
www.allitebooks.com

http://www.allitebooks.org

Application Testing with
Capybara

Confidently implement automated tests for web
applications using Capybara

Matthew Robbins

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Application Testing with Capybara

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1160913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-125-1

www.packtpub.com

Cover Image by VigilancePrime (en.wikipedia)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Matthew Robbins

Reviewers
Yavor Atanasov

Graham Lyons

Daniel Morrison

Acquisition Editor
Aarthi Kumaraswamy

Commissioning Editor
Poonam Jain

Technical Editors
Hardik B. Soni

Krutika Parab

Copy Editors
Adithi Shetty

Sayanee Mukherjee

Alfida Paiva

Project Coordinator
Sherin Padayatty

Proofreaders
Clyde Jenkins

Christopher Smith

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Matthew Robbins is an experienced developer in test, having spent many years
wrestling with commercially available test automation tools. He has spent the last five
years immersed in developing robust test automation frameworks using open source
tools. He worked extensively with the BBC developing test automation frameworks
and tools across their web platform and continues to work in the media industry for
other high-profile broadcasters. Aside from test automation, he is passionate about
becoming more productive in Vim and learning about web browser internals. He
also regularly blogs at http://opensourcetester.co.uk.

I would like to thank Catherine, Jared, and Leon, my wonderful family
for all their support. Also huge thanks to the BBC Frameworks team
especially Pete, Graham, and Yavor for starting me on this journey.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Yavor Atanasov is a software engineer who has in-depth experience within the
whole spectrum of web development at a very large scale. He is from Bulgaria,
currently living and working in London. He has seen the quirks of client-side
JavaScript development and the importance of architecting and writing efficient
backend systems. Agile practices, test-driven and behavior-driven approach
to software development are all a fundamental part of his work. He has also
experienced the complexity of acceptance testing sizeable multilayer systems.

Graham Lyons is a software engineer who has been working on the Web for
around six years. Currently working on the platform at the BBC, he likes elegant,
well-tested code, written in a variety of languages, and probably spends far too
much time thinking about solutions to engineering problems. When he's not doing
that, he enjoys fresh air and good coffee and is currently planning his wedding to a
very patient lady.

Daniel Morrison is the founder of Collective Idea (http://collectiveidea.com),
a software development consultancy in Holland, Michigan. At Collective Idea, Daniel
has worked with Fortune 50 companies and built software for auto manufacturers,
Silicon Valley startups, and everything in between. He writes a lot of web applications
and teaches software development courses around the globe.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Your First Scenario with Capybara	 5

Installing Capybara	 5
Preparing your system	 6

Installing gems with RubyGems	 6
Installing gems with Bundler	 7

Installing system libraries	 8
Installing Capybara	 8

Using RubyGems	 8
Using Bundler	 10

Installing Cucumber and Selenium	 11
Cucumber-Rails	 13
Your first scenario – a YouTube search	 13
Summary	 18

Chapter 2: Mastering the API	 19
Locating elements with XPath and CSS	 19

Default selector in Capybara	 20
A helping hand with selectors	 21

Navigation	 22
Clicking on links or buttons	 22

Submitting forms	 24
Checkboxes and radio buttons	 25

Finders, scoping, and multiple matches	 28
Multiple matches	 30
Matching strategies	 30
Element visibility	 33
Scoping	 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Asserting and querying	 35
Matchers and RSpec	 35
Refining finders and matchers	 38
Checking attribute values	 40

Summary	 40
Chapter 3: Testing Rails and Sinatra Applications	 41

Understanding the Rack interface	 41
Capybara and Rack::Test	 43

Testing a Sinatra application	 45
Sinatra application file – app.rb	 45
Form template – form.erb	 45
Results template – result.erb	 47

Testing with Rack::Test	 48
Which driver to use and when?	 51
A note on Rails/RSpec and Capybara	 52
Summary	 53

Chapter 4: Dealing with Ajax, JavaScript, and Flash	 55
Ajax and asynchronous JavaScript	 55

Capybara and asynchronous JavaScript	 56
Methods that handle asynchronous JavaScript	 59

Finders	 59
Matchers	 59
Gotchas	 60

Flash and HTML5 – black box elements	 62
Flash	 63
Exposing a testable API	 63
Test pages – behold the power!	 65
Testing components "in situ"	 68

Summary	 71
Chapter 5: Ninja Topics	 73

Using Capybara outside of Cucumber	 73
Including the modules	 74
Using the session directly	 75
Capybara and popular test frameworks	 76

Cucumber	 76
RSpec	 77
Test::Unit	 77
MiniTest::Spec	 77

Advanced interactions and accessing the driver directly	 78
Using the native method	 79
Accessing driver methods using browser.manage	 80

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Advanced driver configuration	 81
The driver ecosystem	 82

Capybara-WebKit	 83
Poltergeist	 83
Capybara-Mechanize	 84
Capybara-Celerity	 84

Summary	 85
Index	 87

www.allitebooks.com

http://www.allitebooks.org

Preface
One of my colleagues once described the Ruby community as "Test Infected" and if
any library epitomizes this it's Capybara, which has gained popularity exponentially
since it was first released. The Ruby community certainly owes its creator Jonas
Nicklas a great deal of thanks for bringing peace and harmony to many test
automation code bases around the globe.

The proof of Capybara's success is the way in which its use has spread far beyond
just testing Rails applications and now supports testing of many web applications
written in a wide variety of languages and frameworks. Capybara's functionality
has also been replicated in languages other than Ruby again highlighting just how
powerful the concept is.

So what is Capybara?

Capybara provides a domain-specific language for test automation; this DSL extends
the human-readable BDD style of frameworks such as Cucumber and RSpec into the
automation code itself. For example, opening a browser and navigating to a URL is
as simple as visit http://google.com. This is a vast improvement over typical
test APIs.

Additionally Capybara allows us to write tests once and run them in any compatible
driver. The driver ecosystem is vibrant and switching libraries is as simple as adding
an additional gem and making a one-line change to your code.

Finally, you can do away with writing bespoke methods that wait for content
to become visible or adding sleep statements to your tests; Capybara handles
asynchronous JavaScript without the user even noticing.

Capybara is quite literally your one-stop shop for test automation.

Preface

[2]

What this book covers
Chapter 1, Your First Scenario with Capybara, covers installation and configuration of
your first scenario using Capybara.

Chapter 2, Mastering the API, provides a deep dive into Capybara's API for interacting
with web pages.

Chapter 3, Testing Rails and Sinatra Applications, helps us explore how Capybara is
particularly suited to testing applications implemented using Rails or Sinatra.

Chapter 4, Dealing with Ajax, JavaScript, and Flash, covers how to handle asynchronous
JavaScript and how to use Capybara to test black box components such as Flash or
HTML5 Canvas, Audio, and Video.

Chapter 5, Ninja Topics, helps us in using Capybara outside Cucumber in bespoke
frameworks, within popular test frameworks such as RSpec and explores some
alternatives to Capybara's built-in drivers.

What you need for this book
This book and the examples were developed using Ruby-1.9.3p237, RubyGems 1.8.23,
and most importantly Capybara 2.1.0, which introduced some significant changes. All
other dependencies will be downloaded by either RubyGems or Bundler when you
install Capybara. We will also use Cucumber and RSpec, the latest versions of which
should all be compatible with Capybara 2.1.0 and above.

Who this book is for
This book is for developers and testers who, with some exposure to Ruby, want
to know how to test their applications using Capybara and its compatible drivers
such as Selenium WebDriver and Rack::Test. The examples are deliberately kept
simple and example HTML markup is always included so that readers can copy
the examples to practice and experiment on their own machine.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: "The only source of confusion here might be the use of
the string literal search_query in the fill_in method."

A block of code is set as follows:

<div id="main">
 <div class="section">
 Click this
 Anchor
 </div>
</div>

Any command-line input or output is written as follows:

$ ruby -v

ruby 1.9.3p327 (2012-11-10 revision 37606) [x86_64-darwin11.4.2]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "After
this we need to enter our search terms and click on the Search button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Your First Scenario with
Capybara

Capybara brings two key ingredients to test automation: human-readable code via
an elegant domain-specific language (DSL) and the ability to write once and run
on multiple drivers such as Selenium WebDriver or Rack::Test for Rails/Sinatra
applications. Through the course of this book we will see how Capybara can greatly
increase the resilience of our tests and enhance our productivity.

In this chapter we will walk through installing Capybara and get up and running
straight away with a simple scenario.

Specifically, we will cover the following:

•	 Ensuring that Ruby, RubyGems, and Bundler are available
•	 Ensuring that you have the necessary system libraries available
•	 Installing the Capybara gem
•	 Implementing your first scenario with Capybara, Cucumber, and

Selenium WebDriver

Installing Capybara
Installing Capybara is no different than installing any other Ruby gem; if you
have done any Ruby development in the past, it is likely that you will have all the
prerequisites, and this process will be straightforward.

Your First Scenario with Capybara

[6]

Preparing your system
Capybara is a Ruby gem and as such we need to ensure Ruby is available on
the system.

When you are learning a new library, it makes sense to use standard
Ruby (as opposed to Ruby that runs on a different platform, such as
JRuby or Iron Ruby) and run everything from the command line. This
simply limits the amount of things that might go wrong due to the
quirks of a less well-supported platform or an overly complicated IDE.

Open a command prompt and check the version of your Ruby interpreter:

$ ruby -v

ruby 1.9.3p327 (2012-11-10 revision 37606) [x86_64-darwin11.4.2]

If you see anything greater than 1.9, perfect! This means the correct version of Ruby
installed and available for you to use.

If you see command not found, this means either Ruby is not installed or the system
cannot find it. If you think you have installed Ruby, try modifying your PATH variable
and add the location of the Ruby executable.

If you see anything less than 1.9, you should upgrade your current version of Ruby
to 1.9 or greater. Capybara has a lot of dependencies and it no longer supports
versions of Ruby prior to 1.9.

Installing gems with RubyGems
Like most languages Ruby has its own mechanism for managing libraries of code.
RubyGems is the software used to manage gems that are libraries and Capybara is a
Ruby gem itself.

The RubyGems application typically gets installed when you first install Ruby but it
is worth double-checking if you have it.

At your command prompt, check the version of RubyGems installed by running the
following command:

$ gem -v

1.8.23

If you see anything greater than Version 1.5.0 then you are good to go.

If you see the command not found message, you need to install RubyGems or add
the executable to your PATH variable.

Chapter 1

[7]

If you see anything less than Version 1.5.0, update the version by running the
following command:

gem update –-system

Installing gems with Bundler
Although you can install and use Capybara quite happily without using Bundler,
it is worth covering this because Bundler is becoming ubiquitous within the
Ruby ecosystem and it is very likely that you will want to use it to manage
your project's dependencies.

Bundler is itself a Ruby gem and applies a layer of finer grained dependency
management on top of RubyGems. With RubyGems you can only ever have
one version of a gem installed on your system; with Bundler you can isolate
dependencies to a specific project.

Run the following command to install Bundler:

gem install bundler

In your project directory, create a file named Gemfile with the following contents:

source 'https://rubygems.org'

gem 'capybara'

Then at a command prompt within that directory run:

bundle install

This will install and link the gems you specified in your Gemfile (as well as all their
dependencies) with your current project. This will prevent you from accidentally
breaking another project that might, for example, depend on an earlier version of the
Nokogiri gem and will generally make your life a lot easier.

Bundler allows you to declare specific version requirements in your project Gemfile
and provides many other options such as retrieving a gem directly from a GitHub
repository. You can also bundle gems to a local directory under your project. See
http://gembundler.com for more details of this awesome gem.

Your First Scenario with Capybara

[8]

Installing system libraries
On some platforms certain gems have a dependency on system libraries. This is
usually done for performance reasons. Ruby is an interpreted language so tasks,
such as parsing XML can be slow; therefore, it makes sense to delegate that task
to a system library.

On Windows you won't need to worry about this, though you will have to ensure
you have the Ruby DevKit installed; see http://rubyinstaller.org/add-ons/
devkit for detailed instructions on how to do this.

Capybara has a dependency on Nokogiri, the popular Ruby-based XML parser. This
in turn needs the following system libraries to be available:

•	 libxml2

•	 libxml2-dev

•	 libxslt

•	 libxslt-dev

The latest version of Nokogiri now includes these dependencies
within the gem itself. It is still worth installing the system libraries
globally, however, as you will surely encounter projects that rely
on versions of Nokogiri prior to 1.6.0.

How you install these on a particular system will differ, for example, apt-get for
Ubuntu, yum for Red Hat, or brew for Mac OS X.

Installing Capybara
Your system is now ready for a painless installation of Capybara. How you install
the gem will depend on whether you choose to use RubyGems directly or Bundler
within your project.

Using RubyGems
If you decide to go without Bundler, installing Capybara is as simple as:

gem install capybara

Chapter 1

[9]

If all goes well, you should see an output like the following at your command
prompt. The precise output might differ slightly depending on how many of the
dependencies you already had installed:

Fetching: mime-types-1.25.gem (100%)

Fetching: rack-1.5.2.gem (100%)

Fetching: rack-test-0.6.2.gem (100%)

Fetching: xpath-2.0.0.gem (100%)

Fetching: capybara-2.1.0.gem (100%)

IMPORTANT! Some of the defaults have changed in Capybara 2.1. If you're
experiencing failures,

please revert to the old behaviour by setting:

 Capybara.configure do |config|

 config.match = :one

 config.exact_options = true

 config.ignore_hidden_elements = true

 config.visible_text_only = true

 end

If you're migrating from Capybara 1.x, try:

 Capybara.configure do |config|

 config.match = :prefer_exact

 config.ignore_hidden_elements = false

 end

Details here: http://www.elabs.se/blog/60-introducing-capybara-2-1

Successfully installed mini_portile-0.5.1

Successfully installed nokogiri-1.6.0

Your First Scenario with Capybara

[10]

Successfully installed mime-types-1.25

Successfully installed rack-1.5.2

Successfully installed rack-test-0.6.2

Successfully installed xpath-2.0.0

Successfully installed capybara-2.1.0

7 gems installed

Using Bundler
If you are using Bundler, ensure you have a file named Gemfile in the root directory
of your project directory and it contains the following:

source 'https://rubygems.org'

gem 'capybara'

Then install the necessary gems by running the following command:

bundle install

If everything is successful, you should see an output like the following:

$ bundle install

Fetching gem metadata from https://rubygems.org/.........

Installing mime-types (1.25)

Installing mini_portile (0.5.1)

Installing nokogiri (1.6.0)

Installing rack (1.5.2)

Installing rack-test (0.6.2)

Installing xpath (2.0.0)

Installing capybara (2.1.0)

Using bundler (1.3.5)

Your bundle is complete!

Chapter 1

[11]

Installing Cucumber and Selenium
Capybara is simply an API that provides a layer of abstraction on top of your actual
automation library. If it helps, think of Capybara as your translator; you tell it to do
something and it translates a nice elegant command into the API of your given driver
(which can be a lot less friendly).

So to use this translator we need to have both a way of telling it what to do and also
an automation library API for it to translate in to.

Capybara is a very flexible library and throughout this book we will see it used
in a variety of settings; however, by far the most common use case is to employ
Cucumber as the test runner with Capybara driving Selenium WebDriver to carry
out the browser automation.

Cucumber allows the execution of behavior-driven development (BDD) scenarios
written in the Gherkin syntax to drive your tests. If you are not overly familiar with
Cucumber, http://cukes.info should be your first port of call but don't worry it's
very straightforward and we will walk through creating your first scenario.

Here is an example Cucumber scenario, which we are going to automate:

Feature: Search for Videos on YouTube

 Scenario: Search for Videos of Large Rodents
 Given I am on the YouTube home page
 When I search for "capybara"
 Then videos of large rodents are returned

When Cucumber is invoked it parses the plain English scenario and using regular
expressions it matches each line to an actual line of Ruby code, called a step
definition. We will use Capybara to implement these steps. Capybara will then
handle the communication with Selenium WebDriver, which will open the browser
and start automating the scenario.

Your First Scenario with Capybara

[12]

The following diagram illustrates the flow from Cucumber through to the
underlying driver with Capybara sitting in the middle acting as a translator:

Cucumber

Parses plain English feature
and maps Given/Then/When

to Ruby Code

Exposes elegant DSL and
maps these commands to

driver-specific API

Capybara

No HTTP - Directly
accesses controller

clases

Rack::Test

Full-stack browser test -
communicates with
browser using JSON

wire protocol

Selenium WebDriver

For example, Capybara-WebKit,
Capybara-Mechanize
(Headless Browsers)

Other Pluggable
Drivers

Sinatra

Cucumber and Selenium WebDriver are just additional gems. To install them, run
the following:

gem install cucumber selenium-webdriver

If you are using Bundler, add cucumber and
selenium-webdriver to your Gemfile and
run the bundle install command again.

In versions of Capybara prior to 2.1, Selenium WebDriver was declared as a runtime
dependency in which case it would have been installed when you installed Capybara
and a separate installation would not have been required.

Chapter 1

[13]

Cucumber-Rails
If you are using Capybara to test a Rails application, you should install the
Cucumber-Rails gem as opposed to the standard Rails gem.

This gem has both Capybara and Cucumber declared as dependencies, so you will
get these for free when you install the gem. To install Cucumber-Rails, simply run
the following command:

gem install cucumber-rails

Alternatively, add this to your Gemfile if you are using Bundler, so it looks like
the following:

source 'https://rubygems.org'

gem 'cucumber-rails'

Your first scenario – a YouTube search
Now that we have everything we need, let's get cracking and automate our first
scenario, a simple YouTube search:

Feature: Search for Videos on YouTube

 Scenario: Search for Videos of Large Rodents
 Given I am on the YouTube home page
 When I search for "capybara"
 Then videos of large rodents are returned

A full guide to using Cucumber is outside the scope of this book, but let's assume
you have a file/directory set up something like the one shown here, and that you
can run features from the command line using Cucumber.

If you are using Bundler, run Cucumber using the following command:
bundle exec cucumber

This will ensure you get the Cucumber executable from your project gem
bundle and not any global gems.

features/
├── youtube_search.feature
├── step_defs
│ └── steps.rb
└── support
 └── env.rb

Your First Scenario with Capybara

[14]

Assuming you have a feature file containing the scenario text, when you run
Cucumber from the command line you should get the step definition stubs generated:

$ bundle exec cucumber

Feature: Search for Videos on YouTube

 Scenario: Search for Videos of Large Rodents

 Given I am on the YouTube home page

 When I search for "capybara"

 Then videos of large rodents are returned

1 scenario (1 undefined)

3 steps (3 undefined)

0m0.014s

You can implement step definitions for undefined steps with these
snippets:

Given(/^I am on the YouTube home page$/) do

 pending # express the regexp above with the code you wish you had

end

When(/^I search for "(.*?)"$/) do |arg1|

 pending # express the regexp above with the code you wish you had

end

Then(/^videos of large rodents are returned$/) do

 pending # express the regexp above with the code you wish you had

end

Copy and paste the snippets output by Cucumber into your steps.rb file. These are
the stubs that we will complete with our Capybara commands.

If you run Cucumber again, you will now see it reporting that these steps exist but
are not implemented:

$ bundle exec cucumber

Feature: Search for Videos on YouTube

 Scenario: Search for Videos of Large Rodents

 Given I am on the YouTube home page

Chapter 1

[15]

 TODO (Cucumber::Pending)

 When I search for "capybara"

 Then videos of large rodents are returned

1 scenario (1 pending)

3 steps (2 skipped, 1 pending)

0m0.003s

We now have enough code to bring Capybara into the picture. We will start off by
adding the minimum amount of code needed to get started with the automation.

Ensure your env.rb file looks like the following:

require 'capybara/cucumber'

Capybara.default_driver = :selenium

We start by adding require 'capybara/cucumber'; this is all we need to load the
necessary files.

On older versions of RubyGems you may need to add require
'rubygems' to your env.rb file and if using Bundler, you
will also need to add require 'bundler/setup'.

We then need to tell Capybara to use the Selenium driver using:

Capybara.default_driver = :selenium

It is important to reiterate again that Capybara is simply acting as a translator
and allows us to talk to any compatible driver. In this instance we use Selenium
WebDriver because it is the most popular open source browser automation tool
and allows us to test in a real browser, which is useful for our first ever web test.

If you don't set the driver, you may see an error like the following:

$ bin/cucumber

Feature: Search for Videos on YouTube

 Scenario: Search for Videos of Large Rodents

 Given I am on the YouTube home page

 rack-test requires a rack application, but none was given
 (ArgumentError)

 When I search for "capybara"

Your First Scenario with Capybara

[16]

 Then videos of large rodents are returned

Failing Scenarios:

cucumber features/youtube_search.feature:3 # Scenario: Search for Videos
of Large Rodents

1 scenario (1 failed)

3 steps (1 failed, 2 skipped)

0m0.178s

By default, Capybara assumes that you wish to test a Rack application. Rack is an
ingenious piece of middleware used in both the Rails and Sinatra frameworks that
allows full-stack testing of client/server interaction without the overhead of HTTP,
thus making tests very fast. We will cover this in depth later in the book when we
discuss how Capybara can be used to test Rails and Sinatra applications.

All that remains now is to fill in the step definitions with our Ruby code that will call
the Capybara API to drive the test.

Ensure your steps.rb file looks like the following:

Given(/^I am on the YouTube home page$/) do
 visit 'http://www.youtube.com'
end

When(/^I search for "(.*?)"$/) do |search_term|
 fill_in 'search_query', :with => search_term
 click_on 'search-btn'
end

Then(/^videos of large rodents are returned$/) do
 page.should have_content 'Largest Rodent'
end

Before we dissect the code, let's run the test and see what happens. As always, run
your test using the command cucumber.

Hopefully you see Firefox open, navigate to the YouTube home page and then search
YouTube for videos of Capybara.

Congratulations! You have just successfully run your first full-stack test
using Capybara.

Chapter 1

[17]

The only issue I can see you might have here is if you don't have
Firefox installed or you have it installed to a custom location and
Selenium can't find the executable.

Let's briefly look at each step before we dive deep into Capybara's rich API.
Here you will see how elegant Capybara's API is, as the code literally needs no
explanation. Hopefully this demonstrates that when twinned with Cucumber we
have a human-readable specification, which is automated by code that is very
expressive. For anybody who has lived through using some of the commercially
available test automation tools this should be a revelation!

The first line tells Capybara to inform the driver (Selenium WebDriver) to open a
browser and navigate to a URL we provide as a string:

visit 'http://www.youtube.com'

Selenium WebDriver has built-in mechanisms to wait for page loads
in the browser so we don't have to worry about any kind of page
load check. Note that this does not include waiting for asynchronous
JavaScript, for example, Ajax/XHTTP requests. Fortunately Capybara
has this covered, as we will discover in due course.

After this we need to enter our search terms and click on the Search button. So we
tell Capybara to get the driver to fill in the search form with our search terms. Again
Capybara's API is helpful in telling us this.

#note the search_term variable is passed from the Cucumber scenario
fill_in 'search_query', :with => search_term
click_on 'search-btn'

The only source of confusion here might be the use of the string literal search_query
in the fill_in method. A lot of Capybara's methods use a "best guess" strategy
when you tell them to find something on the page. That is to say they look at various
attributes on DOM elements to try to find the one you asked for. In this instance, we
know the name attribute on the YouTube search form element is search_query so
this is what we provided.

Finally we need to check if the results returned by the search were relevant. For this,
we use Capybara's built-in RSpec magic matchers. If you don't know much about
RSpec, there is plenty online (http://rspec.info/) but essentially the matchers
provide semantically friendly ways of asserting the state of something is as you
expect, with the difference to traditional assertions being that they raise exceptions
when conditions are not met (as opposed to returning false).

 page.should have_content 'Largest Rodent'

Your First Scenario with Capybara

[18]

Finally it is worth noting that the have_content matcher has a default wait built
into it. This is useful because if the content we are waiting for happens to be loaded
via asynchronous JavaScript (and not part of the initial page load), Capybara will
retry for a configurable amount of time to see if it exists. We will cover strategies for
handling asynchronous JavaScript in depth later.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Summary
The aim of this chapter was to get you to a point where you have automated
your first scenario using Capybara. We checked if you had Ruby and RubyGems
available and installed Capybara and its dependencies as well as Cucumber as our
test runner. Finally we implemented a simple scenario that automated a YouTube
search; hopefully this has given you a glimpse of Capybara's elegant API, which we
will be investigating in more detail in the next chapter.

Mastering the API
The YouTube search example showed how easy it was to automate scenarios using
Capybara. Now we need to tackle the API head on, focusing on the following topics:

•	 Selectors – XPath or CSS?
•	 Navigating
•	 Submitting forms
•	 Finders, scoping, and multiple matches
•	 Asserting and querying

By the end of this chapter, you should feel comfortable automating your own
applications using Capybara.

Locating elements with XPath and CSS
The Document Object Model (DOM) is a tree-like "in memory" structure, which
browsers construct when parsing an HTML page and processing JavaScript that
exists either inline in the page or loaded via script tags. CSS selectors and XPath
queries allow us to search this structure to find content and Capybara is wholly
reliant on such selectors to be able to locate content within web pages. It is therefore
essential we understand these before moving into the API.

Don't let anybody try to tell you XPath is faster than CSS or
vice versa. Capybara, in fact, translates all CSS selectors to
XPath so we can close the lid firmly on that can of worms!

www.allitebooks.com

http://www.allitebooks.org

Mastering the API

[20]

Here are some simple examples of each type of selector. For example, finding an
element whose id attribute has the value 'main':

•	 XPath: //*[@id='main']
•	 CSS: #main

Finding a direct or indirect child of any <div> element with the class 'container':

•	 XPath: //div//*[@class='container']
•	 CSS: div .container

The most important thing to consider when implementing a selector is to use
the least fragile one possible to retrieve the element you want. For example,
the following would be an example of a very bad XPath expression:

/html/body/div/div/div/div/p[1]

Any change in the structure of the page is likely to break this selector as it relies
on the DOM hierarchy not changing, which is not a reasonable expectation in any
application under development.

It is much better to get to an element via the most direct route. Often that means
using a combination of the type of element and an attribute value, for example, id,
class, or name.

Web applications designed to be accessible will greatly help
you because often they use standards, such as WAI-ARIA
(http://www.w3.org/WAI/intro/aria) to add semantic,
meaningful, and consistent attributes to elements.

The type of selector you choose is entirely up to you, though I would endeavor to be
consistent within your tests to aid understanding.

I am going to use CSS selectors throughout this book as I find them a bit more
readable than XPath.

Default selector in Capybara
Capybara uses CSS as the default selector. This means when you use the API you
will not need to specify what selector to use, as in the following example:

page.find('#maincontent')

Chapter 2

[21]

If you wish to use XPath selectors, you have a couple of choices. Firstly, you can
explicitly state this when calling methods:

page.find(:xpath, //*[@id="maincontent"])

Alternatively, you can set it globally. This code should probably go in your
env.rb file if you are using Cucumber, as in the following example:

require 'capybara/cucumber'

Capybara.default_selector = :xpath
Capybara.default_driver = :selenium

Capybara supports CSS3 selectors, so for all you power users,
feel free to get going with :nth-child, :nth-of-type,
and all the other treats CSS3 has in store.

A helping hand with selectors
There are a couple of really useful things that will help you if you are not confident
with either XPath or CSS selectors.

The first option is that in both recent Firefox and Chrome browsers if you navigate
to a JavaScript console, using either Firebug in Firefox or the Developer Tools in
Chrome, you can try out your CSS selectors and play around till you find the best
one for the job. To do this you just use a CSS selector with a double dollar ($$) before
it as in the following screenshot, which shows a Firebug console in Firefox. The same
applies to the Developer Tools in Chrome.

The second option is to install a browser extension, which is definitely worth doing if
you plan to use XPath as your default selector.

Mastering the API

[22]

I have found the Firefox add-on FirePath (https://addons.mozilla.org/en-us/
firefox/addon/firepath/) to be very good for this purpose allowing you to enter
XPath or CSS selectors and then highlight matched elements in the DOM.

Navigation
The first parts of the Capybara API you will need to get familiar with are the
methods available for navigating around your application.

We have already used one such method in our YouTube search scenario:

Given(/^I am on the YouTube home page$/) do
 visit 'http://www.youtube.com'
end

As you would expect, this code results in Capybara opening the browser if necessary
and navigating to the URL provided.

Clicking on links or buttons
There are a few methods we can use to navigate the application using links
or buttons:

•	 click_link_or_button

•	 click_on

•	 click_link

Chapter 2

[23]

Here are some examples of how we could use these. The markup provided is just a
snippet from a web page so you can see how the API is used in context:

<div id="main">
 <div class="section">
 Click this
 Anchor
 </div>
</div>

Any of the following Cucumber steps would successfully click on the link:

When(/^I click on a link using an id$/) do
 click_on 'myanchor'
end

When(/^I click on a link using text$/) do
 click_link_or_button 'Click this Anchor'
end

When(/^I click on a link using the title attribute$/) do
 click_link 'myanchortitle'
end

In these examples, we have used a mixture of the three different API methods
available and we have also used different selectors each time.

We saw in the "YouTube search" example that Capybara often uses a "best guess"
strategy for much of the API when attempting to locate elements. In the case of links
and buttons, Capybara looks at the following element properties when attempting to
locate the element to click on:

•	 The id attribute of the anchor, button, or input tag
•	 The title attribute of the anchor, button, or input tag
•	 Text within the anchor, button, or input tag
•	 The value attribute of the input element where its type is one of 'button',

'reset', 'submit', or 'image'
•	 The alt attribute where an image is used as an anchor or input

Mastering the API

[24]

We can apply the same methods against the following markup to click on a
button element:

<div id="main">
 <div class="section">
 <button id="mybutton" title="mybuttontitle">Click this
 Button</button>
 </div>
</div>

When(/^I click on a button using an id$/) do
 click_on 'mybutton'
end

The same is true when the markup contains an input element of type="button".

Submitting forms
Another common task you are likely to want to automate is the completion and
submission of forms.

Again Capybara provides a lot of user-friendly API to do just this. Consider this
simple form snippet:

<form id="myform">
 <input type="text" name="Forename" value="" />
 <input type="text" name="Surname" value="" />
 <input type="submit" value="Go" />
</form>

The following Cucumber step definition would fill in and submit the form:

When(/^I complete and submit the form$/) do
 fill_in 'Forename', :with => 'Matthew'
 fill_in 'Surname', :with => 'Robbins'
 click_on 'Go'
end

When locating fields that can accept text input, Capybara will use one of the
following to find those fields in the DOM:

•	 The id attribute of the input element
•	 The name attribute of the input element
•	 A related label element

Chapter 2

[25]

An example using label elements is shown in the following code. Labels are more
commonly associated with radio buttons and checkboxes but they can still be used
with text inputs:

<form id="myform">
 <label for="name1">User Forename</label>
 <input id="name1" type="text" name="Forename" value="" />
 <label for="name2">User Surname</label>
 <input id="name2" type="text" name="Surname" value="" />
 <input type="submit" value="Go" />
</form>

When(/^I complete and submit the form$/) do
 fill_in 'User Forename', :with => 'Matthew'
 fill_in 'User Surname', :with => 'Robbins'
 click_on 'Go'
end

Checkboxes and radio buttons
You are also likely to encounter forms that have checkboxes and radio buttons
on them. Thankfully, the API to manipulate these elements is much the same as
completing text inputs.

The following markup now includes some additional elements and a screenshot
is shown so that you can visualize what this would look like when rendered
in a browser:

<form id="myform">
 <label for="name1">User Forename</label>
 <input id="name1" type="text" name="Forename" value="" />
 <label for="name2">User Surname</label>
 <input id="name2" type="text" name="Surname" value="" />
 <p>
 <label for="title">Title</label>
 <select name="user_title" id="title">
 <option>Mrs</option>
 <option>Mr</option>
 <option>Miss</option>
 </select>
 </p>
 <p>
 <label for="under_16">Under 16</label>
 <input type="radio" name="underage" value="under"
 id="under_16" checked="checked"/>

Mastering the API

[26]

 <label for="over_16">Over 16</label>
 <input type="radio" name="overage" value="over"
 id="over_16"/>
 </p>
 <p>
 <label for="consent">Consent Given?</label>
 <input type="checkbox" value="yes" name="consent_checkbox"
 id="consent"/>
 </p>
 <input type="submit" value="Go" />
</form>

This will generate an output as shown in the following screenshot:

We now need to implement steps to manipulate the form using the drop-down
menus, radio buttons, and checkboxes. These are all just input elements of type
select, radio, and checkbox respectively.

When(/^I complete and submit the form$/) do
 fill_in 'User Forename', :with => 'Matthew'
 fill_in 'User Surname', :with => 'Robbins'
 select 'Mr', :from => 'title'
 choose 'Over 16'
 check 'consent'
 click_on 'Go'
end

We have already covered filling in the text fields. Next, we move on to selecting the
title from the drop-down list:

select 'Mr', :from => 'title'

Chapter 2

[27]

As with the input elements Capybara will again look at related labels, the id
and name attributes, to locate the element. In this instance title is the ID of the
select element. The value to select from the list must be the text of one of the
child option elements.

Capybara also has an unselect method, which does
exactly what you would expect; it clears the selection!

The next element to tackle is the radio button selection. Here we use the
following code:

choose 'Over 16'

Capybara's choose method again looks at related labels, the id and name attributes,
to locate the element. In this instance, Over 16 is the label related to the radio input
with the id value as over_16.

Finally, we need to select the Consent checkbox and for this we use:

check 'consent'

Capybara's check method, as with the others, uses related labels, the id and name
attributes to locate the element. In this instance consent is the id value related to the
checkbox input.

Capybara also has an uncheck method, which does exactly
what you would expect; it clears the checkbox!

Finally, Capybara also provides API to allow you to upload files by setting the path
in an input element of type='file'. Here is an example of markup containing such
an element:

<label for="form_image">Image</label>
<input type="file" name="image" id="form_image"/>

And an example step to implement this would be as follows:

When(/^I attach a file in a form$/) do
 attach_file 'Image', '/Users/matt/foo.png'
end

Mastering the API

[28]

Capybara will validate that the file to which you are trying to set the path actually
exists on the filesystem. If it does not, you will see an error message like the following:

cannot attach file, /Users/matt/foo.png does not exist
(Capybara::FileNotFound)

 ./features/step_defs/form.rb:11:

Finders, scoping, and multiple matches
A lot of the API we have covered so far in this chapter has in some ways been a bit
of a façade. Capybara, in the best way possible, provides a lot of "syntactic sugar"
around some basic building blocks.

These building blocks are in fact simply XPath expressions to find things on the page
and then delegate the action down to the underlying driver.

Most of the time it makes sense to use this "sugared" API, as your code is made a lot
more expressive and readable. Aside from the obvious benefit of "write once, run on
multiple drivers", the clean semantics of Capybara's API are its main selling points so
you should use it wherever possible.

However, there will be times when these methods don't work for you. For example,
the click_on method is great for handling navigation via anchor tags and images, but
what if your site uses a lot of JavaScript to register click events on other elements?

Consider the following (fairly useless) web page:

<html>
 <head>
 <title>Click Examples</title>
 <script>
 window.onload = function() {
 var mydiv = document.getElementById("mydiv");

 mydiv.onclick =function() {
 alert('div has been clicked');
 };

 };
 </script>
 </head>
<body>

Chapter 2

[29]

 <div id="main">
 <div class="section">
 <div id="mydiv" title="mydivtitle">Click This Div</div>
 </div>
 </div>
 </body>
</html>

In this instance, clicking on the div element with the id value of mydiv results in an
alert message.

To automate this click, we need to turn to Capybara's so called "finders". To begin,
let's focus our attention on the find method itself. This is a method that takes an
XPath expression or a CSS selector and returns a Capybara::Element on which we
can invoke an action.

A Cucumber step to do that would look something like this:

When(/^I click on a div with a click handler attached$/) do
 find('#mydiv').click
end

Because we chose CSS selectors as the default selector, we don't need to tell
Capybara this; however, if we wanted to use an XPath we would simply pass :xpath
as the first argument to the method and then the XPath expression as the second
argument.

Nearly all the other finder methods are built on top of this but are a little more sugared:

•	 find_field: This finder searches for form fields by the related label
element, or the name/id attribute

•	 field_labeled: This finder is the same as find_field
•	 find_link: This finder finds an anchor or an image link using the text, id,

or img alt attribute
•	 find_button: This finder finds a button by the id, name, or value attribute
•	 find_by_id: This finder finds any element by the id attribute

As you can see finders are extremely powerful allowing us to locate any element in
the DOM and manipulate it.

Mastering the API

[30]

Multiple matches
So far all the examples we have looked at make the assumption that we are looking
for a single element in the DOM. With dynamic web applications you may not know
exactly which element to look for. For example, let's assume you are checking some
search results that are dynamically added to the page:

<div id="main">
 <h1>Search Results</h1>
 <ul class="section">
 <li id="res1" class="result">Match 1
 <li id="res2" class="result">Match 2
 <li id="res3" class="result">Match 3

</div>

There are a couple of things you could do here to assert that the content you expect
to be returned exists. The most obvious and perhaps the one you might turn to first
is to iterate through the results and inspect each one. For this you can use the all
method, which returns a collection of elements:

When(/^I search for the relevant result$/) do
 all('.result').each_with_index do |elem, idx|
 elem.text.should == "Match #{idx + 1}"
 end
end

Here we are iterating through all the search results in the preceding markup and
checking that the text is what we expect that is, the first element contains Match 1,
the second Match 2, and so on.

There are some alternatives to using the all method, which may be more
appropriate. If you don't need to check each match, you can set your matching
strategy to be more intelligent looking perhaps for partial matches or try passing in
some additional arguments to ensure the element is visible and contains specific text.
Following the release of Capybara 2.1 there has been significant change in this area
so it makes sense to cover this in depth.

Matching strategies
Looking again at the previous search results markup, let's see what happens when
you use the find method to retrieve elements with the class result:

When(/^I search for the relevant result$/) do
 find('.result').text
end

Chapter 2

[31]

Running this code produces the following error:

When I search for the relevant result # features/step_defs/
results.rb:5

 Ambiguous match, found 3 elements matching css ".result"
 (Capybara::Ambiguous)

Capybara is letting you know that there is more than one element matching this
query, which makes sense. We don't want Capybara to be too magical and just
assume we want the first match; this could be dangerous.

Capybara 1.0 would just take the first of multiple matches,
which could result in your code grabbing the incorrect element
and causing you headaches when debugging broken tests.

Capybara 2.1 introduced the Capybara.match and Capybara.exact options to allow
you to fine-tune the strategy employed when attempting to find elements on the
page. The possible options for Capybara.match are:

•	 :one – This option will raise a Capybara::Ambiguous exception when more
than one match is found for the query.

•	 :first – This option will simply pick the first match (the old behavior).
•	 :prefer_exact – This option will return an exact matching element, if

multiple matches are found, some of which are exact, and others are not.
•	 :smart – This option is available by default in Capybara 2.1 and is

dependent on the value of Capybara.exact. If this is set to true, the
behavior is the same as :one. Otherwise, Capybara first searches for exact
matches, if multiple matches are found, a Capybara::Ambiguous exception
is raised, if none are found, it searches for inexact matches again raising
Capybara::Ambiguous if multiple matches are returned.

Here is an example to illustrate the different options. Hopefully you won't have
markup like this in your application but it serves to illustrate how the different
strategies will affect which elements get returned from a query.

 <label for="text1">please complete this field</label>
 <input id="text1" type="text"/>
 <label for="text2">please complete this</label>
 <input id="text2" type="text" />
 <label for="text3">please complete this input</label>
 <input id="text3" type="text" />

page.fill_in 'please complete this', :with => 'foobar'
page.fill_in 'please complete', :with => 'bazqux'

Mastering the API

[32]

Remember, the default behavior when not using XPath or CSS selectors is that
Capybara will try to perform a partial string match. In the preceding example,
the first search term please complete this is a partial match for the labels
please complete this field and please complete this input. The
second search term please complete is a partial match for all three labels.

Let's consider each strategy in turn and see how this would affect which input gets
completed and with what value:

•	 Capybara.match = :one – This strategy raises the Capybara::Ambiguous
exception.

•	 Capybara.match = :first – In this strategy, both the fill_in calls will
fill in the first text input as they are both partial matches for the first label.

•	 Capybara.match = :prefer_exact – In this strategy, the second input will
be completed with foobar as its label is an exact match for the first query.
Capybara will fall back to filling in bazqux for the first input as its label is
the first partial match for the second query. Note this query is also a partial
match for the second and third input but with this strategy the first of any
multiple matches is used.

•	 Capybara.match = :smart – In this strategy, the second input will be
completed with foobar its label is an exact match for the first query. However,
unlike with :prefer_exact a Capybara::Ambiguous, an error is raised for the
second fill_in call because there is more than one partial match.

Note if you set Capybara.exact = :true, this will override
the previous strategies and no partial matches will be considered.
Instead the Capybara::ElementNotFound exception will be
raised if a query only partially matches elements on the page.

The behavior of :smart also extends to choosing options from a drop-down list
(the select element).

As you can see, these strategies are quite hard to get to grips with, so I would
recommend you create some of your own test pages and then play around with
the different options until you are comfortable with what is going to work best
in your production tests.

Chapter 2

[33]

Element visibility
The visibility of an element also affects whether Capybara will locate it in the DOM.
Capybara has a global setting, which it uses to determine whether to check for
hidden elements:

Capybara.ignore_hidden_elements = true

The default value for this setting is now true, which means that the elements that are
not visible to the user (for example, they have CSS properties set such as display:
none or visibility: hidden) will not get returned as results from our queries.

The behavior of the text method has also changed somewhat in Capybara 2.1. This
is typically used as follows:

find('#log').text #finds text within the element with the id 'log'

The behavior of this method is now dependent on the value of Capybara.ignore_
hidden_elements. When this is true only visible text is returned, otherwise all text
is returned.

In Capybara 1.0 the behavior of this method was driver dependent;
Selenium WebDriver only returned visible text but Rack::Test would
return anything. In Capybara 2.0 consistency was enforced and both
drivers only ever returned visible text.

Capybara 2.1 also introduced a method to override the behavior of Capybara.
ignore_hidden_elements for the text method. If you set Capybara.visible_
text_only = true, the behavior of the text method will be to only ever return
visible text regardless of whether ignore_hidden_elements is set to false.

It is important to remember driver behavior may still differ depending on
how sophisticated the driver's interpretation of visibility is. In Rack::Test
this will be quite crude as there is no rendering as opposed to Selenium
where pages are fully rendered. Hence, the browser can apply a more
sophisticated interpretation of whether an element is visible to the user.

Finally it is worth noting that you can set all these options in a configure block.
For example:

Capybara.configure do |config|
 config.match = :smart
 config.exact_options = true
end

Mastering the API

[34]

Scoping
When attempting to find content on the page that might not be easy to uniquely
identify, another option is to restrict the query to a section of the page. Capybara
provides the within method to allow scoped queries:

<div id="main">
 <h1>Search Results</h1>
 <ul id="local_results">
 <li id="res1" class="result">Local Match 1
 <li id="res2" class="result">Local Match 2
 <li id="res3" class="result">Local Match 3

 <ul id="internet_results">
 <li id="res4" class="result">Internet Match 1
 <li id="res5" class="result">Internet Match 2
 <li id="res6" class="result">Internet Match 3

</div>

In the preceding example, we have two sets of search results returned, some from
the local site and some from the Internet. Let's assume we want to find all the results
from the Internet.

When(/^I search for results within a scope$/) do
 within('#internet_results') do
 all('.result').each do |elem|
 puts elem.text
 end
 end
end

Running this step would produce the following output:

Internet Match 1
Internet Match 2
Internet Match 3

The argument to the within method is just the same as with find. If no type is
provided, the single argument is assumed to be a selector of the default type.
Capybara also provides some within methods that scope to a specific type of element:

•	 within_fieldset – The first argument should be the id or legend attribute
within a form fieldset element

•	 within_table – The first argument should be the id or caption attribute
within a table element

Chapter 2

[35]

•	 within_frame(frame_id) – The first argument should be the id value of an
iframe element (selected drivers, for example, Selenium)

•	 within_window – The first argument should be the window handle (selected
drivers for example, Selenium)

Asserting and querying
Now that you can navigate around your application, submit forms, and locate any
element in the DOM, we need to turn our attention to validating the expected behavior.

Capybara allows us to do this in a couple of ways.

The first option is to use the Capybara "Query" API directly. Capybara provides a
whole set of methods for querying the page under test and returning a Boolean value.

page.has_content? 'capybara rocks'
page.has_selector? '#main'

You could use these methods with a traditional "assertion" approach where
tests assert against a Boolean condition. The other option is to use RSpec "Magic
Matchers". These matchers in fact just "piggy back" off the query methods:

page.should have_content 'capybara rocks'
page.should have_selector '#main'

The beauty of using the RSpec matchers is two fold:

•	 You get meaningful exceptions that inform you exactly where the
problem lies

•	 It satisfies the "fail fast" ideology whereby we fail as early and as hard as
possible, which is exactly what we want when testing web apps

Matchers and RSpec
Capybara exposes the following methods for querying your application's pages:

 has_selector?(*args)
 has_no_selector?(*args)
 has_xpath?(path, options={})
 has_no_xpath?(path, options={})
 has_css?(path, options={})
 has_no_css?(path, options={})
 has_text?(content)
 has_content?(content)

Mastering the API

[36]

 has_no_text?(content)
 has_no_content?(content)
 has_link?(locator, options={})
 has_no_link?(locator, options={})
 has_button?(locator)
 has_no_button?(locator)
 has_field?(locator, options={})
 has_no_field?(locator, options={})
 has_checked_field?(locator)
 has_no_checked_field?(locator)
 has_unchecked_field?(locator)
 has_no_unchecked_field?(locator)
 has_select?(locator, options={})
 has_no_select?(locator, options={})
 has_table?(locator, options={})
 has_no_table?(locator, options={})

All of these can be used in isolation or can be wrapped using an RSpec Matcher.

We won't go into too much detail on these query methods because the principles
are exactly the same as when using the "finder" methods; the only difference is that
rather than returning an element they just return true or false, depending on whether
the element or content exists.

Let's return to our "search results" example:

<div id="main">
 <h1>Search Results</h1>
 <ul id="local_results">
 <li id="res1" class="result">Local Match 1
 <li id="res2" class="result">Local Match 2
 <li id="res3" class="result">Local Match 3

 <ul id="internet_results">
 <li id="res4" class="result">Internet Match 1
 <li id="res5" class="result">Internet Match 2
 <li id="res6" class="result">Internet Match 3

</div>

Here are some example queries and their RSpec equivalents, firstly checking for the
existence of a selector, and then checking for text content:

Then(/^the desired search results are returned$/) do
 page.has_selector? '#local_results'
 page.should have_selector '#local_results'

Chapter 2

[37]

end
Then(/^the desired search results are returned$/) do
 page.should have_content 'Local Match 1'
 first('#res1').should have_content 'Local Match 1'
end

Note that these query methods can be used at the page level or on any node retrieved
using a finder method.

If you see the exception undefined method should for
#<Capybara::Session> (NoMethodError), you probably
need to add gem install rspec or add gem 'rspec' to your
Gemfile and run bundle install again. You would also need to
add require 'rspec/expectations' in your env.rb file.

As well as checking that elements and content exist we can of course check that
things are not present or visible on the page. In the following example, we will
check if an element with the id value local_results does not exist on the page:

Then(/^the desired search results are returned$/) do
 page.has_no_selector? '#local_results'
 page.should have_no_selector '#local_results'
end

The has_xpath?, has_no_xpath?, has_css?, and has_no_css? methods are
precisely the same as the has_selector? and has_no_selector? methods, the only
difference being they just specifically take XPath or CSS selectors as arguments.

The methods that look at specific elements such as tables, fields, and links behave
exactly like the finder methods we saw earlier where they accept a locator
argument and then look at different attributes or labels to find those elements.

•	 has_link? – This checks for an anchor or an image link using the text, id,
or img alt attribute

•	 has_button? – This checks for a button by the id, name, or value attribute
•	 has_field? – This checks for the associated label, name, or id attribute

of a field
•	 has_select? – This checks for the associated label, name, or id attribute of

an input of type select
•	 has_table? – This checks for the id or caption element within a

table element

Mastering the API

[38]

It is important to remember that all these methods can be called on
any Capybara::Node element, meaning you can perform a query
on a node that has been returned from the result of a previous query.

Refining finders and matchers
In addition to setting Capybara's configuration globally using options such as
Capybara.match = :smart you can override the behavior on single finder or
matcher statements by passing an additional hash of arguments, such as :text,
:visible, :exact, :match, or :wait.

Consider this page snippet, which makes some text visible after a delay of
five seconds:

<head>
 <script>
 $(document).ready(function() {
 var addText = function() {
 $('.section').attr('style', 'visibility;visible;');
 }
 setTimeout(addText, 5000);
 });
 </script>
</head>
<body>
 <div id="main">
 <div class="section" style="visibility:hidden;">Capybara
 Rocks</div>
 </div>
</body>

If we have not modified Capybara.default_timeout, it won't help here as it
defaults to wait for two seconds for asynchronous JavaScript. We can override this,
and while we're at it, make our finder check for the correct text as well as override
the matching strategy and ensure the text is visible!

find('.section', :visible => true, :wait => 10, :text => 'Capybara R',
:match => :first)

It's worth stating again that this will override any default settings we may have. This
technique can also be used with the query methods (such as page.has_content?)
and also with the all method.

Chapter 2

[39]

For example, let's assume a page has run some JavaScript that has set one of the
search results not to be shown:

<div id="main">
 <h1>Search Results</h1>
 <ul class="section">
 <li id="res1" class="result">Match 1
 <li id="res2" class="result">Match 2
 <li id="res3" class="result">Match 3
 <li id="res4" class="result" style="visibility:hidden;">Match
 4
 <li id="res5" class="result">Match 5

</div>

If we now run the following step:

When(/^I search for visible results$/) do
 all('.result', :visible => true).each do |elem|
 puts elem.text
 end
end

The output would be:

Match 1
Match 2
Match 3
Match 5

You can also get the all method to return only elements with specific text, for
example, if we modified the step again:

When(/^I search for the relevant result$/) do
 all('.result', :text => 'Match 1').each do |elem |
 puts elem.text
 end
end

Then the output would be:

Match 1

www.allitebooks.com

http://www.allitebooks.org

Mastering the API

[40]

Checking attribute values
Quite often you will want to check if an element exists and has an attribute with
a specific value. This is simple using either CSS selectors or XPath expressions.
This example checks for the presence of a div element with an id attribute of
local_results:

Then(/^the desired search results are returned$/) do
 #using CSS selector
 page.has_selector? 'div[id=local_resuls]'
 #using XPath
 page.has_xpath? "//div[@id='local_results']"
end

You can also use an array index notation on any Capybara::Element passing
in the attribute name as a symbol as shown in the following example. Here we
have combined this technique with one of RSpec's default matchers to assert the
expected result.

Then(/^the desired search results are returned$/) do
 first('#res1')[:class].should == 'result'
end

Summary
In this chapter, we have had a guided tour of Capybara's API covering navigation,
form filling, finding elements, and validating their content. The good news is that
the hard part is now out of the way and you now have all the skills you need to
automate your tests with Capybara. In the next chapter, we see how powerful
Capybara is for testing Rails and Sinatra apps and begin to uncover the real
benefits of using this wonderful library.

Testing Rails and Sinatra
Applications

Capybara was born out of the ecosystem of tools that exist to support testing Rails
applications. We have seen that any web application can be tested using Capybara;
however, we should take the time to understand why Capybara is particularly
well-suited for testing Rails apps, Sinatra apps, or in fact any Rack application.

In this chapter we will consider the following topics:

•	 Defining Rack
•	 Capybara and Rack::Test
•	 Which driver to use and when
•	 Capybara, Rails, and transactional fixtures

Understanding the Rack interface
If you hang around long enough on any Ruby message board, IRC (Internet Relay
Chat) channel, or Issue Tracker, you will soon hear mention of the mysterious Rack
application; so just what is Rack?

Rack (http://rack.github.io/) is probably one of the most powerful libraries
within the Ruby web application stack and underpins nearly all Ruby-based web
frameworks and web servers. Rack is an abstraction layer, often referred to as
middleware, sitting between any web application that wants to talk over HTTP
and the web server chosen to implement that communication.

Testing Rails and Sinatra Applications

[42]

What does this mean in practice? Let's say you are implementing a web application
framework. At some point you will have to consider how you are going to interface
to the web server so that you can digest a request and send a response. Typically,
this would have to be done by writing to a bespoke adapter for the given web
server. So if you wanted your web framework to run in multiple servers, you would
have to code multiple adapters. Rack removes the need for this; you simply code
your framework to Rack's very straightforward interface, and Rack handles the
communication with the server, so swapping servers is a one-line change!

The following is probably the simplest working example of a Rack application.
Try it yourself and you will see there is no magic here, just a very simple but
ingenious idea.

You will need the Rack gem for this. You should have it in your
current project as it as a dependency of Capybara; but if you
have any issues, be sure to run gem install rack or add gem
'rack' to your Gemfile and run bundle install.

require 'rack'
require 'rack/server'

class HelloWorld
 def response
 [200, {'Content-Length' => '11'}, ['Hello World']]
 end
end

class HelloWorldApp
 def self.call(env)
 HelloWorld.new.response
 end
end

Rack::Server.start :app => HelloWorldApp

This example implements the core Rack method call and then responds with a
simple 200 OK status and the body text Hello World. Note that rather than using
Rack::Server, which uses the default WEBrick server, we could have used any
Rack-compatible web server here. Swapping this for another server such as Thin
(http://code.macournoyer.com/thin/) would be as simple as changing the last
line to read Rack::Handler::Thin.start.

Chapter 3

[43]

You can start the application by typing ruby myapp.rb at the command line; you
should then see the following displayed:

$ ruby myapp.rb

[2013-04-09 08:29:27] INFO WEBrick 1.3.1

[2013-04-09 08:29:27] INFO ruby 1.9.3 (2012-11-10) [x86_64-darwin11.4.2]

[2013-04-09 08:29:27] INFO WEBrick::HTTPServer#start: pid=32991
port=8080

If you navigate to http://localhost:8080, you should see the Hello World text in
the browser, hey presto your own Rack application!

The benefits extend further than just this abstraction, because the communication
between the web framework and the web server is done via Rack's specified hash
format this means stubbing out requests and responses is straightforward. The test
library just has to conform to the hash format for requests and response handling,
and you can instantly exercise the application's full-stack functionality without the
need for a web server and HTTP. The Rack::Test library provides this functionality
and is one of the built-in drivers shipped with Capybara. It is likely to be your first
port of call when testing a Rails or Sinatra application with Capybara.

Capybara and Rack::Test
Rack::Test is a library that implements the Rack protocol, making it possible
to test your application's full-stack functionality without the latency of HTTP
communication and opening real browsers. You can use its API to send a request
to your application; when your application responds, Rack::Test will digest
the response and allow you to interrogate it. It can do this because it is simply
implementing the Rack protocol, constructing the request hash to present to the
application just as the Rack web server would do, interpreting the response hash,
and making it available to you via the API.

Here is an example using Rack::Test outside of Capybara that tests the "Hello World"
application we developed previously:

require 'rack/test'
require 'test/unit'

class HelloWorldAppTest < Test::Unit::TestCase
 include Rack::Test::Methods

 def app

Testing Rails and Sinatra Applications

[44]

 HelloWorldApp
 end

 def test_redirect_logged_in_users_to_dashboard
 get "/"

 assert last_response.ok?
 assert_equal last_response.body, 'Hello World'
 end

end

This test calls our application's home page route, asserts that a 200 HTTP response
code was received, and then ensures the body text was Hello World. But the crucial
thing to remember is that no actual communication over the wire occurred here, so
you are getting the reliability and speed of a unit test with the benefit of exercising
the application's full stack.

Of course, realistically our application under test is likely to be implemented
using frameworks such as Rails or Sinatra; we also want to use Capybara to
drive Rack::Test, so we don't have to worry about the internals of Rack::Test.

Rack::Test does not have a direct API for clicking elements, setting radio buttons,
dealing with forms, and so on. It is focused more or less solely on performing
the Rack transactions for us, effectively stubbing out the web server. Capybara,
therefore, has to manage the translation of user-initiated events into Rack::Test
actions. As an example, here is how the Capybara driver translates the click
event on an element into the relevant method's calls for Rack::Test:

def click
 if tag_name == 'a'
 method = self["data-method"] if driver.options[:respect_data_
 method]
 method ||= :get
 driver.follow(method, self[:href].to_s)
 elsif (tag_name == 'input' and %w(submit image).include?(type)) or
 ((tag_name == 'button') and type.nil? or type == "submit")
 Capybara::RackTest::Form.new(driver, form).submit(self)
 end
end

Capybara determines the type of element being clicked and then works out whether
to tell Rack::Test to follow a link or to submit a form.

Chapter 3

[45]

Testing a Sinatra application
All of this becomes more tangible if we look at a more realistic example. We will use
Sinatra simply because there is less boilerplate code than Rails, but the principles are
exactly the same.

Consider the following simple Sinatra application; it allows us to complete a book
review and return the data submitted. Note that there is no persistence in this example.

Sinatra application file – app.rb
This is the main file for our Sinatra application that handles the controller logic:

require 'sinatra'

class BookReview < Sinatra::Base

 get '/form' do
 erb :form
 end

 post '/submit' do
 @name = params[:name]
 @title = params[:title]
 @review = params[:review]
 @age = params[:age]
 erb :result
 end

end

BookReview.run! if __FILE__ == $0 #only run if invoked from command
line - otherwise leave to Capybara

Form template – form.erb
This is an ERB template (Ruby's standard HTML templating format), which when
rendered will allow a user to submit a book review:

<link rel="stylesheet" href="css/form.css">
<form action="/submit" method="post">
 <header id="header" class="info">
 <h2>Book Reviews</h2>
 <div>Review the last book you purchased...</div>
 </header>

Testing Rails and Sinatra Applications

[46]

 <label for="name">
 Your Name
 </label>
 <input type="text" id="name" name="name" maxlegth="255">

 <label class="desc" for="age">
 Age Range
 </label>
 <div>
 <select id="age" name="age">
 <option value="-" selected="selected">
 </option>
 <option value="<20" >
 Under 20
 </option>
 <option value="20-50" >
 20 -50
 </option>
 <option value="50+" >
 Over 50
 </option>
 </select>
 </div>

 <label for="book_title">
 Book Title
 </label>
 <input type="text" id="book_title" name="title"
 maxlegth="255">

 <label for="review">
 Your Review...
 </label>
 <textarea id="review" name="review" rows="10"
 cols="50"></textarea>

 <input type="submit" value="Submit"/>

</form>

Chapter 3

[47]

This is how the form would look when rendered in the browser:

Results template – result.erb
This is another ERB template, which will render the saved review:

<div class="saved_review">
<p>You submitted the following on: <%= Time.new.strftime("%Y-%m-%d
%H:%M:%S") %> </p>

 <p id="name">Name: <%= @name %></p>

 <p id="age">Age: <%= @age %></p>

 <p>Book Title: <%= @title %></p>

Testing Rails and Sinatra Applications

[48]

 <p>Book Review: <%= @review %></p>

 Submit another review...
</div>

This is how the submitted review will appear in the browser:

When the application is run from the command line using ruby app.rb, you can
navigate to http://localhost:4567/form and submit a book review; this will
then echo back the submitted details at http://localhost:4567/result.

So now that we have a working Sinatra application, we need to see how to test this
using Capybara and crucially show the difference between testing with Rack::Test as
the driver as opposed to Selenium WebDriver.

Testing with Rack::Test
From a Capybara perspective, you interact with your Sinatra/Rails application in
exactly the same way in which you do with a remote application. It's just the setup
that differs slightly.

For example, here are some Cucumber step definitions with their Capybara
implementation to automate the completion of the book review form and
check the submitted results:

Given(/^I am on a book review site$/) do
 visit('/form')
end

When(/^I submit a book review$/) do
 fill_in 'name', :with => 'Matt'

Chapter 3

[49]

 fill_in 'title', :with => 'Catch 22'
 fill_in 'review', :with => 'Alright I guess....'
 select '20 - 50', :from => 'age'
 click_on 'Submit'
end

Then(/^I should see the saved details confirmed$/) do
 page.should have_text 'You submitted the following on:'
 find('#name').should have_text 'Matt'
 find('#age').should have_text '20-50'
 find('#review').should have_text 'Alright I guess....'
 find('#title').should have_text 'Catch 22'
end

This implementation is nothing new to us by now, and thankfully this will not
change, regardless of the driver we choose, that's the beauty of Capybara.

However, the setup is something we need to look at in a bit more detail. Here is an
example env.rb file such as you might have in your Cucumber project for testing
your Rails or Sinatra application:

require 'capybara/cucumber'
require 'rspec/expectations'
require_relative '../../sinatra/app'

Capybara.default_driver = :rack_test

Capybara.register_driver :selenium do |app|
 Capybara::Selenium::Driver.new(app, :browser => :chrome)
end

Capybara.app = BookReview

Here we introduce only one new concept, which is setting the value of Capybara.app
to the main class for our Sinatra application, which in this case is the BookReview class.

The Capybara.default_driver is also set to :rack_test, so when we run the tests
they will use Rack::Test as opposed to Selenium WebDriver. No browser will open
and no HTTP requests made, which means they will run very quickly; yet, as we
discussed before, they still exercise the entire application stack.

However, we still want the option of running these tests using Selenium in a real
browser. To do this, we simply change the default driver:

Capybara.default_dirver = :selenium

Testing Rails and Sinatra Applications

[50]

If you run your tests again, you will notice that as if by magic your application
is running in the server and pages are available for the tests to access. If you look
closely, you will notice that the application is running on a seemingly random port.
Because the application is a Rack app, Capybara is able to start the application
server for you and stop it at the end of the tests. In this instance, you are of course
exercising your application over HTTP and in a real browser, so tests will clearly
run significantly slower.

Just to highlight the speed issues, here are two runs of the same scenario: the first
using Rack::Test and the second using Selenium WebDriver. As you can see, the
speed difference is significant:

$ bin/cucumber -r features features/chapter3/sinatra.feature

Feature: Using Capybara and Rack-Test to Interact with Sinatra App

 Scenario: Complete Book Review # features/chapter3/
sinatra.feature:3

 Given I am on a book review site # features/chapter3/
steps/sinatra.rb:1

 When I submit a book review # features/chapter3/
steps/sinatra.rb:5

 Then I should see the saved details confirmed # features/chapter3/
steps/sinatra.rb:13

1 scenario (1 passed)

3 steps (3 passed)

0m0.064s

$ bin/cucumber -r features features/chapter3/sinatra.feature

Feature: Using Capybara and Selenium-Webdriver to Interact with Sinatra
App

 Scenario: Complete Book Review # features/chapter3/
sinatra.feature:3

 Given I am on a book review site # features/chapter3/
steps/sinatra.rb:1

 When I submit a book review # features/chapter3/
steps/sinatra.rb:5

Chapter 3

[51]

 Then I should see the saved details confirmed # features/chapter3/
steps/sinatra.rb:13

1 scenario (1 passed)

3 steps (3 passed)

0m4.079s

Because Capybara starts your application, this means you do
not need to set the base host using Capybara.app_host or use
full URLs in your calls to the visit method. You can simply
use the relative path to the page such as visit '/form'.

Which driver to use and when?
It is important to understand that even when we have Rack::Test available,
it may not always be the best option. As mentioned previously, using the
Rack::Test driver will test your application's full stack and will run tests
quicker than using any browser-based solution headless or otherwise.
However, there are two important considerations:

•	 Rack::Test is not a real browser
•	 Rack::Test does not run any of your client-side code

It is important to bear in mind that there are features of a web server and browser
that will affect the behaviour of the application under test which we will not be
testing when using Rack::Test. For example, HTTP caching headers are not in play,
so there is still a case for testing in this context.

Rack::Test does maintain a cookie JAR, so the behavior of
cookies should still be replicated as with a real browser.

Finally, and perhaps most importantly, Rack::Test is not going to test any of your
application's client-side JavaScript as it deals only with code that runs on the server.
If you have a Rails or Sinatra application that is entirely dependent on JavaScript and
static assets to provide core functionality, you will need to ensure this is covered by
your Capybara tests that use Selenium WebDriver.

As a rule of thumb it would be advisable to harness the power and performance
of Rack::Test for running full stack tests that validate the core of your server-side
integration. In addition, always ensure you have at least a set of sanity or smoke
tests that you run using Selenium WebDriver in a real browser.

Testing Rails and Sinatra Applications

[52]

Capybara helps you here; if you are using Cucumber, simply tag scenarios requiring
JavaScript support with @javascript and in RSpec put :js => true in your specs
as in the following example:

#For Cucumber
@javascript
Scenario: Complete Book Review

#For RSpec
describe "Book Review"
 it "lets the user submit a review", :js => true do

Capybara will then swap out the drivers as required. If you don't want to use
Selenium WebDriver as your JavaScript driver, you can change this to another
driver such as Capybara-WebKit using Capybara.javascript_driver = :webkit.

A note on Rails/RSpec and Capybara
If you use Active Record within your rails application to manage database
transactions, you may or may not be aware of the concept of Transactional Fixtures.
The principle here is that when using compatible test frameworks, the database will
be cleared between each test case ensuring there is no pollution between tests.

This code is part of ActiveRecord::TestFixtures and can be enabled or disabled
in the test framework you are using.

Transactional Fixtures will work fine when your test framework is running within
the same process as your application, such as when you are using Rack::Test with
Capybara. However, as soon as you run your application in a web server and use a
driver such as Selenium WebDriver or Capybara-WebKit, your tests start running in
a different process and therefore have no visibility of the code running in the server.
Hence transactions won't be rolled back after each test.

In this instance, what most people do is use Database Cleaner (https://github.
com/bmabey/database_cleaner) to ensure the database is truncated between each
test. The project's README will give you plenty of help in setting this up should you
choose this option.

Chapter 3

[53]

Summary
Capybara supports testing of Rails, Sinatra, and all other Rack applications out of the
box and this support is a central part of the library.

We have covered what "Rack compatible" actually means and this is crucial to
understanding why Capybara in conjunction with Rack::Test is so well suited to
testing applications using Rails or Sinatra.

Finally, we considered which driver to use and when, highlighting that sometimes
you will still need to use Selenium WebDriver to test some of your application's
functionality. Clearly where JavaScript is concerned, Rack::Test will be of no use and
you will have to use the Selenium driver.

Remember the "fail fast" mantra though, and use Rack::Test to run fast full-stack tests
before you bring out the heavy guns of Selenium.

If your application is JavaScript heavy, don't worry, we are going to see how
Capybara handles this with ease in the next chapter.

Dealing with Ajax, JavaScript,
and Flash

It has been a long time since web applications consisted of mainly static HTML. Most
modern web applications have huge amounts of JavaScript that modify the DOM
on the client (in the browser). Automating such applications requires an additional
level of awareness on the part of the developer authoring the tests. JavaScript in the
DOM is not synchronous; event handlers are used to alter and modify the page as it
loads and as users interact with it, and as such, our tests need to be robust enough to
handle this asynchronous behavior.

Thankfully, Capybara was built with this principle at its core, so that makes
things pretty easy for us. In this chapter, we will work through examples that
demonstrate this.

We will also consider elements on the page that appear at first sight to be
impossible to automate, such as flash components or HTML5 elements,
for example, the canvas tag.

Ajax and asynchronous JavaScript
If you are not overly familiar with JavaScript or its role within the web application, a
brief overview may be worthwhile.

JavaScript interpreters exist in all modern web browsers and allow developers to add
client-side functionality to their pages by changing content dynamically once a page
has loaded.

Dealing with Ajax, JavaScript, and Flash

[56]

The API exposed via JavaScript is largely event-based, so JavaScript code running in
the page can register to listen to a specific event and provide a function that will get
called when that event occurs. An example of this might be a search input with an
autosuggest feature, where JavaScript will listen for keypress events and then start to
update the page with search suggestions based on the text input by the user.

Ajax (Asynchronous JavaScript and XML) is just a subset of the API available
via JavaScript and relates to the ability to load content across the network
asynchronously using XML or JSON (JavaScript Object Notation).

Why is this problematic for automation?

Basic page load is detected by most automation tools out of the box. For example,
Selenium knows when the DOM is ready and won't allow interaction with the
page until this has occurred. However, Selenium cannot know how your specific
application's JavaScript will modify the DOM, and so this responsibility falls on you
as the developer of the test.

Fortunately, Capybara has built in a wall of defense against this issue that removes
as much of the brittleness from our tests as possible.

Capybara and asynchronous JavaScript
Let's look at precisely how Capybara helps us manage asynchronous JavaScript in
our applications.

The following code snippets first show some simple markup from a web page and
then some JavaScript that loads pictures from Flickr using Ajax and appends them
as image tags to the existing markup.

Here, the body part of the document shows the initial state of the DOM prior to the
button being clicked and the JavaScript being executed:

<body>
 <div id="main">
 <input type="button" id="load" value="Load Images" />
 <div class="section">
 <div id="images"></div>
 </div>
 </div>
</body>

Chapter 4

[57]

And here is the JavaScript that loads the images and appends them to the document:

<script>
 $(document).ready(function() {
 $('#load').click(function(){
 var flickerAPI = "http://api.flickr.com/services/feeds/
 photos_public.gne?jsoncallback=?";
 $.getJSON(flickerAPI, {
 tags: "capybara",
 tagmode: "any",
 format: "json"
 })
 .done(function(data) {
 $.each(data.items, function(i, item) {
 $("").attr("src", item.media.m)
 .appendTo("#images");
 if (i === 3) {
 return false;
 }
 });
 });
 });
</script>

The rendered page would look like the following screenshot:

Dealing with Ajax, JavaScript, and Flash

[58]

In this example, the Ajax request is made using the jQuery library (http://jquery.
com/) and has been done using JSONP (JSON with Padding), which allows us to
make a cross-domain request for data.

When a user clicks on the Load Images button, this causes four network requests
to be made to the Flickr API to ask for images tagged with capybara. You can see
these requests in the Firebug (http://getfirebug.com) console as shown in the
preceding screenshot. This is completely asynchronous, so when we are testing
"outside in" using Capybara and Selenium there is no way of knowing when these
requests will complete.

Let's assume we have already completed a step that tells us to click on the Load
Images button, and we now want to write a test to check that the four images
have been loaded and added to the page.

Then(/^I should see all the images load successfully$/) do
 find(:xpath, '//img[4]')
end

The preceding xpath expression checks for the four img elements.
This is also possible with CSS3; to do so, include the following code:

find('div > img:first-child:nth-last-child(5)')

Incredibly, that's all you need to do. You might assume that this wouldn't work
because our test will simply load the page and then check for four image elements
that would probably not be there, as the browser is still loading them.

Thankfully, Capybara builds retry logic into much of its API, so that we do not need
to worry about doing it ourselves.

The amount of time which Capybara will retry defaults to two seconds, but can be
overridden by setting the default_wait_time attribute; if you are using Cucumber,
you can add this to your env.rb file:

require 'bundler/setup'
require 'capybara/cucumber'
require 'rspec/expectations'

Capybara.default_driver = :selenium
Capybara.default_wait_time = 10

Chapter 4

[59]

It is important to note that these asynchronous retries only apply where the driver
you are using supports JavaScript. For example, when using Selenium, these will
most certainly work. If the driver doesn't support JavaScript, there is no need for
Capybara to wait, as waiting for page load is sufficient.

Methods that handle asynchronous
JavaScript
Having seen how Capybara's retry logic works when using a simple find, you now
need to see how far this extends across the API.

Both Capybara's finders and matchers wait for asynchronous JavaScript.

Finders
You have encountered the finder methods earlier in this book and all of these
methods have the built-in wait functionality.

As shown in the previous example, find (:xpath, '//img[4]') waited for
sufficient time to allow the asynchronous JavaScript to run and for the browser to
load the images. The other finders that have this capability are:

•	 find_field

•	 find_link

•	 find_button

•	 find_by_id

•	 all

•	 first

Matchers
The matchers that are used to validate content on the page will also wait for
asynchronous JavaScript; for instance, to use an RSpec Matcher, you could change
the previous example as follows:

Then(/^I should see all the images load successfully$/) do
 page.should have_selector(:xpath, '//img[4]')
end

Dealing with Ajax, JavaScript, and Flash

[60]

As with the finder methods, you get this behavior for free with all the matchers and
also with their negative counterparts as follows:

•	 has_xpath? / has_no_xpath?
•	 has_css? / has_no_css?
•	 has_content? / has_no_content? (Similar to has_text? / has_no_text?)
•	 has_link? / has_no_link?
•	 has_button? / has_no_button?
•	 has_field? / has_no_field?
•	 has_checked_field? / has_no_checked_field?
•	 has_unchecked_field? / has_no_unchecked_field?
•	 has_select? / has_no_select?
•	 has_table? / has_no_table?

Gotchas
Despite Capybara's powerful asynchronous defense mechanisms, it is still possible to
be caught out. Let's look at another example:

<html>
 <head>
 <title>Asynch Examples
 </title>
 <script src="http://ajax.googleapis.com/ajax/
 libs/jquery/1.9.1/jquery.min.js">
 </script>
 <script>
 $(document).ready(function() {
 var addText = function() {
 $('.section').attr('style', 'visibility:visible;');
 }
 setTimeout(addText, 5000);
 });
 </script>
 </head>
 <body>
 <div id="main">
 <div class="section" style="visibility:hidden;">
 Capybara Rocks
 </div>
 </div>
 </body>
</html>

Chapter 4

[61]

This page has some JavaScript code that runs at least five seconds after the
page has loaded and sets the visibility style on the div with class section to
visibility:visible. This makes the text Capybara Rocks visible to the user.

You might think that the following code would work and wait for enough time to
check that the element becomes visible:

Then(/^Capybara waits for the element to be visible$/) do
 find('.section').visible?.should == true
end

In this example, Capybara will not wait for the element to become visible. The
reason is that Capybara simply waits for an element with the correct class to exist
within the DOM then immediately checks the visibility of the element and returns.
This is because the visible? method is not one of Capybara's finders or matchers;
it is simply a method used to query the state of an element at any given time.

You could get this behavior if you desired by writing your own custom
wait_for method:

require 'time'

def wait_for(wait = 8)
 timeout = Time.new + wait

 while (Time.new < timeout)
 return if (yield)
 end
 raise "Condition not met within #{wait} seconds"
end

When(/^I visit a page that makes an element visible with a delay$/) do
 visit 'http://localhost/html/asynch.html'
end

Then(/^Capybara waits for the element to be visible$/) do
 wait_for(10) { find('.section').visible? }
end

The wait_for method accepts a wait time in seconds as an argument and then
executes any block that is passed to it. It then continually runs the block, until either
it returns true or the timeout value is exceeded.

Dealing with Ajax, JavaScript, and Flash

[62]

If you find yourself in this situation, it is probably worth considering whether you
could use a method or selector which does take advantage of Capybara's built-in
wait functionality. For example, you could pass an additional parameter to the find
method to ensure it waits for the element to be visible:

Then(/^Capybara waits for the element to be visible$/) do
 find('.section', :visible => true)
end

Capybara's API is so elegant that using this is almost always going to be a better option
than the code that you might attempt to write in order to deal with such issues.

Flash and HTML5 – black box elements
Just as the use of asynchronous JavaScript and Ajax has pushed the boundaries of
web applications, there are other components outside of static markup that make
testing modern web applications challenging.

Examples of such components include:

•	 Flash applications, such as games, video players, and so on
•	 HTML5 canvas tag used for drawing using a JavaScript API
•	 HTML5 video / audio tag

All these components have something in common, that is, they have functionality
that operates to some extent outside of the context of the DOM. We cannot inspect
their internals using the techniques we have discussed so far, because all these
techniques are based on inspecting the DOM for specific elements, their attributes,
and text values.

For example, your application might dynamically draw pie chart diagrams on
a canvas based on some user input and you would, of course, like to test this.
However, when you inspect the DOM, all you see is the following code:

<canvas id="org_chart" width="500" height="500"></canvas>

This is because there is nothing you can inspect as the browser is rendering a bitmap
dynamically based on the instructions passed via the JavaScript API.

You want to test these components using Capybara, but the issue here is not
Capybara; you need to expose a testable API from these components to enable any
browser-automation tool to stand a chance of adding value.

Chapter 4

[63]

Flash
Flash applications are no different than some of the HTML5 elements. They are black
boxes containing compiled code and embedded in the page. The only way to make
a Flash application on your page accessible to test tools is to ensure you and your
development team builds in a testable API that is exposed via JavaScript.

Flash allows this by offering the External Interface API (http://help.adobe.
com/en_US/FlashPlatform/reference/actionscript/3/flash/external/
ExternalInterface.html), whereby an ActionScript function can be made
available to JavaScript. Additionally, you can use FlashVars (http://helpx.adobe.
com/flash/kb/pass-variables-swfs-flashvars.html) to pass data into the
embedded object from JavaScript or via attributes on elements.

From a test automation perspective, there is little difference in principle between a
Flash component and some of the black box HTML5 components. In the following
examples, HTML5 is used rather than Flash, so that you don't need to concern
yourself with compiling ActionScript or building SWF files, which is well outside
the scope of this book.

Exposing a testable API
The HTML5 audio element is another example of a black box component, similar to
a Flash video player.

Imagine that your development team wants to embed an audio player into the pages
of the site, choosing the HTML5 audio element around which to build the player.
Initially, they are just going to build out some custom controls; later, they intend
to add more advanced features such as user-defined playlists and linking to artist
websites from the current track.

The team's initial spike just introduces the following custom controls:

•	 Play
•	 Pause
•	 Seek

As the team member responsible for test automation, you are left scratching your
head; how can you possibly test that clicking on play actually plays the song and
pause stops it? Though the native controls are visible, you cannot interact directly
with these, as they are part of the Browser Object Model (BOM) and not the DOM.

Dealing with Ajax, JavaScript, and Flash

[64]

The following page demonstrates how a very naive implementation of this might look:

<!DOCTYPE html>
<html>
 <head>
 <title>HTML5 Examples</title>
 <script src="http://ajax.googleapis.com/ajax/libs/
 jquery/1.9.1/jquery.min.js">
 </script>
 <script>
 $(document).ready(function() {

 $('#play').click(function(){
 $('audio')[0].play();
 });

 $('#pause').click(function(){
 $('audio')[0].pause();
 });

 $('#seek').click(function(){
 var val = $('#seekval').val();
 $('audio')[0].currentTime = val;
 });

 });
 </script>
 </head>
 <body>
 <div id="main">
 <input type="button" id="play" value="Play" />
 <input type="button" id="pause" value="Pause" />
 <input type="button" id="seek" value="Seek To:" />
 <input id="seekval" value="" />
 <div class="section">
 <audio src='http://www.vorbis.com/music/
 Hydrate-Kenny_Beltrey.ogg' controls="true">
 </audio>
 </div>
 </div>
 </body>
</html>

This example writes out an HTML5 audio element into the page, with a src element
pointing to the file we want to play.

Chapter 4

[65]

The previous example uses jQuery (hence the use of $) to assist with
finding elements and attaching events. This was deliberate for brevity
and also because a lot of the teams you work with will be using jQuery.
Of course there is no dependency here; you could just have easily used
functions such as getElementById and getElementsByTagName.

There are buttons for Play, Pause, and Seek To, which use callback functions to hook
into the JavaScript API for the audio element to play, pause, or seek through the song.

This page might look something like the following screenshot when rendered
in the browser:

It is worth noting again that you can't interact with the native controls (at least not
without some seriously unpleasant techniques), so how do you validate the behavior
of your custom buttons and controls?

Not all hope is lost, and in fact, it turns out to be quite straightforward. Looking
closely at the HTML5 audio specification reveals there are events that are raised by
the browser when specific behavior is invoked. We can tap into these events, and all
of a sudden, this behavior becomes immediately testable.

Test pages – behold the power!
If you come from a test background, you typically lean towards always wanting to
test the application just as a user would use it and you may not be comfortable with
taking a component out onto a test-specific page rather than testing it "in situ".

I can sympathize with this thinking; but often it makes sense to pull a component
out, especially where it is an isolated piece of page, as with our audio player
example. You will still want to write a thin layer of tests with it embedded in a
real page. But to really put it through its paces, it will help to isolate it. The reason
for doing this is that we can tap into all the JavaScript events, output some debug
information into the page, and then use Capybara to scrape this information and
validate that it is correct.

Dealing with Ajax, JavaScript, and Flash

[66]

Let's update our example with some information gathered from events raised and
then output these onto the page.

Additional elements are added to the markup, which will contain the current player
state and song position:

<body>
 <div id="main">
 <input type="button" id="play" value="Play" />
 <input type="button" id="pause" value="Pause" />
 <input type="button" id="seek" value="Seek To:" />
 <input id="seekval" value="" />
 <div class="section">
 <audio src='http://www.vorbis.com/music/
 Hydrate-Kenny_Beltrey.ogg' controls="false">
 </audio>
 </div>
 <div>Player State: stopped</div>
 <div>Song Position: 0.00</div>
 </div>
</body>

The JavaScript code then needs to be augmented to populate these new elements:

<script>
$(document).ready(function() {

 var updateState = function(state) {
 $('#log').text(state);
 };

 var updateTime = function() {
 var currTime = $('audio')[0].currentTime;
 var currTime = Math.round(currTime*100)/100
 $('#time').text(currTime);
 };

 $('#play').click(function(){
 $('audio')[0].play();
 });

 $('#pause').click(function(){
 $('audio')[0].pause();

Chapter 4

[67]

 });

 $('#seek').click(function(){
 var val = $('#seekval').val();
 $('audio')[0].currentTime = val;
 });

 $('audio')[0].addEventListener('playing', function() {
 updateState('playing'); }, false);
 $('audio')[0].addEventListener('pause', function() {
 updateState('paused'); }, false);
 $('audio')[0].addEventListener('timeupdate', function() {
 updateTime(); }, false);
});
</script>

Now that the three addEventListener function calls have been added to the audio
element, this information can be outputted onto the page using the elements with the
IDs log and time.

Now your page contains debug information which you can use to test the behavior
of the custom controls using Capybara:

Since we have invested the effort to develop a testable page, the actual automation
using Capybara/Selenium is straightforward. An important takeaway here is that
although there is a trade-off by testing the component on a dedicated page, it makes
our test automation a lot less brittle, as the test simply needs to be concerned with
clicking on the buttons and scraping text, simple!

Our feature and steps might look something like the following:

Feature: Validate Custom Controls on HTML5 Audio Player

 Scenario: Validate 'play' control

Dealing with Ajax, JavaScript, and Flash

[68]

 Given I visit a page with a custom HTML5 audio player
 When I click to play a song
 Then the song plays

Given(/^I visit a page with a custom HTML5 audio player$/) do
 visit 'http://localhost/html/html5.html'
end

When(/^I click to play a song$/) do
 click_on 'Play'
end

Then(/^the song plays$/) do
 find('#log').should have_text 'playing'
end

It should be obvious now that you can very easily add tests for pause and seek
scenarios. In doing so, you will have made a previously untestable component
perfectly testable.

Testing components "in situ"
There may still be occasions where testing a component in isolation on a dedicated
test page is not appropriate, and all testing needs to be done against the page that is
going to implement the component. In the example of the audio player component,
you are unlikely to have the option of outputting the event information onto your
actual applications pages.

Thankfully, we still have options for exposing the events that make the component
testable, although it will mean your test code will not be quite as clean or
maintainable; that's the trade-off.

When using Capybara with Selenium (and other supported drivers such as
Capybara-WebKit), you have the option of executing arbitrary JavaScript against the
current page. For example, the following line of code would get all the div elements
on the page:

page.evaluate_script('document.getElementsByTagName("div")')

Chapter 4

[69]

As a potential solution to your issue with exposing debug information on a real
application page, you could agree with the team to change the application code and
create JavaScript objects in the page with this information attached. To do this for the
HTML5 audio example, the JavaScript would just need to be amended as follows:

<script>

var audioDebug = {
 state : 'stopped',
 time : 0.00
};

$(document).ready(function() {

 var updateState = function(state) {
 audioDebug.state = state;
 };

 var updateTime = function() {
 var currTime = $('audio')[0].currentTime;
 var currTime = Math.round(currTime*100)/100;
 audioDebug.time = currTime;
 };

 $('#play').click(function(){
 $('audio')[0].play();
 });

 $('#pause').click(function(){
 $('audio')[0].pause();
 });

 $('#seek').click(function(){
 var val = $('#seekval').val();
 $('audio')[0].currentTime = val;
 });

 $('audio')[0].addEventListener('playing', function() {
 updateState('playing'); }, false);
 $('audio')[0].addEventListener('pause', function() {
 updateState('paused'); }, false);
 $('audio')[0].addEventListener('timeupdate', function() {
 updateTime(); }, false);
});
</script>

Dealing with Ajax, JavaScript, and Flash

[70]

In the preceding code, the audioDebug object is created to hold the debug
information when the events fire. Since polluting the global namespace in JavaScript
is discouraged, you will want to create this object within the namespace of the
application's JavaScript code.

The Cucumber steps can now be amended to reflect this new strategy:

Given(/^I visit a page with a custom HTML5 audio player$/) do
 visit 'http://localhost/html/html5.html'
end

When(/^I click to play a song$/) do
 click_on 'Play'
end

Then(/^the song plays$/) do
 wait_for do
 page.evaluate_script('audioDebug.state').should == 'playing'
 end
end

The only difference is that you now run some JavaScript using Capybara's
evaluate_script method that gets the state property from the audioDebug object.

You will have to employ the custom wait_for function that was
discussed earlier. As Capybara does not build in any kind of wait
when executing arbitrary JavaScript, the likelihood is that if you click
on Play and immediately check the state of the audioDebug object, it
will not have had time to update its state.

When you discuss such strategies with your team, you might find that the
developers could think of some clever abstractions to manage JavaScript events in
the application. For example, you could implement a pattern that pushes the events
into a proxy object and then have different strategy objects that can be switched
on/off and determine what is done with the data; for example, whether the data is
written to a debug object or it is written to the console for logging. It goes without
saying that you will want to switch off this debug output when the application is
deployed in production.

Chapter 4

[71]

Summary
Dealing with asynchronous JavaScript is inevitably going to be a challenge you
have to face. We saw how Capybara makes this easy by implementing built-in waits
into all the methods that involve finding something on the page or interacting with
elements which may not be immediately visible.

Additionally, we took on the challenge of testing black box components and used a
HTML5 audio player as an example. We also saw that the most common approach
to solving this problem is to expose a testable JavaScript API and, if possible, to
implement test-specific pages with the debug output displayed on the page ready to
validate using Capybara.

Ninja Topics
In the final chapter of this book, it seems appropriate for us to look beyond the
basic API and functionality that Capybara offers. You now have all the skills
required to automate your application using Capybara, regardless of whether it is a
Rails/Sinatra application or a web application written using any other framework.

This chapter will ensure that you are comfortable using Capybara outside of
Cucumber. It will also show how you can access functionality in your chosen
driver that is not mapped by Capybara's API and introduce you to some of the
other drivers that you may not have encountered.

Specifically, we will cover:

•	 Using Capybara outside of Cucumber
•	 Advanced interactions and accessing the driver directly
•	 Advanced driver configuration
•	 The driver ecosystem—some alternative options

Using Capybara outside of Cucumber
So far, most of the examples in this book have been set in the context of Cucumber step
definitions, as this is by far the most common way in which people use Capybara.

However, Capybara is by no means coupled to Cucumber, and can be used in any
setting you wish, within Test::Unit, RSpec, or just from vanilla Ruby code. In fact, if
you are using Cucumber but want to abstract some logic out of your step definitions
and into Page Objects, then you will still need to consider how to use Capybara
outside of Cucumber's world (https://github.com/cucumber/cucumber/wiki/
A-Whole-New-World).

Ninja Topics

[74]

The Page Object pattern is a simple way of structuring your test
framework if you are dealing with browser-based applications.
You simply model each page (or each major UI component) as an
object. Aspects such as CSS selectors can be stored as properties,
and you can implement methods to manipulate the page. Simon
Stewart, one of the lead developers on the Selenium WebDriver
project, provides some useful best practices if you choose to
implement this pattern, which are available at https://code.
google.com/p/selenium/wiki/PageObjects.

Including the modules
The first option you have for using Capybara outside of Cucumber is to include the
DSL modules into your own modules or classes:

require 'capybara/dsl'
require 'rspec/expectations'

Capybara.default_driver = :selenium

module MyModule
 include Capybara::DSL
 include RSpec::Matchers

 def play_song
 visit 'http://localhost/html/html5.html'
 click_on 'Play'
 find('#log').should have_text 'playing'
 end
end

class Runner

 include MyModule

 def run
 play_song
 end

end

Runner.new.run

Chapter 5

[75]

In the preceding example, one of the tests from Chapter 4, Dealing with Ajax,
JavaScript, and Flash, which verified the behavior of an HTML5 audio component
has been re-written. Instead of using Cucumber scenarios, we have implemented
our own module and class to run the test.

It is important to require the Capybara DSL file, as this contains all the Capybara
methods that need to be "mixed in". In this example, we have our own Ruby module
and crucially within this, the relevant Capybara module Capybara::DSL is included.
In addition, the RSpec::Matchers module has also been included, which allows us
to utilize standard RSpec Matchers (obviously you do not have to use RSpec; you
could choose a different way to assert behavior). If you follow this pattern in your
own code, you can now mix in any of the standard Capybara methods into your own
module or class methods.

It is worth remembering that if you include modules in a base
class, then all subclasses will inherit the ability to use those
module methods. This would come in handy, for example, if
you were using a Page Object pattern, where the only class that
would have to include the DSL module would be the base page.

Using the session directly
The other option for mixing Capybara into your code is to use the session directly,
that is to say, you instantiate a new instance of the session object and then call the
DSL methods on it.

The following example implements the same test as before, but this time by using a
session instance and raising a simple exception if the expected content is not found:

require 'capybara'

session = Capybara::Session.new :selenium
session.visit('http://localhost/html/html5.html')
session.click_on 'Play'
raise 'song not playing' unless session.find('#log') == 'playing'

If you are using an object-oriented model for building your tests, you will need to
pass the session instance around or find an appropriate strategy to deal with this,
as you do not have the benefit of the modules mixing in the DSL methods globally.

Ninja Topics

[76]

Capybara and popular test frameworks
Capybara provides out of the box integration with a number of popular
test frameworks; this is not a subject we will cover in depth, simply because
they are covered very well in the Capybara README, which can be found
at https://github.com/jniklas/capybara.

Cucumber
Throughout this book, examples have been set in the context of Cucumber, so you
should be happy with how to implement Capybara's API in step definitions and
do some simple setup in the env.rb file, such as setting the default driver. There
are a couple of additional pieces of functionality that Capybara adds when using in
conjunction with Cucumber, which are worth examining.

The first is that Capybara hooks into Cucumber's Before do block as follows:

Before do
 Capybara.reset_sessions!
 Capybara.use_default_driver
end

Apart from setting the default driver, this crucially makes a call to reset_
sessions!, and this in turn will invoke some code in the underlying driver. In the
case of Selenium, this deletes all cookies to ensure that you start each scenario with
no pollution from the previous one. For Rack::Test, this will destroy the browser
instance, so a new one gets created each time; for any other drivers, you will need to
check the implementation of the reset! method to see what they do.

Finally, Capybara also hooks into any Cucumber scenarios you have tagged with
@javascript and automatically switches you to the driver you have set up to handle
JavaScript. For example, you may use Rack::Test as your default driver, but have
set the following in your env.rb file:

Capybara.javascript_dirver = :selenium

In this case, any scenarios tagged with @javascript will result in Capybara starting
a browser using Selenium as the driver.

Chapter 5

[77]

RSpec
Outside of Cucumber, RSpec is one of the most popular Ruby test frameworks,
lending itself well to unit, integration, and acceptance tests, and used inside and
outside of Rails.

Capybara adds the following features to RSpec:

•	 Lets you mix in the DSL to your specs by adding require 'capybara/
rspec' into your spec_helper.rb file

•	 Lets you use :js => true to invoke the JavaScript driver
•	 Adds a DSL for writing descriptive "feature style" acceptance tests

using RSpec

For more details on these features, check out the README, which is available at
https://github.com/jniklas/capybara.

Test::Unit
If you are using Ruby's basic unit test library outside of Rails, then using Capybara
simply means mixing in the DSL module via include Capybara::DSL, as you
saw earlier.

As noted in the README, it makes a lot of sense to reset the browser session in your
teardown method, for example:

 def teardown
 Capybara.reset_sessions!
 Capybara.use_default_driver
 end

If you are using Rails, then there will be other considerations, such as turning off
transactional fixtures, as these will not work with Selenium; again, the Capybara
README details this behavior fully.

MiniTest::Spec
MiniTest is a new unit test framework introduced in Ruby 1.9, which also has the
ability to support BDD style tests.

Capybara does not have built-in support for MiniTest, because MiniTest does not
use RSpec but rather uses its own matchers. There is another gem named capybara_
minitest_spec (https://github.com/ordinaryzelig/capybara_minitest_spec),
which adds support for these matchers to Capybara.

Ninja Topics

[78]

Advanced interactions and accessing the
driver directly
Although we have covered a great deal of Capybara's API, there are still a few
interactions that we have not addressed, for example, hovering over an element or
dragging elements around.

Capybara does provide support for a lot of these more advanced interactions; for
example, a recent addition (Capybara 2.1) to methods you can call on an element
is hover:

find('#box1').hover

In Selenium, this results in a call to the mouse.move_to method and works for both
elements using CSS's hover property or JavaScript's mouseenter / mouseleave
methods. Other drivers may implement this differently, and obviously in some
it may not be supported at all, either where JavaScript support is non-existent
(Rack::Test) or rudimentary (Celerity).

You can also emulate drag-and-drop using the following line of code:

find('#mydiv').drag_to '#droplocation'

Again, driver support is likely to be patchy, but of course this will work fine in
Selenium WebDriver.

Despite all the bells and whistles offered by Capybara, there may still be occasions
where you need to access the API that exists in the underlying driver, but that has
not been mapped in Capybara. In this instance, you have two options:

•	 Call Capybara's native method on any Caybara::Element, and then call the
driver method

•	 Use page.driver.browser.manage to call the driver methods that are not
called on elements

Chapter 5

[79]

Using the native method
If you wish to call a method in the underlying driver, and that method is one that is
called on a retrieved DOM element, then you can use the native method.

A good example is retrieving a computed CSS style value. Elements in the DOM can
obtain CSS properties in a couple of ways; firstly, there is the inline style:

<p style="font-weight:bold;">Bold Paragraph Text</p>

This information could be easily retrieved by accessing the style attribute via
the methods we discussed in Chapter 2, Mastering the API. The other way in which
an element obtains CSS properties is via style elements or stylesheets that are
referenced via link tags in the page. When the browser loads the stylesheets and
applies styles to the specified DOM elements, these are known as computed styles.

Capybara has no direct API for retrieving the computed style of an element,
which was most likely a deliberate design decision as only a few drivers would
ever support this. However, Selenium WebDriver does have this capability, and
it is possible that you would want to access this information.

Consider the following code, where we apply a CSS hover property to a div
element, so that when the user hovers over the element, it changes color.

<html>
 <head>
 <title>Hover Examples</title>
 <style>
 .box {
 height: 200px;
 width: 200px;
 margin: 10px;
 background-color: blue;
 }
 .box:hover {
 background-color: green;
 }
 </style>
 </head>
 <body>
 <div id="main">
 <div id="box1" class="box">
 </div>
 </div>
 </body>
</html>

Ninja Topics

[80]

The Cucumber step definitions that follow use Capybara and Selenium WebDriver to
assert that the color has changed:

When(/^I hover over an element whose color changes on hover using
CSS$/) do
 visit 'http://capybara.local/html/chapter5/hover.html'
 find('#box1').hover
end

Then(/^I see the color change$/) do
 find('#box1').native.style('background-color')
 .should == 'rgba(0, 128, 0, 1)'
end

Here, the style method within Selenium WebDriver is accessed via Capybara's
native method, and the value can then be validated.

This highlights an important issue worth considering when
checking computed styles. Different browsers may report the styles
differently; for example, some may report a color as a hexadecimal
code and others as rgba code; this could make your tests fragile
when running across different browsers.

Accessing driver methods using
browser.manage
The other use case is when we wish to access functionality provided in the
underlying driver that is neither mapped by Capybara nor related to a specific
element on the page.

A good example of this is accessing cookie information. There has been a long running
debate on the Capybara forums and GitHub issue tracker, about whether Capybara
should expose an API for cookie getters and setters, but the overriding feeling has
always been that this should not be exposed (arguably, you should not set cookies in
your tests, as this is changing the state of the application as a user never would).

Nevertheless, it is something you may well need to do, and given that Selenium
WebDriver and a number of other drivers support this functionality, you will need to
access the driver methods directly.

Chapter 5

[81]

Consider this page that sets a cookie using JavaScript:

<html>
 <head>
 <title>Cookie Examples</title>
 <script>
 document.cookie = 'mycookie=foobar';
 </script>
 </head>
 <body></body>
</html>

The following steps simply visits the page and then outputs to the console all the
cookies that are available on the current page:

When(/^I visit a page that sets a Cookie$/) do
 visit 'http://localhost/html/cookie.html'
end

Then(/^I can access the cookie using Selenium$/) do
 puts page.driver.browser.manage.all_cookies
end

We can access any method in the underlying driver by using page.driver.
browser.manage, and then the method we wish to call; in this instance, we call
Selenium WebDriver's all_cookies method, and the output will be as follows:

 [{:name=>"mycookie", :value=>"foobar", :path=>"/html/chapter5",
:domain=>"localhost", :expires=>nil, :secure=>false}]

Selenium WebDriver exposes a full API for accessing and setting cookies.
The documentation can be found at http://rubydoc.info/gems/selenium-
webdriver/0.0.28/Selenium/WebDriver/Driver.

Advanced driver configuration
So far, we have only set the default driver or the JavaScript driver using a symbol:

Capybara.default_driver = :selenium

It is quite likely that you will need to fine-tune the configuration of your driver or
register multiple configurations, which you can select from at run time.

Ninja Topics

[82]

An example of this might be that you are running tests from your office, and the
corporate network sits behind an HTTP Proxy (the bane of a tester's life). If you
are using Selenium WebDriver with Firefox, you could register a custom driver
configuration in Capybara as follows:

Capybara.register_driver :selenium_proxy do |app|
 profile = Selenium::WebDriver::Firefox::Profile.new
 profile["network.proxy.type"] = 1
 profile["network.proxy.no_proxies_on"] = "capybara.local"
 profile["network.proxy.http"] = "cache-mycompany.com"
 profile["network.proxy.ssl"] = 'securecache-mycompany.com'
 profile["network.proxy.http_port"] = 9999
 profile["network.proxy.ssl_port"] = 9999
 profile.native_events = true
 Capybara::Selenium::Driver.new(app, :browser => :firefox,
 :profile => profile)
end
Capybara.default_driver = :selenium_proxy

This configuration uses the Selenium WebDriver API to construct a custom Firefox
profile, set the proxy details programmatically, register the driver with the name
:selenium-proxy, and then make it the default driver.

Obviously the possibilities here are endless, and in browsers such as Firefox and
Chrome, the amount of options you can customize runs into hundreds, so knowing
how to set these is important. For example, you could use this technique to create
profiles with JavaScript disabled or Cookies disabled to ensure your application
behaves correctly in these cases.

If you want to find out more about how to use different browsers and
customize their settings using Selenium WebDriver, the documentation
on the Ruby bindings is the most useful resource (https://code.
google.com/p/selenium/wiki/RubyBindings).

The driver ecosystem
Capybara bundles two drivers, which as you know are Rack::Test and Selenium
WebDriver. However, Capybara is architected in such a way to make it easy for
developers to implement other drivers, and indeed, there is a healthy ecosystem of
pluggable drivers, which offer interesting alternatives to the two built-in options.

Chapter 5

[83]

Capybara-WebKit
Pretty much every developer I know who is passionate about test automation
is desperate for one thing—a headless browser with great JavaScript support. A
headless browser is one that runs without a UI. Headless browsers typically run
tests faster than opening a real browser, and make it easy to run in Continuous
Integration (CI) environments, where often, a windowing environment (either MS
Windows or X11 on Linux) may not be available.

You can refer to the following links to find out more about Capybara-WebKit:

•	 https://github.com/thoughtbot/capybara-webkit

•	 http://qt.digia.com/

Capybara-WebKit is a driver that wraps QtWebKit and is maintained by the guys at
Thoughtbot. The Qt project provides a cross-platform framework for building native
GUI applications, and as part of this, it provides a WebKit browser implementation
that lends itself to headless implementations.

There is a slight catch with this particular implantation of QtWebKit; you will need
to install the Qt system libraries separately, and there is still a reliance on X11 being
present on Linux distributions despite the browser being headless.

Poltergeist
Poltergeist is another driver, which, in the background, will use QtWebKit. The
difference here is that it wraps PhantomJS, which brings a couple of potential
advantages over Capybara-WebKit.

You can refer to the following links to find out more about Poltergeist:

•	 https://github.com/jonleighton/poltergeist

•	 http://phantomjs.org/

You will still need to install PhantomJS as a system dependency, but the PhantomJS
project has tackled some of the issues around making QtWebKit purely headless,
so you will not need X11, and you will not need to install the entire Qt framework,
because PhantomJS bundles this for you.

Ninja Topics

[84]

Capybara-Mechanize
Mechanize is a headless browser implemented purely in Ruby, and has long been a
stalwart for the Ruby community; it uses Nokogiri at its core to provide DOM access,
and then builds browser capabilities around this.

You can refer to the following links to find out more about Capybara-Mechanize:

•	 https://github.com/jeroenvandijk/capybara-mechanize

•	 https://github.com/sparklemotion/mechanize

Capybara-Mechanize is a driver that allows you to use Mechanize to run your tests. It
is a very powerful option, but there are some important aspects to consider, such as:

•	 No JavaScript support: Mechanize does not contain a JavaScript engine;
therefore, none of the JavaScript on any of your pages will be run

•	 No rendering engine: Mechanize does not contain a rendering engine;
therefore, no computed styles will be evaluated

•	 Fast: Because it's not attempting to evaluate JavaScript and do graphical
rendering, it will be super fast

The benefits of using Mechanize may not be obvious at first sight, and a lot will
depend on how your site is implemented. For sites whose functionality is wholly
dependent on JavaScript, this option is clearly not feasible; however, if your site
follows the principles of "progressive enhancement", where JavaScript is simply used
to enrich the user's experience, Mechanize is a great option. You can implement all the
core functional tests using Mechanize, which will be ensure they run with minimal
latency and will be far less fragile than using Selenium, and then just implement a
sprinkling of Selenium or WebKit tests to test the JavaScript dependent features.

Capybara-Celerity
The final driver that is worth considering is Capybara-Celerity, which wraps the
Ruby library Celerity. This is especially worth a look if you are running your test
code on JRuby (Ruby running on the JVM) as Celerity itself wraps the Java library
HtmlUnit.

You can refer to the following links to find out more about Capybara-Celerity:

•	 https://github.com/sobrinho/capybara-celerity

•	 https://github.com/jarib/celerity

•	 http://htmlunit.sourceforge.net/

Chapter 5

[85]

Going back a few years, HtmlUnit would have been a serious consideration for
anybody wanting a headless browser, indeed it was the default headless browser
for the Selenium WebDriver project. HtmlUnit is a pure Java implementation of a
browser and uses Rhino (https://developer.mozilla.org/en/docs/Rhino) to
run JavaScript. Unfortunately, you may find that the JavaScript support still fails
when attempting to evaluate heavy-weight JS libraries, as the project is not actively
maintained, and keeping pace with the demands of modern browsers is unrealistic
for a small project.

If you are looking for a headless alternative to Mechanize, Celerity is worth a look,
but don't rely on it for JavaScript support.

Summary
This chapter has taken you from confidently implementing Capybara tests against
your application to being a Capybara ninja.

By understanding how to use Capybara outside the comfort zone of Cucumber, you
can now use it in almost any setting and even write your own custom framework.
This is important even if you use Cucumber, because as your Cucumber tests grow,
you will probably want to implement some Page Objects and mix Capybara::DSL
into these.

Another important aspect of writing effective tests is being able to configure the
underlying driver and access it directly when required; there is nothing magical
about this, and it means you can harness the full power of your chosen driver.

Finally, we introduced some alternative drivers that should whet your appetite and
prove why Capybara is such a powerful framework. You write your tests once and
then run them in multitude of compatible drivers. Win!

Index
A
addEventListener function 67
Ajax 55, 56
all_cookies method 81
all method 30, 38, 39
alt tag 23
app.rb file 45
assertion 35
asynchronous JavaScript

about 55-58
finders 59
gotchas 60-62
matchers 59
methods 59

attribute values
checking 40

audioDebug object 70
audio element 65-67

B
browser.manage

used, for accessing driver methods 80, 81
Bundler

about 7
gems, installing with 7
URL 7
used, for installing Capybara 10

C
Capybara

about 43, 44, 56-58
CSS, using 20, 21
installing 5

installing, Bundler used 10
installing, RubyGems used 8
session, using 75
URL 76
used, modules included 74, 75
using 73, 74

Capybara-Celerity
about 84
URL 84

Capybara-Mechanize
about 84
URL 84

capybara_minitest_spec
URL 77

Capybara outside of Cucumber's world
URL 73

Capybara-WebKit
about 83
URL 83

checkboxes 25-27
check method 27
choose method 27
class attribute 61
click_on method 28
components

testing, in situ 68, 70
computed styles 79
CSS

elements, locating with 19-21
used, for Capybara 20, 21

Cucumber
about 76
installing 11, 12
URL 11

Cucumber-Rails 13

[88]

D
Database Cleaner

URL 53
div element 29, 40, 68, 79
Domain Specific Language (DSL) 5
driver

accessing 78
native method, using 79, 80
using 51, 52

driver configuration 81, 82
driver ecosystem

Capybara-Celerity 84
Capybara-Mechanize 84
Capybara-WebKit 83
Poltergeist 83

driver methods
accessing, browser.manage used 80, 81

E
elements

locating, with CSS 19-21
locating, with XPath 19-21
visibility 33

evaluate_script method 70
External Interface API

URL 63

F
field_labeled finder method 29
fill_in method 17
find_button finder method 29
find_by_id finder method 29
finders

about 59
refining 38, 39

find_field finder method 29
find_link finder method 29
find method 29, 62
Firebug

URL 58
FirePath

URL 22
Flash 63
FlashVars

URL 63

form.erb 45, 47
forms

checkboxes 25-27
radio buttons 25-27
submitting 24

G
gems

installing, with Bundler 7
installing, with RubyGems 6

getElementById property 65
getElementsByTagName property 65
gotchas 60-62

H
has_button? 37
has_field? 37
has_link? 37
has_select? 37
has_table? 37
hover property 78, 79

I
id attribute 20, 23, 24, 27, 40
inline style 79
input element 24

J
jQuery library

URL 58

L
label element 24
Load Images button 58
locator argument 37

M
main class 49
matchers

about 35-37, 59
refining 38, 39

MiniTest::Spec 77

[89]

modules
including 74, 75

mouse.move_to method 78
multiple matches 30

N
name attribute 17, 24, 27
native method

about 78-80
used, for accessing driver 79, 80

navigation
about 22
buttons, clicking 22-24
links, clicking 22-24

Nokogiri gem 7

P
Page Object

URL 74
pages

testing 65-68
Poltergeist

about 83
URL 83

Q
query methods 35, 38

R
Rack

URL 41
Rack::Test

about 43, 44
testing with 48-51

Rack interface 41-43
radio buttons 25-27
reset! method 76
result.erb 47, 48
Rhino

URL 85
RSpec

about 35-37, 77
URL 17

RSpec matchers
using 35

Ruby bindings
URL 82

Ruby DevKit
installing, URL 8

RubyGems
about 6
gems, installing with 6
used, for installing Capybara 8

S
scoping 34
script tag 19
Search button 17
Selenium

installing 11, 12
Selenium WebDriver

URL 81
session

using 75
session instance 75
session object 75
Sinatra application

app.rb file 45
form.erb 45, 47
result.erb 47, 48
testing 45

situ
components, testing 68-70

src element 64
state property 70
step definition 11
strategies

matching 30-32
style method 80
system

gems, installing with Bundler 7
gems, installing with RubyGems 6
preparing 6

system libraries
installing 8

T
teardown method 77

www.allitebooks.com

http://www.allitebooks.org

[90]

W
WAI-ARIA

URL 20
wait_for function 70
wait_for method 61
within_fieldset argument 34
within_frame(frame_id) argument 35
within method 34
within_table argument 34
within_window argument 35

X
XPath

elements, locating with 19-21

Y
YouTube search 13-17

Test::Unit 77
testable API

exposing 63-65
test frameworks

Cucumber 76
MiniTest::Spec 77
RSpec 77
Test::Unit 77

Thin
URL 42

title attribute 23

U
uncheck method 27
unselect method 27

V
value attribute 23
visible? method 61
visit method 51

Thank you for buying
Application Testing with Capybara

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one
of our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Cucumber BDD How-to
ISBN: 978-1-78216-348-0 Paperback: 70 pages

A short and quick guide to mastering behavior-driven
software development with Cucumber

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 A step-by-step process of developing a real
project in a BDD-style using Cucumber

3.	 Pro tips for writing Cucumber features and
steps

4.	 Introduces some popular and useful third-party
gems used with Cucumber

Instant RSpec Test-Driven
Development How-to
ISBN: 978-1-78216-522-4 Paperback: 68 pages

Learn RSpec and redefine your approach toward
software development

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Learn how to use RSpec with Rails

3.	 Easy to read and grok examples

4.	 Write idiomatic specifications

Please check www.PacktPub.com for information on our titles

Instant Selenium Testing Tools
Starter
ISBN: 978-1-78216-514-9 Paperback: 52 pages

A short, fast, and focused guide to Selenium Testing
tools that delivers immediate results

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Learn to create web tests using Selenium Tools

3.	 Learn to use Page Object Pattern

4.	 Run and analyse test results on an easy-to-use
platform

Selenium 2 Testing Tools:
Beginner's Guide
ISBN: 978-1-84951-830-7 Paperback: 232 pages

Learn to use Selenium testing tools from scratch

1.	 Automate web browsers with Selenium
WebDriver to test web applications

2.	 Set up Java Environment for using Selenium
WebDriver

3.	 Learn good design patterns for testing web
applications

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Your First Scenario with Capybara
	Installing Capybara
	Preparing your system
	Installing gems with RubyGems
	Installing gems with Bundler

	Installing system libraries
	Installing Capybara
	Using RubyGems
	Using Bundler

	Installing Cucumber and Selenium
	Cucumber-Rails
	Your first scenario – a YouTube search
	Summary

	Chapter 2:
Mastering the API
	Locating elements with XPath and CSS
	Default selector in Capybara
	A helping hand with selectors

	Navigation
	Clicking on links or buttons

	Submitting forms
	Checkboxes and radio buttons

	Finders, scoping, and multiple matches
	Multiple matches
	Matching strategies
	Element visibility
	Scoping

	Asserting and querying
	Matchers and RSpec
	Refining finders and matchers
	Checking attribute values

	Summary

	Chapter 3:
Testing Rails and Sinatra Applications
	Understanding the Rack interface
	Capybara and Rack::Test
	Testing a Sinatra application
	Sinatra application file – app.rb
	Form template – form.erb
	Results template – result.erb

	Testing with Rack::Test

	Which driver to use and when?
	A note on Rails/RSpec and Capybara
	Summary

	Chapter 4:
Dealing with Ajax, JavaScript, and Flash
	Ajax and asynchronous JavaScript
	Capybara and asynchronous JavaScript
	Methods that handle asynchronous JavaScript
	Finders
	Matchers
	Gotchas

	Flash and HTML5 – black box elements
	Flash
	Exposing a testable API
	Test pages – behold the power!
	Testing components "in situ"

	Summary

	Chapter 5:
Ninja Topics
	Using Capybara outside of Cucumber
	Including the modules
	Using the session directly
	Capybara and popular test frameworks
	Cucumber
	RSpec
	Test::Unit
	MiniTest::Spec

	Advanced interactions and accessing the driver directly
	Using the native method
	Accessing driver methods using browser.manage

	Advanced driver configuration
	The driver ecosystem
	Capybara-WebKit
	Poltergeist
	Capybara-Mechanize
	Capybara-Celerity

	Summary

	Index

