
www.allitebooks.com

http://www.allitebooks.org

Apache Flume: Distributed
Log Collection for Hadoop
Second Edition

Design and implement a series of Flume agents to send
streamed data into Hadoop

Steve Hoffman

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Apache Flume: Distributed Log Collection for Hadoop
Second Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Second edition: February 2015

Production reference: 1190215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-217-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Steve Hoffman

Reviewers
Sachin Handiekar

Michael Keane

Stefan Will

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Reshma Raman

Content Development Editor
Neetu Ann Mathew

Technical Editor
Menza Mathew

Copy Editors
Vikrant Phadke

Stuti Srivastava

Project Coordinator
Mary Alex

Proofreader
Simran Bhogal

Safis Editing

Indexer
Rekha Nair

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Steve Hoffman has 32 years of experience in software development, ranging from
embedded software development to the design and implementation of large-scale,
service-oriented, object-oriented systems. For the last 5 years, he has focused on
infrastructure as code, including automated Hadoop and HBase implementations
and data ingestion using Apache Flume. Steve holds a BS in computer engineering
from the University of Illinois at Urbana-Champaign and an MS in computer
science from DePaul University. He is currently a senior principal engineer at
Orbitz Worldwide (http://orbitz.com/).

More information on Steve can be found at http://bit.ly/bacoboy and on
Twitter at @bacoboy.

This is the first update to Steve's first book, Apache Flume: Distributed Log Collection
for Hadoop, Packt Publishing.

I'd again like to dedicate this updated book to my loving and
supportive wife, Tracy. She puts up with a lot, and that is very much
appreciated. I couldn't ask for a better friend daily by my side.
My terrific children, Rachel and Noah, are a constant reminder that
hard work does pay off and that great things can come from chaos.
I also want to give a big thanks to my parents, Alan and Karen, for
molding me into the somewhat satisfactory human I've become.
Their dedication to family and education above all else guides me
daily as I attempt to help my own children find their happiness in
the world.

www.allitebooks.com

http://orbitz.com/
http://bit.ly/bacoboy
http://www.allitebooks.org

About the Reviewers

Sachin Handiekar is a senior software developer with over 5 years of experience
in Java EE development. He graduated in computer science from the University of
Greenwich, London, and currently works for a global consulting company, developing
enterprise applications using various open source technologies, such as Apache
Camel, ServiceMix, ActiveMQ, and ZooKeeper.

Sachin has a lot of interest in open source projects. He has contributed code to Apache
Camel and developed plugins for Spring Social, which can be found at GitHub
(https://github.com/sachin-handiekar).

He also actively writes about enterprise application development on his blog
(http://sachinhandiekar.com).

Michael Keane has a BS in computer science from the University of Illinois
at Urbana-Champaign. He has worked as a software engineer, coding almost
exclusively in Java since JDK 1.1. He has also worked on the mission-critical medical
device software, e-commerce, transportation, navigation, and advertising domains.
He is currently a development leader for Conversant, where he maintains Flume
flows of nearly 100 billion log lines per day.

Michael is a father of three, and besides work, he spends most of his time with his
family and coaching youth softball.

Stefan Will is a computer scientist with a degree in machine learning and pattern
recognition from the University of Bonn, Germany. For over a decade, he has worked
for several start-ups in Silicon Valley and Raleigh, North Carolina, in the area of search
and analytics. Presently, he leads the development of the search backend and real-time
analytics platform at Zendesk, a provider of customer service software.

www.allitebooks.com

https://github.com/sachin-handiekar
http://sachinhandiekar.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Overview and Architecture 7

Flume 0.9 8
Flume 1.X (Flume-NG) 8
The problem with HDFS and streaming data/logs 9
Sources, channels, and sinks 10
Flume events 10

Interceptors, channel selectors, and sink processors 11
Tiered data collection (multiple flows and/or agents) 12

The Kite SDK 13
Summary 14

Chapter 2: A Quick Start Guide to Flume 15
Downloading Flume 15

Flume in Hadoop distributions 16
An overview of the Flume configuration file 17
Starting up with "Hello, World!" 18
Summary 23

Chapter 3: Channels 25
The memory channel 26
The file channel 28
Spillable Memory Channel 31
Summary 35

Chapter 4: Sinks and Sink Processors 37
HDFS sink 37

Path and filename 39
File rotation 42

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Compression codecs 43
Event Serializers 44

Text output 44
Text with headers 44
Apache Avro 45
User-provided Avro schema 46
File type 47

SequenceFile 47
DataStream 48
CompressedStream 48

Timeouts and workers 48
Sink groups 49

Load balancing 50
Failover 51

MorphlineSolrSink 52
Morphline configuration files 53
Typical SolrSink configuration 54
Sink configuration 56

ElasticSearchSink 57
LogStash Serializer 60
Dynamic Serializer 61

Summary 61
Chapter 5: Sources and Channel Selectors 63

The problem with using tail 63
The Exec source 65
Spooling Directory Source 67
Syslog sources 71

The syslog UDP source 72
The syslog TCP source 73
The multiport syslog TCP source 74

JMS source 77
Channel selectors 80

Replicating 80
Multiplexing 81

Summary 81
Chapter 6: Interceptors, ETL, and Routing 83

Interceptors 83
Timestamp 84
Host 85
Static 85

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Regular expression filtering 86
Regular expression extractor 87
Morphline interceptor 91
Custom interceptors 92

The plugins directory 94
Tiering flows 95

The Avro source/sink 95
Compressing Avro 98
SSL Avro flows 99

The Thrift source/sink 101
Using command-line Avro 102
The Log4J appender 103
The Log4J load-balancing appender 104

The embedded agent 105
Configuration and startup 106
Sending data 107
Shutdown 108

Routing 108
Summary 110

Chapter 7: Putting It All Together 111
Web logs to searchable UI 111

Setting up the web server 113
Configuring log rotation to the spool directory 115

Setting up the target – Elasticsearch 120
Setting up Flume on collector/relay 122
Setting up Flume on the client 126
Creating more search fields with an interceptor 130
Setting up a better user interface – Kibana 134

Archiving to HDFS 139
Summary 143

Chapter 8: Monitoring Flume 145
Monitoring the agent process 145

Monit 145
Nagios 146

Monitoring performance metrics 146
Ganglia 147
Internal HTTP server 148
Custom monitoring hooks 150

Summary 151

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 9: There Is No Spoon – the Realities of Real-time
Distributed Data Collection 153

Transport time versus log time 153
Time zones are evil 154
Capacity planning 155
Considerations for multiple data centers 156
Compliance and data expiry 157
Summary 158

Index 159

Preface
Hadoop is a great open source tool for shifting tons of unstructured data into
something manageable so that your business can gain better insight into your
customers' needs. It's cheap (mostly free), scales horizontally as long as you have
space and power in your datacenter, and can handle problems that would crush your
traditional data warehouse. That said, a little-known secret is that your Hadoop cluster
requires you to feed it data. Otherwise, you just have a very expensive heat generator!
You will quickly realize (once you get past the "playing around" phase with Hadoop)
that you will need a tool to automatically feed data into your cluster. In the past, you
had to come up with a solution for this problem, but no more! Flume was started as a
project out of Cloudera, when its integration engineers had to keep writing tools over
and over again for their customers to automatically import data. Today, the project
lives with the Apache Foundation, is under active development, and boasts of users
who have been using it in their production environments for years.

In this book, I hope to get you up and running quickly with an architectural overview
of Flume and a quick-start guide. After that, we'll dive deep into the details of many of
the more useful Flume components, including the very important file channel for the
persistence of in-flight data records and the HDFS Sink for buffering and writing
data into HDFS (the Hadoop File System). Since Flume comes with a wide variety
of modules, chances are that the only tool you'll need to get started is a text editor
for the configuration file.

By the time you reach the end of this book, you should know enough to build a highly
available, fault-tolerant, streaming data pipeline that feeds your Hadoop cluster.

What this book covers
Chapter 1, Overview and Architecture, introduces Flume and the problem space that
it's trying to address (specifically with regards to Hadoop). An architectural
overview of the various components to be covered in later chapters is given.

Preface

[2]

Chapter 2, A Quick Start Guide to Flume, serves to get you up and running quickly. It
includes downloading Flume, creating a "Hello, World!" configuration, and running it.

Chapter 3, Channels, covers the two major channels most people will use and the
configuration options available for each of them.

Chapter 4, Sinks and Sink Processors, goes into great detail on using the HDFS Flume
output, including compression options and options for formatting the data. Failover
options are also covered so that you can create a more robust data pipeline.

Chapter 5, Sources and Channel Selectors, introduces several of the Flume input
mechanisms and their configuration options. Also covered is switching between
different channels based on data content, which allows the creation of complex
data flows.

Chapter 6, Interceptors, ETL, and Routing, explains how to transform data in-flight
as well as extract information from the payload to use with Channel Selectors to
make routing decisions. Then this chapter covers tiering Flume agents using Avro
serialization, as well as using the Flume command line as a standalone Avro client
for testing and importing data manually.

Chapter 7, Putting It All Together, walks you through the details of an end-to-end use
case from the web server logs to a searchable UI, backed by Elasticsearch as well as
archival storage in HDFS.

Chapter 8, Monitoring Flume, discusses various options available for monitoring Flume
both internally and externally, including Monit, Nagios, Ganglia, and custom hooks.

Chapter 9, There Is No Spoon – the Realities of Real-time Distributed Data Collection, is
a collection of miscellaneous things to consider that are outside the scope of just
configuring and using Flume.

What you need for this book
You'll need a computer with a Java Virtual Machine installed, since Flume is
written in Java. If you don't have Java on your computer, you can download it
from http://java.com/.

You will also need an Internet connection so that you can download Flume to run
the Quick Start example.

This book covers Apache Flume 1.5.2.

http://java.com/

Preface

[3]

Who this book is for
This book is for people responsible for implementing the automatic movement
of data from various systems to a Hadoop cluster. If it is your job to load data into
Hadoop on a regular basis, this book should help you to code yourself out of manual
monkey work or from writing a custom tool you'll be supporting for as long as
you work at your company.

Only basic knowledge of Hadoop and HDFS is required. Some custom
implementations are covered, should your needs necessitate them. For this
level of implementation, you will need to know how to program in Java.

Finally, you'll need your favorite text editor, since most of this book covers how
to configure various Flume components via an agent's text configuration file.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and
explanations of their meanings.

Code words in text are shown as follows: "If you want to use this feature, you set
the useDualCheckpoints property to true and specify a location for that second
checkpoint directory with the backupCheckpointDir property."

A block of code is set as follows:

agent.sinks.k1.hdfs.path=/logs/apache/access
agent.sinks.k1.hdfs.filePrefix=access
agent.sinks.k1.hdfs.fileSuffix=.log

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

agent.sources.s1.command=uptime
agent.sources.s1.restart=true
agent.sources.s1.restartThrottle=60000

Any command-line input or output is written as follows:

$ tar -zxf apache-flume-1.5.2.tar.gz

$ cd apache-flume-1.5.2

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Flume was
first introduced in Cloudera's CDH3 distribution in 2011."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Overview and Architecture
If you are reading this book, chances are you are swimming in oceans of data. Creating
mountains of data has become very easy, thanks to Facebook, Twitter, Amazon, digital
cameras and camera phones, YouTube, Google, and just about anything else you can
think of being connected to the Internet. As a provider of a website, 10 years ago, your
application logs were only used to help you troubleshoot your website. Today, this
same data can provide a valuable insight into your business and customers if you
know how to pan gold out of your river of data.

Furthermore, as you are reading this book, you are also aware that Hadoop was
created to solve (partially) the problem of sifting through mountains of data. Of
course, this only works if you can reliably load your Hadoop cluster with data for
your data scientists to pick apart.

Getting data into and out of Hadoop (in this case, the Hadoop File System, or
HDFS) isn't hard; it is just a simple command, such as:

% hadoop fs --put data.csv .

This works great when you have all your data neatly packaged and ready to upload.

However, your website is creating data all the time. How often should you batch
load data to HDFS? Daily? Hourly? Whatever processing period you choose,
eventually somebody always asks "can you get me the data sooner?" What you
really need is a solution that can deal with streaming logs/data.

Turns out you aren't alone in this need. Cloudera, a provider of professional services
for Hadoop as well as their own distribution of Hadoop, saw this need over and over
when working with their customers. Flume was created to fill this need and create a
standard, simple, robust, flexible, and extensible tool for data ingestion into Hadoop.

Overview and Architecture

[8]

Flume 0.9
Flume was first introduced in Cloudera's CDH3 distribution in 2011. It consisted
of a federation of worker daemons (agents) configured from a centralized master
(or masters) via Zookeeper (a federated configuration and coordination system).
From the master, you could check the agent status in a web UI as well as push
out configuration centrally from the UI or via a command-line shell (both really
communicating via Zookeeper to the worker agents).

Data could be sent in one of three modes: Best effort (BE), Disk Failover (DFO), and
End-to-End (E2E). The masters were used for the E2E mode acknowledgements and
multimaster configuration never really matured, so you usually only had one master,
making it a central point of failure for E2E data flows. The BE mode is just what it
sounds like: the agent would try to send the data, but if it couldn't, the data would
be discarded. This mode is good for things such as metrics, where gaps can easily be
tolerated, as new data is just a second away. The DFO mode stores undeliverable data
to the local disk (or sometimes, a local database) and would keep retrying until the
data could be delivered to the next recipient in your data flow. This is handy for those
planned (or unplanned) outages, as long as you have sufficient local disk space to
buffer the load.

In June, 2011, Cloudera moved control of the Flume project to the Apache Foundation.
It came out of the incubator status a year later in 2012. During the incubation year,
work had already begun to refactor Flume under the Star-Trek-themed tag, Flume-NG
(Flume the Next Generation).

Flume 1.X (Flume-NG)
There were many reasons why Flume was refactored. If you are interested in
the details, you can read about them at https://issues.apache.org/jira/
browse/FLUME-728. What started as a refactoring branch eventually became the
main line of development as Flume 1.X.

The most obvious change in Flume 1.X is that the centralized configuration master(s)
and Zookeeper are gone. The configuration in Flume 0.9 was overly verbose, and
mistakes were easy to make. Furthermore, centralized configuration was really outside
the scope of Flume's goals. Centralized configuration was replaced with a simple on-
disk configuration file (although the configuration provider is pluggable so that it
can be replaced). These configuration files are easily distributed using tools such as
cf-engine, Chef, and Puppet. If you are using a Cloudera distribution, take a look at
Cloudera Manager to manage your configurations. About two years ago, they created
a free version with no node limit, so it may be an attractive option for you. Just be
sure you don't manage these configurations manually, or you'll be editing these files
manually forever.

https://issues.apache.org/jira/browse/FLUME-728
https://issues.apache.org/jira/browse/FLUME-728

Chapter 1

[9]

Another major difference in Flume 1.X is that the reading of input data and the
writing of output data are now handled by different worker threads (called
Runners). In Flume 0.9, the input thread also did the writing to the output (except
for failover retries). If the output writer was slow (rather than just failing outright),
it would block Flume's ability to ingest data. This new asynchronous design leaves
the input thread blissfully unaware of any downstream problem.

The first edition of this book covered all the versions of Flume up till Version 1.3.1.
This second edition will cover till Version 1.5.2 (the current version at the time of
writing this).

The problem with HDFS and streaming
data/logs
HDFS isn't a real filesystem, at least not in the traditional sense, and many of
the things we take for granted with normal filesystems don't apply here, such
as being able to mount it. This makes getting your streaming data into Hadoop
a little more complicated.

In a regular POSIX-style filesystem, if you open a file and write data, it still exists
on the disk before the file is closed. That is, if another program opens the same
file and starts reading, it will get the data already flushed by the writer to the disk.
Furthermore, if this writing process is interrupted, any portion that made it to disk
is usable (it may be incomplete, but it exists).

In HDFS, the file exists only as a directory entry; it shows zero length until the file
is closed. This means that if data is written to a file for an extended period without
closing it, a network disconnect with the client will leave you with nothing but an
empty file for all your efforts. This may lead you to the conclusion that it would be
wise to write small files so that you can close them as soon as possible.

The problem is that Hadoop doesn't like lots of tiny files. As the HDFS filesystem
metadata is kept in memory on the NameNode, the more files you create, the more
RAM you'll need to use. From a MapReduce prospective, tiny files lead to poor
efficiency. Usually, each Mapper is assigned a single block of a file as the input
(unless you have used certain compression codecs). If you have lots of tiny files,
the cost of starting the worker processes can be disproportionally high compared
to the data it is processing. This kind of block fragmentation also results in more
Mapper tasks, increasing the overall job run times.

Overview and Architecture

[10]

These factors need to be weighed when determining the rotation period to use when
writing to HDFS. If the plan is to keep the data around for a short time, then you can
lean toward the smaller file size. However, if you plan on keeping the data for a very
long time, you can either target larger files or do some periodic cleanup to compact
smaller files into fewer, larger files to make them more MapReduce friendly. After
all, you only ingest the data once, but you might run a MapReduce job on that data
hundreds or thousands of times.

Sources, channels, and sinks
The Flume agent's architecture can be viewed in this simple diagram. Inputs are
called sources and outputs are called sinks. Channels provide the glue between
sources and sinks. All of these run inside a daemon called an agent.

Keep in mind:
• A source writes events to one or more channels.
• A channel is the holding area as events are passed from a

source to a sink.
• A sink receives events from one channel only.
• An agent can have many channels.

Flume events
The basic payload of data transported by Flume is called an event. An event is
composed of zero or more headers and a body.

Chapter 1

[11]

The headers are key/value pairs that can be used to make routing decisions or
carry other structured information (such as the timestamp of the event or the
hostname of the server from which the event originated). You can think of it as
serving the same function as HTTP headers—a way to pass additional information
that is distinct from the body.

The body is an array of bytes that contains the actual payload. If your input is
comprised of tailed log files, the array is most likely a UTF-8-encoded string
containing a line of text.

Flume may add additional headers automatically (like when a source adds the
hostname where the data is sourced or creating an event's timestamp), but the
body is mostly untouched unless you edit it en route using interceptors.

Interceptors, channel selectors, and sink
processors
An interceptor is a point in your data flow where you can inspect and alter Flume
events. You can chain zero or more interceptors after a source creates an event. If
you are familiar with the AOP Spring Framework, think MethodInterceptor. In
Java Servlets, it's similar to ServletFilter. Here's an example of what using four
chained interceptors on a source might look like:

Overview and Architecture

[12]

Channel selectors are responsible for how data moves from a source to one or more
channels. Flume comes packaged with two channel selectors that cover most use
cases you might have, although you can write your own if need be. A replicating
channel selector (the default) simply puts a copy of the event into each channel,
assuming you have configured more than one. In contrast, a multiplexing channel
selector can write to different channels depending on some header information.
Combined with some interceptor logic, this duo forms the foundation for routing
input to different channels.

Finally, a sink processor is the mechanism by which you can create failover paths for
your sinks or load balance events across multiple sinks from a channel.

Tiered data collection (multiple flows and/or
agents)
You can chain your Flume agents depending on your particular use case. For
example, you may want to insert an agent in a tiered fashion to limit the number
of clients trying to connect directly to your Hadoop cluster. More likely, your
source machines don't have sufficient disk space to deal with a prolonged outage
or maintenance window, so you create a tier with lots of disk space between your
sources and your Hadoop cluster.

In the following diagram, you can see that there are two places where data is
created (on the left-hand side) and two final destinations for the data (the HDFS
and ElasticSearch cloud bubbles on the right-hand side). To make things more
interesting, let's say one of the machines generates two kinds of data (let's call
them square and triangle data). You can see that in the lower-left agent, we use a
multiplexing channel selector to split the two kinds of data into different channels.
The rectangle channel is then routed to the agent in the upper-right corner (along
with the data coming from the upper-left agent). The combined volume of events
is written together in HDFS in Datacenter 1. Meanwhile, the triangle data is sent
to the agent that writes to ElasticSearch in Datacenter 2. Keep in mind that data
transformations can occur after any source. How all of these components can be
used to build complicated data workflows will be become clear as we proceed.

Chapter 1

[13]

The Kite SDK
One of the new technologies incorporated in Flume, starting with Version 1.4,
is something called a Morphline. You can think of a Morphline as a series of
commands chained together to form a data transformation pipe.

If you are a fan of pipelining Unix commands, this will be very familiar to you.
The commands themselves are intended to be small, single-purpose functions that
when chained together create powerful logic. In many ways, using a Morphline
command chain can be identical in functionality to the interceptor paradigm just
mentioned. There is a Morphline interceptor we will cover in Chapter 6, Interceptors,
ETL, and Routing, which you can use instead of, or in addition to, the included
Java-based interceptors.

To get an idea of how useful these commands can be, take a look
at the handy grok command and its included extensible regular
expression library at https://github.com/kite-sdk/kite/
blob/master/kite-morphlines/kite-morphlines-core/
src/test/resources/grok-dictionaries/grok-patterns

 https://github.com/kite-sdk/kite/blob/master/kite-morphlines/kite-morphlines-core/src/test/resources/grok-dictionaries/grok-patterns
 https://github.com/kite-sdk/kite/blob/master/kite-morphlines/kite-morphlines-core/src/test/resources/grok-dictionaries/grok-patterns
 https://github.com/kite-sdk/kite/blob/master/kite-morphlines/kite-morphlines-core/src/test/resources/grok-dictionaries/grok-patterns

Overview and Architecture

[14]

Many of the custom Java interceptors that I've written in the past were to modify
the body (data) and can easily be replaced with an out-of-the-box Morphline
command chain. You can get familiar with the Morphline commands by checking
out their reference guide at http://kitesdk.org/docs/current/kite-
morphlines/morphlinesReferenceGuide.html

Flume Version 1.4 also includes a Morphline-backed sink used primarily to feed
data into Solr. We'll see more of this in Chapter 4, Sinks and Sink Processors,
Morphline Solr Search Sink.

Morphlines are just one component of the KiteSDK included in Flume. Starting
with Version 1.5, Flume has added experimental support for KiteData, which is an
effort to create a standard library for datasets in Hadoop. It looks very promising,
but it is outside the scope of this book.

Please see the project home page for more information, as it will
certainly become more prominent in the Hadoop ecosystem as
the technology matures. You can read all about the KiteSDK at
http://kitesdk.org.

Summary
In this chapter, we discussed the problem that Flume is attempting to solve: getting
data into your Hadoop cluster for data processing in an easily configured, reliable
way. We also discussed the Flume agent and its logical components, including
events, sources, channel selectors, channels, sink processors, and sinks. Finally, we
briefly discussed Morphlines as a powerful new ETL (Extract, Transform, Load)
library, starting with Version 1.4 of Flume.

The next chapter will cover these in more detail, specifically, the most commonly
used implementations of each. Like all good open source projects, almost all of these
components are extensible if the bundled ones don't do what you need them to do.

http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html
http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html
http://kitesdk.org

A Quick Start Guide to Flume
As we covered some of the basics in the previous chapter, this chapter will help
you get started with Flume. So, let's start with the first step: downloading and
configuring Flume.

Downloading Flume
Let's download Flume from http://flume.apache.org/. Look for the download
link in the side navigation. You'll see two compressed .tar archives available along
with the checksum and GPG signature files used to verify the archives. Instructions
to verify the download are on the website, so I won't cover them here. Checking
the checksum file contents against the actual checksum verifies that the download
was not corrupted. Checking the signature file validates that all the files you are
downloading (including the checksum and signature) came from Apache and not
some nefarious location. Do you really need to verify your downloads? In general,
it is a good idea and it is recommended by Apache that you do so. If you choose
not to, I won't tell.

The binary distribution archive has bin in the name, and the source archive is
marked with src. The source archive contains just the Flume source code. The
binary distribution is much larger because it contains not only the Flume source
and the compiled Flume components (jars, javadocs, and so on), but also all the
dependent Java libraries. The binary package contains the same Maven POM file
as the source archive, so you can always recompile the code even if you start with
the binary distribution.

Go ahead, download and verify the binary distribution to save us some time in
getting started.

http://flume.apache.org/

A Quick Start Guide to Flume

[16]

Flume in Hadoop distributions
Flume is available with some Hadoop distributions. The distributions supposedly
provide bundles of Hadoop's core components and satellite projects (such as Flume)
in a way that ensures things such as version compatibility and additional bug fixes are
taken into account. These distributions aren't better or worse; they're just different.

There are benefits to using a distribution. Someone else has already done the work of
pulling together all the version-compatible components. Today, this is less of an issue
since the Apache BigTop project started (http://bigtop.apache.org/). Nevertheless,
having prebuilt standard OS packages, such as RPMs and DEBs, ease installation as
well as provide startup/shutdown scripts. Each distribution has different levels of free
and paid options, including paid professional services if you really get into a situation
you just can't handle.

There are downsides, of course. The version of Flume bundled in a distribution will
often lag quite a bit behind the Apache releases. If there is a new or bleeding-edge
feature you are interested in using, you'll either be waiting for your distribution's
provider to backport it for you, or you'll be stuck patching it yourself. Furthermore,
while the distribution providers do a fair amount of testing, such as any general-
purpose platform, you will most likely encounter something that their testing didn't
cover, in which case, you are still on the hook to come up with a workaround or
dive into the code, fix it, and hopefully, submit that patch back to the open source
community (where, at a future point, it'll make it into an update of your distribution
or the next version).

So, things move slower in a Hadoop distribution world. You can see that as good
or bad. Usually, large companies don't like the instability of bleeding-edge
technology or making changes often, as change can be the most common cause
of unplanned outages. You'd be hard pressed to find such a company using the
bleeding-edge Linux kernel rather than something like Red Hat Enterprise Linux
(RHEL), CentOS, Ubuntu LTS, or any of the other distributions whose target is
stability and compatibility. If you are a startup building the next Internet fad, you
might need that bleeding-edge feature to get a leg up on the established competition.

If you are considering a distribution, do the research and see what you are getting
(or not getting) with each. Remember that each of these offerings is hoping that
you'll eventually want and/or need their Enterprise offering, which usually
doesn't come cheap. Do your homework.

http://bigtop.apache.org/

Chapter 2

[17]

Here's a short, nondefinitive list of some of the more established
players. For more information, refer to the following links:

• Cloudera: http://cloudera.com/
• Hortonworks: http://hortonworks.com/
• MapR: http://mapr.com/

An overview of the Flume configuration
file
Now that we've downloaded Flume, let's spend some time going over how to
configure an agent.

A Flume agent's default configuration provider uses a simple Java property file of
key/value pairs that you pass as an argument to the agent upon startup. As you can
configure more than one agent in a single file, you will need to additionally pass an
agent identifier (called a name) so that it knows which configurations to use. In my
examples where I'm only specifying one agent, I'm going to use the name agent.

By default, the configuration property file is monitored for changes
every 30 seconds. If a change is detected, Flume will attempt to
reconfigure itself. In practice, many of the configuration settings cannot
be changed after the agent has started. Save yourself some trouble and
pass the undocumented --no-reload-conf argument when starting
the agent (except in development situations perhaps).
If you use the Cloudera distribution, the passing of this flag is currently
not possible. I've opened a ticket to fix that at https://issues.
cloudera.org/browse/DISTRO-648. If this is important to you,
please vote it up.

Each agent is configured, starting with three parameters:

agent.sources=<list of sources>
agent.channels=<list of channels>
agent.sinks=<list of sinks>

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://cloudera.com/
http://hortonworks.com/
http://mapr.com/
https://issues.cloudera.org/browse/DISTRO-648
https://issues.cloudera.org/browse/DISTRO-648
http://www.packtpub.com
http://www.packtpub.com/support

A Quick Start Guide to Flume

[18]

Each source, channel, and sink also has a unique name within the context of that
agent. For example, if I'm going to transport my Apache access logs, I might define
a channel named access. The configurations for this channel would all start with
the agent.channels.access prefix. Each configuration item has a type property
that tells Flume what kind of source, channel, or sink it is. In this case, we are going
to use an in-memory channel whose type is memory. The complete configuration
for the channel named access in the agent named agent would be:

agent.channels.access.type=memory

Any arguments to a source, channel, or sink are added as additional properties
using the same prefix. The memory channel has a capacity parameter to indicate
the maximum number of Flume events it can hold. Let's say we didn't want to
use the default value of 100; our configuration would now look like this:

agent.channels.access.type=memory
agent.channels.access.capacity=200

Finally, we need to add the access channel name to the agent.channels
property so that the agent knows to load it:

agent.channels=access

Let's look at a complete example using the canonical Hello, World! example.

Starting up with "Hello, World!"
No technical book would be complete without a Hello, World! example. Here is
the configuration file we'll be using:

agent.sources=s1
agent.channels=c1
agent.sinks=k1

agent.sources.s1.type=netcat
agent.sources.s1.channels=c1
agent.sources.s1.bind=0.0.0.0
agent.sources.s1.port=12345

agent.channels.c1.type=memory

agent.sinks.k1.type=logger
agent.sinks.k1.channel=c1

Here, I've defined one agent (called agent) who has a source named s1, a channel
named c1, and a sink named k1.

Chapter 2

[19]

The s1 source's type is netcat, which simply opens a socket listening for events
(one line of text per event). It requires two parameters: a bind IP and a port number.
In this example, we are using 0.0.0.0 for a bind address (the Java convention to
specify listen on any address) and port 12345. The source configuration also has a
parameter called channels (plural), which is the name of the channel(s) the source
will append events to, in this case, c1. It is plural, because you can configure a source
to write to more than one channel; we just aren't doing that in this simple example.

The channel named c1 is a memory channel with a default configuration.

The sink named k1 is of the logger type. This is a sink that is mostly used for
debugging and testing. It will log all events at the INFO level using Log4j, which it
receives from the configured channel, in this case, c1. Here, the channel keyword
is singular because a sink can only be fed data from one channel.

Using this configuration, let's run the agent and connect to it using the Linux
netcat utility to send an event.

First, explode the .tar archive of the binary distribution we downloaded earlier:

$ tar -zxf apache-flume-1.5.2-bin.tar.gz

$ cd apache-flume-1.5.2-bin

Next, let's briefly look at the help. Run the flume-ng command with the help
command:

$./bin/flume-ng help

Usage: ./bin/flume-ng <command> [options]...

commands:

 help display this help text

 agent run a Flume agent

 avro-client run an avro Flume client

 version show Flume version info

global options:

 --conf,-c <conf> use configs in <conf> directory

 --classpath,-C <cp> append to the classpath

 --dryrun,-d do not actually start Flume, just print the
command

 --plugins-path <dirs> colon-separated list of plugins.d directories.
See the

www.allitebooks.com

http://www.allitebooks.org

A Quick Start Guide to Flume

[20]

 plugins.d section in the user guide for more
details.

 Default: $FLUME_HOME/plugins.d

 -Dproperty=value sets a Java system property value

 -Xproperty=value sets a Java -X option

agent options:

 --conf-file,-f <file> specify a config file (required)

 --name,-n <name> the name of this agent (required)

 --help,-h display help text

avro-client options:

 --rpcProps,-P <file> RPC client properties file with server
connection params

 --host,-H <host> hostname to which events will be sent

 --port,-p <port> port of the avro source

 --dirname <dir> directory to stream to avro source

 --filename,-F <file> text file to stream to avro source (default: std
input)

 --headerFile,-R <file> File containing event headers as key/value pairs
on each new line

 --help,-h display help text

 Either --rpcProps or both --host and --port must be specified.

Note that if <conf> directory is specified, then it is always included
first in the classpath.

As you can see, there are two ways with which you can invoke the command
(other than the simple help and version commands). We will be using the agent
command. The use of avro-client will be covered later.

The agent command has two required parameters: a configuration file to use and
the agent name (in case your configuration contains multiple agents).

Let's take our sample configuration and open an editor (vi in my case, but use
whatever you like):

$ vi conf/hw.conf

Chapter 2

[21]

Next, place the contents of the preceding configuration into the editor, save, and exit
back to the shell.

Now you can start the agent:

$./bin/flume-ng agent -n agent -c conf -f conf/hw.conf -Dflume.root.
logger=INFO,console

The -Dflume.root.logger property overrides the root logger in conf/log4j.
properties to use the console appender.

If we didn't override the root logger, everything would still work, but the output
would go to the log/flume.log file instead of being based on the contents of the
default configuration file. Of course, you can edit the conf/log4j.properties file
and change the flume.root.logger property (or anything else you like). To change
just the path or filename, you can set the flume.log.dir and flume.log.file
properties in the configuration file or pass additional flags on the command line
as follows:

$./bin/flume-ng agent -n agent -c conf -f conf/hw.conf -Dflume.root.
logger=INFO,console -Dflume.log.dir=/tmp -Dflume.log.file=flume-agent.log

You might ask why you need to specify the -c parameter, as the -f parameter
contains the complete relative path to the configuration. The reason for this is that
the Log4j configuration file should be included on the class path.

If you left the -c parameter off the command, you'll see this error:

Warning: No configuration directory set! Use --conf <dir> to override.

log4j:WARN No appenders could be found for logger (org.apache.flume.
lifecycle.LifecycleSupervisor).

log4j:WARN Please initialize the log4j system properly.

log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for
more info.

But you didn't do that so you should see these key log lines:

2014-10-05 15:39:06,109 (conf-file-poller-0) [INFO - org.apache.flume.
conf.FlumeConfiguration.validateConfiguration(FlumeConfiguration.
java:140)] Post-validation flume configuration contains configuration for
agents: [agent]

This line tells you that your agent starts with the name agent.

A Quick Start Guide to Flume

[22]

Usually you'd look for this line only to be sure you started the right configuration
when you have multiple configurations defined in your configuration file.

2014-10-05 15:39:06,076 (conf-file-poller-0) [INFO - org.apache.flume.
node.PollingPropertiesFileConfigurationProvider$FileWatcherRunnable.
run(PollingPropertiesFileConfigurationProvider.java:133)] Reloading
configuration file:conf/hw.conf

This is another sanity check to make sure you are loading the correct file, in this
case our hw.conf file.

2014-10-05 15:39:06,221 (conf-file-poller-0) [INFO - org.apache.
flume.node.Application.startAllComponents(Application.java:138)]
Starting new configuration:{ sourceRunners:{s1=EventDrivenSourceRu
nner: { source:org.apache.flume.source.NetcatSource{name:s1,state:I
DLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.
DefaultSinkProcessor@442fbe47 counterGroup:{ name:null counters:{} } }}
channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }

Once all the configurations have been parsed, you will see this message, which shows
you everything that was configured. You can see s1, c1, and k1, and which Java classes
are actually doing the work. As you probably guessed, netcat is a convenience for
org.apache.flume.source.NetcatSource. We could have used the class name if
we wanted. In fact, if I had my own custom source written, I would use its class name
for the source's type parameter. You cannot define your own short names without
patching the Flume distribution.

2014-10-05 15:39:06,427 (lifecycleSupervisor-1-0) [INFO - org.apache.
flume.source.NetcatSource.start(NetcatSource.java:164)] Created
serverSocket:sun.nio.ch.ServerSocketChannelImpl[/0.0.0.0:12345]

Here, we see that our source is now listening on port 12345 for the input. So, let's
send some data to it.

Finally, open a second terminal. We'll use the nc command (you can use Telnet or
anything else similar) to send the Hello World string and press the Return (Enter)
key to mark the end of the event:

% nc localhost 12345

Hello World

OK

The OK message came from the agent after we pressed the Return key, signifying
that it accepted the line of text as a single Flume event. If you look at the agent log,
you will see the following:

Chapter 2

[23]

2014-10-05 15:44:11,215 (SinkRunner-PollingRunner-DefaultSinkProcessor)
[INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.
java:70)] Event: { headers:{} body: 48 65 6C 6C 6F 20 57 6F 72 6C 64
Hello World }

This log message shows you that the Flume event contains no headers (NetcatSource
doesn't add any itself). The body is shown in hexadecimal along with a string
representation (for us humans to read, in this case, our Hello World message).

If I send the following line and then press the Enter key, you'll get an OK message:

The quick brown fox jumped over the lazy dog.

You'll see this in the agent's log:

2014-10-05 15:44:57,232 (SinkRunner-PollingRunner-DefaultSinkProcessor)
[INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:70)]
Event: { headers:{} body: 54 68 65 20 71 75 69 63 6B 20 62 72 6F 77 6E 20
The quick brown }

The event appears to have been truncated. The logger sink, by design, limits the
body content to 16 bytes to keep your screen from being filled with more than
what you'd need in a debugging context. If you need to see the full contents for
debugging, you should use a different sink, perhaps the file_roll sink, which
would write to the local filesystem.

Summary
In this chapter, we covered how to download the Flume binary distribution. We
created a simple configuration file that included one source writing to one channel,
feeding one sink. The source listened on a socket for network clients to connect to
and to send it event data. These events were written to an in-memory channel and
then fed to a Log4j sink to become the output. We then connected to our listening
agent using the Linux netcat utility and sent some string events to our Flume
agent's source. Finally, we verified that our Log4j-based sink wrote the events out.

In the next chapter, we'll take a detailed look at the two major channel types
you'll most likely use in your data processing workflows: the memory channel
and the file channel.

We will also take a look at a new experimental channel, introduced in Version 1.5
of Flume, called the Spillable Memory Channel, which attempts to be a hybrid of
the other two.

For each type, we'll discuss all the configuration knobs available to you, when and
why you might want to deviate from the defaults, and most importantly, why to
use one over the other.

Channels
In Flume, a channel is the construct used between sources and sinks. It provides
a buffer for your in-flight events after they are read from sources until they can
be written to sinks in your data processing pipelines.

The primary types we'll cover here are a memory-backed/nondurable channel and
a local-filesystem-backed/durable channel. Starting with Flume 1.5, an experimental
hybrid memory and file channel called the Spillable Memory Channel is introduced.
The durable file channel flushes all changes to disk before acknowledging the receipt
of the event to the sender. This is considerably slower than using the nondurable
memory channel, but it provides recoverability in the event of system or Flume agent
restarts. Conversely, the memory channel is much faster, but failure results in data
loss and it has much lower storage capacity when compared to the multiterabyte disks
backing the file channel. This is why the Spillable Memory Channel was created. In
theory, you get the benefits of memory speed until the memory fills up due to flow
backpressure. At this point, the disk will be used to store the events—and with that
comes much larger capacity. There are trade-offs here as well, as performance is now
variable depending on how the entire flow is performing. Ultimately, the channel you
choose depends on your specific use cases, failure scenarios, and risk tolerance.

That said, regardless of what channel you choose, if your rate of ingest from the
sources into the channel is greater than the rate at which the sink can write data, you
will exceed the capacity of the channel and throw a ChannelException. What your
source does or doesn't do with that ChannelException is source-specific, but in some
cases, data loss is possible, so you'll want to avoid filling channels by sizing things
properly. In fact, you always want your sink to be able to write faster than your source
input. Otherwise, you might get into a situation where once your sink falls behind,
you can never catch up. If your data volume tracks with the site usage, you can have
higher volumes during the day and lower volumes at night, giving your channels
time to drain. In practice, you'll want to try and keep the channel depth (the number
of events currently in the channel) as low as possible because time spent in the
channel translates to a time delay before reaching the final destination.

Channels

[26]

The memory channel
A memory channel, as expected, is a channel where in-flight events are stored in
memory. As memory is (usually) orders of magnitude faster than the disk, events
can be ingested much more quickly, resulting in reduced hardware needs. The
downside of using this channel is that an agent failure (hardware problem, power
outage, JVM crash, Flume restart, and so on) results in the loss of data. Depending
on your use case, this might be perfectly fine. System metrics usually fall into this
category, as a few lost data points isn't the end of the world. However, if your
events represent purchases on your website, then a memory channel would be
a poor choice.

To use the memory channel, set the type parameter on your named channel to memory.

agent.channels.c1.type=memory

This defines a memory channel named c1 for the agent named agent.

Here is a table of configuration parameters you can adjust from the default values:

Key Required Type Default
type Yes String memory

capacity No int 100

transactionCapacity No int 100

byteCapacityBufferPercentage No int
(percent)

20%

byteCapacity No long
(bytes)

80% of JVM Heap

keep-alive No int 3 (seconds)

The default capacity of this channel is 100 events. This can be adjusted by setting
the capacity property as follows:

agent.channels.c1.capacity=200

Remember that if you increase this value, you will most likely have to increase
your Java heap space using the -Xmx, and optionally -Xms, parameters.

Chapter 3

[27]

Another capacity-related setting you can set is transactionCapacity. This is the
maximum number of events that can be written, also called a put, by a source's
ChannelProcessor, the component responsible for moving data from the source
to the channel, in a single transaction. This is also the number of events that can be
read, also called a take, in a single transaction by the SinkProcessor, which is the
component responsible for moving data from the channel to the sink. You might
want to set this higher in order to decrease the overhead of the transaction wrapper,
which might speed things up. The downside to increasing this is that a source
would have to roll back more data in the event of a failure.

Flume only provides transactional guarantees for each channel in each
individual agent. In a multiagent, multichannel configuration, duplicates
and out-of-order delivery are likely but should not be considered the
norm. If you are getting duplicates in nonfailure conditions, it means
that you need to continue tuning your Flume configurations.

If you are using a sink that writes some place that benefits from larger batches
of work (such as HDFS), you might want to set this higher. Like many things,
the only way to be sure is to run performance tests with different values. This
blog post from Flume committer Mike Percy should give you some good starting
points: http://bit.ly/flumePerfPt1.

The byteCapacityBufferPercentage and byteCapacity parameters were
introduced in https://issues.apache.org/jira/browse/FLUME-1535 as a
means to size the memory channel capacity using the number of bytes used rather
than the number of events as well as trying to avoid OutOfMemoryErrors. If your
events have a large variance in size, you might be tempted to use these settings to
adjust the capacity, but be warned that calculations are estimated from the event's
body only. If you have any headers, which you will, your actual memory usage
will be higher than the configured values.

Finally, the keep-alive parameter is the time the thread writing data into the channel
will wait when the channel is full, before giving up. As data is being drained from the
channel at the same time, if space opens up before the timeout expires, the data will
be written to the channel rather than throwing an exception back to the source. You
might be tempted to set this value very high, but remember that waiting for a write
to a channel will block the data flowing into your source, which might cause data to
back up in an upstream agent. Eventually, this might result in events being dropped.
You need to size for periodic spikes in traffic as well as temporary planned (and
unplanned) maintenance.

http://bit.ly/flumePerfPt1
https://issues.apache.org/jira/browse/FLUME-1535

Channels

[28]

The file channel
A file channel is a channel that stores events to the local filesystem of the agent.
Though it's slower than the memory channel, it provides a durable storage path
that can survive most issues and should be used in use cases where a gap in your
data flow is undesirable.

This durability is provided by a combination of a Write Ahead Log (WAL) and
one or more file storage directories. The WAL is used to track all input and output
from the channel in an atomically safe way. This way, if the agent is restarted, the
WAL can be replayed to make sure all the events that came into the channel (puts)
have been written out (takes) before the stored data can be purged from the local
filesystem.

Additionally, the file channel supports the encryption of data written to the filesystem
if your data handling policy requires that all data on the disk (even temporarily) be
encrypted. I won't cover this here, but should you need it, there is an example in the
Flume User Guide (http://flume.apache.org/FlumeUserGuide.html). Keep in
mind that using encryption will reduce the throughput of your file channel.

To use the file channel, set the type parameter on your named channel to file.

agent.channels.c1.type=file

This defines a file channel named c1 for the agent named agent.

Here is a table of configuration parameters you can adjust from the default values:

Key Required Type Default
type Yes String file

checkpointDir No String ~/.flume/file-channel/
checkpoint

useDualCheckpoints No boolean false

backupCheckpointDir No String No default, but must
be different from
checkpointDir

dataDirs No String
(comma
separated
list)

~/.flume/file-channel/
data

capacity No int 1000000

keep-alive No int 3 (seconds)
transactionCapacity No int 10000

http://flume.apache.org/FlumeUserGuide.html

Chapter 3

[29]

Key Required Type Default
checkpointInterval No long 30000 (milliseconds)
maxFileSize No long 2146435071 (bytes)
minimumRequiredSpace No long 524288000 (bytes)

To specify the location where the Flume agent should hold data, set the
checkpointDir and dataDirs properties:

agent.channels.c1.checkpointDir=/flume/c1/checkpoint
agent.channels.c1.dataDirs=/flume/c1/data

Technically, these properties are not required and have sensible default values for
development. However, if you have more than one file channel configured in your
agent, only the first channel will start. For production deployments and development
work with multiple file channels, you should use distinct directory paths for each
file channel storage area and consider placing different channels on different disks to
avoid IO contention. Additionally, if you are sizing a large machine, consider using
some form of RAID that contains striping (RAID 10, 50, or 60) to achieve higher disk
performance rather than buying more expensive 10K or 15K drives or SSDs. If you
don't have RAID striping but have multiple disks, set dataDirs to a comma-separated
list of each storage location. Using multiple disks will spread the disk traffic almost as
well as striped RAID but without the computational overhead associated with RAID
50/60 as well as the 50 percent space waste associated with RAID 10. You'll want to
test your system to see whether the RAID overhead is worth the speed difference.
As hard drive failures are a reality, you might prefer certain RAID configurations
to single disks in order to protect yourself from the data loss associated with single
drive failures. RAID 6 across the maximum number of disks can provide the highest
performance for the minimal amount of data protection when combined with
redundant and reliable power sources (such as an uninterruptable power supply
or UPS).

Using the JDBC channel is a bad idea as it would introduce a bottleneck and single
point of failure in what should be designed as a highly distributed system. NFS
storage should be avoided for the same reason.

Be sure to set HADOOP_PREFIX and JAVA_HOME environment variables
when using the file channel. While we seemingly haven't used anything
Hadoop-specific (such as writing to HDFS), the file channel uses Hadoop
Writables as an on-disk serialization format. If Flume can't find the
Hadoop libraries, you might see this in your startup, so check your
environment variables:
java.lang.NoClassDefFoundError: org/apache/hadoop/io/
Writable

Channels

[30]

Starting with Flume 1.4, the file channel supports a secondary checkpoint directory.
In situations where a failure occurs while writing the checkpoint data, that
information could become unusable and a full replay of the logs is necessary in
order to recover the state of the channel. As only one checkpoint is updated at a
time before flipping to the other, one should always be in a consistent state, thus
shortening restart times. Without valid checkpoint information, the Flume agent
can't know what has been sent and what has not been sent in dataDirs. As files
in the data directories might contain large amounts of data already sent but not
yet deleted, a lack of checkpoint information would result in a large number of
records being resent as duplicates.

Incoming data from sources is written and acknowledged at the end of the most
current file in the data directory. The files in the checkpoint directory keep
track of this data when it's taken by a sink.

If you want to use this feature, set the useDualCheckpoints property to true and
specify a location for that second checkpoint directory with the backupCheckpointDir
property. For performance reasons, it is always preferred that this be on a different
disk from the other directories used by the file channel:

agent.channels.c1.useDualCheckpoints=true
agent.channels.c1.backupCheckpointDir=/flume/c1/checkpoint2

The default file channel capacity is one million events regardless of the size of the
event contents. If the channel capacity is reached, a source will no longer be able
to ingest the data. This default should be fine for low volume cases. You'll want to
size this higher if your ingestion is so heavy that you can't tolerate normal planned
or unplanned outages. For instance, there are many configuration changes you can
make in Hadoop that require a cluster restart. If you have Flume writing important
data into Hadoop, the file channel should be sized to tolerate the time it takes to
restart Hadoop (and maybe add a comfort buffer for the unexpected). If your cluster
or other systems are unreliable, you can set this higher still to handle even larger
amounts of downtime. At some point, you'll run into the fact that your disk space
is a finite resource, so you will have to pick some upper limit (or buy bigger disks).

The keep-alive parameter is similar to memory channels. It is the maximum
time the source will wait when trying to write into a full channel before giving up.
If space becomes available before the timeout, the write is successful; otherwise,
ChannelException is thrown back to the source.

The transactionCapacity property is the maximum number of events allowed
in a single transaction. This might become important for certain sources that batch
together events and pass them to the channel in a single call. Most likely, you won't
need to change this from the default. Setting this higher allocates additional resources
internally, so you shouldn't increase it unless you run into performance issues.

Chapter 3

[31]

The checkpointInterval property is the number of milliseconds between performing
a checkpoint (which also rolls the log files written to logDirs). If you do not set this, 30
seconds will be used.

Checkpoint files also roll based on the volume of data written to them using the
maxFileSize property. You can lower this value for low traffic channels if you want
to try and save some disk space. Let's say your maximum file size is 50,000 bytes but
your channel only writes 500 bytes a day; it would take 100 days to fill a single log.
Let's say that you were on day 100 and 2000 bytes came in all at once. Some data
would be written to the old file and a new file would be started with the overflow.
After the roll, Flume tries to remove any log files that aren't needed anymore. As the
full log has unprocessed records, it cannot be removed yet. The next chance to clean
up that old log file might not come for another 100 days. It probably doesn't matter if
that old 50,000 byte file sticks around longer, but as the default is around 2 GB, you
could have twice that (4 GB) disk space used per channel. Depending on how much
disk you have available and the number of channels configured in your agent, this
might or might not be a problem. If your machines have plenty of storage space, the
default should be fine.

Finally, the minimumRequiredSpace property is the amount of space you do not
want to use for writing logs. The default configuration will throw an exception if
you attempt to use the last 500 MB of the disk associated with the dataDir path.
This limit applies across all channels, so if you have three file channels configured,
the upper limit is still 500 MB and not 1.5 GB. You can set this value as low as 1 MB,
but generally speaking, bad things tend to happen when you push disk utilization
towards 100 percent.

Spillable Memory Channel
Introduced in Flume 1.5, the Spillable Memory Channel is a channel that acts
like a memory channel until it is full. At that point, it acts like a file channel that
is configured with a much larger capacity than its memory counterpart but runs
at the speed of your disks (which means orders of magnitude slower).

The Spillable Memory Channel is still considered experimental. Use it
at your own risk!

Channels

[32]

I have mixed feelings about this new channel type. On the surface, it seems like a good
idea, but in practice, I can see problems. Specifically, having a variable channel speed
that changes depending on how downstream entities in your data pipe behave makes
for difficult capacity planning. As a memory channel is used under good conditions,
this implies that the data contained in it can be lost. So why would I go through extra
trouble to save some of it to the disk? The data is either very important for me to spool
it to disk with a file-backed channel, or it's less important and can be lost, so I can get
away with less hardware and use a faster memory-backed channel. If I really need
memory speed but with the capacity of a hard drive, Solid State Drive (SSD) prices
have come down enough in recent years for a file channel on SSD to now be a viable
option for you rather than using this hybrid channel type. I do not use this channel
myself for these reasons.

To use this channel configuration, set the type parameter on your named channel
to spillablememory:

agent.channels.c1.type=spillablememory

This defines a Spillable Memory Channel named c1 for the agent named agent.

Here is a table of configuration parameters you can adjust from the default values:

Key Required Type Default
type Yes String spillablememory

memoryCapacity No int 10000

overflowCapacity No int 100000000

overflowTimeout No int 3 (seconds)
overflowDeactivationThreshold No int 5 (percent)
byteCapacityBufferPercentage No int 20 (percent)
byteCapacity No long

(bytes)
80% of JVM Heap

checkpointDir No String ~/.flume/
file-channel/
checkpoint

dataDirs No String
(comma
separated
list)

~/.flume/file-
channel/data

useDualCheckpoints No boolean false

backupCheckpointDir No String No default, but must
be different than
checkpointDir

transactionCapacity No int 10000

Chapter 3

[33]

Key Required Type Default
checkpointInterval No long 30000 (milliseconds)
maxFileSize No long 2146435071 (bytes)
minimumRequiredSpace No long 524288000 (bytes)

As you can see, many of the fields match against the memory channel and file
channel's properties, so there should be no surprises here. Let's start with the
memory side.

The memoryCapacity property determines the maximum number of events held
in the memory (this was just called capacity for the memory channel but was
renamed here to avoid ambiguity). Also, the default value, if unspecified, is
10,000 records instead of 100. If you wanted to double the default capacity, the
configuration might look something like this:

agent.channels.c1.memoryCapacity=20000

As mentioned previously, you will most likely need to increase the Java heap
space allocated using the -Xmx and -Xms parameters. Like most Java programs,
more memory usually helps the garbage collector run more efficiently, especially
as an application such as Flume generates a lot of short-lived objects. Be sure to
do your research and pick an appropriate JVM garbage collector based on your
available hardware.

You can set memoryCapacity to zero, which effectively turns it into a
file channel. Don't do this. Just use the file channel and be done with it.

The overflowCapacity property determines the maximum number of events that
can be written to the disk before an error is thrown back to the source feeding it. The
default value is a generous 100,000,000 events (far larger than the file channel's default
of 100,000). Most servers nowadays have multiterabyte disks, so space should not be a
problem, but do the math against your average event size to be sure you don't fill your
disks by accident. If your channels are filling this much, you are probably dealing with
another issue downstream and the last thing you need is your data buffer layer filling
up completely. For example, if you had a large 1 megabyte event payload, 100 million
of these add up to 100 terabytes, which is probably bigger than the disk space on an
average server. A 1 kilobyte payload would only take 100 gigabytes, which is probably
fine. Just do the math ahead of time so you are not surprised.

Channels

[34]

You can set overflowCapacity to zero, which effectively turns it
into a memory channel. Don't do this. Just use the memory channel
and be done with it.

The transactionCapacity property adjusts the batch size of events written to a
channel in a single transaction. If this is set too low, it will lower the throughput
of the agent on high volume flows because of the transaction overhead. For a high
volume channel, you will probably need to set this higher, but the only way to be
sure is to test your particular workflow. See Chapter 8, Monitoring Flume, to learn
how to accomplish this.

Finally, the byteCapacityBufferPercentage and byteCapacity parameters are
identical in functionality and defaults to the memory channel, so I won't waste your
time repeating it here.

What is important is the overflowTimeout property. This is the number of seconds
after which the memory part of the channel fills before data starts getting written
to the disk-backed portion of the channel. If you want writes to start occurring
immediately, you can set this to zero. You might wonder why you need to wait before
starting to write to the disk portion of the channel. This is where the undocumented
overflowDeactivationThreshold property comes into play. This is the amount of
time that space has to be available in the memory path before it can switch back from
disk writing. I believe this is an attempt to prevent flapping back and forth between the
two. Of course, there really are no ordering guarantees in Flume, so I don't know why
you would choose to append to the disk buffer if a spot is available in faster memory.
Perhaps they are trying to avoid some kind of starvation condition, although the code
appears to attempt to remove events in the order of arrival even when using both
memory and disk queues. Perhaps it will be explained to us should it ever come out
of experimental status.

The overflowDeactivationThreshold property is stated to be for
internal use only, so adjust it at your own peril. If you are considering it,
be sure to get familiar with the source code so that you understand the
implications of altering the default.

The rest of the properties on this channel are identical in name and functionality to
its file channel counterpart, so please refer to the previous section.

Chapter 3

[35]

Summary
In this chapter, we covered the two channel types you are most likely to use in
your data processing pipelines.

The memory channel offers speed at the cost of data loss in the event of failure.
Alternatively, the file channel provides a more reliable transport in that it can
tolerate agent failures and restarts at a performance cost.

You will need to decide which channel is appropriate for your use cases. When
trying to decide whether a memory channel is appropriate, ask yourself what the
monetary cost is if you lose some data. Weigh that against the additional costs of
more hardware to cover the difference in performance when deciding if you need
a durable channel after all. Another consideration is whether or not the data can
be resent. Not all data you might ingest into Hadoop will come from streaming
application logs. If you receive "daily downloads" of data, you can get away with
using a memory channel because if you encounter a problem, you can always
rerun the import.

Finally, we covered the experimental Spillable Memory Channel. Personally, I think
its creation is a bad idea, but like most things in computer science, everybody has an
opinion on what is good or bad. I feel that the added complexity and nondeterministic
performance make for difficult capacity planning, as you should always size things for
the worst-case scenario. If your data is critical enough for you to overflow to the disk
rather than discard the events, then you aren't going to be okay with losing even the
small amount held in memory.

In the next chapter, we'll look at sinks, specifically, the HDFS sink to write events
to HDFS, the Elastic Search sink to write events to Elastic Search, and the Morphline
Solr sink to write events to Solr. We will also cover Event Serializers, which specify
how Flume events are translated into output that's more suitable for the sink. Finally,
we will cover sink processors and how to set up load balancing and failure paths in
a tiered configuration for more robust data transport.

Sinks and Sink Processors
By now, you should have a pretty good idea where the sink fits into the Flume
architecture. In this chapter, we will first learn about the most-used sink with Hadoop,
the HDFS sink. We will then cover two of the newer sinks that support common Near
Real Time (NRT) log processing: the ElasticSearchSink and the MorphlineSolrSink. As
you'd expect, the first writes data into Elasticsearch and the latter to Solr. The general
architecture of Flume supports many other sinks we won't have space to cover in this
book. Some come bundled with Flume and can write to HBase, IRC, and, as we saw
in Chapter 2, A Quick Start Guide to Flume, a log4j and file sink. Other sinks are available
on the Internet and can be used to write data to MongoDB, Cassandra, RabbitMQ,
Redis, and just about any other data store you can think of. If you can't find a sink that
suits your needs, you can write one easily by extending the org.apache.flume.sink.
AbstractSink class.

HDFS sink
The job of the HDFS sink is to continuously open a file in HDFS, stream data
into it, and at some point, close that file and start a new one. As we discussed
in Chapter 1, Overview and Architecture, the time between files rotations must be
balanced with how quickly files are closed in HDFS, thus making the data visible
for processing. As we've discussed, having lots of tiny files for input will make
your MapReduce jobs inefficient.

To use the HDFS sink, set the type parameter on your named sink to hdfs.

agent.sinks.k1.type=hdfs

This defines a HDFS sink named k1 for the agent named agent. There are some
additional parameters you must specify, starting with the path in HDFS you
want to write the data to:

agent.sinks.k1.hdfs.path=/path/in/hdfs

Sinks and Sink Processors

[38]

This HDFS path, like most file paths in Hadoop, can be specified in three different
ways: absolute, absolute with server name, and relative. These are all equivalent
(assuming your Flume agent is run as the flume user):

absolute /Users/flume/mydata

absolute with server hdfs://namenode/Users/flume/mydata

relative mydata

I prefer to configure any server I'm installing Flume on with a working
hadoop command line by setting the fs.default.name property in Hadoop's core-
site.xml file. I don't keep persistent data in HDFS user directories but prefer to
use absolute paths with some meaningful path name (for example, /logs/apache/
access). The only time I would specify a NameNode specifically is if the target was
a different Hadoop cluster entirely. This allows you to move configurations you've
already tested in one environment into another without unintended consequences
such as your production server writing data to your staging Hadoop cluster because
somebody forgot to edit the target in the configuration. I consider externalizing
environment specifics a good best practice to avoid situations such as these.

One final required parameter for the HDFS sink, actually any sink, is the channel
that it will be doing take operations from. For this, set the channel parameter with
the channel name to read from:

agent.sinks.k1.channel=c1

This tells the k1 sink to read events from the c1 channel.

Here is a mostly complete table of configuration parameters you can adjust from
the default values:

Key Required Type Default
type Yes String hdfs

channel Yes String

hdfs.path Yes String

hdfs.filePrefix No String FlumeData

hdfs.fileSuffix No String

hdfs.minBlockReplicas No int See the dfs.replication
property in your inherited
Hadoop configuration,
usually, 3.

hdfs.maxOpenFiles No long 5000

Chapter 4

[39]

Key Required Type Default
hdfs.closeTries No int 0 (0=try forever, otherwise a

count)
hdfs.retryInterval No int 180 Seconds (0=don't retry)
hdfs.round No boolean false

hdfs.roundValue No int 1

hdfs.roundUnit No String
(second,
minute or
hour)

second

hdfs.timeZone No String Local time
hdfs.
useLocalTimeStamp

No boolean False

hdfs.inUsePrefix No String Blank
hdfs.inUseSuffix No String .tmp

hdfs.rollInterval No long
(seconds)

30 Seconds (0=disable)

hdfs.rollSize No long
(bytes)

1024 bytes (0=disable)

hdfs.rollCount No long 10 (0=disable)
hdfs.batchSize No long 100

hdfs.codeC No String

Remember to always check the Flume User Guide for the version you are using at
http://flume.apache.org/, as things might change between the release of this
book and the version you are actually using.

Path and filename
Each time Flume starts a new file at hdfs.path in HDFS to write data into, the
filename is composed of the hdfs.filePrefix, a period character, the epoch
timestamp at which the file was started, and optionally, a file suffix specified
by the hdfs.fileSuffix property (if set), for example:

agent.sinks.k1.hdfs.path=/logs/apache/access

The preceding command would result in a file such as /logs/apache/access/
FlumeData.1362945258

www.allitebooks.com

http://flume.apache.org/
http://www.allitebooks.org

Sinks and Sink Processors

[40]

However, in the following configuration, your filenames would be more like /logs/
apache/access/access.1362945258.log:

agent.sinks.k1.hdfs.path=/logs/apache/access
agent.sinks.k1.hdfs.filePrefix=access
agent.sinks.k1.hdfs.fileSuffix=.log

Over time, the hdfs.path directory will get very full, so you will want to add some
kind of time element into the path to partition the files into subdirectories. Flume
supports various time-based escape sequences, such as %Y to specify a four-digit
year. I like to use sequences in the year/month/day/hour form (so that they are
sorted oldest to newest), so I often use this for a path:

agent.sinks.k1.hdfs.path=/logs/apache/access/%Y/%m/%d/%H

This says I want a path like /logs/apache/access/2013/03/10/18/.

For a complete list of time-based escape sequences, see the Flume
User Guide.

Another handy escape sequence mechanism is the ability to use Flume header
values in your path. For instance, if there was a header with a key of logType,
I could split Apache access and error logs into different directories while using
the same channel, by escaping the header's key as follows:

agent.sinks.k1.hdfs.path=/logs/apache/%{logType}/%Y/%m/%d/%H

The preceding line of code would result in access logs going to /logs/
apache/access/2013/03/10/18/, and error logs going to /logs/apache/
error/2013/03/10/18/. However, if I preferred both log types in the same directory
path, I could have used logType in my hdfs.filePrefix instead, as follows:

agent.sinks.k1.hdfs.path=/logs/apache/%Y/%m/%d/%H
agent.sinks.k1.hdfs.filePrefix=%{logType}

Obviously, it is possible for Flume to write to multiple files at once. The hdfs.
maxOpenFiles property sets the upper limit for how many can be open at once,
with a default of 5000. If you should exceed this limit, the oldest file that's still
open is closed. Remember that every open file incurs overhead both at the OS
level and in HDFS (NameNode and DataNode connections).

Another set of properties you might find useful allow for rounding down event
times at an hour, minute, or second granularity while still maintaining these
elements in file paths. Let's say you had a path specification as follows:

agent.sinks.k1.hdfs.path=/logs/apache/%Y/%m/%d/%H%M

Chapter 4

[41]

However, if you wanted only four subdirectories per day (at 00, 15, 30, and 45 past
the hour, each containing 15 minutes of data), you could accomplish this by setting
the following:

agent.sinks.k1.hdfs.round=true
agent.sinks.k1.hdfs.roundValue=15
agent.sinks.k1.hdfs.roundUnit=minute

This would result in logs between 01:15:00 and 01:29:59 on March 10, 2013 being
written to files contained in /logs/apache/2013/03/10/0115/. Logs from 01:30:00
to 01:44:59 would be written in files contained in /logs/apache/2013/03/10/0130/.

The hdfs.timeZone property is used to specify the time zone that you want time
interpreted for your escape sequences. The default is your computer's local time.
If your local time is affected by daylight savings time adjustments, you will have
twice as much data when %H == 02 (in the fall) and no data when %H == 02 (in the
spring). I think it is a bad idea to introduce time zones into things that are meant
for computers to read. I believe time zones are a concern for humans alone and
computers should only converse in universal time. For this reason, I set this
property on my Flume agents to make the time zone issue just go away:

-Duser.timezone=UTC

If you don't agree, you are free to use the default (local time) or set hdfs.timeZone
to whatever you like. The value you passed is used in a call to java.util.Timezone.
getTimeZone(…), so check the Javadocs for acceptable values to be used here.

The other time-related property is the hdfs.useLocalTimeStamp boolean property.
By default, its value is false, which tells the sink to use the event's timestamp header
when calculating date-based escape sequences in file paths, as shown previously. If
you set the property to true, the current system time will be used instead, effectively
telling Flume to use the transport arrival time rather than the original event time. You
would not set this in cases where HDFS was the final target for the streamed events.
This way, delayed events will still be placed correctly (where users would normally
look for them) regardless of their arrival time. However, there may be a use case
where events are temporarily written to Hadoop and processed in batches, on some
interval (perhaps daily). In this case, the transport time would be preferred, so your
postprocessing job doesn't need to scan older folders for delayed data.

Remember that files in HDFS are broken into file blocks that are replicated across
the DataNodes. The default number of replicas is usually three (as set in the Hadoop
base configuration). You can override this value up or down for this sink with the
hdfs.minBlockReplicas property. For example, if I have a data stream that I feel
only needs two replicas instead of three, I can override this as follows:

agent.skinks.k1.hdfs.minBlockReplicas=2

Sinks and Sink Processors

[42]

Don't set the minimum replica count higher than the number of data
nodes you have, otherwise you'll create a degraded state HDFS. You
also don't want to set it so high that a downed box for maintenance
would trigger this situation. Personally, I've never set this higher than
the default of three, but I have set it lower on less important data in
order to save space.

Finally, while files are being written to HDFS, a .tmp extension is added. When
the file is closed, the extension is removed. You can change the extension used by
setting the hdfs.inUseSuffix property, but I've never had a reason to do so:

agent.sinks.k1.hdfs.inUseSuffix=flumeiswriting

This allows you to see which files are being written to simply by looking at a
directory listing in HDFS. As you typically specify a directory for input in your
MapReduce job (or because you are using Hive), the temporary files will often be
picked up as empty or garbled input by mistake. To avoid having your temporary
files picked up before being closed, set the prefix to either a dot or an underscore
character as follows:

agent.sinks.k1.hdfs.inUsePrefix=_

That said, there are occasions where files were not closed properly due to some HDFS
glitch, so you might see files with the in-use prefix/suffix that haven't been used in
some time. A few new properties were added in Version 1.5 to change the default
behavior of closing files. The first is the hdfs.closeTries property. The default of
zero actually means "try forever", so it is a little confusing. Setting it to 4 means try 4
times before giving up. You can adjust the interval between retries by setting the hdfs.
retryInterval property. Setting it too low could swamp your NameNode with too
many requests, so be careful if you lower this from the default of 3 minutes. Of course,
if you are opening files too quickly, you might need to lower this just to keep from
going over the hdfs.maxOpenFiles setting which was covered previously. If you
actually didn't want any retries, you can set hdfs.retryInterval to zero seconds
(again, not to be confused with closeTries=0, which means try forever). Hopefully
in a future version, they will use the more commonly used convention of a negative
number (usually, -1) when infinite is desired.

File rotation
By default, Flume will rotate actively written-to files every 30 seconds, 10 events, or
1024 bytes. This is done by setting the hdfs.rollInterval, hdfs.rollCount, and
hdfs.rollSize properties, respectively. One or more of these can be set to zero to
disable this particular rolling mechanism. For instance, if you only wanted a time-
based roll of 1 minute, you would set the following:

Chapter 4

[43]

agent.sinks.k1.hdfs.rollInterval=60
agent.sinks.k1.hdfs.rollCount=0
agent.sinks.k1.hdfs.rollSize=0

If your output contains any amount of header information, the HDFS size per file
can be larger than what you expect, because the hdfs.rollSize rotation scheme
only counts the event body length. Clearly, you might not want to disable all three
mechanisms for rotation at the same time, or you will have one directory in HDFS
overflowing with files.

Finally, a related parameter is hdfs.batchSize. This is the number of events that
the sink will read per transaction from the channel. If you have a large volume of
data in your channel, you might see a performance increase by setting this higher
than the default of 100, which decreases the transaction overhead per event.

Now that we've discussed the way files are managed and rolled in HDFS, let's
look into how the event contents get written.

Compression codecs
Codecs (Coder/Decoders) are used to compress and decompress data using
various compression algorithms. Flume supports gzip, bzip2, lzo, and snappy,
although you might have to install lzo yourself, especially if you are using a
distribution such as CDH, due to licensing issues.

If you want to specify compression for your data, set the hdfs.codeC property if you
want the HDFS sink to write compressed files. The property is also used as the file
suffix for the files written to HDFS. For example, if you specify the following, all files
that are written will have a .gzip extension, so you don't need to specify the hdfs.
fileSuffix property in this case:

agent.sinks.k1.hdfs.codeC=gzip

The codec you choose to use will require some research on your part. There are
arguments for using gzip or bzip2 for their higher compression ratios at the cost
of longer compression times, especially if your data is written once but will be read
hundreds or thousands of times. On the other hand, using snappy or lzo results in
faster compression performance but results in a lower compression ratio. Keep in
mind that the splitability of the file, especially if you are using plain text files, will
greatly affect the performance of your MapReduce jobs. Go pick up a copy of Hadoop
Beginner's Guide, Garry Turkington, Packt Publishing (http://amzn.to/14Dh6TA) or
Hadoop: The Definitive Guide, Tom White, O'Reilly (http://amzn.to/16OsfIf) if you
aren't sure what I'm talking about.

http://amzn.to/14Dh6TA
http://amzn.to/16OsfIf

Sinks and Sink Processors

[44]

Event Serializers
An Event Serializer is the mechanism by which a FlumeEvent is converted into
another format for output. It is similar in function to the Layout class in log4j. By
default, the text serializer, which outputs just the Flume event body, is used. There
is another serializer, header_and_text, which outputs both the headers and the
body. Finally, there is an avro_event serializer that can be used to create an Avro
representation of the event. If you write your own, you'd use the implementation's
fully qualified class name as the serializer property value.

Text output
As mentioned previously, the default serializer is the text serializer. This will
output only the Flume event body, with the headers discarded. Each event has a
newline character appender unless you override this default behavior by setting
the serializer.appendNewLine property to false.

Key Required Type Default
Serializer No String text

serializer.appendNewLine No boolean true

Text with headers
The text_with_headers serializer allows you to save the Flume event headers
rather than discard them. The output format consists of the headers, followed by
a space, then the body payload, and finally, terminated by an optionally disabled
newline character, for instance:

{key1=value1, key2=value2} body text here

Key Required Type Default
serializer No String text_with_headers

serializer.appendNewLine No boolean true

Chapter 4

[45]

Apache Avro
The Apache Avro project (http://avro.apache.org/) provides a serialization
format that is similar in functionality to Google Protocol Buffers but is more
Hadoop friendly as the container is based on Hadoop's SequenceFile and has some
MapReduce integration. The format is also self-describing using JSON, making for
a good long-term data storage format, as your data format might evolve over time.
If your data has a lot of structure and you want to avoid turning it into Strings only
to then parse them in your MapReduce job, you should read more about Avro to see
whether you want to use it as a storage format in HDFS.

The avro_event serializer creates Avro data based on the Flume event schema.
It has no formatting parameters as Avro dictates the format of the data, and the
structure of the Flume event dictates the schema used:

Key Required Type Default
serializer No String avro_event

serializer.compressionCodec No String
(gzip,
bzip2, lzo, or
snappy)

serializer.syncIntervalBytes No int (bytes) 2048000
(bytes)

If you want your data compressed before being written to the Avro container, you
should set the serializer.compressionCodec property to the file extension of an
installed codec. The serializer.syncIntervalBytes property determines the size
of the data buffer used before flushing the data to HDFS, and therefore, this setting
can affect your compression ratio when using a codec. Here is an example using
snappy compression on Avro data using a 4 MB buffer:

agent.sinks.k1.serializer=avro_event
agent.sinks.k1.serializer.compressionCodec=snappy
agent.sinks.k1.serializer.syncIntervalBytes=4194304
agent.sinks.k1.hdfs.fileSuffix=.avro

http://avro.apache.org/

Sinks and Sink Processors

[46]

For Avro files to work in an Avro MapReduce job, they must end in .avro or
they will be ignored as input. For this reason, you need to explicitly set the hdfs.
fileSuffix property. Furthermore, you would not set the hdfs.codeC property
on an Avro file.

User-provided Avro schema
If you want to use a different schema from the Flume event schema used with the
avro_event type, starting in Version 1.4, the closely named AvroEventSerializer
will let you do this. Keep in mind that using this implementation only, the event's
body is serialized and headers are not passed on.

Set the serializer type to the fully qualified org.apache.flume.sink.hdfs.
AvroEventSerializer class name:

agent.sinks.k1.serializer=org.apache.flume.sink.hdfs.
AvroEventSerializer

Unlike the other serializers that take additional parameters in the Flume configuration
file, this one requires that you pass the schema information via a Flume header. This is
a byproduct of one of the Avro-aware sources we'll see in Chapter 6, Interceptors, ETL,
and Routing, where schema information is sent from the source to the final destination
via the event header. You can fake this if you are using a source that doesn't set these
by using a static header interceptor. We'll talk more about interceptors in Chapter 6,
Interceptors, ETL, and Routing, so flip back to this part later on.

To specify the schema directly in the Flume configuration file, use the flume.avro.
schema.literal header as shown in this example (using a map of strings schema):

agent.sinks.k1.serializer=org.apache.flume.sink.hdfs.
AvroEventSerializer
agent.sinks.k1.interceptors=i1
agent.sinks.k1.interceptors.i1.type=static

agent.sinks.k1.interceptors.i1.key=flume.avro.schema.literal
agent.sinks.k1.interceptors.i1.value="{\"type\":\"map\",\"values\":\"
string\"}"

If you prefer to put the schema file in HDFS, use the flume.avro.schema.url
header instead, as shown in this example:

agent.sinks.k1.serializer=org.apache.flume.sink.hdfs.
AvroEventSerializer
agent.sinks.k1.interceptors=i1
agent.sinks.k1.interceptors.i1.type=static

agent.sinks.k1.interceptors.i1.key=flume.avro.schema.url
agent.sinks.k1.interceptors.i1.value=hdfs://path/to/schema.avsc

Chapter 4

[47]

Actually, in this second form, you can pass any URL including a file:// URL,
but this would indicate a file local to where you are running the Flume agent,
which might create additional setup work for your administrators. This is also true
of configuration served up by a HTTP web server or farm. Rather than creating
additional setup dependencies, just use the dependency you cannot remove, which
is HDFS, using a hdfs:// URL.

Be sure to only set either the flume.avro.schema.literal header or the flume.
avro.schema.url header both not both.

File type
By default, the HDFS sink writes data to HDFS as Hadoop's SequenceFile. This is a
common Hadoop wrapper that consists of a key and value field separated by binary
field and record delimiters. Usually, text files on a computer make assumptions like
a newline character terminates each record. So, what do you do if your data contains
a newline character, such as some XML? Using a sequence file can solve this problem
because it uses nonprintable characters for delimiters. Sequence files are also splittable,
which makes for better locality and parallelism when running MapReduce jobs on
your data, especially on large files.

SequenceFile
When using a SequenceFile file type, you need to specify how you want the key
and value to be written on the record in the SequenceFile. The key on each record
will always be a LongWritable type and will contain the current timestamp, or if the
timestamp event header is set, it will be used instead. By default, the format of the
value is a org.apache.hadoop.io.BytesWritable type, which corresponds to the
byte[] Flume body:

Key Required Type Default
hdfs.fileType No String SequenceFile

hdfs.writeFormat No String writable

However, if you want the payload interpreted as a String, you can override the
hdfs.writeFormat property, so org.apache.hadoop.io.Text will be used as
the value field:

Key Required Type Default
hdfs.fileType No String SequenceFile

hdfs.writeFormat No String text

Sinks and Sink Processors

[48]

DataStream
If you do not want to output a SequenceFile file because your data doesn't have
a natural key, you can use a DataStream to output only the uncompressed value.
Simply override the hdfs.fileType property:

agent.sinks.k1.hdfs.fileType=DataStream

This is the file type you would use with Avro serialization, as any compression
should have been done in the Event Serializer. To serialize gzip-compressed Avro
files, you would set these properties:

agent.sinks.k1.serializer=avro_event
agent.sinks.k1.serializer.compressionCodec=gzip
agent.sinks.k1.hdfs.fileType=DataStream
agent.sinks.k1.hdfs.fileSuffix=.avro

CompressedStream
CompressedStream is similar to a DataStream, except that the data is compressed
when it's written. You can think of this as running the gzip utility on an uncompressed
file, but all in one step. This differs from a compressed Avro file whose contents are
compressed and then written into an uncompressed Avro wrapper:

agent.sinks.k1.hdfs.fileType=CompressedStream

Remember that only certain compressed formats are splittable in MapReduce should
you decide to use CompressedStream. The compression algorithm selection doesn't
have a Flume configuration but is dictated by the zlib.compress.strategy and
zlib.compress.level properties in core Hadoop instead.

Timeouts and workers
Finally, there are two miscellaneous properties related to timeouts and two for
worker pools that you can change:

Key Required Type Default
hdfs.callTimeout No long

(milliseconds)
10000

hdfs.idleTimeout No int (seconds) 0 (0=disable)

hdfs.threadsPoolSize No int 10

hdfs.rollTimerPoolSize No int 1

Chapter 4

[49]

The hdfs.callTimeout property is the amount of time the HDFS sink will wait for
HDFS operations to return a success (or failure) before giving up. If your Hadoop
cluster is particularly slow (for instance, a development or virtual cluster), you
might need to set this value higher in order to avoid errors. Keep in mind that
your channel will overflow if you cannot sustain higher write throughput than
the input rate of your channel.

The hdfs.idleTimeout property, if set to a nonzero value, is the time Flume will wait
to automatically close an idle file. I have never used this as hdfs.fileRollInterval
handles the closing of files for each roll period, and if the channel is idle, it will
not open a new file. This setting seems to have been created as an alternative roll
mechanism to the size, time, and event count mechanisms that have already been
discussed. You might want as much data written to a file as possible and only close
it when there really is no more data. In this case, you can use hdfs.idleTimeout to
accomplish this rotation scheme if you also set hdfs.rollInterval, hdfs.rollSize,
and hdfs.rollCount to zero.

The first property you can set to adjust the number of workers is hdfs.
threadsPoolSize and it defaults to 10. This is the maximum number of files
that can be written to at the same time. If you are using event headers to determine
file paths and names, you might have more than 10 files open at once, but be
careful when increasing this value too much so as not to overwhelm HDFS.

The last property related to worker pools is the hdfs.rollTimerPoolSize. This is
the number of workers processing timeouts set by the hdfs.idleTimeout property.
The amount of work to close the files is pretty small, so increasing this value from
the default of one worker is unlikely. If you do not use a rotation based on hdfs.
idleTimeout, you can ignore the hdfs.rollTimerPoolSize property, as it is
not used.

Sink groups
In order to remove single points of failures in your data processing pipeline,
Flume has the ability to send events to different sinks using either load balancing
or failover. In order to do this, we need to introduce a new concept called a sink
group. A sink group is used to create a logical grouping of sinks. The behavior of
this grouping is dictated by something called the sink processor, which determines
how events are routed.

There is a default sink processor that contains a single sink which is used whenever
you have a sink that isn't part of any sink group. Our Hello, World! example in
Chapter 2, A Quick Start Guide to Flume, used the default sink processor. No special
configuration is required for single sinks.

Sinks and Sink Processors

[50]

In order for Flume to know about the sink groups, there is a new top-level agent
property called sinkgroups. Similar to sources, channels, and sinks, you prefix
the property with the agent name:

agent.sinkgroups=sg1

Here, we have defined a sink group called sg1 for the agent named agent.

For each named sink group, you need to specify the sinks it contains using the
sinks property consisting of a space-delimited list of sink names:

agent.sinkgroups.sg1.sinks=k1 k2

This defines that the k1 and k2 sinks are part of the sg1 sink group for the agent
named agent.

Often, sink groups are used in conjunction with the tiered movement of data to
route around failures. However, they can also be used to write to different Hadoop
clusters, as even a well-maintained cluster has periodic maintenance.

Load balancing
Continuing the preceding example, let's say you want to load balance traffic to k1
and k2 evenly. There are some additional properties you need to specify, as listed in
this table:

Key Type Default
processor.type String load_balance

processor.selector String (round_robin, random) round_robin

processor.backoff boolean false

When you set processor.type to load_balance, round robin selection will be
used, unless otherwise specified by the processor.selector property. This can be
set to either round_robin or random. You can also specify your own load balancing
selector mechanism, which we won't cover here. Consult the Flume documentation
if you need this custom control.

The processor.backoff property specifies whether an exponential backup should
be used when retrying a sink that threw an exception. The default is false, which
means that after a thrown exception, the sink will be tried again the next time its
turn is up based on round robin or random selection. If set to true, then the wait
time for each failure is doubled, starting at 1 second up to a limit of around 18
hours (216 seconds).

Chapter 4

[51]

In an earlier version of Flume, the default in the code for processor.
backoff was stated as false, but the documentation stated it as
true. This error has been fixed, however, it may save you a headache
by specifying what you want for property settings rather than relying
on the defaults.

Failover
If you would rather try one sink and if that one fails to try another, then you want
to set processor.type to failover. Next, you'll need to set additional properties
to specify the order by setting the processor.priority property, followed by the
sink name:

Key Type Default
processor.type String failover

processor.priority.NAME int

processor.maxpenality int (milliseconds) 30000

Let's look at the following example:

agent.sinkgroups.sg1.sinks=k1 k2 k3
agent.sinkgroups.sg1.processor.type=failover
agent.sinkgroups.sg1.processor.priority.k1=10
agent.sinkgroups.sg1.processor.priority.k2=20
agent.sinkgroups.sg1.processor.priority.k3=20

Lower priority numbers come first, and in the case of a tie, order is arbitrary.
You can use any numbering system that makes sense to you (by ones, fives,
tens—whatever). In this example, the k1 sink will be tried first, and if an exception
is thrown, either k2 or k3 will be tried next. If k3 was selected first for trial and it
failed, k2 will still be tried. If all sinks in the sink group fail, the transaction with
the channel is rolled back.

Finally, processor.maxPenality sets an upper limit to an exponential backoff
for failed sinks in the group. After the first failure, it will be 1 second before it
can be used again. Each subsequent failure doubles the wait time until processor.
maxPenality is reached.

Sinks and Sink Processors

[52]

MorphlineSolrSink
HDFS is not the only useful place to send your logs and data. Solr is a popular
real-time search platform used to index large amounts of data, so full text searching
can be performed almost instantaneously. Hadoop's horizontal scalability creates
an interesting problem for Solr, as there is now more data than a single instance can
handle. For this reason, a horizontally scalable version of Solr was created, called
SolrCloud. Cloudera's Search product is also based on SolrCloud, so it should be
no surprise that Flume developers created a new sink specifically to write streaming
data into Solr.

Like most streaming data flows, you not only transport the data, but you also often
reformat it into a form more consumable to the target of the flow. Typically, this is
done in a Flume-only workflow by applying one or more interceptors just prior to
the sink writing the data to the target system. This sink uses the Morphline engine
to transform the data, instead of interceptors.

Internally, each Flume event is converted into a Morphline record and passed to the
first command in the Morphline command chain. A record can be thought of as a set
of key/value pairs with string keys and arbitrary object values. Each of the Flume
headers is passed as a Record Field with the same header keys. A special Record
Field key _attachment_body is used for the Flume event body. Keep in mind that
the body is still a byte array (Java byte[]) at this point and must be specifically
processed in the Morphline command chain.

Each command processes the record in turn, passing the output to the input of the
next command in line with the final command responsible for terminating the flow.
In many ways, it is similar in functionally to Flume's Interceptor functionality, which
we'll see in Chapter 6, Interceptors, ETL, and Routing. In the case of writing to Solr, we
use the loadSolr command to convert the Morphline record into a Solr Document
and write to the Solr cluster. Here is what this simplified flow might look like in a
picture form:

Chapter 4

[53]

Morphline configuration files
Morphline configuration files use the HOCON format, which is similar to JSON but
has a less strict syntax, making them less error-prone when used for configuration
files over JSON.

HOCON is an acronym for Human Optimized Configuration Object
Notation. You can read more about HOCON on this GitHub page:
https://github.com/typesafehub/config/blob/master/
HOCON.md

The configuration file contains a single key with the morphlines value. The value is an
array of Morphline configurations. Each individual entry is comprised of three keys:

• id

• importCommands

• commands

If your configuration contains multiple Morphlines, the value of id must be provided
to the Flume sink by way of the morphlineId property. The value of importCommands
specifies the Java classes to import when the Morphine is evaluated. The double star
indicates that all paths and classes from that point in the package hierarchy should
be included. All classes that implement com.cloudera.cdk.morphline.api.
CommandBuilder are interrogated for their names via the getNames() method. These
names are the command names you use in the next section. Don't worry; you don't
need to sift through the source code to find them, as they have a well-documented
reference guide online. Finally, the commands key references a list of command
dictionaries. Each command dictionary has a single key consisting of the name of
the Morphline command followed by its specific properties.

For a list of Morphline commands and associated configuration
properties, see the reference guide at http://kitesdk.org/docs/
current/kite-morphlines/morphlinesReferenceGuide.html

Here is what a skeleton configuration file might look like:

morphlines : [
 {
 id : transform_my_data
 importCommands : [
 "com.cloudera.**",
 "org.apache.solr.**"

https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/HOCON.md
http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html
http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html

Sinks and Sink Processors

[54]

]
 commands : [
 {
 COMMAND_NAME1 : {
 property1 : value1
 property2 : value2
 }
 }
 { COMMAND_NAME2 : {
 property1 : value1
 }
]
 }
]

Typical SolrSink configuration
Here is the preceding skeleton configuration applied to our Solr use case. This is not
meant to be complete, but it is sufficient to discuss the flow in the preceding diagram:

morphlines : [
 {
 id : solr_flow
 importCommands : [
 "com.cloudera.**",
 "org.apache.solr.**"
]
 commands : [
 {
 readLine : {
 charset : UTF-8
 }
 {
 grok : {
 GROK_PROPERTIES_HERE
 }
 }
 {
 loadSolr : {
 solrLocator : {
 collection : my_collection
 zkHost : "solr.example.com:2181/solr"
 }
 }

Chapter 4

[55]

 }
]
 }
]

You can see the same boilerplate configuration where we define a single Morphline
with the solr_flow identifier. The command sequence starts with the readLine
command. This simply reads the event body from the _attachment_body field and
converts byte[] to String using the configured encoding (in this case, UTF-8). The
resulting String value is set to the field with the key message. The next command
in the sequence, which is the grok command, uses regular expressions to extract
additional fields to make a more interesting Solr Document. I couldn't possibly do
this command justice by trying to explain everything you can do with it. For that,
please see the KiteSDK documentation.

See the reference guide for a complete list of Morphline commands, their
properties, and usage information at http://kitesdk.org/docs/
current/kite-morphlines/morphlinesReferenceGuide.html

Suffice to say, grok lets me take a webserver log line such as this:

10.4.240.176 - - [14/Mar/2014:12:02:17 -0500] "POST http://mysite.
com/do_stuff.php HTTP/1.1" 500 834

Then, it lets me turn it into more structured data like this:

{
 ip : 10.4.240.176
 timestamp : 1413306137
 method : POST
 url : http://mysite.com/do_stuff.php
 protocol : HTTP/1.1
 status_code : 500
 length : 834
}

If you wanted to search for all the times this page threw a 500 status code,
having these fields broken out makes the task easy for Solr.

Finally, we call the loadSolr command to insert the record into our Solr
cluster. The solrLocator property indicates the target Solr cluster (by way of
its Zookeeper server(s)) and the data collection to write these documents into.

http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html
http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html

Sinks and Sink Processors

[56]

Sink configuration
Now that you have a basic idea of how to create a Morphline configuration file,
let's apply this to the actual sink configuration.

The following table details the sink's parameters and default values:

Key Required Type Default
type Yes String org.apache.flume.

sink.solr.morphline.
MorphlineSolrSink

channel Yes String

morphlineFile Yes String

morphlineId No String Required if the Morphline
configuration file contains more
than one Morphline.

batchSize No int 1000

batchDurationMillis No long 1000 (milliseconds)
handlerClass No String org.apache.flume.

sink.solr.morphline.
MorphlineHandlerImpl

The MorphlineSolrSink does not have a short type alias, so set the type
parameter on your named sink to org.apache.flume.sink.solr.morphline.
MorphlineSolrSink:

agent.sinks.k1.type=org.apache.flume.sink.solr.morphline.
MorphlineSolrSink

This defines a MorphlineSolrSink named k1 for the agent named agent.

The next required parameter is the channel property. This specifies which channel
to read events from for processing.

agent.sinks.k1.channel=c1

This tells the k1 sink to read events from the c1 channel.

The only other required parameter is the relative or absolute path to the Morphline
configuration file. This cannot be a path in HDFS; it must accessible on the server
the Flume agent is running on (local disk, NFS disk, and so on).

Chapter 4

[57]

To specify the configuration file path, set the morphlineFile property:

agent.sinks.k1.morphlineFile=/path/on/local/system/morphline.conf

As a Morphline configuration file can contain multiple Morphlines, you must
specify the identifier if more than one exists, using the morphlineId property:

agent.sinks.k1.morphlineId=transform_my_data

The next two properties are fairly common among sinks. They specify how many
events to remove at a time for processing, also known as a batch. The batchSize
property defaults to 1000 events, but you might need to set this higher if you aren't
consuming events from the channel faster than they are being inserted. Clearly,
you can only increase this so much, as the thing you are writing to—in this case,
Solr—will have some record consumption limit. Only through testing will you be
able to stress your systems to see where the limits are.

The related batchDurationMillis property specifies the maximum time to wait
before the sink proceeds with the processing when fewer than the batchSize number
of events have been read. The default value is 1 second and is specified in milliseconds
in the configuration properties. In a situation with a light data flow (using the defaults,
less than 1000 records per second), setting batchDurationMillis higher can make
things worse. For instance, if you are using a memory channel with this sink, your
Flume agent could be sitting there with data to write to the sink's target but is waiting
for more, only to show up when a crash happens, resulting in lost data. That said, your
downstream entity might perform better on larger batches, which might push both
these configuration values higher, so there is no universally correct answer. Start with
the defaults if you are unsure, and use hard data that you'll collect using techniques
in Chapter 8, Monitoring Flume, to adjust based on facts and not guesses.

Finally, you should never need to touch the handlerClass property unless you plan
to write an alternate implementation of the Morphline processing class. As there is
only one Morphline engine implementation to date, I'm not really sure why this is
a documented property in Flume. I'm just mentioning it for completeness.

ElasticSearchSink
Another common target to stream data to be searched in NRT is Elasticsearch.
Elasticsearch is also a clustered searching platform based on Lucene, like Solr. It is
often used along with the logstash project (to create structured logs) and the Kibana
project (a web UI for searches). This trio is often referred to as the acronym ELK
(Elasticsearch/Logstash/Kibana).

Sinks and Sink Processors

[58]

Here are the project home pages for the ELK stack that can give you a
much better overview than I can in a few short pages:

• Elasticsearch: http://elasticsearch.org/
• Logstash: http://logstash.net/
• Kibana: http://www.elasticsearch.org/overview/

kibana/

In Elasticsearch, data is grouped into indices. You can think of these as being
equivalent to databases in a single MySQL installation. The indices are composed
of types (similar to tables in databases), which are made up of documents. A
document is like a single row in a database, so, each Flume event will become
a single document in ElasticSearch. Documents have one or more fields
(just like columns in a database).

This is by no means a complete introduction to Elasticsearch, but it should be enough
to get you started, assuming you already have an Elasticsearch cluster
at your disposal. As events get mapped to documents by the sink's serializer, the
actual sink configuration needs only a few configuration items: where the cluster
is located, which index to write to, and what type the record is.

This table summarizes the settings for ElasticSearchSink:

Key Required Type Default
type Yes String org.apache.flume.sink.

elasticsearch.ElasticSearchSink

hostNames Yes String A comma-separated list of Elasticsearch nodes
to connect to. If the port is specified, use a
colon after the name. The default port is 9300.

clusterName No String elasticsearch

indexName No String flume

indexType No String log

ttl No String Defaults to never expire. Specify the number
and unit (5m = 5 minutes).

batchSize No int 100

With this information in mind, let's start by setting the sink's type property:

agent.sinks.k1.type=org.apache.flume.sink.elasticsearch.
ElasticSearchSink

http://elasticsearch.org/
http://logstash.net/
http://www.elasticsearch.org/overview/kibana/
http://www.elasticsearch.org/overview/kibana/

Chapter 4

[59]

Next, we need to set the list of servers and ports to establish connectivity using
the hostNames property. This is a comma-separated list of hostname:port pairs.
If you are using the default port of 9300, you can just specify the server name or IP,
for example:

agent.sinks.k1.hostNames=es1.example.com,es2.example.com:12345

Now that we can communicate with the Elasticsearch servers, we need to tell them
which cluster, index, and type to write our documents to. The cluster is specified
using the clusterName property. This corresponds with the cluster.name property
in Elasticsearch's elasticsearch.yml configuration file. It needs to be specified, as
an Elasticsearch node can participate in more than one cluster. Here is how I would
specify a nondefault cluster name called production:

agent.sinks.k1.clusterName=production

The indexName property is really a prefix used to create a daily index. This keeps
any single index from becoming too large over time. If you use the default index
name, the index on September 30, 2014 will be named flume-2014-10-30.

Lastly, the indexType property specifies the Elasticsearch type. If unspecified,
the log default value will be used.

By default, data written into Elasticsearch will never expire. If you want the data
to automatically expire, you can specify a time-to-live value on the records with the
ttl property. Values are a numeric number in milliseconds or a number with units.
The units are given in this table:

Unit string Definition Example
ms Milliseconds 5ms = 5 milliseconds
not specified Milliseconds 10000 = 10 seconds
m Minutes 10m = 10 minutes
h Hours 1h = 1 hour
d Days 7d = 7 days
w Weeks 4w = 4 weeks

Keep in mind that you also need to enable the TTL features on the Elasticsearch cluster,
as it disabled by default. See the Elasticsearch documentation for how to do this.

Finally, like the HDFS sink, the batch property is the number of events per
transaction that the sink will read from the channel. If you have a large volume
of data in your channel, you should see a performance increase by setting this
higher than the default of 100, due to the reduced overhead per transaction.

Sinks and Sink Processors

[60]

The sink's serializer does the work of transforming the Flume event to the
Elasticsearch document. There are two Elasticsearch serializers that come packaged
with Flume, neither has additional configuration properties since they mostly use
existing headers to dictate field mappings.

We'll see more of this sink in action in Chapter 7, Putting It All Together.

LogStash Serializer
The default serializer, if not specified, is ElasticSearchLogStashEventSerializer:

agent.sinks.k1.serializer=org.apache.flume.sink.elasticsearch.
ElasticSearchLogStashEventSerializer

It writes data in the same format that Logstash uses in conjunction with Kibana.
Here is a table of the commonly used fields and their associated mappings from
Flume events:

Elasticsearch field Taken from the Flume
header

Notes

@timestamp timestamp From the header, if present
@source source From the header, if present
@source_host source_host From the header, if present
@source_path source_path From the header, if present
@type type From the header, if present
@host host From the header, if present
@fields all headers A dictionary of all Flume

headers, including the
ones that might have been
mapped to the other fields,
such as the host

@message Flume Body

While you might think the document's @type field will be automatically set to the
sink's indexType configuration property, you'd be incorrect. If you had only one
type of log, it would be wasteful to write this over and over again for every document.
However, if you had more than one log type going through your Flume channel,
you can designate its type in Elasticsearch using the Static interceptor we'll see in
Chapter 6, Interceptors, ETL, and Routing, to set the type (or @type) Flume header on
the event.

Chapter 4

[61]

Dynamic Serializer
Another serializer is the ElasticSearchDynamicSerializer serializer. If you use
this serializer, the event's body is written to a field called body. All other Flume
header keys are used as field names. Clearly, you want to avoid having a flume
header key called body, as this will conflict with the actual event's body when
transformed into the Elasticsearch document. To use this serializer, specify the
fully qualified class name, as shown in this example:

agent.sinks.k1.serializer=org.apache.flume.sink.elasticsearch.
ElasticSearchDynamicSerializer

For completeness, here is a table that shows you the breakdown of how Flume
headers and body get mapped to Elasticsearch fields:

Flume entity Elasticsearch field
All headers same as Flume headers

Body body

As the version of Elasticsearch can be different for each user, Flume doesn't package
the Elasticsearch client and corresponding Lucene libraries. Find out from your
administrator which versions should be included on the Flume classpath, or check
out the Maven pom.xml file on GitHub for the corresponding version tag or branch
at https://github.com/elasticsearch/elasticsearch/blob/master/pom.xml.
Make sure the library versions used by Flume match with Elasticsearch or you might
see serialization errors.

As Solr and Elasticsearch have similar capabilities, check out
Kelvin Tan's appropriately-named side-by-side detailed feature
breakdown webpage. It should help get you started with what
is most appropriate for your specific use case:
http://solr-vs-elasticsearch.com/

Summary
In this chapter, we covered the HDFS sink in depth, which writes streaming data
into HDFS. We covered how Flume can separate data into different HDFS paths
based on time or contents of Flume headers. Several file-rolling techniques were
also discussed, including time rotation, event count rotation, size rotation, and
rotation on idle only.

https://github.com/elasticsearch/elasticsearch/blob/master/pom.xml
http://solr-vs-elasticsearch.com/

Sinks and Sink Processors

[62]

Compression was discussed as a means to reduce storage requirements in HDFS,
and should be used when possible. Besides storage savings, it is often faster to read
a compressed file and decompress in memory than it is to read an uncompressed file.
This will result in performance improvements in MapReduce jobs run on this data.
The splitability of compressed data was also covered as a factor to decide when and
which compression algorithm to use.

Event Serializers were introduced as the mechanism by which Flume events are
converted into an external storage format, including text (body only), text and
headers (headers and body), and Avro serialization (with optional compression).

Next, various file formats, including sequence files (Hadoop key/value files),
Data Streams (uncompressed data files, like Avro containers), and Compressed
Data Streams, were discussed.

Next, we covered sink groups as a means to route events to different sources
using load balancing or failover paths, which can be used to eliminate single
points of failure in routing data to its destination.

Finally, we covered two new sinks added in Flume 1.4 to write data to Apache Solr
and Elastic Search in a Near Real Time (NRT) way. For years, MapReduce jobs have
served us well, and will continue to do so, but sometimes it still isn't fast enough
to search large datasets quickly and look at things from different angles without
reprocessing data. KiteSDK Morphlines were also introduced as a way to prepare
data for writing to Solr. We will revisit Morphlines again in Chapter 6, Interceptors,
ETL, and Routing, when we look at a Morphline-powered interceptor.

In the next chapter, we will discuss various input mechanisms (sources) that will
feed your configured channels which were covered back in Chapter 3, Channels.

Sources and Channel
Selectors

Now that we have covered channels and sinks, we will now cover some of the
more common ways to get data into your Flume agents. As discussed in Chapter 1,
Overview and Architecture, the source is the input point for the Flume agent. There
are many sources available with the Flume distribution as well as many open source
options available. Like most open source software, if you can't find what you need,
you can always write your own by extending the org.apache.flume.source.
AbstractSource class. Since the primary focus of this book is ingesting files of logs
into Hadoop, we'll cover a few of the more appropriate sources to accomplish this.

The problem with using tail
If you have used any of the Flume 0.9 releases, you'll notice that the TailSource
is no longer a part of Flume. TailSource provided a mechanism to "tail" (http://
en.wikipedia.org/wiki/Tail_(Unix)) any file on the system and create Flume
events for each line of the file. It could also handle file rotations, so many used the
filesystem as a handoff point between the application creating the data (for instance,
log4j) and the mechanism responsible for moving those files someplace else (for
instance, syslog).

As is the case with both channels and sinks, events are added and removed from
a channel as part of a transaction. When you are tailing a file, there is no way to
participate properly in a transaction. If failure to write successfully to a channel
occurred, or if the channel was simply full (a more likely event than failure), the
data couldn't be "put back" as rollback semantics dictate.

http://en.wikipedia.org/wiki/Tail_(Unix)
http://en.wikipedia.org/wiki/Tail_(Unix)

Sources and Channel Selectors

[64]

Furthermore, if the rate of data written to a file exceeds the rate Flume could read the
data, it is possible to lose one or more log files of input outright. For example, say you
were tailing /var/log/app.log. When that file reaches a certain size, it is rotated
or renamed, to /var/log/app.log.1, and a new file called /var/log/app.log is
created. Let's say you had a favorable review in the press and your application logs are
much higher than usual. Flume may still be reading from the rotated file (/var/log/
app.log.1) when another rotation occurs, moving /var/log/app.log to /var/log/
app.log.1. The file Flume is reading is now renamed to /var/log/app.log.2. When
Flume finishes with this file, it will move to what it thinks is the next file (/var/log/
app.log), thus skipping the file that now resides at /var/log/app.log.1. This kind
of data loss would go completely unnoticed and is something we want to avoid
if possible.

For these reasons, it was decided to remove the tail functionality from Flume when
it was refactored. There are some workarounds for TailSource after it's removed,
but it should be noted that no workaround can eliminate the possibility of data loss
under load that occurs under these conditions.

Chapter 5

[65]

The Exec source
The Exec source provides a mechanism to run a command outside Flume and
then turn the output into Flume events. To use the Exec source, set the type
property to exec:

agent.sources.s1.type=exec

All sources in Flume are required to specify the list of channels to write events to
using the channels (plural) property. This is a space-separated list of one or more
channel names:

agent.sources.s1.channels=c1

The only other required parameter is the command property, which tells Flume
what command to pass to the operating system. Here is an example of the use
of this property:

agent.sources=s1
agent.sources.s1.channels=c1
agent.sources.s1.type=exec
agent.sources.s1.command=tail -F /var/log/app.log

Here, I have configured a single source s1 for an agent named agent. The source,
an Exec source, will tail the /var/log/app.log file and follow any rotations that
outside applications may perform on that log file. All events are written to the c1
channel. This is an example of one of the workarounds for the lack of TailSource
in Flume 1.x. This is not my preferred workaround to use tail, but just a simple
example of the exec source type. I will show my preferred method in Chapter 7,
Pulling It All Together.

Should you use the tail -F command in conjunction with the Exec
source, it is probable that the forked process will not shut down 100
percent of the time when the Flume agent shuts down or restarts. This
will leave orphaned tail processes that will never exit. The tail –F
command, by definition, has no end. Even if you delete the file being
tailed (at least in Linux), the running tail process will keep the file
handle open indefinitely. This keeps the file's space from actually being
reclaimed until the tail process exits, which won't happen. I think you
are beginning to see why Flume developers don't like tailing files.
If you go this route, be sure to periodically scan the process tables for
tail -F whose parent PID is 1. These are effectively dead processes
and need to be killed manually.

Sources and Channel Selectors

[66]

Here is a list of other properties you can use with the Exec source:

Key Required Type Default
type Yes String exec

channels Yes String space separated list of
channels

command Yes String

shell No String shell command
restart No boolean false

restartThrottle No long (milliseconds) 10000 (milliseconds)
logStdErr No boolean false

batchSize No int 20

batchTimeout No long 3000 (milliseconds)

Not every command keeps running, either because it fails (for example, when the
channel it is writing to is full) or because it is designed to exit immediately. In this
example, we want to record the system load via the Linux uptime command, which
prints out some system information to stdout and exits:

agent.sources.s1.command=uptime

This command will immediately exit, so you can use the restart and
restartThrottle properties to run it periodically:

agent.sources.s1.command=uptime
agent.sources.s1.restart=true
agent.sources.s1.restartThrottle=60000

This will produce one event per minute. In the tail example, should the channel fill
causing the Exec source to fail, you can use these properties to restart the Exec source.
In this case, setting the restart property will start the tailing of the file from the
beginning of the current file, thus producing duplicates. Depending on how long the
restartThrottle property is, you may have missed some data due to a file rotation
outside Flume. Furthermore, the channel may still be unable to accept data, in which
case the source will fail again. Setting this value too low means giving less time to
the channel to drain, and unlike some of the sinks we saw, there is not an option for
exponential backoff.

Chapter 5

[67]

If you need to use shell-specific features such as wildcard expansion, you can set
the shell property as in this example:

agent.sources.s1.command=grep –i apache lib/*.jar | wc -l
agent.sources.s1.shell=/bin/bash -c
agent.sources.s1.restart=true
agent.sources.s1.restartThrottle=60000

This example will find the number of times the case-insensitive apache string is
found in all the JAR files in the lib directory. Once per minute, that count will be
sent as a Flume event payload.

While the command output written to stdout becomes the Flume event body,
errors are sometimes written to stderr. If you want these lines included in the
Flume agent's system logs, set the logStdErr property to true. Otherwise, they
will be silently ignored, which is the default behavior.

Finally, you can specify the number of events to write per transaction by changing
the batchSize property. You may need to set this value higher than the default of
20 if your input data is large and you realize that you cannot write to your channel
fast enough. Using a higher batch size reduces the overall average transaction
overhead per event. Testing with different values and monitoring the channel's
put rate is the only way to know this for sure. The related batchTimeout property
sets the maximum time to wait when records fewer than the batch size's number of
records have been seen before, flushing a partial batch to the channel. The default
setting for this is 3 seconds (specified in milliseconds).

Spooling Directory Source
In an effort to avoid all the assumptions inherent in tailing a file, a new source was
devised to keep track of which files have been converted into Flume events and
which still need to be processed. The SpoolingDirectorySource is given a directory
to watch for new files appearing. It is assumed that files copied to this directory are
complete. Otherwise, the source might try and send a partial file. It also assumes that
filenames never change. Otherwise, on restarting, the source would forget which
files have been sent and which have not. The filename condition can be met in log4j
using DailyRollingFileAppender rather than RollingFileAppender. However, the
currently open file would need to be written to one directory and copied to the spool
directory after being closed. None of the log4j appenders shipping have this capability.

Sources and Channel Selectors

[68]

That said, if you are using the Linux logrotate program in your environment,
this might be of interest. You can move completed files to a separate directory
using a postrotate script. The final flow might look something like this:

To create a Spooling Directory Source, set the type property to spooldir. You must
specify the directory to watch by setting the spoolDir property:

agent.sources=s1
agent.sources.channels=c1
agent.sources.s1.type=spooldir
agent.sources.s1.spoolDir=/path/to/files

Here is a summary of the properties for the Spooling Directory Source:

Key Required Type Default
type Yes String spooldir

channels Yes String space separated list of channels
spoolDir Yes String path to directory to spool
fileSuffix No String .COMPLETED

deletePolicy No String
(never or
immediate)

never

fileHeader No boolean false

fileHeaderKey No String file

basenameHeader No boolean false

Chapter 5

[69]

Key Required Type Default
basenameHeaderKey No String basename

ignorePattern No String ^$

trackerDir No String ${spoolDir}/.flumespool

consumeOrder No String
(oldest,
youngest,
or random)

oldest

batchSize No int 10

bufferMaxLines No int 100

maxBufferLineLength No int 5000

maxBackoff No int 4000 (milliseconds)

When a file has been completely transmitted, it will be renamed with a .COMPLETED
extension, unless overridden by setting the fileSuffix property, like this:

agent.sources.s1.fileSuffix=.DONE

Starting with Flume 1.4, a new property, deletePolicy, was created to remove
completed files from the filesystem rather than just marking them as done. In a
production environment, this is critical because your spool disk will fill up over
time. Currently, you can only set this for immediate deletion or to leave the files
forever. If you want delayed deletion, you'll need to implement your own periodic
(cron) job, perhaps using the find command to find files in the spool directory with
the COMPLETED file suffix and a modification time longer than some regular value,
for example:

find /path/to/spool/dir -type f -name "*.COMPLETED" –mtime 7 –exec rm
{} \;

This will find all files completed more than seven days ago and delete them.

If you want the absolute file path attached to each event, set the fileHeader property
to true. This will create a header with the file key unless set to something else using
the fileHeaderKey property, like this would add the {sourceFile=/path/to/files/
foo.1234.log} header if the event was read from the /path/to/files/foo.1234.
log file:

agent.sources.s1.fileHeader=true
agent.sources.s1.fileHeaderKey=sourceFile

Sources and Channel Selectors

[70]

The related property, basenameHeader, if set to true, will add a header with the
basename key, which contains just the filename. The basenameHeaderKey property
allows you to change the key's value, as shown here:

agent.sources.s1.basenameHeader=true
agent.sources.s1.basenameHeaderKey=justTheName

This configuration would add the {justTheName=foo.1234.log} header if the event
was read from the same file located at /path/to/files/foo.1234.log.

If there are certain file patterns that you do not want this source to read as input, you
can pass a regular expression using the ignorePattern property. Personally, I won't
copy any files I don't want transferred to Flume in the spoolDir in the first place. If
this situation cannot be avoided, use the ignorePattern property to pass a regular
expression to match filenames that should not be transferred as data. Furthermore,
subdirectories and files that start with a "." (period) character are ignored, so you
can avoid costly regular expression processing using this convention instead.

While Flume is sending data, it keeps track of how far it has gotten in each file by
keeping a metadata file in the directory specified by the trackerDir property. By
default, this file will be .flumespool under spoolDir. Should you want a location
other than inside spoolDir, you can specify an absolute file path.

Files in the directory are processed in the "oldest first" manner as calculated by
looking at the modification times of the files. You can change this behavior by setting
the consumeOrder property. If you set this property to youngest, the newest files will
be processed first. This may be desired if data is time sensitive. If you'd rather give
equal precedence to all files, you can set this property to a value of random.

The batchSize property allows you to tune the number of events per transaction
for writes to the channel. Increasing this may provide better throughput at the cost
of larger transactions (and possibly larger rollbacks). The bufferMaxLines property
is used to set the size of the memory buffer used in reading files by multiplying
it with maxBufferLineLength. If your data is very short, you might consider
increasing bufferMaxLines while reducing the maxBufferLineLength property.
In this case, it will result in better throughput without increasing your memory
overhead. That said, if you have events longer than 5000 characters, you'll want
to set maxBufferLineLength higher.

Chapter 5

[71]

If there is a problem writing data to the channel, a ChannelException is thrown
back to the source, where it'll retry after an initial wait time of 250 ms. Each failed
attempt will double this time up to a maximum of 4 seconds. To set this maximum
time higher, set the maxBackoff property. For instance, if I wanted a maximum
of 5 minutes, I can set it in milliseconds like this:

agent.sources.s1.maxBackoff=300000

Finally, you'll want to ensure that whatever mechanism is writing new files to
your spooling directory creates unique filenames, such as adding a timestamp
(and possibly more). Reusing a filename will confuse the source, and your data
may not be processed.

As always, remember that restarts and errors will create duplicates due to
retransmission of files partially sent, but not marked as complete, or because
the metadata is incomplete.

Syslog sources
Syslog has been around for decades and is often used as an operating-system-level
mechanism to capture and move logs around systems. In many ways, there are
overlaps with some of the functionality Flume provides. There is even a Hadoop
module for rsyslog, one of the more modern variants of syslog (http://www.
rsyslog.com/doc/rsyslog_conf_modules.html/omhdfs.html). Generally, I don't
like solutions that couple technologies that may version independently. If you use
this rsyslog/Hadoop integration, you would be required to update the version of
Hadoop you compiled into rsyslog at the same time you upgraded your Hadoop
cluster to a new major version. This may be logistically difficult if you have a large
number of servers and/or environments. Backward compatibility in Hadoop wire
protocols is something that is being actively worked on in the Hadoop community,
but currently, it isn't the norm. We'll talk more about this in Chapter 8, Monitoring
Flume, when we discuss tiering data flows.

Syslog has an older UDP transport as well as a newer TCP protocol that can handle
data larger than a single UDP packet can transmit (about 64 KB) and deal with
network-related congestion events that might require the data to be retransmitted.

Finally, there are some undocumented properties of syslog sources that allow us to
add more regular-expression pattern-matching for messages that do not conform to
RFC standards. I won't be discussing these additional settings, but you should be
aware of them if you run into frequent parsing errors. In this case, take a look at the
source for org.apache.flume.source.SyslogUtils for implementation details to
find the cause.

http://www.rsyslog.com/doc/rsyslog_conf_modules.html/omhdfs.html
http://www.rsyslog.com/doc/rsyslog_conf_modules.html/omhdfs.html

Sources and Channel Selectors

[72]

More details on syslog terms (such as a facility) and standard formats can be found
in RFC 3164 at http://tools.ietf.org/html/rfc3164.

The syslog UDP source
The UDP version of syslog is usually safe to use when you are receiving data from
the server's local syslog process, provided the data is small enough (less than about
64 KB).

The implementation for this source has chosen 2,500 bytes as the
maximum payload size regardless of what your network can
actually handle. So if your payload will be larger than this, use
one of the TCP sources instead.

To create a Syslog UDP source, set the type property to syslogudp. You must set
the port to listen on using the port property. The optional host property specifies
the bind address. If no host is specified, all IPs for the server will be used, which is
the same as specifying 0.0.0.0. In this example, we will only listen for local UDP
connections on port 5140:

agent.sources=s1
agent.sources.channels=c1
agent.sources.s1.type=syslogudp
agent.sources.s1.host=localhost
agent.sources.s1.port=5140

If you want syslog to forward a tailed file, you can add a line like this to your
syslog configuration file:

.err;.alert;*.crit;*.emerg;kern.* @localhost:5140

This will send all error priority, critical priority, emergency priority, and kernel
messages of any priority into your Flume source. The single @ symbol designates
that UDP protocol should be used.

Here is a summary of the properties of the Syslog UDP source:

Key Required Type Default
type Yes String syslogudp

channels Yes String space separated list
of channels

port Yes int

host No String 0.0.0.0

http://tools.ietf.org/html/rfc3164

Chapter 5

[73]

Key Required Type Default
keepFields No boolean false

The keepFields property tells the source to include the syslog fields as part of the
body. By default, these are simply removed, as they become Flume header values.

The Flume headers created by the Syslog UDP source are summarized here:

Header Key Description
Facility This is the syslog facility. See the syslog documentation.
Priority This is the syslog priority. See the syslog documentation.
timestamp This is the time of the syslog event, translated into an epoch

timestamp. It's omitted if it's not parsed from one of the
standard RFC formats.

hostname This is the parsed hostname in the syslog message. It is
omitted if it is not parsed.

flume.syslog.status There was a problem parsing the syslog message's headers.
This value is set to Invalid if the payload didn't conform to
the RFCs, and set to Incomplete if the message was longer
than the eventSize value (for UDP, this is set internally to
2,500 bytes). It's omitted if everything is fine.

The syslog TCP source
As previously mentioned, the Syslog TCP source provides an endpoint for messages
over TCP, allowing for a larger payload size and TCP retry semantics that should be
used for any reliable inter-server communications.

To create a Syslog TCP source, set the type property to syslogtcp. You must still
set the bind address and port to listen on:

agent.sources=s1
agent.sources.s1.type=syslogtcp
agent.sources.s1.host=0.0.0.0
agent.sources.s1.port=12345

If your syslog implementation supports syslog over TCP, the configuration is usually
the same, except that a double @ symbol is used to indicate TCP transport. Here is
the same example using TCP, where I am forwarding the values to a Flume agent
that is running on a different server named flume-1.

.err;.alert;*.crit;*.emerg;kern.* @@flume-1:12345

Sources and Channel Selectors

[74]

There are some optional properties for the Syslog TCP source, as listed here:

Key Required Type Default
type Yes String syslogtcp

channels Yes String space separated list
of channels

port Yes int

host No String 0.0.0.0

keepFields No boolean false

eventSize No int (bytes) 2500 bytes

The keepFields property tells the source to include the syslog fields as part of the
body. By default, these are simply removed, as they become Flume header values.

The Flume headers created by the Syslog TCP source are summarized here:

Header Key Description
Facility This is the syslog facility. See the syslog documentation.
Priority This is the syslog priority. See the syslog documentation.
timestamp This is the time of the syslog event translated into an

epoch timestamp. It's omitted if not parsed from one of
the standard RFC formats.

hostname The parsed hostname in the syslog message. It's omitted
if not parsed.

flume.syslog.status There was a problem parsing the syslog message's
headers. It's set to Invalid if the payload didn't
conform to the RFCs and set to Incomplete if the
message was longer than the configured eventSize.
It's omitted if everything is fine.

The multiport syslog TCP source
The Multiport Syslog TCP source is nearly identical in functionality to the Syslog
TCP source, except that it can listen to multiple ports for input. You may need to use
this capability if you are unable to change which port syslog will use in its forwarding
rules (it may not be your server at all). It is more likely that you will use this to read
multiple formats using one source to write to different channels. We'll cover that
in a moment in the Channel Selectors section. Under the hood, a high-performance
asynchronous TCP library called Mina (https://mina.apache.org/) is used,
which often provides better throughput on multicore servers even when
consuming only a single TCP port.

https://mina.apache.org/

Chapter 5

[75]

To configure this source, set the type property to multiport_syslogtcp:

agent.sources.s1.type=multiport_syslogtcp

Like the other syslog sources, you need to specify the port, but in this case it is a
space-separated list of ports. You can use this only if you have one port specified.
The property for this is ports (plural):

agent.sources.s1.type=multiport_syslogtcp
agent.sources.s1.channels=c1
agent.sources.s1.ports=33333 44444
agent.sources.s1.host=0.0.0.0

This code configures the Multiport Syslog TCP source named s1 to listen to any
incoming connections on ports 33333 and 44444 and send them to channel c1.

In order to tell which event came from which port, you can set the optional
portHeader property to the name of the key whose value will be the port number.
Let's add this property to the configuration:

agent.sources.s1.portHeader=port

Then, any events received from port 33333 would have a header key/value of
{"port"="33333"}. As you saw in Chapter 4, Sinks and Sink Processors, you can now
use this value (or any header) as a part of your HDFSSink file path convention, like this:

agent.sinks.k1.hdfs.path=/logs/%{hostname}/%{port}/%Y/%m/%D/%H

Here is a complete table of the properties:

Key Required Type Default
type Yes String syslogtcp

channels Yes String Space-separated list of channels
ports Yes int Space-separated list of port

numbers
host No String 0.0.0.0

keepFields No boolean false

eventSize No int 2500 (bytes)
portHeader No String

batchSize No int 100

readBufferSize No int (bytes) 1024

numProcessors No int automatically detected
charset.default No String UTF-8

charset.port.PORT# No String

Sources and Channel Selectors

[76]

This TCP source has some additional tunable options over the standard TCP syslog
source. The first is the batchSize property. This is the number of events processed
per transaction with the channel. There is also the readBufferSize property.
It specifies the internal buffer size used by an internal Mina library. Finally, the
numProcessors property is used to size the worker thread pool in Mina. Before
you tune these parameters, you may want to familiarize yourself with Mina (http://
mina.apache.org/), and look at the source code before deviating from the defaults.

Finally, you can specify the default and per-port character encoding to use when
converting between Strings and bytes:

agent.sources.s1.charset.default=UTF-16
agent.sources.s1.charset.port.33333=UTF-8

This sample configuration shows that all ports will be interpreted using UTF-16
encoding, except for port 33333 traffic, which will use UTF-8.

As you've already seen in the other syslog sources, the keepFields property tells
the source to include the syslog fields as part of the body. By default, these are
simply removed, as they become Flume header values.

The Flume headers created by this source are summarized here:

Header Key Description
Facility This is the syslog facility. See the syslog documentation.
Priority This is the syslog priority. See the syslog documentation.
timestamp This is the time of the syslog event translated into an epoch

timestamp. Omitted if not parsed from one of the standard
RFC formats.

hostname This is the parsed hostname in the syslog message. Omitted
if not parsed.

flume.syslog.status There was a problem parsing the syslog message's headers.
This is set to Invalid if the payload didn't conform to the
RFCs, set to Incomplete if the message was longer than the
configured eventSize, and omitted if everything is fine.

http://mina.apache.org/
http://mina.apache.org/

Chapter 5

[77]

JMS source
Sometimes, data can originate from asynchronous message queues. For these
cases, you can use Flume's JMS source to create events read from a JMS Queue
or Topic. While it is theoretically possible to use any Java Message Service (JMS)
implementation, Flume has only been tested with ActiveMQ, so be sure to test
thoroughly if you use a different provider.

Like the previously covered ElasticSearch sink in Chapter 4, Sinks and Sink Processors,
Flume does not come packaged with the JMS implementation you'll be using,
as the versions need to match up, so you'll need to include the necessary
implementation JAR files on the Flume agent's classpath. The preferred method
is to use the --plugins-dir parameter mentioned in Chapter 2, A Quick Start Guide
to Flume, which we'll cover in more detail in the next chapter.

ActiveMQ is just one provider of the Java Message Service API. For
more information, see the project homepage at http://activemq.
apache.org.

To configure this source, set the type property to jms:

agent.sources.s1.type=jms

The first three properties are used to establish a connection with the JMS Server.
They are initialContextFactory, connectionFactory, and providerURL. The
initialContextFactory property for ActiveMQ will be org.apache.activemq.
jndi. ActiveMQInitialContextFactory. The connectionFactory property will
be the registered JNDI name, which defaults to ConnectionFactory if unspecified.
Finally, providerURL is the connection String passed to the connection factory to
actually establish a network connection. It is usually a URL-like String consisting
of the server name and port information. If you aren't familiar with your JMS
configuration, ask somebody who does what values to use in your environment.

This table summarizes these settings and others we'll discuss in a moment:

Key Required Type Default
type Yes String jms

channels Yes String space separated list of
channels

initialContextFactory Yes String

connectionFactory No String ConnectionFactory

providerURL Yes String

http://activemq.apache.org
http://activemq.apache.org

Sources and Channel Selectors

[78]

Key Required Type Default
userName No String username for authentication
passwordFile No String path to file containing

password for authentication
destinationName Yes String

destinationType Yes String

messageSelector No String

errorThreshold No int 10

pollTimeout No long 1000 (milliseconds)
batchSize No int 100

If your JMS Server requires authentication, pass the userName and passwordFile
properties:

agent.sources.s1.userName=jms_bot_user
agent.sources.s1.passwordFile=/path/to/password.txt

Putting the password in a file you reference, rather than directly in the Flume
configuration, allows you to keep the permissions on the configuration open for
inspection, while storing the more sensitive password data in a separate file that
is accessible only to the Flume agent (restrictions are commonly provided by the
operating system's permissions system).

The destinationName property decides which message to read from our connection.
Since JMS supports both queues and topics, you need to set the destinationType
property to queue or topic, respectively. Here's what the properties might look like
for a queue:

agent.source.s1.destinationName=my_cool_data
agent.source.s1.destinationType=queue

For a topic, it will look as follows:

agent.source.s1.destinationName=restart_events
agent.source.s1.destinationType=topic

The difference between a queue and a topic is basically the number of entities
that will be read from the named destination. If you are reading from a queue,
the message will be removed from the queue once it is written to Flume as an
event. A topic, once read, is still available for other entities to read.

Chapter 5

[79]

Should you need only a subset of messages published to a topic or queue, the
optional messageSelector String property provides this capability. For example,
to create Flume events on messages with a field called Age that is larger than 10,
I can specify a messageSelector filter:

agent.source.s1.messageSelector="Age > 10"

Describing the selector capabilities and syntax in detail is far
beyond the scope of this book. See http://docs.oracle.com/
javaee/1.4/api/javax/jms/Message.html or pick up a book
on JMS to become more familiar with JMS message selectors.

Should there be a problem in communicating with the JMS server, the connection
will reset itself after a number of failures specified by the errorThreshold property.
The default value of 10 is reasonable and will most likely not need to be changed.

Next, the JMS source has a property used to adjust the value of batchSize, which
defaults to 100. By now, you should be fairly familiar with adjusting batch sizes
with other sources and sinks. For high-volume flows, you'll want to set this higher
to consume data in larger chunks from your JMS server to get higher throughput.
Setting this too high for low volume flows could delay processing. As always, testing
is the only sure way to adjust this properly. The related pollTimeout property
specifies how long to wait for new messages to appear before attempting to read
a batch. The default, specified in milliseconds, is 1 second. If no messages are read
before the poll timeout, the Source will go into an exponential backoff mode before
attempting another read. This could delay the processing of messages until it wakes
up again. Chances are that you won't need to change this value from the default.

When the message gets converted into a Flume event, the message properties
become Flume headers. The message payload becomes the Flume body, but since
JMS uses serialized Java objects, we need to tell the JMS source how to interpret
the payload. We do this by setting the converter.type property, which defaults
to the only implementation that is packaged with Flume using the DEFAULT String
(implemented by the DefaultJMSMessageConverer class). It can deserialize JMS
BytesMessages, TextMessages, and ObjectMessages (Java objects that implement the
java.io.DataOutput interface). It does not handle StreamMessages or MapMessages,
so if you need to process them, you'll need to implement your own converter type. To
do this, you'll implement the org.apache.flume.source.jms.JMSMessageConverter
interface, and use its fully qualified class name as
the converter.type property value.

http://docs.oracle.com/javaee/1.4/api/javax/jms/Message.html
http://docs.oracle.com/javaee/1.4/api/javax/jms/Message.html

Sources and Channel Selectors

[80]

For completeness, here are these properties in tabular form:

Key Required Type Default
converter.type No String DEFAULT

converter.charset No String UTF-8

Channel selectors
As we discussed in Chapter 1, Overview and Architecture, a source can write to one
or more channels. This is why the property is plural (channels instead of channel).
There are two ways multiple channels can be handled. The event can be written to
all the channels or to just one channel, based on some Flume header value. The
internal mechanism for this in Flume is called a channel selector.

The selector for any channel can be specified using the selector.type property.
All selector-specific properties begin with the usual Source prefix: the agent name,
keyword sources, and source name:

agent.sources.s1.selector.type=replicating

Replicating
If you do not specify a selector for a source, replicating is the default. The
replicating selector writes the same event to all channels in the source's
channels list:

agent.sources.s1.channels=c1 c2 c3
agent.sources.s1.selector.type=replicating

In this example, every event will be written to all three channels: c1, c2, and c3.

There is an optional property on this selector, called optional. It is a space-separated
list of channels that are optional. Consider this modified example:

agent.sources.s1.channels=c1 c2 c3
agent.sources.s1.selector.type=replicating
agent.sources.s1.selector.optional=c2 c3

Now, any failure to write to channels c2 or c3 will not cause the transaction to fail,
and any data written to c1 will be committed. In the earlier example with no optional
channels, any single channel failure would roll back the transaction for all channels.

Chapter 5

[81]

Multiplexing
If you want to send different events to different channels, you should use
a multiplexing channel selector by setting the value of selector.type to
multiplexing. You also need to tell the channel selector which header to
use by setting the selector.header property:

agent.sources.s1.selector.type=multiplexing
agent.sources.s1.selector.header=port

Let's assume we used the Multiport Syslog TCP source to listen on four
ports—11111, 22222, 33333, and 44444—with a portHeader setting of port:

agent.sources.s1.selector.default=c2
agent.sources.s1.selector.mapping.11111=c1 c2
agent.sources.s1.selector.mapping.44444=c2
agent.sources.s1.selector.optional.44444=c3

This configuration will result in the traffic of port 22222 and port 33333 going to the
c2 channel only. The traffic of port 11111 will go to the c1 and c2 channels. A failure
on either channel would result in nothing being added to either channel. The traffic
of port 44444 will go to channels c2 and c3. However, a failure to write to c3 will
still commit the transaction to c2, and c3 will not be attempted again with that event.

Summary
In this chapter, we covered in depth the various sources that we can use to insert
log data into Flume, including the Exec source, the Spooling Directory Source,
Syslog sources (UDP, TCP, and multiport TCP), and the JMS source.

We discussed replicating the old TailSource functionality in Flume 0.9 and
problems with using tail semantics in general.

We also covered channel selectors and sending events to one or more channels,
specifically the replicating and multiplexing channel selectors.

Optional channels were also discussed as a way to only fail a put transaction for
only some of the channels when more than one channel is used.

In the next chapter, we'll introduce interceptors that will allow in-flight inspection
and transformation of events. Used in conjunction with channel selectors,
interceptors provide the final piece to create complex data flows with Flume.
Additionally, we will cover RPC mechanisms (source/sink pairs) between Flume
agents using both Avro and Thrift, which can be used to create complex data flows.

Interceptors, ETL, and
Routing

The final piece of functionality required in your data processing pipeline is the ability
to inspect and transform events in flight. This can be accomplished using interceptors.
Interceptors, as we discussed in Chapter 1, Overview and Architecture, can be inserted
after a source creates an event, but before writing to the channel occurs.

Interceptors
An interceptor's functionality can be summed up with this method:

public Event intercept(Event event);

A Flume event is passed to it, and it returns a Flume event. It may do nothing,
in which case, the same unaltered event is returned. Often, it alters the event in
some useful way. If null is returned, the event is dropped.

To add interceptors to a source, simply add the interceptors property to the
named source, for example:

agent.sources.s1.interceptors=i1 i2 i3

This defines three interceptors: i1, i2, and i3 on the s1 source for the agent
named agent.

Interceptors are run in the order in which they are listed. In the
preceding example, i2 will receive the output from i1. Then,
i3 will receive the output from i2. Finally, the channel selector
receives the output from i3.

Interceptors, ETL, and Routing

[84]

Now that we have defined the interceptor by name, we need to specify its type
as follows:

agent.sources.s1.interceptors.i1.type=TYPE1
agent.sources.s1.interceptors.i1.additionalProperty1=VALUE
agent.sources.s1.interceptors.i2.type=TYPE2
agent.sources.s1.interceptors.i3.type=TYPE3

Let's look at some of the interceptors that come bundled with Flume to get a
better idea of how to configure them.

Timestamp
The Timestamp interceptor, as its name suggests, adds a header with the
timestamp key to the Flume event if one doesn't already exist. To use it, set
the type property to timestamp.

If the event already contains a timestamp header, it will be overwritten with
the current time unless configured to preserve the original value by setting the
preserveExisting property to true.

Here is a table summarizing the properties of the Timestamp interceptor:

Key Required Type Default
type Yes String timestamp

preserveExisting No boolean false

Here is what a total configuration for a source might look like if we only want it
to add a timestamp header if none exists:

agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.i1.type=timestamp
agent.sources.s1.interceptors.i1.preserveExisting=true

Recall this HDFSSink path from Chapter 4, Sinks and Sink Processors, utilizing the
event date:

agent.sinks.k1.hdfs.path=/logs/apache/%Y/%m/%d/%H

The timestamp header is what determines this path. If it is missing, you can be
sure Flume will not know where to create the files, and you will not get the result
you are looking for.

Chapter 6

[85]

Host
Similar in simplicity to the Timestamp interceptor, the Host interceptor will add a
header to the event containing the IP address of the current Flume agent. To use it,
set the type property to host:

agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.type=host

The key for this header will be host unless you specify something else using the
hostHeader property. Like before, an existing header will be overwritten, unless
you set the preserveExisting property to true. Finally, if you want a reverse DNS
lookup of the hostname to be used instead of the IP as a value, set the useIP property
to false. Remember that reverse lookups will add processing time to your data flow.

Here is a table summarizing the properties of the Host interceptor:

Key Required Type Default
type Yes String host

hostHeader No String host

preserveExisting No boolean false

useIP No boolean true

Here is what a total configuration for a source might look like if we only want it to
add a relayHost header containing the DNS hostname of this agent to every event:

agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.i1.type=host
agent.sources.s1.interceptors.i1.hostHeader=relayHost
agent.sources.s1.interceptors.i1.useIP=false

This interceptor might be useful if you wanted to record the path your events took
though your data flow, for instance. Chances are you are more interested in the
origin of the event rather than the path it took, which is why I have yet to use this.

Static
The Static interceptor is used to insert a single key/value header into each
Flume event processed. If more than one key/value is desired, you simply add
additional Static interceptors. Unlike the interceptors we've looked at so far, the
default behavior is to preserve existing headers with the same key. As always, my
recommendation is to always specify what you want and not rely on the defaults.

Interceptors, ETL, and Routing

[86]

I do not know why the key and value properties are not required, as the defaults
are not terribly useful.

Here is a table summarizing the properties of the Static interceptor:

Key Required Type Default
type Yes String static

key No String key

value No String value

preserveExisting No boolean true

Finally, let's look at an example configuration that inserts two new headers,
provided they don't already exist in the event:

agent.sources.s1.interceptors=pos env
agent.sources.s1.interceptors.pos.type=static
agent.sources.s1.interceptors.pos.key=pointOfSale
agent.sources.s1.interceptors.pos.value=US
agent.sources.s1.interceptors.env.type=static
agent.sources.s1.interceptors.env.key=environment
agent.sources.s1.interceptors.env.value=staging

Regular expression filtering
If you want to filter events based on the content of the body, the regular expression
filtering interceptor is your friend. Based on a regular expression you provide, it will
either filter out the matching events or keep only the matching events. Start by setting
the type interceptor to regex_filter. The pattern you want to match is specified
using a Java-style regular expression syntax. See these javadocs for usage details at
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html.
The pattern string is set in the regex property. Be sure to escape backslashes in Java
Strings. For instance, the \d+ pattern would need to be written with two backslashes:
\\d+. If you wanted to match a backslash, the documentation says to type two
backslashes, but each needs to be escaped, resulting in four, that is, \\\\. You will see
the use of escaped backslashes throughout this chapter. Finally, you need to tell the
interceptor if you want to exclude matching records by setting the excludeEvents
property to true. The default (false) indicates that you want to only keep events
that match the pattern.

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

Chapter 6

[87]

Here is a table summarizing the properties of the regular expression
filtering interceptor:

Key Required Type Default
type Yes String regex_filter

regex No String .*

excludeEvents No boolean false

In this example, any events containing the NullPointerException string will
be dropped:

agent.sources.s1.interceptors=npe
agent.sources.s1.interceptors.npe.type=regex_filter
agent.sources.s1.interceptors.npe.regex=NullPointerException
agent.sources.s1.interceptors.npe.excludeEvents=true

Regular expression extractor
Sometimes, you'll want to extract bits of your event body into Flume headers so that
you can perform routing via Channel Selectors. You can use the regular expression
extractor interceptor to perform this function. Start by setting the type interceptor
to regex_extractor:

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor

Like the regular expression filtering interceptor, the regular expression extractor
interceptor too uses a Java-style regular expression syntax. In order to extract one
or more fields, you start by specifying the regex property with group matching
parentheses. Let's assume we are looking for error numbers in our events in the
Error: N form, where N is a number:

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor
agent.sources.s1.interceptors.e1.regex=Error:\\s(\\d+)

Interceptors, ETL, and Routing

[88]

As you can see, I put capture parentheses around the number, which may be one or
more digit. Now that I've matched my desired pattern, I need to tell Flume what to
do with my match. Here, we need to introduce serializers, which provide a pluggable
mechanism for how to interpret each match. In this example, I've only got one match,
so my space-separated list of serializer names has only one entry:

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor
agent.sources.s1.interceptors.e1.regex=Error:\\s(\\d+)
agent.sources.s1.interceptors.e1.serializers=ser1
agent.sources.s1.interceptors.e1.serializers.ser1.type=default
agent.sources.s1.interceptors.e1.serializers.ser1.name=error_no

The name property specifies the event key to use, where the value is the matching
text from the regular expression. The type of default value (also the default if not
specified) is a simple pass-through serializer. For this event body, look at the following:

NullPointerException: A problem occurred. Error: 123. TxnID: 5X2T9E.

The following header would be added to the event:

{ "error_no":"123" }

If I wanted to add the TxnID value as a header, I'd simply add another matching
pattern group and serializer:

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor
agent.sources.s1.interceptors.e1.regex=Error:\\s(\\d+).*TxnID:\\s(\\
w+)
agent.sources.s1.interceptors.e1.serializers=ser1 ser2
agent.sources.s1.interceptors.e1.serializers.ser1.type=default
agent.sources.s1.interceptors.e1.serializers.ser1.name=error_no
agent.sources.s1.interceptors.e1.serializers.ser2.type=default
agent.sources.s1.interceptors.e1.serializers.ser2.name=txnid

Then, I would create these headers for the preceding input:

{ "error_no":"123", "txnid":"5x2T9E" }

However, take a look at what would happen if the fields were reversed as follows:

NullPointerException: A problem occurred. TxnID: 5X2T9E. Error: 123.

Chapter 6

[89]

I would wind up with only a header for txnid. A better way to handle this kind of
ordering would be to use multiple interceptors so that the order doesn't matter:

agent.sources.s1.interceptors=e1 e2
agent.sources.s1.interceptors.e1.type=regex_extractor
agent.sources.s1.interceptors.e1.regex=Error:\\s(\\d+)
agent.sources.s1.interceptors.e1.serializers=ser1
agent.sources.s1.interceptors.e1.serializers.ser1.type=default
agent.sources.s1.interceptors.e1.serializers.ser1.name=error_no
agent.sources.s1.interceptors.e2.type=regex_extractor
agent.sources.s1.interceptors.e2.regex=TxnID:\\s(\\w+)
agent.sources.s1.interceptors.e2.serializers=ser1
agent.sources.s1.interceptors.e2.serializers.ser1.type=default
agent.sources.s1.interceptors.e2.serializers.ser1.name=txnid

The only other type of serializer implementation that ships with Flume, other than
the pass-through, is to specify the fully qualified class name of org.apache.flume.
interceptor.RegexExtractorInterceptorMillisSerializer. This serializer is
used to convert times into milliseconds. You need to specify a pattern property
based on org.joda.time.format.DateTimeFormat patterns.

For instance, let's say you were ingesting Apache Web Server access logs, for
example:

192.168.1.42 - - [29/Mar/2013:15:27:09 -0600] "GET /index.html HTTP/1.1"
200 1037

The complete regular expression for this might look like this (in the form of a Java
String, with backslash and quotes escaped with an extra backslash):

^([\\d.]+) \\S+ \\S+ \\[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3})
(\\d+)

The time pattern matched corresponds to the org.joda.time.format.
DateTimeFormat pattern:

yyyy/MMM/dd:HH:mm:ss Z

Take a look at what would happen if we make our configuration something
like this:

agent.sources.s1.interceptors=e1
agent.sources.s1.interceptors.e1.type=regex_extractor

www.allitebooks.com

http://www.allitebooks.org

Interceptors, ETL, and Routing

[90]

agent.sources.s1.interceptors.e1.regex=^([\\d.]+) \\S+ \\S+ \\
[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) (\\d+)
agent.sources.s1.interceptors.e1.serializers=ip dt url sc bc
agent.sources.s1.interceptors.e1.serializers.ip.name=ip_address
agent.sources.s1.interceptors.e1.serializers.dt.type=org.apache.flume.
interceptor.RegexExtractorInterceptorMillisSerializer
agent.sources.s1.interceptors.e1.serializers.dt.pattern=dd/MMM/
yyyy:HH:mm:ss Z
agent.sources.s1.interceptors.e1.serializers.dt.name=timestamp
agent.sources.s1.interceptors.e1.serializers.url.name=http_request
agent.sources.s1.interceptors.e1.serializers.sc.name=status_code
agent.sources.s1.interceptors.e1.serializers.bc.name=bytes_xfered

This would create the following headers for the preceding sample:

{ "ip_address":"192.168.1.42", "timestamp":"1364588829", "http_
request":"GET /index.html HTTP/1.1", "status_code":"200", "bytes_
xfered":"1037" }

The body content is unaffected. You'll also notice that I didn't specify default
for the other type of serializers, as that is the default.

There is no overwrite checking in this interceptor type. For instance,
using the timestamp key will overwrite the event's previous time
value if there was one.

You can implement your own serializers for this interceptor by implementing
the org.apache.flume.interceptor.RegexExtractorInterceptorSerializer
interface. However, if your goal is to move data from the body of an event to the
header, you'll probably want to implement a custom interceptor so that you can
alter the body contents in addition to setting the header value, otherwise the data
will be effectively duplicated.

To summarize, let's review the properties for this interceptor:

Key Required Type Default
type Yes String regex_extractor

regex Yes String

serializers Yes Space-separated list
of serializer names

serializers.NAME.name Yes String

Chapter 6

[91]

Key Required Type Default
serializers.NAME.type No Default or FQCN of

implementation
default

serializers.NAME.PROP No Serializer-specific
properties

Morphline interceptor
As we saw in Chapter 4, Sinks and Sink Processors, a powerful library of transformations
backs the MorphlineSolrSink from the KiteSDK project. It should come as no surprise
that you can also use these libraries in many places where you'd be forced to write
a custom interceptor. Similar in configuration to its sink counterpart, you only need
to specify the Morphline configuration file, and optionally, the Morphline unique
identifier (if the configuration specifies more than one Morphline). Here is a summary
table of the Flume interceptor configuration:

Key Required Type Default
type Yes String org.apache.flume.

sink.solr.morphline.
MorphlineInterceptor$Builder

morphlineFile Yes String

morphlineId No String Picks the first if not specified and an
error if not specified; more than one
exists.

Your Flume configuration might look something like this:
agent.sources.s1.interceptors=i1 m1
agent.sources.s1.interceptors.i1.type=timestamp
agent.sources.s1.interceptors.m1.type=org.apache.flume.sink.solr.
morphline.MorphlineInterceptor$Builder
agent.sources.s1.interceptors.m1.morphlineFile=/path/to/morph.conf
agent.sources.s1.interceptors.m1.morphlineId=goMorphy

In this example, we have specified the s1 source on the agent named agent, which
contains two interceptors, i1 and m1, processed in that order. The first interceptor
is a standard interceptor that inserts a timestamp header if none exists. The second
will send the event through the Morphline processor specified by the Morphline
configuration file corresponding to the goMorphy ID.

Interceptors, ETL, and Routing

[92]

Events processed as an interceptor must only output one event for every input event. If
you need to output multiple records from a single Flume event, you must do this in the
MorphlineSolrSink. With interceptors, it is strictly one event in and one event out.

The first command will most likely be the readLine command (or readBlob,
readCSV, and so on) to convert the event into a Morphline Record. From there, you
run any other Morphline commands you like with the final Record at the end of the
Morphline chain being converted back into a Flume event. We know from Chapter 4,
Sinks and Sink Processors, that the _attachment_body special Record key should be
byte[] (the same as the event's body). This means that the last command needs to do
the conversion (such as toByteArray or writeAvroToByteArray). All other Record
keys are converted to String values and set as headers with the same keys.

Take a look at the reference guide for a complete list of Morphline
commands, their properties and usage information at http://
kitesdk.org/docs/current/kite-morphlines/
morphlinesReferenceGuide.html

The Morphline configuration file syntax has already been discussed in detail in the
Morphline configuration file section in Chapter 4, Sinks and Sink Processors.

Custom interceptors
If there is one piece of custom code you will add to your Flume implementation, it
will most likely be a custom interceptor. As mentioned earlier, you implement the
org.apache.flume.interceptor.Interceptor interface and the associated org.
apache.flume.interceptor.Interceptor.Builder interface.

Let's say I needed to URLCode my event body. The code would look something
like this:

public class URLDecode implements Interceptor {

 public void initialize() {}

 public Event intercept(Event event) {
 try {
 byte[] decoded = URLDecoder.decode(new String(event.getBody()),
"UTF-8").getBytes("UTF-8");
 event.setBody(decoded);

http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html
http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html
http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html

Chapter 6

[93]

 } catch UnsupportedEncodingException e) {
 // Shouldn't happen. Fall through to unaltered event.
 }
 return event;
 }

 public List<Event> intercept(List<Event> events) {
 for (Event event:events) {
 intercept(event);
 }
 return events;
 }

 public void close() {}

 public static class Builder implements Interceptor.Builder {
 public Interceptor build() {
 return new URLDecode();
 }
 public void configure(Context context) {}
 }
}

Then, to configure my new interceptor, use the fully qualified class name for the
Builder class as the type:

agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.i1.type=com.example.URLDecoder$Builder

For more examples of how to pass and validate properties, look at any of the existing
interceptor implementations in the Flume source code.

Keep in mind that any heavy processing in your custom interceptor can affect the
overall throughput, so be mindful of object churn or computationally intensive
processing in your implementations.

Interceptors, ETL, and Routing

[94]

The plugins directory
Custom code (sources, interceptors, and so on) can always be installed alongside
the Flume core classes in the $FLUME_HOME/lib directory. You could also specify
additional paths for CLASSPATH on startup by way of the flume-env.sh shell script
(which is often sourced at startup time when using a packaged distribution of Flume).
Starting with Flume 1.4, there is now a command-line option to specify a directory
that contains the custom code. By default, if not specified, the $FLUME_HOME/
plugins.d directory is used, but you can override this using the --plugins-path
command-line parameter.

Within this directory, each piece of custom code is separated into a subdirectory
whose name is of your choosing—pick something easy for you to keep track of
things. In this directory, you can include up to three subdirectories: lib, libext,
and native.

The lib directory should contain the JAR file for your custom component. Any
dependencies it uses should be added to the libext subdirectory. Both of these
paths are added to the Java CLASSPATH variable at startup.

The Flume documentation implies that this directory separation by
component allows for conflicting Java libraries to coexist. In truth, this
is not possible unless the underlying implementation makes use of
different class loaders within the JVM. In this case, the Flume startup
code simply appends all of these paths to the startup CLASSPATH
variable, so the order in which the subdirectories are processed will
determine the precedence. You cannot even be guaranteed that the
subdirectories will be processed in a lexicographic order, as the
underlying bash shell for loop can give no such guarantees. In practice,
you should always try and avoid conflicting dependencies. Code that
depends too much on ordering tends to be buggy, especially if your
classpath reorders itself from server installation to server installation.

The third directory, native, is where you put any native libraries associated with
your custom component. This path, if it exists, gets added to LD_LIBRARY_PATH at
startup so that the JVM can locate these native components.

So, if I had three custom components, my directory structure might look something
like this:

$FLUME_HOME/plugins.d/base64-enc/lib/base64interceptor.jar

$FLUME_HOME/plugins.d/base64-enc/libext/base64-2.0.0.jar

$FLUME_HOME/plugins.d/base64-enc/native/libFoo.so

$FLUME_HOME/plugins.d/uuencode/lib/uuEncodingInterceptor.jar

Chapter 6

[95]

$FLUME_HOME/plugins.d/my-avro-serializer/myAvroSerializer.jar

$FLUME_HOME/plugins.d/my-avro-serializer/native/libAvro.so

Keep in mind that all these paths get mashed together at startup, so conflicting
versions of libraries should be avoided. This structure is an organization
mechanism for ease of deployment for humans. Personally, I have not used it yet,
as I use Chef (or Puppet) to install custom components on my Flume agents directly
into $FLUME_HOME/lib, but if you prefer to use this mechanism, it is available.

Tiering flows
In Chapter 1, Overview and Architecture, we talked about tiering your data flows.
There are several reasons for you to want to do this. You may want to limit the
number of Flume agents that directly connect to your Hadoop cluster, to limit
the number of parallel requests. You may also lack sufficient disk space on your
application servers to store a significant amount of data while you are performing
maintenance on your Hadoop cluster. Whatever your reason or use case, the most
common mechanism to chain Flume agents is to use the Avro source/sink pair.

The Avro source/sink
We covered Avro a bit in Chapter 4, Sinks and Sink Processors, when we discussed
how to use it as an on-disk serialization format for files stored in HDFS. Here,
we'll put it to use in communication between Flume agents. A typical configuration
might look something like this:

Interceptors, ETL, and Routing

[96]

To use the Avro source, you specify the type property with a value of avro.
You need to provide a bind address and port number to listen on:

collector.sources=av1
collector.sources.av1.type=avro
collector.sources.av1.bind=0.0.0.0
collector.sources.av1.port=42424
collector.sources.av1.channels=ch1
collector.channels=ch1
collector.channels.ch1.type=memory
collector.sinks=k1
collector.sinks.k1.type=hdfs
collector.sinks.k1.channel=ch1
collector.sinks.k1.hdfs.path=/path/in/hdfs

Here, we have configured the agent in the middle that listens on port 42424, uses
a memory channel, and writes to HDFS. I've used the memory channel for brevity
in this example configuration. Also note that I've given this agent a different name,
collector, just to avoid confusion.

The agents on the top and bottom sides feeding the collector tier might have a
configuration similar to this. I have left the sources off this configuration for brevity:

client.channels=ch1
client.channels.ch1.type=memory
client.sinks=k1
client.sinks.k1.type=avro
client.sinks.k1.channel=ch1
client.sinks.k1.hostname=collector.example.com
client.sinks.k1.port=42424

The hostname, collector.example.com, has nothing to do with the agent name
on this machine; it is the hostname (or you can use an IP) of the target machine
with the receiving Avro source. This configuration, named client, would be
applied to both agents on the top and bottom sides, assuming both had similar
source configurations.

Chapter 6

[97]

As I don't like single points of failure, I would configure two collector agents
with the preceding configuration and instead, set each client agent to round robin
between the two, using a sink group. Again, I've left off the sources for brevity:

client.channels=ch1
client.channels.ch1.type=memory
client.sinks=k1 k2
client.sinks.k1.type=avro
client.sinks.k1.channel=ch1
client.sinks.k1.hostname=collectorA.example.com
client.sinks.k1.port=42424
client.sinks.k2.type=avro
client.sinks.k2.channel=ch1
client.sinks.k2.hostname=collectorB.example.com
client.sinks.k2.port=42424
client.sinkgroups=g1
client.sinkgroups.g1=k1 k2
client.sinkgroups.g1.processor.type=load_balance
client.sinkgroups.g1.processor.selector=round_robin
client.sinkgroups.g1.processor.backoff=true

There are four additional properties associated with the Avro sink that you
may need to adjust from their sensible defaults.

The first is the batch-size property, which defaults to 100. In heavy loads,
you may see better throughput by setting this higher, for example:

client.sinks.k1.batch-size=1024

The next two properties control network connection timeouts. The connect-
timeout property, which defaults to 20 seconds (specified in milliseconds), is the
amount of time required to establish a connection with an Avro source (receiver).
The related request-timeout property, which also defaults to 20 seconds (specified
in milliseconds), is the amount of time for a sent message to be acknowledged. If I
wanted to increase these values to 1 minute, I could add these additional properties:

client.sinks.k1.connect-timeout=60000
client.sinks.k1.request-timeout=60000

Interceptors, ETL, and Routing

[98]

Finally, the reset-connection-interval property can be set to force connections
to reestablish themselves after some time period. This can be useful when your sink
is connecting through a VIP (Virtual IP Address) or hardware load balancer to keep
things balanced, as services offered behind the VIP may change over time due to
failures or changes in capacity. By default, the connections will not be reset except
in cases of failure. If you wanted to change this so that the connections reset
themselves every hour, for example, you can specify this by setting this property
with the number of seconds, as follows:

client.sinks.k1.reset-connection-interval=3600

Compressing Avro
Communication between the Avro source and sink can be compressed by setting the
compression-type property to deflate. On the Avro sink, you can additionally,
set the compression-level property to a number between 1 and 9, with the default
being 6. Typically, there are diminishing returns at higher compression levels, but
testing may prove a nondefault value that works better for you. Clearly, you need
to weigh the additional CPU costs against the overhead to perform a higher level
of compression. Typically, the default is fine.

Compressed communications are especially important when you are dealing with
high latency networks, such as sending data between two data centers. Another
common use case for compression is where you are charged for the bandwidth
consumed, such as most public cloud services. In these cases, you will probably
choose to spend CPU cycles, compressing and decompressing your flow rather
than sending highly compressible data uncompressed.

It is very important that if you set the compression-type property
in a source/sink pair, you set this property at both ends. Otherwise, a
sink could be sending data the source can't consume.

Continuing the preceding example, to add compression, you would add these
additional property fields on both agents:

collector.sources.av1.compression-type=deflate
client.sinks.k1.compression-type=deflate
client.sinks.k1.compression-level=7
client.sinks.k2.compression-type=deflate
client.sinks.k2.compression-level=7

Chapter 6

[99]

SSL Avro flows
Sometimes, communication is of a sensitive nature or may traverse untrusted
network paths. You can encrypt your communications between an Avro sink and
an Avro source by setting the ssl property to true. Additionally, you will need to
pass SSL certificate information to the source (the receiver) and optionally, the sink
(the sender).

I won't claim to be an expert in SSL and SSL certificates, but the general idea is that a
certificate can either be self-signed or signed by a trusted third party such as VeriSign
(called a certificate authority or CA). Generally, because of the cost associated with
getting a verified certificate, people only do this for web browser certificates a
customer might see in a web browser. Some organizations will have an internal CA
who can sign certificates. For the purpose of this example, we'll be using self-signed
certificates. This basically means that we'll generate a certificate but not have it signed
by any authority. For this, we'll use the keytool utility that comes with all Java
installations (the reference can be found at http://docs.oracle.com/javase/7/
docs/technotes/tools/solaris/keytool.html). Here, I create a Java Key Store
(JKS) file that contains a 2048 bit key. When prompted for a password, I'll use the
password string. Make sure you use a real password in your nontest environments:

% keytool -genkey -alias flumey -keyalg RSA -keystore keystore.jks
-keysize 2048

Enter keystore password: password

Re-enter new password: password

What is your first and last name?

 [Unknown]: Steve Hoffman

What is the name of your organizational unit?

 [Unknown]: Operations

What is the name of your organization?

 [Unknown]: Me, Myself and I

What is the name of your City or Locality?

 [Unknown]: Chicago

What is the name of your State or Province?

 [Unknown]: Illinois

What is the two-letter country code for this unit?

 [Unknown]: US

Is CN=Steve Hoffman, OU=Operations, O="Me, Myself and I", L=Chicago,
ST=Illinois, C=US correct?

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html

Interceptors, ETL, and Routing

[100]

 [no]: yes

Enter key password for <flumey>

 (RETURN if same as keystore password):

I can verify the contents of the JKS by running the list subcommand:

% keytool -list -keystore keystore.jks

Enter keystore password: password

Keystore type: JKS

Keystore provider: SUN

Your keystore contains 1 entry

flumey, Nov 11, 2014, PrivateKeyEntry,
Certificate fingerprint (SHA1):
5C:BC:3C:7F:7A:E7:77:EB:B5:54:FA:E2:8B:DD:D3:66:36:86:DE:E4

Now that I have a key in my keystore file, I can set the additional properties on
the receiving source:

collector.sources.av1.ssl=true
collector.sources.av1.keystore=/path/to/keystore.jks
collector.sources.av1.keystore-password=password

As I am using a self-signed certificate, the sink won't be sure that communications
can be trusted, so I have two options. The first is to tell it to just trust all certificates.
Clearly, you would only do this on a private network that has some reasonable
assurances about its security. To ignore the dubious origin of my certificate, I can
set the trust-all-certs property to true as follows:

client.sinks.k1.ssl=true
client.sinks.k1.trust-all-certs=true

If you didn't set this, you'd see something like this in the logs:

org.apache.flume.EventDeliveryException: Failed to send events
...
Caused by: javax.net.ssl.SSLHandshakeException: General SSLEngine
problem
...
Caused by: sun.security.validator.ValidatorException: No trusted
certificate found
...

Chapter 6

[101]

For communications over the public Internet or in multitenant cloud environments,
more care should be taken. In this case, you can provide a truststore to the sink.
A truststore is similar to a keystore, except that it contains certificate authorities
you are telling Flume can be trusted. For well-known certificate authorities, such
as VeriSign and others, you don't need to specify a truststore, as their identities are
already included in your Java distribution (at least for the major ones). You will need
to have your certificate signed by a certificate authority and then add the signed
certificate file to the source's keystore file. You will also need to include the signing
CA's certificate in the keystore so that the certificate chain can be fully resolved.

Once you have added the key, signed certificate, and signing CA's certificate to
the source, you need to configure the sink (the sender) to trust these authorities
so that it will pass the validation step during the SSL handshake. To specify the
truststore, set the truststore and truststore-password properties as follows:

client.sinks.k1.ssl=true
client.sinks.k1.truststore=/path/to/truststore.jks
client.sinks.k1.truststore-password=password

Chances are there is somebody in your organization responsible for obtaining the
third-party certificates or someone who can issue an organizational CA-signed-
certificate to you, so I'm not going to go into details about how to create your own
certificate authority. There is plenty of information on the Internet if you choose to
take this route. Remember that certificates have an expiration date (usually, a year),
so you'll need to repeat this process every year or communications will abruptly
stop when certificates or certificate authorities expire.

The Thrift source/sink
Another source/sink pair you can use to tier your data flows is based on Thrift
(http://thrift.apache.org/). Unlike Avro data, which is self-documenting,
Thrift uses an external schema, which can be compiled into just about every
programming language on the planet. The configuration is almost identical to
the Avro example already covered. The preceding collector configuration that
uses Thrift would now look something like this:

collector.sources=th1
collector.sources.th1.type=thrift
collector.sources.th1.bind=0.0.0.0
collector.sources.th1.port=42324
collector.sources.th1.channels=ch1
collector.channels=ch1

http://thrift.apache.org/

Interceptors, ETL, and Routing

[102]

collector.channels.ch1.type=memory
collector.sinks=k1
collector.sinks.k1.type=hdfs
collector.sinks.k1.channel=ch1
collector.sinks.k1.hdfs.path=/path/in/hdfs

There is one additional property that sets the maximum worker threads in the
underlying thread pool. If unset, a value of zero is assumed, which makes the thread
pool unbounded, so you should probably set this in your production configurations.
Testing should provide you with a reasonable upper limit for your environment. To
set the thread pool size to 10, for example, you would add the threads property:

collector.source.th1.threads=10

The "client" agents would use the corresponding Thrift sink as follows:

client.channels=ch1
client.channels.ch1.type=memory
client.sinks=k1
client.sinks.k1.type=thrift
client.sinks.k1.channel=ch1
client.sinks.k1.hostname=collector.example.com
client.sinks.k1.port=42324

Like its Avro counterpart, there are additional settings for the batch size, connection
timeouts, and connection reset intervals that you may want to adjust based on
your testing results. Refer to the The Avro source/sink section earlier in this chapter
for details.

Using command-line Avro
The Avro source can also be used in conjunction with one of the command-line
options you may have noticed back in Chapter 2, A Quick Start Guide to Flume.
Rather than running flume-ng with the agent parameter, you can pass the
avro-client parameter to send one or more files to an Avro source. These
are the options specific to avro-client from the help text:

avro-client options:

 --dirname <dir> directory to stream to avro source

 --host,-H <host> hostname to which events will be sent (required)

 --port,-p <port> port of the avro source (required)

 --filename,-F <file> text file to stream to avro source [default: std
input]

Chapter 6

[103]

 --headerFile,-R <file> headerFile containing headers as key/value pairs
on each new line

 --help,-h display help text

This variation is very useful for testing, resending data manually due to errors,
or importing older data stored elsewhere.

Just like an Avro sink, you have to specify the hostname and port you will be sending
data to. You can send a single file with the --filename option or all the files in a
directory with the --dirname option. If you specify neither of these, stdin will be
used. Here is how you might send a file named foo.log to the Flume agent we
previously configured:

$./flume-ng avro-client --filename foo.log --host collector.example.com
--port 42424

Each line of the input will be converted into a single Flume event.

Optionally, you can specify a file containing key/value pairs to set Flume header
values. The file uses Java property file syntax. Suppose I had a file named headers.
properties containing:

pointOfSale=US
environment=staging

Then, including the --headerFile option would set these two headers on every
event created:

$./flume-ng avro-client --filename foo.log --headerFile headers.
properties --host collector.example.com --port 42424

The Log4J appender
As we discussed in Chapter 5, Sources and Channel Selectors, there are issues that
may arise from using a filesystem file as a source. One way to avoid this problem
is to use the Flume Log4J Appender in your Java application(s). Under the hood,
it uses the same Avro communication that the Avro sink uses, so you need only
configure it to send data to an Avro source.

The Appender has two properties, which are shown here in XML:

<appender name="FLUME" class="org.apache.flume.clients.log4jappender.
Log4jAppender">
 <param name="Hostname" value="collector.example.com"/>
 <param name="Port" value="42424"/>
</appender>

Interceptors, ETL, and Routing

[104]

The format of the body will be dictated by the Appender's configured layout
(not shown). The log4j fields that get mapped to Flume headers are summarized
in this table:

Flume header key Log4J logging event field
flume.client.log4j.logger.name event.getLoggerName()

flume.client.log4j.log.level event.getLevel() as a number.
See org.apache.log4j.Level for
mappings.

flume.client.log4j.timestamp event.getTimeStamp()

flume.client.log4j.message.
encoding

N/A—always UTF8

flume.client.log4j.logger.other Will only see this if there was a problem
mapping one of the above fields, so
normally, this won't be present.

Refer to http://logging.apache.org/log4j/1.2/ for more details on using Log4J.

You will need to include the flume-ng-sdk JAR in the classpath of your Java
application at runtime to use Flume's Log4J Appender.

Keep in mind that if there is a problem sending data to the Avro source, the
appender will throw an exception and the log message will be dropped, as there
is no place to put it. Keeping it in memory could quickly overload your JVM heap,
which is usually considered worse than dropping the data record.

The Log4J load-balancing appender
I'm sure you noticed that the preceding Log4j Appender only has a single
hostname/port in its configuration. If you wanted to spread the load across multiple
collector agents, either for additional capacity or for fault tolerance, you can use the
LoadBalancingLog4jAppender. This appender has a single required property named
Hosts, which is a space-separated list of hostnames and port numbers separated by a
colon, as follows:

<appender name="FLUME" class="org.apache.flume.clients.log4jappender.
LoadBalancingLog4jAppender">
 <param name="Hosts" value="server1:42424 server2:42424"/>
</appender>

http://logging.apache.org/log4j/1.2/

Chapter 6

[105]

There is an optional property, Selector, which specifies the method that you want
to load balance. Valid values are RANDOM and ROUND_ROBIN. If not specified, the
default is ROUND_ROBIN. You can implement your own selector, but that is outside
the scope of this book. If you are interested, go have a look at the well-documented
source code for the LoadBalancingLog4jAppender class.

Finally, there is another optional property to override the maximum time for
exponential back off when a server cannot be contacted. Initially, if a server cannot
be contacted, 1 second will need to pass before that server is tried again. Each time
the server is unavailable, the retry time doubles, up to a default maximum of 30
seconds. If we wanted to increase this maximum to 2 minutes, we can specify a
MaxBackoff property in milliseconds as follows:

<appender name="FLUME" class="org.apache.flume.clients.log4jappender.
LoadBalancingLog4jAppender">
 <param name="Hosts" value="server1:42424 server2:42424"/>
 <param name="Selector" value="RANDOM"/>
 <param name="MaxBackoff" value="120000"/>
</appender>

In this example, we have also overridden the default round_robin selector to use
a random selection.

The embedded agent
If you are writing a Java program that creates data, you may choose to send
the data directly as structured data using a special mode of Flume called the
Embedded Agent. It is basically a simple single source/single channel Flume
agent that you run inside your JVM.

There are benefits and drawbacks to this approach. On the positive side, you don't
need to monitor an additional process on your servers to relay data. The embedded
channel also allows for the data producer to continue executing its code immediately
after queuing the event to the channel. The SinkRunner thread handles taking events
from the channel and sending them to the configured sinks. Even if you didn't use
embedded Flume to perform this handoff from the calling thread, you would most
likely use some kind of synchronized queue (such as BlockingQueue) to isolate
the sending of the data from the main execution thread. Using Embedded Flume
provides the same functionality without having to worry whether you've written
your multithreaded code correctly.

Interceptors, ETL, and Routing

[106]

The major drawback to embedding Flume in your application is added memory
pressure on your JVM's garbage collector. If you are using an in-memory channel,
any unsent events are held in the heap and get in the way of cheap garbage collection
by way of short-lived objects. However, this is why you set a channel size: to keep the
maximum memory footprint to a known quantity. Furthermore, any configuration
changes will require an application restart, which can be problematic if your overall
system doesn't have sufficient redundancy built in to tolerate restarts.

Configuration and startup
Assuming you are not dissuaded (and you shouldn't be), you will first need to
include the flume-ng-embedded-agent library (and dependencies) into your Java
project. Depending on what build system you are using (Maven, Ivy, Gradle, and
so on), the exact format will differ, so I'll just show you the Maven configuration
here. You can look up the alternative formats at http://mvnrepository.com/:

<dependency>
 <groupId>org.apache.flume</groupId>
 <artifactId>flume-ng-embedded-agent</artifactId>
 <version>1.5.2</version>
</dependency>

Start by creating an EmbeddedAgent object in your Java code by calling the
constructor (and passing a string name—used only in error messages):

EmbeddedAgent toHadoop = new EmbeddedAgent("myData");

Next, you have to set properties for the channel, sinks, and sink processor via
the configure() method, as shown in this example. Most of this configuration
should look very familiar to you at this point:

Map<String,String> config = new HashMap<String, String>;
config.put("channel.type","memory");
config.put("channel.capacity", "75");
config.put("sinks", "s1 s2");
config.put("sink.s1.type", "avro");
config.put("sink.s1.hostname", "foo.example.com");
config.put("sink.s1.port", "12345");
config.put("sink.s1.compression-type", "deflate");
config.put("sink.s2.type", "avro");

http://mvnrepository.com/

Chapter 6

[107]

config.put("sink.s2.hostname", "bar.example.com");
config.put("sink.s2.port", "12345");
config.put("sink.s2.compression-type", "deflate");
config.put("processor.type", "failover");
config.put("processor.priority.s1", "10");
config.put("processor.priority.s2", "20");
toHadoop.configure(config);

Here, we define a memory channel with a capacity of 75 events along with two
Avro sinks in an active/standby configuration (first, to foo.example.com, and
if that fails, to bar.example.com) using Avro serialization with compression.
Refer to Chapter 3, Channels, for specific settings for memory- or file-backed
channel properties.

The sink processor only comes into play if you have more than one sink defined
in your sinks property. Unlike the optional sink groups options covered in Chapter
4, Sinks and Sink Processors, you need to specify a sink list, even if it is just one.
Clearly, there is no behavior difference between failover and load balance when
there is only once sink. Refer to each specific sink's properties in Chapter 4, Sinks
and Sink Processors, for specific configuration parameters.

Finally, before you start using this agent, you need to call the start() method
to instantiate everything based on your properties and start all the background
processing threads as follows:

toHadoop.start();

The class is now ready to start receiving and forwarding data.

You'll want to keep a reference to this object around for cleanup later, as well
as to pass it to other objects that will be sending data as the underlying channel
provides thread safety. Personally, I use Spring Framework's dependency injection
to configure and pass references at startup rather than doing it programmatically,
as I've shown in this example. Refer to the Spring website for more information
(http://spring.io/), as proper use of Spring is a whole book unto itself, and it
is not the only dependency injection framework available to you.

Sending data
Data can be sent either as single events or in batches. Batches can sometimes be
more efficient in high volume data streams.

http://spring.io/

Interceptors, ETL, and Routing

[108]

To send a single event, just call the put() method, as shown in this example:

Event e = EventBuilder.withBody("Hello Hadoop", Charset.
forName("UTF8");
toHadoop.put(e);

Here, I'm using one of many methods available on the org.apache.flume.event.
EventBuilder class. Here is a complete list of methods you can use to construct
events with this helper class:

EventBuilder.withBody(byte[] body, Map<String, String> headers);
EventBuilder.withBody(byte[] body);
EventBuilder.withBody(String body, Charset charset, Map<String,
String> headers);
EventBuilder.withBody(String body, Charset charset);

In order to send several events in one batch, you can call the putAll() method with
a list of events, as shown in this example, which also includes a time header:

Map<String,String> headers = new HashMap<String,String>;
headers.put("timestamp",Long.toString(System.currentTimeMillis());
List<Event> events = new ArrayList<Event>;
events.add(EventBuilder.withBody("First".getBytes("UTF-8"), headers);
events.add(EventBuilder.withBody("Second".getBytes("UTF-8"), headers);
toHadoop.putAll(events);

As interceptors are not supported, you will need to add any headers you want to
add to the events programmatically in Java before you call put() or putAll().

Shutdown
Finally, as there are background threads waiting for data to arrive on your embedded
channel which are most likely holding persistent connections to configured
destinations, when it is time to shut down your application, you'll want to have
Flume do its cleanup as well. You simply call the stop() method on the configured
Embedded Agent as follows:

toHadoop.stop();

Routing
The routing of data to different destinations based on content should be fairly
straightforward now that you've been introduced to all the various mechanisms
in Flume.

Chapter 6

[109]

The first step is to get the data you want to switch on into a Flume header by means
of a source-side interceptor if the header isn't already available. The second step is to
use a Multiplexing Channel Selector on that header value to switch the data to
an alternate channel.

For instance, let's say you wanted to capture all exceptions to HDFS. In this
configuration, you can see events coming in on the s1 source via avro on port 42424.
The event is tested to see whether the body contains the text Exception. If it does, it
creates an exception header key (with the value of Exception). This header is used
to switch these events to channel c1, and ultimately, HDFS. If the event didn't match
the pattern, it would not have the exception header and would get passed to the c2
channel via the default selector where it would be forwarded via Avro serialization
to port 12345 on server foo.example.com:

agent.sources=s1
agent.sources.s1.type=avro
agent.sources.s1.bind=0.0.0.0
agent.sources.s1.port=42424
agent.sources.s1.interceptors=i1
agent.sources.s1.interceptors.i1.type=regex_extractor
agent.sources.s1.interceptors.i1.regex=(Exception)
agent.sources.s1.interceptors.i1.serializers=ex
agent.sources.s1.intercetpros.i1.serializers.ex.name=exception
agent.sources.s1.selector.type=multiplexing
agent.sources.s1.selector.header=exception
agent.sources.s1.selector.mapping.Exception=c1
agent.sources.s1.selector.default=c2
agent.channels=c1 c2
agent.channels.c1.type=memory
agent.channels.c2.type=memory
agent.sinks=k1 k2
agent.sinks.k1.type=hdfs
agent.sinks.k1.channel=c1
agent.sinks.k1.hdfs.path=/logs/exceptions/%y/%M/%d/%H
agent.sinks.k2.type=avro
agent.sinks.k2.channel=c2
agent.sinks.k2.hostname=foo.example.com
agent.sinks.k2.port=12345

Interceptors, ETL, and Routing

[110]

Summary
In this chapter, we covered various interceptors shipped with Flume, including:

• Timestamp: These are used to add a timestamp header, possibly
overwriting an existing one.

• Host: This is used to add the Flume agent hostname or IP as a header
in the event.

• Static: This is used to add static String headers.
• Regular expression filtering: This is used to include or exclude events

based on a matched regular expression.
• Regular expression extractor: This is used to create headers from matched

regular expressions. It's useful for routing with Channel Selectors.
• Morphline: This is used to delegate transformation to a Morphline

command chain.
• Custom: This is used to create any custom transformations you need that

you can't find elsewhere.

We also covered tiering data flows using the Avro source and sink. Optional
compression and SSL with Avro flows were covered as well. Finally, Thrift sources
and sinks were briefly covered, as some environments may already have Thrift
data flows to integrate with.

Next, we introduced two Log4J Appenders, a single path and a load-balancing
version, for direct integration with Java applications.

The Embedded Flume Agent was covered for those wishing to directly integrate
basic Flume functionality into their Java applications.

Finally, we gave you an example of using interceptors in conjunction with a
Channel Selector to provide routing decision logic.

In the next chapter, we will dive into an example to stitch together everything
we have covered so far.

Putting It All Together
Now that we've walked through all the components and configurations, let's
put together a working end-to-end configuration. This example is by no means
exhaustive, nor does it cover every possible scenario you might need, but I think
it should cover a couple of common use cases I've seen over and over:

• Finding errors by searching logs across multiple servers in near real time
• Streaming data to HDFS for long-term batch processing

In the first situation, your systems may be impaired, and you have multiple places
where you need to search for problems. Bringing all of those logs to a single place
that you can search means getting your systems restored quickly. In the second
scenario, you are interested in capturing data in the long term for analytics and
machine learning.

Web logs to searchable UI
Let's simulate a web application by setting up a simple web server whose logs
we want to stream into some searchable application. In this case, we'll be using
a Kibana UI to perform ad hoc queries against Elasticsearch.

Putting It All Together

[112]

For this example, I'll start three servers in Amazon's Elastic Compute Cluster (EC2),
as shown in this diagram:

Each server has a public IP (starting with 54) and a private IP (starting with 172).
For interserver communication, I'll be using the private IPs in my configurations.
My personal interaction with the web server (to simulate traffic) and with Kibana
and Elasticsearch will require the public IPs, since I'm sitting in my house and not
in Amazon's data centers.

Pay careful attention to the IP addresses in the shell prompts, as we will
be jumping from machine to machine, and I don't want you to get lost.
For instance, on the Collector box, the prompt will contain its private IP:

[ec2-user@ip-172-31-26-205 ~]$

If you try this out yourself in EC2, you will get different IP assignments, so adjust
the configuration files and URLs referenced as needed. For this example, I'll be using
Amazon's Linux AMI for an operating system and the t1.micro size server. Also,
be sure to adjust the security groups to allow network traffic between these servers
(and yourself). When in doubt about connectivity, use utilities such as telnet or nc
to test connections between servers and ports.

Chapter 7

[113]

While going through this exercise, I made mistakes in my security
groups more than once, so perform these tests on connectivity
exceptions.

Setting up the web server
Let's start by setting up the web server. For this, we'll install the popular Nginx web
server (http://nginx.org). Since web server logs are pretty much standardized
nowadays, I could have chosen any web server, but the point here is that this
application writes it logs (by default) to a file on the disk. Since I've warned you
from trying to use the tail program to stream them, we'll be using a combination of
logrotate and the Spooling Directory Source to ingest the data. First, let's log in to
the server. The default account with sudo for an Amazon Linux server is ec2-user.
You'll need to pass this in your ssh command:

% ssh 54.69.112.61 -l ec2-user

The authenticity of host '54.69.112.61 (54.69.112.61)' can't be
established.

RSA key fingerprint is dc:ee:7a:1a:05:e1:36:cd:a4:81:03:97:48:8d:b3:cc.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '54.69.112.61' (RSA) to the list of known
hosts.

 __| __|_)

 _| (/ Amazon Linux AMI

 ___|___|___|

https://aws.amazon.com/amazon-linux-ami/2014.09-release-notes/

18 package(s) needed for security, out of 41 available

Run "sudo yum update" to apply all updates.

Now that you are logged in to the server, let's install Nginx (I'm not going to show
all of the output to save paper):

[ec2-user@ip-172-31-18-146 ~]$ sudo yum -y install nginx

Loaded plugins: priorities, update-motd, upgrade-helper

Resolving Dependencies

--> Running transaction check

---> Package nginx.x86_64 1:1.6.2-1.22.amzn1 will be installed

[SNIP]

http://nginx.org

Putting It All Together

[114]

Installed:

 nginx.x86_64 1:1.6.2-1.22.amzn1

Dependency Installed:

 GeoIP.x86_64 0:1.4.8-1.5.amzn1 gd.x86_64 0:2.0.35-11.10.amzn1
gperftools-libs.x86_64 0:2.0-11.5.amzn1 libXpm.x86_64 0:3.5.10-
2.9.amzn1

 libunwind.x86_64 0:1.1-2.1.amzn1

Complete!

Next, let's start the Nginx web server:

[ec2-user@ip-172-31-18-146 ~]$ sudo /etc/init.d/nginx start

Starting nginx: [OK]

At this point, the web server should be running, so let's use our computer's web
browser to go to the public IP, http://54.69.112.61/ in this case. If it is working,
you should see the default welcome page, like this:

http://54.69.112.61/

Chapter 7

[115]

To help generate a sample input, you can use a load generator program such as
Apache benchmark (http://httpd.apache.org/docs/2.4/programs/ab.html) or
wrk (https://github.com/wg/wrk). Here is the command I used to generate data
for 20 minutes at a time:

% wrk -c 2 -d 20m http://54.69.112.61

Running 20m test @ http://54.69.112.61

 2 threads and 2 connections

Configuring log rotation to the spool directory
By default, the server's access logs are written to /var/log/nginx/access.log. The
problem we need to overcome here is to move the files to a separate directory while
it is still open by the nginx process. This is where logrotate comes into the picture.
Let's first create a spool directory that will become the input path for the Spooling
Directory Source later on. For the purpose of this example, I'll just create the spool
directory in the home directory of ec2-user. In a production environment, you
would place the spool directory somewhere else:

[ec2-user@ip-172-31-18-146 ~]$ pwd

/home/ec2-user

[ec2-user@ip-172-31-18-146 ~]$ mkdir spool

Let's also create a logrotate script in the home directory of ec2-user, called
rotateAccess.conf. Open an editor and paste these contents (after the prompt)
in to a file called accessRotate.conf:

[ec2-user@ip-172-31-18-146 ~]$ cat accessRotate.conf

/var/log/nginx/access.log {

 missingok

 notifempty

 rotate 0

 copytruncate

 sharedscripts

 olddir /home/ec2-user/spool

 postrotate

 chown ec2-user:ec2-user /home/ec2-user/spool/access.log.1

 ts=$(date +%s)

 mv /home/ec2-user/spool/access.log.1 /home/ec2-user/spool/access.
log.$ts

 endscript

}

http://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/wg/wrk

Putting It All Together

[116]

Let's go over this so that you understand what it is doing. This is by no means
a complete introduction to the logrotate utility. Read the online documentation
at http://linuxconfig.org/logrotate for more details.

When logrotate runs, it will copy /var/log/nginx/access.log to the /home/
ec2-user/spool directory, but only if it has a nonzero length (meaning, there is
data to send). The rotate 0 command tells logrotate not to remove any files from
the target directory (since the Flume source will do that after it has successfully
transmitted each file). We'll make use of the copytruncate feature because it keeps
the file open as far as the nginx process is concerned, while resetting it to zero
length. This avoids the need to signal nginx that a rotation has just occurred. The
destination of the rotated file in the spool directory is /home/ec2-user/spool/
access.log.1. Next, in the postrotate script section, we will change the ownership
of the file from the root user to ec2-user so that the Flume agent can read it, and
later, delete it. Finally, we rename the file with a unique timestamp so that when
the next rotation occurs, the access.log.1 file will not exist. This also means that
we'll need to add an exclusion rule to the Flume source later to keep it from reading
access.log.1 file until the copying process has completed. Once renamed, it is
ready to be consumed by Flume.

Now let's try running it in debug mode, which will be just a dry run so that we can
see what it can do. Normally, logrotate has a daily rotation setting that prevents it
from doing anything unless enough time has passed:

[ec2-user@ip-172-31-18-146 ~]$ sudo /usr/sbin/logrotate -d /home/ec2-
user/accessRotate.conf

reading config file /home/ec2-user/accessRotate.conf

reading config info for /var/log/nginx/access.log

olddir is now /home/ec2-user/spool

Handling 1 logs

rotating pattern: /var/log/nginx/access.log 1048576 bytes (no old logs
will be kept)

olddir is /home/ec2-user/spool, empty log files are not rotated, old logs
are removed

considering log /var/log/nginx/access.log

 log does not need rotating

not running postrotate script, since no logs were rotated

http://linuxconfig.org/logrotate

Chapter 7

[117]

Therefore, we will also include the -f (force) flag to override the preceding functionality:

[ec2-user@ip-172-31-18-146 ~]$ sudo /usr/sbin/logrotate -df /home/ec2-
user/accessRotate.conf

reading config file /home/ec2-user/accessRotate.conf

reading config info for /var/log/nginx/access.log

olddir is now /home/ec2-user/spool

Handling 1 logs

rotating pattern: /var/log/nginx/access.log forced from command line (no
old logs will be kept)

olddir is /home/ec2-user/spool, empty log files are not rotated, old logs
are removed

considering log /var/log/nginx/access.log

 log needs rotating

rotating log /var/log/nginx/access.log, log->rotateCount is 0

dateext suffix '-20141207'

glob pattern '-[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]'

renaming /home/ec2-user/spool/access.log.1 to /home/ec2-user/spool/
access.log.2 (rotatecount 1, logstart 1, i 1),

renaming /home/ec2-user/spool/access.log.0 to /home/ec2-user/spool/
access.log.1 (rotatecount 1, logstart 1, i 0),

copying /var/log/nginx/access.log to /home/ec2-user/spool/access.log.1

truncating /var/log/nginx/access.log

running postrotate script

running script with arg /var/log/nginx/access.log : "

 chown ec2-user:ec2-user /home/ec2-user/spool/access.log.1

 ts=$(date +%s)

 mv /home/ec2-user/spool/access.log.1 /home/ec2-user/spool/access.
log.$ts

"

removing old log /home/ec2-user/spool/access.log.2

As you can see, logrotate will copy the log to the spool directory with the .1
extension as expected, followed by our script block at the end to change permissions
and rename it with a unique timestamp.

Putting It All Together

[118]

Now let's run it again, but this time for real, without the debug flag, and then we will
list the source and target directories to see what happened:

[ec2-user@ip-172-31-18-146 ~]$ sudo /usr/sbin/logrotate -f /home/ec2-
user/accessRotate.conf

[ec2-user@ip-172-31-18-146 ~]$ ls -l spool/

total 188

-rw-r--r-- 1 ec2-user ec2-user 189344 Dec 7 17:27 access.log.1417973241

[ec2-user@ip-172-31-18-146 ~]$ ls -l /var/log/nginx/

total 4

-rw-r--r-- 1 root root 0 Dec 7 17:27 access.log

-rw-r--r-- 1 root root 520 Dec 7 16:44 error.log

[ec2-user@ip-172-31-18-146 ~]$

You can see the access log is empty and the old contents have been copied to the spool
directory, with correct permissions and the filename ending in a unique timestamp.

Let's also verify that the empty access log will result in no action if run without
any data. You'll need to include the debug flag to see what the process is thinking:

[ec2-user@ip-172-31-18-146 ~]$ sudo /usr/sbin/logrotate -df /home/ec2-
user/accessRotate.conf

reading config file accessRotate.conf

reading config info for /var/log/nginx/access.log

olddir is now /home/ec2-user/spool

Handling 1 logs

rotating pattern: /var/log/nginx/access.log forced from command line (1
rotations)

olddir is /home/ec2-user/spool, empty log files are not rotated, old logs
are removed

considering log /var/log/nginx/access.log

 log does not need rotating

Now that we have a working rotation script, we need something to run it
periodically (not in debug mode) in some chosen interval. For this, we will use
the cron daemon (http://en.wikipedia.org/wiki/Cron) by creating a file in
the /etc/cron.d directory:

http://en.wikipedia.org/wiki/Cron

Chapter 7

[119]

[ec2-user@ip-172-31-18-146 ~]$ cat /etc/cron.d/rotateLogsToSpool

Move files to spool directory every 5 minutes

*/5 * * * * root /usr/sbin/logrotate -f /home/ec2-user/accessRotate.conf

Here, I've indicated a five-minute interval and to run as the root user. Since the root
user owns the original log file, we need elevated access to reassign ownership to
ec2-user so that it can be removed later by Flume.

Once you've saved this cron configuration file, you should see our script every 5
minutes (as well as other processes), by inspecting the cron daemon's log file:

[ec2-user@ip-172-31-18-146 ~]$ sudo tail /var/log/cron

Dec 7 17:45:01 ip-172-31-18-146 CROND[22904]: (root) CMD (/usr/sbin/
logrotate -f /home/ec2-user/accessRotate.conf)

Dec 7 17:50:01 ip-172-31-18-146 CROND[22929]: (root) CMD (/usr/sbin/
logrotate -f /home/ec2-user/accessRotate.conf)

Dec 7 17:54:01 ip-172-31-18-146 anacron[2426]: Job 'cron.weekly' started

Dec 7 17:54:01 ip-172-31-18-146 anacron[2426]: Job 'cron.weekly'
terminated

Dec 7 17:55:01 ip-172-31-18-146 CROND[22955]: (root) CMD (/usr/sbin/
logrotate -f /home/ec2-user/accessRotate.conf)

Dec 7 18:00:01 ip-172-31-18-146 CROND[23046]: (root) CMD (/usr/sbin/
logrotate -f /home/ec2-user/accessRotate.conf)

Dec 7 18:01:01 ip-172-31-18-146 CROND[23060]: (root) CMD (run-parts /
etc/cron.hourly)

Dec 7 18:01:01 ip-172-31-18-146 run-parts(/etc/cron.hourly)[23060]:
starting 0anacron

Dec 7 18:01:01 ip-172-31-18-146 run-parts(/etc/cron.hourly)[23069]:
finished 0anacron

Dec 7 18:05:01 ip-172-31-18-146 CROND[23117]: (root) CMD (/usr/sbin/
logrotate -f /home/ec2-user/accessRotate.conf)

An inspection of the spool directory also shows new files created on our arbitrarily
chosen 5-minute interval:

[ec2-user@ip-172-31-18-146 ~]$ ls -l spool/

total 1072

-rw-r--r-- 1 ec2-user ec2-user 145029 Dec 7 18:02 access.log.1417975373

-rw-r--r-- 1 ec2-user ec2-user 164169 Dec 7 18:05 access.log.1417975501

-rw-r--r-- 1 ec2-user ec2-user 166779 Dec 7 18:10 access.log.1417975801

-rw-r--r-- 1 ec2-user ec2-user 613785 Dec 7 18:15 access.log.1417976101

Putting It All Together

[120]

Keep in mind that the Nginx RPM package also installed a rotation configuration
located at /etc/logrotate.d/nginx to perform daily rotations. If you are going
to use this example in production, you'll want to remove the configuration, since
we don't want it clashing with our more frequently running cron script. I'll leave
handling error.log as an exercise for you. You'll either want to send it someplace
(and have Flume remove it) or rotate it periodically so that your disk doesn't fill up
over time.

Setting up the target – Elasticsearch
Now let's move to the other server in our diagram and set up Elasticsearch, our
destination for searchable data. I'm going to be using the instructions found at
http://www.elasticsearch.org/overview/elkdownloads/. First, let's download
and install the RPM package:

[ec2-user@ip-172-31-26-120 ~]$ wget https://download.elasticsearch.org/
elasticsearch/elasticsearch/elasticsearch-1.4.1.noarch.rpm

--2014-12-07 18:25:35-- https://download.elasticsearch.org/
elasticsearch/elasticsearch/elasticsearch-1.4.1.noarch.rpm

Resolving download.elasticsearch.org (download.elasticsearch.org)...
54.225.133.195, 54.243.77.158, 107.22.222.16, ...

Connecting to download.elasticsearch.org (download.elasticsearch.
org)|54.225.133.195|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 26326154 (25M) [application/x-redhat-package-manager]

Saving to: 'elasticsearch-1.4.1.noarch.rpm'

100%[==
==>] 26,326,154 9.92MB/s in 2.5s

2014-12-07 18:25:38 (9.92 MB/s) - 'elasticsearch-1.4.1.noarch.rpm' saved
[26326154/26326154]

[ec2-user@ip-172-31-26-120 ~]$ sudo rpm -ivh elasticsearch-1.4.1.noarch.
rpm

Preparing... ################################# [100%]

Updating / installing...

 1:elasticsearch-1.4.1-1 ################################# [100%]

http://www.elasticsearch.org/overview/elkdownloads/

Chapter 7

[121]

NOT starting on installation, please execute the following statements
to configure elasticsearch to start automatically using chkconfig

 sudo /sbin/chkconfig --add elasticsearch

You can start elasticsearch by executing

 sudo service elasticsearch start

The installation is kind enough to tell me how to configure the service to
automatically start on system boot-up, and it also tells me to launch the service
now, so let's do that:

[ec2-user@ip-172-31-26-120 ~]$ sudo /sbin/chkconfig --add elasticsearch

[ec2-user@ip-172-31-26-120 ~]$ sudo service elasticsearch start

Starting elasticsearch: [OK]

Let's perform a quick test with curl to verify that it is running on the default port,
which is 9200:

[ec2-user@ip-172-31-26-120 ~]$ curl http://localhost:9200/

{

 "status" : 200,

 "name" : "Siege",

 "cluster_name" : "elasticsearch",

 "version" : {

 "number" : "1.4.1",

 "build_hash" : "89d3241d670db65f994242c8e8383b169779e2d4",

 "build_timestamp" : "2014-11-26T15:49:29Z",

 "build_snapshot" : false,

 "lucene_version" : "4.10.2"

 },

 "tagline" : "You Know, for Search"

}

Since the indexes are created as data comes in, and we haven't sent any data,
we expect to see no indexes created yet:

[ec2-user@ip-172-31-26-120 ~]$ curl http://localhost:9200/_cat/indices?v

health status index pri rep docs.count docs.deleted store.size pri.store.
size

All we see is the header with no indexes listed, so let's head over to the collector
server and set up the Flume relay which will write data to Elasticsearch.

Putting It All Together

[122]

Setting up Flume on collector/relay
The Flume configuration on the Flume collector will be compressed Avro coming
in and Elasticsearch going out. Go ahead and log in to the collector server
(172.31.26.205).

Let's start by downloading the Flume binary from the Apache website. Follow the
download link and select a mirror:

[ec2-user@ip-172-31-26-205 ~]$ wget http://apache.arvixe.com/flume/1.5.2/
apache-flume-1.5.2-bin.tar.gz

--2014-12-07 19:50:30-- http://apache.arvixe.com/flume/1.5.2/apache-
flume-1.5.2-bin.tar.gz

Resolving apache.arvixe.com (apache.arvixe.com)... 198.58.87.82

Connecting to apache.arvixe.com (apache.arvixe.com)|198.58.87.82|:80...
connected.

HTTP request sent, awaiting response... 200 OK

Length: 25323459 (24M) [application/x-gzip]

Saving to: 'apache-flume-1.5.2-bin.tar.gz'

100%[==========================>] 25,323,459 8.38MB/s in 2.9s

2014-12-07 19:50:33 (8.38 MB/s) - 'apache-flume-1.5.2-bin.tar.gz' saved
[25323459/25323459]

Next, expand and change directories:

[ec2-user@ip-172-31-26-205 ~]$ tar -zxf apache-flume-1.5.2-bin.tar.gz

[ec2-user@ip-172-31-26-205 ~]$ cd apache-flume-1.5.2-bin

[ec2-user@ip-172-31-26-205 apache-flume-1.5.2-bin]$

Create the configuration file, called collector.conf, in Flume's configuration
directory using your favorite editor:

[ec2-user@ip-172-31-18-146 apache-flume-1.5.2-bin]$ cat conf/collector.
conf

collector.sources = av

collector.channels = m1

collector.sinks = es

collector.sources.av.type=avro

collector.sources.av.bind=0.0.0.0

Chapter 7

[123]

collector.sources.av.port=12345

collector.sources.av.compression-type=deflate

collector.sources.av.channels=m1

collector.channels.m1.type=memory

collector.channels.m1.capacity=10000

collector.sinks.es.type=org.apache.flume.sink.elasticsearch.
ElasticSearchSink

collector.sinks.es.channel=m1

collector.sinks.es.hostNames=172.31.26.120

Here, you can see that we are using a simple memory channel configured with a
capacity of 10,000 events.

The source is configured to accept compressed Avro on port 12345 and pass it to our
memory channel.

Finally, the sink is configured to write to Elasticsearch on the server we just set up
at the 172.31.26.120 private IP. We are using the default settings, which means
it'll write to the index named flume-YYYY-MM-DD with the log type.

Let's try running the Flume agent:

[ec2-user@ip-172-31-26-205 apache-flume-1.5.2-bin]$./bin/flume-
ng agent -n collector -c conf -f conf/collector.conf -Dflume.root.
logger=INFO,console

You'll see an exception in the log, including something like this:

2014-12-07 20:00:13,184 (conf-file-poller-0) [ERROR - org.apache.flume.
node.PollingPropertiesFileConfigurationProvider$FileWatcherRunnable.run
(PollingPropertiesFileConfigurationProvider.java:145)] Failed to start
agent because dependencies were not found in classpath. Error follows.

java.lang.NoClassDefFoundError: org/elasticsearch/common/io/BytesStream

The Flume agent can't find the Elasticsearch classes. Remember that these are
not packaged with Flume, as the libraries need to be compatible with the version
of Elasticsearch you are running. Looking back at the Elasticsearch server, we
can get an idea of what we need. Remember that this list includes many runtime
server dependencies, so it is probably more than what you'll need for a functional
Elasticsearch client:

Putting It All Together

[124]

[ec2-user@ip-172-31-26-120 ~]$ rpm -qil elasticsearch | grep jar

/usr/share/elasticsearch/lib/elasticsearch-1.4.1.jar

/usr/share/elasticsearch/lib/groovy-all-2.3.2.jar

/usr/share/elasticsearch/lib/jna-4.1.0.jar

/usr/share/elasticsearch/lib/jts-1.13.jar

/usr/share/elasticsearch/lib/log4j-1.2.17.jar

/usr/share/elasticsearch/lib/lucene-analyzers-common-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-core-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-expressions-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-grouping-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-highlighter-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-join-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-memory-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-misc-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-queries-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-queryparser-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-sandbox-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-spatial-4.10.2.jar

/usr/share/elasticsearch/lib/lucene-suggest-4.10.2.jar

/usr/share/elasticsearch/lib/sigar/sigar-1.6.4.jar

/usr/share/elasticsearch/lib/spatial4j-0.4.1.jar

Really, you only need the elasticsearch.jar file and its dependencies, but we
are going to be lazy and just download the RPM again in the collector machine,
and copy the JAR files to Flume:

[ec2-user@ip-172-31-26-205 ~]$ wget https://download.elasticsearch.org/
elasticsearch/elasticsearch/elasticsearch-1.4.1.noarch.rpm

--2014-12-07 20:03:38-- https://download.elasticsearch.org/
elasticsearch/elasticsearch/elasticsearch-1.4.1.noarch.rpm

Resolving download.elasticsearch.org (download.elasticsearch.org)...
54.225.133.195, 54.243.77.158, 107.22.222.16, ...

Connecting to download.elasticsearch.org (download.elasticsearch.
org)|54.225.133.195|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 26326154 (25M) [application/x-redhat-package-manager]

Saving to: 'elasticsearch-1.4.1.noarch.rpm'

Chapter 7

[125]

100%[==
==>] 26,326,154 9.70MB/s in 2.6s

2014-12-07 20:03:41 (9.70 MB/s) - 'elasticsearch-1.4.1.noarch.rpm' saved
[26326154/26326154]

[ec2-user@ip-172-31-26-205 ~]$ sudo rpm -ivh elasticsearch-1.4.1.noarch.
rpm

Preparing... #################################
[100%]

Updating / installing...

 1:elasticsearch-1.4.1-1 #################################
[100%]

NOT starting on installation, please execute the following statements
to configure elasticsearch to start automatically using chkconfig

 sudo /sbin/chkconfig --add elasticsearch

You can start elasticsearch by executing

 sudo service elasticsearch start

This time we will not configure the service to start. Instead, we'll copy the JAR files
we need to Flume's plugins directory architecture, which we learned about in the
previous chapter:

[ec2-user@ip-172-31-26-205 ~]$ cd apache-flume-1.5.2-bin

[ec2-user@ip-172-31-26-205 apache-flume-1.5.2-bin]$ mkdir -p plugins.d/
elasticsearch/libext

[ec2-user@ip-172-31-26-205 apache-flume-1.5.2-bin]$ cp /usr/share/
elasticsearch/lib/*.jar plugins.d/elasticsearch/libext/

Now try running the Flume agent again:

[ec2-user@ip-172-31-26-205 apache-flume-1.5.2-bin]$./bin/flume-
ng agent -n collector -c conf -f conf/collector.conf -Dflume.root.
logger=INFO,console

No exceptions this time around, but still no data. Let's go back to the web server
machine and set up the final Flume agent.

Putting It All Together

[126]

Setting up Flume on the client
On the first server, the web server, let's download the Flume binaries again and
expand the package:

[ec2-user@ip-172-31-18-146 ~]$ wget http://apache.arvixe.com/flume/1.5.2/
apache-flume-1.5.2-bin.tar.gz

--2014-12-07 20:12:53-- http://apache.arvixe.com/flume/1.5.2/apache-
flume-1.5.2-bin.tar.gz

Resolving apache.arvixe.com (apache.arvixe.com)... 198.58.87.82

Connecting to apache.arvixe.com (apache.arvixe.com)|198.58.87.82|:80...
connected.

HTTP request sent, awaiting response... 200 OK

Length: 25323459 (24M) [application/x-gzip]

Saving to: 'apache-flume-1.5.2-bin.tar.gz'

100%[=========================>] 25,323,459 8.13MB/s in 3.0s

2014-12-07 20:12:56 (8.13 MB/s) - 'apache-flume-1.5.2-bin.tar.gz' saved
[25323459/25323459]

[ec2-user@ip-172-31-18-146 ~]$ tar -zxf apache-flume-1.5.2-bin.tar.gz

[ec2-user@ip-172-31-18-146 ~]$ cd apache-flume-1.5.2-bin

This time, our Flume configuration takes the spool directory we set up before, with
logrotate as input, and it needs to write compressed Avro as the collector server.
Open an editor and create the client.conf file using your favorite editor:

[ec2-user@ip-172-31-18-146 apache-flume-1.5.2-bin]$ cat conf/client.conf

client.sources = sd

client.channels = m1

client.sinks = av

client.sources.sd.type=spooldir

client.sources.sd.spoolDir=/home/ec2-user/spool

client.sources.sd.deletePolicy=immediate

client.sources.sd.ignorePattern=access.log.1$

client.sources.sd.channels=m1

client.channels.m1.type=memory

Chapter 7

[127]

client.channels.m1.capacity=10000

client.sinks.av.type=avro

client.sinks.av.hostname=172.31.26.205

client.sinks.av.port=12345

client.sinks.av.compression-type=deflate

client.sinks.av.channel=m1

Again, for simplicity, we are using a memory channel with 10,000-record capacity.

For the source, we configure the Spooling Directory Source with /home/ec2-user/
spool as the input. Additionally, we configure the deletion policy to remove the
files after sending is complete. This is also where we set up the exclusion rule for
the access.log.1 filename pattern mentioned earlier. Note the dollar sign at the
end of the filename, denoting the end of the line. Without this, the exclusion
pattern would also exclude valid files, such as access.log.1417975373.

Finally, an Avro sink is configured to point at the collector's private IP and port
12345. Additionally, we set the compression so that it matches the receiving
Avro source's settings.

Now let's try running the agent:

[ec2-user@ip-172-31-18-146 apache-flume-1.5.2-bin]$./bin/flume-ng agent
-n client -c conf -f conf/client.conf -Dflume.root.logger=INFO,console

No exceptions! But more importantly, I see the log files in the spool directory being
processed and deleted:

2014-12-07 20:59:04,041 (pool-4-thread-1) [INFO - org.apache.flume.
client.avro.ReliableSpoolingFileEventReader.deleteCurrentFile(ReliableSp
oolingFileEventReader.java:390)] Preparing to delete file /home/ec2-user/
spool/access.log.1417976401

2014-12-07 20:59:05,319 (pool-4-thread-1) [INFO - org.apache.flume.
client.avro.ReliableSpoolingFileEventReader.deleteCurrentFile(ReliableSp
oolingFileEventReader.java:390)] Preparing to delete file /home/ec2-user/
spool/access.log.1417976701

2014-12-07 20:59:06,245 (pool-4-thread-1) [INFO - org.apache.flume.
client.avro.ReliableSpoolingFileEventReader.deleteCurrentFile(ReliableSp
oolingFileEventReader.java:390)] Preparing to delete file /home/ec2-user/
spool/access.log.1417977001

2014-12-07 20:59:06,245 (pool-4-thread-1) [INFO - org.apache.
flume.source.SpoolDirectorySource$SpoolDirectoryRunnable.
run(SpoolDirectorySource.java:254)] Spooling Directory Source runner has
shutdown.

Putting It All Together

[128]

2014-12-07 20:59:06,746 (pool-4-thread-1) [INFO - org.apache.
flume.source.SpoolDirectorySource$SpoolDirectoryRunnable.
run(SpoolDirectorySource.java:254)] Spooling Directory Source runner has
shutdown.

Once all the files have been processed, the last lines are repeated every 500
milliseconds. This is a known bug in Flume (https://issues.apache.org/jira/
browse/FLUME-2385). It has already been fixed and is slated for the 1.6.0 release, so
be sure to set up log rotation on your Flume agent and clean up this mess before you
run out of disk space.

On the collector box, we see writes occurring to Elasticsearch:

2014-12-07 22:10:03,694 (SinkRunner-PollingRunner-DefaultSinkProcessor)
[INFO - org.apache.flume.sink.elasticsearch.client.
ElasticSearchTransportClient.execute(ElasticSearchTransportClient.
java:181)] Sending bulk to elasticsearch cluster

Querying the Elasticsearch REST API, we can see an index with records:

[ec2-user@ip-172-31-26-120 ~]$ curl http://localhost:9200/_cat/indices?v

health status index pri rep docs.count docs.deleted store.size
pri.store.size

yellow open flume-2014-12-07 5 1 32102 0 1.3mb
1.3mb

Let's read the first 5 records:

[ec2-user@ip-172-31-26-120 elasticsearch]$ curl -XGET 'http://
localhost:9200/flume-2014-12-07/_search?pretty=true&q=*.*&size=5'

{

 "took" : 26,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 32102,

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "flume-2014-12-07",

 "_type" : "log",

https://issues.apache.org/jira/browse/FLUME-2385
https://issues.apache.org/jira/browse/FLUME-2385

Chapter 7

[129]

 "_id" : "AUomjGVVbObD75ecNqJg",

 "_score" : 1.0,

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:01:47
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@fields":{}}

 }, {

 "_index" : "flume-2014-12-07",

 "_type" : "log",

 "_id" : "AUomjGVWbObD75ecNqJj",

 "_score" : 1.0,

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:01:47
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@fields":{}}

 }, {

 "_index" : "flume-2014-12-07",

 "_type" : "log",

 "_id" : "AUomjGVWbObD75ecNqJo",

 "_score" : 1.0,

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:01:47
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@fields":{}}

 }, {

 "_index" : "flume-2014-12-07",

 "_type" : "log",

 "_id" : "AUomjGVWbObD75ecNqJt",

 "_score" : 1.0,

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:01:47
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@fields":{}}

 }, {

 "_index" : "flume-2014-12-07",

 "_type" : "log",

 "_id" : "AUomjGVWbObD75ecNqJy",

 "_score" : 1.0,

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:01:47
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@fields":{}}

 }]

 }

}

Putting It All Together

[130]

As you can see, the log lines are in there under the @message field, and they can
now be searched. However, we can do better. Let's break that message down into
searchable fields.

Creating more search fields with an
interceptor
Let's borrow some code from what we covered earlier in this book to extract some
Flume headers from this common log format, knowing that all Flume headers will
become fields in Elasticsearch. Since we are creating fields to be searched by in
Elasticsearch, I'm going to add them to the collector's configuration rather than
the web server's Flume agent.

Change the agent configuration on the collector to include a Regular Expression
Extractor interceptor:

[ec2-user@ip-172-31-18-146 apache-flume-1.5.2-bin]$ cat conf/collector.
conf

collector.sources = av

collector.channels = m1

collector.sinks = es

collector.sources.av.type=avro

collector.sources.av.bind=0.0.0.0

collector.sources.av.port=12345

collector.sources.av.compression-type=deflate

collector.sources.av.channels=m1

collector.sources.av.interceptors=e1

collector.sources.av.interceptors.e1.type=regex_extractor

collector.sources.av.interceptors.e1.regex=^([\\d.]+) \\S+ \\S+ \\
[([\\w:/]+\\s[+\\-]\\d{4})\\] \"(.+?)\" (\\d{3}) (\\d+)

collector.sources.av.interceptors.e1.serializers=ip dt url sc bc

collector.sources.av.interceptors.e1.serializers.ip.name=source

collector.sources.av.interceptors.e1.serializers.dt.type=org.apache.
flume.interceptor.RegexExtractorInterceptorMillisSerializer

collector.sources.av.interceptors.e1.serializers.dt.pattern=dd/MMM/
yyyy:dd:HH:mm:ss Z

collector.sources.av.interceptors.e1.serializers.dt.name=timestamp

collector.sources.av.interceptors.e1.serializers.url.name=http_request

Chapter 7

[131]

collector.sources.av.interceptors.e1.serializers.sc.name=status_code

collector.sources.av.interceptors.e1.serializers.bc.name=bytes_xfered

collector.channels.m1.type=memory

collector.channels.m1.capacity=10000

collector.sinks.es.type=org.apache.flume.sink.elasticsearch.
ElasticSearchSink

collector.sinks.es.channel=m1

collector.sinks.es.hostNames=172.31.26.120

To follow the Logstash convention, I've renamed the hostname header to source.
Now, to make the new format easy to find, I'm going to delete the existing index:

[ec2-user@ip-172-31-26-120 ~]$ curl -XDELETE 'http://localhost:9200/
flume-2014-12-07/'

{"acknowledged":true}

[ec2-user@ip-172-31-26-120 ~]$ curl -XGET 'http://localhost:9200/
flume-2014-12-07/_search?pretty=true&q=*.*&size=5'

{

 "error" : "IndexMissingException[[flume-2014-12-07] missing]",

 "status" : 404

}

Next, I create more traffic on my web server and wait for it to appear at the other
end. Then I query some records to see what it looks like:

[ec2-user@ip-172-31-26-120 ~]$ curl -XGET 'http://localhost:9200/
flume-2014-12-07/_search?pretty=true&q=*.*&size=5'

{

 "took" : 95,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 12083,

Putting It All Together

[132]

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "flume-2014-12-07",

 "_type" : "log",

 "_id" : "AUomq4FnbObD75ecNx_H",

 "_score" : 1.0,

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:13:15
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@timestamp":"2014-
12-07T18:13:15.000Z","@source":"207.222.127.224","@fields":{"timestamp"
:"1417975995000","status_code":"200","source":"207.222.127.224","http_
request":"GET / HTTP/1.1","bytes_xfered":"3770"}}

 }, {

 "_index" : "flume-2014-12-07",

 "_type" : "log",

 "_id" : "AUomq4FnbObD75ecNx_M",

 "_score" : 1.0,

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:13:16
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@timestamp":"2014-
12-07T18:13:16.000Z","@source":"207.222.127.224","@fields":{"timestamp"
:"1417975996000","status_code":"200","source":"207.222.127.224","http_
request":"GET / HTTP/1.1","bytes_xfered":"3770"}}

 }, {

 "_index" : "flume-2014-12-07",

 "_type" : "log",

 "_id" : "AUomq4FnbObD75ecNx_R",

 "_score" : 1.0,

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:13:16
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@timestamp":"2014-
12-07T18:13:16.000Z","@source":"207.222.127.224","@fields":{"timestamp"
:"1417975996000","status_code":"200","source":"207.222.127.224","http_
request":"GET / HTTP/1.1","bytes_xfered":"3770"}}

 }, {

 "_index" : "flume-2014-12-07",

 "_type" : "log",

 "_id" : "AUomq4FnbObD75ecNx_W",

 "_score" : 1.0,

Chapter 7

[133]

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:13:16
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@timestamp":"2014-
12-07T18:13:16.000Z","@source":"207.222.127.224","@fields":{"timestamp"
:"1417975996000","status_code":"200","source":"207.222.127.224","http_
request":"GET / HTTP/1.1","bytes_xfered":"3770"}}

 }, {

 "_index" : "flume-2014-12-07",

 "_type" : "log",

 "_id" : "AUomq4FnbObD75ecNx_a",

 "_score" : 1.0,

 "_source":{"@message":"207.222.127.224 - - [07/Dec/2014:18:13:16
+0000] \"GET / HTTP/1.1\" 200 3770 \"-\" \"-\" \"-\"","@timestamp":"2014-
12-07T18:13:16.000Z","@source":"207.222.127.224","@fields":{"timestamp"
:"1417975996000","status_code":"200","source":"207.222.127.224","http_
request":"GET / HTTP/1.1","bytes_xfered":"3770"}}

 }]

 }

}

As you can see, we now have additional fields that we can search by. Additionally,
you can see that Elasticsearch has taken our millisecond-based timestamp field and
created its own @timestamp field in ISO-8601 format.

Now we can do some more interesting queries such as finding out how many
successful (status 200) pages we saw:

[ec2-user@ip-172-31-26-120 elasticsearch]$ curl -XGET 'http://
localhost:9200/flume-2014-12-07/_count' -d '{"query":{"term":{"status_
code":"200"}}}'

{"count":46018,"_shards":{"total":5,"successful":5,"failed":0}}

Putting It All Together

[134]

Setting up a better user interface – Kibana
While it appears as if we are done, there is one more thing we should do. The data
is all there, but you need to be an expert in querying Elasticsearch to make good
use of the information. After all, if the data is difficult to consume and gets ignored,
then why bother collecting it at all? What you really need is a nice, searchable web
interface that humans with non-technical backgrounds can use. For this, we are
going to set up Kibana. In a nutshell, Kibana is a web application that runs as a
dynamic HTML page on your browser, making calls for data to Elasticsearch when
necessary. The result is an interactive web interface that doesn't require you to learn
the details of the Elasticsearch query API. This is not the only option available to
you; it is just what I'm using in this example. Let's download Kibana 3 from the
Elasticsearch website, and install this on the same server (although you could
easily serve this from another HTTP server):

[ec2-user@ip-172-31-26-120 ~]$ wget https://download.elasticsearch.org/
kibana/kibana/kibana-3.1.2.tar.gz

--2014-12-07 18:31:16-- https://download.elasticsearch.org/kibana/
kibana/kibana-3.1.2.tar.gz

Resolving download.elasticsearch.org (download.elasticsearch.org)...
54.225.133.195, 54.243.77.158, 107.22.222.16, ...

Connecting to download.elasticsearch.org (download.elasticsearch.
org)|54.225.133.195|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1074306 (1.0M) [application/octet-stream]

Saving to: 'kibana-3.1.2.tar.gz'

100%[==
==>] 1,074,306 1.33MB/s in 0.8s

2014-12-07 18:31:17 (1.33 MB/s) - 'kibana-3.1.2.tar.gz' saved
[1074306/1074306]

[ec2-user@ip-172-31-26-120 ~]$ tar -zxf kibana-3.1.2.tar.gz

[ec2-user@ip-172-31-26-120 ~]$ cd kibana-3.1.2

Chapter 7

[135]

At the time of writing this book, a newer version of Kibana (Kibana 4)
is in beta. These instructions may be outdated by the time this book is
released, but rest assured that somewhere in the Kibana setup, you can
edit a configuration file to point to your Elasticsearch server. I have not
tried out the newer version yet, but there is a good overview of it on
the Elasticsearch blog at http://www.elasticsearch.org/blog/
kibana-4-beta-3-now-more-filtery.

Open the config.js file to edit the line with the elasticsearch key. This needs to
be the URL of the public name or IP of the Elasticsearch API. For our example, this
line should look as shown here:

elasticsearch: 'http://ec2-54-148-230-252.us-west-2.compute.amazonaws.
com:9200',

Now we need to provide this directory with a web browser. Let's download and
install Nginx again:

[ec2-user@ip-172-31-26-120 ~]$ sudo yum install nginx

By default, the root directory is /usr/share/nginx/html. We can change this
configuration in Nginx, but to make things easy, let's just create a symbolic link to
point to the right location. First, move the original path out of the way by renaming it:

[ec2-user@ip-172-31-26-120 ~]$ sudo mv /usr/share/nginx/html /usr/share/
nginx/html.dist

Next, link the configured Kibana directory as the new web root:

[ec2-user@ip-172-31-26-120 ~]$ sudo ln -s ~/kibana-3.1.2 /usr/share/
nginx/html

Finally, start the web server:

[ec2-user@ip-172-31-26-120 ~]$ sudo /etc/init.d/nginx start

Starting nginx: [OK]

http://www.elasticsearch.org/blog/kibana-4-beta-3-now-more-filtery
http://www.elasticsearch.org/blog/kibana-4-beta-3-now-more-filtery

Putting It All Together

[136]

From your computer, go to http://54.148.230.252/. If you see this page, it means
you may have made a mistake in your Kibana configuration:

http://54.148.230.252/

Chapter 7

[137]

This error page means your web browser can't connect to Elasticsearch. You may
need to clear your browser cache if you fixed the configuration, as web pages are
typically cached locally for some period of time. If you got it right, the screen
should look like this:

Putting It All Together

[138]

Go ahead and select Sample Dashboard, the first option. You should see something
like what is shown in the next screenshot. This includes some of the data we
ingested, record counts in the center, and the filtering fields in the left-hand margin.

Chapter 7

[139]

I'm not going to claim to be a Kibana expert (I'm far from that), so I'll leave further
customization of this to you. Use this as a base to go back and make additional
modifications to the data to make it easier to consume, search, or filter. To do that,
you'll probably need to get more familiar with how Elasticsearch works, but that's
okay because knowledge isn't a bad thing. A copious amount of documentation is
waiting for you at http://www.elasticsearch.org/guide/en/kibana/current/
index.html.

At this point, we have completed an end-to-end implementation of data from a web
server streamed in a near real-time fashion to a web-based tool for searching. Since
both the source and target formats were dictated by others, we used an interceptor to
transform the data en route. This use case is very good for short-term troubleshooting,
but it's clearly not very "Hadoopy" since we have yet to use core Hadoop.

Archiving to HDFS
When people speak of Hadoop, they usually refer to storing lots of data for a long
time, usually in HDFS, so more interesting data science or machine learning can be
done later. Let's extend our use case by splitting the data flow at the collector to store
an extra copy in HDFS for later use.

So, back in Amazon AWS, I start a fourth server to run Hadoop. If you plan on doing
all your work in Hadoop, you'll probably want to write this data to S3, but for this
example, let's stick with HDFS. Now our server diagram looks like this:

http://www.elasticsearch.org/guide/en/kibana/current/index.html
http://www.elasticsearch.org/guide/en/kibana/current/index.html

Putting It All Together

[140]

I used Cloudera's one-line installation instructions to speed up the setup. It's
instructions can be found at http://www.cloudera.com/content/cloudera/en/
documentation/core/latest/topics/cdh_qs_mrv1_pseudo.html.

Since the Amazon AMI is compatible with Enterprise Linux 6, I selected the EL6
RPM Repository and imported the corresponding GPG key:

[ec2-user@ip-172-31-7-175 ~]$ sudo rpm -ivh http://archive.cloudera.com/
cdh5/one-click-install/redhat/6/x86_64/cloudera-cdh-5-0.x86_64.rpm

Retrieving http://archive.cloudera.com/cdh5/one-click-install/redhat/6/
x86_64/cloudera-cdh-5-0.x86_64.rpm

Preparing... #################################
[100%]

Updating / installing...

 1:cloudera-cdh-5-0 #################################
[100%]

[ec2-user@ip-172-31-7-175 ~]$ sudo rpm --import http://archive.cloudera.
com/cdh5/redhat/6/x86_64/cdh/RPM-GPG-KEY-cloudera

Next, I installed the pseudo-distributed configuration to run in a single-node
Hadoop cluster:

[ec2-user@ip-172-31-7-175 ~]$ sudo yum install -y hadoop-0.20-conf-pseudo

This might take a while as it downloads all the Cloudera Hadoop distribution
dependencies.

Since this configuration is for single-node use, we need to adjust the fs.defaultFS
property in /etc/hadoop/conf/core-site.xml to advertise our private IP instead
of localhost. If we don't do this, the namenode process will bind to 127.0.0.1, and
other servers, such as our collector's Flume agent, will not be able to contact it:

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://172.31.7.175:8020</value>
</property>

Next, we format the new HDFS volume and start the HDFS daemon (since that is all
we need for this example):

[ec2-user@ip-172-31-7-175 ~]$ sudo -u hdfs hdfs namenode -format

[ec2-user@ip-172-31-7-175 ~]$ for x in 'cd /etc/init.d ; ls hadoop-
hdfs-*' ; do sudo service $x start ; done

starting datanode, logging to /var/log/hadoop-hdfs/hadoop-hdfs-datanode-
ip-172-31-7-175.out

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_qs_mrv1_pseudo.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_qs_mrv1_pseudo.html

Chapter 7

[141]

Started Hadoop datanode (hadoop-hdfs-datanode): [OK]

starting namenode, logging to /var/log/hadoop-hdfs/hadoop-hdfs-namenode-
ip-172-31-7-175.out

Started Hadoop namenode: [OK]

starting secondarynamenode, logging to /var/log/hadoop-hdfs/hadoop-hdfs-
secondarynamenode-ip-172-31-7-175.out

Started Hadoop secondarynamenode: [OK]

[ec2-user@ip-172-31-7-175 ~]$ hadoop fs -df

Filesystem Size Used Available Use%

hdfs://172.31.7.175:8020 8318783488 24576 6661824512 0%

Now that HDFS is running, let's go back to the collector box configuration to create
a second channel and an HDFS Sink by adding these lines:

collector.channels.h1.type=memory
collector.channels.h1.capacity=10000
collector.sinks.hadoop.type=hdfs
collector.sinks.hadoop.channel=h1
collector.sinks.hadoop.hdfs.path=hdfs://172.31.7.175/access_
logs/%Y/%m/%d/%H
collector.sinks.hadoop.hdfs.filePrefix=access
collector.sinks.hadoop.hdfs.rollInterval=60
collector.sinks.hadoop.hdfs.rollSize=0
collector.sinks.hadoop.hdfs.rollCount=0

Then we modify the top-level channels and sinks keys:

collector.channels = m1 h1
collector.sinks = es hadoop

As you can see, I've gone with a simple memory channel again, but feel free to use a
durable file channel if you need it. For the HDFS configuration, I'll be using a dated
file path from the /access_logs root directory with a 60-second rotation regardless
of size. We are not altering the source just yet, so don't worry.

If we attempt to start the collector now, we see this exception:

java.lang.NoClassDefFoundError: org/apache/hadoop/io/
SequenceFile$CompressionType

Remember that for Apache Flume to speak to HDFS, we need compatible HDFS
classes and dependencies for the version of Hadoop we are speaking to. Let's
get some help from our friends at Cloudera and install the Hadoop client RPM
(output removed to save paper):

Putting It All Together

[142]

[ec2-user@ip-172-31-26-205 ~]$ sudo rpm -ivh http://archive.cloudera.com/
cdh5/one-click-install/redhat/6/x86_64/cloudera-cdh-5-0.x86_64.rpm

[ec2-user@ip-172-31-26-205 ~]$ sudo rpm --import http://archive.cloudera.
com/cdh5/redhat/6/x86_64/cdh/RPM-GPG-KEY-cloudera

[ec2-user@ip-172-31-26-205 ~]$ sudo yum install hadoop-client

Test whether RPM works by creating the destination directory for our data. We'll
also set permissions to match the account we'll be running the Flume agent under
(ec2-user in this case):

[ec2-user@ip-172-31-26-205 ~]$ sudo -u hdfs hadoop fs -mkdir
hdfs://172.31.7.175/access_logs

[ec2-user@ip-172-31-26-205 ~]$ sudo -u hdfs hadoop fs -chown ec2-
user:ec2-user hdfs://172.31.7.175/access_logs

[ec2-user@ip-172-31-26-205 ~]$ hadoop fs -ls hdfs://172.31.7.175/

Found 1 items

drwxr-xr-x - ec2-user ec2-user 0 2014-12-11 04:35
hdfs://172.31.7.175/access_logs

Now, if we run the collector Flume agent, we see no exceptions due to missing HDFS
classes. The Flume startup script detects that we have a local Hadoop installation,
and appends its class path to its own.

Finally, we can go back to the Flume configuration file, and split the incoming data
at the source by listing both channels on the source as destination channels:

collector.sources.av.channels=m1 h1

By default, a replicating channel selector is used. This is what we want, so that no
further configuration is needed. Save the configuration file and restart the Flume agent.

When data is flowing, you should see the expected HDFS activity in the Flume
collector agent's logs:

2014-12-11 05:05:04,141 (SinkRunner-PollingRunner-DefaultSinkProcessor)
[INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.
java:261)] Creating hdfs://172.31.7.175/access_logs/2014/12/11/05/
access.1418274302083.tmp

You should also see data appearing in HDFS:

[ec2-user@ip-172-31-7-175 ~]$ ls -R /access_logs

drwxr-xr-x - ec2-user ec2-user 0 2014-12-11 05:05 /access_
logs/2014

drwxr-xr-x - ec2-user ec2-user 0 2014-12-11 05:05 /access_
logs/2014/12

Chapter 7

[143]

drwxr-xr-x - ec2-user ec2-user 0 2014-12-11 05:05 /access_
logs/2014/12/11

drwxr-xr-x - ec2-user ec2-user 0 2014-12-11 05:06 /access_
logs/2014/12/11/05

-rw-r--r-- 3 ec2-user ec2-user 10486 2014-12-11 05:05 /access_
logs/2014/12/11/05/access.1418274302082

-rw-r--r-- 3 ec2-user ec2-user 10486 2014-12-11 05:05 /access_
logs/2014/12/11/05/access.1418274302083

-rw-r--r-- 3 ec2-user ec2-user 6429 2014-12-11 05:06 /access_
logs/2014/12/11/05/access.1418274302084

If you run this command from a server other than the Hadoop node, you'll need
to specify the full HDFS URI (hdfs://172.31.7.175/access_logs) or set the
default.FS property in the core-site.xml configuration file in Hadoop.

In retrospect, I probably should have configured the default.FS
property on any installed Hadoop client that will use HDFS to save
myself a lot of typing. Live and learn!

Like the preceding Elasticsearch implementation, you can now use this example as a
base end-to-end configuration for HDFS. The next step will be to go back and modify
the format, compression, and so on, on the HDFS Sink to better match what you'll do
with the data later.

Summary
In this chapter, we iteratively assembled an end-to-end data flow. We started by
setting up an Nginx web server to create access logs. We also configured cron
to execute a logrotate configuration periodically to safely rotate old logs to
a spooling directory.

Next, we installed and configured a single-node Elasticsearch server and tested
some insertions and deletions. Then we configured a Flume client to read input
from our spooling directory filled with web logs, and relay them to a Flume
collector using compressed Avro serialization. The collector then relayed the
incoming data to our Elasticsearch server.

Once we saw data flowing from one end to another, we set up a single-node HDFS
server and modified our collector configuration to split the input data feed and relay
a copy of the message to HDFS, simulating archival storage. Finally, we set up a
Kibana UI in front of our Elasticsearch instance to provide an easy-search function
for nontechnical consumers.

In the next chapter, we will cover monitoring Flume data flows using Ganglia.

Monitoring Flume
The user guide for Flume states:

Monitoring in Flume is still a work in progress. Changes can happen very often.
Several Flume components report metrics to the JMX platform MBean server.
These metrics can be queried using Jconsole.

While JMX is fine for casual browsing of metric values, the number of eyeballs
looking at Jconsole doesn't scale when you have hundreds or even thousands of
servers sending data all over the place. What you need is a way to watch everything
at once. However, what are the important things to look for? That is a very difficult
question, but I'll try and cover several of the items that are important, as we cover
monitoring options in this chapter.

Monitoring the agent process
The most obvious type of monitoring you'll want to perform is Flume agent process
monitoring, that is, making sure the agent is still running. There are many products
that do this kind of process monitoring, so there is no way we can cover them all. If
you work at a company of any reasonable size, chances are there is already a system
in place for this. If this is the case, do not go off and build your own. The last thing
operations wants is yet another screen to watch 24/7.

Monit
If you do not already have something in place, one freemium option is Monit (http://
mmonit.com/monit/). The developers of Monit have a paid version that provides more
bells and whistles you may want to consider. Even in the free form, it can provide you
with a way to check whether the Flume agent is running, restart it if it isn't, and send
you an e-mail when this happens so that you can look into why it died.

http://mmonit.com/monit/
http://mmonit.com/monit/

Monitoring Flume

[146]

Monit does much more, but this functionality is what we will cover here. If you are
smart, and I know you are, you will add checks to the disk, CPU, and memory usage
as a minimum, in addition to what we cover in this chapter.

Nagios
Another option for Flume agent process monitoring is Nagios (http://www.nagios.
org/). Like Monit, you can configure it to watch your Flume agents and alert you
via a web UI, e-mail, or an SNMP trap. That said, it doesn't have restart capabilities.
The community is quite strong, and there are many plugins for other available
applications.

My company uses this to check the availability of Hadoop web UIs. While not
a complete picture of health, it does provide more information to the overall
monitoring of our Hadoop ecosystem.

Again, if you already have tools in place at your company, see whether you can
reuse them before bringing in another tool.

Monitoring performance metrics
Now that we have covered some options for process monitoring, how do you
know whether your application is actually doing the work you think it is? On
many occasions, I've seen a stuck syslog-ng process that appears to be running,
but it just wasn't sending any data. I'm not picking on syslog-ng specifically; all
software does this when conditions that are not designed for occur.

When talking about Flume data flows, you need to monitor the following:

• Data entering sources is within expected rates
• Data isn't overflowing your channels
• Data is exiting sinks at expected rates

Flume has a pluggable monitoring framework, but as mentioned at the beginning
of the chapter, it is still very much a work in progress. This does not mean you
shouldn't use it, as that would be foolish. It means you'll want to prepare extra
testing and integration time anytime you upgrade.

While not covered in the Flume documentation, it is common to enable
JMX in your Flume JVM (http://bit.ly/javajmx) and use the
Nagios JMX plugin (http://bit.ly/nagiosjmx) to alert you about
performance abnormalities in your Flume agents.

http://www.nagios.org/
http://www.nagios.org/
http://bit.ly/javajmx
http://bit.ly/nagiosjmx

Chapter 8

[147]

Ganglia
One of the available monitoring options to watch Flume internal metrics is Ganglia
integration. Ganglia (http://ganglia.sourceforge.net/) is an open source
monitoring tool that is used to collect metrics and display graphs, and it can be
tiered to handle very large installations. To send your Flume metrics to your
Ganglia cluster, you need to pass some properties to your agent at startup time:

Java property Value Description
flume.monitoring.type ganglia Set to ganglia
flume.monitoring.hosts host1:port1,

host2:port2
A comma-separated list of
host:port pairs for your
gmond process(es)

flume.monitoring.pollFrequency 60 The number of seconds
between sending of data
(default 60 seconds)

flume.monitoring.isGanglia3 false Set to true if using older
Ganglia 3 protocol. The
default process is to send
data using v3.1 protocol.

Look at each instance of gmond within the same network broadcast domain (as
reachability is based on multicast packets), and find the udp_recv_channel block
in gmond.conf. Let's say I had two nearby servers with these two corresponding
configuration blocks:

udp_recv_channel {
 mcast_join = 239.2.14.22
 port = 8649
 bind = 239.2.14.22
 retry_bind = true
}
udp_recv_channel {
 mcast_join = 239.2.11.71
 port = 8649
 bind = 239.2.11.71
 retry_bind = true
}

In this case the IP and port are 239.2.14.22/8649 for the first server and
239.2.11.71/8649 for the second, leading to these startup properties:

-Dflume.monitoring.type=ganglia
-Dflume.monitoring.hosts=239.2.14.22:8649,239.2.11.71:8649

http://ganglia.sourceforge.net/

Monitoring Flume

[148]

Here, I am using defaults for the poll interval, and I'm also using the newer
Ganglia wire protocol.

While receiving data via TCP is supported in Ganglia, the current
Flume/Ganglia integration only supports sending data using
multicast UDP. If you have a large/complicated network setup,
you'll want to get educated by your network engineers if things
don't work as you expect.

Internal HTTP server
You can configure the Flume agent to start an HTTP server that will output JSON
that can use queries by outside mechanisms. Unlike the Ganglia integration, an
external entity has to call the Flume agent to poll the data. In theory, you can
use Nagios to poll this JSON data and alert on certain conditions, but I have
personally never tried it. Of course, this setup is very useful in development and
testing, especially if you are writing custom Flume components to be sure they are
generating useful metrics. Here is a summary of the Java properties you'll need to
set at the start up of the Flume agent:

Java property Value Description
flume.monitoring.type http The value is set to http
flume.monitoring.port PORT This is the port number to bind

the HTTP server

The URL for metrics will be http://SERVER_OR_IP_OF_AGENT:PORT/metrics.

Let's look at the following Flume configuration:

agent.sources = s1
agent.channels = c1
agent.sinks = k1
agent.sources.s1.type=avro
agent.sources.s1.bind=0.0.0.0
agent.sources.s1.port=12345
agent.sources.s1.channels=c1
agent.channels.c1.type=memory
agent.sinks.k1.type=avro
agent.sinks.k1.hostname=192.168.33.33
agent.sinks.k1.port=9999
agent.sinks.k1.channel=c1

 http://SERVER_OR_IP_OF_AGENT:PORT/metrics

Chapter 8

[149]

Start the Flume agent with these properties:

-Dflume.monitoring.type=http
-Dflume.monitoring.port=44444

Now, when you go to http://SERVER_OR_IP:44444/metrics, you might see
something like this:

{

 "SOURCE.s1":{

 "OpenConnectionCount":"0",

 "AppendBatchAcceptedCount":"0",

 "AppendBatchReceivedCount":"0",

 "Type":"SOURCE",

 "EventAcceptedCount":"0",

 "AppendReceivedCount":"0",

 "StopTime":"0",

 "EventReceivedCount":"0",

 "StartTime":"1365128622891",

 "AppendAcceptedCount":"0"},

 "CHANNEL.c1":{

 "EventPutSuccessCount":"0",

 "ChannelFillPercentage":"0.0",

 "Type":"CHANNEL",

 "StopTime":"0",

 "EventPutAttemptCount":"0",

 "ChannelSize":"0",

 "StartTime":"1365128621890",

 "EventTakeSuccessCount":"0",

 "ChannelCapacity":"100",

 "EventTakeAttemptCount":"0"},

 "SINK.k1":{

 "BatchCompleteCount":"0",

 "ConnectionFailedCount":"4",

 "EventDrainAttemptCount":"0",

 "ConnectionCreatedCount":"0",

 "BatchEmptyCount":"0",

 "Type":"SINK",

 "ConnectionClosedCount":"0",

 "EventDrainSuccessCount":"0",

 "StopTime":"0",

http://SERVER_OR_IP:44444/metrics

Monitoring Flume

[150]

 "StartTime":"1365128622325",

 "BatchUnderflowCount":"0"}

}

As you can see, each source, sink, and channel are broken out separately with their
corresponding metrics. Each type of source, channel, and sink provide their own set
of metric keys, although there is some commonality, so be sure to check what looks
interesting. For instance, this Avro source has OpenConnectionCount, that is, the
number of connected clients (who are most likely sending data in). This may help
you decide whether you have the expected number of clients relying on that data
or, perhaps, too many clients, and you need to start tiering your agents.

Generally speaking, the channel's ChannelSize or ChannelFillPercentage
metrics will give you a good idea whether the data is coming in faster than it is
going out. It will also tell you whether you have it set large enough for maintenance/
outages of your data volume.

Looking at the sink, EventDrainSuccessCount versus EventDrainAttemptCount
will tell you how often output is successful when compared to the times tried. In
this example, I am configuring an Avro sink to a nonexistent target. As you can
see, the ConnectionFailedCount metric is growing, which is a good indicator
of persistent connection problems. Even a growing ConnectionCreatedCount
metric can indicate that connections are dropping and reopening too often.

Really, there are no hard and fast rules besides watching ChannelSize/
ChannelFillPercentage. Each use case will have its own performance profile,
so start small, set up your monitoring, and learn as you go.

Custom monitoring hooks
If you already have a monitoring system, you may want to take the extra effort to
develop a custom monitoring reporting mechanism. You may think this is as simple
as implementing the org.apache.flume.instrumentation.MonitorService
interface. You do need to do this, but looking at the interface, you will only see a
start() and stop() method. Unlike the more obvious interceptor paradigm, the
agent expects that your MonitorService implementation will start/stop a thread
to send data on the expected or configured interval if it is the type to send data to
a receiving service. If you are going to operate a service, such as the HTTP service,
then start/stop would be used to start and stop your listening service. The metrics
themselves are published internally to JMX by the various sources, sinks, channels,
and interceptors using object names that start with org.apache.flume. Your
implementation will need to read these from MBeanServer.

Chapter 8

[151]

The best advice I can give you, should you decide to implement your
own, is to look at the source of two existing implementations (included
in the source download referenced in Chapter 2, A Quick Start Guide
to Flume) and do what they do. To use your monitoring hook, set the
flume.monitoring.type property to the fully qualified class name
of your implementation class. Expect to have to rework any custom
hooks with new Flume versions until the framework matures and
stabilizes.

Summary
In this chapter, we covered monitoring Flume agents both from the process level
and the monitoring of internal metrics (whether it is working).

Monit and Nagios were introduced as open source options for process watching.

Next, we covered the Flume agent internal monitoring metrics with Ganglia and
JSON over HTTP implementations that ship with Apache Flume.

Finally, we covered how to integrate a custom monitoring implementation if
you need to directly integrate to some other tool that's not supported by Flume
by default.

In our final chapter, we will discuss some general considerations for your
Flume deployment.

There Is No Spoon – the
Realities of Real-time

Distributed Data Collection
In this last chapter, I thought we should cover some of the less concrete, random
thoughts I have around data collection into Hadoop. There's no hard science behind
some of this, and you should feel perfectly alright to disagree with me.

While Hadoop is a great tool to consume vast quantities of data, I often think of
a picture of the logjam that occurred in 1886 in the St. Croix River in Minnesota
(http://www.nps.gov/sacn/historyculture/stories.htm). When dealing with
too much data, you want to make sure you don't jam your river. Be sure to take the
previous chapter on monitoring seriously and not just as nice-to-have information.

Transport time versus log time
I had a situation where data was being placed using date patterns in the filename
and/or the path in HDFS didn't match the contents of the directories. The expectation
was that the data in the 2014/12/29 directory path contained all the data for
December 29, 2014. However, the reality was that the date was being pulled from the
transport. It turns out that the version of syslog we were using was rewriting the
header, including the date portion, causing the data to take on the transport time and
not reflect the original time of the record. Usually, the offsets were tiny, just a second
or two, so nobody really took notice. However, one day, one of the relay servers died
and when the data that had got stuck on upstream servers was finally sent, it had the
current time. In this case, it was shifted by a couple of days, causing a significant data
cleanup effort.

http://www.nps.gov/sacn/historyculture/stories.htm

There Is No Spoon – the Realities of Real-time Distributed Data Collection

[154]

Be sure this isn't happening to you if you are placing data by date. Check the date
edge cases to see that they are what you expect, and make sure you test your outage
scenarios before they happen for real in production.

As I mentioned previously, these retransmits due to planned or unplanned
maintenance (or even a tiny network hiccup) will most likely cause duplicate and
out-of-order events to arrive, so be sure to account for this when processing raw
data. There are no single delivery or ordering guarantees in Flume. If you need
that, use a transactional database or distributed transaction log such as Apache
Kafka (http://kafka.apache.org/) instead. Of course, if you are going to use
Kafka, you would probably only use Flume for the final leg of your data path,
with your source consuming events from Kafka (https://github.com/baniuyao/
flume-ng-kafka-source).

Remember that you can always work around duplicates in your data
at query time as long as you can uniquely identify your events from
one another. If you cannot distinguish events easily, you can add a
Universally Unique Identifier (UUID) (http://en.wikipedia.
org/wiki/Universally_unique_identifier) header using the
bundled interceptor, UUIDInterceptor (configuration details are in
the Flume User Guide).

Time zones are evil
In case you missed my bias against using local time in Chapter 4, Sinks and Sink
Processors, I'll repeat it here a little stronger: time zones are evil—evil like Dr. Evil
(http://en.wikipedia.org/wiki/Dr._Evil)—and let's not forget about his
Mini Me counterpart, (http://en.wikipedia.org/wiki/Mini-Me)—Daylight
Savings Time.

We live in a global world now. You are pulling data from all over the place into
your Hadoop cluster. You may even have multiple data centers in different parts
of the country (or the world). The last thing you want to be doing while trying
to analyze your data is to deal with askew data. Daylight Savings Time changes at
least somewhere on Earth a dozen times in a year. Just look at the history: ftp://
ftp.iana.org/tz/releases/. Save yourself the headache and just normalize it
to UTC. If you want to convert it to "local time" on its way to human eyeballs,
feel free. However, while it lives in your cluster, keep it normalized to UTC.

http://kafka.apache.org/
https://github.com/baniuyao/flume-ng-kafka-source
https://github.com/baniuyao/flume-ng-kafka-source
http://en.wikipedia.org/wiki/Universally_unique_identifier
http://en.wikipedia.org/wiki/Universally_unique_identifier
http://en.wikipedia.org/wiki/Dr._Evil
http://en.wikipedia.org/wiki/Mini-Me
ftp://ftp.iana.org/tz/releases/
ftp://ftp.iana.org/tz/releases/

Chapter 9

[155]

Consider adopting UTC everywhere via this Java startup parameter
(if you can't set it system-wide): -Duser.timezone=UTC
Also, use the ISO 8601 (http://en.wikipedia.org/wiki/
ISO_8601) time standard where possible and be sure to include
time zone information (even if it is UTC). Every modern tool on the
planet supports this format and will save you pain down the road.

I live in Chicago, and our computers at work use Central Time, which adjusts for
daylight savings. In our Hadoop cluster, we like to keep data in a YYYY/MM/DD/HH
directory layout. Twice a year, some things break slightly. In the fall, we have twice as
much data in our 2 a.m. directory. In the spring, there is no 2 a.m. directory. Madness!

Capacity planning
Regardless of how much data you think you have, things will change over time. New
projects will pop up and data creation rates for your existing projects will change
(up or down). Data volume will usually ebb and flow with the traffic of the day.
Finally, the number of servers feeding your Hadoop cluster will change over time.

There are many schools of thought on how much extra storage capacity you should
keep in your Hadoop cluster (we use the totally unscientific value of 20 percent, which
means that we usually plan for 80 percent full when ordering additional hardware but
don't start to panic until we hit the 85-90 percent utilization number). Generally, you
want to keep enough extra space so that the failure and/or maintenance of a server or
two won't cause the HDFS block replication to consume all the remaining space.

You may also need to set up multiple flows inside a single agent. The source and
sink processors are currently single-threaded, so there is some limit to what tuning
batch sizes can accomplish when under heavy data volumes. Be very careful in
these situations where you split your data flow at the source using a replicating
channel selector to multiple channels/sinks. If one of the path's channels fills up, an
exception is thrown back to the source. If that full channel is not marked as optional
and the data is dropped, the source will stop consuming new data. This effectively
jams the agent for all other channels attached to that source. You may not want
to drop the data (marking the channel as optional) because the data is important.
Unfortunately, this is the only fan-out mechanism provided in Flume to send to
multiple destinations, so make sure you catch issues quickly so that all your
data flows are not impaired due to a cascade backup of events.

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

There Is No Spoon – the Realities of Real-time Distributed Data Collection

[156]

For a number of Flume agents feeding Hadoop, this too should be adjusted based
on real numbers. Watch the channel size to see how well the writes are keeping up
under normal loads. Adjust the maximum channel capacity to handle whatever
amount of overhead makes you feel good. You can always purchase way more
hardware than you need, but even a prolonged outage may overflow even the most
conservative estimates. This is when you have to pick and choose which data is more
important to you and adjust your channel capacities to reflect that. This way, if you
exceed your limits, the least important data will be the first to be dropped.

Chances are your company doesn't have an infinite amount of money and at some
point, the value of the data versus the cost of continuing to expand your cluster
will start to be questioned. This is why setting limits on the volume of data collected
is very important. This is just one aspect of your data retention policy, where cost is
the driving factor. In a moment, we'll discuss some of the compliance aspects of this
policy. Suffice to say, any project sending data into Hadoop should be able to say
what the value of that data is and what the loss is if we delete the older stuff. This
is the only way the people writing the checks can make an informed decision.

Considerations for multiple data centers
If you run your business out of multiple data centers and have a large volume of
data collected, you may want to consider setting up a Hadoop cluster in each data
center rather than sending all your collected data back to a single data center.
There may be regulatory implications regarding data crossing certain geographic
boundaries. Chances are there is somebody in your company who knows much
more about compliance than you or I, so seek them out before you start copying
data across borders. Of course, not collating your data will make it more difficult
to analyze it, as you can't just run one MapReduce job against all the data. Instead,
you would have to run parallel jobs and then combine the results in a second pass.
Adjusting your data processing procedures is better than potentially breaking the
law. Be sure to do your homework.

Pulling all your data into a single cluster may also be more than your networking
can handle. Depending on how your data centers are connected to each other, you
simply may not be able to transmit the desired volume of data. If you use public cloud
services, there are surely data transfer costs between data centers. Finally, consider
that a complete cluster failure or corruption may wipe out everything, as most clusters
are usually too big to back up everything except high value data. Having some of the
old data in this case is sometimes better than having nothing. With multiple Hadoop
clusters, you have the ability to use a FailoverSinkProcessor to forward data to a
different cluster if you don't want to wait to send to the local one.

Chapter 9

[157]

If you do choose to send all your data to a single destination, consider adding a
large disk capacity machine as a relay server for the data center. This way, if there
is a communication issue or extended cluster maintenance, you can let data pile up
on a machine that's different from the ones trying to service your customers. This is
sound advice even in a single data center situation.

Compliance and data expiry
Remember that the data your company is collecting from your customers should
be considered sensitive information. You may be bound by additional regulatory
limitations on accessing data such as:

• Personally identifiable information (PII): How you handle and safeguard
customer's identities http://en.wikipedia.org/wiki/Personally_
identifiable_information

• Payment Card Industry Data Security Standard (PCI DSS): How you
safeguard credit card information http://en.wikipedia.org/wiki/PCI_
DSS

• Service Organization Control (SOC-2): How you control access to
information/systems http://www.aicpa.org/InterestAreas/FRC/
AssuranceAdvisoryServices/Pages/AICPASOC2Report.aspx

• Statements on Standards for Attestation Engagements (SSAE-16): How
you manage changes http://www.aicpa.org/Research/Standards/
AuditAttest/DownloadableDocuments/AT-00801.pdf

• Sarbanes Oxley (SOX): http://en.wikipedia.org/wiki/
Sarbanes%E2%80%93Oxley_Act

This is by no means a definitive list, so be sure to seek out your company's
compliance experts for what does and doesn't apply to your situation. If you aren't
properly handling access to this data in your cluster, the government will lean on
you, or worse, you won't have customers anymore if they feel you aren't protecting
their personal information. Consider scrambling, trimming, or obfuscating your
data of personal information. Chances are the business insight you are looking falls
more into the category of "how many people who search for "hammer" actually buy
one?" rather than "how many customers are named Bob?" As you saw in Chapter
6, Interceptors, ETL, and Routing, it would be very easy to write an interceptor to
obfuscate PII as you move it around.

Your company probably has a document retention policy that includes the data
you are putting into Hadoop. Make sure you remove data that your policy says
you aren't supposed to be keeping around anymore. The last thing you want
is a visit from the lawyers.

http://en.wikipedia.org/wiki/Personally_identifiable_information
http://en.wikipedia.org/wiki/Personally_identifiable_information
http://en.wikipedia.org/wiki/PCI_DSS
http://en.wikipedia.org/wiki/PCI_DSS
http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC2Report.aspx
http://www.aicpa.org/InterestAreas/FRC/AssuranceAdvisoryServices/Pages/AICPASOC2Report.aspx
http://www.aicpa.org/Research/Standards/AuditAttest/DownloadableDocuments/AT-00801.pdf
http://www.aicpa.org/Research/Standards/AuditAttest/DownloadableDocuments/AT-00801.pdf
http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act
http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act

There Is No Spoon – the Realities of Real-time Distributed Data Collection

[158]

Summary
In this chapter, we covered several real-world considerations you need to
think about when planning your Flume implementation, including:

• Transport time does not always match event time
• The mayhem introduced with Daylight Savings Time to certain

time-based logic
• Capacity planning considerations
• Items to consider when you have more than one data center
• Data compliance
• Data retention and expiration

I hope you enjoyed this book. Hopefully, you will be able to apply much of
this information directly in your application/Hadoop integration efforts.

Thanks, this was fun!

Index
A
ActiveMQ

URL 77
agent 10
agent identifier (name) 17
agent process, monitoring

Monit 145
Nagios 146

AOP Spring Framework 11
Apache Avro

about 45
URL 45

Apache benchmark
URL 115

Apache Kafka
URL 154

avro_event serializer 45
Avro source/sink

about 95
Avro, compressing 98
used, for tiering data flows 95-102

B
basenameHeaderKey property 70
batchDurationMillis property 57
batchSize property 57
batchTimeout property 67
Best effort (BE) mode 8

C
capacity planning 155, 156
CDH3 distribution 8
CDH 5

URL 140

cf-engine tool 8
channel 10, 25
ChannelProcessor function 27
channel selector

about 12, 80
multiplexing 81
replicating 80

checkpointInterval property 31
Chef tool 8
Cloudera

about 7
URL 17

codecs 43
command-line Avro 102, 103
compliance 157
CompressedStream 48
consumeOrder property 70
cron daemon

URL 118
custom interceptors

about 92, 93
plugins directory 94, 95

custom monitoring reporting mechanism
developing 150, 151

D
data flows, tiering

Avro source/sink, using 95
command-line Avro 102
Log4J appender 103
Log4J load-balancing appender 104
SSL Avro 99-101
Thrift source/sink, using 101

data/logs
streaming 9

[160]

DataStream 48
destinationName property 78
Disk Failover (DFO) mode 8

E
Elastic Compute Cluster (EC2) 112
ElasticSearch

about 57
setting up 120, 121
URL 58, 120, 135
versus Apache Solr 61

ElasticSearchSink
about 57-59
ElasticSearchDynamicSerializer

serializer 61
ElasticSearchLogStashEventSerializer 60
LogStash serializer 60
settings 58

Embedded Agent
about 105, 106
alternative formats, URL 106
configuration 106, 107
data, sending 107, 108
shutdown 108
startup 106, 107

End-to-End (E2E) mode 8
Event Serializer

about 44
Apache Avro 45
file type 47
text output 44
text_with_headers serializer 44
timeouts 48, 49
user-provided Avro schema 46
workers 48, 49

Exec source
about 65-67
properties 66

F
file channel

about 28-31
configuration parameters 28

file type
about 47
CompressedStream 48

DataStream 48
SequenceFile 47

Flume
about 8
agent process, monitoring 145
channel 25
configuration file 17, 18
downloading 15
events 10, 11
in Hadoop distributions 16
setting up, on client 126-130
setting up, on collector/relay 122-125
URL 15
user guide 28, 39, 145

Flume 0.9 8
Flume 1.X (Flume-NG) 8

URL 8
Flume configuration file

overview 17, 18
Flume JVM

URL 146
Flume-NG (Flume the Next Generation)
flume-ng-kafka-source

URL 154

G
Ganglia

about 147, 148
URL 147

grok command
URL 13

H
Hadoop distributions

benefits 16
Flume 16
limitations 16

Hadoop File System. See HDFS
HBase 37
HDFS

about 7
archiving to 139-142
issue 9

hdfs.batchSize parameter 43
hdfs.maxOpenFiles property 40

[161]

HDFS sink
about 37-39
compression codecs 43
configuration parameters 38
filename 39-42
file rotation 42
path 39-42

hdfs.timeZone property 41
hdfs.useLocalTimeStamp

boolean property 41
Hello, World! example

file configuration 18, 21, 23
help command 19
Hortonworks

URL 17
Host interceptor

about 85
properties 85

Human Optimized Configuration Object
Notation (HOCON)

URL 53

I
indexName property 59
interceptor

about 11
used, for creating search fields 130-133

interceptors
about 83
adding 83
custom 92
Host 85
Morphline 91
regular expression 87
regular expression filtering 86
Static 85
Timestamp 84

internal HTTP server
using 148-150

IRC 37

J
Java Key Store (JKS) 99
Java Message Service source. See JMS

source

Java properties
flume.monitoring.hosts 147
flume.monitoring.isGanglia3 147
flume.monitoring.type 147

JMS message selectors
URL 79

JMS source
about 77-79
configuring 77
settings 77, 78

K
keep-alive parameter 30
keepFields property 73, 74
Kibana

setting up 134-139
URL 58, 139

Kite SDK
about 13, 14
URL 14

L
Log4J appender

about 103, 104
URL 104

Log4J load-balancing appender 104, 105
logrotate utility

URL 116
Logstash

URL 58
log time

versus transport time 153, 154

M
MapR

URL 17
memoryCapacity property 33
memory channel

about 26, 27
configuration parameters 26

metrics
URL 148

minimumRequiredSpace property 31

[162]

Monit
about 145, 146
URL 145

Morphline
configuration file 53
URL 53, 55, 92

morphlineId property 57
Morphline interceptor 91, 92
MorphlineSolrSink

about 52
Morphline configuration file 53
sink configuration 56
SolrSink configuration 54

multiple data centers
considerations 156

Multiport Syslog TCP source
about 74-76
Flume headers 76
properties 75

N
Nagios

about 146
URL 146

Nagios JMX plugin
URL 146

nc command 22
Near Real Time (NRT) 37
Nginx web server

URL 113

O
overflowCapacity property 33
overflowDeactivationThreshold property 34
overflowTimeout property 34

P
Payment Card Industry Data Security

Standard (PCI DSS)
URL 157

performance metrics, monitoring
custom monitoring hooks 150
Ganglia 147
internal HTTP server 148

Personally identifiable information (PII)
URL 157

plugins directory
$FLUME_HOME/plugins.d directory 94
about 94
lib directory 94
native directory 94

pollTimeout property 79
pom.xml file

URL 61
POSIX-style filesystem 9
processor.backoff property 50
Puppet tool 8

R
Red Hat Enterprise Linux (RHEL) 16
regular expression extractor interceptor

about 87, 89
properties 90

regular expression filtering interceptor
about 86
URL 86

routing 109
Runners 9

S
Sarbanes Oxley (SOX)

URL 157
SequenceFile file type 47
serializers 88
serializer.syncIntervalBytes property 45
sink group

about 49
failover 51
load balancing 50

sink processors 11, 12, 49
sinks 10
Solr 52
SolrCloud 52
SolrSink

configuration 54
sources 10
Spillable Memory Channel

about 25, 31, 32
configuration parameters 32

[163]

spool directory
log rotation, configuring 115-119

Spooling Directory Source
about 67, 70
creating 68
properties 68

Spring
URL 107

start() method 150
Static interceptor

about 85, 86
properties 85, 86

syslog sources
about 71
Multiport Syslog TCP source 74
TCP source 73
UDP source 72
URL 71

Syslog TCP source
about 73
creating 73
Flume headers 74

Syslog UDP source
about 72
Flume headers 73
properties 72

T
tail

about 63
issues 63, 64
URL 63

tail -F command 65
text_with_headers serializer 44
Thrift

URL 101

Thrift source/sink
used, for tiering data flows 101

tiered data collection 12
Timestamp interceptor

about 84
properties 84

timestamp key 90
time zones 154, 155
transactionCapacity property 30, 34
transport time

versus log time 153, 154

U
Universally Unique Identifier (UUID)

URL 154
user-provided Avro schema 46

V
VeriSign 99

W
web application

simulating 111-113
web server

log rotation, configuring to
spool directory 115-120

setting up 113-115
Write Ahead Log (WAL) 28
wrk

URL 115

Z
Zookeeper 8

Thank you for buying
Apache Flume: Distributed Log

Collection for Hadoop
Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Apache Flume: Distributed Log
Collection for Hadoop
ISBN: 978-1-78216-791-4 Paperback: 108 pages

Stream data to Hadoop using Apache Flume

1. Integrate Flume with your data sources.

2. Transcode your data en-route in Flume.

3. Route and separate your data using regular
expression matching.

4. Configure failover paths and load-balancing
to remove single points of failure.

Hadoop Beginner's Guide
ISBN: 978-1-84951-730-0 Paperback: 398 pages

Learn how to crunch big data to extract meaning
from the data avalanche

1. Learn tools and techniques that let you
approach big data with relish and not fear.

2. Shows how to build a complete infrastructure
to handle your needs as your data grows.

3. Hands-on examples in each chapter give the big
picture while also giving direct experience.

Please check www.PacktPub.com for information on our titles

Apache Kafka
ISBN: 978-1-78216-793-8 Paperback: 88 pages

Set up Apache Kafka clusters and develop custom
message producers and consumers using practical,
hand-on examples

1. Write custom producers and consumers with
message partition techniques.

2. Integrate Kafka with Apache Hadoop and
Storm for use cases such as processing
streaming data.

3. Provide an overview of Kafka tools and other
contributions that work with Kafka in areas
such as logging, packaging, and so on.

Apache Solr Beginner's Guide
ISBN: 978-1-78216-252-0 Paperback: 324 pages

Configure your own search engine experience
with real-world data with this practical guide to
Apache Solr

1. Learn to use Solr in real-world contexts, even
if you are not a programmer, using simple
configuration examples.

2. Define simple configurations for searching data
in several ways in your specific context, from
suggestions to advanced faceted navigation.

3. Teaches you in an easy-to-follow style, full
of examples, illustrations, and tips to suit the
demands of beginners.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Overview and Architecture
	Flume 0.9
	Flume 1.X (Flume-NG)
	The problem with HDFS and streaming data/logs
	Sources, channels, and sinks
	Flume events
	Interceptors, channel selectors, and sink processors
	Tiered data collection (multiple flows and/or agents)

	The Kite SDK
	Summary

	Chapter 2: A Quick Start Guide to Flume
	Downloading Flume
	Flume in Hadoop distributions

	An overview of the Flume configuration file
	Starting up with "Hello, World!"
	Summary

	Chapter 3: Channels
	The memory channel
	The file channel
	Spillable Memory Channel
	Summary

	Chapter 4: Sinks and Sink Processors
	HDFS sink
	Path and filename
	File rotation

	Compression codecs
	Event Serializers
	Text output
	Text with headers
	Apache Avro
	User-provided Avro schema
	File type
	SequenceFile
	DataStream
	CompressedStream

	Timeouts and workers

	Sink groups
	Load balancing
	Failover

	MorphlineSolrSink
	Morphline configuration files
	Typical SolrSink configuration
	Sink configuration

	ElasticSearchSink
	LogStash Serializer
	Dynamic Serializer

	Summary

	Chapter 5: Sources and Channel Selectors
	The problem with using tail
	The Exec source
	Spooling Directory Source
	Syslog sources
	The syslog UDP source
	The syslog TCP source
	The multiport syslog TCP source

	JMS source
	Channel selectors
	Replicating
	Multiplexing

	Summary

	Chapter 6: Interceptors, ETL, and Routing
	Interceptors
	Timestamp
	Host
	Static
	Regular expression filtering
	Regular expression extractor
	Morphline interceptor
	Custom interceptors
	The plugins directory

	Tiering flows
	The Avro source/sink
	Compressing Avro
	SSL Avro flows

	The Thrift source/sink
	Using command-line Avro
	The Log4J appender
	The Log4J load-balancing appender

	The embedded agent
	Configuration and startup
	Sending data
	Shutdown

	Routing
	Summary

	Chapter 7: Putting it All Together
	Web logs to searchable UI
	Setting up the web server
	Configuring log rotation to the spool directory

	Setting up the target – Elasticsearch
	Setting up Flume on collector/relay
	Setting up Flume on the client
	Creating more search fields with an interceptor
	Setting up a better user interface – Kibana

	Archiving to HDFS
	Summary

	Chapter 8: Monitoring Flume
	Monitoring the agent process
	Monit
	Nagios

	Monitoring performance metrics
	Ganglia
	Internal HTTP server
	Custom monitoring hooks

	Summary

	Chapter 9: There Is No Spoon – the Realities of Real-time Distributed Data Collection
	Transport time versus log time
	Time zones are evil
	Capacity planning
	Considerations for multiple data centers
	Compliance and data expiry
	Summary

	Index

