
Agile Swift
Swift Programming Using Agile
Tools and Techniques
—
Godfrey Nolan

www.allitebooks.com

http://www.allitebooks.org

Agile Swift
Swift Programming Using

Agile Tools and Techniques

Godfrey Nolan

www.allitebooks.com

http://www.allitebooks.org

Agile Swift: Swift Programming Using Agile Tools and Techniques

Godfrey Nolan
Huntington Woods, Michigan, USA

ISBN-13 (pbk): 978-1-4842-2101-3 ISBN-13 (electronic): 978-1-4842-2102-0
10.1007/978-1-4842-2102-0

Library of Congress Control Number: 2016961810

Copyright © 2017 by Godfrey Nolan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Aaron Black
Technical Reviewer: Bruce Wade
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Jessica Vakili
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author �� ix

About the Technical Reviewer �� xi

 ■Chapter 1: Introduction �� 1

 ■Chapter 2: Swift Unit Testing �� 25

 ■Chapter 3: Third-Party Tools ��� 61

 ■Chapter 4: Mocking �� 97

 ■Chapter 5: UI Testing �� 117

 ■Chapter 6: Test Driven Development �� 131

Index �� 169

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author �� ix

About the Technical Reviewer �� xi

 ■Chapter 1: Introduction �� 1

Hello World Unit Test�� 1

Benefits ��� 2

Agile Testing Pyramid �� 3

Calculator Unit Tests in Xcode ��� 3

Prerequisites��� 4

Getting Started ��� 5

Creating a Class �� 7

Setting Up the User Interface ��� 10

Setting Up the Outlets ��� 11

Create Unit Test Code ��� 15

Run Unit Tests ��� 15

Hello World Unit Test in Ubuntu ��� 17

Prerequisites��� 17

Create and Compile Code ��� 18

Create Test Code ��� 19

Ubuntu Tweaks ��� 19

Run Unit Tests ��� 20

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

GUI Tests �� 21

Hello World GUI Test �� 21

Summary ��� 23

 ■Chapter 2: Swift Unit Testing �� 25

Types of Assertions ��� 25

XCTest Options �� 26

@testable ��� 28

setUp �� 29

tearDown �� 30

Performance Testing ��� 31

Calculator App ��� 32

Creating the View ��� 36

Completing the ViewController Code �� 41

Create the Model Code ��� 42

Tests ��� 43

Unit Testing 102 ��� 44

FIRST Unit Tests �� 44

Maintaining Your Unit Tests �� 45

Code Coverage �� 46

When Things Go Wrong ��� 48

Logs �� 50

Ubuntu Command Line �� 52

Package Manager ��� 54

Tests ��� 55

Summary ��� 60

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

 ■Chapter 3: Third-Party Tools ��� 61

Fast Tests �� 61

Nimble Install �� 62

Nimble Unit Test �� 63

Isolated Unit Tests ��� 64

Mocking �� 65

What Is Mocking ��� 65

Repeatable Unit Tests �� 67

Installing Jenkins �� 68

Calculator Project ��� 72

Self-Verifying Unit Tests �� 76

Slather ��� 76

Technical Debt ��� 78

Swift Lint �� 78

Swift Format ��� 84

SonarQube �� 86

Stevia �� 93

Summary ��� 95

 ■Chapter 4: Mocking �� 97

Same Rules Do Not Apply �� 97

Cuckoo �� 98

Mocking HTTP ��� 101

Mocking User Defaults �� 104

Mocking Date and Time �� 108

Mocking System Settings �� 113

Summary ��� 116

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■Chapter 5: UI Testing �� 117

Recording Tests ��� 118

Coded Tests ��� 121

Component Parts �� 122

Sample Test �� 124

Reporting ��� 125

Summary ��� 129

 ■Chapter 6: Test Driven Development �� 131

Understanding Test Driven Development �� 131

Unit Testing versus TDD �� 132

Value of TDD ��� 132

Writing an App Using TDD�� 132

Feature 1 �� 133

Feature 2 �� 144

Feature 3 �� 157

Conclusion ��� 167

Index �� 169

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Godfrey Nolan is founder and president of RIIS LLC, a mobile development firm in the
Detroit Metro area. He is also the author of Agile Android, Bulletproof Android, Android
Best Practices, Decompiling Android, and Decompiling Java. Godfrey has spoken at
DroidCon and AnDevCon, as well as JavaOne, ASP-Connections, VSLive, CodeMash,
Code PaLOUsa, 1DevDay, and many local Java and .NET user groups on a wide range of
topics such as continuous integration, executable requirements, and mobile security.

www.allitebooks.com

http://www.allitebooks.org

xi

About the Technical
Reviewer

Bruce Wade is a software engineer from British Columbia, Canada. He started in software
development when he was 16 years old by coding his first web site. He went on to study
computer information systems at DeVry Institute of Technology in Calgary, then to
further enhance his skills, he studied visual and game programming at The Art Institute,
Vancouver. Over the years, he has worked for large corporations as well as for several
start-ups. His software experience led him to utilize many technologies, including
C/C++, Python, Objective-C, Swift, Postgres, and JavaScript. In 2012 he started the
company, Warply Designed, to focus on mobile 2D/3D and OS X development. Aside
from hacking out new ideas, he enjoys spending time hiking with his Boxer Rasco,
working out, and exploring new adventures.

www.allitebooks.com

http://www.allitebooks.org

1© Godfrey Nolan 2017
G. Nolan, Agile Swift, DOI 10.1007/978-1-4842-2102-0_1

CHAPTER 1

Introduction

Swift was announced at the WWDC in 2014 and surprisingly in 2015 the code was open
sourced. It can run on both OSX and Ubuntu, which is a huge departure for Apple, which
has typically been a more closed system. The Swift language is a completely different
animal than Objective-C.

Being new, it doesn't have many of the arcane aspects of the much older Objective-C.
Its learning curve is much shallower than Objective-C and will allow new developers to
quickly crank out iOS apps. Well, that is Apple's plan anyway.

Although very new, Swift is evolving quickly and already has built-in unit testing using
XCTest and UI testing using XCUI. As an introduction to Swift Agile testing, we're going
to look at how to do a simple unit test written in Swift, both in Xcode and on the Ubuntu
Linux platform. We’ll finish by writing a UI test using the new XCUI API testing framework.

Hello World Unit Test
Before we go any further let’s look at a simple unit test. For demonstration purposes we
can use a simple Hello World example, which can be created by typing swift package
init on the command line. See Listing 1-1.

Listing 1-1. Hello World

struct HelloWorld {
 var text = "Hello, World!"
}

The corresponding unit test is shown in Listing 1-2, which tests whether the text
variable is "Hello, World!" or not.

Listing 1-2. Hello World Unit Test

func testExample() {
 XCTAssertEqual(HelloWorld().text, "Hello, World!")
}

Chapter 1 ■ IntroduCtIon

2

Unit tests use assertions to make sure the method provides the expected result. In
this case, we’re using XCTAssertEqual to see if the Add method returns 2 when adding 1 + 1.
If the test works, then we should see the output shown in Listing 1-3 when we run the
swift test command.

Listing 1-3. Test output

$ swift test
Test Suite 'All tests' started at 13:12:28.961
Test Suite 'debug.xctest' started at 13:12:28.976
Test Suite 'HelloWorldTests' started at 13:12:28.976
Test Case 'HelloWorldTests.testExample' started at 13:12:28.976
Test Case 'HelloWorldTests.testExample' passed (0.0 seconds).
Test Suite 'HelloWorldTests' passed at 13:12:28.976
 Executed 1 test, with 0 failures (0 unexpected) in 0.0 (0.0)

seconds
Test Suite 'debug.xctest' passed at 13:12:28.976
 Executed 1 test, with 0 failures (0 unexpected) in 0.0 (0.0)

seconds
Test Suite 'All tests' passed at 13:12:28.976
 Executed 1 test, with 0 failures (0 unexpected) in 0.0 (0.0)

seconds

Benefits
If you’re new to Agile development, you’re probably wondering how Agile can improve
the development process. At its most basic, Agile and unit testing in particular helps with
the following:

•	 Catch more mistakes

•	 Confidently make more changes

•	 Perform built-in regression testing

•	 Extend the life of your codebase

If you write unit tests and they cover a significant portion of your code, then you’re
going to catch more bugs. You can make simple changes to tidy up the code or make
extensive architectural changes. If you run your unit tests after your changes and they all
pass then you can be confident that you didn’t introduce any subtle defects.

The more unit tests you write, the more you can regression test your app whenever
you change the code. And once you have a lot of unit tests then it becomes a regression test
suite that allows you to have the confidence to do things you wouldn’t otherwise attempt.

Unit tests mean you no longer have to program with a “leave well enough alone”
mindset. You can now make significant changes, such as changing to a new database,
updating your backend API, and even changing from Objective-C to Swift, and be happy
that your app is behaving the same as before you made the changes if all the tests execute
without any errors.

Chapter 1 ■ IntroduCtIon

3

Agile Testing Pyramid
There are several types of tests you need in your test suite to make sure your app is fully
tested. You should have unit tests for the component or method level functionality, API
tests for any backend, RESTful APIs and GUI tests for your iOS screens, and general
application workflow.

The classic Agile test pyramid first appeared in Mike Cohn’s book Succeeding with
Agile. This pyramid is a good guide of the relative quantity of each type of tests your app is
going to need; see Figure 1-1.

In this book we’re going to focus primarily on unit tests as well as some GUI tests.
We’ll begin by showing how to create a simple unit test in both flavors of Swift—Ubuntu
and Xcode—as well as a simple GUI test using XCUI.

Calculator Unit Tests in Xcode
In the following example we show how to create a simple calculator in Xcode. It's not
even a true calculator, as it just adds two numbers. See Figure 1-2. This unit test should
return true assuming adding two numbers in the app works correctly.

Figure 1-1. Agile pyramid

Chapter 1 ■ IntroduCtIon

4

To set up and run a unit test, you need to perform the following tasks:

•	 Make sure you have the prerequisites

•	 Create and compile calculator code

•	 Create unit test code

•	 Run unit tests

Prerequisites
The minimum requirements for the Swift examples in this book are OSX 10.11 (El
Capitan) and Xcode 8.0. The following example was created using Xcode 8.0 with Swift 3.0
running on OSX 10.11.

Figure 1-2. Adding two numbers in Xcode

Chapter 1 ■ IntroduCtIon

5

Getting Started
 1. In Xcode, choose File ➤ New Project and then choose an iOS

single view application. See Figure 1-3.

 2. Click Next. Then choose Calculator as the Product Name.
Choose Swift as the language and check the Include Unit Tests
and Include UI Test checkboxes. See Figure 1-4.

Figure 1-3. Single view application

Chapter 1 ■ IntroduCtIon

6

 3. Next, click on the Create to create the project shell. See
Figure 1-5.

Figure 1-4. Project options

Chapter 1 ■ IntroduCtIon

7

Creating a Class
Now we need to add the calculator’s code, as follows.

 1. Choose File ➤ New ➤ File and then choose Swift File as the
template for your file, as shown in Figure 1-6.

Figure 1-5. Create an application

Chapter 1 ■ IntroduCtIon

8

 2. Name the file CalculatorModel.swift; see Figure 1-7.

Figure 1-6. Create a Swift file

Chapter 1 ■ IntroduCtIon

9

 3. Add the Calculator class code to CalculatorModel.swift, as
shown in Listing 1-4.

Figure 1-7. CalculatorModel.swift

Chapter 1 ■ IntroduCtIon

10

Listing 1-4. Calculator Class

import Foundation

class Calculator {

 var a: Int
 var b: Int

 init(a:Int, b:Int){
 self.a = a
 self.b = b
 }

 func add(a:Int, b:Int) -> Int {
 return a + b
 }

 func sub(a:Int, b:Int) -> Int {
 return a - b
 }

 func mul(a:Int, b:Int) -> Int {
 return a * b
 }

}

To simplify our testing we’re initializing the class so we can prefill the data in the two
fields that we’re going to add. We’ve also added some other functions that we’ll use later.

Setting Up the User Interface
Next we need to create the user interface in Xcode so we can add our two numbers on an
iOS device.

 1. In the Project Navigator, click on the Main.storyboard file

 2. Search for Text Field in the Object Library .

 3. Drag two text fields onto the View Controller in the
Storyboard.

 4. Search for Button in the Object Library .

 5. Drag a button and place it beside the two text fields.

Chapter 1 ■ IntroduCtIon

11

 6. Double-click on the button and change its text to Add.

 7. Search for a Label in the Object Library

 8. Drag two labels on to the View Controller and place them
under the text fields.

 9. Click on the Label and rename one to Total: and the other to
Result.

When you’re finished, the View Controller should look like Figure 1-8.

Setting Up the Outlets
To connect the elements on our View Controller to the code, we need to first set up our
outlets.

 1. We want to make some room to show the ViewController
and the swift code, so first click on to hide the Document
Outline.

 2. Click on Show the Assistant Window to see the View
Controller code.

Figure 1-8. Calculator Storyboard

Chapter 1 ■ IntroduCtIon

12

 3. It’s still crowded, so click on to hide the Utility area of
Xcode. See Figure 1-9.

 4. Hold Ctrl and drag from the first text field to just under the
class definition.

 5. In the menu that pops up, choose the following (see Figure 1-10)
and click Connect.

•	 Connection: Outlet

•	 Name: aTextField

•	 Type: UITextField

•	 Storage: Weak

Figure 1-9. Calculator Storyboard and View Controller code

Chapter 1 ■ IntroduCtIon

13

 6. Repeat these steps for bTextField.

 7. Hold Ctrl and drag from the Result Label to just under the
class definition.

 8. In the menu that pops up, choose the following

•	 Connection: Outlet

•	 Name: resultLabel

•	 Type: UILabel

•	 Storage: Weak

 9. Now let’s create an IBAction for the Add button so it can call
a method to add the values in the text field values and put the
result in the resultField.

 10. Click on the Add button and, while holding the Ctrl button,
drag it to the space under the IBOutlets.

 11. In the pop-up menu, choose the following:

•	 Connection: Action

•	 Name: calculateTapped

•	 Type: UIButton

•	 Event: Touch Up Inside

•	 Arguments: Sender

 12. Click Connect.

Figure 1-10. IBOutlet for aTextField

Chapter 1 ■ IntroduCtIon

14

If everything was entered correctly, your ViewController.swift code should be
similar to the code in Listing 1-5.

Listing 1-5 shows the ViewController.swift code that allows our interface to
interact with the CalculatorModel class.

Listing 1-5. Updated ViewController.swift Code

import UIKit

class ViewController: UIViewController {

 @IBOutlet var aTextField : UITextField!
 @IBOutlet var bTextField : UITextField!
 @IBOutlet var resultLabel : UILabel!

 @IBAction func calculateTapped(_ sender : UIButton) {
 }

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

}

In Listing 1-5, we can see the IBOutlet definitions for the two text fields and the result
label where we're going to put the result of our calculation. We also have an IBAction that
will call the Calculator.Add method and update the resultLable field.

To finish our simplest addition calculator, we need to create a calculator object
resCalc = Calculator() and update the resultLabel so it adds aTextField and
bTextField. This code is shown in Listing 1-6.

Listing 1-6. Updated calculateTapped() Method

let resCalc = Calculator(a:0, b:0)

@IBAction func calculateTapped(_ sender: UIButton) {
 resultLabel.text =
 String(resCalc.add(
 a: Int((aTextField.text! as NSString).intValue),
 b: Int((bTextField.text! as NSString).intValue)))

}

Run the app and click the Add button to make sure that the calculation is working
correctly.

Chapter 1 ■ IntroduCtIon

15

Create Unit Test Code
Add the code in Listing 1-7 to the CalculatorTests.swift file, which you'll find in the
CalculatorTests directory created by Xcode.

Listing 1-7. CalculatorTests.swift

import XCTest
@testable import Calculator

class CalculatorTests: XCTestCase {

 let resCalc = Calculator(a:0, b:0)

 override func setUp() {
 super.setUp()
 }

 override func tearDown() {
 super.tearDown()
 }

 func testAdd() {
 XCTAssertEqual(resCalc.add(a: 1,b: 1),2)
 XCTAssertEqual(resCalc.add(a: 1,b: 2),3)
 XCTAssertEqual(resCalc.add(a: 5,b: 4),9)
 }

}

CalculatorTests imports the calculator code and the XCTest framework. After
initializing the calc object, we have a testAdd method to test some simple calculations
using the XCTAssertEqual assertions. We assert that 1+1 is equal to 2, 1+2 is 3, and 5+4 is 9.

Run Unit Tests
To run the tests, click on the Test navigator tab (5th) to see Figure 1-11.

Chapter 1 ■ IntroduCtIon

16

Right-click on CalculatorTests and choose Run CalculatorTests. If the tests
pass, you should see a green checkmark beside the test method showing it passed. See
Figure 1-12.

If the tests don't pass, it'll show up a red X with the offending XCTAssertEqual
highlighted; see Figure 1-13.

Figure 1-11. Test navigator

Figure 1-12. Passing tests

Chapter 1 ■ IntroduCtIon

17

Hello World Unit Test in Ubuntu
In the following example, we show how to create our simple unit test example on the
Ubuntu platform. This should also return true, assuming adding two numbers in the
calculator Android app works correctly.

I'm also going to contradict what I said earlier about Swift, as unit tests on Ubuntu
are the one area where Swift is not very smooth or obvious. So it needs some explanation
before it gets fixed in later versions of Swift. We’ll talk about that more in the Ubuntu
tweaks section.

To set up and run a unit test, we need to talk about the following steps:

•	 Install the prerequisites

•	 Create and compile the calculator code

•	 Create the test code

•	 Add Ubuntu tweaks

•	 Run the unit tests

Prerequisites
You need to be using either Ubuntu 14.04 or 15.10. Download the latest 3.x development
snapshot from https://swift.org/download/. This is a ZIP file with the compiled Swift
binaries so you can unzip it and add it to your path as shown in Listing 1-8. Modify your
snapshot name appropriately.

Figure 1-13. Failing the test

https://swift.org/download/

Chapter 1 ■ IntroduCtIon

18

Listing 1-8. Creating a Swift Environment

$ tar -xvzf swift-3.0-RELEASE-ubuntu14.04.tar.gz
$ pwd
$ export PATH=/home/ubuntu/swift-3.0-RELEASE-ubuntu14.04/usr/bin:$PATH

Create and Compile Code
Create a sources folder and add the code in Listing 1-9 to a new file called Calculator.
swift.

Listing 1-9. Calculator.swift

class Calculator {
 func add(a:Int, _ b:Int) -> Int {
 return a + b
 }

 func sub(a:Int, _ b:Int) -> Int {
 return a - b
 }

 func mul(a:Int, _ b:Int) -> Int {
 return a * b
 }
}

Before we compile the code, we need to create a Package Manager file in the top-
level directory; see Package.swift in Listing 1-10.

Listing 1-10. Package.swift

import PackageDescription

let package = Package(
 name: "Calculator"
)

If everything is set up correctly, you should have the structure shown in Figure 1-14.

Figure 1-14. Initial directory structure

Chapter 1 ■ IntroduCtIon

19

Run the swift build command, which will create a .build directory if the code
compiles.

Create Test Code
Create a Tests directory and enter the code in Listing 1-11 into a new file called
CalculatorTests.swift, which you should put in the Tests/CalculatorTests directory.

Listing 1-11. CalculatorTests.swift

import XCTest
@testable import Calculator

class CalculatorTests: XCTestCase {
 var calc : Calculator!

 override func setUp() {
 super.setUp()
 calc = Calculator()
 }

 func testAddCheck() {
 XCTAssertEqual(calc.add(1,1),2)
 }
}

CalculatorTests imports the calculator code and the XCTest framework. We have
a setup that initializes the calc object and a test method to check that 1 + 1 does indeed
equal 2.

Ubuntu Tweaks
In Xcode the code in Listing 1-11 would work fine, but we need a few extras in Ubuntu.
First create a LinuxMain.swift file in the Tests directory. It creates the constructor for
the tests, as shown in Listing 1-12.

Listing 1-12. LinuxMain.swift

import XCTest
@testable import CalculatorTests

XCTMain([
 testCase(CalculatorTests.allTests)
])

Finally, we also need to add some XCTest extensions to the test case in
CalculatorTests.swift that lists all our tests methods. See Listing 1-13.

Chapter 1 ■ IntroduCtIon

20

Listing 1-13. XCTest Extension

extension CalculatorTests {
 static var allTests : [(String, (CalculatorTests) -> () throws -> Void)]
{
 return [
 ("testAddCheck", testAddCheck)
]
 }
}

Figure 1-15 shows the directory structure for our code and tests.

Run Unit Tests
Run the swift test command to see the result of the unit tests. If your tests are
successful they show the output shown in Listing 1-14.

Listing 1-14. Command-Line Unit Test Output on Ubuntu

$ swift test
Test Suite 'All tests' started at 13:12:28.961
Test Suite 'debug.xctest' started at 13:12:28.976
Test Suite 'HelloWorldTests' started at 13:12:28.976
Test Case 'HelloWorldTests.testExample' started at 13:12:28.976
Test Case 'HelloWorldTests.testExample' passed (0.0 seconds).
Test Suite 'HelloWorldTests' passed at 13:12:28.976
 Executed 1 test, with 0 failures (0 unexpected) in 0.0 (0.0) seconds
Test Suite 'debug.xctest' passed at 13:12:28.976
 Executed 1 test, with 0 failures (0 unexpected) in 0.0 (0.0) seconds
Test Suite 'All tests' passed at 13:12:28.976
 Executed 1 test, with 0 failures (0 unexpected) in 0.0 (0.0) seconds

Figure 1-15. Project directory structure

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ IntroduCtIon

21

GUI Tests
If we look back at the Agile pyramid, we can see that we also need some GUI tests. We
can use the XCUI API framework for our testing. XCUI was released at WWDC 2015 and
is short for XCTest and UI. In XCUI we have a choice. We can either write the code from
scratch or record interactions with the UI and then modify the code later.

 ■ Note You can only do GuI tests in Xcode. You can’t do any XCuI testing on the ubuntu
platform as the open source version of Swift is missing all of the uIKit GuI classes.

Hello World GUI Test
Listing 1-15 shows a simple example where we launch the previous calculator app, as
shown in Figure 1-8.

To create an XCUI test, do the following:

 1. Click on CalculatorUITests in the CalculatorUITests folder.

 2. Click within the testExample() method

 3. Click the red record button, which is highlighted in Figure 1-16.

 4. Enter 12 in the first text field

 5. Enter 13 in the second text field

 6. Click the Add button, which will update the Result field to 25.

 7. Click on the Result field.

Figure 1-16. XCUI record button

Chapter 1 ■ IntroduCtIon

22

The generated code can be seen in Listing 1-15.

Listing 1-15. GUI Tests

import XCTest

class CalculatorUITests: XCTestCase {

 override func setUp() {
 super.setUp()
 XCUIApplication().launch()

 }

 func testExample() {
 let app = XCUIApplication()
 let addElementsQuery = app.otherElements.containing(.button,

identifier:"Add")
 let textField = addElementsQuery.children(matching: .textField).

element(boundBy: 0)
 textField.tap()
 textField.typeText("12")

 let textField2 = addElementsQuery.children(matching: .textField).
element(boundBy: 1)

 textField2.tap()
 textField2.typeText("13")
 app.buttons["Add"].tap()

 XCTAssert(app.staticTexts["25"].exists) }

}

The text fields in our sample app are 12 and 13, so if everything is working correctly,
the Result label will display 25. tap() simulates a user clicking on the Add button and
XCTAssert's that 25 is displayed. See Figure 1-17.

Chapter 1 ■ IntroduCtIon

23

Figure 1-17. Running the XCUI tests

Right-click on the calculator tests and choose Run Calculator Tests to run the GUI
tests. The Xcode simulator fires and the test code interacts with the GUI and passes or
fails, depending on your tests.

Summary
In this chapter, we looked at an overview of the current state of Swift unit testing and
UI testing in Xcode and on the Ubuntu platform. In the rest of the book, we’ll explore
Agile testing in a lot more detail so you can see how to apply these techniques to your
application to produce cleaner, faster code with fewer defects.

25© Godfrey Nolan 2017
G. Nolan, Agile Swift, DOI 10.1007/978-1-4842-2102-0_2

CHAPTER 2

Swift Unit Testing

Swift’s implementation of unit testing uses the XCTest library. Swift does not use OCUnit
for any unit testing. XCTest is easy to set up and works within Xcode, on the command
line in OSX, or on the open source Linux version of Swift.

In this chapter we take a deeper look at Swift unit testing. Unit tests are typically
written by developers and not QA folks. Ideally, they’re written before or while the
application code is being written in a test driven development environment. Writing unit
tests weeks after coding, when you’ve forgotten all about the functionality of the app or
the overall context of the code’s expected functionality, can be problematic.

Types of Assertions
In our Hello, World and Calculator examples in the last chapter, we used XCTAssertEqual
but there are other assertions we can use in the XCTest library. Table 2-1 shows the
complete list.

Chapter 2 ■ Swift Unit teSting

26

Let’s look at some simple examples of these assertions.
XCTAssert(2+2==4,“error message”)
XCTAssertEqual(2+2, 4,“error message”)
XCTAssertEqualWithAccuracy(5/2, 2.5,0.01,“error message”)
XCTAssertFalse(2 == 1,“error message”)
XCTAssertTrue(1 == 1)
XCTAssertGreaterThan(2, 1,“error message”)
XCTAssertGreaterThanOrEqual(2, 2,“error message”)
XCTAssertLessThan(1, 2,“error message”)
XCTAssertLessThanOrEqual(1, 2,“error message”)
XCTAssertNil(Calculator,“error message”)
XCTAssertNotEqual(1, 2,“error message”)
XCTAssertNotEqualWithAccuracy(1, 2, 0.1, “error message”)
XCTAssertNotNil(Calculator,“error message”)

XCTest Options
The XCTest methods always start with the word “test” and then a camel case description
of what you are testing, e.g., testDivideByZerosGuarded. It takes no arguments and
returns no result. Unit tests live in their own test directory and so do not comingle with
the application code. They do not test the user interface or view, but use assertions to test
your model code. We will test the view code but it will be in a later chapter using the XCUI
library.

Table 2-1. Assertions

Assertion Description

XCTAssert Tests that two values are the same

XCTAssertEqual Tests that two values are equal

XCTAssertEqualWithAccuracy Tests that two floating point values (a,b) are equal
within a tolerance of c

XCTAssertFalse Tests if a Boolean condition is false

XCTAssertTrue Tests if a Boolean condition is true

XCTAssertGreaterThan Tests that one value is greater than the other

XCTAssertGreaterThanOrEqual Tests that one value is greater or equal to the other

XCTAssertLessThan Tests that one value is less than the other

XCTAssertLessThanOrEqual Tests that one value is less than or equal to the other

XCTAssertNil Tests that an object is nil

XCTAssertNotEqual Tests that two values are not equal

XCTAssertNotEqualWithAccuracy Tests that two floating point values (a,b) are not
equal within a tolerance of c

XCTAssertNotNil Tests that an object is not nil

Chapter 2 ■ Swift Unit teSting

27

The structure of a test file is shown in Listing 2-1, where all test classes are subclasses
of XCTestCase.

Listing 2-1. Test Class Structure

class Tests: XCTestCase {
 override func setUp() {
 // initialization or setup
 }

 func testExample() {
 // assert and verify
 }

 override func tearDown() {
 // revert to original state
 }
}

No matter whether you are writing code in Swift, Objective-C, Java, or C#, all unit
testing should use the concept of setup-record-verify. Setup means creating objects,
data, or even rows in a database so you can simulate the real-world environment. Record
means calling the method or object and verify means making sure the test returned the
correct results, in our case using assertions. There’s also a cleanup task so you can revert
the system to how it was before testing started. If you can’t easily set up, record, and verify
your tests, then unit testing becomes very difficult.

The following XCTest elements help set up, record, and verify your tests.

•	 @testable

•	 setUp

•	 tearDown

•	 measureBlock

@testable allows us to easily target modules for testing. setUp gets called before
each test runs. tearDown gets called after each test runs. And finally, measureBlock
provides us with a way to measure how long a test case takes to run.

We’ll see later how these are created for us automatically by Xcode. We’ll also see
later why these are important is helping us organize our tests. Test code should be treated
just like real code. It’s very easy to start to see test code as having a lower status than your
application code. But, just like with your production code, you should be looking at your
tests and refactoring them to see if you can make the code neat and tidy so that you or any
other developer can understand it at a later date.

Chapter 2 ■ Swift Unit teSting

28

@testable
One of the best received Swift 2 features was the introduction of the @testable keyword
or annotation. This added the ability to access anything internal or public from test cases
by making it @testable. Now all you need to do is import your model code in your test
class and you are good to go. In Figure 2-1, we create the CalculatorModel.swift code.

Now we can import the class using the @testable keyword, as shown in Figure 2-2.
And we can now call the Calculator code and use it in our assertions.

Figure 2-1. CalculatorModel.swift internal class

Figure 2-2. Calculator tests

Chapter 2 ■ Swift Unit teSting

29

setUp
The setup method is used to initialize any data or objects before a test is called. For
example, setup could include code to write to log files or create objects to be used in the
test. setUp() saves you from having to repeat the calls in each test.

Listing 2-2 shows the test code on Ubuntu without using setUp.

Listing 2-2. Without setUp

class Tests: XCTestCase {
 var simpleCalc : Calculator!

 func testAddTwoNumbersCheck() {
 simpleCalc = Calculator()
 XCTAssertEqual(simpleCalc.add(a:1, b:1),2)
 }

 func testSubTwoNumbersCheck() {
 simpleCalc = Calculator()
 XCTAssertEqual(simpleCalc.sub(a:3, b:1),2)
 }

 func testMulTwoNumbersCheck() {
 simpleCalc = Calculator()
 XCTAssertEqual(simpleCalc.mul(a:2, b:3),6)
 }
}

Listing 2-3 shows the same test code with the setup() method.

Listing 2-3. With the setUp Method

class Tests: XCTestCase {
 var simpleCalc : Calculator!

 override func setUp() {
 super.setUp()
 simpleCalc = Calculator()
 }

 func testAddTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.add(1,1),2)
 }

 func testSubTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.sub(3,1),2)
 }

Chapter 2 ■ Swift Unit teSting

30

 func testMulTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.mul(2,3),6)
 }
}

tearDown
tearDown is called after each test run. Using our previous example, the code becomes
Listing 2-4 and the Calculator object is now destroyed before each test method.

Listing 2-4. tearDown

class Tests: XCTestCase {
 var simpleCalc : Calculator!

 override func setUp() {
 super.setUp()
 simpleCalc = Calculator()
 }

 override func tearDown() {
 super.tearDown()
 simpleCalc = nil
 }
 func testAddTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.add(1,1),2)
 }

 func testSubTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.sub(3,1),2)
 }

 func testMulTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.mul(2,3),6)
 }
}

Chapter 2 ■ Swift Unit teSting

31

Performance Testing
Using the self.measure() XCTest function, we can see how long a specific test or tests are
taking to run. Listing 2-5 shows an example method called testPerformanceExample(),
which uses self.measure() to see how long our XCTAssert on a simple addition would
take.

Listing 2-5. Timing Example

func testPerformanceExample() {
 self.measure() {
 XCTAssertEqual(self.resCalc.add(a:1, b:2),3)
 }
}

If we run the test in Xcode, as shown in Figure 2-3, we also see that the test runs
successfully.

Additionally, Xcode provides the ability to baseline your test, as shown in Figure 2-4, so
that you can see how your test is performing over time to see if it’s getting better or worse.

Figure 2-3. Timing your tests

Chapter 2 ■ Swift Unit teSting

32

Calculator App
In this section, we’re going to create a simple app to show how easy it is to add unit
testing to Swift apps in Xcode. We’ll look at how much we get out of the box and then
create a calculator app to do some basic unit tests.

First create a new Xcode project. We want it to be a single view (iOS) application.
Call it Calculator again and make sure to check the Include Unit Tests checkbox
(see Figure 2-5).

Figure 2-4. Baseline your test times

Chapter 2 ■ Swift Unit teSting

33

Click on the CalculatorTests directory once the Xcode editor opens. You should be
able to see that the shell of a test file, called CalculatorTests.swift, has already been
created, as shown in Figure 2-6.

Figure 2-5. Create application

Figure 2-6. CalculatorTests.swift

Chapter 2 ■ Swift Unit teSting

34

At the top of the file, we see

import XCTest
@testable import Calculator

This imports the XCTest testing framework and uses the @testable Swift command
to tell the compiler that we want to test against the Calculator module.

The class is called CalculatorTests and it extends XCTestCase:

class CalculatorTests: XCTestCase

There are four stub methods created automatically—setUp() and tearDown(),
which run before and after every test, testExample(), which is a unit test stub, and
testPerformanceExample(), which we use when we want to know how long something
takes to run. Note that all test methods in XCTest need to start with the word “test”. We
get all this without having to write any code.

While we’re here, let’s add an assertion to the testExample() method. Change the
testExample to the code in Listing 2-6 so you can see how the tests run in Xcode.

Listing 2-6. XCTAssert Unit Test

func testExample() {
 let result = 2+2
 XCTAssert(result == 4, "something gone wrong here")
}

Listing 2-6 tests that 2+2 is indeed equal to 4 using XCTAssert. The error string after
the test is typically used to give you a hint about what test failed. But in this example, it’s
just a simple “something gone wrong here” catch-all error message.

Click on the test tab in the Navigator area so you can see the Test Navigator. Run
the test by right-clicking on testExample() in the Test Navigator and choosing Test
"testExample()". The green arrow indicates that it’s a passing test. You should see the
same view as shown in Figure 2-7.

Chapter 2 ■ Swift Unit teSting

35

We can also see a report on how the tests ran if we right-click again on
testExample() in the Test Navigator and choose Jump to report. See Figure 2-8.

While we don’t have that much to report yet, it does show us where we need to go
when we start writing more comprehensive unit tests.

To complete this app, you need to take the following steps:

 1. Create the user interface or view.

 2. Create the model code to perform the calculations.

Once that’s completed, you can return to unit tests.

Figure 2-8. Test report

Figure 2-7. testExample test passes

Chapter 2 ■ Swift Unit teSting

36

Creating the View
Figure 2-9 shows the calculator layout in Main.Storyboard. The numbers and the
operations are buttons and we’re using a text field to display the results.

Setting Up the User Interface
 1. Click on Main.Storyboard in the Project Navigator.

 2. Search for Text Field in the Object Library at the bottom of

the Utilities area.

 3. Drag a Text Field onto the View Controller.

 4. Click on the Size Inspector tab at the top of the Utilities

area.

Figure 2-9. Calculator layout

Chapter 2 ■ Swift Unit teSting

37

 5. Set the measurements as follows:

•	 X: 70

•	 Y: 30

•	 Width: 250

 6. Going back to the Object Library, search for a Button.

 7. Drag a Button and place it just under the left side of the text
field.

 8. Double-click on the Button and rename it the number 7.

 9. Drag and rename the remaining buttons so that the View
Controller looks like Figure 2-10.

Setting Up the Outlets
To connect the elements on the View Controller to the code, you need to first set up the
outlets:

 1. We want to make some room to show the ViewController

swift code, so first click on to hide the Document Outline.

 2. Next click on Show the Assistant Window to see the

ViewController code.

 3. Click on the number 7 at the same time as control and then
drag it across to the code.

Figure 2-10. Calculator buttons and results text field

Chapter 2 ■ Swift Unit teSting

38

 4. In the menu that pops up, choose the following and click
Connect; see Figure 2-11.

 i. Connection: Action

 ii. Name: compute

 iii. Type: UIButton

 iv. Event: Touch Up Inside

 v. Arguments: Sender

 5. Repeat these steps for the remaining numbers.

 6. Hold control and drag the + field to the ViewController code.

Figure 2-11. Connect the numbers

Chapter 2 ■ Swift Unit teSting

39

 7. In the menu that pops up, choose the following and click
Connect; see Figure 2-12.

•	 Connection: Action

•	 Name: operation

•	 Type: UIButton

•	 Event: Touch Up Inside

•	 Arguments: Sender

 8. Repeat this process for =, -, *, and /.

 9. Next, hold Control and drag the Clear button to the code.

 10. In the menu that pops up, choose the following and click
Connect; see Figure 2-12.

•	 Connection: Action

•	 Name: clear

•	 Type: UIButton

•	 Event: Touch Up Inside

•	 Arguments: Sender

Figure 2-12. Connect the operations

Chapter 2 ■ Swift Unit teSting

40

 11. Finally, we connect the text field where we are going to place
the results of our calculations.

 12. Hold control and drag the text field to the ViewController
code.

 13. In the menu that pops up, choose the following and click
Connect; see Figure 2-14.

•	 Connection: Outlet

•	 Name: resultsFld

•	 Type: UITextField

•	 Storage: Strong

Figure 2-14. Connecting the Clear button

Figure 2-13. Connect the Clear button

Chapter 2 ■ Swift Unit teSting

41

Completing the ViewController Code
Listing 2-7 shows the complete code for our ViewController, including the compute,
operation, and clear fields. The operation code calls our CalculatorModel code, which
performs the calculations. We need to isolate the operations or model code by putting it
in a different class, which then makes it possible to unit test our code.

Listing 2-7. ViewController Code

 import UIKit

 class ViewController: UIViewController {
 @IBOutlet var resultsFld: UITextField!

 var res = Int()
 var num = Int()
 var op = String()

 let resCalc = CalculatorModel()

 override func viewDidLoad() {
 super.viewDidLoad()
 op = "="
 resultsFld.text = ("\(res)")
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 @IBAction func compute(sender: UIButton) {
 num = num * 10 + Int(sender.titleLabel!.text!)!
 resultsFld.text = ("\(num)")
 }

 @IBAction func operation(sender: UIButton) {

 switch op {
 case "=":
 res = num
 case "+":
 res = resCalc.add(res, num)
 case "-":
 res = resCalc.sub(res, num)
 case "*":
 res = resCalc.mul(res, num)
 case "/":
 res = resCalc.div(res, num)

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Swift Unit teSting

42

 default:
 print("error")
 }

 num = 0
 resultsFld.text = ("\(res)")

 if(sender.titleLabel!.text == "=") {
 res = 0
 }

 op = sender.titleLabel!.text! as String!

 }

 @IBAction func clear(sender: UIButton) {
 res = 0
 num = 0
 op = "="
 resultsFld.text = ("\(res)")
 }
}

Create the Model Code
The code for our Calculator model is shown in Listing 2-8. We have very simple add, sub,
mul, and div functions. Note also that we’re putting a guard around the div operation to
protect against dividing by zero.

Listing 2-8. CalculatorModel.swift

import Foundation

class CalculatorModel {

 var a: Int!
 var b: Int!

 func add(_ a:Int,_ b:Int) -> Int {
 return a + b
 }

 func sub(_ a:Int,_ b:Int) -> Int {
 return a - b
 }

Chapter 2 ■ Swift Unit teSting

43

 func mul(_ a:Int,_ b:Int) -> Int {
 return a * b
 }

 func div(_ a:Int,_ b:Int) -> Int {

 guard b != 0 else {
 return 0
 }
 return a / b
 }

}

Tests
We now go back to CalculatorTests.swift in the CalculatorTests directory and add
the testAdd() code in Listing 2-9. This file allows us to do some simple unit tests on the
add method in the CalculatorModel class.

Listing 2-9. testAdd()

import XCTest
@testable import Calculator

class CalculatorTests: XCTestCase {

 var resCalc : CalculatorModel!

 override func setUp() {
 super.setUp()
 resCalc = CalculatorModel()
 }

 func testAdd() {
 XCTAssertEqual(resCalc.add(1, 1),2)
 XCTAssertEqual(resCalc.add(1, 2),3)
 XCTAssertEqual(resCalc.add(5, 4),9)
 }
}

Figure 2-15 shows the test results for our unit test in the Test Navigator. We also
included a divide by zero test to make sure the guard is working effectively.

Chapter 2 ■ Swift Unit teSting

44

We can do a lot more with our Swift unit tests, which we’ll talk about later in this
chapter. But it is worth noting that it is simplicity itself to set up and use unit testing with
the XCTest library for Swift in Xcode.

Unit Testing 102
We touched earlier on what makes a good unit test. At its most basic, a unit test should
have the following “first” qualities, which were first coined by Tim Ottinger and Brett
Schuchert:

•	 Fast

•	 Isolated

•	 Repeatable

•	 Self-verifying

•	 Timely

FIRST Unit Tests
There’s no point in writing unit tests unless they finish fast. If they’re too slow then over
time they will get skipped as people get bored.

Unit tests should be isolated so that your tests don’t have to worry about whether a
third-party server is running or not or if the WiFi is down. We’ll talk about how to do that
in the chapter on mocking.

Figure 2-15. Test results

Chapter 2 ■ Swift Unit teSting

45

Unit tests should be repeatable and give you the same result each time. Users will
lose confidence if your tests start to produce random behavior.

Unit tests should be self-verifying. We’re familiar with the concept of assertions and
we know that they are part of the Setup-Record-Verify process of unit testing. But are we
sure that our unit tests are testing our code adequately? Are they only testing happy paths
or are they also testing enough edge cases so we can be confident when we add new
features? Code coverage can help us here and we’ll talk about that later in this section.

Finally, unit tests should be timely, which means tests should not be written when all
the code is completed to make your code coverage numbers look better. Write your unit
tests as you write your code, preferably using Test Driven Development (TDD), which we
cover in a later chapter. Best practices dictate that you need to understand the application
code when you’re writing your unit tests; otherwise, you’re not going to know what to test
and you’re not going to write good tests.

Maintaining Your Unit Tests
So far we’ve only written a couple of tests, but what happens when you have 100s or 1000s
of tests? Just like application code, unit tests can become unmaintainable and break
easily as their numbers grow. We need to make sure that we’re paying attention to the
tests and practice refactoring them early and often.

We also need to make sure our unit tests have clear and concise error messages so
we have some hope of finding out what error failed and why.

Error Messages
Like with application code, we quickly forget all the details of how the tests function. If
we haven’t written any tests in a while, it gets a lot more difficult to understand what was
being tested and why. Writing optional error messages is one simple way to help reverse
the process and give yourself hints that will hopefully jog your memory to remind you
what you were testing.

XCTest assertions take two or more arguments, as you’ve seen in earlier examples.
After the arguments comes the optional error message string; see Listing 2-10. XCTest will
display the error message if the assertions fails. You can also include variable names in
the error message to make the error message more meaningful.

Listing 2-10. Meaningful Error Messages

func testAdd() {
 XCTAssertEqual(resCalc.add(1,1),2,"testAdd failed - 1 + 1 does not equal

2")
}

Xcode also allows you to filter on failed tests only, as shown in Figure 2-16, which can
be useful as your tests start to grow exponentially.

Chapter 2 ■ Swift Unit teSting

46

Parameterized
Listing 2-11, shows a simple function that multiplies two inputs, a and b.

Listing 2-11. Multiply Function

func multiply(_ a: Int, _ b: Int) -> Int {
 return a * b
}

Instead of writing multiple lines of assert statements, we can use Swift parameters
to write one XCTAssertEqual and pass in multiple tests, as shown in Listing 2-12. This
makes for neater and more understandable tests.

Listing 2-12. Parameterized Tests

class MyTest: XCTestCase {

 func testMulParams() {
 let cases = [(4,3,12), (2,4,8), (3,5,15), (4,6,24)]
 cases.forEach {
 XCTAssertEqual(otherCalc.mul($0, $1), $2)
 }
 }

}

Code Coverage
Good code coverage is also essential to your unit testing. If the majority of your code is
not covered by unit tests then you the risk of releasing untested code with defects.

To enable Code Coverage in your Swift app, go to Product ➤ Scheme ➤ Edit Scheme
and check the Gather Coverage Data Code Coverage, as shown in Figure 2-17.

Figure 2-16. Filter to only show the failed tests

Chapter 2 ■ Swift Unit teSting

47

Xcode will show you what percentage of the code is covered by our tests. First choose
the reporting tab (see Figure 2-18) and then click on the test results you want to look at
(see the arrow in Figure 2-18). Then click on the Coverage tab.

Xcode also lets you see exactly what code is covered so you can immediately see the
code that is covered by tests and perhaps more importantly what code is not covered. To
see the code, click on the arrow beside the Swift file. In Figure 2-18, we’re showing the
arrow for CalculatorModel.swift.

Once you click on the code, you can see the code covered by tests in green and code
that is not covered in red. See Figure 2-19.

Figure 2-17. Enable Code Coverage

Figure 2-18. Code coverage

Chapter 2 ■ Swift Unit teSting

48

If we know where the untested code is, we need to fix it and make it green. We do this
by writing more tests. Sometimes lots more tests so that all the red turns green. This in
turn will increase our code coverage percentages.

When Things Go Wrong
Put it down to human nature, but you can be sure that there will be errors in your code
and there will be errors in your tests. We talked earlier about how we can use optional
error messages when a test fails, but what if the test is at fault and not your application
code? Thankfully, you can set breakpoints in your test code to see what’s happening.

In Figure 2-20, the test case XTAssertEqual(rescalc.add(1,2),3) has been
changed to XTAssertEqual(rescalc.add(1,2),4) to make it fail. Figure 2-20 shows the
failing test.

Figure 2-19. Code covered by tests shown in green

Chapter 2 ■ Swift Unit teSting

49

Click on the offending line of code and then click on the blue breakpoint to set the
breakpoint the next time the tests are run. Figure 2-21 shows Xcode when the breakpoint
is encountered on a subsequent run.

Figure 2-20. Failing test

Figure 2-21. Debugging tests

Chapter 2 ■ Swift Unit teSting

50

Xcode shows the value of each of the variables and you can either Step Into (F7) the
called functions or Step Over (F6) code as appropriate. Changing the expected result back
to 3 is enough to fix the error.

Figure 2-22 shows the Breakpoint tab, which lists all the breakpoints in the test or
application code, which can be useful when you have multiple breakpoints set in your code.

Logs
If you run into any issues, one of the first places to look is the logs. You can find the logs in
the Reporting tab, beside the Coverage tab in Xcode (see Figure 2-23). The logs will show
the order that the tests are run in, as well as timings.

Figure 2-23. Test logs

Figure 2-22. Breakpoint tab

Chapter 2 ■ Swift Unit teSting

51

If a test does fail, then the logs can be filtered to show errors only, as shown in
Figure 2-24. In this example we’ve removed the guard condition from the divide function
and caused an error by testing to see what happens when we divide by zero.

Clicking on the error will take you to errant code, as shown in Figure 2-25.

Figure 2-24. Test error logs

Figure 2-25. Code error in Xcode

Chapter 2 ■ Swift Unit teSting

52

We can fix the error by removing the comments so the guard can again catch the
error before it crashes the program.

Ubuntu Command Line
We can build the model part of the Calculator app on the Linux or Ubuntu platform.
Unfortunately, it won’t have a user interface but we will be able to call the code from the
command line as well as from our test suite.

 ■ Note the structure of Swift apps on Ubuntu can be quite confusing. running the
command swift package init on the command line will create a complete hello, world!
example. this can be really useful when you’re getting started with Swift on Ubuntu to see
the correct structure of Swift app.

Figure 2-26 shows the tree structure of the Calculator app in Ubuntu.

Calculator.swift in the sources directory is our model code from the Xcode
Calculator app. In the Tests/Calculator directory, we have two test files, which run a
number of simple XCTAssertEquals and a second file that does the remaining available
assertions. The two other files are Package.swift and LinuxMain.swift and they are
Swift files that are needed on the Ubuntu platform. We touched on them in the last
chapter and we’ll also cover them later in this chapter.

To build the code, we need the Calculator code and the Package.swift code.
Calculator.swift is shown in Listing 2-13. It’s the same as the Xcode version with a small
change, whereby we return 9999 when we divide by zero to stop the code from crashing.

Figure 2-26. Calculator code

Chapter 2 ■ Swift Unit teSting

53

Listing 2-13. Calculator.swift

class Calculator {

 func add(_ a:Int, _ b:Int) -> Int {
 return a + b
 }

 func sub(_ a:Int, _ b:Int) -> Int {
 return a - b
 }

 func mul(_ a:Int, _ b:Int) -> Int {
 return a * b
 }

 func div(_ a:Int, _ b:Int) -> Int {
 //divide by zero
 if (b == 0) {
 return 9999
 }
 return a / b
 }
}

Package.swift is our manifest file. It controls what code gets used in the build and
what targets (debug, release) are going to get built. Our example is very simple; it just
names the package, as shown in Listing 2-14.

Listing 2-14. Package Manager Code

import PackageDescription

let package = Package(
 name: "Calculator"
)

To build the files, type swift build.
If all goes well, you’ll see a .build directory, with contents similar to that shown in

Figure 2-27.

Chapter 2 ■ Swift Unit teSting

54

The build directory shows that we built the debug version of the app. There’s not
a lot of information here that’s immediately useful, although we can see the modules
external dependencies—Calculator.swiftdefs—as well as what compiles and flags
were used to compile the module—debug.yaml—which is useful when trying to find the
root of a problem.

To run the Calculator code, we create a new main.swift file in the sources directory,
as shown in Listing 2-15.

Listing 2-15. main.swift

let foobar = Calculator()
var result = foobar.add(1,2)
print("Total: \(result)")

Rebuild the code again using the Swift build command and then run the executable
by calling .build/debug/Calculator. This gives the following result:

$.build/debug/Calculator
Total: 3

Package Manager
Package managers can be a lot more complex than our example, which has only a name
value. We can also include other source code dependencies and include or exclude
directories from the build process. Listing 2-16, shows a Package.swift example called
DeckOfPlayingCards that comes from Swift.org. In the file, it includes a couple of other
repositories that are included when the module is built.

Figure 2-27. The build directory

Chapter 2 ■ Swift Unit teSting

55

Listing 2-16. Package.swift File from DeckOfPlayingCards

import PackageDescription

let package = Package(
 name: "DeckOfPlayingCards",
 dependencies: [
 . Package(url: "https://github.com/apple/example-package-fisheryates.

git", majorVersion: 1),
 . Package(url: "https://github.com/apple/example-package-playingcard.

git", majorVersion: 1),
]
)

Tests
For our calculator example, we have two files for simple and edge case tests,
SimpleCalculatorTests and OtherCalculatorTests. Figure 2-28 shows how the Tests
directory is structured.

The test methods in SimpleCalculatorTests—testAddTwoNumbersCheck,
testSubTwoNumbersCheck, testMulTwoNumbersCheck, and testDivTwoNumbersCheck—
test the straightforward operation of the calculator. The test methods in the
OtherCalculatorTests—testSubWorksWithNegativeResult, testMulByZeroCheck,
testMulNotEqual, testMulLessThan, testMulGreaterThan, testMulParams, and
testDivByZeroCheck—show examples of some other XCTAsserts, as well as use a
parameterized test for neater tests and a test to see what happens when you divide by zero.

Any of the tests we create for the Ubuntu platform will also run within Xcode. But the
opposite isn’t always true. Most notably, performance tests do not work on the Ubuntu
platform in Swift 3.

In both platforms the unit test methods are the same, so we import XCTest and use
the @testable keyword to import the modules we want to test against. However, there are
differences. XCTest needs to know the name of all the test methods in your code.

In both our test files we have an allTests extension with the name of the file
SimpleCalculatorTests and a list of all the tests in the format shown in Listing 2-17.
If you do not include a test method in allTests, it will not get called.

Figure 2-28. Test code directory structure

Chapter 2 ■ Swift Unit teSting

56

Listing 2-17. allTests Extension

extension SimpleCalculatorTests {
 static var allTests : [(String, (SimpleCalculatorTests) -> () throws ->

Void)] {
 return [
 ("testAddTwoNumbersCheck", testAddTwoNumbersCheck),
 ("testSubTwoNumbersCheck", testSubTwoNumbersCheck),
 ("testMulTwoNumbersCheck", testMulTwoNumbersCheck),
 ("testDivTwoNumbersCheck", testDivTwoNumbersCheck)
]
 }
}

Finally, we need a LinuxMain.swift file that sets up the allTests variables for
swift-test, as shown in Listing 2-18. The format is the same; you just change the names
of the test suite and test case to match whatever you want to call your test suite.

Listing 2-18. LinuxMain.swift

import XCTest
@testable import CalculatorTests

XCTMain([
 testCase(CalculatorTests.allTests)
])

Simple Tests
Listing 2-19 shows the complete code for SimpleCalculatorTests.swift. It has the
allTests extensions, a setUp and tearDown method, and the four tests to add, multiply,
subtract, and divide a pair of numbers.

Listing 2-19. Simple Tests

import XCTest
@testable import Calculator

extension SimpleCalculatorTests {
 static var allTests : [(String, (SimpleCalculatorTests) -> () throws ->

Void)] {
 return [
 ("testAddTwoNumbersCheck", testAddTwoNumbersCheck),
 ("testSubTwoNumbersCheck", testSubTwoNumbersCheck),
 ("testMulTwoNumbersCheck", testMulTwoNumbersCheck),
 ("testDivTwoNumbersCheck", testDivTwoNumbersCheck)
]
 }
}

Chapter 2 ■ Swift Unit teSting

57

class SimpleCalculatorTests: XCTestCase {

 var simpleCalc : Calculator!

 override func setUp() {
 super.setUp()
 simpleCalc = Calculator()
 }

 override func tearDown() {
 simpleCalc = nil
 }

 func testAddTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.add(1,1),2)
 }

 func testSubTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.sub(3,1),2)
 }

 func testMulTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.mul(2,3),6)
 }

 func testDivTwoNumbersCheck() {
 XCTAssertEqual(simpleCalc.div(12,2),6)
 }

}

Edge Case Tests
So far we’ve only used XCTAssertEqual. In our simplified view of the world, we only
tested the happy path where things don’t go wrong. But there are many scenarios that
your code may encounter that are not so happy, such as dividing by zero. You have to
make sure that the code will handle these unexpected scenarios. These examples show a
few negative test examples as well as a few other miscellaneous tests.

In OtherCalculatorTests.swift, we have examples of XCTAssertNotEqual,
XCTAssertLessThan, XCTAssertGreaterThan, a parameterized test shown earlier in the
chapter, and also a test to make sure the calculator doesn’t crash when we divide by zero.
See Listing 2-20.

Listing 2-20. Edge Case Tests

import XCTest
@testable import Calculator

Chapter 2 ■ Swift Unit teSting

58

extension OtherCalculatorTests {
 static var allTests : [(String, (OtherCalculatorTests) -> () throws ->

Void)] {
 return [
 ("testSubWorksWithNegativeResult",

testSubWorksWithNegativeResult),
 ("testMulByZeroCheck", testMulByZeroCheck),
 ("testMulNotEqual", testMulNotEqual),
 ("testMulLessThan", testMulLessThan),
 ("testMulGreaterThan", testMulGreaterThan),
 ("testMulParams", testMulParams),
 ("testDivByZeroCheck", testDivByZeroCheck)
]
 }
}

class OtherCalculatorTests: XCTestCase {

 var otherCalc : Calculator!

 override func setUp() {
 super.setUp()
 otherCalc = Calculator()
 }

 override func tearDown() {
 otherCalc = nil
 }

 func testSubWorksWithNegativeResult() {
 XCTAssertEqual(otherCalc.sub(1,3),-2)
 }

 func testMulByZeroCheck() {
 XCTAssertEqual(otherCalc.mul(2,0),0)
 }

 func testMulNotEqual() {
 XCTAssertNotEqual(otherCalc.mul(2,2),5)
 }

 func testMulLessThan() {
 XCTAssertLessThan(otherCalc.mul(2,2),5)
 }

 func testMulGreaterThan() {
 XCTAssertGreaterThan(otherCalc.mul(2,3),5)
 }

Chapter 2 ■ Swift Unit teSting

59

 func testMulParams() {
 let cases = [(4,3,12), (2,4,8), (3,5,15), (4,6,24)]
 cases.forEach {
 XCTAssertEqual(otherCalc.mul($0, $1), $2)
 }
 }

 func testDivByZeroCheck() {
 XCTAssertEqual(otherCalc.div(12,0),9999)
 }

}

Test Output
Even though there is more than one test file, we can run all the tests using the swift test
command.

 ■ Note remove the main.swift class in the sources directory and rebuild using swift
build before you run any tests.

$ swift test
Compile Swift Module 'CalculatorTests' (2 sources)
Linking ./.build/debug/CalculatorPackageTests.xctest
Test Suite 'All tests' started at 18:38:59.671
Test Suite 'debug.xctest' started at 18:38:59.680
Test Suite 'SimpleCalculatorTests' started at 18:38:59.680
Test Case 'SimpleCalculatorTests.testAddTwoNumbersCheck' started at
18:38:59.680
Test Case 'SimpleCalculatorTests.testAddTwoNumbersCheck' passed (0.0
seconds).
Test Case 'SimpleCalculatorTests.testSubTwoNumbersCheck' started at
18:38:59.680
Test Case 'SimpleCalculatorTests.testSubTwoNumbersCheck' passed (0.0
seconds).
Test Case 'SimpleCalculatorTests.testMulTwoNumbersCheck' started at
18:38:59.680
Test Case 'SimpleCalculatorTests.testMulTwoNumbersCheck' passed (0.0
seconds).
Test Case 'SimpleCalculatorTests.testDivTwoNumbersCheck' started at
18:38:59.680
Test Case 'SimpleCalculatorTests.testDivTwoNumbersCheck' passed (0.0
seconds).
Test Suite 'SimpleCalculatorTests' passed at 18:38:59.681

Chapter 2 ■ Swift Unit teSting

60

 Executed 4 tests, with 0 failures (0 unexpected) in 0.0 (0.0) seconds
Test Suite 'OtherCalculatorTests' started at 18:38:59.681
Test Case 'OtherCalculatorTests.testSubWorksWithNegativeResult' started at
18:38:59.681
Test Case 'OtherCalculatorTests.testSubWorksWithNegativeResult' passed (0.0
seconds).
Test Case 'OtherCalculatorTests.testMulByZeroCheck' started at 18:38:59.681
Test Case 'OtherCalculatorTests.testMulByZeroCheck' passed (0.0 seconds).
Test Case 'OtherCalculatorTests.testMulNotEqual' started at 18:38:59.681
Test Case 'OtherCalculatorTests.testMulNotEqual' passed (0.0 seconds).
Test Case 'OtherCalculatorTests.testMulLessThan' started at 18:38:59.681
Test Case 'OtherCalculatorTests.testMulLessThan' passed (0.0 seconds).
Test Case 'OtherCalculatorTests.testMulGreaterThan' started at 18:38:59.681
Test Case 'OtherCalculatorTests.testMulGreaterThan' passed (0.0 seconds).
Test Case 'OtherCalculatorTests.testMulParams' started at 18:38:59.681
Test Case 'OtherCalculatorTests.testMulParams' passed (0.0 seconds).
Test Case 'OtherCalculatorTests.testDivByZeroCheck' started at 18:38:59.681
Test Case 'OtherCalculatorTests.testDivByZeroCheck' passed (0.0 seconds).
Test Suite 'OtherCalculatorTests' passed at 18:38:59.681
 Executed 7 tests, with 0 failures (0 unexpected) in 0.0 (0.0) seconds
Test Suite 'debug.xctest' passed at 18:38:59.681
 Executed 11 tests, with 0 failures (0 unexpected) in 0.0 (0.0) seconds
Test Suite 'All tests' passed at 18:38:59.681
 Executed 11 tests, with 0 failures (0 unexpected) in 0.0 (0.0) seconds

Summary
In this chapter, we looked at XCTest in more detail. It’s not as comprehensive as OCUnit,
but for what you lose in functionality, it’s more than made up by XCTest’s simplicity. And,
no doubt, there will be changes coming in future versions of Swift.

Before we leave, it’s worth pointing out that unit testing requires time. The toy
examples in this chapter rapidly expand along with your code. Development takes longer
as you’re writing more tests, but QA time should be reduced—especially any manual
testing. If you have good coverage it will extend the life of your code considerably, as you
don’t have to fight spaghetti code to add just one more slice of functionality.

But we’d be lying if we said that unit testing on its own is the holy grail. There are
many more elements to creating Agile Swift code. We haven’t mentioned mocks, where
Swift has some interesting limitations. We’ll cover that in Chapter 4. We have only briefly
touched on UI testing; we’ll cover that in more detail in Chapter 5. And we’ll also return to
unit testing and more specifically to Test Driven Development in Chapter 6.

In the next chapter, we’ll look at which tools from Apple and others can help us
create cleaner, faster, and neater unit tests.

http://dx.doi.org/10.1007/978-1-4842-2102-0_4
http://dx.doi.org/10.1007/978-1-4842-2102-0_5
http://dx.doi.org/10.1007/978-1-4842-2102-0_6

61© Godfrey Nolan 2017
G. Nolan, Agile Swift, DOI 10.1007/978-1-4842-2102-0_3

CHAPTER 3

Third-Party Tools

You are going to need some extra third-party tools to make sure your tests are FIRST class
tests. Or, in other words, that they are:

•	 Fast

•	 Isolated

•	 Repeatable

•	 Self-verifying

•	 Timely

XCTest isn’t going to be enough to satisfy the first criteria. If we were using
Objective-C this is pretty straightforward. In Objective-C, we use OCUnit for our unit
tests (fast) and OCMock (isolated) to mock out our interactions with anything outside
the class we are testing. We also use Jenkins or our favorite continuous integration server
(repeatable) to make the tests and gcovr for code coverage (self-verifying). And finally, we
write the tests using a TDD approach (timely).

It’s more complicated in Swift, but the FIRST principles are still the same. We want
to make our unit tests as fast and expressive as possible. Because of the underlying design
of the Swift language we don’t have an XCMock and probably never will—but there are
alternatives that we can use to isolate our code. We can do continuous integration and
display our code coverage. And we can practice TDD in any language.

In this chapter, we’ll look at what Xcode and third-party tool options are currently
available and how you can use them to write better tests.

Note that many of these third-party tools continue to experience significant changes
as Swift evolves. Some of them will fade away and others will take their place. Check the
source code at http://github.com/godfreynolan/agileswift to find the latest working
examples.

Fast Tests
XCTest does help you in the fast category of the FIRST criteria. But it many cases it may
not be expressive enough for what you want to test. Nimble, on the other hand, will
provide you with the testing power you need to test your code quickly and help to make
sure you’re testing the right thing.

http://github.com/godfreynolan/agileswift

Chapter 3 ■ third-party tools

62

Anything more than a simple Hello, World type application is probably going to
need better assertions than what comes with the XCTest assertions. Nimble is one option
that offers a lot more matchers. It also provides a lot more flexibility by allowing you to
include ranges instead of just single values. Nimble lets you create matchers that can be
combined to create much more flexible expressions of intent than XCTest.

Table 3-1 lists most of the Nimble assertions and you can also write your own. Note
that each of these assertions also has the negative or NOT version of the assertion. This
table does not include any custom matchers, which are also supported in Nimble.

 ■ Note Nimble goes hand in hand with Quick, which is a Bdd or Behavior driven design
Framework we'll cover more about Ui testing in Chapter 5.

Nimble Install
The easiest way to install Nimble is to use CocoaPods, which is another dependency
manager for iOS and Cocoa projects. Before we can install Nimble, we have to install
CocoaPods, which we do as follows.

sudo gem install cocoapods
pod setup --verbose

Now we can install Nimble. cd to the project directory and type the command

pod init

This creates a podfile. If we’re using this on the Calculator code, then edit the podfile
so it looks like Listing 3-1.

Listing 3-1. Nimble Podfile

platform :ios, '9.0'
source 'https://github.com/CocoaPods/Specs.git'

target 'CalculatorTests' do
 use_frameworks!
 pod 'Quick'
 pod 'Nimble', '~> 4.0.0'
end

Lastly we have to execute the podfile so it downloads and installs Nimble. Type the
following to run the podfile.

pod install

http://dx.doi.org/10.1007/978-1-4842-2102-0_5

Chapter 3 ■ third-party tools

63

Nimble Unit Test
To use Nimble in our tests, we need to import the Nimble library. We can then replace
some of our earlier tests with expect statements, such as

Table 3-1. Nimble Matchers

Assertion Type Description Example

Equivalence Passes if actual is
equivalent to expected

expect(actual).
to(equal(expected))

Identity Passes if actual has the
same pointer address as
expected

expect(actual).
to(beIdenticalTo(expected))

Comparison LessThan,
LessThanOrEqualTo,
GreaterThan, and
GreaterThanOrEqualTo

expect(actual).
to(beLessThan(expected))

Comparison Passes if expected is
close to actual within a
tolerance

expect(actual).
to(beCloseTo(expected,
within: delta))

Types/Classes Passes if instance is an
instance of a class

expect(instance).
to(beAnInstanceOf(aClass))

Truthiness Passes if actual is not nil,
true, or an object with a
Boolean value of true

expect(actual).
to(beTruthy())

Error Handling Passes if
somethingThatThrows()
throws an ErrorType

expect{ try
somethingThatThrows()
}.to(throwError())

Collection Membership Passes if all of the
expected values are
members of actual

expect(["whale",
"dolphin", "starfish"]).
to(contain("dolphin",
"starfish"))

Strings Passes if actual contains,
beginsWith, endsWith, or
empty substring expected

expect(actual).
to(contain(expected))

Count Passes if actual
collection’s count is equal
to expected

expect(actual).
to(haveCount(expected))

Group of Matchers Matches a value to any of
a group of matchers

expect(actual).
to(satisfyAnyOf
(beLessThan(10),
beGreaterThan(20)))

Chapter 3 ■ third-party tools

64

expect(self.resCalc.add(1,operandTwo: 1)) == 2

Or we can create more complex matchers such as this range.

expect(self.resCalc.mul(4, operandTwo: 3)).to(satisfyAnyOf(beGreaterTh
an(10), beLessThan(20)))

The full code is shown in Listing 3-2.

Listing 3-2. Nimble Unit Tests

import XCTest
import Nimble
@testable import Calculator

class CalculatorTests: XCTestCase {

 let resCalc = CalculatorModel()

 func testAdd() {
 expect(self.resCalc.add(1,1)) == 2
 }

 func testAddRange() {
 expect(self.resCalc.mul(4, 3)).to(satisfyAnyOf(beGreaterThan(10),

beLessThan(20)))
 }

}

Nimble integrated with XCTest is an excellent Swift matcher framework. CocoaPods
also makes it easy to install and configure.

Isolated Unit Tests
In the last chapter, we talked about how unit tests should be isolated so that your tests
don’t have to worry about whether a third-party server is running or if the WiFi is down.
Writing and executing unit tests should be lightning fast. To do this, we need to write
method-based unit tests with mocked out database or network access.

If we’re making network connections or reading from the file system or database,
then by definition we’re not writing isolated unit tests. We are also making an assumption
about a third-party web service or database that may not be running every time we run
our tests. In a worst-case scenario, our tests are going to fail, but for the wrong reason
such as the network being down.

To keep our unit tests isolated from any outside interference, we need to mock out
any code that talks to external resources.

Chapter 3 ■ third-party tools

65

Mocking
The classic way to isolate your code in most languages is to use a mocking framework.
Mocking works by interrupting any calls that we want to isolate our tests from and
replacing them with fake code that returns a known result. For example, say we want to
test how our parser code works with a web service. We’re going to assume that the web
service knows what it’s doing and passes our JSON parser code a known JSON string
of objects. If we’re testing our JSON parser code, we don’t care about the web service,
because that’s the responsibility of some other test, probably an integration test. Mocking
allows us to provide this type of isolated testing.

Similarly, what if we’re trying to test our login authentication code? It’s not our job
to test if SQLite works correctly; we just want to test the decryption code. So we isolate
SQLite by mocking out the calls and passing in a fake username and encrypted password
into our methods being tested.

In Objective-C, the mocking framework would possibly be OCMock and in Java it would
probably be Mockito or PowerMock. Unfortunately things aren’t as simple in Swift because
the Swift runtime won’t allow these mocking frameworks to inject code to mock out the
classes we want to isolate our code from. However, all is not lost. We can still mock out the
calls but it’s not as neat and tidy in Swift. It’s still possible to isolate your tests from outside
influences by stubbing out the methods or using one of the few emerging frameworks.

What Is Mocking
Mocking can be confusing, but it can be summarized by the following code:

when(methodIsCalled).thenReturn(aValue);

When methodIsCalled, it always returns aValue; for example, when you call
getWeatherForCity("Troy") then always return 72 or if you call getDateAndTime() then
always return {"time": "12:43:12 PM","date": "05-30-2016"}.

The concept is that the temperature or time is then used to test your target methods.
You can always rely on it being what you hardcoded so you can spend time trying to break
your Fahrenheit to Celsius conversion or your JSON parsers.

You can also mock edge cases, such as impossible temperatures (-460) or different
time zones (GMT), to see how your code handles it.

There are three parts to creating this mocking behavior:

•	 Arrange: Set up the testing objects

•	 Act: Perform the actual test

•	 Assert: Verify the result

In Listing 3-3, we set up or arrange the test objects in the arrange phase, in this case a
particular date. We act or test the object and verify that the date exists and is as expected.

Chapter 3 ■ third-party tools

66

Listing 3-3. Arrange, Act, and Assert

stub(mock) {
 (mock) in
 when(mock.getDate.get).thenReturn(dateAndTime.from(year: 2014, month:

05, day: 20) as Date)
}
 XCTAssertEqual(mock.getDate, dateAndTime.from(year: 2014, month: 05, day:
20) as Date)
XCTAssertNotNil(verify(mock).getDate)

In the example we’re using a framework called Cuckoo, which is available from
https://github.com/SwiftKit/Cuckoo. It gets around the read-only binary restrictions
by using a two-stage process. The first stage generates the mocking code from your test
objects, which is then recompiled in the second stage so you fake your object calls.

To install Cuckoo, take the following steps:

 1. Create your project with model class and test class.

 2. Install the Cuckoo pod by first running pod init from the
command line.

 3. Edit the generated podfile and add pod “Cuckoo” as a test
target.

 4. Run the command pod install.

 5. Close the project and reopen the workspace.

 6. Click on the project folder then choose Test Target ➤ Build
Phases. See Figure 3-1.

 7. Click + and choose New Run Script Phase.

 8. Add Listing 3-4 to the Run Script section, making sure to
modify the input files that you want to mock.

 9. Build the project.

 10. Run the tests.

 11. Drag and drop GeneratedMocks.swift into the test section.

 12. Run the mocked tests.

Listing 3-4. Cuckoo Run Script

Define output file; change "${PROJECT_NAME}Tests" to your test's root
source folder, if it's not the default name
OUTPUT_FILE="./${PROJECT_NAME}Tests/GeneratedMocks.swift"
echo "Generated Mocks File = ${OUTPUT_FILE}"

https://github.com/SwiftKit/Cuckoo

Chapter 3 ■ third-party tools

67

Define input directory; change "${PROJECT_NAME}" to your project's root
source folder, if it's not the default name
INPUT_DIR="./${PROJECT_NAME}"
echo "Mocks Input Directory = ${INPUT_DIR}"

Generate mock files; include as many input files as you'd like to create
mocks for
${PODS_ROOT}/Cuckoo/run generate --testable "${PROJECT_NAME}" \
--output "${OUTPUT_FILE}" \
"${INPUT_DIR}/FileName1.swift" \
"${INPUT_DIR}/FileName2.swift" \
"${INPUT_DIR}/FileName3.swift"
... and so forth

After running once, locate `GeneratedMocks.swift` and drag it into your
Xcode test target group

In the next chapter, we’ll take a more detailed look at how to mock web services,
dates, and system properties in Swift using Cuckoo.

Repeatable Unit Tests
Continuous integration means that you should be building your app early and building
it often. You should be building the code from the earliest stages of your development
process and you should building on a regular basis—every evening or alternatively every
time the code is checked in.

Figure 3-1. Adding a run script

Chapter 3 ■ third-party tools

68

Because it’s more of a DevOps process, it doesn’t belong on a development machine.
Ideally, it should be on a standalone machine, such as a Mac Pro Server, or in the cloud.
That allows everyone to see the build reports and metrics.

We’re going to use Jenkins as our continuous integration build server. You may be
asking yourself why we wouldn’t just use an OSX server as our build server. If you’re
working in an environment where you’re only doing iOS development, then the OSX
server is a good option, but if you’re working in a mixed environment—even if it’s a mixed
Swift environment—then OSX server isn’t going to work. Personally, I like to be able
see how all the Java, PHP, Objective-C, and Swift builds are doing in the same place, so
Jenkins is the best option.

Installing Jenkins
Sometimes tools are easy to set up and sometimes they are not. Unfortunately on a Mac,
Jenkins falls into the latter category. Once you have it up and running for a single project
then it’s very easy to configure. But it can be surprisingly difficult to get the first project
working.

To set up Jenkins, take the following steps:

 1. Download the latest LTS (long-term support) version of
Jenkins from http://jenkins-ci.org.

 2. Install the package. When it's completed, go to http://
localhost:8080, where you should see something like
Figure 3-2.

Figure 3-2. The Jenkins home page

http://jenkins-ci.org/
http://localhost:8080/
http://localhost:8080/

Chapter 3 ■ third-party tools

69

To make it useful in our Swift environment, we need to add a number of plugins.
Click on Manage Jenkins ➤ Manage Plugins and search for and add the Xcode and Git
plugin or whatever other source code management system you use. When you’re done,
your installed plugins screen should look something like Figure 3-3.

We’ve already touched on why our Jenkins server should be a dedicated box. The
hardest part of the configuration process is to set it up so it has the correct permissions to
run the iOS simulator.

Take the following steps to give Jenkins the correct permissions:

 1. Set up the user jenkins correctly as the install misses a couple
of things, as shown in Figure 3-4.

Figure 3-3. Jenkins plugins

Chapter 3 ■ third-party tools

70

 2. Make jenkins an admin user as follows:

sudo dseditgroup -o edit -a jenkins -t user admin

 3. Add jenkins to the developer group:

sudo dscl . append /Groups/_developer GroupMembership jenkins

 4. Click on the Login options, set Autologin as Jenkins, and then
reboot. See Figure 3-5.

Figure 3-4. Configure the Jenkins user

Chapter 3 ■ third-party tools

71

 5. Make the Jenkins application run as a launch agent and not
as a daemon so the simulator can run correctly. We need to
first unload the Jenkins app and then move it. Execute the
following commands from the terminal.

sudo launchctl unload /Library/LaunchDaemons/org.jenkins-ci.plist
sudo mv /Library/LaunchDaemons/org.jenkins-ci.plist /Library/
LaunchAgents/

 6. Remove the following lines from the org.jenkins-ci.plist
file.

<key>SessionCreate</key>
<true />

 7. Finally, reload the Jenkins app by executing the following
commands in the terminal.

sudo launchctl load /Library/LaunchAgents/org.jenkins-ci.plist
sudo dseditgroup -o edit -a jenkins -t user admin

Figure 3-5. Autologin as a Jenkins user

Chapter 3 ■ third-party tools

72

Calculator Project
Now that we have configured Jenkins, we need to create our first automated job. Go back
to the Dashboard and click on Create a New Job. Enter the name of your project and
choose Freestyle Project, as shown in Figure 3-6.

We need to tell Jenkins where to find the code. In this example, we’re using Git as our
source code management system. Here we’re again we’re using the Calculator example.
Enter the Git repository URL. As it’s a public repo, there are no credentials so we’re going
to skip that. There is also only one branch so we can leave the Branch Specifier as the
master. See Figure 3-7.

Figure 3-6. Create a build Item

Figure 3-7. Source code management

Chapter 3 ■ third-party tools

73

Scroll down to the Build section and choose the Xcode build action. See Figure 3-8.

In the Xcode build step, click on Settings and change the configuration to Debug, as
shown in Figure 3-9.

Scroll down and click on Advanced Build Setting and set the Xcode Schema
File to Calculator and the custom xcodebuild arguments to "test -destination
’platform=iOS Simulator,name=iPhone 6s Plus,OS=9.3’". This tells Xcode to run the
tests using the iPhone 6s Plus simulator running iOS 9.3. See Figure 3-10. This may need
to change for you depending on what you have installed on your machine. Click Save to
save your configuration.

Figure 3-8. The Xcode build step

Figure 3-9. Xcode settings

Chapter 3 ■ third-party tools

74

Now we’re ready to build our app. Click on Build Now on the Project page. See
Figure 3-11.

It helps, especially the first time, to see what’s happening under the covers when
Jenkins is building. Click on the build number so you can take look; see the number
highlighted in Figure 3-12.

Figure 3-10. Advanced Xcode settings

Figure 3-11. Build now

Chapter 3 ■ third-party tools

75

Click on Console Output to see if anything failed and where it broke in the build
process, as shown in Figure 3-13. In this case, the build ran successfully.

Figure 3-12. Click on the Build number

Figure 3-13. Jenkins console output

Chapter 3 ■ third-party tools

76

Self-Verifying Unit Tests
Test suites that are self-verifying, i.e., that we can trust to test all of our code’s functionality,
are a critical piece of our test strategy. When we make a small change—such as add a new
button—or change something more dramatic—such as changing from an MVC to a Clean
Architecture—we want to have confidence in our tests that no functionality has changed
and we haven’t broken anything. After small or large changes, if all unit tests pass then we
need to be confident that the end user will still have the same user experience.

Code coverage tells you how much of your code is being unit tested. It is a great way to
visually see what code isn’t being tested so you can rapidly fill in the gaps in your test suite.

Code coverage can also be a metric to tell you what percentage of the code has been
covered with tests. If you’re not calculating code coverage as a metric, you are flying
blind. In the past I’ve seen people write unit tests on the login pages but then neglect to
write unit tests for the app after the user is logged in. In that scenario, we cannot be sure
that any new feature changes have not created any defects due to some unintended side
effects in the existing code, as nothing was being tested past the login screen.

Slather
We saw in the previous chapter that we can enable code coverage easily in Xcode. Go
to Product ➤ Scheme ➤ Edit Scheme, choose the Test Menu item, and click on Gather
Code Coverage. See Figure 3-14.

However, we want to be able to see the code coverage outside of the Xcode IDE so
other people can view the metrics. We also want to be able to run it from the command
line so we can add it as a step in our Jenkins build.

Figure 3-14. Adding code coverage in Xcode

Chapter 3 ■ third-party tools

77

Slather is a third-party tool that allows us to take the Xcode metrics and display the
coverage in a variety of options. It also works from the command line so we automate it
using our continuous integration server.

Install Slather using the following command:

gem install slather

To output the code coverage in HTML, run the following command:

slather coverage --html --scheme XcodeSchemeName path/to/project.xcodeproj

For the Calculator code, this becomes:

slather coverage --html --scheme Calculator Calculator/Calculator.xcodeproj

The output is shown in Figure 3-15, which shows that there are no tests on the sub or
mul methods.

Figure 3-15. Slather code coverage

Chapter 3 ■ third-party tools

78

Technical Debt
Continuous integration (CI) servers such as Jenkins really come into their own when
working on larger projects with a team of developers. As each developer checks in their
code, the app is built and unit tested. You even have the option of letting the business
stakeholder get a copy of the app using Testflight.

Experience will tell you that someone needs to be looking at the quality of the code to
make sure your technical debt isn’t getting out of control. Software projects all suffer from
the Second Law of Thermodynamics, which states “that in every real process the sum of
the entropies of all participating bodies is increased”. Entropy is the chaos or disorder of a
system, which as the law states, is always increasing. We can restate it for software engineering
projects as follows: “in every software project the technical debt is always increasing”.

There are ways to pay back the technical debt and decrease the entropy of your
codebase, or in other words, increase its quality. Unfortunately, quality is too often a
subjective measure in development teams. Code reviews can by their very nature be
confrontational as people quite rightly are emotionally attached to their work. But there
are other ways. There are tools that can make the code review process more objective
and reduce the emotions on a team and get the team to focus on doing their job and
delivering code. And thankfully we can automate these tools using our CI server.

We’re going to look at three tools in this section. First there is Swift Lint, which is a third-
party lint tool from Realm, second there is Swift Format, which removes any style questions
from your code, and finally, there is SonarQube Swift Analyzer, which statically analyzes your
code and performs and automated code reviews. All of these can be used within Jenkins.

Swift Lint
Make sure you install Homebrew. Go to brew.sh and run the ruby command to install.
Once Homebrew is installed, you can go fetch and run swiftlint as follows:

$ brew install swiftlint
$ cd /path/to/XCode directory
$ swiftlint

Listing 3-5 shows the output of Swift Lint when we run it on the Calculator project.

Listing 3-5. Swift Lint First Run

$ swiftlint
Linting Swift files in current working directory
Linting 'AppDelegate.swift' (1/4)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:46:
warning: Trailing Newline Violation: Files should have a single trailing
newline. (trailing_newline)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:17:
warning: Line Length Violation: Line should be 100 characters or less:
currently 127 characters (line_length)

Chapter 3 ■ third-party tools

79

/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:23:
error: Line Length Violation: Line should be 100 characters or less:
currently 285 characters (line_length)
.
.
.
Violation: Line should be 100 characters or less: currently 194 characters
(line_length)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:41:
warning: Line Length Violation: Line should be 100 characters or less:
currently 128 characters (line_length)
Linting 'CalculatorModel.swift' (2/4)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:41: warning: Trailing Newline Violation: Files should have a single
trailing newline. (trailing_newline)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:16:22: warning: Opening Brace Spacing Violation: Opening braces should
be preceded by a single space and on the same line as the declaration.
(opening_brace)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:16:10: warning: Colon Violation: Colons should be next to the
identifier when specifying a type. (colon)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:16:17: warning: Colon Violation: Colons should be next to the
identifier when specifying a type. (colon)
.
.
.
Violation: Variable name should be between 3 and 40 characters long: 'b'
(variable_name)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:33:14: error: Variable Name Violation: Variable name should be between
3 and 40 characters long: 'a' (variable_name)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:33:21: error: Variable Name Violation: Variable name should be between
3 and 40 characters long: 'b' (variable_name)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:12: warning: Trailing Whitespace Violation: Lines should not have
trailing whitespace. (trailing_whitespace)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:15: warning: Trailing Whitespace Violation: Lines should not have
trailing whitespace. (trailing_whitespace)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:20: warning: Trailing
Linting 'ViewController.swift' (3/4)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:75: warning: Trailing Newline Violation: Files should have a single
trailing newline. (trailing_newline)

Chapter 3 ■ third-party tools

80

/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:17:5: warning: Variable Name Violation: Variable name should be
between 3 and 40 characters long: 'op' (variable_name)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:60:9: warning: Control Statement Violation: if,for,while,do statements
shouldn't wrap their conditionals in parentheses. (control_statement)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:14: warning: Trailing Whitespace Violation: Lines should not have
trailing whitespace. (trailing_whitespace)
.
.
.
/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:67: warning: Trailing Whitespace Violation: Lines should not have
trailing whitespace. (trailing_whitespace)
Linting 'CalculatorTests.swift' (4/4)
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:14:38: warning: Comma Spacing Violation: There should be no space
before and one after any comma. (comma)
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:18:44: warning: Comma Spacing Violation: There should be no space
before and one after any comma. (comma)
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:19:44: warning: Comma Spacing Violation: There should be no space
before and one after any comma. (comma)
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:20:44: warning: Comma.
.
.
.
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:25: warning: Trailing Whitespace Violation: Lines should not have
trailing whitespace. (trailing_whitespace)
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:26: warning: Trailing Whitespace Violation: Lines should not have
trailing whitespace. (trailing_whitespace)
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:27: warning: Trailing Whitespace Violation: Lines should not have
trailing whitespace. (trailing_whitespace)
Done linting! Found 66 violations, 14 serious in 4 files.

As you can see, there is lots of whitespace and many formatting errors. We can
manually fix them or we can get Swift Lint to correct the files if we run swiftlint
autocorrect. See Listing 3-6. Make sure to Git commit before taking this step in case you
need to reverse the changes.

Chapter 3 ■ third-party tools

81

Listing 3-6. Auto-Corrections

$ swiftlint autocorrect
Correcting Swift files in current working directory
Correcting 'AppDelegate.swift' (1/4)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:45
Corrected Trailing Newline
Correcting 'CalculatorModel.swift' (2/4)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:41 Corrected Trailing Newline
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:16:23 Corrected Opening Brace Spacing
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:33:21 Corrected Colon
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:33:14 Corrected Colon
.
.
.
Whitespace
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:40 Corrected Trailing Whitespace
Correcting 'ViewController.swift' (3/4)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:74 Corrected Trailing Newline
/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:14 Corrected Trailing.
.
.
.

/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:67 Corrected Trailing Whitespace
Correcting 'CalculatorTests.swift' (4/4)
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:24:44 Corrected Comma Spacing
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:20:44 Corrected Comma Spacing
/Users/Shared/Jenkins/Documents/Calculator/CalculatorTests/CalculatorTests.
swift:19:44 Corrected.
.
.
.
Done correcting 4 files!

If we run swiftlint again, we’re down to 22 violations; see Listing 3-7.

Chapter 3 ■ third-party tools

82

Listing 3-7. Swiftlint Second Run

$ swiftlint
Linting Swift files in current working directory
Linting 'AppDelegate.swift' (1/4)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:17:
warning: Line Length Violation: Line should be 100 characters or less:
currently 127 characters (line_length)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:23:
error: Line Length Violation: Line should be 100 characters or less:
currently 285 characters (line_length)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:24:
warning: Line Length Violation: Line should be 100 characters or less:
currently 155 characters (line_length)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:28:
error: Line Length Violation: Line should be 100 characters or less:
currently 218 characters (line_length)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:29:
warning: Line Length Violation: Line should be 100 characters or less:
currently 141 characters (line_length)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:33:
warning: Line Length Violation: Line should be 100 characters or less:
currently 157 characters (line_length)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/AppDelegate.swift:37:
warning: Line Length.
.
.
.
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:33:14: error: Variable Name Violation: Variable name should be between
3 and 40 characters long: 'a' (variable_name)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/CalculatorModel.
swift:33:22: error: Variable Name Violation: Variable name should be between
3 and 40 characters long: 'b' (variable_name)
Linting 'ViewController.swift' (3/4)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:17:5: warning: Variable Name Violation: Variable name should be
between 3 and 40 characters long: 'op' (variable_name)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:60:9: warning: Control Statement Violation: if,for,while,do statements
shouldn't wrap their conditionals in parentheses. (control_statement)
Linting 'CalculatorTests.swift' (4/4)
Done linting! Found 22 violations, 14 serious in 4 files.

Run your unit tests to make sure nothing has broken and check in the code. We can
fix a lot of the lint errors by creating better variable names in our CalculatorModel code.
See Listing 3-8. Use your favorite editor to do a find and replace on the two variables. As
yet Xcode doesn’t have any refactoring for Swift so we’re going to have to manually make
the fixes.

Chapter 3 ■ third-party tools

83

Listing 3-8. Updated CalculatorModel Code to Fix Lint Issues

import Foundation

class CalculatorModel {

 var operandOne: Int
 var operandTwo: Int

 init() {
 }

 func add(operandOne: Int, operandTwo: Int) -> Int {
 return operandOne + operandTwo
 }

 func sub(operandOne: Int, operandTwo: Int) -> Int {
 return operandOne - operandTwo
 }

 func mul(operandOne: Int, operandTwo: Int) -> Int {
 return operandOne * operandTwo
 }

 func div(operandOne: Int, operandTwo: Int) -> Int {
 guard operandTwo != 0 else {
 return 0
 }
 return operandOne / operandTwo
 }

}

Get the code to compile again, run your unit tests and, if they all pass, then check
the code in. The AppDelegate.swift code is autogenerated Xcode, so we can ignore
it or (better still) clear it up by removing the comments. We should also look at the
ViewController.swift warning.

Linting 'ViewController.swift' (3/4)
/Users/Shared/Jenkins/Documents/Calculator/Calculator/ViewController.
swift:60:9: warning: Control Statement Violation: if,for,while,do statements
shouldn't wrap their conditionals in parentheses. (control_statement)

If that’s not something you view as important then you can disable the checking by
adding the following to the .swiftlint.yml file. See Listing 3-9.

Chapter 3 ■ third-party tools

84

Listing 3-9. .swiftlint.yml File

disabled_rules:
 - control_statement

Run lint again. Now there are no errors in the files, as shown in Listing 3-10.

Listing 3-10. Swift Lint Third Run

$ swiftlint
Linting Swift files in current working directory
Linting 'AppDelegate.swift' (1/4)
Linting 'CalculatorModel.swift' (2/4)
Linting 'ViewController.swift' (3/4)
Linting 'CalculatorTests.swift' (4/4)
Done linting! Found 0 violations, 0 serious in 4 files.

We can add Swift Lint as a build step in Jenkins. Click on the Jenkins project and
choose Configure. Scroll down to add Build Step ➤ Execute Shell and then add the full
path to Swift Lint. See Figure 3-16.

Swift Format
One of the goals of this book and this chapter is to use tools that make the development
process more objective and less subjective. Too much time has been lost discussing
whether you should use indents or tabs in your code. Some people can get very worked
up about indents versus tabs or where to put their curly braces or how many lines to
leave between a method declaration and the variables. These sort of discussions can
unnecessarily prolong code reviews. Time can be spent more productively writing code
rather than arguing over its formatting. The requirement is surely to be consistent across
the entire codebase.

SwiftFormat can provide this consistency across your codebase. Assuming that
everyone can agree on the basic rules for how you want your code to look, SwiftFormat
can apply those rules programmatically. At worst you’re only going to have the indents
versus tabs argument once now before you code the rules in SwiftFormat.

SwiftFormat provides rules for the following Swift coding styles. There is no reason
why you can’t add your own rules by extending the code.

Figure 3-16. Running Swift Lint within Jenkins

Chapter 3 ■ third-party tools

85

•	 Line breaks

•	 Semicolons

•	 Specifiers

•	 Braces

•	 ElseOnSameLine

•	 Indent

•	 Space

•	 ConsecutiveSpaces

•	 BlankLinesAtEndOfScope

•	 BlankLinesBetweenScopes

•	 ConsecutiveBlankLines

•	 TrailingWhitespace

•	 LinebreakAtEndOfFile

•	 TrailingCommas

•	 Todos

•	 Ranges

Download SwiftFormat from https://github.com/nicklockwood/SwiftFormat.
Run the command swiftformat –i 4 against your Swift file or directory for code that you
want indented with four spaces.

As an example, let’s take a look at the before and after for some code that mocks out
the iOS AudioPlayer. Listing 3-11 shows the before function.

Listing 3-11. testIncreaseAudioVolume before SwiftFormat

func testIncreaseAudioplayerVolume()
{
 let mock = MockAVAudioPlayerHelper()
 let mockPlayerProtocol = MockAVAudioPlayerProtocol()

 let url = NSURL.fileURL(withPath: Bundle.main.path(forResource:
"Sample", of Type: "mp3")!) let _: NSError?

 var tempAudioPlayer: AVAudioPlayer?

 do
 {
 try
 tempAudioPlayer = AVAudioPlayer(contentsOf: url)
 } catch

https://github.com/nicklockwood/SwiftFormat

Chapter 3 ■ third-party tools

86

 {
 print("audioPlayer error \(error.localizedDescription)")
 }
 tempAudioPlayer?.volume = 1.0

 XCTAssertEqual(mock.audioPlayer?.volume,1.0)
 XCTAssertEqual(mock.getVolume,1.0)
 XCTAssertEqual(mock.audioPlayer?.volume,tempAudioPlayer?.volume)
}

Run swiftformat –i 4 on the code. You’ll see that the formatting has fixed the do-
try-catch to something that most developers would expect to see. Although the differences
are subtle, it makes the code tidier and more professional looking; see Listing 3-12.

Listing 3-12. testIncreaseAudioVolume after SwiftFormat

func testIncreaseAudioplayerVolume() {
 let mock = MockAVAudioPlayerHelper()
 let mockPlayerProtocol = MockAVAudioPlayerProtocol()

 let url = NSURL.fileURL(withPath: Bundle.main.path(forResource:
"Sample", of Type: "mp3")!) let _: NSError?

 var tempAudioPlayer: AVAudioPlayer?

 do {
 try
 tempAudioPlayer = AVAudioPlayer(contentsOf: url)
 } catch {
 print("audioPlayer error \(error.localizedDescription)")
 }
 tempAudioPlayer?.volume = 1.0

 XCTAssertEqual(mock.audioPlayer?.volume, 1.0)
 XCTAssertEqual(mock.getVolume, 1.0)
 XCTAssertEqual(mock.audioPlayer?.volume, tempAudioPlayer?.volume)
}

SonarQube
Lint is a great first step, but it’s only a first step. We said earlier that we’re trying to move
from a subjective analysis or code review to an objective one and there are many tools
other than Lint that can do a more detailed job of static code analysis. SonarQube is one
such tool that can grade your code. It can calculate metrics for complexity, the security of
the code, and the amount of time you’re going to need to pay back the technical debt on
your code. See Figure 3-17. Unfortunately, the Swift static code analyzer on SonarQube
isn’t free but it’s still worth looking at.

Chapter 3 ■ third-party tools

87

Install SonarQube
To install SonarQube, take the following steps:

 1. Download SonarQube from http://www.sonarqube.org/
downloads and unzip the SonarQube distribution into /etc/
sonarqube.

 2. Download SonarQube scanner from https://sonarsource.
bintray.com/Distribution/sonar-scanner-cli/sonar-
scanner-2.6.1.zip and install it in /etc/sonar-runner.

 3. Log in to SonarQube at http://localhost:9090 (assuming
you're on the CI server) with the default system administrator
credentials, which are admin/admin.

 4. Go to Settings ➤ Update Center ➤ Available Plugins ➤

Languages ➤ Swift and install the Swift plugin
(see Figure 3-18).

 5. Once the plugin is installed, click on Installed Plugins in the
Update Center.

 6. Go to Settings ➤ General Settings ➤ Licenses.

 7. Enter the license key in the Swift field and click Save Licenses
Settings.

 8. Download the SonarQube examples from https://github.
com/SonarSource/sonar-examples/archive/master.zip and
unzip it in /etc/sonar-examples.

Figure 3-17. SonarQube dashboard

http://www.sonarqube.org/downloads
http://www.sonarqube.org/downloads
https://sonarsource.bintray.com/Distribution/sonar-scanner-cli/sonar-scanner-2.6.1.zip
https://sonarsource.bintray.com/Distribution/sonar-scanner-cli/sonar-scanner-2.6.1.zip
https://sonarsource.bintray.com/Distribution/sonar-scanner-cli/sonar-scanner-2.6.1.zip
http://localhost:9090/
https://github.com/SonarSource/sonar-examples/archive/master.zip
https://github.com/SonarSource/sonar-examples/archive/master.zip

Chapter 3 ■ third-party tools

88

 9. In one terminal on the CI server, start the console sudo /etc/
sonarqube/bin/macosx-universal-64/sonar.sh console.

 10. In another terminal cd to /etc/sonar-examples/project/
languages/swift/swift-sonar-runner and run the sonar-
runner as follows: /etc/sonar-runner/bin/sonar-runner.

The sample Swift code is shown in Listing 3-13. It’s very simple but at least it will tell
us if the Swift plugin is working.

Listing 3-13. SonarQube example.swift Code

let names = ["Chris", "Alex", "Ewa", "Barry", "Daniella"]

func backwards(s1: String, s2: String) -> Bool {
 return s1 > s2
}

var reversed = sorted(names, backwards);

if (true) { print(reversed) }

Go back to the Dashboard, http://localhost:9090, and click on the Swift project.
See Figure 3-19. You should see a new dashboard for your project. We’re doing great—
our project is getting an A in the Software Quality Assessment based on the Lifecycle
Expectations metric or SQALE. We also only have a couple of issues. Click on the number
under issues to see more.

Figure 3-18. Install Swift plugin

http://localhost:9090/

Chapter 3 ■ third-party tools

89

Click on the example.swift file to drill down into the issues at a code level. The
SonarQube major issue is we should not put more than one statement on a line.
See Figure 3-20.

Now we’re ready to try it on our Calculator project.

Add the Calculator Project
Add sonar.projectKey, projectName, and projectVersion to the sonar.properties
class and use the sources property to tell it where to find the code. See Listing 3-14.

Figure 3-19. An example.swift dashboard

Figure 3-20. SonarQube example.swift Code issues

Chapter 3 ■ third-party tools

90

Listing 3-14. The sonar.properties File

sonar.projectKey=riis.com:swift-calculator
sonar.projectName=Swift :: Calculator Project
sonar.projectVersion=1.0
sonar.sources=Calculator

Execute /etc/sonar-runner/bin/sonar-scanner in a terminal. You should get the
output shown in Figure 3-21.

If you click on the errors, you can see that they are minimal and easily fixed.
See Figure 3-22.

Figure 3-21. SonarQube dashboard for the Calculator app

Figure 3-22. SonarQube issues for the Calculator app

Chapter 3 ■ third-party tools

91

Fix the code using SonarQube and rerun the Calculator tests to make sure nothing is
broken. Finally, rerun the scanner to show there are no more major issues.

Adding SonarQube to Jenkins
SonarQube can also run as part of your Jenkins build. From the Jenkins Dashboard,
choose Manage Jenkins ➤ Manage Plugins ➤ Available. Search for and install the
SonarQube plugin. Restart the server.

To configure your existing SonarQube server so Jenkins can see it, choose Manage
Jenkins ➤ Configure System. Scroll down to SonarQube servers, choose a name for your
SonarQube install, and enter a server URL—ideally a fully qualified domain name, as
shown in Figure 3-23.

Scroll down to the SonarQube scanner and add a name for your SonarQube
instance. Unclick the Install Automatically checkbox, add SONAR_RUNNER_HOME, and click
Save. See Figure 3-24.

Figure 3-23. SonarQube server configuration on Jenkins

Figure 3-24. SonarQube scanner configuration on Jenkins

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ third-party tools

92

Adding SonarQube to Calculator Jenkins Project
Where SonarQube and Jenkins really shine is that they provide the ability for anyone with
access to the Jenkins server to check in from time to time and see if the project quality is
still on track. To set this up in Jenkins, click on the project name in the Dashboard, click
on Configure, and scroll down to the Add Build step. Add Execute SonarQube Scanner, as
shown in Figure 3-25.

Scroll down to Execute SonarQube Scanner and add the path to your SonarQube
project properties file, as shown in Figure 3-26. This is the same properties file shown
earlier in Listing 3-14.

Click on Build Now to build the project. If everything works, you should be able to
see your project’s SonarQube dashboard by clicking on the SonarQube link, which now
appears on your Project Dashboard. See Figure 3-27.

Figure 3-25. Add the SonarQube build step

Figure 3-26. Add the sonar-project.properties file

Chapter 3 ■ third-party tools

93

The Dashboard for the Calculator project is the same one you saw earlier in Figure 3-
21. Thankfully we’re still getting an A and, while there are a number of major issues, they
turn out to be more formatting issues similar to the sample project. There are no blocker
or critical issues.

Stevia
We’ll see in Chapter 6 when we talk about TDD that Swift programming on the iOS
platform has to deal with too much user interface scaffolding for the developer to ever
develop a good red/green/refactor cadence. The problem is that to create a mobile app,
the developer has to keep switching between writing code and creating the interface in
the Interface Builder and back again.

The Interface Builder generates code based on your interactions, so it should be
possible to create the same code without ever having to touch the Interface Builder.
Unfortunately, the overhead to write the Auto Layout code generated by the Interface
Builder is almost as time consuming as using the Interface Builder to do it for you.
Auto Layout has a relatively steep learning curve and increases your code complexity.
However, there are third-party tools that dramatically simplify this process.

We’re going to look at how Stevia can help you get the TDD cadence back. Stevia is
one of several auto layout Domain Specific Languages or DSLs and aims to make the auto
layout code readable.

Listing 3-15 shows an example of how to code the layout in Stevia.

Listing 3-15. Stevia Layout

layout(
 100,

Figure 3-27. Link to the SonarQube Dashboard

http://dx.doi.org/10.1007/978-1-4842-2102-0_6

Chapter 3 ■ third-party tools

94

 |-email-| ~ 80,
 8,
 |-password-| ~ 80,
 "",
 |login| ~ 80,
 0
)

Figure 3-28 shows the interface generated from this Layout.

To install Stevia, take the following steps:

 1. Run pod init on the project’s top-level directory.

 2. Add the following to the generated podfile:

pod 'SteviaLayout'

use_frameworks!

We’ll look at Stevia again later in this book.

Figure 3-28. Stevia Login screen

Chapter 3 ■ third-party tools

95

Summary
In this chapter, we looked at a number of third-party tools to complement the XCTest for
improved unit testing. We looked at Nimble to help expand our assertions or create our
own; we looked briefly at how to use Cuckoo for mocking to isolate our tests; we looked at
Jenkins for our continuous integration needs; we looked at Slather to measure our code
coverage; and finally we looked at Swift Lint and SonarQube to measure the code quality.
Every tool either runs from the command line or is integrated within Jenkins. This means
we have a much better chance of maintaining the quality and the life of each project long
into the future.

97© Godfrey Nolan 2017
G. Nolan, Agile Swift, DOI 10.1007/978-1-4842-2102-0_4

CHAPTER 4

Mocking

One of the major goals, whether it’s on the iOS platform or not, is to isolate the code that
we’re testing. When we write our tests, we want to test a specific class’s method without
any of the associated interactions with other classes in the app or any external elements,
such as a web service. We should be testing a single method, not its dependencies. This
method should also be the only code covered by the test, with everything else mocked.

Mocking out these third-party interactions is a great way to put a fence around a method
so we’re not reliant on such things as the network, a device’s location, or local time when
we’re doing our testing. The only reason a test should fail is because there’s something wrong
with the code, never because external dependencies (such as the WiFi) are not working.

Mocking dependencies allows you to get your tests to run quicker than the
alternative, which often means having to wait for the simulator to start or the network to
respond. Sure, there are times when you need to use a simulator, such as when you’re
testing Views, but you’ll see in the next chapter how this can be accomplished better
using the XCUI framework rather than in XCTest.

In this chapter, we’ll start with our simple Hello World example and then look at
how we can mock out the following interactions to achieve test isolation and faster test
execution.

•	 HTTP calls

•	 User defaults

•	 Dates

•	 Audio player

Same Rules Do Not Apply
Mocking in Swift isn’t the same as in other languages. There aren’t any predominant
Mocking frameworks, such as OCMock in Objective-C or Mockito in Java. Other
languages can use reflection to alter runtime code to mock out the classes. But you can’t
do that in Swift. It’s been designed to be a much safer language and doesn’t allow the
code to be modified at runtime. So you’re going to have think a little differently to achieve
the same results as say OCMock. The language is also so new and is changing so rapidly
that there isn’t a stable, mature mocking framework that you can rely on to be updated for
Swift 3, let alone future versions of Swift.

Chapter 4 ■ MoCking

98

Cuckoo
Currently there is a mocking framework called Cuckoo that will allow us to mock out our
code similar to OCMock. Cuckoo is a two-stage mocking framework and is available from
https://github.com/SwiftKit/Cuckoo. The first part, CuckooGenerator, scans your
code and creates a GeneratedMocks.swift file, which you then write your test mocks
against. When you run your tests, the GeneratedMocks.swift code, together with the
Cuckoo library, enable your mocks to function as you would expect.

Let’s start with a simple Hello, World! example to see how it works. Because it’s a
two-stage process, it isn’t seamless, but we have enough examples in the chapter that it
should become second nature.

Listing 4-1 shows the sayIt() function, which returns the Hello, World! string.

Listing 4-1. Hello World!

class Hello
{
 func sayIt() -> String
 {
 return "Hello, World!"
 }
}

For our purposes, we want the mock to return a different string when the sayIt()
function is called. We saw in the last chapter that we can summarize how we use mocks
as follows:

when(methodIsCalled).thenReturn(aValue);

When our method or function is called, it should return our canned value. So we
want our mocked code to be as follows:

mock.sayIt().thenReturn("Hello,How are you")

To install Cuckoo, follow these steps:

 1. Create your project with the Hello.swift model class and test
class.

 2. Install the Cuckoo pod by first running pod init from the
command line.

 3. Edit the generated podfile and add Cuckoo as a test target, as
shown in Listing 4-2.

https://github.com/SwiftKit/Cuckoo

Chapter 4 ■ MoCking

99

Listing 4-2. Podfile

target 'HelloWorldCuckooTests' do
 pod 'Cuckoo',
 :git => 'https://github.com/SwiftKit/Cuckoo.git',
 :branch => 'master'
end

 4. Run the pod install command.

 5. Close the project and reopen the workspace.

 6. Click on the Project folder and choose Test Target->Build
Phases.

 7. Click + and choose New Run Script Phase.

 8. Add Listing 4-3 to the Run Script section.

 9. Build the project.

Listing 4-3. Cuckoo Run Script

Define output file; change "${PROJECT_NAME}Tests" to your test's root
source folder, if it's not the default name
OUTPUT_FILE="./${PROJECT_NAME}Tests/GeneratedMocks.swift"
echo "Generated Mocks File = ${OUTPUT_FILE}"

Define input directory; change "${PROJECT_NAME}" to your project's root
source folder, if it's not the default name
INPUT_DIR="./${PROJECT_NAME}"
echo "Mocks Input Directory = ${INPUT_DIR}"

Generate mock files; include as many input files as you'd like to create
mocks for
${PODS_ROOT}/Cuckoo/run generate --testable "${PROJECT_NAME}" \
--output "${OUTPUT_FILE}" \
"${INPUT_DIR}/Hello.swift"

 10. Right-click on HelloWorldCuckooTests and add
GeneratorModel.swift to the test folder, as shown in
Figure 4-1.

Chapter 4 ■ MoCking

100

 11. Create the mock in HelloWorldCuckooTests, as shown in
Listing 4-4.

 12. Run the mocked tests.

Listing 4-4. Mocked HelloWorld

 func testSayItIsntSo() {

 let mock = MockHello()

 stub(mock, block: { (mock) in
 mock.sayIt().thenReturn("Hello,How are you")
 })

 XCTAssertEqual(mock.sayIt(), "Hello,How are you")
 }

Figure 4-2 shows the test results.

Figure 4-1. Add GeneratorMock.swift to your test folder

Figure 4-2. testSayItIsntSo results

Chapter 4 ■ MoCking

101

Mocking HTTP
Unit tests should be isolated from any network calls. We want whatever our code is doing
with the URL or REST API to be hidden from any network issues when we are unit testing
our code. We would test that when we’re doing integration testing. Listing 4-5 shows the
UrlSession class code, which does a simple GET for a given URL.

Listing 4-5. UrlSession.swift Code

class UrlSession
{
 var url:URL?
 var session:URLSession?
 var apiUrl:String?

 func getSourceUrl(apiUrl:String) -> URL
 {
 url = URL(string:apiUrl)
 return url!
 }

 func callApi(url:URL) -> String
 {
 session = URLSession()
 var outputdata:String = ""
 let task = session?.dataTask(with: url as URL) { (data, _, _) ->

Void in
 if let data = data
 {
 outputdata = String(data: data, encoding: String.Encoding.

utf8)!
 print(outputdata)

 }
 }

 task?.resume()

 return outputdata

 }
}

Ideally we would want to mock this out so we get a specific string of canned HTML or
JSON text that we can then manipulate, parse, or deconstruct in our application and test
how these functions work.

Chapter 4 ■ MoCking

102

To install Cuckoo, follow these steps:

 1. Create your UrlWithCuckoo project with the UrlSession.
swift model class and test class.

 2. Install the Cuckoo pod by first running pod init from the
command line.

 3. Edit the generated podfile and then add Cuckoo as a test
target, as shown in Listing 4-2.

 4. Run the pod install command.

 5. Close the project and reopen the workspace.

 6. Click on the Project folder and choose Test Target ➤ Build
Phases.

 7. Click + and choose New Run Script Phase.

 8. Add Listing 4-6 to the Run Script section.

 9. Build the project.

Listing 4-6. Cuckoo Run Script

Define output file; change "${PROJECT_NAME}Tests" to your test's root
source folder, if it's not the default name
OUTPUT_FILE="./${PROJECT_NAME}Tests/GeneratedMocks.swift"
echo "Generated Mocks File = ${OUTPUT_FILE}"

Define input directory; change "${PROJECT_NAME}" to your project's root
source folder, if it's not the default name
INPUT_DIR="./${PROJECT_NAME}"
echo "Mocks Input Directory = ${INPUT_DIR}"

Generate mock files; include as many input files as you'd like to create
mocks for
${PODS_ROOT}/Cuckoo/run generate --testable "${PROJECT_NAME}" \
--output "${OUTPUT_FILE}" \
"${INPUT_DIR}/UrlSession.swift"

 10. Right-click on UrlWithCuckooTests and add
GeneratorModel.swift to the test folder, as shown in
Figure 4-1.

 11. Using the newly available functions from GeneratorModel.
swift, mock out the getSourceURL and callAPI function calls.

Listing 4-7 shows the mocked code that returns a simple but valid string of an
HTML web page. We mock out the two function calls—the first determines whether
getSourceURL returns a mock URL and the second determines whether callAPI returns a
simple JSON string.

Chapter 4 ■ MoCking

103

Listing 4-7. testURL() Session Code

func testUrl()
 {
 let mock = MockUrlSession()
 let urlStr = "http://riis.com"
 let url = URL(string:urlStr)!

 stub(mock)
 { (mock) in

 when(mock.apiUrl).get.thenReturn(urlStr)
 }

 stub(mock)
 { (mock) in

 when(mock.url).get.thenReturn(url)
 }

 stub(mock)
 { (mock) in

 when(mock.session).get.thenReturn(URLSession())
 }
 stub(mock) { (stub) in
 stub.getSourceUrl(apiUrl: urlStr).thenReturn(url)
 }

 stub(mock) { mock in
 mock.callApi(url: equal(to:url, equalWhen: { $0 == $1 })).

thenReturn("{'firstName': 'John','lastName': 'Smith'}")

 }

 XCTAssertNotNil(verify(mock).session)
 XCTAssertNotNil(verify(mock).apiUrl)
 XCTAssertNotNil(verify(mock).url)

 XCTAssertEqual(mock.apiUrl, urlStr)
 XCTAssertEqual(mock.url?.absoluteString, urlStr)
 XCTAssertNotNil(mock.session)
 XCTAssertEqual(mock.callApi(url: url),"{'firstName':

'John','lastName': 'Smith'}")

 }

We run the test code and the results can be seen in Figure 4-3.

Chapter 4 ■ MoCking

104

Mocking User Defaults
Our sample app for this use case is shown in Figure 4-4. It takes a user’s username,
password, and date of birth.

Figure 4-3. testURL results

Figure 4-4. Username, password, and date of birth

Chapter 4 ■ MoCking

105

User defaults or NSUserDefaults are built-in iOS functionalities, meaning that we
don’t need to test them. When testing our app we will want to test our code using a fake
username so we don’t have to get someone to log in to the app to test other methods.

Listing 4-8. User Model Code

import Foundation

class UserDefaultsMock
{
 var standardUserDefaults :UserDefaults?

 init(suiteName:String)
 {
 standardUserDefaults = UserDefaults.standard
 standardUserDefaults?.addSuite(named: suiteName)
 standardUserDefaults?.synchronize()
 }
}

Figure 4-5. Detail view of the saved data

Chapter 4 ■ MoCking

106

It would be useful if we could set the name and user ID of the user so that we don’t
have to log in each time we’re testing the app if we want to test any subsequent logic.

To install Cuckoo, follow these steps:

 1. Create your Date project with the UserDefaultsMock.swift
model class and test classes.

 2. Install the Cuckoo pod by first running pod init from the
command line.

 3. Edit the generated podfile and then add Cuckoo as a test
target, as shown in Listing 4-2.

 4. Run the pod install command.

 5. Close the project and reopen the workspace.

 6. Click on the Project folder and choose Test Target ➤ Build
Phases.

 7. Click + and choose New Run Script Phase.

 8. Add Listing 4-6 to the Run Script section and change
UrlSession.swift to UserDefaultsWithCuckoo.swift.

 9. Build the project.

 10. Right-click on UserDefaultsWithCuckoo and add
GeneratorModel.swift to the test folder, similar to Figure 4-1.

 11. Using the newly available functions from
GeneratorModel.swift, we create mock classes for
testUserDefaults, testGetFirstnameFromDefaults,
testGetAmountValueFromDefaults, and
testGetUserIdValueFromDefaults.

Listing 4-9 shows the mock code. In the code, we create the user-default objects and
set up the mocks in setUp().

Listing 4-9. User Mock Code

import XCTest
import Cuckoo

@testable import UserDefaultsWithCuckoo

class UserDefaultsWithCuckooTests: XCTestCase
{
 let suiteName = "UnitTestingUserDefaults"
 var mock:MockUserDefaultsMock!

 override func setUp()
 {
 super.setUp()

Chapter 4 ■ MoCking

107

 // Put setup code here. This method is called before the invocation
of each test method in the class.

 mock = MockUserDefaultsMock(suiteName: suiteName)
 stub(mock) {
 (mock) in
 when(mock.standardUserDefaults.get).thenReturn(UserDefaults.

standard)
 }

 }

 override func tearDown()
 {
 // Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()

 mock.standardUserDefaults?.removeSuite(named: suiteName)
 reset(mock)
 }

 func testUserDefaults()
 {
 XCTAssertNotNil(mock.standardUserDefaults)
 XCTAssertNotNil(verify(mock).standardUserDefaults)

 }

 func testGetFirstnameFromDefaults()
 {
 mock.standardUserDefaults?.set("SwiftUser", forKey: "Firstname")
 XCTAssertEqual(mock.standardUserDefaults?.value(forKey: "Firstname")

as! String,"SwiftUser")
 }

 func testGetAmountValueFromDefaults()
 {
 mock.standardUserDefaults?.set(100.0, forKey: "amount")
 XCTAssertEqual(mock.standardUserDefaults?.float(forKey: "amount"),100.0)
 }

 func testGetUserIdValueFromDefaults()
 {
 mock.standardUserDefaults?.set(8, forKey: "UserId")
 XCTAssertEqual(mock.standardUserDefaults?.integer(forKey: "UserId"),8)
 }

}

Chapter 4 ■ MoCking

108

Run the tests on these simple mocks; the results are shown in Figure 4-6.

Mocking Date and Time
If we add a birth date to our User class, we can show how to create our own iOS date/
time environment. This abstraction allows us to hide the implementation so that we can
control time zones and day of the year and create a lot more edge case tests to give our
code a workout. When we test our code, we can use a mock date/time implementation to
make our job easier.

The data is saved and displayed on the next view, shown in Figure 4-5. If it happens
to be your birthday, you will get a pop-up message wishing you a happy birthday.

Listing 4-10 shows the DateImplementation code with functions for checking the
previous and current month, calculating the person’s age, and determining whether it’s
the user’s birthday. If it is her birthday, it creates a pop-up message wishing the user a
happy birthday.

Listing 4-10. DateImplementation.swift

class DateImplementation
{
 var chosenDate : Date?

 func getPreviousMonth() -> Int
 {
 let cal = Calendar.autoupdatingCurrent

 return cal.component(.month, from: cal.date(byAdding: .month, value:
-1, to: self.chosenDate!)!)

 }

 func getCurrentMonth() -> Int
 {
 let cal = Calendar.autoupdatingCurrent

 return cal.component(.month, from: cal.date(byAdding: .month,
value:0, to: self.chosenDate!)!)

 }

Figure 4-6. Test results

Chapter 4 ■ MoCking

109

 func calculateAge() -> Int
 {
 let calendar = NSCalendar.current
 let ageComponents = calendar.dateComponents([.year,.month,.day],

from:self.chosenDate!, to:NSDate() as Date)
 let personAge = ageComponents.year

 return personAge!

 }

 func checkForBirthday() -> Bool
 {
 let dateFormatter = DateFormatter()
 dateFormatter.dateStyle = DateFormatter.Style.medium

 let currentDate = Date()

 dateFormatter.dateFormat = "MMM"
 let month = dateFormatter.string(from: chosenDate!)
 let currentMonth = dateFormatter.string(from: currentDate)

 dateFormatter.dateFormat = "dd"
 let day = dateFormatter.string(from: chosenDate!)
 let currentDay = dateFormatter.string(from: currentDate)

 if currentDay == day && currentMonth == month
 {
 return true
 }
 else
 {
 return false
 }
 }
}

It would be useful if we could set the date to match a user’s birthday by mocking the
date and calling checkForBirthday(). We have no control over the date, so it’s an obvious
place to mock.

To install Cuckoo, follow these steps:

 1. Create your Date project with the DateImplementation.swift
model class and test classes.

 2. Install the Cuckoo pod by first running pod init from the
command line.

 3. Edit the generated podfile and then add Cuckoo as a test
target, as shown in Listing 4-2.

Chapter 4 ■ MoCking

110

 4. Run the pod install command.

 5. Close the project and reopen the workspace.

 6. Click on the Project folder and then choose Test Target ➤ Build
Phases.

 7. Click + and choose New Run Script Phase.

 8. Add Listing 4-6 to the Run Script section and change
UrlSession.swift to DateImplementation.swift.

 9. Build the project.

 10. Right-click on DateWithCuckooTests and add
GeneratorModel.swift to the test folder, similar to Figure 4-1.

 11. Using the newly available functions from GeneratorModel.
swift, we mock calculateAge, getCurrentMonth,
getPreviousMonth, and checkForBirthday.

Listing 4-11 shows the mock code. In the code, we create the Date objects and set up
the mocks in setUp().

Listing 4-11. DateImplementationTests.swift

import XCTest
import Cuckoo

@testable import DateWithCuckoo

class DateImplementationTests: XCTestCase
{
 var previousYearDate: Date?
 var mock:MockDateImplementation!
 var mockedDate :Date!

 override func setUp()
 {
 super.setUp()

 let calendar = Calendar.autoupdatingCurrent

 let previousYear = calendar.component(.year, from: calendar.
date(byAdding: .year, value: -3, to: Date())!)

 let currentMonth = calendar.component(.month, from: calendar.
date(byAdding: .month, value: 0, to: Date())!)

 let currentDay = calendar.component(.day, from: calendar.
date(byAdding: .day, value: 0, to: Date())!)

 let mockDateAndTime = MockDateAndTime()

Chapter 4 ■ MoCking

111

 previousYearDate = mockDateAndTime.from(previousYear, month:
currentMonth, day: currentDay) as Date

 mockedDate = mockDateAndTime.from(2014, month: 05, day: 20) as Date

 mock = MockDateImplementation().spy(on: DateImplementation())

 stub(mock) {
 (mock) in
 when(mock.chosenDate.get).thenReturn(mockedDate!)
 }

 stub(mock) { mock in

 when(mock.calculateAge()).thenReturn(3)
 }

 stub(mock) { mock in

 mock.checkForBirthday().thenReturn(true)

 }

 stub(mock) { mock in
 when(mock.getCurrentMonth()).thenReturn(05)
 }

 stub(mock) { mock in
 when(mock.getPreviousMonth()).thenReturn(04)
 }
 }

 class MockDateAndTime
 {
 func from(_ year:Int, month:Int, day:Int) -> Date
 {
 var c = DateComponents()
 c.year = year
 c.month = month
 c.day = day

 let gregorian = Calendar(identifier:Calendar.Identifier.
gregorian)

 let date = gregorian.date(from: c as DateComponents)

 return (date! as NSDate) as Date
 }
 }

Chapter 4 ■ MoCking

112

 override func tearDown()
 {
 // Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()
 self.previousYearDate = nil
 self.mockedDate = nil
 reset(mock!)
 }

 func testDateVerify()
 {
 XCTAssertNotNil(mock.chosenDate)
 XCTAssertEqual(mock.chosenDate, mockedDate)
 XCTAssertNotNil(verify(mock).chosenDate)
 }

 func testGetMonths()
 {
 let currentMonth = mock.getCurrentMonth()
 let previousMonth = mock.getPreviousMonth()

 XCTAssertEqual(currentMonth,05)
 XCTAssertEqual(previousMonth,04)
 }

 func testAge()
 {
 let age = mock.calculateAge()

 XCTAssertNotNil(age)
 XCTAssertNotEqual(age, 2)
 XCTAssertEqual(age, 3)
 }

 func testForBirthDay()
 {
 let birthday = mock.checkForBirthday()

 XCTAssertEqual(birthday, true)
 }

}

Now that we’ve mocked the date, we verify that it’s set correctly in testDateVerify()
and also test the user’s age in testAge(). Finally, we assert that the user’s birthday is
today using testForBirthDay().

The test results are shown in Figure 4-7.

Chapter 4 ■ MoCking

113

Mocking System Settings
We can take the same approach with system settings. In this final example, we show how
to set the media player volume by mocking out the system settings. Listing 4-12 shows
the code for the AVAudioPlayerHelper class. The model code has the getVolume() and
increaseVolumeofAudioPlayer() functions.

Listing 4-12. AVAudioPlayerHelper.swift

import Foundation
import AVFoundation

class AVAudioPlayerHelper
{
 var audioPlayer :AVAudioPlayer?

 var getVolume: Float
 {
 return (audioPlayer?.volume)!
 }

 func increaseVolumeOfAudioPlayer()
 {
 audioPlayer?.prepareToPlay()
 audioPlayer?.play()
 }
}

To install Cuckoo, follow these steps:

 1. Create your AudioPlayer project with AVAudioPlayerHelper.
swift model class and test classes.

 2. Install the Cuckoo pod by first running pod init from the
command line.

 3. Edit the generated podfile and then add Cuckoo as a test
target, as shown in Listing 4-2.

Figure 4-7. DateImplementationTests.swift test results

Chapter 4 ■ MoCking

114

 4. Run the pod install command.

 5. Close the project and reopen the workspace.

 6. Click on the Project folder and choose Test Target ➤ Build
Phases.

 7. Click + and choose New Run Script Phase.

 8. Add Listing 4-6 to the Run Script section and change
UrlSession.swift to AVAudioPlayerHelper.swift.

 9. Build the project.

 10. Right-click on AudioPlayerWithCuckooTests and add
GeneratorModel.swift to the test folder, similar to Figure 4-1.

 11. Using the newly available functions from GeneratorModel.
swift, we mock testIncreaseAudioplayerVolume().

In Listing 4-13, we see that in setUp() we create a mock Audio Player and in
testIncreaseAudioplayerVolume() we change the volume to max volume. We then
assert that we’ve made that change.

Listing 4-13. Audio Player Mocked Code

import XCTest
import Cuckoo
import AVFoundation

@testable import AudioPlayerWithCuckoo

class AudioPlayerWithCuckooTests: XCTestCase
{
 var mockAudioPlayer:MockAudioPlayer?
 let maximumVolume:Float = 1.0

 class MockAudioPlayer
 {
 let volume:Float = 1.0
 func getAudioPlayer() -> AVAudioPlayer
 {
 let url = NSURL.fileURL(withPath: Bundle.main.path(forResource:

"Sample",
 ofType: "mp3")!)
 let _: NSError?
 var tempAudioPlayer: AVAudioPlayer?

 do
 {
 try
 tempAudioPlayer = AVAudioPlayer(contentsOf: url)

Chapter 4 ■ MoCking

115

 } catch
 {
 print("audioPlayer error \(error.localizedDescription)")
 }
 tempAudioPlayer?.volume = volume

 return tempAudioPlayer!

 }
 }

 override func tearDown()
 {
 // Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()
 mockAudioPlayer = nil
 }

 func testIncreaseAudioplayerVolume()
 {
 let mock = MockAVAudioPlayerHelper()
 mockAudioPlayer = MockAudioPlayer()

 let tempAudioPlayer = mockAudioPlayer?.getAudioPlayer()

 stub(mock) {
 (mock) in
 when(mock.audioPlayer.get).thenReturn(tempAudioPlayer)
 }

 stub(mock) {
 (mock) in
 when(mock.increaseVolumeOfAudioPlayer()).thenDoNothing()
 }

 stub(mock) {
 (mock) in
 when(mock.getVolume.get).thenReturn(maximumVolume)
 }

 XCTAssertEqual(mock.audioPlayer?.volume,maximumVolume)
 XCTAssertEqual(mock.getVolume,maximumVolume)
 XCTAssertEqual(mock.audioPlayer?.volume,tempAudioPlayer?.volume)
 XCTAssertNotNil(verify(mock).audioPlayer)
 }

}

Chapter 4 ■ MoCking

116

We run the tests; see Figure 4-8 for the test results.

Summary
This chapter looked at how to use Cuckoo to mock out a basic HelloWorld class, calling a
REST API, User Defaults, Dates, and AudioPlayer classes. As yet, there aren’t any de facto
standards or mocking frameworks to use in Swift and because of its read-only runtime, it
may be a while before one emerges. But in the meantime, Cuckoo provides ways to stub
or fake out the objects so you can be just as successful in your testing.

Figure 4-8. AudioPlayerWithCuckooTest results

117© Godfrey Nolan 2017
G. Nolan, Agile Swift, DOI 10.1007/978-1-4842-2102-0_5

CHAPTER 5

UI Testing

iOS apps fail for a number of reasons other than simple logic errors that we typically catch
with unit tests. The app may not install correctly, or there may be a problem when you
move from landscape to portrait and back again. Your layout also might not work on one
of the devices such as the iPad mini that you forgot to test it on. Or it might just hang if the
network is down, leaving the user with no option but to close the app.

It’s just not possible to test for these conditions using classic unit testing. If you
remember the Swift Agile testing pyramid, you need to be at higher up on the pyramid to
catch these User Interface or UI errors (see Figure 5-1) for a Swift Agile Pyramid.

Figure 5-1. The Swift Agile testing pyramid

The bulk of your tests should be unit tests—these are small tests at the function
level. UI tests are at the top of the pyramid and are harder to maintain. These are typically
black box tests where each test creates a new session as we work through the UI to get to
the dialog that we’re trying to test. So UI tests by their very nature are brittle—small UI
changes can break multiple UI tests. Not surprisingly, there are fewer UI tests. But we still
need to test the app end to end and not just its isolated components.

Chapter 5 ■ UI testIng

118

We’re going to have to use the XCUI framework to test our UIs. There are a couple of
other options out there, but most of them have been abandoned or deprecated, such as
Frank, a Cucumber derivative, or Apple’s UIAutomation framework, so XCUI seems to be
the logical way to go.

Recording Tests
Recording tests get you started using XCUI. I don’t think anyone would use them
exclusively for testing as, like all auto-generated tools, they can create a lot of extra
garbage code. However it’s a great place to start getting your feet wet.

We’ll use the Calculator app from the Chapter 5 folder of the book’s source code.
Open it with Xcode 8 and run the app. If everything is working correctly, you should see
the image in Figure 5-2.

To add XCUI testing to this or any other project, take the following steps in Xcode:

 1. Choose File ➤ New ➤ Target.

 2. Scroll down to Test.

 3. Choose UI Testing Bundle.

 4. Click Next.

 5. Click Finish.

Figure 5-2. Calculator app

http://dx.doi.org/10.1007/978-1-4842-2102-0_5

Chapter 5 ■ UI testIng

119

If all goes well, you should see a CalculatorUITests folder and a
CalculatorUITests.swift file similar to Figure 5-3.

The template code has three methods—setUp(), tearDown(), and testExample().
Note the highlighted red circular button on the bottom of the screen beside the blue
breakpoint arrow. If you don’t see that button, you’ve done something wrong in the steps
and need to try again.

To start recording, put the cursor in the testExample() method and click the red
button to start recording. Try multiplying 3 times 4 and then check the answer in the
results field. See Listing 5-1.

Listing 5-1. Autogenerated XCUI Recorded Code

func testExample() {

 // Use recording to get started writing UI tests.
 // Use XCTAssert and related functions to verify your tests produce the

correct results.

 let app = XCUIApplication()
 app.buttons["3"].tap()
 app.buttons["*"].tap()
 app.buttons["4"].tap()
 app.buttons["="].tap()

Figure 5-3. XCUI template code

Chapter 5 ■ UI testIng

120

 app.otherElements.containing(.button, identifier:"7").children(matching:
.textField).element.tap()

}

XCUIApplication() creates the app in the simulator. Then we tap the 3, *, 4, and
equals buttons. XCUI doesn’t seem to understand what we’re doing when we click on the
results field. But we have enough to get us started. Recording is a great starting point for
tests, but don’t be surprised if you end up rewriting a lot of the code it produces.

XCUI uses the Accessibility framework, so make sure the text field has a name that
it can reference. Click on the Main.storyboard and open the Identity Inspector tab.
Choose the result field in the Storyboard and name the Identifier resultsFld, as shown
in Figure 5-4.

Like with our unit tests, we want to Arrange-Act-Assert. We’ve arranged or set up
the objects, we’ve added the numbers, and now we need to assert that the resultsFld
displays 12 when we multiply 3 * 4. Using XCTAssert, we can assert that the value in the
resultsFld is 12 as follows.

XCTAssert(app.textFields["resultsFld"].value! as! String == "12")

Update the testExample as shown in Listing 5-2 and run the test again. It should run
successfully.

Listing 5-2. Updated Recorded Code

func testExample() {

 let app = XCUIApplication()
 app.buttons["3"].tap()
 app.buttons["*"].tap()
 app.buttons["4"].tap()
 app.buttons["="].tap()

Figure 5-4. Updating accessibility identifiers

Chapter 5 ■ UI testIng

121

 let resultTextField = app.textFields["resultsFld"]
 XCTAssert(resultTextField.value! as! String == "12")

}

Figure 5-5 shows the output from the reporting tab after the code runs.

Coded Tests
In the last section you learned how you can use XCUI to record user interface apps. But
in most cases you’re going to write them from scratch. Recording tests is great but it's
usually just used to jumpstart the tests.

There are some very good reasons why you want to consider writing your tests. XCUI
recording is an excellent tool but the general consensus from the iOS community is that,
to date, it's a step back from the previous UIAutomation Apple and third-party tools that
were available in the Objective-C stack.

There are also times when recording the test simply isn't going to work and you're
going to have to figure out why. Writing your own tests helps you learn how it all fits
together if you need to debug any recorded or handwritten tests. UI tests are very brittle;
a simple change in an earlier view can have a ripple effect on later tests and if you don't
know how to debug and fix problems, you're going to have to spend a lot of time re-
recording your tests.

XCUI also generates the code and like all code-generation tools the generated code
is never neat and tidy. It's going to be easier to read your handwritten code than the XCUI
generated code if you revisit it sometime in the future. You're also going to need to know
how the recording works in case you're testing the wrong thing. There really is no other
option; you're still going to need to write your tests.

Figure 5-5. XCUI successful test report

Chapter 5 ■ UI testIng

122

Component Parts
XCUI has three component parts:

•	 XCUIApplication

•	 XCUIElement

•	 XCUIElementQuery

Using these three components, we can target a single element or a group of elements
in your app, create an action for the button or label to use, and then verify that the
element responded with the expected result.

We launch the app using XCUIApplication and then use XCUIElementQuery to find
the appropriate XCUIElement to test. Once we perform an action on the XCUIElement we
can use XCTAssert to test its value.

In most modern automated testing frameworks, we perform the three As when we
write our tests. That is, we arrange, act, and assert. So we arrange that the app is launched
(XCUIApplication) and that we're targeting the correct button or table cell on the correct
view (XCUIElementQuery); we act, meaning we perform an act such as tap on the button
or enter some text in a text field (XCUIElement); and then we assert (XCTAssert) or test
that the button or text field is in the expected state after we've performed our action.

XCUIApplication
XCUIApplication creates a new instance of your application by calling
XCUIApplication().launch(). Every test runs in a separate process so that you can
guarantee that the app is always beginning in the same fresh, unblemished state. If there's
another process running, it will be killed before the new application or process starts.

XCUIElementQuery
Each element on a view can be an XCUIElement type, such as a button or a cell or an
identifier such as a label or title. In order to interact it with it, we need to identify it. We do
this using XCUIElementQuery.

You can search for buttons, labels, titles, text fields, and table cell elements directly
using its name or using elementAtIndex(i). If you're searching by name, as you saw
earlier, you're going to need to make sure every element has its accessibility information
filled in. This seems to be a win-win as not only does it help with the XCUI testing, it also
makes your app easier for visually impaired users to use. Table 5-1 shows some examples
of calling some common elements.

Chapter 5 ■ UI testIng

123

Each XCUIElementQuery() needs to filter down the choices to a unique element or
elements. If the query isn't exact, then the test will fail and you won't be able to perform
any actions. You can also chain your XCUIElementQueries to make the query more
obvious; for example, XCUIApplication().tables.element.cells["Call Mom"].
buttons["More"].

Finally, you can also use matching predicates such a BEGINSWITH or ENDSWITH to filter
the list of elements. For example, the following will find a label or labels that end with
Football Club.

let soccerTeams = NSPredicate(format: "label ENDSWITH 'Football Club'")

XCUIElement
Once we have the correct XCUIElement, we can perform an action and assert that the
action produced the correct response.

We can tap a button as follows:

 app.buttons.elementBoundByIndex(1).tap()

Or enter text in a text field:

 emailTextField.tap()
 emailTextField.typeText("email@email.com")

Click a link on a WebView:

 app.links["Soccer"].tap()

See if a label or title exists:

 staticTexts["Burton Albion"].exists

Table 5-1. XCUIElementQuery Examples

Assertion Type Description

Text field XCUIApplication().textFields["Full Name"]

Button XCUIApplication().buttons["Check Validations"]

Button XCUIApplication().buttons.elementBoundByIndex(0)

Label XCUIApplication().staticTexts["Two Words Needed"]

Table XCUIApplication().tables.element.cells.
elementBoundByIndex(4)

Chapter 5 ■ UI testIng

124

Sample Test
We can code the earlier recorded example from scratch following the three As—arrange,
act, and assert. Now that we've explained how XCUI recording works under the hood, the
XCUI commands should make a lot more sense.

Arrange
We showed how to create a UI target in the last blog. Using our sample code from Chapter 5,
go ahead and create the UI target again. We can reuse the setUp() code that the recording
process generated, which is shown in Listing 5-3. This will start the app and create the
context.

Listing 5-3. XCUIApplication

class CalculatorUITests: XCTestCase {

 override func setUp() {
 super.setUp()

 // stop if any test fails
 continueAfterFailure = false

 // start the app
 XCUIApplication().launch()
 }
}

Act
The app has been created, so we need to act next. For us that's as simple as multiplying
two numbers. Connect to the XCUIApplication context and then tap on the appropriate
XCUIElement buttons to create the actions we need to multiple the two numbers. We are
once again borrowing from our earlier example. See Listing 5-4.

Listing 5-4. Acting on the XCUIElement Buttons

func testExample() {

 let app = XCUIApplication()
 app.buttons["3"].tap()
 app.buttons["*"].tap()
 app.buttons["4"].tap()
 app.buttons["="].tap()

}

http://dx.doi.org/10.1007/978-1-4842-2102-0_5

Chapter 5 ■ UI testIng

125

Assert
Finally, we assert that the result is what we expect. We need to use XCUIElementQuery to
gain access to the text field, which we've named resultsFld, so that we can find the text
field at app.textFields["resultsFld"].

It's pretty straightforward to test that the value is 12 using XCTAssert:

 XCTAssert(app.textFields["resultsFld"].value! as! String == "12")

CLI
One of our requirements throughout the book is to be able to run tests outside of Xcode.
If you install the command-line tools (assuming you're running Xcode 8.x), then the
following command will run the test from the command line.

xcodebuild test -project Calculator.xcodeproj -scheme Calculator
-destination 'platform=iOS Simulator,name=iPhone 6s,OS=9.3'

Reporting
Xcode does a very good job of reporting on the XCUI test results. Figure 5-6 shows the test
results for a working UI test, including all the intermittent steps.

It’s also worth getting familiar with the logs. Figure 5-7 shows the condensed version
of the logs for a working test.

Figure 5-6. Test results for the working XCUI test

Chapter 5 ■ UI testIng

126

Clicking on the expander icon at the method level shows an expanded version of the
captured logs, as shown in Figure 5-8.

Figure 5-8. Expanded logs for working XCUI test

Figure 5-7. Logs for the working XCUI test

Chapter 5 ■ UI testIng

127

If you want to see the actual log files, expand the Writing Diagnostic Log section. See
Figure 5-9.

It’s unlikely that you’re going to spend much time looking at the logs when the tests
pass. Figure 5-10 shows a failing test.

The test reports are excellent at showing what step failed; see Figure 5-11.

Figure 5-9. Location of log files

Figure 5-10. Failing test in Xcode

Figure 5-11. Failing test in reporting

Chapter 5 ■ UI testIng

128

Figure 5-12 shows the failing test in the logs.

The expanded logs can be very helpful when you’re trying to debug your
XCUIElementQuery logic and can’t figure out why you’re testing the wrong XCUIElement or
why it’s not resolving to a single XCIElement (see Figure 5-13).

Figure 5-12. Failing test in logs

Figure 5-13. Expanded logs

Chapter 5 ■ UI testIng

129

Summary
You should not expect to be writing as many XCUI tests as XCTests in your application,
but XCUI testing is a crucial part of your Agile Swift testing pyramid. Remember that unit
tests are at the method level, which is inside-out testing, whereas XCUI is used to test the
flow of your application, which is more of an outside-in type of testing.

131© Godfrey Nolan 2017
G. Nolan, Agile Swift, DOI 10.1007/978-1-4842-2102-0_6

CHAPTER 6

Test Driven Development

It wouldn’t be right in a book about Agile development if we didn’t make an effort to show
Test Driven Development (TDD) in action. So in this chapter we’re going to create an app
from scratch using our TDD approach. The sample app we’re going to create using TDD
will be for a daily horoscope. I’m not a fanatic about astrology by any means, but it’s a
simple app that will allow us to show our TDD techniques in action.

Understanding Test Driven Development
TDD means that we take the first feature on our list of features and code using the
following process:

•	 Write a test first and see it fails (red)

•	 Write the simplest possible solution to get the test to pass (green)

•	 Refactor to remove any code smells (refactor)

Then we take another feature from the list and repeat the red/green/refactor process.
We repeat this process until all the features are completed.

 ■ Note In classic TDD, whether it’s in Java or C#, we don’t usually have to worry about
any infrastructure. But things aren’t that straightforward in iOS. When we create a Swift
class to test, we often have to create a Storyboard that will display or interact with that Swift
class. So when we say write the simplest possible solution to get the unit test to pass, that
will also have to include some iOS Storyboard code too. Alternatively, you can leave that to
the refactoring stage if you like, but it just needs to be completed somewhere in the red/
green/refactor process.

ChApTer 6 ■ TeST DrIven DevelOpmenT

132

Unit Testing versus TDD
So far we’ve been focused on unit testing our Swift apps. But unit testing is not necessarily
TDD. Test Driven Development involves writing the unit test before writing the code,
whereas unit tests don’t mandate when you write tests. Without TDD, more often than
not unit tests are written at the end of a coding cycle to improve code coverage metrics.
So you can do unit testing with TDD, but you can’t do TDD without unit testing. Once you
start TDD, you should find that it is less painful than classic unit testing.

Value of TDD
We know that unit testing and testing in general helps catch mistakes, but why would
we want to use TDD? There are several fundamental reasons for this. TDD pushes the
developer to only implement what is minimally needed to implement a feature, so it
can help us shape our design to actual or real use and avoids any gold plating in our
implementation. We call this process YAGNI, or You Ain’t Going to Need It. It leads to
much simpler implementations as the focus is on what is required, not necessarily what
you might be able to do so saving money and reducing complexity.

In these days of faster mobile startups, YAGNI also encourages getting a minimum
viable product or MVP out the door as quickly as possible. The business owners choose
the bare minimum of features needed to launch an app in the app store. This minimum
feature list is then split into manageable chunks that feed your developers’ TDD process.

Unit testing without TDD can get you a regression test suite that will help you from
introducing any defects as your code. But because you’re writing unit tests before you
write any code, your understanding of what the code is trying to do is naturally going to
be much fresher than writing unit tests weeks or even months later. The TDD regression
test suite is probably going to have more coverage and be much more comprehensive
than unit testing without TDD.

Also because of the ongoing refactoring, the code becomes more maintainable and
much leaner, leading to a longer life for your codebase. It is very easy to write horrible,
untestable code in Swift. Refactoring will encourage you to write single-line methods that
are easily tested rather than monolithic View Controllers.

Finally, the process of coding in this continuous red/green/refactor cycle helps kill
procrastination, as the focus is on small discrete steps and the app gradually emerges
from the bottom up as one feature after another is implemented.

Writing an App Using TDD
Before we get started, we’re going to need some basic requirements for our horoscope app.

•	 Display each star sign

•	 Display information about each star sign

•	 Display a daily horoscope for star sign

There are lots of other things that we could add, but we’re practicing YAGNI so we’re
going to go with the minimum of features for our MVP horoscope app.

ChApTer 6 ■ TeST DrIven DevelOpmenT

133

We’re going to create a simple horoscope app that displays the list of Zodiac signs,
displays some information about each star sign, and then shows the daily horoscope.

Feature 1
The initial feature requires that we display a list of star signs, which we will do using a
Table View, as shown in Figure 6-1.

Getting Started
For this feature, we need to create a new project. Close any other Xcode projects that you
have open. Because of the nature of the mobile apps we not only need to create a Swift file
with our horoscope information, but we also need to set up the interface to display the signs.

Note that while this will end up being a Master-Detail application, the TDD process
tells us that we only need the minimum amount of information to create our feature. A
single view application meets our immediate needs (see Figure 6-2).

Figure 6-1. Horoscope app feature 1

ChApTer 6 ■ TeST DrIven DevelOpmenT

134

 1. In Xcode, go to File ➤ New ➤ Project.

 2. User iOS and Application, choose the Single View Application
template, as shown in Figure 6-2.

 3. Click next and enter the following options (see Figure 6-3):

•	 Product Name: Horoscope

•	 Organization Name: Example

•	 Organization Identifier: com.example

•	 Language: Swift

•	 Devices: iPhone

•	 Include Unit Tests: Checked

 4. Click Next.

 5. Navigate to Desktop ➤ Agile Swift ➤ Chapter 6.

 6. Check Create Git Repository on My Mac.

 7. Click Create.

Figure 6-2. Single view iOS application

http://dx.doi.org/10.1007/978-1-4842-2102-0_6

ChApTer 6 ■ TeST DrIven DevelOpmenT

135

Writing the Test First
Open the HoroscopesTests.Swift file in the HoroscopesTest folder. It will be the
same template we’ve seen in the past, with setUp, tearDown, testExample, and
testPerformanceExample methods. Our first feature is to display the horoscope star signs,
not the first page. Create the unit tests in Listing 6-1 to start the process.

Listing 6-1. Feature 1 Unit Tests

let horoscopeModel = HoroscopeData.horoscopes

func testNumHoroscopeSigns() {
 XCTAssertEqual(horoscopeModel.count, 12)
}

func testFirstHoroscopeSignAries() {
 XCTAssertEqual(horoscopeModel[0].name, "Aries")
}

A couple of things to note. Because we haven’t created the horoscope data this
isn’t going to compile. So we’re going to need to create a struct or a class to store the
horoscope data. Secondly we’re going to need to create the user interface too. Technically

Figure 6-3. Use these project options

ChApTer 6 ■ TeST DrIven DevelOpmenT

136

we don’t need to do that to make the test pass but then we won’t be displaying the signs.
So I always recommend creating the user interface along with your tests. This seems
strange in the world of TDD, but there really isn’t any way around it for mobile apps.

Listing 6-2 shows the code in HoroscopeData.swift. We can use a struct, as the
data isn’t going to change and nobody is going to be adding, editing, or deleting any of
the elements of our horoscope data once we have it then way we want.

Listing 6-2. Horoscope Data

import Foundation

struct Horoscope {
 var name: String
}

struct HoroscopeData {

 static let horoscopes = [
 Horoscope(name: "Aries")
]

}

We’ve done enough for the tests to compile and run. Run the tests by clicking on the
test icon in the HoroscopeTests class. The testNumHoroscopeSigns should fail, as

shown in Figure 6-4.

Figure 6-4. Failing tests feature 1

ChApTer 6 ■ TeST DrIven DevelOpmenT

137

To get the tests to pass, add the rest of the horoscope names to the HoroscopeData.
swift file, see Listing 6-3.

Listing 6-3. Complete List of Horoscope Signs

import Foundation

struct Horoscope {
 var name: String
}

struct HoroscopeData {

 static let horoscopes = [
 Horoscope(name: "Aries"),
 Horoscope(name: "Taurus"),
 Horoscope(name: "Gemini"),
 Horoscope(name: "Cancer"),
 Horoscope(name: "Leo"),
 Horoscope(name: "Virgo"),
 Horoscope(name: "Libra"),
 Horoscope(name: "Scorpio"),
 Horoscope(name: "Sagittarius"),
 Horoscope(name: "Capricorn"),
 Horoscope(name: "Aquarius"),
 Horoscope(name: "Pisces")
]

}

Run the tests again and this time they should pass, as shown in Figure 6-5.

Figure 6-5. Passing tests feature 1

ChApTer 6 ■ TeST DrIven DevelOpmenT

138

We’ve created the data for our app, but it’s not much use without the user interface.
So we’re going to create that next.

Creating a Table View App
 1. In the Project Navigator, notice that there are a number of files

created automatically. Xcode created a View Controller as well
as an AppDelegate.swift file when we chose the single view
application.

 2. Click on Main.storyboard.

 3. Click on the View Controller in the Document Outline.
If it’s not visible, then click the Show Document Outline
button at the bottom left of the Editor area.

 4. Click on the View Controller and delete it.

 5. Delete ViewController.swift.

 6. Go to the Object Library at the bottom right of the Xcode
screen.

 7. In the search window, search for the Table View Controller in
the object window.

 8. Drag and drop a Table View Controller onto the Editor.

 9. Click on the Table View Controller in the Document Outline
window.

 10. Next, click on the Attributes Inspector in the Inspector
area.

 11. Check on the Is Initial View Controller to make this the
Storyboard Entry point when the application is started.

Adding a Label
 1. In the Document Outline, expand Table View Controller.

 2. Click on Table View.

 3. In the Utilities area on the right, go to the Attributes
Inspector .

 4. Under Table View, from the Content menu, choose Dynamic
Prototype.

 5. In the Document Outline, expand the Table View.

 6. Expand the Table View Section.

ChApTer 6 ■ TeST DrIven DevelOpmenT

139

 7. Click the remaining table view cell to select it.

 8. In the Attributes Inspector, set the Style menu to custom.

 9. Enter signCell in the Identifier just below the Style

 10. In the Document Outline, expand Table View Cell and click on
Content View.

 11. Go to the Object Library at the bottom right of the Xcode
screen.

 12. In the search window, search for the Label in the object
window.

 13. Drag and drop the Label on the Table View Cell in the
Storyboard, see Figure 6-6.

Figure 6-6. Adding a Label to the Signs Table’s Table View Cell

ChApTer 6 ■ TeST DrIven DevelOpmenT

140

Creating a Table View Class
 1. Go to File ➤ New ➤ File.

 2. On the left, under iOS, make sure Source is selected.

 3. Choose Cocoa Touch Class.

 4. From the Subclass of menu, choose UITableViewController.

 5. Edit the name of the Class to be SignsTableViewController
(see Figure 6-7).

 6. Click Next.

 7. You should already be in the Horoscope folder, so click Create.

 8. Notice that SignsTableViewController.swift has been
added to the Project Navigator.

Figure 6-7. Create Table View Controller SignsTableViewController

ChApTer 6 ■ TeST DrIven DevelOpmenT

141

By making our class a subclass of the UITableViewController, we will have a
SignsTableViewController.swift class with template methods for all the functionality
we need for our table object.

Connecting the Table Class
 1. In the Project Navigator, click on Main.storyboard.

 2. In the Document Outline, click Table View.

 3. In the Utilities area on the right, click on the Connections

inspector tab .

 4. Notice there are two outlets that are assigned to the Table
View: dataSource and delegate.

 5. Next we need to connect the view we have in the Storyboard
to our new class. In the Document Outline, click Table View
Controller.

 6. In the Utilities area on the right, click the Identity Inspector
tab .

 7. Next to Class, type SignsTableViewController or choose it
from the dropdown.

 8. Click Return to apply the change.

 9. In the Document Outline, click Table View.

 10. In the Utilities area on the right, click the Connections
Inspector tab again.

 11. Notice that dataSource and delegate are now connected to the
Signs Table View Controller (see Figure 6-8).

ChApTer 6 ■ TeST DrIven DevelOpmenT

142

Now we can start adding the code we need to populate the table cells.
We need to make the following changes to SignsTableViewController.swift:

•	 Add a reference to the horoscope data by adding let
horoscopeModel = HoroscopeData.horoscopes

•	 Edit the numberOfSectionsInTableView, set to return 1 as there
is only one section table

•	 Edit the numberOfRowsInSectionsInTableView to return
horoscopeModel.count i.e. 12 signs

•	 Configure the cell to display the horoscope data

•	 Change

 let cell = tableView.dequeueReusableCell(withIdentifier:
"reuseIdentifier", for: indexPath)

to

let cell = tableView.dequeueReusableCell(withIdentifier: "signCell", for:
indexPath)

Figure 6-8. dataSource and delegate outlets

ChApTer 6 ■ TeST DrIven DevelOpmenT

143

And add the cell name so it can be displayed.

let horoscopeDetail = horoscopeModel[indexPath.row]
cell.textLabel?.text = horoscopeDetail.name

The cleaned up file is shown in Listing 6-4.

Listing 6-4. Table View Code

import UIKit

class SignsTableViewController: UITableViewController {

 let horoscopeModel = HoroscopeData.horoscopes

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
 }

 override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 return horoscopeModel.count
 }

 override func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(withIdentifier: "signCell",
for: indexPath)

 // Configure the cell...
 let horoscopeDetail = horoscopeModel[indexPath.row]
 cell.textLabel?.text = horoscopeDetail.name
 return cell
 }
 /*
 // MARK: - Navigation
 // In a storyboard-based application, you will often want to do a little

preparation before navigation override func prepare(for segue:
UIStoryboardSegue, sender: Any?) {

ChApTer 6 ■ TeST DrIven DevelOpmenT

144

 // Get the new view controller using segue.
destinationViewController.

 // Pass the selected object to the new view controller.
 }
 */

}

We need to leave the template prepare function in our code as we’re going to need it
in the next feature. Run the app and the table displays with the 12 signs.

Refactor
The final stage of testing is to refactor. Begin by deleting the ViewController.swift file.
Right click and choose delete and then choose ‘Move to Trash’. The remaining code is so
simple we don’t need to do much refactoring with the code. We should, however, add more
tests to make sure all the remaining signs are being displayed, as shown in Listing 6-5.

Listing 6-5. Adding more Tests

func testHoroscopeSignsAreInCorrectOrder() {
 XCTAssertEqual(horoscopeModel[0].name, "Aries")
 XCTAssertEqual(horoscopeModel[1].name, "Taurus")
 XCTAssertEqual(horoscopeModel[2].name, "Gemini")
 XCTAssertEqual(horoscopeModel[3].name, "Cancer")
 XCTAssertEqual(horoscopeModel[4].name, "Leo")
 XCTAssertEqual(horoscopeModel[5].name, "Virgo")
 XCTAssertEqual(horoscopeModel[6].name, "Libra")
 XCTAssertEqual(horoscopeModel[7].name, "Scorpio")
 XCTAssertEqual(horoscopeModel[8].name, "Sagittarius")
 XCTAssertEqual(horoscopeModel[9].name, "Capricorn")
 XCTAssertEqual(horoscopeModel[10].name, "Aquarius")
 XCTAssertEqual(horoscopeModel[11].name, "Pisces")

}

Feature 2
In feature 2, we want to display information about each sign. Let’s keep it basic so we can
choose to display the following information:

•	 Name

•	 Description

•	 Symbol

•	 Month

ChApTer 6 ■ TeST DrIven DevelOpmenT

145

We’ll display the information on a second view when the user clicks on the relevant
table cell.

We could store the information in a SQLite database, but that’s not a requirement, so
we’ll take the YAGNI route and instead store the sign information in our struct. It’s neat,
clean, and meets the requirement.

Writing the Test
Start with the tests. We can quickly test for the Description, Symbols, and Month in the
HoroscopeTests.swift file, as shown in Listing 6-6.

Listing 6-6. Testing Description, Symbol, and Month

func testHoroscopeDescription() {
 XCTAssertEqual(horoscopeModel[0].description, "Courageous and

Energetic.")
}

func testHoroscopeSymbols() {
 XCTAssertEqual(horoscopeModel[0].symbol, "Ram")
}

func testHoroscopeMonth() {
 XCTAssertEqual(horoscopeModel[0].month, "April")
}

To get the tests to run, we need to add the description, symbol, and month to the
horoscope struct in HoroscopeData.swift (see Listing 6-7).

Listing 6-7. Updated Horoscope Struct

struct Horoscope {
 var name: String
 var description: String
 var symbol: String
 var month: String
}

Run the tests. As expected, seeing as we’re in the red part of the red/green/refactor
TDD cycle, the unit tests all fail (see Figure 6-9).

Figure 6-9. Failing tests

ChApTer 6 ■ TeST DrIven DevelOpmenT

146

Complete the description of the Aries horoscope data shown in Listing 6-8.

Listing 6-8. Completed Horoscope Details for Aries

struct HoroscopeData {

 static let horoscopes = [
 Horoscope(name: "Aries",
 description: "Courageous and Energetic.",
 symbol: "Ram",
 month: "April")
]
}

Run the tests again and they turn green, as shown in Figure 6-10.

Figure 6-10. Passing tests

Creating a User Interface
We’re not done yet, as we need to display the information to the user. We’re going to
create a detailed view of the horoscope sign. When the user clicks on one of the signs it
will take them to a detail view of the information for that sign. To add this functionality to
our app, we’ll first add a Navigation Controller.

Adding the Navigation Controller

 1. In the Project Navigator, click on Main.storyboard.

 2. Hide the Document Outline button by clicking the at the
bottom left of the Editor area.

 3. Go to the Object Library in the Utilities area on the bottom
right.

 4. Find the Navigation Controller.

 5. Drag it onto the Storyboard.

ChApTer 6 ■ TeST DrIven DevelOpmenT

147

 6. The Navigation Controller comes with two scenes:

•	 Navigation Controller: Manages the relationships and
transitions between our views

•	 Root View Controller: The first controller instantiated by the
Navigation Controller

 7. Delete the provided Root View Controller so the Table View
Controller can be the first controller instantiated.

 8. Click onto the top bar of the Root View Controller so that it is
outlined in blue and delete it.

The Editor should now look similar to what you see in Figure 6-11.

Figure 6-11. Adding a Navigation Controller

ChApTer 6 ■ TeST DrIven DevelOpmenT

148

Setting the Initial View Controller

We can see the gray arrow is pointing to our Signs Table View Controller. We need to
change that so that the Navigation Controller is our initial View Controller.

 1. Open the Document Outline button by clicking the at the
bottom left of the Editor area.

 2. Click on the Navigation Controller to select it.

 3. In the Utilities area on the right, click on the Attributes
inspector tab .

 4. In the View Controller section, check on Is Initial View
Controller.

 5. In the Editor area, the gray arrow should now be pointing to
the Navigation Controller, as shown in Figure 6-12.

Figure 6-12. Initial View Navigation Controller

ChApTer 6 ■ TeST DrIven DevelOpmenT

149

Setting the Root View Controller

Next we need to set the Signs Table View Controller as the root View Controller so it is the
first controller that users see. We set this in the Connections Inspector.

 1. Select the Navigation Controller in the Editor.

 2. In the Utilities area on the right, click on the Connections
Inspector tab .

 3. In the Triggered Segues section in the Connections Inspector
tab, click on the root View Controller.

 4. Hold Ctrl and drag from the + circle beside root View
Controller to the Signs Table View Controller.

 5. In the Connections Inspector tab the root View Controller
is now connected to the Signs Table View Controller.

 6. In the Editor section, the Signs Table View Controller is now
the root View Controller for the Navigation Controller, as
shown in Figure 6-13.

Figure 6-13. Setting the root View Controller

ChApTer 6 ■ TeST DrIven DevelOpmenT

150

This now creates a connection between the Navigation Controller and the Table View
Controller which is now the Root View Controller for the Navigation Controller.

Adding the Detail View Controller

Next we create a View Controller to display the sign information and then create a
connection between it and the cell in our Signs Table View Controller. Therefore, when
users tap on the cell, they are taken to the new View Controller.

 1. We need to add a View Controller that will list the details
about our star sign. In the Object Library, find the View

Controller.

 2. Drag a View Controller and drop it to the right of Signs Table
View Controller in the Editor.

 3. Hold Ctrl and drag from the Label ‘Aries’ cell to the View
Controller on the right.

 4. A Segue menu will open, as shown in Figure 6-14. Under
Selection Segue, click Show.

Figure 6-14. Creating the segue between the Table View and View Controller

ChApTer 6 ■ TeST DrIven DevelOpmenT

151

 5. In the Document Outline, expand Signs Table View Controller
if it isn’t already expanded.

 6. Click on Navigation Item to select it.

 7. In the Utilities area on the right, click the Attributes Inspector

tab .

 8. Enter Signs as the Title.

 9. The Signs Table View Controller title bar has been updated.

 10. Click the Run button and you should be able to click on a Sign
and get a blank detail page.

Figure 6-15. Adding the Detail View Controller

Adding a Name, Description, Symbol, and Month

We can quickly create the layout for the View Controller that appears when you tap on a
horoscope sign. This view will list the extra information we created earlier.

 1. Go to the Document Outline. If it’s not open, click on .

 2. Under View Controller Scene in the Document Outline, click
View Controller to select it.

 3. In the Object Library area on the right, search for Label.

 4. Add a Label for Name, Symbol, Month, and Description, and
then order them as shown in Figure 6-16.

ChApTer 6 ■ TeST DrIven DevelOpmenT

152

Creating SignsDetailViewController Class

 1. Go to File ➤ New ➤ File in the Project Navigator.

 2. Make sure on the left, under iOS, that Source is selected.

 3. Double-click Cocoa Touch Class to choose it.

 4. From the Subclass of menu, choose UIViewController.

 5. Choose SignsDetailViewController as the name of the class,
see Figure 6-17.

 6. Click Next and Create.

 7. In the Project Navigator, click on Main.storyboard.

 8. In the Document Outline, select Signs Detail View Controller.

Figure 6-16. Adding info labels to the Detail View Controller

ChApTer 6 ■ TeST DrIven DevelOpmenT

153

 9. In the Utilities area on the right, click on the Identity Inspector
tab .

 10. For the class, select SignsDetailViewController from the drop-
down then press Return. SignsDetailViewController is now
connected to the new class.

 ■ Note Just like with UITableViewController, by subclassing UIViewController, our
new class will have template code for the view functionality we’re going to need.

Figure 6-17. Creating SignsDetailViewController.swift

Creating a Segue

Add a variable for the current sign at the start of the detail view, as shown in Listing 6-9.

Listing 6-9. Adding the currentSignDetail Variable

class SignsTableViewController: UITableViewController {
 var currentSignDetail:Int?

Uncomment the prepare method under // MARK: – Navigation; see Listing 6-10.

ChApTer 6 ■ TeST DrIven DevelOpmenT

154

Listing 6-10. Preparing for Segue Code

// MARK: - Navigation

 // In a storyboard-based application, you will often want to do a little
preparation before navigation
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 // Get the new view controller using segue.destinationViewController.
 // Pass the selected object to the new view controller.
}

Segues allow us to pass data from one page to the next. In this case we’re going to
send the ID of the table cell that’s been clicked so that we can pick this up and display the
appropriate horoscope sign Details View.

Replace the code with the code in Listing 6-11.

Listing 6-11. Updated prepareForSegue

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 if (segue.identifier == "showDetail") {
 if let indexPath = tableView.indexPathForSelectedRow {
 let signsDetailViewController:SignsDetailViewController =
 segue.destination as! SignsDetailViewController
 let signNumber = indexPath.row
 signsDetailViewController.currentSignDetail = signNumber

 }
 }
 }

We’re preparing for the segue by first referencing the showDetail segue, and then
we’re taking the indexPath.row or the ID of the clicked row and using the signNumber to
pass the ID to the segue destination, which we’ll set up next.

Creating the showDetail Segue

Let’s connect the two views so showDetail knows where to go.

 1. Click on Main.storyboard.

 2. In the Editor, click on the segue between the Table View and
Detail View Controllers (see Figure 6-18).

 3. Click the Attributes Inspector tab .

 4. Enter showDetail in the Identifier field so that the prepare
method knows where to send the data.

ChApTer 6 ■ TeST DrIven DevelOpmenT

155

Connecting Sign Detail Outlets

 1. Click on Main.storyboard in the Project Navigator.

 2. Hide the Document Outline by clicking .

 3. Click the top bar of the Signs Detail View Controller in the
Editor area.

 4. Click on the Assistant Editor button to view the Storyboard
next to SignsDetailViewController.swift.

 5. Hold Ctrl and drag the Name label to the
SignsDetailViewController.swift file.

 6. In the menu that pops up, set the following:

•	 Connection: Outlet

•	 Name: signName

•	 Type: UILabel

•	 Storage: Weak

 7. Click Connect.

 8. Repeat this process for signSymbol, signMonth, and
signDescription.

Figure 6-18. showDetail Segue

ChApTer 6 ■ TeST DrIven DevelOpmenT

156

Receiving the Segue Data and Updating the Detail View

Finally we need to do two things—receive the data that’s been passed from the Sign Table
View and update the labels with the horoscope information for that sign.

First, let’s create the currentSignDetail variable to receive the segue data, as shown
in Listing 6-12.

Listing 6-12. currentSignDetail Variable for Receiving Segue Data

class SignsDetailViewController: UIViewController {

 var currentSignDetail:Int?

Secondly, we update the viewDidLoad method to change the values of the labels and
display the horoscope information from our struct, as shown in Listing 6-13.

Listing 6-13. Update Labels with the currentSignDetailValue

override func viewDidLoad() {
 super.viewDidLoad()

 if let currentSignDetailValue = currentSignDetail
 {
 signName.text = HoroscopeData.horoscopes[currentSignDetailValue].

name
 signSymbol.text = HoroscopeData.horoscopes[currentSignDetailValue].

symbol
 signMonth.text = HoroscopeData.horoscopes[currentSignDetailValue].

month
 signDescription.text = HoroscopeData.horoscopes[currentSignDetailVa

lue].description
 }
}

Refactor
When we run the app the Description is getting truncated, see Figure 6-19.

Figure 6-19. Truncated Sign Description

ChApTer 6 ■ TeST DrIven DevelOpmenT

157

We can fix this as follows.

 1. Click on the Main.storyboard

 2. Click on Description field on the Signs Detail View Controller

 3. In the Utility Area open the Attributes Inspector

 4. Set Lines = 0

 5. Go to Line Break and choose Word Wrap.

 6. Open the Size Inspector

 7. Set X = 15, Y = 200, Width = 300 and Height = 75

Run the simulator again and the Description is no longer truncated.
You can also remove the unused template methods in the views as well as add more

tests similar to what was shown in the last step. Removing the unused code will make
the remaining code more obvious when you return in the future and you can find the
template code again if needed.

Feature 3
Feature 3 says we should display the horoscope for each star sign. Once again, let’s
start with the testing. The requirement is that it must be free and available in XML or
JSON (Java Script Object Notation). We can create our own simple API or use one of the
many free APIs. In this case, we’re going to use the daily horoscope from http://www.
findyourfate.com/rss/dailyhoroscope-feed.asp.

The Aries output can be seen in Listing 6-14.

Listing 6-14. Horoscope XML

<rss version="2.0">
 <channel>
 <title>Daily Horoscope</title>
 <description>Daily Horoscopes by FindYourFate.com</description>
 <link>http://www.findyourfate.com</link>
 <item>
 <title>Aries Horoscope for Thursday, September 29, 2016</
title>
 <description>
 You may feel that you are in a crucial place in your

life today, but try not to let your emotions run
away with you. It is easy to blame others, but you
know that will not be the answer. Try not to hurt
someone`s feelings today when they try to give you a
compliment. Flattery is not your thing, but speaking
out loud about what you are thinking may not be
the best way to handle this. Don`t discard those

http://www.findyourfate.com/rss/dailyhoroscope-feed.asp
http://www.findyourfate.com/rss/dailyhoroscope-feed.asp

ChApTer 6 ■ TeST DrIven DevelOpmenT

158

invitations just yet. Such events can be fun and you
could finally meet that special someone.

 </description>
 <link>
 http://horoscope.findyourfate.com/

ariesdailyhoroscope.html
 </link>
 </item>
 </channel>
</rss>

We know from our unit testing chapter that we’re not going to test any network
communication. It is not something we want to do during our unit testing. But we should
be testing our own methods that call findyourfate. Listing 6-15 shows a test to see if we
appended the URL correctly.

Listing 6-15. testAppendURL

func testAppendURL() {
 let compURL = HoroscopeService.sharedInstance.appendURL(sign: "Aries")
 XCTAssertEqual(compURL, "http://www.findyourfate.com/rss/dailyhoroscope-

feed.asp?sign=Aries&id=45")
}

The appendURL code is shown in Listing 6-16.

Listing 6-16. AppendURL

func testAppendURL() {
 let compURL = HoroscopeService.sharedInstance.appendURL(sign: "Aries")
 XCTAssertEqual(compURL, "http://www.findyourfate.com/rss/dailyhoroscope-

feed.asp?sign=Aries&id=45")
}

Run the code and the test passes.

Creating the User Interface
We want to display the horoscope on our Detail View so that it can take the FindYourFate
daily horoscope and display it to our users.

Updating the Detail View

 1. Click on the Main.storyboard.

 2. Go to the Object Library and find the Label object.

ChApTer 6 ■ TeST DrIven DevelOpmenT

159

 3. Drag and drop the label onto the Signs Detail View Controller
and put it under the description, as shown in Figure 6-20.

Figure 6-20. Completed signs detail view

Creating the Horoscope Service

 1. Open File ➤ New ➤ File.

 2. Create a .swift.

 3. Cut and paste the code in Listing 6-17. appendURL is the code
we tested and callDailyhoroscopeApi is template code for
calling an URL asynchronously.

ChApTer 6 ■ TeST DrIven DevelOpmenT

160

Listing 6-17. HoroscopeService.swift

import Foundation

class HoroscopeService
{
 static var horoscopeUrl:String = ""

 class var sharedInstance :HoroscopeService
 {
 struct Singleton
 {
 static let instance = HoroscopeService()
 }

 return Singleton.instance
 }

 func appendURL (sign:String) -> String {
 let baseURL = "http://www.findyourfate.com/rss/dailyhoroscope-feed.asp"
 let findYourFateID = "45"
 let completedURL = baseURL + "?sign=" + sign + "&id=" +

findYourFateID
 return completedURL
 }

 func callDailyhoroscopeApi(sign:String,parameters: AnyObject?,
 success: ((_ resp: Data) -> Void)?,
 failure: ((_ error: NSError?) -> Void)?)
 {

 let urlString = appendURL(sign: sign)
 let url = URL(string: urlString)
 let request = NSMutableURLRequest(url: url!)
 let session = URLSession.shared
 request.httpMethod = "GET"
 request.addValue("application/xml", forHTTPHeaderField: "Content-

Type")
 request.addValue("application/xml", forHTTPHeaderField: "Accept")

 let task = session.dataTask(with: request as URLRequest,
completionHandler:

 {
 data, response, error -> Void in
 let httpResponse = response as! HTTPURLResponse
 let strData = NSString(data: data!, encoding: String.

Encoding.utf8.rawValue)
 print("Body: \(strData)")

ChApTer 6 ■ TeST DrIven DevelOpmenT

161

 if httpResponse.statusCode == 200
 {
 DispatchQueue.main.async(execute: { () -> Void in
 success!(data!)
 })
 }
 else
 {
 DispatchQueue.main.async(execute: { () -> Void in

 failure!(error as NSError?)
 })
 }
 })
 task.resume()
 }
}

Updating SignsDetailViewController.swift

There are three things we need to do to update the Horoscope field.

•	 Call HoroscopeService’s callDailyhoroscopeApi method to get
the horoscope

•	 Parse the returned XML to pull out the daily horoscope field,
Description

•	 Finally, update the Horoscope field with the daily horoscope

The complete code is shown in Listing 6-18.

Listing 6-18. SignsDetailViewController

import UIKit

class SignsDetailViewController: UIViewController, XMLParserDelegate {

 var currentSignDetail:Int?

 @IBOutlet weak var signName: UILabel!
 @IBOutlet weak var signSymbol: UILabel!
 @IBOutlet weak var signMonth: UILabel!
 @IBOutlet weak var signDescription: UILabel!
 @IBOutlet weak var signHoroscope: UILabel!
 @IBOutlet weak var spinner: UIActivityIndicatorView!

ChApTer 6 ■ TeST DrIven DevelOpmenT

162

 var parser = XMLParser()
 var element = NSString()

 var horoscopeDescription = String()
 var insideAnItem = false

 // MARK: - View life cycle

 override func viewDidLoad() {
 super.viewDidLoad()

 if let currentSignDetailValue = currentSignDetail
 {
 signName.text = HoroscopeData.horoscopes[currentSignDetail

Value].name
 signSymbol.text = HoroscopeData.horoscopes[currentSignDetail

Value].symbol
 signMonth.text = HoroscopeData.horoscopes[currentSignDetail

Value].month
 signDescription.text = HoroscopeData.horoscopes[currentSign

DetailValue].description

 self.callDailyhoroscopeApi(sign: HoroscopeData.horoscopes
[currentSignDetailValue].name)

 }
 }

 override func didReceiveMemoryWarning()
 {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 // MARK: - API Call
 func callDailyhoroscopeApi(sign:String)
 {
 self.spinner.startAnimating()
 HoroscopeService.sharedInstance.callDailyhoroscopeApi(sign: sign,

parameters: nil, success: {
 (data) in

 self.spinner.stopAnimating()

 self.parseXmlData(data: data)

 }) { (error) in
 self.spinner.stopAnimating()
 }
 }

ChApTer 6 ■ TeST DrIven DevelOpmenT

163

 // MARK: - XMLParser
 func parseXmlData(data:Data)
 {
 //create xml parser
 self.parser = XMLParser(data: data)
 self.parser.delegate = self
 self.parser.parse()

 let success:Bool = self.parser.parse()
 if success {
 print(success)
 }
 }

 // MARK: - XMLParser Delegate methods

 // didStartElement
 func parser(_ parser: XMLParser, didStartElement elementName: String,

namespaceURI: String?, qualifiedName qName: String?, attributes
attributeDict: [String : String])

 {

 element = elementName as NSString
 if (elementName as NSString).isEqual(to: "item")
 {
 insideAnItem = true
 print(attributeDict)
 }
 }

 // foundCharacters
 func parser(_ parser: XMLParser, foundCharacters string: String)
 {

 if element.isEqual(to: "description") && insideAnItem == true
 {
 print("description is \(string)")
 self.horoscopeDescription = string

 }
 }

 // didEndElement
 func parser(_ parser: XMLParser, didEndElement elementName: String,

namespaceURI: String?, qualifiedName qName: String?)
 {

 }

ChApTer 6 ■ TeST DrIven DevelOpmenT

164

 func parserDidEndDocument(_ parser: XMLParser)
 {
 DispatchQueue.main.async {
 self.spinner.stopAnimating()
 //Display the data on UI

 self.signHoroscope.text = self.horoscopeDescription
 }

 }

}
Figure 6-21 shows the final app, complete with the displayed Aries horoscope from

findyourfate.com. To refactor the code we would probably add some URL mocking to
the test using the http connection example Cuckoo library example that we explored in
Chapter 4.

Figure 6-21. Aries detail page with the daily horoscope

http://dx.doi.org/10.1007/978-1-4842-2102-0_4

ChApTer 6 ■ TeST DrIven DevelOpmenT

165

I would be the first to admit that creating the user interface gets in the way of creating
a red/green/refactor cadence when you’re developing. The unit testing code is limited
to code that doesn’t directly relate to the iOS UI framework. Ideally we wouldn’t have to
open Xcode at all and use the command line tools such as xcodebuild to build our app.
While that isn’t realistic at the moment there are a number of 3rd party tools that can help
limit the amount of time we have to spend using Storyboards and the Interface Builder.

We looked at the Stevia library for building interfaces in Chapter 3. There are a
number of Swift DSLs (Domain Specific Languages) such as Stevia and SnapKit that aim
to dramatically shorten the lines of User Interface code in your applications.

Listing 6-19 shows the Detail View Page code written in Stevia that we wrote for a
final refactoring stage.

Listing 6-19. Stevia version of the SignsDetailView

import UIKit
import Stevia

class SignsDetailView: UIView
{
 var signName = UILabel()
 var signSymbol = UILabel()
 var signMonth = UILabel()
 var signDescription = UILabel()
 var signHoroscope = UILabel()
 var spinner = UIActivityIndicatorView()

 convenience init()
 {
 self.init(frame:CGRect.zero)
 // This is only needed for live reload as injectionForXcode
 // doesn't swizzle init methods.
 render()
 }

 func render()
 {
 backgroundColor = .white
 spinner.color = .darkGray
 signName.font = UIFont.boldSystemFont(ofSize: 18)

 sv(
 signName,
 signSymbol,
 signMonth,
 signDescription,
 signHoroscope,
 spinner

)

http://dx.doi.org/10.1007/978-1-4842-2102-0_3

ChApTer 6 ■ TeST DrIven DevelOpmenT

166

 layout(
 100
 |-10-signName-10-| ~ 30,
 8,
 |-10-signSymbol-10-| ~ 30,
 8,
 |-10-signMonth-10-| ~ 30,
 8,
 |-10-signDescription-10-|,
 8,
 |-10-signHoroscope-10-|,
 |-spinner-|
)

 self.signDescription.style(self.labelStyle)
 self.signHoroscope.style(self.labelStyle)

 }
 func labelStyle(l:UILabel)
 {
 l.numberOfLines = 0
 l.textAlignment = .left
 l.lineBreakMode = .byWordWrapping
 l.textColor = .black
 l.text = NSLocalizedString("Description", comment: "")
 }
}

Instead of using the Interface Builder to drag and drop the Labels we can do all of
that in code, see the Layout below for each of the fields.

Listing 6-20. SignsDetailView layout

 layout(
 100,
 |-10-signName-10-| ~ 30,
 8,
 |-10-signSymbol-10-| ~ 30,
 8,
 |-10-signMonth-10-| ~ 30,
 8,
 |-10-signDescription-10-|,
 8,
 |-10-signHoroscope-10-|,
 |-spinner-|
 }

ChApTer 6 ■ TeST DrIven DevelOpmenT

167

The layout is created in the loadView() SignsDetailViewController as follows, see
Listing 6-21.

Listing 6-21. Inflating the SignsDetailView layout

let signsDetailView = SignsDetailView()

override func loadView() {
 view = signsDetailView
}

As Swift 3 matures hopefully more libraries will emerge that will allow developers to
spend more time writing model code and less time connecting interfaces. The complete
Stevia example is available with the rest of the source code online.

Conclusion
In this chapter we created a simple three feature Horoscope app using Test Driven
Development or TDD.

169

��������� A, B
Assertions, 25–26

��������� C
Continuous integration (CI), 78
Cuckoo

GeneratedMocks.swift file, 98, 100
HelloWorld, 100
OCMock, 98
podfile, 99
Run Script, 99
sayIt() function, 98
steps, 98
testSayItIsntSo results, 100
two-stage process, 98

��������� D, E
Domain Specific Languages (DSLs), 93

��������� F
Fast tests

Nimble
assertions, 62–63
CocoaPods, 62
podfile, 62
unit tests, 63–64

XCTest, 61

��������� G, H
GUI testing

act, 124
arrange, 124
assert, 125
classic unit testing, 117
CLI, 125
coding, 22, 121
parts

XCUIApplication, 122
XCUIElement, 123
XCUIElementQuery, 122–123

recording tests
autogenerated XCUI Recorded

Code, 119
calculator app, 118
garbage code, 118
setUp(), tearDown() and

testExample(), 119
updated Recorded Code, 120–121
updating accessibility

identifiers, 120
Xcode, 118
XCUIApplication(), 120
XCUI successful test report, 121
XCUI template code, 119

reporting
expanded logs, 128
failing test, 127–128
log files, 127
XCUI test, 125–126

Index

© Godfrey Nolan 2017
G. Nolan, Agile Swift, DOI 10.1007/978-1-4842-2102-0

■ INDEX

170

sample test, 124
Swift Agile testing pyramid, 117
tap(), 22
UI tests, 117
XCUI, 21, 23

��������� I
Isolated unit tests

mocking
arrange, act and assert, 66
coding, 65
Cuckoo, 66–67
decryption code, 65
JSON parser code, 65
Objective-C, 65
web service, 65

network connections, 64

��������� J, K, L
Java Script Object Notation (JSON), 157

��������� M, N
Mocking

date and time
Cuckoo installation, 109
DateImplementation.swift,

108–109
DateImplementationTests.swift,

110, 112–113
testForBirthDay(), 112

dependencies, 97
HTTP

Cuckoo installation, 102
Cuckoo Run Script, 102
testURL results, 104
testURL() Session Code, 103
UrlSession.swift Code, 101

Objective-C/Mockito, 97
system settings

Audio Player Mocked Code,
114–115

AudioPlayerWithCuckooTest
results, 116

AVAudioPlayerHelper.swift, 113
Cuckoo installation, 113–114

test isolation and execution, 97

third-party interactions, 97
user defaults

Cuckoo installation, 106
detail view, saved data, 105
test results, 108
user mock code, 106, 107
user model code, 105
username, password and date of

birth, 104
web service, 97

��������� O, P, Q
Objective-C, 1

��������� R
Repeatable unit tests

continuous integration, 67
development process, 67
Jenkins

autologin, 71
build item, 72
build now, 74
build number, 75
configuration process, 69–70
console output, 75
home page, 68
permissions, 69
plugins, 69
source code management, 72
Xcode build step, 73
Xcode settings, 73–74

OSX server, 68

��������� S
Self-verifying

code coverage, 76
slather, 76–77

Software Quality Assessment, 88
SonarQube

dashboard, 87
dashboard for Calculator app, 90
example.swift Code, 88, 89
example.swift dashboard, 89
installation, 87
issues for Calculator app, 90
Jenkins

build step, 92

GUI testing (cont.)

■ INDEX

171

dashboard, 93
scanner configuration, 91
server configuration, 91
sonar-project.properties file, 92

sonar.properties file, 90
static code analysis, 86
Stevia

auto layout code, 93
installation, 94
Interface Builder, 93
layout, 93
login screen, 94
TDD, 93

Swift plugin, 88
Swift Agile testing, 1
Swift Format

after testIncreaseAudioVolume, 86
before testIncreaseAudio

Volume, 85, 86
codebase, 84
rules, 84–85

Swift language, 1
Swift Lint

AppDelegate.swift code, 83
auto-corrections, 81
first run, 78–80
Homebrew, 78
Jenkins, 84
second run, 82
swiftlint.yml File, 84
third run, 84
updated CalculatorModel Code, 83
ViewController.swift, 83

Swift unit testing
assertions types, 25–26
breakpoint tab, 50
calculator app

CalculatorModel.swift, 42–43
CalculatorTests.swift, 33
creating application, 33
layout, 36
methods, 34
outlets, 37–40
testAdd(), 43
testExample test passes, 35
test report, 35
test results, 44
user interface, 36–37
ViewController coding, 41–42
XCTAssert, 34
XCTestCase, 34

code coverage, 46–48
debugging test, 49
error messages, 45
failing test, 49
fast, 44
isolated, 44
logs, 50, 52
maintenance, 45
multiply function, 46
parameterized tests, 46
repeatable, 45
self-verifying, 45
timely, 45
Ubuntu command line

allTests extension, 56
build directory, 54
calculator code, 52
Calculator.swift, 53
edge case tests, 57–59
LinuxMain.swift, 56
main.swift, 54
package managers, 54
Package.swift, 52–53
simple tests, 56, 57
swift test command, 59, 60
test code directory structure, 55
tree structure, 52

XCTest
class structure, 27
performance testing, 31
setUp, 29
setup-record-verify, 27
tearDown, 30
@testable, 28

��������� T
Test Driven Development (TDD), 45

feature 1
adding, Label, 138
dataSource and delegate

outlets, 142
failing tests, 136
horoscope app, 133
HoroscopeData.swift, 136
list, Horoscope Signs, 137
more tests, 144
passing tests, 137
project options, 135
Single view iOS

application, 134

■ INDEX

172

Table Class connection, 141–142,
144

Table View App, 138
Table View Class, 140
Table View Code, 143
Table View Controller

SignsTableViewController, 140
testNumHoroscopeSigns, 136
unit tests, 135

feature 2
adding Navigation Controller,

146–147
currentSignDetail Variable, 153,

156
Detail View Controller, 150–152
failing tests, 145
Horoscope Details for Aries, 146
initial View Controller, 148
name, description, symbol and

month, 151
passing tests, 146
refactoring, 156
Root View Controller, 149
Segue Code, 154
showDetail Segue, 154–156
sign detail outlets, 155
SignsDetailViewController Class,

152
SignsDetailViewController.swift,

153
testing description, symbol and

month, 145
updated Horoscope Struct, 145
updated prepareForSegue, 154
update Labels,

currentSignDetailValue, 156
feature 3

AppendURL, 158
Detail View, 158
HoroscopeService.swift, 160–161
Horoscope XML, 157–158
SignsDetailViewController.swift,

161–164, 166
testAppendURL, 158

horoscope app, requirements, 132
implementation, 132
process, 131
refactoring, 132
regression test, 132

testPerformanceExample(), 31

Third-party tools
CI, 78
code review process, 78
entropy, 78
fast tests, 61–62, 64
isolated tests, 64–67
Objective-C, 61
repeatable tests, 67–69, 71–75
self-verifying, 76–77
Swift language, 61
TDD approach, 61

��������� U, V, W
Unit testing

Agile pyramid, 3
benefits, 2
Hello World, 1
output, 2
vs. TDD, 132
Ubuntu

Calculator.swift, 18
CalculatorTests.swift, 19
command-line, 20
initial directory structure, 18
LinuxMain.swift, 19
Package.swift, 18
project directory structure, 20
steps, 17
Swift Environment, 18
XCTest Extension, 20

Xcode calculator
adding two numbers, 4
CalculatorTests.swift, 15
class, 10
coding, 15
creating application, 7
creating Swift file, 8
failing tests, 17
IBOutlet for aTextField, 13
Model.swift, 9
outlets, 11–14
passing tests, 16
prerequisites, 4
project options, 6
single view application, 5
Storyboard, 11–12
tasks, 4
test navigator, 16
updated calculateTapped()

method, 14

Test Driven Development (TDD) (cont.)

■ INDEX

173

updated ViewController.swift
Code, 14

user interface, 10–11
View Controller

code, 12
XCTest, 25

��������� X, Y, Z
XCUI API testing framework, 1
XCUIApplication, 122, 124
XCUIElement, 123, 124
XCUIElementQuery, 122–123

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Hello World Unit Test
	Benefits
	Agile Testing Pyramid
	Calculator Unit Tests in Xcode
	Prerequisites
	Getting Started
	Creating a Class
	Setting Up the User Interface
	Setting Up the Outlets
	Create Unit Test Code
	Run Unit Tests

	Hello World Unit Test in Ubuntu
	Prerequisites
	Create and Compile Code
	Create Test Code
	Ubuntu Tweaks
	Run Unit Tests

	GUI Tests
	Hello World GUI Test

	Summary

	Chapter 2: Swift Unit Testing
	Types of Assertions
	XCTest Options
	@testable
	setUp
	tearDown
	Performance Testing

	Calculator App
	Creating the View
	Setting Up the User Interface
	Setting Up the Outlets

	Completing the ViewController Code
	Create the Model Code
	Tests

	Unit Testing 102
	FIRST Unit Tests
	Maintaining Your Unit Tests
	Error Messages
	Parameterized

	Code Coverage
	When Things Go Wrong
	Logs

	Ubuntu Command Line
	Package Manager
	Tests
	Simple Tests
	Edge Case Tests
	Test Output

	Summary

	Chapter 3: Third-Party Tools
	Fast Tests
	Nimble Install
	Nimble Unit Test

	Isolated Unit Tests
	Mocking
	What Is Mocking

	Repeatable Unit Tests
	Installing Jenkins
	Calculator Project

	Self-Verifying Unit Tests
	Slather

	Technical Debt
	Swift Lint
	Swift Format
	SonarQube
	Install SonarQube
	Add the Calculator Project
	Adding SonarQube to Jenkins
	Adding SonarQube to Calculator Jenkins Project

	Stevia

	Summary

	Chapter 4: Mocking
	Same Rules Do Not Apply
	Cuckoo

	Mocking HTTP
	Mocking User Defaults
	Mocking Date and Time
	Mocking System Settings
	Summary

	Chapter 5: UI Testing
	Recording Tests
	Coded Tests
	Component Parts
	XCUIApplication
	XCUIElementQuery
	XCUIElement

	Sample Test
	Arrange
	Act
	Assert
	CLI

	Reporting
	Summary

	Chapter 6: Test Driven Development
	Understanding Test Driven Development
	Unit Testing versus TDD
	Value of TDD

	Writing an App Using TDD
	Feature 1
	Getting Started
	Writing the Test First
	Creating a Table View App
	Adding a Label
	Creating a Table View Class
	Connecting the Table Class
	Refactor

	Feature 2
	Writing the Test
	Creating a User Interface
	Adding the Navigation Controller
	Setting the Initial View Controller
	Setting the Root View Controller
	Adding the Detail View Controller
	Adding a Name, Description, Symbol, and Month
	Creating SignsDetailViewController Class
	Creating a Segue
	Creating the showDetail Segue
	Connecting Sign Detail Outlets
	Receiving the Segue Data and Updating the Detail View

	Refactor

	Feature 3
	Creating the User Interface
	Updating the Detail View
	Creating the Horoscope Service
	Updating SignsDetailViewController.swift

	Conclusion

	Index

