
www.allitebooks.com

http://www.allitebooks.org

Axure RP 6 Prototyping
Essentials

Creating highly compelling, interactive prototypes with
Axure that will impress and excite decision makers

Ezra Schwartz

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.packtpub.com/authors/profiles/ezra-schwartz
http://www.allitebooks.org

Axure RP 6 Prototyping Essentials

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2012

Production Reference: 1170112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-164-2

www.packtpub.com

Cover Image by AnnaMarie White (anna-mariewhite@sbcglobal.net)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Ezra Schwartz

Reviewers
Michael Blakely

Jeff Harrison

Mark Johnston

Elizabeth Srail

Acquisition Editor
Wilson D'souza

Lead Technical Editor
Susmita Panda

Technical Editor
Azharuddin Sheikh

Copy Editors
Neha Shetty

Brandt D'Mello

Project Coordinator
Jovita Pinto

Proofreader
Linda Morris

Indexers
Hemangini Bari

Monica Ajmera Mehta

Graphics
Conidon Miranda

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Axure is a powerful tool to transform abstract requirements into a working
detailed visualization to support implementation and reduce project risks. We have
experienced these benefits with many of our clients, allowing us to successfully lead
enterprise design efforts with the world’s largest corporations. The lessons Ezra
shares with you in this book—planning what your specification will look like, and
structuring masters to substantially reduce redundancy and rework, to name a few—
will help you unlock Axure's full potential and will save you significant amounts of
work later in your project.

Here is a brief story about how Axure and the techniques in this book were
used successfully on a recent enterprise project: We were engaged with a large
Silicon Valley client to lead the User Experience effort for an enterprise Oracle
implementation billed to "transform" the company's Quote to Cash internal systems.
The big IT consulting players were on board with teams of business analysts, Oracle
experts, and project managers. We began our efforts by heading out to the clients to
conduct field research with the company's business partners and internal users. We
followed this with a "Baseline" usability test of the existing system and concluded
that an entirely new user interface was needed to truly transform the business. While
conducting our research, the initial business requirements were starting to unfold,
and we were sketching out user stories and task flows to understand the current
business processes and areas for optimization. We then used Axure to visualize what
the new system could look like.

Things were going along smoothly when an e-mail came in at 5 pm on Friday,
requesting my presence at a brief executive meeting that same day. The execs were
very happy with all the research we had accomplished and excited about seeing the
future. In fact, we were informed that the executive sponsor would be having an
annual meeting with the top 170 company leaders at an offsite resort in Carmel in 2
weeks and wanted to present a vision of what the transformation would look like.
This was great—true executive sponsorship—however it did not match with our
project plan. The requirements were just being defined and we had barely cracked
open Axure to begin wireframes. The executives asked me to show what we had
designed so far. I summarily showed them a left sidebar menu and a blank screen.

www.allitebooks.com

http://www.allitebooks.org

They looked at me perplexed and said, "We don't see anything." "I know," I replied.
"We have been completing our user research and are just finishing early sketches
of potential designs. The vision you want to see was scheduled for six weeks
from now."

That obviously was not going to meet the needs of our executive sponsor, so we
quickly began creating a vision of the future in Axure. Loren Baxter (a contributor
to this book) was evolving the prototype as fast as we could think of new ideas. He
truly played Axure like a pianist at Carnegie Hall. Mastery of the tool (in this case,
Axure) was critical to our ability to start from an empty slate and define a vision in
days versus weeks or months. We met daily with execs and showed our builds as
they evolved. This in turn accelerated the refinement of the requirements since the
visualization clearly communicated the requirements as they were being discussed.
The executive presentation was a resounding success and the entire company
leadership became aligned with the new vision we created.

Moving from vision to a detailed set of wireframes and specifications was our
next challenge. Ezra was brought on board to lead this effort and he applied the
principles and strategies presented in this book. Our team of UX designers worked
tirelessly during the next several months visualizing over 90 Business Requirements
Documents, totaling over 1.5 million words. Many of the features in Axure 6 are a
direct result of feedback we provided to the Axure team as we built our wireframes
and detailed specifications. We used the naming strategies outlined in this book to
keep us organized and to communicate to the larger project team as we ensured that
our wireframes and specifications were in sync with the business requirements.

Once our UX wireframes and specifications were complete, we handed off our
UX deliverables to the developers for implementation. By this time, the project
team had grown to nearly 200 people working globally towards a very aggressive
implementation date. All the work we had put into using Axure for detailed
annotated wireframes, interaction models, and detailed specifications was leveraged
to keep the project on track despite the usual changes in scope, IT implementation
challenges, and changes in requirements.

The QA team used our wireframes to build test cases long before the development
code was available. We continuously updated wireframes and specifications as
changes to the requirements occurred and the naming conventions provided critical
traceability between our wireframes and the business requirements. At the same
time, we continuously used Axure prototypes to perform usability tests on areas of
known concern to validate our design decisions as the project evolved.

www.allitebooks.com

http://www.allitebooks.org

Whether your project is a small effort for your department or a larger enterprise
effort like the one I have described, the techniques and strategies in this book will
help you successfully bridge the gap between abstract business requirements and
what ultimately gets implemented by your development team. Axure can provide
significant value to your organization while dramatically reducing project risks. I
suggest you read this book in layers. First, master the great new techniques available
in Axure 6 for creating rich visualizations. Then, apply the naming and architecture
strategies and adapt them to your project needs.

Good luck with your prototypes!

James Hobart
President, Classic System Solutions, Inc.

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ezra Schwartz is an Information and User Experience Architect, who specializes
in logistics of complex user interface frameworks. He focuses on device and locale
agnostic global enterprise applications, team collaboration strategies, and UX
requirements traceability and specification documentation for phased, multi-release
projects.

Ezra helps clients to integrate successfully rapid UX prototyping, validation,
and testing with their development culture. He assists clients with adoption of
user-centered-design methodologies, compliance, and best practices. He has lead
mission-critical user experience projects in the finance, aviation, healthcare, mobile,
publishing, media research, manufacturing, academic research, and software
development industries. Ezra also provides his services pro-bono to select not-for-
profit organizations.

Ezra is the founder and organizer of AxureWorld.org, a free community-driven
international conference, dedicated to rapid UX prototyping. He talks regularly
about user experience topics at conferences and on his blog www.artandtech.com.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Many colleagues and friends have contributed directly, or indirectly, to the writing
of this book. I would like to extend special thanks to Oren Beit-Arie, Udi Arad,
Carl Grant, Dino Eliopulos, Frank Torbey, Robert Albrecht-Mallinger, Dennis
Connolly, Jirka Kende, Helena Porczak, Loren Baxter, Jerry Smith, Tim Robb, Marco
Mastrapasqua, Vince Torres, Jim Hobart, and Victor Hsu, for their support and
encouragement over the years.

I am tremendously grateful to my colleagues Elizabeth Srail, Michael Blakely, Jeff
Harrison, and Mark Johnston for their work on my drafts and their detailed, honest,
knowledgeable, thoughtful, and generous comments.

My sincere gratitude to the editors and staff at Packt Publishing, Susmita Panda,
Jovita Pinto, Azharuddin Sheikh, and Wilson D'souza for their guidance, patience,
and continuous encouragement throughout this project.

To my family and friends, Julia, Hillel and Eitan Gauchman, Eda and Hedva
Schwartz, Ruth and Doron Blatt, Christine and Scott Marriott, Ayelet and Alon
Fishbach, Galila Spharim and Yigal Bronner, thanks for cheerleading, and a special
thanks to Lisa Comforty for her counsel, and to Barbara Drapchow whose clarinet
lessons provided much-needed creative breaks.

Finally, a big hug to Orit, Ben, and Yoav, who waited patiently for me to resurface
and resume normal family life.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Michael Blakely is a leading expert in User Experience Architecture, specializing
in excellent design solutions. He works as a freelance contractor, creating everything
from large-scale website redesigns to enterprise-level web applications. During
his 15 years of experience in the industry, he has worked with many noteworthy
clients, some of which are Disney, Cisco Systems, Bloomberg, Ernst & Young, and
Walgreens. His current work involves designing mobile apps using Axure RP to
communicate solutions and the user experience to clients and stakeholders.

Educated at Utah State University, Michael Blakely holds an MSc in Instructional
Technology. Mike is an Axure Master and Trainer. A devoted power-user, he
is active in the Axure community, contributing as a Beta-Tester and a Technical
Reviewer for Axure RP 6 Prototyping Essentials.

He maintains his portfolio at www.behance.net/michaelblakely. You can know
more about him at www.blakelyinteractive.net. He is also available on Linkedin
at http://www.linkedin.com/pub/michael-blakely/1/67b/5a0.

Jeff Harrison is a senior User Experience Consultant at Evantage Consulting in
Minneapolis, where he specializes in interaction design, information architecture,
and data visualization. In addition to his client work, Jeff is an Axure trainer and
frequent contributor to the Axure forums, where he is unhealthily motivated by the
impossible.

Jeff lives in the Twin Cities with his wife, Jenna, and two kids, Evelyn and Eli.

http://www.behance.net/michaelblakely
http://www.blakelyinteractive.net
http://www.linkedin.com/pub/michael-blakely/1/67b/5a0

Mark Johnston has lived and breathed design and its application to software
and the Internet for over a decade and a half. He has been on an evolutionary
journey through the print and Web to his current passion of user experience design.
During this time, he has pursued the development of many skills and techniques,
including visual design, HTML, CSS, Javascript, accessibility, interaction design, and
information architecture and usability.

He has applied the knowledge he has gained while learning his craft to websites
ranging from the small and static through to large dynamic media rich sites, as well
as B2B solutions and line of business applications.

He enjoys getting his hands dirty, forging better experiences for the people that
are sometimes forgotten in large companies; people who deal direct with the
customers, to make their life a little easier and in turn help provide better support to
its customers. He aims to create solutions that work well for the customers without
sacrificing the needs of the company.

Mark settled at Austar, Australia's leading regional subscription TV provider and
ASX200 company, a little over 7 years ago, where he has been honing his skills as a
practitioner in the user experience field, while at the same time helping to further
develop programs within Austar to drive user centered thinking, design,
and processes.

Mark believes that in every worker's toolbox, there are a handful of great tools to
help in order to get the job done. For Mark, Axure is a very important tool to build
rich prototypes to gain direct feedback.

I want to thank Ezra for the opportunity to work with him and
Packt on this book. I also want to thank Victor and the team at
Axure for being one of the most supportive and responsive software
companies I have dealt with, putting up with all my e-mails. Last
but not least, I would like to thank my great team and the people at
Austar that I work with, who have allowed us to effect real change
for our customers through our work.

Elizabeth Srail has been interested in learning about people her entire life.
Drawn to this field because the idea of helping business executives understand that
they should learn how the company's customers behave and think before making
strategic decisions was reason enough.

Elizabeth's philosophy of a good user experience is a thoughtful, scalable
architecture, an amazing visual design that does not become quickly outdated, and a
smart and flexible technical architecture. Elizabeth was the UX designer on a website
that incorporated each of these elements, earning a Webby Honorable mention in the
Parenting/Family category.

Since 1999, Elizabeth has worked at large financial institutions, marketing/branding
agencies, and for UX specific services companies. Therefore, she has done UX work
in many industries: financial, retail, education, spirits, and health and wellness. This
diverse experience has helped aide her success in the UX field. She has been using
Axure continuously for three years, and is convinced; she is a proficient user of
Axure, because Mr. Schwartz taught her many tricks that are too, in the book.

Elizabeth graduated Summa Cum Laude from Ohio University with a BA in Finance
and a BA in Management Information Systems. She also accidentally earned a minor
in Spanish because she enjoyed speaking the language so much.

On a personal note, Elizabeth is a devoted yoga student of the Ashtanga yoga system
and believes that an expansive body leads to an expansive mind.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

To my parents, Eda and Zeev Schwartz

Table of Contents
Preface 1
Chapter 1: Prototyping Fundamentals 7

The art of UX prototyping 10
Prototyping interaction 11

The prototyping checklist 13
The project 13

Simple websites 14
Web applications and portals 14
Mobile apps 15
Heuristic evaluation 16
User validation 16

Deliverables: Prototype and specifications 17
Balancing act: What stakeholders have to say 19

Business stakeholders 19
Management 20
Business process architects 21

Project management 25
Visual design 27
Development stakeholders 30

The UX perspective 32
The UX practitioner 33
The UX team lead 34

The challenge 34
Team structure 35
Process 35
Extending the process 35
Axure: The Good 36
Axure: The Bad 37
Tips for using Axure on large design projects 38

Axure around the world 38
The Axure perspective 40
Summary 42

Table of Contents

[ii]

Chapter 2: Axure Basics—the User Interface 43
Getting started 44

Working with multiple project files 45
The Axure workspace 46

Customizing the workspace 48
The Sitemap pane 49

Wireframe pages 52
Flow pages 52

The Page Properties pane 54
Page notes 55

Managing notes 56
Page interactions 57
Page formatting 57

Sketch effects 57
The Widgets pane 58

Wireframe Widgets 59
Flow widgets 60
Creating your own widget library 61
Third party widget libraries 62

The Widget Properties pane 63
Annotation tab 63

Annotation fields 65
Annotation views 66

Interactions tab 67
Interactions 68
Events 70
Cases 70
Actions 72

Formatting tab 73
Location and size 75
Font 76
Alignment + Padding 77
Style 78
Ordering 80
Fills, Lines, + Borders 80

The Wireframe pane 81
Grid and Guides 83

The Masters pane 86
Master behavior 88

Normal 89
Place in Background 90
Custom Widget 91

Usage Report 94

Table of Contents

[iii]

The Dynamic Panel Manager 95
The toolbar and menu bar 99
Axure file formats 101

The .RP file format (stand-alone) 101
The RPPRJ file format (shared project) 103

Summary 104
Chapter 3: Prototype Construction Basics 105

Prototyping principles 106
Alexandria, the Digital Library Project 106
Getting started—productivity in 30 minutes 107

Initial requirements and use cases 109
Use case diagram page 110
Saving the project file 114
First wireframe pages 115
Task flow diagram page 116

Browse path flow diagram 117
Search path flow diagram 118

Link use cases to flow diagrams 119
Generating the HTML prototype 120

Getting started with masters and dynamic Panels 123
The first wireframe 123

The quick and dirty approach 123
The quick but structured approach 124

First masters: navigation systems 125
Global navigation bar 127
Secondary navigation system 132

The first dynamic panel 135
Adding states to a dynamic panel 137

Adding visual effects 142
Adding sketch effects 145
Updating task flow diagrams 146
Practitioner's corner—Axure prototyping for mobile devices 146

Mobile-friendly websites and mobile apps 146
Different device resolutions and aspect ratios 147
Using the Viewport Tag 148
Using a full screen browser 149
Landscape and portrait page versions 150
Event and gesture compatibility 150
Browser limitations 152
Using widget libraries 153
Loading prototypes onto the device 153

Summary 154

Table of Contents

[iv]

Chapter 4: Interactivity 101 155
Interaction design—brief history 155

The 1950–60s 156
The 1970–80s 156
The 1990–2000s 158
The present, future, and Axure interactions 160

Axure interactions primer 161
Guided example 161

Step 1: Defining the interaction in simple words 162
Step 2: The Axure interface 162
Step 3: Translating this requirement into an Axure interaction 164
Step 4: Annotating the interaction (optional?) 165

Axure events 166
Events triggered on OnPageLoad 166
Guided example: Changing the default landing page 167
Simulating contextual navigation 168

OnPageLoad events and dynamic panels 172
OnPageLoad event in detail 174

User triggered events 175
Guided example: Sign-in 175
Construction strategy 177

Adding the interaction 179
Organizing actions 184
Widget, Events, and Context 185
Widget Events in detail 186

Axure cases 187
Guided example: Construction and interactions 188

Part 1: Construction tweaks 188
Part 2: Adding interactions 193
Axure actions 196

Links actions 197
Dynamic panel actions 197
Widgets and variables actions 197
Miscellaneous actions 198

Summary 198
Chapter 5: Advanced Interactions 199

Conditions 200
If-Then-Else 200
Guided example—conditions and dynamic panels 201

Step 1: Defining the interaction 201
Step 2: Constructing Wireframe 202
Step 3: Setting the first condition 203
Step 4: Adding the first interaction 204

Table of Contents

[v]

Step 5: Completing the interaction 205
The Condition Builder 208

Guided example—multiple conditions 210
Step 1: Defining the interaction 210
Step 2: Constructing Wireframe 212
Step 3: Interaction tweaks 214
Step 4: Evaluating multiple conditions 215
Step 5: Final conditional touches 217

Troubleshooting conditions 219
Raised events 219

Guided example 220
Step 1: Creating a raised event on the master 221
Step 2: Applying interaction to raised events on a page 226

Nested masters: Amplifying the raised event 228
Variables 232

Guided example—creating context with variables 233
Step 1: Defining the interaction 233
Step 2: Construction considerations: Dynamic panel or pages? 233
Step 3: Adjusting existing conditions 235
Step 4: Variables and the order of actions 238
Step 5a: Setting variables (and possible snags) 239
Step 5b: Setting and initializing variables 242
Step 6: Using variable values to determine appropriate cases 245

Variable types 247
Global variables 248

Axure's built-in variable 248
Create your own variables 248

Special variables 248
Usage examples 250
Local variables and functions 250

Naming variables 250
How variables can help in usability testing 251

Guided example—contextual usability testing 252
Pros and cons of using variables 254
Tips and techniques from the experts 255

Hiding and showing list elements, by Jeff Harrison 255
The approach 256
Step 1: Creating the row template 256
Step 2: Moving rows together 257
Step 3: Repeating as desired 258
Step 4: Adding controls 259

Keyboard Shortcuts by Loren Baxter 261
High-level Interaction 261
Detailed steps 262
Notes 263

Table of Contents

[vi]

Axure tricks by Fred Beecher 263
Trick 1: Debugging your Logic 263
Trick 2: Passing variable values between pages 263
Trick 3: Hidden link to clear variables 264
Trick 4: Text fields masquerading as text panels 264

Summary 264
Chapter 6: Widget Libraries 267

Axure's built-in libraries 270
Axure and community libraries 272
Your own widget library 274

Guided example: Widget library to support prototype 274
Step 1: Create the library file 274
Step 2: Creating a custom widget (lorem ipsum) 277
Step 3: Refresh the library in the project file 278

Expanding the library—design patterns 279
Example 1: A confirmation/alert box widget 279

Step 1: Defining the pattern 279
Step 2: Construction 281

Example 2: An incremental search widget 282
Step 1: Defining the pattern 282
Step 2: Construction 284
Step 3: Interactions 285

Managing widget libraries 286
Local masters or external widget libraries? 287

Using RPLIB 288
Using masters in a PR or RPPRJ file 289

Practitioner's corner 289
Why widgets? 290
Pixel-perfect icons 290
Clear widget label and tool tips for extra help 291

Summary 292
Chapter 7: Managing Prototype Change 293

From vision to reality 294
Aligning expectations 294

UX and software development models 295
Waterfall 296
Agile 297

Estimating Axure work 298
Calculating your time 300
Expectation alignment 301

Transitioning from concept to detailed design 302
From vision mode 303
From sketch mode 303

Table of Contents

[vii]

Foundations and scaffoldings 304
Determining the Wireframe width 304
Guides 306
The grid 308

Page templates 309
Page style editor 310

Widget style editor 314
Default widget styles 315

Style painter 316
Integrating with the project style guide and CSS 319

The style guide 319
To sync or not to sync? 328

Prototype with existing visual design 329
Summary 331

Chapter 8: Functional Specifications 333
Collaboration with the development team 336

Aligning expectations 338
Capturing UI specifications 339

Global specifications 339
Generators and outputs: Specifications and prototypes 341
Customizing the Word specifications generator 343
Page notes 344

One note section versus many 346
Annotation fields 347
Annotation views 351

Generating specifications 353
The General section 354
The Pages section 355
The Masters section 356
The Page Properties section 360
The Screenshot section 362
The Widget Properties section 365
The Layout section 368
The Word Template section 369

Summary 370
Chapter 9: Collaboration 373

Shared projects 375
The environment 375
Check out/in status 376
Setting up a shared repository 377
Loading from a shared repository 382

Table of Contents

[viii]

The Share menu 384
Creating and loading 384
Updating the entire file 385
Updating a single page or master 386
Manage Shared Project… 386
Browse Shared Project History… 388
Repoint to Moved Shared directory… 391
Clean Up Local Copy… 392

Best practices for UX Axure teamwork 393
Attributes of the UX team 393

Feedback from stakeholders—the Discussion tab 396
Discussions hosted on AxShare 397
Discussions not hosted on AxShare 401

Step 1: In AxShare.com 402
Step 2: In Axure 402
Step 3: In the browser 403

Summary 403
Index 405

Preface
User experience (UX) has gone mainstream. It is finally recognized by business
and software development stakeholders as a critical pillar of social acceptance and
commercial success. The timing coincides with an explosion in expressive means to
create new and highly compelling user interfaces that operate on a wide range of
powerful devices, such as smartphones and tablets. UX encompasses a wide range
of disciplines including cognitive psychology, user research, and visual design, and
it all comes together in the prototype—an interactive simulation that excites decision
makers and validates the design approach before it is coded.

Boxes and arrows just don't cut it anymore. Axure, the leading UX tool for
wireframing, rapid prototyping, and specifications has quickly become the UX tool
of choice for thousands of practitioners worldwide. The UX community is fortunate
to have a growing number of dedicated simulation tools, but currently few are
getting close to striking Axure's balance of maturity, features, and cost.

This book offers a holistic overview of Axure and its use throughout the interface
development life cycle. The intent is to help you construct wireframes and
prototypes with your 'headlights on', taking into consideration the inherent
iterative nature of the UX process. A sample project is weaved into the chapters.
It provides an opportunity to discuss, in context and in sequence, practical topics
such as addressing business and technical requirements, handling use cases and
flow diagrams, low and high-fidelity wireframe construction, naming conventions,
creating interactions, writing annotations, generating detailed UX specifications, and
requirements traceability.

You may not be in a position to change how projects are scheduled, budgeted, and
managed, but hopefully, by the time you finish this book you will feel confident
about adding Axure to your set of trusted UX tools. Based on my personal
experience, I can promise you that it will enhance your ability to deliver top-
quality deliverables and tackle the demands for rapid iterative UX projects of any
complexity and size, for any platform and device.

Preface

[2]

What this book covers
Chapter 1, Prototyping Fundamentals, offers a checklist of considerations for using
Axure in various project types, and introduces the perspectives of various
stakeholders who collaborate with UX in a typical project.

Chapter 2, Axure Basics—the User Interface, introduces Axure basics: file formats, the
workspace, wireframe pane, sitemap pane, masters pane, widgets pane, widget
properties pane, page properties pane, dynamic panel manager, toolbar and
menu bar.

Chapter 3, Prototype Construction Basics, covers various aspects of requirements and
use cases, flow diagrams, navigation, masters, dynamic panels, and prototyping for
mobile apps.

Chapter 4, Interactivity 101, details various Axure interactions, events, cases, actions,
and naming conventions.

Chapter 5, Advanced Interactions, covers some advanced topics such as raised events,
variables, conditions, drag and drop, and animation.

Chapter 6, Widget Libraries, introduces masters and widget libraries, built-in libraries,
and community libraries. Using the information given in this chapter, you can create
your own widget libraries, manage libraries, manage visual design patterns, and
device specific libraries.

Chapter 7, Managing Prototype Change, helps manage widget style editor, style painter,
and iteration management. It also covers topics such as prototyping for multiple
delivery formats and devices, strategic annotation, manage phased and multi-release
projects.

Chapter 8, Functional Specifications, provides information that lets us manage
elements such as page notes and annotation fields, annotation strategy, requirement
management and configuring specifications generators.

Chapter 9, Collaboration, provides useful information about shared repository, naming
conventions for teams, responsibilities, workflow, training, troubleshooting.

Preface

[3]

What you need for this book
In order to follow the demo project in this book, and to experiment on your own, you
will need the following:

•	 Axure 6 for Windows or Mac, you can download a free, 30-day evaluation
copy from http://www.axure.com/, and the company is very generous in
extending the trial period. To get the most current list of system requirements
to run Axure on either Windows or Mac visit the Axure's website.

•	 For specifications, you need Word 2000 and a newer version for Windows
and Word 2004 and newer for Mac.

•	 Firefox, in both platforms is the recommended browser.

Who this book is for
This book is intended for:

•	 UX practitioners, business analysts, product managers, and others involved
in UX projects

•	 Consultants or in-house staff working for agencies and corporations
•	 Individual practitioners or UX team members
•	 UX practitioners who seek to deliver higher value in a fraction of the time

involved in wireframing and annotating with traditional, drawing tools-
based techniques

•	 UX practitioners who want to dramatically improve their productivity and
skills with expertise in delivering rich interactive prototypes and extensive
specifications instead of static documents

The book assumes either no or a little familiarity with Axure. Perhaps, you are
evaluating the tool for an upcoming project or are required to quickly get up to
speed on a project you just joined.

The book assumes some familiarity with the principals of the User-Centered Design
methodology.

http://www.axure.com/

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "One or more actions are organized in a
unit named case and a case is associated with a specific event, such as OnClick".

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
Subscribe and Log In buttons (A) in the dynamic panel DP Subscribe Actions Bar
(B) fit the width of the dynamic panel".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.allitebooks.org

Prototyping Fundamentals
"We shape our tools, and thereafter our tools shape us."—Marshal McLuhan

I find Marshal McLuhan's insight to be especially intriguing in the context of tools
that help us conceptualize and express user experience. In fact, my motivation to
write this book has been shaped by my personal experience with Axure, since I
started using it back in 2007.

What struck me then, and continues to excite me today, was the freedom to design,
test, iterate, and present fully-clickable interactive prototypes. I did not need a
developer. I did not need to spend months to learn a programming or authoring
language. It was easy, fast, and fun. As someone who does user experience for a
living, Axure afforded me my own user experience.

Within a few hours, I had my first prototype running, and since that day, I never
looked back, and have since rarely used Visio, my previous wireframing tool. I also
realized that, in addition to being able to create interactive prototypes, Axure helped
me deal with a major chore—creating and updating the user interface functional
specifications document.

If you ever created a specifications document the traditional way by using Visio,
Word, and a screen capture utility, you know the drill—a tedious process that
involves adding footnote tags to Visio wireframes, taking screenshots of these
wireframes, saving them, importing them to Word, and finally, writing the relevant
annotations. If you update the wireframe, you have to retake the screen capture,
save, replace its version in Word, and update the annotations. Multiply this process
by the number of wireframes in your project, and the magnitude of the effort
becomes clear and daunting.

Prototyping Fundamentals

[8]

As the UX design is inherently an iterative process, the specifications update process
is a real drain of time, money, and energy, which is bad for everyone involved in
the project. With Axure's integrated specifications, I found an innovative approach
that reduces, greatly, the manual process. Axure numbers the annotations on the
wireframes, takes the screenshots, and organizes the entire content in a customizable
layout. While configuring the specifications document takes some experimentation,
the effort pales in comparison to the manual process. Moreover, once you are happy
with the way the specifications generator works, you no longer need to deal with it.

Axure's support for team collaboration was an important enhancement that
helped cement its adaptation among UX professionals, because it underscored the
dramatic shift in the perception of UX among business stakeholders, as critical to the
success of software projects. As any sizable project requires multiple UX resources,
collaboration has become a prerequisite that Axure addresses with its Shared
Projects feature.

As I started to use Axure, I occasionally stumbled on technical issues or had
questions I could not figure out. Responses were prompt and detailed, files I sent for
checkups were reviewed and issues explained, and occasionally, immediate follow-
up of software updates that fixed bugs I mentioned. This dedication to customer
support has been, and continues to be, by far, the deepest I have ever encountered.

I also discovered an incredibly helpful and responsive community of fellow users
worldwide, on Axure's Discussion Forum. Typically, you can get a helpful response
to your query within hours and people are generous with their expertise. Over the
years, as I gained some expertise with the tool, it has been nice to be able to help
others in the forum. I will admit that this level of support is very important to me.
When a tool becomes critical to my work, it has a direct impact on my livelihood.
Support feels like a lifeline in times of crisis, and knowing that such a level of
support exists, plays a major role in my loyalty and tolerance.

Axure's value was so compelling that I was able to convince clients and team
members to approve the use of the tool, back when it was far less known among
UX practitioners. This UX-centric integrated environment for wireframing,
specifications, and collaboration also carried a price tag that was a small fraction of
the cost and implementation complexities of enterprise tools. Occasionally, clients
would raise a concern about the ability to find UX resources who know how to use
Axure. UX designers would raise a concern about switching from tools they were
very familiar with to a new tool. These two perspectives can potentially feed each
other in a loop, which makes it difficult to effect change. It really takes external
pressures to drive change.

Chapter 1

[9]

Indeed, the growth of Axure's popularity among UX designers paralleled two
important trends: The solidification of UX as an integrated part of the overall
software development process, and technological advances that afforded the creation
of rich user experiences. As more companies recognized the business value of
modern user experience, budgets opened up, and with them, the demand for
UX professionals.

With increased demand came also the pressures to deliver on time and within
budget, both often aggressive to absurdity. At a certain point, too-ambitious
schedules create serious friction with core principles of user-centered design, an
inherently time consuming methodology that calls for contextual research, iterative
design, and user validation. I realized, as many others did, that on top of helping
me produce excellent deliverables on a tight schedule, Axure is helping me stay
profitable, because I can deliver a lot more value to my clients, in less time and
less sweat.

This is an important point. At the end of the day, design agencies and independent
consultants need to turn a profit in order to stay viable. It is impossible to stay
viable for long, if you have to double and triple your working hours just to keep
up with the pressure of constant updates to a prototype and specifications. In-
house UX teams must also control their cost and increase their productivity. Axure
helps maintain profitability, because it is relatively easy to master, and it affords
substantial efficiencies through clever use of customizable patterns, templates, and
automation.

In conclusion, and reflecting back on McLuhan's observation earlier in this chapter,
Axure is a tool that has been shaped by UX designers over the course of nearly a
decade. At the time of writing this book, it is widely used, with over 30,000 licensed
copies world wide, running on Mac and Windows. Axure is probably the de facto
UX design tool in our industry. To what degree does it shape its users? It is for each
of us to discover.

In this chapter, we introduce a prototyping checklist that covers the diverse set of
variables that are involved in user experience projects, and how your approach
to constructing an Axure project file might be affected by the specifics of your
own project. Also, in the spirit of User Centered Design, and because UX projects
are a collaborative effort, I thought it will be valuable to include the insights and
expectations of real people who've experienced work on UX projects in various roles
ranging from business, project management, visual design and development, as well
as other user experience practitioners.

Prototyping Fundamentals

[10]

The art of UX prototyping
Prototyping is an ancient practice. Back in the fifteenth century, Leon Battista Alberti
described an event that took place in the First century BC. In his classic text named
On the Art of Building in Ten Books, Alberti mentions that Julius Caesar "completely
demolished a house on his estate in Nemi, because it did not totally meet with his
approval". He continues to recommend "the time-honored custom, practiced by the
best builders, of preparing not only drawings and sketches but also models of wood
or any other material…".

One might think that, given his authority as the ruler of the Roman Empire, Julius
Caesar was perhaps abusing his powers by acting in a capricious, short-tempered
manner. We can also think about Caesar as a typical client, reacting somewhat badly
to a design that did not meet his requirements and specifications.

Another way to think about the event has an immediate relevance to us, two
millennia later. The core of the problem is how to figure out what the client
wants and deliver a product that meets those expectations. This is a problem of
communication, and UX designers face the challenge of resolving it satisfactorily on
every project they work on. Often, the client might have a clear idea in their head
of the exact way the building—and for that matter, the software—should look and
function. Sometimes, the client has no idea about the structure or the function of the
software but has a pressing need to have such a structure in place, in order to fulfill a
business or some other pressing need.

From the early days of computer science, people found the obvious parallels to
physical architecture and borrowed from it liberally, terms and titles such as
architect, build, configuration, and so on. Indeed, like architects and builders of
physical structures, we too need to create a functional product, face the challenges of
tracking against tight budgets and schedules, and keep our clients happy.

However, beyond borrowing the terminology from architecture, aspects that relate to
engineering and process rigor take much longer to implement. For example, the use
of modeling in user interface and user experience design, as we see it today, came in
quite late in the software development life cycle. This perhaps explains why a very
high number of software projects fair badly, but our cities are not littered by the
ruins of collapsed buildings. Compare a large architecture project to build a 100-story
skyscraper, with a large enterprise software project. What are the odds that both will
be fully up and running within years? They are very high for the skyscraper, and far
less for the software.

Chapter 1

[11]

In other words, if we compare the rigor, efficiencies, and processes that translate a
cardboard model and blueprints into a skyscraper to the typical chaos of software
projects (perhaps with the exception of software for airplanes and such no-failure
use), we probably have some ways to go. It is an evolutionary process.

The truth is that, of the billions of private residents, public buildings, and industrial
structures that humans constructed on earth, since moving out of caves, relatively
few ever benefited from the design of an architect. Not that these are necessarily bad,
in fact, many of the structures we see today evolved successfully over millennia.
People build their own homes, individually or as a communal effort. You can read
Donald Harington's The Architecture of the Arkansas Ozarks, for a wonderful account
of such an evolutionary process.

Alberti further writes that "Having constructed those models, it will be possible
to examine clearly and consider thoroughly the relationship between the site and
the surrounding district, the shape of the area, the number and order of parts of a
building. It will also allow one to increase or decrease the size of those elements
freely, to exchange them, and make new proposals and alterations until everything
fits together well and meets with approval. Furthermore, it will provide a surer
indication of the likely costs, which is not unimportant, by allowing one to
calculate costs".

It is fascinating to 'translate' Alberti's writings about modeling for buildings, to UX
prototyping for software. He is talking about the ability to articulate the layout,
hierarchy, organization, order of entities, and also the ability to use the prototype for
cost and effort estimation.

Another example of providing a client with 'wireframes' and ensuring alignment
with their needs is mentioned in the book Painting and Experience in 15th-Century Italy
by Michael Baxandall, who writes about the fifteenth century painter Filippo Lippi.
Back in 1457, Lippi was commissioned to paint a triptych for Giovanni di Cosimo
de' Medici, the Italian banker and Patron of the Arts. In a letter to Giovanni, Filippo
writes "...And to keep you informed, I send a drawing of how the triptych is made of
wood, and with its height and breadth...".

Prototyping interaction
Therefore, it turns out that we did not quite invent the prototyping wheel after
all. The value, ROI calculations, and fancy technical terminology of prototyping
have been around for a couple of millennia, if not more. There are, however,
several important differences that make prototyping a rich user experience that is
particularly challenging for UX practitioners.

Prototyping Fundamentals

[12]

Most structures don't involve dynamic interaction with the user. Buildings stand
there, whether there is an occupant or not. Moreover, when you enter a building,
rooms do not contextualize themselves instantly to reflect your identity. When it
comes to software and prototyping a rich user experience, the complications come
from the need to demonstrate the following:

•	 Action and response: The prototype needs to simulate possible paths that a
user would have on any given screen and the system's appropriate responses
to actions the user is taking. Often, the path could be conditional and take
several steps to complete in a coherent and satisfactory way. The arsenal of
interaction patterns that is available to UX designers today is significantly
richer than what was available a decade ago.
For example, the prevalent navigation model back in the client-server
model of the '80s involved moving from one window to another, as part of a
workflow involved in completing a task. In the '90s, common web navigation
was hyperlinking from one page to another, facilitating a similar goal.
These days, with asynchronous in-page data updates, the need to negotiate
multiple windows has been greatly diminished, but the complexities of
prototyping in-page data refreshes have increased.

•	 Personalized experience based on login: The prototype needs to simulate
how the system will render for different users, based on the entitlements.
In the case of non-registered users, the site might display special offers to
entice the user to register. A registered user may get information based on
preferences they have set in an earlier session, and a paying user needs access
to additional content, based on past activity on the site. Increasingly, we are
asked to model all of these permutations.

•	 Scalability and future scope: Many applications are deployed in phases,
making it possible for the business to prioritize their investment in the
project, based on strategic goals, practical budgetary, and technical
constraints. The prototype, which often begins as a fully-fledged visionary
concept, needs to be able to support 'graceful degradation', or fallback to less-
ambitious capabilities of the present, and scale in the future.

•	 Adaptability to localize: In a global economy, a common requirement is to
develop an application that can easily be localized to reflect the language and
cultural preferences of the locale or demographics of its users. The prototype
needs to demonstrate the ability to render in multiple languages.

•	 Exception handling: One of the toughest requirements is to demonstrate
the way an application will respond to the rules for moving through an
interaction path; this can be subject to either user or system override.

Chapter 1

[13]

Like architecture and construction, software is an evolving art and science, but
unlike construction, many of the tools and methodologies are evolving at such a
rapid pace that it is very difficult to establish solid patterns of development. While
physical architecture and construction have evolved over centuries and stay relevant
for a long time, in technology, what worked ten years ago is practically ancient and
moot by now.

The prototyping checklist
Before you embark on an Axure prototyping project, you should carefully consider
several variables that will affect your approach to the prototype's construction and
logistics. The following checklist is probably relevant to any type of prototyping
software you may use, and not just to Axure. However, as you will see, neglecting to
think in advance about these issues can cause serious roadblocks at various points in
the project. The checklist is driven by the deliverables you are contracted to, or are
expected to, deliver. This, in my opinion, is the most practical and beneficial angle
with which to approach the work ahead.

The project
In the case of UX projects, size and scope matters, the type of application, and the
purpose for which you are going to prototype can have a significant impact on
the time, budget, and number of UX resources needed to get the job done on time.
Surprisingly, it is not uncommon for projects that begin as small-scale efforts, to
mushroom into increasingly complex and expensive ones.

UX resources, including internal teams, often do not have good visibility into the real
drivers that move the project within the company. As a result, you may not always
have the benefit of knowing in advance about what is going on, and changes to the
scope and direction may come as a disappointing and frustrating surprise. There is
little that can be done about such situations, but you can take a proactive approach
to the way you construct your prototype, such that you have the ability to handle
change, with reduced impacts to your own workload.

Prototyping Fundamentals

[14]

Simple websites
I am not sure what a simple website is, but we know one when we use one. I am
using the word "simple" on purpose, because often, initial conversations around a
project begin with "we need a simple website, something very basic...", which later
turns out to be not that simple or trivial at all. A common understanding of 'simple'
tends to focus instinctively on the number of pages involved. However, this can be a
gravely misleading measure.

•	 Modern web applications have a small number of page templates (for
example, an overview page, a list page, and a details page), but within each,
the level of transformation and complexity can be significant.

•	 Another measure could be how many audiences the application will serve.
Does it need to dynamically change the content and functionality based on
login? Are any types of registrations involved? Are there any transactions?
If the answers to all of these are no, and what you are looking at is stringing
a number of pages together with some global navigation, then you are most
likely looking at a simple project.

Is using Axure a good option for such simple tasks? Most likely not, especially if this
is a one-time project, and you don't build user interfaces quite often. One could easily
argue, and quite successfully, that in order to concentrate on the creation of content
for a simple site, a common tool such as PowerPoint, will be more productive,
because you can concentrate on the content and not lose energies on learning the
prototyping tool. Additionally, the deployment of simple websites today is most
successful when people use existing platforms, such as, WordPress or Squarespace.
These enable a non-technical person to experiment and create highly sophisticated
websites using prebuilt and easily-customizable templates.

Web applications and portals
This class of prototypes is probably the 'meat and potatoes' for Axure use. While
there are many portal platforms, corporations often require custom developments
and enhancements that feed their business needs. For many organizations, such
projects are viewed as transformative and strategic, and are a significant financial
investment. The following list shows some attributes such projects have in common:

•	 In order to secure approval and a go-ahead from corporate leaders, the
initial UX involvement may be limited to the creation of a highly polished
vision prototype. The UX footprint may be small, in terms of actual resources
involved, but is significant in terms of the impact on moving forward.

Chapter 1

[15]

•	 The application involves multiple modules that often represent discrete
organizational business units. It is not uncommon for these business units
to be spread across the country or the world. Each business unit may have
its own rules, requirements, and supporting technologies, which need to
be streamlined and unified to make the integrated application work as
envisioned.

•	 If you are tasked with creating a high-fidelity prototype, keep the
organizational complexity in mind. As much as possible, document your
working assumptions, the guidance, and feedback of various stakeholders,
their priorities, and potential areas of friction.

•	 Forward and backward vision. On one hand, a UX often enjoys a mandate to
come up with an all-new, efficient, and great design. Then, there comes push
back, and sometimes blame; the UX is too ambitious and too risky, and at
times the UX team is ignorant of the constraints of legacy and business rules.
The ability to maintain the fine balance between pragmatic and innovative
is important, especially because a UX rarely gets enough time to gain deep
knowledge of the business.

•	 Don't assume anything. Ask as many questions as you need to clarify the
terminology and processes that you don't understand.

•	 Point out, early on, the potential gaps and implementation risks. In Axure,
annotate the risk field for relevant widgets and layout regions you are
concerned about, and go over those items during review sessions.

•	 To handle the complexity and specific needs of each module, developing
such an application requires a large team for business and technology
stakeholders, and to work with everyone, a big UX team.

•	 Start using a shared project early on, and communicate a lot with the team
about establishing design patterns and other common elements. There is a
need to maintain the balance between providing each workstream with the
flexibility to address the unique needs of the part it is tasked with, but also,
to keep in mind the overall consistency and integrity of the application.

Mobile apps
Apple continues its long tradition of affecting the user experience in profound
ways. As it narrows the gap between mobile devices and the traditional computer
experience, new interaction patterns, such as figure gestures, have been introduced
in the lexicon of direct manipulation methods. With Axure's shared libraries, you
can easily create prototypes that simulate the appearance of most popular mobile
devices, from iPhones and iPads to Android.

Prototyping Fundamentals

[16]

Increasingly, organizations seek to extend their web applications from the Web to the
mobile space, and you can prototype such apps in Axure, demonstrating their use on
the targeted device.

Heuristic evaluation
One of the initial steps that UX designers are often asked to perform, at the inception
of a redesign project, is a heuristic analysis of the existing user interface. The
outcome can help decision makers to determine the scope, budget, and timelines for
the project, with an opportunity to get the UX designer familiar with the application
and its user experience issues.

You can, very rapidly, create a mini replica of the actual application by placing and
linking screen captures in Axure pages. Add more details, such as droplists, form
fields, and action buttons, at the appropriate places in the screen captures, to create
a hybrid of images with a widget-based prototype. Add your comments in relevant
annotation fields and generate an HTML prototype and a Word document, which
you will use as you guide stakeholders through the findings.

User validation
A by-product of creating an interactive prototype in Axure is, of course, the fact
that you have a tremendous instrument to use in various user validation activities,
such as, focus groups and usability tests (UT). This is a no brainer. However, it
is important to include, in the project's budget and timeline, the refactoring work
necessary to use the prototype for such activities. This is especially important for
complex applications that adjust the user interface based on the user login.

•	 Make sure that the scenarios planned for UT are actually built into the
prototype. If not, adding those may involve considerable work and
modifications to the construction of the file.

•	 If the file is also intended to be used to create specifications, how will the
tweaks and added interactions, needed to make the prototype work for UT,
affect the generated specs?

•	 Does it make sense to duplicate the current file and have a dedicated file
just for the purpose of UT? It really depends on where you are, in terms of
construction. The benefit of developing the file separately is that you can
work quickly and tweak the construction without having to worry about the
specifications or impacting other sections of the project. On the other hand, it
means that any updates made to the production file will have to be updated
in the UT file.

Chapter 1

[17]

Deliverables: Prototype and specifications
Are you contracted, or expected, to deliver only an interactive prototype or also
annotated specifications? The following list takes you through some important
pointers to consider. Don't worry about Axure terms and functionalities you are not
familiar with, as we cover those later in the book:

•	 If specifications are in play, what are the expectations for the format and
delivery of those specifications? Is it, for example, an exhaustive Word
document, or a light HTML-based annotated version of the prototype?

•	 Did you have an opportunity to discuss these flavors of documentation
with the relevant stakeholders (typically, the development team), or are
specifications mentioned casually, with their scope only implied? If the latter
is the case, you should get explicit clarifications as early as possible.

•	 Ask for an example of a previous specifications document used by the
development team, to get a sense of what is acceptable.

•	 If you are contracted to deliver an interactive prototype, what level of fidelity
is expected? Interactivity means different things to different stakeholders.
Their expectations are often shaped by past experiences, if any, with user
experience projects.

•	 If the application needs to support different types of user roles based on
login, are you expected to simulate the entire user experience for each of
these roles, or just a primary role? This point alone can make or break a
project, because stakeholders may demand to see the differences for each
role, while you have budgeted and scheduled the work for simulating only
one.

•	 Wireframe planning and construction: Knowing in advance that various
sections have to reflect different types of users or states, should mean use of
masters and dynamic panels. This will reduce redundancy of wireframes and
rework, as the use of masters will require the use of raised events.

•	 Axure skills and techniques: Demonstrating how the interface renders
for different users or different workflow paths, is likely to involve use of
variables and functions, and as mentioned, use of masters, dynamic panels,
and raised events. Knowing what is expected will help you acquire the Axure
skills you need, in advance.

•	 Are you expected to simulate features such as type-ahead, or is it enough to
call out such behaviors in the annotations? It is not that difficult to build the
simulation in Axure, but, is there value, and more importantly, is time and
budget allocated for constructing such common interactions?

•	 How much of the interface is expected to be prototyped, and how much can
be just defined by static wireframes?

Prototyping Fundamentals

[18]

•	 Often, the conversation around the scope of work occurs before the
beginning of the actual work. It is a good idea to agree with stakeholders on
the set number of high-priority screens and flows that will be simulated in
detail, with the rest to be addressed as static wireframes.

•	 Is the plan to quickly deliver a high-fidelity vision prototype first, and once
the project gets the green light, use it for detailed design and specifications?
If this is the case, keep in mind that refactoring the need to rebuild sections of
your Axure file is likely to be required. There are several reasons for this:

	° To begin with, the work on a vision prototype tends to be very high-
level show off, with "best-of-all-possible-worlds" functionalities
and features. Often, there may be enough time or details to validate
that the proposed user experience can actually be supported by the
underlying business processes or technology. When the work on the
detailed design moves forward, many of the assumptions that were
made for the vision need to be scaled back in order to meet actual
business requirements and technical constraints.

	° One particular pitfall to watch for has to do with administration
screens. Most applications have some sort of administrative
functionalities that range in capability, for example, allowing a
superuser to assign access permissions to other users for setting the
values of a wide range of defaults and other parameters. As very few
users will actually interact with this part of the application, it is often
dismissed casually in early conversations, only to resurface once deep
into the project.

	° Create an inventory of all the application's modules and key
screens. With the relevant stakeholders, agree which screens are
in scope for what treatment. This will be the blueprint for working
on the prototype, and for change management, as a result of scope
realignment.

Chapter 1

[19]

Balancing act: What stakeholders
have to say
In his classic movie Rashomon, Akira Kurosawa unfolds the details of an event, by
telling the story from the perspectives of multiple characters, including a dead
person. Each character, who was also a direct witness to the event, recounts the story
by telling the narrative from their point of view. That some form of the event actually
happened, is undisputed, but as it happens, the stories, while similar in structure,
end up contradicting each other.

User experience practitioners often find themselves in a Rashomon situation because
of UX's unique position at the intersection of business, technology, people, and
systems. The success of the UX project rests on our ability to fuse the various entities
in a coherent and elegant way.

Understanding the perspectives of the stakeholders we work with is important, not
only to arriving at a good solution, but also for a strong collaborative environment
capable of handling the stress of constant change and fleeting schedules. The
coming pages provide the insights of real people: business process architects,
product managers, project managers, visual designers, development managers, and
developers. I had the pleasure and benefit of working closely with many of these
people over the years, and their insights are provided below, as they correlate to
various chapters in this book.

Business stakeholders
You are likely to interact regularly with several types of business people: top
executives, business process architects, product managers, and others. In many
projects, the entire effort is driven by the business, and the success or failure of
UX initiatives indeed rests on the informed support of top executives, who firmly
understand the benefits of investing in user experience. UX practitioners often do not
get much visibility into the tactical or strategic goals that the top management has for
the project, which may lead to frustration and misaligned expectations on both sides.

Prototyping Fundamentals

[20]

Management
I have asked Oren Beit-Arie, Chief Strategy Officer at Ex Libris, a leading global
provider of library automation solutions, to share his thoughts about management
and UX. This is what he has to say:

Organizationally, a company may not be built around UX core competencies, and
outsource it. Consequently, UX may be the first to be cut because it is not clear to
management that UX contributes enough value, and there is suspicion that the
consultants are just exaggerating up the value of their work. The recognition of the
importance of UX for our company and products has evolved over the past decade,
as we gradually learned to integrate UX with the development process.

When you are designing a customer facing application, it is easy for stakeholders
to form their own personal opinion on how compelling a proposed UX is. That's
because we can see ourselves in the role of the user, compare the experience with the
competition, and with other applications we are familiar with.

But when you develop expert systems, and administration tools, Management and
other stakeholders face a true challenge with the UX because it is difficult to figure
out the best user experience. Managers have less intuition about how expert users
do their work, how to improve and innovate something you are not fully know in
great detail?

As a result of the evolutionarily path we took, we have a lot more confidence in
dealing with this situation, and the impact of UX on our products. Today, we
can also invasion how to use patterns we experienced on our iPhone and other
mobile devices, might work on a particular product, because such patterns are so
ubiquitous.

Generally, we find that, as Management, we think about UX as an investment
effort that has two aspects to it:

The first deals with relatively straight-forward questions that are easy for
management to drive towards and benchmark against: How to facilitate tasks
and workflow via the UX? How to improve the productivity and efficiency of an
application? How to satisfy the need to demonstrate lower cost of ownership? How
to get a smart UX especially for complex tasks, How to make a product accessible,
and so on. This is a very important aspect, but perhaps more tactical, as it is a
solution-based approach.

Chapter 1

[21]

The second aspect is less clear but more strategic and far-reaching; where
Management, often struggles to determine the appropriate answer and make the
proper investment: It involve aesthetics, design language, high production values,
and our product, even corporate identity: How to balance between sleek, supper
commercial design, and a more appropriate, practical design?

Increasingly, the standards and expectations our customers have, are not related
to the specific class of applications we are dealing with. Rather, they form their
experiences based on their experiences with applications from totally different
domains. The issues become - are user expectation set too high due to these other
apps? Think about Pixar producing eBooks…How to balance between making you
product unique - and yet not so different - How to preserve your identity?

New realities force management to think about the competitive landscape, and
new customer demands such as dealing with multi-device delivery: Mobile,
tablets, desktops - which translate to the cost and complexities of multiple
technologies, and on top of these - creating the UX for these. Another example for
a challenging dilemma was, should we wait to HTML5 or do something now with
existing technologies? Other questions related to this aspect involve localization,
personalization and customization - How much to spend on these features and
capabilities?

It is a process, and working closely, and iteratively with UX helps resolve many of
those questions and concerns.

Business process architects
Tim Robb is a senior manager at NetApp, with whom I had the pleasure of
collaborating some time ago. I have to admit that I am still under the spell of his
leadership style and the way he worked to get the team through challenges that, at
the time, seemed insurmountable. Here are Tim's thoughts on collaboration with UX,
in this case, a team of UX designers.

Q: What are your expectations from the UX team?

I'm looking for the UX team to understand the context in which our users will
interact with an application and what the users value above all else… That is,
I expect the UX team to go beyond time-on-task analyses and develop a full
understanding of why the users would want to use an application AND then
how the application will impact user productivity, how it will hold their interest,
how it will pique their curiosity, how it will help them understand and hopefully
encourage them to return and view the application as an enabler rather than a
"burden"…

Prototyping Fundamentals

[22]

The UX team should apply its expertise to help the business/functional/technical
teams from "getting in their own way". We can all fall in love with automation,
technology, the latest-and-greatest, "process simplification", our pet features,
etc. However, the UX team should be speaking as the surrogate voice of the user.
They should keep the business teams honest in representing and protecting the
users' best interests. They should help the project team approach "stretch goals"
in fostering end user satisfaction. Don't lull us into adopting "best practices" at
the expense of delivering something remarkable, something that could deliver a
competitive advantage.

In some respects I expect the UX team to serve as a kind of safety net that drives
the business to deliver a harmonized blend of critical functionality and usability.
The UX team should play a key role in leaving users with the impression that
application delivery is not something we did TO THEM, rather something we did
FOR THEM.

Q: What are some challenges in reviewing UX?

Protecting the time to do it… the business is trying to balance requirements-
gathering, BRD (Business Requirements Document) development, conversion to
functional/technical documentation, etc. and bringing UX team up to speed on all
the nuances within and across workstreams.

Given challenge above, we had to 'divide and conquer' to review and advise…
I think preferences for UI elements tend to be very personal which can result in
different opinions when different parties review at different points in development
lifecycle (and I would assume, frustration on the side of the UX team when the
feedback changes depending on who is weighing in and when)

Trying to understand how to wade thru a wide variety of options… Looking at
Wireframes, mockups or some other graphic representation is very helpful – critical
for me (and also I think for sales and marketing users, who I think tend to be more
"visual")… but then it can be a challenge to keep up with the changes and proposed
changes and user-reaction/feedback to those over time.

Q: Do interactive prototypes help clarify the UX, or do they make things more
complicated, slowing down the project?

I think the answer is "Both". Prototypes definitely help clarify the UX and in many
respects "bring it to life"… but they do take time to develop, review, refine, review,
assess, refine, etc.

Chapter 1

[23]

I think an equally impactful issue for consideration is how close can/will the
final product be to the prototype?… Project capacity/timeline, technical limits or
performance considerations (for instance if application is integrated to or embedded
in another application framework) can all impact the ability to match a prototype
to the final deliverable. Users who see a prototype seem to magically develop a
"photographic memory" of that cool new UI or UX treatment of something they've
labored with in the legacy system for years… If the end product can't or doesn't
deliver those one or two favored aspects, you can run the risk of not meeting up to
the expectations the prototype set in their mind. I don't think this is a reason to
shy away from prototypes, just a cautionary note to be careful how you position
prototypes/wireframes.

That being said, we don't subscribe to the "under-promise, over-deliver" strategy.
Despite good intentions, that can easily turn into a "under-promise, under-deliver"
situation and worse, can actually prevent the team from reaching stretch goals or
creating differentiating outcomes.

Q: What can UX teams do to improve the communication with business people?

Simply be honest with the users and the project team… don't tell either of them
what you think they want to hear, tell/show them what is realistically possible
within the constraints of the technology and the project scope. At the same time,
convey the UX team's excitement and energy to those possibilities.

Communicate visually, communicate visually, communicate visually – whether
with mockups, wireframes, prototypes or by showing other websites for
comparisons or just to trigger thoughts/ideas.

Don't dwell on the legacy system, but understand it well enough to understand
what users think are the top detractors/barriers to productive use AND what
they think are top 5 positive aspects. Keep in mind that when you do deliver
the new system, regardless of current "shortcomings" the legacy system will
instantly become "the best thing we ever had". So help protect the project team by
understanding not to "miss what's not broken".

Don't underestimate or under-invest in the value of the end-user feedback as part
of the review process. And if you are developing an application that is utilized both
internally and externally be certain to capture both perspectives… walk thru "a
day in the life" of both parties and then frame that in the perspective of the end user
values (not what the project team values, not what project management values).

Prototyping Fundamentals

[24]

M is a director-level business process architect at a global consulting firm, who has
years of experience leading the development of business requirements effort for
highly complex software development projects:

During the requirement gathering and high-level design phases of a complex
implementation project partnership between the Business Architecture and the UX
team can greatly enhance the final product.

By using a prototype-driven approach, the business is able to grasp possible options
and make better informed decisions. At the same time, the risk is that what is
presented is assumed to be "set in stone" by the executive team therefore creating
an expectation that cannot be maintained due to budget constraints or availability
of functionalities.

The Business Architecture team can and should leverage ideas generated by the UX
team and evaluate the business requirements accordingly. In multiple occasions,
we found our requirements to be lacking the users' perspective. By communicating
with the team and by evaluating its reaction, we were able to adjust the
requirements to achieve an enhanced user experience.

Of particular help was the use of wireframes. One of the most effective interactions
I have experienced with the UX team was the creation of wireframes making the
requirements come to life.

The back-and-forth between the teams and the ability to see a draft of the final
product while finalizing the requirements was instrumental in the achievement
of a successful product. For example, one of the requirements called for the ability
to indicate that one account can be indicated as "Same As" any other account on
the object being developed. After reviewing the wireframe and going through the
steps a user would have had to take to comply with the requirement, the Business
Architecture team realized how cumbersome the interaction was and modified the
requirement accordingly.

Although the use of wireframes and prototypes greatly enhances the ability to
deliver a good final product from a user experience standpoint, some considerations
need to be taken into account.

The UX team has generally limited knowledge of the processes being enabled; this
requires the Process Architecture team to spend a considerable amount of time, at
least in the beginning, transferring knowledge. This is especially daunting when
the UI being designed is completely knew. In projects with limited time and budget
this can cause friction between the teams and poor cooperation.

Chapter 1

[25]

The Process Architecture team's expectations need to be managed when
interacting with the UX team. In the early stages of a project, there should be a
clear understanding of the rules of engagement between the two teams and the
expected deliverables the UX team will produce. In my experience, teams that did
not work on projects with heavy involvement from the UX team had difficulty
understanding the benefits and the deliverables the UX team can provide. One of
the major points of contention has been, in my experience, the demarcation between
BRDs and UX specs. It has been challenging to identify which document should
contain what requirements and to what extent to the point that, at times, there
were conflicting directions for the functional teams to follow.

The UX team should use tools capable of producing an output that speaks not
only to functional teams but to Business Architects as well. While reviewing UX
specs I frequently found the documents to be very technical and not immediately
understandable. This slowed down the process of creating a cohesive output and, in
time-sensitive situations, has created friction between teams.

We live in a world where most of us spend a considerable amount of time each day
on the Internet or using products from well known software providers such as
Microsoft Office and Adobe Creative Suite. This provides all of us with access to
well thought out user interfaces that have been refined over the course of several
years and have been widely accepted as standard. When interacting with the UX
team, Process Architects tend to apply their experience with such software packages
and websites sometime overstepping their area of expertise. Interaction with the
UX team, in such circumstances, has resulted less than fruitful. The Business
Architecture team should clearly understand and recognize the UX team's
expertise and rely on its inputs to craft a good user interface.

In my opinion, the inclusion of the UX team on complex system implementations
is fundamental for being able to provide the best product. Although the interaction
with the other teams involved in the development is not always easy, the benefits
far outweigh the challenges.

Project management
Project managers are tasked with tracking the progress of projects and facilitating
solutions that help resolve roadblocks along the way. In many projects, UX
professionals do not have the benefit of a dedicated project manager, which can be a
problem for medium and large projects. If a project manager is not budgeted to the
project, it is a good idea to raise that as a flag and take extra effort in developing a
comprehensive, mid-level plan, by yourself. If there is a project manager, make sure
to review the entire project plan and flag dependencies where the UX effort has not
been considered.

www.allitebooks.com

http://www.allitebooks.org

Prototyping Fundamentals

[26]

For example, many plans do not account for the time it takes to refactor the Axure
file from vision prototype to detailed design prototype. Others don't take into
account the time it takes to iterate and revise the prototype. Sometimes, the time it
takes to arrange the logistics of usability tests such as recruiting, is not considered.
The more time spent early on with the project manager, as the plan is being
developed and revised, the better off the project will track later on.

Tom Hackett is a project manager with a background in web development. He has
worked with UX designers as a front-end web developer and a project manager:

Q: What are your expectations from the UX team?

As a project manager my expectation from a UX team is that they are able to
identify user issues, and suggest design solutions that solve customer problems.
I would expect that a UX Engineer can identify issues through both interviews
and observation. A UX Engineer who can create clickable mockups and walk
users through a prototype helps clarify if suggested changes will have the desired
effect. It's also important that the final designs incorporate functionality and
workflow notes for the development teams, clarifying expected behavior that isn't
implemented in the interactive prototypes. It's a huge benefit if the wireframes are
written in such a way that the development team can leverage the HTML/CSS in
implementation.

Q: Do interactive prototypes help clarify the UX or make things more complicated,
slowing down the project?

My experience has been that UX prototyping seems on paper to increase
project timelines, but in practice can reduce development cycles since users can
give feedback on an interactive UX design much sooner than waiting for the
first generation system. This reduces the amount of feedback necessary in the
development cycle itself and allows developers to focus on functionality rather than
incorporating design or layout feedback during the build phase. An interactive
UX often clarifies whether implied or assumed functionality that isn't documented
formally exists, both for end users and development teams.

Q: What can UX teams do, to improve the communication with business people?

UX Engineers can improve overall team communication by ensuring development
teams are behind suggested solutions and feel confident in implementation. An
interactive prototype that pleases the business but cannot be implemented due
to performance constraints or ties to legacy system workflows, etc... can cause
problems with scope management.

Chapter 1

[27]

Visual design
The Medium is the Message—Marshal McLuhan

Visual design introduces some of the most daunting challenges for rapid prototyping
projects and a hidden iceberg for Axure prototypes. Why? Because of a gap,
sometimes a serious one, that grows between the wireframes in the prototype and
the visual design. This poses both UX and development risks because of the need to
reconcile between two representations of the same screen. Eventually, a refactoring
of the Axure prototype will be needed, especially if the intent is to keep using the file
throughout the entire life cycle of the product.

The two sets of wireframes are developed asynchronously. Normally, we start
with Axure wireframing as rough conceptual sketches that evolve through rapid
iterations. These wireframes address information architecture and actionable tasks,
and the layouts are often tentative. With Axure, we can enhance those estimates
and evolve the concept as an interactive prototype that demonstrates the vision for
navigation and interaction patterns.

All this work, however compelling, tends to be in grayscale, without visual design.
As user experience architects and designers, we want to isolate the feedback we
obtain from stakeholders and potential users. The conventional wisdom is that
adding visual design cues at such an early point is adding unnecessary 'noise' to the
feedback. That is because people's response to colors and layouts is both extremely
subjective and strong, and the concern is that such feedback tends to push to the
background more substantive issues.

However, referencing McLuhan's point that the medium is the message, is the
argument that it is not possible to separate visual design from user experience. This
argument sounds especially compelling when it comes to the design of mobile apps.
This is a case where beauty is inherent to the design of the user experience.

What often happens is that, at some point in the UX process, visual design gets
involved, and the ugly duckling emerges as a beautiful swan. Now, everyone needs
to start looking at the two sets of wireframes. Often, the two sets will continue to
evolve on separate tracks because, while the work with the visual designer takes
place, work on finalizing Axure wireframes for specifications continues. It is easier to
manage the situation if it is taken into consideration early on. Resolution is still going
to be an effort, but at least it will be accounted for in the project plan.

I have found that UX designers, myself included, sometimes do not completely
appreciate the complexities and challenges that the visual designers on the project
face. Busy and stressed by our own issues, it is tempting to dump on the visual
designer a great deal of information, often not fully baked, and expect that somehow
the designer will 'get it'.

Prototyping Fundamentals

[28]

Therefore, I have asked Yael Alpert and Colin Ochel, two exceptionally talented
principal visual designers, to share their perspective. Here are Yael's thoughts:

Q: What are your expectations from your UX partner (team or individual) on the
project?

Get informed about the client's business and UI requirements as much as possible
and get the full understanding of any background research for the project done by
the UX team.

Be involved the UX's process of creating personas and users' and stakeholders'
interviews, when such process exists, and understand the audience for the project.

Get involved in the UX process as to why they made certain decisions in design
and interaction; this can help the visual designer better make their decisions in
visualizing the wires and see what limitations, if any, the specific project has.

Meet the UX designer to go through the wires; this is very important, so the visual
designer can fully understand every intention of the UX in the project.

Have meetings critiquing the visual designs; it is important to have these meetings
so the visuals are viewed from a UI perspective before being presented to the client.

Q: What are some challenges of integrating the visual design with a conceptual
wireframe?

Keeping true to the UI while creating an engaging braded experience. Many times
it is tempting to design interactions that are 'more fun or unique' but are less 'user
friendly'; the challenge is to find the balance between the two.

Come up with appropriate solutions - many time the wireframes will not be
obvious in what's the best solution for a certain interaction or page; the visual
designer will than need to communicate the UI intention in a way that makes sense
to the user. It's the visual design that the user sees in the end and these do not come
with an explanation, so the visual design needs to be very clear to the user.

Be creative: a good visual designer will try and see the wire frame page in a few
different ways and explore a few ways of visualizing the same thing. This is a
challenging practice but a very good one especially if user testing of the UI are
conduced.

Chapter 1

[29]

Q: What should UX designers keep in mind when communicating with visual
designers?

Everything happens for a reason: Have every element in the wire thought about
(even if they are made just for the purpose of visual design), even elements such
as color; if you color a certain item in the wires, the visual designer will see it as a
meaningful thing, if there's no reason for the color / differentiation – do not
use color.

Be consistent: Describe or visually represent specific elements in a similar way
and keep to it throughout the wireframes. Elements such as icons representation,
navigation items, buttons etc.

Be clear: The visual designer in a way is like the client to some extent; s/he needs to
understand the wires as much as anyone else to achieve the best outcome; to save a
lot of back and forth clarity is important.

Be open: Many times, inspired by the wires and the project in general, the visual
designer might come up with a different layout and or interactions than the UI that
still serve the project well. Be open to discuss updates if they make sense; visuals
designers in the interactive area understand interactions and have an opinion; they
are not just 'coloring' the wireframes; a good visual designer brings his or hers
experience to the table that can work well together with UX.

Here are Colin's insights:

Q: What are your expectations from the UX team?

To be the voice of the client. I expect that the wire frame are the translation of the
client's needs and if I have any questions or suggestions, the UEA can answer me
as if they are the client.

I also expect the UEA team to be open to change. Because the UEA gathers the
requirements from the client, they are led down the client's vision of the product/
site/widget and it very difficult to view it from another direction. I get to see the
requirements from a bird's eye view through the raw wire frames so I can view the
content/flow from a non-influential eye. This allows me to make suggestions the
UEA might not have considered.

Prototyping Fundamentals

[30]

Q: What are some challenges of integrating the visual design with a conceptual
wireframe?

Space. Often wireframes pack in a lot of information in a small space. It looks fine
when it's small text in a bounding box but not when it is in a designed layout.

Less is usually more when it comes to design. Just because something is content
rich does not mean that it needs to be cluttered. Do not be afraid to brake down
a page into parts that are shown only when needed. Finding a clever yet clear,
intuitive way to display the content is always a challenge though. The more you
hide, the more risk you run into bad usability.

Q: What should UX designers keep in mind when communicating with visual
designers?

Most designers do not think like architects so it is a good test to see if your
wireframes are clear. If the designer gets hung up on any part of your wireframe
then you need to revise that interaction to make it more clear because if they do not
get it, the end user will not get it.

Development stakeholders
One would not be blamed for thinking that developing the user experience and
software development are complementary processes. However, as we often find,
there is a gap between UX and development. There are many reasons for friction, but
a fundamental means to resolve these is communication.

It is surprising to hear stories about large projects where the interaction designer and
developers only got together well after a spanking, high-fidelity vision prototype,
commissioned by the business side of the organization, had been used to drive top
management to move forward with the project.

The problem, from the perspective of the development team, is that the expectation
now is that the amazing application will be developed and will work just like
the prototype, and will be in production in no time…as if life was so simple!
Development leaders often express concerns that UX does not always take
into account the constraints of available technology, impact of the new UX on
performance, scarceness of development resources available to the organization, or
the complexities involved in implementation of the new UX.

These concerns are often valid and true. With Axure, however, UX has a tool that
helps improve communications through visualization of interactivity and integrated
annotations. Conversations, analysis, estimation, and adjustments can start early on
in the development life cycle and reduce the stress on the development team.

Chapter 1

[31]

The following are the thoughts of Mark Roeser, a senior technology executive with
extensive experience and focus on large-scale data systems:

Q: What are your expectations from the UX team?

At the core of course the UX team builds out the interface design, looking for the
most effective way to bridge the user's wants with the application. What I like to
see most are openness and curiosity. UX needs to navigate around shifting product
goals, technical constraints, a variety of user personas, and other unique challenges
that have the potential to lead to an unsatisfying compromise. Having the freedom
and curiosity to explore a number of possibilities is the best path toward inspired
solutions.

Q: What are some challenges in reviewing UX?

Removing ourselves and our assumptions when reviewing UX, and imagining new
contexts and situations in which to review a design. Also, focusing on the right
elements at the right stage of the project: don't review or discuss art when things
should still be handled at the wireframe stage.

Q: Do interactive prototypes help clarify the UX or make things more complicated,
slowing down the project?

Prototypes should be carefully considered with specific goals in mind and not
always be included. Prototypes that are easy to produce but too simplistic can lead
to false validations. For example, a hardcoded workflow reviewed with an end user
can seem easy and clear to understand, whereas a final working product might
reveal excessive clicks, repetitive tasks, etc. when they use it for real w/out the
idealized storyline.

Q: What can UX teams do, to improve the communication with business people?

As much as possible, share share the methods and teach the language of UX. Give
them a language to effectively communicate their ideas and concerns, and draw
them into the process. Be a guide and partner with them to discover solutions
together, rather than asserting authority or attempting to dazzle with cleverness.

I'm also very much interested in finding ways to improve how UX works in an
iterative development process, particularly in the context of the "minimal shippable
functionality" aspect of agile/scrum. Here the goal is to learn early from a simple
product in the field, rather than concentrating all UX work at the start. For this to
be effective, the UX team needs to work closely with the development team to plan
meaningful iterations and build in the feedback/measurements necessary to drive
the process forward. Easier said than done!

Prototyping Fundamentals

[32]

The UX perspective
User interface/experience practitioners come in many flavors. There is no standard
certification or professional accreditation that can help a client determine who is a
truley qualified UX resource. While you will not take on an uncertified architect to
design a skyscraper or your home, the evolution of user experience as a discipline
matches other segments in software design, where a degree is not the only measure
of expertise and skill.

However, there is also an aspect that relates to the technical skills we bring to the
table. For someone who is only versed and comfortable with wireframing in Visio,
developing an interactive prototype in Visio, will be a challenge.

Of course, it is a lot easier to create such a prototype in Axure. However, should
you embrace this tool? It is best to avoid heated tool-camp loyalty arguments, as the
answer typically boils down to a strategic business and professional decision:

•	 Are you a single user? Perhaps an independent consultant, or the single UX
practitioner in an organization? In this case, you need to consider the cost of
investing in the tool, and the return on your investment.

•	 Think about the projects you have created so far with the tool(s) you have. Is
there a gap that you need to fill?

•	 Axure is becoming a good skill to master. Will learning the tool open up new
opportunities?

•	 What about the cloud-based services for which you pay a subscription?
Certainly, it is a good idea to review the option. However, the thing to
consider here is that many corporations may frown upon having their
strategic plans placed on some cloud. Moreover, firewalls and other security
barriers may make it difficult for stakeholders to access the work.

•	 Are you a member of an interface design agency, or in an in-house design
team?

•	 What are the challenges of running a shared Axure project?
•	 What kind of training is needed to level the team's prototyping skills?
•	 What are the project opportunities that open up with using shared project

and the efficiencies, savings, and increased profits in terms of re-use of
widget libraries, masters and generators?

Chapter 1

[33]

The UX practitioner
I have asked a few colleagues to share their honest perspectives on the use of
Axure. I think you might find Katrina's and Saikat's account very relevant to your
experience. Here are Katrina Benco's thoughts:

I used Visio for a long time before using Axure. The thought of switching tools was
a daunting, but enticing proposition. I started using Axure with an open mind and
haven't looked back. It has a small learning curve and is continually proving itself
as a clever and useful tool.

One way Axure has supported my design process is its flexibility for documenting
highly complex or configurable systems with a rich, interactive UI and layers
of business rules. The mechanisms to prototype also allow me to document and
annotate the different states of the wireframes in an object-oriented manner. I can
use dynamic panels and masters to show different states in the UI not only based
on interaction, but also business rules, roles, configurations, etc.

My primary use of Axure has been to design and specify wireframes and generate
printed wireframe specification documents for the developers, not to do prototyping.
However, Axure's prototyping features have reshaped my design process in two
ways:

I can quickly prototype an interaction and test it out myself. There is nothing like
trying on your own design for size. I prototype my design concepts to pitch them
to the business and tech folks. Seeing concepts in action is a powerful way to show
design concepts and gain buy-in, or to sell one design over another.

My suggestions for successful adoption by a large UX team are to:

First, have best practices for using the tool in place to ensure everyone documents
their wireframes in the same way. Second, take advantage of the masters to globally
spec as much of your UI as you can and to share design patterns.

And here are Saikat Mandal's thoughts:

Axure is an amazing prototyping tool. It can be all-inclusive tool for a UX
designer. It helps you ideate; create bubble diagrams, flow diagrams, sketchy-low
fidelity prototypes. Where it is hugely helpful is its capability to make high fidelity
prototypes, which can mimic the actual system at quarter of its cost and time.
This is not just a tool for the designers but also for the whole team, which includes
Project Managers, Business Analysts, developers and even the Quality Analysts.
Rapid visualization gets all these team going. They now don't have to wait for the
other team to pass the ball.

Prototyping Fundamentals

[34]

The beauty of all complex things is its simple structure (I am reminded of Clarke's
Law: Any sufficiently advanced technology is indistinguishable from magic.) Your
work just gets done like magic and you don't even have to think of the mechanism
behind it. (Disclaimer: Sometime this can set wrong expectations at workplace).
The Layout is similar to a website. A simple structure which tells you that there
is a website with simple three pages. A common man can make a website and have
a web presence. It does not need any prior knowledge of website building. Simple
knowledge of hyper linking will get a person going. You can then make it more
complex based on your need.

There are some challenges to Axure's adoption. Most of the design fraternity has
grown up using Adobe suit and Dreamweaver as prototyping tool. Thus adapting
to a new product that does things differently can be a challenge in the beginning.
The other disadvantage is that Axure does not have the capability of layers . Layers
in Axure can add whole new meaning. This will make it closer to Photoshop and
can have the versatility of Auto Cad.

However, there are ways to customize the dynamic panels to behave as layers. So
an advanced user, familiar with layers can modify dynamic panels and get it to
perform the functions of layers.

'Nomenclature' is another problem. Naming widgets and panels correctly and
reusing them as masters is the crux of Axure. Unique Ids can be separated from a
class of object by naming objects properly. A new user without guidance will not
get to know the pattern and thus there needs to be some scaffolding to help them.
The good news is that a user has complete ability to customize the system. Thus
giving tremendous power to the user.

Overall one tool doing so much is in itself a marvel. It has its shortcomings but the
team behind it is doing a tremendous job of mitigating the problems. Axure is a
powerful tool, which can make wonders when used correctly.

The UX team lead
I asked Alfred Kahn to share with us his insights, based on his experiences with the
previous version of Axure, while leading a large UX team on a complex project:

The challenge
Create a new, consistent, unified design for the J.P. Morgan Treasury Services portal,
using a large team spread across three locations.

Chapter 1

[35]

Team structure
My team consisted of 12 designers divided into four workstreams, each responsible
for a different part of the design: Portal, Payments, Information Management and
Standards. Each workstream had a lead responsible for overseeing the design work
and ensuring that the workstream's designs complied with the standards that were
developed over the course of the project. The Standards team was responsible for
maintaining the User Experience standards and reviewing each team's designs for
compliance.

Process
Based on prior experiences working with standards that were developed in the
abstract, I established an iterative process that would enable us to evolve standards
organically. Our standards were derived from solving real-world design problems
specific to the context and the domain in which we were working. Each workstream
had an ownership of the wireframes for the screen designs in its area of the portal
and published its own specifications. The specifications were consumed by the
product and tech teams (BSAs, architects, and developers) for that area, but starting
with the initial designs, we identified common functionality and created a set of
standard patterns that were then used in all wireframes.

Each of the three specifications included a "Globals" section, maintained by the Portal
and Standards workstreams, containing specifications for widgets used for common
functionality. As a result of this approach, the Client Experience team became the
central point for maintaining consistency across the entire portal project in terms of
both design and requirements.

Axure was the easy choice as the primary design tool, to a large extent based on its
shared project, masters, and UI specification generation features. Had we used any
other tool, the project would likely have required at least 2-3 additional designers to
just support distribution and integration of common design elements.

Extending the process
After the design of the first release was done, we explored ways to integrate the
functional specification content into Axure, in order to provide a single point of
reference for the developers building the application. We piloted and then rolled out
a process whereby the Business Systems Analysts (BSAs) would enter their content
into the shared Axure file in a separate set of annotations through a customized
view. The BSA annotations were published in the UI specification in a separate table
following the annotations entered by the Client Experience designers.

Prototyping Fundamentals

[36]

This approach was limited to those parts of the functional specification that related
to the UI, but provided a single point of reference for the developers building the
user interface. It had the added benefit of lowering the overhead around maintaining
consistency between the functional specification and the UI specification; prior to
establishing this process, the Client Experience and the BSA teams spent a significant
amount of time reviewing each other's documentation to make sure that they were in
alignment and that there were no conflicts.

Axure: The Good
There were two main features in Axure that helped ensure consistency of the
design across the three workstreams: the shared project and custom widget library
features.

The shared project feature enabled the team to use the same set of masters, which
meant that we could centrally update designs common to all workstreams. The
custom widget library provided designers with an easy option to use widgets that
complied with the standards. We regularly re-factored the custom widget library to
reflect modifications made to the user experience and the visual design standards, so
that they always had an up-to-date version available to them. Other Axure features
that helped streamline the design process were:

•	 Access to wireframes across workstreams: As every designer had access to
every wireframe, they could easily refer to another team's design to prevent
duplication of functionality and drive consistency across the application.

•	 Wireframe categorization and navigation: We used the tree in Axure's left
navigation to categorize our many wireframes. Each team had a node, and
as we had established a numbering and naming convention for wireframes,
masters and dynamic panel states, it was easy for us to find each other's
wireframes.

•	 Page Notes: These enabled us to provide a categorized overview of each
screen, and the sections we established within Page Notes served as a
template to prompt designers to enter critical information.

•	 Integrated specification generation: It drastically reduced the overhead
related to maintaining the UI specification, especially as we ended up
with multiple versions of each specification related to point releases. Had
we been forced to use a separate tool for managing and generating the UI
specifications, it would have doubled the level of effort for the project, at the
very least.

Chapter 1

[37]

•	 Restore feature: On a number of occasions, Axure's restore feature
saved us many days of rebuilding screens. Coupled with the fact that the
subversion instance was backed up centrally, we were able to reduce our file
management overhead as well.

Axure: The Bad
The single biggest downside to using Axure (Version 5.6 and earlier) on a project
of this size is that the project file got extremely large, creating significant latency in
checking files in and out. It was not unusual for it to take up to 5 minutes to check a
screen in or out. This was a source of frustration for the team and became a drag
on productivity.

An easy way to mitigate the check in/out latency would have been to break the
file up into separate projects for each workstream. Unfortunately, Axure does not
have an "include" feature; there was no way to store, maintain, and share common
elements outside of the main project file. For this reason, we maintained a single
project file and lived with the frustration.

While we loved the custom widgets library feature, it didn't update when the library
modified; each time we updated the library, it had to be published and imported
manually. It would have been much better to be able to push custom widget library
updates out to all designers automatically, through the project file.

The functionality associated with the Specification Generator not as robust as other
features, however, Axure was very responsive to our feedback. We sent the company
a list of new features and upgrades that we thought would significantly improve
the utility of Axure for us. When we met to review the list, we indicated that the
Specification Generator feature upgrades were of the highest priority for us (Axure 6
addresses many of those requests).

Despite all of these issues, Axure was a huge boon to the project. Given the scale of
the effort, if we had not selected Axure as our design tool, each workstream would
have required an additional designer just to manage the distribution and integration
of the common design elements, significantly adding to the overhead of the project.
After leading a team through the design of four releases using Axure as our design
tool, I think we made the right choice, and would do so again without hesitation.

Prototyping Fundamentals

[38]

Tips for using Axure on large design projects
The following are some tips that should help you get the most out of using Axure on
a large project:

•	 Axure can promote, but not enforce, consistent design; ensuring a consistent
design still requires a governance process

•	 It is critical to construct wireframes properly and consistently across all
teams

•	 Create a naming convention for wireframes and dynamic panels; validate
proper naming during governance reviews

•	 Agree on a common structure/organization of wireframes and enforce that
organization across all teams

•	 Allow time to train new users in the finer points of using Axure
•	 At the beginning of the project, pilot a number of ways of using masters

and dynamic panels, and then settle on a common approach; validate the
implementation during governance reviews

•	 Be sure to bake time into your project plan for maintenance of the Axure file:
	° Refactor the project file at strategic points in time—between

completion of wireframes and writing the spec, and after the
completion of a release

•	 Plan to have one wireframe structure for prototypes and another for
specifications

Axure around the world
The world is getting smaller, and I think that UX plays a small role in getting people
from all over the world closer, by propagating good user-centered design patterns.
I am curious about the practice of UX, and the use of Axure, as a design tool around
the world. I have posted the question to the AxureWorld group on LinkedIn (see
here: http://lnkd.in/52g3h8). You can read the responses from practitioners in
Brazil, the Netherlands, India, Israel, the UK, and many other countries…and please
add your comments as well!

Chapter 1

[39]

As a more in-depth response, I have asked Richard Tsai, Chief Information Architect
at UserXper Digital Consulting Co., to share with us the perspective on Axure's use
in China and Taiwan, and this is what he has to say:

My first experience with Axure RP happened in 2006. This all started from a
colleague who observed that lots of prototyping tools, which I had never heard
before, were introduced by the Western UX bloggers. After downloading and
using Axure RP v4.0, I immediately realized that this is exactly what I want. It is
highly valuable in managing large-scale website projects.

In 2007, I left from my ex-company and setup UserXper Digital Consulting
Corporation. Our major business is focusing on providing the service of
information architect and website planning, including prototyping. At the same
time, UseXper became the Sales & Training Partner with Axure Company and
stared to promote Axure RP in the Greater China Area.

The obvious advantages of Axure RP itself and word-of-mouth advertising by users
took effect better than our promote activities; therefore, many famous and top-class
enterprises such as Internet company (Yahoo! Taiwan, Alibaba, Baidu,...), software
companies (Trend Micro,..) , even hardware companies have used the Axure RP
and taken it as the first choice of UI prototype tool.

How the users in Great China area apply the Axure RP to their job? There are
three different usages from beginners to fabulous users.

First are beginners using Axure RP, nonracially identity as freelancers or small
teams. They would simply use basic function such as wireframing and lo-fi
prototype to concretize their ideas. These users may not employ themselves in
Axure RP's complicated interactive design; however, they still make a good thing of
communicating accurately to reach the requirements.

Secondly, advanced experienced design team design the ui & interaction via Axure
RP which tends to mockup the system flow to verify the interface usability as soon
as possible.

Last one would be fabulous team. These people would process the "Design
Management plan" by using Axure RP. For instance, team members can
coordinate UI design pattern through the Widget Libraries function. More
important thing is to create excellent user experience by using the linked-up
company standard with design guideline.

Prototyping Fundamentals

[40]

Except dot-coms, there are more and more MIS departments of traditional
industries and hardware manufacturers start to using Axure RP to design the
interface of Mobile App or Tablet PC UI.

Furthermore, there are some interesting and creative examples about using Axure
RP. For example, a IT team in Beijing use Axure RP to control SA(System
Analysis) and Specification approval. Another example is a company in Taipei
generates the system operation handbook by Spec generation function. Moreover,
one of my colleagues loves Axure RP so much that he uses Axure RP for making
training contact to replace traditional PowerPoint.

More and more industries pay attention to User experience in Great China area.
Famous UX events in Taipei such as HPX party & UiGathering used to taking
Axure RP prototyping as the main lecture. There was about 700-800 persons
attending the User Friendly Conference, the biggest user-experienced conference
and held in SuZhou, China. One of workshops in User Friendly 2011 was Axure
RP Prototyping this year.

The Axure perspective
As this is a book on prototyping with Axure, it made a lot of sense to approach the
company about the vision for the future. There are several considerable challenges
that the company has to deal with:

•	 The more Axure can do (logic, variables, functions, and so on), the more
complex the tool becomes. In fact, we already find a demand in the market
for specialized Axure 'prototypes': people who can take Axure to the max
and create really powerful vision prototypes. Ironically, however, freeing
ourselves from the dependency on developers, and the ability to quickly
and easily create interactive prototypes, is exactly the goal Axure set out to
achieve, being a tool for non-developers. So, here's how the company can
balance these two extremes:

	° Prototype versus specifications: The demand for high-fidelity vision
prototypes is on the rise and is becoming a norm. The turnaround on
such prototypes is fast, and they are extremely influential in getting
decision makers to give the green light to ambitious development
projects. However, turning a vision prototype into a specification—a
deliverable that is often contracted for—is most likely to require
refactoring. The refactoring effort can be substantial, and yet—
often not planned for—budget or schedule wise. Clearly, there are
some challenges around reducing the gap between the prototype
construction and specification generation. How would Axure try to
address this in the future?

Chapter 1

[41]

	° The rapidly changing landscape of UX: Apple, for example, with its
iPhones and iPads and its integration of the mobile operating system
iOS with the desktop operating system OS-X, has changed the user
experience in profound ways. As a result, the syntax of interaction
patterns is evolving. New multi-finger gestures are a good example.
How will Axure support the creation of prototypes for the next
generation of devices?

I have asked Victor Hsu, who, together with Martin Smith, started Axure back in
2002, to share some of his thoughts:

When we started Axure, we set out to build a tool that would reduce project costs
and timelines by introducing interactive prototyping into the process. Axure RP
1.0 was built, and it was a flop. It was difficult to use and had a lot of features that
overlapped with existing tools that did a better job. Looking back, it just wasn't a
tool many people would want to spend their day using. Luckily, the user experience
profession was about to take off. And we discovered a new approach to designing
Axure RP.

Instead of thinking about the project, we started focusing on you, the people
actually using Axure RP. We prioritized features that made it faster and easier to
use and gave you the prototyping capabilities other tools did not. We trusted you
to take advantage of those capabilities to reach better designs and to communicate
with your teams. It worked. You delivered cost savings to the projects and helped
build better software. Axure RP is now the standard for software prototyping tools.

Time and time again, we've seen your successes lead to recognition, and
recognition lead to more responsibility. This is a great thing. The Axure RP
roadmap is evidence of the increasing demands on UX professionals and your
increasing influence. Turnaround times need to be faster. The prototypes are
getting richer as user testing becomes more prevalent. They need to be presented
on the target devices like iPhones and iPads. And your prototypes are replacing
requirements lists and documents as the reference for visual design, copywriting,
development and testing.

We will continue to help you take advantage of these opportunities and at the
same time make Axure RP more enjoyable for you to learn and use. You will find
excellent resources from prototyping and Axure RP experts like Ezra to help you
along the way. And all we ask of you is to produce great work and accept the credit
and influence you've earned.

Prototyping Fundamentals

[42]

Summary
Our success as UX designers rests on our ability to synthesize and express the
many diverse, often conflicting, inputs we gather from sources, such as business
and development stakeholders, user research, business requirements, and various
constraints. At the end of the day, our goal is to find the pragmatic balance,
opportunities, and innovation for the best user experience possible. In order to
visualize and document our vision, a specialized UX tool is invaluable, and in recent
years, Axure has become the tool of choice for many UX designers who feel it has the
right balance of features, complexity, and cost, and is the right tool to demonstrate
their vision.

The coming chapters will introduce you to the wealth of features Axure offers, in
the context of real-life circumstances. As you read the book and get a better sense
of how Axure might fit your needs, keep in mind the various perspectives of the
stakeholders and partners you are collaborating with. At the end of the day, Axure is
just a tool, and it is through true collaboration that we can develop a successful and
hopefully innovative prototype.

Axure Basics—the User
Interface

Like all creative professionals, that rely on tools to express their ideas and deliver their
work, we must understand the possibilities and limitations of the tools we use. There
is no substitute for diving into Axure and discovering its features through first-hand
exploration. However, investing some time early on, to familiarize yourself with the
nuances and capabilities of its user interface, will help you approach Axure prototype
construction in a more skilful, robust, and timesaving way.

This chapter is designed to help you establish a solid familiarity with Axure's
concepts and rich capabilities. The topics include:

•	 Getting started
•	 The Workspace (Mac and PC version)
•	 The Wireframes pane
•	 The Sitemap pane
•	 The Masters pane
•	 The Widget pane
•	 The Widget properties pane
•	 The Page properties pane
•	 The Dynamic Panel Manager
•	 The Toolbar and Menu bar
•	 Axure file formats

Axure Basics—the User Interface

[44]

Getting started
When you launch Axure, you are presented with the Welcome Screen and Licensing
window, as shown in the following screenshot:

This window allows you to:

•	 Open recent files (A).
•	 Create new RP files (B).
•	 See which version of Axure you are running (C). Typically, Axure releases

several updates during a version's life cycle; currently, there is no automatic
update feature, so it is a good idea to check the Downloads section on the
Axure's website, and update to the latest point release. If you are part of a
team, it is recommended that all team members use the same version and
point release. If you are upgrading from an earlier version of Axure, then
keep a backup copy of your files. Once you save a version 5 file in version 6,
you will not be able to open it in version 5 again.

Chapter 2

[45]

•	 Check whether the software is licensed to you or your organization (D).
This information should reflect the information you provided when you
purchased the software.

•	 Access online tutorials (E) and video tutorials (F).

You have the option of preventing the Welcome screen from appearing when Axure
starts up (G), and if you do, the window can be accessed it at any time by selecting
the Welcome Screen and Licensing option, from the Help menu.

Finally, there is an invitation to contact Axure with questions and requests at
support@axure.com (H). My personal experience with Axure's support has been
consistently great since the first time I contacted the company, several years ago.

Working with multiple project files
What if you want to have two or more Axure files open at the same time? No
problem, but the Mac and Windows versions are slightly different: The Mac version
supports the launching of multiple files. Use the Windows menu to navigate between
your open files.

On Axure for Windows, only one file can be open at any given time. For example,
if you have one project file open and you choose the Open command from the File
menu (as you want to review another project), the current file will close and will
be replaced by the newly opened project file. In order to work with multiple files,
launch another instance of Axure from your program menu.

Axure Basics—the User Interface

[46]

The Axure workspace
Axure's workspace is straightforward, as seen in the following screenshot:

Your main wireframing construction space is the Wireframe pane (A), which is at the
center of the screen, flanked by supporting panes on the left, right, and bottom:

Left panes:

•	 The Sitemap pane (B)
•	 The Widgets Pane (C)
•	 The Masters pane (D)

Right panes:

•	 The Widget Properties pane (E)
•	 The Dynamic Panel Manager (F)

Bottom pane:

•	 The Page Properties pane (G)

Chapter 2

[47]

The menu bar (H) and toolbar (I) complete the composition on the top.

The preceding screenshot is a Windows version. The Mac version of Axure (see the
following screenshot) is nearly identical; except the menu bar (A) and the appearance
of the toolbar (B), variations that stem from the difference in how toolbars are
implemented on Windows versus OS-X:

Think of the various panes as lenses that allows you to switch your view from a
macro perspective of the project to a micro perspective of a widget.

•	 Project level perspective: The top-most level is that of the Sitemap and
Masters panes. These panes provide a view of all the pages and masters in
your project, and the ability to add, delete, re-order, and apply other actions
to those assets.

•	 Wireframe level perspective: When you open a page, a master, or a dynamic
panel state for editing in the Wireframe pane, two panes are relevant:

	° The Page Properties pane is where you annotate, style, and attach
interactions to the page or the master wireframes (but all these
options are disabled for the dynamic panel state).

	° The Widgets pane is where you access your collection of built-in or
custom widgets, from which you will construct your wireframes and
diagrams.

Axure Basics—the User Interface

[48]

	° If you include dynamic panels and masters on your page, then they
will be listed in the Dynamic Panel Manager pane. It is possible to
nest dynamic panels within other dynamic panels, masters within
masters, dynamic panels within masters, masters within dynamic
panels, and so on. The ability to view, at a high-level, the construction
of a wireframe is tremendously important, especially if you did not
create the wireframe, a situation that is common in team projects.

•	 Widget level perspective: Wireframes are composed of widgets. Use the
Widget Properties pane to annotate, style, and attach interactions to widgets.

The following table shows a summary of how Axure's workspace corresponds to the
main entities of project, wireframe, and widget:

Prototype perspective Wireframe perspective Widget perspective
Sitemap pane Wireframes pane Widget properties
Masters pane Page properties

Dynamic Panel Manager
Widget pane

All levels
The Toolbar and Menu bar

Customizing the workspace
You have some control over the arrangement of the workspace (as shown in the
following screenshot), which includes:

•	 The ability to hide or show all the panes with the exception of the Wireframe
pane (A).

•	 The ability to detach the panes and move them around. This feature is very
useful if you work with two monitors. A convenient way to organize your
space is moving all the side and bottom panes to one monitor, while keeping
the Wireframe pane on the other monitor:

Chapter 2

[49]

Note, that you cannot change the default location of panes when they are in their
docked state. For example, the Sitemap pane is always parked on the upper-left and
cannot be placed in any other location.

The Sitemap pane
In the Sitemap pane (shown in the preceding screenshot), you create and organize
Pages. Pages are the highest-level elements in Axure. When you launch Axure,
it opens a new, untitled document. The Sitemap pane of this new project has a
default structure that includes a home page, and three nested pages. This will be the
foundation of your own project.

The name of this pane may suggest an antiquated web-centric approach that is
restricted to websites. However, don't let the label mislead you, because it is possible
to create high-fidelity prototypes of highly complex, enterprise-grade web or desktop
applications with Axure.

Axure Basics—the User Interface

[50]

If you are migrating from Visio, an Axure page is similar to a tab in a .vsd file.
Although it is technically possible to create an entire prototype using only page level
wireframes, this approach, like traditional methods of creating wireframes in Visio
or a drawing program, is limiting and may be sufficient only for simple, fairly static,
and small applications. However, as you start exploring Axure, building static pages
will be a logical place to start.

In the Sitemap pane, you can:

•	 Create new pages (A).
•	 Change the order of pages (B) by moving them up and down the sitemap.
•	 Organize pages to reflect a page hierarchy by changing their nesting level

(C). Note, that by nesting one page under another, you are only creating a
visual representation of the sitemap structure. The pages themselves are not
associated to each other programmatically as a result of the nesting. You
create the navigation interactivity yourself, a topic we will discuss shortly.

•	 Delete pages (D).
•	 Edit pages (E).
•	 Search pages (F). For very large prototype projects with many nested pages,

the search capability is a tremendous time saver. Click on the magnifying
glass icon (F) to toggle the visibility of the search field, which appears below
the pane's row of icons.

Finally, you can hide the Sitemap pane or toggle its docking state by using the
controls on the upper-right corner of the pane (H). These options are depicted in the
following screenshot:

Chapter 2

[51]

Also, note that by placing your mouse over a page and right-clicking, a context menu
(A) will pop up, as shown in the following screenshot. Some of the items there are
redundant to those offered by the icons bar:

Axure Basics—the User Interface

[52]

Finally, a word about organizing the Sitemap. The number of pages in your
project are likely to mushroom. Many of them will be pages that are not used in
the prototype or specification. Rather, they will be ideas for new pages, old drafts,
various approaches you had in mind, and so on. There is a natural tendency to
try to keep all of this work, because, who knows, you might need it at some point.
You cannot create actual folders in the Sitemap pane, so a work-around method for
keeping your work tidy is to create blank "category" pages, and label them in a visual
way that communicates they are actually dividers (B). Then, nest the related pages
under those blank pages. For example, create a blank page, label it "old work" or
"Archive", and then move down and nest all the related pages that you no longer use
and which currently clutter your working section.

There are two types of pages in Axure:

Wireframe pages
A wireframe page, in the Sitemap pane, corresponds to a discrete application screen.
Only wireframes that appear in the Sitemap pane are generated in the HTML
prototype. It is an important fact to remember because master wireframes, which
when being edited in the Wireframe pane look much like page wireframes, cannot be
directly accessed in the prototype.

Flow pages
Flow diagrams are essential for developing a comprehensive understanding of the
application before we begin prototyping. Diagrams are abstractions of knowledge
and, when done right, are a great communication aid that facilitate shared
understanding between the project's stakeholders. We use them extensively to
illustrate the various dimensions involved in a UX project. The typical diagram types
include:

•	 Site maps
•	 Business process diagrams
•	 UML diagrams
•	 Flow charts
•	 Org charts
•	 Venn diagrams
•	 Task flows

Chapter 2

[53]

Axure includes built-in diagramming capabilities, which are not as robust as
dedicated diagramming tools, but offer a significant benefit: Your project flows and
wireframes can be created, edited, reviewed, and stored in a single tool. Moreover,
the output of these diagrams is generated automatically in the HTML prototype or
Word specification document.

Consider a review meeting with stakeholders. As you walk the audience through a
task in the clickable HTML prototype, you can switch from a diagram that illustrates
the pages that are part of the flow, to the wireframes of the pages, and back. No need
to switch between tools, export Visio files to pdf, and so on. It is efficient.

See the following screenshot for an example of an automatically generated
Sitemap diagram:

Axure Basics—the User Interface

[54]

•	 Start by creating a new page above the Home page or whatever is the
topmost page in your project. Rename it Sitemap (A), and right-click on it.
In the contextual menu, select the Flow (B) option from the Diagram Type
menu. Notice that the icon of the page changes to reflect that the page is now
a flow page.

•	 With the Sitemap page open and active in the Wireframes pane, right-click
on the Home page or equivalent and select Generate Flow Diagram (D) from
the contextual menu.

•	 The Generate Flow Diagram pop up (E) will appear and you can choose
between a Standard (F) or Right Hanging (G) diagram.

•	 The resulting diagram will appear on the Sitemap page. Note that once you
generate the HTML prototype and select the sitemap page, clicking on any of
the pages' rectangles will link the user to the corresponding page.

The Page Properties pane
This pane is divided into three sections:

•	 Page Notes (A): For annotating pages and masters
•	 Page Interactions (B): For creating OnPageLoad interactions for pages and

masters
•	 Page Formatting (C): For applying formatting properties to pages

These sections are shown in the following screenshot:

Chapter 2

[55]

Page notes
As mentioned earlier, Axure provides an integrated wireframing and annotation
environment. The page notes tab is where you enter page level information, such as
description, entry and exit points, restrictions, and so on. Obviously, this feature is
relevant mostly for those who need to generate a specification document or HTML
annotations. However, even if you are not on the hook for that deliverable, it is
still an extremely useful spot to capture questions, feedback from stakeholders,
and so on. Instead of managing such information in notebooks, e-mails, and other
documents, why not just store it all within the wireframe?

As illustrated in the following screenshot, page notes text can be formatted.
Highlight any section of the text and change font family, color, bold, italic, and
underline properties (A):

However, you cannot change the font size, create bullets, or change paragraph
alignment. Once you generate the HTML prototype, your notes, including their
formatting, will appear in the notes tab (B)

Axure Basics—the User Interface

[56]

Managing notes
In the Page notes section, you describe an entire page or master, and there are
basically two approaches to creating and managing your notes:

1. A single notes "bucket" in which you type all relevant information.
2. Multiple note sections, each dedicated to a specific audience or UX aspect.

Which approach to adopt for your project depends on the complexity of the project,
and stakeholder expectations. It is a good idea to discuss expectations early on, to
make sure that your documentation is satisfactory.

The benefits of using just a single notes field is obviously simplicity, at least for you.
The drawback is that stakeholders might find it difficult to consume the information.
In most projects, you are addressing an audience that has specific interest in only
part of your description. For example, developers might be interested in behavior
patterns of the screen and other technical information, while the business team is
looking for the fulfillment of the business requirements. If all your information is
packed in a single field, then readers will have to weed through information that is
irrelevant to them.

As Axure lets you segment page level notes into several note sections, it is highly
recommended to take advantage of this feature. Examples of such sections include:

•	 BRD references
•	 Accessibility (WAI/Section 508) Notes
•	 UX description
•	 Exceptions, personalization, or localization notes
•	 Review notes, follow-up questions and internal notes to self or team

Axure lets you control:

•	 The titles of notes sections
•	 Inclusion of the notes in the HTML prototype
•	 Inclusion of the notes in the Word specification documents
•	 Which notes section to include in the output

Creating additional note sections should also be used in shared projects, if several
teams contribute content to the same wireframe pages. For example, the UX team
provides UX related notes, business analysts add business requirements notes, and
system analysts add functional notes. Keep in mind, however, that Axure is NOT a
business requirements system.

Chapter 2

[57]

Page interactions
This tab allows the UX designer to define how the page will render in the HTML
prototype. This is an awesome feature because it affords an economy of construction.
For example, instead of creating a unique page that visualizes how the page looks
when a first time visitor accesses it, and another unique wireframe to show the page
after the user logged-in, you can use a single page with dynamic panels. Each state in
the dynamic panels will correspond to a visitor view and a registered user view.

You specify an OnPageLoad event that fires when the page is being loaded by the
browser. The browser will then execute the actions that you specified for the event
and will render either the visitor page or the registered user page. We cover this
technique in detail later in Chapters 4 and 5.

Page formatting
As mentioned earlier, page formatting can be applied only to pages, and not to
masters or dynamic panel states. You can define the following attributes:

•	 Page alignment (left or centered)
•	 Background color
•	 Background image, including horizontal and vertical alignment and

repetition
•	 Sketch effects (which are described in the following section)

•	 You can save a combination of these attributes as a custom style and apply
this custom style to other pages—a great time saver for ensuring consistency
across pages

Sketch effects
Remember the good old days when we used to sketch lions on the walls of caves
and later, wireframes on napkins? There is an amazingly compelling quality to the
human touch and in the context of prototyping Axure lets you apply a sketchy effect
to your wireframe that lends them a 'handmade' feel.

Axure Basics—the User Interface

[58]

Using this style during early conceptualization can help you communicate implicitly
to stakeholders and reviewers the fact that they are looking at a draft. See the
following screenshot for a standard styled wireframe (A) and the same wireframe at
100% Sketchiness(B):

The Widgets pane
For a Visio user, and for any user of a painting tool, the widgets pane should be all
too familiar. It is a collection of shapes that you can drag over to the Wireframes
pane and use to construct a wireframe.

The Widgets pane allows you to access Axure's built-in widgets collections, manage,
and organize imported third party widget libraries, or your own custom widgets
collection, and to search for widgets, in your building and loaded widget libraries.

•	 By default, the pane shows Axure's built-in Wireframe widgets (See the
following screenshot, A). This is a collection of geometric and basic user
interface components such as radio buttons, fields, drop-lists, and so on.

•	 Use the drop-list menu (B) to switch between the built-in or loaded libraries
and to manage your own or third-party libraries.

•	 To switch to another library, select it from the menu (C).
•	 The built-in Flow widget library (D) is a collection of diagram related shapes

that can be used to create flow charts and other diagrams.
•	 To search for a widget, click the magnifying glass icon (E) and the search

field will be displayed.

Chapter 2

[59]

Wireframe Widgets
Axure's drawing capabilities are somewhat limited when compared to full-fledged
drawing or diagramming programs such as Visio or Fireworks. For example, you
cannot rotate, skew, or distort a rectangular widget, which also means that you
cannot create diagonal lines. Also missing are free-hand drawing tools and shapes
such as polygons and arrows. A work-around to consider is to create the shape you
need in a drawing tool, such as Fireworks, and use the Image widget to import it to
your wireframe.

Axure widgets are not just simple shapes. It is possible to associate most of the
widgets to an interaction and make it do things. The text label of some widgets can
be set by variables and the visual styling can change in response to mouse events.
Finally, you can annotate each widget.

Axure offers all the necessary visual vocabulary needed to create fully robust
prototypes. Mastering the capabilities of each widget will help you construct
better wireframes.

Axure Basics—the User Interface

[60]

Flow widgets
Flow diagrams are interesting because they are an abstraction of a flow, an algorithm
expressed not as a mathematical formula, but rather in concrete shapes, arrows, and
text. A flow diagram is an image. In addition, here is a situation where the phrase
"A picture is worth a thousand words" underscores a general problem with flow
diagrams. Flow diagrams are often not very easy to understand and you actually
need a thousand words to explain exactly what is going on.

There are several methodologies to create flows: eXtreme Programming (XP), the
Microsoft Solutions Framework (MSF) for Agile, the Rational Unified Process (RUP),
the OpenUp (Eclipse), the Agile Unified Process (AUP), the Enterprise Unified
Process (EUP), and there are still more.

You may also need to use several types of flow diagrams such as Affinity process,
sequence, sitemap, interaction model, hierarchy, and so on.

Whatever choices you make for creating flow diagrams for your project, Axure 6 can
help you put them together in a compelling way, as shown in the following screenshot:

In addition to the geometric shapes commonly used for diagramming, such as the
Diamond for decision points, there are specialized shapes such as Database and
Bracket, and most importantly, the Actor shape.

Chapter 2

[61]

Creating your own widget library
Widgets are like Lego blocks—they are the simple raw materials with which you
have the potential to construct and express complex designs. Widgets are generic
templates from which you can quickly assemble less generic structures or patterns.
Most importantly, widgets are used to apply consistent design patterns throughout
the entire prototype.

In order to extend Axure's built-in widget libraries, you can create your own
collections. These collections can be project-specific pattern libraries or patterns that
you find yourself using repeatedly on various projects.

In order to create your own library, you select the Create library option from the
droplist in the Widgets pane. You will be prompted to name the library and point to
a location where you want to save the file.

Axure widget libraries are independent files that have the suffix rplib. In other
words, the custom library can be edited and managed independently of your current
project file. The rplib files open in an instance of Axure that has a Widget Library
pane (see the following screenshot, A) instead of the Sitemap pane. This is good,
because the idea is to be able to use and reuse the libraries across projects. We will
discuss this topic extensively in Chapter 6, Managing Patterns with Widget Libraries:

Axure Basics—the User Interface

[62]

Third party widget libraries
Before you embark on creating your own custom library, it is worth doing a little
research to check out the growing collection of free and commercial widget libraries
that are listed on the Axure's website at http://axure.com/widgetlibraries
(see the following screenshot). At the time of writing, there are collections for iPad,
iPhone, Android, OS-X, touch screen hand gestures, social media, icons, and various
useful patterns. There is a high probability that someone, somewhere, has already
done the work and saved you the time and effort:

http://axure.com/widgetlibraries
http://axure.com/widgetlibraries

Chapter 2

[63]

Ultimately, you need to use widgets and patterns that best match the needs of your
project. The nice thing about Axure's custom libraries is that you can tweak and
extend a library that someone else has created.

The Widget Properties pane
This pane is similar to the Page Properties pane, in that it facilitates the three major
aspects of a high-fidelity prototype: Interactivity, visualization, and documentation.
The pane is contextual to a widget selection: It becomes active only when you have a
single widget selected. Once a widget is selected, the widget properties pane allows
you to define its behavior and attributes in the following three tabs:

•	 Annotations
•	 Interactions
•	 Formatting

Annotation tab
In order to appreciate this simple yet profound tab, one needs to compare Axure's
annotation workflow with one involving Visio and Word (VW). While light
annotations can be placed within a Visio wireframe, Word must be used in order to
create comprehensive UI documentation. Therefore, this is the VW workflow:

1. Create the wireframe in Visio.
2. Add numbered markers where needed. Add light annotations, as space

allows.
3. Take a screen capture of the wireframe.
4. Name and save the screen capture.
5. Paste the screen capture into Word.
6. Create an attributes table for each of the numbered markers.
7. Write the extended annotations and details that could not fit into the

Visio file.

This process has to be repeated for each wireframe and the inherent ongoing
iteration requires constant tweaking of the Visio wireframe, cascading a repeat of the
preceding process. I listed this workflow in such detail because each step translates
to time: A few seconds perhaps, but per wireframe, this workflow adds tremendous
overhead when schedules are tight—significant pressure on the UX designer or team.

Axure Basics—the User Interface

[64]

To summarize, The VW workflow for UX documentation can be painful and
expensive. It is also prone to errors, especially in large projects, where keeping
the Visio and Word documents in sync is complicated; often requiring an Excel
spreadsheet to track updates and changes. Finally, both Visio and Word are single-user
applications, simultaneous use of the same document by team members is impossible.

The Axure workflow for documentation, on the other hand, involves selecting the
widget you want to annotate (see the following screenshot, A), and typing your
annotations in the customizable annotation fields (B). A numbered annotation footnote
is added automatically (C). With one click you can generate a specifications document
in Word, whenever new updates to wireframes requires a fresh version of the specs.
The screenshots are always up-to-date, and they are generated automatically. The
numbered footnotes on the screenshot correspond to annotation tables:

Axure's integrated environment means that wireframes and annotations are tightly
coupled. Whether you generate an HTML prototype or a Word interaction, the
most updated screenshots are created along with numbered footnotes. In Word, the
annotation tables are listing the attributed widgets referenced in the screenshots.
The timesaving is significant. This means that you can spend less time on the tedious
mechanics of prototype documentation and more time on refining the design.

Chapter 2

[65]

Annotation fields
Annotation fields capture attributes associated with the widget. Axure comes with a
default set of annotation fields, but most likely, you will end up with your own set—
those that best fit the needs of your project. The fields come in four data type flavors:

1. Text fields: Use these to capture attributes such as description, default value,
and so on. You can type as much text as needed.

2. Select list fields: Use these for as many attributes as possible, to enforce
consistency of values, and to save time while annotating. For example, status,
release versions, and so on.

3. Number fields: Use these when you want to enforce a numeric attribute.
However, I have to admit that I have not found a good use for it. For normal
attributes such as release or phase number, the Select list is probably more
appropriate because you have set values. However, it is there in case you do
need it.

4. Date fields: Use for date-specific attributes. For example, you can create a
field called last updated and update the value after each edit to the widget.
This sounds like good and useful information to track, but remember that the
update is manual. You will have to remember to make those updates for all
widgets, as you update them.

To customize the default annotation fields, click on the Customize link on the
Widget Properties pane (A) to launch the Customize Fields and Views dialog (B),
as shown in the following screenshot (the process is discussed in detail in Chapter 8,
Functional Specifications):

Axure Basics—the User Interface

[66]

Very early in the project, discuss the optimal field set with business and development
stakeholders. They are typically the primary consumers of the annotations. Work
collaboratively with these groups to agree on the attributes that provide them with
the most value.

Agree on annotation fields with the primary consumers of the UX
spec.
Be practical about the number of annotation fields—less is more.

Although you can have as many annotation fields as you want, be practical.
Remember that these fields are widget level fields and you will have tens, if not
hundreds, of widgets in your project that require some annotation. The more fields,
the more effort to create and update the attribute data, especially as requirements
keep changing up to the last moment.

Don't be shy about educating your partners about the effort involved in wireframing
and annotation. I recommend this approach especially for Agile projects, where
requirements are developed on the go and it can be a real challenge to write
specifications for an evolving product.

Annotation views
Axure provides a useful feature to help organize annotation fields in smaller subsets
named Views that make the input of content more convenient. As you may have
noticed, the Widget Properties pane and the Dynamic Panel Manager pane share
the right-hand side of the Axure's workspace. As you add your annotations, they
take more vertical space. As each view has few fields, fewer vertical scrollings will be
needed as you create your annotations. Some of the uses of Views are as follows:

•	 You want to organize business-related fields in one group and development-
related fields in another. Normally, you annotate the business attributes
earlier in the project, as requirements are being discussed with business
stakeholders. As the project moves from vision to detailed design, the more
technical annotation fields become the focus of annotation.

•	 Views are useful in a shared Axure project files, where multiple UX designers
collaborate on the project file. Some of the annotation fields might be specific
for a module or a work stream, and each team can have its own view.

•	 Another use is in projects where a team of business analysts (BA) populate
functional annotations in dedicated annotation fields. Adding a dedicated BA
view shields them and the entire team from accessing UX specific fields.

Chapter 2

[67]

Annotation views help plan the sequence in which the annotations are written
to balance the load and to avoid a last minute crunch. Configuring views is easy:
Switch to the Views tab in the Customize Fields and Views dialog (as shown in the
following screenshot, A). Views are listed in the left-hand column (B), where you can
add, reorder, and delete views. In order to associate views with specific annotation
fields, select the view, and use the Add drop-list (C) on the right-hand column.

In the Widget Properties pane (D), you switch between views by selecting the view
you want from the drop-list (E). The selected view appears in the drop-list and below
the associated annotation fields (F). The one issue to keep in mind is to be careful
to enter annotations in the right view and field. The views are not contextual to the
widget and view-switching is a manual task:

Interactions tab
With Axure, UX designers, with limited or no programming skills, can rapidly
simulate an interactive user experience and communicate the proposed interaction
design to stakeholders in a compelling and convincing way. The learning curve to
creating more advanced, high-fidelity prototypes in Axure is not steep, especially
when compared to authoring environments such as Flash ActionScript. UX
practitioners, in general, have a good understanding of logic, process, and flow.
Therefore, they are well-positioned to master interactions with Axure. UX designers
with experience and background in scripting and programming can advance further
into the realm of hyper-fidelity prototypes. In short, Axure affords all UX designers
the ability to create interactive simulations at their level of comfort.

The effectiveness of simulating interactivity in UX projects cannot be exaggerated.
The reality is that most stakeholders have a hard time imagining how something
might work, even when they are presented with a sequence of static wireframes.

Axure Basics—the User Interface

[68]

Less than a decade ago, desktop and web software landed themselves easily into a
page-to-page sequencing because most actions were followed by refreshing of the
entire page. It was easy to model flows with static wireframes. Modern interfaces, on
the other hand, are dynamic and increasingly beautiful. They respond to a growing
array of user actions and gestures, with smooth, engaging visual effects. Data on
various sections of the screen is seamlessly and fluidly updated in the background,
independent of other sections, and without page refresh.

That is perhaps why the slowly emerging expertise that was known years ago as User
Interface Design has transformed itself to what we refer to today as User Experience
Design. You cannot communicate the intended experience with static wireframes.

For example, think about communicating a simple "mouse over" interaction where
the user's mouse is hovering over a text. The styling changes from normal to bold and
underlined. Its color changes from black to orange, the background color changes too.
After two milliseconds, a small pop up appears on the upper-right corner of the link.
This is what you will have to SAY, if you are using a static wireframe.

Imagine a stakeholders' meeting with high-level executives to whom you want
to communicate your vision of the design. The most trivial of interaction patterns
requires so much explanation that it inevitably slows down the overall delivery of
the application-flow. Alternatively, you can use an Axure prototype to demonstrate
the interaction by moving the mouse over the text. The experience is
communicated instantly.

Interactions
Interactions are the things that makes an Axure prototype interactive. You can create
page and master level interactions in the Page Properties pane and widget level
interactions in the Widgets Properties pane.

In a nutshell, there are two things you have to remember about widget interactions:

•	 They are contextual to the widget you select
•	 Each interaction is a self-contained unit, which is made of three components:

	° Event: Each interaction is tied to a single event, for example, OnClick

	° Case: Each event can have one or more cases
	° Action: Each case can have one or more actions

Chapter 2

[69]

The following screenshot illustrates the structure of a simple interaction:

In our case, this is what should happen when the user clicks on a navigation tab:

•	 A widget (A) is selected in the Wireframes pane. This widget happens to
be a Left Tab widget, which is based on the Rectangle widget. This type of
widget can respond to three possible events: OnClick, OnMouseEnter, and
OnMouseOut.

•	 In order to make this widget respond to a click, we are going to choose the
OnClick (B) event, and add a Case to it (C).

•	 This is a simple interaction that involves just a single case, but you can
interact with multiple cases. We will discuss all of that in Chapter 4, but for
now, all that needs to happen when the user clicks on the widget is that he or
she should be linked to another page.

•	 Nested below the case is the action; in this case, open a page in the current
window (D).

•	 Finally, note the asterisk on the Interactions tab (E). If you are on any of the
other tabs of the Widget Properties pane, this visual indicator is a useful
reminder that an interaction is associated with the widget. Additionally, when
you create an interaction for a widget, a footnote is automatically added to the
Widget (A). A footnote is also added to the widget when you annotate it, so
the asterisk, which appears on any, or both, of the tabs, indicates whether the
footnote is related to an annotation, interaction, or both.

As you can see, an Axure interaction is constructed of simple, natural language
phrases. The example above shows that:

•	 Onclick, opens a link in the current window

Axure Basics—the User Interface

[70]

Therefore, while behind the scenes Axure will generate some code that will run the
interaction in the browser, you do not need to write or interpret a single line of code.
Axure uses Pseudo-code, which is the enabler that helps non-programmers to create
interactive prototypes.

Events
Most of Axure's built-in widgets support some sort of event. As mentioned earlier,
events are contextual to the widget. Click on the widget in the Wireframes pane
and the available events will be listed in the Widget Properties' pane Interactions
tab. The following screenshot illustrates the difference between the events that are
available for a drop-list widget, and the single event that is available for a
Button widget:

Cases
Context is among the important attributes of a good user experience. Given a user,
the interface renders the relevant content and functionality in a way that informs,
and guides, the user to a successful, positive, and even enjoyable completion of their
interaction with the application or the site.

Context is determined by certain conditions and parameters. The system needs
to evaluate those conditions in order to apply the appropriate business rules and
render the appropriate experience as we designed. For example, a website that offers
subscriptions services to content will provide access to this content to users who
signed into their account. For visitors, the site will offer functionality that is meant to
entice them to subscribe. This is the kind of situation that we can model in Axure and
demonstrate in the prototype.

Chapter 2

[71]

A widget event with a single case associated to it means that whenever the event
is triggered, the case will fire the action or actions that are tied to it. Basically, the
widget will have just one behavior whenever that event happens. However, of
course, we normally need to simulate a lot more complex situations, based on the
context of the event. The following screenshot illustrates a simple example of two
possible outcomes, for the same OnClick event (A):

The business rules require that, from the Home page:

1. When a visitor on the site clicks on the Books tab (B), a special promotional
page of a book will be presented that may influence the user to subscribe.

2. When a subscriber to the site, who has signed in, clicks on the Books tab,
the standard template for the books page should be presented with some
promotional materials.

As you can see in the Widget Properties pane, two cases are nested under the
OnClick event: The Signup Promo case (C1) and the Subscriber Promo case (C2).
When you generate the prototype and click the Books tab on the home page, a menu
listing the two cases appear and depending on your selection, an appropriate page
will be loaded.

Axure Basics—the User Interface

[72]

As you notice, Axure provides the ability to create interactions on the Page
Interactions tab, and here, in the Widget Properties tab. While the manner of
composing the interaction is identical, there is some difference in the way multiple
cases are executed.

A case associated with an OnPageLoad event is executed automatically by the
browser, when the page or master associated with the interaction loads. When there
are multiple cases tied to a single OnPageLoad event, how can the browser figure
out what do do? In software, when a single path splits into two or more branches,
the automatic determination of which of those to follow is based on the evaluation
of some conditions. In Chapter 5, Advanced Interactions, you will learn how to create
conditional logic that will determine how the page should render.

By comparison, when you attach multiple cases to a user-triggered event on a
widget, the determination of which case to execute is manual, as was described
earlier. We will see this in more detail in Chapters 4 and 5.

Actions
An Axure action is a discrete, specific instruction, such as to open a link in a pop-
up window. One or more actions are organized in a unit named case and a case is
associated with a specific event, such as OnClick. The event will execute when its
case is triggered by the event.

At the time of writing, Axure provides 24 actions, organized in four categories:

•	 Links: It is a group of seven actions that handle the hyperlinking navigation
from one page to another using windows or iFrames.

•	 Dynamic panels: Seven actions that control dynamic panels widgets.
•	 Widgets and variables: A set of eight actions that help control the behavior of

widgets.
•	 Miscellaneous: Only two actions here, one that enables timing and the other

which provides a text field where you can describe, in detail, some action
that you don't want to, or can't simulate in Axure. (You can also use the other
action to document a complex interaction for later reference.)

In order to manage and configure the actions in a case, you use the Case Editor (see
the following screenshot, A), which is structured to guide you through a multistep
process. You can rename the case in Step 1 and add conditions, if needed. The main
body of the dialog is divided into three columns:

Chapter 2

[73]

•	 Step 2, add actions to the case (B): Actions that you select in this column are
added to the columns for Step 3 and Step 4, where you will configure and
order them.

•	 Step 3, where you organize multiple actions (C): When you have multiple
actions in a case, the order of actions is important due to the way they are
processed by Axure and the browser.

•	 Finally, you configure the actions in Step 4 (D).

All Axure actions are structured similarly as a sentence which includes a
configurable action (the one exception is other). The color of the configurable part is
green. For example, the action sentence is Open Link in Current Window (E), and
the word Link (F) is the configurable part:

Formatting tab
At its core, a wireframe is nothing but a framed rectangle with some boxes, interface
controls, and text. It can work perfectly when sketched on a napkin or an index card,
but this technique can get you only that far. With the evolution of user experience
as an established discipline, there has been a shift towards higher fidelity. We are
rapidly moving away from static, low fidelity wireframes, where explication of the
user experience relies on supporting text and the audience's imagination, to sleek,
high fidelity interactive HTML prototypes that get very close in approximating the
software to be delivered.

Axure Basics—the User Interface

[74]

We are in the user experience business and the "experience" is determined as much
by how the interface looks as by how it behaves. The tension between form and
function is exceptionally strong. On one end, user experience designers want to
keep the discussion subjective, focused on structure, and flow. "Sketchy" styling can
help enforce the tentative aspect of an emerging design, which is important during
early phases of a project. On the other hand, companies spend considerable effort on
creating "Vision" prototypes to entice top management to invest in expensive new
applications. Such prototypes are often executed in hyper-fidelity, including refined
visual design and features that often would never make it to production. Nonetheless,
such prototypes play a critical role in galvanizing support for the new project.

Whatever are the stylistic expressions appropriate for your project and design
philosophy, you can define the visual properties of widgets by using the Widget
Properties Formatting tab.

Like the Annotations and Interaction panes, the Formatting pane (see the following
screenshot, A) is contextual to the selected widget (B). As opposed to other tabs,
however, you can also use the Formatting tab to style multiple selected widgets. The
tab is divided into six collapsible sections (C):

1. Location + Size
2. Font
3. Alignment + Padding
4. Style
5. Ordering
6. Fills, Lines, + Borders

Most of the formatting attributes that appear in this tab are also available through
the Format Bar, and the Format menu, but here you get a one-stop access to all of the
formatting under a single tab.

Chapter 2

[75]

Location and size
With a single widget selected (see the following screenshot, A), you can:

•	 Set the Left and Top position, and Width and Height of the widget (B)
•	 Lock or unlock a single selected widget (C). The selection border of locked

widgets changes from blue to red (D)

In addition to the attributes of a single selected widget, you can also apply size and
location attributes (E), and lock or unlock a group of selected widgets (F). This is
useful when you are arranging a group of like-widgets.

Benjamin Franklin was perhaps the person who coined the phrase "A place for
everything and everything in its place". While he was probably not talking about
wireframes, I like to mention the phrase in the context of wireframe construction and
the placement of widgets on a page.

www.allitebooks.com

http://www.allitebooks.org

Axure Basics—the User Interface

[76]

In this section, you can enter the exact height and width of widgets, which is faster
than manually reviewing and resizing using the mouse. Additionally, resizing a
group of selected widgets "by the numbers" is convenient on various occasions; for
example, when you want to uniform a few input form fields.

Finally, knowing the exact position and size of widgets helps when you add
interactions that involve moving a widget to a different position.

Font
In this section (see the following screenshot, A), you can modify the font attributes of
a single (B), or multiple selected widgets:

•	 Font family
•	 Font size
•	 Font styling, bold, italic and underline
•	 Font color
•	 Toggle bullet list styling

The role of typography in your prototype cannot be underestimated. The typeface,
its size, styling, color, and spacing can make a sea of difference in how your work
will be perceived by stakeholders and end users:

Chapter 2

[77]

Alignment + Padding
This section is closely associated to the Font section, in that it affords control over text
attributes in widgets. You can control:

•	 The horizontal and vertical alignment of text in relation to the widget:
	° Left, center, and right
	° Top, center, and bottom

•	 The left, top, right, and bottom padding of the text from the edge of a widget
•	 The line spacing of text lines in the widget

The following screenshot illustrates an example of changing the default settings (A)
of a widget (B), and the outcome (C):

Axure Basics—the User Interface

[78]

Style
An Axure style is a collection of formatting attributes that can be applied to the
shape and text components of a widget. Each widget type in Axure has a default
style, which determines how it appears when added to a wireframe and when it is
generated in the prototype. Also, note that Axure's concept of style is closely related
to CSS. While currently, you cannot associate a CSS file created for your application
with your Axure file, it is not difficult to apply the style manually.

There are a few methods to modify the style of a widget, which are illustrated in the
following screenshot:

•	 Manually change various attributes of a selected widget (A) using the
Formatting tab, Format bar, or Format menu. This can become slow and
repetitive when you want to apply a consistent look across a group of
widgets.

•	 Change the default style of a widget. In the Style section (B), click on the
Widget Style Editor icon (C) to bring the Widget Style Editor dialog (D).

•	 Widget types are listed on the left column. Note that the list is not contextual
to the selected image, which means that you have to remember to click on
the right item in the list. In addition, the labels are not consistent with those
in the Widget panel. For example, you will not find the Rectangle widget on
this list, but its equivalent is labeled Button Shape (E).

Chapter 2

[79]

•	 Make changes to the various attributes as needed (F) and close the dialog.
•	 Note, that at this point, as you have modified the default style of the widget,

all the instances of this widget across all the wireframes in your file will
change to reflect the new style (G).

Modifying the default style of widgets can be useful, for example, when you want
to change the default font family from Ariel, or font color, from the Hex value of
#333333. However, as a widget can be used to create any number of elements across
a prototype, modifying the default style is limited. This is where the Axure Custom
Style feature comes in. The following screenshot illustrates how you can create and
apply a custom style:

•	 The selected widgets (A), which are based on the Rectangle widget type,
have the Default style (B).

•	 Under the Widget Style Editor (C), switch to the Custom tab (D), and click
on the Add icon (E) to create and rename a new style (F). Note, that by
default, the custom styles list is empty.

•	 Configure the new style as needed (G) and close the editor. The new style
will be listed in the Style drop-list (H) and the style will be applied to all the
selected widgets (A2).

Axure Basics—the User Interface

[80]

•	 From this point on, you can apply the custom style, and others that you add,
to your widgets. By changing the custom style, all the widgets that were
assigned this style will be updated instantly—a considerable time saver.

Ordering
The ordering section is straightforward and self-explanatory. When multiple widgets
are selected, you can:

•	 Vertically align widgets to left, right, and center and horizontally align top,
middle, and bottom widgets

•	 Distribute widgets horizontally and vertically
•	 Group and ungroup widgets
•	 For a single widget, control it's depth placement relative to other widgets,

by placing it in front or back, of all other widgets, or use the a more granular
control of pushing it forward and backward so that it is behind some
widgets, but in front of others

The following screenshot illustrates the use of the Ordering section (A) to left-align
and vertically distribute a group of widgets (B) and the end result (B2):

Fills, Lines, + Borders
This section too is straightforward and self-explanatory. You can apply the following
attributes to a single or multiple selected widgets:

•	 Set Fill color
•	 Set Line color
•	 Set Line width
•	 Set Line pattern, otherwise referred to as borders (solid, dotted, and so on)

Chapter 2

[81]

The following screenshot illustrates the use of the the Fills, Lines, + Borders section
(A) to set the line color and border pattern, of a group of widgets (B), and the end
result (B2):

The Wireframe pane
Simply put, in this pane you build your wireframes. You can have multiple
wireframes open, each in its own tab. There are three types of wireframes in Axure:

1. Page wireframes: You manage and organize these in the Sitemap pane.
2. Master wireframes: You manage and organize these in the Masters pane.
3. Dynamic Panel States wireframes: You manage and organize these in the

Dynamic Panel Manager pane.

Tabs display the name of the wireframe (see the following screenshot, A). You can
change the order in which the tabs appear by clicking on a tab and dragging it to
the left or right. You can scroll to the left and right using the directional arrows (B),
which is useful when there are more open tabs, than can fit into the width of the
Wireframes pane. The Tabs menu (C) lists all the open wireframes (D), and affords
quick navigation between tabs when many are open.

Axure Basics—the User Interface

[82]

Finally, you can close an individual tab by clicking on the close icon (E):

It is common to work with multiple open wireframes. Pretty quickly, you find
yourself flipping through the tabs in search of the wireframe you want to focus on
next. To quickly clean up a clattered Wireframes pane and isolate only the wireframe
you want, use the Close All Tabs, and especially, Close Other Tabs.

Chapter 2

[83]

Grid and Guides
Grid and Guides are standard features we come to expect in any graphic software
as they provide a visual aid for alignment and composition. In order to access these
features, right-click anywhere in the wireframe area, for the Grid and Guides
context menu (see the following screenshot, A), or, from the Wireframes menu. The
menu is divided into grid-related options (B) and guide-related options (C):

You can control the display of the grid and change its settings from the Grid
Dialog (see the following screenshot, A), where you select from two types of grids,
Intersection, (B) or Line (C) to set the grid's spacing. Note that the grid is not visible
in the HTML prototype or in the screen captures that will be generated in the Word
specification document:

Axure Basics—the User Interface

[84]

The grid provides a uniform visual backdrop to all wireframes, if you choose to
show it. Guides, on the other hand, can be used in a number of ways, depending on
your personal method of constructing wireframes, and Axure offers two types of
guides that are suitable for a wide range of construction circumstances.

Local guides work well with a more tentative construction mode, which is probably
the common approach for rapid, conceptual exploration: You begin by dragging
widgets over and placing them as needed. Not much attention is placed on the exact
positioning or alignment (see the following screenshot, A). Once the structure is
set, guides can help align and space the widget to create a professional and visually
pleasing composition (B). As you add other widgets, they can be easily snapped
to the appropriate guide for fast alignment and consistent sizing with the existing
widgets:

You add new local guides to the wireframes by dragging them from the vertical and
horizontal rulers, which is the standard method for guides across graphics software.
Selected guides are green and once placed, they are blue. You can lock the guides
to prevent unintentional change of their position. Local guides appear only on the
wireframe on which they were placed.

Axure's Global guides are meant for a more structured, layout-driven construction.
This approach is common in the world of print, such as magazines and books, where
guides provide the organizational skeleton for placing content on a page. The idea is
to divide the width of the page into a set number of columns. The width of widgets
placed on the page, is based on the width of one column. The following screenshot
illustrates the concept:

Chapter 2

[85]

From the Create Guides dialog (A), you choose a 12 or 16 column preset from the
Presets drop-list (B). You can tweak the guides and add rows (C). Finally, you can
check the Create as Global Guides checkbox (D), so that the guides will appear on
all your wireframes.

As you create your wireframe, you set the width of widgets according to the guide.
Some widgets can span the width of all columns, others have a one-column width,
and so on. You can start thinking about widgets as one column, two columns, and so
on. This 'Lego'-like approach helps communications with the development team and
as a side benefit, contributes to a visual harmony of the screens, as all elements there
are proportionally related.

The current implementation of Axure's Global Guides ties the persistence of the
guides across all pages with two specific presets based on the 960 grid system
from 960.gs (check out http://960.gs/ for more information on standardized
grid systems). You can change the settings of the presets, but you cannot save
your modified guides. This is a new feature in Axure 6, and we are likely to see
enhancements to the guides' features in the coming releases.

http://960.gs/

Axure Basics—the User Interface

[86]

The Masters pane
As the name suggests, a master is a single wireframe that can be reused on other
wireframes. When you change the master wireframe, the change will instantly be
applied to all the instances of this master, effectively updating all the wireframes
where the master has been placed. There are several good reasons to incorporate
masters into your prototype construction as much as possible:

•	 You can manage consistency of design patterns across the user interface
•	 You can save yourself an enormous amount of time: Make the update to the

master wireframe and Axure will reflect the change on all other relevant
wireframes

•	 You can save more time: Write your annotation once, in the master
wireframe, and avoid extra work, redundancy, and errors in the UI
Specifications document

•	 You can reduce the size of your Axure file, because masters reduce the
redundancy of duplicated widgets

Use the Masters pane to:

•	 Manage and organize the project's masters, including the option to add,
delete, rename, group in folders, change order, and so on

•	 Select a master for editing
•	 Set the behavior of masters on the pages they are placed on
•	 Add or remove masters from pages
•	 View usage report: See if a master is actually used in your prototype, or not
•	 Search masters, a useful feature when you have many masters

Chapter 2

[87]

The following screenshot illustrates the contextual menu (A), which you get on right-
clicking a master or a folder in the Masters pane:

When you are prototyping, you do not always know in advance whether or not a
particular element in a wireframe is a repeating element and thus, a good candidate
to becoming a master. How do you tell if a widget should be a master? When you
copy it from one wireframe and paste it into another. In order to support this type
of on-the-go construction, Axure's Convert To Master feature provides a really
productive method for creating masters out of any widget or collection of widgets on
the screen:

1. Select the widgets that make up the reusable object you want to convert to a
master (see the following screenshot, A).

2. Right-click and select the Convert To Master option (B) from the contextual
menu.

3. The Convert To Master dialog (C) appears. The verbiage explains that the
selected widgets will be replaced by a master containing copies of those
widgets. It sounds more complicated than it is.

4. More importantly, replace the default name of the master, from New Master 1
to some meaningful name. It helps to add the prefix M- to a master's name, to
help distinguish masters from other wireframes.

Axure Basics—the User Interface

[88]

Naming conventions are discussed throughout the book, but I cannot
stress enough on how important it is to label widgets.

5. Presto! your widgets will be converted to a master. How can you tell?
Masters have a red mask which helps identify them on a wireframe.

6. The new master will now be listed in the Masters pane (E):

Master behavior
This feature allows you to determine how to apply a master instance to a wireframe.
The term behavior is somewhat confusing, but the actual options are straightforward
and useful. There are three options:

1. Normal
2. Place in Background
3. Custom Widget

The three options are explained in detail in the following sections:

Chapter 2

[89]

Normal
This is what Normal master behavior means: Place the master anywhere on a
wireframe, update the master, and the changes will be reflected in all the wireframes
that have an instance of this master. The only attribute that the master and its
instances don't share is the location. The following screenshot illustrates the feature:

As you begin work on the header part of an application, one of the first elements
you might need is the logo. Logos are great candidates for use as masters because
they are often placed on multiple pages and you want to make sure that only one
approved version of the logo is used across the prototype.

•	 Create a new master and label it M-Approved Logo. The prefix M will help you
distinguish between master and page wireframes when they are open in the
Wireframes pane.

•	 Use the Image widget to import the logo image file into the master page (B).
Where you place the logo in the Wireframe pane, does not really matter. I
like the upper-left position of a wireframe to always be 10px from the left
and top (C).

•	 In the Home page wireframe (D), place the logo master (E) as needed. In this
example, the upper-left corner of the master is at 330px from the left, and
20px from the top (F).

Axure Basics—the User Interface

[90]

•	 Over the course of developing the prototype, you might change the logo
image, if a new version becomes available. You will make the update only on
the M-Approved Logo master wireframe and the Home page wireframe will
be updated. However, the placement of the logo on the Home page, or any
other wireframe, will never change.

Place in Background
This is what Place in Background master behavior means: Place the master on a
wireframe, and its location on the wireframe, the left-top position of its left-top
corner, will automatically inherit the location of the master. You will not be able
to change the location of the master on the wireframes you place it on. All other
changes you make to the master will be immediately applied to its instances, just like
the Normal master behavior. The following screenshot illustrates the feature:

The header part of an application is another example for an element that should be
constructed as a master, because it is likely to be used on many wireframes.

•	 As we want the header to have the same location across all wireframes, let's
change its default behavior to Place in Background. Note that the icon of such
masters is gray (A), while the icon of masters with Normal behavior, is pink.

Chapter 2

[91]

•	 In our example, the header master (B) includes the application name and
tag line, and the logo, which is constructed as a master. As you can see, it is
possible to include masters in other masters.

•	 It is important to position the widgets at the location where you want them
to appear in wireframes (C).

•	 On the home page (D), make sure to delete header widgets that you created
in earlier iterations. Drag over the header master. The instance of the
master will automatically snap to position zero from the left and top of the
page (E), and all the widgets of the header master will show a red border
when selected, indicating they are locked. You will not be able to change
the position in the wireframe. The master will have a gray mask when not
selected, as opposed to the pink mask of a master with Normal behavior.

Custom Widget
This is what Custom Widget master behavior means: Place the master anywhere on
a wireframe, and that instance loses its tie to its master. Changes that you make to
the master wireframe will NOT be applied to its instances. This is the opposite of the
Normal master behavior.

A master with a Custom Widget behavior functions just like a custom widget
created in the Widgets pane as part of a custom widget library. Both are instances
of templates, which lose their link to the parent master, once they are dragged-over
from their respective panes into the wireframe canvas. Changes to a master with a
custom widget behavior will not cascade down to its instances.

The main difference between a master with Custom Widget behavior, and a custom
widget in a library, is in the method of repurposing and distribution: Custom
widgets are stored in special Axure library files (.rplib) that can be easily shared
and repurposed in other projects.

The following screenshot illustrates the Custom Widget behavior feature: Message,
alert, and information boxes are also good candidates to being constructed as
masters, but most applications are likely to have several types of each and the
flexibility to visualize various examples of messages in the prototype is important.

•	 Create a new master. Label it M-Info Box for example and change its
behavior Custom Widget(A). Notice that the icon for custom widget masters
is a slightly darker gray than that of Place in Background masters.

•	 Continue to wireframe the object (B). The location of the widgets on the
wireframe (C) is not important.

Axure Basics—the User Interface

[92]

•	 When you place the master on a page (D), the group of widgets that makes
up the master has blue borders (E), and is not masked in pink, like a Normal
master, or gray, like Place in Background masters. In fact, at this point, this
group of widgets is no longer associated with the master M-Info Box.

•	 At this point, you can make changes to the widgets, just as you would with
regular wireframe widgets (F):

Chapter 2

[93]

Finally, I want to mention the Flatten master feature which is related to Custom
Widget behavior. Sometimes, you want to use a master with Normal or Place in
Background behavior as a starting point for another control. You also don't want to
modify the existing master. Therefore, we want to break the link from the instance of
the master on the wireframe and the master in the Masters pane. This is what Flatten
master does and the following screenshot illustrates the feature:

•	 On the wireframe you are editing, right-click anywhere over the instance of
the master you want to "break" (A).

•	 From the context menu, select Flatten (B) from the Master option.
•	 This instance of the master will lose its tie to its parent master and will be

converted back to being a collection of widgets (C), which you can edit freely
on the wireframe. Changes that you make to the parent master will not be
reflected here.

You can set the behavior of a master when you create the master, or at
any time later. If you change the original master behavior, then the new
behavior will apply only to instances of masters you place from this
point onward. Instances of the master that were placed in wireframes
before the change will keep their original behavior.

Axure Basics—the User Interface

[94]

Usage Report
Change is inherent to the iterative process. You may be working on a wireframe and
realize that due to new or changed requirements, a change is needed in a master that
is used on the wireframe. Before you proceed with the modification to the master,
you remember that all instances of the master will change instantly anywhere this
master is used.

The impact of changing a master hastily can be compounded if you are a member of
a team that collaborates on an Axure-shared project file. You may not be intimately
familiar with the details of wireframes that were created by your colleagues, or with
the requirements that guide the design consideration in their part of the work. If you
change the master in order to fit it to your page, then the update may come as an
unwelcome surprise to your team members. The modification you made to the look
and feel of the master, its functionality, or both, may 'break' their wireframes.

In order to solve this problem, Axure offers a useful feature, the masters Usage
Report. Right-click on a master in the Masters pane (as shown in the following
screenshot, A) and select Usage Report from the context menu (B). The Master
Usage Report dialog (C) lists all the pages and other masters, where a particular
master is used:

Chapter 2

[95]

In a shared project situation, the list will help you identify if the master is used on
wireframes created by other team members, so you can contact them to discuss
changes. You can review the wireframes before making the change and determine
the impact on the layout and functionality. Finally, if the list is empty, it means that
the master is not used anywhere, and so is a candidate for deletion.

The Dynamic Panel Manager
The name Dynamic Panel Manager is a legacy from previous versions. In fact, since
Version 6, the pane, which is contextual to the selected wireframe in the Wireframes
pane, lists all the dynamic panel widgets and all the masters that are used on that
wireframe.

Chapter 4, Interactivity 101, covers dynamic panels in depth, but a few words about
these widgets are in order here. As its name suggests, Axure's dynamic panel widget
has something to do with facilitating change, movement, and interaction. It is, in my
opinion, the most unique of all Axure's features; the key to our ability to dream-up
and communicate the user experience in an engaging way.

The dynamic panel widget stores and displays variations, or states, of a portion on
the wireframe that needs to render differently based on some context. This widget
saves the effort and redundancy of having to duplicate an entire wireframe, just
to show several variations of a page section. Dynamic panels are used to construct
sophisticated interactions that include animation, visual effects, drag-and-drop, and
many others.

A dynamic panel widget is a container. Think about a deck of playing cards—a
dynamic panel is the box that holds the cards. The Dynamic Panel Manager
provides means to view, organize, and edit the individual's cards or states.

Axure Basics—the User Interface

[96]

We will look at a simple example. The following screenshot illustrates an Axure
HTML prototype in a Firefox browser. When the user clicks on the Sign In link (A),
we want to show a Sign In pop up (B):

The preceding screenshot illustrates how this functionality is constructed in the
Axure file and the role of the Dynamic Panel Manager, which we will shorten here
to DPM:

•	 The header master M-Top HeaderBar (A) is open for editing in the
Wireframes pane. It appears as the top node in the Dynamic Panel Manager
pane. Notice the pink master icon (A).

•	 This master's wireframe includes a few dynamic panels and masters, but
how can you tell what is going on? In the DPM pane, two items are nested
underneath the master (B and C). Their icons indicate that these are Dynamic
Panel widgets. A twisty next to each indicates that each of those dynamic
panels is expandable.

•	 The Dynamic Panel widget (B) is the login pop up (see B in the preceding
screenshot). On the master wireframe, it has a light-yellow mask, which
indicates that it is a hidden dynamic panel. In the prototype, it becomes
visible when the user clicks on the Sign In link (see A in the preceding
screenshot).

•	 The Dynamic Panel widget (C) contains the Alexandria title and a tag line.
On the master wireframe, it has a light-blue mask, which indicates it is a
visible dynamic panel.

Chapter 2

[97]

•	 Even in this very simple wireframe, dynamic panels and masters overlap and
it can become difficult to isolate a specific widget. Use the Hide toggle (D) to
reduce the visual clutter and focus on the widgets you want to edit. When
you click an item in the DPM pane (E), it gets selected in the Wireframes
pane (F):

Using masters and dynamic panel widgets to construct wireframes is an efficient
practice to create flexible, sophisticated prototypes, and good specifications. As you
become more comfortable with the concepts of masters and dynamic panels, your
wireframes are likely to become more complex, with nested masters and nested
dynamic panels. Axure's Dynamic Panel Manager helps you negotiate the complexity
by exposing the structure of dynamic panels in the wireframe you are editing.

The following screenshot continues our previous example, which illustrated a master
wireframe, with two dynamic panels (A):

•	 When you expand each of those dynamic panels (B), their states are exposed.
The first dynamic panel has two states. A twisty next to the top state (C)
indicates that it too, is expandable.

•	 The second dynamic panel has three states (D).
•	 Expanding the nested state (C) reveals that it includes a nested dynamic

panel (E), which has a single state (F).

Axure Basics—the User Interface

[98]

Double-clicking on any of the dynamic panels, or their states, from the Dynamic
Panel Manger opens them for editing, which is extremely convenient. Use the
panel's button bar (G) to edit, and/or delete states, and change the order of states
in the list:

I mentioned at the beginning of this section that the name of this pane is somewhat
inaccurate, because since Version 6, the Dynamic Panel Manager also exposes the
masters that are included in your wireframe. Click on the master icon on the pane's
button bar to toggle the visibility of the masters in the DPM (see the following
screenshot, A):

•	 Click once on any of the masters in the list and it is selected in the Wireframe
pane (B)

•	 Double-click on any of the masters in the list to open that master for editing
in the Wireframes tab

In conclusion, when you open a complex wireframe after a few weeks of not working
on it, or, if the wireframe was created by someone else, the Dynamic Panel Manager
is your window to understanding the construction of the wireframe:

Chapter 2

[99]

The toolbar and menu bar
Axure's toolbar and menu bar are where Axure's Mac and PC versions are native
to their operating system. There is, however, little difference, functionality wise
between Axure for Windows and Axure for Mac. Mac users can configure Axure's
toolbar (see the following screenshot, A) by right-clicking and selecting Customize
Toolbar (B) from the context menu. This is standard Mac toolbar behavior. On Mac,
formatting functionality is located on the Format bar (C), whereas on the Windows
side the functionality is organized in toolbars. The toolbar on Axure for Windows (D)
has the pre-office 2007-ribbon look:

Axure Basics—the User Interface

[100]

The menu bar is another interface element where the differences between the Mac
and Windows version are related to conformity with the operating system. You can
control the display of Axure's workspace panes from the View menu, as shown in
the following screenshot, A and C with the View menu (B and D):

Finally, there is full compatibility between files created on Axure 6 for Mac and
Windows. Note, however, that there is no backwards compatibility in either version.
This means that, while you can open files created in Version 5.6, in Axure 6, you will
not be able to use it again in Version 5.6.

Chapter 2

[101]

Axure file formats
Axure supports two unique modes of prototype development workflows:

1. The first is focused on the needs of a single designer who is the sole author of
the prototype in Axure. Axure's RP file format is the default when you create
a new Axure project.

2. The other workflow mode facilitates team collaboration with built-in features
such as controlled check in and outs and version control. Axure's RPPRJ file
formats this. These powerful features offer so many benefits that a single
practitioner should consider using this mode as well.

Earlier in this chapter, in the discussion on the Widgets pane we discussed a third
file format, the RPLIB, which you use to create your own custom widget libraries.

The .RP file format (stand-alone)
This format is appropriate if you are the only person ever to need direct access to
view or edit the file. In other words, if you are the sole practitioner working on a
prototype using Axure, this is the default format to use. Prototypes saved in the RP
format are stored as a single file on your local drive, for example, My Project.rp.
This method is identical to any other file-based application such as Excel, Visio, or
Word.

One of the challenges in UX projects is managing change. Rapid iteration is the
essence of prototyping and so, the RP file you are working on will evolve from day
to day, often dramatically. Sometimes, however, you need to go back to an older
version. Perhaps, you messed something up, or some other reason.

Axure Basics—the User Interface

[102]

The following screenshot illustrates a simple method I use to organize my Axure
work and keep a history of previous iterations:

When I start a new Axure project, I create a directory for it (A) with the following
subdirectories, which I number in order to control their sorting order:

•	 1 Current (B): This is where I keep the latest version of the file. At the end of
the day, I use the SaveAs command to save a copy of the file in the Archive
folder. I append the date to the name of the file. In this way, I have a history
of my entire work and at the most may lose 1 day's worth of work.

•	 2 Archive (C): This is where all my previous versions of the project file are
stored (D).

•	 3 Documents (E): This is where I use various project documents. I often have
to divide it into additional subfolders.

Chapter 2

[103]

•	 4 Visual Design (F): This is where I keep everything that relates to the visual
design such as logos, style guides, and so on.

•	 5 Prototype (G): I generate the HTML prototype to this folder.
•	 6 Misc (H): Odds and ends that don't fit into any of the other directories.
•	 7 Specifications (I): Here I generate versions of the Word document, if

specifications are part of the deliverables. I like to keep this directory last,
because typically, specifications are the closing effort in the prototyping
process, at least when it comes to the active participation of consultants in a
project.

The RPPRJ file format (shared project)
This is the appropriate format for a team of UX designers who are collaborating on
a UX project. The following screenshot illustrates the model in which the project
repository (A) is hosted on a remote server, or a shared directory on the network:

Axure Basics—the User Interface

[104]

Several UX designers (B) and a BA (C) can access the files simultaneously from their
Mac or PC clients, and collaborate on its construction and annotations. The ability
to distribute work among multiple resources is very important, especially, for large
enterprise projects. The topic of collaboration is discussed at length in Chapter 9,
Collaboration.

Among the key features of this format are:

•	 Check out/check in controls
•	 Ability to cancel check outs, basically a form of undo, if you mess something

up in the wireframe and want to start over
•	 Version control and the ability to restore previous versions

In order to create the shared project, open the .rp file in Axure and from the Shared
menu, select Create Shared Project from Current File. Follow the simple wizard and
you are all set. In order to create a shared project file from scratch, follow a similar
path by opening Axure and using the blank file that opens.

Summary
If you are new to Axure, I hope that this chapter got you excited about wireframing
with the tool. If you have been using Axure for a while, I hope that this review
helped close a few gaps and informed you about some of the new features in Version
6. If you have not done so already, I highly recommend visiting the Axure's website.
It offers a wealth of videos and tutorials that will help you master the tool's rich
feature set.

Many users, me included, were able to do productive work with Axure within
hours from downloading the trial version (offered for a 30 days evaluation). Axure
is quickly becoming a de-facto industry standard for UX work, so it is a good skill to
acquire and master. If you plan to purchase Axure, I am confident that you will get
a return on your investment very quickly. Finally, if Axure becomes your primary
prototyping tool, the more you know about it, the more freedom you will have to
express your ideas in a powerful, compelling way.

In the next chapter, we lay down the foundations for the best practice prototyping
construction. We cover the concepts of pages, masters and dynamic panels, as well as
the methods for constructing scalable and reusable wireframes.

Prototype Construction
Basics

User experience design is part art, part craftsmanship; the fusion of methodology
and patterns with creative problem solving. The prototype plays a major role in the
success of UX projects because it is simultaneously a concrete interactive preview
of both the vision and the actuality of the application being designed. For the UX
designer, Axure offers the ability to deliver simulations of rich interactive user
experience, quickly, iteratively, and without having to know programming.

A few years ago, the cost of providing timely interactive prototypes was prohibitive
for many companies. Most UX designers are not programmers and so have been
limited to producing static wireframes in Visio or similar tools. Skilled developers
had to be engaged in order to convert the static wireframes into interactive
JavaScript, Dynamic HTML, or Flash simulations.

This was a mini development effort that required the UX designer to invest a
significant amount of time to communicate interaction flows and the behavior
of various widgets to the developer, and later help debug the simulation. Once a
prototype has been coded, it typically reflected an outdated version of the actual
static wireframes because in the meanwhile, the wires were subject to a number of
iteration cycles.

With Axure, UX designers can create very sophisticated interactive prototypes
without having to know how to code or having to engage developers in order to
create the simulation. The gap between our ability to imagine the experience and
articulate it in the prototype had closed. With this power also comes a demand for
prototyping methods, techniques, and best practices. As projects have so many
processes after all, why re-invent the wheel.

In this chapter, we cover how to set up a solid foundation for an Axure file.

Prototype Construction Basics

[106]

Prototyping principles
I would like to propose three simple, project-agnostic guiding principles to
prototyping, which you can keep in mind as you approach a new UX project and
throughout the effort:

•	 Estimate, plan, and keep re-evaluating the prototyping and specifications effort.
This will go a long way to help you deliver on vision, on time, and on budget
while maintaining your sanity.

•	 Master the tools you are using, including Axure. The tools we master and
the quality of our craftsmanship help shape our deliverables, and in turn
increase the confidence of our clients and partners in our expertise and in the
vision we help shape.

•	 Just because you can do it in Axure does not mean you have to. Be strategic about
the amount of low-level high fidelity details to which you are committing.

Throughout the book, I will demonstrate the application of these principles to real life
scenarios using a demonstration project or sample snippets, which you can download
from http://www.packtpub.com/support. You will find that, although many of the
ideas and best practices are presented in the context of Axure, they are in fact tool-
agnostic and can help you in your work even if you use other prototyping tools.

Alexandria, the Digital Library Project
Elephants and mice share common ancestors and similarly, albeit oddly compared, UX
projects for the global enterprise, share the DNA of much smaller UX projects. Core
activities such as discovery, user and application research, requirements gathering,
iterative design, and usability testing are fundamental to user-centered design despite
potentially profound differences in the scale and complexity of the projects.

The book's sample project simulates the design process of a digital library web
and mobile application, named after the city that was home to the largest library
of ancient times, Alexandria. The choice of this subject matter was driven by the
many opportunities to demonstrate numerous Axure features and techniques, in the
context of an application that conceptually, is familiar to most readers.

Of course, there are many ways to skin a UX project and obviously, the demo
project is a much simplified, abstracted version of what happens in reality, where
the process involves rapid cycles of iterative design as we move from the concept
to the detailed design. Still, the goal is to demonstrate the process of developing an
interactive prototype and generating UI functional specifications with Axure from
the ground up.

Chapter 3

[107]

Any prototype incorporates many inputs that inform the design approach, including:

•	 Business requirements
•	 Feedback from users and stakeholders
•	 Intermediate usability tests to validate the proposed design

We begin the demo project by incorporating some high-level requirements and
use cases, which serve as the foundation of a high-level, conceptual framework for
the wireframing and prototyping phase. It will be an opportunity to discuss how
Axure's diagramming capabilities feed the wireframing process. We will move
to construction methods that include masters and dynamic panels, and include
some examples of iteration and feedback that will require a rework of our initial
construction.

As we dive into topics such as interactions, widget libraries, styling, and annotations,
the demo project helps visualize various concepts and construction methods,
when applicable. From a workflow perspective, we begin with a stand-alone RP
file, Axure's default file format, and discuss collaboration extensively in Chapter
9, when we convert the project into a shared project RPPRJ file to demonstrate
teamwork features and workflows. Throughout, we consider various prototyping
and specifications activities in the context of the overall project plan, development
methodologies, effort, and resources estimation.

Getting started—productivity in 30
minutes
Pardon the gimmicky header, but I want to emphasize Axure's value proposition as
a primary UX design application. Any tool must balance its cost, feature set, and ease
of use. If you purchase software with your own funds, clearly you ask: "If I invest
time and money in this new tool, how soon can I be productive and do actual work?"
In the case of Axure, the answer is days, often hours, and minutes, which will be the
case for most of the activities outlined in this chapter.

Prototype Construction Basics

[108]

In many projects, the initial use of Axure will be to develop a vision prototype, or a
proof of concept (POC)—a high-fidelity, polished, and clickable prototype. More than
anything else, it is a sales tool which plays a major role in rallying top management to
support major investment in the next generation of a software product, or to persuade
investors to bet on a new venture. Key attributes of the POC are:

•	 Not burdened too much by detailed business, functional, or technical
requirements

•	 Highly interactive simulation that highlights new features of the proposed
approach to innovative user experience

•	 Highly polished execution that incorporates branding and visual design

The POC articulates the appearance and behavior of the new software. It presents its
"look and feel" in the best of all possible worlds. The closer the actual product ends
up being to the vision, the better job we did as UX architects. It is an opportunity
to think "out of the box", while keeping in mind the fact that a box does exist in the
form of budgetary and technical constraints.

Therefore, let's assume you have already completed some of the initial project tasks,
including:

•	 Strategy sessions with various stakeholders in the company
•	 Contextual interviews with end users
•	 Establishing a base line by conducting usability studies of the existing

application
•	 Reviewing of competitive and related applications
•	 Analyzing the site's content
•	 Developing the taxonomy and global navigation
•	 Having a list of key features and user flows
•	 Developing personas and a matrix of user roles and their key tasks
•	 Having high-level business requirements

With this solid understanding of the product and its intended users, you are ready
to dive into Axure and unleash your creative energies. In this chapter, you will learn
how to use Axure to:

•	 Create use-case diagrams
•	 Create interaction flow diagrams
•	 Create Pages, Masters, and Dynamic panels

Chapter 3

[109]

Initial requirements and use cases
Based on discovery activities conducted so far, you have a list of high-level
requirements that provide a core set of guidelines and define the product offerings.
In some projects, the list of business requirements is handed to you, and in other
projects, you can play a key role in their development. Regardless, the requirements
should not define the user experience. Rather, our contribution as UX designers is to
translate the requirements into an excellent practical user experience.

Let's digest the first set of requirements:

1. From the home page, the user should be able to browse or search the library.
2. The user should be able to get more information about a title without leaving

the home page.
3. Each title should have a dedicated page with full details, as well as preview

capabilities.
4. The user should be able to search the library from any page, using either a

simple Google type search box or an advanced search feature.
5. Search results will be presented in a list of matching titles.
6. The user should get more information about a title without having to leave

the search results screen.
7. From the search results screen, the user should be able to access any title's

detail page.
8. If no matching titles are found, then provide the user with a relevant

notification.

Good requirements can be easily broken into short and unambiguous sentences with
a syntax that includes the user, a user action, and the interaction outcome. In other
words, each of these sentences becomes a use case. Use case methodology is beyond
the scope of this book, but a wealth of information on this subject matter is available.

The high-level requirements with which we started, drive the following use cases:

•	 Browsing items of the library
•	 Searching the library for specific item(s) with Simple search
•	 Searching the library for specific item(s) with Advanced search
•	 Viewing search results
•	 Viewing item details

Prototype Construction Basics

[110]

Axure is an integrated wireframing, prototyping, and specifications
system. It means that we can start developing the specifications
document in parallel to the wireframing and prototyping effort.
Diagrams are a good example of important documentation that can be
created in Axure and generated in the Word specification document.

Use case diagram page
When you launch Axure, it opens with a blank new file with a home page and three
nested siblings (see the following screenshot, A). I recommend keeping the structure
and flow pages, such as use case and flow diagrams, in a section above the wireframe
pages. Note that the order of pages in the Sitemap pane is the order in which those
pages will appear the HTML prototype and Word specifications table of contents.
By placing the structure and flow pages first, you control the logical narrative that
provides high-level abstractions, such as user flows, before moving into the actual
wireframes and interaction. This will work well in early review meetings, as you
describe the prototype. Additionally, in a later stage, readers of the UX specification
will be able to form a clear idea of the application by following the page progression.

In the Sitemap pane, add a New Sibling page above the Home page (B) as shown in
the following screenshot:

Double-click on this new page to open it as a tab in the Wireframe tab. Next, rename
the new page Use Cases. (as shown in the following screenshot, A). Axure provides
a method to differentiate between wireframe pages and diagram pages: Right-click
and select the Flow option (B) from the Diagram Type contextual menu. Notice that
the page icon (C) has changed making it easier to distinguish between wireframe and
flow pages:

Chapter 3

[111]

Wireframe and Flow pages are identical in all aspects
except the icon to the left of their name.

Next, select the Flow widget library (see the following screenshot, A) in the Widgets
pane. Drag out the Actor widget (B) to the page. This stick figure is the standard
representation of users in UML and most diagramming methodologies. Drag out an
Ellipse widget and label it Browse Path (C). The Ellipse is the UML notation for a
use case. Continue to add and label ellipse widgets as needed:

In order to complete the use case diagram, we want to connect the actor widget
to the use cases and organize the widgets nicely on the page for a polished
presentation. Begin with the layout and organize the cases in a vertical order that
follows a logical progression of possibilities.

Prototype Construction Basics

[112]

This is a great opportunity to get familiarized with Axure's three selection modes,
which facilitate moving and arranging widgets on wireframe and flow pages. You
can find the Selection Mode on the Axure's toolbar. (See the following screenshot, A
for the Windows version, and B for the Max version.)

1. Select Intersected Mode (C): This is Axure's default mode. When you click
and drag your mouse over the wireframe, all the widgets that are part
of your selection area, even if they were only partially included in it, are
selected.

2. Select Contained Mode (D): In this mode, only widgets that are fully
included in your selection are selected.

3. Connector Mode (E): This mode is most effective when you work with Flow
widgets because it generates connector lines that you can use to hook up the
various flow widgets in your diagrams.

Personally, I prefer the Select Contained Mode over the default Select Intersected
Mode, because it provides precision by including only items fully encompassed by
my selection, leaving out others that are in close proximity:

Chapter 3

[113]

In order to organize widgets on a page, use the tools in the Object toolbar. The
following screenshot shows the tools on the Mac version; the identical tools are on
the Windows version:

•	 Group and ungroup objects (A)
•	 Move forward or backwards, top or bottom (B)
•	 Align objects left, right and middle and top, bottom and center (C)
•	 Distribute objects horizontally and vertically (D)
•	 Lock and unlock objects (E)

Select a group of widgets in the use case page, as illustrated in the following
screenshot, and use the Align (A) and Distribute (B) options on the toolbar to
balance the cases on the page:

With all the use cases vertically aligned and evenly distributed, group them together
using the Group option on the toolbar. Select this group and, while holding the Shift
key, select the Actor widget. Use the Align Middle option to have the Actor facing
the use cases.

Prototype Construction Basics

[114]

Next, switch to the Connector mode and draw lines from the Actor widgets to each
of the use cases. You should end up with a page that looks something similar to the
following screenshot:

Saving the project file
To paraphrase the joke on Chicago elections: Save your work early and often. In my
experience, Axure is very stable, but long ago, I developed the instinct to save my
work frequently. In addition to the standard save, I recommend a strategy to support
iterative design work: Use the Save As command at the end of each day to create
an archive of daily versions of your RP file. It is also a good idea to use the Save As
command before making dramatic changes to key wireframes.

Chapter 3

[115]

Here is why: Your Axure file will evolve rapidly to incorporate a tremendous
amount of detail, as you address increasingly finer requirements. Ideas that looked
initially promising will not work as well as you thought. Feedback from stakeholders
and users will require more changes, sometimes requiring that you backtrack to the
previous version.

It is in your best interest then, to maintain an on-going history of your Axure file.
When you work on a stand-alone file (.RP), this means that you are responsible for
managing the revision history. I am not talking here about merely backing up your
file, which is a given.

For managing the history of revisions, a technique or rather, a behavior that works
for me is quite simple and easy to implement: At the end of each workday, save the
file. Then, use Save As to save the file in an archive directory and append the date
to the file name. The next day, open the file from the current directory. With this
method, you will always be able to restore or find previous items and add them back
to the current file, if needed.

First wireframe pages
With initial use cases in place, let's move forward to create relevant wireframe pages.
The pages that immediately come to mind are:

•	 Home Page
•	 Search Results Page
•	 Item Details Page

As you might have noticed, when you launch Axure, it opens a new document
similar to an MS Office application, such as Word or PowerPoint. You will see in the
Sitemap pane that Axure places a Home page and three nested pages. This is the
default for each new Axure file.

Prototype Construction Basics

[116]

Rename the non descript Page 1 and Page 2 labels of the nested pages (see the
following screenshot, A) to something more meaningful, and delete Page 3. Your
Sitemap pane should look something similar to the following screenshot, (B):

You can change the order of pages by using the move up and move down arrows
(C), and change their nesting level by using the indent and outdent arrows (C).

Task flow diagram page
A prototype is tailored to visualize and demonstrate the user experience. Before we
can develop the demonstration, we really need to nail down key user tasks which
are, after all, the reason for the existence of the application. As the scope of this book
limits our discussion of the topic to the context of Axure, I will focus on the aspect of
creating task flow diagrams.

Task flow diagrams are a model, an abstraction of the Ping-Pong exchange that
makes up user-system interaction. These diagrams also play an important role in:

•	 Validating the sequence and logic of each task with business and technical
stakeholders

•	 Developing an agreement on which flows and parts of flows should be
prototyped, and to what level of fidelity

The diagrams should be shaped by explicit context, which is determined by a
combination of inputs, including:

•	 What the system knows about the given user
•	 The options afforded to the user by the system
•	 The user's actions

Chapter 3

[117]

While there are no set standards for UX flow diagrams, keep in mind that clarity,
precision, and organization would help you during joint sessions with stakeholders.

Axure provides a one-stop shop for creating both flow diagrams and the wireframes
that are associated with them. The ability to use a single application for modeling,
simulating and documenting the user experience, gives us a powerful work
environment.

Two main flows that immediately come to mind in the context of Alexandria involve
browsing and searching. In the first option, the user can browse titles on the home
page and drill down for more details. The other path lets the user search for a set of
titles, or for a specific title. Matches are presented in the search result list and the user
can drill down to the details of a desired title. Thus, both paths may end on the same
item-detail page.

Let's create a couple of task flow diagram pages, one for modeling the browse path
and the other for search. In the Sitemap pane, add the two siblings below the Use
Case diagram page. Label the pages and use the Diagram Type menu to change their
icon to mark them as flow pages.

Browse path flow diagram
In order to compose the diagram, carry out the following steps:

1. Double-click to open the Browse Path page in the Wireframes pane.
2. From the Widgets pane, drag over the Actor widget.
3. Now comes the cool part: From the Sitemap pane drag over the Home

page—it is the entry point to this flow. Notice that the widget inherits its
label from its parent page on the Sitemap pane. Also note the document icon
on the upper-left corner of the widget (see the following screenshot, A). It
means that when you generate the HTML prototype, clicking on this widget
will link to the actual Home page.

4. From the Sitemap pane, drag over the Item Details page.
5. Select the shapes and use Align Middle and Distribute Horizontally to clean

up the presentation.
6. Change to Connector Mode to draw connectors from the Actor widget to

the Home page and from there to the Item Details page. Use the Arrow Style
options to add directional arrowheads to the connectors.

Prototype Construction Basics

[118]

7. In order to add an interaction label to the arrow, add a glossary using the
Wireframe library widgets and you have just completed your first flow
diagram in Axure. It should look similar to the one shown in the following
screenshot:

Search path flow diagram
The initial requirements call for two search features:

•	 Simple search
•	 Advanced search

Both methods take the user through a similar path: If any matches are found, they
are displayed in the Search Results page (see the following screenshot, A) and the
user can drill down to the Item Details page (B). If no matches are found, then the
user can run a new search.

As you complete the search path, you realize that it exposes an important risk.
If users run either a simple or an advanced search but do not find what they are
looking for, then there is a possibility that the users would abandon the flow (C)
and move on to another site. The justification for providing powerful, simple, and
advanced search features should be tied to the strategic importance of Search in the
application. This is an example of strategic insight that underscores the business
value of developing supporting diagrams for the prototype:

Chapter 3

[119]

Link use cases to flow diagrams
In addition to being able to create and store diagrams and wireframes within the
same application, you can link Axure diagrams and wireframes to create a seamless
transition from the one to the other:

1. Open the Use Cases page in the Wireframe pane.
2. Right-click on the Browse Path use case and select the Edit Reference Page

option (see the following screenshot, A) from the Edit Flow Shape submenu.
3. The Reference Page pop-up (B) lists all the pages in the Sitemap pane.
4. Select the Browse Path page to link the use case to the page and close the pop

up.

Prototype Construction Basics

[120]

5. Notice the reference page icon (D) that now appears on the upper-left
corner of the use case. The behavior of the widget has changed: Before it is
associated with a reference page, double-clicking on it enables the editing of
the widget's label. By double-clicking on it, it references another page in the
sitemap to open the Reference Page pop up. This is because the widget's title
inherits the title of the referenced page and is no longer editable:

Generating the HTML prototype
It is now time to generate your first HTML prototype to review the work you have
completed so far. As your prototype advances, you will find yourself generating
previews quite often in order to validate that the HTML output works in the way
you intended.

Accessing the HTML prototype generation feature is accomplished either from the
toolbar icon or from the Generate menu. The Generate Prototype dialog (see the
following screenshot (A) for the Windows version and (B) for the Mac version),
allows you to specify various settings that impact the output. However, at this early
point, you want to start with the General section (C) and let Axure know where to
output the HTML prototype.

Chapter 3

[121]

Either use Axure's default for the destination folder, a directory labeled "Axure
Prototypes" in your Documents folder or keep all your project work under the same
directory, as described in Chapter 2. This makes it easier to find all your project stuff,
especially when you want to transport or backup up your work.

Firefox is the recommended browser, but you can specify your choice in the Open
With section (D). Each time you generate the HTML prototype, it opens a new
browser tab. It is a good idea to bookmark the page after the first time you generate
the prototype, and from then on, use the Do Not Open option to reduce the
proliferation of open tabs in the browser. Just generate and refresh the page:

Hit the Prototype icon to generate the HTML prototype. The screen is divided into
two sections:

•	 On the left, a pane with two tabs: the Sitemap and Page Notes. The Sitemap
tab (see the following screenshot, A) is selected by default.

•	 The main body which displays the diagram or wireframe; the top page in the
Sitemap is the default.

In our example, the Use Cases page (B) is selected in the Sitemap pane and
displayed in the main section of the screen. As you roll your mouse over the Browse
Path use case (C), notice that the cursor changes indicating an active link, which on
click, will load the referenced Browse Path diagram page (D). Alternatively, clicking
on the icon in the lower-right corner of the use case (E) opens the referenced page
in a new tab. In our example, the Browse Path diagram shows the Home and Item
Details page. The boxes in the diagram were made by dragging over the actual
pages from the Sitemap.

Prototype Construction Basics

[122]

Now, in the HTML prototype, these boxes too have a link icon (F), and clicking on
the box of the icon links to the referenced wireframe page:

To summarize what we have covered so far:

•	 Creating use case diagrams
•	 Creating task flow diagrams
•	 Referencing and linking flow and wireframe pages from diagrams
•	 Generating an HTML prototype

Even an Axure novice can complete the activities we covered above in 30 minutes or
so, and create a meaningful piece of work. As you continue to build the prototype,
the underlying use cases and task flow will always be available for confirmation and
validation.

Chapter 3

[123]

Getting started with masters and
dynamic Panels
With the foundation in place, we will now move on to develop some rough
wireframes, focusing our attention to high-level requirements and the information
gathered thus far. Here are some high-level, conceptual questions to develop:

•	 Information architecture: How is information organized and accessed on
each screen?

•	 What are the main navigation systems?
•	 What are common components that are shared across screens?

The first wireframe
Often you might have a gut feeling about the general organization of the layout,
based on experience and familiarity with similar applications. The header, footer,
and body will serve as initial placeholders for deeper exploration.

Axure's HTML prototypes have fixed width. In other words, you cannot design an
elastic wireframe which will adjust to the device's display. Therefore, it is important
to decide what will be the wireframe's maximum width before placing widgets
on the page. The decision can be simple, if the target device is known. iPhone, for
example. If the application is device-agnostic, you are still likely to create wireframes
for standard display and wireframes optimized for mobile experience.

Therefore, in our Alexandria Digital Library project, we start the home page by
outlining three layout blocks with Rectangle widgets:

•	 Header
•	 Body
•	 Footer

The quick and dirty approach
This approach often does not bother with restrictions such as maximum wireframe
width, widgets alignment and spacing, and other composition considerations.
Wireframes are placed on the pages quickly and tentatively with a lot of copy-
and-paste of similar widgets to speed up the construction. This approach can be
compared to stream-of-consciousness writing, and for some, it is a great way to get
ideas out.

Prototype Construction Basics

[124]

The quick but structured approach
This approach is based on the principal that a small, upfront investment of time at
the start of wireframe construction can pay off big-time later in the project.

Our first set of wireframes will be for a web-based application, so let's start by
applying a new feature to Axure 6, the Global Guides, which is discussed in Chapter
2. The 960 Grid: 16 Column option (see the following screenshot, A) establishes the
maximum width for wireframes to 960 pixels. Additionally, the left and top margin
for widgets is easy to maintain consistently at 10 pixels (B):

From the Widgets pane, drag over three Rectangle widgets. Resize and organize
them as header, body, and footer blocks as illustrated in the following screenshot.
With Axure's Zoom feature (A), you can adjust the display of the wireframe area, to
get a better sense of the entire composition, a useful feature when you want to move
or resize wide objects. Based on the 960 Grid system (B), you can snap the blocks 10
pixels from the left and set their width to 940 pixels (C) leaving a 10 pixel margin
from the right. Double-click on each widget to type in their label:

Chapter 3

[125]

First masters: navigation systems
The home page is probably the most important page for websites just as it is for
applications. However, in a world of deep links, the user's first interaction with a
site often begins on other sites or search engines that link pages other than the home
page. At a glance, the user should be able to discern:

•	 Where they are
•	 What the landing page is about
•	 Which actions are available in the context of the page and the site
•	 Where to navigate within the site

In order to develop the navigation systems for the application, we need to expand on
the initial business requirements. The revised first requirement is:

1. From the home page, the user should be able to browse or search the library.
For the Release 1, the library will offer subscribers three types of media:

	° Electronic books
	° Electronic newspapers and magazines
	° Streaming movies and TV shows

Prototype Construction Basics

[126]

2. For each type of media, the user should be able to select from a list of genres:
	° Electronic books:

	° Fiction
	° Classics
	° Humor
	° Mystery
	° Romance
	° Thrillers

	° Non fiction
	° Advice
	° Biography
	° Cooking
	° Sports
	° Textbooks

	° Newspapers and magazines
	° Newspapers

	° US Newspapers
	° Chicago Tribune
	° New York Times
	° Washington Post

	° World Newspapers
	° The Hindu
	° Le Monde
	° Times of London

	° Magazines
	° (Release 1 US only)
	° The Atlantic
	° Popular science
	° Wired magazine

3. The titles of newspapers and magazines listed in the navigation cannot be
abbreviated.

Chapter 3

[127]

In requirements discussions, business stakeholders emphasize the importance of
listing the titles of available publications in a prominent way to draw the attention of
potential subscribers.

We are obviously limited in space here and cannot continue to list all the
subcategories for each of the media types. However, equipped with an initial
taxonomy, we can begin the development of our global navigation.

Note the appearance of the phrase "Release 1" which helps define the scope of
work planned for the initial launch. It also implies that future releases will expand
on the initial offering, so scalability and flexibility should be an important design
consideration.

Global navigation bar
In order to facilitate access to each of the media types offered in the library, you
decide to try a horizontal navigation bar that will appear on all pages, thus making it
a global element.

There are several benefits to this approach:

•	 It communicates very explicitly the type of offerings in the library
•	 It is very easy to navigate from one segment to another
•	 It is a common navigation element and most users will be familiar with it

There are also some drawbacks to consider, such as:

•	 There is a scalability limit of how many categories can be placed horizontally
•	 Where and how to present items of various media types

Prototype Construction Basics

[128]

At this point, the benefits appear to outweigh the potential problems, so let's move to
Axure. The navigation bar should be positioned between the header and main body,
as illustrated in the following screenshot, A:

In order to construct the global navigation, carry out the following steps:

1. Drag over a Rectangle widget (see the following screenshot, A), right-click
on it, and from the Edit Button Shape contextual menu, select Tab Left (B).
The rectangle shape will turn into the familiar tab shape (C).

2. Resize the widget to fit the space between the header and body blocks (D).
If you are using the 960 grid, then you will find it easy to size and snap the
widget. Double-click and label the tab Home (E).

3. Copy the tab widget and paste it three times.
4. Distribute and align the widgets in a horizontal row. Again, the grid will be

helpful.
5. Label the three tabs Books, New & Mags, and Movies & TV. (F)
6. Save your work:

Chapter 3

[129]

At this point, we have to add three main category pages to correspond to the tabs
in the global navigation: Books, News & Mags, and Movies & TV. These, and the
home page, will share the same global navigation element. We have two options to
continue from here:

•	 Use the "quick and dirty" method to simply duplicate the home page, rename
it, and adjust the widgets on each duplicated page. The drawback is that
changes to repeating elements, such as the global navigation, will have to be
applied manually to all wireframes. This approach is fast initially, but costly
in the long run.

•	 Use the somewhat slower but structured method of converting all the
repeating elements on the home page into masters, then duplicating it to
create the category pages. The masters will be reused, thus saving time in
the long run and ensuring construction consistency across pages. This is the
approach which will be demonstrated next.

Prototype Construction Basics

[130]

We are going to demonstrate the second approach, using masters. Masters are
components of the user interface that appear on multiple pages. When you edit the
master, all of its instances in the prototype are immediately updated. A twist that
Axure has added to masters is that, while the look and feel of a master is identical
wherever you use it, its behavior can be tailored to fit the context in which it is used.
We will discuss this feature named Raised Event in Chapter 5, Advanced Interactions.

Therefore, our first master will be the global navigation bar:

1. In the Wireframes pane, switch off the home page select the group of four
tabs that make up the global navigation bar (see the following screenshot, A).

2. Right-click anywhere within the selection and in the contextual menu select
the Convert To Master option (B) from the Convert submenu:

3. Axure will prompt you with a Convert To Master dialog as shown in the
preceding screenshot (C). Take a moment to read the text:

	° Converting these widgets to a master creates a new master
containing a copy of these widgets: This means that a new master
will be added in the Masters pane.

	° Then, these widgets are replaced with the new master. Note that
interactions on other widgets affecting these widgets will need to
be updated: This means that a single item, the master, will replace
the four discrete images that you placed in the wireframe. The
master, which is an independent wireframe, now has those four
widgets. When we discuss interactions later in the book, the impact
of this procedure will become meaningful.

Chapter 3

[131]

	° If you would like to continue, enter the new master name and click
Continue: This is really important! Before you click on the Continue
button, make sure to re-label the master, replacing the default and
generic New Master 1, with something meaningful, and then click on
the Continue button. We will discuss naming convention strategies
in Chapter 4.

Start the name of each master with an M. for example, M Global
Nav. The prefix will make it easier for you to identify which open
wireframes are masters.

You will immediately notice a change in the way the navigation bar looks: The
following screenshot shows a visual comparison of the before and after states: The
four selected widgets (A), are now grouped together (B) and the entire block now has
a pink shade which helps you distinguish masters from other widgets.

The new master appears in the Masters pane (C). Keep in mind that the Masters
pane is not contextual to a specific wireframe. Rather, it is the repository of all the
masters you have in your project file. However, the Dynamic Panel Manager pane
is contextual to the edited wireframe page. Clicking on the Include Masters icon
(D) lists the new master (E) under the Home page. Note that the master is listed as:
Unlabeled (M Global Nav). We will deal with the naming issue shortly:

Prototype Construction Basics

[132]

In the home page, continue to create masters out of the header and footer blocks as
these elements too will appear on every page.

It is premature to convert the body block into a master because the home page,
category pages, and other auxiliary pages that will be added later do not share the
same layout and content.

New masters from scratch
You can also create new masters without converting existing widgets by
using the Add Master option in the Masters pane. This is a good option
when you know in advance that the wireframe will be used as a master.

Secondary navigation system
The global navigation bar addresses requirement R1/A, which deals with navigating
between the three main media category types and the home page. Next, we want to
develop a secondary navigation system to facilitate requirement R1/B, which lists
the various subcategories within each media type.

Let's use the Books page as a model, which hopefully can be leveraged to the other
pages. Begin by selecting the home page in the sitemap (see the following screenshot,
A) duplicating it (B), and renaming the duplicate page from Copy of Home (C) to
Books. (D). You may also consider the organization of the Sitemap, for example,
keeping the category and other pages nested under the home page (E) or keeping, at
least at first, a flat organization (F):

Chapter 3

[133]

The page layout for the Books category page should look similar to the following
screenshot. Construction wise we have three masters—the header (A), global nav
(B), and footer (E). The body placeholder widget (D) has been resized to 75% of the
page width to make room for the Left Nav widget (C). If you use the 960 guide,
establishing the proportions is a little easier:

Prototype Construction Basics

[134]

The left pane should communicate to the user all the content areas available in the
library and make it very easy to access each content area. According to requirement
R1.B1, the structure to model for Books should be:

•	 Electronic Books:
	° Fiction

	° Classics
	° Humor
	° Mystery
	° Romance
	° Thrillers

	° Non Fiction
	° Advice
	° Biography
	° Cooking
	° Sports
	° Textbooks

The Tree widget is a fast and efficient way to model a hierarchical navigation system
in Axure. Before you drag the widget to the Books wireframe, lock the left pane
widget to prevent it from moving while you edit the tree. The default tree widget
(see the following screenshot, A) includes a parent and three nested siblings, all
labeled enter text…, re-label the nodes and add additional items according to the
requirements. For example, select the last node in the tree (B), right-click on it, and
from the context menu select the Add Sibling After option. You can customize the
tree widget in the Edit Tree Properties dialog (D), which you access from the tree's
context menu:

Chapter 3

[135]

The first dynamic panel
The left navigation pane we just created for the Books wireframe (see the following
screenshot, A), would be great for the other category pages: News & Mags and
Movies & TV. We want the pane's location, dimensions, functionality, and visual
design properties to stay consistent across all pages, which mean that the pane is a
natural candidate for a master. However, how can we change the pane's content such
that it fits the other category pages?

This is where Axure's Dynamic Panel widget comes into play. Here is how: If
you locked the Rectangle widget (see the following screenshot, B), unlock it now.
Select it from the tree widget (C) and convert this group into a master (D). Label the
master M Left Nav and open it for editing in the Wireframes pane (E). In the master
wireframe, select both widgets and convert those to a dynamic panel (F):

Axure will prompt you with the Convert To Dynamic Panel dialog (G). Take a
moment to read the text:

•	 Converting these widgets to a dynamic panel creates a new dynamic panel
containing a copy of these widgets: This means that a new dynamic panel
will be added in the Dynamic Panel Manager pane. In addition, the panel
will include a single state, which will contain a copy of the selected widgets.

Prototype Construction Basics

[136]

•	 Then, these widgets are replaced with the new dynamic panel. Note that
interactions on other widgets affecting these widgets will need to be
updated: This means that the individual widgets which will be converted
into a dynamic panel and will be replaced by the dynamic panel, which has
copies of these widgets.

•	 Would you like to continue?: Well, yes.
•	 Do not show this message again: This is a checkbox, which I would leave

unchecked for now.

Once you close the dialog box, notice the following changes to the master wireframe
(see the following screenshot, A). The rectangle and tree now appear as a single
box with a light-blue mask (B), which is how Axure helps you visually distinguish
dynamic panels from other widgets.

The Dynamic Panel Manager pane, which is contextual to the selected wireframe,
now displays the construction structure of the wireframe. The wireframe M Left Nav
(C) is at the top. The icon to its left indicates that it is a master. However, note how
easy it is to identify the master with the prefix M. In the following screenshot, there
is the dynamic panel widget which is identified by a tri-color icon and is labeled by
default as Unlabeled (D).

Now is the time to re-label it to something meaningful, such as DP Category Tree.
I recommend using a prefix such as DP (short for dynamic panel) to help identify
dynamic panels by their label. Finally, the node nested under the dynamic panel is of
its single state, which is labeled by default as State1 (E). Re-label the state to S Books.
You got the naming pattern by now—the prefix S stands for S:

Chapter 3

[137]

New dynamic panel from scratch
You can also create a new dynamic panel by dragging over a dynamic
panel widget to the wireframe. Double-click on it for editing and the first
state will open in a new tab in the Wireframes pane. Add widgets to this
blank wireframe without convert existing widgets. This is a good option
if you know in advance that the component you are going to wireframe
needs to be a dynamic panel.

Adding states to a dynamic panel
Our next step is to add a couple more states to the dynamic panel, which correspond
to the News & Mags and Movies & TV category pages. The following screenshot
illustrates a couple of ways to do this:

1. In the Wireframe pane, double-click on the dynamic panel (A) or right-
click on it and select Manage Panel States (B) from the context menu. In the
Dynamic Panel State Manager dialog (C) that opens, click on the Add icon
(D). A new state will be added below the Books state. Label this new state S
News & Mags (E).

2. Another option to add new states is from the Dynamic Panel Manager pane
(F). Click on the Add State icon (G) there and a new state will be added
below the News & Mags state. Label this new state S Movies and TV (H):

Prototype Construction Basics

[138]

The two new states you added are basically blank wireframes. The next step is to
create the appropriate trees for each state, in order to reflect Alexandria's categories
for these media types. Open all states for editing either from the Dynamic Panel
State Manager dialog or from the Dynamic Panel Manager pane. Copy the tree and
rectangle widgets from the Books state wireframe and paste them in the other state
wireframes. On each state, replace the generic Left Nav label of the rectangle widget
with the label of the category page: Books, News & Mags, and Movies & TV.

In the News & Mags state, edit the tree to reflect the category structure as per
requirements of R1.B2:

1. Newspapers and Magazines
2. Newspapers
3. World Newspapers
4. The Hindu
5. Le Monde
6. Times of London
7. US Newspapers
8. Chicago Tribune
9. New York Times
10. US News & World Report
11. Washington Post
12. Magazines
13. (Release 1 US Only)
14. The Atlantic
15. Popular Science
16. Wired Magazine

As you complete the tree structure for the News & Mags state, you hit a snag with US
News & World Report: The long title extends the width of the left navigation object.
Requirement R1.C specifically prohibits abbreviation of titles. The fastest way to
resolve this design issue is to let the text wrap in the tree. However, Axure's tree
widget does not allow wrapping. The second option is to widen the left nav and
narrow the body section.

Chapter 3

[139]

Before you act on the impulse to tweak the sizes of these two elements, follow
requirements R1/B3 to finish the Movies & TV state, to see if there is a width issue
there as well, and what is the maximum width needed to satisfy all states:

1. Movies
2. Action & Adventure
3. Children & Family
4. Drama
5. Foreign
6. Sci-Fi
7. TV
8. British Tube
9. Kids & Family
10. Comedies
11. Dramas
12. Mini Series

There are no width issues with the Movies & TV state, so we can tweak the width of
the News & Mages state. Note the following important fact:

The width and height of a dynamic panel widget must be equal to, or greater than, the widest
or highest state in the panel.

If you widen only the News & Mags state but do not widen its container, the DP
Category Tree dynamic panel, the visible parts of the News & Mags state in the HTML
prototype and in the Word output screenshot, will be determined by the width and
height of the dynamic panel. In other words, the correct way to make the adjustment
is to widen the dynamic panel first, rather than the states.

The original width of the left nav and body sections was set tentatively with the
aid of the 960 grid, but without the specifics or constraints of content. We want to
make the adjustments while continuing to benefit from the use of the 960 grid. The
following screenshot illustrates the process:

•	 Open the master M Left Nav (A) for editing and show Global Guides (B).
Move the widgets from their default position at 0 pixels from left and top (C),
to 10 pixels from left and top (D). This adjustment will align the pane with
the grid.

•	 The original width of the dynamic was 220 pixels (E). Widen the dynamic
panel so it snaps to the 960 guide at 280 pixels (F and G).

Prototype Construction Basics

[140]

Keep in mind that you widened only the dynamic panel, the outer container of the
actual wireframes, which are the three states. The next step is to widen the rectangle
shape in each of the states. The reason to apply the wider size to all the states is
your desire to maintain structural and visual consistency in the layout framework
of category pages. In other situations, it is perfectly ok that each state has different
dimensions, as long as the size of the dynamic panel is equal to or greater than, the
largest state.

When you open a state for editing (H), the width gap between the rectangle widget
and the resized dynamic panel is clearly visible (I). Resize the rectangle, so that it
snaps to the dotted blue line which marks the boundary of the dynamic panel:

With the Left Nav adjusted to handle wide publication titles, the next step is to
adjust the width of the body section of the Books page (see the following screenshot,
A). The wider left nav section (B) covers the body section (C). Use the 960 grid to
adjust the body width (D):

Chapter 3

[141]

The first draft of the Books category wireframe now contains Alexandria's global and
secondary navigation systems. In addition, with the exception of the body section,
all other elements are masters. From a construction standpoint, we want to use this
wireframe as a template for other media category pages: News & Mags, and Movies
& TV.

Duplicate the "Books" page twice and re-label the copies News & Mags, and Movies
& TV. The Books left nav state is visible on all pages, but don't get startled, because
the first state is always visible on dynamic panel widgets.

Prototype Construction Basics

[142]

Adding visual effects
Next, we want to enhance the user experience and provide visual effects in response
to user actions. For example, when the user hovers over a tab in the global navigation
bar, the tab should change its appearance. With Axure, you can create such effects
effortlessly, which we will demonstrate on Alexandria's Global Nav bar:

•	 The Global Nav (see the following screenshot, A) is a master wireframe
constructed from four Rectangle widgets, set to Tab Left shapes. Right-click
on the left most widget, the Home tab (B), and from the context menu select
the Edit Rollover Style (C) from the Edit Button Shape submenu. The other
options for this widget include mouse down, selected, and disabled styles.

•	 In the Set Rollover Style Dialog (D) that appears, set the desired style
attributes. In our example here, I will stick to a grayscale palette. The tab
background will be black; the type will be white and bold. Note that in order
to apply the bold style to the font, you have to press the B icon next to the
Click to toggle bold property.

•	 Check the Preview checkbox (E), for a "live" preview of the widgets
appearance on rollover. Click on OK when you are satisfied with the
rollover style.

•	 Back on the wireframe, a new icon (F) appears on the upper-left corner of
each widget. This visually indicates that the widget has one or more mouse
states styles defined. Move your mouse over the square to preview the style
(in our example, the rollover style) for this widget:

Chapter 3

[143]

Next, we will add a rollover style to the Left Nav tree widget. The following
screenshot illustrates the process:

•	 Open the master M Left Nav and the three states of the dynamic panel (DP)
category tree. We need to apply styling to each of the trees, so start with the S
Book wireframe (A). Right-click on the top node (B) and then select the Edit
Rollover Style option (C) from the context menu.

Prototype Construction Basics

[144]

•	 In the Set Rollover Style dialog (D) that appears, set the style attributes for
the rollover: Check the Underline style and make sure to also click on the
icon to the left of Click to toggle underline. Change the font color to blue.

•	 In the Apply to section (E), select the option named This node, sibling and
all child nodes, which is a great time saver. Check the Preview option (F)
to validate your choices on the tree widget (G) and if all looks ok, close the
dialog.

•	 The style indicator (H) has been added to each of the items on the tree.
Rollover the icon to see a preview of the style:

Repeat the steps on the tree widget of the other states. Generate the HTML prototype
and use the Sitemap pane to review the rollover effects in the category pages you
just finished.

Chapter 3

[145]

Adding sketch effects
If you like to begin your design process for a project by sketching exploratory
wireframes on paper or iPad, then you can achieve a similar tentative look by using
Axure's sketch effects feature, which has been introduced in Version 6.

For early iterations of the prototype, this kind of treatment might help communicate
to stakeholders that we are still looking at the initial concept. The effect can be
applied on a page-by-page basis or to all pages as a global style. The latter makes it
easier to remove the effect. In other words, Sketchiness affects the entire wireframe
and not just selected widgets in a wireframe. The following screenshot illustrates
the visual difference in the appearance of a wireframe page before (A) and after
Sketchiness has been applied at 100% (B). Experiment with the Sketchiness slider (C)
to find the level that works for you:

Prototype Construction Basics

[146]

Updating task flow diagrams
Finally, it is a good idea to update the Browse Path flow diagram as the initial flow
did not reflect the fact that the user can browse the media pages in addition to the
home page. Your task now is to update the wireframe on your own, without a
systematic description of the process. The end result, including linking to reference
pages, should look similar to the one shown in the following screenshot:

Practitioner's corner—Axure prototyping
for mobile devices
Ritch Macefield, PhD, is a principal trainer and consultant at Ax-Stream, in U.K. He
has graciously contributed his approach to Axure prototyping for mobile, which is
presented here:

Mobile-friendly websites and mobile apps
There are a number of specific things you should be aware of when producing Axure
prototypes for mobile devices, such as smartphones and tablets.

The first important thing to understand is the difference between mobile friendly
websites and native mobile apps.

Chapter 3

[147]

There are two basic types of system we use on PCs. Some systems run natively on
the device and are specific to the PC's operating systems (for example, MS Windows,
MacOS, or Linux) example of this are things such as Microsoft Outlook and Apple's
QuickTime. These are sometimes known as desktop systems. There are also systems
that reside on the World Wide Web (WWW), which are accessed through a browser,
and are (largely) independent of what operating systems the PC is using.

The situation is exactly the same with mobile devices. There are native apps that run
directly on the device, and are specific to the device's operating system (for example,
iOS and Android). There are also mobile friendly websites. These are websites
designed specifically to be used on the mobile device, within a mobile-based browser.
Here, the site being accessed recognizes that a mobile device is being used, and
provides a version of the site that is designed specifically for this type of platform. In
rare cases, there may be many different versions of the site, which target a wide range
of different mobile devices, but typically, there will just be a generic version for mobile
devices or, perhaps, a version for smartphones and a version for tablets.

Of course, the nature of the systems we design for these two different types of platform
is very different but, as we will explore throughout this section, this difference has
implications for Axure mobile prototyping that may not be initially obvious!

Different device resolutions and aspect ratios
Websites targeted for PC-based browsers are designed for one, or just a few different,
pages sizes. At the time of writing, 800x 600 pixels, 1024x768, and 1200x1024 are the
most common of these. Some sites have liquid layouts so that the page size changes
along with the browser window size (liquid layouts are not supported within
Axure). The point here is that when prototyping for PC browsers, we typically only
have to worry about a few different pages sizes, and it is both viable and common to
produce different versions of Axure prototypes for more than one page size.

By contrast, mobile devices come in a very wide range of resolutions and aspect
ratios. Even devices from the same manufacture, targeted at the same market can
vary in the way. This means that it will not, typically, be viable to produce versions
of the prototype for all the different types of devices on which the real system might
run. In turn, this means that we need to think very carefully about what page size(s)
we are going to prototype and what device(s) will be used when demonstrating
and/or for usability testing the prototype.

Prototype Construction Basics

[148]

Using the Viewport Tag
Whether you are prototyping a native app or a mobile friendly website, the Axure
prototype will always be an HTML website. This once presented a significant
problem in Axure mobile prototyping because mobile browsers typically scale
web pages to ensure that pages fit completely within the browser window on the
mobile device. However, this scaling was often inappropriate for (Axure) prototypes
because it would shrink pages even when the page was already small enough to fit
within the browser window!

Axure 6 solved this problem using the "Viewport Tag" (see the preceding screenshot,
A). This is a generic HTML tag that instructs mobile browsers how to scale web
pages, and is recognized by most modern mobile devices. In Axure, you can set this
tag when generating the prototype using the "mobile/device" option. In most cases,
the default settings will work fine, but some devices will require special settings. In
these cases, you will need to consult the documentation for the specific device(s) you
are using.

Chapter 3

[149]

Using a full screen browser
When prototyping native apps, we often also want to prototype various states of the
device's status bar (this is usually at the top of the screen and shows things such as
battery charge and signal strength). This presents an issue because, under normal
circumstances, the device will always display its status bar, so, both the device and
the prototype will have status bar, leading to a problem highlighted in the following
screenshot (A):

To get round this problem, the prototype needs to be viewed within a browser's full
screen mode. Sadly, not all mobile browsers have such a mode; however, browsers
are available for most devices that do have this capability. For example, Vanilla Surf
is available for the iPhone/iPad and Dolphin Mini Browser is available for Android
(there were free versions of both available at the time of writing).

Prototype Construction Basics

[150]

Landscape and portrait page versions
Unlike systems that run on a PC, mobile device make extensive use of the ability to
rotate the device, so that pages can be viewed in portrait or landscape mode. In turn,
this means that we may have to prototype two versions of some, or all, pages in the
prototype, as illustrated in the following screenshot:

This feature of mobile prototyping also leaves us with the problem of being able
to 'synchronize' the pairs of pages when demonstrating or usability testing our
prototypes. In these cases, it can be useful to use a simulation tool, such as the one
provided by ax-stream, which have the ability to keep pairs of pages 'in-synch'.

Event and gesture compatibility
The way in which we interact with a PC and mobile device are very different. For
example, the following diagram illustrates how, for many type of interaction, there is
no equivalency across the two platforms:

Chapter 3

[151]

The preceding diagram also illustrates two other important issues related to mobile
prototyping with Axure. The first is that, although both type of platform support
double and triple clicking/pressing, these two types of event/gesture are not
presently supported in Axure.

The second issue is more subtle: although both platforms support the drag
interaction, and drag is supported in Axure 6, the drag event creates an issue when
prototyping native apps with Axure. This is because the Axure prototype is an
HTML web page, so when it is run within some mobile browsers the drag event
will act on the entire page, even if we coded the prototype to drag just part of a
page using a dynamic panel. However, when we run the prototype on other mobile
browsers and within a PC browser, we are able to drag just part of the page as
intended. In summary, Figure 4 illustrates how, with Axure 6 mobile prototyping,
the only event/gesture that is truly common to both PCs and mobile device is a
single click!

Prototype Construction Basics

[152]

This is just one of many examples of problems we get with Axure mobile
prototyping related to events/gestures. To address this, ax-stream's mobile simulator
(illustrated in the following screenshot) provides a way of mapping events to
gestures so that, at least, we can 'represent' how the various mobile gestures would
control the system being prototyped:

Browser limitations
As implied earlier, Axure prototypes can be run within a mobile browser on the
device itself or within PC browser; perhaps by using some kind of simulator. With
more complex prototypes (such as those using animation), we face an issue when
running within a mobile browser, because mobile browsers do not necessarily
support the more complex HTML and JavaScript present within an Axure prototype
that include the more complex interactions. Sadly, the degree to which functionality
within an Axure prototype is supported varies across both different mobile browsers
and the device on which they are running!

Chapter 3

[153]

Therefore, the only advice here is: do not assume that all of your interactions will
work on your intended mobile devices, just because they work on your PC, and
make sure you thoroughly test your prototype on the exact device and browser with
which you intend to do demonstration and/or conduct usability tests.

Using widget libraries
There are numerous Axure widget libraries available, including libraries for mobile
prototyping; at the time of writing, there are libraries available for iPhone, iPad, and
Android devices. These range from simple 'dumb' Axure widgets to more complex
widgets capable of, for example, supporting the Y-Axis rotation which is commonly
used on mobile devices.

Loading prototypes onto the device
Mobile devices often access web pages through a 3G connection; which, of course,
we all know can often be quite slow and un-reliable. Similarly, because mobile
devices do not typically have the processing power, disk speed, or networking
throughput capacity of a modern PC, browsing web pages can be slow, even with
a strong Wi-Fi connection. This problem of download speed is exacerbated because
real mobile websites have pages that are very deliberately coded to have a very small
file size; specifically to optimize the download time. By contrast, the pages within
Axure prototypes are not optimized in this way are typically relatively large!

In order to get round this problem with running Axure prototypes on mobile
devices, the advice is to load your prototype onto the device itself and run it from
there. In this way, your prototype will run as fast and as reliably as possible.

Prototype Construction Basics

[154]

Summary
This chapter laid out the foundation for the project's interactive prototype and
proposed a structured, pragmatic, and requirements-driven approach to wireframe
construction. Taking advantage of Axure's unified wireframing and specifications
environment, we covered:

•	 Constructing use case and task flow diagrams
•	 Basic wireframing aided by guides and grids
•	 Wireframe construction with Masters and Dynamic panels
•	 The importance of labeling of widgets, Masters, and Dynamic panel states
•	 Applying visual effects in response to mouse activity
•	 Applying the sketch effect

You were introduced to Alexandria, the book's demonstration project, and in a series
of activities, created an initial set of diagrams and wireframes which included the use
of wireframe and flow widgets, and Masters, and Dynamic panels.

The next chapter will introduce you to Axure interactivity fundamentals such
as interactions, cases, events, and actions. We will also deepen the discussion on
naming conventions and wireframe construction strategies.

Interactivity 101
In this chapter, we will cover Axure interaction basics and some of the simple,
yet powerful features that empower non-programmers to develop high fidelity,
clickable UX prototypes. We review the three components that make up an Axure
interaction—events, cases, and actions, and how to compose both user-driven and
automatic interactions.

Interaction design—brief history
Before we dive into the details of Axure interactions, a brief discussion of the
evolution of user experience is in order, because historical perspective provides
valuable insights into the reasons for, and nature of changes in, the way people
interact with computers. These changes, in turn, define the methods, and the type of
tools embraced, as a UX professional, in order to keep up with constant change.

Twenty five hundred years ago, Heraclitus observed: "Nothing endures but change",
and this holds true until today. Axure emerged in response to a growing need for
a UX-specific tool that could move us from the static to the dynamic—a tool that
empowers a UX pro to create compelling rich user interaction quickly and without
dependence on the services of a programmer or advanced programming skills.

Traditionally, user interface designers have been using basic tools to visualize the
user interface. From the proverbial napkin, index cards, sketch books and other
paper products, to general-purpose software such as PowerPoint, drawing software
such as Illustrator, Photoshop or Fireworks and, of course, the all time favorite,
Microsoft Visio. With the exception of visual design and branding related mockups,
low fidelity static wireframes were the norm for user interface deliverables.

Interactivity 101

[156]

The 1950–60s
Many historical and practical reasons contributed to the predominance of the
static wireframes approach. The chief reason is the fact that the discipline of User
Experience as we think of it today, emerged only in the 1980s. In the 1950s and 1960s
the reality was different, because there was no user interface! Input was loaded
through punch cards or keyboards, and the computer made the software "run" from
start to end. The user experience of that era could be compared perhaps to baking a
cake—follow a recipe using the required ingredients, put in the oven, and hope that
the outcome is edible. Logic and algorithms were paramount, placing programmers
and analysts in a natural position to control all aspects of software development.

The general public had little exposure to, experience with, control over or
expectations regarding computers in general and even less when it came to
interaction with computers. The common perception was that working with
computers was limited to smart people, and the idea that computers are difficult to
use took root.

The 1970–80s
The Personal Computer (PC) began to trickle into the market in the 1970s and turned
into a real commercial success with models such as the Apple II and, in 1981, the IBM
PC. Human-computer interaction in these systems was facilitated by the keyboard
and operating systems, such as Microsoft DOS. The PC, as these systems came to
be referred to by the general public, marked the beginning of a dramatic transition
from a user interaction that was strictly controlled by, limited to, and conducted in a
business environment, to one that happens in home settings.

Once you got your new PC, there were very few software titles available to do
anything useful. In order to use new software, or more importantly, play a new
game, you had to write it yourself. So naturally, programmers continued to control
all aspects of software creation. A new and hugely successful profession and
business model—software development— had emerged.

While the size and cost of computing has placed the ownership of a computer within
the reach of consumers, remaining hardware and software limitations has several
implications on the user experience:

•	 Extensive use of abbreviations, such as file names that could be only eight
characters long, truncated terms (Ext P instead of Extended Price), and the
notorious Year 2000 fiasco.

Chapter 4

[157]

•	 Extensive use of reference codes substituting entire words and phrases, with
number or letters. For example:

	° 1 for exempt
	° 2 for non exempt
	° 3 for not applicable

•	 Finding the correlation between such code and its meaning, often required
use of a bulky training document or user manual. As we know, few people
bother reading these.

•	 Keyboard shortcuts and obscure key combinations were the only method
for user input. The benefit was fast data entry and the drawback was the
increased load on memorization requirements.

•	 12 to 14 inches monochrome, and later color monitors at a resolution of
640x480 were the standard display hardware. This small real estate translated
to proliferation of windows, dialog boxes, and horizontal scrolling. To
complete a single task, a user was frequently required to negotiate many
windows, dialogs boxes, and other prompts, which disrupted and slowed
down the natural flow of relatively simple tasks.

This list includes some of the key ingredients for cryptic, ambiguous, and difficult-to-
use software. The prevailing perception that software is complicated and hard to use
was even further enhanced.

The 1980's moved the personal computer to new grounds in terms of user
interactions although paradoxically, this had not, initially, resulted in improved
usability. Several major breakthroughs contributed to a new paradigm of human-
computer interaction:

•	 The GUI (Graphical User Interface)
•	 The Mouse (Direct Manipulation)
•	 WYSIWYG (What-You-See-Is-What-You-Get)

The Graphical User Interface that was born out of the pioneering work at the now
legendary Xerox PARC, iconized by Apple Macintosh and much later popularized
by Microsoft Windows, offered a new and exciting user experience that was much
less dependent on keyboarding and memorization of key combinations and codes.
Instead, representational metaphors such as the Desktop, the Trash, folders and
icons, provided new cognitive facilities to bridge the gap between the user's mental
model of the steps involved in performing a task, and the way the task was modeled
in the software. The smaller the gap, the more intuitive the software was perceived
to be.

Interactivity 101

[158]

A small input device, fondly named the mouse, further empowered users through
the concept of Direct Manipulation: The ability to control the screen without
the arbitration of a keyboard. Terms such as Point-and-Click, Double-Click and
Drag-and-Drop, became an inseparable part of our daily lexicon. Another ground-
breaking innovation of the era was WYSIWYG (What You See Is What You Get).
This gave the profound idea that the screen representation of a document, which the
user sees and edits, is almost identical, in terms of size, positioning, and color, to a
paper output.

For the first time since the beginning of computing, programmers were stepping
into an unfamiliar territory—the graphic part in Graphical User Interface. Numerous
decisions had to be made on issues such as layout and organization of information,
colors palettes, typography, positioning, and alignment of UI widgets, choice of
graphics for icons, and many others.

The impact on the life cycle of the software was that, as new features were added,
a good programmer would look for the most logical place to add them, while
others would be satisfied with any empty piece of screen real estate. Over time, the
user interface would become increasingly bloated, confusing, expensive to extend
or support, and ultimately, very difficult to use and support. Software further
maintained its reputation as being complex, confusing, and not intuitive.

Yet, very often, attempts to improve the software by changing the user interface were
encountered with great resistance—from users. A class of Power Users emerged
in every organization. These were the people who figured how to work the system
and knew its obscure and undocumented features. They internalized numerous key
combinations, codes, and shortcuts, and felt in complete control. These people taught
themselves and others how to be productive using an unproductive tool. With
this mastery often came power and a sense of job security. An offer to change the
software and improve it implied a real loss of investment and power.

The user part in Graphical User Interface emerged. However, it would take another
decade and a half, and the introduction of a dramatic new invention, before the term
User Experience would become synonymous with a discipline that today plays an
integral role in the life cycle of software development.

The 1990–2000s
The World Wide Web, as it was known in the early days, initially proved to be a
great setback to the user experience. Some of the reasons included:

•	 Narrow bandwidth facilitated through slow dial-up connections meant that
screens could take a long time to render

Chapter 4

[159]

•	 The entire page had to be refreshed upon clicking any hyperlink, leading
further to poor performance

•	 Competing and incompatible flavors of web browsers meant that a page,
designed for viewing on one browser, was not likely to render correctly on
another browser

•	 The comforts of having familiar conventions for a GUI desktop client were
gone, replaced by numerous user interfaces, as each website has its own
design

These inconveniences were simply the unavoidable growing pains of an unstoppable
progress. Innovations such as the Amazon Shopping Cart and Google's Search
introduced new paradigms of powerful simplicity which turned the Internet from a
somewhat naive democratic virtual environment to a fiercely commercial one.

The Internet proved to be the great equalizer, immortalized in a 1993 New Yorker
cartoon by Peter Stiener, showing a dog using a computer telling another dog: "On
the Internet, nobody knows you are a dog". In the context of user experience, two
aspects of the reality depicted by this cartoon are especially relevant:

•	 Compared to traditional software development, creating simple websites
was, and still is, lighting-fast and it does not require programmers, although
programmers remain essential for more complex applications. Consequently,
everyone and their grandmothers began creating websites.

•	 Whereas in the commercial world, the cost of changing software vendors
was often prohibitive, website publishers soon found out a bitter reality: The
abundant availability of alternatives meant that the competition was only
one click away. Moreover, it could be difficult to distinguish between a site
created in someone's bedroom, and one created by a global company. If the
first was better, users flocked to it.

These two factors paved the way to effectively associating usability with revenue.
The fledgling, disjointed, and little understood practice of user interface design
began to emerge, sprouting methodologies such as Joint Development and User
Centered Design. An argument emerged, that an investment in understanding users'
needs may in fact yield better software.

The discipline of user experience has matured since the beginning of the new
century. The web was transformed in the last decade, shedding many of its early-
stage problems with user experience. Several factors played a role:

•	 The advent of high speed Internet
•	 Fast, affordable computers
•	 Browser compatibility

Interactivity 101

[160]

•	 Data interconnectivity via web services
•	 The Semantic web and increased decoupling of data from the way it is

displayed
•	 Data updates without page reloading

Users developed much higher expectations for ease of use from commercial
applications, and user experience has been placed front and center. Businesses began
to see the user interface not as eye candy but as a strategic asset. New terminology,
specifically addressing measurement of website effectiveness, has been introduced:

•	 Analytics: The tools and methodologies to quantify the traffic of users on
a site

•	 Conversion: How many visitors actually complete a transaction
•	 Retention: How many users are loyal to the site and return with more

business

More trends quickly emerged, most importantly, social networks, cloud computing,
and mobile devices such as smartphones and tablets. The shift placed the user at
the forefront of software development and focused on measurable, result-oriented
design, and in turn, helped push the industry towards a formal recognition of User
Experience as a revenue-generator as opposed to a cost center.

The present, future, and Axure interactions
Considering the history and evolution of user experience, it is clear that we are in a
midst of an enormous transition in software design. Our ability to simulate highly
engaging user experiences across diverse delivery platforms is critical, because UX is
quickly taking a front and center position in the development life cycle.

Axure's interactions were game changing with respect to enabling UX designers
to gain independence in the creation of high-fidelity prototypes. Over the years,
Axure has expanded the vocabulary of building blocks that make up its interactions'
features, yet delicate balance has to be maintained. On the one hand, Axure should
not be too complicated or too similar to programming, and preserve its core mission.
On the other hand, Axure is pressured to support increasingly complex interactions
and devices. So far, Axure has been able to maintain a good balance between these
two seemingly competing needs.

Chapter 4

[161]

Axure interactions primer
Interactions are the feature that turns our static wireframes into clickable, interactive
HTML prototypes. Axure shields us from the complexities of coding, by providing
a simple, wizard-like interface for defining instructions and logic in English. Each
time we generate the HTML prototype, Axure converts the interactions into real
JavaScript code, which a web browser can understand.

Each Axure interaction is composed of three basic units of information: When, Where,
and What:

•	 When does the interaction happen? The Axure terminology for When is events,
and some examples include:

	° When the page is loaded in the browser
	° After a user clicks on a widget
	° After the user tabs out of a field

•	 Where is the interaction? An interaction is attached to either a widget, such as
a rectangle, radio button or drop-list, or to a page or master wireframe. You
can create widget interactions in the Widget Properties pane, and master
interactions in the Page Properties pane.

•	 What should happen? It is the Axure terminology for what actions are. Actions
define the outcome of the interaction, for example, when a page loads, set
a dynamic panel to a specific state, when the user clicks on a button, link to
another page, and so on. When the user tabs out of a form field, validate the
input, and display an error message.

In addition, Axure interactions can be guided by conditional logic, which is an
optional ingredient. We will cover conditions, variables, and other advanced features
in Chapter 5, Advanced Interactions.

The W3C of Axure interactions
In addition to standing for the World Wide Web consortium, the
acronym W3C also stands for When, Where, What, and Condition—the
ingredients of an Axure interaction. It is an easy mnemonic to remember
when you construct and debug interactions.

Guided example
We will start with a quick example, which builds on the static wireframes we created
in Chapter 2, Axure Basics—the User Interface.

Interactivity 101

[162]

Step 1: Defining the interaction in simple
words
When the user clicks on a tab on the Global Navigation bar, it links to the
corresponding page. The new page will replace the current page.

As a learning device, use the W3C to break the sentence into the following
building blocks:

•	 When: When the user clicks on it
•	 Where: A tab on the global navigation bar (widget)
•	 What: Link to the corresponding page
•	 Condition: No condition

Step 2: The Axure interface
Open the Global Navigation master (M Global Nav), for editing in the Wireframes
pane as shown in the following screenshot. The navigation bar is made of four
rectangle type widgets, styled to have a Tab Left appearance. Although each of these
tabs will have an interaction attached to it, we will use the Books tab widget (B) for
this example:

In the Widget Properties pane (C), click on the Interactions tab (D) to see the list of
events that a rectangle widget can respond to. There are three events:

•	 OnClick
•	 OnMouseEnter
•	 OnMouseOut

The When part in Step 1 is: When the user clicks, so the OnClick event (E) is the event
we need. Before moving ahead, however, we will review the following screenshot,
which visualizes the contextual nature of widget-level interactions:

Chapter 4

[163]

When no widgets are selected in the wireframe, the Interactions tab in the Widget
Properties pane (A) is dimmed and no events are listed. When you click on a widget
(B), the interaction section becomes active (C), listing contextual events to the
selected widget type.

The primary interface for defining interactions is in Axure's Case Editor window,
which we will discuss shortly. The following screenshot visualizes the ways to access
this window from the Widget Properties pane:

Interactivity 101

[164]

The following options will launch the Case Editor window (E):

•	 Option 1: Clicking on the Add Case link (A)
•	 Option 2: Double-clicking the OnClick event (B)
•	 Option 3: Clicking the context menu icon (C), which appears when you

mouse over an event and select the Add Case option (D) from the menu

Moreover, if these options are not enough, Axure also offers a simplified method to
deal with interactions that involve only linking:

•	 Click on the Quick Links link (F) to open the Link Properties dialog (G),
where you can choose the appropriate linking target page

Step 3: Translating this requirement into an
Axure interaction
Our example calls for a simple OnClick interaction. Although we hold off the
detailed discussion on the actual structure of interactions until the next section of
this chapter, it is very likely that you will be able to figure out yourself, how to link
the Books tab to the Books page by using either the Case Editor window or Link
Properties dialog.

However, I do want to point out a few subtle changes to Axure's interface that
happen after you associate an interaction to a widget. The following screenshot
visualizes the before and after states of various interface elements, which are detailed
in the following table:

Chapter 4

[165]

Axure UI With interaction(s) Without interaction(s)
The widget (A) A yellow, numbered footnote icon

appears on the upper-right corner of
the widget (A2).

The footnote icon will also
appear if annotations are
associated with it.

Interactions tab
(B)

An asterisk (*) is added to the right of
the lightning icon on the tab (B2). This
visual indicator is a useful reminder
when the widget is selected, but you
are working on either the Annotations
or Formatting tabs.

No asterisk.

Interaction
section (C)

A twisty icon appears to the left of the
event. One or more cases are listed,
and each case can also be expanded or
collapsed. (C1)

Step 4: Annotating the interaction (optional?)
There are two questions to consider at this point: Why bother with annotations to
begin with, and why start with annotations so early in the prototyping phase? Here
are some pointers to consider regarding the first question:

•	 Are you on the hook for delivering a UI specifications document?
•	 Are you planning to provide stakeholders with a link to the interactive

prototype so they can review it?
•	 Are you part of a UX team of designers collaborating on the project?

If your answer was "Yes" to any of the preceding questions, the rationale is simple—
because you have to, and because stakeholders will consume the prototype. While
the reasons to annotate involve others, the reasons to start early involve you:
Annotating wireframes can be tedious and time consuming, but let's face it—you
will have to get to it eventually.

While you have the widget selected for editing (see the following screenshot,
A), after you are done with the interaction, labeling the widget (B) and adding a
description (C) will only take a few seconds.

Interactivity 101

[166]

Similarly, when you add an annotation to a widget to the Interactions tab, an
asterisk appears to the right of the tab icon (D):

In order to complete this example, continue to add interactions to the other tabs that
make up the Global Navigation. We will return to this master later in the book to
demonstrate more advanced interaction features.

The purpose of this guided example was to familiarize you with the workflow
involved in creating interactions, and Axure's interface nuances. Now we will cover
interactions in more detail.

Axure events
Axure interactions are triggered by two types of events:

•	 When a page (and masters placed on a page) is loaded in the browser: These
are automatic interactions that are triggered when the page loads.

•	 When a user directly interacts with a widget: These are triggered by the user.

Events triggered on OnPageLoad
Think about this concept as a staging setup, an orchestration of actions that take
place behind the scenes and is executed as the page is rendered in the browser.
Moreover, it is a setup to which you can apply conditional logic and variables, and
deliver a contextual rendering of the page. In short, the OnPageLoad event, which can
be applied to pages and on masters, is likely to become one of your frequently used
methods to control your prototype.

Chapter 4

[167]

Guided example: Changing the default
landing page
When you generate a prototype, it always loads the sitemap's top-most page. In our
Alexandria example, it is the Use Case page. However, as you move from modeling
flows to wireframing—testing and presenting the prototype—it becomes desirable to
start on the Home page, or some other page, depending on your needs. This example
is an opportunity to demonstrate a simple interaction that is triggered when a page is
being loaded in the browser.

The interaction objective is: As soon as the prototype loads in the browser, the top
page in the sitemap redirects to a page you specified. We will break the interaction to
its W3C components:

•	 When: The prototype launches
•	 Where: The top page in the sitemap
•	 What: Redirect to another page
•	 Condition: No condition

The following screenshot provides a visualization of setting up the interaction:

1. Open the Use Cases page for editing (A) and in the Page Properties pane,
switch to the Page Interactions tab (B).

2. OnPageLoad (C) is the only interaction available, so double-click on it to
open the Case Editor window (D).

Interactivity 101

[168]

3. Re-label the interaction in field Step 1: Description (E), from the meaningless
Case 1 to a more descriptive title, such as Redirect Prototype Start Page.

4. Step 2: Add actions lists all Axure's actions. The Links group of interactions
is the one that handles navigation and the action Open Link in Current
Window (F) is the most appropriate, so click on it.

5. The action now appears in the column Step 3: Organize actions (G), and all
the pages in the sitemap are listed in the column Step 4: Configure actions.
Click on the Home page (H), to identify it as the target.

6. We are done. Close the Case Editor window.
7. Notice the asterisk that was added to the Page Interactions tab (I), Axure's

visual pattern is used to indicate that the page has interactions, and is a
useful reminder when the Page Properties pane is completely minimized
and only the tabs are visible.

8. The New Case (J) is now listed under the OnPageLoad interaction. Notice
that you can easily interpret the interaction. Axure uses natural language
to describe what should happen: When the page loads, open Home in the
current window.

Generate the prototype. Although the top page in the sitemap is the Use Cases page,
the prototype will open on the Home page, which was our objective.

Simulating contextual navigation
A trivial user experience requires that the global navigation object will clearly
communicate to the user what page they are on.

When a page loads, the Global Navigation bar will change to reflect the selected
page. We will deconstruct the interaction into its W3C components:

•	 When: A page loads
•	 Where: The Global Navigation master
•	 What: Reflects which page is presented
•	 Condition: No condition

What is interesting about this, and most requirements, is that there are many ways
to execute the What component. The active tab can be larger, it can have a different
color than the other tabs, and its label can have a font in bold and of a different color,
and so on. While there are well-accepted UX pattern conventions, creativity and
innovation are at the core of what UX designers contribute to the process.

Chapter 4

[169]

As the interaction patterns of the application that you are designing will be tied
to your interpretation of requirements, and to the application's visual design style
guide, Axure's interactions are similar to Lego blocks—you mix and match standard
pieces and end up with a unique creation. The following screenshot demonstrates
this:

Back in Chapter 3, Prototype Construction Basics, we assigned a Rollover style to each
of the tabs that make up the Global Navigation bar. Now, we will follow a similar
path to assign a Selected style to the tabs:

1. Select all four tabs that make up the navigation bar, as shown in the previous
screenshot (A).

2. Right-click and select the Edit Selected Style option (B) from the Edit Button
Shape menu.

3. In the Set Selected Style pop-up (C), assign the visual attributes that you
want the selected style to have. For example, a white text color over a black
background color—the visual opposite of the non-selected tabs.

4. Check the Preview option (D) to see a live preview of the tabs in Selected
style, and close the pop-up when done.

Interactivity 101

[170]

Next, we want to add an OnPageLoad interaction to each prototype page that is
listed in the Global Navigation bar. When the page loads the interaction, it will set a
tab on the Global Navigation to its Selected style:

The preceding screenshot illustrates adding the interaction to the Home page, and
you can apply the example to the other pages:

1. Open the home page for editing (A), switch to the Page Interactions tab in
the Page Properties pane and double-click the OnPageLoad interaction (B).
The Case Editor (C) window will open now.

2. Start by re-labeling the interaction with a meaningful name, such as Initialize
Page. Then, review the actions listed in the column Step 2: Add actions.

3. In the Widgets and Variables section, you will find the action Set Widget(s)
to Selected State (D), which is the one we need. Click on the action and it
will be added to the column Step 3: Organize actions.

Chapter 4

[171]

4. All the widgets that are part of the home page wireframe are listed in the
column Step 4: Configure actions. Find the Global Nav section, and check
the Home (Button Shape) to Selected (E) checkbox.

5. At the bottom of the column, select the option Selected from the Select the
value: drop-down (F).

Generate the prototype. The Home page loads first and the Home tab (shown in the
following screenshot (A)) has the Selected style applied. As you rollover the other
tabs, they change their visual appearance to the Rollover style (B), as shown in the
following screenshot:

Labeling Widgets
If you want to assess the value of labeling your prototype widgets,
rebuild the Home page, and the three media pages and their associated
masters, but don't label anything—just keep pages, masters, widgets,
and interactions with their default label. You will find that as your
prototype evolves, creating interactions become nearly impossible
because nothing can be easily identified.

Interactivity 101

[172]

OnPageLoad events and dynamic panels
With the Global Navigation bar wired, it is time to focus our attention on the left
navigation pane, which we have on the Books, News & Mags, and Movies & TV
media pages. In Chapter 2, Axure Basics—the User Interface, we constructed the Left
Nav master using a dynamic panel widget. Each media page has a corresponding
state that lists categories that are relevant to that medium.

Currently in the prototype, however, each of the media pages is displaying the
Books categories on the left pane, because, as a default Axure will always display the
top-most state of a dynamic panel.

Our objective is to get the Left Nav to display the correct categories on the page
on which it is located. In addition, Media Nav is a more descriptive name for this
interface component, so let's rename it in the Axure file.

The interaction into its W3C components is as follows:

•	 When: A medium page (Books, News & Mags, Movies & TV) loads
•	 Where: The Media Nav master
•	 What: Display the relevant categories for that medium page
•	 Condition: No condition

The easiest method to get the dynamic panel to load the appropriate state is to use
the OnPageLoad event. The following screenshot illustrates the construction process
using the News & Mags as an example, which you can apply to the other two pages:

Chapter 4

[173]

1. Open the News & Mags page (A) for editing and switch to the Page
Interactions tab in the Page Properties pane. We want to add an action to the
existing Initialize Page case (B), which we created in the previous section.

2. Double-click on the case to launch Case Editor. In the column Step 2: Add
actions, find the Dynamic Panel group of actions. As we want to change the
state of a dynamic panel, the action Set Panel state(s) to State(s) (C), is the
one we need. The action appears in the column Step 3: Organize actions (D),
but we focus our attention on the next column.

3. The column Step 4: Configure actions shows the dynamic panel Set DP
Category Tree (Dynamic Panel) state to (E) nested below the master M
Media Nav. It is the only dynamic panel on this page. From the Select the
state drop-down (F) select the relevant state.

4. Generate the prototype to make sure that the OnPageLoad works as you
expected, and if everything looks fine. Repeat these steps on the other two
pages.

The generated prototype is illustrated in the following screenshot. The Home page
loads first and when you click on the Books tab in the Global Navigation bar, the
Books page appears. The Books tab (A) is set to its Selected state, and the media
pane lists books of related categories (B). Clicking on the News & Mags tab loads the
page and its Global Navigation (C) and media pane (D) are set accordingly:

Interactivity 101

[174]

OnPageLoad event in detail
I hope that by now you have developed a taste for the OnPageLoad event. As we can
see from the examples, it is a powerful, and quite a simple mechanism. It enables you
to reduce the number of redundant wireframes in the prototype by using masters
and dynamic panels, which can be controlled by the OnPageLoad event to display
the appropriate state. In Chapter 5, we will discuss the use of conditional logic and
variables, which further increases the usefulness of this event.

In order to conclude this section, here is a detailed review of Axure's OnPageLoad
event, which can be used on pages and masters:

Page Request

Master

Page
OnPageLoad

Case?

Do Action(s)

Do Action(s)

Do Some other

Action(s)

Render Page

in Browser

Condition(s)?

(Optional)

Or/And
Yes

No

Do Nothing(s)

A

B
C

D

E

F

G

H

I

•	 The browser gets a request to load a page (A), either because it is the first
time that you have launched the prototype or as a result of the navigation
from one prototype page to another.

•	 The browser first checks for OnPageLoad interactions. An OnPageLoad event
(B) may be associated with the loading page (C), a master used on the page
(D), or both.

Chapter 4

[175]

•	 If an OnPageLoad exists, the browser first evaluates page level interactions,
and then master level interactions. As we will see in Chapter 5, the benefits
of this order of operations is that you can set the value of a variable on
the page's OnPageLoad interaction, and pass that variable to the master's
OnPageLoad interaction. It sounds a bit complicated though!

•	 If the OnPageLoad interaction includes condition(s) (E), the browser
will evaluate the logic and execute the appropriate action (F and/or G).
Otherwise, if the OnPageLoad event does not include a condition, the browser
will execute the interaction (H).

•	 The requested page is rendered (I) per the interaction.

User triggered events
Like the real application, an Axure prototype can respond to user actions. The closer
the prototype simulates the systems' response, the easier it is for stakeholders and
participants in usability testing, to predict how the application is intended to work in
production. We achieve a higher fidelity in the prototype by simulating the widget's
behavior in response to user-initiated events such as click, rollover, drag, and so on.
While the OnPageLoad event is triggered automatically when the page loads, widget
interactions are triggered when the user acts.

Guided example: Sign-in
Earlier in the chapter, we had an opportunity to create a user-driven interaction,
when we attached an OnClick event to each of the tabs on the Global Navigation
master. The interaction involved a simple linking action triggered when the user
clicked on the tab. This is the tip of the iceberg for Axure interactions.

In the following example, we will expand widget interactions, by adding a Log In
object to the header section.

Interactivity 101

[176]

It is, of course, impossible to cover in detail the evolution of the entire demo
application, so let's pretend that in subsequent iterations, the application's name,
logo, and tagline were added to the Header master. The following screenshot
illustrates the evolution of the Header from a simple rectangle (A) that served as
a placeholder for initial wireframes to replace the rectangle with the application's
name, logo, and tagline (B), to the point where we are ready to articulate our design
of the Subscribe and Log In experience (C):

The subscription and log in interaction design is informed by meetings with business
stakeholders who repeatedly emphasized that they want the header bar to be very
minimalist, much like an iPhone or iPad app. The focus should be on getting visitors
to the site to subscribe or log in.

In our example, we will build the login prompt and demonstrate some more actions
on widget possibilities.

The following diagram shows the login flow and its basic requirements: When the
user (A) clicks on the Log In button, a pop up with a username, password fields,
and assistance should appear (B). The user needs to provide their e-mail ID and
password. Upon a successful log in, provide links to the user's profile, and account
information. In addition, display special promotions offered to the user (C):

Chapter 4

[177]

Prompt

User Name

Password

Help, Remember

Log In

Success?

TBD

Show Link to Profile

Show Link to Account

Show Promotions

CB

A

No

Log In Yes

Compared to the previous requirements that we have used so far in our examples,
this requirement is quite detailed, as it covers an entire user interaction flow. I
am leaving out an alternate path purposely, which deals with a user who needs
assistance to log in, as we will cover conditional logic in Chapter 5.

Construction strategy
Before wiring the interaction, we need to wireframe the Login pop-up, and there are
some construction issues to consider. For example, should the entire Subscribe/Log
In control (button and pop up) be a part of the Header master, or an independent
master nested in the Header master? The following screenshot shows the Header
master (A) inside which the Subscribe/Log In component (B) was constructed:

It is always a good idea to keep the construction as modular as possible, to reduce
both the complexity and redundancy of wireframes. As the functionality and
behavior of the Subscribe/Log In component is distinctly separate from the header,
it makes sense to detach it from the header, by converting it to an independent
master.

Interactivity 101

[178]

In addition, we know that for the login pop-up to appear when the user clicks on the
Log In button, the pop up must be a dynamic panel. That is because it is the only
Axure widget for which you can control the visibility attribute.

The following screenshot visualizes the construction steps needed before we can
create the interaction for the Log In button:

Chapter 4

[179]

•	 We start in the Header master (A), by selecting all the widgets that make up
the Subscribe/Log In component (B) and converting the selection to a master.
As we do the conversion in the Header master, an instance of the new master
will replace the widgets that were converted.

•	 After opening the newly minted Subscribe/Log In master for editing (C),
we select all the widgets again, and set the position of the entire selection to
10 pixels from the left and top of the wireframe's upper-left corner (D). This
is an optional step, which gives you a visual control that all the widgets are
within the visible parts of the wireframe and not bleeding outside.

•	 Next, we select all the widgets except the Subscribe and Log In widgets (E),
and convert the selection to a dynamic panel (F).

•	 We select the dynamic panel (G), and set it to Hidden (H).
•	 The Subscribe/Login master is now composed of the Log In button (I), the

hidden dynamic panel of the Login prompt (J), and Subscribe button (K).

Finally, we label all the widgets in the Subscribe/Log In master.

Adding the interaction
We are now ready to add the interaction that is triggered when the user clicks on the
Log In button widget. The W3C components of the interaction are:

•	 When: The user clicks the Log In button
•	 Where: The Log In button (Rectangle widget)
•	 What: Show the login prompt
•	 Condition: No condition

Interactivity 101

[180]

This interaction, as shown in the following screenshot, does not cover the entire flow,
of course, it covers only what happens after the user clicks on the Log In button:

1. The master M Subscribe/Login master should open for editing in the
Wireframes pane. Click on the Log In widget (B) and in the Widget
Properties pane, double-click on the OnClick event (C).

2. In Case Editor (D), give the interaction a meaningful name, for example,
Show Login Prompt, and in the column Step 2: Add actions, select the action
Show Panel(s) (E) from the Dynamic Panels section.

3. The only dynamic panel in this master's wireframe is listed in the column
Step 4: Configure actions. In our example, it is labeled as DP Login Prompt
(Dynamic Panel) (F). Check it to indicate your selection.

Chapter 4

[181]

That seems to be done. The following screenshot illustrates the generated prototype
after you click on the Log In button:

Something does not look right! While the login prompt becomes visible when
you clicked on the Log In button, it appears behind the Global Navigation and
body sections. That is because the way Axure manages the Z-axis, or the depth
relationship of wireframe widgets.

Although Axure does not provide a formal layer management feature such as those
common in drawing applications, it supports ordering of widgets using the move
front, back, forward, and backward options. In addition, the first widget you place
in the wireframe will be at the very background, and following widgets will be in
front. This is not something you might notice, unless the widgets overlap.

What has happened in our example is that the Header master was placed first on the
wireframe, and the login prompt—which is nested in it—is obscured by the Global
Navigation and Body sections that were added after the Header and so are in
front of it.

Interactivity 101

[182]

In order to repair this problem, carry out the steps shown in the following
screenshot:

•	 Back in the M Subscribe/Login master, select the Log In button, and double-
click the Show Login Prompt interaction (A).

•	 In the Case Editor (B), find the Bring Panel(s) to Front action (C), in the
Dynamic Panels section of the column Step 2: Add actions.

•	 Check the checkbox to the left of the DP Login Prompt (Dynamic Panel)
(D)—the single dynamic panel in this wireframe. Close Case Editor.

•	 Now, the interaction created for the OnClick event includes two actions—
making the hidden dynamic panel visible, and placing it in front of all other
widgets in the wireframe where the master is placed.

Chapter 4

[183]

The following screenshot illustrates the result after you generate the prototype again:

The interaction now works just as intended, and the Login Prompt (A) now appears
on top of the other elements. Prototyping the login interaction, however, has just
begun. Now that the login prompt is visible, we need to simulate a successful and
unsuccessful login. We will get back to these flows in Chapter 5, but one tweak that
we can apply now, will afford the user to dismiss the login prompt.

There are a couple of ways to hide the panel if the user chooses not to log in at this
point. The fastest method is to replace the action Show Panel(s), with the action
Toggle Visibility for Panel(s). When the user clicks the Log In button for the first
time, the Login prompt will become visible. Clicking on the button again will hide
the prompt, and so on.

Interactivity 101

[184]

Organizing actions
As you composed your initial interactions in the Case Editor, you may have
wondered about the role of the column Step 3: Organize actions. As it turns out,
once you have two or more actions associated with a case, their order is important.
The following screenshot explains the modification of the Show Login Prompt
interaction, which includes two actions:

•	 Our initial interaction (A) listed the Show Panel(s) action first, and then
Bring Panel(s) to front as second. This makes total sense.

•	 In order to replace the Show Panel(s) action with the Toggle Visibility for
DP Login Prompt action, we have to delete the Show action first (B).

•	 The Toggle Visibility for DP Login Prompt action is added below the Bring
DP Login Prompt to Front action (C).

•	 You may not be sure if the order matters in this case, but, because in the
initial interaction the Bring DP Login Prompt to Front was last, you may
want to maintain the same order that proved to work. To change the order,
select the Move Action Up option from the actions context menu (D).

•	 You will end up with an order that is similar to what you had originally (E).
•	 In this specific case, it turns out that the order of actions in the Step 3 column

did not matter much. However, as your interactions become more advanced,
one of the first troubleshooting techniques is to check that the order of
actions make sense.

Chapter 4

[185]

Widget, Events, and Context
Each of Axure's built-in widgets, with the exception of the iFrame, can be assigned
an interaction. No single widget can perform all possible actions, which is a
good thing, because most user interface widgets have inherent, well-established
constraints. For example, a radio button can be selected or deselected, enabled or
disabled, and in or out of focus. So, Axure events and widgets are contextual. In
order to see, which actions are associated with a widget, drag-over the widget to
the Wireframes pane, and while it is selected, switch to the Interactions tab in the
Widgets Properties pane.

Note that you don't have to create interactions to enable some widgets for
interaction. Form input widgets such as text fields, radio buttons, or drop-downs
will respond to the user without any interactions, although no follow-up action
will take place. For example, the user will be able to type in a text field, but actions
such as evaluating the contents of the field, or actions once the user exits the field
will not happen unless you create the appropriate interactions. Other widgets, such
as rectangle or image widgets without an interaction, will appear as part of a static
image when the wireframe is rendered in the browser.

The following figure is a visualization of Axure's Widget/Actions groupings:

Interactivity 101

[186]

Widget Events in detail
The OnClick event is one of the fundamental triggers of modern user-computer
interactions. In Axure, it is one of several actions you can associate with a widget
and, as discussed earlier, widgets and events are contextual.

The following diagram gives a detailed look at Axure's widget level events:

Page

Do Action(s)

Do Action(s)

Do Some other

Action(s)

Update Page

in Browser

Widget

type

Condition(s)?

(Optional)

Or/And
Yes

No

A

C
D E

F

G

H

I

Widget

B

User Action

•	 The user interacts with a widget by initiating an event (A), such as an
OnClick event that is associated with that widget (B).

•	 The type of widget (button, checkbox, and so on) constrains the possible
response the user can expect (D). For example, before clicking on a button,
the user may move the mouse over it, and the visual appearance of the
button will change in response to the OnMouseEnter event.

•	 The browser will check if conditional logic is tied to the widget event (E).
For example, you may have created an interaction in which a rollover event
will display different states of a dynamic panel based on some variable. The
browser will evaluate the condition and execute the action(s) (F and G).

•	 If no conditions exist, the browser will execute the action(s) associated with
the widget (H).

•	 Based on the actions tied to the event, the browser will update the screen, or
load some other screen (I).

Chapter 4

[187]

Axure cases
You are familiar with cases from modeling and diagramming the user experience.
Cases are abstractions of interaction flows the user has with an application. Each case
encapsulates a discrete path the user can take. Typically, we are asked to prototype
the primary case and often alternate paths, which are either contextual to the user
or to some other conditions that may cause the same task to have variable flows.
Multiple cases of the same task infer some conditional logic that affects which path of
the task will be followed.

Axure cases are a way to build alternate paths for the same task. In all of the
examples that we constructed so far, we encountered cases as a part of the process of
creating interaction. However, other than labeling the case in a meaningful way, we
had no real use for cases. That is because our interactions so far involved single cases
and no conditions were involved.

The following diagram illustrates the structure of an Axure interaction and where
Axure cases fit in:

Interaction

Event

Condition

OR

A B

Action 1

Action 2

Action 1

Action 2

Case 1

Case 2

Case 1

Action 1

Action 2

Event

Interaction

Interactivity 101

[188]

Cases are typically used in one of two ways, in both page and master OnPageLoad
events, or in widget events:

•	 A single case with one or more actions (A) per single interaction event; no
conditional logic is involved

•	 Multiple cases, each with one or more actions (B) per single interaction event;
conditional logic is used for manual selection of the prototype to determine
the execution of the interaction

An Axure case is basically a container of actions, and it is what makes it possible for
us to simulate alternate interaction paths. The higher the fidelity of the prototype, the
higher is the number of multicase interactions.

Guided example: Construction and
interactions
Back to our Alexandria example, we want to continue our work on the Login
section. We want to simulate a successful login flow. However, the wireframes are
not complete. In this example, we first go through some wireframe construction and
tweaking, which is necessary before the actual interactions can be built.

Part 1: Construction tweaks
Due to limitations of space, and in the interest of keeping the flow of reading as
smooth as possible, some minor details have been omitted. If you choose to follow
this exercise, it is an opportunity to experiment.

We start with the following screenshot, which illustrates where we had left off with
the Subscribe/Login master:

Chapter 4

[189]

Objective: Upon successful login, Subscribe and Log In buttons should be replaced
with the following:

1. Welcome <First name of user>
2. Links to Profile, Account, and Support
3. In the current wireframe of the master M Subscribe/Login, the buttons for

Subscribe and Log In are made of rectangle widgets that are placed directly
on the wireframe (A). Let's convert the widgets into a dynamic panel with
two states. The top state is these two buttons, so label the state something like
Before Login. The second state will show the new links as per our objective,
so label it After Login. Also, label the dynamic panel that contains those two
states as DP Subscribe Actions Bar (DP stands for Dynamic Panel).
The following screenshot continues the construction process:

4. Open both states for editing. From the Before Login state wireframe (A),
select and copy the widgets (B). Switch to the After Login state wireframe
(C), and paste the widgets (D) using the context menu.

Interactivity 101

[190]

5. For reasons of visual consistency, the welcome notice and new links will
appear in a rounded rectangle widget that has the same height as the buttons
in the first state, but is a bit wider. In the After Login state, change the style
of one of the pasted links (E) from a Rounded Left widget to a Rounded
Rectangle (F). Proceed to change the text to Welcome <name> and the new
links (H).
The following screenshot continues the construction process:

6. Return to the master wireframe. The Subscribe and Log In buttons (A) in the
dynamic panel DP Subscribe Actions Bar (B) fit the width of the dynamic
panel. However, you want to adjust the panel's width, so that the wider state
in the After Login state will fit as well.

Chapter 4

[191]

7. In the Dynamic Panel Manager pane, move the After Login state so it is
above the Before Login state (C). Now, you can see the state's wireframe (D).
It is easy to adjust the width of the dynamic panel (E) quickly and accurately.
The following screenshot continues the construction process:

Now that the dynamic panel which holds both states of the login buttons has
been adjusted to the size of its largest state, we can switch the order of the
states in the Dynamic Panel Manager, so that the Before Login state is visible
by default.

8. Open this state for editing (A), and move the buttons from the left side of
the dotted blue boundary of the dynamic panel (B), to the right (C). Why?
Because these buttons are positioned close to the right margin of the Home
and other site pages. After login, we want to avoid the wider state from
extending to the right of the right margin.

Interactivity 101

[192]

9. Switch back to the master wireframe M Subscribe/Login (D). It is now
composed of two dynamic panels. One of the buttons (E) and the other which
we created in the previous example of the login prompt (F). Right align them
so that that the login prompt will appear below the Log In button (G).
The following screenshot concludes this construction process:

Chapter 4

[193]

We did a lot of widget shifting on master level wireframes and now it is critical to
check the impact of these tweaks on the page wireframes which will be generated in
the prototype.

1. When we open the Home page wireframe for review, it appears that the
Subscribe/Login master (A) has shifted to the right and is now extending
beyond the body section (B), which marks the right margin of the wireframe
(C).

2. We initially placed the Subscribe/Login master in the Header master, but
given the latest tweaks to the Subscribe/Login master and the potential of
further tweaks, perhaps it makes sense to place the master directly on the
page wireframe. Cut the master out of the Header master, and paste and
position it on the Home page master (D).

3. As we will have to place the master on practically all other pages of the
application, there is a risk that future repositioning of the master on one
wireframe, will have to be repeated, with a risk of position inconsistencies
between pages.

4. In order to avert the risk, apply the X position of the Subscribe/Login master
placement on the Home wireframe, to the placement of the dynamic panels
in that master's wireframe. Then, change the master's behavior to Place in
Background.

5. Switch back to the Home page wireframe, delete the instance of the
Subscribe/Login master that is there, and drag-over a new instance of the
same master. It will automatically snap right into the appropriate position
(E). The effort of placing and maintaining a consistent position for this master
has now been greatly reduced.

Part 2: Adding interactions
After a well-deserved coffee break, it is time to complete what we set out to do at the
beginning of the example, which is, to simulate what happens when the user
signs in.

Our objective: When the user clicks on the Log In button after providing a username
and password (if the credentials are correct), replace the Subscribe and Log In
button with a welcome message and links to the user's profile, account, as well as a
link to support. At this point, we don't want to elaborate on failed logins, so we will
provide a placeholder until the wireframes for this path are updated.

Interactivity 101

[194]

The following screenshot illustrates the initial steps in the process:

We will start with the interaction that simulates a successful login. This will be
very basic, and we will not evaluate if the fields actually have any data, nor will we
compare the input to some expected credentials (but no worries, we will get to this in
Chapter 5).

1. Open the Login Form state of the login prompt dynamic panel and select
the Login button (A). Double-click on the OnClick event (B) and select the
action Set Panel state(s) to state(s). Rename this case. In the column Step 4:
Configure Actions, two dynamic panels are listed—the Login Prompt and
the Subscribe Actions Bar. Check the latter, and from the Select the state
drop-down select After Login (D).

Chapter 4

[195]

2. After you close the Case Editor, the new interaction is added (E), and a
yellow footnote tag is added to the Login button (F), indicating that an
interaction (or/and annotation, or both) is associated with it.
The following screenshot continues the process:

Next, we will add the alternate login case, when the user does not provide valid
credentials:

•	 With the Login button still selected (A), double-click the OnClick event, or
click on the Add Case link (B) to launch the Case Editor.

•	 As we did not prepare the wireframes needed to support this flow, let's use
a place holder: The action Other (C) lets you describe in words the intended
interaction. In many cases, this is good enough to get a conversation going.
Type the description in the column Step 4: Configure actions (D), and close
the editor.

Interactivity 101

[196]

Two cases are now nested under the OnClick event (E). It is time to generate the
prototype and see what we get! The following screenshot illustrates the result
generated in the browser:

Axure actions
Earlier in this chapter, we looked at Axure events, which trigger actions. We
described cases, which are the organizational units for one or more actions triggered
by an event. Hopefully, as you went through the guided examples throughout the
chapter, you have noticed the richness of functionality we can simulate with Axure
and the fact that no programming skills are needed—just a bit of common sense.

Axure currently supports twenty-five actions, organized in the following four
groups:

1. Links
2. Dynamic panels
3. Widgets and variables
4. Miscellaneous

Chapter 4

[197]

The following diagram shows Axure's action groupings:

1. Links

Open

Windows

In Current Windows

In New Windows/Tab

In Popup Window

In Parent Window

Frames

Close

In Frame(s)

In Parent Frame

Current Window

2. Dynamic Panels 3. Widgets and Variables

Set Variable/Widget

value(s)
Set to State

Show

Hide

Toggle Visibility

Move

Bring to Front

Send to Back

Enable Widget(s)

Disable Widget(s)

Set Widget(s) to Selected State

Set Focus on Widget

Tree Widget

Expand Tree Nodes(s)

Collapse Tree Nodes(s)

Image Map widget

Scroll to Image Map Region

Axure

Actions

4. Miscellaneous

Wait Time(ms)

Other

Raise Event

Links actions
These actions are parallel to the HTML <a> target attribute, such as _self, _parent,
and so on, which specifies where to open the linked document. They are mostly self-
explanatory and used to facilitate navigation. The frame actions allow you to take
advantage of the iFrame widget and load a page within a page, or even multiple
pages within a page.

Dynamic panel actions
Dynamic panels are the widgets that are responsible for the prototype "magic". The
actions afford control over horizontal, vertical, and depth position, visibility, and
movement.

Widgets and variables actions
Wherever applicable, you can enable or disable widgets, for example, fields, radio
buttons, or checkboxes. You can set focus on a widget, which is great for placing the
cursor in a particular form field when a page loads. As we demonstrated earlier, you
can set a widget to a selected state and this will work as long as you create a selected
state for the widget. Finally, there are some specialized actions for the tree and image
map region widgets.

Interactivity 101

[198]

Miscellaneous actions
•	 Wait Time (ms) is self-explanatory and extremely useful for setting up timed

interactions.
•	 Other is basically a text placeholder, where you can articulate in writing

some action that should take place.
•	 Raise Event is an action that is applicable only to widgets that are placed in a

master wireframe. We will discuss raised events in detail in Chapter 5.

Summary
In this chapter, we covered the fundamental aspects of Axure interactions.
Interactions can be associated with pages, masters, and contextually with widgets. It
is up to you to determine which elements in a prototype should be interactive, and
to what level of fidelity these interactions should mimic in the planned application.
As a rule of thumb, focus on your deliverables, and on the value that each interaction
can provide, to make the prototype communicate your intention for a better user
experience.

If you are expected to deliver a specifications document, the higher the fidelity and
complexity of your interactions, the more difficult it gets to generate a clear and easy-
to-digest specifications document. Start experimenting very early with the output of
your prototype as a Word document and final words to conclude this chapter—label
widget and interaction elements in your wireframes!

In the next chapter, we will cover more advanced aspects of Axure interactions such
as conditional logic, variables, raised events, and so on. However, don't let the word
advanced scare you, because the investment in learning some more intricate aspects of
interactions and wireframe constructions will help you create really compelling high-
fidelity prototypes.

Advanced Interactions
Don't let the word "advanced" scare you away from this chapter! I am going to cover
a set of features such as raised events, conditional logic and variables, introduction
to a terminology which is usually associated with programming and suggests
complexity. It is understandable if you are not interested in, or are intimidated by,
the prospect of coding, and wish to avoid using this set of Axure features as long as
possible. You should not.

First, rest assured that no coding is involved. By now, you are familiar with Axure's
Interactions and the Case Editor features, which require you only to select from a
contextual selection of options and construct interactions by pointing and clicking.
The only typing required is the labeling. You will find a similar easy-to-use interface
when you use features such as the Condition Builder or simulate "drag and drop".

Secondly, think about some of the terminologies and methods we use in interaction
design. We use branching logic to determine use cases, scenarios, and how
functionality responds to user interaction under certain conditions. Axure makes it
fairly easy to model the logic we need, in order to visualize branching paths, and
express it in the interactive prototype.

Finally, not only will you maximize your investment in Axure, you will also enhance
your own professional skills and have an opportunity to express your creativity.
Much like learning a new language, the greater your vocabulary the more expressive
will be your communication. It is the same with professional tools; and like any
professional tool, Axure, more than anything else, is an enabler for your creativity.
So, let's dive right in.

Advanced Interactions

[200]

Conditions
When you incorporate conditional logic into your prototype, you save yourself from
a great deal of overhead work. If you don't use conditional logic, you are limiting
your ability to simulate conditional interactions in your prototype. Let's face it,
we use logic all the time, even if the results are not always logical. Moreover, in
computer science and interaction design, we must use conditional logic in order to
accommodate variable situations and exceptions. Yet, there seems to be a general
reluctance to deal with direct use of logic when it comes to using software. A
good example is the so-called "advanced" search feature that most search engines,
including Google, offer, and the reason why Google's concept of a single search field
and no operators has become the standard search interface.

If-Then-Else
Programming languages employ a variety of syntaxes for creating and evaluating
conditional statements. Axure simplifies things by using the very common syntax of
If-Then-Else, which essentially looks like this:

•	 If A is true, then do X
•	 Else, if B is true then do Z

This kind of decision-making is very natural to UX designers because we use a
similar logical approach to model task and interaction flows. When we create a
conditional interaction, we reflect the flow's logic in the prototype. As it is best to
learn by doing, let's dive into a quick example:

Sandbox files for learning and experimenting
Sometimes, the most effective way to figure things out is by
experimentation. In the course of prototyping, you will find yourself
wondering how some Axure feature works, or wanting to explore a new
interaction. This is where the sandboxing technique can help: Create a
blank new Axure file on your desktop, work through your explorations
on this file, and then apply your learning to the project file. In the sandbox
file, you don't have to worry about "breaking" any of your previous work
and can focus instead just on the mechanics of the feature you are trying
to figure out. The technique will also keep your production file clean and
free of experimentation wireframes.

Chapter 5

[201]

Guided example—conditions and dynamic
panels
Axure makes it very easy to apply conditional logic to the prototype, as you will see
in this example. We will use a "sandbox" file to explore the feature, and later, apply
the learning to the Alexandria project file.

Step 1: Defining the interaction
Our goal is to change the state of a dynamic panel based on the user input. This is
one of the most commonly used conditional logic interactions in the construction of
Axure prototypes, and a great illustration of If-Then-Else.

In this simple example, the user selects a shape from a list of shapes and the
appropriate shape appears. As we established in Chapter 4, Interactivity 101, the first
step is to define the desired interaction. Now that the conditional logic is involved,
this is also the opportunity to spell out the logic:

•	 When: When the user changes the selection
•	 Where: A droplist widget
•	 What: Change the state of a dynamic panel to show the corresponding shape
•	 Conditions: On entry, the droplist should show the option "Select from List",

and no shape should be visible
•	 If the user selects the value "Rectangle" from the droplist, show the rectangle

state
•	 If the user selects the value "Triangle" from the droplist, show the triangle

state
•	 If the user selects the value "Circle" from the droplist, show the circle state
•	 If the user selects the value "Select from List" from the droplist, hide the

shapes

The logic here is simple, because each selection in the droplist has a corresponding
dynamic panel state. We instruct Axure to evaluate which option is selected in the
droplist, and then change the state of the dynamic panel accordingly.

Notice that the first sentence in the condition section specifies the entry state, in this
case, the option "Select from List". This is the default state when the screen loads.
When you plan interactions that involve conditions, always make sure you account
for a default state of that UI control.

Advanced Interactions

[202]

Step 2: Constructing Wireframe
We will start by preparing a sandbox environment. Create a blank directory on
your desktop and label it Axure Sandbox. In this directory, create another directory
named HTML—this is where we will generate the prototype. Finally, create a new
Axure file named Sandbox and save it in the Axure Sandbox directory. The following
screenshot illustrates the steps:

•	 From the Widgets pane, drag over a Droplist (A) and a Dynamic Panel (B)
widget. Label them Droplist and Shape States, for example.

•	 Double-click on the droplist and in the Edit Droplist dialog (C), add the
values specified in Step 1, and check Select from List to make it the default
value (D).

•	 In the dynamic panel, create the states for the three corresponding shapes.
This does not need to be an elaborate production. Make sure you label each
of the states (E).

•	 Right-click on the dynamic panel and select Set Hidden from the context
menu.

Chapter 5

[203]

Step 3: Setting the first condition
When you start with interactions, having the flow pre-planned helps in creating
the wireframe and in adding the interaction. Now that we covered both in Steps 1
and 2, we will set the conditional logic for the interaction. The following screenshot
visualizes the process:

•	 With the droplist selected in the wireframe (A), switch to the Interactions tab
in the Widgets Properties pane, and double-click on the OnChange event (B)
to launch Case Editor (C).

•	 Before clicking on Case 1, we want to create the conditions. Click on the Add
Condition link (D) to launch the Condition Builder window (E).

Advanced Interactions

[204]

•	 We will discuss Condition Builder later in this chapter, but for now, notice
that the first condition row already appears in the builder. It is contextual
to the selected widget, and is structured like an equation: "The selected
option of droplist equals the value Select from List." (F). As this is one of the
conditions that needs to be evaluated, each time the user changes a value in
the droplist, we can use it as is. Click on OK to close the builder.

•	 Back in Case Editor (C), notice that the condition has been added to Case
1, and Axure presents it in a human-friendly way: If selected option of
Droplist equals "Select from List" (G).

Step 4: Adding the first interaction
Now we need to instruct Axure about the action to apply when the condition we
have just set is met. In this case, when the value of the droplist is "Select from List",
the shapes should be hidden. As the shapes are in the dynamic panel widget, we
want to hide that widget. Now, you might ask yourself, "Why hide the dynamic
panel, if it is already hidden?"

When you create conditions, always make sure to account for ALL
the possible cases that are applicable to the interaction.

It is true that in the wireframe, the dynamic panel is hidden by default. However,
once the user selects a shape from the list, the dynamic panel will become visible,
until the user changes the value in the droplist to "Select from List". Moreover,
this is where the Set Hidden action will come into play. The following screenshot
illustrates the process:

Chapter 5

[205]

•	 First, label Case 1 to something meaningful such as Hide Shapes (A).
•	 Select the Hide Panel(s) action (B), and click to check the dynamic panel

widget which is listed in the column Step 4: Configure actions (C).
•	 The complete interaction is now listed under the column Step 3: Organize

actions (D).

Step 5: Completing the interaction
At this point, the interaction includes a single case, which handles a single condition.
In order to complete the interaction, we need to capture additional cases when the
user picks various shapes from the droplist. The following screenshot illustrates the
first half of the process involved in adding the condition and interaction for the
first shape:

•	 As we are evaluating the selected option of the same widget, the only
variable to check is the value of that option. This means we can use a
shortcut: Right-click on the initial case created in Step 4 (A), select Copy Case
(B), and then Paste Case(s) (C) from the context menu.

•	 Double-click on the new case (D) to open Case Editor (E), where the first
things to do are to rename the case (F), and delete the Hide action (G).

Advanced Interactions

[206]

Using one case as the starting point for another case is common. The following
screenshot illustrates the process of tweaking the duplicate case to fit a new
condition:

Chapter 5

[207]

•	 In Case Editor, click on the Edit Condition link (A). All there is to do next
is to change the copied selection from Select from List to Rectangle (B), and
close the Condition Builder.

•	 Back in Case Editor, set the action to Set Panel state(s) to State(s) in the
column Step 2: Add actions (C) and in the column Step 4: Configure actions
(D), check the dynamic panel widget (D) and select the Rectangle shape (E).

•	 We need to add a Show Panel(s) action (F), because the dynamic panel
widget is hidden by default and it is also hidden when the selected option in
the droplist is Select from List. With this action set up, close Case Editor.

•	 The interaction for OnChange case (G) now covers a couple of the conditions
we specified in Step 1 of this example. Add the additional cases using the
process outlined in Step 5.

The following screenshot illustrates what the complete conditional interaction should
look like:

When the user changes an item in the droplist, the OnChange action (A) evaluates
the selection and:

•	 If the user selects the value Rectangle from the droplist, show the rectangle
state (C)

•	 If the user selects the value Triangle from the droplist, show the triangle
state (D)

Advanced Interactions

[208]

•	 If the user selects the value Circle from the droplist, show the circle state (E)
•	 If the user selects the value Select from List from the droplist, hide the

shapes (B)

It is time to generate the HTML prototype. Make sure you set the path for the
prototype to Axure Sandbox | HTML, as discussed in Step 2 of this example. The
following screenshot (A through E) illustrates the generated result:

The Condition Builder
Let's take a closer look at a simple conditional statement from the previous example.
The interaction for the Rectangle case is composed of the following two sentences:

1. If the selected option in the Droplist equals Rectangle
2. Set Shape State state to Rectangle

Chapter 5

[209]

The first sentence is the condition being evaluated, and the second sentence is the
action that takes place if the condition is met. Now let's focus on the condition
sentence itself, and the flexibility afforded by the modular nature of Axure's
Condition Builder.

Although the condition is composed of five droplists, what we are looking at is an
equation in which we compare the first two droplists to the last two droplists. The
following screenshot illustrates how the segments are assembled in the builder:

•	 selected option of is one of eleven choices in the first droplist (A). The
selection made here affects the other droplists. Note that, although in our
example, we have the interaction tied to the OnChange event of the droplist
widget, the condition we add does not have to be limited to evaluating the
selected value of the droplist. We could add other conditions to the OnChange
event that evaluate any of the other choices in the builder's droplist A.

•	 Our choice in the first droplist narrows the options in the second droplist (B)
to droplists and listbox widgets. Our example wireframe has only a single
droplist widget and so Droplist (Droplist) is the only item listed.

•	 The third droplist (C) is where we set the comparison choices in droplists A
and B to the choices in droplist D and E. In addition to the option Equals,
there are nine more options to construct the equation.

Advanced Interactions

[210]

•	 In the forth droplist (D), we specify what type of value the comparison will
evaluate. In our example, we want to know what is the selected option in the
wireframe droplist. However, we could also set a comparison to the selected
option of some other droplist and create contextual droplists (example is
coming below).

•	 The last droplist (E) is contextual to the selection we make in D. In our
example, as we opted to look at the value of the Droplist widget (B), Axure
lists the values we entered for that widget.

•	 Finally, the Description section (F) is automatically generated by Axure to
reiterate the condition in plain English.

Guided example—multiple conditions
We often have to evaluate multiple conditions before we can determine which action
to take. For example, simulating validation of the required form or authentication
fields, or simulating a contextual rendering of an application screen, based on the
user login, status, and other parameters. The Condition Builder is a significant time
saver because with relatively few wireframes, mostly variations within dynamic
panel states, it is possible to create multiple conditions and simulate sophisticated
interactions.

For this example, we will continue with our Alexandria project. Specifically, we will
complete the login validation which we constructed in the previous chapter.

Step 1: Defining the interaction
Our goal is to evaluate if the user entered their username and password, prompt
the user if there is missing or wrong information, or log them into the site. This
interaction is broadly used, although interaction patterns vary slightly. Successful
sign-in is a critical task because in most sites and applications, it affords access to the
most valuable features.

It is sometimes tempting to postpone, or skip altogether, simulating the sign-in task,
because it is so trivial. However, without an explicit directive from UX about this
flow, we are leaving the interpretation and design to the developers.

In this example, we will use Condition Builder to compose several conditions and
the first step is to define the desired interaction. As with all interactions that involve
conditional logic, this is the opportunity to spell out the logic:

•	 When: When the user clicks on the Login button.
•	 Where: The Login rectangle widget.

Chapter 5

[211]

•	 What: Validate the username and password. Alert the user if there is an
issue, or log the user in.

•	 Conditions: On entry, the User Name and Password fields are empty, and the
Login button is disabled.

•	 The Login button is enabled only if both fields are populated.
•	 When the user clicks on the Login button.

	° If the provided credentials are ok, change the screen to reflect a
successful sign-in screen.

	° If any or both credentials are wrong, notify the user and disable the
Login button.

	° If the user re-typed the credentials, reactivate the Login button.

The logic here is a bit more involved compared to the previous example, as we need
to account for the interaction in multiple widgets: The form fields, the Login button,
and the notification to the user in the case of an authentication problem.

The following screenshot illustrates the current state of our Login wireframe and its
interaction, as it was created in Chapter 4:

•	 The Subscribe/Login master is a dynamic panel with two states
•	 Login Form is on the second state, and the only widget with an interaction is

the Login button (A)
•	 The interaction is triggered by an OnClick event which does not evaluate the

User Name and Password fields

Advanced Interactions

[212]

Step 2: Constructing Wireframe
We will start by iterating on top of what we have already created, and make
adjustments to the wireframe according to the new requirements. The following
screenshot illustrates the tweaks:

Chapter 5

[213]

•	 It appears that in the current wireframe, there is no room for providing the
user with feedback if there is an issue with the username or password.

•	 Right above the Login button, we will add a dynamic panel which will
contain the error message (see the preceding screenshot, A) and set it to
Hidden (B). Remember that dynamic panel widgets are the only widget type
for which you can control the visibility properties:

	° The height of the current pop up needs to be adjusted to
accommodate the added alert, and remember to increase the height
of the dynamic panel that holds the state.

•	 The Login button (C) needs to have a disabled state. There are at least a
couple of ways to approach the constructions.

	° Converting the widget into a dynamic panel and adding a disabled
state:

	° Use the styling feature to add a Disabled Style (D) in the Set
Disabled Style editor (E) and use actions to switch between normal
and disabled styles. In this example, I will use the second option
because it involves maintaining a single wireframe widget and the
use of styles which is faster to update.

With the wireframe updated to support the interaction, we can now move on to the
next step.

Advanced Interactions

[214]

Step 3: Interaction tweaks
A quick review of the flow of interactions, as it pertains to the wireframes, is
illustrated in the following screenshot:

•	 The entire interaction is triggered when the user clicks on the Log In button
(A), a widget in the Before Login state of the dynamic panel DP Subscribe
Actions Bar (B), which is part of the master M Subscribe/Login (C).

•	 The dynamic panel Login Form (D), which is also in the master (C), will
become visible.

•	 The alert dynamic panel (E) will be hidden. This is taken care of by setting
the default visibility of this dynamic panel to hidden:

	° The Login button (F) needs to be set to show its disabled state.

Chapter 5

[215]

As setting the Login button to a disabled style cannot be defaulted on the widget, it
needs to be set in an action. The process is illustrated in the following screenshot:

The logical place to have this action is on the button that triggers the interaction, the
Log In button (see the preceding screenshot, A). Moreover, as we already created
an initial interaction for this widget in Chapter 4 (B), we only need to add the action
Disable Widget(s) (C and D) to that interaction. Generate the prototype and test this
out. The styling of the Login button will be set to the visual style you assigned to the
widget, and although the widget has an OnClick interaction associated with it, it
will be disabled.

Step 4: Evaluating multiple conditions
Now that we have established an initial state for the Login button in the prompt, we
can move on to composing the interaction that will enable the button and allow the
user to continue with the login process.

As the Login button should only be enabled if there is some content in the User
Name and Password fields, let's assign each of the fields with an interaction to
evaluate just that. In this example, our evaluation will not be too elaborate.

•	 For the User Name field, we will check whether the user typed in at least
four characters. We will not look for a specific value.

•	 For the Password field, we will check whether the user typed in at least six
characters. We will not look for a specific value.

Advanced Interactions

[216]

Both fields are Text Field widgets. This type of widget can support the following
events:

•	 OnClick

•	 OnKeyUp

•	 OnFocus

•	 OnLostFocus

How can we decide which event should trigger the interaction? The truth is that you
can accomplish the requirements in several ways, and in some cases, it is a matter
of trial and error. In this example, I will use the OnKeyUp event to trigger the actions
that evaluate the fields, because this event provides an instant feedback to the user if
the entered credentials satisfy the requirements.

The following screenshot illustrates the conditions and interactions for the User
Name field (A):

•	 We need to create two cases for the OnKeyUp event (B):
	° The first case (C) will evaluate whether the length of the input in this

field is at least four characters, and whether the length of the input
in the Password field is at least six characters, because the user must
provide both pieces of information. If the length of the input for both
meets the conditions, the Login button (E) will be enabled.

	° The second case (D) will keep the Login button disabled, if the length
of input to the User Name field is less than four characters. We
don't need to evaluate the length of the Password field, because the
User Name must meet the condition and so it does not matter if the
Password field is ok.

Chapter 5

[217]

This example was a demonstration of the frequent need to evaluate multiple
conditions in a single case. Let's take a closer look at the Condition Builder:

Satisfy all or any
The preceding screenshot illustrates the Condition Builder's Satisfy droplist (A)
which has only two values, all and any. By default, it is set to all, which is fine if
you have a single condition in the builder. With two or more conditions, it becomes
critical that this droplist is set to the correct value. To help you make sense of the
condition, the droplist is set as part of a sentence. Always read the entire sentence
when you consider which option to set:

•	 Satisfy all of the following:
•	 Satisfy any of the following:

In our example, the conditional logic controls whether or not to activate the Login
button, and because BOTH fields must be validated, the selection of "all" in the
Satisfy droplist is the correct one.

Step 5: Final conditional touches
Complete the interactions and conditions for the Password field and generate the
prototype to test whether the login control works as intended. The companion Axure
file for this chapter includes the complete interaction, but I encourage you to try
to figure it out yourself, because, as with anything else, we learn best by first-hand
experimentation.

It will also be nice to demonstrate the alert field, which notifies the user when either
of the fields is invalid. This condition is tested when the user clicks on the active
Login button.

Advanced Interactions

[218]

In this example, we will only evaluate the Password field and the process is
illustrated in the following screenshot:

•	 We have already created an interaction for the Login button (A) in Chapter
4. The initial version did not evaluate anything, and the two cases for the
OnClick event were to be triggered manually.

•	 The revised interactions for the Successful and Failed Login cases will
evaluate a specific password value. While the conditional logic in the User
Name and Password fields evaluates the length of the input, here, we want
to simulate the system response if the value of the Password field (C) is
incorrect.

Chapter 5

[219]

•	 For convenience, set the password to something that is easy to remember and
type, because as long as the conditional simulation of the login is in place,
you will have to go through the flow each time you generate the prototype.
This can become very tedious. Our password will be simply be 123456. If
needed, however, you can use Axure to simulate very rigorous password
verification conditions.

•	 The alert line (D) appears only if the password is incorrect. The Successful
Login case will test if the password equals to 123456 and will change the
state of the entire dynamic panel.

Troubleshooting conditions
As ease as it is to set up many interactions and conditions in Axure, I can guarantee
that there will be cases where your interaction will not work as expected. The
following are some basic troubleshooting ideas:

•	 The most common culprit—a simple copy and paste issue—might explain
inexplicable behavior of a widget. The problematic widget may have
inherited the interactions and conditions of the original widget. Clean up as
needed.

•	 Are you evaluating the correct widget? Axure presents all the widgets that
are placed on the page (or master). The list can be very long and so picking
the wrong widget is understandable. If you are having a hard time finding
the widget, re-label it temporarily as XYZ, which will make it much easier to
spot. Remember to restore to the original label after you fix the interaction.

•	 Take a moment to write down the conditional logic and review it against
what you have in Axure. Make sure to review in order. Sometimes, just
writing the logic, especially if it is a bit more complex, makes it easier to spot
the problem in Axure.

•	 Check the Satisfy all/any droplist if you have multiple conditions.
Depending on how you want the logic to work, the setting may be wrong.

Raised events
Can a tiger change its stripes? Can an Axure master change its size or shape from
one page to another? The answer to both is, unfortunately, no. However, you can
control the behavior of a master, so that each of its instances, across multiple pages,
would have a different behavior for the same event. Raised events greatly extend the
usefulness of masters and once you learn this feature (easy, I promise), you will find
yourself using it often.

Advanced Interactions

[220]

There are three important things to remember about raised events:

•	 Raised events can be created only for widgets that are on masters
•	 A master may have multiple raised events
•	 Creating a raised event is a two-step process:

	° Step 1: Create the raised event on the master
	° Step 2: Create the interaction for the raised event on the page where

an instance of the master is placed

Why do we need raised events? A one-word answer is Context. The longer
explanation goes something like this:

•	 Masters would be of very limited use for an interactive prototype, if there
was no way to allow the master exhibit different behaviors, based on the
page on which the master is placed.

•	 When a master is placed on a page, it is not possible to edit or assign
interactions from the page to any of the master's widgets. The master's
wireframe has to be edited in its own page. A raised event affords a way to
create an interaction on a wireframe, which can be applied to widgets within
masters.

Guided example
Our first example will demonstrate the use of raised events to manage the behavior
of a Global Navigation master, such that a tab that corresponds to the current page
will not respond to an OnClick event.

In Chapter 4, we set a basic interaction for each of the four tabs that make up the
master M Global Nav. Each of the tab widgets links to its corresponding page when
an OnClick event is triggered. For example, on the Home page, clicking on the
Books tab links to the Books page; quite straightforward.

The problem is that the Books tab continues to be clickable on the Books page
because the tab is part of the master. It performs its built-in interaction on each
page on which the master is placed. In this example, we will make the behavior
contextual.

Chapter 5

[221]

Step 1: Creating a raised event on the master
For this example, there is no need to make any construction changes to the
wireframes, just adjust the interactions. The following screenshot illustrates the
wireframe before using raised events:

•	 On the master M Global Nav wireframe (A), the Books widget (B) has a
single interaction tied to the OnClick event (C).

•	 The interaction, as seen in Case Editor, is Open Books in Current Window
(D), composed of the action Open Link in Current Window (E) pointing to
the Books page in the sitemap (F).

•	 An instance of the master M Global Nav (G) is placed on the Books page
wireframe (H). Notice that the Interactions tab in the Widget Properties
pane (I) is disabled and empty.

Advanced Interactions

[222]

As you can see in the preceding screenshot (I), widgets on the master cannot be
assigned interactions once the master is placed on a page. Moreover, depending
on the interaction, it is complex or impossible to create an interaction context in
the master wireframe that is assigned to master widgets. The following screenshot
illustrates the first of the two parts in the process of creating raised events:

Chapter 5

[223]

As raised events can only be created in a master wireframe, we start by opening the
Global Navigation M Global Nav (A). I will focus on the Books tab widget (B), but
the process should be repeated for all widgets.

•	 The Books widget has one interaction triggered by the OnClick event. We
start by deleting the existing action Open Books in Current Window (C).

•	 Double-click on Case 1, and in Case Editor, scroll all the way to the bottom of
the column Step 2: Add actions, where you will find the Raise Event action
(D) nested under the Miscellaneous section.

•	 While the Raise Event action is added to the column Step 3: Organize
actions (E), the column Step 4: Configure actions (F) is empty.

•	 In order to add a new raised event, click on the Add icon (G) there. You may
have noticed that Axure provides a description of raised events in the top
part of the column. The important part of the description pertains to labeling
raised events:

	° Raised event names must be alphanumeric
	° Spaces are not permitted in raised event names

•	 Label the raised event something like GoToBooks (H), and, very important:
make sure you check the checkbox to the left of the raised event name!

•	 While you are at it, and if you did not do it before, label the generic Case 1 to
something meaningful such as GoTo Books (I).

•	 Notice that now, because of labeling, the interaction in the column Step 3:
Organize actions is easy to figure out.

Troubleshooting Raised Events
The first thing to check if a raised event does not work is to make sure
that the checkbox next to the raised event name in Case Editor (see the
preceding screenshot, H) is indeed checked!

Advanced Interactions

[224]

Finally, the following screenshot illustrates an alternative way to create raised events
on the master:

•	 From the Wireframe menu (A), select Manage Raised Events (Masters
Only)… (B). This menu option is contextual and you do not see it on the
Wireframe menu when you work on pages or dynamic panel states (unless
those are part of a master).

•	 The Manage Raised Events dialog (C) pops up and it is identical to the one
that appears in Case Editor. Existing raised events, such as the one we just
created in the example, will be listed (D).

•	 Use the Add icon (E) to create additional raised events (F). These raised
events will then be available for you to use in interactions for widgets within
that master.

The following screenshot illustrates how to associate these raised events with
master's widgets, this time using the Home tab widget as an example:

Chapter 5

[225]

•	 Follow the step that we took in the Books tab, and start by selecting the
Home tab in the master wireframe, and use the Delete option (A) to clear the
original action Open Home in Current Window (B).

•	 In Case Editor, as soon as we select the Raise Event action, it appears in the
column Step 3: Organize actions (D), and all four events we just added are
listed in the column Step 4: Configure actions (E).

Advanced Interactions

[226]

•	 After checking the box next to the raised event GoToHome (F) and labeling
the case with the meaningful name (G), the interaction in the Step 2 column
is updated (H).

Repeat the process for the News & Mags and Movies & TV widgets to complete the
conversion of the master M Global Nav. At this point, each of the widgets on the
master can respond to an OnClick event which will trigger the corresponding raise
event. However, we created the labels for those raised events. The names could be
very arbitrary. So how does Axure know that the label GoTo Home, for example, is
supposed to link to the Home page? How do we assign an actual Axure action to the
raised event? For the answer, let's move on to the next section.

Step 2: Applying interaction to raised events on
a page
The following screenshot illustrates the "before" and "after" use of raised events on
the Books page wireframe:

•	 Without raised events: In the Books page wireframe (A1), there is an
instance of the Global Navigation master (B1) in which the tab widgets
have conventional link actions. When you click on the master on the page
wireframe, the functionality of the Interactions tab in the Widget Properties
pane is disabled (C1), because the master's widgets are not exposed to the
page.

Chapter 5

[227]

•	 With raised events: In the Books page wireframe (A2), there is an instance of
the Global Navigation master (B2) in which the tab widgets have interactions
that involve raised events. When clicking on the master on the page
wireframe, the functionality of the Interactions tab in the Widget Properties
pane is enabled, and the raised events are listed (C2). Now, it is possible to
create interactions on this page, which will be triggered by widgets on the
master.

Therefore, here is the fascinating and powerful aspect of raised events, and why
the time investment in understanding raised events will pay off. As masters are
placed on multiple pages, the list of raised events will be exposed on each page,
including the wireframe pages of other masters. In each page, you can create different
interactions for the same raised event. Moreover, this is how the same master can
have different behaviors on different pages.

The following screenshot illustrates the interactions assigned to the four tabs in the
Global Navigation on the Books page:

Advanced Interactions

[228]

•	 When the master M Global Nav (A) is selected in the Books page wireframe,
all the raised events associated with the master are listed in the Widget
Properties pane's Interactions tab (B).

•	 The OnClick event for the raised event of the Books tab widget (C) is only
assigned an "Other" type action, with some verbiage that basically says that
when the user clicks on this tab, nothing happens. Creating a case for this
raised event is optional, and here I also demonstrate how to user the "Other"
action as a way to document the prototype.

•	 Note that for usability testing, you may want to clear the interaction, so that
the tab will not respond to a mouseover.

•	 The OnClick events for tabs Home, News & Mags and Movies & TV (D, E,
and F) involve the simple link action to the corresponding page of each of the
tabs.

Repeat the assignment of interactions to the master's raised events on each of the
other pages.

Nested masters: Amplifying the raised event
It is common to include one master within the wireframe of another master. The
raised event of the nested master, however, will not be exposed when the enclosing
master is placed on page wireframes. The following screenshot illustrates an example
of the nested master:

Chapter 5

[229]

•	 One of the requirements for Alexandria is to provide a contextual help.
Your proposed approach is to include a small help icon where needed. In
this example, the icon appears in the login prompt (A). Clicking on the icon
shows a transparent help pop up (B), which can be dismissed by clicking it.

The following screenshot illustrates the underlying construction in Axure, and the
issue of raised events in nested masters:

•	 The help pop-up is constructed as a master M Help Popup (A), composed
of an image widget that holds the help icon (B) and a dynamic panel widget
(C) where each state contains the relevant help content. In order to visualize
the example, the dynamic panel is shown as visible, but in the actual
construction, it should be set to hidden by default.

Advanced Interactions

[230]

•	 The interaction for the help icon (B) is triggered by an OnClick event, which
includes the raised event action ShowHelp. As the help pop-up master will
be placed on multiple pages and masters, the plan for the raised event is to
do the following:

	° Show the help pop-up dynamic panel
	° Bring the pop up to the front
	° Set the dynamic panel to the state which contains the help content

that corresponds to its placement on the page wireframe
•	 Place an instance of the help pop-up master on the Login Form master

wireframe (E). When the pop-up master is selected (F), its raised event is
visible in the Interactions tab (G).

•	 However, when you click on the Login master (H) on the home page
wireframe (I), the raised event of the nested help pop-up is not visible (J).

What to do? The following screenshot illustrates the issue and solution using a
simple method which I call Amplify Raised Events:

Chapter 5

[231]

•	 While we cannot see the help master's raised event on the Home page
wireframe, we can see it on the login prompt of the master wireframe
(A). So, click on the nested help master (B) to show the raised event in the
Interactions tab (C).

•	 Create a new case for the raised event ShowHelp. The action for this
case will be a raised event which you will name AmplifyShowHelp (D).
Essentially, the nested raised event will trigger a new raised event. In
essence, it will amplify or repeat the call to the original raised event action.

•	 Switch to the Home page wireframe (E) and click on the Login master (F).
The raised event AmplifyShowHelp will be visible in the Interactions tab
(G).

•	 Now create a new case for this raised event, name it Show Login Help and
assign it relevant actions, as discussed above. Generate the prototype to make
sure that the interaction is working as intended.

Advanced Interactions

[232]

To conclude the raised events topic, I want to re-emphasize the tremendous
usefulness of this feature to the construction of high fidelity prototypes. While
masters help us enforce visual consistency and reduce the number of redundant
wireframes, raised events help assign contextual behaviors to those masters.

Variables
About two thousand years ago, the Greek philosopher Epictetus said that:

The materials of action are variable, but the use we make of them should
be constant.

The ancient Greeks loved deep concepts, such as atoms, so it is not surprising that
they invented information architecture and the notion of separating a reference to
data from the actual data it contains. Wikipedia has a good definition for a variable.
In the context of computer science, it is "A symbolic name given to some known or
unknown quantity or information for the purpose of allowing the name to be used
independent of the information it represents."

We use variables all the time. For example, when we think (or perhaps prefer not to
think) about our account balance, the term "account balance" is a name for a variable.
The actual dollar amount of the balance changes, but our way to reference it does not
have to. As Epictetus said, the variable is constant, its value changes.

In addition to storing data, variables are used to pass this data around, from one
event that sets their value, to another event that consumes that value. As a result,
variables are very useful when you have conditional logic, because it is possible to
check the value of a variable in order to determine which path to take.

We can also control the scope in which variables can be used:

•	 Local variables are limited to a certain function in a certain area of the
application, and are not available to other functions in other areas of the
application.

•	 Global variables are "visible" or available to all functions across the entire
application.

A simplified analogy is human memory. We are equipped with a "working" or
"short term" memory, a limited storage capacity that enables us to complete specific
tasks. For example, it helps us to remember that we put water to boil, or where we
left our phone. There is no need to store this information after the activity ended
and the information is replaced by new transient information. We also have long-
term memory, which enables us to retrieve information on demand long after its
acquisition.

Chapter 5

[233]

Guided example—creating context with
variables
A personalized and contextual user experience is a core tenant of modern apps and
applications. Thus, it is highly probable that you will be expected to prototype such
adaptability in your projects. The following example demonstrates a use of variables
to support a contextual rendering of the prototype based on the user login.

Step 1: Defining the interaction
The Alexandria project has a business model that is based on revenues from
advertising and paid subscriptions. In order to keep things simple for our example,
there are only two subscription tiers:

•	 Free: Registered users have free access to most content, but each item is
wrapped in advertising and there are limits on the number of items the user
can consume in a given day

•	 Unlimited: No advertisements, no daily limits and access to all content

Our goal is to have the prototype present the appropriate home page content based
on the user login. Specifically, how the home page renders to visitors, and how, after
login, it renders to Free or Unlimited subscribers.

Step 2: Construction considerations: Dynamic
panel or pages?
The Home page wireframe needs to be updated to account for three variations:

•	 The Home page before the user logged-in.
•	 The Home page after a user with a free subscription logged-in. Need to show

the placement of advertisements on the layout.
•	 The Home page after a user with an unlimited subscription logged-in. Need

to show the placement of promotional offers on the layout.

Advanced Interactions

[234]

The number of ways to come up with the appropriate design is obviously limited
only by your creativity. The key construction to consider, however, is how to
implement the three different home pages in the prototype. The following screenshot
illustrates the current construction and helps review the options:

•	 Option 1: In addition to the current Home wireframe (A) which is needed for
a generic home page which is displayed to visitors, add a dedicated page for
free and unlimited subscribers.

•	 Option 2: Convert the Body section into a dynamic panel. Each state will
reflect a different rendering of content for visitors, or based or signed-in
users.

Which option is better? Here are three issues to consider:

•	 Are you designing a complex application where the body section of the page
is complex and variability of each page is significant?

•	 Are you on the hook to deliver UI specifications?
•	 Are you part of a UX team of two or more designers who may need to work

on this page?

Chapter 5

[235]

If your answer to any or all questions is yes, then you might be better off taking
option 1, the dedicated page route. Here is why you should preferably choose the
dynamic panel option:

•	 A complex body section means that each state of the dynamic panel is likely
to be composed of nested dynamic panels and masters. In other words, a
body section composed of a dynamic panel can yield a page which is very
complex, harder to manage and edit, and perhaps slow to load.

•	 Only one full rendering of the home page will be generated in the Word
specification document, and that of the top most state, or the state specified
in an OnPageLoad interaction for the page. All other variations of the
body section will appear as dynamic panel states, making it much more
difficult for developers or other consumers of the specification to get a sense
of the entire page. A dedicated page for each context will yield complete
screenshots of each variation, which you will be able to annotate as relevant.

•	 It is easier to distribute the work among team members, as checking out
one of the home page wireframes will not prevent another designer from
working on another Home page wireframe.

Finally, because with the exception of the body section, all other elements of the
Home page wireframe are masters, maintaining consistency where it is important is
not going to be an issue.

Duplicate the home page and rename the following pages:

•	 Home [Visitor]
•	 Home [Subscriber]

As the focus of this example is variables, we will not bother elaborating on the
construction too much. In the wireframe Home [Subscriber], convert the body
rectangle widget into a dynamic panel with two states: Free and Unlimited. At this
point, they should be identical, except their label.

Step 3: Adjusting existing conditions
Back in Chapter 4, we set the prototype to load by default on the Home page. That
assignment has not changed despite the fact that we just duplicated and renamed the
page. Now we are going to add some logic that will determine if the logged-in user
has a free or an unlimited subscription and link to the appropriate state of the Home
[Subscriber] page.

Advanced Interactions

[236]

The user needs to provide two bits of information in order to login: a username and
a password. The fidelity of the prototype will not be compromised if we only use the
password to evaluate the user's subscription type. After all, this is only a prototype,
not the actual application!

The following screenshot visualizes the process of setting the variables that will help
us determine the type of account associated with the logged-in user:

•	 In the master M Subscribe/Login (A), tweak the interactions associated with
the Login button (B). We already have a case for a successful login (C), with
a condition that evaluates the content of the password field for the string
123456 (D). That initial interaction, however, does not really do anything
other than changing the state of the login master.

•	 Instead, Successful Login should link to the Home [Subscriber] page [E].
However, this is only half of the solution. How do we know which state of
the body to show on the Home [Subscriber] page?

Chapter 5

[237]

•	 All that is needed here is to add another condition that checks if the
password equals 654321—this will be our method of forking the interaction:

	° The password 123456 will be now associated with the free
subscription login

	° The password 654321 will be associated with the unlimited
subscription login

Of course, you can set whatever passwords you want, but it is important to keep
them easy to memorize and enter—we will have to enter those passwords each time
we want to walk through any of the screens associated with logged-in users.

The following screenshot visualizes that adjusted logic:

Advanced Interactions

[238]

•	 We are checking if the Password field equals 123456 or 654321 (A), and if any
of those values are found (B), the OnClick event (C) will link to the Home
[Subscriber] page. This is the Successful Login case [D].

•	 We also need to adjust the Failed Login case [E]. If the Password field does
not equal any of the two values, then an alert will be displayed.

Step 4: Variables and the order of actions
How will the Home [Subscriber] page know which state of the body's dynamic
panel to display? With variables, of course, using the action Set Variable/Widget(s)
value.

The following screenshot illustrates the most important aspect of adding variables to
an interaction—the order of actions:

Chapter 5

[239]

•	 The current Successful Login case (A) has a single Open Link in Current
Window action (B). When the action Set Variable/Widget(s) value (C) is
added, it is listed in the column Step 3: Organize actions below the existing
action (D). The interaction will not work as intended if you keep the two
actions in this order, because the new page will load before the variable value
has been set.

•	 In the column Step 3: Organize actions, click on the set variable action (D)
and use the contextual menu (E) to move it to be the first action in the case
(F).

Now that the order of actions is set, click on the Open Set Value Editor button (G) in
the column Step 4: Configure actions.

Step 5a: Setting variables (and possible snags)
Moving forward in this prototype, it is important to keep track of what type of
subscriber is interacting with the application in order to present the appropriate
content, and demonstrate the difference in the user experience for visitors
and subscribers.

In other words, we need to know the user type. The user type is determined by
two facts:

•	 Has the user logged-in or not
•	 What is the subscription level of a logged-in user: free or unlimited

The user type is an example of a variable. In Axure, variables have basic naming
rules. A variable name must be:

•	 Alphanumeric
•	 Less than 25 characters long
•	 Without spaces

Our first variable can be named UserType, and its possible values can be
expressed as:

•	 Visitor = 0
•	 Free Subscription = 1
•	 Unlimited Subscription = 2

Advanced Interactions

[240]

Using numbers to reference variable values has the advantage of being short, less
prone to typos, and easier to remember. However, whenever variables are involved,
I highly recommend that you write down those values. It can get confusing when the
number of possible values are higher.

The following screenshot illustrates the process of creating the variable UserType,
and assigning it values in the context of the Login button. Or rather, attempting
to set it a value, and discovering that an interaction needs to be tweaked in order
to accommodate the added logic. We will continue from where we left off in the
preceding screenshot:

Chapter 5

[241]

•	 Click on the Open Set Value Editor button (A). The Set Variable and
Widget Values dialog (B) contains a default row which is conceptually
similar to the rows in Condition Builder. We can construct a variable value
assignment phrase by selecting or typing values in each of the four columns.

•	 Axure's built-in variable OnLoadVariable is the default value in the second
column. However, as we want to create a brand new variable, use the Add
new… option (C) from the droplist.

•	 In the Manage Variables pop-up (D), use the Add icon (E) to add the
UserType variable to the list that initially has only the built-in variable, and
close the pop up.

•	 Back in the Set Variable and Widget Values dialog, we hit a snag: Our
current Successful Login case includes a condition that considers both 123456
and 654321 as viable options.

This means that our Successful case is too general. We need to break it into explicit
cases, one that checks if the value is 123456, and the other, if the value is 654321.
Only then, will we be able to assign the variable UserType, the values 1 or 2.

I wanted to take you through this path of hitting a snag during work on interactions,
because it illustrates the inherent iterative nature of prototyping. Previous
wireframes and interactions have to be constantly adjusted, to support higher
fidelity. With experience, you will learn to predict such situations.

Advanced Interactions

[242]

Step 5b: Setting and initializing variables
The following screenshot illustrates the process of finalizing the variable assignment
after adjustment has been made to the Login button's OnClick interaction:

•	 For the OnClick event (A), we now have a dedicated case that checks if the
password is 123456 (B1) and another that checks if the password equals
654321 (C1). Both are cases for successful login. We did not have to modify
the case for unsuccessful login (D).

Chapter 5

[243]

•	 Open the first case (B1) in Case Editor and click on the Open Set Value
Editor button (E) to launch the Set Variable and Widget Values window.
Now it is easy to complete the variable value assignment: In Step 5a, we have
established that for the condition password that equals 123456, the variable
will equal 1 (F).

•	 Repeat the step for the condition password that equals 654321, where the
variable should be set to 2.

The revised OnClick event (A2) now includes two cases that can set the variable
UserType based on the value in the Password field.

Initializing, passing, and resetting variables
The bad news about variables is the fact that you are responsible for making sure
they function correctly. The good news is that there are basically only three steps
to remember about proper handling of variables, and as long as you keep those in
mind, troubleshooting should be easy, or unnecessary.

Remember that when you create a variable, you are only creating an empty
container, so it is important to ensure that some event, triggered by some widget or
page load, actually populates the variable with a value. This is the step of initializing
the variable.

It is common to mistakenly think that some value, such as zero, will be automatically
placed in the variable by the software. The meaning of "no value" is "Null", which
is different from zero. Zero is an actual, explicit value. Null means that there is no
value. In the case of Axure an empty variable is noted by two quote marks with no
space between them: "".

There are circumstances where it is helpful to set the value of a variable immediately
at the time of prototype generation. It is easier to troubleshoot changes in the value of
a variable, when you can track its change from the start, or, initialize it.

Think about your variables as a herd of sheep: You want to know
their condition at all times. Maintain a running list of variables you
use in the file, their possible values, and the resulting path based on
the values. One method is to keep such a list in Axure, as a dedicated
page on the Sitemap pane. This is especially beneficial in shared project
files because all team members can easily share and learn about the
variables used in the file.

Advanced Interactions

[244]

The following screenshot illustrates how we initialize the variable UserType in a
continuation of our example:

•	 Earlier in this example, we have established the page Home [Visitor] as
the prototype's default landing page. Therefore, by default, the user who
interacts with this page is a visitor, until they login. This is an opportunity to
formalize this fact by initializing the value of the variable UserType.

•	 Open the Home [Visitor] page (A) for editing and double-click on the
OnPageLoad interaction (B). In Case Editor, add the action Set Variable/
widget value(s) (C). In the Set Variable and Widget Values dialog, set the
value of the variable UserType (D) to 0 (E).

•	 Each time the prototype is generated, the updated OnPageLoad event (F) on
the Home [Visitor] page will set the value of the variable UserType to 0.

Chapter 5

[245]

Step 6: Using variable values to determine
appropriate cases
Upon successful login validation, the page Home [Subscriber] is loaded. This is
when we will use the value stored in the variable UserType to determine which state
of the Body's dynamic panel to display. The following screenshot illustrates
the process:

•	 As the page Home [Unlimited] (A) is a duplicate of the original Home page,
it includes the original OnPageLoad event (B) which has a single action for
the Global Navigation.

•	 Similar to what we did in Step 5b, we need to have a case for each of the
possible user types. Duplicate the original case and rename the two cases:

	° Initialize Page [Free] (C)
	° Initialize Page [Unlimited] (D)

Advanced Interactions

[246]

•	 Double-click on the first case and add to it a condition that checks if the value
of the variable UserType equals to '1', which stands for free subscription.

In order to complete the condition, we set the appropriate actions and adjust
dynamic panels on the page, so they show the relevant state. The following
screenshot illustrates the process for the Initialize Page [Free] case:

Chapter 5

[247]

•	 We add the action Set Panel state(s) to State(s) (A) and set the state of the
Body dynamic panel (B) to the Free state (C).

•	 As this page can only load if the user has successfully logged-in, we also
need to set the dynamic panel Subscribe Actions Bar (D) to its After Login
state (E).

The completed Initialize Page [Free] case (F) is set. Apply similar modifications
to Initialize Page [Unlimited]. The following screenshot illustrates the generated
prototype for the Free Subscription home page, where the value of the variable
UserType equals '1':

•	 The Home tab (A) in the Global Navigation is set to its selected style
•	 The Body section is set to the Free Subscription state
•	 The Subscriber Action Bar (C) is set to its After Login state

This concludes the guided example on variables. While on paper the process may
appear long and complex it is, in actuality, quite fast and straightforward. Many of
the steps mentioned here are basic and take seconds to perform. The key for success
with this type of advanced interactions is to think through the entire flow. Remember
what it is that you are trying to simulate, and be practical about it.

Variable types
Axure supported variables in previous versions, but Axure 6 has some significant
enhancements that improve the practical use of variables in your prototype and open
up new possibilities for creating high fidelity prototypes. Axure offers three types of
variables which are discussed in the following sections.

Advanced Interactions

[248]

Global variables
As their name suggests, global variables, once set, are available to any page
throughout the browser session. In other words, they will expire only when you
close your browser tab or window.

Axure's built-in variable
Axure comes with one built-in variable: the OnLoadVariable. It is a very useful
container when each page in the prototype loads. As page load is a guaranteed
event you can use this variable to initialize, set, or reset the value of widgets and
other variables. One thing to keep in mind is that just because the variable is called
OnLoadVariable, it will work even if not used exclusively on a page load event. It
will work anywhere. However, in keeping with the principal that variable names
should be meaningful and relevant to the event that triggers them, it is not a
recommended practice.

Create your own variables
Axure supports unlimited variables, but like everything good in life, there are some
limits. First, if you are using Internet Explorer to test and socialize your prototype,
Axure recommends limiting the prototype to a maximum of 25 variables. In practice,
25 variables can satisfy a great number of advanced prototyping.

If you use Firefox (Axure's recommended browser for viewing HTML prototypes),
the sky is the limit if you want to use variables to the max. Variables are passed
through the URL, and the limit of Firefox URL is 64,000 characters. In other words,
when you add the characters that make up the names of your variables, and their
values, the sum total should be 64K or lower. Therefore, while there is a limit, 64,000
characters should be more than enough. In any case, the phrase "Less is more"
applies to variables as well.

Special variables
Displaying the current day, date, or page name in the prototype is a valuable
capability and another welcome enhancement to Axure 6. Just like the other topics
discussed in this chapter, don't let the terminology hold you from using this
function. Think about special variables as the "Insert" feature in Microsoft Word. You
can insert today's date into a document or display the page number in the footer.
Similarly, Axure provides a form of built-in access to useful parameters which you
can incorporate into the prototype when relevant.

Chapter 5

[249]

Currently, these built-in variables include attributes of the current day, or the name
of the current page. Most likely, items such as current time and other attributes will
be added to Axure in the future. The following table shows a list of special variables
offered in Axure 6:

Variable Name Description Example in editor Result in prototype
PageName Name of the current

page as it appears in
the Sitemap pane.

This is the
[[PageName]] page

This is the Home
page

Day The numeric value of
the current day in a
range of 1 to 31

Today is day [[Day]]
of the week

Today is day 17 of
the week

Month The numeric value of
the current month in a
range of 1 to 12

This is month
[[Month]] of the year

This is month 5 of
the year

MonthName The name value of the
current month

This month is
[[MonthName]]

This month is May

DayOfWeek The name value of the
current day

Today is
[[DayOfWeek]]

Today is Friday

Year The current year in 4
digits

The year is [[Year]] The year is 2011

GenDay The numeric value
of the day in which
the prototype was
generated in a range of
1 to 7

Generated on day
[[GenDay]]

Generated on day
15

GenMonth The numeric value of
the month in which
the prototype was
generated in a range of
1 to 12

Generated on month
[[GenMonth]]

Generated on
month 8

GenMonthName The name value of
the month in which
the prototype was
generated

Generated in
[[GenMonthName]]

Generated in
January

GenDayOfWeek The name value of
the week in which
the prototype was
generated

Generated on
[[GenDayOfWeek]]

Generated on
Tuesday

GenYear The year in which
the prototype was
generated

Generated in
[[GenYear]]

Generated in 2011

Advanced Interactions

[250]

Usage examples
Here are some examples of combinations you can make with variables:

In the editor Result in prototype
Today is [[DayOfWeek]], [[MonthName]]
[[Day]] [[Year]]

Today is Thursday, August 24 2011

Prototype generated on [[GenMonth]]/
[[GenDay]]/[[GenYear]]

Prototype generated on 12/28/2011

Local variables and functions
Both of these features are new to Axure 6 and add a significant boost to our ability
to create sophisticated interactive prototypes. However, a serious discussion of these
topics is beyond the scope of this book, and a shallow explanation of how these
features work can be more confusing than helpful. Complementary materials about
these features will be posted online.

Naming variables
Axure variables have basic naming rules. A variable name must be:

•	 Alphanumeric
•	 Less than 25 characters long
•	 Without spaces

Here are some best practice suggestions to keep in mind:

•	 As you cannot use spaces, and are limited to alphanumeric characters, use
the "CamelCase" convention, which makes it easy to parse words within the
variable string. Basically, you need to capitalize the first character in each
word. For example, use "WishListCount" instead of "wishlistcount".

•	 Use descriptive names so that you, or others who work on the file, will
understand what the variable stands for. Avoid names such as Var1, Var2
and so on because I can guarantee that within days or weeks, you yourself
will not remember what these names stand for.

•	 If you are working on a shared project file, each team member should
add their initials at the end of the variable name, in all caps. For example,
"WishListCountES". Note the potential for redundant variables, as each
designer creates their own version of the same variable. This is an example of a
collaboration process issue which we will discuss in Chapter 9, Collaboration.

Chapter 5

[251]

How variables can help in usability
testing
One of the key attributes of any high-fidelity prototype is the degree by which its
look and feel mimics the "real" application. In UX prototyping, in addition to the
visual treatment, it is the responsiveness to user input that makes a big difference in
reducing the gap between the mockup and the actual software.

The higher the fidelity of your prototype, the higher the quality of feedback you
get from participants in usability studies. Historically, however, prototyping has
been limited to hard-coding data to the wireframes, thus, inherently reducing
the responsiveness and dynamic qualities of the simulation. Short of hiring a
programmer to code a prototype, and the effort that introduces its own massive
problems, there was no practical way to easily demonstrate the true dynamic
responsiveness and how data changes from one screen to another in response to a
user input, under varying conditions.

As a result, usability studies were, and still are, often hindered by the fact that we
need to ask the participant to ignore hard coded information or continuity issues. In
other words, we ask the user to ignore the "brains" part of the user experience, that is
the data and context associated with task flows. At least in my experience, I find that
most participants get the fact that they are looking at a mockup and understand why
the data does not really reflect the flow they were supposed to follow, or why they
are restricted to a script.

It can be difficult to distinguish between valid usability issues in the design, and
"noise" which is a result of the participant getting confused by mechanics and
data presentation limitations of the prototype itself. Thus, the following example
demonstrates a technique which is based on the use of some variables to personalize
the experience for the UT participant.

Advanced Interactions

[252]

Guided example—contextual usability testing
The following example demonstrates a basic method for personalizing the prototype
for participators in a usability test. Review the construction of the sample file
hSandbox_Chap-5b.RP. The following screenshot illustrates the first half of
the concept:

•	 Our example contains two pages. The first, Initialize UT (A), is intended to
be used by the person who facilitates the test—perhaps yourself. A couple of
minutes before starting the text, enter the person's name (B) and hit the Save
button.

•	 The Save button triggers an OnClick event that sets the value of a variable
that you created to the value of the text in the Participant's First Name field.
In order to verify that the variable has been set, a text widget below the field
(C) displays the value of the variable.

Chapter 5

[253]

Hit the Continue button to link to the first page with which the participant should
interact. The following screenshot illustrates the interaction on this page:

•	 The Home page (A) includes a generic Welcome Visitor label (B), standard
Username and Password fields, and a Login button (C). Participants can
enter anything they want in the field, or, you can instruct them to enter some
specific values.

•	 When the participant hits the Login button (D), the variable that stores
the participant's first name populates the Welcome label (E), changing the
participant's experience of interacting with the prototype and making it more
personal.

Variations on this basic concept can help you tailor the prototype for various testing
situations, where such adaptability might add values to the testing.

Advanced Interactions

[254]

Pros and cons of using variables
Be strategic! Always keep in mind the phrase "Just because I can, does not mean
I should." In previous sections of this topic, we discussed many of the aspects
involved in using variables and the value of integrating them into the prototype. If
you plan to use variables extensively, it is important to understand how interactions
in general, and variables in particular, will effect your work, and in a case of a team,
everyone who is using the file.

Axure makes it fairly easy to figure out the construction of a prototype and the
interactions involved. Events, cases, and conditions are presented in a natural
language that shields you from the obscurities of programming the language code.
As long as you label your widgets in a meaningful way, any Axure user should be
able to open your file and understand how you wired it.

However, in reality, if you open a file after several weeks or months, you might
need a few minutes to remind yourself what is going on in the file. It is not
uncommon to forget which variable value meant to trigger which path and so on.
Moreover, as Axure does not include yet a debugger, it can be difficult sometimes
to identify a broken interaction. Thus, my advice is to document key interactions
and variable assignments. Some techniques, to do this, include the use of dedicated
documentation pages and add an "Other" action at the end of complex interactions.

The use of variables enables you to gain considerable construction efficiencies.
Instead of redundant instances that show variations of a page, you may use just one
page and manipulate its layout with variables. For someone who looks at the HTML
version of the file, how you constructed the file may not make a difference. However,
when you generate the Word specifications document, will the output make sense to
developers and others who consume the specs?

Another specifications issue involves an option to include interactions. The question
is: Is there a real value in including interactions details, or will they add bulk to the
documentation while confusing the developers? The short answer: It will probably
add no value.

There is a difference between the way we construct our prototype simulation and the
way the actual application is coded. Many of the interactions we create in Axure are
only meant to make the prototype work, but may not make sense from a developer's
viewpoint.

Chapter 5

[255]

Therefore, if you are expected to deliver development grade specifications, as well
as a highly interactive prototype, you may need to consider having two files, one for
each target delivery. Obviously, there is overhead in this approach, but it gets you
the best deliverable for each medium. It is possible to find a middle ground, where
the interactions are constructed such that the Word specifications still provide a
meaningful output, but you will have to experiment with the output often, until you
and the teams who consume the specifications are comfortable with the result.

Tips and techniques from the experts
It is a real pleasure to include in this book a few advanced techniques which were
contributed by Jeff Harrison, Loren Baxter, and Fred Beecher—three of the most
knowledgeable Axure wizards, who are also very generous with sharing their
expertise with the community. RP files associated with these examples are posted on
the book's website.

Hiding and showing list elements, by Jeff
Harrison
This example shows you how to build a table with controls that give you different
filtered views of the data. In earlier versions of Axure, you might have ended up
creating a dynamic panel with as many states as you have views, and creating a
different view of the table for each one. That works fine, but if the data changes it
means you have to change it in multiple places. In addition, as tables frequently
incorporate form controls, it means you need to have multiple copies of these too,
requiring lots of logic to keep the hidden copies in sync with the visible ones.

Axure 6 makes it pretty easy to use a different approach: create each row just once,
and hide, show, and rearrange them for each view.

Advanced Interactions

[256]

The approach
My example, as illustrated in the following screenshot, will show a list of users of
a system, and allow an administrator to select a user record for editing. It will also
allow the administrator to filter the list of users by department:

By default, it will display all the rows, but clicking on one of the three department
buttons across the top will display only the associated user.

In the table, the buttons will define which rows are hidden and which are shown.
The trick is to move the remaining ones around, so there are no gaps or overlapping
rows. We will design each row, so that when it disappears, it will pull everything
below it up, and when it appears, it will push lower rows down.

Step 1: Creating the row template
The first thing I will do is create a single data row.

I have already made a few decisions about my table. I know that the rows will be
25 pixels high, and separated by a rule. I know that it will display the users' names,
departments, and locations. In addition, I know that I want to use radio buttons to let
the administrator select a user, and an "edit selected user" button to go on to the next
page.

As I want to hide, show, and move the rows around independently, each row will
need to be in a dynamic panel.

Chapter 5

[257]

I arrange my elements in the row, and add a radio button. I right-click on the radio
button, select Assign Radio Group, and name the group select user. The prototype
will allow only a radio button in a radio group to be selected at once, so doing this is
important in order to get the radio buttons to work right. Of course, at the moment,
the radio button is a group of one, which is not very impressive, but when I make
copies of the row, the new radio buttons will be automatically assigned to the same
group. (It pays to plan ahead with Axure.) I also put a horizontal line widget along
the bottom edge of the row.

Now, we will define a little more behavior. Axure 6 gives dynamic panels a number
of new events, including OnShow and OnHide. Thinking back to our approach,
whenever this row is hidden, I want it to move up to make room for the ones below
it to close the gap. Whenever it is shown, I want it to move down in order to move
into the space below it. In each case, I am going to move it by its own height-see the
following screenshot:

You will note that there is an extra action on the OnHide case. I have decided that if
the selected row is hidden, it is going to become unselected. This is a simple way to
prevent a situation in which the user has an option selected that is not displayed. It is
not the only solution, but it is an easy one.

Okay, let's move on.

Step 2: Moving rows together
The next step is to make a copy of the row—just one—and put it below the first one.
In the example, I am entering the row data as I create the rows, but you can wait
until later if you want. However, at this point, you will want to give each row a label.
Call the top row "row 1" and the other one "row 2".

Advanced Interactions

[258]

In any case, I now have two rows, and it is time for me to insert the next bit of logic.
Our approach says that when a row disappears, it should pull everything below it
up, and when it appears, it will push everything below it down. Each of these rows
will already move in the right direction when it is hidden and shown. The trick now
is to get the rows below it to move with it.

It turns out that this is really easy by using the new OnMove event on the first row
panel-see the following screenshot:

Now, whenever row 1 moves, row 2 will go with it.

Of course, there is nothing below row 2 yet, so we cannot do anything with it. This
brings us to our next step.

Step 3: Repeating as desired
Now, select both rows, copy them, and paste a copy directly below them. Label these
"row 3" and "row 4".

Note that the interaction you just created was copied along with the two rows.
Moving row 1 will also move row 2, and moving row 3 will also move row 4. The
only thing you need to do to string these together is to connect row 2 and row 3 with
the same OnMove interaction. See the following screenshot:

Chapter 5

[259]

By copying and pasting the whole table, then stitching together the pieces, you can
quickly build this into a very long list. For my example, I stopped at eight rows, but
doing it again would give you 16, then 32, and so on. This is another great example
of why it pays to plan ahead when working in Axure.

Once you have all the rows you want, create a header row. It does not need to be
interactive, or in a panel; it is just there for clarity, as is illustrated in the
following screenshot:

Step 4: Adding controls
You have done all the work. Now all you need to do is to create the filter controls,
and have each one designate the rows to hide, and the ones to be shown-see the
following screenshot:

Advanced Interactions

[260]

The Show All button shows all the rows, as illustrated in the following screenshot:

The other buttons show only the rows that correspond to the filter, and hide the rest,
as shown in the following screenshot:

Chapter 5

[261]

Creating new filters is that easy.

To finish off the example, I defined a "selected" style for each button (white on black)
put all four filter buttons in a selection group (by selecting them all, right-clicking
on them, and selecting Edit Button Shape | Assign Selection Group), and setting
the Show All button to the selected state on page load, as shown in the following
screenshot:

This general approach can be adapted for any set of items in which pieces of the
set will appear and disappear—each item moves the one below it as it is shown or
hidden, which in turn moves the one below it, and so on. The only other thing to
keep in mind is that each thing has to move by its own height. In this example, all the
rows are of the same height, but in a form with expanding sections, you will likely
have to adjust the "move" interactions once the heights of the various sections have
been defined.

Keyboard Shortcuts by Loren Baxter
You can simulate keyboard shortcuts in Axure. It is a great way to communicate
and test the effectiveness of shortcuts for power users. See the simple example for
switching tabs, and a complex example that simulates some of Gmail's keyboard
shortcuts. (Example files are posted on the book's page on the publisher's website)

High-level Interaction
Fundamentally, you have a hidden input field that forces itself to maintain focus.
Any characters entered on the keyboard will be read by this textfield and checked for
matches to active characters. If a match is found, an interaction is performed. Finally,
the textfield clears itself and resets the focus.

Advanced Interactions

[262]

Detailed steps
I recommend creating a separate, duplicate page to communicate your keyboard
shortcuts. The technique prevents any other text input on the page from being
usable, so it should be quarantined.

1. Place all elements, dynamic panels, and unique states on your page that will
change based on the keyboard input.

2. Create a small, hidden dynamic panel somewhere on the page.
3. Place a textfield named _control inside this textfield. This will perform all

the interactions.
4. Create an OnPageLoad event that sets focus on _control.
5. Set the interactions on _control as follows:

OnKeyUp

	° If text on widget "_control" = "a" or "A" [check for character 1]
	° Then perform interaction 1 [if match, perform

interaction 1]
	° If text on widget "_control" = "b" or "B" [check for character 2]
	° Then perform interaction 2 [if match, perform

interaction 2]
	° If true
	° Then set text on widget "_control" to "" [always clear the

 textfield afterwards]
	° Set focus on widget "_control" [reset focus on

 textfield]

OnFocus

	° Set text on widget "_control" to "" [redundant clearing of
 textfield, helps]

OnLostFocus

	° Wait 100ms [hack to make certain
 browsers work]

	° Wet focus on "_control" [if lost focus, regain
 focus immediately]

6. Test it out! You should be good to go. You can go on from here and add new
cases or make them more complex. Take a look at the Gmail example to see
complexity in action.

Chapter 5

[263]

Notes
•	 Only keystrokes that produce characters will work. To make the directional

keys work, you have to try a different technique involving radio buttons or
checkboxes.

•	 Remember, no other text inputs on the page will work while this technique
is in use. Perhaps there is a scalable solution to this challenge, but no one has
found it yet.

Axure tricks by Fred Beecher
As Fred jokingly mentioned:

Sadly, Axure keeps improving such that my best "tricks" become unnecessary. I
guess that's a good problem to have, eh?

Still, Fred has a number of tricks that are still relevant in Axure 6, and fortunately,
Fred shared those with us:

Trick 1: Debugging your Logic
With the addition of math operations, Axure 6 allows for much more intricate
interactive logic. Whereas, I normally only rely on variables to pass information
between pages, I now use variables on pages themselves to keep track of how many
items are listed, how many times someone has done something, and so on. When
things don't work, it can be really frustrating to figure out why. I deal with this by
creating a text panel that displays the variable's value at all times. I call it, cleverly,
Variable Value. On every interaction on which I set the value of a variable, I also set
the text on this text panel. When something is going wrong, I can usually figure out
what it is by comparing what the value of the variable is supposed to be with what is
actually displayed on the screen.

Trick 2: Passing variable values between pages
One of the main uses of variables is to pass values between pages. However, this
commonly does not work. Why? The reason is that most people set up an interaction
such that the Open Link interaction comes before the Set Variable interaction. Put Set
Variable first and then Open Link and all your problems will go away (well, all your
inscrutable variable-based problems anyway).

Advanced Interactions

[264]

Trick 3: Hidden link to clear variables
When performing a lot of complex conditional logic, the variable situation can get
pretty murky. Phantom values might be interfering with whatever it is you are doing
after you have interacted with the prototype a whole bunch. The solution to this is
to have a link somewhere on the page that clears all variables and reloads the page,
to really make this effective though, this link needs to be on a master that is on all
pages. As you add variables, you have to keep coming back to the interactions on
this link to add them to the pile that is cleared. Then, you just have to do this once! A
trick such as this is crucial for user testing, as it ensures that a previous user's session
has been completely cleared out. In terms of formatting, I usually make my link a
very light gray and place it to the right of the header. Users never see it. Moreover,
when I am done testing, I just remove it from the master, so it does not show up in
the functional spec or make the generated screenshots look weird.

Trick 4: Text fields masquerading as text panels
One tiny new feature in Axure 6 that has already had a huge impact on how I work
is the new text field option to toggle borders on and off. One of the great things about
Axure is that you can use an interaction to set the text of one widget equal to that of
another widget, as long as that widget is a form widget of some type. However, that
is very frustrating when you are trying to, for example, edit a selected item. However,
now if you have the text in your editable items displayed in read-only text fields with
the border turned off, you can do exactly that and, visually, the screens will work the
same. The only drawback is that there must be a background color to the text fields.
They cannot be transparent. Feature request? :)

Summary
In this chapter, we covered a set of Axure functionalities that are responsible for
creating truly interactive prototypes. Conditions, raised events, and variables extend
our ability to move beyond the basics of navigating from one wireframe to another.
We can also create a relevant context in response to inputs.

The use of these capabilities, while not too complicated, does require a higher-level
of discipline and focus. We are not engaged in coding, by far. However, conditional
logic and variables involve formal evaluation of possibilities. As long as you
document the values of variables, and the possible actions that should take place
given each one, you should be able to reduce interactions that don't work and save
time on debugging.

Chapter 5

[265]

Finally, don't hesitate to experiment, to try interactions that may help you
communicate to stakeholders and users, your vision for the user experience you plan
for the application.

In the next chapter, we will cover change management. As the prototype stabilizes
and the schedule tightens, there are often many dramatic modifications, requirement
changes, and other situations that require changes to the prototype. We will look at
the Axure functionality and best practices that help apply changes quickly,
and efficiently.

Widget Libraries
Axure's widget libraries are all about efficiency, consistency, and sharing. They are
about not having to re-invent the wheel each time we start a new UX project. They
have the potential of saving needless work and they can help you in being more
productive, faster. More importantly, they help maintain the consistency of design
patterns across the entire prototype project. This chapter covers the basic concepts
involved in the use, creation, and sharing of widget libraries.

An Axure widget library is basically a collection of custom widgets that are stored
in a special file format named RPLIB. These collections greatly extend Axure's built-
in widget libraries. You can create these collections yourself, or download a library
made by others.

We are tasked with delivering a compelling user experience that meets business
requirements, technical constraints, and user expectations. The process typically
moves very quickly from high-level conceptual sketches to detailed design, and from
static diagrams to clickable simulations of interaction flows. If there is one constant
aspect to the work, it is change. For mid-to large-scale design projects the challenge is
two-fold:

•	 Produce many wireframes, quickly. Using ready-made widgets saves the
time of having to create those from scratch.

•	 Manage consistency of design patterns across existing and new wireframes:
Wireframes are assembled from approved patterns stored in a project's
widget library.

Widget Libraries

[268]

Before we dive deeper into widget libraries, it is important to have a brief discussion
on design patterns because the concept of design patterns is a deeply grounded
principle across disciplines, from arts to computer science. The use of patterns
in UX design is commonplace and complements the paradigm of object-oriented
programming and application development. Within the user experience context, a
pattern is a template for an application-agnostic group of widgets, which solves a
specific interaction requirement in a generalized way.

Patterns are considered to be a very good thing in principal, but can be difficult to
apply in practice. Everyone seems to agree that the adoption of patterns within an
application and cross-applications improves skill transference, reduces the learning
curve, and yields a superior user experience overall. Yet, millions of users still have
to put up with significant inconsistencies brought to bear by operating systems. To
add to the decade-long battle between generations of Microsoft Windows and Apple
OS, we now have to deal with inconsistencies among mobile platforms such as
Google's Android, Apple's iOS, HP's webOS, Rim's BBX, and so on. To make things
worse, the move to applications in a Cloud often translates to interaction patterns
that are inconsistent with patterns of desktop applications. It is a mess, and we need
to deal with it.

The following screenshot illustrates the differences in the implementation of a key
Microsoft pattern named the ribbon, in the Mac and Windows versions of Microsoft
Word, perhaps the most popular word processor in the world. Despite the fact that
this is the same application, a user switching from one platform to another might
easily get disoriented:

Chapter 6

[269]

•	 A casual comparison between the Ribbon of Mac's (A) Word 2011 and the
Ribbon of Window's (B) shows significant inconsistencies in the treatment
of tabs (A1, B1), the location of section titles (A2, B2), and access to the
customized Ribbon menu (A3, B3).

•	 The look and feel of the dialog box for customizing the ribbon (A4, B4) varies
widely between the two versions.

There is little one can do about cross-platform consistencies; and one could argue
that the impact of such inconsistencies is relatively minor, because few users switch
regularly between operating systems. However, this is not the real issue. The
example underscores the fundamental problem with trying to leverage too much on
any particular set of design patterns, because the rate of change is too high.

While the effectiveness of patterns depends on uniformity and consistent application,
it is important to preserve openness to constant refinement, adaptation, and new
patterns, to avoid becoming dogmatic and enslaved to existing patterns.

Widget Libraries

[270]

Some examples of interaction categories where patterns play an important role
include:

•	 Navigation
•	 Data entry
•	 Grids and lists
•	 Search
•	 Message and error handling
•	 Shopping
•	 Sign-in/out and authentication

Don't enforce or lock into a pattern library too early in the design
process. Remember that your ultimate goal is to design an
application, not a pattern library.

With Axure, you can approach the creation and management of patterns using the
masters and/or widget library features.

Axure's built-in libraries
Widgets libraries are accessible from the Widgets pane. Axure includes two built-in
libraries which provide the basic building blocks for developing an extended user
experience vocabulary. The built-in libraries cannot be altered, which means that it
is not possible to add or remove widgets from these collections. It is quite possible to
prototype an entire application, even a complex one utilizing only a portion of these
built-in widgets. The following screenshot illustrates the libraries and the way to
switch between them:

Chapter 6

[271]

•	 There are currently 22 widgets in the Wireframe library accessible from
the Widgets pane (A), the default one being the Axure library. To switch a
library, use the droplist (B) and select the Flow option (C).

•	 There are currently 15 flow widgets (D) which are meant to be used for
diagram construction.

The mechanics of the Widget pane are described in more detail in Chapter 2.

Widget Libraries

[272]

Axure and community libraries
In addition to the built-in libraries, Axure's website provides links to a growing
number of widget libraries (see the following screenshot). Most have been posted
by UX practitioners for fellow UX practitioners (visit http://www.axure.com/
widgetlibraries):

The generosity of people within the UX profession goes back to the days when Nick
Finck, Henrik Olsen, Peter Van Dijck, and others offered free Visio stencils and
Omnigraffle palettes. This culture of generosity also flourishes in Axure's active user
community in the form of freely shared tips, techniques, and custom widget libraries.

The types of widgets that you will find in the community libraries include iPhone,
iPad, the OS-X user interface components, Android, Windows 7, various icons and
social media elements, and much more!

Most of these community libraries are free of charge, despite the substantial amount
of thought and labor that was invested in creating them. One such example is the
work by Loren Baxter, an accomplished user experience designer and top Axure
expert. Loren authored the "Better Defaults Widget Library" (see the following
screenshot, A), which has added 34 widgets to Axure's 22. His library includes
elements such as an error popout, stylized popouts, date picker, and many other
very useful items.

http://www.axure.com/widgetlibraries

Chapter 6

[273]

His other creation is the "Social Widgets" collection (see the following screenshot, B),
which includes widgets such as a complete "Leave a comment" form, "Share This"
popup, and animations for when you need to visualize a "Loading This" animation.

You can either use these libraries as provided or tweak the widgets you want to
make them fit your particular need. Either way, you can save a lot of time by not
having to make some of these widgets yourself:

Of course, when you develop your own cool widget library, make sure that it is
listed on the Axure site!

Widget Libraries

[274]

Your own widget library
Axure makes it very easy to create, manage, and distribute your own widget
libraries, which is great because there are several circumstances for which extending
Axure's built-in widgets is beneficial:

•	 When you find yourself spending too much time repurposing parts of
existing wireframes in new wireframes

•	 When you design user interfaces for applications that are based on an
interface framework used by development teams such as Google's GWT, the
Dojo toolkit, Oracle's ADF, and so on

•	 When you want to share with the world, a set of widgets, which you think
would benefit others in their prototyping projects

Guided example: Widget library to support
prototype
In this example, we will establish a widget library for the purpose of supporting
consistency of design patterns in a prototype, in this case, the books demonstration
project, Alexandria.

Step 1: Create the library file
As mentioned earlier, a widget library is an independent Axure file that is managed
separately from your project file. The following screenshot illustrates the process of
creating the library from within the Alexandria project file:

Chapter 6

[275]

•	 From the droplist in the Widgets pane (A), select the Create Library option
(B). This is the only place in Axure from where you can create a library.

•	 Save the library to any destination you want (C) or Axure's suggested
defaults:

	° Windows: My Documents | My Axure RP Libraries (D)
	° Mac: Documents | Axure | Libraries

Widget Libraries

[276]

The new widget library file opens on top of the project file. Axure's RPLIB
user interface is a little different from the RP interface, as illustrated in the
following screenshot:

•	 On Mac, a widget library file sports the special library icon (A1), although the
Windows version keeps the standard RP icon (A2).

•	 The Widget Library pane (B) replaces the Sitemap pane.
•	 The Widget Notes pane (C) replaces the Page Notes pane. Notice that the

Widget Notes pane has only a single tab, for notes. OnPageLoad interactions
and Page Formatting are not applicable here.

•	 Note that the share menu is a part of the RPLIB file format. This means that a
widget library file cannot be converted into a shared project file. This poses
some challenges for teams who share libraries.

With the widget library file ready, we can move on to creating some widgets.

Chapter 6

[277]

Step 2: Creating a custom widget (lorem ipsum)
Let's begin with the lowly text placeholder. Lorem ipsum, the reliable pseudo Latin
text filler has been used, according to some accounts, since the sixteenth century in
publishing, and it is still going strong today.

The use of text placeholders in wireframes is common because often we do not have
the actual text that should accompany the page. Some argue that the use of lorem
ipsum in hyper-realistic prototypes is problematic because it confuses participants
in usability tests. The critics may have a point. On the other hand, using inaccurate
text can also lead to misunderstandings, especially if dealing with particularly literal
stakeholders. Use this element with caution—make sure that the placeholder makes
sense and its intended use is clearly understood.

The following screenshot illustrates the process of creating the widget:

•	 In the Widget Library pane, rename the default New Widget 1 as lorem
Ipsum.

•	 Drag over a Text Panel widget and paste the lorem ipsum text (B), which you
can find in Wikipedia or on one of the 28,300,000 web pages Google identifies
when you search the term.

Widget Libraries

[278]

•	 Adjust the width and length of the text block as you see fit. There is no need
to make specific definitions here. However, since in the Alexandria project
we applied the 16 column 960 Grid, it makes sense to take advantage of the
grid's proportions in the library as well.

•	 With the widget selected in the Widget Library pane click on the Widget
Properties icon (C). In the Widget Properties pop up (D), define the icon and
tooltip. For the widget icon, which is displayed when the library is loaded
in the Widgets pane, the default Use Preview should work fine. For the
Tooltip, add a brief description and click on OK to close the pop up.

The information you provide in the Widget Properties pop up will help you, or any
user of the library, figure out what the widgets are, when the library is loaded into
the project file.

Congratulations! You have just created your very first custom widget!

Step 3: Refresh the library in the project file
We will add a few more widgets to our new library shortly, but for now, save your
work and close the widget library. The following screenshot illustrates the final steps
involved in integrating the new library with the project file:

Chapter 6

[279]

•	 Back in the project file, the widget library appears in the droplist (A), still
displaying the default, blank New Widget 1. From the droplist (A), select the
option Refresh Library (C), and the lorem Ipsum widget will appear (D).

•	 If you click on the widget, a little icon appears on the upper-right corner of
the widget (E). Click on the icon and the description you wrote in the Widget
Properties pops up (F).

•	 To switch to another widget library, use the droplist (D).

From now on, when making changes to the widget library file, we need to remember
to refresh the library in the project file in order to reflect those changes.

Expanding the library—design patterns
The following are a couple of systematic examples for constructing useful widgets
to add to any project library. The widgets are meant to enforce a design pattern that
is specific to the application at hand. Granted, creating widgets in a widget library
is not very different from creating such widgets in your project file. However, this is
another opportunity to go over the construction process.

Example 1: A confirmation/alert box widget
This example will demonstrate a simple yet important aspect of widget libraries:
A method for ensuring that the construction of widgets and interaction patterns is
consistent throughout the prototype. The method is especially beneficial for a team
of UX designers who collaborate on a project, and it can certainly benefit you as a
single practitioner. You can find the widget in the sample file Alexandria Widget
Library RPLIB.

Step 1: Defining the pattern
For many projects, and certainly, projects of a certain size and scope, creating and
documenting a pattern library is highly recommended. However, it can be difficult
to maintain the library, especially as work pressures mount. An Axure widget library
makes it easier to manage and maintain the pattern since all of them are concentrated
in the library file, and loaded into the project file.

Widget Libraries

[280]

In this example, we want to create a confirmation and alert box which will be used to
prompt the users during various flows. The following screenshot illustrates the list of
rules which help define and design this custom widget (A) in the library:

•	 Confirmation messages will have two action buttons: The primary
confirmation action (B), and Cancel, a secondary action button (C)

•	 Alert messages will have a single action button, OK, styled as a primary
action button

•	 The primary action button should be on the right
•	 The styling of primary and secondary action buttons should be visually clear
•	 There will be no "Close" icon on the upper right corner
•	 There will be a horizontal bar at the top of the dialog for the message header

(D)
•	 There will be a brief text description of the message (E)

•	 There should be an appropriate icon to the left of the message description (F)

When you put pattern rules on paper, it becomes clear why it is so easy to break
patterns and so difficult to maintain consistency. Even this simple dialog box has
eight rules, excluding visual styling!

Documenting patterns is important, yet sometimes, it is not entirely clear whose
responsibility it is to do the job. Is it the visual designer's role? The UX designer's
role? Should this be a collaboration of both? The dynamics of each project determines
the answer that is appropriate for it.

Chapter 6

[281]

Step 2: Construction
Therefore, let's create this alert box. For now, avoid visual styling and stick to
grayscale. There are, of course, a number of methods to construct this wireframe. The
following screenshot illustrates the construction:

•	 Create a new widget in your widget library, label it Alert Box, and open the
widget for editing in the Wireframes pane (A)

•	 Display the 16 column 960 grid, to ensure proportional compatibility with
the main project file

•	 The widget should include two states, one with a wireframe for an alert box
with two action buttons (C) and a single button (D)

•	 In the Widget Properties pop-up, add the Tooltip text, for example: Includes
alert and confirmation states with 1 button (Close) or 2 buttons (Save and
Cancel) (E)

•	 Save your work and remember to refresh the library in the project file when
you get back to it

Widget Libraries

[282]

You may consider adding a couple more widgets to your library that are based on
this dialog, for example, a pattern for a primary action button and the other for a
secondary action button.

Our final example for the topic is a little more complicated, but it involves an
extremely popular interaction pattern, the Incremental Search field.

Example 2: An incremental search widget
According to Wikipedia, the incremental search feature, also known as "search as
you type", "type-ahead search", and so on, has been around since the late 1970s. It has
been popularized on the Web by Google and has now become a standard requisite
feature in modern applications, regardless of the device for which they were made.

There are two good reasons why this feature has earned such an overwhelming
adoption. From a user experience perspective, this is a wonderful, easy-to-use, and
time saving feature. As the user types into a searchable field, the system immediately
provides the user with a list of potential matches. As a result, the user can select one
of the suggested terms with high confidence of finding relevant data. The second
reason, is that from a technical perspective it is possible to implement this capability
on the Web with little impact on performance.

As the probability of using incremental search in a prototype is high, adding it to the
library makes sense.

Step 1: Defining the pattern
The following screenshot illustrates the desired behavior of the type-ahead search
widget (A). You can find the widget in the sample file Alexandria Widget
Library RPLIB:

Chapter 6

[283]

•	 Suggested words or terms will appear in a droplist (B) after the user has
typed three characters into the search field (C).

•	 The style of the matching characters in the list will be normal (D).
•	 The style of the characters that follow the matching characters in the list will

be bold (D).
•	 Each row in the list should respond to rollover by changing its appearance.

The text will have an underscore styling, and its background color will
change (E).

•	 When the user clicks on a row, its content will populate the search field and
the list will be dismissed (F).

•	 The user should be able to ignore the recommendations and keep typing
in the search field. When no matches are available, the droplist will close
automatically.

Widget Libraries

[284]

Step 2: Construction
In order to simplify the example, we will simulate a user typing in the word "Axure".
When you create a list of recommended words and terms you can save time by using
Google or Bing, instead of developing one on your own list of potential hits. The lists
we create will have the following recommendations:

After three characters After four characters
axum axure
axure axure libraries
axum ethiopia axure tutorial
axug axure widgets
axutla publa axure review

The following screenshot illustrates key steps in the creation of this widget:

Chapter 6

[285]

•	 Create a new widget in your widget library, label it Incremental Search Field
and open the widget for editing in the Wireframes pane (A).

•	 Add the field and button widgets (B) and make sure to label widgets as you
go.

•	 Add a dynamic panel widget (C) for the recommendations list. As discussed
earlier, the two states correspond to a potential list of recommendations for
three (D) and four characters (E).

•	 Finally, add a description to the Widget Properties pop up (F), for example:
Show search recommendations list after the user types 3 and 4 characters
into the search field. The user can select a term and it populates the field.

Step 3: Interactions
Finally, add an interaction that will trigger the display of the search
recommendations droplist as per our requirements. The following screenshot
illustrates this:

•	 The interaction is triggered by an OnKeyUp event in the search field (A). The
idea is that the length of the string typed into the field will be evaluated after
each keystroke.

Widget Libraries

[286]

•	 The recommendation list dynamic panel, by default, is set to be hidden (B)
and should become visible if the length of the string in the search field is
equal to, or greater than, three. There are three cases for the OnKeyUp
event (C):

	° Case 1: Evaluates if there are three characters in the field, and if so
makes the recommendation menu visible, sets the dynamic panel
to its first state, and brings the panel to the front to ensure it is not
partially blocked by other widgets (D).

	° Case 2: Evaluates if there are four characters in the field, and if so
makes the recommendation menu visible, sets the dynamic panel to
its second state, and brings the panel to the front to ensure it is not
partially blocked by other widgets (E).

	° Case 3: Evaluates if there are less than three characters in the field,
and if so hides the recommendation menu (F).

The combined effect of these cases helps create a recommendation droplist that
simulates an immediate responsiveness to the number of characters the user has
in the search field. Obviously, the search term itself is canned, which means that in
usability testing you will have to script the task in such a way that it will prepare the
participant, since the behavior of the widget is such that, it will respond to any text
typed in.

Widget libraries with masters
The first time you drag over a widget that includes a master from a
loaded widget library onto a wireframe page on your project file, the
master will be imported automatically into your project file. Once a
master exists in the project file, it is not replaced automatically when the
library is refreshed or another instance of the widget is dragged over.
The easiest way to update the master is to use the option Import from
RP File from the File menu of your project file, which also works for
importing from RPLIB files.

Managing widget libraries
You just created your first widget library. Perhaps you also downloaded a few
community libraries. Now you are ready to use them in your prototype file. The
Widgets pane is the hub for all activities related to widget libraries. Using the
libraries' drop list in the Widgets pane, you can initiate the following tasks:

Chapter 6

[287]

•	 Load library
•	 Create library
•	 Edit library
•	 Refresh library
•	 Unload library

When you want to use a custom widget from one of your loaded libraries, drag it
over just as you would do with the built-in widgets. If the widget includes variables
or a custom style, the Import Wizard dialog would flag such dependencies. If you
want to create your own interactions, or avoid importing styles that are incompatible
with your project, then use the Cancel button to import only the widgets, or click on
the Finish button to import the entire package.

Once you create an instance of the widget in your wireframe, that instance is no
longer associated with its originating widget library, a behavior that is similar to
those of built-in widgets and flattened masters. Thus, modifications to a widget
in the widget library are not applied to any of the instances of that widget in your
project file even after you refresh the library.

Remember that the widget library is a discrete file, completely unaware of, and
separated from, your project file. When you add more widgets to the library,
make improvements and modifications to existing widgets, or download an
updated version of a library you downloaded from the web, these changes are not
automatically reflected in the Widget Library pane of your project file until you use
the Refresh option. Moreover, I will repeat again: widgets that are already placed on
wireframes will not be updated.

Local masters or external widget
libraries?
Widget libraries are a great distribution vehicle for sharing your coolest widgets ever
with the world. However, when it comes to managing a pattern library for a large
project, or an entire application suite, we need to consider the following two options:

•	 Option A: Store the project's patterns in an external RPLIB widget library and
load it into the project file

•	 Option B: Store the project's patterns as a collection of masters within the RP
project file

Widget Libraries

[288]

There are pros and cons to both approaches and depending on the circumstances of
your project, you should determine which type of widget collection is appropriate
for your particular needs.

Using RPLIB
Here is a list of pros and cons for using a widget library file:

•	 Pros
	° The library can be used simultaneously in multiple projects. Updates

to single library files will become available to all the projects upon
refresh.

	° The library can become a company's standards and patterns file-of-
record as it evolves and expands over time and projects.

	° For UX consultants, a personal library of often-used patterns, can
become an invaluable time-saving tool.

	° In a team situation, easily distribute the library file to team members.

•	 Cons
	° In a team situation, need to notify team members that new updates

are available, so that they know to refresh their link to the library.
	° In a team situation, owner of the library might make changes to

widgets, without taking into account the impact such a change might
have on the wireframes of another team member.

	° In a team situation, only a single user can make updates to the library
at any given time. In large, high velocity projects, this may become a
workflow bottleneck, because modifications to patterns are needed at
a much faster rate than the serial.

	° Updates to widgets do not apply to widgets used in the project.
Change management of the prototype may require a significant
amount of rework if the wireframes are constructed from non-master
custom widgets.

Chapter 6

[289]

Using masters in a PR or RPPRJ file
Here is a list of pros and cons:

•	 Pros
	° Updates to pattern widgets are immediately applied across all

wireframes where the masters are used.
	° In a team situation, a designer who is about to change a custom

widget pattern can check first where the master is used and then
discuss potential implications with team members who are using the
master in their wireframes.

	° No need to deal with loading and refreshing an external widget
library.

	° A smoother update workflow because the pattern library is built into
the project file.

	° In shared project files, multiple designers can own and update their
custom widget masters. This parallel workflow works well for large,
high-velocity projects.

•	 Cons
	° Widget patterns tend to be project-specific, so it may be more

challenging to consider a more generalized construction of patterns.
	° Sharing with other prototype files has potentially serious limitations:

The project file has to be made available to the importing user, if that
user is working in another

	° Difficult to evolve the patterns over time and across multiple projects,
especially when the specific project file in which the masters were
created is no longer in use.

Practitioner's corner
I have asked Pete Karabetis—an Information Designer at Vim Interactive—to share
some tips based on his experience in creating widget libraries, such as the Social
Media Icons Widget Library. So, here is Pete:

Widget Libraries

[290]

Why widgets?
A good widget library is great fun to make and always takes time and patience. The
reason I made my first Axure widget library, Social Media Icons, is that I was tired of
searching online for icons to use in my prototypes each time I needed one. I decided
to make my own library to better my own workflow at first and then I polished it up
and shared it with the Axure community to make life easier for fellow prototypers.

Not only should your widget libraries be easy to use, but also they should have a
nice presentation. Here are three best practices to consider before you share yours
with the world: Set an icon for each widget, give each icon a clear name, and add a
tooltip for extra information.

Pixel-perfect icons
Be a perfectionist. Take the time to ensure all your widgets look sharp and noticed in
the Widgets pane by setting a custom icon in their widget preferences. The following
screenshot illustrates the simple process of replacing Axure's default preview icon
with your own:

Chapter 6

[291]

This is an example of an RSS icon widget (A). Click on the Widget Properties icon (B)
to view the Widget Properties pop up (C). If you don't set your widget's icon, Axure
will automatically create one for you by taking a snapshot of the widget and resizing
it to fit inside the preset grid of the Widgets Pane (D). Instead, click on the Import
Icon button (E) to import the icon you wish to use.

The widget's dimensions are only 32 x 32 pixels, which is small enough to set an icon
of the same size to represent it in the Widgets pane. I used the same 32 x 32 pixel
PNG image to make both the widget and its icon, but you can customize your icon in
any way you like. Compare the preview icon created by Axure to the actual widget
and you will notice that it is smaller and blurrier than the widget itself.

Clear widget label and tool tips for extra help
A clear widget label describes what your icon widget is, or what your widget does.
Avoid obscure names or abbreviated shortcuts and try to be as informative as
possible. For example, instead of labeling the widget obliquely as "RSS", label it "RSS
(Color, 32x32)". The widget's Tooltip field in the Widget Properties pop-up (see the
following screenshot, A) provides room for added information, such as the use of
local variables which are used to support interactivity, the widget's behavior, color
values, and so on. When the library gets loaded into a project file, the information is
available through a pop up (B):

Widget Libraries

[292]

Summary
Widget libraries help extend Axure's built-in collection of widgets and share custom
widgets with others, for free or for a fee. The libraries available for download on
Axure's website, and elsewhere, save you significant time and effort if you need to
prototype mobile devices of various flavors, social networks, and other commonly
used elements. Additionally, widget libraries help develop, evolve, and enforce a
global pattern library for projects or an entire suite of applications. In other words,
they offer a strategy for managing prototype change, which is the topic of our
next chapter.

Managing Prototype Change
Most UX projects are subject to two major drivers of change which often place the
design effort at some risk, due to conflicting objectives. On one hand, good UX
places a premium on as many iteration cycles of design, review, user validation
and revision as possible, which are likely to yield successful results. The process is
inherently slow, can be costly, and involves constant change to the prototype. On the
other hand, there are business realities of ambitious plans coupled with aggressive
schedules and limited budgets. The mix often inflicts on the project shifting priorities
and scope—another source of constant change, but one that is typically not aligned,
and often contrasts with, changes called for by UX.

Additionally, there is the sort of change that is tied to our design tool. As we shift
from sketches and high-level wireframes to detailed design and interactivity, we
are constantly evolving the Axure file. New pages, masters, and dynamic panels
are added rapidly and wired with new interactions. It is tempting to use timesaving
shortcuts, such as copy-and-paste, to quickly create alternative paths and possible
states, instead of taking a longer path of thinking about construction of masters and
their re-use. It is also normal to keep previous versions of wireframes, if we need to
use or repurpose them at a later point. Before you know it, you will be looking at a
fairly bloated Axure file. It may take longer to generate the HTML prototype, not to
mention, finding the latest version of wireframes.

In this chapter, we look at Axure features and construction strategies for dealing
with prototype changes in a productive and efficient manner.

Managing Prototype Change

[294]

From vision to reality
UX projects tend to follow an unfortunate, predictable path. We begin with a project
launch fuelled by excitement, high aspirations, and a bucket full of ambitious
strategic goals. We follow with an intense, stimulating, high-level conceptual
explorations phase, in search for a "killer" user experience. The outcome—a polished,
high-fidelity vision is presented to decision makers, who are justifiably impressed
and excited, bless the ambitious project with the "Green" light. They allocate a
meager budget and issue a directive for delivery yesterday. The organization
immediately shifts into a scramble mode, and your polished hi-fidelity prototype
now needs to address the details of low-level requirements, technical constraints,
and pragmatic compromises that need to be made in order to meet the timeline and
the budget.

Perhaps this description is bleaker than what you have personally experienced so
far in your projects, I truly hope so. However, the numbers talk for themselves:
According to the 2010 IT Project Success Rates survey by Scott W. Ambler, Chief
Methodologist for Agile and Lean for IBM Rational:

•	 Less than 55% of IT projects, on average, are successful
•	 About 32% of IT projects, on average, are challenged
•	 The rest, about 13%, on average are failures

Hopefully, we all get to work on the 55% of the projects that are successful. However,
there is a high probability that constant requests for changes in scope and direction
will compromise for the UX to some degree, require re-thinking of the design, and
refactoring of the prototype. Our goal is to balance such changes in order to maintain
the integrity and cohesiveness of the original UX vision that got the project approved
in the first place.

Visit the following URL for more information:
http://drdobbs.com/architecture-and-design/226500046

Aligning expectations
What exactly are you expected to deliver, and what is the impact, from an Axure
construction perspective? These are tricky but tightly-coupled questions, especially
for medium and large projects. The answers to the first question underscore the
relationships and agreements between you and the project's stakeholders. The
answers to the second question affect your ability to deliver successfully on the
agreements made.

Chapter 7

[295]

A shared understanding of, and agreement about, the level of work and granularity
of details expected from UX deliverables is critical. Mismatched expectations are
likely to result in a blunder.

Before you can come to an agreement, however, you need to estimate the requested
work, in order to develop a reasonable estimate of time and budget. There is
a tendency to come up with overly optimistic estimates. The reasons might be
competitive—you are bidding on the project and want to come ahead in the
competition. It might be a lack of previous experience in developing an application
for a specific domain, or lack of experience due to distortion of scale: Something
that worked in a small startup project may not work for a large enterprise project.
Regardless, bad estimates will put the entire project at risk.

Not to be under-estimated, is also the impact on your well-being. There is a high
probability that you might find yourself working impossible, crazy hours, just to
keep up with an endless stream of demands and changes that you did not estimate
for, but stakeholders expect you should deliver. This situation is not uncommon, but
it can be avoided, or at least minimized.

There are three major elements that influence the ability to estimate the UX effort,
from an Axure perspective:

•	 The software development model of the project
•	 The expected granularity level of the prototype
•	 The expected detail level of the UI specifications document(s)

Implications of these elements on your ability to manage the budget, schedule, and
the quality of deliverables such that they are always in alignment with the project,
is critical.

UX and software development models
We are working on software, and traditionally, UX has been weak on integration
with development organizations and methodologies. In many projects, UX is being
recruited by the business side and is imposed on the development organization,
which may be concerned that UX will not be aligned with internal methodologies
and processes. Therefore, it is important for UX to:

•	 Get familiarized with prevalent development methods in general, and the
development flavor of your projects, in particular

•	 Seek alignment of UX and development around process and methods

Managing Prototype Change

[296]

The following is a very brief description of the most common methodologies, a flavor
of which can be found in most organizations. In larger organizations with multiple
development groups, it is not uncommon to find misalignment among the groups.
Things can get complex for UX, so map out your eco-system early on.

Waterfall
Just a few years ago, an acceptable practice was to estimate the UX effort based on
the number of wireframes needed to visualize an agreed-upon set of screens and
user flows. The common development model followed a fairly linear path, known as
"Waterfall", in which requirements were developed first, followed by software and
interface design activities, software build, testing, and release. After its first release,
the software would continue to evolve through cycles of incremental enhancements
until the end of its life cycle.

The traditional waterfall model did not require much collaboration or iteration
and contributed greatly to the creation of a "siloing" culture, in which business and
development teams worked in relative isolation from, and hostility towards, each
other. The process called for each group to focus on its part of the project, and hand
off its deliverables to the next team.

It looked roughly something like this: The business team would spend a year on
developing the complete business requirements for the product and hand the
document over to the development team. That team would then spend another
year on coding the software and present the complete new product to the business
team when finished. The gaps between the expectations of the business, and what
has been developed, would often be substantial, although on paper, all or most
requirements were being fulfilled. So basically, the organization would spend two
or more years of substantial investment in the product and end up with a flop. Each
group would blame each other, due to lack of shared accountability and ownership
of the entire process.

UX often had little or no input in the planning phase. With little understanding of
the UX process, business and development stakeholders would make assumptions
around how the interface should be designed, based on their understanding of what
users want. Little was done to validate these assumptions with real users.

A minor benefit to UX was the relative ease of planning and estimating of the user
interface effort, because so much of the planning was done up-front. Of course, once
the UI work actually started, the actual deliverables almost always deviated from the
original estimate. However, keeping track of changes was relatively easy, as long as
you and the stakeholders on the project established a clear change control process.

Chapter 7

[297]

Agile
These days, Agile development is all the rage. The Agile model shares fundamental
values and principals with the well-established UX approach to User Centered
Design. In fact, the first value listed on the "Agile Manifesto" is: "Individual and
interactions over processes and tool" (see http://agilemanifesto.org/ for
more information). Although the individual referred to here is a member of the
project team, and not the end user UX has in mind, this is a value to which any UX
practitioner would subscribe.

The Agile software development model is highly collaborative, iterative, and
follows four key phases: Requirements, architecture and design, development, and
finally testing and feedback. Without iteration and emphasis on delivering working
software, these phases may remind you of the Waterfall model. However, instead of
establishing both high and low-level requirements before the development begins, as
is the case with traditional Waterfall model, Agile starts with high-level requirements
as input for immediate coding. Agile also considers requirements in a flexible way,
which supports rapid adaptations and change as the iterative process unfolds.

Jargon
However, from a UX perspective there are some pitfalls to keep in mind. To start
with, Agile is fraught with technical jargon and terminology such as Scrum, Sprint,
Timebox, Backlog, Burn Down, Team Velocity, Planning Poker, DoD, and on and
on. Fortunately, there are also plenty of good resources online that can help you sort
things out.

Jargon heavy practices are always problematic, because there is an increased risk
of communication failures due to misinterpretations of key terminology. Always
remember not to take anything for granted, and make sure that you, and those in
charge of the Agile process, are on the same page regarding the definition of various
Agile terms. This can reduce the risk of problems down the road, due to inconsistent
application of the same term, by yourself and other team members.

If you are not familiar with the meaning of a term, don't hesitate to ask. If you are
embarrassed to ask, or worried that not being familiar with terminology will have a
negative impact on how others in the team perceive your competence, research the
term first, and then discuss.

http://agilemanifesto.org/

Managing Prototype Change

[298]

Agile flavors
There are several Agile methodologies that share the basic principals of the Agile
model, but differ on implementation and sometimes also terminology and practice.
These methodologies include Scrum, Extreme Programming (XP), Crystal, Dynamic
Systems Development Method (DSDM), Feature-Driven Development (FDD), and
Lean Software Development.

The profusion of methodologies can be daunting for UX professionals, who in
general, tend not to be well versed in the arcana of developers. Agile is practiced
in many flavors, and differences between implementation nuances of the model at
various organizations can be substantial. Make sure to get a solid understanding of
the particular Agile process that is planned, or is being practiced on your project,
as early as possible. Your previous experience with Agile may lead you to make
assumptions about the process that may be irrelevant. So remember: When you are
part of a larger interdisciplinary team, don't make assumptions and don't be shy
about asking for clarifications.

Sometimes, the project plan has been outlined by the development team well before
the UX resources join the project, especially when the UX effort is outsourced. This
plan may not take the full impact of specialized UX tasks into consideration. For
example, the usability testing activity may be included, but none or few of the activities
that support the effort are accounted for, such as allowing enough time for recruitment,
creating the scripts, and preparing the Axure file to match tested scenarios. Reviewing
the plan and ensuring that you are comfortable with the plan is important.

Estimating Axure work
It can be difficult to estimate the amount of Axure work that will be involved in
an Agile or Waterfall-flavored projects. A few years ago, agreements could be
easily made around the number of wireframes and the number of revisions—
estimates that formed the basis for acceptance of work. If an interactive prototype
was commissioned, it was a separate deliverable, typically coded by a frontend
developer. However, with Axure, the boundaries are blurred, and consequently,
the most fundamental of questions need to be considered in order to avoid costly
misunderstandings.

Chapter 7

[299]

For example, what is a wireframe? Suppose we agree that the home page is an example
of a wireframe. Before Rich Internet Applications (RIAs), back in the days of static
wireframes produced with a tool such as Visio, the home page wireframe would be
considered a single wireframe, for the purpose of estimating and delivery. Today, we
still have a home page, but when it is constructed for an RIA, in a tool such as Axure, it
is a composite of widgets, masters, and dynamic panels. Each master is an independent
wireframe, made of widgets, dynamic panels, and perhaps other masters. Each
dynamic panel may be a set of unique states sometimes composed of other dynamic
panels and masters. Moreover, the wireframes also include interactions.

Therefore, a single Axure wireframe can translate to a lot more work as compared to
what a traditional wireframe used to require. This is not because Axure is inefficient.
On the contrary, it is because:

•	 Axure enables UX designers to visualize rich Internet applications, at a level
of fidelity that is generally on par with developer-produced prototypes.

•	 Modern applications are asynchronous, which means that data can be sent to
and from a single page without having to reload the page. This means that
modern pages are a composite of widgets that can operate independently
from other sections on the same page, while maintaining a contact with
the entire page. A page in an Axure prototype can model personalization,
context, and local. The level detail and complexity that UX designers can
visualize has increased tremendously, but not the allocated schedule and
budget of the typical project plan.

When it comes to the Agile model, UX can become tricky. In each sprint, developers
produce code that supports the work in the upcoming sprints. Similarly, the Axure
file gets more and more detailed, as the prototype elaborates flows and interactions
that were developed in earlier sprints. However, the efficiencies that come from
writing code do not translate efficiencies in your Axure file.

Instead, the file grows as more pages, masters, and dynamic panels are added and
old drafts are mixed in with new proposals. Interactions, variables, and raised
events increase the complexity of the file. In an environment that requires rapid
iteration, estimation, and change, constructing your Axure file in a disciplined way
is paramount. What appears as a minor requirement change might cascade to you
having to modify any number of widgets and interactions. This can affect your
ability to keep up with the pace of the project.

Managing Prototype Change

[300]

Calculating your time
Schedules of many projects include a built-in fallacy of equating a day's eight hours
block, to eight hours of productive work. Many UX practitioners, from inexperience,
optimism or a desire to be good team players, tend to gloss over this detail when
reviewing the schedule. The following are some of the key culprits that require time
which is typically not accounted for in the plan:

•	 Analysis and synthesis: UX is about creative problem solving and coming
up with good UX, especially for complex task flows. You need time to
digest the information that you collect during discovery and requirement
development, and time to analyze and synthesize the material and emerge
with a concept or an approach. In short, you need time to think, and thinking
takes time. Most project plans don't include thinking time, unfortunately.

•	 Exploration and iteration take time: It is rare to hit the appropriate solution
on the first draft. Often, several options need to be developed and explored,
and the wining solution will emerge through discussions. This is a time
consuming process, which is also not accounted for in plans.

•	 Meetings: UX is face-time heavy, meaning that face-to-face meetings with
stakeholders and team members will consume a significant portion of your
day. At some points in the project, meetings can account for over 50% of
your weekly schedule, for example, during the development and review of
business requirements.

•	 Elaboration: Despite Axure's efficiencies and ease of use, wireframing
and interactions take time, especially if you are modeling multiple use
cases, conditional flows, and exceptions. You will be generating the HTML
prototype frequently, reworking masters and states, and so on. This is all
time-consuming.

•	 Snags: Sometimes, you will get unexpectedly stuck on a wireframe or
interaction. You may have to reconstruct a wireframe previously considered
as finished, as a result of a required change. Don't assume that each Axure
session will go absolutely smooth and fast.

•	 Communication: Phone calls and conference calls, responding to and writing
e-mails, creating presentations, reading and creating support documentation.
These activities will quickly add up to a substantial amount of time spent
daily on project-related work which you cannot postpone much.

Chapter 7

[301]

•	 Downtime: We are not machines yet, although in some projects you may
feel the expectation to act like one. Taking food, coffee, snack, and washroom
breaks are fortunately still allowed, and should be encouraged, because
productivity, creativity, and motivation suffer as a result of work pressures.
Taking a break every 50 minutes or so is also encouraged, in order to rest
your eyes, stretch and improve your circulation. Finally, even if you are in
a progressive environment, a quick visit to the washroom turns into half an
hour spent listening to a colleague's stories.

•	 Health issues and personal emergencies: We all get ill at some point or
another. Flu, allergies, and other normal, seasonal maladies will require us to
take a few days off from work in order to recover, not to mention avoiding
getting the entire office catching your bugs.

There are no absolute answers to estimating both the amount of the Axure work
needed, such as wireframing and interaction, or the amount of real time it will take
to produce. However, you can apply common sense and experience to any of the
following formulas:

•	 The optimist: 8 hours minus (25% meetings and communications + 15%
other project-related work + 10% downtime) = 50%. In other words, plan to
be productive, work of about 4 prototyping hours.

•	 The realist: 8 hours minus (40% meetings and communications + 20% other
project-related work + 10% downtime + 10% buffer) = 80%. In other words,
plan to be productive, work of about 2 prototyping hours.

And that is why, dear reader, you most likely will find yourself, at some point,
working well over eight hour days, including weekends, and sometimes through
holidays. If your experience does not agree with my description here, please let me
know! Sometimes, software projects, including those that started with the best of
intentions, but a weak project plan, degrade into a dreaded "death march" in which
the entire project team is made to follow an impossible schedule in order to meet an
unrealistic goal.

Expectation alignment
You may not be able to affect the entire project plan of a large project, or even a small
project, but you should align stakeholders with UX methods and processes. Keep
in mind that generally people have only a vague idea about the work UX designers
perform. Stakeholders and team members from other disciplines consume our
deliverables and work products, but often underestimate the amount of effort that
was invested into producing them, which is a problem for UX.

Managing Prototype Change

[302]

Make sure that you explain the UX work-process to stakeholders on your project
(from top executives, if you have access to them) to key members of the business and
development teams. You will gain substantial cooperation and understanding after
you explain the work process, the value of using Axure, and the amount of work
you need to do in order to create those great interactions and contextual flows. Most
people get that, and will begin taking into account the leg-time that UX requires. The
following are a couple of examples:

•	 Prototype granularity: The prototype will be consumed by everyone
involved in the project. You will use it throughout the project to demonstrate
to stakeholders how the requirements and flows are fulfilled in the design,
and in usability validation and testing activities. What level of granularity
is expected from the prototype? Stakeholders may not realize that the more
granular the prototype, the more effort has to be invested in managing it
through iterations.

•	 Specifications: The primary audience for UI specifications is the development
team. Don't assume that your understanding of what a UI spec is, matches
that of the development team. Stakeholders might incorrectly focus on the
ease with which it is possible to generate specs in Axure with a click of a
button and forget about the tedious effort of writing the content that goes
into the annotation fields, and the manual cleanup process that might be
needed after the raw specification document has been generated.

Transitioning from concept to detailed
design
The first phase of most UX projects can be considered as the "honeymoon" phase.
The period is characterized by the following attributes:

•	 Excitement: It is a period of exploration during which you have an
opportunity to understand the goals of the project, develop, and validate a
concept with stakeholders and end users.

•	 Team building and familiarization: Like the honeymoon of a newly-married
couple, everyone is on their best behavior, but some cracks may open here
and there. If you are a consultant, you may also start getting a sense of
internal politics. If you are an internal resource, you may already know many
team members and be familiar with internal politics, which in turn might
help you make fast assessments about the level of collaboration you can
expect from others.

Chapter 7

[303]

•	 High-level requirements: People often travel for their honeymoon to some
remote, romantic destination such Paris, for example, or some tropical island.
It is an opportunity to be away from the grind of daily routine. Similarly, the
vision prototype is a high-level concept built to address strategic, high-level
goals. You can explore and propose fascinating user-interactions, highly
efficient contextual presentation of information and user flows, and so on.
Your work is unencumbered by the constraints of low-level business and
technical requirements.

Typically, your transition from concepts to detailed design will be affected by the
work products and deliverables you created, and the expectations around the level of
detail and elaboration in the following phases.

From vision mode
In the vision prototype, you articulated a high-level UI framework, navigation, and
layouts of the application. You demonstrated key interaction flows and interactivity
features. Using Axure to wireframe and build the concept file, your progress rate
was probably high, and so was your ability to respond to feedback and requests
for modifications. Stakeholders and management embrace the concept, and you are
good to go and to move on to the detailed design phase.

•	 Are you expected to continue and deliver such a level of detail in
interactivity during the detailed design phase? If the answer is yes, then, is
the intent to generate specifications out of it?

•	 Do you have the time and/or UX resources needed to sustain a fully-fledged,
high-fidelity prototype throughout the detailed design phase?

From sketch mode
If you were using the sketch mode for initial explorations of the user experience,
there is a point in the process when the "sketchy" styling becomes extraneous. At the
conceptualization phase, the sketch effect can help communicate to a stakeholder
and reviewers the rawness of what they are looking at. This is important, because
most people tend to respond to what they see and the sketchy look helps mitigate the
risk of taking early drafts as actual designs.

Managing Prototype Change

[304]

There is a potential for an opposite situation to occur in which stakeholders and
participants in early validation sessions might assume that the sketchy design is the
intended design. After all, it is subject to the same potential tendency to consider a
visual presentation as a finished, or a close-to-finished approach. The viewer may not
realize that the sketch effect is meant to communicate a draft. Sketch effects are new
to Axure, and it is not yet clear how useful it will be. In any case, if you find that it
creates confusion instead of helping out, cancel the effect.

Foundations and scaffoldings
The following section covers basic wireframing construction principles, including
concepts which were introduced in previous chapters, such as guides and grids. While
useful, you might wonder what these have to do with managing change. The answer
is simple—modularity. The ability to quickly and efficiently make modifications to the
prototype is directly associated with how wireframes are constructed.

Determining the Wireframe width
The width of Axure wireframes is always fixed, which means that the wireframe
will not resize dynamically to fit the available screen width, when the prototype is
generated. In other words, you cannot simulate the layout elasticity.

In order to determine the maximum width of wireframes, you need to consider:

•	 The target device
•	 The screen's resolution

While the evolution of display resolution for desktop and laptop computers has
evolved in standard leaps, inching its way from 320 x 200 pixels or less, to today's
HD screens, tablets, and other mobile devices which are all over the map when it
comes to screen size and resolution. Unless you are designing an application for a
specific device, it is impractical to create a wireframe layout for each possible target
display. However, there are some practical approaches to consider.

If you are developing a web application which will be viewed on a computer screen,
it is advised to select a lower common denominator, such as 1024 pixels. This
number increases every few years, as the quality and screen resolution improves.
Many UX designers work with very large screens, because the larger the screen,
the more productive you can be. It is common to use multiple displays to further
increase the productivity. However, it is important to remember the target audience
for the application we are designing. Many users may be restricted by much smaller
screens, for example, sales people, whose primary monitor is a small laptop.

Chapter 7

[305]

Another benefit of designing with 1024 pixels in mind is that a number of tablets,
including the iPad and the Samsung Galaxy, use a screen resolution of 1024 pixels
horizontally. In order to make life interesting, however, a tablet screen can be viewed
as a landscape (horizontally) and as portrait (vertically) as the user rotates the
device. This often means the app needs two sets of wireframes to accommodate each
viewing option.

The actual width of page wireframes should be less than 1024 pixels for a number of
reasons, as illustrated in the following screenshot:

Managing Prototype Change

[306]

•	 If you present the prototype on a screen with a resolution of 1024 (A), a
projector for example, the wireframe will extend the entire width of the
browser. Note that the Sitemap pane has collapsed.

•	 When you click on a button to show the Sitemap pane (B), you will no longer
be able to show the entire screen and have to scroll horizontally (C).

•	 With the Sitemap pane collapsed, but the vertical scroll bar on (D), about 20
pixels on the right will be lost, which may be a problem in a presentation.

•	 At higher horizontal resolution settings, for example, 1280 pixels (E), an
entire wireframe set to 1024 pixels will fit, leaving a wide margin on the
right.

•	 This margin will be eliminated when you turn on the Sitemap pane (F), and
moreover, a vertical scroll will cause a loss of about 20 pixels on the right,
requiring use of the horizontal scroll bar.

Guides
The idea that the contents of a fixed-width page can be organized in a flexible, yet
proportional arrangement of columns is ancient. The overall effect helps to create
good page layouts that are pleasing to the eye, because the width of all columns is
based on the same ratio. If you consider the guide early in the design process, you
are likely to gain efficiencies of construction, because the width of widgets will be
set to a standard ratio, allowing you the flexibility to mix and match widgets across
pages.

The most common use of guides, however, is casual. Typically, the guide is needed
to align objects across a horizontal or vertical line. Most users of drawing and
painting applications are familiar with the convention of creating guides by dragging
them over from the vertical or horizontal rulers. Guides are a welcome addition to
Axure 6, and the same convention applies, as illustrated in the following screenshot:

Chapter 7

[307]

•	 In order to add a horizontal guide to the page, click on the horizontal
ruler and drag down to the page area. A thin green line will appear. The Y
coordinates will be displayed to assist with exact positioning (A).

•	 In order to remove a guide, you can either click and drag it out of the page
(B), or right-click on it and use the Delete option from the context menu.

•	 In order to lock a guide to the page, right-click and select the Lock option
from the context menu (C).

With Axure, it is possible to move beyond the casual use of guides as a temporary
alignment aid. You can also take advantage of guides as scaffoldings that support the
consistency of layouts and patterns across multiple pages of your prototype. Axure
supports both page level and file level (global) guides.

Global guides
Think of global guides as an extension to the concept of a master—both maintain
their physical properties across pages. Need to make a modification—do it only once,
and all the instances will be updated.

Axure comes loaded with two global guides based on the 960 grid-system that was
created by Nathan Smith. (See http://960.gs). His idea was to streamline web
development by providing commonly used dimensions, based on the width of 960
pixels. Note the terminology mix-up here—Axure has decided to keep the term
'grid', which is used by the 960 system, despite the fact that in Axure, the term grid is
used elsewhere. However, the global guide functionality is basically about applying
a guide-set master. The application of guides is discussed in detail in Chapter 3.

Page guides
Guides are also available on a page level. This means that each page, or a set of
pages, can conform to the alignment and spacing governed by guides that you
dragged over from the horizontal and vertical rulers. Page guides are typically the
casual guides mentioned earlier. Perhaps your design does not conform to the 960
grid, or you cannot use a global design because your application contains a variation
of layouts. The ability to control guides per page provides flexibility for page-level
design.

I mentioned that page-level guides can be applied to a set of pages because you can
copy and paste the guides from page to page. Unfortunately, you cannot save local
guides for reuse on other pages, but it is likely that such functionality will be added
at some point.

http://960.gs

Managing Prototype Change

[308]

The grid
A grid is a visual tool that helps in organizing wireframe layouts and is common to
most drawing and illustration software. The grid is an infinite pattern of horizontal
and vertical lines that are set to a pre-defined interval, and are part of the page
background in editing mode, but not visible in the generated prototype or Word
specifications screenshots.

The grid is perhaps a trivial, little noticed feature of Axure, and many users don't
bother to display it, or ever to change the default 'out-of-the-box' settings. However,
you can improve the construction quality of your wireframes by taking advantage of
the grid to align widgets across a horizontal or vertical axis.

Customizing the grid
You can customize the Axure grid by using the Grid Settings dialog, which you
can access from the Grid and Guides option in the Wireframe menu. Alternatively,
you can right-click anywhere within an empty space in the Wireframe area. You can
toggle the visibility of the grid. Axure also lets you toggle the snap feature, which
makes grid lines function like a magnet; as you drag a widgets across a wireframe,
it "snaps" to the closest grid line. The following screenshot illustrates the process of
customizing the grid:

Chapter 7

[309]

•	 From the Wireframe menu (A), select the Grid and Guide option (B), and
from there continue to select the Grid Setting… option (C).

•	 Grid Dialog (D) opens. The default Axure grid is set to 10 pixel spacing
Intersection style. If you are using Mac, the default DPI setting is set to 72,
which is the Mac standard. If you are using the PC version, it is defaulted to
96 DPI.

•	 You can modify any of the settings (E), although changing the DPI is
typically not required.

•	 If you switch the grid style to Line, keep in mind that it might be difficult
to distinguish between grid lines and guide lines. Note that in the screen
capture, the lines are red (F), but this was done only to make it easier to see
the otherwise faint-blue grid lines.

Page templates
Visual consistency is a fundamental principal of good software design and an
attribute that can significantly help with managing change. Of course, not all screens
in a given software have the same layout. Rather, a level of visual coherence can
guarantee a consistent experience across the application.

It is a common practice to develop pages as templates, for the following reasons:

•	 Advantage for you as a UX designer: Leverage design patterns across
instances of the same screen, to simplify construction of your Axure
prototype and specifications, since we often need to create multiple versions
of the same page in order to visualize variations.

•	 Advantage for the development team: Developers typically think about
templates and code reuse, efficiency and reuse being native to programming.
Developers will instantly understand and appreciate your approach
of templates in the design. Discuss the structure of templates with the
developers to align your modular approach to the coded modular approach.

The concept of page templates is very similar to that of masters, except that templates
are not a built-in Axure feature. They are a choice of a construction method you
choose to use. In this section, we discuss several Axure features that lend themselves
to the creation, use, and modification of Axure templates.

Managing Prototype Change

[310]

Page style editor
With the page style editor, a new feature is introduced in this version, where you
can create custom page-level styles, which you can apply to specific pages in your
prototype. Key benefits of this feature are as follows:

•	 Consistency across all pages that share similar properties
•	 Ability to change wireframes quickly and efficiently during the detailed

design phase: when changes to any of the page style properties are called for,
you only need to make the modification once to the custom page style

We touched on the page style editor earlier in the book, in the context of the Sketch
Effect feature. However, there are additional properties you can control, which—
similar to the properties listed in the widget style editor—map to cascading style
sheet (CSS) properties. Axure shields you from having to know CSS, its terminology,
and syntax. However, understanding the mapping can be useful when you discuss
visual design with developers and designers.

Axure Page Style Editor CSS
Page Align Margin and Padding
Back Color background-color
Back Image background-image
Back Image-Import background-attachment
Horz Align background-position
Vert Align background-position
Repeat background-repeat

To further explore the template concepts, several pages of the Alexandria
demonstration project come to mind. For example, the Home, Media Category, and
Item Detail pages:

Home page template
You might wonder why the home page is considered as a page template, as there
is only a single home page in the application. As you think about your Axure
prototype file, you realize that in fact, you use several variations of the home page.
The following screenshot illustrates the structural similarities between the three
variations of the home page in the Alexandria demonstration project:

Chapter 7

[311]

The three flavors of the home page are Visitor (A), Free Subscription (B), and
Unlimited Subscription (C). In the RP file, there are only two unique pages, one for
visitors, and the other for the masters. When you compare the initial sketch (A) to the
iterated version (B), you note the change in the body area. The rest of the framework
evolves as well, of course, but the use of masters help maintain the over all trajectory.
The intent is to try and keep the same home page structure consistent throughout
the interaction flow for all from a visiting user to a paying subscriber. The content
and messaging will change, of course, but the underlying construction can be reused
across all variations.

Managing Prototype Change

[312]

Category page template
Although the site offers various kinds of media, it is desirable to present them using
the same layout. This enables efficiencies of code, and from the user's perspective,
a consistent experience when browsing for items, regardless of their category. This
is typical to experience in popular applications such as iTunes and Spotify. The
following screenshot illustrates the structural cohesiveness across the three types of
media offered by the application:

Chapter 7

[313]

•	 As long as the underlying concept calls for consistency of the design pattern
across all types of media, the use of masters and dynamic panel can greatly
reduce the speed and flexibility with which we can model context, on top of a
uniform template.

•	 Each of the categories, Books (A), Newspapers (B), and Movies (C) is made
of the exact same masters. Each category has a wireframe page in the sitemap
in order to reduce the overall complexity of the construction and support the
documentation and specifications generation.

Detail page template
For the page detail, we are also incorporating an example of design for multiple
devices, in this case, the web-based layout (A), and an iPad layout (B). While the
presentation is different, both item details are essentially constructed of the
same masters:

Managing Prototype Change

[314]

Widget style editor
The widget style editor affords a global control over the visual properties of a widget
type. In other words, it is the Axure's user-friendly way to apply Cascading Style
Sheet (CSS) properties to widgets, with the exception of widget height and width.

Note that:

•	 Not all the widgets that appear in the Widget pane are listed in the style
editor. This is because some widgets, such as the dynamic panel or iFrame,
don't really have independent visual properties of their own.

•	 The Rectangle, Placeholder, and Button Shape widgets are referenced as
Button Shape widget in the style editor, so changes to the default of that
style apply to these three widgets as well:

Widget Style properties

Fo
nt

Fo
nt
Siz
e

Bold ltalic Underl
ine

Image
Box

Text
Panel

Y Y Y Y Y Y Y Y Y

Y Y Y Y Y Y YY

Y Y Y Y Y Y

Y Y Y Y Y Y

Y Y Y Y Y Y

Y Y Y Y Y Y

Y Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

Y Y Y Y Y

Y Y

Y Y

Y Y Y Y Y Y Y Y Y

Y Y Y Y Y

Y

Y

Y

Y

Y Y

Y

Y

Y Y

Y

Y Y Y Y YYYY

YY

Align
ment

Vert
Align

Padd
ing

Line
Spac
ing

Font
Col
or

Fill
Col
or

Line
Col
or

Line
Wid
th

Tree
Node

Hyperlink

Button
Shape

Button

Text
Field

Text
Area

List
Box

Droplist

Check
box

Radio
Button

Flow
Shape

Tree
Node

Chapter 7

[315]

Default widget styles
When you start a fresh Axure file, all the widgets have an 'out-of-the-box' default.
By tweaking the default style of the widgets in your project file, you can save time
and enforce consistency across all your wireframes. The changes you make will be
immediately applied to all widgets for which you modified the default style, across
the entire file, with the exception of widgets to which you assigned a custom style.

The following screenshot illustrates an example:

•	 Each time you drag a Rectangle widget onto the Wireframes pane, its visual
properties will be pre-set to the default setting. These include:

	° Black line and white fill
	° Arial font, size 13, and so on

Managing Prototype Change

[316]

•	 In the toolbar, click on the widget style editor icon (A), to launch the Widget
Style Editor dialog (B).

•	 Widgets that can be controlled by the editor are listed on the left-hand
column, under the Widget Defaults column (C).

•	 When you click on any of the widgets on the list, you can see its visual
properties.

•	 Modifications that you make to these properties (E) will be applied to all the
widgets of this type across the entire prototype. For example, if you change the
font, font size, background, and fill colors of a Rectangle widget, the new
settings will apply to all the Rectangle, Placeholder, and Bottom Shape-
based widgets (F) across all your wireframes in this file.

If you change the font family of one widget, for example, from Ariel to
Verdana, make sure to apply the same properties to all widgets listed in
the editor, unless the font variation is called for by the design. Also, make
sure to review all your wireframes—some fonts are wider than others, so
text wrapping may occur.

Style painter
The style painter is a welcome new addition to Axure 6, and a common feature of a
drawing and painting application. It allows you to apply visual properties from one
widget to other widgets.

The following screenshot illustrates a practical example: Suppose you have a dialog
box with a primary-action button, and four secondary-action buttons. Initially, all the
buttons, made of Rounded Rectangle widgets share the default style for that widget,
and all of them look the same. You want to style the action buttons in a way that
distinguishes the primary button from the secondary button:

Chapter 7

[317]

•	 You start by applying the visual properties for the Primary button (A), and
the secondary-action buttons (B).

•	 You want to apply the styling of the first secondary button, to the other
three instances. With the newly styled button selected (C), click on the Style
Painter icon on the toolbar (D), or on the Formatting tab in the Widget
Properties pane, under the Style section.

•	 The Format Painter dialog (E) appears. Click on the Copy button (F). Don't
close the dialog yet. It will float above the work area, but you will be able to
make selections on the wireframe.

•	 Select the three unformatted secondary buttons (G), and then click on the
Apply button (H) in the Format Painter dialog. The desired style will be
applied to the selected buttons.

Managing Prototype Change

[318]

Easy and fast, the style painter helps you maintain visual consistency across widgets.
It is a real time-saver when you have to apply a set of visual properties that includes
gradients, from widget on one page to widgets on other pages. This is especially
convenient in cases where using copy-and-paste to replace unformatted widgets
with formatted ones is not a productive option.

There are a number of drawbacks for using the style painter as a systematic method
for implementing style changes:

•	 You must apply the desired style to all like-widgets across all wireframes,
which can be time consuming, especially if the style needs to be changed as a
result of feedback.

•	 Even when minor style changes are required, for example, changing one of
the gradient values used for the fill of primary action-buttons, the task of
change is still time-consuming because you have to go through the entire file
and then make the changes.

•	 It can be difficult to differentiate between widgets that have been updated
and those that have not been updated. Pressing the Apply button will be fast,
but the rest will not be.

•	 If you started to apply the change to some widgets and had to stop due to
some reason you may have a hard time figuring out which widgets have
already been modified, and you may have to go through the entire file again
and make sure that all widgets were updated.

Additionally, you cannot apply the painter styles to other button states such as
rollover, selected, and so on. The style painter is a welcome addition to Axure's
widget-editing capabilities. It is great when creating quick drafts because it greatly
reduces tedious repetitive formatting steps. However, when it comes to maintaining
the consistency of an application's style guide, consider the approach I propose in the
following section.

Chapter 7

[319]

Integrating with the project style guide
and CSS
The following technique promises to provide substantial efficiencies and speed in
our ability to adjust wireframes and prototypes to the visual design. Axure still does
not support explicit integration of CSS files, but hopefully we will see this in
coming versions.

The style guide
A style guide is an extensive document that is typically produced by the visual
designer on the project. A typical guide should cover the following aspects of the
visual design:

•	 Branding:
	° The color palette: Listing the HEX values of all the major colors,

including gradients
	° Application logo: Including all the allowed instances and sizes of the

logo on various pages and display rules
	° A template anatomy: Labeling of all the layout elements that make

up the structure of each major page template of the application

•	 Design elements:
	° Typography: The fonts and the styling of fonts across the applications
	° Graphics: The rules and styling for buttons and icons, including size,

order, margin, and padding

•	 Structural elements:

	° Covers the styling and sizing rules for data grid tables, windows,
light boxes, alert, message and error boxes, and finally, forms.

Managing Prototype Change

[320]

The visual design guide should be the document of records for anything related to
visual design. The style guide is accompanied with a CSS style sheet which translates
many of the properties sheets listed in the guide into CSS classes and IDs.

Some elements that are listed in the style guide, such as the details of the page
anatomy, may also be covered in your UX documentation. Make sure to synchronize
with the visual designer about the names and labels of various elements to avoid
conflicting references.

Currently, Axure does not support explicit CSS integration either in the form of
linking with external CSS files, or by creating the CSS internally. However, it is
getting close. We have covered a number of methods that are available to quickly
modify the visual style of widgets. We found that using the Style Painter or default
widget styles have their limitations when you have to reflect the latest visual design
in your prototype.

Axure custom styles, however, get as close as ever before, to emulating the usage
and behavior of CSS. While the implementation is not perfect, you can still gain
substantial efficiencies in the change process and maintenance of the widget's styles,
and the ability to conform with the project's style guide and some of its CSS.

The following diagram illustrates the use of custom styles to apply primary and
secondary look and feels to buttons:

The following table is a section of the style guide, as it would pertain to the buttons
in the preceding diagram. It looks very different from a CSS file which will be
handed over to the developers.

Chapter 7

[321]

Widget State Style guide In the preceding
diagram

Primary
Button

Default Fill Gradation:
Hex#: FF6600 bottom, to Hex#: FFCC00 top
Border-Width: 1px
Border-Color: 99000
Font-Family: Ariel
Font-Style: Normal
Font-Weight: Normal
Font-Size: 16px
Color: Hex#: FFFFFF
Text-Align: Center
Padding-Left, Right: 12 px
Padding Top, Bottom: 6 px

A

Primary
Button

Rollover Fill Gradation:
Hex#: FFCC00 bottom, to Hex#: FF6600 top
Border Width: 1px
Border-Color: FF0000
Font-Family: Ariel
Font-Style: Normal
Font-Weight: Bold
Font-Size: 16px
Color: FFFFFF
Text-Align: Center
Padding-Left, Right: 12 px
Padding Top, Bottom: 6 px

B

Secondary
Button

Default Height = 32 px
Fill Gradation:
Hex#: FF9900 bottom, to Hex#: FFCC99 top
Border Width: 1px
Border-Color: 99000
Font-Family: Ariel
Font-Style: Normal
Font-Weight: Normal
Font-Size: 14px
Color: FFFFFF
Text-Align: Center
Padding-Left, Right: 12 px
Padding Top, Bottom: 6 px

C

Managing Prototype Change

[322]

Widget State Style guide In the preceding
diagram

Secondary
Button

Rollover Fill Gradation:
Hex#: FF6600 bottom, to Hex#: FFCC00 top.
Border Width: 1px
Border-Color: FF0000
Font-Family: Ariel
Font-Style: Normal
Font-Weight: Bold
Font-Size: 14px
Color: FFFFFF
Text-Align: Center
Padding-Left, Right: 12 px
Padding Top, Bottom: 6 px

D

The benefits of a style-guide, as a communication method, over a CSS document are
as follows:

•	 Style guides are a lot easier for non-developers to read, in comparison. Reading
a CSS document is like reading a code. Not a complicated code, but still, class
and ID names can be very obscure, and there may be other properties and
writing conventions that typical UX designers may not be familiar with.

•	 Often the CSS document will not be available for quite some time. While the
style guide is created and handed over by the visual designer, converting it
into a working CSS is typically performed by a developer. This activity may
take place later in the development process.

Up to Version 6, there were two methods to implement visual design in Axure,
without custom styles. In context to the buttons in the preceding example:

•	 Method A: Create the buttons to the project's widget library. Whenever
a primary or secondary instance of a button is needed, drag it over to a
wireframe.

•	 Method B: Construct each button as a master within your prototype file. To
use, drag the master over to a wireframe, and flatten it in order to modify the
text or size.

When it comes to managing changes of the visual design in your prototype, the
major drawback of both these approaches is that once applied to a wireframe, you
can no longer make a global change in any of the button's visual properties. You will
need to go over each wireframe and apply the changes manually, which is a tedious
and time-consuming process.

Chapter 7

[323]

With Axure's Custom Style feature, it is possible to capture the visual properties of
all elements listed in the project's style guide, as custom styles, and from then on, use
only these styles, most importantly, in masters—flattening masters will not remove
the widget's link to the custom style. Consequently, updating the custom style will
instantly update the master, its instances, and its flattened instances.

The following screenshot illustrates a simple example of the application of a custom
style to a master, in this case, a button widget:

Managing Prototype Change

[324]

•	 In the Masters pane, create a folder and label it Widget Library.
•	 Create two masters. Label the first Primary Button and the other Secondary

Button.
•	 Open the Primary Button for editing. Use a Rounded Rectangle to create a

button with a height of 32 pixels, according to the style guide. Type the label
Primary on the button. (A).

•	 That is it for now, as far as styling the master goes!
•	 Click on the Widget Style Editor icon on the toolbar (B) to open the Widget

Style Editor dialog (C), and switch to the Custom tab on the left-hand pane
(D). Initially, this column will be empty.

•	 Click on the Add icon (E) to create your first custom style and label it Button-
Primary-Default (F). You can use spaces and other characters to separate
the words in the name of a custom style, I recommend getting used to
maintaining compatibility with CSS guidelines.

If you have, and understand, the project's CSS document, you can use
the class name used there. Otherwise, keep in mind the W3C's CSS 2.1
guidelines:
"In CSS, identifiers (including element names, classes, and IDs in selectors)
can contain only the characters [a-zA-Z0-9] and ISO 10646 characters
U+00A0 and higher, plus the hyphen (-) and the underscore (_); they cannot
start with a digit, two hyphens, or a hyphen followed by a digit."
Visit http://www.w3.org/TR/CSS21/syndata.html for more
information.

•	 The style properties listed in the Widget Style Editor match the properties in
your style guide, as well as the standard CSS syntax:

Chapter 7

[325]

Axure Widget Style Editor Style Guide/CSS Syntax
Font Font-Family
Font Size Font-Size
Bold Font-Weight
Italic Font-Style
Underline Text-Decoration
Alignment Text-Align
Vert Align Vertical-Align
Left Pad Padding-Left
Top Pad Padding-Top
Right Pad Padding-Right
Bottom Pad Padding-Bottom
Line Spacing Line-Height
Font Color Color
Fill Color Background-Color
Line Color Border-Color
Line Width Border-Width
Line Style Border-Style

•	 Define the relevant properties for the button widget, for example:
	° Font-Family: Ariel
	° Font-Size: 16px
	° Font-Weight: Normal
	° Font-Style: Normal
	° Text-Align: Center
	° Padding-Left, Right: 12 px
	° Padding Top, Bottom: 6 px
	° Color: Hex#: FFFFFF
	° Fill Gradation: Hex#: FF6600 bottom, to Hex#: FFCC00 top
	° Border –Color HEX#: 99000
	° Border-Width: 1px

Managing Prototype Change

[326]

•	 After you capture all the properties for the style (G), click on the OK button
to dismiss Widget Style Editor. Remember to save the file, as a habit.

Back on the Primary Button master comes the real fascinating part with two options
to apply the custom style to the widget:

•	 Option A: Click to select the widget from the droplist (H) to the left of the
Widget Style Editor icon. This droplist now lists the new style you just
added: Button-Primary-Default. Select this value, and see your widget
change to that style! (K).

•	 Option B: In the Widgets Properties pane, switch to the Formatting tab (I).
The style droplist also appears in the Style section there (J). The button will
change to match the selected custom style (K).

This, in a nutshell, is the method. Continue to add the other styles and expand the
custom styles library. As long as you style your widget using custom styles, you will
be able to respond to changes in the style guide very quickly.

In fact, you can start your custom style library fairly early in the design process.
Suppose you want to start, as many practitioners do, with a grayscale palette. You
can still define custom styles. When the actual style guide is provided, all you need
to do is update the custom styles. This can save days of tedious manual updates, as
illustrated in the following screenshot:

Chapter 7

[327]

•	 Create a new page in your file, and label it Sandbox Page (A). I find that, in
addition to using Axure sandbox files to quickly test ideas in isolation from
the entire project file, it is convenient to have a sandbox page in the file, for
some quick tests and explorations.

•	 Drag over the Primary Button master (B) and place it on the page (C). Notice
that the Widget Style droplist on the toolbar (D) is disabled. This is because
changes to the styles are at the master level, not the page on which the master
instance is placed.

•	 As you need to change the button's label from "Primary" to "Move to Cart",
you need to flatten the master. Right-click on the widget and select the
Flatten option (E) from the Master's menu.

Managing Prototype Change

[328]

•	 The link that the master instance had to the master "mother ship" has been
severed. The button is no longer a master, and so you can edit the button's
label. Flattening a master is similar to how Axure handles widgets that are
dragged over from a custom widget library.

•	 Most importantly, and a significant benefit over widget libraries, is that
although the master has been flattened, the widget is still associated with the
custom style: Notice that the Widget Style droplist on the toolbar (G) is now
enabled. Changes you make to the custom style when you update the master
will also update the widget that was based on the master, well after the tie had
been broken.

To sync or not to sync?
Should the prototype be aligned with the application's visual design? The benefits
are substantial:

•	 Stakeholders and participants in usability testing can provide a valuable
response to the overall look and feel of the proposed user experience.
Response to a change is inherent in user experience prototyping projects.

•	 Less confusion during development. The developers can easily see, both in
the HTML prototype and the Word specifications, what it is that they are
supposed to code.

The second item is actually very important. When the prototype is kept at its basic
grayscale, low fidelity design, there is a need to manage two different types
of wireframes:

•	 The wireframes of record, which are wireframes created in our Axure
prototype.

•	 The visual design wireframes, which are delivered by the visual designer.
These typically reflect an older version of the wireframes, the actual
wireframes, of course, are not being updated to reflect the latest version of
the prototype.

The problem is that it is very confusing, especially to developers, who need to figure
out how to deal with those two different sets of wireframes. Fundamentally, the
project is driven by business drivers, such as response to competitive pressures
and changing needs, dissatisfied customers and sales force, high support costs, or
a window of opportunity to increase the market share with innovation. The UX
project is typically accompanied by a major branding or styling effort. Company and
product logos, new or extended color palette, new visuals, including photos and
icons are all part of what should become a master style guide for the project.

Chapter 7

[329]

The desire to incorporate the new visual design is compelling, but it is only through
the use of techniques such as custom styles and masters that the effort can be
manageable from a prototyping perspective.

Integrating the visual design into a prototype poses some challenges for us. It is
a common best practice to begin the prototype with rough grayscale wireframes.
Axure 6 allows you to present initial concepts in a sketchy style, further reinforcing
the tentativeness of the design.

The goal in the early stages is to get the "important" things right: the information
architecture of the application, global and intra-page navigation, high-level
functionality, critical task flows, and so forth. The assumption is that the visual
design is premature in the early stages of the project and can often unnecessarily
shift discussions from matters of substance to more superficial topics of colors
and graphics.

This approach is becoming quickly outdated. User interfaces are becoming the
forefront of innovation as they provide immersive environments that engage the
user in the most trivial of data entry and data consumption tasks. The boundaries
between gaming and serious applications are also blurring as direct manipulation
capabilities on all computing platforms, and especially on handheld devices such as
smartphones and tablets, transform interactions with data into a seriously engaging
activity. Prototyping a rich user experience that involves data visualization and
manipulation is becoming as much about visual design as it is about the data.

Regardless of the approach you favor, it is important to remember a fundamental
principle: data and the presentation of data should be separate. It is the only way to
create device-agnostic interfaces, facilitate easy integration of data, and share it with
other applications. This principle should be reflected in the user experience design,
which falls under your domain, just as it should be clear in the application's technical
design, which falls under the developer's domain.

Prototype with existing visual design
There are situations in which you are restricted to an established design pattern.
This happens when an application has to comply with the look and feel of other
applications produced by the company, be consistent with the branding guidelines
of a corporation, and also in other similar situations. The application you are asked
to design can be new, or perhaps you are asked to extend the functionality of an
existing application. The user experience you develop may represent a departure
from the company's existing or legacy assets, but the visual design must match.

Managing Prototype Change

[330]

You may have access to the master files of the visual assets in the form of Photoshop,
Illustrator or PNG files. However, often all you have to work with are the graphics
that are used on an existing site or application. These you can extract and modify for
use in your own prototype.

Axure provides an exceptionally fast method to create, extend, and manage
interactive prototypes that are based on an existing application. The following
example demonstrates how to use screen captures of an existing site to create a
custom widget library that becomes the source of building blocks required to design
an extension to an existing application.

The following screenshot illustrates an example, which is based on the home page
of packtpub.com:

Chapter 7

[331]

•	 Take screen captures of the page. PNG Format is best.
•	 In Axure, use the Slice Image option to carve out repeating visual patterns.
•	 You can also refine the various widgets in an image-editing tool such as

Fireworks or Photoshop, or a screen capture tool such as Snagit.
•	 Create a widget library and add all the graphic assets.

Further, refine the widget library by remaking the widgets in Axure. In other words,
replace the sliced images with actual Axure widgets to which you will apply a
matching custom style.

Summary
In this chapter, we discussed the challenges that most UX practitioners face, when
it comes to managing changes to the prototype. Many of these challenges have
nothing to do with Axure. They are associated with the larger domain of software
development and the evolving integration of UX into various development
methodologies. Of course, change is inherent to UX. Consequently, it is in our best
interest to figure out how to avoid the most tedious, time-consuming chores that
typically involve tweaks of layout and visual design.

Axure provides a number of features that support change on a global level. Some are
common to many applications, such as Find and Replace for modifying text strings
in the prototype. The powerful and still-evolving Custom Styles feature provides
dramatic time and effort savings in maintaining the consistency of visual design
patterns across the prototype.

The key to successful change, however, is managed expectations. Assume that the
stakeholders you work with have no idea about what is involved in UX work.
Your ability to estimate the level of wireframing, prototyping, refactoring, and
specifications effort, should be combined with your ability to educate and articulate
what is involved in your work.

In the next chapter, we discuss the workflows involved in the creation of the UX
functional specifications document. As mentioned here, the process will begin with
the alignment of expectations of what information should be specified and the
output format of the document.

Functional Specifications
The UX functional specifications document is a communications tool: It is written
in a formal way by which the interaction designer prescribes to the developers the
desired behavior of the user interface. If you need to deliver such a document, your
takeaways from this chapter should be the following:

•	 Seek the development team's input and approval on the format and scope of
the specifications, as early in the project as possible

•	 Estimate early, and correctly, the effort involved in creating and generating
the specifications

•	 Start planning and testing the specifications output when you start your
Axure file and continue testing and tweaking the output throughout the
project

The tendency to postpone dealing with the specifications until later in the project
is natural. After all, the document is typically due at the conclusion of UX activities
for the project, and other more pressing tasks on the UX plate take priority.
Consequently, the UI specifications document is a bit like the iceberg that sunk the
Titanic: It is big, mostly hidden, and if you don't watch for it, it will hit you when
you think all is going great.

Axure provides an integrated specification creation and output environment.
This feature addresses the iceberg nature of specifications heads-on, in that it
significantly reduces the labor and time involved in updating and producing the UI
functional specifications deliverable. In other words, it translates to real value for UX
practitioners who use the tool. This capability has been prominent on Axure's long
list of groundbreaking features since the product's release back in 2004, and helped
propel the tool's popularity within the UX industry.

Functional Specifications

[334]

To understand why, it is important to compare it to a non-integrated workflow,
which was the de-facto practice just a few years ago. Visio is used in the following
example, but you could easily substitute it with any of the other graphics tools, such
as Adobe Fireworks:

1. Create the first draft of the specifications:
	° Create a wireframe in Visio.
	° Add annotation footnotes to the wireframe, which is a manual

process: a footnote shape needs to be created, sized and formatted,
then duplicated and renumbered, for each annotation footnote on the
wireframe.

	° Create the UI specification document in MS Word.
	° Take a screen-capture of the wireframe.
	° Label the captured wireframe such that you can recall later where it

belongs in the specifications document.
	° Save the captured wireframe in the appropriate directory.
	° Import the captured wireframe into the Word document.
	° Write the annotations for the captured wireframe in the Word

document, typically, in a table above or below the image.

2. Update and maintain the specifications:
	° In Visio, reorder and renumber annotation footnotes: This is often

required due to iterations and updates applied to the wireframe
since the first draft has been captured. Consequently, new annotation
footnotes are added, and depending on their position, renumbering
of existing footnotes is needed to maintain orderly sequence of top
left to bottom right. This is a manual process.

	° Take a screen capture of the updated wireframe.
	° Label the capture: If you wish to maintain a new version of the

previous capture for that wireframe (wise tactic), your naming
convention for screen captures should also consider a serial version
id, or date.

	° Save the capture in the appropriate directory.
	° Open the specifications Word document.
	° Find the appropriate section in the Word document.
	° Replace the previous capture with the updated capture.

Chapter 8

[335]

	° Update the annotation table. You have to make sure that the footnote
numbers in the wireframe match the sequence and numbers of
table rows.

Each step listed in the preceding production workflow is manual, and often
painstakingly so. Each step translates to seconds and minutes, which add up to hours
and days, since the entire process needs to be repeated for each wireframe included
in the specifications. For medium and large projects, we may be looking at tens of
screenshots.

Set aside the time needed to create or update each wireframe or the time needed
to write or update its related annotation. In addition, time yourself using a sample
wireframe: Add up the minutes needed for going through the workflow of updating
it in the spec—from Visio to Word. Multiply the result by the number of wireframes
and you will get a rough estimate of the time it will take to revise the spec for each
new iteration.

If the average time per wireframe is about 10 minutes for the entire manual process,
the manual process of updating just 10 wireframes will take close to two hours. Now,
to make things even more complicated, think about a team project and the effort
required to coordinate the specification work among a team of UX designers. This is
a real challenge.

Axure removes a great deal of the manual labor out of the workflow involved
in the production of the specifications document, which translates to a saving of
significant time and effort. In recent years, the landscape of UX prototyping tools has
flourished with abundance of new products, and many offer-integrated specification
environments. However, as you will see, while most of the manual work has
been removed, generating meaningful, comprehensive specifications is still time
consuming, and is not a trivial effort.

In this chapter, we cover the details of specifications' creation and output process,
and review best practices that will help you streamline the production of this
deliverable into the complete, high-value deliverable.

Functional Specifications

[336]

Collaboration with the development team
Let's face it. Much of the UX work on the project is often throwaway. For a brief
moment in the development life cycle, UX is bathing in the limelight: the creativity
invested into conceptualizing the new user experience, the intensity of joint iteration
and change cycles, and the excitement of validating the interactive prototype with
decision-makers, stakeholders, and end users. At the end of the day, however,
developers need to translate the prototype into a fully-functional application. The UI
functional specification is the document that binds the visualization we have created
throughout the project—the wireframes and prototype—with the technical details of
the user interface.

There are a couple of well-worn truisms that illustrate why the interactive prototype
and the functional specifications document complement each other so well:

The first is that "no one reads anymore". In software, this is expressed pointedly
by the famous abbreviation RTDM (Read the Damn Manual), which nobody ever
does. This is true not only to consumers of software, but also to those who make it.
Typical software projects generate an obscene amount of internal documents. Many
of the documents that you are not responsible for authoring, you are expected to
review and comment on. When a crunch time sets in, even the best-intentioned team
member will find it impossible to read carefully AND to do their work.

When it comes to UX generated documents, the specifications document can be a
substantial tome. This is where the adage "A picture is worth a thousand words"
comes to play: Visualizing the intended interaction of a rich Internet application is
a significant time saver. The UX designer is spared having to write long descriptive
verbiage, annotate multiple screenshots, and manage the updates. The developer can
see the intended experience in an unambiguous way instead of following text, aided
only with static wireframe screenshots.

In Chapter 7, we reviewed various development methodologies and their impact
on the user experience track. Typically, UX has a little influence over the choice
and practice of the particular development methodology on the project, but we do
have the ability to influence and understand how UX will integrate into the project.
For this reason, I emphasize the importance of communicating early with the
development team and stakeholders, so that you and your team can align the UX
work with the larger application road map.

Chapter 8

[337]

Very broadly speaking, UX practitioners, regardless of their employment model,
whether consultants or in-house resources, find themselves in favor of one of the
following situations:

•	 Business 'owns' UX: In this setup, the UX team is most likely to be external
to the firm, parachuted in to solve a particular need and dismissed at the
end of the engagement. The drivers for engagement are almost always
strategic: Response competitive pressure, desire for market leadership, new
product initiative, and so on. There is some risk of possible friction with the
development team over methodologies, approach, and deliverables, but also
an opportunity to influence a real change.

•	 Development 'owns' UX: In this setup, the UX team is part of the technology
group. The UX team is more likely to be made of internal resources that
are in better sync with the group's goals and methodologies. The risk here,
however, is that UX may be less inclined to propose bold, new ideas that
conflict with the goals and constraints of the development team, and resist
change demanded by the business.

Both scenarios are not ideal for UX because the reposting structure places UX under
the umbrella of one side of the organization, business, or technology, and potentially
in a built-in conflict with the other side. We know that UX is the glue that unifies a
project's wants, needs, vision, and constraints. Ideally, UX would enjoy a reporting
structure that would effectively provide it with both influence and independence
across the entire business.

However, this situation may be too rare, and until then, remember that one of the
most important factors for UX success involves building solid relationships with
all stakeholders on the project. A spirit of collaboration and communication leads
to trust, and helps avoid problems down the road. As the development team is the
primary consumer of the functional specifications, achieving an agreement on the
format and scope of the document has an impact on how you will construct your
Axure file.

Functional Specifications

[338]

Aligning expectations
The development team is typically the primary target audience for the UI functional
specifications document. In order to be successful with this deliverable, you need to
apply the same approach as you would to voting in Chicago ("Vote early and vote
often"). Meet with the development team early and often to determine the format
and scope of the document. It will be a big mistake to wait with the specifications
just because the delivery comes much later in the project plan. At that point, your
Axure file has matured, evolved, and is practically complete from a construction
perspective. Adjustments may be difficult to make.

The following are some concrete steps that can pave the road for a successful
partnership. These steps are important if you have never worked with the
team before:

•	 Meet with the development team very early on in the project to explicitly
discuss the specifications document.

•	 Ask to see examples of specifications which the development team has been
using for other projects. Don't be surprised if you don't get much in the way
of examples, however.

•	 Demo Axure's specifications features to the development team. There is a
high probability that the tool will be exotic and unknown to the team, which
may lead to initial resistance to Axure, if the team is used to looking at Visio/
Word documents.

•	 Whatever hesitations the developers may originally have, it is likely that
education and review of various possibilities for the generation specification
will help you build a compelling case.

•	 Discuss with the team the attributes and level of detail they would like to
see. Schedule a follow-up meeting in which you will present a draft of the
specifications that includes the agreed upon fields. Tweak as needed.

At the end of this process, you will have established a good working relationship
with the development team and have their buy-in for the specifications deliverable.
While they may not be the only consumers of the document, this will be the group
that will sign off on this deliverable. You will find that in general, developers are
very open to changes, especially when it means helping them with the chore of
reading massive documents. As mentioned earlier, people don't like reading big
documents. Less is best.

Chapter 8

[339]

Capturing UI specifications
As mentioned at the start of this chapter, Axure provides an integrated, configurable,
specification capture and output environment. However, by no means should you
assume that the process of creating the specs involves filling in the annotation fields
and hitting the 'Generate' button. You will get a document, for sure, but it may not be
something you want to hand over to your development partners.

A good specifications document should provide a high-level description of the user
experience across the entire application, continue to cover the structure and behavior
of the application's various screens, and conclude with the behavior of various
widgets down to button-level elements. In other words, the document's underlying
structure should be composed of the following:

•	 Global aspects of applications, using the Word template that is part of the
spec generator

•	 Page level description, using page notes
•	 Widget level descriptions, using field annotations

The following sections will describe in detail how to customize the various elements
to best fit the document you want to generate for your project.

Global specifications
There is a great deal of information about the user experience that applies to the
application at its entirety, and the first part of the specifications should cover the
principals, considerations, and activities that led to the application prescribed in the
specs. Also, keep in mind that readers of the specifications may not be well versed
in the details of UX concepts and terminology. Not all the items listed below may be
relevant to any given project, but in some configuration or another, these apply to
any UX project:

•	 Introduction: The purpose and target audience: What is this document, and
who is it written for?

•	 Guidelines and principles:
	° Screen resolution
	° Devices support
	° Handling the date and time
	° Browser support
	° Performance: The acceptable response time for various interactions

from a UX perspective

Functional Specifications

[340]

	° Messaging display:
	° User and system errors
	° Confirmations
	° Alerts

	° User assistance and guidance (help)
	° Handling user access, permissions, and security.
	° User customization features
	° Localization features
	° ADA compliance

•	 Interface layouts
•	 Key patterns (samples):

	° Windows and dialogs
	° Notifications:

	° Error messages
	° Warning message
	° Confirmation message
	° Informational messages

	° Miscellaneous:
	° Calendars
	° Button patterns
	° Icon patterns
	° Sign In

•	 The naming convention
•	 Abbreviated glossary of Axure terminology, where you define in simple

terms what are masters, dynamic panels, and widgets
•	 Document control:

	° Document versioning
	° Related documents (such as the visual design guide)
	° Reviewers list
	° Approvers list

Chapter 8

[341]

It may be tempting to consider composing this section in Axure. However, remember
that the output will be an image. This is because the content of Axure's pages,
master, and states, which you edit in the Wireframe pane, will be generated as screen
captures of the application in the Word output file. While this is an option for some
type of information that you may want to keep within Axure, you really need a word
processor to author and format this section effectively.

Generators and outputs: Specifications and
prototypes
Before we dive into the details of capturing the project's global specifications, let's
clarify the relationship between Axure's generators, specifications, and the prototype.
The following screenshot illustrates the concepts:

Functional Specifications

[342]

•	 Prototype: This always refers to an HTML output of your Axure file.
Whenever you click on the Prototype button (A) on the toolbar, you are
presented with the Generate Prototype dialog (D). Under this dialog, you
can specify various options of the default HTML output generator. You can
create multiple HTML outputs, which are useful for breaking apart a large
project into sections that generate faster.

•	 The HTML prototype generates the contents of the pages in your sitemap in
the web browser of your choice.

•	 Specification: This always refers to a formatted Word output of the Axure
file. Whenever you click on the Specification button (B) on the toolbar, you
are presented with the Generate Specification dialog (E). In this dialog, you
determine the format and output options of the default Word output generator.
Similar to the HTML output, you can create multiple Word generators. For
example, you can divide a large project into smaller specifications chapters
that correspond to application modules.

•	 As opposed to the HTML output, for the specifications to be meaningful,
you need to annotate the wireframes: Pages, masters, dynamic panels, and
widgets. This means that the effort involved in generating specifications
extends well beyond the configuration of a generator.

•	 Generators: Axure provides three output options: HTML, Word, and CSV.
Out-of-the-box, Axure comes with one generator of each type. When you
click on the Generators button (C) on the toolbar, you are presented with
the Generator Configurations dialog (F) which lists all the generators you
currently have in your project file (G). Under this dialog, you can manage
your generator collection (H):

	° Creating new generators in one of the output formats
	° Editing a generator
	° Duplicating an existing generator
	° Deleting generators
	° Setting the default generator for the HTML and Word outputs

Why would you need multiple generators? Consider the following examples:

•	 You may want to generate an HTML version with the footnotes visible, and
another one with the footnotes hidden. When you meet with stakeholders,
you can have both versions available allowing you to easily switch between
one that is visually clean, and the other, which provides descriptive details
about various elements of the interface.

Chapter 8

[343]

•	 For large projects, you may want to generate the HTML of only a subset
of pages, the ones you are currently working on, in order to speed up the
HTML generation.

•	 For large projects, you may want to divide the Word output into chapters,
each corresponding to a workstream, or an application module. This works
well when there are different stakeholders and development teams for each
module or workstream. Each can review and respond to the relevant portion
of the specs.

Customizing the Word specifications
generator
Let's start with the first Word generator for the project. Although you can use the
provided generator, I would recommend creating a dedicated generator, and leaving
this one for experimentations. See the following illustration in order to follow the
flow below:

Functional Specifications

[344]

•	 Click on the Generators icon (A) on the toolbar. Alternatively, select
Specifications… from the Generate menu.

•	 In the Generator Configuration dialog (B), select the Word Specification
option (D) from the Add droplist (C).

•	 Rename the new generator as relevant.
•	 Click on the Set as default button (E). The default generator is the one that is

launched when you press the Generator icon on the toolbar.
•	 Now you can click on the Edit and generate icon (G), which will launch

the Generate Prototype dialog. There, you will set the various properties
that determine the final output of the Word specification. We will cover this
dialog in detail later in this chapter.

Now that you understand the relationship between generators and specifications,
and have a Word generator waiting to be configured, it is time to dive into the
mechanics of capturing specifications.

Page notes
Axure's Page notes provide the mechanics for capturing the page-level description
and other specifications. This is the place to provide:

•	 High-level overview of the page
•	 Page entry points
•	 Tasks that the user can accomplish on this page (actionable items)
•	 Important user experience principles
•	 Key interface components

Out-of-the-box, Axure provides a single page notes field named Default, which you
probably should rename. You can add additional note fields, which will help you to
provide an organizational structure to the page note section in the specification. For
example, you can consider adding notes for discussing key business requirements
that are addressed by this page, functional specifications, localization and
personalization notes, and so on.

Although the section is named page notes, you can use it
for pages and masters

Chapter 8

[345]

The page note categories you create in the file are available to all pages, although this
does not mean that you have to fill all the notes sections on all pages. The following
screenshot illustrates the required flow to customize the notes section:

•	 Open the page for editing (A) on the Wireframes pane.
•	 Click on the Page Notes tab (B) in the Page Properties pane.
•	 You will see the Default note field (C) listed in the droplist.
•	 A good reason to rename this field is that you will have an option to use

the note name as a header in the specification document. Obviously, to the
reader the word 'Default' will be somewhat vague.

•	 In order to rename the note field, click on the Manage Notes… link (D).
•	 In the Page Notes dialog (E) that appears, click on the first item (F) and type

the new note field name, for example, UX Description.

Functional Specifications

[346]

•	 In order to add additional note fields, click on the Add icon (G). Consider
carefully the note fields you are adding:

	° Is the section going to be applicable to the majority of pages?
	° Who is the audience for this note? Developers or business people?

•	 It is a good idea to add a note field for your personal use (H)—a place to
capture issues, ideas, questions for stakeholders, and so on. You can generate
a version of the specification that has only this field, which will provide you
with a good issue management system.

•	 Close the Page Notes dialog when you are done adding the fields you need.
You can always tweak this section, although, once you have started to
capture information, be careful about deleting note fields.

•	 From this point on, the renamed and new fields are listed in the droplist (I).
Switch between fields using the droplist.

One note section versus many
While discussing this topic with colleagues, there seems to be an agreement that a lot
depends on the nature of the project. As a result, there is no right or wrong answer
here. However, evaluate your needs and your approach in light of the following:

•	 Some developers are interested in very detailed specifications, while others
want to focus only on the absolutely necessary details.

•	 The specifications may be consumed by a remote team, often overseas,
and developers will interpret your words verbatim, while in an Agile
environment, developers might barely read anything.

•	 In a few projects, the specifications are also going to be consumed and
signed-off by business analysts, business stakeholders, and other non-
developers. Understand what they are looking to get from the documentation
and tailor the note field content for such an audience. This will help in
getting their approval.

•	 With multiple note fields, it is easy to make mistakes! Most commonly,
forgetting to switch note fields will result in typing notes in the wrong
note field.

Chapter 8

[347]

Annotation fields
Think about a snapshot you take with your camera. The lens picks an incredible
amount of detail in addition to whatever was your intended subject and focus for the
shot. Now compare this to a sketch you draw on a sheet of paper. Every single mark
on that page is there because you placed it there. The analogy to a wireframe is that
every element on a wireframe was placed there for some reason—you started with a
blank after all. Someone, a developer, will need to translate the wireframe to
live code.

In the UI functional specifications document, you are expected to provide both
descriptive and prescriptive information about any widget in a wireframe. We have
discussed earlier in the chapter, the level of effort involved in manually creating
the specifications. Axure takes care of many of the most labor-intensive tasks and
delivers profound time savings. Still, you must expect to spend a significant amount
of time on the specifications.

After establishing your page notes, it is time to configure the annotation fields.
Across the UX industry, there is no standard for the UI specifications document.
The deliverable's format and depth of coverage depends on the UX practitioner, the
tools used to generate the document, and what has been requested by the
development team.

Axure comes with a set of nine annotation fields. Some of these fields you will want
to rename, or remove. You can easily add your own fields, and customize both their
label and type. Annotation field types are:

•	 Text
•	 Select list
•	 Number
•	 Date

Each UX project may be vastly different, but one can argue that across the board,
there are generalized properties that can be, and are, applicable to any interface
project. Naturally, UX, as a discipline, is rapidly evolving and we need to address
new interaction methods such as gestures, haptic feedback, and other factors.

This evolution is likely to expand the type of information that has to be captured in
the specifications, and consequently, the annotation fields needed to capture and
communicate such information to developers.

Functional Specifications

[348]

The following table shows a listing of annotation fields. Those that come out-of-the-
box, and ideas for fields you could use in practice:

Out-of-the-box Possible Minimal set of fields
1 Label (Text) Label and Widget ID

(Text)
Label and Widget ID
(Text)

2 Description (Text) UX Description UX Description
3 Status (Select List) Widget Type Widget Type
4 Benefit (Select List) Behavior & Display

Rules
Behavior & Display
Rules

5 Effort (Text) Required Validation & Errors
6 Risk (Select List) Exceptions Defaults
7 Stability (Text) Defaults
8 Target Release (Text) BRD Reference
9 Assigned To (Text) Validation & Errors
10 Sort Order
11 Dependencies
12 Persistence
13 Content source
14 Release or Phase

Is it possible to have a widely-accepted 'minimal' set of fields that would work across
most UX projects? It is a compelling possibility that could help achieve some level
of standardization for the UX specifications delivery. Luke Perman pointed me to
the AXLIB open source library that includes an annotation set of 10 fields, many of
which include droplist values to speed up the entry and help standardize the input.

It is highly recommended that you firm up the list of annotation fields before you
actually begin writing your annotations. The following screenshot illustrates the
process of customizing the collection of annotation fields:

Chapter 8

[349]

•	 From the Wireframe menu (A), select the Customize Annotations Fields and
Views… option (B).

•	 The Customize Fields and Views window (C) will appear, listing Axure's
out-of-the-box fields in the Customize Fields column (D).

•	 In order to rename a field (E), click on it and type the new label. While you
can change the label of the annotation field, you will not be able to change its
Type (F).

•	 If the field happens to be a Select List type field, the current values are
listed in the Edit: 'Field Name' column (G). You can easily modify, add, and
remove values by typing in that area.

Functional Specifications

[350]

•	 In order to add new annotation fields of various types, reorder them in the
list and delete fields, use the controls above the list of fields (H). I highly
recommend that you delete fields that you don't plan to use in order to avoid
confusion, such as entering content in such fields by mistake. Regardless, in
the process of customizing the Word generator, you can control the fields to
include or exclude from the output.

The following screenshot illustrates an alternative way to access the customization
feature of your collection of annotation fields:

•	 Switch to the Annotations tab (A) in the Annotation Properties pane.
•	 Axure's out-of-the-box list of fields (B) is displayed in the pane, initially

disabled. Once you select a widget (C) in your Wireframe pane, the
annotation fields become active and you can type your annotations or select a
value from a list.

Chapter 8

[351]

•	 In order to customize the list of fields, click on the Customize link (D) to
open up the Customize Fields and Views dialog (E). The dialog will be set to
the Fields tab (F).

•	 In order to add a new field to the list, click on the Add droplist (G). You will
have to decide the type of the field from the list of options (H). You will not
be able to change the field type once the field is created. If you select the
wrong type, delete the field and create a new one of the type you need.

•	 The new field will be added at the bottom of the list (I). Make sure to rename
all your fields in a meaningful way, so that the reader understands what
to expect there. Try to keep the labels concise—ideally, a single word: The
output of the annotation fields is in tables, where each field label is a column
header.

•	 The Clear All function (J) is very handy for copy-paste situations. This is
a common scenario: Well after you start annotating your widgets, you are
likely to copy widgets either for use in the same wireframe, or on other
areas of the prototype. As the pasted widget inherits the contents of the
annotations field, make sure to clear them if the information is not relevant
for the pasted widget. Do this immediately after pasting, to avoid problems
later in the project, when irrelevant information will appear all over the
specification, potentially confusing reviewers and developers who consume
the document.

Annotation views
Annotation view is a feature that allows you to group your annotation fields. This is
useful if you have a long list of fields, and want to organize them in smaller groups.
For example, you may decide, together with your development team stakeholders,
on a subset of fields that are mandatory, and the rest are optional. By setting the
Annotation tab to the Mandatory view, the much shorter list of fields will be easier
to scan as you go over your widgets and ensure that all mandatory information has
been captured.

Functional Specifications

[352]

The following screenshot illustrates the flow for setting up your views:

•	 When you open the Customize Fields and Views window, the Fields tab
(A) is selected by default and all the fields in your file are listed (B) in the
Customize Fields column. All these fields appear when you switch to the
Annotations tab in the Widget Properties pane (C).

Chapter 8

[353]

•	 When you initially switch to the Views tab (D), the Customize Views
column (E) will be empty, because you still do not have any custom views.

•	 Click on the Add icon (F) to add the first view and label it. For example,
Mandatory.

•	 In the Fields in Mandatory column, Axure will make this a contextual label,
once you reopen the dialog or add another view, so it always references the
selected view you have on the Customize Views column.

•	 Use the droplist Add (G) to select the fields that will be part of the
Mandatory view.

•	 Repeat this process whenever you want to manage your views. Close the
window when you are finished.

•	 Now, the view droplist in the Widget Properties pane shows your new
views. Now, only the fields you need are displayed (I and J, in our example).
You always have the option to view all fields.

Generating specifications
As mentioned throughout this chapter, it is important to experiment and test the
output of the specifications early and often.

You control all the output properties of the specification document in the Generate
Specifications window. The window is divided into eight sections. When you are
done tweaking them and press the Generate button, Axure will launch Microsoft
Word which will open with the specification document ready to be reviewed and
edited by you.

Functional Specifications

[354]

The General section
The following screenshot illustrates the first section in the spec configuration
window (A):

Under this window, you instruct Axure about the following two things:

•	 The location where you want to create the generated specifications: By
default, the path (B) leads to the Specifications directory (C) that is created
when you install Axure. For Windows users, the directory name is My Axure
RP specifications and it is located under the My Documents folder, or in the
Documents folder on Mac. Click on the ellipsis button (D) to change the path
to your own destination, for example, if you want to store the document in
a special folder you have for all your project's files. You can always use the
default by clicking on the Use Default button (E).

Chapter 8

[355]

•	 The name of the specifications document: By default, it is the name of your
Axure prototype file. You can modify the last segment of the path (F) as
needed.

The Pages section
Under this section (A), you select the pages from the prototype's sitemap which will
appear in the specifications, as illustrated in the following screenshot:

Functional Specifications

[356]

Option Description
Include Pages Section (B) This option supersedes the rest of the items below. If you

uncheck this option, none of the pages in the sitemap will
be generated.

Section Header (C) It lets you customize the name of the Pages section. For
example, instead of Pages, you may want to rename it to
"Screens". If you check this option, don't leave it blank.
This label will appear in the Table of Contents of the
generated specifications.

Include Sitemap List (D) If you check this option, Axure will include a list of
all the pages in your project's sitemap. Keep in mind,
however, that if you choose to generate some of the
pages, the list will still show all of them, which may be
confusing to the reader.

Sitemap Header (E) Using this option, you can re-label the default sitemap
header from Page Tree to Application Screens, for
example. If you check this option, don't leave it blank.
Your custom label, or the default, will appear in the
generated Word document.

Generate All Pages (F) By default, this option is checked. However, as
mentioned earlier, it is most likely that you will want
to uncheck it. The ability to segment pages is extremely
useful. Not only can you have precision and select just
the relevant screen you want to include in the spec, it
also opens up the possibilities to generate chapters and
sections that are tailored for specific audiences. In large
projects, each workstream can generate its own set of
specifications.

Useful in large projects with many pages and subpages,
where Axure controls Check All, Uncheck All, Check
All Children and Uncheck All Children (G).

The Masters section
Under this section (A), you select the masters from the prototype's sitemap that
will appear in the specifications and the way they will appear, as illustrated in the
following screenshot:

Chapter 8

[357]

Option Description
Include Masters
Section (B)

This option supersedes the rest of the items below. If you uncheck
this option, none of the masters in the prototype will be generated.
To clarify, the masters will still appear in wireframes, but
there will not be a special section for them in the specifications
document. This can be useful if you want to create, for example,
a PowerPoint presentation showing only key screens of the
applications. Instead of manually taking screen captures of each
from the HTML prototype, you can generate a specification
of only the pages you need, and exclude the masters. All the
screenshots you need for the presentation will be automatically
generated, faster.

Section Header (C) It lets you customize the name of the Masters section. For
example, instead of the default 'Masters', a term which might be
foreign to readers not familiar with Axure's terminology, you may
want to call the label 'Reusable UI elements'. Moreover, even if
you stay with 'Masters', don't leave it blank, since the label will
appear in the Table of Contents of the generated specifications.

Functional Specifications

[358]

Option Description
Include Master List
(D)

If you check this option, Axure will include a list of all the masters
in your project.

Master List Header
(E)

You can re-label the default master list header from Page Tree
to 'List of Reusable Components', for example. If you check this
option, don't leave it blank. Your custom label, or the default, will
appear in the generated Word document.

Only List Generated
Masters (F)

By default, this option is checked, and I recommend leaving it
checked—there is little value in listing items that do not appear in
the document.

Useful in large projects with many masters, is Axure's control to
Check All, Uncheck All, Check All Children, and Uncheck All
Children (H)

Generate All
Masters (G)

By default, this option is checked. If this option is kept checked,
it will generate all the masters in your file. You should consider
unchecking it, especially if you are tweaking the pages that will
be generated. Typically, your file may include an old version of
pages and masters, various design candidates, and even work in
progress—there can actually be quite a bit of stuff you want to
keep out of the specs.

Only Generate
Masters Used on
Generated Pages (I)

By default, this option is not selected, but I recommend you
consider checking it, especially if you are generating only a subset
of pages. Remember, masters are not independent elements; they
are reused in one or more pages. If a master does not appear in
the pages that are generated in the spec, it will make little sense.

Do Not Generate
Masters Set As
Custom Widgets (J)

Masters that are set as custom widgets are typically intended
to be modified once they are placed on the page. This means
that a master set as a custom widget will actually not be easily
recognizable as such on the page. As a result, it will not be very
valuable to developers and most likely create some confusion.

Chapter 8

[359]

Option Description
Document Masters
in Page Sections (K)

By default, Axure generates the Masters section after the Pages
section. The table of content looks like this:

Page section

 Page 1
 Page 2
 Page n

Masters section

 Master 1
 Master 2
 Master n

This means that a developer working on a particular page needs
to jump from the page to the masters section and locate a master
mentioned in the page section, which can be inconvenient and
sometimes confusing, as not all the elements associated with a
single page are in one place.

By checking this option, Axure will generate the page with its
associated masters.

The table of content looks like this:

Page section

 Page 1
 Master 1
 Master 2
 Page 2
 Master 1
 Master n

 Page n
 Master 1

 Master 2
 Master n

This organization packages all the information about a screen in
one section.

Functional Specifications

[360]

Option Description
Only Document
First Use (L)

If you checked the previous option, one immediate downside will
be a redundancy of masters. Basically, each master will repeat on
each page where it is used. Depending on the size, the project,
and the construction of your prototype, this redundancy may
translate to hundreds of additional pages in your specification
document—I am not exaggerating here.

Therefore, the option to generate only the first instance of a
master—under the first page it is used on—can be a tremendous
space saver. However, it does end up intensifying the original
problem of spreading masters in the document, because this
arrangement forces the reader to potentially hunt for masters all
over the document.

Exclude Master
Notes (M)

Similar to pages, you can also add notes to masters. This is a
very useful feature, especially if the master is a large, composite
component that can benefit from its own set of notes. However,
you can use this option to exclude those notes.

The Page Properties section
Axure 6 has significantly improved controls over the organization and content of
the functional specifications document. In the Pages section, you selected which
pages from the sitemap will be generated in the specifications, and in the Page
Properties section (A), you are offered a wealth of 14 options to configure the page
information. These options will apply to all the pages in the sitemap, as illustrated in
the following screenshot:

Chapter 8

[361]

Option Description
Include Notes (B) With this option selected, page notes will be generated for

each of the pages.
Show Notes Names as
Headers (C)

As discussed earlier in the chapter, you can create multiple
note fields. With this option selected, these note names will
appear as headers and the content of the notes below.

Use Heading Basic
Style(D)

If you checked the previous option, this option will become
active. It is unchecked and the style Heading 3 will be
applied, giving page notes a significant prominence. If you
check the box, the basic heading will be Heading 5, which
is gray, with a smaller font, making notes less prominent.

Select and order the notes
(E)

This option lets you govern the order in which the page
notes will be generated within each page.

Functional Specifications

[362]

Option Description
Include Page Interactions
(F)

With this option selected, OnPageLoad interactions will
be generated. Whether or not Axure's interactions provide
any value to developers; it should be discussed with the
development team.

Section Header (G) If you choose to include page interactions, you can use the
default Section Header or re-label it.

Use Heading Basic Style
(H)

Similar to D, using this gives you the option of making the
interaction section more or less prominent.

Include List of Masters
Used on Page/Master (I)

As it is impossible to visually distinguish masters by
looking at the wireframe on a page (unless you take
special effort to identify them manually), developers will
appreciate the listing of all the masters, which make it
easier to locate them in the masters section.

Section Header (J) If you choose the option above, which is highly
recommended, you can modify the default label—given
that you may choose to reference masters using a different
term, this is a good option.

Include Master Usage
Report (masters only) (K)

This too, is a very useful feature. Each master will have a
listing of all its instances across the entire prototype. This is
incredibly helpful.

Section Header (L) This is similar to J.
Pages Header (M) This is similar to J.
Masters Header (N) This is similar to J.
Include Dynamic Panels
(O)

If you are using dynamic panel in your prototype, you are
likely to have this option checked in order to expose the
various states associated with those dynamic panels.

The Screenshot section
One of the great timesaving features involved in producing the functional
specifications document—automatic generation of all wireframe screenshots. This
means that each time you generate a fresh version of specifications your screen
captures are up-to-date! Not only that, but the annotation footnotes will be created
as well. The Screenshot section (A) in Axure 6 provides a wealth of screenshot
customization options, as illustrated in the following screenshot:

Chapter 8

[363]

Option Description
Include
Screenshot (B)

This option supersedes the rest of the items below. If you uncheck this
option, none of the screenshots in the prototype will be generated. It
is difficult to think about a situation in which you might not want to
include screenshots, however.

Screenshot
Header (C)

You can modify the label of this section; for example, change the
default "Screenshot", to "Wireframe", or "User Interface".

Show footnotes
on screenshot
(D)

With this option selected, the screenshots will include a little yellow-
numbered footnote that references annotated elements on the
wireframe. You will probably want to have this option selected for
the specifications document. However, if you need to generate a set
of wireframes to include in a PowerPoint presentation, the footnotes
option can be skipped.

Functional Specifications

[364]

Option Description
Exclude
footnotes not in
widget tables
(E)

We discuss widget tables in the Widget Properties section, which
comes up next. Basically, the idea is that you may have more
annotation fields in your Axure file, fields that you want to output.
You organize the fields in the widget table(s). With this option
checked, footnotes that are associated with fields that are not part of
the widget tables will not be generated. For example, you may have
a field to capture internal issues, questions, and other miscellaneous
details. Typing content in this field will create a footnote on the
wireframe. However, since you are not going to include this field in
the widget table(s) you don't want the footnote to appear. This option
takes care of this situation.

Put border on
screenshot (F)

This option does exactly what it claims. However, you may want to
consider it if you want to use it. It might confuse the developer to
think that perhaps the border is part of the wireframe, as visually it
might be difficult to distinguish the Axure added border from a frame
around the widget. Something to be kept in mind!

Do not scale
footnotes with
screenshot (G)

With this option, the size of the yellow footnotes stay constant.

Apply default
OnPageLoad
cases (H)

This may be an important option to check. There are many
circumstances where rendering of the page depends on the execution
of the OnPageLoad event. This works well in an interactive prototype,
but also—as importantly—happens when the specification is being
generated.

Include
Submenus (I)

This option will generate screenshots of expanded menus, if you use
Axure's menu widgets in your prototype.

Include Expand
Trees (J)

This option will generate screenshots of expanded trees, if you use
Axure's tree widgets in your prototype.

Show default
pages in Inline
Frames (K)

This is an incredibly important option to check if you load pages
inside iFrames or other pages. It will ensure that the entire
wireframe—the parent page as well as the page that is targeted for the
iFrame—will be generated.

Do not apply
background
styles (L)

If you use a background effect for the prototype (for example,
applying background colors), you can have these removed from the
screenshot output.

Do not apply
sketch effects
(M)

It lets you maintain the option of sketch effects on your prototype, and
also lets you remove them from the output.

Chapter 8

[365]

Option Description
Max Width as %
of Page/Column
Width (N)

This option provides a measure of control over the width of the
screenshot, in relation to the output page. For example, for 60 percent
of 7.5" width for a Letter size page set to Portrait (with half an inch
margin to the left and right), we generate a screenshot which is 4.5"
wide, leaving a 3" space for annotation information. However, keep
in mind that in a typical project, the variation between wireframes is
significant, and you will want to experiment and ensure the quality of
the output.

Max Height
as % of Page
Height (O)

This option is similar to the preceding section, but it controls the
max height of the screenshot. This is useful for big, scrolling screens.
However, keep in mind that in a typical project, the variation between
wireframes is significant and you will want to experiment and ensure
the quality of the output.

Allow
screenshots
to split across
pages (single
column only)
(P)

This option is useful for very big screenshots. If you limit the height of
the image, so that it fits onto the page you will, by default, also reduce
its width, potentially making it difficult to identify details. However,
splitting the screen capture across screens, you can keep the maximum
width for best quality, without worrying about the height.

The Widget Properties section
We discussed in the first part of this chapter about the macro and micro means
to capture annotation in Axure. The Page Note fields are the macro option, a
configurable space that allows you to discuss an entire page and provide the UX
overview and context. The Widget Annotation fields are the micro option, allowing
you to capture UX properties of widget level controls.

Functional Specifications

[366]

The Widget Properties section (A) provides you with a number of controls that help
you organize the presentation of widget annotations in the specifications document,
as illustrated in the following screenshot:

Option Description
Include Widget Tables (B) This option supersedes the rest of the items below.

If unchecked, none of the widget annotations will
be generated. Axure lets you create any number of
widget tables. Click on the Add link (K).

Table Header (C) You can change the label of this section. For example,
if you add an additional table, the first can be labeled
Mandatory Annotations (L) and the second table
Additional Annotations (M). You can switch between
tables by using the widget table droplist (N).

Chapter 8

[367]

Option Description
Select and order the columns
(D)

All the widget annotation fields in your file are
listed here. As each annotation field is a column in
the annotations table in the Word output, the more
fields you want to output, the narrower each table
column will be in the Word output. At some point, the
tables become unusable. Axure provides an easy and
powerful method to avoid the problem by allowing
you to associate fields with multiple tables. As a
result, each table has fewer, wider columns, and the
result is readable and clear. Within each table, you can
control the order of the column, which will be their
order in the widget tables.

Only include widgets with
footnotes (E)

This option will reduce the unnecessary clutter from
the specification, listing only widgets that actually
have footnotes.

Remove rows with only
Footnotes and Label data (F)

This is an excellent space-saving option that will filter
out widgets that have footnotes, but have no actual
annotations.

Filter droplists (G) This is a useful option for controlling annotations
which should be included in the output. For example,
you have an annotation field named 'Release Version',
where, for each widget, you note the intended version
number. With the filter on, such as Release Version =
1.0, the generated spec will include the annotations of
only those widgets for which the value of the Release
Version field is 1.0. On the screenshots, footnotes will
appear only next to the items that match the filter
criteria.

Remove empty columns (H) This is another useful space saver.
Column Heading Labels (I) This is another space saver which will eliminate

empty columns from tables, and by that increase the
width of the columns with data.

Allow Rows to Break Across
Pages (J)

This is a self-explanatory option. However, you my
want to discuss this with developers. They may prefer
to see the entire row in one place and avoid a potential
error.

Functional Specifications

[368]

The Layout section
The Layout section (A) provides additional controls over the page layout of the
specifications document, as illustrated in the following screenshot:

Option Description
Columns (B) You have a choice to keep a single column or two columns

layout. Keep in mind that in a two columns layout, the
screenshots may be too small for an application page.
However, if these are specifications for an iPhone app, for
example, this may be a perfect, compact format.

Order the content (C) You can set the order of appearance of major content
sections in the specification. Use the up and down arrows
(D) to organize the sections.

Chapter 8

[369]

The Word Template section
Finally, the Word Template section (A) is the last section under the Generate
Specification dialog. When you click on the Generate button on this dialog, Axure
opens up a Word template with all the content organized, based on your selection
in the previous sections. This panel allows you to edit the Word template, import a
template, or create your own, as illustrated in the following screenshot:

Functional Specifications

[370]

Option Description
Edit, Import, New Template
(C)

These links allow you to edit the provided Word
template, import a new template, or create your own.

Applied Word Styles (D) It lets you modify the default style names, if you want.
You also have the option to use Word's built-in styles
instead. You will have to experiment and determine
which you like better.

Create New Template (E) If you click on the link New Template (C), a pop-up
window with the same title will appear, with options to
customize the template.

Paper Size (F) It lets you choose between US formats such as Legal,
Letter, Ledger, and the International A4 format.

Orientation (G) It lets you choose between Portrait and Landscape
orientation.

Numbered Headings (H) It lets you choose to have numbered or non-numbered
headings. Here we encounter an interesting challenge:
While it can be difficult, or nearly impossible, to
reference sections in the specifications document without
numbered headings, these headings will most likely
change between drafts of the document. This is because
you may tweak the output, add or remove the content,
and so on. This is why it is impossible to rely on page
numbers, because each generated spec might have
a different page count, and elements may appear on
different pages. Only a consistent and comprehensive
naming convention scheme can help to maintain a
reference mechanism that is reliable (see Chapter 5).

Columns (I) Choose between one or two columns page layout.

Summary
Regardless of the tool you use, generating UI-functional specifications is a
complicated affair. Think about model toys: despite the fact that each piece is
labeled or numbered, it can be difficult to figure out what the complete model will
look like once it is assembled. Similarly, the organization, context, and associations
between various user interface elements on a screen and across screens can be easily
ascertained when looking at the HTML prototype. However, delivering a document
that maintains these relationships is not trivial.

Chapter 8

[371]

Most dedicated prototyping tools currently available in the market offer some form
of integrated specifications. Following the evolution of this Axure feature over the
years, and recognizing the increasing complexity of user interface projects, the non-
triviality of the effort is clear.

Finally, I feel that it is really important to conclude this chapter with three key
takeaways which started this chapter:

•	 Seek the development team's input and approval on the format and scope of
the specifications as early in the project as possible

•	 Estimate early and correctly the effort involved in creating and generating
the specifications

•	 Start planning and testing the specifications when you start your Axure file
and continue testing and tweaking the output throughout the project

The next, and final, chapter in this book deals with Axure's collaboration capabilities.
Even if you are a 'lone wolf'—an independent UX practitioner, your Axure skills are
quickly becoming valuable as Axure establishes itself as the de-facto prototyping
tool in the market. Familiarity with Axure's shared project features will help you to
quickly join larger enterprise projects.

Collaboration
Henry Ford once said "Coming together is the beginning, staying together is
progress, and working together is success". If you have some experience with UX
projects that includes working with a team of UX designers, you can appreciate the
challenge of "staying together", or in modern terms, "staying in sync". This has been,
and continues to be, an acute pain point for UX teams.

There are many good reasons for these difficulties. To begin with, a project has to be
of a certain size and complexity to warrant the extended investment an organization
will have to make in a UX team. Each UX designer is usually assigned to one or
several workstreams or modules, each with its dedicated business and, sometimes,
technology stakeholders. Add the constraints of a tight schedule and budget, and
you will end up in a fast-paced environment with many asynchronously moving
parts. You may be in one of those right now.

For a UX team that is using a traditional file-centric tool such as Visio, an immediate
concern is keeping wireframes in sync, because:

•	 Only one person can edit a Visio file at any given time, which means that
each designer works on a separate file

•	 In order to get a sense of the entire application, constant consolidation of the
individual files is needed

•	 The larger the team, the more accelerated the project velocity and the harder
it is to manage the consistency of interaction patterns and widgets across the
files each designer is working on

Collaboration

[374]

The UX team faces a similar challenge of collecting feedback from stakeholders. A
common practice is to have each UX workstream create PowerPoint presentations of
the latest wireframes, add some verbiage describing the interactions, and send it out
to stakeholders for written feedback. There are several drawbacks here:

•	 Stakeholders need to respond to a static presentation of a dynamic interface
•	 Redundant, extra effort for the team creating the presentations
•	 A challenge to consolidate feedback from multiple stakeholders
•	 A challenge to share feedback with the other UX workstreams on a timely

and on-going basis

Axure 6 supports the following two forms of collaboration that help address major
difficulties on both fronts mentioned earlier:

1. The Shared Project format enables a team of UX designers and others (BAs,
for example) to collaborate on the same project in real-time.

2. The Discussion tab in the HTML prototype facilitates review by
stakeholders, by enabling viewers of the HTML prototype to add comments
for each page on the sitemap.

Like other important Axure features, these capabilities translate to real time and
effort savings for the UX team. For a UX team that is considering a prototyping tool
that supports a collaborative environment, there are few other 'industrial strength'
options at the price point and maturity offered by Axure. The Shared Project feature
has been around since Version 4.5, back in 2008. It is stable, reliable, and is being
continuously refined.

The Discussion feature is new to Axure 6. It is an option integrated into the HTML
prototype, where the entire team and stakeholders can share feedback and responses
to wireframes.

Collaboration still continues to pose significant challenges, because it is the nature
of the beast: any project with many simultaneously-asynchronously moving
parts is inherently a complex process to manage. This chapter focuses on Axure's
collaboration features and the methods which will help you keep the UX team,
stakeholders, and prototype in sync.

Chapter 9

[375]

Shared projects
When you launch Axure, it always starts a new project, following the pattern of, say,
Microsoft Word. When you save the file, it will always be saved in the RP file format,
Axure's standalone format, which means that only one person can access and work
on it at any given time, similar to a Word or Visio document. In order to collaborate
with one or more UX designers, save the project as a shared project, and you are
good to go!

If you are a single practitioner, you might find it beneficial to use shared projects
instead of the default standalone option. You will be able to work from your desktop
and laptop computers, enjoying the peace of mind that comes from knowing the fact
that you can always revert to a previous version of your work.

The environment
The Axure Shared Project environment is straightforward. The following diagram
illustrates a typical setup:

•	 The project file is created on a server or shared directory (A). This is done
once by using the Create Shared Project from Current File… option. What
is on that central location is, in essence, a repository of all the elements that
make up the project—a very large collection of folders and files that are
managed by the repository. It is highly advisable not to touch, manually, any
of the files on the central repository or on your local copy of the project.

•	 When a team member accesses the file for the first time by using the Get
and Open Shared Project… option, a local copy of the repository is created
on that person's computer (B) and (C). Each team member may use a Mac
or Windows machine, with the corresponding version of Axure. The only
restriction is that all users must use Axure 6.

Collaboration

[376]

•	 Each team member can check out any element of the prototype, including
elements that are checked out to other team members. Elements subjected to
check out and check in are:

	° Pages
	° Masters
	° Annotation fields
	° Global variables
	° Page style sheets
	° Widget styles
	° Generators

•	 An important fact to remember is that team members work on their own
local copy, and not directly off the server. In order to edit files that are on
the shared repository, team members check out a desired element (D) or (F).
The icon for that element, on each person's local copy, will display a green
circle. If other users attempt to check out the same item, Axure prompts
them that the file is already checked out; later in the chapter, we discuss such
situations. Once the editing is done, team members check in the element (E or
G), and it clears for editing by others.

Check out/in status
The following table shows the various statuses along with their description:

Status Description Icon
Checked in The element is available for check out

to all team members. However, the
status indicates only what the local
copy 'knows'. When you actually try
to check out the file, Axure will let you
know whether it is available or not.

A blue diamond.

Checked out The element is checked out to you.
The local copy of other team members
will still display the file as checked in.

A green circle. The person who
has the element checked out will
see an indicator in the form of
an icon or a label and marks its
status. Local copies of the other
team members will show that
the element is checked in, until
they attempt to check the item
out.

Chapter 9

[377]

Status Description Icon
New When you add a new element, it

is first created in your local Axure
project file. Once you check it in, other
members of the team will be able to
see or use it.

A green plus sign. The icon is
applicable to pages and masters,
and appears only on the local
copy of the person who created
it. Other elements may not have
an indicator.

Conflict The element on your local Axure
project file conflicts with a version
of the same element on the master
project file on the server or shared
directory.

A red rectangle.

Unsafely
checked out

You checked out an element despite
being warned that it has been checked
out by another team member. You or
the other person will lose the work
you did, once you attempt to check in
the file to the repository.

An orange triangle.

Setting up a shared repository
The process of setting up a shared project is not unlike following a recipe. You need
to prepare some ingredients in advance, so that you don't get stuck halfway through.
In this case, you need to have the location of the repository.

As mentioned earlier, the repository can be stored on a shared network drive or on a
dedicated SVN server, hosted on the company's server, or hosted by an SVN hosting
service. Either way, you will have an address that points to that location, and with
the location available, you are ready to proceed.

Hosting Service versus Internal Hosting
Organizations will be extremely cautious about putting anything outside
of their secured environment. Whether your team's plan calls for using
a third-party SVN hosting service, the organization's own dedicated
SVN server, or space on a shared directory, make sure to get clearance
from the appropriate department, as well as a clear understanding of
the support that will be provided, such as regular backups of the shared
directory, emergency backup restore, and so on.

Collaboration

[378]

The following screenshot illustrates the process of setting up a shared repository,
which starts with a standard standalone Axure file (A). It can be a completely blank
file or one that you have started as a preliminary sandbox:

•	 With the file open in Axure, select the Create Shared Project from Current
File… option (B) from the Share menu.

•	 The Create Shared Project window (C) will open, offering a wizard-type
flow that will walk you through the steps of creating the shared repository.

Chapter 9

[379]

•	 The first step is to name the project in the Shared Project Name field (D).
Pay attention to the disclaimer: Files and folders associated with the project
will be created using the project name. Please enter a valid filename. For
example "\" and "/" are not valid characters. My recommendation is to keep
the project name short and to use a hyphen to separate several words, for
example, My-Great-Project. Click on the Next button (E) to continue.

•	 The Shared Project Directory step (F) is where you need to point Axure
to the location of the shared repository. This screen includes the following
instructions:
This directory is commonly on a network drive where others can access the
Shared Project.
Example: /Volumes/Public/OurSharedDirectory
The Shared Project Directory will be created on this directory with the
project name.
Ex: /Volumes/Public/OurSharedDirectory/ProjectName
The Shared Directory can also be a URL for an SVN directory. An SVN
server must already be configured.
Example: http://svn.myserver.com/OurSharedDirectory/
Example: svn://www.myserver.com/OurSharedDirectory/
Shared directories or project names with special characters may not work.

•	 You can either paste the address you prepared into the Shared Directory
field (G), or use the ellipsis button (H) to navigate to the shared directory on
the organization's network.

•	 Before you click on the Next button (I) to move to the next step, make sure
that you have spelled the project name correctly, because the typos will stay
with the file throughout the life of the project. You can return to the previous
screen and make the correction, if needed.

•	 After you click on the Next button, Axure will prompt you if there is a
problem with the information you provide (J). You will have to validate
that the path you have is correct. If you are dependent on someone else for
validating the information, it is a good idea to do this setup during the time
at which the person is available.

•	 In the following screen, Axure asks you to point to the Local Directory for
the Shared Project… (K). This is where the local copy of the repository
will be created on your hard drive. By default, Axure offers to store it in
the directory labeled Shared Projects, in the Axure Directory; but, if you
prefer to keep all your project work in a dedicated project directory, you can
certainly do that.

Collaboration

[380]

•	 You are ready for the final step. Click on the Finish button (L), and within a
short time, Axure will prompt you with a Success confirmation (M).

•	 When you look in the local directory, you will find that Axure has created
two items. In order to use the example of our demo file, the first item is a file
Alexandria.rpprj (N) and the second item is a directory labeled DO_NOT_
EDIT (O), which, as mentioned earlier, you really should not mess with.

Congratulations—you are good to go—the local copy of your shared
project is ready for you to use. However, you are not done yet! Make sure
to distribute the link to the shared directory to all your team members. It
is also not a bad idea to keep this link readily available, if you need it in
the future. For an SVN setup, you will also need to include the username
and password that will enable your team to access the server the first
time they attempt to load the file.

If you have been using a standalone version of the project, you will find the most
prominent visual differences on the Sitemap pane and the Masters pane (A), as
shown in the following screenshot:

Chapter 9

[381]

In the shared project .rpprj file, the icons for pages (B) and masters (C) include a
status indicator. This indicator reflects the state of the element on your local copy of
the project, not its status on the server.

Another difference between a standalone RP file and a shared project file is the
directories and files that make up a shared project. Like the quintessential forbidden
castle door in a fairy tale, the mysteriously labeled folder DO_NOT_EDIT might
attract your attention. It is actually not a bad idea to take a quick glance to satisfy
natural curiosity.

The following screenshot illustrates the local copy of the repository, which has been
created in the Shared Projects directory—a subdirectory located inside Axure's
main directory:

Collaboration

[382]

•	 This main directory (B) is created when you first install Axure. On Mac, it is
located in the Documents folder (A), and on Windows, it is located in the My
Documents folder.

•	 Your project has a dedicated folder within the Shared Projects directory, and
as mentioned earlier, there are two items in its root level: the Alexandria.
rpprj file, and the DO_NOT_EDIT folder.

•	 The DO_NOT_EDIT directory has the following two folders:
	° LocalStore (C): This folder contains a small set of files.
	° SVN (D): This folder contains all the project files. The size of this

directory will grow as the project advances.

If you did not set up the shared project or, for some reason, you need to recreate the
local copy of the project, you will need to create your local copy of the project by
accessing the shared repository, which we'll discuss next.

Loading from a shared repository
The first item you will need is the path to the shared repository on the server. You
will also need a username and password, if the file is hosted on an SVN server. It is
highly recommended that the person responsible for setting the shared repository
makes this information readily available to the team and is also available to help
with the setup, if needed. On your part, make sure to store this information for
future use!

You should have either a path to a network directory or a URL to an SVN server, that
looks something similar to the following:

https://company.svn.beanstalkapp.com/alexandria/Alexandria

https://company.svn.beanstalkapp.com/alexandria/Alexandria
https://company.svn.beanstalkapp.com/alexandria/Alexandria

Chapter 9

[383]

The following screenshot illustrates the process:

•	 From the Share menu (A), select the Get and Open Shared Project…
option (B).

•	 Axure will present the Get Shared Project dialog box (C). This dialog has the
following instructional text, which it is useful to keep in mind:
This directory should contain the Shared Project repository including
folders like "db", "conf", and "locks".
Note: If you have previously opened this shared project on this computer,
you do not need to get it again. You can use File->Open to open the .rpprj
file in your local copy of the shared project.
Shared directories or project names with special characters may not work
properly.

Collaboration

[384]

•	 The Shared Directory field (D) is where you either paste the URL or path
that we discussed earlier (E) or use the ellipsis (F) button to navigate within
the network to the destination, if you are familiar with it. Use the Next
button (G) to continue.

•	 A Progress bar (H) will appear as Axure will attempt to connect to the shared
repository. You will be prompted with an error if the path is incorrect. If all is
well, Axure will move you to the next step.

•	 The Local Directory field (I) is where you instruct Axure to create a local
copy of the repository. By default, Axure offers to store it in the directory
labeled Shared Projects, in the Axure Directory; but, if you prefer to keep all
your project work in a dedicated project directory, you can certainly do that
using the ellipsis button.

•	 Click on the Finish button (J), and Axure will download all the necessary
files from the server or network directory to the destination folder you
indicated earlier. Depending on your network connection speed and the size
of the file, this might take a few minutes.

The shared file will open and you can start working. Remember, in order to access
the file on a day-to-day basis, you can use the Open Recent option from the File
menu. If, for some reason, you forget where the file is located, use the file search to
look for the .rpprj string in the filename.

The Share menu
Once you have the local copy of the project loaded, you will be using the Share
menu constantly. It is highly recommended that you and the entire team have a
strong understanding of the various menu options.

Creating and loading
You typically have to use these options only once per project.

Menu item Description
Create Shared Project
from Current file…

Use this option if you want to create a shared project file out
of the current file. This menu item is active only when you
have an open file.

Get and Open Shared
Project…

Use this option to create a local copy of a shared project file.
If you are also the person responsible for creating the shared
project, you can skip this step, because a local copy will be
created for you when you create the shared file.

Chapter 9

[385]

Updating the entire file
This set of options applies batch-like functionality to updates, check out, and check
ins. They are listed in the following table with their descriptions:

Menu item Description
Get All Changes
from Shared
Directory

This option mass-updates your local copy of the project file with
all of the changes that were made by other team members. Make a
habit of getting all changes as the first thing you do each time you
start working on the file; repeat it a few times during the day.

Send All Changes to
Shared Directory

This option will update the shared repository with all the changes
you have made since the last time you sent your changes.
Consider this option as a form of saving your work. Although
you can and should use the Save option to save your work to the
local copy of the project, sending your updates will ensure that
if something happens to the local copy, most of your work will
be on the server. Note that the files you are working on are still
checked out to you. The trade-off is that, when you send your
changes to the shared directory, you can no longer undo them by
undoing the check out.

Check Out
Everything

This option will check the entire project out to you, a highly
unadvisable action. Fortunately, Axure will prompt you with a
warning, as shown in the following screenshot:

If you do manage to somehow check the entire project out,
check it back in as soon as possible, because the rest of the team
obviously will not be able to safely check out any of the assets.

Check In Everything This option will check in everything you have checked out.
Develop the habit of using this option at the end of the day, which
will insure that you have nothing checked out and that other team
members can check out files, if you are out of the office.

Collaboration

[386]

Menu item Description
Undo All Check
Outs

This is a great option to help you undo undesirable work and
revert the affected items back to the state they were in before you
checked them out. It can happen to anyone: You check out a page
and a few masters, with the intention of further developing the
prototype. Things fall apart and you realize that the best bet is to
start over. Now, in the meantime, you were saving your work,
so you cannot undo the local copy. However, if you did not send
changes, you can undo the check out.

Updating a single page or master
This set of options allows you to deal with a single element at a time. These options
are listed in the following table along with their description:

Menu item Description
Get Changes from
Shared Directory

This option applies only to a selected page or master.

Send Changes to Shared
Directory

This option applies only to a selected page or master.

Check Out This option applies only to a selected page or master.
Check In This option applies only to a selected page or master.
Undo Check Out This option applies only to a selected page or master.

Manage Shared Project…
In a shared project environment, each team member has a copy of the project on his
or her computer. During the course of a day's work, each team member will create
new elements, check out files, and generally modify the project. These changes will
not be reflected in the shared repository until the team member sends all changes to
the server or checks in all their check out elements.

While you can tell if a page is checked out to you, you cannot tell, from looking at the
sitemap, whether a page that is checked in is actually available for check out or has
perhaps been checked out by another team member. This applies not only to pages,
but also to all the elements that are controlled by the shared repository.

The Manage Shared Projects console provides any team member with a real-time
view into all the elements that are managed by the shared project. In essence, you get
a peek into the project's record files. The other information that you get is the status
of each individual element on the project. This view can spare you from the hassle of
attempting to check out an element that is checked out to another team member.

Chapter 9

[387]

The following screenshot takes you through a normal use scenario:

•	 Team member A has the page HM-100 Home [Initial] (A) checked out. After
performing some work on the page and associated masters, which are also
checked out to this user, it is time to send all changes to the shared repository
using the Send All Changes to shared Directory option (C) from the Share
menu (B).

Collaboration

[388]

•	 After a few seconds, during which the Progress pop-up (D) is displayed,
team member A is presented with the Send Changes dialog (E), listing the
elements that are going to be updated on the server in the top pane (F), and a
field to enter what these changes were on the Change notes pane (G). Upon
clicking on OK, the updates will be sent to the shared repository.

•	 Switching to team member B, who also wants to check out the same page
HM-100 Home [Initial]. To this user, the page appears available for check
out, on the Sitemap pane. However, the user chooses to use the Manage
Shared Project… option (I), from the Share menu (H).

•	 The Manage Shared Project dialog (J) is presented. The top section of the
dialog indicates the path to the shared directory (K) and also includes the
following instructions: Click Refresh to retrieve the current status of the
pages, masters, and document properties in the shared project. Right click
on an item or selection to check in, check out, and get the latest changes.
Click the column headers to sort by the column. Indeed, notice that the
main table area (L) is initially empty.

•	 Upon clicking on the Refresh button (M), the table area (N) is populated with
the list of all pages, masters, and design documents in real time.

•	 The user can see that the page HM-100 Home [Initial] (O) is checked out and
can see which team member has the file checked out. Now, team member B
can contact team member A and coordinate the check out. In the
mean time, right-clicking on the row will present a contextual menu that will
list available actions.

•	 Note that one of the available options is Check Out (P). While it is possible
to do so, it is critical to make sure that all team members understand that this
option is a last resort.

•	 Dismiss this dialog by clicking on the Close button (Q). It is a good idea to
get into the habit of using the Manage Shared Projects before trying to check
out pages that are the responsibility of other team members.

Browse Shared Project History…
In addition to Axure Shared Projects, provide your team with a couple of
invaluable features:

•	 The risks of lost work are substantially reduced. As long as the SVN server,
or shared network directory where you host your project, are reliably backed
up, you can restore any previous version of the project, from day one. It is
not possible to exaggerate the importance of this capacity and the peace of
mind that comes with it.

Chapter 9

[389]

•	 The team gains the precious ability to step back in time and access earlier
iterations of the prototype. When you consider the realities of a large, fast-
paced project, you realize that the need to revert to an earlier version of some
pattern is likely to happen. One of the most challenging aspects of iterative
design is having an effective way to revert to, or compare to, an earlier
version of the application.

The value to the UX is real and measurable. The system maintains complete
version control throughout the file's life cycle. Each time a team member sends
changes or checks in their work, a new version is added to the log. Each version,
precisely identified with a unique revision number and the date of its capture, can
be transformed back into a fully functional RP file that reflects its condition at the
moment the version was created.

Barring a catastrophic failure of the SVN server or a shared directory that has not
been backed up properly, as long as the shared repository is available, you can access
practically any restore point in the project, as illustrated by the following screenshot:

•	 From the Share menu, select the Browse Shared Project History… option.
•	 The Shared Project History Browser dialog (A) will appear. The top field

points to the shared repository—you don't want to change this.

Collaboration

[390]

•	 Depending on the size of the team and the point in time that you want to
recover, relative to the start date of the file, the list of all versions can be
overwhelmingly long. In order to narrow down the list to the set of potential
versions that correspond to the date and time you are looking for, use the
Start and End calendar droplists (C and D). By default, the start and end
dates are set to capture the last seven days' worth of work.

•	 If you want to override the calendar pickers, you have an option to retrieve
the list of all versions by checking the All Dates checkbox (E). Click on the
Get History button (F) to continue.

•	 Within seconds, the table area (G) will be populated by a list of versions,
with each row representing a fully functional restore point of the Axure file.
Each row can be sorted by one of the version's attributes, including Revision,
Date, Author, and Check-in Note.

•	 Identify, in the list, the version that is most likely to contain the last good
version of the item or items you are looking to restore. Normally, you will
see several versions for each day. As the revision number is serial, the highest
revision number corresponds to the last update for that date.

•	 When you click on a row (H), all the activity that has been automatically
recorded by Axure will be displayed in the Check-in Notes pane (I), and
additionally, so will any notes added by the team member who uploaded the
changes. This information is incredibly valuable, because typically, you will
be looking to restore a particular page or master.

•	 Now comes the truly fantastic part. I have to admit that I am still excited by
it each time I get to use it. If you identified the revision, use the Export to
RP file button (J). Axure will prompt you to save the file on your drive, and
within a few seconds, you will be able to open a fully functional, standalone
Axure file corresponding to the time and date of that revision. Now you can
find the element you were looking for and import it into the current shared
project file, if you want.

•	 However, if this ends up not being the snapshot you need, continue
exploring until you find it. If more versions are available, the Next 100
Revisions button (K) will be active. Use the Close button (L) to dismiss this
window when you are done.

Chapter 9

[391]

A side benefit of the history browser is that there is no need to keep old versions of
pages and masters in the active Sitemap and Master pane, especially as the constant
additions and updates by multiple team members tend to greatly bloat the working
environment. As the project moves deeper into detailed design, it is beneficial to
perform regular audits with team members and discard pages that are no longer
relevant, and masters that are not used on any pages. The result will be a leaner file
that generates faster as both an HTML prototype and Word specifications document
and, as we discussed, all previous work can be easily resorted, if needed.

Repoint to Moved Shared directory…
Occasionally, there is a need to move the shared directory from its location on the
network drive. As long as the repository has been moved in its entirety, this is a safe
operation. All team members can continue to use their local copy of the file but point
towards the new location of the shared repository.

If there is a need to move the shared repository, as illustrated in the following
screenshot, follow the ensuing steps:

1. Coordinate the move with the entire team. Ideally, pick a date and time that
will minimize the impact to the team's schedule. Try to avoid proximity to
major deadlines.

2. Make sure that team members are aware of the planned move. Communicate
to all clearly that the shared repository will not be available at the set
timeframe.

3. At a set time before the move, all team members should use the Check In
Everything option.

4. After the move, provide all team members with the updated path.
5. Each team member will repoint to the new location by using the Repoint

Shared Directory option (A), and entering the provided URL into the Shared
Directory field (B).

Collaboration

[392]

Clean Up Local Copy…
Sometimes, for some unknown reasons, bad stuff happens. With Axure, such events
are extremely rare. However, suppose you are attempting to check in your work and
get the error message Working Copy Locked. As explained by Axure, A variety of
things can cause Working Copy Locked errors. These include virus scanners
and losing connection to the server or a computer failure during a previous
operation.

Carry out the the process illustrated in the following screenshot:

In the event of a Working Copy Locked error, typically, when you try to check in
something, do the following:

1. Select the Clean Up Local Copy… from the Share menu.

Chapter 9

[393]

2. Axure will attempt to repair the problem, as described in the Clean Up Local
Copy dialog (A), a process which includes the following steps (B):

	° Save the project (You do that)
	° Export the project to an RP file for backup (You do that)
	° Cleanup SVN specific files (Axure does that)
	° Get all changes (Axure does that)

From my personal experience, and that of some of my colleagues, I can attest to the
fact that this feature seems to work just fine and you are able to send your work to
the server.

Best practices for UX Axure teamwork
Teams are complicated. The number of variables that determine a team's makeup
and workings can be widely different, making meaningful comparisons difficult.
However, as the famous proverb goes, for every problem there is an opportunity; in this
section, I am not attempting to resolve this challenge but rather to isolate the most
fundamental team attributes:

Attributes of the UX team
The following are the attributes of the UX team:

•	 Team size: How big is the UX team? Obviously, two people are a team, but
the larger the number of UX designers involved in a project, the harder it
is to keep everyone on the same page. Larger teams are likely to break into
multiple workstreams, so there is also the challenge of cross-workstream
communications.

•	 Location: Are all team members sharing the same physical office space? Is
everyone on the same floor and in close proximity? Are people spread across
the corporate campus, or across multiple cities? Are some team members
working remotely from their home-offices? Are team members spread across
the globe?

•	 Knowledge of project's domain: Some team members may have previous
project experience with, and exposure to, the application's domain. Other
team members are new to the domain and its nuances. This can be an issue
with expert systems.

Collaboration

[394]

•	 UX experience and expertise: Some team members may be UX veterans,
with established track records, but also with a set preference for how they are
used to getting things done. Other team members may have a different take.
Junior members may have significantly less experience with UX work and
lack the ability to foresee potential problems, estimate workload, and display
confidence when presenting to stakeholders.

•	 Axure expertise: Veteran team members are likely to have years of power-
use skills with tools such as Visio, but little Axure knowledge, perhaps even
some resistance. Some team members will be completely new to the tools,
while a few may have significant Axure experience.

•	 Individual personalities: This section is impossible to cover in a few
sentences, of course. However, the normal mix of extroverts, introverts, the
assertive, the shy, the outgoing, the reserved, the blunt, self-starters, those
with strong work ethics, the lazy, the overly polite, the alpha and beta types,
and so on, can turn a team dynamic into a soap opera.

•	 Cultural influences: In some cultures, it is not polite to behave in an assertive
way around team members of higher seniority. This might be mistakenly
interpreted by one from an all-are-equal culture as timidness, hesitation, and
lack of confidence. Team members might find the attitude and manners of
others to be rude and inappropriate, leading to tension and hostile relations.
The combinations are as diverse as the globe we live in.

Regular and effective communication is the fundamental ingredient for successful
teamwork, yet it is easier said than done. This is especially true with virtual teams
of individuals that work remotely from their homes and with on-site teams spread
across several geographical locations. That said, all too often, colleagues who share a
cubicle fail to exchange meaningful information despite their physical proximity. The
following are a few practices to consider for your team:

•	 As far as possible, it is important to allocate time for staff development.
Ensure that all team members possess a level of Axure proficiency that
would not only make them productive, but would also avoid loss of work
due to errors caused by an unknowledgeable team member messing up the
shared file. As we know, such calamities tend to happen just before a major
deadline.

•	 Team members should understand how to work with shared projects. All
should be comfortable with the various options under the Share menu and
the difference between options such as Get all changes... and Get Changes...,
for example.

Chapter 9

[395]

•	 New team members should have an on-board DeepDive session with
a knowledgeable team member to cover the structure of the sites. In large,
intense projects, new members are often thrown into the cold waters of a
shared project file, to sink or to swim, because the team is at the height of
some crunch. Disoriented and under pressure to get up to speed as soon as
possible, the incoming member can be easily lost in the intricacies and work-
around.

•	 All team members should participate in a weekly status meeting that covers
the structure of the sitemap, variables (since those are global and limited),
and other important changes. Use web sharing to view the file, and make
sure that team members understand how other members constructed their
wireframes.

•	 Despite looming deadlines, it is important to be careful and pay attention
before checking in and out. A few seconds of concentration can save hours of
lost work.

•	 Team members should avoid unsafe check outs—this is critical. There are a
few and clear reasons for breaking this rule, say when the person that has the
elements checked out is going to be away for some time.

•	 Before you begin work on a page, make sure to get all changes from the
shared directory—this will insure that you have the latest copy.

•	 Start your work session by getting all changes. Continue to update your file
frequently throughout the day.

•	 When done editing a page or master that you checked out, check it in so that
it will be available for other team members.

•	 Check out only what is needed for your design work; check in as soon as
you are done and check out the next chunk you are going to work on: Avoid
hogging files by checking out any that you are not working on.

•	 If possible, structure the sitemap and masters in sections, such that team
members can work on chunks of the file in parallel. Agree on unique page
and master IDs and a naming convention to help team members access the
right files.

•	 Make sure that the shared file is backed up regularly.

Collaboration

[396]

Feedback from stakeholders—the
Discussion tab
Just a few years ago, the means to collect feedback from stakeholders about a
proposed user experience were very limited, because it was rare to actually have
an interactive prototype available for review on a regular basis. Axure helped
revolutionize the way the user experience is expressed, by replacing static wireframe
presentations with compelling interactive simulations. However, for a while,
methods of collecting feedback continued to be few and somewhat limited.

Normally, you gather stakeholders in a meeting room or by video conference
calls, and as you demonstrate the prototype, people respond to various aspects
of the application's design. It is good practice to request the attendees to suspend
their feedback until you have a chance to complete an initial walkthrough of the
proposed interaction. However, it is rare that people can hold off their comments,
and typically, the presentation flow is interrupted, with a risk of derailment due to
tangential discussions.

Of course, experience and good facilitation skills play a major role in one's ability
to drive a presentation forward in a productive way. However, regardless of
the facilitation, it is objectively difficult for stakeholders to provide you with a
thoughtful response, because they have a relatively brief window of opportunity to
view, digest, and respond to your presentation.

The discussion feature is brand new to Axure 6 and is meant to address this
difficulty by providing stakeholders with the means to respond to the prototype in
the privacy of their office, where they can take more time to consider the screens and
interactions. A new Discussion tab has been added to the prototype's left menu bar;
this lets viewers type their comments for each page. While this new feature has a
number of issues and is far from being robust it is, at the time of writing, still in beta
form. Given Axure's record of accomplishment of listening to the user community
and enhancing features, the discussion feature is likely to be an important valuable
addition for users.

Chapter 9

[397]

Discussions hosted on AxShare
AxShare has been around for over a year. It is free and in beta phase, at the time of
writing. It is the foundation of an Axure cloud-based hosting service for your HTML
prototypes. AxShare itself is currently hosted on the Amazon Web Services cloud
platform, which is quite reliable and secure, as far as cloud environments go.

As was mentioned earlier in this chapter, in the context of using a third-party SVN
hosting service for your shared repository, it is important that you get clearance to
use AxShare from the relevant department in the organization you are working for.
It is also a good idea to test how the corporate firewall affects access to the site, as
you want to provide a hassle-free experience to stakeholders.

With AxShare, you have the following two options to facilitate a discussion with
stakeholders and users:

•	 Host the file on AxShare. This option has several limitations, including the
maximum file size that can be currently uploaded, the number of files that
can be hosted, and security reservations. On the other hand, it is free and
technically simple as there is no need to worry about corporate firewalls.

•	 Host the HTML on your own server, and still enable the discussion feature.

Collaboration

[398]

The first option begins by uploading your file to AxShare, as illustrated by the
following screenshot:

Chapter 9

[399]

•	 Start by pointing your browser to http://share.axure.com/ (A), which
will link you to the AxShare website (B). As the site states—at the time of
writing—AxShare is in beta, hence the association with AxureLabs.

•	 From this screen, you will be able to:
	° Sign In (C) to your account once you create it (D)
	° Link to view your uploaded prototypes (E)

•	 The last option is the one that stakeholders will use once you provide them
with the appropriate code, password, and a link to AxShare.

•	 Creating an account is a breeze, as you only need to provide an e-mail
address and a password you would like to use.

•	 Once you sign in, upload an RP file to the server (F). If you are working on a
Shared Project file, export the latest version of the RP file and check the file
size. The current limit on uploads is 10 MB. Use the Choose File button (G)
to upload the RP file.

•	 Add the prototype's name (H) and an optional password (I). If you add a
password, it will be required from everyone who will attempt to view or add
feedback to your prototype. It is a good idea to set one up.

•	 Click on the Create button and the prototype will be added to a list, which
will eventually have all your hosted AxShare files (K). The list can be sorted
by upload date (L) and can be refreshed (M).

•	 You can also create folders (N), which is a convenient way to organize your
uploaded files.

•	 Currently, you can host up to 10 files on AxShare.

http://share.axure.com/

Collaboration

[400]

You can easily manage your uploaded files, as illustrated by the following
screenshot:

•	 Within the row of each uploaded prototype (A), click on the twisty arrow
on the far right of the menu (B), for the following options for that
particular project:

	° Renaming the prototype
	° Moving the prototype—as mentioned earlier, the files you upload to

AxShare can be organized in folders, and this is how you move the
files between folders

	° Viewing the discussions
	° Disabling the discussions
	° Changing the password needed to access the prototype
	° Deleting the prototype
	° Uploading a new RP file to replace the currently hosted file; if you are

using the discussion feature, remember that discussions entered to
pages that were deleted in the new uploaded file, will be lost

The last option is really important, because you will have a fresh iteration to present
on an ongoing basis. All the comments entered by reviewers to previous versions of
the file, will be preserved, as long as the pages they commented on still exist in the
later version.

Chapter 9

[401]

Discussions not hosted on AxShare
The other option to facilitate a dialog in the prototype through the Discussion tab
is to use AxShare to generate a special code that you enter in the HTML generator
configuration. The actual prototype HTML files can be placed on the server of your
choice. The following screenshot illustrates this process:

Collaboration

[402]

Step 1: In AxShare.com
This is a step you are responsible for.

1. After logging in, click on the Get ID for Discuss button (A).
2. In the Create a Prototype ID for Discussion pop-up (B), enter the name of

the project. A password to access the Discussion tab is optional. Click on the
Create button (C) to continue.

3. A new row is added to the My Prototypes list (D). Copy the prototype
ID (E).

Should you protect the discussion with a password? The truth is that it
is a matter of control. By not sharing the password with everyone who
has access to the prototype, you are controlling who can participate in the
discussion and add feedback. Consider the stakeholders that you want
to get involved. If the feedback is going to be about a business strategy,
perhaps it is not wise to have it exposed to say, contract developers and
others who will also access the site, but from which you are not expecting
feedback through the discussion option. If you are not sure, ask!

Step 2: In Axure
This too is a step you are responsible for:

1. Open the Generate Prototype window (F) and click on the Discuss option
(G).

2. Type or paste the prototype ID into the field (H), and click on the Generate
button (I) when ready.

3. Send out an e-mail to anyone you want to use the discussion and provide
them with:

	° The URL of the prototype
	° The password to access the Discussion tab

Chapter 9

[403]

Step 3: In the browser
All users who are invited will access the prototype with their browser. If a password
has been enabled, the left pane will be grayed out and a panel (L) will include a field
where the password should be entered (M). That is it!

In conclusion, Axure's discussion feature is promising, because it is integrated with
the product. The feature is not limited to shared project files—it can also be activated
on the standard RP files.

It is important to make sure, however, that stakeholders and users that are supposed
to participate in the discussion can figure out a way to navigate through the
prototype. Often, not all widgets have interactions assigned to them: Some features
work and others don't. Let the user know in advance that, upon moving the mouse
over a certain area of the screen, a guide (constructed as a hidden dynamic panel)
will appear, instructing the user where to click. This layer of instructions could also
include letter or number tags over certain areas on which you want feedback. These
footnotes will make it easier to get a more structured feedback, as all reviewers will
refer to the same elements.

Summary
Once you experience Axure's Shared Project capabilities, you may wonder how UX
teams managed projects before Axure. Well obviously, you and others did, but at
a premium cost of time and effort. Teams that are evaluating prototyping tools to
support their work can reflect on their current workflow and methods and consider
Axure's value as compared to other options in the market.

Axure's Shared Projects adds real, measurable value, by helping the UX team
address three major obstacles head-on:

1. It provides a controlled environment that facilitates work on the same
prototype and specifications file by multiple team members.

2. It maintains unlimited version control, which is critical for disaster recovery
or reverting to a previous revision.

3. It facilitates dialog between the team and its stakeholders by proving a direct
feedback in the Discussion pane, an Axure feature not limited just to Shared
Projects, and yet complements the entire iterative process of teamwork.

These capabilities are built on top of the tool's rich, reliable, yet constantly evolving
platform of UX-specific feature sets for prototyping and specifications.

Index
Symbols
960 grid system

about 85
URL 85

1024 pixels 305
2010 IT Project Success Rates survey 294
.RP file format 101, 102

A
actions

organizing 184
advanced techniques

Axure tricks 263
keyboard shortcuts 261
list elements, hiding and showing 255

Affinity process 60
Agile flavors 298
Agile Manifesto

URL 297
Agile model

about 297
Agile flavors 298
Jargon 297

Agile Unified Process (AUP) 60
Alexandria Digital Library project

about 106
POC 108
sketch effects, adding 145
task flow diagrams, updating 146
visual effects, adding 142
wireframes 123

alignment + padding, formatting tab 77
analytics 160
Android 268

annotation fields
about 65
customizing 65
date 65
number 65
select list 65
text 65

annotation fields, UI specifications 347-351
annotation tab

about 63, 64
annotation fields 65
annotation views 66, 67

annotation views
uses 66, 67

annotation views, UI specifications 351-353
arcana 298
Archive (C) 102
attributes, UX team

about 393
Axure expertise 394
cultural influences 394
domain knowledge 393
individual personalities 394
location 393
team size 393
UX experience and expertise 394

Axure
about 8, 333, 335
Alexandria Digital Library project 106
Condition Builder 208
conditions 200
conditions, troubleshooting 219
custom widget library feature 36
drawbacks 37
features 36
integrated specification generation 36

[406]

launching 44
licensing window 44
Mac version 47
multiple project files, working with 45
page notes 36
page templates 309
prototyping fundamentals 7, 8
prototyping principles 106
raised events 219
restore feature 37
selection modes 112
shared project feature 36
shared projects 375
tips, for using on large design projects 38
variables 232
variables, naming 250
variables types 247
welcome screen 44
widget libraries 267

Axure actions
about 72, 73, 196
categories 72
diagrammatic representation 197
dynamic panel actions 197
links action 197
miscellaneous actions 198
widgets and variables actions 197

Axure cases
about 187
Axure actions 196
construction process 189-191
construction tweaks 188
dynamic panel actions 197
impact of tweaks, on page wireframes 193
interactions, adding 193-196
links actions 197
miscellaneous actions 198
using 188
widgets and variables actions 197
wireframe construction 188

Axure concepts 43
Axure Custom Style feature 79
Axure events

about 166
OnPageLoad events 166
user triggered events 175

Axure file formats

.RP file format 101
about 101
RPPRJ file format 103

Axure interaction
about 69
cases 187
events 166
guided example 161
interaction design 155
introduction 161
user triggered events 175

Axure interface 162, 163
Axure perspective 40, 41
Axure prototyping for mobile

aspect ratios 147
browser limitations 152
device resolutions 147
event and gesture compatibility 150, 151
full screen browser, using 149
landscape page versions 150
mobile apps 146
mobile friendly websites 146
portrait page versions 150
prototypes, loading onto device 153
Viewport Tag, using 148
widget libraries, using 153

Axure Shared Project environment 375
Axure tricks

about 263
hidden link, for clearing variables 264
logic, debugging 263
text fields, masquerading as text panels 264
variable values, passing between pages 263

Axure UI 165
Axure widget library 267
Axure work estimation

about 298, 299
expectation alignment 301
time, calculating 300, 301

Axure workflow 64
Axure workspace

about 46, 47
customizing 48, 49
Dynamic Panel Manager 46
Masters pane 46
menu bar 47
Page Properties pane 46, 47

[407]

Project level perspective 47
Sitemap pane 46
supporting panes 46
toolbar 47
Widget level perspective 48
Widget Properties pane 46
Widgets pane 46
Widgets Pane 47
Windows version 47
Wireframe level perspective 47
Wireframe pane 46

AxureWorld group 38

B
Backlog 297
back option 181
backward option 181
BBX 268
Better Defaults Widget Library 272
browse path flow diagram 117
built-in libraries, widget libraries 270

benefits 274
built-in variable 248
Burn Down 297
business stakeholders

about 19
business process architects 21
management 20

C
Case Editor features 199
cases, Axure interaction 187, 188
cases, interactions tab 70-72
categories, Axure action

dynamic panels 72
links 72
miscellaneous 72
widgets and variables 72

category page template 312, 313
check out/in status, shared projects 376, 377
clear widget label 291
Close All Tabs 82
community libraries

about 272, 273
widgets 272

concept, transitioning to detailed design
about 302
from sketch mode 303
from vision mode 303

Condition Builder
about 199, 208
multiple conditions example 210
segments, assembling 209

condition component 168
conditions

about 200
example 201
If-Then-Else 200
troubleshooting 219

confirmation/alert box widget
about 279
constructing 281, 282
designing rules 280
pattern, designing 279, 280

Connector Mode 112, 114
cons, masters 289
cons, RPLIB 288
construction strategy, user triggered events

actions, organizing 184
context 185
events 185
interaction, adding 179-183
widget 185
widget events 186

Context 220
contextual usability testing 252, 253
conversion 160
Convert To Master feature 87
Crystal 298
CSS

integrating with 319
Current (B) 102
Custom Style feature 323
custom styles

applying 320
custom variable 248
custom widget library

about 274
creating 61
custom widget (lorem ipsum), creating 277,

278
library file, creating 274, 275

[408]

library, refreshing in project file 278, 279
custom widget (lorem ipsum)

creating 277, 278
Custom Widget master behavior 91-93

D
date, annotation fields 65
DayOfWeek variable 249
Day variable 249
default annotation fields

customizing 65
default widget styles 315, 316
design patterns 268
detailed design

concept, transitioning to 302
detail page template 313
development stakeholders 30
development team, UX functional specifica-

tions
about 336
business 'owns' UX 337
development 'owns' UX 337
expectations, aligning 338

discussions, hosted on AxShare
about 397
options, for facilitating 397-400

discussions, not hosted on AxShare
about 401
in AxShare.com 402
in Axure 402
in browser 403

Discussion tab
about 374, 396
discussions, hosted on AxShare 397
discussions, not hosted on AxShare 401
feedback 396

Documents (E) 102
DoD 297
Double-Click 158
Drag-and-Drop 158
drawbacks, Axure 37
dynamic panel

about 72, 135, 136
states, adding 137-141

dynamic panel actions 197

Dynamic Panel Manager
about 95-98
example 96
role 96

dynamic panel widget 95
Dynamic Systems Development Method

(DSDM) 298

E
Enterprise Unified Process (EUP) 60
event and gesture compatibility 150, 151
events, Axure interactions

OnPageLoad events 166
user triggered events 175

events, interactions tab 70
example, Axure interactions

Axure interface 162-164
interaction, annotating 165, 166
interaction, defining 162
requirement, translating into Axure interac-

tion 164
example, conditions

first condition, setting 203
first interaction, adding 204
interaction, completing 205-208
interaction, defining 201
wireframe, constructing 202

example, OnPageLoad events
contextual navigation, simulating 168- 171
default landing page, changing 167

example, raised events
interaction, applying to raised events 226-

228
raised event, creating on master 221-226

example, variables
construction considerations 233-235
existing conditions, adjusting 235-237
interaction, creating 233
order of actions 238, 239
variable assignment, finalizing 242, 243
variables, setting 239, 241

expectations, prototype change management
aligning 294, 295

Extreme Programming (XP) 60, 298

[409]

F
Feature-Driven Development (FDD) 298
features, Axure 36
Finish button 384
flow diagrams, Sitemap pane

about 52
business process diagrams 52
flow charts 52
org charts 52
site maps 52
task flows 52
UML diagrams 52
venn diagrams 52

Flow widgets
about 60
flows, creating 60

font, formatting tab 76
formatting tab

about 73, 74
alignment + padding 77
Fills, Lines, + Borders section 80, 81
font 76
location 75, 76
ordering 80
size 75, 76
style 78, 79

forward option 181
foundations 304

G
GenDayOfWeek variable 249
GenDay variable 249
general section, generate specifications

window 354, 355
generate specifications window

general section 354, 355
masters section 356
page properties section 360-362
pages section 355, 356
screenshot section 362-365
widget properties section 365-368
world template section 369, 370

GenMonthName variable 249
GenMonth variable 249
GenYear variable 249

Global Guides 124, 307
global navigation bar

about 127
benefits 127
constructing 128-131
drawbacks 127

global variables
about 248
built-in variable 248
custom variables, creating 248

grid
about 308
customizing 308, 309

grid and guides, Wireframe pane 83-85
guides

creating 306, 307
global guides 307
page guides 307

GUI (Graphical User Interface) 157

H
home page template 310, 311
HTML prototype 52

about 110
accessing 120
generating 120, 121

I
If-Then-Else 200
incremental search widget

constructing 284, 285
creating 282
interactions 285, 286
pattern, designing 282, 283

initial requirements, POC 109
initial wireframe pages 115
interaction categories

examples, of patterns 270
interaction design

1950-60s 156
1970-80s 156-158
1990-2000s 158-160

interactions
about 68, 69
annotating 165, 166

[410]

points to remember 68
interactions tab

about 67, 68
actions 72, 73
cases 70
events 70
interactions 68

iOS 268

J
Jargon 297

K
key attributes, POC 108
keyboard shortcuts

about 261
high-level Interaction 261
notes 263
steps 262

key culprits, time calculations
analysis 300
communication 300
downtime 301
elaboration 300
exploration 300
health issues 301
iteration 300
meetings 300
personal emergencies 301
snags 300
synthesis 300

L
layout section, generate specifications win-

dow
about 368
Columns (B) 368
Order the content (C) 368

Lean Software Development 298
licensing window, Axure 44, 45
links 72
links actions 197
Linux 147
list elements, hiding and showing

about 255

approach 256
controls, adding 259-261
rows, moving together 257-259
row template, creating 256, 257

Local Directory field 384
location + size, formatting tab 75
Log In button 178
lorem ipsum 277

M
MacOS 147
Master behavior

about 88
Custom Widget 91
Normal 89
Place in Background 90

master M Global Nav 220
masters

cons 289
pros 289

masters and dynamic panels
about 123
first wireframe 123

Masters pane
about 86-88
contextual menu 87
features 86
Master behavior 88
Usage Report 94
uses 86

masters section, generate specifications
window

about 356
Document Masters in Page Sections (K) 359
Do Not Generate Masters Set As Custom

Widgets (J) 358
Exclude Master Notes (M) 360
Generate All Masters (G) 358
Include Master List (D) 358
Include Masters Section (B) 357
Master List Header (E) 358
Only Document First Use (L) 360
Only Generate Masters Used on Generated

Pages (I) 358
Only List Generated Masters (F) 358
Section Header (C) 357

[411]

Master Usage Report 94
menu bar 99, 100
Microsoft DOS 156
Microsoft Solutions Framework (MSF) for

Agile 60
miscellaneous actions 198
Misc (H) 103
mobile platforms

Android 268
BBX 268
iOS 268
webOS 268

MonthName variable 249
Month variable 249
Mouse (Direct Manipulation) 157, 158
Moved Shared directory

repointing 391
move front option 181
MS Windows 147
multiple conditions example, Condition

Builder
about 210
evaluating 215-217
final conditional touches 217, 218
interaction, defining 210, 211
interaction tweaks 214, 215
wireframe, constructing 212, 213

N
navigation systems

about 125
developing 125, 126
global navigation bar 127
secondary navigation system 132-134

nested master 228-230
Normal master behavior 89, 90
number, annotation fields 65

O
Object toolbar 113
OnClick event 175
OnPageLoad event

about 57, 166, 174, 175
and dynamic panels 172, 173
example 167

OpenUp (Eclipse) 60

ordering section, formatting tab 80

P
Page formatting

about 57
attributes 57
sketch effects 57

page guides 307
Page interactions 57
PageName variable 249
Page notes

about 55
advantages 56
benefits 56
examples 56
managing 56

page notes, UI specifications
about 344-346
one note section versus many 346

Page Properties pane
about 47, 54
Page formatting 54
Page interactions 54
Page notes 54

page properties section, generate specifica-
tions window

about 360
Include Dynamic Panels (O) 362
Include List of Masters Used on Page/Mas-

ter (I) 362
Include Master Usage Report (masters only)

(K) 362
Include Notes (B) 361
Include Page Interactions (F) 362
Masters Header (N) 362
Pages Header (M) 362
Section Header (G) 362
Section Header (J) 362
Section Header (L) 362
Select and order the notes (E) 361
Show Notes Names as Headers (C) 361
Use Heading Basic Style(D) 361
Use Heading Basic Style (H) 362

pages section, generate specifications win-
dow

about 355

[412]

Generate All Pages (F) 356
Include Pages Section (B) 356
Include Sitemap List (D) 356
Section Header (C) 356
Sitemap Header (E) 356

page style editor
about 310
back color 310
back image 310
back image import 310
benefits 310
horz align 310
page align 310
repeat 310
vert align 310

page templates
about 309
category page template 312, 313
detail page template 313
developing 309
home page template 310, 311
page style editor 310

Personal Computer (PC) 156
perspectives, stakeholders

understanding 19
pixel-perfect icons 290, 291
Place in Background master behavior 90, 91
Planning Poker 297
POC

about 108
HTML prototype, generating 120, 121
initial requirements 109
key attributes 108
project file, saving 114
relevant wireframe pages 115, 116
task flow diagram page 116, 117
use case diagram page 110
use cases 109
use cases, linking to flow diagrams 119

Point-and-Click 158
Power Users 158
Progress bar 384
project file

saving 114
Project level perspective 47
project management 25, 26
project, prototyping checklist

heuristic evaluation 16
mobile apps 15
simple websites 14
user validation 16
web applications and portals 14

project style guide 320
about 319
application logo 319
aspects 319
benefits 322
color palette 319
communication method 322
graphics 319
integrating with 319
template anatomy 319
typography 319

proof of concept. See POC
pros, masters 289
pros, RPLIB 288
prototype

aligning, with visual design 328
with, existing visual design 329, 331
loading onto device 153

prototype changes
managing 293

prototype changes, managing
Axure work, estimating 298, 299
concepts to detailed design, transitioning

302
expectations, aligning 294
foundations 304
scaffoldings 304

prototype development workflows
modes 101

Prototype (G) 103
prototype granularity 302
prototyping 10
prototyping checklist

about 13
pointers 17
project 13
specifications 17

prototyping interaction
action and response 12
adaptability to localize 12
exception handling 12
personalized experience based on login 12

[413]

scalability and future scope 12
prototyping principles 106
Pseudo-code 70

Q
quick and dirty approach 123
quick but structured approach 124

R
Raised Event 130
raised events

about 219
amplifying 228-232
example 220
features 220
need for 220
nested master 228-230
things to remember 220

Raise Event 198
Rational Unified Process (RUP) 60
Read the Damn Manual. See RTDM
retention 160
ribbon 268, 269
Rounded Rectangle widgets 316
RPLIB

cons 288
pros 288

RPPRJ file format 103, 104
RTDM 336

S
scaffoldings 304
screenshot section, generate specifications

window
about 362
Allow screenshots to split across pages

(single column only) (P) 365
Apply default OnPageLoad cases (H) 364
Do not apply background styles (L) 364
Do not apply sketch effects (M) 364
Do not scale footnotes with screenshot (G)

364
Exclude footnotes not in widget tables (E)

364
Include Expand Trees (J) 364

Include Screenshot (B) 363
Include Submenus (I) 364
Max Height as % of Page Height (O) 365
Max Width as % of Page/Column Width

(N) 365
Put border on screenshot (F) 364
Screenshot Header (C) 363
Show default pages in Inline Frames (K)

364
Show footnotes on screenshot (D) 363

Scrum 297, 298
search path flow diagram 118
secondary navigation system

developing 132-134
Select Contained Mode 112
Select from List option 201
Select Intersected Mode 112
selection modes, Axure

Connector Mode 112
Select Contained Mode 112
Select Intersected Mode 112

select list, annotation fields 65
Shared Directory field 384
Shared Project format 374
Shared Project History

browsing 388-390
shared projects

about 375
check out/in status 376
environment 375
managing 386-388
shared repository, loading from 382, 384
shared repository, setting up 377-382
Share menu 384

shared repository
loading from 382, 383
setting up 377-382

Share menu
about 384
creating 384
entire file, updating 385
loading 384
local copy, cleaning up 392, 393
Moved Shared directory, repointing to 391
Shared Project History, browsing 388-390
Shared Project, managing 386-388
single Page or Master, updating 386

[414]

Share menu options
Check In 386
Check In Everything 385
Check Out 386
Check Out Everything 385
Clean Up Local Copy 392
Create Shared Project from Current file 384
Get All Changes from Shared Directory 385
Get and Open Shared Project 384
Get Changes from Shared Directory 386
Send All Changes to Shared Directory 385
Send Changes to Shared Directory 386
Undo All Check Outs 386
Undo Check Out 386

Sitemap diagram
example screenshot 53, 54

Sitemap pane
about 49
features 50
flow pages 52
organizing 52
wireframe pages 52

Sketch Effect feature 310
sketch effects

about 57
adding 145

snap feature 308
Social Widgets collection 273
software development models

about 296
Agile model 297
Waterfall 296

special variables
about 248
Day 249
DayOfWeek 249
GenDay 249
GenDayOfWeek 249
GenMonth 249
GenMonthName 249
GenYear 249
Month 249
MonthName 249
PageName 249
Year 249

Specification Generator 37
specifications 302

Specifications (I) 103
Sprint 297
Squarespace 14
stakeholders

business stakeholders 19
states 95
style, formatting tab 78, 79
style painter

about 316-318
drawbacks 318
practical example 316

style properties 324, 326, 327
Subscribe/Log In component 177

T
task flow diagram page

about 116, 117
browse path flow diagram 117
search path flow diagram 118

task flow diagrams
updating 146

Team Velocity 297
text, annotation fields 65
third party widget libraries

about 62
URL 62

time
calculating 300

Timebox 297
tips, for using Axure on large projects 38
tips, widget libraries

clear widget label 291
pixel-perfect icons 290, 291
widgets, need for 290

toolbar 99, 100
troubleshooting

conditions 219

U
UI specifications

annotation fields 347-351
annotation views 351-353
capturing 339
generators and outputs 341
global specifications 339, 340
multiple generators 342, 343

[415]

page notes 344-346
prototype 342
specification 342
word specifications generator, customizing

343, 344
UML 111
usability testing

variables, used 251
usability tests (UT) 16
usage examples, variable 250
use case diagram page 110-112
use case, POC 109
use cases

linking, to flow diagrams 119
User Centered Design 9
User Experience 156
user triggered events

about 175
construction strategy 177-179
example 175, 176

UX
about 295
software development models 296

UX Axure teamwork
attributes 393
best practices 393
practices 394, 395

UX designers 67
UX functional specifications 333
UX perspective

about 32
UX practitioner 33
UX team lead 34

UX practitioner
about 33, 67
URL 272

UX projects
about 67
honeymoon phase 302

UX projects, honeymoon phase
excitement 302
familiarization 302
high-level requirements 303
team building 302

UX prototyping
about 10

prototyping interaction 11
UX team lead

about 34
challenge 34
process 35
process, extending 35
team structure 35

V
variables

about 232
best practice suggestions 250
cons 254
example 233
initializing 242, 243
naming 250
passing 243
pros 254
resetting 243
setting 239, 241
used, in usability testing 251
UserType variable, initializing 244
uses 232

variable types
about 247
functions 250
global variables 248
local variables 250
special variables 248
usage examples 250

variable values
used, for determining appropriate cases

245-247
Viewport Tag

using 148
Visio and Word. See VW
vision prototype 108
visual design 27
Visual Design (F) 103
visual design guide 320
visual effects

adding 142, 143
VW 63
VW workflow

about 64
creating 63

[416]

W
W3C components

about 172
condition 172
what 172
when 172
where 172

Wait Time (ms) 198
Waterfall model 296
webOS 268
welcome screen, Axure 44, 45
What component 168
When component 168
Where component 168
Widget/Actions groupings 185
widget event 71
widget interactions. See interactions
widget level events 186
widget libraries

about 267-271
built-in libraries 270
community libraries 272
confirmation/alert box widget example 279
creating, for supporting prototype 274
incremental search widget example 282
managing 286, 287
refreshing, in project file 278, 279

widget library file
creating 274-276

Widget Properties pane
about 63
annotation tab 63
formatting tab 73
interactions tab 67
tabs 63

widget properties section, generate specifi-
cations window

about 365
Allow Rows to Break Across Pages (J) 367
Column Heading Labels (I) 367
Filter drop lists (G) 367
Include Widget Tables (B) 366
Only include widgets with footnotes (E)

367
Remove empty columns (H) 367
Remove rows with only Footnotes and

Label data (F) 367
Select and order the columns (D) 367
Table Header (C) 366

widgets
labeling 171
need for 290

widgets and variables 72
widgets and variables actions 197
widgets, community libraries

Android 272
iPad 272
iPhone 272
OS-X user interface components 272
social media elements 272
various icons 272
Windows 7 272

Widgets pane
about 58
features 58
Flow widgets 60
third party widget libraries 62, 63
widget library, creating 61
Wireframe Widgets 59

widget style editor
about 314
default widget styles 315, 316
note 314

Wireframe level perspective 47
wireframe page, Sitemap pane 52
Wireframe pane

about 81, 82
Grid and guides 83-85

Wireframe Widgets 59
Wireframe width

determining 304, 306
wireframing process 107
WordPress 14
word specifications generator, UI specifica-

tions
customizing 343, 344

word template section, generate specifica-
tions window

about 369
Applied Word Styles (D) 370
Columns (I) 370
Create New Template (E) 370
Edit, Import, New Template (C) 370

[417]

Numbered Headings (H) 370
Orientation (G) 370
Paper Size (F) 370

workspace, Axure. See Axure workspace
World Wide Web (WWW) 147, 158
WYSIWYG (What-You-See-Is-What-You-

Get) 157

Y
Year variable 249

Z
Zoom feature 124

Thank you for buying
Axure RP 6 Prototyping Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Testing Cookbook
ISBN: 978-1-84951-466-8 Paperback: 364 pages

Over 70 simple but incredibly effective recipes for
taking control of automated testing using powerful
Python testing tools

1. Learn to write tests at every level using a
variety of Python testing tools

2. The first book to include detailed screenshots
and recipes for using Jenkins continuous
integration server (formerly known as Hudson)

3. Explore innovative ways to introduce automated
testing to legacy systems

4. Written by Greg L. Turnquist – senior software
engineer and author of Spring Python 1.1

Software Testing using Visual
Studio 2010
ISBN: 978-1-84968-140-7 Paperback: 400 pages

A step by step guide to understanding the features
and concepts of testing applications using Microsoft
Visual Studio 2010

1. Master all the new tools and techniques in
Visual Studio 2010 and the Team Foundation
Server for testing applications

2. Customize reports with Team foundation
server

3. Get to grips with the new Test Manager tool for
maintaining Test cases

4. Take full advantage of new Visual Studio
features for testing an application's User Interface

Please check www.PacktPub.com for information on our titles

Liferay User Interface
Development
ISBN: 978-1-84951-262-6 Paperback: 388 pages

Develop a powerful and rich user interface with
Liferay Portal 6.0

1. Design usable and great-looking user interfaces
for Liferay portals

2. Get familiar with major theme development
tools to help you create a striking new look for
your Liferay portal

3. Learn the techniques and tools to help you
improve the look and feel of any Liferay portal

4. A practical guide with lots of sample code
included from real Liferay Portal Projects free
for use for developing your own projects

Yahoo! User Interface Library 2.x
Cookbook
ISBN: 978-1-849511-62-9 Paperback: 436 pages

Over 70 simple incredibly effective recipes for taking
control of Yahoo! User Interface Library like a Pro

1. Easily develop feature-rich internet applications
to interact with the user using various built-in
components of YUI library

2. Simple and powerful recipes explaining how to
use and implement YUI 2.x components

3. Gain a thorough understanding of the YUI tools

4. Plenty of example code to help you improve
your coding and productivity with the
YUI Library

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Prototyping Fundamentals
	The art of UX prototyping
	Prototyping interaction

	The prototyping checklist
	The project
	Simple websites
	Web applications and portals
	Mobile apps
	Heuristic evaluation
	User validation

	Deliverables: Prototype and specifications

	Balancing act: What stakeholders
have to say
	Business stakeholders
	Management
	Business process architects

	Project management
	Visual design
	Development stakeholders

	The UX perspective
	The UX practitioner
	The UX team lead
	The challenge
	Team structure
	Process
	Extending the process
	Axure: The Good
	Axure: The Bad
	Tips for using Axure on large design projects

	Axure around the world
	The Axure perspective
	Summary

	Chapter 2: Axure Basics—the User Interface
	Getting started
	Working with multiple project files

	The Axure workspace
	Customizing the workspace

	The Sitemap pane
	Wireframe pages
	Flow pages

	The Page Properties pane
	Page notes
	Managing notes

	Page interactions
	Page formatting
	Sketch effects

	The Widgets pane
	Wireframe Widgets
	Flow widgets
	Creating your own widget library
	Third party widget libraries

	The Widget Properties pane
	Annotation tab
	Annotation fields
	Annotation views

	Interactions tab
	Interactions
	Events
	Cases
	Actions

	Formatting tab
	Location and size
	Font
	Alignment + Padding
	Style
	Ordering
	Fills, Lines, + Borders

	The Wireframe pane
	Grid and Guides

	The Masters pane
	Master behavior
	Normal
	Place in Background
	Custom Widget

	Usage Report

	The Dynamic Panel Manager
	The toolbar and menu bar
	Axure file formats
	The .RP file format (stand-alone)
	The RPPRJ file format (shared project)

	Summary

	Chapter 3: Prototype Construction Basics
	Prototyping principles
	Alexandria, the Digital Library Project
	Getting started—productivity in 30 minutes
	Initial requirements and use cases
	Use case diagram page
	Saving the project file
	First wireframe pages
	Task flow diagram page
	Browse path flow diagram
	Search path flow diagram

	Link use cases to flow diagrams
	Generating the HTML prototype

	Getting started with masters and dynamic Panels
	The first wireframe
	The quick and dirty approach
	The quick but structured approach

	First masters: navigation systems
	Global navigation bar
	Secondary navigation system

	The first dynamic panel
	Adding states to a dynamic panel

	Adding visual effects
	Adding sketch effects
	Updating task flow diagrams
	Practitioner's corner—Axure prototyping for mobile devices
	Mobile friendly websites and mobile apps
	Different device resolutions and aspect ratios
	Using the Viewport Tag
	Using a full screen browser
	Landscape and portrait page versions
	Event and gesture compatibility
	Browser limitations
	Using widget libraries
	Loading prototypes onto the device

	Summary

	Chapter 4: Interactivity 101
	Interaction design—brief history
	The 1950-60s
	The 1970-80s
	The 1990-2000s
	The present, future, and Axure interactions

	Axure interactions primer
	Guided example
	Step 1: Defining the interaction in simple words
	Step 2: The Axure interface
	Step 3: Translating this requirement into an Axure interaction
	Step 4: Annotating the interaction (optional?)

	Axure events
	Events triggered OnPageLoad
	Guided example: Changing the default landing page
	Simulating contextual navigation
	OnPageLoad events and dynamic panels
	OnPageLoad event in detail

	User triggered events
	Guided example: Sign-in
	Construction strategy
	Adding the interaction
	Organizing Actions
	Widget, Events and Context
	Widget Events in detail

	Axure cases
	Guided example: Construction and interactions
	Part 1: Construction tweaks
	Part 2: Adding interactions
	Axure actions

	Links actions
	Dynamic panel actions
	Widgets and variables actions
	Miscellaneous actions

	Summary

	Chapter 5: Advanced Interactions
	Conditions
	If-Then-Else
	Guided example—conditions and dynamic panels
	Step 1: Defining the interaction
	Step 2: Constructing Wireframe
	Step 3: Setting the first condition
	Step 4: Adding the first interaction
	Step 5: Completing the interaction

	The Condition Builder
	Guided example—multiple conditions
	Step 1: Defining the interaction
	Step 2: Constructing Wireframe
	Step 3: Interaction tweaks
	Step 4: Evaluating multiple conditions
	Step 5: Final conditional touches

	Troubleshooting conditions
	Raised events
	Guided example
	Step 1: Creating a raised event on the master
	Step 2: Applying interaction to raised events on
a page

	Nested masters: Amplifying the raised event

	Variables
	Guided example—creating context with variables
	Step 1: Defining the interaction
	Step 2: Construction considerations: Dynamic panel or pages?
	Step 3: Adjusting existing conditions
	Step 4: Variables and the order of actions
	Step 5a: Setting variables (and possible snags)
	Step 5b: Setting and initializing variables
	Step 6: Using variable values to determine appropriate cases

	Variable types
	Global variables
	Axure's built-in variable
	Create your own variables

	Special variables
	Usage examples
	Local variables and functions

	Naming variables
	How variables can help in usability testing
	Guided example—contextual usability testing

	Pros and cons of using variables
	Tips and techniques from the experts
	Hiding and showing list elements, by Jeff Harrison
	The approach
	Step 1: Creating the row template
	Step 2: move rows together
	Step 3: repeating as desired
	Step 4: adding controls

	Keyboard Shortcuts, by Loren Baxter
	High-level Interaction
	Detailed steps
	Notes

	Axure tricks, by Fred Beecher
	Trick 1: Debugging your Logic
	Trick 2: Passing variable values between pages
	Trick 3: Hidden link to clear variables
	Trick 4: Text fields masquerading as text panels

	Summary

	Chapter 6: Widget Libraries
	Axure's built-in libraries
	Axure and community libraries
	Your own widget library
	Guided example: Widget library to support prototype
	Step 1: Create the library file
	Step 2: Creating a custom widget (lorem ipsum)
	Step 3: Refresh the library in project file

	Expanding the library—design patterns
	Example 1: A confirmation/alert box widget
	Step 1: Defining the pattern
	Step 2: Construction

	Example 2: An incremental search widget
	Step 1: Defining the pattern
	Step 2: Construction
	Step 3: Interactions

	Managing widget libraries
	Local masters or external widget libraries?
	Using RPLIB
	Using masters in a PR or RPPRJ file

	Practitioner's corner
	Why widgets?
	Pixel-perfect icons
	Clear widget label and tool tips for extra help

	Summary

	Chapter 7: Managing Prototype Change
	From vision to reality
	Aligning expectations
	UX and software development models
	Waterfall
	Agile

	Estimating Axure work
	Calculating your time
	Expectation alignment

	Transitioning from concept to detailed design
	From vision mode
	From sketch mode

	Foundations and scaffoldings
	Determining the Wireframe width
	Guides
	The grid

	Page templates
	Page style editor

	Widget style editor
	Default widget styles

	Style painter
	Integrating with the project style guide and CSS
	The style guide

	To sync or not to sync?
	Prototype with existing visual design

	Summary

	Chapter 8: Functional Specifications
	Collaboration with the development team
	Aligning expectations

	Capturing UI specifications
	Global specifications
	Generators and outputs: Specifications and prototypes
	Customizing the Word specifications generator
	Page notes
	One note section versus many

	Annotation fields
	Annotation views

	Generating specifications
	The General section
	The Pages section
	The Masters section
	The Page Properties section
	The Screenshot section
	The Widget Properties section
	The Layout section
	The Word Template section

	Summary

	Chapter 9: Collaboration
	Shared projects
	The environment
	Check out/in status
	Setting up a shared repository
	Loading from a shared repository
	The Share menu
	Creating and loading
	Updating the entire file
	Updating a single page or master
	Manage Shared Project…
	Browse Shared Project History…
	Repoint to Moved Shared directory…
	Clean Up Local Copy…

	Best practices for UX Axure teamwork
	Attributes of the UX team

	Feedback from stakeholders—the Discussion tab
	Discussions hosted on AxShare
	Discussions not hosted on AxShare
	Step 1: In AxShare.com
	Step 2: In Axure
	Step 3: In the browser

	Summary

	Index

