
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Arduino	Networking

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Arduino	Networking

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Discover	the	Arduino	Ethernet	Shield

Hardware	and	software	requirements

Hardware	configuration

Testing	your	connection

Summary

2.	Sending	Data	to	a	Web	Server

Hardware	and	software	requirements

Hardware	configuration

Sending	data	to	a	server

Log	incoming	data	in	a	database

www.allitebooks.com

http://www.allitebooks.org

Displaying	the	results

Summary

3.	Data	Logging	Station

Hardware	and	software	requirements

Hardware	configuration

Logging	data	on	an	SD	card

Creating	a	web	server	on	Arduino

Plotting	the	data	locally

Summary

4.	Controlling	Objects	from	Anywhere

Hardware	and	software	requirements

Hardware	configuration

Testing	the	relay

Controlling	the	relay	remotely

Controlling	the	relay	from	anywhere

Summary

5.	Internet	of	Things	with	Xively

Hardware	and	software	requirements

Hardware	configuration

Creating	your	Xively	account

Sending	data	to	Xively

Visualizing	the	recorded	data

Summary

6.	Logging	Data	in	Google	Docs

Hardware	and	software	requirements

Hardware	configuration

Setting	up	your	Google	Account

Creating	your	Temboo	account

Logging	data	in	a	spreadsheet

Sending	automated	e-mails

Summary

www.allitebooks.com

http://www.allitebooks.org

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Arduino	Networking

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Arduino	Networking
Copyright	©	2014	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	August	2014

Production	reference:	1140814

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-686-6

www.packtpub.com

Cover	image	by	Pratyush	Mohanta	(<tysoncinematics@gmail.com>)

www.allitebooks.com

http://www.packtpub.com
mailto:tysoncinematics@gmail.com
http://www.allitebooks.org

Credits
Author

Marco	Schwartz

Reviewers

C.	M.	Banas

Ryan	Dunn

Phillip	Mayhew

Tom	O’Connor

Krisjanis	Rijnieks

Commissioning	Editor

Pramila	Balan

Acquisition	Editor

Harsha	Bharwani

Content	Development	Editor

Sumeet	Sawant

Technical	Editors

Kunal	Anil	Gaikwad

Siddhi	Rane

Copy	Editors

Mradula	Hegde

Adithi	Shetty

Project	Coordinator

Danuta	Jones

Proofreader

Ameesha	Green

Indexer

Rekha	Nair

Production	Coordinator

Melwyn	D’sa

Cover	Work

Melwyn	D’sa

About	the	Author
Marco	Schwartz	is	an	electrical	engineer,	entrepreneur,	and	blogger.	He	has	a	Master’s
degree	in	Electrical	Engineering	and	Computer	Science	from	SUPELEC	in	France,	and	a
Master’s	degree	in	Microengineering	from	EPFL	in	Switzerland.

He	has	more	than	5	years	of	experience	working	in	the	domain	of	electrical	engineering.
His	interests	gravitate	around	electronics,	home	automation,	the	Arduino	and	the
Raspberry	Pi	platforms,	open	source	hardware	projects,	and	3D	printing.

He	runs	several	websites	around	Arduino,	including	the	Open	Home	Automation	website
(http://www.openhomeautomation.net/),	which	is	dedicated	to	building	home	automation
systems	using	open	source	hardware.

He	has	written	another	book,	Home	Automation	with	Arduino,	Amazon	Digital	Services,
Inc.,	which	is	a	self-published	Kindle	book.	He	has	also	written	a	book	on	how	to	build
Internet	of	Things	projects	with	Arduino	called	Internet	of	Things	with	the	Arduino	Yun,
Packt	Publishing.

http://www.openhomeautomation.net/

About	the	Reviewers
Ryan	Dunn	is	a	solutions	architect,	who	specializes	in	web	technologies	and	enterprise-
level	deployments.	He	currently	lives	in	Southern	Kansas	City,	KS.

He	holds	a	Bachelor’s	degree	in	Computer	Science	from	Kansas	State	University	and	a
Master’s	degree	in	Business	Administration	from	the	University	of	Kansas.	He	has
worked	for	a	variety	of	organizations,	with	his	career	spanning	a	number	of	industries,
including	e-commerce,	digital	marketing,	SEO,	education,	security,	and	mobile.

He	has	been	working	with	web	technologies	for	over	10	years,	and	during	this	time,	he	has
always	retained	an	agnostic	approach	to	the	technology,	which	has	resulted	in	a	wide
range	of	experience.	As	a	solutions	architect,	he	manages	every	aspect	of	solution
deployments,	including	analysis,	network	architecture,	system	architecture,	creative
design,	and	development.

I	have	a	wife,	Crystal,	and	two	children.	As	a	result	of	their	support,	I	have	been	able	to
pursue	my	passion	for	technology	and	am	forever	grateful	for	all	their	love.

Phillip	Mayhew	has	a	Bachelor	of	Science	degree	in	Computer	Science	from	North
Carolina	State	University.	He	is	the	founder	and	managing	principal	of	Rextency
Technologies	LLC,	which	is	based	in	Statesville,	North	Carolina.	His	primary	expertise
lies	in	software	application	performance	testing	and	monitoring.

Tom	O’Connor	is	an	experienced	systems	architect	and	DevOps	engineer.	He	lives	in	the
West	Midlands	in	the	United	Kingdom.	Over	the	last	8	years,	he	has	worked	for	a	wide
variety	of	companies,	from	e-commerce	to	video	effects,	and	now	is	the	owner	of	the
company	he	founded,	which	provides	systems	consultancy	for	wireless	network	design
and	installations.

He	writes	a	technical	blog	on	his	website	that	provides	both	tutorial	articles	and	updates
on	what	he’s	been	working	on.	He	has	wide-reaching	skills	and	experience	gathered	over
the	last	10	years	of	working	on	Windows,	Linux,	and	Unix	systems	for	most	of	that	time,
coupled	with	recent	experience	in	designing	and	building	high-performance	computer
systems.

He	is	also	an	active	member	of	the	UK	DevOps	community	as	well	as	a	community
moderator	on	www.serverfault.com,	where	he	demonstrates	his	expertise	and	skills	to	a
wide	audience.

Krisjanis	Rijnieks	is	a	digital	interactive	media	professional	working	with	projects	that
involve	graphic	design,	animation,	user	interface	design,	projection	mapping,
programming,	and	electronics.	The	outcome	of	his	projects	usually	are	websites,	games,
and	hardware	prototypes	or	interactive	installations.	He	also	runs	workshops	in	the	field	of
creative	coding	and	projection	mapping.	One	of	his	most	interesting	current	projects	is	the
development	of	an	openframeworks	add-on	for	projection	mapping	on	the	Raspberry	Pi—
ofxPiMapper.

He	is	also	an	MA	student	at	the	Media	Lab	Helsinki	(Aalto	University	School	of	Arts,

http://www.serverfault.com

Design	and	Architecture),	and	he	is	currently	working	on	his	master	thesis,	which	is
related	to	the	ofxPiMapper	projection	mapping	software	project.

Krisjanis	runs	a	small	digital	media	company	CodeBark	(www.codebark.com)	with	his
colleague,	Irina	Spicaka.	Together,	they	also	developed	a	platform	called	Creative	Coding
for	Live	Audio	and	Visuals	(www.cc4av.info),	which	acts	as	a	placeholder	for	different
events	and	workshops	related	to	electronic	audiovisual	culture.

He	is	also	collaborating	with	the	Fab	Lab,	Berlin,	and	this	is	where	he	spends	most	of	his
time	when	in	Berlin.

Cinder	–	Begin	Creative	Coding,	Packt	Publishing,	is	the	first	book	that	he	has	worked	on.
It’s	an	introduction	to	Cinder,	the	C++	creative	coding	framework,	(similar	to
openFrameworks)	and	contains	tutorials	to	get	you	started	with	Cinder	as	fast	and	painless
as	possible.

http://www.codebark.com
http://www.cc4av.info

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read,	and	search	across	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Arduino	is	an	amazing	platform	to	quickly	create	exciting	electronics	projects.	Using	the
Arduino	platform,	even	non-experts	can	connect	sensors,	actuators,	and	displays	together
and	build	complex	projects	that	provide	immediate	applications	for	everyday	life.

However,	these	projects	are	even	better	when	they	are	connected,	meaning	they	have	some
way	to	communicate	with	other	devices,	and	not	necessarily	with	other	Arduino	boards.
There	are	many	ways	to	connect	Arduino	projects	together	and	to	other	devices	such	as
computers:	WiFi,	XBee,	Bluetooth,	and	Ethernet.	This	book	will	focus	entirely	on	how	to
create	amazing	projects	using	this	latest	technology	to	connect	Arduino	projects.

Using	Ethernet	has	several	advantages	over	wireless	solutions:	it	is	fast,	cheap,	and	you
will	find	plenty	of	help	on	the	subject	on	the	Internet.	For	me,	the	most	important	thing	is
that	the	Ethernet	library	for	Arduino	is	very	well	documented,	and	comes	built-in	with	the
Arduino	software.	It’s	hardware	counterpart,	the	Arduino	Ethernet	shield,	is	also	very	well
built	and	well	supported	by	the	Arduino	community.

In	this	book,	we	are	going	to	see	how	to	use	the	Ethernet	shield	and	the	Ethernet	library
via	six	exciting	projects.	We	are	going	to	start	with	the	very	basics	and	see	how	to	connect
the	Ethernet	shield	to	your	local	network	and	the	Web.	Then,	we	will	send	data	from	the
Ethernet	shield	to	a	server	located	on	your	local	network.	Finally,	we	will	integrate	the
Ethernet	shield	in	an	“Internet	of	Things”	framework,	by	building	several	projects
connected	directly	to	the	Web.

What	this	book	covers
Chapter	1,	Discover	the	Arduino	Ethernet	Shield,	introduces	the	Arduino	Ethernet	shield
by	showing	you	how	to	set	up	everything	so	you	can	easily	build	more	exciting
applications	in	the	next	chapters.	We	are	going	to	connect	the	Ethernet	shield	to	your
router,	and	make	sure	that	it	can	access	the	Web.

Chapter	2,	Sending	Data	to	a	Web	Server,	explains	how	to	connect	a	temperature	and
humidity	sensor	to	your	Arduino	board	and	use	the	Ethernet	shield	to	send	this	data
continuously	to	a	web	server	running	on	your	computer.	We	will	also	plot	this	data	in	real
time	on	the	web	server	so	that	you	can	visualize	it	in	your	browser.

Chapter	3,	Data	Logging	Station,	uses	the	same	hardware	as	in	the	previous	chapter,	but
we	will	make	the	Arduino	Ethernet	more	independent.	We	will	log	the	data	measured	by
the	board	locally	on	an	SD	card,	and	also	create	a	web	server	on	the	Ethernet	shield	so	that
it	can	be	accessed	from	any	device	in	your	local	network.

Chapter	4,	Controlling	Objects	from	Anywhere,	covers	how	to	connect	a	relay	module	to
our	Arduino	and	Ethernet	shield	hardware	so	that	it	can	be	controlled	via	the	network.	We
are	first	going	to	control	this	relay	module	from	within	your	local	network,	and	then	use	a
dedicated	service	to	be	able	to	control	this	relay	from	anywhere.	As	an	example,	we	are
also	going	to	connect	a	lamp	to	this	relay	module.

Chapter	5,	Internet	of	Things	with	Xively,	continues	with	cloud-connected	projects	by
interfacing	the	Ethernet	shield	with	a	cloud	service	called	Xively.	Using	this	service,	we
will	be	able	to	send	the	data	measured	by	our	project	to	the	Web	and	monitor	it	in	real
time	from	the	Xively	website,	from	anywhere	in	the	world.

Chapter	6,	Logging	Data	in	Google	Docs,	uses	the	web	service	Temboo	to	interface	the
Ethernet	shield	with	even	more	web	services	such	as	Google	Docs	or	Gmail.	For	example,
we	are	going	to	make	measurements	using	our	Arduino	board	and	automatically	log	these
results	in	a	Google	Docs	spreadsheet,	which	can	be	accessed	from	anywhere	in	the	world.

What	you	need	for	this	book
You	will	need	several	hardware	and	software	components	to	make	all	the	projects	found	in
this	book.	Of	course,	you	can	just	read	the	description	of	the	projects	and	learn	this	way.
However,	I	really	recommend	actually	doing	the	projects	yourself	to	really	learn	about
how	to	use	the	Arduino	Ethernet	shield	to	build	exciting	networking	applications.

The	hardware	components	required	are	detailed	at	the	beginning	of	each	chapter.
However,	what	you	will	really	need	for	all	the	projects	is	an	Arduino	board.

All	the	projects	of	the	book	are	based	on	the	Arduino	Uno	board:

http://arduino.cc/en/Main/arduinoBoardUno

For	all	the	projects	of	this	book,	you	will	also	need	the	Arduino	Ethernet	shield:

http://arduino.cc/en/Main/ArduinoBoardEthernet

On	the	software	side,	there	is	some	software	that	we	will	use	in	all	the	chapters	of	the
book.	The	first	software	that	we	will	use	in	all	the	chapters	is	the	Arduino	IDE	that	you
need	to	install.	You	can	download	it	from:

http://arduino.cc/en/main/software

The	Ethernet	library	itself	is	contained	within	the	Arduino	IDE,	so	you	won’t	need	to
install	it	yourself.	There	are	also	several	external	libraries	you	will	need,	but	these	are
detailed	in	each	chapter	where	they	are	necessary.

You	will	also	need	a	web	server	running	on	your	computer	for	some	of	the	projects.	I
recommend	using	software	that	integrates	a	web	server	and	a	database,	and	that	handles	all
the	details	for	you.

If	you	are	working	on	Windows,	I	recommend	using	EasyPHP:

http://www.easyphp.org/

Under	OS	X,	I	recommend	using	MAMP:

http://www.mamp.info/

For	Linux,	you	can	follow	the	instructions	provided	at	the	following	link	to	install	a	web
server:

http://doc.ubuntu-fr.org/lamp

Make	sure	that	the	server	is	running	at	this	point;	we	are	going	to	use	it	in	several	projects
in	this	book.

http://arduino.cc/en/Main/arduinoBoardUno
http://arduino.cc/en/Main/ArduinoBoardEthernet
http://arduino.cc/en/main/software
http://www.easyphp.org/
http://www.mamp.info/
http://doc.ubuntu-fr.org/lamp

Who	this	book	is	for
This	book	is	for	all	those	who	are	willing	to	build	exciting	connected	Arduino	projects
using	the	Ethernet	shield.	You	actually	don’t	need	to	know	the	Arduino	platform
beforehand	as	all	the	projects	will	be	explained	step	by	step	with	clear	instructions.	You
also	don’t	need	any	prior	knowledge	in	the	Ethernet	technology.	The	only	thing	you	need
to	understand	is	the	projects	found	in	this	book	are	just	basic	knowledge	in	electronics	and
programming.

This	book	is	also	for	electronic	hobbyists	who	want	to	learn	more	about	the	Arduino
platform.	By	executing	the	projects	found	in	this	book,	you	will	learn	about	many	possible
ways	to	use	the	Arduino	Ethernet	shield.	You	will	also	learn	how	to	connect	sensors	and
actuators	to	Arduino	and	control	them	within	your	local	network.

Finally,	this	book	is	also	for	those	who	are	willing	to	learn	more	about	the	Internet	of
Things	framework	using	the	Arduino	Ethernet	shield.	The	last	chapters	of	the	book	are
dedicated	to	building	projects	that	are	connected	to	cloud	services	and	can	be	accessed
from	anywhere	in	the	world,	simply	by	connecting	your	Arduino	projects	to	your	Internet
router	via	Ethernet.

www.allitebooks.com

http://www.allitebooks.org

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“In	the
setup()	function	of	the	sketch,	we	will	try	to	get	an	IP	address	using	DHCP.”

A	block	of	code	is	set	as	follows:

String	log_time	=	String(day())	+	"/"	+	

String(month())	+	"/"	+	String(year())	+	"	"	+	

String(hour())	+	":"	+	String(minute())	+	":"	+	

String(second());

Any	command-line	input	or	output	is	written	as	follows:

#	192.168.1.103/digital/7/1

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	“If	you	are	using
Windows,	you	will	find	the	information	you	need	under	Network	Settings	in	your
Control	Panel.”

Note
Warnings	or	important	notes	or	some	additional	information	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	through	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

All	the	up-to-date	code	for	the	projects	of	this	book	can	also	be	found	at	the	following
address:

https://github.com/openhomeautomation/arduino-networking/

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/openhomeautomation/arduino-networking/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/support,
selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the	details
of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the
errata	will	be	uploaded	to	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.

http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Discover	the	Arduino	Ethernet
Shield
In	this	first	chapter	of	the	book,	we	will	only	focus	on	the	basics	and	get	started	with	the
Arduino	Ethernet	shield.	In	order	to	build	more	complex	projects	in	the	next	chapters	of
the	book,	we	first	need	to	be	absolutely	sure	that	our	shield	is	functioning	correctly,	and	it
can	connect	to	our	local	network	and	the	Web.

To	ensure	this,	we’ll	first	assemble	the	hardware,	and	then	build	a	simple	Arduino	sketch
that	will	connect	to	the	Web,	grab	a	test	web	page,	and	display	it	back	inside	the	Arduino
Serial	Monitor.

These	will	be	the	major	takeaways	of	this	chapter:

First,	we’ll	make	sure	that	you	have	all	the	required	hardware	and	software
components.	We	are	also	going	to	assemble	the	shield	and	the	Arduino	Uno	board,
and	connect	everything	to	our	local	network	via	a	router.
Then,	we	will	write	the	sketch	that	will	connect	your	shield	to	your	local	network	as
well	as	the	Web,	and	this	sketch	will	grab	a	test	page	to	make	sure	your	connection	is
working	correctly.
Finally,	we	are	going	to	test	this	sketch	and	monitor	the	status	of	the	Ethernet	shield
on	the	Arduino	Serial	Monitor.	From	this	first	test	of	the	shield,	we’ll	be	able	to	tell
whether	the	shield	is	correctly	connected	to	the	Internet	or	not.

Hardware	and	software	requirements
You	don’t	need	a	lot	of	hardware	for	this	first	project.	You	only	need	an	Arduino	Uno
board,	and	of	course,	the	Arduino	Ethernet	shield.	Other	boards	such	as	the	Arduino	Mega
will	work	as	well	for	the	projects	in	the	first	chapter	of	the	book,	but	you	might	face
difficulties	for	the	projects	in	the	following	chapters	in	the	book.	Therefore,	I	recommend
that	you	use	an	Arduino	Uno	board	for	all	the	projects	of	this	book.

Before	actually	assembling	the	shield	with	the	board,	make	sure	to	write	down	the	MAC
address	of	the	shield,	which	is	written	on	the	back	of	the	shield.	We	will	need	it	later	in	the
project	when	we	write	the	first	sketch.

This	is	an	image	of	the	assembled	board	and	the	Ethernet	shield:

You	will	also	need	a	USB	B	to	USB	A	cable	to	connect	the	Arduino	board	to	your
computer,	and	an	Ethernet	cable	to	connect	the	shield	to	a	router.

On	the	software	side,	all	you	need	is	the	Arduino	IDE,	which	can	be	found	at	the
following	address:

http://arduino.cc/en/main/software

The	Ethernet	library	is	included	by	default	in	the	Arduino	software,	so	you	don’t	need	to
install	any	additional	components.

http://arduino.cc/en/main/software

Hardware	configuration
The	hardware	configuration	in	this	chapter	is	really	simple.	At	this	point,	you	should
already	have	the	Arduino	Ethernet	shield	connected	to	your	Arduino	Uno	board.	If	that’s
not	the	case,	please	do	so	now.

You	then	have	only	two	cables	to	plugin:	a	USB	cable	between	your	computer	and	the
Arduino	Uno	board	and	the	Ethernet	cable.	Simply	connect	the	USB	cable	to	one	port	of
your	computer.

For	the	Ethernet	cable,	you	have	several	options.	The	easiest	thing	you	can	do,	which	is
what	I	recommend,	is	to	connect	the	Ethernet	cable	directly	from	the	shield	to	the	main
router	of	your	home.	Usually,	you	will	have	a	Wi-Fi	router	in	your	home,	which	you	use	to
enable	Wi-Fi	connectivity	for	your	computer	and	other	devices.	This	router	should	also
have	some	Ethernet	ports,	where	you	can	connect	your	Ethernet	shield.	The	advantage	of
this	solution	is	that	your	shield	will	automatically	get	an	IP	address	and	will	have	access	to
the	Internet	automatically.	This	assumes	that	your	router	is	configured	for	DHCP;	go	to
your	router	settings	to	enable	DHCP.	As	this	procedure	varies	depending	on	the	brand	of
your	router,	refer	to	your	router	documentation	to	find	out	how	to	do	this	on	your	specific
router.

If	you	don’t	have	a	router,	you	can	directly	connect	the	Ethernet	cable	to	your	computer.	I
don’t	recommend	this	alternative,	as	configuring	your	computer	to	connect	to	the	shield
and	sharing	the	Internet	connection	with	the	shield	is	really	complex,	and	it	also	depends
on	your	operating	system.

If	you	really	don’t	have	access	to	a	router	but	you	have	access	to	a	Wi-Fi	network,	I
recommend	buying	one	of	these	small	Wi-Fi	routers	that	have	an	Ethernet	port.	It	can
connect	to	any	Wi-Fi	network	in	range	and	share	the	connection	automatically	with	other
devices	via	Ethernet.

For	example,	as	shown	in	the	following	image,	I	recommend	the	TP-Link	MR3020	router:

This	is	an	image	of	the	assembled	hardware	for	the	tasks	in	this	chapter,	with	the	USB

cable	and	the	Ethernet	cable	plugged	in	the	project:

If	everything	is	wired	correctly,	you	should	see	the	ON	LED	on	the	Ethernet	shield	is
switched	on,	as	well	as	the	LINK	LED	near	the	Ethernet	port.

Testing	your	connection
Now	that	the	hardware	is	ready,	we	can	write	our	first	sketch	to	test	the	Ethernet	shield
and	the	connection	to	the	Web.	Note	that	the	pieces	of	code	shown	in	this	section	are	only
the	most	important	parts	of	the	code,	and	you	can	find	the	complete	code	inside	the
GitHub	repository	of	the	book.

Start	the	Arduino	sketch	by	including	the	following	required	libraries	to	use	the	shield:

#include	<SPI.h>

#include	<Ethernet.h>

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

Then,	we	have	to	define	the	MAC	address	of	the	Ethernet	shield.	This	address	is	located
just	behind	the	shield,	and	you	should	have	noted	it	down	already.	You	have	to	enter	it	in
the	following	format:

byte	mac[]	=	{	0x90,	0xA2,	0xDA,	0x0E,	0xFE,	0x40	};

We	also	need	to	define	where	we	are	going	to	connect	to	test	the	connection.	You	can	use
any	web	page	you	want,	or	even	perform	a	search	on	Google,	but	for	this	first	test,	I	want
to	use	a	simple	page.

I	found	this	website	with	a	simple	test	page	that	we’ll	try	to	grab	while	making	a	request
later	in	the	sketch.	You	can	also	set	up	your	own	page	if	you	have	a	web	server	online,	for
example,	if	you	have	a	blog	hosted	somewhere.

The	website	address	is	stored	in	a	char	variable:

char	server[]	=	"www.brainjar.com";

Note	that	you	can	also	use	other	pages	here,	for	example
http://www.example.com/hello.

The	Ethernet	shield	will	then	automatically	get	the	IP	address	of	this	website.

To	get	an	IP	address	for	the	Ethernet	shield	itself,	we’ll	use	DHCP	to	automatically	get
one	from	the	router	we	are	connected	to.	However,	if	DHCP	fails,	we	need	to	assign	a
default	address	to	the	shield.

This	is	stored	in	an	IPAddress	variable.	Note	that	you	can	put	anything	you	want	inside
this	variable.	As	for	this	first	project,	we	really	need	DHCP	to	work	to	get	connected	to
the	Web.	However,	it	is	a	good	practice	to	specify	an	IP	address	in	the	same	subnet	as	your
router,	so	the	shield	can	at	least	connect	to	your	local	network.	For	example,	the	IP	address

http://www.packtpub.com
http://www.packtpub.com/support

of	my	computer	was	192.168.1.100,	so	I	specified	a	similar	IP	address	for	the	shield:

IPAddress	ip(192,168,1,50);

We	can	now	create	the	instance	for	the	Ethernet	client	with	the	following	code:

EthernetClient	client;

Now,	in	the	setup()	function	of	the	sketch,	we	will	try	to	get	an	IP	address	using	DHCP.
If	you’re	connected	to	a	router,	there	is	no	reason	it	would	fail.	However,	if	it	does	indeed
fail,	we	will	automatically	set	the	default	IP	address	for	the	shield:

if	(Ethernet.begin(mac)	==	0)	{

				Serial.println("Failed	to	configure	Ethernet	using	DHCP");

				Ethernet.begin(mac,	ip);

}

Then,	we	will	print	out	the	IP	address	on	the	Serial	port	for	debugging	reasons:

Serial.begin(115200);

Serial.print("IP	address:	");

Serial.println(Ethernet.localIP());

Now,	in	the	loop()	function	of	the	sketch,	we	will	actually	connect	to	the	server.	It	starts
by	calling	the	connect	function	and	checks	whether	we	are	indeed	connected.	If	that’s	the
case,	we	print	it	out	on	the	Serial	monitor	for	debugging	purposes:

if	(client.connect(server,	80))	{

				if	(client.connected())	{

						Serial.println("connected");

Now	that	we	are	connected,	we	can	set	the	GET	request	for	the	test	page	we	want	to
access:

client.println("GET	/java/host/test.html	HTTP/1.1");

client.println("Host:	www.brainjar.com");

client.println("Connection:	close");

client.println();

After	the	request	is	sent,	we	will	read	the	data	that	is	coming	back	from	the	server,	to
check	whether	everything	went	fine.	We	will	also	print	out	this	data	on	the	Serial
monitor:

while	(client.connected())	{

		while	(client.available())	{

				char	c	=	client.read();

				Serial.print(c);

		}

}

Finally,	when	we	are	sure	that	the	client	is	not	connected	anymore,	we	will	print	the
information	on	the	Serial	monitor	and	call	the	close()	function	on	the	Ethernet	client:

if	(!client.connected())	{

		Serial.println();

		Serial.println("disconnecting.");

		client.stop();

}

Finally,	we	don’t	want	to	continuously	do	this	action,	but	only	repeat	it	every	five	seconds.
This	is	done	with	a	delay()	function:

delay(5000);

It’s	now	time	to	test	the	sketch.

Note
The	complete	code	for	this	first	chapter	can	be	found	the	GitHub	repository	of	the	book:

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter1

Make	sure	that	the	Ethernet	cable	is	plugged	in	your	shield	and	your	router,	and	upload	the
sketch	to	the	Arduino	board.	You	can	now	also	open	the	Serial	Monitor,	and	select	the
correct	Serial	speed	(115200	for	the	Arduino	sketch	of	this	chapter);	that’s	the	first	thing
you	should	see,	which	is	the	IP	address	of	your	board:

IP	address:	192.168.1.103

Then,	the	Arduino	board	should	connect	to	the	server:

Connecting…

If	this	is	successful,	the	output	will	show	that	it	is	indeed	connected:

connected

Now,	the	Arduino	board	will	send	the	GET	request	to	the	server	in	order	to	grab	the	content
of	the	test	page.	The	server	will	answer	with	an	HTTP	200	OK	status	if	the	request	was
successful,	along	with	the	contents	of	the	page:

HTTP/1.1	200	OK

Content-Length:	308

Content-Type:	text/html

Last-Modified:	Tue,	27	May	2003	15:17:04	GMT

Accept-Ranges:	bytes

ETag:	"6291ea76324c31:5897"

Server:	Microsoft-IIS/6.0

X-Powered-By:	ASP.NET

Date:	Thu,	15	May	2014	17:35:40	GMT

Connection:	close

Inside	this	long	answer,	you	should	see	many	HTML	tags,	such	as	<html>	and	<head>
tags.	Inside	the	answer,	you	should	also	get	the	content	of	the	page	inside	a	<p>	tag	as
follows:

<p>This	is	a	very	simple	HTML	file.</p>

If	you	can	see	this,	congratulations!	Your	Ethernet	shield	is	working	correctly!	Finally,	the
Arduino	board	will	also	display	that	the	Ethernet	shield	has	been	disconnected	from	the
remote	server:

disconnecting

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter1

If	everything	worked	correctly,	it	means	that	your	Ethernet	shield	is	working	correctly,	and
it	can	connect	without	any	problems	to	your	local	network	and	to	the	Web.

If	something	didn’t	work	as	expected,	there	are	several	things	you	can	check.	First,	make
sure	that	all	connections	are	correctly	made,	and	that	the	Ethernet	cable	is	correctly
plugged	between	the	shield	and	your	router.

If	the	DHCP	fails	at	the	beginning	of	the	sketch	and	your	shield	can’t	get	an	IP	address,
please	check	whether	DHCP	is	activated	without	limitations	on	the	MAC	addresses	in	the
configuration	panel	of	your	router.

Finally,	if	the	Arduino	board	can’t	connect	to	the	remote	server,	first	check	whether	the
server	itself	is	working	by	entering	the	URL	of	the	test	page	manually	in	your	browser.

www.allitebooks.com

http://www.allitebooks.org

Summary
In	this	first	chapter	of	the	book,	we	built	our	first	project	with	the	Arduino	Ethernet	shield,
only	to	check	whether	the	shield	was	working	correctly	and	whether	it	could	connect	to
your	local	network	and	to	the	Internet.	We	only	made	sure	that	the	Ethernet	shield	could
indeed	be	connected	to	the	Internet,	but	this	already	gave	you	an	overview	of	everything
that	you	can	do	with	the	Ethernet	shield.	You	saw	how	easy	it	is	to	send	requests	with	the
Ethernet	shield,	which	is	something	we	will	use	later	in	the	book	to	send	data	from	the
Ethernet	shield	to	a	remote	server.

These	were	the	major	takeaways	from	this	first	chapter:

First,	we	made	sure	that	all	the	hardware	was	correctly	set	and	that	the	shield	was
connected	to	your	router	via	an	Ethernet	cable.
Then,	we	built	the	first	sketch	of	this	book	simply	to	test	that	the	Ethernet	shield
could	indeed	connect	to	the	local	network	and	the	Web.	To	test	this,	we	built	a	sketch
that	connects	to	the	Web	and	grabs	a	test	page	from	a	remote	server.
Finally,	we	uploaded	this	code	to	the	board	and	checked	that	everything	was	working
correctly	by	monitoring	the	status	of	the	connection	in	the	Arduino	Serial	Monitor.
We	also	defined	some	strategies	on	what	to	do	if	the	sketch	didn’t	work	and	the
shield	could	not	connect	to	the	Web.

In	the	next	chapter	of	the	book,	we	are	going	to	build	our	first	application	using	the
Ethernet	shield.	We	are	also	going	to	use	an	Ethernet	client,	but	this	time	to	connect	to	a
server	running	on	our	own	computer	and	to	send	measurements	that	come	from	a
temperature	and	humidity	sensor.

Chapter	2.	Sending	Data	to	a	Web	Server
In	the	previous	chapter,	we	made	sure	that	your	Arduino	Ethernet	shield	could	actually
connect	to	your	local	network	and	to	the	Web.	In	this	chapter,	we	are	going	to	build	on
that,	and	build	our	first	application	using	the	Ethernet	shield.

We	are	going	to	see	in	more	detail	how	the	Ethernet	client	works	by	measuring	data	from
a	digital	sensor	and	sending	this	data	to	a	web	server.	In	this	chapter,	this	web	server	will
be	a	server	running	on	your	own	computer.

These	will	be	the	major	takeaways	from	this	chapter:

First,	we	are	going	to	choose	the	temperature	and	humidity	sensor	that	we	will	also
use	later	in	the	book.	We	are	also	going	to	install	the	different	software	components
that	are	required	for	this	chapter,	especially	the	library	to	plot	data	on	your	computer.
Then,	we	are	going	to	build	the	Arduino	code	that	will	perform	measurements	and
send	these	measurements	to	the	web	server	running	on	your	computer.
After	that,	we’ll	start	building	the	server-side	code.	In	the	first	part,	we	are	going	to
build	the	code	responsible	for	simply	logging	the	received	data	into	a	local	database.
Finally,	we	will	interface	the	database	with	a	live	plotting	library	so	the
measurements	can	be	seen	as	they	come	from	the	Ethernet	shield	and	are	logged	in
the	database.

Hardware	and	software	requirements
On	the	hardware	side,	you	will	of	course	need	the	Arduino	Uno	board	and	Arduino
Ethernet	shield.

You	will	also	need	a	sensor	to	measure	some	data.	As	this	book	is	about	how	to	use	the
Ethernet	shield	and	not	how	to	measure	data	from	sensors,	you	can	actually	take	any
sensor	of	your	choice.

I	used	a	DHT11	sensor,	which	is	a	digital	temperature	and	humidity	sensor.	I	chose	this
sensor	for	this	chapter	and	for	many	chapters	of	the	book	since	it	is	a	very	cheap	sensor
and	easy	to	interface	with	Arduino.	Along	with	the	DHT11	sensor,	you	will	also	need	a
4.7k	Ohm	resistor.

You	can	also	use	other	kind	of	sensors.	You	can	use	analog	sensors,	which	return	a	signal
depending	on	the	measured	data.	For	example,	the	TMP36	sensor	is	an	analog	temperature
sensor	that	returns	a	voltage	proportional	to	the	ambient	temperature.

Other	kind	of	sensors	you	can	use	here	are	sensors	based	on	the	SPI	or	I2C	protocols,
which	are	digital	communication	protocols	that	are	easy	to	use	with	Arduino.	For
example,	you	can	use	the	BMP085	or	BMP180	sensors,	which	have	an	I2C	interface,	and
you	can	also	measure	the	barometric	pressure	and	ambient	humidity.

You	will	also	need	a	breadboard	and	some	jumper	wires	to	make	the	connections	between
the	sensor	and	the	Ethernet	shield.

This	is	a	list	of	all	the	components	that	were	used	for	this	chapter:

Arduino	Uno	(https://www.adafruit.com/products/50)
Arduino	Ethernet	Shield	(https://www.adafruit.com/products/201)
DHT11	sensor	(https://www.adafruit.com/products/386)
Breadboard	(https://www.adafruit.com/product/64)
Jumper	wires	(https://www.adafruit.com/product/758)

On	the	software	side,	the	first	thing	you	will	need	is	the	library	to	interface	with	the	sensor
you	chose	before.	As	I	chose	a	DHT11	sensor	for	this	project,	you	will	need	to	download
and	install	the	DHT	library:

https://github.com/adafruit/DHT-sensor-library

To	install	an	Arduino	library,	simply	unzip	the	content	of	the	downloaded	file	into	the
/libraries	folder	of	your	main	Arduino	folder	(or	create	this	folder	if	it	doesn’t	exist
already).

You	will	also	need	a	library	to	plot	the	data	stored	in	the	database.	I	used	the	flot	library,
which	is	very	convenient	to	use	and	allows	real-time	visualization	of	incoming	data.	This
library	is	included	in	the	code	of	this	chapter,	but	if	you	want	more	information	on	the
library	you	can	go	to	http://www.flotcharts.org/.

About	the	database	itself,	this	project	uses	SQLite,	which	is	a	lite	and	easy-to-use
database.	It	is	perfect	for	such	projects,	as	it	doesn’t	require	a	database	server	running	on

https://www.adafruit.com/products/50
https://www.adafruit.com/products/201
https://www.adafruit.com/products/386
https://www.adafruit.com/product/64
https://www.adafruit.com/product/758
https://github.com/adafruit/DHT-sensor-library
http://www.flotcharts.org/

your	computer.

It	comes	preinstalled	on	many	operating	systems	such	as	OS	X	or	Linux,	but	if	that’s	not
the	case,	go	over	to	their	website	to	download	and	install	it:

http://www.sqlite.org/

If	you	are	using	Linux,	the	best	option	is	to	install	SQLite	with	your	Linux	distribution
package	manager.

Note	that	it	is	also	possible	to	use	relational	databases	other	than	SQLite,	such	as	MySQL.
Many	web	servers	come	with	the	MySQL	server	as	well,	and	you	will	only	need	to	make
small	changes	in	the	code	of	this	chapter	to	use	a	MySQL	database.	You	can	also	use
nonrelational	databases	such	as	MongoDB	(http://www.mongodb.org/),	but	this	will
require	more	changes	in	the	code.

Finally,	you	will	also	need	to	have	a	web	server	up	and	running	to	make	this	project	work.
You	can	find	more	information	about	how	to	set	up	a	web	server	in	the	preface	of	this
book.	If	you	don’t	have	a	web	server	installed	yet,	you	can	visit	the	following	links	to	get
one:

Windows:	EasyPHP	(http://www.easyphp.org/)	or	WAMP
(http://www.wampserver.com/en/)
OS	X:	MAMP	(http://www.mamp.info/)
Linux:	LAMP	(https://help.ubuntu.com/community/ApacheMySQLPHP)

http://www.sqlite.org/
http://www.mongodb.org/
http://www.easyphp.org/
http://www.wampserver.com/en/
http://www.mamp.info/
https://help.ubuntu.com/community/ApacheMySQLPHP

Hardware	configuration
It’s	now	time	to	set	up	the	hardware	for	this	project.	At	this	point,	if	you	followed	the	first
chapter,	you	should	already	have	your	Arduino	Ethernet	shield	plugged	into	the	Arduino
board,	and	one	Ethernet	cable	connecting	the	Ethernet	shield	and	your	Internet	router.	If
that’s	not	the	case	already,	please	do	so.

The	only	thing	you	will	have	to	connect	in	this	project	is	the	DHT11	sensor	and	the
resistor.	You	can	have	an	overview	of	the	different	connections	you	have	to	make	by
looking	at	the	following	schematics:

First,	plug	the	DHT11	sensor	to	the	breadboard.	Then,	connect	pin	number	1	and	2	of	the
sensor	using	the	4.7k	Ohm	resistor.

Now,	for	the	power	supply.	Connect	pin	number	1	of	the	sensor	to	Arduino	5	V,	and	pin
number	4	to	the	Arduino	GND.	Finally,	connect	pin	number	2	of	the	DHT	sensor	to
Arduino	pin	number	7.

This	is	what	it	should	look	like	at	the	end:

If	your	project	looks	the	same,	congratulations,	you	can	move	to	the	next	part	where	we
are	going	to	build	the	Arduino	sketch	for	this	project.

Sending	data	to	a	server
It	is	now	time	to	build	the	sketch	for	our	first	application	using	the	Arduino	Ethernet
shield.	But	first,	we	need	one	more	piece	of	data:	the	local	IP	address	of	your	computer.
Inside	the	Arduino	sketch,	we	are	going	to	specify	where	the	Arduino	Ethernet	shield	has
to	send	the	data.

Finding	your	IP	address	is	easy,	but	it	depends	on	your	operating	system.	If	you	are	using
OS	X,	you	can	find	your	IP	address	inside	Network	Preferences.

If	you	are	using	Windows,	you	will	find	the	information	you	need	under	the	Network
Settings	in	your	Control	Panel:

Another	way	under	Windows	is	to	go	to	Start,	then	Run,	and	type	cmd.	Then,	inside	the
console,	type	ipconfig	and	hit	Enter.	Your	computer’s	IP	address	will	be	displayed.

If	you	are	using	Linux	or	OS	X,	you	can	simply	go	to	a	terminal	and	type:

ifconfig

This	command	should	print	your	IP	address	inside	the	terminal	window.	It	will	in	general
be	something	like	eth0	or	en0.	This	is	what	I	had	on	my	machine:

en0:	flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST>	mtu	1500

		ether	b8:f6:b1:12:c4:d7	

		inet6	fe80::baf6:b1ff:fe12:c4d7%en0	prefixlen	64	scopeid	0x4	

		inet	192.168.1.100	netmask	0xffffff00	broadcast	192.168.1.255

		nd6	options=1<PERFORMNUD>

		media:	autoselect

		status:	active

Some	Linux	distributions	made	the	move	to	another	tool	called	ip.	To	use	it,	simply	go	to
a	terminal	and	type:

ip	addr

This	will	also	display	your	computer’s	IP	address.

We	are	now	ready	to	build	the	Arduino	sketch.	First,	we	need	to	include	the	required
libraries:

#include	<SPI.h>

#include	<Ethernet.h>

#include	"DHT.h"

Insert	the	MAC	address	of	your	Ethernet	shield,	which	you	can	find	on	the	back	of	the
shield:

byte	mac[]	=	{	0x90,	0xA2,	0xDA,	0x0E,	0xFE,	0x40	};

You	will	also	need	to	define	the	pin	on	which	the	DHT	sensor	was	connected,	as	well	as
the	type	of	sensor	you	are	using:

#define	DHTPIN	7	

#define	DHTTYPE	DHT11

Note	that	you	do	not	need	a	sensor	connected	to	your	Arduino	board	to	test	this	project.
You	can	simply	send	the	content	of	any	variable	as	a	test,	or	use	the	random()	function	of
Arduino	to	generate	random	data	measurements.

First,	we	will	define	a	default	IP	address	for	the	Ethernet	shield.	The	sketch	should	not	use
this	address	since	we’ll	attempt	to	connect	using	DHCP,	but	if	DHCP	fails,	we	need	this
default	IP	address.	I	recommend	using	an	address	that	is	in	the	same	IP	domain	as	your
computer	IP	address:

IPAddress	ip(192,168,1,50);

Then,	we	can	define	the	IP	address	of	the	server,	which	in	this	case	is	your	computer.	This
is	where	you	need	to	enter	the	IP	address	you	got	before:

IPAddress	server(192,168,1,100);

We	can	then	create	an	instance	of	the	Ethernet	client:

EthernetClient	client;

We	can	also	create	an	instance	of	the	DHT	library:

DHT	dht(DHTPIN,	DHTTYPE);

Now	in	the	setup()	function	of	the	sketch,	we	first	try	to	use	DHCP	to	automatically	get
an	IP	address	for	the	Ethernet	shield.	This	is	done	using	the	following	piece	of	code:

Serial.begin(115200);

if	(Ethernet.begin(mac)	==	0)	{

		Serial.println("Failed	to	configure	Ethernet	using	DHCP");

		Ethernet.begin(mac,	ip);

}

After	this	step,	we	print	the	IP	address	on	the	Serial	port:

Serial.print("IP	address:	");

Serial.println(Ethernet.localIP());

In	the	loop()	function	of	the	sketch,	the	first	step	is	to	take	measurements	from	the
DHT11	sensor:

float	h	=	dht.readHumidity();

float	t	=	dht.readTemperature();

Convert	these	measurements	into	strings:

String	temp	=	String((int)	t);

String	hum	=	String((int)	h);

For	debugging	purposes,	we	also	print	these	values	on	the	Serial	port.	We’ll	check	later
whether	these	values	are	correct	when	testing	the	sketch:

Serial.println("Temperature:	"	+	temp);

Serial.println("Humidity:	"	+	hum);

Now,	we	are	actually	going	to	send	the	data	to	the	server.	Don’t	worry	about
understanding	what	the	server-side	code	does	for	now,	as	we’ll	deal	with	that	later.	First,
we	have	to	connect	to	the	server	running	on	your	computer:

if	(client.connect(server,	80))	{

		if	(client.connected())	{

				Serial.println("connected");

If	this	is	successful,	we	can	make	the	request.	As	in	Chapter	1,	Discover	the	Arduino
Ethernet	Shield,	we	are	going	to	use	a	standard	GET	request,	and	to	pass	the	temperature
and	humidity	measurements	as	arguments.	At	this	point,	you	will	also	need	to	enter	the	IP
address	of	your	computer.	This	is	all	done	using	the	following	piece	of	code:

client.println("GET	/datalogger/datalogger.php?temp="	+	temp	+	"&hum="	+	

hum	+	"	HTTP/1.1");

		client.println("Host:	192.168.1.100");

		client.println("Connection:	close");

		client.println();

You	can	see	that	the	code	calls	a	filename	datalogger.php,	which	we	are	going	to
examine	in	the	next	section.

Then,	after	the	request	is	made,	we	can	read	the	answer	from	the	server:

while	(client.connected())	{

		while	(client.available())	{

		char	c	=	client.read();

		Serial.print(c);

		}

}

Next,	we	can	close	the	connection	if	the	client	is	not	connected	to	the	server	anymore:

if	(!client.connected())	{

		Serial.println();

				Serial.println("disconnecting.");

				client.stop();

		}

We	are	also	going	to	repeat	the	whole	loop	every	second:

delay(1000);

Note
You	can	find	all	the	code	for	this	section	in	the	GitHub	repository	of	this	chapter:

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter2

Now,	if	we	just	uploaded	the	code	to	the	Arduino	board,	not	much	would	have	happened,
since	we	didn’t	do	anything	on	the	server	side.	The	Arduino	board	would	make	the
request,	but	as	the	request	file	doesn’t	exist	on	the	server,	the	server	would	return	an	error
code.

So	first,	we	need	to	build	a	file	on	the	server	that	will	handle	the	request	from	the	board
and	log	the	data	somewhere.	That’s	exactly	what	we	are	going	to	do	next.

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter2

Log	incoming	data	in	a	database
In	this	section,	we	are	going	to	use	PHP	to	build	the	server-side	part	of	the	project.	If	you
are	a	complete	novice	in	PHP,	I	recommend	the	following	resource	to	learn	the	basics	of
the	language:

http://php.net/manual/en/tutorial.php

First,	we	are	going	to	see	the	content	of	the	datalogger.php	file.	This	file	will	handle	the
requests	coming	from	the	Arduino	board,	log	the	data	in	a	database,	and	answer	with	a
simple	message.	Note	that	this	file	has	to	be	in	a	folder	named	datalogger	on	your	web
server.	We	will	see	the	important	parts	of	the	code.	To	get	the	complete	code	for	this
section,	please	refer	to	the	GitHub	repository	of	the	chapter.	Note	that	all	the	PHP	code
should	be	between	the	<php	…	?>	tags.

The	file	starts	by	receiving	the	data	from	the	GET	request	sent	by	the	Arduino	Ethernet
shield:

$temperature	=	intval($_GET["temp"]);

$humidity	=	intval($_GET["hum"]);

We	also	instantiate	the	connection	with	the	SQLite	database:

$db	=	new	SQLite3('database.db');

Then,	we	need	to	give	some	structure	to	the	database	if	the	database	file	is	brand	new.	If
you	are	not	familiar	with	the	SQL	commands,	I	invite	you	to	visit	the	following	link:

http://www.cs.utexas.edu/~mitra/csFall2013/cs329/lectures/sql.html

We	are	going	to	create	four	different	columns	inside	the	database:	a	unique	ID	that	will	be
automatically	incremented	by	SQLite,	a	timestamp	to	know	when	the	measurement	was
made,	and	the	temperature	and	humidity	data.	This	is	done	using	the	following	piece	of
code:

$db->exec('CREATE	TABLE	IF	NOT	EXISTS	measurements	(id	INTEGER	PRIMARY	KEY,	

timestamp	TIMESTAMP	DEFAULT	CURRENT_TIMESTAMP	NOT	NULL,	temperature	

INTEGER,	humidity	INTEGER);');

Note	that	if	you	are	using	more	sensors	(for	example,	if	you	are	also	measuring	the
ambient	light	level),	you	can	add	more	fields	here.	Simply	add	a	new	field	to	the	list,	for
example:	pressure	INTEGER.

Now,	we	can	actually	insert	the	data	as	a	new	row	in	the	database.	Since	SQLite
automatically	adds	the	ID	and	timestamp	fields,	we	just	need	to	insert	the	data	concerning
the	temperature	and	humidity:

$db->exec("INSERT	INTO	measurements	(temperature,	humidity)	VALUES	

('$temperature',	'$humidity');");

If	you	need	to	insert	more	data	into	the	database,	for	example,	if	you	have	another
measurement	to	log,	you	can	simply	extend	this	command	to	insert	more	data	into	the
SQLite	database.

http://php.net/manual/en/tutorial.php
http://www.cs.utexas.edu/~mitra/csFall2013/cs329/lectures/sql.html

Tip
This	simple	code	illustrates	how	easy	it	is	to	insert	data	into	the	SQLite	database.
However,	it	leaves	our	server	exposed	to	a	security	issue	known	as	the	SQL	injection.
Since	our	project	is	made	for	your	own	local	network	only,	this	is	not	really	an	issue	here.
However,	if	you	plan	to	deploy	the	project	online,	I	recommend	modifying	the	code	to
solve	this	security	problem.	The	following	link	will	give	you	more	information	about	this
issue	http://www.tutorialspoint.com/sqlite/sqlite_injection.htm.

Finally,	we	reply	to	the	Arduino	board	with	a	simple	message:

echo	"Data	received";

Now,	we	haven’t	actually	talked	about	the	database	itself	yet.	There	is	a	database.db	file
included	as	an	example	in	the	code	for	this	chapter,	but	I	recommend	you	simply	delete	it
and	try	to	make	your	own	database.	You	can	simply	go	to	the	directory	in	a	terminal	where
all	files	of	the	project	are	located	and	type:

sqlite3	database.db

Tip
If	you	are	using	Windows,	I	recommend	using	Console	as	a	terminal.	You	can	get	it	at	the
following	link	http://sourceforge.net/projects/console/.

This	command	will	create	your	database	file.	You	can	now	again	exit	the	database	file	by
typing	the	following	command:

.exit

Note	that	if	you	are	under	Linux,	you	might	have	to	change	the	permissions	on	the
database	and	the	folder	that	contains	the	project.	To	do	so,	go	the	project’s	folder	via	a
terminal	and	type:

chmod	777	database.db

Now,	it	is	time	to	make	a	first	test	of	the	project.	Make	sure	that	all	the	files	of	the	server
are	located	in	a	folder	called	datalogger	on	your	web	server.	You	can	now	upload	the
Arduino	sketch	to	your	board	and	open	the	Serial	monitor.	You	should	first	see	that	the
sketch	is	connecting	to	your	network	and	receiving	an	IP	address	as	follows:

IP	address:	192.168.1.103

Then,	it	should	enter	the	first	iteration	of	the	loop()	function,	and	print	out	the
temperature	and	humidity	measurements:

Temperature:	21

Humidity:	37

After	this	step,	you	should	see	that	the	sketch	is	connected	to	your	server,	and	that	the
server	is	answering	with	a	standard	200	OK	answer:

connected

HTTP/1.1	200	OK

http://www.tutorialspoint.com/sqlite/sqlite_injection.htm
http://sourceforge.net/projects/console/

Date:	Mon,	19	May	2014	08:09:57	GMT

Server:	Apache/2.2.23	(Unix)	mod_ssl/2.2.23	OpenSSL/0.9.8y	DAV/2	PHP/5.4.10

X-Powered-By:	PHP/5.4.10

Content-Length:	13

Connection:	close

Content-Type:	text/html

Also,	at	the	end	of	this	answer,	you	should	see	the	confirmation	message	that	we	defined
in	the	PHP	file:

Data	received

disconnecting.

If	you	are	seeing	these	messages,	congratulations!	It	means	that	your	Arduino	Ethernet
shield	is	successfully	communicating	with	the	web	server	running	on	your	computer,	and
is	actually	logging	some	data.

If	this	is	not	the	case,	first	check	your	hardware	connections.	Make	sure	the	DHT11	sensor
is	correctly	wired	with	the	Arduino	board,	and	that	the	Ethernet	cable	is	plugged	into	the
shield	and	your	Internet	router.	Don’t	hesitate	to	redo	Chapter	1,	Discover	the	Arduino
Ethernet	Shield,	to	make	sure	that	your	Ethernet	shield	is	working	properly.

Also,	make	sure	that	the	web	server	is	active	on	your	computer,	and	that	all	the	files	of	the
project	(especially	the	datalogger.php	file)	are	located	in	a	folder	named	datalogger
inside	your	web	server	folder.	You	can	test	this	independently	from	the	Arduino	Ethernet
shield.	Simply	go	to	your	favorite	web	browser,	and	type:

localhost/folder_of_the_project/datalogger.php?temp=20&hum=40

This	will	log	some	fake	data	inside	the	database,	so	you	can	be	sure	that	the	web	server	is
running	correctly.

We	are	now	going	to	check	on	the	server	side	whether	the	data	was	recorded	correctly.
And	we	are	actually	going	to	kill	two	birds	with	one	stone,	since	this	code	will	also	be
used	in	the	next	section	to	plot	the	data.

To	check	that	the	data	was	recorded	correctly,	you	can	simply	create	a	file	named
readout.php,	which	will	read	data	from	the	database,	format	it,	and	print	the	formatted
data	so	you	that	can	see	it.	First,	we	need	to	access	the	SQLite	database:

$db	=	new	SQLite3('database.db');

We	then	need	to	make	a	query	to	the	database	so	it	returns	the	data	we	want.	In	this
request,	we	are	simply	going	to	take	all	the	fields	from	the	table	called	measurements.
This	is	done	using	the	following	piece	of	code:

$results	=	$db->query('SELECT	id,	timestamp,	temperature,	humidity	FROM	

measurements');

Now,	we	need	to	use	PHP	to	parse	this	variable	that	contains	all	the	results	from	the	query.
We	simply	use	a	while	statement	for	that:

while($row	=	$results->fetchArray())

{

		$dataset[]	=	array(strtotime($row['timestamp'])	*	

1000,$row['temperature']);

}

Note	that	in	the	process	of	parsing	the	results,	we	format	the	data	in	another	variable,	so
that	the	script	we	will	use	to	plot	the	data	can	use	it.	We	also	convert	the	timestamp
column	so	that	the	plotting	script	can	use	it.	In	this	example,	we	are	just	going	to	display
and	later	plot	the	temperature,	which	is	why	we	only	take	these	two	variables	out	from	the
database.	You	can,	of	course,	do	the	same	for	the	humidity.

Finally,	we	print	out	the	formatted	data	in	the	JSON	format:

echo	json_encode($dataset);

Now,	we	can	test	this	readout	file.	Simply	go	over	to	a	terminal,	go	to	the	folder	where	the
file	is	located,	and	type:

php	readout.php

This	should	plot	all	the	recordings	that	have	been	made	so	far:

[[1400486855000,20],[1400486868000,20],[1400486879000,21],

[1400486890000,21],[1400486901000,21],[1400486912000,21],

[1400486922000,22],[1400486933000,23],[1400486944000,23]]

What	are	you	are	seeing	in	the	terminal	window	is	the	raw	data	that	was	recorded	for	the
temperature.	It	consists	of	several	small	arrays	of	two	elements,	which	are	the	timestamp
and	recorded	temperature.	If	you	want	to	learn	more	about	the	JSON	format	that	this	PHP
script	is	returning,	you	can	visit	http://json.org/.

If	you	can	see	this	raw	data	being	displayed,	it	means	that	the	data	coming	from	the
Arduino	board	was	correctly	logged	in	your	computer.

http://json.org/

Displaying	the	results
We	are	now	going	to	use	the	data	that	was	logged	in	the	database	and	display	it	on	a	graph
for	more	convenience.	For	this	task,	we	are	going	to	use	a	JavaScript	library	called	flot,
which	is	already	included	in	the	code	for	this	chapter.	This	library	provides	nice	functions
to	plot	data	on	a	web	page,	and	also	allows	you	to	plot	data	in	real	time,	so	you	will	see
the	graph	being	automatically	updated	as	more	data	comes	in.

Everything	will	happen	inside	an	HTML	file	called	plot.html.	We	will	only	see	the	most
important	parts	of	the	code	here.	Please	refer	to	the	GitHub	repository	of	the	chapter	to	get
the	complete	files.	Inside	this	file,	you	first	have	to	include	the	files	required	for	the	flot
library:

<script	src="flot/jquery.js"></script>

<script	src="flot/jquery.flot.js"></script>

<script	src="flot/jquery.flot.time.js"></script>

You	also	need	an	element	in	the	HTML	page	that	will	host	the	graph.	This	is	done	using
the	following	piece	of	code:

<div	id="placeholder"	style="width:800px;	height:450px;"></div>

Let’s	also	define	some	options	for	the	plot.	Since	this	is	now	JavaScript,	we	have	to	write
this	code	inside	the	<script>…</script>	tags.	If	you	want	to	learn	more	about	JavaScript
first,	I	recommend	this	excellent	interactive	tutorial:

http://www.codecademy.com/en/tracks/javascript

Because	we	have	timestamps	as	the	x-axis,	we	need	to	specify	that	the	data	for	this	axis	is
a	specific	time,	and	that	we	want	to	display	the	hours,	minutes,	and	seconds:

var	options	=	{

		xaxis:	{

				mode:	"time",

				timeformat:	"%H:%M:%S"

		}

};

We	also	need	to	receive	the	data	every	time	we	call	the	script	to	plot	the	data.	This	is	done
by	an	AJAX	call	to	the	PHP	file	we	created	before:

$.ajax({

		url:	"readout.php",

		type:	"GET",

		dataType:	"json",

		success:	onDataReceived

});

Note	that	this	code	has	to	go	inside	the	update()	function	in	the	JavaScript	code.	You	can
define	this	function	with:

function	update()	{

You	can	see	that	this	AJAX	call,	if	successful,	calls	another	JavaScript	function.	This

http://www.codecademy.com/en/tracks/javascript

function	will	actually	take	the	data	as	an	argument	and	plot	it	with	the	options	we	defined
before:

function	onDataReceived(series)	{

		var	data	=	[];

		data.push(series);

		$.plot("#placeholder",	data,	options);

}

All	this	code	is	contained	in	the	update()	function,	and	this	function	is	called
continuously	(every	10	milliseconds)	so	that	the	plot	is	always	updated	when	a	new	data
point	comes	in:

setTimeout(update,	10);

Finally,	at	the	end	of	the	script,	we	call	this	function	once	to	get	the	graph	started:

update();

It	is	now	time	to	test	the	page	we	just	created.	Place	all	the	files	in	the	datalogger	folder
on	your	web	server	and	make	sure	that	the	sketch	is	still	loaded	on	the	Arduino	board.

For	illustration	purposes,	I	reset	the	measurement	database	at	this	point,	but	you	can	of
course	just	keep	the	measurements	that	the	sensor	already	performed.

Open	the	plot.html	file.	This	is	the	result	I	got	after	the	first	two	measurement	points:

To	illustrate	the	behavior	of	the	sensor	on	the	plot,	I	pinched	it	with	my	fingers	and
released	it	a	bit	later.	As	expected,	the	temperature	went	up	before	going	down	again	after
a	while.	The	following	screenshot	is	the	result	on	the	web	page:

If	it	doesn’t	work	at	this	point,	there	are	many	things	you	can	check.	First,	make	sure	again
that	the	code	for	the	previous	sections	is	working	and	that	the	Arduino	Ethernet	shield	is
correctly	sending	data	to	the	server.	Also,	check	that	all	the	code	files	are	located	inside
the	same	folder	on	the	web	server.	And	make	sure	that	you	are	accessing	plot.html	via
the	localhost	URL	in	your	browser.

Then,	open	the	JavaScript	console	to	check	that	everything	is	fine.	You	will	usually	find
the	console	in	the	developer	tools	of	your	web	browser.	For	example,	in	Chrome,	you	will
find	the	console	in	the	View	|	Developer	menu:

Inside	this	console,	you	will	be	able	to	see	whether	there	are	any	errors	in	the	JavaScript
code	on	the	page,	and	this	will	usually	give	you	a	good	idea	of	what	is	going	on	in	the
page	and	what	you	have	to	fix.

Summary
In	this	second	chapter	of	the	book,	we	built	our	first	application	based	on	the	Arduino
Ethernet	shield	and	Ethernet	client	class.	We	did	some	basic	measurements	on	the	Arduino
board,	sent	these	measurements	on	a	local	web	server,	and	finally	displayed	this	data	in
real	time	on	a	graph.

To	proceed	further	with	this	chapter,	I	invite	you	to	carefully	repeat	all	the	steps	of	this
chapter	to	really	understand	well	how	the	Arduino	Ethernet	shield	communicates	with	the
PHP	code	running	on	your	computer.	You	can	also	add	more	sensors	to	the	projects	and
log	this	data	inside	the	database.	Also,	you	can	try	to	plot	several	variables	at	once	on
different	graphs.

These	were	the	major	takeaways	from	this	chapter:

First,	we	interfaced	a	digital	temperature	and	humidity	sensor	to	the	Arduino	board
so	that	we	can	send	the	measurements	to	a	local	web	server	using	the	Ethernet	shield.
We	also	installed	some	useful	software	components	such	as	a	library	to	plot	data	in	a
web	page.
Then,	we	built	an	Arduino	sketch	to	send	data	directly	to	a	web	server	running	on
your	computer.
After	that,	we	started	building	the	server-side	code	by	coding	the	file	responsible	for
logging	data	into	a	local	database.	We	also	tested	this	code	with	the	Arduino	Ethernet
shield,	and	made	sure	that	the	data	was	correctly	transmitted	to	the	server	and	logged
in	the	database.
Finally,	we	built	a	web	page	to	automatically	plot	the	data	as	it	is	received	on	the	web
server,	using	a	JavaScript	library	called	flot.

In	the	next	chapter,	we	are	going	to	do	similar	things,	but	using	a	completely	different
approach:	instead	of	running	a	client	on	the	Arduino	board	and	transmitting	the	data	on	a
local	web	server,	we	are	going	to	run	the	server	right	on	the	Arduino	board.	The	Arduino
project	will	constantly	display	the	measurements	on	a	web	page	and	log	the	data	locally	on
a	SD	card.

Chapter	3.	Data	Logging	Station
In	this	chapter,	we	are	going	to	create	something	really	similar	to	what	we	did	in	Chapter
2,	Sending	Data	to	a	Web	Server,	that	is	measuring	data	from	a	sensor,	storing	the	data,
and	sending	it	back	to	a	web	server	so	that	it	can	be	plotted.

However,	things	are	going	to	be	similar	only	on	the	appearance	front.	Instead	of	having	an
Ethernet	client	that	runs	on	the	Arduino	board	and	sends	data	to	a	server,	we	are	going	to
make	the	Arduino	board	more	independent.	In	the	first	part	of	the	chapter,	we	are	going	to
log	the	data	locally	using	the	integrated	MicroSD	card	reader	of	the	Ethernet	shield.

Then,	we	are	going	to	create	a	server	right	on	the	Arduino	board.	The	board	will	measure
data	as	usual,	but	the	server	will	serve	the	data	to	the	incoming	clients.	Finally,	we	will	use
a	modified	version	of	the	code	we	used	in	the	Chapter	2,	Sending	Data	to	a	Web	Server,	to
plot	the	measured	data	on	your	computer.

The	following	will	be	the	major	takeaways	of	this	chapter:

First,	we	are	going	to	build	the	hardware	for	this	project,	including	the	temperature
and	humidity	sensor,	and	the	SD	card	to	log	the	measured	data.
Then,	we	will	create	the	first	part	of	the	project,	and	log	data	automatically	on	the	SD
card,	which	is	inserted	inside	the	Ethernet	shield.	At	this	point,	we	are	going	to	use
the	Internet	connection	of	the	Ethernet	shield	to	automatically	obtain	the	current	time
from	a	Network	Time	Protocol	(NTP)	time	server.
Finally,	we	are	going	to	build	a	web	server	and	run	it	on	the	Arduino	board.	You	will
then	be	able	to	access	the	data	measured	by	the	board	just	by	entering	in	the	address
of	the	board	in	a	web	browser.	We	are	also	going	to	modify	the	code	from	the	last
chapter	to	obtain	the	measurements	from	the	Arduino	board	and	plot	them	live	in
your	browser.

Hardware	and	software	requirements
On	the	hardware	front,	you	will	of	course,	need	the	Arduino	Ethernet	shield	and	an
Arduino	board	such	as	the	Arduino	Uno.

You	will	also	need	a	sensor	to	measure	some	data.	As	this	book	is	about	how	to	use	the
Ethernet	shield	and	not	how	to	measure	from	sensors,	you	could	actually	take	any	sensor
of	your	choice.

I	used	a	DHT11	sensor,	which	is	a	digital	temperature	and	humidity	sensor.	I	chose	this
sensor	for	this	chapter	and	for	many	chapters	of	the	book	as	it	is	a	very	cheap	sensor	and
easy	to	interface	with	Arduino.	Along	with	the	DHT11	sensor,	you	will	also	need	a	4.7k
ohm	resistor.

To	log	the	data,	you	will	need	to	have	a	MicroSD	card	that	you	can	plug	into	the	Ethernet
shield.	I	don’t	have	a	specific	brand	to	recommend,	but	I	used	a	SanDisk	MicroSD	card
with	a	normal	SD	adapter	(which	worked	well	for	me),	so	you	can	also	plug	it	into	your
computer	to	check	whether	the	data	was	correctly	logged.	Also,	make	sure	that	the	SD
card	is	formatted	using	the	FAT32	format.

You	will	also	need	a	breadboard	and	some	jumper	wires	to	create	the	connection	between
the	sensor	and	the	Ethernet	shield.

The	following	is	a	list	of	all	components	that	were	used	for	this	chapter:

The	Arduino	Uno	(https://www.adafruit.com/products/50)
The	Arduino	Ethernet	shield	(https://www.adafruit.com/products/201)
The	DHT11	sensor	(https://www.adafruit.com/products/386)
A	MicroSD	card	(http://www.amazon.com/SanDisk-Micro-SDHC-Memory-
Adapter/dp/B0052MHQM6)
A	breadboard	(https://www.adafruit.com/product/64)
Jumper	wires	(https://www.adafruit.com/product/758)

On	the	software	front,	the	first	thing	you	will	need	is	the	library	to	interface	with	the
sensor	you	chose	before.	I	chose	a	DHT11	sensor	for	this	project.	You	will	need	to
download	and	install	the	DHT	library	from	https://github.com/adafruit/DHT-sensor-
library.

To	install	an	Arduino	library,	simply	unzip	the	content	of	the	downloaded	file	to	your
libraries	folder	of	your	main	Arduino	folder	(or	create	this	folder	if	you	haven’t	done	so
already).

https://www.adafruit.com/products/50
https://www.adafruit.com/products/201
https://www.adafruit.com/products/386
http://www.amazon.com/SanDisk-Micro-SDHC-Memory-Adapter/dp/B0052MHQM6
https://www.adafruit.com/product/64
https://www.adafruit.com/product/758
https://github.com/adafruit/DHT-sensor-library

Hardware	configuration
It’s	now	time	to	set	up	the	hardware	for	this	project.	At	this	point,	if	you	followed	any	of
the	previous	chapters	of	this	book,	you	should	already	have	your	Arduino	Ethernet	shield
plugged	into	the	Arduino	board,	and	one	Ethernet	cable	connecting	the	Ethernet	shield	and
your	Internet	router.	If	that’s	not	the	case	already,	please	do	so.

The	only	thing	you	will	have	to	connect	in	this	project	is	the	DHT11	sensor	and	the
resistor.	You	can	see	an	overview	of	the	different	connections	you	have	to	make	by
looking	at	the	following	schematic	diagram:

First,	plug	the	DHT11	sensor	into	the	breadboard.	Then,	connect	the	pin	number	1	and	2
of	the	sensor	using	the	4.7k	ohm	resistor.

Now	comes	the	power	supply.	Connect	the	pin	number	1	of	the	sensor	to	the	Arduino	5V,
and	the	pin	number	4	to	the	Arduino	GND.	Finally,	connect	the	pin	number	2	of	the	DHT
sensor	to	the	Arduino	pin	number	7.

At	the	end,	it	should	look	like	the	following	image:

Finally,	simply	insert	the	SD	card	into	the	SD	card	slot	on	the	Ethernet	shield.

Logging	data	on	an	SD	card
Let’s	start	with	the	first	topic	of	this	chapter—logging	data	on	a	SD	card	using	the
integrated	SD	card	slot	of	the	Ethernet	shield.	What	we	are	going	to	do	is	perform	some
measurements	on	the	Arduino	board	and	log	each	of	these	measurements	to	the	SD	card	in
a	simple	text	file.

However,	compared	to	the	project	of	the	Chapter	2,	Sending	Data	to	a	Web	Server,	we
don’t	actually	know	the	date	when	the	measurement	was	taken.	In	the	previous	chapter,
we	simply	used	the	date	of	the	computer,	but	we	don’t	have	this	information	here.	To	get
the	time	on	the	Arduino	board,	we	are	going	to	use	another	strategy.	We	are	going	to	use
the	Ethernet	shield	to	connect	to	an	NTP	time	server,	grab	the	time	once	when	the	Arduino
sketch	starts,	and	then	use	the	Time	library	to	track	the	time	from	there.

To	learn	more	about	the	Time	library,	you	can	visit	the	following	page	on	the	Arduino
website:

http://playground.arduino.cc/Code/Time

The	process	of	logging	data	on	a	SD	card	starts	by	including	the	correct	libraries	as
follows:

#include	"DHT.h"

#include	<SD.h>

#include	<Time.h>

#include	<Ethernet.h>

#include	<EthernetUdp.h>

#include	<SPI.h>

We	also	need	to	define	the	sensor	type	and	the	pin	to	which	the	sensor	is	connected.	This
is	done	with	the	following	lines	of	code:

#define	DHTPIN	7

#define	DHTTYPE	DHT11

To	define	the	MAC	address	of	the	Ethernet	shield,	use	the	following	line	of	code:

byte	mac[]	=	{	0x90,	0xA2,	0xDA,	0x0E,	0xFE,	0x40	};

To	use	the	SD	card,	you	will	also	need	to	define	the	chipSelect	pin,	which	is	the	pin
number	4	on	the	Ethernet	shield.	This	is	done	using	the	following	line:

const	int	chipSelect	=	4;

Now,	we	are	going	to	deal	with	the	NTP	server.	There	are	actually	several	NTP	servers
you	can	use	(you	can	see	the	IP	addresses	of	many	of	these	servers	inside	the	TimeNTP
example	that	come	with	the	Time	library).	You	can	also	set	your	time	zone	here.	To	get
more	information	about	which	NTP	server	you	can	use	and	which	time	zone	to	set,	you
can	have	a	look	at	the	example	TimeNTP	sketch.	This	sketch	is	given	as	an	example	inside
the	Time	library.	For	this	project,	I	used	the	first	server	available	with	time	zone	number	1,
as	shown	in	the	following	code:

http://playground.arduino.cc/Code/Time

IPAddress	timeServer(132,	163,	4,	101);

const	int	timeZone	=	1;

To	connect	to	this	server,	we	also	need	to	define	an	Ethernet	client.	This	time,	we	are
going	to	use	a	protocol	different	from	the	earlier	one,	which	is	called	UDP.	UDP	is
different	from	TCP—it’s	much	simpler	and	lighter.	However,	it	doesn’t	guarantee	that	the
data	was	correctly	delivered,	which	TCP	does.	You	don’t	actually	need	to	care	about	the
details	of	this	protocol,	as	the	Time	library	handles	everything.	You	can	just	leave	the
default	UDP	port,	as	shown	in	the	following	code:

EthernetUDP	Udp;

unsigned	int	localPort	=	8888;

You	also	need	to	create	an	instance	of	the	DHT	sensor	as	follows:

DHT	dht(DHTPIN,	DHTTYPE);

Now,	in	the	setup()	function	of	the	sketch,	you	need	to	define	the	following	code
responsible	for	getting	an	IP	address	for	the	Ethernet	shield:

Serial.begin(9600);

if	(Ethernet.begin(mac)	==	0)	{

		//	no	point	in	carrying	on,	so	do	nothing	forevermore:

		while	(1)	{

				Serial.println("Failed	to	configure	Ethernet	using	DHCP");

				delay(10000);

		}

}

After	that,	we	will	try	to	initialize	the	SD	card,	as	shown	in	the	following	code:

Serial.print("Initializing	SD	card…");

pinMode(10,	OUTPUT);

If	this	is	successful,	we	will	print	out	a	message	on	the	Serial	port,	as	shown	in	the
following	code:

if	(!SD.begin(chipSelect))	{

		Serial.println("Card	failed,	or	not	present");

		//	don't	do	anything	more:

		return;

}

Serial.println("card	initialized.");

We	will	also	start	the	DHT	sensor	as	follows:

dht.begin();

Finally,	still	in	the	setup()	function,	we	will	print	out	the	IP	address	of	the	Ethernet	shield
and	create	the	connection	to	the	NTP	server.	Note	that	here	we	are	calling	a	function	called
getNtpTime,	which	is	defined	later	in	the	sketch.	As	this	is	a	function	provided	by	the
Time	library,	we	are	not	going	to	look	into	the	details	of	this	function.	The	following	is	the
code	for	this	part:

Serial.print("IP	number	assigned	by	DHCP	is	");

Serial.println(Ethernet.localIP());

Udp.begin(localPort);

Serial.println("waiting	for	sync");

setSyncProvider(getNtpTime);

Now,	in	the	loop()	function	of	the	sketch,	we	will	first	measure	the	temperature	and
humidity	from	the	sensor	using	the	following	code:

float	h	=	dht.readHumidity();

float	t	=	dht.readTemperature();

Secondly,	we	will	convert	these	measurements	to	strings	as	follows:

String	temp	=	String((int)	t);

String	hum	=	String((int)	h);

We	are	now	going	to	build	a	string	that	contains	the	date	and	time	of	the	measurement
using	the	Time	library.	This	library	contains	functions	to	get	the	current	time,	day,	or
month,	for	example,	which	are	calculated	from	the	initial	call	to	the	NTP	server.	For
example,	calling	the	day()	function	will	return	the	current	day.	The	following	piece	of
code	returns	a	string	with	the	date	and	time:

String	log_time	=	String(day())	+	"/"	+

String(month())	+	"/"	+	String(year())	+	"	"	+

String(hour())	+	":"	+	String(minute())	+	":"	+

String(second());

We	then	assemble	this	string	with	the	temperature	and	humidity	measurements	using
commas	as	separators	between	the	different	strings,	as	shown	in	the	following	line	of
code:

String	dataString	=	log_time	+	","	+	temp	+	","	+	hum;

We	are	now	going	to	write	this	data	on	the	SD	card.	We	first	need	to	open	the	card	to	write
data	using	the	following	line:

File	dataFile	=	SD.open("datalog.txt",	FILE_WRITE);

If	that’s	successful,	we	will	put	the	contents	of	the	dataString	variable	to	this	file	named
datalog.txt,	as	shown	in	the	following	code:

if	(dataFile)	{

		dataFile.println(dataString);

		dataFile.close();

		Serial.println(dataString);

}

else	{

		Serial.println("error	opening	datalog.txt");

}

Finally,	we	will	repeat	the	operation	every	10	seconds,	but	you	can,	of	course,	modify	this
delay	with	the	following	line:

delay(10000);

Note

All	the	code	for	this	section	can	be	found	inside	the	GitHub	repository	of	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/master/chapter3.

It’s	now	time	to	test	this	sketch.	Make	sure	that	the	Ethernet	cable	is	plugged	into	the
shield	and	your	Internet	router,	and	the	SD	card	is	plugged	into	the	Ethernet	shield	SD
card	slot.	You	can	now	upload	the	sketch	to	the	board	and	open	the	Serial	Monitor.	The
following	line	is	what	you	should	see	first:

Initializing	SD	card…card	initialized.

Then,	you	should	see	that	your	Ethernet	shield	has	an	IP	address,	as	shown	in	the
following	line:

IP	number	assigned	by	DHCP	is	192.168.1.103

You	should	see	that	this	shield	is	currently	synchronizing	the	time	with	the	NTP	server,	as
shown	in	the	following	output:

waiting	for	sync

Transmit	NTP	Request

Receive	NTP	Response

After	that,	you	should	see	that	the	first	measurement	is	made	as	follows:

21/5/2014	9:32:13,22,38

After	the	delay	you	fixed	in	the	sketch,	you	will	see	that	a	second	measurement	is	made
with	the	corresponding	date	and	time.	To	be	sure	that	the	sketch	is	correctly	writing	data
on	the	SD	card,	you	can	let	it	run	for	a	while	and	then	disconnect	the	Ethernet	shield	from
the	power	supply.	After	this,	remove	the	SD	card,	and	read	it	on	your	computer	via	an
adapter.	You	should	see	the	following	screenshot:

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter3

As	you	can	see,	all	the	measurements	were	correctly	logged	on	the	SD	card,	and	we	can
clearly	see	that	the	interval	between	two	measurements	was	10	seconds.

Creating	a	web	server	on	Arduino
For	the	rest	of	this	chapter,	we	are	going	to	take	another	approach.	We	are	still	going	to
make	the	Arduino	with	the	Ethernet	Shield	work	as	an	independent	system,	but	this	time
we	are	even	going	to	create	a	web	server	on	the	Arduino	board.	This	is	actually	similar	to
the	project	we	saw	in	the	Chapter	2,	Sending	Data	to	a	Web	Server,	but	this	time	it	is	the
Arduino	board	itself	that	will	display	the	data	as	it	is	measured.

The	sketch	for	this	part	starts	by	including	the	right	libraries,	as	shown	in	the	following
code:

#include	"DHT.h"

#include	<Ethernet.h>

#include	<SPI.h>

Define	the	pin	and	the	type	of	the	sensor	in	the	following	manner:

#define	DHTPIN	7

#define	DHTTYPE	DHT11

Also,	you	have	to	define	the	MAC	address	of	your	Ethernet	shield	as	usual,	as	shown	in
the	following	line	of	code:

byte	mac[]	=	{	0x90,	0xA2,	0xDA,	0x0E,	0xFE,	0x40	};

We	will	also	define	a	default	IP	address	in	case	the	DHCP	fails,	as	shown	in	the	following
line:

IPAddress	ip(192,168,1,50);

This	is	where	the	new	feature	comes	in.	So	far,	we	only	used	the	EthernetClient	class	to
define	a	client	that	will	connect	to	a	remote	server.	Here,	however,	because	we	want	to
create	a	server	right	on	the	Arduino	board,	we	are	going	to	use	the	EthernetServer	class,
as	shown	in	the	following	line	of	code:

EthernetServer	server(80);

You	can	use	the	port	80	for	your	server,	as	it	will	be	much	easier	to	access	the	server	from
your	web	browser.

We	also	should	not	forget	to	create	an	instance	of	the	DHT	sensor.	This	is	done	using	the
following	line:

DHT	dht(DHTPIN,	DHTTYPE);

Now,	in	the	setup()	function	of	the	sketch,	we	will	try	to	use	DHCP	to	get	an	IP	address
for	the	Ethernet	shield	using	the	following	code:

if	(Ethernet.begin(mac)	==	0)	{

		Serial.println("Failed	to	configure	Ethernet	using	DHCP");

		Ethernet.begin(mac,	ip);

}

Still	in	the	setup()	function,	we	also	have	to	start	our	Ethernet	server,	and	print	out	the	IP

address	of	the	server	using	the	following	code:

server.begin();

Serial.print("Server	is	at	");

Serial.println(Ethernet.localIP());

Finally,	we	will	start	the	DHT	sensor	as	follows:

dht.begin();

Now,	in	the	loop()	part	of	the	sketch,	we	will	perform	the	temperature	and	humidity
measurements,	as	shown	in	the	following	code:

float	h	=	dht.readHumidity();

float	t	=	dht.readTemperature();

Convert	the	measurements	to	strings	using	the	following	code:

String	temp	=	String((int)	t);

String	hum	=	String((int)	h);

Then,	we	need	to	handle	the	connections	that	come	to	the	Arduino	board,	for	example,
from	a	web	browser.	To	do	so,	we	are	actually	going	to	create	an	instance	of	the
EthernetClient	class	every	time	the	server	becomes	available.	As	this	is	a	class	we
already	saw	in	previous	chapters	of	the	book,	this	is	something	we	already	know	how	to
work	with.

If	a	connection	is	detected,	we	create	this	client,	and	print	it	out	on	the	Serial	port	for
debugging	purposes,	as	shown	in	the	following	code:

EthernetClient	client	=	server.available();

if	(client)	{

				

		Serial.println("New	client");

The	next	part	is	a	bit	technical.	We	need	to	read	out	the	request	that	comes	from	the	client,
but	also	detect	the	moment	when	the	request	is	over	so	that	we	can	close	the	connection.
This	is	handled	by	always	checking	whether	the	current	line	is	blank	or	not.	The	first	step
is	then	to	read	out	the	request	that	comes	from	the	client,	character	per	character,	using	the
following	piece	of	code:

boolean	currentLineIsBlank	=	true;

while	(client.connected())	{

						

		//	Read	data

		if	(client.available())	{

				char	c	=	client.read();

					Serial.write(c);

Note	that	the	incoming	request	is	also	printed	out	on	the	Serial	port	for	debugging
purposes.	Now,	if	we	detect	that	we	have	an	end	of	line	character	and	that	the	current	line
is	blank,	it’s	a	sign	that	the	request	is	over,	as	shown	in	the	following	line:

if	(c	==	'\n'	&&	currentLineIsBlank)	{

Therefore,	we	can	answer	the	client.	We	will	first	send	a	standard	HTTP	header	that	states
everything	went	OK,	and	that	we	want	to	refresh	the	page	automatically	every	5	seconds,
as	shown	in	the	following	code:

client.println("HTTP/1.1	200	OK");

client.println("Content-Type:	text/html");

client.println("Connection:	close");

client.println("Refresh:	5");		//	Refresh	the	page	automatically	every	5	

sec

client.println();

client.println("<!DOCTYPE	HTML>");

client.println("<html>");

Then,	we	will	print	out	the	data	from	the	measurement	on	the	page	using	the	following
code:

client.print("Temperature:	");

client.print(temp);

client.print("
");

client.print("Humidity:	");

client.print(hum);

client.println("
");

client.println("</html>");

The	rest	of	the	following	code	is	there	to	detect	whether	we	reached	the	end	of	the	request
or	not:

if	(c	==	'\n')	{

		//	Starting	a	new	line

		currentLineIsBlank	=	true;

}

else	if	(c	!=	'\r')	{

		//	you've	gotten	a	character	on	the	current	line

		currentLineIsBlank	=	false;

}

Finally,	we	will	give	the	browser	a	small	delay	to	receive	the	answer,	and	we	will	close	the
connection,	as	shown	in	the	following	code:

//	Give	the	web	browser	time	to	receive	the	data

delay(1);

//	Close	the	connection:

client.stop();

Serial.println("Client	disconnected");

Note
All	the	code	for	this	section	can	be	found	in	the	GitHub	repository	of	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/master/chapter3.

It’s	now	time	to	test	the	code	that	we	wrote	in	this	section.	Again,	make	sure	that	the
Ethernet	cable	is	plugged	to	the	Ethernet	shield	and	to	your	router.	Then,	you	can	upload
the	code	to	the	board,	and	open	the	Serial	Monitor.	You	should	first	see	the	IP	address	of
the	web	server	running	on	the	Arduino	board	as	follows:

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter3

Server	is	at	192.168.1.103

After	that,	the	sketch	will	just	do	nothing	while	waiting	for	any	incoming	connection.	To
make	a	connection	happen,	just	go	over	to	your	web	browser	and	type	in	the	IP	address	of
the	board.	You	should	immediately	see	the	GET	request	from	the	browser	being	printed	out
in	the	Arduino	Serial	Monitor,	as	shown	in	the	following	output:

New	client

GET	/	HTTP/1.1

Host:	192.168.1.103

Connection:	keep-alive

Cache-Control:	max-age=0

Accept:	

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

User-Agent:	Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_9_3)	

AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/34.0.1847.137	Safari/537.36

Referer:	http://192.168.1.103/

Accept-Encoding:	gzip,deflate,sdch

Accept-Language:	fr-FR,fr;q=0.8,en-US;q=0.6,en;q=0.4,de;q=0.2

As	we	can	see,	there	is	a	lot	of	text	and	this	depends	on	your	browser.	However,	the
important	thing	is	actually	the	first	line	of	the	request,	which	means	it’s	a	GET	request	to
our	Arduino	board.

Finally,	after	the	Arduino	answers	the	server,	the	connection	is	closed	and	the	following
message	is	displayed:

Client	disconnected

In	your	browser,	you	should	also	directly	see	that	the	data	is	being	printed	out	on	the	page
created	by	the	Arduino	board,	as	shown	in	the	following	screenshot:

If	you	can	see	this,	congratulations,	you	just	created	your	own	web	server	that	runs	on	an
Arduino	board.	If	you	can’t	see	a	page,	first	make	sure	that	Arduino	has	an	IP	address	and
it	can	be	connected	to	your	local	network.	To	do	so,	repeat	the	instructions	in	Chapter	1,
Discover	the	Arduino	Ethernet	Shield,	again.

Also	make	sure	that	you	correctly	entered	the	IP	address	of	the	board	in	your	browser.	You
can	also	check	on	the	Serial	Monitor	that	you	are	not	receiving	any	error	messages	from
the	DHT	sensor,	which	will	compromise	the	behavior	of	the	web	server.

Plotting	the	data	locally
To	end	the	chapter,	we	are	going	to	see	how	to	plot	data	measured	by	the	Arduino	board.
To	do	so,	we	will	modify	the	Arduino	sketch	a	little	bit,	and	then	use	part	of	the	code	from
the	previous	chapter	to	plot	the	data	right	in	your	web	browser.

First,	we	are	going	to	modify	the	Arduino	sketch	so	that	it	returns	data	in	a	more	useful
format;	in	the	present	case,	the	JSON	format.	In	place	of	the	code	responsible	to	print	out
the	measurements,	we	are	going	to	simply	print	the	data	in	the	JSON	format.	This	is	done
using	the	following	piece	of	code:

client.println("HTTP/1.1	200	OK");

client.println("Content-Type:	application/json");

client.println("Connection:	close");

client.println();

client.print("{\"temperature\":	");

client.print(temp);

client.print(",	\"humidity\":	");

client.print(hum);

client.println("}");

We	can	now	quickly	test	this	project.	Upload	the	code	to	the	Arduino	board	again,	open
your	web	browser,	and	go	to	the	same	IP	address	you	used	before.	You	should	see	the
following	line	printed	on	the	page:

{"temperature":	24,	"humidity":	36}

Now,	we	also	have	to	build	the	server-side	code	to	plot	the	data.	The	code	is	very	similar
to	the	code	of	the	previous	chapter,	so	I	will	only	detail	the	differences	between	the	two
projects.	In	the	previous	chapter,	it	was	the	board	that	was	trying	to	reach	out	the	server
running	on	your	computer,	and	the	datalogger.php	file	was	handling	the	requests.	In	this
chapter,	we	are	going	to	do	the	reverse	and	call	the	board	from	the	web	server	running	on
your	computer.	To	do	so,	we	are	going	to	use	a	module	from	PHP	called	cURL	to	make	GET
requests	to	a	given	URL;	in	this	case,	the	URL	of	the	Arduino	board.

The	first	thing	we	have	to	do	is	make	changes	to	the	datalogger.php	file	and	add	the
URL	of	the	Arduino	board,	as	shown	in	the	following	line	of	code:

$url	=	'http://192.168.1.103';

Start	the	cURL	call,	as	shown	in	the	following	line	of	code:

$curl	=	curl_init();

We	also	have	to	set	the	options	of	the	cURL	call.	We	want	the	call	to	return	the	data	from
our	Arduino	web	server,	and	we	also	want	the	URL	to	be	the	one	we	defined	before.	This
is	done	using	the	following	code:

curl_setopt_array($curl,	array(

		CURLOPT_RETURNTRANSFER	=>	1,

		CURLOPT_URL	=>	$url,

));

We	can	now	execute	the	command,	as	shown	in	the	following	line	of	code::

$resp	=	curl_exec($curl);

Close	the	cURL	call,	as	follows:

curl_close($curl);

We	get	the	answer	in	a	variable	that	contains	the	data	in	a	string.	In	order	to	open	it	with
PHP,	we	need	to	convert	it	to	the	JSON	format	first,	and	then	extract	the	temperature	and
humidity	fields.	This	is	done	using	the	following	piece	of	code:

$json	=	json_decode($resp,	true);

$temperature	=	intval($json["temperature"]);

$humidity	=	intval($json["humidity"]);

The	rest	of	the	file	is	strictly	identical	to	the	code	we	developed	in	the	previous	chapter.

Now,	we	also	need	to	make	a	small	modification	in	the	plot.html	file.	In	the	previous
chapter,	the	data	was	automatically	logged	inside	the	database	as	the	Arduino	board	was
constantly	sending	data	to	the	server.	Here,	we	need	to	make	the	call	on	the	server	side.
This	is	done	by	adding	the	following	small	piece	of	code	just	before	the	code	that	reads
out	the	data	from	the	database:

$.ajax({

		url:	"datalogger.php",

		type:	"GET",

});

This	means	that	just	before	the	data	is	read	from	the	database	to	be	plotted,	we	are	calling
the	Arduino	board	to	get	the	temperature	and	humidity	measurements.

Note
All	the	code	for	this	section	can	be	found	inside	the	GitHub	repository	of	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/master/chapter3.

We	can	now	test	this	part	of	the	chapter.	Note	that	the	code	from	the	GitHub	repository
includes	an	example	database	so	you	can	test	the	project	right	away,	but	I	recommend
deleting	the	file	just	before	testing	the	project,	so	you	will	plot	your	own	measured	data
while	testing	the	code.

You	can	just	put	all	the	code	for	the	plotting	part	inside	a	folder	at	the	root	of	your	web
server.	Then,	open	the	plot.html	file	via	the	localhost	URL	in	your	web	server.	You
should	immediately	see	that	data	is	being	plotted	inside	your	web	browser.	After	a	while,
you	should	get	a	graph	similar	to	the	following	graph:

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter3

If	you	can	see	this	plot	in	your	browser,	congratulations!	This	means	you	can	perform
remote	measurements	from	the	web	server	running	on	your	Arduino	board.

If	this	is	not	the	case,	there	are	several	things	you	can	check.	This	first	thing	you	can
check	is	making	sure	that	the	Arduino	board	correctly	displays	the	data	in	a	JSON	format.
To	do	so,	you	can	simply	enter	the	address	of	your	board	in	a	browser.	Then,	check
whether	your	web	server	is	running	on	your	computer	and	that	you	have	placed	all	the
files	from	the	project	inside	a	repository	in	your	web	server’s	main	folder.	Finally,	make
sure	that	you	are	accessing	the	HTML	file	from	the	localhost	URL	in	your	browser	and	not
by	clicking	on	it	inside	your	file	explorer.

Summary
Let’s	summarize	what	we	did	in	this	chapter.	We	created	an	independent	measurement
station	with	Arduino	that	automatically	measures	and	serves	the	data	in	some	way.	First,
we	logged	the	data	locally	on	a	SD	card	and	then	we	served	this	data	using	a	web	server
running	on	the	Arduino	board.

The	following	are	the	major	takeaways	of	this	chapter:

1.	 First,	we	built	the	required	hardware	for	this	chapter,	and	inserted	the	SD	card	into
the	Ethernet	shield.

2.	 Then,	in	the	first	part	of	the	project,	we	logged	the	measured	data	on	the	SD	card	and
used	a	remote	time	server	to	automatically	get	the	measurement	times.

3.	 Finally,	we	built	a	new	Arduino	sketch	to	have	a	web	server	running	on	the	Arduino
board.	We	then	modified	the	plotting	code	from	the	previous	chapter	so	it	can	call	the
server	on	the	Arduino	board	to	get	and	plot	the	measured	data.

There	are,	of	course,	many	ways	to	improve	this	project.	You	can	add	more	sensors	to	the
project	and	either	log	this	additional	data	on	a	SD	card	or	serve	it	on	a	web	page	using	the
Arduino	web	server.	You	can	also	have	many	of	these	boards	in	your	home	or	even
outside	and	make	your	computer	poll	all	these	Arduino	servers	at	a	regular	interval	to	get
their	measurements.

In	the	next	chapter,	we	are	going	to	work	again	with	this	idea	of	creating	an	independent
system	with	the	Arduino	Ethernet	shield.	We	are	going	to	connect	a	relay	to	the	Arduino
board,	so	you	can	switch	a	lamp	on	and	off	remotely.	This	project	will	come	in	two
flavors.	First,	we	will	make	a	sketch	to	control	the	relay	remotely	via	your	web	browser.	In
the	second	part	of	the	chapter,	we	will	use	a	special	library	so	the	relay	can	be	controlled
from	anywhere	in	the	world.

Chapter	4.	Controlling	Objects	from
Anywhere
In	this	chapter,	we	are	going	to	do	something	different	to	what	we	did	in	the	other
chapters.	What	we	did	so	far	was	measure	some	data	on	the	Arduino	board	and	transmit
this	data	back	to	the	network	using	the	Ethernet	shield.	In	this	chapter,	we	are	going	to
control	a	device	instead	of	measuring	data.

To	do	so,	we	will	use	a	relay	connected	to	the	Arduino	board	with	the	Ethernet	shield	and
control	this	relay	remotely.	We	are	also	going	to	connect	a	set	of	power	cables	to	this	relay
so	you	can	directly	plug	a	lamp	into	it	so	that	it	can	be	controlled	remotely.

In	the	first	part	of	the	chapter,	we	are	going	to	control	this	relay	remotely	within	your	local
network.	In	the	second	part	of	the	chapter,	we	will	use	a	dedicated	web	service	to	control
this	relay	from	anywhere	in	the	world.

The	following	will	be	the	major	takeaways	from	this	chapter:

First,	we	are	going	to	see	how	to	choose	the	different	components	for	this	project,
including	the	relay	and	cables	to	connect	a	device	to	the	relay	such	as	a	lamp.
Then,	we	will	assemble	the	different	hardware	components,	connect	the	relay	to	the
Arduino	board,	and	the	power	cables	to	the	relay.
After	that,	we	will	write	an	Arduino	sketch	to	test	whether	the	relay	is	working
correctly	and	has	been	correctly	connected	to	the	circuit.
When	we	are	sure	that	the	relay	is	working,	we	will	write	an	application	using	the
Ethernet	shield	along	with	the	relay.	We	are	going	to	write	a	sketch	to	control	the
relay	via	Ethernet	and	then	build	an	interface	to	control	the	relay	from	your	web
server.
Finally,	in	the	last	section	of	the	chapter,	we	are	going	to	use	a	dedicated	web	service
to	control	the	relay	from	anywhere	in	the	world.	We	are	also	going	to	adapt	the
interface	we	just	created	to	control	the	relay	from	anywhere.

Hardware	and	software	requirements
Let’s	first	see	what	we	need	for	this	project.	As	with	all	the	other	chapters,	you	will	need
an	Arduino	board	and	the	Arduino	Ethernet	shield.

You	will	also	need	a	relay	module.	I	really	recommend	using	a	relay	that	is	integrated	on	a
board,	with	all	the	required	components	on	the	board	as	well.	It	will	avoid	you	having	to
build	your	own	relay	module	on	a	breadboard,	and	it	is	also	much	safer.	Indeed,	there	is	no
risk	in	wiring	the	relay	and	other	components	in	an	incorrect	fashion.	Simply	make	sure
that	the	relay	you	choose	is	compatible	with	5	V	input	voltage	levels.	Also,	you	have	to
make	sure	that	the	relay	module	can	handle	the	power	of	the	device	you	are	going	to	use
for	this	project.	For	example,	the	lamp	I	used	was	a	30	W	lamp,	and	the	relay	could	handle
more	than	1000	W,	just	to	be	on	the	safe	side.	I	chose	a	5	V	relay	module	from	Polulu,	as
shown:

You	can	simply	use	the	relay	as	it	is	and	control	it	with	the	code	we	are	going	to	develop
in	this	project,	but	the	goal	of	having	a	relay	is	to	connect	a	device	to	it.	For	this	project,	I
chose	to	connect	a	lamp	to	the	relay,	but	by	following	the	instructions	in	this	chapter,	you
will	be	able	to	connect	any	device	that	uses	a	standard	power	plug.

To	do	so,	I	used	a	set	of	power	cables,	one	with	a	male	socket	and	one	with	a	female
socket,	as	shown	in	the	following	image:

www.allitebooks.com

http://www.allitebooks.org

The	male	plug	will	be	used	to	connect	the	relay	to	the	main	power	plug	in	the	wall	and	the
female	socket	will	be	used	to	connect	the	device	to	control	the	relay.

Note
Always	be	very	careful	when	connecting	wires	to	the	main	electricity.	Make	sure	that	you
don’t	touch	any	of	the	exposed	parts	of	the	relay,	and	make	sure	that	the	cables	themselves
don’t	have	any	exposed	copper.	Also,	connect	the	plug	to	the	electricity	latest	when
assembling	the	project.

Let’s	now	see	the	software	requirements	for	this	project.	As	usual,	you	will	need	to	have
the	Arduino	IDE	installed,	along	with	a	web	server	running	on	your	computer.

In	the	second	part	of	the	chapter,	we	are	going	to	use	a	service	called	Teleduino	to	control
the	Ethernet	shield	from	anywhere.	To	use	this	service,	you	will	need	to	get	an	API	key,
which	you	will	have	to	insert	inside	the	Arduino	sketch.

You	can	get	a	key	by	visiting	the	following	address:

https://www.teleduino.org/tools/request-key

You	will	be	taken	to	the	following	page	where	you	can	get	your	key:

https://www.teleduino.org/tools/request-key

You	will	also	need	to	install	a	few	Arduino	libraries	for	this	chapter.

The	first	one	you	will	need	is	the	aREST	library	for	Arduino,	which	you	can	find	at	the
following	link:

https://github.com/marcoschwartz/aREST

Finally,	you	will	also	need	to	download	and	install	the	Teleduino	library,	which	you	can
find	here:

https://www.teleduino.org/downloads/

To	install	a	given	library,	simply	extract	the	folder	to	your	Arduino/libraries	folder	(or
create	this	folder	if	it	doesn’t	exist	yet).

https://github.com/marcoschwartz/aREST
https://www.teleduino.org/downloads/

Hardware	configuration
Now	let’s	see	how	to	connect	the	different	components	of	the	project.	As	with	the	other
chapters	of	the	book,	you	will	need	to	have	the	Ethernet	shield	plugged	into	the	Arduino
board.	You	will	also	need	to	connect	an	Ethernet	cable	between	the	Ethernet	shield	and
your	router.

Then,	you	need	to	connect	the	relay	module.	The	relay	module	has	three	input	pins:	VCC,
GND,	and	a	signal	pin	usually	called	SIG.	You	need	to	connect	the	VCC	pin	to	Arduino	5
V,	GND	to	Arduino	GND,	and	finally	the	signal	pin	to	Arduino	pin	number	7,	which	is	a
digital	pin.	The	following	image	shows	the	system	at	this	point:

Then,	you	need	to	connect	the	power	cables	to	the	relay	module.	A	relay	module	basically
has	three	output	pins:	COM	(for	the	common	pin),	NC	(for	the	normally	closed	pin),	and
NO	(for	the	normally	open	pin).

What	we	want	is	to	have	the	COM	pin	of	the	relay	connected	to	one	wire	of	the	power
plug,	NC	not	connected,	and	NO	connected	to	one	other	wire	of	the	power	plug.	The
following	image	summarizes	the	connections	at	this	stage:

First,	connect	one	pin	of	the	female	power	plug	to	the	COM	pin.	Then,	connect	one	pin	of
the	male	power	plug	to	the	NO	pin.	Finally,	connect	the	two	remaining	cables	together,	for
example,	using	a	typical	electrical	screw	terminal.

Once	this	is	done,	you	can	connect	the	device	you	want	to	control	the	relay.	Connect	the
lamp	inside	the	female	power	socket,	and	then	connect	the	male	power	plug	to	the	power
plug	in	the	wall.	The	following	image	represents	the	system	at	this	point,	without	the
device	to	control	being	connected:

If	you	have	something	similar,	congratulations!	You	are	done	with	the	hardware
connections	for	this	chapter.

Testing	the	relay
We	are	now	going	to	build	a	very	simple	sketch	to	test	the	hardware	connections	we	just
made.	The	sketch	will	simply	switch	the	relay	on	and	off	every	second.

The	sketch	starts	by	declaring	the	right	pin	for	the	relay:

const	int	relay_pin	=	7;

Then,	we	set	this	pin	as	an	output:

pinMode(relay_pin,OUTPUT);

Then,	in	the	loop()	function	of	the	sketch,	we	set	the	relay	to	a	HIGH	state:

digitalWrite(relay_pin,	HIGH);

We	wait	for	5	seconds:

delay(5000)

Then,	we	switch	the	relay	pin	to	a	LOW	state	again:

digitalWrite(relay_pin,	LOW);

We	then	wait	again	for	5	seconds:

delay(5000);

Note
The	code	for	this	section	can	be	found	in	the	GitHub	repository	for	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4.

You	can	now	upload	the	code	to	the	Arduino	board.	You	should	hear	the	relay	switching
on	and	off	every	second.	If	you	connect	a	lamp	to	the	project,	for	example,	you	should
also	see	it	switching	on	and	off	every	second.

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4

Controlling	the	relay	remotely
Now,	we	are	going	to	build	our	first	interesting	application	using	the	system	we	just
assembled.	We	are	going	to	build	an	Arduino	sketch	to	control	the	relay	from	anywhere
within	your	local	network.	For	example,	if	your	computer	is	connected	via	Wi-Fi	to	your
router	and	the	Ethernet	shield	is	connected	to	the	same	router,	you	will	be	able	to	control
the	relay	via	your	computer.	The	advantage	of	this	approach	in	this	section	is	that	even	if
your	Internet	connection	is	down,	you	will	still	be	able	to	control	the	relay.

The	application	starts	by	including	the	correct	libraries:

#include	<SPI.h>

#include	<Ethernet.h>

#include	<aREST.h>

We	set	up	the	MAC	address	of	the	board:

byte	mac[]	=	{	0x90,	0xA2,	0xDA,	0x0E,	0xFE,	0x40	};

We	also	define	a	default	IP	address	for	the	board	that	will	be	used	if	DHCP	fails:

IPAddress	ip(192,168,1,150);

We	then	create	an	instance	of	the	aREST	library,	which	will	handle	the	request	that	comes
to	the	board:

aREST	rest	=	aREST();

You	also	need	to	create	an	instance	of	the	Ethernet	server:

EthernetServer	server(80);

In	the	setup()	function	of	the	sketch,	we	get	an	IP	address	using	DHCP,	as	shown	in	the
following	code	snippet:

if	(Ethernet.begin(mac)	==	0)	{

		Serial.println("Failed	to	configure	Ethernet	using	DHCP");

		Ethernet.begin(mac,	ip);

}

Print	the	IP	address	on	the	Serial	Monitor,	using	the	following	code:

server.begin();

Serial.print("Server	is	at	");

Serial.println(Ethernet.localIP());

Finally,	in	the	loop()	function	of	the	sketch,	we	check	whether	there	are	incoming	clients
and	handle	these	clients	with	the	aREST	instance:

EthernetClient	client	=	server.available();

rest.handle(client);

Note
The	code	for	this	section	can	be	found	in	the	GitHub	repository	for	this	chapter	at

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4.

You	can	now	upload	the	code	to	the	Arduino	board	and	open	the	Serial	Monitor.	You
should	see	the	IP	address	of	the	board	being	printed	out:

Server	is	at	192.168.1.103

You	can	now	go	to	your	web	browser	and	start	typing	in	commands.	The	aREST	library
allows	you	to	directly	command	all	the	pins	of	the	Arduino	board	via	Ethernet.	You	can
find	the	complete	documentation	of	the	library	at
https://github.com/marcoschwartz/aREST.	For	example,	we	first	need	to	set	pin	number	7
as	an	output.	This	is	done	using	the	following	command:

http://192.168.1.103/mode/7/o

You	will	be	greeted	with	the	following	message	in	the	browser:

Pin	D7	set	to	output

Now,	to	set	the	pin	to	a	HIGH	state,	you	can	simply	type:

http://192.168.1.103/digital/7/1

You	will	get	the	confirmation	in	your	browser:

Pin	D7	set	to	1

You	should	also	hear	the	relay	switching	from	one	state	to	the	other	when	you	enter	the
command.

Now	we	are	going	to	build	the	server-side	interface	to	control	the	relay	from	your
computer	without	having	to	enter	commands	manually	in	your	browser.

The	interface	is	based	on	HTML,	JavaScript,	and	PHP.	In	the	HTML	file,	there	are
basically	two	buttons:	one	to	turn	the	relay	on	and	one	to	turn	the	relay	off.	The	following
is	the	code	for	one	of	the	buttons:

<button	class="btn	btn-block	btn-lg	btn-primary"	type="button"	id="1"	

onClick="buttonClick(this.id)">On</button>

You	can	see	that	the	button	calls	a	function,	which	is	defined	in	a	JavaScript	file.	Now	let’s
have	a	look	at	this	file.	The	first	thing	we	have	to	do	when	the	page	loads	is	set	the	relay
pin	to	be	an	output,	just	as	we	did	when	we	typed	commands	directly	in	the	browser.	This
is	done	using	the	following	piece	of	code:

window.onload	=	function()	{

		$.get("command.php",	{command:	"/mode/7/o"});

}

You	can	see	that	we	are	calling	a	file	named	command.php.	We	will	see	the	details	of	this
file	later.	Now,	we	saw	earlier	that	every	time	a	button	is	clicked,	it	calls	a	function	called
buttonClick.	The	following	function	is	also	defined	in	the	JavaScript	file:

function	buttonClick(clicked_id){

Depending	on	which	button	was	clicked,	we	send	the	corresponding	command	to	the

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4
https://github.com/marcoschwartz/aREST

Arduino	board.	For	example,	for	the	On	button,	we	put	a	HIGH	state	on	the	relay	pin,	as
shown	in	the	following	code:

if	(clicked_id	==	"1"){

		$.get("command.php",	{command:	"/digital/7/1"});

}

Finally,	we	have	to	look	at	the	PHP	file	that	will	actually	send	the	command	to	the	board.
We	first	need	to	get	the	command	that	was	sent	by	the	JavaScript	file	and	store	it	in	a
variable:

$command	=	$_GET['command'];

Then,	we	need	to	set	the	URL	to	which	we	will	send	the	command.	To	send	the	command
to	the	board,	we	will	use	a	PHP	module	called	cURL,	which	will	do	exactly	the	same	as
what	we	just	did	from	the	web	browser.

At	this	point,	you	will	have	to	modify	the	IP	address	defined	in	the	PHP	file	and	replace	it
with	the	IP	address	of	your	board.	The	following	piece	of	code	does	just	that:

$service_url	=	'http://192.168.1.103'	.	$command;

$curl	=	curl_init($service_url);

Then,	we	can	actually	perform	the	cURL	call	using	the	following	piece	of	code:

curl_setopt($curl,	CURLOPT_IPRESOLVE,	CURL_IPRESOLVE_V4);

curl_setopt($curl,	CURLOPT_CONNECTTIMEOUT,	0.5);

$curl_response	=	curl_exec($curl);

curl_close($curl);

Note
The	code	for	this	section	can	be	found	in	the	GitHub	repository	for	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4.

We	can	now	test	the	interface.	Make	sure	that	all	the	files	of	this	interface	are	stored	inside
a	folder	at	the	root	of	your	web	server	folder,	and	also	make	sure	that	the	web	server	is
running.	Then,	go	to	this	folder	via	the	localhost	path	in	your	browser	and	open	the	HTML
file.	You	should	see	the	following	screenshot:

Try	to	click	on	one	of	the	buttons:	you	should	hear	that	the	relay	instantly	switches

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4

according	to	the	button	you	clicked.

Note
When	you	loaded	the	interface	in	your	browser,	the	relay	pin	was	also	automatically	set	to
be	an	output.

Controlling	the	relay	from	anywhere
In	the	last	section	of	this	chapter,	we	are	going	to	take	another	approach.	So	far,	we	have	a
server	running	on	our	Arduino	board,	which	can	receive	commands	from	any	device	on
your	local	network.	However,	this	is	not	convenient	if	you	want	to	control	a	device	from
anywhere	in	the	world.	For	example,	you	want	to	activate	a	lamp	in	your	home	at	given
intervals	when	you	are	away	from	your	home.

To	do	so,	we	are	going	to	use	the	Teleduino	service,	which	allows	you	to	do	exactly	that.
The	Arduino	Ethernet	shield	will	be	constantly	connected	to	this	service,	so	you	can
transmit	commands	to	the	board	from	anywhere	in	the	world	if	you	have	an	Internet
connection.	We	are	going	to	build	a	new	sketch	for	the	Arduino	board	and	then	adapt	the
interface	accordingly,	so	you	can	control	the	relay	from	anywhere	in	the	world	right	from
your	web	browser.

You	first	need	to	include	the	required	libraries:

#include	<EEPROM.h>

#include	<Servo.h>

#include	<Wire.h>

#include	<Teleduino328.h>

#include	<SPI.h>

#include	<Ethernet.h>

Then	you	need	to	define	the	MAC	address	of	your	Ethernet	shield:

byte	mac[]	=	{	0x90,	0xA2,	0xDA,	0x0E,	0xFE,	0x40	};

Then,	define	a	lot	of	parameters	for	the	Teleduino	service.	As	we	will	use	DHCP	to	get	an
IP	address,	you	don’t	need	to	change	anything	in	the	following	code:

IPAddress	deviceIp(192,	168,	1,	100);	//	Only	if	useDhcp	is	false

IPAddress	gatewayIp(192,	168,	1,	1);	//	Only	if	useDhcp	is	false

IPAddress	dnsIp(192,	168,	1,	1);	//	Only	if	useDhcp	is	false

IPAddress	subnet(255,	255,	255,	0);	//	Only	if	useDhcp	is	false

IPAddress	serverIp(173,	230,	152,	173);	//	Only	if	useDns	is	false

char	serverName[]	=	"us01.proxy.teleduino.org";	//	Only	if	useDns	is	true

unsigned	int	serverPort	=	5353;	//	Can	be	set	to	either	53	or	5353

byte	statusLedPin	=	8;

We	also	need	to	enter	the	key	that	you	got	at	the	beginning	of	the	chapter.	However,	you
will	need	to	convert	this	key	to	the	correct	format	so	that	you	can	insert	it	inside	the
Arduino	sketch.

You	can	do	so	by	visiting	the	following	URL:

https://www.teleduino.org/tools/arduino-sketch-key

You	will	be	prompted	to	insert	the	key	inside	the	new	window,	as	shown	in	the	following
screenshot:

https://www.teleduino.org/tools/arduino-sketch-key

You	can	then	copy	and	paste	the	result	inside	the	Arduino	sketch:

byte	key[]	=	{	0x64,	0x26,	0xFF,	0xC9,

															0x20,	0x4D,	0xF1,	0xCF,

															0xAE,	0x42,	0xD4,	0x1A,

															0xED,	0x6C,	0xB0,	0xB7	};

You	also	need	to	define	the	following	variables	so	that	the	Teleduino	service	can	work:

byte	data[257];

byte	dataLength;

byte	hexStage;

unsigned	long	lastInstruction	=	0;

unsigned	long	lastRefresh	=	0;

byte	stage	=	0;

Finally,	define	an	Ethernet	client:

EthernetClient	Client;

The	rest	of	the	sketch	comes	from	the	Teleduino	example	and	won’t	be	detailed	here.

Note
The	code	for	this	section	can	be	found	in	the	GitHub	repository	for	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4.

It’s	now	time	to	make	a	first	test	of	this	sketch.	Upload	the	sketch	to	your	Arduino	board,
and	then	go	to	your	web	browser.	You	can	now	directly	send	commands	to	your	board.
First,	we	are	going	to	set	the	relay	pin	as	an	output	as	seen	earlier.	This	is	done	using	the
following	command	(where	you	have	to	insert	your	own	key	at	the	k	parameter):

http://us01.proxy.teleduino.org/api/1.0/328.php?k=yourKey	

&r=definePinMode&pin=7&mode=1

You	will	be	greeted	by	a	confirmation	message	inside	your	web	browser.	You	can	now
switch	the	relay	pin	to	a	HIGH	state	using	the	following	command:

http://us01.proxy.teleduino.org/api/1.0/328.php?

k=yourKey&r=setDigitalOutput&pin=7&output=1

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4

By	doing	so,	you	should	hear	the	click	of	the	relay,	meaning	the	command	was	correctly
sent.	You	will	also	be	greeted	by	a	confirmation	message	inside	your	browser.

Now,	we	are	going	to	modify	the	interface	so	you	can	command	the	relay	from	anywhere
using	your	web	browser.	Inside	the	JavaScript	file,	you	will	then	need	to	define	your
Teleduino	API	key:

var	key	=	"yourAPIkey";

Then,	we	have	to	change	the	command	parameters	to	fit	the	Teleduino	API	and	mention
the	key	as	well,	as	shown	in	the	following	code:

window.onload	=	function()	{

		$.get("command.php",	{

		key:	key,	command:	"definePinMode&pin=7&mode=1"});

}

Also,	we	have	to	change	the	command	parameters	and	mention	the	key	for	the	function
that	is	called	when	a	button	is	clicked:

if	(clicked_id	==	"1"){

		$.get("command.php",	{

		key:	key,	command:	"setDigitalOutput&pin=7&output=1"});

}

Inside	the	PHP	file,	we	now	have	to	get	two	parameters,	the	command	and	API	key	from
Teleduino:

$key	=	$_GET['key'];

$command	=	$_GET['command'];

We	also	need	to	modify	the	service	URL,	as	shown	in	the	following	code:

$service_url	=	'http://us01.proxy.teleduino.org/api/1.0/328.php?k='	.

$key	.	'&r='	.	$command;

$curl	=	curl_init($service_url);

The	rest	of	the	files	are	strictly	identical,	as	seen	in	the	previous	section.

Note
The	code	for	this	section	can	be	found	in	the	GitHub	repository	for	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4.

You	can	now	put	all	the	files	for	this	modified	interface	inside	a	folder	at	the	root	of	your
web	server.	Also,	make	sure	that	the	web	server	is	still	running.	You	can	open	the	HTML
file	and	you	should	see	exactly	the	same	interface	as	before.

You	can	now	try	to	click	on	a	button	and	you	should	instantly	hear	the	relay	switch.	The
advantage	over	the	previous	section	of	the	chapter	is	that	this	interface	can	now	work	from
anywhere.	You	can	be	in	one	part	of	the	world	and	have	your	Ethernet	shield	in	another
part	of	the	world	and	it	would	still	work.

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter4

Summary
In	this	chapter,	we	interfaced	a	relay	to	the	Arduino	board	and	the	Ethernet	shield	so	that	it
can	be	controlled	remotely.	To	do	so,	we	used	two	different	approaches,	each	with	their
own	advantages	and	disadvantages.	First,	we	kept	things	local	and	controlled	the	relay
from	within	your	local	network.	This	solution	has	the	advantage	that	even	if	your	Internet
connection	is	down,	the	project	still	works.

Then,	we	used	a	dedicated	web	service	to	control	the	relay	from	anywhere.	This	is	clearly
an	advantage	of	the	latter	approach;	however,	it	will	not	work	if	your	Ethernet	shield	is	not
connected	to	the	web.

The	following	were	the	major	takeaways	from	this	chapter:

First,	we	chose	the	different	components	for	the	project,	and	assembled	them	so	that
we	can	control	a	device	from	the	Arduino	board	such	as	a	desk	lamp.
Then,	we	wrote	the	first	sketch	to	test	the	project	by	simply	switching	the	relay	on
and	off.
After	that,	we	built	the	first	application	based	on	the	hardware	we	just	assembled.	We
used	a	dedicated	library	so	that	the	Arduino	board	could	receive	commands	from	the
network	using	the	Ethernet	shield.	We	also	built	a	simple	web-based	interface	so	that
you	can	control	the	relay	from	a	graphical	interface	running	on	your	computer.
Finally,	we	used	a	web	service	called	Teleduino	to	control	the	relay	from	anywhere	in
the	world.	We	also	modified	the	graphical	interface	so	that	we	can	control	the	relay
from	anywhere.

In	the	next	chapter,	we	are	going	to	take	yet	another	approach	and	use	the	Ethernet	shield
to	connect	our	Arduino	projects	to	the	Internet	of	Things.	We	are	going	to	perform	some
measurements	on	the	Arduino	board	and	send	this	data	right	to	a	cloud	service.	Using	this
service,	we	will	be	able	to	monitor	the	measurements	that	come	from	the	board	in	real
time	and	from	anywhere	in	the	world.

Chapter	5.	Internet	of	Things	with	Xively
In	the	previous	chapters	of	the	book,	we	mainly	kept	things	local	when	performing
measurements	on	the	Arduino	board	with	the	Ethernet	shield.	For	example,	we	sent	some
measured	data	back	to	a	database	on	your	computer	and	displayed	the	measurements
there.

In	this	chapter,	we	are	going	to	take	a	different	approach.	We	are	going	to	integrate	the
Ethernet	shield	into	an	Internet	of	Things	perspective.	This	means	that	instead	of	logging
measurements	locally	within	your	local	network,	we	are	going	to	automatically	send	the
measured	data	to	a	cloud	service	called	Xively.	The	purpose	of	the	Xively	website	is	to
store	data	that	comes	from	your	devices	and	display	this	data	on	their	website.	This	way,
your	data	will	be	available	at	any	time	and	can	be	accessed	from	anywhere.

The	following	will	be	the	major	takeaways	from	this	chapter:

First,	we	are	going	to	build	the	hardware	for	this	project	around	the	Ethernet	shield
and	the	DHT11	temperature	and	humidity	sensor.
Then,	we	will	create	an	account	on	the	Xively	website.	We	will	also	configure	this
account	so	that	we	can	send	the	measured	data	to	it	using	the	Arduino	Ethernet
shield.
When	the	account	is	correctly	set,	we	will	use	the	account	information	such	as	the
Xively	API	key	to	build	the	Arduino	sketch	for	this	project.
Finally,	we	will	upload	the	sketch	to	the	Arduino	board	and	test	it.	We	will	check	that
the	data	is	correctly	sent	to	the	Arduino	board	and	visualize	the	recorded	data	in	real
time	in	your	browser.

Hardware	and	software	requirements
On	the	hardware	side,	you	will	of	course	need	the	Arduino	Ethernet	shield	and	an	Arduino
board	such	as	the	Arduino	Uno.

You	will	also	need	a	sensor	to	measure	some	data.	As	this	book	is	about	how	to	use	the
Ethernet	shield	and	not	how	to	measure	from	sensors,	you	can	actually	use	a	sensor	of
your	choice.

I	picked	a	DHT11	sensor,	which	is	a	digital	temperature	and	humidity	sensor.	I	chose	this
sensor	as	it	is	a	very	cheap	sensor	and	easy	to	interface	with	Arduino.	Along	with	the
DHT11	sensor,	you	will	also	need	a	4.7k	ohm	resistor.

You	will	also	need	a	breadboard	and	some	jumper	wires	to	make	the	connections	between
the	sensor	and	the	Ethernet	shield.

On	the	software	side,	the	first	thing	you	will	need	is	the	library	to	interface	with	the	sensor
you	chose	before.	As	I	chose	a	DHT11	sensor	for	this	project,	you	will	need	to	download
and	install	the	DHT	library	from	https://github.com/adafruit/DHT-sensor-library.

To	install	an	Arduino	library,	simply	unzip	the	contents	of	the	downloaded	file	into	your
libraries	folder	of	your	main	Arduino	folder	(or	create	this	folder	if	it	doesn’t	exist
already).

https://github.com/adafruit/DHT-sensor-library

Hardware	configuration
It’s	now	time	to	set	up	the	hardware	for	this	project.	At	this	point,	if	you	followed	one	of
the	previous	chapters,	you	should	already	have	your	Arduino	Ethernet	shield	plugged	into
the	Arduino	board,	one	Ethernet	cable	connecting	the	Ethernet	shield,	and	your	Internet
router.	If	that’s	not	the	case	already,	please	do	so.

The	only	thing	you	will	have	to	connect	in	this	project	is	the	DHT11	sensor	and	the
resistor.	You	can	have	an	overview	of	the	different	connections	you	have	to	make	by
looking	at	the	following	schematic	diagram:

First,	plug	the	DHT11	sensor	to	the	breadboard.	Then,	connect	pin	numbers	1	and	2	of	the
sensor	using	the	4.7k	ohm	resistor.

Now	comes	the	power	supply.	Connect	the	pin	number	1	of	the	sensor	to	the	Arduino	5	V
and	the	pin	number	4	to	the	Arduino	GND.	Finally,	connect	the	pin	number	2	of	the	DHT
sensor	to	the	Arduino	pin	number	7.

At	the	end,	it	should	look	like	the	following	image:

You	are	now	done	with	the	hardware	configuration	of	this	project	and	can	move	to	the
next	step,	which	is	creating	an	account	on	Xively.

Creating	your	Xively	account
The	first	thing	we	have	to	do	to	use	the	Xively	service	is	create	and	configure	a	Xively
account.	You	need	to	create	an	account	on	Xively	so	that	we	can	send	data	to	their	service.
Xively	is	basically	an	online	platform	for	connected	objects	such	as	our	Ethernet	shield.
The	service	will	automatically	store	the	data	that	we	send.	It	will	also	display	the
measured	data	in	the	form	of	graphs	that	are	updated	in	real	time	as	the	data	comes	in.

The	very	first	step	is	to	go	over	to	the	Xively	signup	page	on	their	website	at
https://xively.com/signup/.	You	will	arrive	at	a	page	where	you	can	enter	your	personal
details:

Then,	you	will	need	to	create	a	device,	which	is	a	virtual	entity	on	the	Xively	website.
This	device	will	receive	the	measured	data.	When	you	create	a	new	device,	you	will	need
to	enter	a	name	for	your	device:

https://xively.com/signup/

Then,	you	can	add	channels	to	your	device.	A	channel	on	Xively	is	like	a	variable	or	a	row
in	a	database;	it	is	the	entity	that	will	receive	a	specific	measurement	from	the	Arduino
board.	You	can	create	a	new	channel	on	the	page	of	your	device	by	clicking	on	the	button
shown	in	the	following	screenshot:

You	will	need	to	enter	some	name	for	your	channels.	You	will	have	to	create	two	of	them
for	this	project:	one	called	Temperature	and	one	called	Humidity.

Then,	you	will	need	to	get	some	information	about	your	account,	which	are	all	located	on
the	device	page.

The	first	one	is	the	feed	ID,	which	identifies	this	specific	device.	You	can	find	it	in	the
following	section	of	the	page:

Then,	you	will	have	to	get	your	API	key,	which	is	specific	to	your	account.	You	can	also
find	it	on	the	device	page,	as	shown	in	the	following	screenshot:

You	will	need	to	enter	these	two	keys	inside	the	Arduino	sketch	that	we	will	build	in	this
chapter,	so	keep	them	at	hand.

Sending	data	to	Xively
We	are	now	going	to	build	the	Arduino	sketch	for	this	project.	The	goal	is	to	measure	data
on	the	Arduino	board,	connect	with	the	Xively	server,	and	send	the	data.

The	first	step	is	to	include	the	following	required	libraries:

#include	<SPI.h>

#include	<Ethernet.h>

#include	"DHT.h"

Enter	the	MAC	address	of	your	board:

byte	mac[]	=	{	0x90,	0xA2,	0xDA,	0x0E,	0xFE,	0x40	};

We	can	then	define	the	pin	and	the	type	of	the	DHT	sensor	as	follows:

#define	DHTPIN	7

#define	DHTTYPE	DHT11

Create	an	instance	on	the	sensor,	as	shown	in	the	following	line:

DHT	dht(DHTPIN,	DHTTYPE);

Create	an	instance	of	the	Ethernet	client:

EthernetClient	client;

We	also	define	a	default	IP	address	for	the	board:

IPAddress	ip(192,168,1,50);

In	the	sketch,	we	also	set	the	address	of	the	secured	Xively	server	that	we	will	connect	to
using	the	Ethernet	shield:

IPAddress	server(216,52,233,120);

Now,	we	have	to	modify	the	sketch	a	little	bit	to	enter	your	own	information	about	your
Xively	account.	This	is	where	you	have	to	enter	your	API	key	and	feed	ID	that	you	got	in
the	previous	section.	Using	the	following	code,	you	can	define	your	API	key	and	feed	ID:

#define	WEBSITE		"api.xively.com"

#define	API_key		"yourAPIKey"

#define	feedID		"yourFeedID"

In	the	setup()	function	of	the	sketch,	we	can	now	use	DHCP	to	get	an	IP	address	for	the
sketch,	as	shown	in	the	following	code:

//	Start	the	Ethernet	connection

if	(Ethernet.begin(mac)	==	0)	{

		Serial.println("Failed	to	configure	Ethernet	using	DHCP");

		Ethernet.begin(mac,	ip);

}

For	debug	purposes,	we	print	this	IP	address	on	the	Serial	Monitor:

Serial.print("IP	address:	");

Serial.println(Ethernet.localIP());

Now,	in	the	loop()	function	of	the	sketch,	we	will	make	the	measurements	with	the	DHT
sensor,	format	the	data	for	Xively,	and	send	this	data	to	the	Xively	server.

The	first	step	is	to	make	the	measurements.	This	is	done	with	the	following	lines	of	code:

float	humidity	=	dht.readHumidity();

float	temperature	=	dht.readTemperature();

We	then	need	to	format	this	measured	data	so	the	Xively	server	can	understand	it.	Indeed,
Xively	defines	a	specific	format	to	receive	data.	All	the	formats	are	defined	at
https://xively.com/dev/docs/api/communicating/data_formats/.

In	our	case,	we	will	need	to	put	the	data	in	a	JSON	string	according	to	the	Xively
specifications.	This	is	done	using	the	following	piece	of	code:

int	length	=	0;

String	data	=	"";

data	=	data	+	"\n"	+	"{\"version\":\"1.0.0\",\"datastreams\"	:	[{\"id\"	:	

\"Temperature\",\"current_value\"	:	\""	+	String((int)temperature)	+	"\"},"	

+	"{\"id\"	:	\"Humidity\",\"current_value\"	:	\""	+	String((int)humidity)	+	

"\"}]}";

Serial.println(data);

length	=	data.length();

You	will	note	that	we	also	get	the	length	of	the	string	that	we	will	also	need	in	order	to
send	the	data	to	the	Xively	server.	Also,	we	are	using	backslashes	before	quotations	marks
to	indicate	that	we	want	to	transmit	quotation	marks	and	not	the	end	of	the	string.

Then,	we	will	actually	connect	to	the	Xively	server	and	send	the	data.	This	is	done	by
using	a	PUT	request	and	sending	a	JSON	file	to	the	Xively	server.	In	the	header	of	the
request,	we	define	the	feed	ID	of	the	Xively	device	and	we	also	transmit	your	Xively	API
key.

We	also	need	to	send	the	data	we	defined	before	in	the	body	of	the	request.	This	is	done
using	the	following	piece	of	code:

if	(client.connect(server,	80))	{

		if	(client.connected())	{

				Serial.println("connected");

				client.println("PUT	/v2/feeds/"	+	String(feedID)	+	".json	HTTP/1.1");

				client.println("Host:	api.xively.com");

				client.println("X-ApiKey:	"	+	String(API_key));

				client.println("Content-Length:	"	+	String(length));

				client.print("Connection:	close");

				client.println();

				client.print(data);

				client.println();

		}	else	{

				Serial.println(F("Connection	failed"));

				return;

}

Then,	after	the	data	is	sent,	we	read	back	the	data	coming	from	the	server	and	print	the

https://xively.com/dev/docs/api/communicating/data_formats/

answer	on	the	Serial	Monitor	for	debugging	purposes,	using	the	following	piece	of	code:

while	(client.connected())	{

		while	(client.available())	{

				char	c	=	client.read();

				Serial.print(c);

		}

}

Finally,	when	it	is	over,	we	stop	the	connection.	This	is	done	with	the	following	code:

if	(!client.connected())	{

		Serial.println();

		Serial.println("disconnecting.");

		client.stop();

}

We	repeat	the	entire	process	every	10	seconds	with	the	following	line:

delay(10000);

Note
All	the	code	for	this	chapter	can	be	found	on	the	GitHub	repository	of	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/master/chapter5.

It	is	now	time	to	test	the	sketch	and	upload	data	to	Xively.	You	can	upload	the	sketch	to
Xively	at	this	point,	and	open	the	Serial	Monitor	in	the	Arduino	IDE.	You	should	see	that
the	IP	address	of	the	board	is	being	printed	out,	and	that	the	sketch	is	connected	to	the
Xively	server:

IP	address:	192.168.1.104

Connecting…

You	should	also	see	how	the	data	was	formatted	for	Xively:

{"version":"1.0.0","datastreams"	:	[{"id"	:	"Temperature","current_value"	

:	"24"},{"id"	:	"Humidity","current_value"	:	"37"}]}

After	a	moment,	you	should	see	the	answer	coming	back	from	Xively.	If	the	data	was	sent
correctly	to	the	Xively	server,	you	should	see	a	200	OK	code	being	printed	out	to	the	Serial
Monitor:

HTTP/1.1	200	OK

Date:	Wed,	21	May	2014	15:02:49	GMT

Content-Type:	application/json;	charset=utf-8

Content-Length:	0

Connection:	close

X-Request-Id:	e44becaa5231354568262013fa713d9f099ffc83

Cache-Control:	max-age=0

Vary:	Accept-Encoding

This	means	that	the	data	was	correctly	received	by	the	Xively	server,	and	in	an
understandable	format.

If	that	is	not	the	case,	there	are	several	things	you	can	check.	First,	make	sure	that	the

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter5

Internet	connection	of	your	Ethernet	shield	is	working,	and	that	the	shield	is	indeed
receiving	an	IP	address.	Then,	make	sure	that	you	correctly	entered	your	Xively
information,	meaning	the	API	key	and	the	feed	ID.	Also,	check	that	you	correctly
formatted	your	data	in	the	JSON	format,	which	we	introduced	while	writing	the	sketch.
Finally,	make	sure	that	the	DHT	sensor	is	correctly	wired	and	measuring	data	properly,	as
it	could	interfere	with	the	normal	behavior	of	the	rest	of	the	sketch.

Visualizing	the	recorded	data
We	are	now	going	to	visualize	the	data	we	recorded	with	Xively.	You	can	go	over	again	to
the	device	page	on	the	Xively	website.	You	should	see	that	some	data	has	been	recorded	in
different	channels,	as	shown	in	the	following	screenshot:

By	clicking	on	one	of	these	channels,	you	can	also	display	the	data	graphically.	For
example,	the	following	screenshot	shows	the	temperature	channel	after	a	few
measurements:

After	a	while,	you	will	have	more	points	for	the	temperature	measurements,	as	shown	in
the	following	screenshot:

You	can	also	do	the	same	for	the	humidity	measurements;	the	following	screenshot	shows
the	humidity	measurements:

Note	that	by	clicking	on	the	time	icon,	you	can	change	the	time	axis	and	display	a	longer
or	shorter	time	range.

If	you	don’t	see	any	data	being	displayed,	you	need	to	go	back	to	the	Arduino	IDE	and
make	sure	that	the	answer	coming	from	the	Xively	server	is	a	200	OK	message,	like	we
saw	in	the	previous	section.

Summary
Let’s	summarize	what	we	did	in	this	chapter.	We	used	the	Ethernet	shield	to	build	an
Internet	of	Things	project,	as	we	connected	the	Ethernet	shield	directly	to	a	cloud	service.
We	measured	data	on	the	Arduino	board	and	sent	this	data	to	the	cloud	service	Xively	so
that	it	can	be	accessed	and	displayed	from	anywhere.

The	advantage	of	this	solution	is	that	the	data	recorded	on	Xively	is	accessible	from
anywhere,	and	not	only	from	your	local	network.	You	can	also	use	the	data	and	Xively	to
create	automated	triggers	based	on	the	data.	You	can,	for	example,	send	a	request	to
another	website	based	on	the	recorded	data.	You	can	also	share	the	data	that	is	recorded	by
your	device	with	colleagues	or	friends	so	that	they	can	also	monitor	what	your	project	is
recording	in	real	time.

Of	course,	one	of	the	drawbacks	from	this	solution	is	that	if	your	Internet	connection	is
down,	the	whole	project	won’t	work	at	all.

The	following	were	the	major	takeaways	from	this	chapter:

We	first	built	the	hardware	of	this	project,	including	the	Ethernet	shield	and	the
DHT11	sensor	to	measure	temperature	and	humidity.
Then,	we	went	over	to	the	Xively	website	and	created	an	account	there.	We	also	set
up	a	device	on	the	Xively	interface,	and	created	channels	so	that	data	can	be	recorded
on	the	Xively	website.	Finally,	we	also	got	a	feed	ID	and	API	key	so	that	the	Arduino
sketch	knows	where	to	send	the	data.
We	then	designed	the	Arduino	sketch	for	this	project.	The	Arduino	sketch	was
responsible	for	measuring	data,	formatting	it	according	to	the	Xively	guidelines,	and
sending	it	to	Xively.	We	tested	this	sketch	and	made	sure	that	Xively	accepted	the
data.
Finally,	we	went	again	to	the	Xively	website	to	visualize	the	data.	We	learned	how	to
visualize	this	data	graphically,	and	saw	the	data	arrive	in	real	time.

In	the	next	chapter,	we	are	going	to	continue	building	Internet	of	Things	applications.	We
are	going	to	use	another	web	service	called	Temboo,	which	is	a	platform	that	can	be
interfaced	with	other	services	such	as	Gmail	or	Google	Docs.	We	are	going	to	use	this
service	to	record	data	directly	on	a	Google	Docs	spreadsheet	and	send	automated	e-mails
based	on	the	recorded	data.

Chapter	6.	Logging	Data	in	Google	Docs
In	this	chapter,	we	are	going	to	continue	building	Internet	of	Things	applications	using	the
Arduino	Ethernet	shield.	This	time,	we	are	going	to	use	the	web	service	Temboo,	to	build
some	useful	and	interesting	applications.	Temboo	is	different	from	Xively,	which	we	used
in	the	previous	chapter.	It	is	not	a	cloud	platform	in	itself,	but	it	can	be	used	to	interface
our	Arduino	projects	with	several	other	applications	and	services.	You	can	see	Temboo	as
a	bridge	between	your	Ethernet	shield	and	a	wide	range	of	web	services,	such	as	e-mail
services,	text	messaging	services,	or	storage	services.

For	example,	in	this	chapter,	we	are	going	see	how	to	interface	your	Arduino	project	to
your	Google	Account	via	Temboo.	We	will	use	this	functionality	to	automatically	log
measurements	inside	a	Google	Docs	spreadsheet.

The	advantage	of	this	solution	is	that	you	can	access	your	Google	Docs	spreadsheet	from
anywhere,	thus	monitoring	your	data	from	anywhere	in	the	world	while	your	Ethernet
shield	is	sending	data	from	home.	We	are	also	going	to	send	automated	e-mail	alerts	using
Gmail	based	on	the	measured	data.

The	following	will	be	the	major	takeaways	of	this	chapter:

First,	we	are	going	to	configure	the	hardware	part	of	this	project	using	the	Ethernet
shield	and	the	DHT11	sensor.	We	are	also	going	to	download	and	install	the	required
libraries	for	the	project,	including	the	Temboo	Arduino	library.
Then,	we	will	set	up	the	different	accounts	that	we	need	for	this	chapter.	First,	we
will	set	up	your	Google	Account	and	create	a	spreadsheet	where	the	data	will	be
logged.	We	are	also	going	to	set	up	a	Temboo	account	and	configure	it	to	use	the
Arduino	Ethernet	shield.
Once	all	the	accounts	are	set,	we	are	going	to	build	the	first	application	of	this	project
—automatic	log	measured	data	in	a	Google	Docs	spreadsheet.	You	will	be	able	to	see
the	measured	data	recorded	live	in	the	spreadsheet	and	the	data	being	plotted
automatically	in	real	time.
Finally,	we	are	going	to	set	up	our	Arduino	system	to	automatically	send	e-mails
when	a	given	measurement	exceeds	a	threshold.

Hardware	and	software	requirements
On	the	hardware	side,	you	will	of	course	need	the	Arduino	Ethernet	shield	and	an	Arduino
board	such	as	the	Arduino	Uno.

You	will	also	need	a	sensor	to	measure	some	data.	As	this	book	is	about	how	to	use	the
Ethernet	shield	and	not	how	to	measure	from	sensors,	you	could	actually	take	any	sensor
of	your	choice.

I	used	a	DHT11	sensor,	which	is	a	digital	temperature	and	humidity	sensor.	I	chose	this
sensor	for	this	chapter	and	for	many	chapters	of	the	book	as	it	is	a	very	cheap	sensor	and	it
is	easy	to	interface	with	Arduino.	Along	with	the	DHT11	sensor,	you	will	also	need	a	4.7k
ohm	resistor.

You	will	also	need	a	breadboard	and	some	jumper	wires	to	create	the	connections	between
the	sensor	and	the	Ethernet	shield.

On	the	software	side,	the	first	thing	you	will	need	is	the	library	to	interface	with	the	sensor
you	chose	before.	As	I	chose	a	DHT11	sensor	for	this	project,	you	will	need	to	download
and	install	the	DHT	library	from	https://github.com/adafruit/DHT-sensor-library	in	order
to	use	this.

You	will	also	need	to	download	and	install	the	Arduino	Temboo	library	from
https://www.temboo.com/arduino/others/library-installation.

To	install	an	Arduino	library,	simply	unzip	the	contents	of	the	downloaded	file	to	your
libraries	folder	of	your	main	Arduino	folder	(or	create	this	folder	if	it	doesn’t	exist
already).

https://github.com/adafruit/DHT-sensor-library
https://www.temboo.com/arduino/others/library-installation

Hardware	configuration
It’s	now	time	to	set	up	the	hardware	for	this	project.	At	this	point,	if	you	followed	one	of
the	previous	chapters,	you	should	already	have	your	Arduino	Ethernet	shield	plugged	to
the	Arduino	board,	one	Ethernet	cable	connecting	the	Ethernet	shield,	and	your	Internet
router.	If	that’s	not	the	case	already,	please	do	so.

The	only	thing	you	will	have	to	connect	in	this	project	is	the	DHT11	sensor	and	the
resistor.	You	can	have	an	overview	of	the	different	connections	you	have	to	make	by
looking	at	the	following	schematic	diagram:

First,	plug	the	DHT11	sensor	to	the	breadboard.	Then,	connect	pin	number	1	and	2	of	the
sensor	using	the	4.7k	ohm	resistor.

Now,	we	are	going	to	connect	the	power	supply.	Connect	pin	number	1	of	the	sensor	to	the
Arduino	5V,	and	pin	number	4	to	the	Arduino	GND.	Finally,	connect	pin	number	2	of	the
DHT	sensor	to	the	Arduino	pin	number	7.

At	the	end,	the	connections	should	look	like	the	following	screenshot:

You	are	now	done	with	the	hardware	configuration	of	this	project	and	you	can	move	to	the
next	step,	that	is,	setting	up	your	Google	Account	for	this	project.

Setting	up	your	Google	Account
For	this	project,	you	will	need	to	have	a	Google	Account.	If	you	are	already	using	a
service	such	as	Gmail	or	YouTube,	it	means	you	already	have	a	Google	Account,	and	you
will	be	able	to	use	Google	Docs	immediately.	If	this	is	not	the	case,	you	can	create	an
account	at	the	following	address:

https://docs.google.com

Once	your	account	is	created,	you	will	be	able	to	create	your	first	spreadsheet.	To	do	so,
just	click	on	the	Create	button	and	select	Spreadsheet.	You	will	have	to	enter	a	name	for
the	spreadsheet,	which	is	important	as	you	will	need	to	provide	this	name	to	Temboo	later.
I	named	my	sheet	simply	Ethernet.

Then,	you	will	need	to	give	names	to	the	columns	that	will	receive	the	data.	We	are	going
to	measure	temperature	and	humidity	and	also	add	a	timestamp	to	each	measurement.	You
will	need	to	enter	this	in	the	first	row,	as	shown	in	the	following	screenshot:

When	you	have	a	Google	spreadsheet	that	looks	like	this,	it	means	that	you	are	all	set	up
for	this	part	and	that	you	can	move	to	the	next	part.

https://docs.google.com

Creating	your	Temboo	account
The	next	step	is	to	create	an	account	on	Temboo.	To	do	this,	simply	go	to	the	following
address:

https://www.temboo.com/

You	will	be	greeted	with	a	page	that	asks	you	to	enter	your	e-mail	address.

Once	your	account	is	created,	you	will	be	taken	to	the	Temboo	main	page.	You	will	have
many	choices	at	this	stage,	but	the	one	we	are	looking	for	is	Devices,	which	is	displayed	in
the	following	screenshot:

Inside	the	devices	page,	Temboo	proposes	a	tool	called	Device	Coder.	This	tool	is
intended	to	generate	most	of	the	code	for	us	when	we	use	a	platform	such	as	the	Arduino
Yun,	or	in	our	case,	the	Arduino	Ethernet	shield.

Simply	click	on	the	right	choice,	which	corresponds	to	other	Arduino	devices	such	as	the
Ethernet	shield,	as	shown	in	the	following	screenshot:

https://www.temboo.com/

Then,	you	will	be	asked	which	kind	of	sensor	you	want	to	use.	Of	course,	Temboo	cannot
list	every	possible	sensor	we	could	use	for	this	kind	of	project.	Therefore,	the	DHT11
sensor	is	not	in	the	list	of	possible	devices.	However,	we	will	fix	this	by	rewriting	part	of
the	generated	code.	For	now,	simply	choose	Generic	sensor.	Then	in	the	next	menu,
select	Spreadsheet.

You	will	then	be	taken	to	a	new	menu	where	you	can	configure	your	device.	As	this	is
your	first	time	configuring	the	device,	you	will	be	asked	to	create	new	Temboo	credentials
for	your	Ethernet	shield.	A	Temboo	credential	is	a	set	of	parameters	that	are	stored	on	the
Temboo	servers	so	that	you	don’t	have	to	enter	them	later	while	developing	your
applications.

Enter	the	details	about	your	Arduino	board	and	Ethernet	shield	in	the	credentials	box,	as
shown	in	the	following	screenshot:

Then,	just	as	you	selected	to	work	with	a	spreadsheet,	you	will	also	need	to	enter	your
Google	Account	credentials.	We	will	use	it	to	access	Google	Docs	and	also	in	the	final
part	of	the	chapter	to	interface	with	Gmail.

Enter	all	your	Google	Account	information	in	the	box,	which	is	shown	in	the	following
screenshot:

For	the	name	of	my	Google	Account	credential,	I	used	EthernetGmail.

Note	that	if	you	have	the	Google	2-Step	authentication	method	activated,	you	will	need	to
provide	an	application-specific	password	here.	This	is	done	for	security	reasons,	so	your
Google	Account	doesn’t	get	compromised	if	Temboo	gets	compromised.	You	can	find
more	information	about	application-specific	passwords	at
https://support.google.com/accounts/answer/185833?hl=en.

You	can	also	choose	not	to	enter	your	Google	information	at	this	point.	However,	in	that
case,	you	will	need	to	enter	it	inside	the	Arduino	sketch	and	modify	this	sketch	slightly.	To
find	more	information	about	this,	you	can	visit
https://www.temboo.com/arduino/yun/update-google-spreadsheet.

You	will	also	be	asked	to	give	a	name	of	a	spreadsheet	you	prepared	before.	Simply	enter
this	name	in	the	correct	box,	as	shown	in	the	following	screenshot:

For	example,	I	named	my	spreadsheet	Ethernet:

https://support.google.com/accounts/answer/185833?hl=en
https://www.temboo.com/arduino/yun/update-google-spreadsheet

After	that,	you	will	have	to	select	the	device	you	will	be	working	with	to	log	data	to	the
spreadsheet.	This	is	where	you	select	the	credentials	that	we	created	before,	as	shown	in
the	following	screenshot:

You	will	also	need	to	give	a	name	to	the	project	you	just	created	so	your	Arduino	sketch
will	later	on	know	where	to	send	the	data.	I	named	mine
arduinoTemperatureSpreadsheet.	If	you	decide	to	use	another	name,	you	will	have	to
make	a	small	modification	in	the	code	later.

When	this	is	done,	you	will	be	prompted	to	download	a	compressed	file	that	contains	two
Arduino	code	files.	Download	it,	unzip	it,	and	have	a	look	at	it.	It	will	appear	like	the
following	screenshot:

There	should	be	an	Arduino	file	and	another	file	called	TembooAccount.h.	This	last	file	is
the	most	important	as	it	contains	your	credentials	for	the	project.	You	will	need	to	use	this
file	for	the	rest	of	the	project	in	place	of	the	file	that	is	included	in	the	GitHub	repository
of	the	project.

Logging	data	in	a	spreadsheet
After	finishing	the	configuration	of	our	device	on	the	Temboo	website,	we	downloaded	a
bunch	of	files	from	Temboo.	However,	the	Arduino	file	that	was	downloaded	is	for	a
generic	sensor.	In	this	section,	we	are	going	to	adapt	this	file	for	our	own	needs	and	see
the	details	of	how	the	code	works.

Note
You	will	need	to	insert	your	own	TembooAccount.h	file	in	the	same	folder	as	the	Arduino
file	so	that	the	code	can	work.

The	main	Arduino	sketch	for	this	section	starts	by	including	all	the	libraries	that	are
required	for	the	project	to	work	with	Temboo.	Note	that	we	will	also	insert	the	DHT
library.	Add	the	following	libraries	in	the	code:

#include	<SPI.h>

#include	<Dhcp.h>

#include	<Dns.h>

#include	<Ethernet.h>

#include	<EthernetClient.h>

#include	<Temboo.h>

#include	"TembooAccount.h"

#include	"DHT.h"

We	also	define	the	pin	on	which	the	DHT	sensor	is	connected	and	the	type	of	the	sensor:

#define	DHTPIN	7

#define	DHTTYPEDHT11

Then,	we	will	create	an	instance	of	the	sensor:

DHTdht(DHTPIN,	DHTTYPE);

We	also	assign	the	MAC	address	of	the	Ethernet	shield.	Note	that	here	it	is	not	explicitly
assigned,	but	the	information	is	directly	taken	from	your	Temboo	account	file.	The	MAC
address	is	assigned	with	the	following	line:

byte	ethernetMACAddress[]	=	ETHERNET_SHIELD_MAC;

We	will	also	create	an	instance	of	an	Ethernet	client	as	follows:

EthernetClient	client;

Now,	in	the	setup()	function	of	the	sketch,	we	will	get	an	IP	address	for	the	Ethernet
shield	via	DHCP,	as	shown	in	the	following	code:

Serial.print("DHCP:");

if	(Ethernet.begin(ethernetMACAddress)	==	0)	{

		Serial.println("FAIL");

		while(true);

}

Serial.println("OK");

delay(5000);

Start	the	DHT	sensor	with	the	following	line:

dht.begin();

Then,	in	the	loop()	function,	we	will	measure	the	temperature	and	humidity	from	the
DHT	sensor	and	convert	the	measurements	to	strings	with	the	following	piece	of	code:

float	h	=	dht.readHumidity();

float	t	=	dht.readTemperature();

int	temperature	=	(int)t;

int	humidity	=	(int)h;

Serial.println("Temperature:	"	+	String(temperature));

Serial.println("Humidity:	"	+	String(humidity));

After	the	measurements	are	done,	we	will	call	the	following	function	that	will	actually
connect	to	the	web	and	log	the	data	to	our	Google	Docs	spreadsheet.	We	are	going	to	see
the	details	of	this	function	that	was	autogenerated	by	Temboo	in	a	moment:

runAppendRow(temperature,	humidity);

Finally,	we	will	also	insert	some	delay	between	each	measurement.	I	recommend	using	a
large	delay	(I	chose	to	log	data	every	minute	for	demonstration	purposes)	because	the
number	of	calls	you	can	make	to	Temboo	is	limited.	The	delay	is	inserted	with	the
following	line:

delay(60000);

You	can	see	the	different	plans	and	pricing	at	the	following	link:

https://www.temboo.com/about/plans

For	example,	on	the	free	plan,	you	are	limited	to	1,000	calls	per	month,	which	means	that
you	can	log	measurements	approximately	every	44	minutes.	On	the	first	paid	plan,	you
can	log	one	data	point	approximately	every	5	minutes.	Keep	these	limitations	in	mind
while	developing	your	applications.

Let’s	now	see	the	details	of	the	runAppendRow()	function.	It	starts	by	declaring	the	type	of
Choreo	we	want	to	use.	A	Choreo	is	the	equivalent	of	a	library	on	the	Temboo	service.	For
example,	we	will	declare	that	we	want	to	use	the	specific	library	to	insert	data	in	a	row	in
the	Google	Docs	spreadsheet:

TembooChoreoAppendRowChoreo(client);

We	will	set	the	different	information	about	your	account,	such	as	the	name	of	the	account
and	your	app	key.	All	these	are	already	defined	in	your	Temboo	account	file	that	you
downloaded	before,	so	you	don’t	need	to	define	anything	more:

AppendRowChoreo.setAccountName(TEMBOO_ACCOUNT);

AppendRowChoreo.setAppKeyName(TEMBOO_APP_KEY_NAME);

AppendRowChoreo.setAppKey(TEMBOO_APP_KEY);

Then,	you	need	to	somehow	specify	where	the	data	should	be	logged.	Once	more,	all	the
work	is	done	by	Temboo:	all	the	information	is	saved	on	the	Temboo	side	in	the	Google

https://www.temboo.com/about/plans

Account	credentials	you	have	set	before.	If	you	used	the	same	name	as	I	did	for	this
example,	you	don’t	have	to	modify	anything	in	the	following	line:

AppendRowChoreo.setSavedInputs("arduinoTemperatureSpreadsheet");

Note	that	the	new	way	to	overcome	the	Temboo	call	limitation	is	also	to	transmit	several
data	points	at	each	call	of	the	Temboo	API,	for	example,	by	appending	several	rows	at
each	call.	You	can	modify	the	code	accordingly	as	an	exercise.

Now,	we	need	to	format	the	data	so	it	can	be	recorded	correctly	in	Google	Docs.	What	you
want	to	insert	in	a	given	row	is	a	timestamp,	the	temperature,	and	the	humidity.	For	the
timestamp,	we	are	simply	going	to	use	the	time	that	has	passed	since	the	device	was
powered	on	with	the	millis()	function.

The	data	itself	will	be	contained	inside	a	string	variable,	where	the	value	of	each	column
will	be	separated	with	a	comma,	as	shown	in	the	following	code:

String	RowDataValue	=	String(millis())	+	","	+	String(temperature)	+	","	+	

String(humidity);

AppendRowChoreo.addInput("RowData",	RowDataValue);

We	also	need	to	set	which	Choreo	we	want	to	use	with	the	following	line:

AppendRowChoreo.setChoreo("/Library/Google/Spreadsheets/AppendRow");

Then,	we	can	finally	execute	Choreo	and	store	the	result	in	a	variable	called	returnCode
using	the	following	line:

unsigned	int	returnCode	=	AppendRowChoreo.run();

If	this	code	is	equal	to	0	after	Choreo	has	been	executed,	it	means	that	everything	went
fine,	and	we	will	print	the	corresponding	message	on	the	Serial	Monitor	for	debugging
purposes	using	the	following	piece	of	code:

if	(returnCode	==	0)	{

		Serial.println("Done!\n");

}	else	{

		//	A	non-zero	return	code	means	there	was	an	error

		//	Read	and	print	the	error	message

		while	(AppendRowChoreo.available())	{

				char	c	=	AppendRowChoreo.read();

				Serial.print(c);

		}

		Serial.println();

}

If	that’s	not	the	case,	we	will	print	the	corresponding	error	message	on	the	Serial	Monitor.
Finally,	we	close	Choreo	with	the	following	line:

AppendRowChoreo.close();

Note
You	can	find	all	the	code	for	this	section	on	the	GitHub	repository	of	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/master/chapter6.

https://github.com/openhomeautomation/arduino-networking/tree/master/chapter6

Even	if	you	decide	to	get	the	code	directly	from	the	GitHub	repository,	note	that	you	will
need	to	take	your	own	Temboo	account	file	or	enter	the	correct	information	in	the	Temboo
account	file	provided	on	GitHub.

We	can	now	test	the	project.	Upload	the	code	to	the	Arduino	board,	go	to	Google	Docs,
and	open	the	spreadsheet	of	the	project.	After	a	moment,	you	should	see	the	first
measurements	being	logged	inside	the	spreadsheet,	as	shown	in	the	following	screenshot:

You	can	also	use	the	integrated	plotting	functionalities	of	Google	Docs	to	display	the
measurements	on	a	graph.	You	can	simply	select	the	columns	corresponding	to	the	data
(A,	B,	and	C	in	the	example	developed	in	this	chapter),	and	click	on	the	Insert	Chart
button	inside	the	toolbar.	You	will	be	prompted	to	choose	the	type	of	graph	you	want	to
plot.	I	simply	chose	a	line	chart	to	plot	all	the	data	on	a	single	graph.	The	graph	will	look
similar	to	the	following	screenshot:

As	everything	is	dynamic,	you	should	see	that	the	graph	is	updated	in	real	time	as	new
measurements	come	in.	Note	that	as	this	is	a	spreadsheet	on	Google	Docs,	it	is	accessible

from	anywhere	you	are	in	the	world,	you	just	need	to	log	in	to	your	Google	Account.

Sending	automated	e-mails
In	this	last	part	of	the	chapter,	we	are	going	to	build	on	what	we	already	did,	but	change
the	application	slightly.	This	time,	we	are	going	to	use	the	Ethernet	shield	and	Temboo	to
automatically	send	e-mails	when	a	condition	is	reached.	As	an	example,	we	will	set	a
condition	on	the	measured	temperature.	Whenever	the	temperature	reaches	a	given	value,
we	will	send	an	e-mail	to	the	address	of	your	choice,	for	example,	your	professional	e-
mail	to	keep	you	updated	when	you	are	at	work.

It	starts	by	going	again	to	the	Device	Coder	on	the	Temboo	website	at
https://www.temboo.com/library/Library/Devices/Arduino/Others/.

Click	on	Generic	sensor	and	then	on	Email.	This	time	you	won’t	have	to	enter	that	much
information.	Your	Gmail	account	should	already	be	set	from	the	previous	section	and	the
Device	Coder	should	automatically	select	your	Ethernet	shield.

You	simply	need	to	enter	the	destination	e-mail	(for	example,	your	professional	e-mail
address	or	the	e-mail	address	from	a	family	member)	and	the	Subject	field	of	the	e-mail.
Do	not	worry	now	about	the	value	of	the	body	of	the	e-mail;	we	will	change	it	later:

When	it	is	finished,	click	on	Generate.	As	for	the	previous	section,	you	will	be	prompted
to	enter	a	name	for	this	project	so	that	Temboo	knows	where	to	send	e-mails.	I	named
mine	arduinoTemperatureEmail,	but	if	you	decide	to	use	another	name,	you	will	simply
have	to	change	one	line	in	the	code	later.

You	can	now	download	the	generated	code,	which	we	will	modify	a	bit.	As	for	the
previous	section,	we	are	going	to	modify	the	Arduino	code,	but	it	is	important	that	you	get
your	own	TembooAcccount.h	file	that	contains	the	information	relative	to	your	own
account	on	Temboo.

The	Arduino	sketch	is	similar	to	the	one	in	the	previous	section,	so	I	will	only	discuss	the
main	changes.

In	the	loop()	function	of	the	sketch,	you	need	to	set	the	limit	at	which	the	e-mail	will	be
sent	by	Temboo.	For	demonstration	purposes,	I	will	set	the	limit	to	23,	as	shown	in	the
following	code:

https://www.temboo.com/library/Library/Devices/Arduino/Others/

if	(temperature	>	23)	{

		Serial.println("\nTriggered!	Calling	/Library/Google/Gmail/SendEmail…");

		//	Send	email

		runSendEmail(temperature);

}

You	can	see	that	every	time	the	temperature	goes	above	that	limit,	an	alert	will	be	sent	by
Temboo	via	e-mail.	We	will	see	the	details	of	this	function	in	a	moment.	I	also	inserted	a
1-minute	delay	between	each	measurement,	so	we	don’t	continuously	send	e-mails	if	the
threshold	is	crossed:

delay(60000);

Now	let’s	look	at	the	details	of	the	runSendEmail()	function.	This	function	is	responsible
for	creating	the	correct	Choreo	to	send	an	e-mail,	set	the	body	of	the	e-mail,	and	send	it
via	Temboo.

It	starts	by	creating	the	correct	Choreo	to	send	an	e-mail	with	the	following	line:

TembooChoreoSendEmailChoreo(client);

We	also	define	the	different	information	relative	to	your	account	that	is	defined	in	the
Temboo	account	file	you	just	downloaded	from	Temboo:

SendEmailChoreo.setAccountName(TEMBOO_ACCOUNT);

SendEmailChoreo.setAppKeyName(TEMBOO_APP_KEY_NAME);

SendEmailChoreo.setAppKey(TEMBOO_APP_KEY);

Then,	this	is	where	you	need	to	enter	the	name	of	the	e-mail	project	that	you	just	created
on	Temboo.	If	you	use	the	same	name	as	I	did,	there	is	no	need	to	modify	anything	in	the
following	line:

SendEmailChoreo.setSavedInputs("arduinoTemperatureEmail");

We	will	now	build	the	body	of	the	e-mail,	which	will	be	stored	in	a	string	variable.	We
simply	use	a	generic	message	where	we	attach	the	value	of	the	measured	temperature	and
store	everything	in	a	string.	Finally,	we	will	add	the	following	lines	as	an	input	to	the
Choreo	used	to	send	e-mails:

String	MessageBodyValue	=	String("Alert!	The	current	sensor	value	is:	")	+	

String(sensorValue);

SendEmailChoreo.addInput("MessageBody",	MessageBodyValue);

Just	before	executing	Choreo,	we	define	that	we	want	to	use	SendEmailChoreo	from
Gmail	using	the	following	line:

SendEmailChoreo.setChoreo("/Library/Google/Gmail/SendEmail");

We	can	finally	execute	Choreo	and	store	the	result	in	a	variable:

unsigned	intreturnCode	=	SendEmailChoreo.run();

As	in	the	previous	section,	if	the	result	is	0,	it	means	everything	went	fine.	If	this	is	not	the
case,	we	will	print	the	error	message	on	the	Serial	port	for	debugging	using	the	following

piece	of	code:

if	(returnCode	==	0)	{

		Serial.println("Done!\n");

}	else	{

		//	A	non-zero	return	code	means	there	was	an	error

		//	Read	and	print	the	error	message

		while	(SendEmailChoreo.available())	{

				char	c	=	SendEmailChoreo.read();

				Serial.print(c);

		}

		Serial.println();

}

Finally,	we	will	close	Choreo	with	the	following	line:

SendEmailChoreo.close();

Note
You	can	find	all	the	code	for	this	section	on	the	GitHub	repository	of	this	chapter	at
https://github.com/openhomeautomation/arduino-networking/tree/MASTER/chapter6.

You	can	now	test	the	sketch.	The	first	thing	to	do	is	to	make	sure	that	you	have	your	own
Temboo	account	file	in	the	same	folder	as	the	Arduino	sketch.	Then,	upload	the	sketch	to
the	Arduino	board	and	open	the	Serial	Monitor.	The	first	thing	you	should	see	is	the
confirmation	message	that	everything	went	ok:

DHCP:	OK

Setup	complete

Then,	you	should	see	the	first	measurements	on	the	Serial	Monitor:

Temperature:	21

Humidity:	39

Depending	on	the	temperature	value,	you	might	need	to	pinch	your	sensor	to	trigger	the	e-
mail	alert.	Remember,	in	the	example	of	this	chapter,	we	set	a	value	of	23	degrees	for	the
temperature.	After	a	while,	if	the	temperature	reaches	the	threshold,	you	should	see	the
following	message:

Triggered!	Calling	/Library/Google/Gmail/SendEmail…

After	a	while,	the	following	confirmation	message	should	appear:

Done!

You	can	now	close	the	Serial	Monitor	and	go	check	the	e-mail	account	that	you	set	on
Temboo.	You	should	have	received	a	message	with	the	title	you	set	on	Temboo,	and	you
will	also	receive	the	body	that	indicates	the	generic	message	you	set	in	the	sketch	along
with	the	measured	temperature.

https://github.com/openhomeautomation/arduino-networking/tree/MASTER/chapter6

Summary
In	this	chapter,	we	created	another	Internet	of	Things	project	using	the	web	service
Temboo.	Based	on	Temboo,	we	built	two	exciting	applications.	The	first	one	was	to
automatically	log	measurements	inside	a	Google	Docs	spreadsheet.	Compared	to	the
approach	we	took	in	the	previous	chapter,	the	advantage	here	is	clearly	that	Google	Docs
is	the	widely	used	standard	to	create	and	share	spreadsheets.	You	can	access	your	data
from	anywhere	just	by	using	a	web	browser,	and	you	can	also	plot	the	data	and	share	it
easily	with	your	friends	and	family.

We	also	built	an	exciting	application	where	we	interfaced	our	project	with	Gmail	via
Temboo.	We	built	an	automated	e-mail	alert	system	based	on	the	measured	data.

Let’s	see	what	the	major	takeaways	of	this	chapter	were.	First,	we	built	the	hardware	of
the	project,	with	the	DHT11	temperature	and	humidity	sensor	on	top	of	the	Arduino
Ethernet	shield.

Then,	we	set	up	the	different	accounts	that	were	needed	for	the	project.	We	first	created	a
spreadsheet	on	Google	Docs	and	configured	it	correctly	so	it	can	work	with	Temboo.
Then,	we	also	created	a	Temboo	account	and	configured	it	so	that	your	Ethernet	shield	can
send	data	to	Temboo	and	log	measurements	to	Google	Docs.

After	the	setting	up	phase,	we	built	the	first	application	of	this	project,	which	consisted	of
logging	data	directly	to	a	Google	Docs	spreadsheet.	We	also	displayed	this	data	using	the
Google	Docs	plotting	capabilities.

Finally,	we	used	Temboo	again	to	create	an	automated	e-mail	alert	system	by	sending	an
e-mail	automatically	to	the	address	of	your	choice	when	a	measurement	reached	a	given
threshold.

As	this	is	the	end	of	this	book,	let’s	see	what	we	learned	about	the	Arduino	Ethernet	shield
and	what	exciting	applications	we	can	create	with	it.

The	first	part	of	the	book	was	all	about	running	a	web	client	on	the	Ethernet	shield.	We
made	a	first	test	by	just	trying	out	the	shield	and	seeing	whether	it	could	connect	to	the
Internet	and	grab	the	contents	of	a	page.	Then,	we	built	our	first	measurement	system,
where	the	Ethernet	shield	was	connecting	to	a	server	running	to	your	computer	to	log
some	data.

In	the	second	part	of	the	book,	we	gave	more	autonomy	to	the	Arduino	Ethernet	shield	by
running	a	web	server	right	on	the	Arduino	board.	We	made	the	measurement	project	again,
but	this	time	by	having	a	web	server	run	on	the	board	and	logging	data	to	a	SD	card
inserted	in	the	shield.	We	also	connected	a	relay	to	the	Arduino	board	and	we	controlled	it
via	Ethernet.

Finally,	we	built	two	Internet	of	Things	project	using	the	platforms	Xively	and	Temboo.	In
both	these	projects,	we	sent	data	to	the	Web	using	the	Ethernet	shield	so	that	this	data	can
be	accessed	and	displayed	graphically	from	anywhere	in	the	world.

To	conclude	this	book,	I	hope	that	all	the	information	you	found	in	the	different	chapters

will	give	you	the	will	to	build	even	more	exciting	applications.	The	Arduino	Ethernet
shield	is	one	of	the	best	ways	to	build	amazing	connected	applications	with	Arduino,	and
there	is	no	limit	to	what	you	can	do	with	the	concepts	you	learned	in	this	book.

Index
A

account,	Google
setting	up	/	Setting	up	your	Google	Account

account,	Temboo
creating	/	Creating	your	Temboo	account

application,	building	with	Arduino	board
hardware	requisites	/	Hardware	and	software	requirements
software	requisites	/	Hardware	and	software	requirements
hardware	configuration	/	Hardware	configuration

application,	building	with	Arduino	Ethernet	shield
hardware	requisites	/	Hardware	and	software	requirements
software	requisites	/	Hardware	and	software	requirements
hardware	configuration	/	Hardware	configuration

Arduino	board
web	server,	creating	on	/	Creating	a	web	server	on	Arduino

Arduino	Ethernet	Shield
URL	/	Hardware	and	software	requirements,	Hardware	and	software
requirements

Arduino	IDE
URL	/	Hardware	and	software	requirements

Arduino	library
installing	/	Hardware	and	software	requirements

Arduino	Temboo	library
URL	/	Hardware	and	software	requirements
installing	/	Hardware	and	software	requirements

Arduino	Uno
URL	/	Hardware	and	software	requirements,	Hardware	and	software
requirements

automated	e-mails
sending	/	Sending	automated	e-mails

B
Breadboard

URL	/	Hardware	and	software	requirements,	Hardware	and	software
requirements

C
COM	pin,	relay	/	Hardware	configuration
connection,	Arduino	Ethernet	Shield

testing	/	Testing	your	connection

D
data

sending,	to	server	/	Sending	data	to	a	server
logging,	on	SD	card	/	Logging	data	on	an	SD	card
plotting	/	Plotting	the	data	locally
sending,	to	Xively	/	Sending	data	to	Xively
logging,	in	Google	Docs	spreadsheet	/	Logging	data	in	a	spreadsheet

database
incoming	data,	logging	into	/	Log	incoming	data	in	a	database

delay()	function	/	Testing	your	connection
Device	Coder,	Temboo	/	Creating	your	Temboo	account

URL	/	Sending	automated	e-mails
DHT11	sensor	Arduino	Ethernet	Shield

URL	/	Hardware	and	software	requirements,	Hardware	and	software
requirements

DHT	library
URL	/	Hardware	and	software	requirements,	Hardware	and	software
requirements,	Hardware	and	software	requirements

E
e-mails

sending	/	Sending	automated	e-mails
EasyPHP

URL	/	Hardware	and	software	requirements

F
flot	library

URL	/	Hardware	and	software	requirements

G
GND	pin,	relay	/	Hardware	configuration
Google	Account

setting	up	/	Setting	up	your	Google	Account
Google	Docs

URL	/	Setting	up	your	Google	Account
Google	Docs	spreadsheet

data,	logging	/	Logging	data	in	a	spreadsheet

H
hardware	configuration

for	data,	logging	in	Google	Docs	/	Hardware	configuration
hardware	configuration,	Arduino	Ethernet	Shield	/	Hardware	configuration
hardware	configuration,	Internet	of	Things	project	/	Hardware	configuration
hardware	requirements,	Arduino	Ethernet	shield	/	Hardware	and	software
requirements
hardware	requisites

application,	building	with	Arduino	Ethernet	shield	/	Hardware	and	software
requirements
for	building,	application	with	Arduino	board	/	Hardware	and	software
requirements
for	controlling	objects	remotely	/	Hardware	and	software	requirements
for	Internet	of	Things	project	/	Hardware	and	software	requirements
for	data,	logging	in	Google	Docs	/	Hardware	and	software	requirements

I
input	pins,	relay

VCC	pin	/	Hardware	configuration
GND	pin	/	Hardware	configuration
SIG	pin	/	Hardware	configuration

Internet	of	Things	project
hardware	requisites	/	Hardware	and	software	requirements
software	requisites	/	Hardware	and	software	requirements

J
JSON	format

URL	/	Log	incoming	data	in	a	database
Jumper	wires

URL	/	Hardware	and	software	requirements,	Hardware	and	software
requirements

L
LAMP

URL	/	Hardware	and	software	requirements
LINK	LED	/	Hardware	configuration

M
MAMP

URL	/	Hardware	and	software	requirements
MicroSD	card

URL	/	Hardware	and	software	requirements
MongoDB

URL	/	Hardware	and	software	requirements

N
NC	pin,	relay	/	Hardware	configuration
NO	pin,	relay	/	Hardware	configuration

O
output	pins,	relay

COM	pin	/	Hardware	configuration
NC	pin	/	Hardware	configuration
NO	pin	/	Hardware	configuration

P
PHP

used,	for	building	server-side	application	/	Log	incoming	data	in	a	database

R
recorded	data

visualizing	/	Visualizing	the	recorded	data
relay

testing	/	Testing	the	relay
controlling,	remotely	/	Controlling	the	relay	remotely
controlling,	from	distant	location	/	Controlling	the	relay	from	anywhere

remote	objects,	controlling
hardware	requisites	/	Hardware	and	software	requirements
software	requisites	/	Hardware	and	software	requirements
hardware	configuration	/	Hardware	configuration

results
displaying	/	Displaying	the	results

runAppendRow()	function	/	Logging	data	in	a	spreadsheet

S
SD	card

data,	logging	on	/	Logging	data	on	an	SD	card
server

data,	sending	to	/	Sending	data	to	a	server
SIG	pin,	relay	/	Hardware	configuration
sketch

writing,	for	testing	Arduino	Ethernet	Shield	connection	/	Testing	your
connection

software	requirements,	Arduino	Ethernet	shield	/	Hardware	and	software
requirements
software	requisites

for	building	application,	with	Arduino	Ethernet	shield	/	Hardware	and	software
requirements
for	building,	application	with	Arduino	board	/	Hardware	and	software
requirements
for	controlling	objects	remotely	/	Hardware	and	software	requirements
for	Internet	of	Things	project	/	Hardware	and	software	requirements
for	data,	logging	in	Google	Docs	/	Hardware	and	software	requirements

SQLite
URL	/	Hardware	and	software	requirements

T
Teleduino	library

URL	/	Hardware	and	software	requirements
Teleduino	service

URL	/	Controlling	the	relay	from	anywhere
Temboo

account,	creating	/	Creating	your	Temboo	account
Temboo	account

creating	/	Creating	your	Temboo	account
URL	/	Creating	your	Temboo	account

TembooAccount.h	file	/	Creating	your	Temboo	account
Time	library

URL	/	Logging	data	on	an	SD	card

U
update()	function	/	Displaying	the	results

V
VCC	pin,	relay	/	Hardware	configuration

W
WAMP

URL	/	Hardware	and	software	requirements
web	server

creating,	on	Arduino	board	/	Creating	a	web	server	on	Arduino

X
Xively

data,	sending	to	/	Sending	data	to	Xively
Xively	account

creating	/	Creating	your	Xively	account
URL,	for	signup	/	Creating	your	Xively	account

	Arduino Networking
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Discover the Arduino Ethernet Shield
	Hardware and software requirements
	Hardware configuration
	Testing your connection
	Summary
	2. Sending Data to a Web Server
	Hardware and software requirements
	Hardware configuration
	Sending data to a server
	Log incoming data in a database
	Displaying the results
	Summary
	3. Data Logging Station
	Hardware and software requirements
	Hardware configuration
	Logging data on an SD card
	Creating a web server on Arduino
	Plotting the data locally
	Summary
	4. Controlling Objects from Anywhere
	Hardware and software requirements
	Hardware configuration
	Testing the relay
	Controlling the relay remotely
	Controlling the relay from anywhere
	Summary
	5. Internet of Things with Xively
	Hardware and software requirements
	Hardware configuration
	Creating your Xively account
	Sending data to Xively
	Visualizing the recorded data
	Summary
	6. Logging Data in Google Docs
	Hardware and software requirements
	Hardware configuration
	Setting up your Google Account
	Creating your Temboo account
	Logging data in a spreadsheet
	Sending automated e-mails
	Summary
	Index

