on the server side).

 title: "Example Scoring Report"
 subtitle: "Item Level Analysis"
 date: "`r Sys.Date()`"
 output:
 tufte::tufte_handout: default

 Next up is the read into the markdown file of our score data. We are already familiar with echo=FALSE ,
which prevents the code from displaying. However, we also set include=FALSE , which prevents any output
from the code from displaying. As noted earlier, we use the variable scores() from our Shiny server side,
which is where we read.csv() our scores. Recall that there, on the Shiny server, we called that variable
simply scores . However, in the rmarkdown file, we call it as a function (it does update dynamically, after all).
Rather than continue calling a variable as a function, we rename it here with a local environment variable of
the same name, scores :

 ̀``{r echo=FALSE, include = FALSE}
 scores <- scores()
 scores <- as.data.table(scores)
 setnames(scores, 1, "Student")

 ̀``

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

266

 Our next code chunk has results='asis' to prevent further processing of our knitr table (called
 kable). Additionally, this code will output the first three and the last two rows and columns into a small
sample kable . It will do this only if there are more than six rows or columns.

 ̀``{r, echo = FALSE, results = 'asis'}
 if (nrow(scores) > 6) {
 row.index <- c(1:3, (nrow(scores)-2):nrow(scores))
 }

 if (ncol(scores) > 6) {
 col.index <- c(1:3, (ncol(scores)-2):ncol(scores))
 }

 kable(scores[row.index, col.index, with = FALSE])
 ̀``

 From here, we can calculate several measures of quiz or question reliability by using the ltm package.
The point biserial correlation is essential; it uses the more familiar Pearson correlation adjusted for the fact
that there is binary data for the quiz questions. It allows a comparison between students’ performance on
a particular question and their performance on the quiz overall (hence our comparison to the rowSums). By
ordering this data from high to low, we may read off the quiz questions that have the lowest score. Those are
the questions that may not be measuring the main theme of our quiz (admittedly, a vast oversimplification—
psychometrics is a science well beyond the scope of this text). Additionally, we calculate both the Cronbach’s
alpha and Rasch model, which we use later. Again, we do not seek to include these results directly in our
dynamic document; we can access them, though, for later use.

 ̀``{r, include = FALSE}
 items <- names(scores)[-1]

 scores[, SUM := rowSums(scores[, items, with = FALSE])]

 ## now calculate biserial correlations
 ## first melt data to be long
 scores.long <- melt(scores, id.vars = c("Student", "SUM"))

 ## calculate biserial correlation, by item
 ## order from high to low
 biserial.results <- scores.long[, .(
 r = round(biserial.cor(SUM, value, level = 2), 3),
 Correct = round(mean(value) * 100, 1)
), by = variable][order(r, decreasing = TRUE)]

 alpha.results <- cronbach.alpha(scores[, !c("Student", "SUM"), with=FALSE])

 rasch.results <- rasch(scores[,!c("Student", "SUM"), with=FALSE])

 ̀``

 Not all code needs be inside the formal code blocks; code may be inline with the text of the document.
This is helpful because we can set cutoff scores (in this case, semi-arbitrarily set at 0.6) and generate

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

267

different text printed in the final report based on those scores. The tufte package allows for side column
notes designated by ̂ [] .

 The test overall had `r ifelse(alpha.results$alpha > .6, "acceptable
 reliability", "low reliability")` of
 alpha = `r format(alpha.results$alpha, FALSE, 2, 2)`.^[Alpha ranges from 0 to 1, with one
indicating a perfectly reliable test.]

 The graph shows the measurement error by level of
 ability.^[Higher values indicate more measurement error, indicating the test is less
reliable at very low and very high ability levels (scores).]

 Recall from our earlier discussion that figure size may be controlled in the code blocks. Here, we plot
the Rasch model and see that high-performing and low-performing students are measured less precisely:

 ̀``{r, echo = FALSE, fig.width = 5, fig.height = 4}

 ## The Standard Error of Measurement can be plotted by
 vals <- plot(rasch.results, type = "IIC", items = 0, plot = FALSE)
 plot(vals[, "z"], 1 / sqrt(vals[, "info"]),
 type = "l", lwd = 2, xlab = "Ability", ylab = "Standard Error",
 main = "Standard Error of Measurement")

 ̀``

 The code does end with one last kable , but we have seen that already and need not belabor the point.
What we show now in Figure 15-3 is the final result of a download. Notice that all the suppressed code does
not show up. Also, notice the sample of the data, since we know from Figure 15-2 that there were more than
six rows or columns. Finally, notice the automatically numbered side comments that provide more detail.
Those were built using the ̂ [] code inside the text area of the document. These make it very easy to provide
detailed, yet not vital, insight.

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

268

 Figure 15-3. The PDF that downloads

CHAPTER 15 ■ DYNAMIC REPORTS AND THE CLOUD

269

 Uploading to the Cloud
 Our last task is to get our files from a local machine to the cloud instance. Remember, in prior chapters, we
have not only used PuTTY to install Shiny Server on our cloud, but also used WinSCP to move files up to our
cloud. We start WinSCP , reconnect, and ensure that on the left, local side we are in our Shiny application
folder, while on our right, cloud server side we are in /home/ubuntu . We recall the result of that process in
Figure 15-4 .

 From here, we access PuTTY and run the following code from the command line:

 sudo cp -R ~/Chapter15 /srv/shiny-server/

 Remember, in an earlier chapter we adjusted our instance to allow access to certain ports from certain
addresses. You may now verify that your application works by typing the following URL into any browser:

 http://Your.Instance.IP.Address:3838/Chapter15/

 Summary
 In this, our last chapter, we built a dynamic document that can rapidly update based on new data. This
update can even extend to graphics and inline ifelse statements, which allow the very narrative to morph
based on new data. Additionally, we built a Shiny application that allows users with an Internet connection
to upload a file to feed new data into such a report. Such reports can be download in many formats, although
we chose PDF.

 Throughout this text, we provided techniques for advanced data management, including connecting to
various databases. Those techniques merge well with dynamic documents, and the ability to easily translate
information in a data warehouse to actionable intelligence. Our final observation is that as data becomes
more extensive, successful filtration and presentation of useful data become more vital skills in any field.
Happy coding!

 Figure 15-4. WinSCP with PieChart_Time, slider_time, and Upload_hist Shiny applications all uploaded

271© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1

 References

 This chapter contains the full references for all resources cited throughout the rest of the book.

 University Library, University of Illinois at Urbana-Champaign. “LibGuides: SPSS Tutorial: About This
Tutorial.” http://guides.library.illinois.edu/c.php?g=347869 . Retrieved September 27, 2016.

 Chambers, J. Software for Data Analysis: Programming with R . Springer, 2009.
 Chang, W. “shinydashboard: Create Dashboards with 'Shiny'.” R package version 0.5.1.

 https://CRAN.R-project.org/package=shinydashboard . 2015.
 Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson, J. “shiny: web application framework for R.”

R package version 0.11, 1. 2015.
 Chheng, T. “RMongo: MongoDB Client for R . ” R package version 0.0.25.

 https://CRAN.R-project.org/package=RMongo . 2015.
 Conway, J., Eddelbuettel, D., Nishiyama, T., Prayaga, S.K., and Tiffin, N. “RPostgreSQL: R interface

to the PostgreSQL database system.” R package version 0.4-1. https://CRAN.R-project.org/
package=RPostgreSQL . 2015.

 U.S. Census Bureau, American FactFinder. “Data Access and Dissemination Systems (DADS).”
 http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.
xhtml?pid=ACS_10_5YR_B01003 . Retrieved September 27, 2016.

 Dragulescu, A. A. “xlsx: Read, write, format Excel 2007 and Excel 97/2000/XP/2003 files.” R package
version 0.5.7. https://CRAN.R-project.org/package=xlsx . 2014.

 Dowle, M., Srinivasan A., Short T., and Lianoglou S. with contributions from R Saporta
and E Antonyan. “data.table: Extension of Data.frame.” R package version 1.9.6.
 https://CRAN.R-project.org/package=data.table . 2015.

 Feinerer, I. and Hornik, K. “tm: Text Mining Package.” R package version 0.6-2.
 https://CRAN.R-project.org/package=tm . 2015.

 Fellows, I. “wordcloud: Word Clouds.” R package version 2.5.
 https://CRAN.R-project.org/package=wordcloud . 2014.

 Friedl, J. E. F. Mastering Regular Expressions, Third Edition . O’Reilly Media, 2006.
 Harrell Jr, F. E. with contributions from Charles Dupont and many others. “Hmisc: Harrell

Miscellaneous.” R package version 3.17-1 . https://CRAN.R-project.org/package=Hmisc . 2015.
 Hester, J. “covr: Test coverage for packages.” R package version 2.2.1.

 https://CRAN.R-project.org/package=covr . 2016.
 Johnson, P. “devEMF: EMF Graphics Output Device.” R package version 2.0.

 https://CRAN.R-project.org/package=devEMF . 2015.
 Lang, D. T. and the CRAN Team. “XML: Tools for Parsing and Generating XML Within R and S-Plus.” R

package version 3.98-1.4. https://CRAN.R-project.org/package=XML . 2016.
 Microsoft Corporation. “checkpoint: Install Packages from Snapshots on the Checkpoint Server for

Reproducibility.” R package version 0.3.16. https://github.com/RevolutionAnalytics/checkpoint . 2016.

http://guides.library.illinois.edu/c.php?g=347869
https://cran.r-project.org/package=shinydashboard
https://cran.r-project.org/package=RMongo
https://cran.r-project.org/package=RPostgreSQL
https://cran.r-project.org/package=RPostgreSQL
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_B01003
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_B01003
https://cran.r-project.org/package=xlsx
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=tm
https://cran.r-project.org/package=wordcloud
https://cran.r-project.org/package=Hmisc
https://cran.r-project.org/package=covr
https://cran.r-project.org/package=devEMF
https://cran.r-project.org/package=XML
https://github.com/RevolutionAnalytics/checkpoint

■ REFERENCES

272

 Ooms, J. “The jsonlite package: a practical and consistent mapping between JSON data and R objects.”
arXiv preprint arXiv:1403.2805. 2014.

 Prikryl, M. WinSCP—Free SFTP and SCP client for Windows . 2007.
 R Core Team. “foreign: Read Data Stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase, …” R

package version 0.8-66. https://CRAN.R-project.org/package=foreign . 2015.
 Rizopoulos, D. “ltm: An R package for latent variable modeling and item response theory analyses.”

 Journal of Statistical Software , 17(5), 1–25. 2016.
 R Special Interest Group on Databases (R-SIG-DB), Hadley Wickham, and Kirill Müller. “DBI: R

Database Interface.” R package version 0.5. https://CRAN.R-project.org/package=DBI . 2016.
 RStudio Team. “RStudio: Integrated Development for R.” www.rstudio.com . 2015.
 Amazon Web Services. “Setting Up with Amazon EC2.”

 http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html .
Retrieved October 2, 2016.

 Schenk, C. MiKTEX project page. http//: miktex. org . 2009
 Tatham, S. “PuTTY: A free SSH and Telnet client.” www.chiark.greenend.org.uk/~sgtatham/putty/ .

2016.
 Urbanek, S. “rJava: Low-Level R to Java Interface.” R package version 0.9-8. https://CRAN.R-project.

org/package=rJava . 2016.
 U. S. Census Bureau, American FactFinder. “B01003—“Total Population. All Counties within Illinois.

2006–2010 American Community Survey 5-Year Estimates.” http://factfinder2.census.gov/faces/
tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_B01003&prodType=table . 2010.

 U. S. Census Bureau, American FactFinder. “B23006—Educational Attainment by Employment Status
for the Population 25 To 64 Years. Universe: Population 25 to 64 years. All Counties within Illinois. 2006–2010
American Community Survey 5-Year Estimates.” http://factfinder2.census.gov/faces/tableservices/
jsf/pages/productview.xhtml?pid=ACS_10_5YR_B23006&prodType=table . 2010.

 U. S. Census Bureau, American FactFinder.. “S1903—Median Income in the Past 12 Months (in
2010 Inflation-Adjusted Dollars): All Counties within Illinois. 2006–2010 American Community Survey
5-Year Estimates.” http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.
xhtml?pid=ACS_10_5YR_S1903&prodType=table . 2010.

 van der Loo, M. “The stringdist package for approximate string matching.” The R Journal , 6, pp. 111–122.
 http://CRAN.R-project.org/package=stringdist . 2014.

 Venables, W., and Ripley, B. D. S programming . Springer, 2004.
 Wickham, H. “ Reshaping data with the reshape package.” Journal of Statistical Software, 21(12),

pp. 1–20. 2007.
 Wickham, H. ggplot2: Elegant Graphics for Data Analysis . Springer, 2016.
 Wickham, H. . “testthat: Get started with testing.” The R Journal, 3 (1), pp. 5–10.
 Wickham, H. “evaluate: Parsing and Evaluation Tools that Provide More Details than the Default.” R

package version 0.9. https://CRAN.R-project.org/package=evaluate . 2016.
 Wickham, H., and Chang, W. “devtools: Tools to Make Developing R Packages Easier.” R package version

1.12.0. https://CRAN.R-project.org/package=devtools . 2016.
 Wickham, H., Danenberg, P., and Eugster, M. “roxygen2: In-Source Documentation for R.” R package

version 5.0.1. https://CRAN.R-project.org/package=roxygen2 . 2015.
 Wickham, H. and Francois, R. “dplyr: A Grammar of Data Manipulation.” R package version 0.4.3.
 https://CRAN.R-project.org/package=dplyr . 2015.
 Wickham, H., Francois, R., and Müller, K. “tibble: Simple Data Frames.” R package version 1.0.

 https://CRAN.R-project.org/package=tibble . 2016.
 Wickham, H., James, D. A., and Falcon S. “RSQLite: SQLite Interface for R.” R package version 1.0.0.

 https://CRAN.R-project.org/package=RSQLite . 2014.
 Wiley, J. F. and Pace, L. Beginning R: An Introduction to Statistical Programming , Second Edition .

Apress, 2015.

https://cran.r-project.org/package=foreign
https://cran.r-project.org/package=DBI
http://www.rstudio.com/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
https://cran.r-project.org/package=rJava
https://cran.r-project.org/package=rJava
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_B01003&prodType=table
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_B01003&prodType=table
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_B23006&prodType=table
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_B23006&prodType=table
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_S1903&prodType=table
http://factfinder2.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=ACS_10_5YR_S1903&prodType=table
http://cran.r-project.org/package=stringdist
https://cran.r-project.org/package=evaluate
https://cran.r-project.org/package=devtools
https://cran.r-project.org/package=roxygen2
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=tibble
https://cran.r-project.org/package=RSQLite

■ REFERENCES

273

 Xie, Y. Dynamic Documents with R and knitr . CRC Press, 2015.
 Xie, Y. and Allaire, J. J. “tufte: Tufte’s Styles for R Markdown Documents.” R package version 0.2.

 https://CRAN.R-project.org/package=tufte . 2016.
 YAML: The Official YAML Website. www.yaml.org . Retrieved October 2, 2016.
 Zeileis, A. and Grothendieck, G. “zoo: S3 Infrastructure for Regular and Irregular Time Series.” Journal of

Statistical Software arXiv preprint math/0505527 .

https://cran.r-project.org/package=tufte
http://www.yaml.org/

275© Matt Wiley and Joshua F. Wiley 2016
M. Wiley and J. F. Wiley, Advanced R, DOI 10.1007/978-1-4842-2077-1

 A
 AdvancedRPkg , 85
 Advanced R software

 JDK , 2
 MKL , 1
 MRO , 1
 RStudio , 1

 Amazon Web Services (AWS)
 account creation , 200
 AdvancedR , 201
 AdvancedR security group , 203
 AmazonEC2FullAccess , 201
 CIDR , 203
 Dashboard , 202
 Elastic Compute Cloud (EC2) , 200
 IAMS , 200–201
 instance key pair settings and fi nal launch , 204
 security group , 203
 security group’s inbound rules , 203
 Ubuntu server selection , 204
 user , 201–202
 user actions , 202

 anyDuplicated() , 161
 *apply functions

 eapply() , 41
 elements , 35
 environment() , 41
 error checking , 35
 frame and matrix/array , 38
 issues , 37
 lapply , 35
 ls() , 41
 mapply() , 39
 mean() cannot , 40
 mean()/sd() , 41
 mtcars data , 38
 mtcars data frame , 37–38
 par() , 39
 rapply() , 41
 recursion , 40
 summary() , 37

 types , 35
 vapply , 36
 X, INDEX, and FUN , 38

 arrange() function , 160
 assignInNamespace()

function , 58–59
 Automation

 *apply family off unctions (see *apply
functions)

 coding , 29
 defi nition, insanity , 29
 fl ow control , 32–35
 loops (see Loops)
 repeats , 29
 tools , 42

 B
 Big data (bases)

 challenges , 181
 CSV fi les , 181
 functions , 197
 installation of software , 181
 MongoDB (see MongoDB)
 packages , 181
 R data objects and load , 181
 rigid format , 181
 SQLite (see SQLite database)

 C
 Cloud

 e-mail , 209
 operating system , 199
 public IP address , 205
 PuTTY , 205
 PuTTY confi guration , 206
 PuTTYgen , 205
 PuTTY security alert , 206
 server fi ngerprint (RSA) , 206
 transfer fi les , 209
 Ubuntu command line , 207

 Index

■ INDEX

276

 uploading fi les, WinSCP , 207–208
 windows environment , 199

 Cloud instance , 254
 Cloud Ubuntu, Windows users

 commands , 211
 installing Microsoft R , 222
 installing R , 216
 installing Shiny , 224
 Java installation , 224
 RStudio Server , 218
 superuser and security , 213, 215

 Comma-separated values (CSV) fi les , 181
 Comprehensive R Archive Network (CRAN) , 2, 84

 D, E
 Dashboard

 body , 243–245
 in cloud , 245–247
 header , 241
 sampler code , 247
 sidebar , 241–242

 dashboardBody() function , 243
 dashboardHeader() function , 241
 dashboardSidebar() function , 241
 Data management

 data and creating variables , 170–171, 173
 dplyr packages , 159
 merging and reshaping data , 173–174, 176–177
 sapply() , 160
 selecting and subsetting , 162–168
 sorting , 160–161
 variable renaming and ordering , 168–169

 data.table package
 anyDuplicated() function , 118
 built-in data frame class objects , 115
 checkpoint , 141
 creatio, new variables , 150–152
 data and creating variables , 127–130
 data frame , 120
 data management , 115, 141
 data munging/cleaning , 142
 Data.Table[i, j, by] , 122
 diris , 116, 118
 duplication family , 119
 fuzzy matching , 152–154, 156
 head() and tail() , 116
 merging data , 130–131, 133, 135–136
 one-time conversions , 141
 order() , 117–118
 recoding data , 143–146, 148
 recoding numeric values , 148–149
 reshaping data , 136–139
 sapply() , 116
 second and third formals , 123–125

 selecting and subsetting data , 120–123, 125
 Sepal.Length , 121
 setkey() , 117
 setosa, versicolor, and virginica , 116
 species , 118, 120–121
 unique() , 119
 variable renaming and ordering , 125–126

 Debugging
 assignInNamespace() function , 58–59
 browser() function , 54
 debug() function , 53
 scatter plot , 52–53
 tapply() and unique() , 54
 traceback() , 55
 wtd.quantile() function , 55
 wtd.table() function , 56, 58

 desc() , 160
 Development Kit (JDK) , 2
 DevTools , 90–92
 distinct() , 161
 Dynamic document

 beamer_presentation , 257
 case studies , 256
 ch15_html.Rmd , 255–256
 cloud instance , 254
 code chunks , 257
 HTML output , 256
 hybrid approach , 255
 local machine , 253
 Rmarkdown process , 261
 Rmarkdown , 257
 Shiny

 application , 262
 report.Rmd , 263, 268
 server.R , 258, 261
 ui.R , 261, 263
 user interface , 263

 uploading, cloud , 269

 F
 Functions

 components , 43–44
 Hmisc R package , 43
 invisible() function , 50
 match.arg() function , 47
 match.call() , 48
 message() , 51
 missing() function , 48
 on.exit() function , 50
 R commands , 43
 return() function , 49
 scoping , 44–45, 47
 stop() function , 51
 stopifnot() , 51
 suppressMessages() , 51

Cloud (cont.)

■ INDEX

277

 suppressWarnings() , 51
 warning() , 51

 Fuzzy matching , 152–154, 156

 G
 ggplot2 R package , 61
 GitHub , 84
 group_by() , 171
 groupedtextplot , 78, 80
 gsub() , 148

 H
 Help and documentation , 17–18
 hist() function , 149
 Hmisc package , 55
 Hmisc R package , 43

 I, J, K
 Identity and access management

(IAM) , 200
 img() function , 242
 Intel Math Kernel Library (Intel MKL) , 1
 invisible() function , 50

 L
 Local machine , 253
 Loops

 control , 32
 for loop , 31
 for() , 29
 functions , 29
 head() , 30
 infi nite , 29
 proc.time() , 29
 repeat() , 32
 rnorm , 31
 simulation , 31
 types , 31
 while loop , 31
 xCube , 30

 M
 mainPanel() , 262
 match.arg() function , 47
 Mathematical operators and functions

 calculations , 13
 complex logic tests , 12
 if-else fl ow control , 12
 loops , 11
 matrices operations , 14–15
 scalar operations , 14

 symbolic logic forms , 11
 trigonometric functions , 13

 meanPlot() function , 92
 menuItem() functions , 241, 242
 merge() function , 174
 Microsoft Corporation , 115, 2016
 Microsoft R Open (MRO) , 1, 222
 MiKTeX , 84
 MongoDB

 and R
 BSON query language , 195
 dbAuthenticate (con3, username,

password) , 192
 dbDisconnect() , 196
 dbGetQuery() , 193, 195
 dbShowCollections() , 193
 fNames , 195
 information, locations , 194
 JSON fi le , 194
 mock data , 194, 195
 mongoDbConnect() , 192
 outcomes , 194
 RMongo package , 192–193
 unstructured data , 195
 View() , 193

 data directory , 192
 document store database , 190
 downloading , 191
 folder , 191
 installation process , 190
 JSON and semistructured data , 190
 JSON fi les , 192
 website , 190

 Multiple inheritance , 63
 mutate() , 170

 N
 NAMESPACE fi le , 93
 normalizePath() , 260

 O
 Object-oriented programming (OOP) , 61
 Objects

 complex numbers , 3
 data frame , 4–5
 double numeric , 3
 factors , 3
 integers , 3
 logical , 2–3
 matrix , 4
 missing values , 3
 scalar , 4

 on.exit() function , 50
 on.exit() parameter , 260

■ INDEX

278

 Operators and functions
 assignments , 5–6
 data-type-checking functions , 7–11
 mathematical (see Mathematical operators and

functions)
 subsetting , 6–7

 owSums() , 152

 P, Q
 Package

 adding R code , 92–93
 checkpoint , 83
 covr , 83
 CRAN , 84
 devtools package , 83
 devtools , 90–92
 ggplot2 , 83
 MiKTeX , 84
 root directory , 89
 roxygen2 package , 83
 R package , 83–84
 R Package subdirectories , 90
 tests , 93–95, 97–98
 testthat , 83
 version control

 AdvancedRPkg repository , 85, 87
 desktop.ini , 88
 GitHub , 84
 GitHub desktop , 87–88
 linux kernel , 84
 README and .gitignore fi les , 85–86

 XQuartz , 84
 package_coverage() function , 95
 parent.env() function , 45
 paste0() , 167
 PostgreSQL

 and R , 187–190
 database , 186
 data integrity and reliability , 186
 windows , 186–187

 R
 read.dta() , 142
 Reduce() , 152
 REFUSED , 144–145
 renderPlot() , 227
 reshape() , 176–177
 right_join() , 175
 rowMeans() function , 151, 152
 roxygen2

 classes , 103–104
 data , 102–103
 functions , 99–100

 methods , 104–106
 R Package

 AdvancedRPkg , 107
 check() function , 107
 CRAN , 112
 DESCRIPTION fi le , 107
 ggplot() function , 110
 meanPlot() , 110
 R CMD INSTALL , 111
 README fi le , 111
 show() method , 110
 .tar.gz fi le , 107

 RStudio Server , 218, 220–221

 S
 S3 system

 classes
 data frames , 61, 63
 multiple classes , 62
 multiple inheritance , 63
 object class , 62
 single inheritance , 63
 textplot object , 64
 vectors or generic vectors , 61

 methods
 built-in mtcars data , 68
 custom methods , 66
 expand.grid() , 70
 fortify() function , 68
 generic function , 66
 ggplot() method , 68, 69
 ggplot.lm() method , 70–71
 linear regression model , 69
 methods() function , 66
 ::: operator , 67
 par() function , 65
 plot() function , 65
 plot.table() , 67
 plot.textplot() , 65
 summary() , 68
 textplot object class , 65
 UseMethod() , 66

 S4 system
 classes

 new() , 73
 paste() , 74
 setClass() , 72, 75
 sprintf() , 74
 validity function , 73–74

 class inheritance , 76–77
 methods , 77–80

 select() function , 164–165
 Sepal.Length , 162
 setMethod() , 77

■ INDEX

279

 Shiny
 application , 228, 232
 arguments , 228
 in cloud , 236–237
 fl uidPage() function , 228
 function renderPlot() , 230
 HTML code, creation , 231
 input functions , 229
 mainPanel() , 225, 229
 numericInput() , 232
 play button feature , 233
 plotOutput() , 227
 plotOutput(“piePlot”) , 230
 R calculations , 232
 renderPlot() , 227, 230
 RStudio , 225, 227
 run App play button , 227
 shinyServer() , 227
 sidebarPanel() function , 228
 sliderInput() function , 232
 titlePanel() command , 232
 user fi le uploading , 234–236
 user-interface code , 229
 web application framework , 225

 Shiny Dashboard sampler
 coding , 247
 dashboard’s bones

 dashboard body , 243–245
 dashboard header , 241
 ashboard sidebar , 241–242
 littlest Shiny dashboard , 240

 showMethods() , 77
 sidebarMenu() , 241–243
 sidebarPanel() , 262
 Single inheritance , 63
 Social security number (SSN) , 130
 SPSS

 input fi les , 23–24
 output fi les , 25–26

 SQLite database
 advantages and disadvantages , 182
 and R

 all.equal() , 183
 dbClearResult() , 184
 dbDisconnect() , 186
 DBI package library , 183
 dbIsValid() , 183, 186
 dbSendQuery , 184
 dbWriteTable() , 183
 iris data , 183
 RAM , 185
 rnorm() , 185
 RSQLite library , 183
 sepal and length , 184
 setosa , 184–185

 SQL , 183–184
 VACUUM , 185

 defi nitive guide , 182
 installing , 182
 PostgreSQL (see PostgreSQL)

 stopifnot() function , 64
 str() function , 142
 stringdistmatrix() , 154
 strsplit() , 154
 Structured Query Language

(SQL) , 183
 summary() function , 50
 System and fi les

 accuracy , 19
 automating fi le management , 18
 creation , 18
 fi le.access , 19–20
 fi le.append function , 21
 fi le.copy , 21
 fi le.create , 20
 fi le.exists() , 19
 fi le.info function , 20
 fi le.remove , 20
 getwd() , 19
 high-stakes projects , 19
 PowerPoint , 21
 recursive=TRUE option , 21
 sys.setFileTime function , 20
 TRUE or FALSE , 19

 T
 table() , 142
 tapply() , 52
 test_textplot.R , 94
 tolower() , 153
 toupper() , 153

 U
 unlist() , 150

 V
 valueBox() , 244

 W
 WinSCP , 207–208
 WinSCP upload folder view , 246
 wtd.quantile() , 56

 X, Y, Z
 XQuartz , 84

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Programming Basics
	Advanced R Software Choices
	Reproducing Results
	Types of Objects
	Base Operators and Functions
	Mathematical Operators and Functions
	References

	Chapter 2: Programming Utilities
	Help and Documentation
	System and Files
	Input
	Output
	References

	Chapter 3: Programming Automation
	Loops
	Flow Control
	*apply Family of Functions
	Final Thoughts

	Chapter 4: Writing Functions
	Components of a Function
	Scoping
	Functions for Functions
	Debugging
	Summary

	Chapter 5: Writing Classes and Methods
	S3 System
	S3 Classes
	S3 Methods

	S4 System
	S4 Classes
	S4 Class Inheritance
	S4 Methods

	Summary

	Chapter 6: Writing a Package
	Before You Get Started
	Version Control

	R Package Basics
	Starting a Package by Using DevTools
	Adding R Code
	Tests

	Documentation Using roxygen2
	Functions
	Data
	Classes
	Methods

	Building, Installing, and Distributing an R Package
	Summary

	Chapter 7: Introduction to Data Management Using data.table
	Introduction to data.table
	Selecting and Subsetting Data
	Using the First Formal
	Using the Second Formal
	Using the Second and Third Formals

	Variable Renaming and Ordering
	Computing on Data and Creating Variables
	Merging and Reshaping Data
	Merging Data
	Reshaping Data

	Summary

	Chapter 8: Data Munging with data.table
	Data Munging / Cleaning
	Recoding Data
	Recoding Numeric Values

	Creating New Variables
	Fuzzy Matching
	Summary

	Chapter 9: Other Tools for Data Management
	Sorting
	Selecting and Subsetting
	Variable Renaming and Ordering
	Computing on Data and Creating Variables
	Merging and Reshaping Data
	Summary

	Chapter 10: Reading Big Data(bases)
	SQLite
	Installing SQLite on Windows
	SQLite and R

	PostgreSQL
	Installing PostgreSQL on Windows
	PostgreSQL and R

	MongoDB
	Installing MongoDB on Windows
	MongoDB and R

	Summary

	Chapter 11: Getting a Cloud
	Disclaimers
	Starting Amazon Web Services
	Accessing Your Instance’s Command Line
	Uploading Files to Your Instance
	Final Thoughts

	Chapter 12: Cloud Ubuntu for Windows Users
	Common Commands
	Superuser and Security
	Installing and Using R
	Installing and Using RStudio Server
	Installing Microsoft R
	Installing Java
	Installing Shiny on Your Cloud
	Final Thoughts

	Chapter 13: Every Cloud has a Shiny Lining
	The Basics of Shiny
	Shiny in Motion
	Uploading a User File into Shiny
	Hosting Shiny in the Cloud
	Final Thoughts

	Chapter 14: Shiny Dashboard Sampler
	A Dashboard’s Bones
	Dashboard Header
	Dashboard Sidebar
	Dashboard Body

	Dashboard in the Cloud
	Complete Sampler Code
	References

	Chapter 15: Dynamic Reports and the Cloud
	Needed Software
	Local Machine
	Cloud Instance

	Dynamic Documents
	Dynamic Documents and Shiny
	server.R
	ui.R
	report.Rmd

	Uploading to the Cloud
	Summary

	References
	Index

