
Beginning
Apache Pig

Big Data Processing Made Easy
—
Balaswamy Vaddeman

www.allitebooks.com

http://www.allitebooks.org

Beginning
Apache Pig

Big Data Processing Made Easy

Balaswamy Vaddeman

www.allitebooks.com

http://www.allitebooks.org

Beginning Apache Pig: Big Data Processing Made Easy

Balaswamy Vaddeman
Hyderabad, Andhra Pradesh, India

ISBN-13 (pbk): 978-1-4842-2336-9� ISBN-13 (electronic): 978-1-4842-2337-6

DOI 10.1007/978-1-4842-2337-6

Library of Congress Control Number: 2016961514

Copyright © 2016 by Balaswamy Vaddeman

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Celestin Suresh John
Technical Reviewer: Manoj R. Patil
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Prachi Mehta
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

The six most important people in my life:

The late Kammari Rangaswamy (Teacher)

The late Niranjanamma (Mother)

Devaiah (Father)

Radha (Wife)

Sai Nirupam (Son)

Nitya Maithreyi (Daughter)

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author��� xix

About the Technical Reviewer��� xxi

Acknowledgments��� xxiii

■■Chapter 1: MapReduce and Its Abstractions����������������������������������� 1

■■Chapter 2: Data Types�� 21

■■Chapter 3: Grunt�� 33

■■Chapter 4: Pig Latin Fundamentals��� 41

■■Chapter 5: Joins and Functions��� 69

■■�Chapter 6: Creating and Scheduling Workflows Using
Apache Oozie��� 89

■■Chapter 7: HCatalog��� 103

■■Chapter 8: Pig Latin in Hue�� 115

■■Chapter 9: Pig Latin Scripts in Apache Falcon���������������������������� 123

■■Chapter 10: Macros��� 137

■■Chapter 11: User-Defined Functions�� 147

■■Chapter 12: Writing Eval Functions��� 157

■■Chapter 13: Writing Load and Store Functions���������������������������� 171

■■Chapter 14: Troubleshooting��� 187

■■Chapter 15: Data Formats�� 201

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a Glance

vi

■■Chapter 16: Optimization��� 209

■■Chapter 17: Hadoop Ecosystem Tools�� 225

■■Appendix A: Built-in Functions�� 249

■■Appendix B: Apache Pig in Apache Ambari��������������������������������� 257

■■Appendix C: HBaseStorage and ORCStorage Options������������������ 261

Index��� 265

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author��� xix

About the Technical Reviewer��� xxi

Acknowledgments��� xxiii

■■Chapter 1: MapReduce and Its Abstractions����������������������������������� 1

�Small Data Processing��� 1

�Relational Database Management Systems�� 3

�Data Warehouse Systems�� 3

�Parallel Computing��� 4

�GFS and MapReduce��� 4

�Apache Hadoop ��� 4

�Problems with MapReduce�� 13

�Cascading ��� 13

�Apache Hive��� 15

�Apache Pig��� 16

�Summary�� 20

■■Chapter 2: Data Types�� 21

�Simple Data Types�� 22

�int�� 22

�long�� 22

�float��� 22

�double ��� 23

�chararray��� 23

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

�boolean�� 23

�bytearray��� 23

�datetime�� 23

�biginteger�� 24

�bigdecimal��� 24

�Summary of Simple Data Types��� 24

�Complex Data Types��� 24

�map��� 25

�tuple�� 26

�bag��� 26

�Summary of Complex Data Types�� 27

�Schema�� 28

�Casting��� 28

�Casting Error�� 29

�Comparison Operators�� 29

�Identifiers��� 30

�Boolean Operators�� 31

�Summary�� 31

■■Chapter 3: Grunt�� 33

�Invoking the Grunt Shell��� 33

�Commands��� 34

�The fs Command�� 34

�The sh Command��� 35

�Utility Commands��� 36

�help�� 36

�history�� 36

�quit�� 36

�kill�� 37

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

�set�� 37

�clear��� 38

�exec��� 38

�run �� 39

�Summary of Commands��� 39

�Auto-completion��� 40

�Summary�� 40

■■Chapter 4: Pig Latin Fundamentals��� 41

�Running Pig Latin Code�� 41

�Grunt Shell��� 41

�Pig -e �� 42

�Pig -f ��� 42

�Embed Pig Code in a Java Program��� 42

�Hue�� 44

�Pig Operators and Commands�� 44

�Load��� 45

�store�� 47

�dump��� 48

�version��� 48

�Foreach Generate�� 48

�filter��� 50

�Limit��� 51

�Assert�� 51

�SPLIT�� 52

�SAMPLE��� 53

�FLATTEN��� 53

�import�� 54

�define��� 54

�distinct��� 55

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

�RANK�� 55

�Union��� 56

�ORDER BY�� 57

�GROUP��� 59

�Stream��� 61

�MAPREDUCE�� 62

�CUBE�� 63

�Parameter Substitution�� 65

�-param��� 65

�-paramfile�� 66

�Summary�� 67

■■Chapter 5: Joins and Functions��� 69

�Join Operators�� 70

�Equi Joins�� 70

�cogroup��� 72

�CROSS��� 73

�Functions�� 74

�String Functions�� 74

�Mathematical Functions�� 76

�Date Functions��� 78

�EVAL Functions�� 80

�Complex Data Type Functions�� 81

�Load/Store Functions��� 82

�Summary�� 87

■■�Chapter 6: Creating and Scheduling Workflows Using
Apache Oozie��� 89

�Types of Oozie Jobs�� 89

�Workflow��� 89

www.allitebooks.com

http://www.allitebooks.org

■ Contents

xi

�Using a Pig Latin Script as Part of a Workflow��������������������������������������� 91

�Writing job.properties�� 91

�workflow.xml��� 91

�Uploading Files to HDFS�� 93

�Submit the Oozie Workflow��� 93

�Scheduling a Pig Script�� 94

�Writing the job.properties File��� 94

�Writing coordinator.xml��� 94

�Upload Files to HDFS��� 96

�Submitting Coordinator��� 96

�Bundle�� 96

�oozie pig Command�� 96

�Command-Line Interface�� 98

�Job Submitting, Running, and Suspending�� 98

�Killing Job�� 98

�Retrieving Logs ��� 98

�Information About a Job�� 98

�Oozie User Interface��� 99

�Developing Oozie Applications Using Hue�� 100

�Summary ��� 100

■■Chapter 7: HCatalog��� 103

Features of HCatalog�� 103

Command-Line Interface�� 104

show Command��� 105

Data Definition Language Commands��� 105

dfs and set Commands�� 106

■ Contents

xii

WebHCatalog�� 107

Executing Pig Latin Code��� 108

Running a Pig Latin Script from a File��� 108

HCatLoader Example��� 109

Writing the Job Status to a Directory�� 109

HCatLoader and HCatStorer��� 110

Reading Data from HCatalog��� 110

Writing Data to HCatalog��� 110

Running Code�� 111

Data Type Mapping�� 112

Summary�� 113

■■Chapter 8: Pig Latin in Hue�� 115

Pig Module��� 115

My Scripts�� 116

Pig Helper�� 117

Auto-suggestion�� 117

UDF Usage in Script��� 118

Query History��� 118

File Browser��� 119

Job Browser��� 121

Summary�� 122

■■Chapter 9: Pig Latin Scripts in Apache Falcon���������������������������� 123

cluster�� 124

Interfaces��� 124

Locations��� 125

feed ��� 126

Feed Types��� 126

Frequency�� 126

■ Contents

xiii

Late Arrival�� 127

Cluster��� 127

process �� 128

cluster�� 128

Failures�� 128

feed��� 129

workflow�� 129

CLI�� 129

entity ��� 129

Web Interface��� 130

Search��� 131

Create an Entity��� 131

Notifications�� 131

Mirror��� 131

Data Replication Using the Falcon Web UI��� 131

Create Cluster Entities��� 132

Create Mirror Job �� 132

Pig Scripts in Apache Falcon�� 134

Oozie Workflow�� 134

Pig Script��� 135

Summary�� 136

■■Chapter 10: Macros��� 137

Structure�� 137

Macro Use Case��� 138

Macro Types��� 138

Internal Macro��� 139

External Macro�� 140

■ Contents

xiv

dryrun��� 141

Macro Chaining�� 141

Macro Rules��� 142

Define Before Usage�� 142

Valid Macro Chaining��� 143

No Macro Within Nested Block�� 143

No Grunt Shell Commands��� 143

Invisible Relations��� 143

Macro Examples��� 144

Macro Without Input Parameters Is Possible��� 144

Macro Without Returning Anything Is Possible�� 144

Summary�� 145

■■Chapter 11: User-Defined Functions�� 147

User-Defined Functions�� 148

Java��� 148

JavaScript�� 150

Other Languages��� 152

Other Libraries�� 154

PiggyBank�� 154

Apache DataFu ��� 155

Summary�� 155

■■Chapter 12: Writing Eval Functions��� 157

MapReduce and Pig Features�� 157

Accessing the Distributed Cache��� 157

Accessing Counters��� 158

Reporting Progress�� 159

Output Schema and Input Schema in UDF��� 159

Examples of Output and Input Schemas�� 161

■ Contents

xv

Other EVAL Functions��� 162

Algebraic��� 162

Accumulator�� 168

Filter Functions�� 168

Summary�� 169

■■Chapter 13: Writing Load and Store Functions���������������������������� 171

Writing a Load Function��� 171

Loading Metadata�� 174

Improving Loader Performance��� 176

Converting from bytearray��� 176

Pushing Down the Predicate��� 177

Writing a Store Function��� 178

Writing Metadata��� 182

Distributed Cache�� 183

Handling Bad Records��� 184

Accessing the Configuration�� 185

Monitoring the UDF Runtime�� 185

Summary�� 186

■■Chapter 14: Troubleshooting��� 187

Illustrate��� 187

describe��� 188

Dump�� 188

Explain�� 188

Plan Types�� 189

Modes�� 193

Unit Testing��� 195

Error Types��� 197

■ Contents

xvi

Counters��� 198

Summary�� 199

■■Chapter 15: Data Formats�� 201

Compression�� 201

Sequence File �� 202

Parquet��� 203

Parquet File Processing Using Apache Pig�� 204

ORC�� 205

Index�� 207

ACID��� 207

Predicate Pushdown�� 207

Data Types��� 207

Benefits��� 208

Summary�� 208

■■Chapter 16: Optimization��� 209

Advanced Joins�� 209

Small Files��� 209

User-Defined Join Using the Distributed Cache��� 210

Big Keys��� 212

Sorted Data�� 212

Best Practices�� 213

Choose Your Required Fields Early�� 213

Define the Appropriate Schema��� 213

Filter Data�� 214

Store Reusable Data�� 214

Use the Algebraic Interface��� 214

Use the Accumulator Interface�� 215

Compress Intermediate Data��� 215

■ Contents

xvii

Combine Small Inputs�� 215

Prefer a Two-Way Join over Multiway Joins�� 216

Better Execution Engine��� 216

Parallelism��� 216

Job Statistics�� 217

Rules�� 218

Partition Filter Optimizer�� 218

Merge foreach��� 218

Constant Calculator��� 219

Cluster Optimization��� 219

Disk Space �� 219

Separate Setup for Zookeeper��� 220

Scheduler�� 220

Name Node Heap Size��� 220

Other Memory Settings ��� 221

Summary�� 222

■■Chapter 17: Hadoop Ecosystem Tools�� 225

Apache Zookeeper�� 225

Terminology��� 225

Applications��� 226

Command-Line Interface��� 227

Four-Letter Commands�� 229

Measuring Time��� 230

Cascading��� 230

Defining a Source�� 230

Defining a Sink�� 232

Pipes�� 233

Types of Operations��� 233

■ Contents

xviii

Apache Spark��� 237

Core��� 238

SQL�� 240

Apache Tez��� 245

Presto��� 245

Architecture��� 246

Connectors�� 247

Pushdown Operations�� 247

Summary�� 247

■■Appendix A: Built-in Functions�� 249

■■Appendix B: Apache Pig in Apache Ambari��������������������������������� 257

Modifying Properties�� 258

Service Check�� 258

Installing Pig��� 259

Pig Status�� 259

Check All Available Services�� 259

Summary ��� 260

■■Appendix C: HBaseStorage and ORCStorage Options������������������ 261

HBaseStorage��� 261

Row-Based Conditions�� 261

Timestamp-Based Conditions�� 262

Other Conditions�� 262

OrcStorage��� 263

Index��� 265

xix

About the Author

Balaswamy Vaddeman is a thinker, blogger, and
serious and self-motivated big data evangelist with
10 years of experience in IT and 5 years of experience
in the big data space. His big data experience covers
multiple areas such as analytical applications, product
development, consulting, training, book reviews,
hackathons, and mentoring. He has proven himself
while delivering analytical applications in the retail,
banking, and finance domains in three aspects
(development, administration, and architecture) of
Hadoop-related technologies. At a startup company, he
developed a Hadoop-based product that was used for
delivering analytical applications without writing code.

In 2013 Balaswamy won the Hadoop Hackathon
event for Hyderabad conducted by Cloudwick
Technologies. Being the top contributor at

Stackoverflow.com, he helped countless people on big data topics at multiple web
sites such as Stackoverflow.com and Quora.com. With so much passion on big data, he
became an independent trainer and consultant so he could train hundreds of people and
set up big data teams in several companies.

http://stackoverflow.com/#_blank
http://stackoverflow.com/#_blank
http://quora.com/#_blank

xxi

About the Technical
Reviewer

Manoj R. Patil is a big data architect at TatvaSoft, an
IT services and consulting firm. He has a bachelor’s
of engineering degree from COEP in Pune, India. He
is a proven and highly skilled business intelligence
professional with 17 years of information technology
experience. He is a seasoned BI and big data consultant
with exposure to all the leading platforms such as
Java EE, .NET, LAMP, and so on. In addition to
authoring a book on Pentaho and big data, he believes
in knowledge sharing, keeps himself busy in corporate
training, and is a passionate teacher. He can be
reached at on Twitter @manojrpatil and at https://
in.linkedin.com/in/manojrpatil on LinkedIn.

Manoj would like to thank his family, especially
his two beautiful daughters, Ayushee and Ananyaa, for
their patience during the review process.

https://in.linkedin.com/in/manojrpatil
https://in.linkedin.com/in/manojrpatil

xxiii

Acknowledgments

Writing a book requires a great team. Fortunately, I had a great team for my first project.
I am deeply indebted to them for making this project reality.

I would like to thank the publisher, Apress, for providing this opportunity.
Special thanks to Celestin Suresh John for building confidence in me in the initial

stages of this project.
Special thanks to Subha Srikant for your valuable feedback. This project would have

not been in this shape without you. In fact, I have learned many things from you that
could be useful for my future projects also.

Thank you, Manoj R. Patil, for providing valuable technical feedback. Your
contribution added a lot of value to this project.

Thank you, Dinesh Kumar, for your valuable time.
Last but not least, thank you, Prachi Mehta, for your prompt coordination.

1© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_1

CHAPTER 1

MapReduce and Its
Abstractions

In this chapter, you will learn about the technologies that existed before Apache Hadoop,
about how Hadoop has addressed the limitations of those technologies, and about the
new developments since Hadoop was released.

Data consists of facts collected for analysis. Every business collects data to
understand their business and to take action accordingly. In fact, businesses will fall
behind their competition if they do not act upon data in a timely manner. Because the
number of applications, devices, and users is increasing, data is growing exponentially.
Terabytes and petabytes of data have become the norm. Therefore, you need better data
management tools for this large amount of data.

Data can be classified into these three types:

•	 Small data: Data is considered small data if it can be measured in gigabytes.

•	 Big data: Big data is characterized by volume, velocity, and variety.
Volume refers to the size of data, such as terabytes and more. Velocity
refers to the age of data, such as real-time, near-real-time, and
streaming data. Variety talks about types of data; there are mainly
three types of data: structured, semistructured, and unstructured.

•	 Fast data: Fast data is a type of big data that is useful for the real-time
presentation of data. Because of the huge demand for real-time or
near-real-time data, fast data is evolving in a separate and unique space.

�Small Data Processing
Many tools and technologies are available for processing small data. You can use
languages such as Python, Perl, and Java, and you can use relational database
management systems (RDBMSs) such as Oracle, MySQL, and Postgres. You can even
use data warehousing tools and extract/transform/load (ETL) tools. In this section, I will
discuss how small data processing is done.

Electronic supplementary material  The online version of this chapter
(doi:10.1007/978-1-4842-2337-6_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-2337-6_1

Chapter 1 ■ MapReduce and Its Abstractions

2

Assume you have the following text in a file called fruits:

Apple, grape
Apple, grape, pear
Apple, orange

Let’s write a program in a shell script that first filters out the word pear and then
counts the number of words in the file. Here’s the code:

cat fruits|tr ',' '\n'|grep -v -i 'pear'|sort -f|uniq -c –i

This code is explained in the following paragraphs.
In this code, tr (for “translate” or “transliterate”) is a Unix program that takes two

inputs and replaces the first set of characters with the second set of characters. In the
previous program, the tr program replaces each comma (,) with a new line character
(\n). grep is a command used for searching for specific text. So, the previous program
performs an inverse search on the word pear using the -v option and ignores the case
using -i.

The sort command produces data in sorted order. The -f option ignores case while
sorting.

uniq is a Unix program that combines adjacent lines from the input file for reporting
purposes. In the previous program, uniq takes sorted words from the sort command
output and generates the word count. The -c option is for the count, and the -i option is
for ignoring case.

The program produces the following output:

Apple 3
Grape 2
Orange 1

You can divide program functionality into two stages; first is tokenize and filtering,
and second is aggregation. Sort is supporting functionality of aggregation. Figure 1-1
shows the program flow.

Figure 1-1.  Program flow

The previous program can be run on a single machine and on small data. Such
simple programs can be used to perform simple operations such as searching and sorting
on one file at a time. However, writing complex queries involving multiple files and
multiple conditions requires better data processing tools. Database management systems
(DBMS) and RDBMS technologies were developed to address querying problems with
structured data.

Chapter 1 ■ MapReduce and Its Abstractions

3

�Relational Database Management Systems
RDBMSs were developed based on the relational model founded by E. F. Codd. There are
many commercial RDBMS products such as Oracle, SQL Server, and DB2. Many open
source RDBMSs such as MySQL, Postgres, and SQLite are also popular. RDBMSs store
data in tables, and you can define relations between tables.

Here are some advantages of RDBMSs:

•	 RDBMS products come with sophisticated query languages
that can easily retrieve data from multiple tables with multiple
conditions.

•	 The query language used in RDBMSs is called Structured Query
Language (SQL); it provides easy data definition, manipulation,
and control.

•	 RDBMSs also support transactions.

•	 RDBMSs support low-latency queries so users can access
databases interactively, and they are also useful for online
transaction processing (OLTP).

RDBMSs have these disadvantages:

•	 As data is stored in table format, RDBMSs support only
structured data.

•	 You need to define a schema at the time of loading data.

•	 RDBMSs can scale only to gigabytes of data, and they are mainly
designed for frequent updates.

Because the data size in today’s organizations has grown exponentially, RDBMSs have
not been able to scale with respect to data size. Processing terabytes of data can take days.

Having terabytes of data has become the norm for almost all businesses. And new
data types like semistructured and unstructured have arrived. Semistructured data has
a partial structure like in web server log files, and it needs to be parsed like Extensible
Markup Language (XML) in order to analyze it. Unstructured data does not have any
structure; this includes images, videos, and e-books.

�Data Warehouse Systems
Data warehouse systems were introduced to address the problems of RDBMSs. Data
warehouse systems such as Teradata are able to scale up to terabytes of data, and they are
mainly used for OLAP use cases.

Data warehousing systems have these disadvantages:

•	 Data warehouse systems are a costly solution.

•	 They still cannot process other data types such as semistructured
and unstructured data.

•	 They cannot scale to petabytes and beyond.

Chapter 1 ■ MapReduce and Its Abstractions

4

All traditional data-processing technologies experience a couple of common
problems: storage and performance.

Computing infrastructure can face the problem of node failures. Data needs to be
available irrespective of node failures, and storage systems should be able to store large
volumes of data.

Traditional data processing technologies used a scale-up approach to process a large
volume of data. A scale-up approach adds more computing power to existing nodes,
so it cannot scale to petabytes and more because the rest of computing infrastructure
becomes a performance bottleneck.

Growing storage and processing needs have created a need for new technologies
such as parallel computing technologies.

�Parallel Computing
The following are several parallel computing technologies.

�GFS and MapReduce
Google has created two parallel computing technologies to address the storage and
processing problems of big data. They are Google File System (GFS) and MapReduce.
GFS is a distributed file system that provides fault tolerance and high performance on
commodity hardware. GFS follows a master-slave architecture. The master is called
Master, and the slave is called ChunkServer in GFS. MapReduce is an algorithm based
on key-value pairs used for processing a huge amount of data on commodity hardware.
These are two successful parallel computing technologies that address the storage and
processing limitations of big data.

�Apache Hadoop
Apache Hadoop is an open source framework used for storing and processing large data
sets on commodity hardware in a fault-tolerant manner.

Hadoop was written by Doug Cutting and Mark Cafarella in 2006 while working for
Yahoo to improve the performance of the Nutch search engine. Cutting named it after his
son’s stuffed elephant toy. In 2007, it was given to the Apache Software Foundation.

Initially Hadoop was adopted by Yahoo and, later, by companies like Facebook and
Microsoft. Yahoo has about 100,000 CPUs and 40,000 nodes for Hadoop. The largest
Hadoop cluster has about 4,500 nodes. Yahoo runs about 850,000 Hadoop jobs every
day. Unlike conventional parallel computing technologies, Hadoop follows a scale-out
strategy, which makes it more scalable. In fact, Apache Hadoop had set a benchmark by
sorting 1.42 terabytes per minute.

Most of Hadoop is written in Java, but it has support for many programming
languages such as C, C++, Python, and Scala through its streaming module. Apache
Hadoop was initially written for high throughput and batch-processing systems. RDBMS
technologies were written for frequent modifications in data, whereas Hadoop has been
written for frequent reads.

http://www.techrepublic.com/article/why-the-worlds-largest-hadoop-installation-may-soon-become-the-norm/
http://sortbenchmark.org/

Chapter 1 ■ MapReduce and Its Abstractions

5

Moore’s law says the processing capability of a machine will double every two years.
Kryder’s law says the storage capacity of disks will grow faster than Moore’s law. The
cost of computing and storage devices will go down every day, and these two factors can
support more scalable technologies. Apache Hadoop was designed while keeping these
things in mind, and parallel computing technologies like this will become more common
going forward.

The latest Apache Hadoop contains three modules, as shown in Figure 1-2. They are
HDFS, MapReduce, and Yet Another Resource Negotiator (YARN).

Figure 1-2.  The three components of Hadroop

�HDFS
The Hadoop distributed file system is used for storing large data sets. It divides files into
blocks and stores every block on at least multiple nodes. This is called a replication factor,
and by default it is 3. HDFS is fault-tolerant because it has more than one replica for every
block, so it can handle node failures without affecting data processing. A block of HDFS
is the same as an operating system block, but a HDFS block size is larger, such as 64 MB
or 128 MB. Unlike traditional storage systems, it is highly scalable. It does not require any
special hardware and can work on commodity hardware.

Chapter 1 ■ MapReduce and Its Abstractions

6

Assume you have a replication factor of 3, a block size of 64 MB, and 640 MB of data
needs to be uploaded into HDFS. At the time of uploading the data into HDFS, 640 MB
is divided into 10 blocks with respect to block size. Every block is stored on three nodes,
which would consume 1920 MB of space on a cluster.

HDFS follows a master-slave architecture. The master is called the name node, and
the slave is called a data node. The data node is fault tolerant because the same block
is replicated to two more nodes. The name node was a single point of failure in initial
versions; in fact, Hadoop used to go down if the name node crashed. But Hadoop 2.0+
versions have high availability of the name node. If the active name node is down, the
standby name node becomes active without affecting the running jobs.

�MapReduce
MapReduce is key-value programming model used for processing large data sets. It has
two core functions: Map and Reduce. They are derived from functional programming
languages. Both functions take a key-value pair as input and generate a key-value pair as
output.

The Map task is responsible for filtering operations and preparing the data required
for the Reduce tasks. The Map task will generate intermediate output and write it to
the hard disk. For every key that is being generated by the Map task, a Reduce node is
identified and will be sent to the key for further processing.

The Map task takes the key-value pair as input and generates the key-value pair as
output.

(key1, value1) ----------------> Map Task----------------> (Key2, Valu2)

The Reduce task is responsible for data aggregation operations such as count, max,
min, average, and so on. A reduce operation will be performed on a per-key basis. Every
functionality can be expressed in MapReduce.

The Reduce task takes the key and list of values as input and generates the key and
value as output.

(key2, List (value2))--------> Reduce Task ---------------> (Key3, value3)

In addition to the Map and Reduce tasks, there is an extra stage called the combiner
to improve the performance of MapReduce. The combiner will do partial aggregation on
the Map side so that the Map stage has to write less data to disk.

You will now see how MapReduce generates a word count. Figure 1-3 depicts how
MapReduce generates the fruits word count after filtering out the word pear.

Chapter 1 ■ MapReduce and Its Abstractions

7

Source and Sink are HDFS directories. When you upload data to HDFS, data is
divided into chunks called blocks. Blocks will be processed in a parallel manner on all
available nodes.

The first stage is Map, which performs filtering and data preparation after
tokenization. All Map tasks (M1, M2, and M3) will do the initial numbering for words that
are useful for the final aggregation. And M2 filters out the word pear.

The key and list of its values are retrieved from the Map output and sent to the
reducer node. For example, the Apple key and its values (1, 1, 1) are sent to the reducer
node R1. The reducer aggregates all values to generate the count output.

Between Map and Reduce, there is an internal stage called shuffling where the
reducer node for the map output is identified.

You will now see how to write the same word count program using MapReduce. You
first need to write a mapper class for the Map stage.

�Writing a Map Class

The following is the Map program that is used for the same tokenization and data filtering
as in the shell script discussed earlier:

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class FilterMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 �public void map(LongWritable offset, Text line, Context context) throws

IOException, InterruptedException {
 //tokenize line with comma as delimiter
 StringTokenizer itr = new StringTokenizer(line.toString(),",");
 //Iterate all tokens and filter pear word
 while (itr.hasMoreTokens()) {

Figure 1-3.  MapReduce generating a word count

Chapter 1 ■ MapReduce and Its Abstractions

8

 String strToken=itr.nextToken();
 �if(!strToken.equals("pear")){
//converting string data type to text data type of mapreduce

 word.set(strToken);
 context.write(word, one);//Map output
 }

 }
 }
}

The Map class should extend the Mapper class, which has parameters for the input
key, input value, output key, and output value. You need to override the map() method.
This code specifies LongWritable for the input key, Text for the input value, Text for the
output key, and IntWritable for the output value.

In the map() method, you use StringTokenizer to convert a sentence into words.
You are iterating words using a while loop, and you are filtering the word pear using an if
loop. The Map stage output is written to context.

For every run of the map() method, the line offset value is the input key, the line is
the input value, the word in the line will become an output key, and 1 is the output value,
as shown in Figure 1-4.

Figure 1-4.  M2 stage

Figure 1-5.  Map output without the combiner

The map() method runs once per every line. It tokenizes the line into words, and it
filters the word pear before writing other words with the default of 1.

If the combiner is available, the combiner is run before the Reduce stage. Every Map
task will have a combiner task that will produce aggregated output. Assume you have two
apple words in the second line that is processed by the M2 map task.

The Map output without the combiner will look like Figure 1-5.

Chapter 1 ■ MapReduce and Its Abstractions

9

Even combiner follows the key-value paradigm. Like the Map and Reduce stages,
it will have an input key and input value and also an output key and output value. The
combiner will write its output data to disk after aggregating the map output data. The
combiner will write relatively less data to disk as it is aggregated, and less data is shuffled
to the Reduce stage. Both these things will improve the performance of MapReduce.

Figure 1-6 shows the combiner writing aggregated data that is apple,2 here.

Figure 1-6.  The combiner writing aggregated data

�Writing a Reduce Class

The following is a reducer program that does the word count on the map output and runs
after the Map stage if the combiner is not available:

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordCountReducer extends Reducer<Text, IntWritable, Text,
IntWritable> {
 private IntWritable count = new IntWritable();

 �public void reduce(Text word, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 // add all values for a key i.e. word
 for (IntWritable val : values) {
 sum += val.get();
 }
 �count.set(sum);//type cast from int to IntWritable
context.write(word, count);
 }
}

The reduce class should extend the Reducer class, which has parameters for the
input key, input value, output key, and output value. You need to override the reduce()
method, and you specify the text data type for the input key and IntWritable for the
input value, and these two should match with the map output key and value data types.
You also specify the output key as text and the output value as IntWritable.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ MapReduce and Its Abstractions

10

For every run of reducer, the Map output key and its list of values are passed to the
reduce() method as input. The list of values is iterated using a for loop because they are
already iterable. Using the get() method of IntWritable, you get the value of the Java int
data type that you would add to the sum variable. After completing the reduce() method
for the partial word key, the word and count are generated as the reducer output. The
reduce() method is run once per key, and the Reduce stage output is written to context
just like map output. Figure 1-7 shows apple and the list of values (1,1,1) processed by
Reduce task R2.

Figure 1-7.  Reduce task R2

�Writing a main Class

The following is the main class that generates the word count using the mapper class and
the reducer class:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(FilterMapper.class);
 job.setReducerClass(WordCountReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 //take input path from command line
 FileInputFormat.addInputPath(job, new Path(args[0]));
 //take output path from command line
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

In this code, you create a configuration object, and you pass it to the Job class.

Chapter 1 ■ MapReduce and Its Abstractions

11

You first pass the main class name in setJarByClass so that the framework will start
executing from that class. You set the mapper class and the reducer class on the job object
using the setMapperClass and setReducerClass methods.

FileInputFormat says the input format is available as a normal file. And you are
passing the job object and input path to it. FileOutputFormat says the output format
is available as a normal file. And you are passing the job object and output path to
it. FileInputFormat and FileOutputFormat are generic classes and will handle any
file type, including text, image, XML, and so on. You need to use different classes
for handling different data formats. TextInputFormat and TextOutputFormat will
handle only text data. If you want to handle binary format data, you need to use
Sequencefileinputformat and sequencefileoutputformat.

If you want to specify key and value data types, you can control them from this
program for both the mapper and the reducer.

�Running a MapReduce Program

You need to create a .jar file with the previous three programs. You can generate a .jar
file using the Eclipse export option. If you are creating a .jar file on other platforms like
Windows, you need to transfer this .jar file to one of the nodes in the Hadoop cluster
using FTP software such as FileZilla or WinScp. Once the JAR is available on the Hadoop
cluster, you can use the Hadoop jar command to run the MapReduce program, like so:

Hadoop jar /path/to/wordcount.jar Mainclass InputDir OutputDir

Most grid computing technologies send data to code for processing. Hadoop works
in the opposite way; it sends code to data. Once the previous command is submitted, the
Java code is sent to all data nodes, and they will start processing data in a parallel manner.
The final output is written to files in the output directory, and by default the job will fail if
the output directory already exists. The total number of files will depend on the number
of reducers.

	 1.	 Prepare data that is suitable for the combiner and write a
program for word count using MapReduce that includes the
combiner stage.

�YARN
In earlier Hadoop versions, MapReduce was responsible for data processing, resource
management, and scheduling. In Hadoop 2.0, resource management and scheduling
have been separated from MapReduce to create a new service called YARN. With YARN,
several applications such as in-memory computing systems and graph applications can
co-exist with MapReduce.

YARN has a couple of important daemons. They are the resource manager and
node manager. The resource manager is responsible for providing resources to all
applications in the system. The node manager is the per-machine framework agent
that is responsible for containers, monitoring their resource usage (CPU, memory,
disk, network), and reporting the same to the resource manager. The per-application

http://wiki.apache.org/hadoop/PoweredByYarn
http://wiki.apache.org/hadoop/PoweredByYarn

Chapter 1 ■ MapReduce and Its Abstractions

12

application master is, in effect, a framework-specific library and is tasked with
negotiating resources from the resource manager and working with the node manager
to execute and monitor the tasks.

�Benefits
Now that you know about the three components that make up Apache Hadoop, here are
the benefits of Hadoop:

•	 Because Apache Hadoop is an open source software framework, it
is a cost-effective solution for processing big data. It also runs on
commodity hardware.

•	 Hadoop does not impose a schema on load; it requires a schema
only while reading. So, it can process all types of data, that is,
structured, semistructured, and unstructured data.

•	 Hadoop is scalable to thousands of machines and can process
data the size of petabytes and beyond.

•	 Node failures are normal in a big cluster, and Hadoop is fault
tolerant. It can reschedule failed computations.

•	 Apache Hadoop is smart parallel computing framework that
sends code to data rather than data to code. This code-to-data
approach consumes fewer network resources.

�Use Cases
Initially Hadoop was developed as a batch-processing framework, but after YARN,
Hadoop started supporting all types of applications such as in-memory and graph
applications.

•	 Yahoo uses Hadoop in web searches and advertising areas.

•	 Twitter has been using Hadoop for log analysis and tweet analysis.

•	 Hadoop had been used widely for image processing and video
analytics.

•	 Many financial companies are using Hadoop for churn analysis,
fraud detection, and trend analytics.

•	 Many predictive analytics have been done using Hadoop in the
healthcare industry.

•	 LinkedIn’s “People You May Know” feature is implemented by
using Apache Hadoop.

Chapter 1 ■ MapReduce and Its Abstractions

13

�Problems with MapReduce
MapReduce is a low-level API. You need to think in terms of the key and value every
time you use it. In addition, MapReduce has a lengthy development time. It cannot be
used for ad hoc purposes. You need MapReduce abstractions, which hide the key-value
programming paradigm from the user.

Chris Wensel addressed this problem by creating the Java-based MapReduce
abstraction called Cascading.

�Cascading
Cascading is a Java-based MapReduce abstraction used for building big data applications.
It hides the key-value complexity of MapReduce from the programmer so that the
programmer can focus on the business logic, unlike MapReduce. Cascading also has
an API that provides several built-in analytics functions. You do not need to write
functions such as count, max, and average, unlike MapReduce. It also provides an API for
integration and scheduling apart from processing.

Cascading is based on a metaphor called pipes and filters. Basically, Cascading
allows you to define a pipeline that contains a list of pipes. Once the pipe output is passed
as an input to another pipeline, the pipelines will merge, join, group, and split the data
apart from performing other operations on data. The pipeline will read data from the
source tap and will write to the sink tap. The source tap, sink tap, and their pipeline are
defined as a flow in Cascading. Figure 1-8 shows a sample flow of Cascading.

Figure 1-8.  Sample flow of Cascading

Here is how to write a word count program in Cascading:

import java.util.Properties;
import cascading.flow.Flow;
import cascading.flow.local.LocalFlowConnector;
import cascading.operation.aggregator.Count;
import cascading.operation.regex.RegexSplitGenerator;
import cascading.pipe.Each;

Chapter 1 ■ MapReduce and Its Abstractions

14

import cascading.pipe.Every;
import cascading.pipe.GroupBy;
import cascading.pipe.Pipe;
import cascading.property.AppProps;
import cascading.scheme.local.TextLine;
import cascading.tap.SinkMode;
import cascading.tap.Tap;
import cascading.tap.local.FileTap;
import cascading.tuple.Fields;
public class WordCount {
 public static void main(String[] args) {
 Tap srcTap = �new FileTap(new TextLine(new Fields(new String[]{"line"})) ,

args[0]);
 �Tap sinkTap =�new FileTap(new TextLine(new Fields(new String[]{"word" ,

"count"})), args[1], SinkMode.REPLACE);
 Pipe words=new Each("start",new RegexSplitGenerator(","));
 Pipe group=new GroupBy(words);
 Count count=new Count();
 Pipe wcount=new Every(group, count);
 Properties properties = new Properties();
 AppProps.setApplicationJarClass(properties, WordCount.class);
 LocalFlowConnector flowConnector = new LocalFlowConnector();
 Flow flow = flowConnector.connect("wordcount", srcTap, sinkTap, wcount);
 flow.complete();
 }
}

In this code, the Fields class is used for defining column names. TextLine will hold
field names and also data path details. srcTap will have source field names and input
path. snkTap will define output field names and the output path. FileTap is used to read
data from the local file system. You can use HFS to run it on the HDFS data. SinkMode.
REPLACE will replace the output data if it already exists in the output directory specified.

Each operator is allowed to perform an operation on each line. Here you are using
the RegexSplitGenerator function that splits every line of text into words using a comma
(,) as the delimiter. You are defining this pipe as words.

The GroupBy class works on the words pipe to arrange words into groups and creates
a new pipe called group. Later you will create a new pipe account that will apply the
count operation on every group using the Every operator.

Properties allow you to provide values to properties. You are not setting any
properties. You will use the put() method to insert property values.

properties.put("mapred.reduce.tasks", -1);

You will create an object for LocalFlowConnector and will define the flow
mentioning the source tap and sink tap and last pipe. The functionality of the application
will be resolved starting from the last pipe to the first pipe.

Chapter 1 ■ MapReduce and Its Abstractions

15

LocalFlowConnector will help you to create a local flow that can be run on the local
file system. You can use HadoopFlowConnector for creating a flow that works on the
Hadoop file system. flow.complete() will start executing the flow.

	 1.	 Modify the previous Cascading program to filter the word pear.

�Benefits
These are the benefits of Cascading:

•	 Like MapReduce, it can process all types of data, such as
structured, semistructured, and unstructured data.

•	 Though it is a MapReduce abstraction, it is still easy to extend it.

•	 You can rapidly build big data applications using Cascading.

•	 Cascading is unit-testable.

•	 It follows fail-fast behavior, so it is easy to troubleshoot problems.

•	 It is proven as an enterprise tool and can seamlessly integrate
with data-processing tools.

�Use Cases
Cascading can be used as an ETL, batch-processing, machine-learning, and big data
product development tool. Cascading can be used in many industries such as social
media, healthcare, finance, and telecom.

�Apache Hive
A traditional warehouse system is an expensive solution that will not scale to big data.
Facebook has created a warehouse solution called Hive. Hive is built on top of Hadoop to
simplify big data processing for business intelligence users and tools. The SQL interface
in Hive has made it widely adopted both within Facebook and even outside of Facebook,
especially after it was provided as open source to the Apache Software Foundation. It
supports indexing and ACID properties.

Hive has some useful components such as the metastore, Hive Query Language,
HCatalog, and Hive Server.

•	 The metastore stores table metadata and stats in an RDBMS such
as MySQL, Postgres, or Oracle. By default it stores metadata in the
embedded RDBMS Apache Derby.

•	 The Hive Query Language (HQL) is a SQL interface to Hadoop
that is compiled into MapReduce code. Queries can be submitted
through the command-line interface (CLI), the web interface, a
Thrift client, an ODBC interface, or a JDBC interface. HQL can
launch not only MapReduce but also Tez and Spark jobs.

http://www.cascading.org/use-cases/
https://hive.apache.org/

Chapter 1 ■ MapReduce and Its Abstractions

16

•	 HCatalog is table and storage management tool that enables big
data processing tools to easily read and write data.

•	 HiveServer2 is a Thrift client that enables BI tools to connect to
Hive and retrieve results.

Here is how to write a word count program in Apache Hive:

select word,count(word) as count
from
(SELECT explode(split(sentence, ',')) AS word FROM texttable)temp
group by word

This writes a Hive query that filters the word pear and generates the word count.
split is used to tokenize sentences into words after applying a comma as a delimiter.

explode is a table-generating function that converts every line of words into rows and
names new column data as words. This creates a new temporary table called temp,
generates a word-wise count using the group by and count functions from the temp table,
and creates an alias called count. This query output is displayed on the console. You can
create a new table from this table by prepending the create table as select statement
like below.

Create table wordcount as

�Benefits
Hive is a scalable data warehousing system. Building a Hive team is easy because of its SQL
interface. Unlike MapReduce, it is suitable for ad hoc querying. With many BI tools available
on top of Hive, people without much programming experience can get insights from big data.
It can easily be extensible using user-defined functions (UDFs). You can easily optimize code
and also support several data formats such as text, sequence, RC, and ORC.

�Use Cases
Because Hive has a SQL interface, it was a quickly adopted Hadoop abstraction in
businesses. Apache Hive is used in data mining, R&D, ETL, machine learning, and
reporting areas. Many business intelligence tools provide facilities to connect to a Hive
warehouse. Some tools include Teradata, Aster data, Tableau, and Cognos.

�Apache Pig
Pig is a platform for analyzing large data sets with a sophisticated environment for
optimization and debugging. It introduced a scripting-based language called Pig Latin
that is used for data processing. Pig Latin is data flow language that follows a step-by-
step process to analyze data. Pig Latin can launch MapReduce, Tez, and Spark jobs. Pig’s
current version is 0.15, and Pig support for Spark is a work in progress. Pig Latin can call
Java, JavaScript, Python, Ruby, or Groovy code through UDFs.

Chapter 1 ■ MapReduce and Its Abstractions

17

It was developed by a team at Yahoo for researchers around 2006. In 2007, it was
open sourced to the Apache Software Foundation. The purpose of Pig was to enable ad
hoc querying on Apache Hadoop.

Here is how to write a word count program in Apache Pig:

input = LOAD '/path/to/input/file/' AS (line:Chararray);
Words = FOREACH input GENERATE FLATTEN(TOKENIZE(line,',')) AS word;
Grouped = GROUP words BY word;
wordcount = FOREACH Grouped GENERATE group, COUNT(word) as wordcount;
store wordcount into '/path/to/output/dir';

The load operator reads the data from the specified path after applying the schema
that is specified after the As word. Here line is the column name, and chararray is the
data type. You are creating a relation called input.

The FOREACH processes line by line on the relation input, and generate applies the
Tokenize and Flatten functions to convert sentences into plain words using a comma
delimiter, and the column name is specified as word. These words are stored in a relation
called words. Words are arranged into groups using the Group operator. The next line is
applied on a relation called grouped that performs the count function on every group of
words. You are defining the column name as wordcount. You will store the final output in
another directory using the store operator. The dump operator can be used for printing
the output on the console.

	 1.	 Change the previous program to filter the word pear.

Pig Latin code can be submitted using its CLI and even using the HUE user interface.
Oozie can use Pig Latin code as part of its workflow, and Falcon can use it as part of feed
management.

�Pig vs. Other Tools
The Hadoop ecosystem has many MapReduce abstractions, as shown in Figure 1-9. You
will learn how Apache Pig is compared against others.

Java Based

Data Warehouse

Scripting Platform

Cascading Apache Hive Apache Pig

MR Abstractions

Figure 1-9.  Pig versus other tools

Chapter 1 ■ MapReduce and Its Abstractions

18

�MapReduce

MapReduce is a low-level API. Development efforts are required for even simple
analytical functions. For example, joining data sets is difficult in MapReduce.
Maintainability and reuse of code are also difficult in MapReduce. Because of a lengthy
development time, it is not suitable for ad hoc querying. MapReduce requires a learning
curve because of its key-value programming complexity. Optimization requires many
lines of code in MapReduce.

Apache Pig is easy to use and simple to learn. It requires less development time and
is suitable for ad hoc querying. A simple word count in MapReduce might take around 60
lines of code. But Pig Latin can do it within five lines of code. You can easily optimize code
in Apache Pig. Unlike MapReduce, you just need to specify two relations and their keys
for joining two data sets.

�Cascading

Cascading extensions are available in different languages. Scalding is Scala-based,
Cascalog is Clojure-based, and PyCascading is Python-based. All are programming
language–based. Though it takes relatively less development time than MapReduce, it
cannot be used for ad hoc querying. In Pig Latin, the programming language is required
only for advanced analytics, not for simple functions. The word count program in
Cascading requires 30 lines of code, and Pig requires only five lines of code. Cascading’s
pipeline will look similar to the data flow conceptually.

�Apache Hive

Apache Hive was written only for a warehouse use case that can process only structured
data that is available within tables. And it is declarative language that talks about what
to achieve rather than how to achieve. Complex business applications require several
lines of code that might have several subqueries inside. These queries are difficult to
understand and are difficult to troubleshoot in case of issues. Query execution in Hive is
from the innermost query to the outermost query. In addition, it takes time to understand
the functionality of the query.

Pig is procedural language. Pig Latin can process all types of data: structured,
semistructured, and unstructured including nested data. One of the main features of
Pig is debugging. A developer can easily debug Pig Latin programs. Pig has a framework
called Penny that is useful for monitoring and debugging Pig Latin jobs. The data
flow language Pig Latin is written in step-by-step manner that is natural and easy to
understand.

Hive does not have any support for splitting, but Pig has support for it. It even can
apply different operators after splitting. Inserting a new query into an existing query is
difficult in Apache Hive. In Pig Latin it is an easy thing to do it. You need to insert a new
line of code and link the next line of code to the newly inserted relation.

Chapter 1 ■ MapReduce and Its Abstractions

19

�Use Cases
Apache Pig can be used for every business case where Apache Hadoop is used. Here are
some of them:

•	 Apache Pig is a widely used big data–processing technology. More
than 60 percent of Hadoop jobs are Pig jobs at Yahoo.

•	 Twitter extensively uses Pig for log analysis, sentiment analysis,
and mining of tweet data.

•	 PayPal uses Pig to analyze transaction data and fraud detection.

•	 Analysis of web logs is also done by many companies using Pig.

�Pig Philosophy
Apache Pig has four founding principles that define the philosophy of Pig. These
principles help users get a helicopter view of the technology. These principles also help
developers to write new functionality with a purpose.

�Pigs Eat Anything

Pig can process all types of data such as structured, semistructured, and unstructured
data. It can also read data from multiple source systems like Hive, HBase, Cassandra, and
so on. It supports many data formats such as text, sequence, ORC, and Parquet.

�Pigs Live Anywhere

Apache Pig is big data–processing tool that was first implemented on Apache Hadoop. It
can even process local file system data.

�Pigs Are Domestic Animals

Like other domestic animals, pigs are friendly animals, and Apache Pig is user friendly.
Apache Pig is easy to use and simple to learn. If a schema not specified, it takes the
default schema. It applies the default load and store functions if not specified and
applies the default delimiter if not given by the user. You can easily integrate Java, Python,
and JavaScript code into Pig.

�Pigs Fly

Apache Pig is used to build lightweight big data applications that have high performance.
Apache Pig is instrumental in writing big functionality with few lines of code.

https://pig.apache.org/philosophy.html#Pigs+Are+Domestic+Animals
https://pig.apache.org/philosophy.html#Pigs+Fly

Chapter 1 ■ MapReduce and Its Abstractions

20

�Summary
Traditional RDBMSs and data warehouse systems cannot scale to the growing size and
needs of data management, so Google introduced two parallel computing technologies,
GFS and MapReduce, to address big data problems related to storage and data
processing.

Doug Cutting, inspired by the Google technologies, created a technology called
Hadoop with two modules: HDFS and MapReduce. HDFS and MapReduce are the same
as Google GFS and MapReduce with respect to functionality. MapReduce has proven
itself in big data processing and has become the base platform for current and future big
data technologies.

As MapReduce is low level and not developer friendly, many abstractions were
created to address different needs. Cascading is a Java-based abstraction that hides the
key and value from the end user and allows you to develop big data applications. It is not
suitable for ad hoc querying. Apache Hive is data warehouse for big data and supports
only structured data; even a nontechnical person can generate reports using BI tools on
top of Hive.

Apache Pig is a scripting platform for big data processing that is developer friendly, is
easy to learn, and can process all types of data.

21© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_2

CHAPTER 2

Data Types

In this chapter, you will start learning how to code using Pig Latin. This chapter covers
data types, type casting among data types, identifiers, and finally some operators.

Apache Pig provides two data types. They are simple and complex, as specified in
Figure 2-1. The simple data types include int, long, float, double, boolean, chararray,
bytearray, datetime, biginteger, and bigdecimal. The complex data types are map,
tuple, and bag.

Figure 2-1.  Data types in Pig

Chapter 2 ■ Data Types

22

In Pig Latin, data types are specified as part of the schema after the as keyword and
within brackets. The field name is specified first and then the data type. A colon is used to
separate the column name and data type.

Here is an example that shows how to use data types:

emp = load '/data/employees' as (eid:int,ename:chararray,gender:chararray);

Now you will learn all about the data types in both the simple and complex
categories.

�Simple Data Types
In this section, you will learn about the simple data types in detail with example code,
including the size they support. Most of data types are derived from the Java language.

�int
The int data type is a 4-byte signed integer similar to the integer in Java. It can contain
values in the range of 2^31 to (2^31)–1, in other words, a minimum value of 2,147,483,648
and a maximum value of 2,147,483,647 (inclusive).

The following shows some sample code that uses the int data type:

Sales = load '/data/sales' as (eid:int);

�long
The long data type is an 8-byte signed integer that is the same with respect to size and
usage as in Java. It can contain values in the range of 2^63 to (2^63)–1. A lowercase l or an
uppercase L is used to represent a long data type in Java. Similarly, you can use lowercase
l or uppercase L as part of constant.

The following is an example that uses the long data type:

emp = load '/data/employees' as (DOB:long);

�float
The float data type is a 4-byte floating-point number that is the same as float in Java.
A lowercase f or an uppercase F is used to represent floats, for example, 34.2f or 34.2F.

The following is an example that uses the float data type:

emp = load '/data/employees' as (salary:float);

Chapter 2 ■ Data Types

23

�double
double is an 8-byte floating-point number that is the same as double in Java. Unlike float
or other data, no character is required to represent the double data type.

The following is an example that uses the double data type:

emp = load '/data/employees' as (salary:double);

�chararray
The chararray data type is a character array in UTF-8 format. This data type is the same
as string. You can use chararray when you are not sure of the type of data stored in a
field. When you use an incorrect data type, Pig Latin returns a null value. It is a safe data
type to use to avoid null values.

The following is an example that uses the chararray data type:

emp = load '/data/employees' as (country:chararray);

�boolean
The boolean data type represents true or false values. This data type is case insensitive.
Both True and tRuE are treated as similar in Boolean data.

The following is an example that uses the boolean data type.

emp = load '/data/employees' as (isWeekend:boolean);

�bytearray
The bytearray data type is a default data type and stores data in BLOB format as a byte
array. If you do not specify a data type, Pig Latin assigns the bytearray data type by
default. Alternately, you can also specify the bytearray data type.

The following is an example that uses the bytearray data type:

emp = load '/data/employees' as (eid,ename,salary);

Here’s another example:

emp = load '/data/employees' as (eid:bytearray,ename:bytearray,salary:bytearray);

�datetime
The only date-based data type available in Pig Latin is datetime, which is used to
represent the date and time. The data before T is the date, the data after the T is the time,
the data after + is time zone.

Chapter 2 ■ Data Types

24

The following is an instance of this format: 2015-01-01T00:00:00.000+00:00.

emp = load '/data/employees' as (dateofjoining:datetime);

�biginteger
The biginteger data type is the same as the biginteger in Java. If you have data bigger
than long, then you use biginteger. The biginteger data type is particularly useful for
representing credit card or debit card numbers.

Sales = load '/data/sales' as (cardnumber:biginteger);

�bigdecimal
The bigdecimal data type is the same as bigdecimal in Java. The bigdecimal data type is
used for data bigger than double. Here’s an example: 22.2222212145218886998.

�Summary of Simple Data Types
Table 2-1 summarizes all the simple data types.

Table 2-1.  Simple Data Types

Type Description Example

int 4-byte 100

long 8-byte 100L or 100l

float 4-byte 100.1f or 100.1F

double 8-byte 100.1e2

biginteger Java biginteger 100000000000

bigdecimal Java bigdecimal 100.0000000001

boolean True/false true/false

chararray UTF-8 string Big data is everywhere

bytearray Binary data Binary data

datetime Date and time 2015:12:07T10:10:20.001+00.00

�Complex Data Types
Complex data types in Pig Latin are used to process more than one data point. Complex
data is classified as a map, tuple, or bag, as specified in Figure 2-2.

Chapter 2 ■ Data Types

25

Figure 2-2.  Complex data types

�map
A map data type holds a set of key-value pairs. Maps are enclosed in straight brackets. The
key and value are separated by the # character. The key should be the chararray data
type and should be unique. While the value can hold any data type, the default is set to
bytearray.

Here’s the syntax (the key-value pair needs to be present in a file):

[key1#value1,key2#value2,key3#value3,...]

Here’s an example:

[empname#Bala]
emp = load '/data/employees' as (M:map[]);

Chapter 2 ■ Data Types

26

Here’s another example:

emp = load '/data/employees' as (M:map[chararray]);

The second example states the value of the data type is chararray.
If your data is not in the map data type format, you can convert the two existing fields

into the map data type using the TOMAP function.
The following code converts the employee name and year of joining a company to

the map data type:

emp = load 'employees' as (empname:chararray, year:int);
empmap = foreach emp generate TOMAP(empname, year);

�tuple
A tuple is an ordered set of fields and is enclosed in parentheses. A field can hold any data
type including another tuple or bag. Fields are numbered beginning from 0. If field data is
not available, then its value is set to a default of null.

For example, consider the following tuple:

(Bala,100,SSE)

This tuple has three data fields. Data in this example can be loaded using the
following statement:

emp = load '/data/employees' as (T: tuple (empname:chararray, dno:int,
desg:charray));

or the following statement:

emp = load '/data/employees' as (T: (empname:chararray, dno:int,
desg:charray));

You can convert existing data fields into tuples with the TOTUPLE function. The
following code converts fields with simple data types into tuples:

emp = load '/data/employees' as (ename:chararray, eid:int, desg:charray);
emptuple=foreach emp generate TOTUPLE(ename, eid,desg);

�bag
A bag is a collection of tuples and is enclosed in curly brackets. A bag can have duplicate
values. Tuples can have any number of fields. If the field value is not found, a null is
returned.

Chapter 2 ■ Data Types

27

Here is the syntax for the bag data type:

{tuple1, tuple2, tuple3,...}

Here’s an example:

{(Bala, 1972, Software Engineer)}

Data for this example can be loaded using the following statement:

emp = load '/data/employees' as (B: bag {T: tuple (ename:chararray,
empid:int, desg:charray)});

or the following:

emp = load '/data/employees' as (B: {T: (ename:chararray, empid:int,
desg:charray)});

There are two types of bags: outer bag and inner bag.
Here is an example of data with an inner bag:

(1,{(Bala, 1972, Software Engineer)})

You can convert fields with simple data types into bag data types using the TOBAG
function.

The following lines of code convert existing fields into bag data types.

emp = load '/data/employees' as (ename:chararray, empid:int, desg:charray);
empbag=foreach emp generate TOBAG(ename,empid,desg);

Dump empbag;

({(Bala),(1972),(Software Engineer)})

�Summary of Complex Data Types
Table 2-2 summarizes the complex data types.

Table 2-2.  Complex Data Types

Type Description Example

map Key and value [100#ApachePig]

tuple Set of fields (10,Pig)

bag Collection of tuples {(10,Pig), (11 Hive)}

Chapter 2 ■ Data Types

28

�Schema
Now you will look at how to check the available columns, and their data types, of a
relation. To find out the schema of a relation, you can use the describe keyword.

The syntax for using describe is as follows:

Describe <<relation>>;

For example, the statement for describe usage is as follows:

emp = load '/data/emp' as (ename:chararray, eid:int, desg:chararray);
Describe emp;

The output will read as follows:

emp: {ename:chararray, eid:int, desg:chararray}

You need not specify the data type in Pig Latin, as it assigns the default data type
bytearray to all columns.

The following code specifies column names without data types:

Movies = load '/data/movies' as (moviename, year, genre);
Describe Movies;

The output will read as follows:

Movies: {moviename:bytearray, year:bytearray, genre:bytearray}

Pig Latin allows you to load data without specifying a column name and data
type. It uses the default numbering, starting from 0, and assigns the default data type.
If you try to generate a schema for such a relation, Pig Latin will give the output Schema
unknown. Whenever you perform operations on fields of such relations, Pig Latin will cast
bytearray to the most suitable data type.

The following code does not specify column names and data types:

emp = load '/data/employees';
Describe emp;

emp: schema for emp unknown.

�Casting
Casting is used to convert one data type to another. Pig Latin performs two types of
casting: implicit casting occurs when Pig Latin performs casting automatically, and
explicit casting occurs when a user performs casting. To perform explicit casting, you
specify the target data type within parentheses.

Chapter 2 ■ Data Types

29

To perform casting from int to chararray, you can use the following code:

empcode = foreach emp generate (chararray) empid;

bytearray is the most generic data type and can be cast to any data type. Casting
from bytearray to other data types occurs implicitly depending on the specified
operation. To perform arithmetic operations, bytearray casting is performed to double.
Similarly, casting from bytearray to datetime, chararray, and boolean data types occurs
when the user performs the respective operations. bytearray can also be cast to the
complex data types of map, tuple, and bag.

�Casting Error
Both implicit casting and explicit casting throw an error if they cannot perform casting.

For example, if you are performing a sum operation on two fields and one of them
does not contain a numeric value, then implicit casting will throw an error.

If you are explicitly trying to cast from chararray to int and chararray does not
have a numeric value, then explicit casting will throw an error.

Table 2-3 lists possible castings between different data types. For example, boolean
can be cast to chararray but not to int because boolean is represented using true and
false values, not 0 and 1.

Table 2-3.  Possible Castings Between Different Data Types

From To int long float double chararray bytearray boolean

int NA Yes Yes Yes Yes No No

long Yes NA Yes Yes Yes No No

float Yes Yes NA Yes Yes NO No

double Yes Yes Yes NA Yes No No

chararray Yes Yes Yes Yes NA No Yes

bytearray Yes Yes Yes Yes Yes NA Yes

boolean No No No No Yes No NA

�Comparison Operators
The operators in Table 2-4 are used in Pig Latin to perform comparison operations such
as equal, not equal, greater than, and so on.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Data Types

30

You can use the filter keyword to perform comparison operations.
Here’s an example:

Year= filter emp by (year==1972);

You can also perform pattern matching as part of the filter keyword using the
matches operator.

For instance, the following code searches for employees who have john in their
names:

empjohn = filter emp by (ename matches ‘.*john*.’ ;

�Identifiers
Identifiers may be names of fields, relations, aliases, variables, and so on. Identifiers
always begin with an alphabet and can be followed by letters, numbers, and underscores.

Here are examples of correct names:

Moviename1_
Moviename5

Here are examples of incorrect names:

_movie
$movie
Movie$

Table 2-4.  Comparison Operations

Operator Symbol

Less than <

Greater than >

Less than or equal <=

Greater than or equal >=

Equal ==

Not equal !=

Pattern matching matches

Chapter 2 ■ Data Types

31

�Boolean Operators
Pig Latin includes Boolean operators such as AND, OR, NOT, and IN.

•	 AND returns true if all conditions are true.

•	 OR requires that at least one condition is true in order to return a
true value.

•	 NOT inverts the value, and IN represents a list of “or” conditions.

Boolean operators are specified in the filter statement.
The following code filters employees whose year of joining a company is either 1997

or 1980:

empyoj = FILTER emp BY (yearOJ==1997) OR (yearOJ==1980);

�Summary
In this chapter, you learned the fundamentals of Pig Latin. Simple data types, complex
data types, and type casting among them were discussed. You also learned how to write
an identifier and how to use comparison operators and Boolean operators.

33© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_3

CHAPTER 3

Grunt

In the previous chapter, you learned the Pig Latin fundamentals such as data types,
type casting among data types, and operators. In this chapter, you will learn about the
command-line interface (CLI) of Pig, called Grunt.

You can use Grunt for submitting Pig Latin scripts, controlling jobs, and accessing
file systems, both local and HDFS, in Pig.

�Invoking the Grunt Shell
You can start a Grunt shell in the following four modes: Local, MapReduce, Tez, and Tez-local.

Figure 3-1.  Grunt modes

Chapter 3 ■ Grunt

34

MapReduce is the default invoke mode. Type pig to start the Grunt shell in
MapReduce mode. However, if exectype is specified in the pig.properties file, then
exectype becomes the default mode.

Local mode reads data from the local file system and runs MapReduce jobs. Local
modes are used to process small amounts of data on a single machine.

Pig version 0.14 has a new execution engine called Tez that incorporates Apache
Tez as an execution engine. Tez is a framework developed on top of YARN to address
performance issues involving input/output (I/O) in MapReduce. Tez jobs will be much
faster than MapReduce. You will learn more about Tez in Chapter 17.

Tez-local also reads data from the local file system but using the Tez framework.
You’ll now see some examples for starting the Grunt shell.
Here’s the syntax:

Pig –x mode

Here are some examples:

Pig –x tez
Grunt>

Pig –x local
Grunt>

//default mode
Pig
Grunt>

The -x option is the short form of –execctype.
Work is in progress to add Spark as an execution engine. Once it is available, you can

start the Spark execution engine with the pig -x spark command.
Now you will learn about the various commands available in the Grunt shell.

�Commands
Two commands in Pig Latin—namely, fs and sh—help you interact with file systems and
run shell scripts.

�The fs Command
The fs command is used to invoke the fsshell commands of HDFS. This command can
be executed in the Grunt shell and Pig Latin scripts.

Here are a few examples of the sh command to check the input file path in the Grunt
shell before specifying it as an input path and to check the output directory once the job is
completed. Without the sh command, you would have to exit Grunt to check the input file
path and return to Grunt to continue. Thus, the command saves time.

http://dx.doi.org/10.1007/978-1-4842-2337-6_17
https://issues.apache.org/jira/browse/PIG-4059

Chapter 3 ■ Grunt

35

The syntax for the fs command follows:

Fs <fs-command> <input-parameters>

fs-command : fsshell-command like ls,mkdir or rm etc.

input-parameters : parameters of above command.

For example, you can use the following fs command to create a directory:

grunt >fs -mkdir /data

You ca use the following the fs command to list the directory or file:

grunt >fs –ls /data

You can refer the file system shell guide for a complete list of fsshell commands
(http://xxx).

The fs command chooses the relevant file system to interact with, based on the
mode in which you have chosen to invoke Pig. If you have started Pig in Local mode,
the fs command will interact with the local file system; otherwise, it will interact with
the Hadoop distributed file system. Some commands such as ls will run without input
parameters and will take the current working directory in Local mode and the user home
directory in nonlocal mode.

�The sh Command
sh is used to run shell commands such as ls, mkdir, and du from both Grunt and Pig Latin
scripts. However, commands such as cd are not relevant with the sh command.

Use the following syntax to execute sh commands:

Sh <shell-command> <input-parameters>

Shell-command : operating system commands like ls, mkdir and rm etc.
input-parameters : parameters of above command.

The following are examples of sh commands:

grunt> sh ls /
wordcount.pig
joinsdemo.pig

grunt> sh mkdir /data

If Pig is started in Local mode, both the fs and sh commands might have the same
effect. In Local mode, if you create a directory called test using either the fs or sh
command, a folder called test is created on the local file system as well.

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
http://xxx/

Chapter 3 ■ Grunt

36

You have learned how to use the fs and sh commands to interact with both the local
file system and the Hadoop distributed file system. Now you will learn about other utility
commands that are useful for controlling both the Grunt shell and Hadoop jobs.

�Utility Commands
The following are the utility commands.

�help
The help command prints a list of Pig commands or properties with a short description
and syntax.

grunt> help

Commands:
<pig latin statement>; - See the PigLatin manual for details: http://hadoop.
apache.org/pig
File system commands:
 �fs <fs arguments> - Equivalent to Hadoop dfs command: http://hadoop.

apache.org/common/docs/current/hdfs_shell.htm

You can display properties with the properties option, as in the following example:

Pig -help properties

�history
The history command displays previously used commands in the Grunt shell. You can
also rerun them. The commands are numbered by default. To remove the numbering, use
the -n option. To navigate the list of commands, use the up arrow and the down arrow.

The following are the history command examples:

Grunt>history
1 num = load 'movies';
2 num11 = filter num by $0==11;

Grunt>history –n
num = load 'movies';
num11 = filter num by $0==11;

�quit
Use the quit command to exit the Grunt shell.

Grunt>quit;
hdfs@cluster5en1:~>

Chapter 3 ■ Grunt

37

�kill
The kill command specifies the job ID to abort a running job. The kill command is
equivalent to the mapred job -kill <jobid> command in Hadoop. Most of the time,
you will not remember job IDs, so you can use the mapred job -list command to get
currently running jobs.

Grunt> kill job_201512120001_001;

�set
The set command applies a value to a property name, for both Pig and Hadoop. It can be
used in the Grunt shell and Pig Latin scripts. This section shows Pig properties for which
you can set values.

The set default_parallel command specifies the default number of reducers; in
this example, it sets the default number of reducers to 20:

 Grunt>set default_parallel 20;

The set debug command enables and disables debugging in a Pig Latin script. It is
set to disable, by default. The following command enables debugging:

Grunt>set debug 'on';

To then disable it, use the off option as follows:

Grunt> set debug off;

This set command allows you to set a name for a job. By default
PigLatin:scriptname is given as the job name if the job is submitted from the Grunt shell.

PigLatin: DefaultJobName

The following example sets the job name to test:

Grunt> Set job.name ‘test’;

The set job.priority command allows you to set a priority for a job. It can take
the value very_low, low, normal, high, or very_high. The default priority is normal. The
following example sets the priority to low:

Grunt> set job.priority low;

This command is also used to set values to Hadoop properties. The following line
sets the number of reducers to 5, using the Hadoop property mapred.reduce.tasks:

Grunt> set mapred.reduce.tasks 5;

Chapter 3 ■ Grunt

38

�clear
This clears all visible commands in the Grunt shell:

grunt>clear

�exec
The exec command runs Pig Latin scripts from the Grunt shell.

Here’s the syntax:

Exec [-param] [-param file] pigscript

•	 -param: This specifies extra parameters such as a name-value pair
and is optional.

•	 -paramfile: Lengthy scripts often have many dynamic
parameters defined. While it is difficult to read a lengthy
command, it is also difficult to maintain values provided at the
time of running the script. The -paramfile option helps manage
lengthy scripts by creating a file containing all the property names
and their values.

The command looks like the following:

Grunt>cat /home/hdfs/allproperties.props;
Inpath=/user/hdfs/data

Grunt> exec –paramfile /home/hdfs/allproperties.props /home/hdfs/
dumpmovies.pig;

If there are multiple parameters, you can specify all the property names and their
values in a file. The file path can also be specified to a Pig script. This is optional.

Grunt> exec dumpmovies.pig;

You can specify both the absolute and relative paths. The relative path will be
resolved from the current working directory of the local file system.

The -param option allows you to provide values for dynamic parameters defined in
the script. You can define dynamic properties in a script using the $ symbol.

Chapter 3 ■ Grunt

39

The following code defines a dynamic parameter called inpath:

Movies = load '$inpath';
Dump movies;

The value for inpath can be specified at the time of running the script using the
-param option, as shown here:

Grunt> exec –param inpath=/home/hdfs/movies dumpmovies.pig

�run
The run command is similar to the exec functionality, and it executes a Pig Latin script
from Grunt. But it also has some additional features. One feature is that commands used
in the script are saved in history. Thus, they can be executed using aliases from the script
after running it.

Here’s the syntax:

run [–param] [–param_file] piglatinscript
options are same as in command exec.

•	 -param: This specifies extra parameters such as a name-value
pair. It is not mandatory because some scripts may not have
parameters.

•	 -paramfile: This specifies all property names and their values in
a file when handling multiple parameters. Some scripts may not
have params, so this is optional.

Here’s an example:

Grunt> run –param inpath=/home/hdfs/movies dumpmovies.pig

�Summary of Commands
Table 3-1 describes the various commands and shows an example for quick reference.

Chapter 3 ■ Grunt

40

�Auto-completion
Since the Grunt shell is equipped with the auto-completion feature, you do not need to
type out complete commands. Type the first few characters of a command and press the
Tab key; the rest of the command is inserted automatically. If more than one command
begins with the specified characters, all of them are displayed. For example, if you press L
and press the Tab key, you will see load, long, and ls.

grunt> movies = l --hit tab

load long ls

grunt> movies = l

�Summary
In this chapter, you learned the execution modes available for Pig Latin and also learned
how to interact with both the local file system and HDFS using the fs and sh commands.
You also gained knowledge of how to kill Hadoop jobs using the kill command and how
to control the Grunt shell using the help, history, exec, and run commands.

Table 3-1.  Commands

Type Command Short Description Example

File system fs File system commands Grunt>fs –ls /

Shell sh Runs shell programs Grunt>sh ls /

Utility exec Runs Pig Latin scripts from
the Grunt shell

Grunt>exec dumpmovies.
pig

run Runs Pig Latin scripts from
the Grunt shell

Grunt>run dumpmovies.
pig

clear Clears all commands from
the Grunt shell

Grunt>clear

help Displays all command
information

Grunt>help

history Displays previously run
statements

Grunt> history

set Sets a value to a property Set debug ‘on’

quit Quits the Grunt shell Grunt>quit;

kill Kills a job Grunt>kill
job_201512120001_001

41© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_4

CHAPTER 4

Pig Latin Fundamentals

In this chapter, you will learn the basics of Pig Latin. You will learn how to run Pig Latin
code, and you will come to understand Pig Latin basic relational operators and parameter
substitution.

�Running Pig Latin Code
You can run Pig Latin code in several ways:

•	 Using the Grunt shell

•	 Using the pig -e command

•	 Using the pig -f command

•	 Using the Hue tool

•	 Embedding Pig Latin code in Java code

Let’s see how to run the code using each of these methods.

�Grunt Shell
As discussed in Chapter 3, you can use the Grunt shell to submit Pig Latin code. Since
code submitted from the Grunt shell is session-based, once you exit the Grunt shell, you
lose the code, and you have to start fresh from the first line of code. The Grunt shell is
useful to run small Pig Latin code for testing in development and testing environments.

Here’s some sample code in the Grunt shell:

Grunt>emp = load '/data/employee' using PigStorage() as (eno:int,ename:chara
rray,salary:chararray,deptno:int);
Grunt>

http://dx.doi.org/10.1007/978-1-4842-2337-6_3

Chapter 4 ■ Pig Latin Fundamentals

42

�Pig -e
When you have to run a list of Pig Latin statements, you can use the pig -e command.
Here’s the syntax:

Pig -e " <pig latin statement>"

Although Pig Latin code is not easy to read, it is easy to modify. This command can
also be embedded easily in the shell script for further automation.

The following code uses the Pig –e command, and the semicolon represents the
end of a statement:

Pig -e "emp = load '/data/employee' using PigStorage(',');dump emp;"

�Pig -f
The Pig –e command is not readable if it has multiple lines of code. Pig –f allows you to
embed Pig Latin code in a file. Here’s the syntax:

Pig -f /path/to/piglatin/file

Although the file can be saved with any extension, it is better to save the file with a
.pig extension to distinguish it from other script files.

This is the standard way to write Pig Latin code in a production environment.
Running Pig Latin code this way helps you write more dynamic scripts as it supports
dynamic parameters, allows you to write reusable Pig Latin scripts, and helps maintain
the scripts easily.

The following is an example of the pig –f command:

Cat /home/hdfs/dumpemp.pig
emp = load '/data/employee' using PigStorage(',') as (eno:int,ename:chararr
ay,salary:int,deptno:int) ;
dump emp;

pig -f /home/hdfs/dumpemp.pig

�Embed Pig Code in a Java Program
You can also run Pig Latin code using Java. The PigServer class in Java interacts with the
Pig Latin code. As discussed in the previous chapter, you can specify the execution mode,
either MapReduce, Tez, Local, or Tez-local, in the PigServer constructor. If you choose
Local mode, Pig runs the job on the local file system, and MapReduce runs the job on the
distributed file system.

The following code instantiates the PigServer class:

PigServer ps=new PigServer("local");

Chapter 4 ■ Pig Latin Fundamentals

43

The following are some useful methods of the PigServer class:

•	 Use the registerQuery() method of the PigServer class to
register Pig Latin code. However, code specified in registerQuery
is not run until you submit the store or dump command.

•	 Use the registerScript() method of the PigServer class to
register a file as a Pig Latin script file.

•	 Use the store() method of the PigServer class to start the
execution of Pig Latin code. It takes two inputs: the relation name
and the output directory. It stores the given relation name results
in the specified output directory.

•	 Use the registerJar() method of the PigServer method to
register a JAR file if it contains any user-defined functions.

The following Java code reads data from the input directory and writes it to the
output directory. However, observe that the input and output directories are not specified
in the Java code; hence, you would have to provide them at runtime.

	 1.	 Write the following Java program:

import java.io.IOException;
import org.apache.pig.PigRunner;
import org.apache.pig.PigServer;
import org.apache.pig.backend.executionengine.ExecException;

public class StoreEmp {
 public static void main(String[] args) {

 PigServer pigServer=null;
 try {
 pigServer = new PigServer("local");
 pigServer.registerQuery("emp = load '"+args[0]+"' ;");
 pigServer.store("emp", args[1]);

 } catch (ExecException e1) {
 e1.printStackTrace();
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 }
 }

If you choose to write this program using Eclipse, make sure
you have the pig.jar file in the build path to check and
compile it successfully. Copy the file to one of the cluster
nodes to run the program on a cluster.

Chapter 4 ■ Pig Latin Fundamentals

44

	 2.	 Write the command to compile the Java program.

Generate the .class file for the .java file by compiling it with
the javac program. Mention Pig*.jar in the classpath so that
the Pig API in the Java program is resolved.

The following command compiles Java file.

/usr/lib/jdk8/bin/javac -cp /usr/hdp/2.3.4.0-3485/
pig/pig-0.15.0.2.3.4.0-3485-core-h2.jar StoreEmp.
java.

	 3.	 Write the command to run the Java program.

After generating .class for the .java file, run it using the Java
program shown here:

/usr/lib/jdk8/bin/java -cp /usr/hdp/2.3.4.0-3485/pig/pig-
0.15.0.2.3.4.0-3485-core-h2.jar:/usr/hdp/2.3.4.0-3485/
hadoop-hdfs/lib/*:/usr/hdp/current/hadoop-client/client/*:/usr/
hdp/2.3.4.0-3485/pig/lib/*:. StoreEmp employee.csv dumpempout

If Pig cannot find its dependent JARs, the Java program might fail and throw a “class
not found” exception. To avoid such exceptions, include all the required JARs in the class
path using the -cp option.

The following are other special characters that can be used after the –cp option.

•	 Colon (:): When multiple directories are required, the colon
delimits the directories.

•	 Asterisk (*): This includes all files from a given directory in the
class path.

•	 Dot (.): This adds the current directory to the class path
mentioned, so as to take the generated .class file from the
current directory.

After specifying the class name StoreEmp, you specify the input and output
directories; you would not have specified them in Java code. In the previously mentioned
code, employee.csv is the input directory, and dumpempout is the output directory.

�Hue
Hue contains a list of web applications that allows users to submit Hadoop tools code to
a cluster. It even has a Pig Editor to submit Pig Latin code. You will learn more about it in
Chapter 8.

�Pig Operators and Commands
I will now discuss some operators and commands available in Pig. Pig operators are the
pillars of Apache Pig and are used for data analysis.

http://dx.doi.org/10.1007/978-1-4842-2337-6_8

Chapter 4 ■ Pig Latin Fundamentals

45

Pig operators and commands are categorized into Reduce operators and non-
Reduce operators, as shown in Figure 4-1. Since most tasks are resource-intensive,
Reduce operators such as join, cogroup, and distinct launch the Reduce tasks. The
reduce operators lets you stipulate the number of Reduce tasks that you want to run at a
given time for optimal performance. Other operators such as limit and flatten do not
launch Reduce tasks.

Figure 4-1.  Pig operators

Now you will learn about both Reduce and non-Reduce operators in detail.

�Load
The load operator loads data from the source system. Its syntax is followed by two
operators: as and using.

An example of load follows:

emp = load '/data/employee' using PigStorage(',') as (eno:int,ename:chararra
y,salary:int,deptno:int);

The as operator defines the schema, and using specifies the function that you
applied while reading data. By default, Pig Latin chooses PigStorage() for both the
schema and the function. bytearray is the default data type in the default schema. The
number list starting at 0 is taken as the default field name. Pigstorage('\t') applies a
tab as the default delimiter, but you can specify any other character as the delimiter.

Chapter 4 ■ Pig Latin Fundamentals

46

load allows you to read from both directories and files. You can also specify the
absolute and relative paths of files and directories. The relative path is resolved with
respect to the current working directory in Local mode. The user home directory in HDFS
is the default consideration for the relative path in MapReduce and Tez modes. You can
also specify multiple paths with a comma separator. Compressed files are automatically
loaded using the corresponding codecs in Pig Latin. If you have .gz files as the source
data sets, you need not direct the codec to read the data. The load operator reads it
automatically.

You can even use regular expressions (RegEx) in the file path of the load statement.

�RegEx in the File Path
Sometimes you may have to use multiple files and directories in the load statement.
RegEx characters help specify multiple directories and files.

Here are some RegEx characters that you can use in load statements:

SNO RegEx Characters Meaning

1 ? Resolves to any single character

2 * Resolves to zero or more characters

3 [abc] Resolves to a single character from the character set
{a,b,c}

4 [a-b] Resolves to a single character from the character range
{a...b}

5 [^a] Resolves to a single character that is not from the
character set or range {a}

6 \c Removes any special meaning of character c

7 {ab,cd} Resolves to a string from the string set {ab, cd}

8 {ab,c{de,fh}} Resolves to a string from the string set {ab, cde, cfh}

These RegEx characters are taken from HDFS GLOB file patterns. The following
file paths will resolve to all employee.csv files whose parent directories range from
date=2016-07-01 to date=2016-07-07.

The following HDFS example code lists all files:

/user/hdfs/date=2016-07-0[1-7]
/user/hdfs/date=2016-07-0[1234567]

To test a RegEx string using the HDFS shell guide, use the following code:

hdfs@cluster10-1:~> hdfs dfs -ls /user/hdfs/date=2016-07-0[1-7]
Found 1 items
-rw-r--r-- 3 hdfs hdfs �85 2016-07-04 05:27 /user/hdfs/date=2016-

07-01/employee.csv

Chapter 4 ■ Pig Latin Fundamentals

47

Found 1 items
-rw-r--r-- 3 hdfs hdfs �85 2016-07-04 05:27 /user/hdfs/date=2016-

07-02/employee.csv
Found 1 items
-rw-r--r-- 3 hdfs hdfs �85 2016-07-04 05:27 /user/hdfs/date=2016-

07-03/employee.csv
Found 1 items
-rw-r--r-- 3 hdfs hdfs �85 2016-07-04 05:27 /user/hdfs/date=2016-

07-04/employee.csv
Found 1 items
-rw-r--r-- 3 hdfs hdfs �85 2016-07-04 05:27 /user/hdfs/date=2016-

07-05/employee.csv
Found 1 items
-rw-r--r-- 3 hdfs hdfs �85 2016-07-04 05:27 /user/hdfs/date=2016-

07-06/employee.csv
Found 1 items
-rw-r--r-- 3 hdfs hdfs �85 2016-07-04 05:27 /user/hdfs/date=2016-

07-07/employee.csv

Rather than specifying all the file paths, with RegEx you can specify a single file path
that gets resolved to all the files.

The following code contains a load operator with a RegEx string:

emp = �load '/user/hdfs/date=2016-07-0[1-7]/employee' using
PigStorage(',') as (eno,ename,salary,dno);

or as follows:

emp = �load '/user/hdfs/date=2016-07-0[1234567]/employee' using
PigStorage(',') as (eno,ename,salary,dno);

�store
store writes a relation data to a sink or output directory. The sink can be an HDFS,
HBase, or Accumulo. The store statement is followed by the INTO and USING keywords.

The INTO keyword is mandatory in the store operator’s syntax, and it specifies
the sink. store can also contain the file system relative path that is resolved based on
the selected execution engine. If Pig Latin is working in Local mode, the relative path is
resolved with respect to the current working directory, and if it is nonlocal mode, it is
resolved to the user home directory in HDFS.

using specifies a store function, and PigStorage is the default function. Pig Latin
code fails if an output directory already exists. With store, you can write data in different
formats such as ORC, JSON, and Avro. You can also write data to different data stores such
as HBase and Accumulo. You will learn in detail how to write different formats and how to
write data to different data stores in Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-2337-6_6

Chapter 4 ■ Pig Latin Fundamentals

48

The following code writes data of the relation deptcount to the output directory
/data/deptcount using a comma delimiter:

Store deptcount into '/data/deptcount' using PigStorage (',');

Write a Pig Latin script that changes the default delimiter in the source directory
(/data/employee) to a comma and stores data to a different directory.

�dump
The command dump displays data of a relation on the console. Write the relation name
after the dump operator to display relation data on the console.

Dump <relationname>

With dump you can test code prior to production. You can also use it to debug Pig Latin
scripts. Any Pig Latin code that follows the dump operator is ignored and is not executed.

Developers can insert a dump line at any step in the Pig Latin code to view input data
at that particular step. All the data is displayed on the screen. So, if a relation has large
data, it will take so much time to display the data on the console.

The following code displays five records from the employee data set on the console:

Emp = �load '/data/employee' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,deptno:int);

Records5 = limit emp 5;
Dump records5;

�version
Use the version option to check the version of Pig you are using.

Pig --version

�Foreach Generate
Foreach is a multipurpose operator used for projection, applying functions, generating a
new schema, and performing nested operations. Often, it is used along with the generate
keyword, and it operates on one row at a time from the specified relation. Most of its
functionality is similar to a SQL SELECT clause. Foreach, also called the transformation
operator, performs transformation jobs.

Here’s the syntax:

relname = FOREACH relname1 { block | nested_block };

relname1 : Relation name to be used

Chapter 4 ■ Pig Latin Fundamentals

49

block is used to process outer bags. You can use the foreach .. generate
statement to process data. Nested_block is used to process inner bags.

�Projection
You can choose or project some or all fields from a relation using the foreach ..
generate statement. The following code chooses all the fields from the emp relation:

All = foreach emp generate *

The asterisk represents all the fields of a relation. You may have to use the relation
name to access a field if you have bag, tuple, or map data types involved, as shown here:

Empnoname= foreach emp generate emptuple.empno,emptuple.empname;

�Flatten
Apply the FLATTEN operator using the foreach .. generate statement to change
structure of data from a bag to a tuple and from a tuple to a field. For more information,
read about the Flatten operator later in the chapter.

�Using Functions
The foreach .. generate statement is also used to apply a function on a field or set of
fields. Functions include the following:

•	 Built-in

•	 User-defined

•	 Single-row functions such as UPPER

•	 Multirow functions such as COUNT, which must be applied after
the GROUP operator

The following foreach statement converts all employee names into uppercase:

Enameucase = foreach emp generate UPPER(ename);

You will learn how to use the other functions such as lower, max, and count in Chapter 5.

�New Schema
You can define a new schema on the output of the foreach .. generate statement.

The following code increases the salary by 10 percent and changes its data type:

emp = �load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);

describe emp;
emp: {eno: int,ename: chararray,salary: int,dno: int}

http://dx.doi.org/10.1007/978-1-4842-2337-6_5

Chapter 4 ■ Pig Latin Fundamentals

50

Newsal = �foreach emp generate eno,ename,salary*1.1,deptno as
(eno :int,ename:chararray,salary:doouble,deptno:int)

Describe Newsalary;
newsal: {eno: int,ename: chararray,newsal: double,dno: int}

�Nested Block
Nested blocks process inner bags. Multiple operations can be performed within nested
blocks. Nested blocks are enclosed in opening ({) and closing brackets (}). The last
statement should always be generate. Macros cannot be used in nested blocks.

The following code displays the employee name and department name by retrieving
them from different inner bags after the cogroup operator:

emp = �load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);

dept = load 'dept.csv'using PigStorage(',') as (dno:int,dname:chararray);
cogrp = cogroup emp by dno,dept by dno;
describe cogrp;

Here is a sample of the cogrp schema:

cogrp: {group: int,emp: {(eno: int,ename: chararray,salary: int,dno: int)},
dept: {(dno: int,dname: chararray)}}

You can process inner bags using nested blocks, as shown here:

enamedname = foreach cogrp{
 generate flatten(emp.ename),flatten(dept.dname);
}

�filter
filter retrieves data based on specified conditions. filter checks one row after another
for the specified conditions.

It is best practice to filter data as early as possible in the project so that you will get an
early opportunity work on less data.

The following are some conditions that can be applied using the filter operator.

�null
As discussed in Chapter 2, you can check for null values in a row using the null operator.
The following code retrieves employee records in which deptno is null.

Nodept=filter emp by deptno is null:

http://dx.doi.org/10.1007/978-1-4842-2337-6_2

Chapter 4 ■ Pig Latin Fundamentals

51

�Boolean Operators
You can apply AND, OR, and NOT Boolean operators in a filter statement.

The following code retrieves employee records whose deptno is greater than or equal
to 100 and less than or equal to 300:

somedept=filter emp by deptno>=100 and deptno<=300;

�Comparison Operators
You can apply the comparison operator using the filter statement.

The following code retrieves all employee records whose deptno is 300:

dept300=filter emp by deptno==300;

�Limit
limit retrieves a specific number of tuples from a relation. limit is followed by the
relation name and number.

Limit relationname number

The following code retrieves only five tuples from the relation emp. If five tuples are
not available, it returns only the available number of tuples, and if more than five tuples
are available, only five tuples are retrieved. Tuples are returned randomly, and the same
tuples may not be retrieved when you rerun the code until and unless you apply the
order by operator, before the limit operator.

The following code is a limit example:

Limit5 = limit emp 5;

This operator is useful to check data in a relation in the initial stage of writing Pig
Latin code.

�Assert
Assert verifies a specified condition on a relation. If a condition is not true, it throws the
appropriate error message.

Here’s the syntax:

ASSERT relname BY condition [, errormessage];

The following code verifies deptno is not null in the emp relation. If deptno is null, the
MapReduce job will fail with the assertion violated error deptno should not be null.

Chapter 4 ■ Pig Latin Fundamentals

52

Emp = �load '/data/employee' using PigStorage() as (eno:int,ename:chararray,
salary:int,deptno:int);

Assert emp by deptno is not null,'deptno should not be null';
Dump emp;

This operator is also useful for testing data for abnormalities in the development and
testing environments.

You need to be sure when using it in production for a couple of reasons.

•	 By design, it fails the MapReduce job if the condition evaluates to true.

•	 It also causes performance issues.

�SPLIT
split divides the data of a relation into two or more relations based on the condition
you specify. It is opposite of the join functionality, which retrieves data from two or more
relations into one relation.

Here’s the syntax:

SPLIT relationname INTO
 relname1 IF condition1,
 relname2 IF condition2,
 ... ,
 relname3 OTHERWISE;

Data that fulfils the specified condition is moved to the specified relation.

relname1 IF condition1

Data that does not fulfil any of the mentioned conditions is moved to the default
relation specified with otherwise. The otherwise statement is optional.

relname3 otherwise

The following code splits the emp relation data into three relations. Relation dept200
contains the employee records whose department number is less than or equal to 200.
Relation dept300 contains the employee records whose department number is greater
than 200 and less than or equal to 300. Employee records that do not satisfy the previous
conditions will go into the otherdept relation. These three relations data is written to the
output directory using the store command.

split emp into
dept200 IF deptno<=200 ,
dept300 IF (deptno>200 and deptno<300),
otherdept otherwise;

Chapter 4 ■ Pig Latin Fundamentals

53

store dept200 into 'dept200';
store dept300 into 'dept300';
store otherdept into 'otherdept';

The split functionality is same as the filter functionality if you do not process
result relations or store them in some output directories.

�SAMPLE
To build statistical models, for instance, you do not need complete data from a relation.
Under such circumstances, you can use the sample operator to generate sample data.

Sample relname expression.

expression can be a number between 0 and 1. That is, .2 means 20 percent. You can
use a scalar like 100/200. The following code generates 10 percent random data from the
relation emp.

emp10 = Sample emp .1

The same tuples may not be displayed if you rerun the code.
Many algorithms are available to build sample data, and Pig Latin does not provide

rich sampling techniques.
For further sampling algorithms such as Bernoulli sampling and Wiegthed random

sampling, you can use the DataFu project. See https://datafu.incubator.apache.org/
docs/datafu/guide/sampling.html.

�FLATTEN
Most Pig Latin operators generate output in complex data types like bags or tuples. How
do you process such data? You can use the FLATTEN operator to change the structure of
the bag and tuple data types. When FLATTEN is applied, it changes the tuple structure to a
field structure and the bag structure to a tuple.

�Tuple Example
Before applying flatten, the tuple structure appears thusly:

emp: {et: (eno: int,eame: chararray,salary: int,deptno: int)}

The following code applies flatten on the tuple structure and changes it to a field
structure:

emp = load 'emptuple.csv' using PigStorage(',') as (et:tuple(eno:int,eame:ch
ararray,salary:int,deptno:int));
describe emp;

https://datafu.incubator.apache.org/docs/datafu/guide/sampling.html
https://datafu.incubator.apache.org/docs/datafu/guide/sampling.html

Chapter 4 ■ Pig Latin Fundamentals

54

If you apply flatten on a tuple as specified in the previous code, the structure of the
data and schema will change to a field, as shown here:

emp = foreach emp generate FLATTEN(et);
describe emp;

emp: {et::eno: int,et::eame: chararray,et::salary: int,et::deptno: int}

�Bag Example
A bag structure changes to a tuple structure when flatten is applied. Sometimes a cross
join is performed when you apply the flatten operator. flatten also removes empty bags.

The following code performs a group operation on the deptno field of the emp
relation and selects the group field and ename field, which are not actually flattened:

deptgrp = GROUP emp by dno ;
empcount = foreach deptgrp generate group,emp.ename;
dump empcount;

Without applying flatten, data will have three tuples and appear like so:

(200,{(Niruopam),(Bala)})
(300,{(Radha)})
(,{(Nitya)})

If you apply flatten on emp.ename, a cross-join is performed, and four tuples are
produced.

empcount = foreach deptgrp generate group,flatten(emp.ename);
dump empcount;

(200,Niruopam)
(200,Bala)
(300,Radha)
(,Nitya)

�import
The import operator is used to import a Pig Latin macro. You will learn about it in
Chapter 10.

�define
define is used to define a macro and an alias for lengthy and complex Pig Latin
commands. You will learn how to use define in macros in Chapter 10 and define in user-
defined functions in Chapter 11.

http://dx.doi.org/10.1007/978-1-4842-2337-6_10
http://dx.doi.org/10.1007/978-1-4842-2337-6_10
http://dx.doi.org/10.1007/978-1-4842-2337-6_11

Chapter 4 ■ Pig Latin Fundamentals

55

�distinct
The distinct operator removes duplicate tuples from a relation. Its functionality is the
same as a SQL distinct clause. The SQL while distinct can be applied on a field; the
Pig Latin can be applied only on a relation.

For better results, you need to apply order by before the distinct operator.
Here’s the syntax:

Distinct relname [PARTITION by partitionercalss] [PARALLEL num]

The following code removes duplicate records from the emp relation:

Emp = �load '/data/employee' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,deptno:int);

uniqemp = distinct emp;
dump uniqemp;

�Choosing the Number of Reduce Tasks
The distinct operator launches the Reduce task. You can specify the number of reducers
after the PARALLEL keyword.

The following code launches ten Reduce tasks to remove duplicate employee tuples:

uniqemp = distinct emp PARALLEL 10;

�Using the MapReduce Partitioner
The MapReduce partitioner decides on the Reduce tasks for map output depending on a
key. You can use the MapReduce partitioner in the distinct operator.

The following code applies HashPartitioner while performing the distinct
operation:

numcount = distinct num partition by org.apache.hadoop.mapreduce.lib.
partition.HashPartitioner;

�RANK
The rank operator provides a rank to every tuple of the specified relation. By default,
rank would start ranking tuples from 1. rank can also be assigned after ordering one or
more fields.

Here’s the syntax:

Relname2 = RANK relname1 [By Fieldname1 ASC|DESC, By Fieldname2
ASC|DESC,...] [DENSE]

Chapter 4 ■ Pig Latin Fundamentals

56

The following code shows an example of the rank operator.

emprank = RANK emp;

(1,100,Bala,100000,200)
(2,200,Radha,200000,300)
(3,300,Nitya,150000,)
(4,400,Niruopam,1600000,200)

emprank = RANK emp by empno DESC;

The previous code applies the rank after ordering empno in descending order. By
default, if there is a tie for some tuples, the same rank is assigned, and the next tuple will
not get the next rank. In the following data, Nitya gets tuple 2, and 2 ranks, so 3 is not
assigned to any tuple. The next rank starts from 4.

(1,400,Nirupam,1600000,200)
(2,300,Nitya,150000,)
(2,300,Nitya,150000,)
(4,200,Radha,200000,300)
(5,100,Bala,100000,200)

To generate rank consecutively, you must apply a dense rank.
The following code shows an example of dense ranking:

emprank = RANK emp by empno DESC DENSE;

(1,400,Nirupam,1600000,200)
(2,300,Nitya,150000,)
(2,300,Nitya,150000,)
(3,200,Radha,200000,300)
(4,100,Bala,100000,200)

�Union
The union operator is used to merge two or more relations.

Relname3 = UNION [ONSCHEMA] relname1, relname 2, ...] [PARALLEL n];

ONSCHEMA -schema is mandatory for a relation if it is specified.
Relname1,relname2,.. -relations to be merged
PARALLEL n -decides number of output files

The union output might contain duplicate tuples because the union operator does
not remove them.

Chapter 4 ■ Pig Latin Fundamentals

57

The following code shows an example of union:

Emp1= �load '/data/employee' using PigStorage(',') (eno:int,ename:chararray,
salary:int,dno:int);;

Dump emp1;
(200,Radha,200000,300)
(400,Nirupam,1600000,200)

Emp2 = �load '/data/newemployee' using PigStorage(',') (eno:int,ename:chararray,
salary:int,dno:int);

Dump emp2;

(400,Nirupam,1600000,200)
(100,Bala,100000,200)
(300,Nitya,150000,)
Empuni = union emp1,emp2;
Dump empuni;

(200,Radha,200000,300)
(400,Nirupam,1600000,200)
(100,Bala,100000,200)
(400,Nirupam,1600000,200)
(300,Nitya,150000,)

The union functionality is achieved only by using the Map task. It does not launch
any Reduce tasks. But you can use the parallel keyword to get n number of output files.

The parallel keyword with union works only in the Tez execution mode.
ONSCHEMA checks for the schema of all relations used.
The union operation fails even if any one of the relations does not have the schema

defined.
The following code fails because emp1 does not have any schema defined:

Emp1 = load '/data/employee' using PigStorage(',') ;
emp2 = load '/data/newemployee' using PigStorage(',') as (eno:int,ename:char
array,salary:int,dno:int);
empuni = union emp1,emp2 parallel 10;

In the union output, the order of tuples is not preserved. Pig Latin allows relations of
different schemas to be merged. You must be cautious while processing the union output
because a union between relations with different schemas and sizes can cause changes in
the schema of the union output.

�ORDER BY
The Order By operator works the same way as the SQL ORDER BY. It sorts relation data
using the mentioned fields. The order can be ascending or descending.

Chapter 4 ■ Pig Latin Fundamentals

58

Here’s the syntax:

relname = ORDER relname1 BY [*|fieldnames [ASC|DESC]] [PARALLEL n];
* -used to specify complete tuple.
Fieldnames -one or more fileds can be specified. order.
Asc -sorts a field in ascending order.
Desc -sorts a field in descending order.
Parallel n -used to specify n number of reduce tasks.

The following code orders the emp relation on the department number field:

Deptorder = ORDER emp by deptno;

Specifying an order is optional, and by default ascending order is applied. Null
values are returned first in ascending order and last in descending order. Pig Latin does
not allow you to sort data on complex data types or user expressions.

Order by may not produce the same results when you rerun it. The order of tuples
with the same key might change from one run to another. For example, the order of tuples
with deptno 200 might change when rerun.

Look at the following code:

Deptorder = ORDER emp by deptno desc;
Dump deptorder;
/
(200,Radha,200000,300)
(400,Niruopam,1600000,200)
(100,Bala,100000,200)
(300,Nitya,150000,)

When you specify multiple fields in the Order by operator, the fields are sorted in the
order specified in the code. The following code first sorts data in descending order on the
deptno field and later sorts data in ascending order on ename without disturbing the order
of the deptno field.

Deptenameorder = ORDER emp by deptno desc,ename asc;
Dump deptenameorder;

(200,Radha,200000,300)
(100,Bala,100000,200)
(400,Niruopam,1600000,200)
(300,Nitya,150000,)

�Choosing Number of Reduce Tasks
ORDER BY launches Reduce tasks. You can choose the number of reducers using parallel.

Chapter 4 ■ Pig Latin Fundamentals

59

The following code launches ten Reduce tasks using parallel:

Deptorder= ORDER emp BY deptno desc parallel 10;

�GROUP
The Group operator organizes relation data into groups based on specified field names.

Here’s the syntax:

relname= �GROUP relname1 { ALL | BY fieldnames } [USING 'collected' | 'merge']
[PARTITION BY partitioner] [PARALLEL n];

ALL -Considers entire relation as a group.
'collected' -�Used to specify group operation only through Map task. It

avoids reduce task.
'merge' -Used only with cogroup to avoid reduce task.
PARTITION BY -Used to specify Mapreduce Partitioner class
PARALLEL n -Used to specify number of reduce tasks

group operations allow you to perform aggregate operations. After the group
operator, you use foreach generate to calculate aggregates using built-in or user-defined
functions.

The group operator produces two fields of data. One field named Group contains
data from the field upon which you performed group operations, and second is a Bag field
that contains all the columns of data from relation you have used.

The following code contains GROUP BY example.
emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:charar

ray,salary:int,dno:int);:

deptgrp = GROUP emp By dno;
describe deptgrp;

deptgrp: {group: int,emp: {(eno: int,ename: chararray,salary: int,dno: int)}}

ALL allows you to perform aggregate operations on an entire relation. For example,
you can get the total count of tuples in a relation and the total sum of a field in an entire
relation using it. The following code computes the total number of employees in the
relation emp:

Grpall = GROUP emp ALL;
Empcount = foreach grpall generate group,count(emp.eno);
Dump empcount;
(all,10000)

When you apply the group operator on a single field of a relation, all unique values of
that field are considered groups, and all null values are considered as one group.

Chapter 4 ■ Pig Latin Fundamentals

60

When you apply the group operator on two or more fields, all unique rows on the
specified fields are considered groups.

The following code groups emp relation data on the single field deptno and computes
the employee count:

Deptgrp = GROUP emp BY deptno;
Empcount = foreach deptgrp generate group,COUNT(emp.empno);
Dump empcount;

(200,200)
(300,100)
(,11)

COGROUP also works the same way as the group operator. I will discuss it in Chapter 5
along with the join operator.

�Using the Partitioner
The MapReduce Partitioner identifies the Reduce tasks for map output. Using the
MapReduce partitioner in the Group operator helps better manage map output keys.
Specify the class name along with the package name and save this class or the JAR
containing this class in the lib folder.

The following code uses HashPartitioner that uses a hash function to decide the
Reduce task for the Map output:

deptgrp = GROUP emp By deptno partition by org.apache.hadoop.mapreduce.lib.
partition.HashPartitioner;

�Choosing Number of Reducers
The Group operator launches a Reduce task, and you can control the number of Reduce
tasks to ensure optimal performance. Parallel allows you to choose a specified number
of Reduce tasks.

The following code launches ten Reduce tasks:

Deptgrp = GROUP emp By deptno PARALLEL 10;

�Avoiding a Reduce Task
The Reduce task is resource-intensive and can be avoided with the collected option in
the group operator.

http://dx.doi.org/10.1007/978-1-4842-2337-6_5

Chapter 4 ■ Pig Latin Fundamentals

61

The collected option works only under a couple of conditions:

•	 The loader function should implement the CollectableLoadFunc
interface.

•	 Data should be ordered on the group key.

PigStorage does not implement the CollectableLoadFunc interface. An example for
such loader function is HbaseStorage.

The following code computes a column-wise employee count for the deptno column
on the hbase table called employee without launching Reduce tasks:

emp = l�oad 'hbase://employee' using org.apache.pig.backend.hadoop.hbase.
HBaseStorage('empdetails:eno, empdetails:ename, empdetails:salary,
empdetails:dno') as (empno:int,ename:chararray,salary:int,dno:int);

grpall = group emp by dno using 'collected';
totcount =foreach grpall generate group,COUNT(test.empno);
dump totcount;

�Stream
The Stream operator allows you to use other programs in Pig Latin code such as Hadoop
streaming. You can use a shell script, Perl code, and Python code with a stream operator.
The stream operator sends data as input to the program used.

Here’s the syntax:

STREAM relationname THROUGH {`command` | programpath } [AS schema] ;

You will now see how to use Unix commands and a shell program with the stream
operator.

�Using Unix Commands
You can directly use Unix commands in the stream operator.

The following code filters tuples that contains 100 in them using the Unix grep
command:

num = stream emp through `grep 100`;

�Using a Shell Program
When using several Unix commands, it is better to compile all of them in a shell script
and use the script in a stream operator. To make the shell script executable, use the Unix
chmod command. A shell script needs to be present in the local file system.

Chapter 4 ■ Pig Latin Fundamentals

62

The following code searches for 100.Cat filter100.sh:

Grep 100

The following code makes the shell script executable:

Chmod +x filter100.sh

The following code uses the shell script:

emp = �load '/data/employee' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,deptno:int);

Emp = stream Emp through `filter100.sh`;

If the absolute path is not specified for shell scripts, it will look for script files in the
present working directory. The stream operator opens options to use different programs
in Pig Latin code. Shell script or Unix commands are easy to use and code can be easily
modified as you need not compile and run like Java.

�MAPREDUCE
If you have MapReduce programs already written for your project requirement, you
do not need to rewrite the same functionality in Pig Latin. You can use those existing
MapReduce programs in Pig Latin code using the mapreduce operator.

The following code specifies the MapReduce JAR path, and this JAR file contains the
required MapReduce programs to be run. This path belongs to the local file system.

relname = MAPREDUCE '/path/to/mapredue.jar'
 STORE relname1 INTO 'mrinputLocation' USING storeFunc
 LOAD 'mroutputLocation' USING loadFunc AS schema
 [`params, ... `];

MAPREDUCE '/path/to/mapredue.jar'

This stores relation data into an input directory that is the input for the MapReduce
program. This is used to integrate the input Pig Latin relation to the MapReduce program:

 STORE relname INTO 'mrinputLocation'

Once MapReduce generates output, its output will be sent back to the Pig Latin
relation specified in the load operator.

LOAD 'mroutputLocation' USING loadFunc AS schema

MapReduce JAR input parameters are specified here:

`params`

Chapter 4 ■ Pig Latin Fundamentals

63

Without Pig Latin, the MapReduce JAR can be run using the hadoop jar command.
The following command generates the word count using hadoop-mapreduce-examples.jar.
This program takes three inputs: the MapReduce program word count, the input
directory names, and the output directory namesout. The following code shows how to
run MapReduce code:

hdfs@cluster10-1:~> hadoop jar hadoop-mapreduce-examples.jar wordcount names
namesout

The following code runs the same MapReduce program using Pig Latin code:

names = load 'names';
wc = �MAPREDUCE 'hadoop-mapreduce-examples.jar' store names into

'mrinputdir' load 'mroutputdir' as (word:chararray,num:int)
`wordcount namesout mroutputdir` ;

dump wc;

The MapReduce operator launches a Hadoop job such as store and dump operators
and stores output in the relation wc. MapReduce also generates data in the output
directory, and you need to clean it explicitly.

�CUBE

The CUBE operator allows you to perform operations such as cube and rollup.

Chapter 4 ■ Pig Latin Fundamentals

64

Here’s the syntax:

relname = CUBE relname1 BY { CUBE operation| ROLLUP operation } PARALLEL n];

CUBE Operation :�It generates multi dimensional data set on input
field values.

ROLLUP Operation : It generates multi level aggregates.
PARALLEL N : Choosing number of reduce tasks.

�CUBE
The Cube operator generates all combinations for values of the input fields given. (x,y,z)
will produce a data bag as follows:

{ (x, y, z), (null, null, null), (x, y, null), (x, null, z),
 (x, null, null), (null, y, z), (null, null, z), (null, y, null) }

The cube operator is useful for generating multidimensional data sets in Pig Latin.
The schema of a cube is similar to a schema of a group. The cube schema will have a

group tuple and a cube bag.

enoename = cube emp by CUBE(eno,ename);
describe enoename;
enoename: {group: (eno: int,ename: chararray),cube: {(eno: int,ename:
chararray,salary: int,dno: int)}}

The CUBE operator launches a Reduce task so you can choose the number of Reduce
tasks using a parallel keyword. The following code launches ten Reduce tasks to
perform a cube operation:

enoename = cube emp by CUBE(eno,ename) parallel 10;

�ROLLUP
The ROLLUP operator produces a data bag with a hierarchy of input values. (x,y,z) will
produce a data bag like the following:

{ (x, y, z), (x, y, null), (x, null, null), (null, null, null) }

The following code generates a rollup on the employee number and employee name
fields:

Rollupex = CUBE emp by ROLLUP(eno,ename);

As it launches the Reduce task, you can choose the number of Reduce tasks to be
executed, as shown here:

Rollupex = CUBE emp by ROLLUP(eno,ename) parallel 10;

Chapter 4 ■ Pig Latin Fundamentals

65

With the Cube operator, you complete learning most of Pig Latin operators. Now
you will see how to write dynamic scripts using the parameter substitution feature of
Pig Latin.

�Parameter Substitution
Parameter substitution allows you to declare a variable or parameter within the Pig
Latin script whose value you can provide at the time of running the script. Parameter
substitution allows you to write more dynamic scripts. This feature is useful in a production
environment where you do not change an already working script very frequently.

The following code returns five tuples from the employee relation, and the employee
relation will load data from the input directory /data/employee:

emp = �load '/data/employee' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,deptno:int) ;

emp5 = limit emp 5;
dump emp5;

If you want to have five employee tuples from some other input directory, you
need to modify the load statement and run the Pig script. You need to avoid frequent
modifications as changes in requirements will be a common thing and you need to write
dynamic script to make reusable for as many changes as possible. Pig Latin provides a
feature called parameter substitution that will help you write dynamic and reusable Pig
Latin scripts.

Parameter substitution can be achieved in two ways, as listed in Figure 4-2.

Figure 4-2.  Parameter substitution

Now you will learn how these two options help you write dynamic scripts.

�-param
-param allows you to provide values at run time for declared variables in a Pig Latin script.
This is two-step process.

	 1.	 First you need to define a parameter using a dollar symbol ($)
within the Pig Latin code.

Chapter 4 ■ Pig Latin Fundamentals

66

The following code avoids hard-coding the input directory by defining a parameter
called inputdir:

emp = �load '$inputdir' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,deptno:int);

Without the parameter substitution feature, you would hard-code the input path as
follows, which needs to be changed every time the input path is changed.

emp = load '/data/employee' using PigStorage(',') as (eno:int,ename:chararr
ay,salary:int,deptno:int);

	 2.	 The value of parameter inputdir will be substituted at the
time of running the script.

The following code substitutes the inputdir parameter with /data/employee. The
parameter name and its value need to be specified after the -param option.

Pig -param inputdir=/data/employee -f dumpemp5.pig

Now you can run the Pig Latin script with the input directory of your choice without
altering the code.

�-paramfile
The problem with the -param option is that the number of -param options depend on the
number of variables defined in a script that makes it lengthy, as follows:

Pig -param inputdir=/data/employee –param indate=10-01-2016 –delim=:
-outdir=/data/outemp -f dumpemp5.pig

The previous command lacks readability and is also hard to maintain.
To address this problem, you can use the -paramfile option. After defining

parameters in a Pig Latin script, you need to create a file that contains parameter names
and their values.

The following parameter file contains two parameters called inputdir and
outputdir, as well as their values:

Cat /home/hdfs/inputoutput.properties
Inputdir=/data/employee
Outputdir=/data/out/emp

You will specify the parameter file path when running the script.
The following example makes a command readable and also makes it much easier to

maintain variables using a separate file:

Pig -parmafile /home/hdfs/inputoutput.properties -f dumpemp5.pig

Chapter 4 ■ Pig Latin Fundamentals

67

�Summary
In this chapter, you learned three important fundamentals of Pig Latin.

•	 How to run Pig Latin code using pig –e, pig –f, the Grunt shell,
and Java code.

•	 The purpose and usage of Pig Latin basic operators such as limit,
union, split, load, store, and so on.

•	 How to make Pig Latin script more dynamic using the –param and
–paramfile options.

69© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_5

CHAPTER 5

Joins and Functions

Many times you need to retrieve data from more than one relation to generate more
meaningful and readable reports. You can use the joins feature of Apache Pig to retrieve
data from more than one relation.

In Pig Latin, joins can be two types: equi joins and non-equi joins. Equi joins retrieve
data from more than one relation applying equal conditions. A non-equi join retrieves
data from more than one relation applying conditions that are not equal.

Equi joins can be further categorized into inner joins and outer joins. Inner joins
return only matching rows, and outer joins return both matching and nonmatching rows.
Nonmatching rows can be from left, right, or both. Outer joins can be further categorized
into left outer join, right outer join, and full outer join.

Figure 5-1 shows all the join types.

Figure 5-1.  Join types

Chapter 5 ■ Joins and Functions

70

�Join Operators
You will now learn how to perform join operations using Pig Latin. Pig Latin provides two
operators, join and cogroup, to perform join operations.

Consider the following employee and department data:

�Equi Joins
Equi joins use an equality condition to retrieve data from more than one table. To retrieve
the department name of an employee, you would have to match the department number
of the employee relation with the department number of the department relation.

�Inner Joins
An inner join retrieves only those rows that are matched. For example, some employees
may not have a department number. Such employee rows are not displayed in the output.
To perform an inner join, you use relations with a common column.

The following script retrieves the matching rows in the Employee and Department
relations using the common column deptNo:

Employee = �load '/user/hdfs/in/employee' using PigStorage(',') as
(eno:int,ename:charaaray,desg:chararray,deptno:int);

Department=�load '/user/hdfs/in/dept' using PigStorage(',') as
(deptno:int,dname:chararray);

joinempdept = join Employee by deptno,Department by deptno;
enamedanme = foreach joinempdept generate ename,dname;
dump enamedname;

Chapter 5 ■ Joins and Functions

71

The following output does not display the Nitya row in the Employee relation because
it does not have a deptno value. The administration row from the Department relation is
also not displayed because it does not have a matching row.

�Outer Joins
As mentioned earlier, outer joins retrieve not only matching rows but also nonmatching
rows from relations. Outer joins can be performed in three ways.

�Left Outer Join

Left outer joins retrieve matching rows including nonmatching rows from the left relation.
The first relation used in a script is considered the left relation, and the second one is
considered the right relation. You can use only LEFT or LEFT OUTER in a script to specify it
as a left outer join.

The following code also retrieves the nonmatching row from the left relation, which
is the Nitya row:

joinempdept = join Employee by deptno LEFT OUTER,Department by deptno;

�Right Outer Join

The right outer joins retrieve matching rows including nonmatching rows from the
right relation. You can use only RIGHT or RIGHT OUTER in the script to specify it as a right
outer join.

The following code retrieves the nonmatching row from the right-side relation,
which is the administration row:

joinempdept = join Employee by deptno RIGHT OUTER,Department by deptno;

Chapter 5 ■ Joins and Functions

72

�Full Outer Join

You can retrieve nonmatching rows from both relations using a full outer join. You can
use only FULL or FULL OUTER in a script to specify it as a full outer join.

The following code retrieves nonmatching rows from both relations:

joinempdept = join Employee by deptno FULL OUTER,Department by deptno;

All join operations launch Reduce tasks, and Reduce tasks are costly operations in
Hadoop in terms of runtime. Hence, you must optimize joins for better performance. I
will discuss join optimizations in Chapter 16.

�cogroup
cogroup is primarily used for achieving join functionality, but it works in much the
same way as the GROUP operator. cogroup groups data from multiple relations based on
a common column. The difference between the group and cogroup operators is that the
GROUP operator groups data based on columns from one relation, and cogroup groups
data on common columns from two or more relations.

The difference between the cogroup and join operators is that cogroup results will
include a common column, the data from the left relation, and the data from the right
relation, whereas join results will include data only from the left relation and the right relation.

The following code performs an outer join on the Employee and Department relations
using the common column deptno:

emp = �load '/data/employee' using PigStorage(',') as
(empno:int,ename:chararray,salary:int,deptno:int);

dept = load 'dept.csv' using PigStorage(',') as (deptno:int,dname:chararray);
cogrp = cogroup emp by deptno outer,dept by deptno;
describe cogrp;

http://dx.doi.org/10.1007/978-1-4842-2337-6_16

Chapter 5 ■ Joins and Functions

73

{group: int,emp: {(empno: int,ename: chararray,salary: int,deptno: int)},
dept: {(deptno: int,dname: chararray)}}

The describe operator output after the join will look like this:

Empdeptjoin = join emp by deptno,dept by deptno;
Describe empdeptjoin;
empdeptjoin: {�emp::empno: int,emp::ename: chararray,emp::salary: int,

emp::deptno: int,dept::deptno: int,dept::dname: chararray}

�CROSS
The cross operator generates the Cartesian product of two or more relations. This
operator can be used for non-equi joins in Pig Latin.

At times you may have to retrieve data from multiple relations that may not have
any common column. For example, assume that in addition to emp and dept, you have
another relation called salaryrange that defines minsalary, maxsalary, and rangename
for that salary range.

To classify employee salary into a range, you must retrieve data from the employee
and salaryrange relations, and these two do not have any common column. One
solution is to generate a Cartesian product of both relations that matches one row from
one relation with every row of the other relation. The Cartesian product of the employee
and salaryrange relations generates 16 (4*4) rows. Apply the between operation on the
output to get the salary range for an employee salary. This is one example of a non-equi
join. You can use the CROSS operator to generate the Cartesian product of two or more
relations.

The following code generates the Cartesian product for the employee and
salaryrange relations:

Cartesianprod= cross employee,salaryrange;

Complete the previous code to generate the employee name and range name, as
shown here:

Chapter 5 ■ Joins and Functions

74

�Functions
Pig Latin provides several functions to process data. The two types of functions in Pig
Latin are built-in functions and user-friendly functions. Built-in functions come with Pig,
and you can directly use them by mentioning their name. If you cannot find a suitable
function, you can write your own function and use it in Pig Latin. Such functions are
called user-defined functions.

Pig Latin provides the built-in functions listed in Figure 5-2. Built-in functions are
case sensitive, and most of them are in uppercase.

Figure 5-2.  Built-in functions

�String Functions
String functions are used to work on a sequence of characters. Most string functions work
the way string functions work in Java. The following are some String functions.

Chapter 5 ■ Joins and Functions

75

�UPPER
The UPPER function converts input string into uppercase. It allows chararray data.

The following code converts all employee names into uppercase:

ucase= foreach employee generate UPPER(ename);

�LOWER
The LOWER function converts input string into lowercase. The LCFIRST function converts
the first letter into lowercase, and UCFIRST converts the first letter into uppercase.

The following code converts the first letter of all employee names into uppercase:

firstucase= foreach employee generate UCFIRST (ename);

�TRIM
Extra spaces are a common issue in data. The field data might start with a space, might
end with space, or both. TRIM removes both spaces. If you are sure that data only starts
with space or only ends with space, then you can use LTRIM or RTRIM, respectively.
The TRIM operation takes more time than LTRIM and RTRIM. Sometimes joins do not
work because of space issues, so it is a good idea perform trim operations on common
columns.

The following code removes spaces from both ends of the string TEST:

Nospace = foreach dummy generate TRIM (' TEST ');

�REPLACE
The REPLACE function is used to replace existing characters with new specified characters.
It internally uses Java’s replaceAll function, as follows: http://docs.oracle.com/
javase/6/docs/api/java/lang/String.html#replaceAll(java.lang.String, java.
lang.String). Java escape characters replace special characters. It also allows RegEx like
Java functions.

Here’s the syntax:

REPLACE(string, 'existingStr', 'newChars');

The following code replaces the asterisk characters with the word star:

foreach dummy generate REPLACE('character *','*','star');

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#replaceAll(java.lang.String
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#replaceAll(java.lang.String

Chapter 5 ■ Joins and Functions

76

�STRSPLIT
The STRSPLIT function splits the string using the delimiter specified. It works like a string
tokenizer. A delimiter can also be a regular expression. limit is the integer value that
specifies the number of times the delimiter must be applied.

Here’s the syntax:

STRSPLIT(string, delim, limit)

Tokens= foreach names generate STRSPLIT('this:is:test:',':',2);

The STRSPLITTOBAG function is similar to STRSPLIT. The only difference is
that STRSPLITTOBAG returns a bag data type. For example, the previous code with
STRSPLIT returns the ((this,is:test:)) output and with STRSPLITTONAG returns the
({(this),(is:test:)}) output.

�UniqueID
The UniqueID function returns a unique value to every record. It uses taskindex and
sequence to generate a unique value.

�SUBSTRING
The SUBSTRING function returns a substring of a string. It takes three arguments. They are
the input string, start index, and stop index. SUBSTRING returns characters starting from
the start index until the stop index.

The following code returns the World substring from “Hello World”:

Foreach dummy generates SUBSTRING('Hello World','6','11')

�Mathematical Functions
Most mathematical functions in Pig Latin work the same way as Java mathematical
functions.

Let’s look at some mathematical functions in Pig Latin.

�FLOOR
The Floor function returns the largest previous integer that is less than or equal to the
input number like a mathematics floor function.

https://pig.apache.org/docs/r0.16.0/func.html#strsplittobag

Chapter 5 ■ Joins and Functions

77

The following are some examples:

Floorvalue=Foreach dummy generate floor(4.9)

�CEIL
The CEIL function returns the smallest next integer that is greater than or equal to the
input number like a mathematics ceil function.

Here’s an example:

Ceilvalue = Foreach dummy generate ceil(4.9)

�ROUND
The ROUND function returns a rounded value of an input number like a mathematical
round function. It is performed on decimals.

Here’s an example:

Chapter 5 ■ Joins and Functions

78

If you have more than one decimal value and want to preserve a specific number of
digits, you can use the ROUND_TO function. The ROUND_TO function allows you to specify
the number of digits to be retained as a second argument.

digits4=Foreach dummy generate Round_To(123.22,4)

�RANDOM
The RANDOM function returns a pseudo-random number between 0.0 and 1.0.

Randnum = foreach dummy generate RANDOM();

�ABS
The ABS function returns the absolute value of an input number.

Abvsvalue = forach dummy generate ABS(-4.3);

Pig Latin provides more mathematical functions such as sin, tan, and cos.
Please refer to Appendix A for a complete list of functions.

�Date Functions
Pig Date functions depend on the Java Date API and the JODATIME API.

The following are some important functions in Pig Latin.

�CurrentTime
The CurrentTime function returns the current datetime object similar to the JODATIME
API. The datetime object provides the date, time, and time zone information.

The following code returns the current date with the time and an India time zone:

Timenow = forach dummy generate CurrentTime();
Dump timenow;
(2016-06-27T13:01:39.402+05:30)

�GetDay
The GetDay function returns the day from the input datetime field.

The following code returns the current day from the current date:

Currentday=foreach names generate GetDay(CurrentTime());

Pig provides similar functions to get the hour, second, week, month, and year using
the GetHour, GetSecond, GetWeek, GetMonth, and GetYear functions.

http://c/Users/BV186006/Downloads/APPendix A
https://pig.apache.org/docs/r0.16.0/func.html#get-day

Chapter 5 ■ Joins and Functions

79

�DAYSBETWEEN
DAYSBETWEEN returns the number of days between two datetime fields.

The following code returns 9 as the day difference between 2016-06-19 and 2016-06-10:

days = �foreach dummy generate DaysBetween(ToDate('2016-06-19'),
ToDate('2016-06-10'));

Pig also provides similar functions such as HOURSBETWEEN, MINUTESBETWEEN,
SECONDSBETWEEN, WEEKSBETWEEN, MONTHSBETWEEN, and YEARBETWEEN to find the difference
in hours, minutes, seconds, weeks, months, and years.

�TODATE
TODATE converts the input field value to a date format. This function can be used in four ways.

The following code converts milliseconds to the date format; milliseconds are
considered from 1970-01-01T00:00:00.000Z. You can use the ToMilliSeconds function to
convert the date to milliseconds.

ToDate(milliseconds)

The following code returns the current date in milliseconds:

currentmillis = foreach dummy generate ToMilliSeconds(CurrentTime());

ToDate(isostring)

It converts ISOString to a datetime format.
The following code converts the string data into the datetime data type:

strtodate = foreach dummy generate ToDate('2016-06-19');

ToDate(string, requiredformat)

The following code converts the string to a user-specified format. You can use the
Java SimpleDateFormat class specification (http://docs.oracle.com/javase/6/docs/
api/java/text/SimpleDateFormat.html) to set the format.

ToDate(string, requiredformat, timezone)

It converts a string to the user-specified format and time zone.
You can use the ToString function to convert the datetime field value to the string type.

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Chapter 5 ■ Joins and Functions

80

�TOUNIXTIME
The ToUnixTime function returns the Unix time for the datetime field value. It is the
number of seconds elapsed since January 1, 1970, 00:00:00.000 GMT.

The following code returns the current date in seconds:

currentseconds = foreach dummy generate ToUnixTime(CurrentTime());

I will discuss user-defined functions (UDFs) in greater detail in Chapter 11.

�EVAL Functions
All functions that extend the EVALFUNC class are EVAL functions, and they run once per
tuple.

The following are some EVAL functions.

�AVG
The AVG function returns the average of numbers from the input field. The AVG function
must be preceded by the GROUP operator.

The following code returns the department-wise average salary:

deptgrp = GROUP emp by deptno;
flat = foreach deptgrp generate FLATTEN(group),AVG(emp.salary);

�MIN
The MIN function returns smallest number from the input field. The MIN function needs to
be preceded by the GROUP operator. It ignores null values. It returns the department-wise
minimum salary.

deptgrp = GROUP emp by deptno;
flat = foreach deptgrp generate FLATTEN(group),MIN(emp.salary);

Like with MIN, Pig Latin also provides the MAX function that returns the largest
number from the input field.

�COUNT
The COUNT function returns the total number of elements from the input field. The COUNT
function must be preceded by the GROUP operator. The COUNT function ignores null values.
To consider null values, use COUNT_STAR.

http://dx.doi.org/10.1007/978-1-4842-2337-6_11

Chapter 5 ■ Joins and Functions

81

The following code returns the employee count of every department number:

deptgrp = GROUP emp by deptno;
flat = foreach deptgrp generate FLATTEN(group),COUNT_STAR(emp.deptno);

�BagToString
The BagToString function converts data from a bag structure to a normal string.

�Complex Data Type Functions
Here are the complex data type functions.

�TOTUPLE
The TOTUPLE function converts given fields into the tuple data type.

The following code converts four fields (empno, ename, salary, and deptno) into a
tuple:

grunt>emptuple= foreach emp generate TOTUPLE(empno,ename,salary,deptno);
grunt>dump emptuple;

((100,Bala,100000,200))
((200,Radha,200000,300))
((300,Nitya,150000,))
((400,Nirupam,1600000,200))

�TOBAG
The TOBAG function converts given fields into the bag data type.

The following code converts four fields (empno, ename, salary, and deptno) into a bag
data type:

empbag= foreach emp generate TOBAG(empno,ename,salary,deptno);
dump empbag;

({(100),(Bala),(100000),(200)})
({(200),(Radha),(200000),(300)})
({(300),(Nitya),(150000),()})
({(400),(Nirupam),(1600000),(200)})

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Joins and Functions

82

�TOMAP
The TOMAP function converts given fields into the map data type. As map contains key and
value data, you provide two fields as input and the key as a chararray data type.

The following code converts ename and empno fields into a map data type:

Grunt>empmap= foreach emp generate TOMAP(ename,empno);
grunt>dump empmap;

([Bala#100])
([Radha#200])
([Nitya#300])
([Nirupam#400])

�TOP
The TOP function returns the top N tuples from a bag.

Top(N,tuplenumber,relationname)

The TOP function takes three inputs: the number of tuples to be returned, the tuple
number at which counting begins, and the relation name from which tuples must be
retrieved.

The following code generates the deptno-wise employee count and then returns the
first tuple from the output. You have created an alias for the TOP function and grouped
deptno-wise employee count data. You must apply the GROUP operator before applying the
TOP function.

DEFINE desca TOP('DESC');---first define macro

emp = �load 'employee.csv' using PigStorage(',') as
(empno:int,ename:chararray,salary:int,deptno:int);

deptnogrp = group emp by deptno;
empcount = foreach deptnogrp generate FLATTEN(group),COUNT(emp) as ecount;
empcount = GROUP empcount BY ecount; ---group before applying top
empcount = foreach empcount{
result = desca(2,1,empcount);
 generate result;
}
dump empcount;

�Load/Store Functions
Pig Latin provides several functions for reading and writing different data formats such
as ORC, Binary, and Avro, and some functions are used for reading and writing different
technology data such as HBase and Accumulo.

You will learn some load/store functions here.

Chapter 5 ■ Joins and Functions

83

�JsonLoader/JsonStorage
JsonStorage writes given relation data into the file system in JavaScript Object Notation
(JSON) format. It also generates a hidden schema file called .pig_schema containing
field names and data types and a hidden header file called .pig_header in the output
directory. The header file contains the field names.

The following code writes employee relation data in JSON format:

employee = �load 'employee.csv' using PigStorage(',') as
(eno:int,ename:chararray,salary:int,deptno:int);

store employee into 'csvtojson'using JsonStorage();

It generates the following files in the output directory:

 ls -ltra csvtojson
total 36
-rw-r--r-- 1 hdfs hadoop 8 Jun 23 02:44 ._SUCCESS.crc
-rw-r--r-- 1 hdfs hadoop 0 Jun 23 02:44 _SUCCESS
-rw-r--r-- 1 hdfs hadoop 12 Jun 23 02:44 ..pig_schema.crc
-rw-r--r-- 1 hdfs hadoop 429 Jun 23 02:44 .pig_schema
-rw-r--r-- 1 hdfs hadoop 12 Jun 23 02:44 ..pig_header.crc
-rw-r--r-- 1 hdfs hadoop 24 Jun 23 02:44 .pig_header
-rw-r--r-- 1 hdfs hadoop 12 Jun 23 02:44 .part-m-00000.crc
-rw-r--r-- 1 hdfs hadoop 232 Jun 23 02:44 part-m-00000
drwxr-xr-x 2 hdfs hadoop 4096 Jun 23 02:44 .
drwxr-xr-x 7 hdfs hadoop 4096 Jun 23 02:57 ..

JsonLoader reads JSON data. JsonLoader can be used with or without a schema.
If you do not specify the schema in code, it assumes there is a schema file called .pig_
schema in the input directory.

employee = load 'employee.csv' using JsonStorage(',')
dump employee;

{"eno":100,"ename":"Bala","salary":100000,"deptno":200}
{"eno":200,"ename":"Radha","salary":200000,"deptno":300}
{"eno":300,"ename":"Nitya","salary":150000,"deptno":null}
{"eno":400,"ename":"Niruopam","salary":1600000,"deptno":200}

�PigStorage
The PigStorage function reads and writes structured text files. It is the default load/
store function in Pig Latin. It takes two inputs; one is the delimiter, and the other is a list
of options. The default delimiter is a tab (\t). The delimiter is a single character, and if
control characters such as Ctrl+B are delimiters, you need to use their Unicode character
(\u002) as the delimiter.

PigStorage('[delimiter]','[options]');

Chapter 5 ■ Joins and Functions

84

The ('schema') option is used for reading data using a schema from the schema files
from their Unicode character (\u002) as the input directory and for writing the schema to
the output directory.

The following code generates a schema file while writing data to the output
directory:

store emp into 'empnew' using PigStorage(',','-schema') ;

You can use the ls -ltra command to view hidden schema files and header files.

hdfs@cluster10n1:~> ls -ltr emp
-rw-r--r-- 1 hdfs hadoop 8 Jun 27 13:15 ._SUCCESS.crc
-rw-r--r-- 1 hdfs hadoop 0 Jun 27 13:15 _SUCCESS
-rw-r--r-- 1 hdfs hadoop 12 Jun 27 13:15 ..pig_schema.crc
-rw-r--r-- 1 hdfs hadoop 147 Jun 27 13:15 .pig_schema
-rw-r--r-- 1 hdfs hadoop 12 Jun 27 13:15 ..pig_header.crc
-rw-r--r-- 1 hdfs hadoop 3 Jun 27 13:15 .pig_header
-rw-r--r-- 1 hdfs hadoop 12 Jun 27 13:15 .part-m-00000.crc
-rw-r--r-- 1 hdfs hadoop 120 Jun 27 13:15 part-m-00000
drwxr-xr-x 2 hdfs hadoop 4096 Jun 27 13:15 .
drwxr-xr-x 11 hdfs hadoop 12288 Jun 27 13:17 ..

The following are the options:

•	 ('noschema'): This is used to ignore the available schema file.

•	 ('tagsource'): tagsource is outdated; tagpath is the latest
option. This adds the first column with the input path.

•	 ('tagPath'): This adds the pseudo-column INPUT_FILE_PATH to
the beginning of the record.

•	 ('tagFile'): This adds the pseudo-column INPUT_FILE_NAME to
the beginning of the record.

�TextLoader
The TextLoader function is used for reading unstructured data. It is used only for reading
data from the source and does not work for writing data.

�HbaseStorage
The HbaseStorage function is used for reading and writing HBase table data. The
HbaseStorage function takes two inputs; one is a list of columns, and the other consists
of the options to be used. The load operator takes the table name in hbase://tablename
format.

Chapter 5 ■ Joins and Functions

85

Here’s the syntax:

Relname = load 'hbase://tablename' using HbaseStorage('columnnames',['options']);

Specify the column name and column family with a colon (:) between them. To
delimit columns, use either a space or a comma.

Some important features of HbaseStorage are discussed here:

•	 You can specify all columns in a column family using * or without
specifying any column name. This will produce a Pig map with
column names as a key. The following code retrieves all columns
from the empdetails column family from the employee HBase table.

emp = �load 'hbase://employee' using org.apache.pig.backend.
hadoop.hbase.HBaseStorage('empdetails:*') ;

dump emp;

([ename#bala,dept#200,salary#100000,eno#100])

•	 You can specify column names that start with a particular string.
The following code retrieves only columns that start with e. This
will also produce data in a Pig map data type.

emp = �load 'hbase://employee' using org.apache.pig.backend.
hadoop.hbase.HBaseStorage('empdetails:e*') ;

dump emp;
([ename#bala,eno#100])

•	 You can specify a list of column names without any filter
condition using a space or a comma as a delimiter. The following
code retrieves eno, ename, salary, and deptno columns from the
employee table. You can define any schema using this method.

emp = �load 'hbase://employee' using org.apache.pig.backend.
hadoop.hbase.HBaseStorage('empdetails:eno,empdetails:ename,
empdetails:salary,empdetails:deptno') as (eno:int,ename:chararray,
salary:int,deptno:int);

dump emp;

The following are some options of HbaseStorage that you can use:

•	 -loadKey retrieves the row key as the first value in every tuple,
and the default value is false.

•	 -gt=minrowKeyVal retrieves rows with a rowKey greater than
minrowKeyVal.

•	 -lt=maxrowKeyVal retrieves rows with a rowKey less than
maxrowKeyVal.

Chapter 5 ■ Joins and Functions

86

•	 -regex=regex retrieves rows that match this RegEx on a row key.

•	 -limit=numRowsPerRegion retrieves the maximum
numRowsPerRegion number of rows per region.

•	 The -delim=delim delimiter can be used on a column list (the
default is whitespace).

•	 -minTimestamp=timestamp returns cell values that have a creation
timestamp greater than or equal to the timestamp value specified.

•	 -timestamp=timestamp retrieves cell values that have a creation
timestamp equal to the specified value.

•	 -includeTimestamp displays the timestamp after the rowkey (for
example, rowkey, timestamp, …).

Refer to Appendix C for a complete list of options.
The following code retrieves the row key along with the columns eno, ename, salary,

and deptno:

emp = �load 'hbase://employee' using org.apache.pig.backend.hadoop.hbase.
HBaseStorage('empdetails:*','-loadKey=true')

dump emp;

�Storing Data into HBase

To store Pig relation data in the HBase table, specify the HBase table in a clause and a list
of columns in the HbaseStorage() function. The first column is considered as a row key.
The table must be present in HBase.

The following code stores data in the Hbase table emp and the first column eno as a
row key:

emp = �load 'employee.csv' using PigStorage(',') as
(empno:int,ename:chararray,salary:int,deptno:int);

store emp into 'hbase://emp' using org.apache.pig.backend.hadoop.hbase.
HBaseStorage(
 'empdetails:ename empdetails:salary empdetails:deptno ');

If you scan the emp table in HBase, you will see eno stored as a row key.

hbase(main):001:0> scan 'emp'
ROW COLUMN+CELL
 100 column=empdetails:deptno,
timestamp=1466921682193, value=200
 100 column=empdetails:ename,
timestamp=1466921682193, value=Bala
 100 column=empdetails:salary,
timestamp=1466921682193, value=100000
1 row(s) in 0.3040 seconds

Chapter 5 ■ Joins and Functions

87

Like HbaseStorage, Pig Latin also provides ACCUMULOSTORAGE functions to read and
write data from and to the Accumulo data store.

�OrcStorage
The OrcStorage function is used for both reading and writing (Optimized Row Columnar
(ORC) data format. ORC is an efficient data format used for high performance.

Here’s the syntax:

Relname = load '/path/to/dataset' using OrcStorage(['options']);

You can specify compression and stripe size as options. Refer to Appendix C for a
complete list of options.

Options are available while writing data, and the following code converts CSV data
into ORC format applying Snappy compression:

employee = �load 'employee.csv' using PigStorage(',') as
(eno:int,ename:chararray,salary:int,deptno:int);

store employee into 'csvtoorc'using OrcStorage('-c SNAPPY');

�Loading Data

If filter conditions are available after the load operator and they are on normal data types,
they will be moved to the load operator for better performance.

The following code loads ORC data using the OrcStorage function, and the filter
condition deptno=200 is moved to the load operator so data will be loaded more quickly.

employee = �load 'csvtoorc' using OrcStorage as
(eno:int,ename:chararray,salary:int,deptno:int);

dept200 = filter emp by deptno==200;

�Summary
In this chapter, you learned two important features of Pig Latin.

•	 How to perform join operations such as equi joins and nonequi
joins using the join, cogroup, and cross operators

•	 How to use different built-in functions of Pig Latin like String,
Math, Date, Eval, and Load/Store

89© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_6

CHAPTER 6

Creating and Scheduling
Workflows Using Apache
Oozie

Big data processing in Hadoop usually involves multiple technologies that have to be
implemented in a certain order and manner. Often, these technologies also interact with
one another. For instance, a certain step n in the workflow can be executed if and only
if step n-1 has been successfully executed. Manually executing each of these multiple
steps is time-consuming. Apache Oozie addresses this problem by providing dependency
management among different steps and technologies.

Apache Oozie is a web application that provides a job execution service for Hadoop
ecosystem jobs. It can execute both order-based jobs and time-based jobs. Currently, it
supports MapReduce, Hive, Sqoop, Spark, and Pig jobs. You can also run cascading jobs.
In this chapter, you will learn how to submit Pig jobs using Oozie. (Oozie means “elephant
rider” or “elephant keeper” in Burma.)

�Types of Oozie Jobs
Primarily, Oozie can execute two types of jobs: workflow jobs and coordinator jobs.
Workflow contains a bunch of Hadoop ecosystem jobs that run as a single unit in a
specified order. Coordinator jobs provide a scheduler service for Hadoop ecosystem jobs.
They can schedule Hadoop jobs depending on both a time and an event. You can launch
a list of coordinator jobs as a bundle application in Oozie. In this chapter, you will learn
how to write simple workflow and coordinator applications.

�Workflow
To write a workflow application, you will need a job.properties file, a workflow.xml file,
and a Hadoop ecosystem job script file. For example, to run a Pig job after a Hive job, you
will require a job.properties file, a workflow.xml file, a Pig script file, and a Hive script
file. Now you will learn more about these files.

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

90

�job.properties
The job.properties file in a workflow application primarily contains Hadoop
environment details and workflow details such as the HDFS namespace, the job tracker
URL, the workflow application path, and some other details.

Use the fs.defaultFS property to specify the HDFS namespace. This property is
available in core-site.xml, and the value can be taken from that file.

The following is an example that specifies the HDFS namespace:

fs.defaultFS=hdfs://cluster10

In older versions, you specified the namenode address of the Hadoop cluster as
follows:

nameNode=hdfs://namenodehostname:8020

Use the property mapreduce.jobtracker.address to specify the jobtracker address
of the Hadoop cluster. This property is available in the mapred-site.xml file.

mapreduce.jobtracker.address=cluster10-1:8021

Use the property oozie.wf.application.path to specify the workflow application
path in the HDFS cluster and use the oozie.libpath property to specify the library path.

The job.properties file is stored in the local file system and can be easily modified
to run the Oozie script on different clusters.

�workflow.xml
The workflow is defined using workflow.xml. It contains two types of XML tags also called
nodes: control nodes and action nodes.

Control nodes specify the job priority, that is, which job has to be run first and which
job has to be run last. Some control nodes include the following:

•	 Start node: Decides which Hadoop job has to be run first

•	 End node: Decides which Hadoop job has to be run last

•	 Kill node: Aborts a Hadoop job when it fails

The action node decides the job to be executed. It supports MapReduce, Hive, Pig,
Sqoop, Ssh, Distcp, and Spark jobs. Every job either fails or succeeds; hence, every action
will have two more tags called OK and Error to decide the next action. The OK tag decides
the next job to be run if the current job is successful, and the Error tag will decide the next
action if the current job fails.

Figure 6-1 depicts how different nodes work. The action is executed until it fails or it
reaches the end node.

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

91

�Using a Pig Latin Script as Part of a Workflow
The following are the steps for using a Pig Latin script as part of a workflow.

�Writing job.properties
First, you must write the job.properties file. As discussed, the jobtracker address, the
file system address, and the workflow application path must be set in the job.properties
file. You can declare variables with some value so that they are reusable within the Oozie
application.

The following sample job.properties file defines variables called examplesRoot
with value examples. It also has a variable called user.name that gets resolved to
the current user of the operating system. If the current user is hdfs, then oozie.
wf.application.path will resolve to /user/hdfs/examples/apps/pig. You must create
this directory in HDFS.

fs.defaultFS=hdfs://cluster10
mapreduce.jobtracker.address=cluster10n1:8021
queueName=default
examplesRoot=examples
oozie.use.system.libpath=true
oozie.libpath=/user/${user.name}/${examplesRoot}/apps/examples-lib
oozie.wf.application.path=/user/${user.name}/${examplesRoot}/apps/pig

�workflow.xml
workflow.xml starts with the <workflow-app> XML tag, and you can use the attribute
name in it to name your Oozie workflow. The <start> tag specifies the action name to be
run first in the workflow using the attribute called to.

Figure 6-1.  How nodes work

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

92

The workflow.xml file shown next contains an action named first-pig-node to
be started first. The <start> tag is followed by a list of <action> tags representing action
nodes. Every <action> tag has <ok> and <error> tags to represent success and failure.
The tags <ok> and <error> have two attributes to represent the next tags to be executed.
The tag <end> represents the end of the workflow. The <kill> tag represents error
message to be thrown in case an action fails.

The Pig action should have <pig> tag within it. The <script> tag contains the path
of the Pig script file that must be run. This script file must be placed in the hdfs directory
mentioned in the job.properties file as the value of oozie.wf.application.path. The
parameters ${jobTracker} and ${nameNode} will resolve using their values defined in the
job.properties file.

A sample workflow.xml file follows:

<workflow-app xmlns="uri:oozie:workflow:0.2" name="pig-wf">
 <start to="first-pig-node"/>
 <action name="first-pig-node">
 <pig>
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>
<script>id.pig</script>
 </pig>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <me�ssage>Pig failed, error message[${wf:errorMessage(wf:lastErrorNo

de())}]</message>
 </kill>
 <end name="end"/>
</workflow-app>

�Set a Value to a Property
You can use the <configuration> tag to specify a value to a property. The
<configuration> tag has a property tag, and it in turn has two tags, <name> and <value>.

The following code sets the MapReduce queue name to the default:

<configuration>
 <property>
 <name>mapred.job.queue.name</name>
 <value>default</value>
 </property>
</configuration>

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

93

�Passing Parameter Values
You can pass values to parameters such as the -param option in Pig. You can use the
<param> tag immediately after the <script> tag to pass a value to a parameter. The
following code sets the value /user/data/input to the parameter INPATH:

<param>INPATH=/user/data/input </param>

You can write the initialization steps using a <prepare> tag that is to be executed
before the workflow is launched.

The following code deletes a folder before the workflow begins:

<prepare>
 <delete path="/user/hdfs/output-data/pig"/>
</prepare>

�Uploading Files to HDFS
After you write job.properties and workflow.xml, you can upload workflow.xml and
the Pig script file to the HDFS directory specified as a value of oozie.wf.application.
path. You also need to upload JARs to the HDFS directory specified in the lib.path
property of the job.properties file.

Hdfs dfs -put /path/to/workflow.xml /user/hdfs/examples/apps/pig
Hdfs dfs -put /path/to/script.pig /user/hdfs/examples/apps/pig

�Submit the Oozie Workflow
You can use the Oozie command-line interface to submit the Oozie workflow. The oozie
job command submits the workflow. It requires the oozie option that takes the Oozie
server URL and the config option that takes the job.properties file.

oozie job -oozie http://localhost:11000/oozie -config job.properties -submit

job:14-20160525161321-oozie-test-w

The submit option submits the workflow to the Oozie server, and it puts the workflow
in PREP status. If the workflow is successfully submitted, it returns the Oozie job ID;
otherwise, it returns an error. The start command executes the Oozie workflow.

oozie job -oozie http://localhost:11000/oozie -config job.properties -start

Once the workflow is initiated, you can monitor it from the web console or the
command-line interface.

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

94

The latest version of Oozie does not require workflow.xml to be written. It comes
with the oozie pig command that generates workflow.xml. Only a complex workflow
requires workflow.xml to be written.

Write two Pig scripts. The first one lists all employees whose designation is
“software engineer” and writes data to HDFS, and the second one counts the
department-wise number of employees from the first program output. Run them
manually first and write an Oozie workflow including both programs to see the
advantages of the Apache Oozie workflow.

�Scheduling a Pig Script
After developing a workflow, you have to decide how often you want to run it. As per specific
business needs, you can run it monthly, quarterly, or yearly. Rather than running the workflow
manually at chosen intervals, use the Oozie coordinator to automate the process. You can run
the workflow not only on a specified date and time but also based on data availability.

To use the Oozie coordinator, you must write the job.properties file and
coordinator.xml file for developing the coordinator application.

You’ll now learn how to write these files and integrate them with a workflow.

�Writing the job.properties File
The job.properties file for the coordinator is the same as the workflow job.properties.
The only difference is that the job.properties file has the oozie.coord.application.
path property instead of the oozie.wf.application.path property. The oozie.coord.
application.path property must include the hdfs directory that stores coordinator files.
The job.properties file is in the local file system like the workflow job.properties file.

�Writing coordinator.xml
The file coordinator.xml starts with the tag <coordinator-app>, which has the following
attributes: start, end, frequency, and timezone.

�start
start contains the date and time when you want to run the workflow application. You
can hard-code this value in yyyy-mm-ddThh:mmZ format. Or you can declare a parameter
as ${start} so that you can specify its value in the job.properties file. You can control
the coordinator from the job.properties file, available in the local file system.

�end
end specifies the date and time when you want to stop running the workflow application.
You can hard-code this value in yyyy-mm-ddThh:mmZ format. Or you can declare a
parameter as ${end} so that you can specify its value in the job.properties file.

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

95

�frequency
frequency determines how often you want to run the workflow application. It could be
monthly, quarterly, or yearly or as per your requirements. Many options are available to
run it as per your business requirements.

�timezone
This specifies the time zone where you want to run your workflow. For example, you can
specify GMT or UTC.

The following code runs the workflow application every ten minutes starting from
2016-06-02T09:00Z and ending at 2016-06-02T10:00Z in the UTC time zone.

<coordinator-app name="cron-coord" frequency="${coord:minutes(10)}"
start="2016-06-02T09:00Z" end="$2016-06-02T10:00Z" timezone="UTC"
 xmlns="uri:oozie:coordinator:0.2">

The following code runs the workflow application every ten minutes taking the start
value and the end value from the job.properties file in the UTC time zone:

<coordinator-app name="cron-coord" frequency="${coord:minutes(10)}"
start="${start}" end="${end}" timezone="UTC"
 xmlns="uri:oozie:coordinator:0.2">

coord:minutes is an Oozie built-in variable. It also has coord:hours,coord:days
and coord:months variables, or you can also use the cron syntax to specify how often you
want to run workflow application.

�Integrating with the Workflow
You can use the <workflow> tag within the <coordinator-app> tag to specify the
workflow to be integrated with the coordinator. The <workflow> tag contains a child tag
called <app-path> that contains the workflow application path. You can hard-code the
workflow application path or you can specify a parameter that gets resolved using the
job.properties variable.

The following code takes the workflow application path from a variable named
workflowAppUri in the job.properties file:

<workflow>
 <app-path>${workflowAppUri}</app-path>
</workflow>

The following code contains the workflow application path /user/hdfs/examples/
apps/pisg. This hdfs directory contains the workflow.xml file; required source code files
such a Hive, Pig, or MapReduce; and the required JAR files.

<workflow>
 <app-path>/user/hdfs/examples/apps/pig</app-path>
</workflow>

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

96

�Upload Files to HDFS
You upload the coordinator.xml file to the hdfs directory specified as the value of
oozie.coord.application.path. You keep the job.properties file in the local file
system.

�Submitting Coordinator
You can submit the coordinator application using the Oozie command-line interface.
Although you use the same command that you used for workflow submission, here you
use only the coordinator job.properties file. If submitted successfully, the job ID is
returned. For the workflow, the job ID ends with w, and for the coordinator application, it
ends with c. If submission fails, it throws an error.

oozie job -oozie http://localhost:11000/oozie -config /path/to/job.
properties -submit

job:14-20160525161321-oozie-test-c

After completing the workflow exercise given in the previous section, write a
coordinator application using that workflow code and make it run once daily for 30 days.

�Bundle
Bundle is an Oozie application that is used for managing and launching a list of Oozie
coordinators as a single application. Bundle requires the job.properties and bundle.
xml files. job.properties is in the local file system, and the bundle.xml file is in HDFS.
The bundle.xml file starts with the <bundle-app> tag and contains a list of <coordinator>
tags. <coordinator> tags should have a child tag called <app-path> that contains
the HDFS directory path for the coordinator application. You can submit the Bundle
application in the same way as the workflow and coordinator applications using the
command-line interface. The job.properties file must have the property oozie.bundle.
application.path.

�oozie pig Command
Oozie introduced the oozie pig command beginning in version 3.3.2, which simplifies
the Oozie workflow submission with a Pig script.

Table 6-1 lists the options available for oozie pig.

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

97

The following command submits the dumpemp.pig script using the oozie pig
command. There is no need to upload the Pig script file to HDFS because the following
command automatically generates workflow.xml that you can view using the Oozie web
console:

oozie pig -oozie http://localhost:8080/oozie -file /path/to/ dumpemp.pig
-config job.properties

You can pass values to parameters using the -X option.
The following code passes values to the input path and the output path parameters

INPATH and OUTPATH:

oozie pig -oozie http://localhost:8080/oozie -file /path/to/ dumpemp.
pig -config job.properties -X -param INPATH=/user/hdfs/data/movies -param
OUTPATH==/user/hdfs/out/movies

When you have to pass many parameter values, you can use the paramfile option
just as in Apache Pig. All you need to do is define all the values in a file and then specify
the file path.

The following code uses the –param file option:

Cat paramvalues
INPATH=/user/hdfs/data/movies
OUTPATH==/user/hdfs/out/movies

oozie pig -oozie http://localhost:8080/oozie -file /path/to/ dumpmovies.pig
-config job.properties -X -paramfile /path/to/paramvalues

Table 6-1.  oozie pig Options

Option Description Example

-X <arg> To pass parameters to Pig -X -param input=/user/hdfs/input

-auth <arg> To specify the
authentication type

-auth SIMPLE

-config <arg> To specify the
job.properties file

-config job.properties

-doas <arg> To specify to impersonate
user

-doas oozie

-file <arg> To specify the Pig script file -file /path/to/pigscriptfile

-oozie <arg> To specify the Oozie server
URL

-oozie http://localhost:11000/oozie

http://localhost:11000/oozie

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

98

�Command-Line Interface
Oozie provides a command-line interface that includes commands for job
management, admin operations, and specific commands for each technology such as
Hive and Pig as of now.

The command-line interface internally uses the REST API to interact with the Oozie
server.

I’ll introduce you to some of the most used commands in the Oozie CLI.

�Job Submitting, Running, and Suspending
Oozie provides job command options for submitting, running, and suspending jobs.

Use the submit option to submit an Oozie job that is in PREP status. Use the run
option to run an Oozie job and the suspend option to suspend a job (the job is then
assigned suspend status).

The following command suspends an existing workflow:

oozie job -oozie http://cluster10-1:11000/oozie -suspend
0000014-160411112524820-oozie-oozi-W

To execute the -oozie option, the Oozie HTTP URL that is the value of the oozie.
base.url property value in oozie-site.xml is mandatory.

�Killing Job
Use the Oozie command-line interface option –kill to abort an Oozie job by specifying
the job ID.

The following command kills the existing workflow job:

oozie job -oozie http://cluster10-1:11000/oozie -kill
0000014-160411112524820-oozie-oozi-W

�Retrieving Logs
You can retrieve server logs for a specific Oozie job with its job ID using the logs option.

The following command retrieves logs for workflow job
0000014-160411112524820-oozie-oozi-W:

oozie job -oozie http://cluster10-1:11000/oozie -logs
0000014-160411112524820-oozie-oozi-W

�Information About a Job
You can use the -info option to get more information about a job, such as a workflow
application path, job status, and external job ID.

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

99

The following command retrieves more information about a workflow job.
The following output contains more information about a workflow job such as the

username submitted, the time created, the time started, the time ended, and so on:

oozie job -oozie http://cluster10-1:11000/oozie -info
0000014-160411112524820-oozie-oozi-W
.---
--
Workflow Name : map-reduce-wf
App Path : hdfs://localhost:9000/user/hdfs/examples/apps/pig
Status : SUCCEEDED
Run : 0
User : hdfs
Group : users
Created : 2016-05-26 10:01 +0000
Started : 2016-05-26 10:01 +0000
Ended : 2016-05-26 05:01 +0000
Actions
.---
--
Action Name Type Status Transition External Id
External Status Error Code Start End
.---
--
hadoop1 map-reduce OK end
job_200904281535_0254 SUCCEEDED - 2009-05-26 05:01 +0000
2009-05-26 05:01 +0000
.---
--

�Oozie User Interface
The Oozie server comes with a user interface. oozie-site.xml contains the UI URL as a
value of the oozie.base.url property. The default port is 11000. The Oozie user interface
provides the status of the workflow, coordinator, and bundle jobs. Apart from the status, it
also provides job logs so that you can troubleshoot failed jobs.

The Oozie user interface provides three tabs: Workflow Jobs, Coordinator Jobs, and
Bundle Jobs. The tab gives more information about the jobs. Each tab has subtabs to view
the status of running jobs, completed jobs, custom jobs, and all jobs. Custom jobs help
filter jobs based on the status. For example, to check killed jobs, you will use a filter such
as status=killed in the Custom Filter subtab.

Figure 6-2 displays workflow jobs and their information.

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

100

Click the Oozie job ID for more information about the job. It displays job definition,
its logs, and the list of actions it executed. You can click any action to determine its
external Hadoop job ID and resource manager URL to determine its progress. The Action
page displays the Oozie error code if the Oozie job has failed and helps troubleshoot
failed jobs.

Figure 6-3 displays more information about a workflow job.

Figure 6-3.  More info about a job

Figure 6-2.  Workflow jobs

�Developing Oozie Applications Using Hue
Hue provides a user interface called the Oozie Editor to develop Oozie applications. It
simplifies Oozie application development such that even a layperson can develop Oozie
applications. It supports workflows, coordinators, and bundle applications. Visit http://
gethue.com/category/oozie/ for more information.

�Summary
In this chapter, you learned about the workflow and scheduler engine called Apache
Oozie.

These are some of important things you learned in this chapter:

•	 How to manage dependency among Hadoop ecosystem jobs
using workflow

http://gethue.com/category/oozie/
http://gethue.com/category/oozie/

Chapter 6 ■ Creating and Scheduling Workflows Using Apache Oozie

101

•	 How to schedule workflows using the coordinator

•	 That Bundle is a collection of workflow and coordinator jobs

•	 How to submit Pig Latin code using the oozie pig command

•	 How to use the command-line interface of Apache Oozie

•	 How to use the Oozie user interface for monitoring and managing
Oozie jobs

For more information about Apache Oozie, you can read Apache Oozie Essentials by
Jagat Singh.

103© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_7

CHAPTER 7

HCatalog

As we discussed in Chapter 1, Apache Hive is a scalable data warehousing technology
built on Apache Hadoop. Hive comes with a metastore service that maintains metadata
so that users can run any number of queries on already created tables. However, data
processing technologies such as MapReduce and Pig do not have a built-in metadata
service, so users must define a schema each time they want to run a query.

HCatalog is a table and storage management layer for Hadoop that addresses
this problem by exposing Hive metadata to technologies such as MapReduce and Pig.
HCatalog provides technology-independent tables in Hadoop so that users can easily
read and write data without mentioning or maintaining the data schema. Tables added
in Hive technology are reflected in Hcatalog, and vice versa. HCatalog internally uses the
Hive metastore to serve user requests. Currently, HCatalog supports requests from Hive,
Pig, and MapReduce technologies.

Initially HCatalog was an independent project at the Apache Software Foundation;
now it is part of the Apache Hive project.

Features of HCatalog
The following are the salient features of HCatalog:

•	 HCatalog hides the data location and underlying data formats.
It supports formats such as RCFile, CSV, JSON, Parquet, and
SequenceFile. It also supports custom data formats.

•	 MapReduce, streaming, and Pig use the HCatalog API to process
tables.

•	 In addition to the API, HCatalog provides a command-line
interface (CLI) and WebHCatalog service.

•	 The HCatalog CLI supports DDL commands such as create,
alter, and drop.

•	 WebHCatalog allows users to submit HTTP requests to HCatalog.
WebHCatalog also helps integrate other tools with HCatalog. The data
warehousing tool Teradata and the big data analytics tool Asterdata
use WebHCatalog to extract data from the Hadoop ecosystem.

http://dx.doi.org/10.1007/978-1-4842-2337-6_1

Chapter 7 ■ HCatalog

104

•	 HCatalog enables interoperability among tools such as Hive, Pig,
and MapReduce. The Hive output can be made available to Pig
and MapReduce for processing. Similarly, the Pig and MapReduce
outputs can be made available to other tools.

•	 MapReduce uses the HCatInputFormat and HCatOutputFormat
classes for reading and writing data from HCatalog. Pig Latin uses
HCatLoader and HCatStorer for reading and writing data from
HCatalog.

Figure 7-1 shows the architecture of HCatalog.

Figure 7-1.  Architecture of HCatalog

Command-Line Interface
Just as in Hive, HCatalog comes with a command-line interface.

Use the hcat command to get to the hcatalog prompt, and use the hcat -e
command to run commands.

hdfs@cluster10-1:~>hcat
hcat>

Chapter 7 ■ HCatalog

105

show Command
The functionality of the show command is the same as in Hive. It displays available tables,
databases, and functions.

The following command displays available tables:

hcat -e "show tables"
OK
employee
department
Time taken: 2.305 seconds

Use show databases to display the databases, and use show functions to display the
functions. Tables are displayed from the default database. With the use command, you
can switch databases.

The following command displays tables from a user-created database called test:

hcat -e "use test;show tables;"
OK
Time taken: 2.069 seconds
OK
Dummy
Test
Time taken: 0.659 seconds

Just as in Hive, the describe command displays the schema of a table.
The following command displays the schema of table numbers:

hcat -e "describe numbers"
OK
num string
Time taken: 2.656 seconds

The HCatalog CLI supports only the Data Definition Language (DDL) of SQL; it
does not support others such as the Data Manipulation Language and the Data Control
Language.

Data Definition Language Commands
HCatalog supports only DDL commands such as the create, alter, and drop commands,
and HCatalog throws an “operation not supported” error if you use other commands.

The select following command throws an error because it is not supported.

hcat -e "select * from numbers"
FAILED: SemanticException Operation not supported

Chapter 7 ■ HCatalog

106

create Statement
You can create tables, views, indexes, and functions using the create statement. It does
not support the create table as select command of Apache Hive as it launches
Hadoop jobs.

The following command creates a table named dummy with a column named test:

hcat -e "create table dummy (test string)"
OK
Time taken: 2.438 seconds

You can also create a table using another table schema.
The following command creates a new table called numbersnew using the schema of

the existing table called numbers:

hcat -e 'create table numbernew like numbers'
OK
Time taken: 2.472 seconds

drop Statement
You can delete tables, views, indexes, and functions using the drop statement.

The following command drops the table named dummy:

hcat -e "drop table dummy"
OK
Time taken: 2.347 seconds

alter Statement
Use the alter statement to change the schema of a table or a view.

The following hcatalog command renames a table:

hcat -e "ALTER TABLE employee RENAME TO employee_new"
OK
Time taken: 2.347 seconds

dfs and set Commands
The HCatalog CLI also supports the dfs and set commands. dfs allows users to interact
with HDFS, and set allows users to set a value of a property.

The following hcat command lists the /user/hdfs directory contents:

hcat -e "dfs -ls /user/hdfs "
Found 5 items
drwx------ - hdfs hdfs 0 2016-04-14 14:00 .Trash

Chapter 7 ■ HCatalog

107

drwxr-xr-x - hdfs hdfs 0 2016-03-09 12:02 .hiveJars
drwx------ - hdfs hdfs 0 2016-04-14 03:34 .staging
drwx------ - hdfs hdfs 0 2016-04-14 00:50 jobstatus
drwxr-xr-x - hdfs hdfs 0 2016-03-09 12:29 joinnumbers

WebHCatalog
WebHCatalog, previously called the Templeton service, is a built-in REST API in HCatalog
that allows developers to submit HTTP requests to Hive, Pig, and MapReduce.

The WebHCatalog URL format is http://ipaddress:portnumber/templeton/v1/
resource.

•	 ipaddress is the destination where the HCatalog server runs.
Some distributions come with multiple HCatalog servers.

•	 portnumber is the destination where its port is listening. The
default port number is 50111. To identify the value of templeton.
port, visit wenhcat-site.xml.

•	 resource could be hive, pig, or mapreduce.

This URL will also support additional parameters that will be passed to the HTTP
POST method for further processing.

Let’s now discuss how to submit requests to Pig using WebHCatalog.
The WebHCatalog base URL is http://ipaddress:port/templeton/v1/pig.
Table 7-1 lists parameters you can pass to the Pig script in WebHCatalog.

Table 7-1.  WebHCatalog Parameters

Parameter Description Comments

execute Runs Pig Latin code Either execute or the file
is required

file Pig Latin script file name Either execute or the file
is required

arg Used to provide an argument None

files Comma-separated files to be copied to
MapReduce cluster

None

statusdir Directory where
output status is written

hdfs directory

callback URL to be called after job completion None

Now you will learn a few ways to use WebHCatalog.

http://ipaddress:portnumber/templeton/v1/resource
http://ipaddress:portnumber/templeton/v1/resource
http://ipaddress:port/templeton/v1/pig

Chapter 7 ■ HCatalog

108

Executing Pig Latin Code
Now you will learn how to run Pig Latin code using WebHCatalog. For example, from a
list of employees, if you want to get five employee records, you will write Pig Latin code
like this:

employees = load 'employees';
employees5= limit employees 5;
store employees5 into 'employees5';

To run the previous code using WebHCatalog, you must run the curl command with
the Pig base URL. The complete Pig Latin code will be executed. The -s option shows an
error if it fails. The -d option takes extra data as parameters.

The following curl command displays five employee records by executing Pig Latin
code embedded:

curl -s -d execute= 'employees = load 'employees'; employees5 = limit
employees 5;store employees into 'employees5' ' http://10.20.30.1:50111/
templeton/v1/pig?user.name=hdfs'

user.name is mandatory. It throws an error if the script is not submitted successfully
or returns a job ID if successfully submitted. The job status can be viewed in the Resource
Manager UI. This functionality is useful for small code with only a few lines.

Running a Pig Latin Script from a File
When you have to run several lines of code, you need to use the file option.

Here is step-by-step guide to run Pig Latin scripts from a file in WebHCatalog:

	 1.	 Write a Pig Latin script to a file.

The following code retrieves five employee records and stores
them in a directory:

hdfs@cluster10-1:~> Cat employees5.pig
employees = load ' employees ';
employees5 = limit employees 5;
store employees5 into ' employees5 ';

	 2.	 Upload the file to the hdfs directory.

hdfs@cluster10-1:~> hdfs dfs -put employees5.pig /user/hdfs

	 3.	 Run the curl command.

curl -s -d file=/user/hdfs/employees5.pig -d arg=-v 'http://
10.20.30.1:50111/templeton/v1/pig?user.name=hdfs'

Chapter 7 ■ HCatalog

109

HCatLoader Example
A Pig Latin script with an HCatLoader function can also be run using WebHCatalog. For
example, the following code displays five employee records:

employees = LOAD 'employees' USING org.apache.hive.hcatalog.pig.
HCatLoader();
employees5 = limit employees 5;
dump employees5;

You can run the previous program with or without the useHCatalog option. In older
versions, it was mandatory that you use the useHCatalog option. In the latest versions, it
is not required.

	 1.	 Write the previous code in a file.

	 2.	 Upload the previous code file to hdfs.

hdfs dfs -put dumpemphcatloader.pig /user/hdfs

	 3.	 Run the curl command by specifying useHCatalog as the arg
parameter.

The following command uses the useHCatalog option to run
Pig Latin code using WebHCatalog:

 curl -s -d file= dumpemphcatloader.pig -d arg=-useHCatalog
'http:// 10.20.30.1:50111/templeton/v1/pig?user.name=hdfs'

Writing the Job Status to a Directory
Use the following code to write the job status to a directory using the statusdir
parameter:

 curl -s -d file=dumpnumhcatloader.pig -d statusdir=jobstatus
'http:// 10.20.30.1:50111/templeton/v1/pig?user.name=hdfs'

A new directory is created in hdfs with the subdirectories exit, stderr, and stdout.

 hdfs dfs -ls /user/hdfs/jobstatus
Found 3 items
-rw-r--r-- 3 hdfs hdfs 2 2016-04-14 00:50 jobstatus/exit
-rw-r--r-- 3 hdfs hdfs 160 2016-04-14 00:50 jobstatus/stderr
-rw-r--r-- 3 hdfs hdfs 0 2016-04-14 00:50 jobstatus/stdout

If the curl command fails, run it in verbose mode using the -v option. WebHCatalog
runs both scripts that contain HCatLoader/HCatStorer and other storage functions such
as PigStorage.

Chapter 7 ■ HCatalog

110

HCatLoader and HCatStorer
You can use HCatLoader and HCatStorer to process Hive tables using Pig Latin.
HCatLoader and HCatStorer are two functions used for reading and writing data. These
two internally use the HcatInputFormat and HcatOutputFormat classes.

Reading Data from HCatalog
HCatLoader reads the data from the table specified in the load statement.

movies = LOAD 'movies' USING org.apache.hive.hcatalog.pig.HCatLoader();

If you are using a nondefault database, you must specify your input as dbname.
tablename.

The following Pig Latin code displays ten employee records from a table called
employees:

�employees = LOAD 'employees' USING org.apache.hive.hcatalog.pig.HCatLoader();
employees10 = limit employees 10;
dump employees10;

The previous code reads data from a Hive table called employees. Pig Latin cannot
read the location of the table and its data format. This Pig Latin code is dynamic and
works even if the table storage location and format are changed. The schema definition is
optional as it can be accessed from the existing HCatalog table schema.

To retrieve a specific portion of data from a partitioned table, write the Filter
statement immediately after the load statement. A Filter statement can have multiple
conditions. Conditions on the partition column are sent to HCatalog, and conditions on a
nonpartitioned column are processed by Pig Latin.

The following code retrieves employee records whose date of joining is 01-01-2010
from department number 100:

Employees = LOAD 'employees' USING org.apache.hive.hcatalog.pig.HCatLoader();
filterdoj= filter employees by dateoj='01-01-2010' dept=’100’;

The previous code contains the partition column (date) and the nonpartition column
(year). The date condition is passed to HCatalog so that it only retrieves data stored on 01-
01-2010. The data for department number 100 is filtered using Pig Latin code.

Writing Data to HCatalog
To write data to HCatalog using HCatStorer, specify the table name after the into operator.
The table name must be present; otherwise, it will throw a “table not found” error. If you are
using a nondefault database, you must specify your input as dbname.tablename.

store ratings2010 into 'ratings2010' using org.apache.hcatalog.pig.HCatStorer();

Chapter 7 ■ HCatalog

111

You can write data to specific partition; you need to specify the partition column in
HCatStorer in single quotes.

store ratings2010 into 'ratings2010' using org.apache.hcatalog.pig.
HCatStorer('year=2010');

If you have multiple partitions, you do not need to specify partitions in HCatStorer.
However, the partition column must be included in the alias you are writing.

The following code writes the ratings1011 relation data using HCatStorer:

store rating1011 into 'ratings1011' using org.apache.hcatalog.pig.HCatStorer()

If multiple years of data is available in an alias called years1011, it will write all years
of data to its respective year partition in the target table. The alias rating1011 should
have the partition column year.

The table must be available in HCatalog; otherwise, the previous statement fails.
Once data is written to the Hive table, it can be used by Hive, MapReduce, and again by
Pig, if required.

Running Code
You need to start the Grunt shell with the useHCatalog option to run Pig Latin code with
the HCatLoader function. The useHCatalog option will help Pig to locate the required
JARs for processing a table.

hdfs@cluster10-1:~> pig -useHCatalog

You can run the previous Pig Latin code from a file using the -useHCatalog option.

pig -useHCatalog -f dumpmovies10.pig

You can even run a Pig Latin script without the -useHCatalog option, but you need
to have HADOOP_HOME, HIVE_HOME, HCAT_HOME, PIG_CLASSPATH, and PIG_OPTS set.

HADOOP_HOME, HIVE_HOME, and HCAT_HOME must point to their home directories.
PIG_CLASSPATH should have the required Hive, HCatalog, and Hadoop JARs.
In the following example, you must replace * with the actual version number.

export PIG_CLASSPATH=$HCAT_HOME/share/hcatalog/hcatalog-core*.jar:\
$HCAT_HOME/share/hcatalog/hcatalog-pig-adapter*.jar:\
$HIVE_HOME/lib/hive-metastore-*.jar:$HIVE_HOME/lib/libthrift-*.jar:\
$HIVE_HOME/lib/hive-exec-*.jar:$HIVE_HOME/lib/libfb303-*.jar:\
$HIVE_HOME/lib/jdo2-api-*-ec.jar:$HIVE_HOME/conf:$HADOOP_HOME/conf:\
$HIVE_HOME/lib/slf4j-api-*.jar

PIG_OPTS should point to the Hive metastore URI.

export PIG_OPTS=-Dhive.metastore.uris=<value-from-hive-site.xml>

Chapter 7 ■ HCatalog

112

Data Type Mapping
HCatalog follows the Hive data types, and they are different from the Pig data types.
Hence, Pig interprets HCatalog data types using its own data types.

Table 7-2 maps HCatalog data types to Pig data types.

Table 7-2.  HCatalog Data Types to Pig Data Types

HCatalog Data Type Pig Data Type

Int Int

TinyInt Int

BigInt Long

SmallInt Int

Date Datetime

TimeStamp DateTime

Decimal BigDecimal

Float Float

Double Double

Char chararray

Varchar chararray

String Chararray

Boolean Boolean

Binary Bytearray

Map Map

Struct Tuple

List Bag

Before writing data into the HCatalog table, you must check current alias data types
against the target table data type. If they cannot be mapped, the Pig Latin script throws
an error.

For example, if you have the int data type in the Pig Latin alias and try to write that
column data into the string data type of the HCatalog table, it will throw the following
error:

Pig 'int' type in column 0(0-based) cannot map to HCat 'STRING'type. Target
filed must be of HCat type {INT or BIGINT or TINYINT or SMALLINT}

Chapter 7 ■ HCatalog

113

However, many new data types have been added to both Hive and Pig. Some new
data types might not have a direct mapping in Pig Latin. When there is no mapping in Pig,
HCatalog checks for the range of the target data type. If the range does not match, it will
insert null values by default. However, you can display an error rather than inserting null
values.

Use -onOutOfRangeValue Throw in the HCatStorer function to throw an error:

store data into 'movies10' using org.apache.hive.hcatalog.pig.
HCatStorer('','','-onOutOfRangeValue Throw');

Summary
In this chapter, you learned about the table and storage management tool HCatalog.

Here are some of the important things you learned about HCatalog:

•	 Data formats supported by HCatalog

•	 How it achieves interoperability among Hive, Pig, and
MapReduce

•	 How to use DDL commands in the command-line interface of
HCatalog

•	 How to access HDFS and set property values

•	 How to submit Pig Latin code using WebHCatalog

•	 How to read data using HCatLoader and how to write data using
HCatStorer

•	 The data type mappings between Pig and HCatalog

115© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_8

CHAPTER 8

Pig Latin in Hue

Every technology in the Hadoop ecosystem comes with a command-line interface that
enhances the user experience with the technology. The Hadoop ecosystem is replete
with technologies, and it is impossible to remember all of the commands, which are also
case sensitive. Hue (which stands for Hadoop User Experience) alleviates this problem by
providing web interfaces for most of the technologies in the Hadoop ecosystem.

Hue aggregates a set of web applications related to the Hadoop ecosystem and
provides a common graphical user interface that makes using Hadoop easy. Some of
commonly used web applications are a File Browser utility and a Job Browser utility. Hue
provides the File Browser utility to manage the Hadoop file system and the Job Browser
utility to manage Hadoop jobs. An integrated user interface is also available for tools such
as Hive, Pig, Sqoop, Oozie, Impala, and HBase. Hue is available on distributions such as
Cloudera, Hortonworks, and MapR.

Hue sits in the middle of the user and the Hadoop ecosystem. It serves user requests
using graphical user interface for its integrated web applications. For example, a user
can submit Hive jobs using the Hive web application (Beeswax) in Hue without access
to the Hive command line. Similarly, you can submit Oozie jobs using the Oozie web
application in Hue. The process is further simplified because the Oozie script is generated
through the Oozie dashboard.

Hue is useful for security reasons to restrict Hadoop users from web applications so
that users need to know less about the Hadoop cluster. It further simplifies Hadoop job
management for users by providing a graphical user interface.

This chapter will discuss the Pig module, File Browser utility, and the Job Browser utility.

Pig Module
The Pig module in Hue improves the user experience while submitting Pig jobs. You can
save Pig Latin scripts and view previously run scripts and logs of completed jobs. You can
also view the progress of jobs that are running. The Pig module in Hue is divided into two
functionalities: My Scripts and Query History.

Chapter 8 ■ Pig Latin in Hue

116

My Scripts
My Scripts allows users to write, save, modify, and run Pig Latin scripts.

Click New Scripts to write a new Pig Latin script.
Select a Pig Latin script from My Scripts to modify or execute it.
Figure 8-2 displays the Pig Editor with Pig Latin code.

Figure 8-2.  Pig Editor with code

Figure 8-1.  The Pig Editor

Figure 8-1 shows the Pig Editor in Hue.

Clicking the New Script link provides a large text area to write Pig Latin scripts and
a text box to set the title for the script to be written. In addition, it provides the following
buttons: Save, Execute, Explain, and Syntax check.

Save: Click Save to save the script. Enter the name for the
script to be saved in the Title text box.

Execute: Click Execute to run the Pig Latin code you have
written. It functions like the run command.

Explain: Click Explain to display the explain plan of the script.
It is equivalent to the Pig Latin explain operator.

Syntax check: Click “Syntax check” to display syntax errors if
any are found.

Once a job is submitted, Kill appears. Click Kill to kill a job that is running. Once a
job is completed, the Logs link appears; click it to view a log of jobs.

Chapter 8 ■ Pig Latin in Hue

117

Pig Helper
Pig Helper in the Pig module displays the syntax of all the operators. When you select
an operator, the syntax of that operator appears in the text area. In the text area, you can
modify the syntax to suit your requirement.

For example, if you do not remember the HCatLoader syntax, you can select the
HCatalog syntax from HCatalog drop-down box in the Pig Helper. The syntax appears in
the text area, and you can modify the table name to choose the table you want to view.
Thus, you don’t have to remember the syntax of Pig Latin operators.

Figure 8-3 shows the Pig Helper options.

Figure 8-3.  Pig Helper options

Auto-suggestion
The auto-suggestion option is available in the Hue UI. If you enter the starting letter of a
Pig Latin operator and click Ctrl+Enter, a list of Pig Latin operators appears on the screen.
Auto-suggestion is also available in the path section of the load or store operator. Click
Ctrl+Enter and a list of folder names or file names appears. The auto-suggestion option is
particularly useful while searching for case-sensitive operators.

Figure 8-4 displays the auto-suggestion options.

Figure 8-4.  The auto-suggestion options

Chapter 8 ■ Pig Latin in Hue

118

UDF Usage in Script
User-defined functions (UDFs) can be quite easily used in Pig Latin scripts. Click the
Upload UDF Jar button to upload a JAR file in the Pig module of Hue. Once the UDF is
uploaded, it appears in the User Defined Functions drop-down menu. Click the UDF JAR
link to automatically generate the Register command for the chosen UDF.

Figure 8-5 displays the User-Defined Functions drop-down menu.

Figure 8-5.  User-Defined Functions list

Figure 8-6.  Query History area

Query History
Query History displays a list of the last-run Pig scripts. The list displays the following
columns: Date, Pig Script, and Status. It also provides a Delete option. The Date column
shows the date and time when a Pig script was run. The Pig Script column shows the
name of the script was run. Click the script name to view the output generated in that run.
Click the Execute button to rerun the script. Click the Delete button to remove the script
run and its output.

Figure 8-6 displays the Query History area.

Chapter 8 ■ Pig Latin in Hue

119

File Browser
Users do not need to have terminal access to interact with the Hadoop Distributed File
System. The File Browser utility provides the HDFS Shell Guide feature in Hue. Users do
not need to remember HDFS shell commands. Even a layperson can explore HDFS using
the File Browser utility in Hue (see Figure 8-7).

Figure 8-7.  File Browser utility

File Browser allows users to create, modify, and delete files and directories on HDFS.

	 1.	 To create a file, select New ➤ File.

	 2.	 Enter a file name in the Create File box (see Figure 8-8).

	 3.	 Click Submit.

Figure 8-8.  Create File box

To create a new directory, follow these steps:

	 1.	 Select New ➤ Directory.

	 2.	 Enter a directory name in the Create Directory box.

	 3.	 Click Submit. The new directory created in Hue is equivalent
to the hdfs dfs -mkdir command (see Figure 8-9).

Figure 8-9.  Directory name

Chapter 8 ■ Pig Latin in Hue

120

To upload files to HDFS using File Browser, follow these steps:

	 1.	 Click Upload ➤ Files.

	 2.	 Click again to upload a file and select the files to open.

	 3.	 Select Upload ➤ Zip file to upload the ZIP files (see Figure 8-10).

Figure 8-10.  Unzipping files

Figure 8-11.  Downloading files

This functionality is the same as the copyFromLocal command in the HDFS Shell
Guide.

To download HDFS files, follow this step:

	 1.	 Click the Download button (see Figure 8-11) after selecting
the files in the File Browser.

This functionality is the same as the copyToLocal command of the HDFS Shell
Guide.

The File Browser allows users to change the permissions of files and directories.
You can even change the owner and groups.

	 1.	 Select the check box next to File/Directory and click the
Change Permissions button.

	 2.	 In the Permissions page, you can choose the read, write, or
execute permissions and click Submit (see Figure 8-12).

Chapter 8 ■ Pig Latin in Hue

121

This function is equivalent to the hdfs dfs -chmod command.
You can search files and directories in HDFS.

	 1.	 Enter a file or directory name in the search box (see Figure 8-13).

Figure 8-12.  Permissions

Figure 8-13.  Search feature

A list of all matching files and directories appears.
You can also copy/move files or directories within the Hadoop distributed file

system.

Job Browser
You do not have to access the Job Tracker or Resource Manager to view information on
jobs. The Job Browser in Hue allows you to view different types of jobs such as running,
failed, killed, and finished. The Job Browser displays two text boxes: Username and Text.
In the Username text box, enter the username to view jobs executed by that user. In the
Text box, enter the job name to search for the job. Matching jobs are displayed. Jobs can be
searched by job ID or by job name. The status of the job is also displayed (see Figure 8-14).

Chapter 8 ■ Pig Latin in Hue

122

Click the job ID to view more information about the job.
Click Logs to view the job logs.
Click the Succeeded button to see the jobs that completed successfully.
Click the Running or Failed or Killed button to see the jobs.
Running jobs display the following: percentage of maps completed, percentage of

reducers completed, time taken for job, and queue name. The Job Browser functionality
is equivalent to the mapred job command.

Summary
In this chapter, you learned about three Pig-related features of Hue.

•	 How to use the Pig Editor features such as how to write new
scripts, how to use the Pig Helper and auto-suggestion, and how
to use UDF JARs in a Pig Latin script

•	 How to do file operations such as creating files, deleting files,
moving files, and so on, in the File Browser application of Hue

•	 How to perform job management in the Job Browser of Hue

Figure 8-14.  Job status

123© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_9

CHAPTER 9

Pig Latin Scripts in
Apache Falcon

In this chapter, you will learn all about Apache Falcon and how to use Pig Latin scripts
in Falcon. Apache Falcon is a Hadoop framework used for data lifecycle management.
Its applications include data feed management, data replication from one cluster to
another, and a lineage of data applications. Although developed by InMobi, it is now an
Apache project.

Feed management in Apache Falcon allows users to do the following:

•	 Define the retention period to retain data

•	 Define the retry policy to handle job failures and manage late
data arrival

Most enterprises use Apache Falcon to replicate data from production to the backup
cluster or disaster recovery cluster.

Falcon makes use of Hadoop ecosystem tools such as Apache Oozie, Apache Pig, and
core Hadoop to provide these data applications. Apache Falcon is built on top of Apache
Oozie, and it works as a high-level abstraction.

Falcon contains three entities called cluster, feed, and process. The feed and
process entities will have the cluster entity internally. The process entity will have the
feed entity internally.

•	 The cluster entity defines the Hadoop cluster to be used.

•	 The feed entity defines the data set location and late data arrival
management.

•	 The process entity defines the workflow and retries the workflow
execution in the case of job failures.

Figure 9-1 shows the relationship among these entities.

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

124

cluster
Now you will learn how to write the cluster entity. The cluster entity must have a
unique name. colo defines a colocated cluster.

The following code defines the cluster entity and its colocated cluster:

<cluster colo="drcluster" description="" name="devcluster"
xmlns="uri:falcon:cluster:0.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Interfaces
Falcon utilizes many services to complete a job. For example, it uses HDFS to create
temporary directories and Hive to retrieve metadata and partitions. All such services
must be defined as interfaces in the cluster entity.

Now you will learn how to write interfaces in the cluster entity.
The following code defines an HFTP interface to read data from the remote cluster:

<interface type="readonly" endpoint="hftp://<hostname>:50010" version="0.20.2" />

In the following code, the write interface is the value of the property fs.defaultFS
in core-site.xml. It is used for writing data to the staging directories.

<interface type="write" endpoint="hdfs://<hostname>:8020" version="0.20.2" />

The name node’s hostname must be used to replace <hostname> in the previous code.

Figure 9-1.  Relationship between Falcon entities

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

125

In the following code, the execute interface represents the value of the property
mapreduce.jobtracker.address. It submits jobs. Use the job tracker hostname in the
endpoint URL.

<interface type="execute" endpoint="<hostname>:8021" version="0.20.2" />

The following code defines the Oozie endpoint:

<interface type="workflow" endpoint="http://<hostname>:11000/oozie/"
version="4.0" />

Falcon depends on Oozie for job scheduling. The workflow interface specifies the
Oozie URL. The endpoint URL must include the name of the host where Oozie is running.

In the following code, the registry interface specifies the metadata service of
Apache Hive. It interacts with Hive partitions.

<interface type="registry" endpoint="thrift://<hostname>:9083" version="0.11.0" />

The messaging interface allows for messaging internally within a Falcon job.
The following code defines the messaging interface:

<interface type="messaging" endpoint="tcp://<hostname>:61616?daemon=true"
version="5.4.6" />

Locations
A cluster has a list of locations defined as follows:

<location name="staging" path="/tmp/emp/staging" />
<location name="working" path="/tmp/emp/working" />

location has attributes called name and path. The name attribute defines the type
of location. Locations are three types: staging, temp, and working. All paths point to the
HDFS location. These locations must be present before executing Falcon entities and
must have read/write/execute permissions for the Falcon user.

•	 The working directory is optional but is not the staging directory.

•	 Staging needs to have 777 permissions, and the working directory
should also have 755 permissions.

Write the cluster entity and submit it to the Falcon server using the following code:

falcon@cluster10-1:~> falcon entity -type cluster -file prodCluster.xml -submit

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

126

feed
feed defines the data set. The feed XML begins with the feed tag, and it must have a
unique name. The feed entity is used by the process entity.

The following code defines the feed entity named ratings:

<feed description="ratingsfeed" name="ratings" xmlns="uri:falcon:feed:0.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Feed Types
There are two types of feed: the file system that refers to the hdfs directory path or the
Hive table.

File System
The file system feed defines paths related to HDFS. It uses locations and location tags.
The <locations> tag contains <location> tags that refer to the data location, the stats
location, and the meta locations.

The following code defines the data, stats, and meta locations.

<locations>
<location type="data" path="/data/mvoies" />
 <location type="stats" path="/data/falcon/stats " />
 <location type="meta" path="/data/falcon/meta" />
</locations>

Table
You can specify a Hive table as a type of feed. You can also specify partitions.

Here’s the syntax:

catalog:$database-name:$table-name#partition-key=partition-value

The following code defines a ratings table in the emp_db database with the partition
key as the date:

<table uri="catalog:emp_db:ratings#date=${YEAR}-${MONTH}-${DAY}" />

Frequency
The <frequency> tag specifies the frequency of the data feed. You can use minutes, hours,
days, and months as frequency variables.

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

127

The following tag specifies the feed to be generated once every day:

<frequency>days(1)</frequency>

Late Arrival
The <late-arrival> tag specifies the grace period for the late arrival of the feed using the
cut-off attribute.

The following code specifies that the feed can be a maximum of five minutes late:

<late-arrival cut-off='minutes(5)'/>

Cluster
feed uses the cluster entity that you have already submitted. Along with cluster, you
specify the validity and the retention period. validity specifies the start date and the end
date for a feed.

Use the retention tag to specify a period of retention. retention has two attributes,
namely, limit and action.

•	 The limit attribute specifies a period of time for the feed to be
retained.

•	 The action attribute specifies an action that must be performed
after the end date.

The cluster in the following code is valid for one year. After one year, the feed will be
retained for three months and deleted after three months.

<cluster name="prodcluster">
 <validity start="2016-06-20T00:00Z" end="2017-06-19T00:00Z"/>
 <retention limit="months(3)" action="delete"/>
 </cluster>

After writing the feed entity, submit it to the Falcon server and schedule it to get it
into a running state.

The following command submits the feed:

falcon@cluster10-1:~> falcon entity -type feed -file ratingsfeed.xml -submit

The following code schedules the last-submitted feed:

falcon@cluster10-1:~> falcon entity -type feed -name ratingsfeed -schedule

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

128

process
The process entity defines the process to be used for executing a workflow. process
can be defined with or without the existing the feed entity. The process entity talks to
the cluster entity but may not talk to the feed entity. The process entity must have a
unique name.

You define the process entity using the <process> tag as follows:

<process name="ratingprocess">
</process>

The following are some important attributes to be defined for process.

cluster
The cluster attribute defines the Hadoop cluster for executing a workflow. The
<clusters> tag has one or more child <cluster> tags that will point to an existing
cluster entity. Every cluster will have start time and end time defined by the <validity>
tag, as shown in the following code:

<clusters>
 <cluster name="prodCluster">
 <validity start="2016-06-21T16:15Z" end="2017-06-21T16:15Z "/>
 </cluster>
 .
 .
 .
 <cluster name="DRCluster">
 <validity start="2016-06-21T16:15Z" end="2017-06-21T16:15Z "/>
 </cluster>

</clusters>

Failures
In the case of job failures and if you want to rerun the workflow, you can use the <retry>
tag. The <retry> tag has attributes to specify the time interval after which the workflow
must be rerun, the number of times it must be rerun, and whether it should be rerun in
the case of a timeout error.

The following code defines a retry policy with a 30-minute delay for a maximum of
three times. It also specifies to rerun the workflow on a timeout error.

<retry policy= "periodic" delay= "minutes(30)" attempts=3 onTimeout='true'/>

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

129

feed
Specifying feed in process is optional. You can specify feed either as input or as output
to a workflow. The workflow takes the input data set from the input feed and writes to the
output data set specified in the output feed.

The following code specifies the output feed:

<outputs>
 <output name="ratingsOut" feed="ratingfeed" instance="today(0,0)"/>
 </outputs>

workflow
You can define the process entity on the existing Oozie workflow or you can choose the
Hive script or Pig script as a workflow engine. You must mention the engine, its version,
and the script path in the HDFS directory, as shown in the following code:

<workflow engine="pig" version="0.15" path="/user/hdfs/apps/pig/ratings.pig"/>

Once you write the process entity, you submit it to the Falcon server using the
submit option and schedule it to get into running mode, as shown in the following code:

falcon@cluster10-1:~> falcon entity -type process -file ratingsprocess.xml -submit

falcon@cluster10-1:~> falcon entity -type process -name ratingsprocess -schedule

CLI
A user can interact with Falcon using either the command-line interface or the Falcon
web interface.

The Falcon CLI provides commands for entity management, instance management,
metadata, admin, and recipe commands. CLI internally uses the REST API of Falcon to
serve user requests.

Now you will learn about some important commands of CLI.

entity
The Falcon entity command provides options to manage all entities. You can submit an
entity, schedule an entity, and delete an entity.

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

130

Submit
After developing an entity, you submit it to the Falcon server. The status of the entity
changes to Submitted. The Type option specifies the type of entity you are submitting,
such as cluster, feed, or process. The file option must refer to the file path of an XML.

The following code submits the cluster entity using its definition in prodCluster.xml:

falcon@cluster10-1:~> falcon entity -type cluster -file /path/to/
prodCluster.xml -submit

�Schedule
After you submit an entity, you must schedule it so that you can run it. The feed and
process entities can be scheduled. Use the name defined for the entity in XML to
schedule it.

The following code schedules a feed named ratingsfeed:

falcon@cluster10-1:~> falcon entity -type feed -name ratingsfeed -schedule

Suspend
You can suspend an entity that is in running state using the suspend option. Only feed
and process can be suspended. Write the name of the entity you want to suspend.

The following code suspends the feed entity named ratingsfeed:

falcon@cluster10-1:~> falcon entity -type feed -name ratingsfeed -suspend

Resume
You can resume an entity that is in suspended state. Like suspend, resume can be applied
only on feed and process.

The following code resumes the feed named ratings:

falcon@cluster10-1:~> falcon entity -type feed -name ratingsfeed -resume

Apart from the previously mentioned commands, you can delete an entity and
update the definition of an entity. The Falcon instance command provides options for
killing, suspending, and rerunning instances also.

Web Interface
The Falcon web interface provides features for managing entities including a search
option, developing entities, notifications, and mirrors.

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

131

Search
You can search an entity using a name, or you can use * to list all entities. In the output,
you can select an entity and perform operations such as scheduling, suspending,
resuming, and so on.

Figure 9-2 shows buttons for the entities and also the search box.

Figure 9-2.  Buttons for entities

Create an Entity
The “Create an entity” feature of the Falcon web interface helps you create an entity by
generating XML. You do not need to write XML manually. All entities can be generated
with this feature.

In the user interface, you enter XML tag values and their attribute values. XML is
generated as you enter the values. The XML code is displayed in the right section of the
user interface. You can edit XML using Edit XML and then save it.

The saved entity in the user interface is submitted to the Falcon server. To search
for a submitted entity, enter its name in the search box. In the search results, choose an
entity by clicking the check box. To schedule the chosen entity, click the Schedule button.

Notifications
To view all notifications including error messages generated during entity submission,
click the Notifications link.

Mirror
The Mirror feature allows users to create a Falcon entity that replicates data from one
cluster to another.

Data Replication Using the Falcon Web UI
Many enterprises replicate data from the production cluster to a backup or disaster
recovery cluster.

The HDFS DistCp program is a good option to copy data from one cluster to another.
You may need to run DistCp multiple times and rerun failed DistCp programs.

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

132

•	 You can schedule DistCp using the Unix crontab to avoid running
the DistCp program multiple times manually. But DistCp will not
rerun failed DistCp programs.

•	 To avoid manually scheduling DistCp and manually rerunning
failed jobs, you can use the Falcon web interface.

The Falcon web interface provides a mirror feature that can be used to mirror data
from one cluster to another. The source cluster and destination cluster can be one of the
following: HDFS, Microsoft Azure, or Amazon S3. In addition to the HDFS path, you can
also mirror hive tables or databases.

Figure 9-3 shows the Mirror button in the Falcon web UI.

Figure 9-4.  Mirror Name field

Figure 9-3.  Mirror button

Create Cluster Entities
Create one cluster entity for the source and one cluster entity for the destination.

Create Mirror Job
Click Mirror in the Falcon web interface to display the page to create a mirror job. Enter a
unique name for the mirror job in the Mirror Name field, as shown in Figure 9-4.

Select a mirror type between File System and Hive Catalog Storage. Select a file
system to mirror data among HDFS, Azure, and S3 and select Hive (catalog storage) to
mirror hive tables or databases. Select one source from HDFS, Azure, and S3.

In Figure 9-5, I have selected HDFS as the source cluster. From the drop-down menu,
select the required cluster. In Figure 9-5, I have selected the prodcluster entity as the
source cluster entity. I have entered /data/prod/movies as the source path.

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

133

Similarly for Target, I have selected HDFS as the location, DRCluster as the target
cluster entity, and /data/dr/movies as the target path where the data is to be replicated.
The run job here determines the cluster where the job needs to be run. Here you have to
choose the target cluster to run the mirror job.

In the Validity section, specify the start date and end date for this mirror job, as
shown in Figure 9-6.

Figure 9-5.  Target settings

Figure 9-6.  Validity section

In the Frequency field, enter the frequency with which the job has to be run. Here,
I have specified that the job is to be run every day, as shown in Figure 9-7. In the Delay
text box, specify the grace time after which a retry is to be performed and specify the
number of retries.

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

134

After all these details are entered, click Next and Save. The mirror job is submitted.
To schedule a job, follow these steps:

	 1.	 In the search box, search for and select the mirror job.

	 2.	 Click Schedule.

	 3.	 The Oozie user interface and Resource Manager UI display
the jobs running periodically to replicate data from the prod
cluster to the dr cluster.

Figure 9-8 shows the mirror job submitted.

Figure 9-7.  Frequency settings

Figure 9-8.  Mirror job submitted

Pig Scripts in Apache Falcon
Apache Pig can be used to process feeds. You can use pig in Apache Falcon to take care of
handling late data, feed retention, and feed replication instead of writing code for them.

Falcon can be used on an individual Pig script and also in an Oozie workflow that
contains a Pig script.

Oozie Workflow
You can use Oozie as a workflow engine in a process entity. You need to have a complete
workflow application ready in HDFS including workflow.xml, script files, and required JARs.

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

135

As discussed earlier in this chapter, you will specify the Oozie workflow path and
Oozie version in the process entity. The workflow can read data from the input feed and
can write to the output feed if you specify the input feed and the output feed.

Pig Script
To choose an individual Pig script as a workflow engine in the process entity, upload the
Pig script to the HDFS directory and specify the file path in the process entity using the
Falcon web UI.

The following code defines the Pig Latin script as a workflow engine:

<workflow engine="pig" version="0.15" path="/user/hdfs/apps/pig/ratings.pig"/>

The read, write, and execute permissions on the Pig Latin script must be granted to
the user who is running the Falcon process. The Pig script reads data from the input feed
and writes output data to the output feed. Once a process entity is scheduled, the Bundle
job is launched. The Bundle job starts the coordinator job, the coordinator job starts the
workflow job, and the workflow job runs the Pig script.

The following Falcon process runs the embedded Pig script, /user/falcon/
storeinhbase.pig, to transfer data from HDFS to HBase once a day. In case of failure,
it attempts three times in five-minute intervals. It also includes a cluster entity called
testCluster.

The following code uses Pig Latin code as a workflow engine:

<process xmlns='uri:falcon:process:0.1' name='hdfsToHbase'>
 <clusters>
 <cluster name='testCluster'>
 <validity start='2016-08-04T10:27Z' end='2016-09-04T12:27Z'/>
 </cluster>
 </clusters>
 <parallel>1</parallel>
 <order>FIFO</order>
 <frequency>days(1)</frequency>
 <timezone>GMT-05:00</timezone>
 �<workflow name='pigtest' version='pig-0.12.0' engine='pig' path='/user/
falcon/storeinhbase.pig'/>

 <retry policy='periodic' delay='minutes(5)' attempts='3'/>
 <ACL owner='hdfs' group='hdfs' permission='0755'/>
</process>

From the command line, you must first submit the previous process and then
schedule a process. The cluster must be submitted first and then the process entity.

The Pig Latin script will look like this:

emp = load '/path/to/employee/dataset' using PigStorage(',') as (empno:int,e
name:chararray,salary:int,deptno:int);

Chapter 9 ■ Pig Latin Scripts in Apache Falcon

136

store emp into 'hbase://emp' using org.apache.pig.backend.hadoop.hbase.
HBaseStorage(
 'empdetails:ename empdetails:salary empdetails:deptno ');

This transfers data from an employee data set in HDFS to the emp table in HBase.
You can avoid writing the process entity manually; the Falcon web UI will generate

the process entity XML for you.

Summary
Apache Falcon is a feed and process management system built on top of Apache Oozie.
You learned the fundamentals of Apache Falcon in this chapter.

•	 How to define, submit, and schedule the Falcon entities called
cluster, feed, and process

•	 How to use the Falcon CLI commands for submitting, scheduling,
suspending, and resuming Falcon entities

•	 How the Falcon web UI can be used for creating entities and also
searching for existing entities

•	 How to create mirror jobs using the Falcon web interface

•	 How to use Apache Oozie or Apache Pig as a workflow engine in
the process entity

137© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_10

CHAPTER 10

Macros

In this chapter, you will learn how to write macros in Pig Latin.
For example, you will write code like the following to compute a department-wise

employee count for all non-null departments on the employee data set:

dnogrp = group emp by dno;
empcount = foreach dnogrp generate group,COUNT(emp.eno) as eno;
empcount = filter empcount by group is not null;
dump empcount;

If you have a similar requirement to compute a salary-wise employee count or
designation-wise employee count, you need to rewrite the entire previous code to change
only the group column name. If you have to rewrite code every time you have a similar
requirement, you cannot be productive. Also, it is difficult to maintain such redundant code.

Pig Latin provides a feature called a macro that enables you to write more reusable
and maintainable Pig Latin code.

Macro can be written using the DEFINE operator followed by a name, input
parameters, return values, and list of Pig Latin statements. The following is the macro
structure and an explanation of its parts.

Structure
This is the structure:

DEFINE macro_name (param1, param2, ...]) RETURNS {void | rel1 [, rel2 ...]} {
 pig_latin_statements
 };

macro_name is the name of the macro to be defined. The macro name needs to be
unique.

Four types of parameters can be given as input to a macro. The relation name can be
an integer, string, and float. Return values can be void or one or more number of relation
names. VOID is used if nothing is there to be returned. The relation that is specified should
be there in the macro body as $relationname.

Chapter 10 ■ Macros

138

Macro Use Case
For this example, say you have identified reusable functionality with respect to your
requirements and will write a macro for that. For the previously discussed requirement,
the dno column-wise employee count for non-null values is eligible for reusable code.

You can write a macro as shown here:

DEFINE countagg(r,colname) returns rerel{
dnogrp=group $r by $colname;
empcount = foreach dnogrp generate group,COUNT($r.eno) as eno;
$rerel = filter empcount by group is not null;
}

The macro name is countagg, which takes two inputs. One is a relation, and the
other is the column name. You are naming them r and colname, respectively. These
are referred to using $ within the macro code. As a macro is not directly hard-coded in
the emp relation and the dno column, you can use it for different relations and different
columns also.

You can use a macro like the following in Pig Latin code to compute the department-
wise employee count for non-null department values:

emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
empcount = countagg (emp,dno);

If you want to compute the salary-wise employee count, you can just change one of
the input parameters (dno) to the salary column.

empcount = countagg (emp,salary);

Like this, a macro allows you to write more dynamic Pig Latin scripts by providing
relation names and column names at the time of using the macro.

Macro Types
Macros come in two types, as specified in Figure 10-1.

Chapter 10 ■ Macros

139

Macros can be defined internally in a Pig Latin script or externally to a Pig Latin
script in a separate file.

Internal Macro
Macros can be defined internally within a Pig Latin script. You do not need to link a Pig
Latin script to a macro explicitly because it is available in the same file; also, other Pig
Latin scripts cannot refer to it, so an internal macro is less reusable. You can define any
number of macros in a Pig Latin script.

The following Pig Latin code contains a macro called countagg within it:

DEFINE countagg(r,colname) returns rerel{
dnogrp=group $r by $colname;
empcount = foreach dnogrp generate group,COUNT($r.eno) as eno;
$rerel = filter empcount by group is not null;
}
emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
empcount = countagg (emp,dno);
dump empcount;

Figure 10-1.  Types of macros

Chapter 10 ■ Macros

140

External Macro
External macros are defined in a separate file. The following are steps for writing an
external macro in Pig Latin:

	 1.	 You need to write a macro in a separate file, and the file needs
to be in the local file system.

The following file called countagg.macro contains a macro
called countagg:

Cat /home/hdfs/countagg.macro
DEFINE countagg(r,colname) returns rerel{
dnogrp=group $r by $colname;
empcount = foreach dnogrp generate group,COUNT($r.eno) as eno;
$rerel = filter empcount by group is not null;
}

	 2.	 You need to import a macro into a Pig Latin script using its
file path. The file path can be absolute or relative. The relative
path will be resolved from the current working directory in the
local file system.

The following code is an example of importing an external
macro called countagg:

IMPORT 'countagg.macro';

	 3.	 After creating a macro in a separate file and importing it, you
can use it within Pig Latin code.

The following code contains both an import statement and a
macro usage statement:

hdfs@cluster10-1:~> Cat columnwiseempcount.pig

IMPORT 'countagg.macro';
emp = �load 'employee.csv' using PigStorage(',') as

(eno:int,ename:chararray,salary:int,dno:int);
empcount = countagg (emp,dno); ---------macro usage
dump empcount;

After these steps, you can run a Pig Latin script using a file
path like the following:

Pig -f /path/to/columnwiseempcount.pig

An external macro needs to be imported before it is used in
Pig Latin, and it provides highly reusable and maintainable
Pig Latin code.

Chapter 10 ■ Macros

141

dryrun
When you run a Pig Latin script that contains a macro, a macro statement in Pig Latin
code will be replaced by macro code. You can view newly generated Pig Latin code using
the dryrun feature.

The following code is an example of a dryrun of a Pig Latin script.

Pig -dryrun -f /path/to/columnwiseempcount.pig

When you dryrun Pig Latin code, it generates a file with the name
piglatinscriptfilename.expanded. You can view a complete new Pig Latin code in
that file.

hdfs@cluster10-1:~> cat columnwiseempcount.pig.expanded
emp = load 'employee.csv' USING PigStorage(',') as (eno:int,
ename:chararray, salary:int, dno:int);
macro_countagg_dnogrp_0 = group emp by (salary);
empcount = foreach macro_countagg_dnogrp_0 generate group, COUNT(emp.(eno)) AS eno;
empcount = filter empcount BY (group IS not null);
dump empcount;

Macro Chaining
When you have multiple macros, you can have one macro refer to another macro as long
as it is not a recursive call. In the previous example, you wrote a macro file to compute
one column-wise employee count and removed non-null values from the group column.
Now you will see how to write a new macro for filtering the non-null values of a column
and refer to it from the countagg macro.

Say you need to filter non-null values from a column of a relation, so you need
two inputs; one is a relation, and another is a column. As it returns a new relation after
removing non-null values, you have to declare a relation as the return value.

The following code contains the complete code for a new macro:

hdfs@cluster10-1:~> cat filternotnull.macro
DEFINE filternotnull(r1,colname1) returns rerel{
$rerel = filter $r1 by $colname1 is not null;
};

You need to make two changes in the countagg macro file:

	 1.	 You need to add an import statement that contains the
previously created macro file path.

	 2.	 You need to replace the earlier filter’s not-null functionality
with the macro call.

Chapter 10 ■ Macros

142

The following code is the new code for the countagg macro:

hdfs@cluster10-1:~> cat countagg.macro
IMPORT 'filternotnull.macro';
DEFINE countagg(r,colname) returns rerel1{
dnogrp=group $r by $colname;
empcount = foreach dnogrp generate group as group1,COUNT($r.eno) as eno;
$rerel1 = filternotnull(empcount,group1);
};

The Pig Latin script remains the same because the second macro is referred to only
from the first macro.

The following code is the final Pig Latin script that contains macro chaining:

hdfs@cluster10-1:~> cat importmacro.pig
import 'countagg.macro';
emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
empcount = countagg (emp,dno);
dump empcount;

Macro Rules
Macros need to follow some rules, as covered next.

Define Before Usage
A macro needs to be defined before its first usage.

The following code is correct:

DEFINE macroex() RETURNS void {
..
..
 };
.
.
Rel = macroex();

The following code is not correct:

..

..
Rel = macroex();

DEFINE macroex() RETURNS void {
..
..
 };

Chapter 10 ■ Macros

143

Valid Macro Chaining
Macro chaining that is one macro referring to another macro is fine if it is not recursive.
Recursive calls are not allowed in macros. This applies for both a single macro and
multiple macros.

The following code does not work because the first macro (macroex1) calls the
second macro (macroex2), and the second macro calls the first macro again.

DEFINE macroex1() RETURNS void {
..
..
Rel1 = macroex2();
 };
DEFINE macroex2() RETURNS void {
..
..
Rel2 = macroex1();
 };

No Macro Within Nested Block
A Foreach nested block cannot use macros. The following code is not valid:

Rel1=Foreach emp {
Rel = macroex();
Generate..
}

No Grunt Shell Commands
The Grunt shell commands are not allowed in a macro.

Invisible Relations
Relations defined within a macro are not visible to external Pig Latin code, and they
cannot be referred to from external Pig Latin code.

The relations dnogrp and empcount are internal to macros.

DEFINE countagg(r,colname) returns rerel{
dnogrp=group $r by $colname;
empcount = foreach dnogrp generate group,COUNT($r.eno) as eno;
$rerel = filter empcount by group is not null;
}

Chapter 10 ■ Macros

144

Macro Examples
Here are some macro examples.

Macro Without Input Parameters Is Possible
A macro might not have any input parameters; however, such a macro is less dynamic.
The following code removes a tuple when the dno column is null:

DEFINE filtenotnull() returns rerel{
$rerel = filter emp by dno is not null;
}

Macro Without Returning Anything Is Possible
A macro might not return anything. In such cases, you use void as its return type.

The following macro code stores the result into an HDFS directory so it does not
need to return anything:

hdfs@cluster10-1:~> cat countagg.macro
DEFINE countagg(r,colname) returns void{
dnogrp=group $r by $colname;
empcount = foreach dnogrp generate group as group1,COUNT($r.eno) as eno;
store empcount into 'empcount';
};

You should not try to catch macro output because it is not returning anything. That
is the reason you use a simple macro call as a last line without storing its output in a
relation.

The following code uses a macro with a void return type:

hdfs@cluster10-1:~> cat importmacro.pig
import 'countagg.macro';
emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
countagg (emp,dno);

Chapter 10 ■ Macros

145

Summary
Macros in Pig Latin allow you to write more reusable and maintainable Pig Latin code.
You have learned many things about macros in this chapter.

•	 You learned macro syntax and its usage in Pig Latin scripts.

•	 Macros can be two types: internal and external macros. An
internal macro is part of Pig Latin script file, whereas an external
macro is not.

•	 One macro internally referring to another macro is possible.

•	 You learned five important rules of writing macros.

•	 You also learned how to write parameterless macros and void
return type macros.

147© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_11

CHAPTER 11

User-Defined Functions

In this chapter, you will learn how to write user-defined functions (UDFs) in Pig Latin.
I have discussed how Pig Latin provides two types of functions, as listed in

Figure 11-1. There are many built-in functions, but those will not be sufficient for
all requirements. Many times you need to write your own functions to fulfil your
requirements. Such functions are called user-defined functions.

Figure 11-1.  The two types of function

Chapter 11 ■ User-Defined Functions

148

User-Defined Functions
Apache Pig is a highly extensible platform and allows you to develop custom functionality
using UDFs. Pig UDFs not only allow you to develop your own functions but also allow
you to use a programming language you are comfortable with. It currently supports the
programming languages Java, JavaScript, Python, Jython, Ruby, and Groovy, as listed in
Figure 11-2.

Figure 11-2.  Pig’s supported languages

Java supports the complete functionality of UDFs, but support from JavaScript,
Python, Jython, Ruby, and Groovy is still evolving. Cluster needs to have a runtime
to use a programming language. As Java is a prerequisite for Hadoop, its runtime will
be available by default. The JavaScript engine Rhino is available starting from Java 1.6
version. Most Unix systems will have Python installed by default, so the runtime will be
available for Python. Other languages need to be installed explicitly for their runtime.

Java
You will learn how to write sample UDFs using Java and see how to use them in Pig Latin
code.

The following are the steps for writing a UDF in Java.

Writing Java UDF
You need to extend the abstract class EvalFunc to create UDFs in Pig Latin. EvalFunc
has an abstract method called exec that needs to be implemented to develop custom
functionality.

You will write a UDF that replaces the null department number with the default
department number 400.

The following code replaces the null value in the department column with 400:

package stringutils;
import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;

public class ReplaceNull extends EvalFunc<Integer> {
 public Integer exec(Tuple input) throws IOException {
 Integer dno = (Integer) input.get(0);

Chapter 11 ■ User-Defined Functions

149

 try {
 if (dno == null)
 {
 return new Integer(400);
 }
 } catch (Exception e) {
 throw new IOException(
 �" exception thrown while processing department number ", e);
 }
 return dno;

 }
}

You will have tuple data inside the exec method, and you will use the get() method
to get the first value from a tuple. If the first value is null, you will return 400. Here you
have written this entire class in the stringutils package.

You can use the Eclipse IDE for writing a UDF. You need to have pig.jar in the build
path to compile it successfully. After writing the UDF class, you need to create a JAR file.

Creating a JAR File
You can create a JAR file using a JAR program that comes with Java or you can use any
IDE-like Eclipse. The Jar command needs to have the following syntax:

Jar cvf jarfilename file-names

Eclipse provides an export feature that can be used to export a list of Java files as a
single JAR file. You need to right-click Project, click the Export option, and select Jar File
under the Java category. After that, you will select .java files and enter the JAR file path
where you want to store the JAR file. In the next screen, click Finish. In the last screen, it
will ask you to select the main class; you do not need to select or enter the main class name
as you do not have any main class in UDF.

You need to copy a JAR file to a Hadoop cluster if you have not generated on one
of the cluster nodes. File transfer software such as WinScp or FileZilla can be used to
transfer files from Windows to Unix.

Registering the Java UDF
You need to register the UDF JAR file to make it available during runtime. You use the
register command to register the JAR file. The following register statement registers
customutils.jar:

REGISTER customutils.jar;

Chapter 11 ■ User-Defined Functions

150

The JAR needs to in the local file system. You can use both an absolute path or a
relative path; the relative path will resolve from the current working directory in the local
file system.

Using a Java UDF in Pig Latin Code
You can use user-defined functions in foreach generate like built-in functions. You will
specify both the package name and the class name to use the UDF. The following code
uses the replacenotnull UDF from the stringutils package.

replacenull = FOREACH emp GENERATE eno,ename,salary,stringutils.
replacenull(dno);

The complete code will look like this:

REGISTER strutils.jar;
Emp = load '/data/employee.csv' using PigStorage(',') as (eno:int,ename:char
array,salary:int,dno:int);
replacenull = FOREACH emp GENERATE eno,ename,salary,strutils.
replacenull(dno);
dump replacenull;

Rather than using a lengthy function name with a package structure, you can use a
short alias name as a function. You use the DEFINE operator to define a short alias name
as follows:

DEFINE replacenull strutils.replacenull();

This is simple eval function. You can write more advanced functions using Java. You
will learn how to write more advanced functions in the next chapter.

JavaScript
You can write user-defined functions in JavaScript also. Pig Latin internally uses the
JavaScript execution engine Rhino. Rhino is an open source framework that provides
scripting capabilities to Java. You will learn how to write UDFs in JavaScript that change
the employee name to uppercase.

Writing a JavaScript UDF
A JavaScript UDF contains two things. One is the output schema, and the other is the
code of the JavaScript function. You specify the output schema of the JavaScript function,
as shown here:

function-name.outputschema= "pig-latin-schema"

Chapter 11 ■ User-Defined Functions

151

The following code specifies the output schema that contains one column of the
varchar data type for a function called jsUpperCase:

jsUpperCase.outputSchema = "ename:chararray";

Now you will write a JavaScript function called jsUpperCase() that takes an
employee name as input and returns the uppercased employee name. You can use the
JavaScript function called toUpperCase() to do this.

function jsUpperCase(ename) {
 return ename.toUpperCase();
}

You will write these two (the schema and the JavaScript function) in a file. Also
remember you can write multiple functions in a single file.

The following code contains a JavaScript UDF called jsUpperCase:

hdfs@cluster10-1:~> cat uppercasejs.js
jsUpperCase.outputSchema = " enameUC:chararray ";
function jsUpperCase(ename) {
 if(ename!==null)
 return ename.toUpperCase();
 else
 return ename;
}

Registering a JavaScript UDF with Pig
Once you have written a function in a file, you need to make it available during runtime.
So, you need to register the JavaScript function using the register operator. You will use
a JavaScript command or JsScriptEngine command as interpreter commands.

Both of the following register statements are valid:

register 'uppercasejs.js' using org.apache.pig.scripting.js.JsScriptEngine
as strfuncs;

register '/home/hdfs/uppercasejs.js' using JavaScript as strfuncs;

You can use both the relative path or the absolute path of the JavaScript function file
in the register statement, and you will define an alias for this file using the AS keyword.

Using a JavaScript UDF in Pig Latin
You need to mention the alias name and function name to use it in Pig Latin code.
The following code provides the employee name column to the JavaScript function
jsUpperCase():

jsout = foreach emp generate eno,strfuncs.jsUpperCase(ename),salary,dno;

Chapter 11 ■ User-Defined Functions

152

You can check the schema of the jsout relation that has gotten the new column
name upperename, as mentioned in the JavaScript function file.

Describe jsout;
jsout: {eno: int,upperename: chararray,salary: int,dno: int}

The following code uses the JavaScript UDF in Pig Latin code:

hdfs@cluster10-1:~> cat uppercasejs.pig
register 'uppercasejs.js' using org.apache.pig.scripting.js.JsScriptEngine
as strfunc;
emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
jsout = foreach emp generate eno,strfunc.jsUCase(ename),salary,dno;
describe jsout;

Embedding Pig Latin Code
You can also embed Pig Latin code in JavaScript like you embed Pig Latin code in Java.
You can use the JSPig class to do this. The compile() method of JSPig can be used to
compile Pig Latin code.

The following code compiles Pig Latin code, and also Pig Latin code uses the
JavaScript function:

var P = pig.compile(" emp = load 'employee.csv' as (eno:int,ename:chararray,
salary:int,dno:int);”+
 “jsout = foreach a generate eno,strfunc.jsUCase(ename),salary,dno”+
 “dump jsout;");

JSPig also provides a method called bind() to bind data to a variable. The bind()
method returns an object of the BoundScript class that provides methods equal to the Pig
Latin operators describe, explain, and run functionalities.

Other Languages
You will now learn how to write UDFs in other languages such as Jython, Python, Ruby,
and Groovy.

Jython
You need to follow the same steps (write, register, and use) to use Jython code in the Pig
Latin code as you do for writing Java and JavaScript UDFs. Writing a Jython UDF is the
same as a JavaScript UDF; you need to write two things: one is the output schema, and

Chapter 11 ■ User-Defined Functions

153

other is the function code. The following code returns a number of characters in the
employee name:

@outputSchema("word:chararray")
def namelength(word):
 return len(word)

You can register Jython code using the register command along with the interpreter
command. Jython or JythonScriptEngine can be used as the interpreter command.

The following two statements are valid register statements for Jython:

register 'namelen.py' using org.apache.pig.scripting.jython.
JythonScriptEngine as customeutils;

So is the following:

Register 'namelen.py' using jython as customeutils;

You can use the Jython function by using its name and defining its alias.
The following code uses the Jython namelength function:

namelen = foreach emp generate customutils.namelength(ename);

The following is the complete Pig Latin code:

hdfs@cluster10-1:~> cat jythonfunc.pig
register 'namelen.py' using org.apache.pig.scripting.jython.
JythonScriptEngine as customutils;
emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
emp = foreach emp generate ename,customutils.namelength(ename);
dump emp;

Other Languages
Other language functions follow the same process as JavaScript and Jython. Functions
contain two parts. One is the output schema, and the other is function code. The output
schema is not mandatory. The default schema is taken if no output schema is specified.

You need to register functions using the register command and interpreter
command. The interpreter command for Python could be streaming_python or org.
apache.pig.scripting.streaming.python.PythonScriptEngine.

Table 11-1 contains the interpreter commands for all languages for quick reference.

Chapter 11 ■ User-Defined Functions

154

You can use other languages’ UDFs in foreach generate statements like you use
Jython and JavScript UDFs. You use the alias name set in the register statement and the
function name defined in the code.

Other Libraries
Before writing your own UDFs, you can check out few more libraries such as PiggyBank
and Apache DataFu. Both PiggyBank and Apache DataFu contain useful UDFs.

PiggyBank
PiggyBank is collection of UDFs written and shared by users. It comes as a JAR file when
you download Apache Pig. PiggyBank UDFs contain evaluation UDFs and storage UDFs.
Many useful storage UDFs such as CSVLoader, XMLLoader, and RegexLoader are available
in PiggyBank. Also, many useful evaluation UDFs are available to process strings, dates,
math, and XML data. You will use PiggyBank UDFs the same way you use normal UDFs.

The following code checks whether the input string is a numeric using the PiggyBank
UDF IsNumeric:

REGISTER piggybank.jar ;
Emp = load 'employee.csv' using PigStorage(',') as (eno: chararray,ename:cha
rarray,salary:int,dno:int);
Checknum = foreach emp generate org.apache.pig.piggybank.evaluation.
IsNumeric(eno);
Dump checknum;

Table 11-1.  Interpreter Commands for the Supported Languages

Chapter 11 ■ User-Defined Functions

155

PiggyBank UDFs may not have been tested well. They are available because they are
shared by users.

Apache DataFu
Apache DataFu (https://datafu.incubator.apache.org/) provides a collection of
libraries that are tested and suitable for large-scale data processing. It contains two
libraries; one is for Pig, and the other is for Hourglass. Hourglass provides MapReduce
libraries, and Apache DataFu Pig provides reusable UDFs that are well tested. DataFu’s
Pig library provides many UDFs for statistical analysis.

For example, you can generate the median for these listed numbers:

23
22
12
33
22
22
34
24

The following code uses DataFu’s Median UDF to generate the median of the
previous numbers:

register datafu-pig-incubating-1.3.0.jar
numrel = load 'numbers' using PigStorage() as (num:int);
grpall = group num all;
med = FOREACH grpall GENERATE Median(numrel.num);
DUMP med;

The previous code returns 22 as the median.

Summary
In this chapter, you learned to write UDFs in Pig Latin, including the following topics:

•	 How to develop UDFs using the Java language

•	 How to develop UDFs in the scripting language JavaScript and
how to embed Pig Latin code in JavaScript code

•	 How to develop UDFs in other scripting languages such as Jython,
Python, Ruby, and Groovy

•	 How to use PiggyBank UDFs

•	 How to use UDFs available in Apache DataFu

https://datafu.incubator.apache.org/

157© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_12

CHAPTER 12

Writing Eval Functions

In the previous chapter, you learned how to write user-defined functions. In this
chapter, you will learn in detail how to write Eval functions using Java and how to access
MapReduce features and Pig features inside Eval functions.

MapReduce and Pig Features
Let’s start with MapReduce and Pig features.

Accessing the Distributed Cache
The MapReduce distributed cache is a useful feature to keep small files on all data
nodes so that you can avoid costly operations like Reduce tasks. You can add files to the
distributed cache using Pig. You can add both HDFS files and local files. Distributed
cache files can be accessed within the exec method of Eval functions.

The following code adds the local file department.csv and the HDFS file loactions.
csv to the distributed cache. It tries to access them within the exec method using their
names.

public class DCAccessor extends EvalFunc<String> {

 @Override
 public String exec(Tuple input) throws IOException {
 �Scanner scanlocalfile=new Scanner(new FileReader

("./department.csv "));

Scanner scanhdfsfile=new Scanner(new FileReader("./locations.csv "));

 return getdname("./department.csv", dno);
 }
@Override
 public List<String> getShipFiles() {
ArrayList<String> localfiles= new ArrayList<String>();
localfiles.add("/home/hdfs/department.csv");

Chapter 12 ■ Writing Eval Functions

158

 return localfiles;
 }
@Override
 public List<String> getCacheFiles() {
ArrayList<String> hdfsfiles= new ArrayList<String>();
localfiles.add("/home/hdfs/locations.csv");
 return localfiles;
 }
}

It is better to put small files in the distributed cache because it keeps files on
every data node. It is useful for functionality like joins. You can get joins to access
the distributed cache without using the join operator. For example, you can get the
department name from the departments data set to get the department number in the
employee data set easily from the distributed cache.

Accessing Counters
Counters display important statistics about the MapReduce job. Counters display many
statistics. Some of them are the number of rows read, the number of rows written, the
number of bytes read, and the number of bytes written. You can also access counters
within a user-defined function. You can define new counters and also can retrieve built-
in counters. You can use the PigStatusReporter class for both. This class provides a
method called incrCounter that can be used to increase counters.

You will see how to write a new counter to count null values in the Department
number column.

	 1.	 You need to create an enum with counter variables.

The following enum called NullValues contains variables for
counting null values in the department number and salary
columns.

package customutils;
public enum NullValues {
DNONULL,SALARYNULL
}

	 2.	 You need to instantiate the PigStatusReporter class to call
the incrCounter() method within the Eval function.

The following code increases the value of DNONULL by 1 every
time it gets a null value for the department number:

public class ReplaceNull extends EvalFunc<Integer> {
 public Integer exec(Tuple input) throws IOException {
 PigStatusReporter psr=PigStatusReporter.getInstance();
 Integer dno = (Integer) input.get(0);

Chapter 12 ■ Writing Eval Functions

159

 try {
 if (dno == null)
 {
 psr.incrCounter(NullValues.DNONULL, 1);
 return new Integer(400);
 }
 } catch (Exception e) {
 throw new IOException(
 �" exception thrown while processing

department number ", e);
 }
 return dno;

 }
}

After the job completion, you can check counters using the jobtracker URL, or you
can simply run the following mapred command to see the MapReduce counters:

mapred job -status <job_id>

The command should display counters, and one of them will have the counter as
shown here:

customutils.NullValues
 DNONULL=12

Reporting Progress
When you have user-defined functions that take a long time to complete, it is better to
display the progress to the user. You can simply call the progress() method within the
exec method of the Eval function. This will also avoid timeout errors in applications.

The following code calls the method progress() within the EVAL function:

public class ReplaceNull extends EvalFunc<Integer> {
 public Integer exec(Tuple input) throws IOException {
progress();
 }
}

Output Schema and Input Schema in UDF
You can define the output schema within a user-defined function. It is a good habit to
define an output schema. The right schema will not only improve performance but also
avoid unwanted failures.

Chapter 12 ■ Writing Eval Functions

160

You need to override the outputSchema() method of the EvalFunc class to define the
output schema for the UDF.

The following code contains the outputSchema() method:

public Schema outputSchema(Schema input){
Schema udfSchema=new Schema();
..
..
Return udfSchema;

 }

This method has a schema of the input data; you can build an output schema using the
same schema class if you want. As most of Pig Latin data types are the same as the Java data
types, Pig can resolve the output data type if it is not specified in a user-defined function.

Table 12-1 contains the data type mapping between Pig and Java.

Table 12-1.  Data Type Mappings

Chapter 12 ■ Writing Eval Functions

161

bag and tuple are simple Java interfaces. You cannot use them directly. You will use the
TupleFactory and BagFactory classes to return the tuple and bag data types within UDF.

The following code creates a tuple with a capacity of ten fields and adds that tuple to
a bag:

TupleFactory tfactory=TupleFactory.getInstance();
Tuple myTuple=tfactory.newTuple(10);

BagFactory bfactory= BagFactory.getInstance();
DataBag bag=bfactory.newDefaultBag();
bag.add(myTuple);

If the UDF does not provide any output schema, Pig will assume it is a single tuple
with one field of bytearray. If the Pig Latin script does not honor this assumption, it will
throw an error. Pig can get the data type of a variable using the Java Reflection API unless
they are the bag and tuple data types.

The following code returns the correct schema even though the UDF replacenull
did not override the outputSchema() method because ReplaceNull returns only Integer.

replacenull = FOREACH emp GENERATE strutils.replacenull(dno) as dno;
describe replacenull;

replacenull:{dno:int}

Examples of Output and Input Schemas
The following code defines a Tuple as the output schema:

public Schema outputSchema(Schema input) {
 �Schema outSchema = new Schema(new Schema.FieldSchema(null,DataType.

TUPLE));
 return outSchema;

The variable DataType.TUPLE represents the tuple data type in the schema. The
DataType class contains all the variables that can be used for representing the schema.

You can also access the input schema within the UDF using the getInputSchema()
method of the EvalFunc class.

The following code returns the first field from the input schema:

public Integer exec(Tuple input){
getInputSchema().getField(1);
}

Chapter 12 ■ Writing Eval Functions

162

Other EVAL Functions
You saw how to write simple EVAL functions in the previous chapter. Here you will
learn how to write advanced EVAL functions such as aggregate, accumulator, and filter
functions.

Algebraic
The EvalFunc class is used for writing both single-row functions and multirow functions.
You will extend EvalFunc to write simple single-row functions, and if you want to write
multirow functions such as an aggregate count and sum, you need to implement an extra
interface called Algebraic. The Algebraic interface contains three methods to process
initial data, intermediate data, and final data. Intermediate data processing is useful for
reducing the load on the final stage. Algebraic functions take bags as input and produce
scalar values as output.

The following code contains the Algebraic interface with its methods:

public interface Algebraic{
 public String getInitial();
 public String getIntermed();
 public String getFinal();
}

These three stages are same as the map, combine, and reduce stages in the
MapReduce framework.

Table 12-2 matches the algebraic functions to the MapReduce functions.

Table 12-2.  Mapping the Functions

Initial Data Processing
Initial data processing is achieved by the class name returned by the method
getInitial().

The following code returns the class name as CountInitial, which will actually have
code for initial data processing:

Public string getInitial(){
Return CountInitial.class.getname();
}

Chapter 12 ■ Writing Eval Functions

163

The initial class has to extend EvalFunc and override the exec() method.

public class CountInitial extends org.apache.pig.EvalFunc<Tuple> {
@Override
 public Tuple exec(Tuple input) throws IOException {
.
.
}
}

getInitial is same as the Map task of the MapReduce framework. It is run only once
per tuple. It takes a tuple as input and produces a tuple as output.

Intermediate Data Processing
Intermediate data processing is achieved by the class name returned by the method
getIntermed().

The following code returns the class name as CountIntermed, which will actually
have code for intermediate data processing:

Public string getIntermed(){
Return CountIntermed.class.getname();
}

The Intermed class has to extend EvalFunc and override the exec() method as
shown here:

public class CountIntermed extends org.apache.pig.EvalFunc<Tuple> {
@Override
 public Tuple exec(Tuple input) throws IOException {
.
.
}
}

getIntermed() is same as the Combine task of the MapReduce framework. This
will be called zero or many times. It takes a tuple as input and produces a tuple as an
intermediate result.

Final Data Processing
The final data processing is achieved by the class name returned by the method
getFinal().

Chapter 12 ■ Writing Eval Functions

164

The following code returns the class name as CountFinal, which will actually have
code for intermediate data processing:

Public string getInitial(){
Return CountFinal.class.getname();
}

This Final class also extends the EvalFunc class and overrides the exec() method.
getFinal() is same as the Reduce task of the MapReduce framework. This is the final
stage, which will produce the final output.

public class CountFinal extends EvalFunc<Integer> {
@Override
 public Integer exec(Tuple input) throws IOException {
 return new Integer(sum);
 }

It will take a tuple as input but will produce a scalar value as output. The previous
code is returning an integer as the final result. Now you will see how to write an algebraic
function that counts null values.

Algebraic Function Example
An algebraic function should be computable in the three stages discussed. More
importantly, it should be computable in the intermediate stage with partial data to reduce
load on the final stage. For example, Sum is an algebraic function that can have the SUM
function on the partial data in the intermediate stage and also the SUM function in the
final stage.

The initial stage will have the default numbering most of the time like the map
function in MapReduce.

Figure 12-1 shows the operations of the algebraic function SUM in three stages.

Figure 12-1.  Algebraic function SUM

Sometimes you cannot have the same function in both the intermediate and final
stages; in that case, you will plan a suitable function for the intermediate stage. For
example, if you want to have a count of rows in a relation, you can use the count function
in the intermediate stage, but you need to have SUM in the final stage, as shown in
Figure 12-2.

Chapter 12 ■ Writing Eval Functions

165

Some functions such as ranking functions and statistical functions cannot be algebraic.
For example, say you want to count null values in a group. You will do the default

numbering in the initial stage, which is 1. You will count the number of null rows in the
intermediate stage, and you will sum all the intermediate values for the final sum. If all
the rows after the initial stage have the default number 1, there is no difference in the
count and sum in the intermediate stage.

Now you will see how to extend the EvalFunc class and implement the Algebraic
interface to write an algebraic function that counts null values in a column.

Extend the EvalFunc Class

Like with the simple Eval function, you need to extend EvalFunc and override the exec()
method. You will take the input tuple from the exec() method, will retrieve the first
element as a data bag, and will iterate that data bag to get the final tuple and field value. If
the field is null, you will increase the counter. You write this code as if there is no algebraic
function implemented.

The following code contains the implementation for counting the null functionality:

@Override
 public Integer exec(Tuple input) throws IOException {
 int count = 0;

 DataBag db = (DataBag) input.get(0);
 if (db == null)
 return null;
 Iterator it = db.iterator();
 while (it.hasNext()) {
 Tuple dnotuple = (Tuple) it.next();
 for (int i = 0; i < dnotuple.size(); i++) {
 Object dno = dnotuple.get(i);
 if (dno == null) {

 count++;
 }

 }

 }
 return new Integer(count);
 }

Figure 12-2.  Final stage

Chapter 12 ■ Writing Eval Functions

166

Implement the Algebraic Interface

You will now implement the Algebraic interface.

Writing Classes
You will write three classes, one for each stage. Every class will extend EvalFunc and
implement the exec() method. You will write the initial class that will return 1 if null is
found.

The following code is for the initial stage for counting nulls:

public class CountInitial extends org.apache.pig.EvalFunc<Tuple> {
 TupleFactory mTupleFactory=TupleFactory.getInstance();
 @Override
 public Tuple exec(Tuple input) throws IOException {
 DataBag bag = (DataBag)input.get(0);
 Iterator it = bag.iterator();
 if (it.hasNext()){
 Tuple t = (Tuple)it.next();
 if (t != null && t.get(0) == null)
 return mTupleFactory.newTuple(Integer.valueOf(1));
 }
 return mTupleFactory.newTuple(Integer.valueOf(0));
}
}

The intermediate class will return the number of rows that have one null.
The following is the code for the intermediate stage to count the nulls:

public class CountIntermediate extends EvalFunc<Tuple> {
TupleFactory mTupleFactory=TupleFactory.getInstance();
int count = 0;
 @Override
 public Tuple exec(Tuple input) throws IOException {
 DataBag values = (DataBag)input.get(0);
 for (Iterator<Tuple> it = values.iterator(); it.hasNext();) {
 Tuple t = it.next();
 Integer i=(Integer)t.get(0);
 if(i.intValue()==1)
 count++;
 }
 Tuple medtuple=mTupleFactory.newTuple();
 medtuple.append(new Integer(count));
 return medtuple;
 }

}

Chapter 12 ■ Writing Eval Functions

167

The final class sums all the values in the input tuple to return the final result, which is
the null count in this case.

The following code contains the final stage code for counting nulls:

public class CountFinal extends EvalFunc<Integer> {
 @Override
 public Integer exec(Tuple input) throws IOException {
 DataBag values = (DataBag)input.get(0);
 int sum = 0;
 for (Iterator<Tuple> it = values.iterator(); it.hasNext();) {
 Tuple t = it.next();
 if (t != null && t.size() > 0 && t.get(0) != null){
 Integer i=(Integer)t.get(0);
 sum += i.intValue();
 }
 }
 return new Integer(sum);
 }

}

Returning Classes
Now you need to implement methods of the Algebraic interface. As discussed earlier, the
interface will have three methods that will return the class name of their respective stages.

The following code implements three methods. The getInitial() method returns
the name of the initial class name that is getInitial, the getIntermed() method will
return the intermediate class name CountIntermediate, and the getFinal() method
returns the final class name that is getFinal.

The following code contains the implementation for the initial, intermediate, and
final methods of the Algebraic interface:

public class AlgebraicCountNull extends EvalFunc<Integer> implements Algebraic {
public String getInitial() {
 return CountInitial.class.getName();
 }

 public String getIntermed() {
 return CountIntermediate.class.getName();
 }
public String getFinal() {
 return CountFinal.class.getName();
 }

Chapter 12 ■ Writing Eval Functions

168

 @Override
 public Integer exec(Tuple input) throws IOException {
..
..
}

Accumulator
All functions may not be algebraic. Statistical functions like median cannot be computed
in multiple stages like in the Algebraic interface. These types of function will again
increase the load on the Reduce task. The Accumulator interface will send data of the
same key incrementally to reduce the load on the Reduce task. The Accumulator interface
will also decrease memory consumption to boost application performance.

The Accumulator interface contains three methods, as follows:

public interface Accumulator <T> {
 public void accumulate(Tuple b) throws IOException;
 public T getValue();
 public void cleanup();
}

The following is the description for all three methods:

accumulate(Tuple b)

It is responsible for processing input tuple. It will be called one or more times.

getValue()

This will be called once after all the values of a key are passed to the accumulator.

cleanup()

It will be called after the getvalue() method to perform the cleanup operation.
The built-in aggregate function count implements the Accumulator interface.

Filter Functions
A filter function is a type of eval function that returns only a Boolean value. You need to
extend the FilterFunc class and implement the exec() method to write your own filter
function. The filter functions can be used in the Filter statement and also in the foreach
generate statement.

Chapter 12 ■ Writing Eval Functions

169

The following code returns true if the column contains NULL or false otherwise:

import java.io.IOException;
import org.apache.pig.FilterFunc;
import org.apache.pig.data.Tuple;

public class IsNull extends FilterFunc {

 @Override
 public Boolean exec(Tuple input) throws IOException {
 Object obj=input.get(0);
 return (obj==null);
 }

}

You can use the IsNull function on the department number column to retrieve the
NULL department number tuple, as shown here:

Emp = load 'employee.csv' using PigStorage() as (eo,ename,salary,dno);
Nulldno = filter emp by IsNull(dno);
Dump nulldno;

The output will be as follows:

(300,Nitya,150000,)

Summary
In this chapter, you learned to access MapReduce features and also learned to write
advanced UDFs. Some of important topics are listed here:

•	 How to access files from the distributed cache within EVAL
functions

•	 How to create new counters and access existing counters within
the EVAL function using the PigStatusReporter class

•	 How to report the progress of a job using the progress() method

•	 How to access the input schema and define the output schema
within the EVAL function

•	 How to write the algebraic function by implementing the
getInitial, get Intermediate, and getFinal methods of the
Algebraic interface

•	 The benefits of the Accumulator functions

•	 How to write a filter function by extending the FilterFunc class

171© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_13

CHAPTER 13

Writing Load and Store
Functions

You have many load/store functions such as PigStorage, HBaseStorage, and TextLoader
available in Pig, and many functions are available in PiggyBank. However, you may get
other requirements to write your own load/store functions. You will learn how to write
load and store functions in this chapter.

Writing a Load Function
You need to extend the abstract class LoadFunc and implement its abstract methods to
write a simple loader function. The LoadFunc class can be used for loading data from
many systems including Hadoop. The basic methods to be implemented are getNext(),
getInputFormat(), prepareToRead(), and setLocation(), as listeds in Table 13-1, and
the LoadFunc class comes with many methods with default implementations that you can
even override if you want.

Table 13-1.  Basic Methods to Implement

Chapter 13 ■ Writing Load and Store Functions

172

•	 The getNext() method should return tuples one after another
until all are finished. If you are reading data from Hadoop, it will
use the Text class and the RecordReader class of Hadoop to read
the next record and return it as a tuple.

•	 The prepareRead() method will set the split to be ready by Pig. It
will be called before the getNext() method.

•	 The getInputFormat() method will return the input format class
of MapReduce that is suitable for input files. MapReduce provides
many input format classes; you can use one of them. If none of
MapReduce input format classes is suitable, you need to write
your own input format class using the MapReduce API.

Pig also provides input format classes that can be used as return classes of the
getInputFormat() method. These Pig classes include all the files and directories
recursively, unlike MapReduce.

PigTextInputFormat is a subclass of TextInputFormat and is used to read the text
data type.

PigSequenceFileInputFormat is a subclass of SequenceFileInputFormat that is
used to read the sequence file format data. PigFileInputFormat is a subclass of the
FileInputFormat class and can be used to read any file. setLocation is used to set input
paths, and you can even access the job details within this method. Internally the method
relativeToAbsolutePath(String, Path)} will resolve relative paths if any are specified
by the user. You will see how to load a double colon–delimited employee file using Pig
Latin. You will override the four methods discussed.

The getnext() method will retrieve the next key available for processing using the
method nextKeyValue(). If nextKeyValue() returns false, it means there are no keys to
process, so the getNext() method returns null. The getCurrentValue() method returns
a row that will be converted into the MapReduce Text type. Using text you will find the
delimiter position. Using the delimiter position, you identify and read fields by data first
into the array list, and you add that array list to a tuple. Every time it needs to return the
fresh tuple, so you have to make it null in the end.

getInputFormat returns the PigTextInputFormat class, and the prepareRead()
method will assign the RecordReader object to the local recordreader object using which
you are reading data in the getnext() method.

The setLocation() method sets the input locations to the job using String
inputPath.

Many MapReduce classes are involved in this program. MapReduce provides new
classes in the MapReduce package and old classes in the mapred package. You need to
refer to the new classes in the MapReduce package for import statements in the program.

This is a simple program with a double colon as the delimiter. It can be further
developed to take any double characters as a delimiter.

The complete DoubleColonLoader class looks like this:

public class DoublecolonLoader extends LoadFunc {
 protected RecordReader reader = null;
 private String delimiter = "::";
 private ArrayList<Object> tupleList = null;

Chapter 13 ■ Writing Load and Store Functions

173

 private TupleFactory tupleFactory = TupleFactory.getInstance();
 @Override
 public Tuple getNext() throws IOException {
 try {
 boolean keyexists = reader.nextKeyValue();
 if (!keyexists) {
 return null;
 }
 Text row = (Text) reader.getCurrentValue();
 int delimpos = row.find(delimiter);
 byte[] buf = row.getBytes();
 int len = row.getLength();
 int start = 0;

 for (int i = 0; i < len; i++) {
 if (delimpos > 0) {
 readField(buf, start, delimpos);
 start = delimpos + 2;
 }
 delimpos = row.find(delimiter, start);
 }
 readField(buf, start, len);

 Tuple t = tupleFactory.newTupleNoCopy(tupleList);

 tupleList = null;
 return t;
 } catch (InterruptedException e) {
 int errCode = 6018;
 String errMsg = "Could not read input";
 throw new ExecException(errMsg, errCode,
 PigException.REMOTE_ENVIRONMENT, e);
 }

 }
private void readField(byte[] buf, int start, int end) {
 if (tupleList == null) {
 tupleList = new ArrayList<Object>();
 }
 if (start == end) {
 tupleList.add(null);
 } else {
 tupleList.add(new DataByteArray(buf, start, end));
 }
 }

Chapter 13 ■ Writing Load and Store Functions

174

 @Override
 public InputFormat getInputFormat() {
 return new TextInputFormat();
 }

 @Override
 public void prepareToRead(RecordReader rreader, PigSplit split) {
 reader = rreader;
 }

 @Override
 public void setLocation(String inputpath, Job job) throws IOException {
 FileInputFormat.setInputPaths(job, inputpath);
 }

}

You need to create a JAR file for the previous program and register it before using it,
like any other user-defined function. After registering, you can use the class name as the
function name along with the full package name.

The following code uses the DoubleColonLoader function in the Pig Latin script:

Register customutils.jar;
Emp = load 'employee' using customutils.DoubleColonLoader() as (eno:int,enam
e:chararray,salary:int,dno:int)
Enoename =foreach emp generate eno,ename;
Dump enoename;

Loading Metadata
You might want to load metadata about data if it is already available. You need to use
the LoadMetadata interface to achieve this by implementing its four methods, listed in
Table 13-2.

Table 13-2.  The LoadMetadata Methods to Implement

Chapter 13 ■ Writing Load and Store Functions

175

The getStatistics() method returns statistics about data to be loaded if any are
available; otherwise, it returns null. The statistics feature for data is a work in progress.
For now, you can simply use return null, as shown here:

@Override
 public ResourceStatistics getStatistics(String loc, Job job)
 throws IOException {
 return null;
 }

The getPartitionKeys() method returns partition keys available in the data; if no
partition keys are available, it returns null. This is useful to read data from Hive tables.
HCatLoader of Hive returns partition keys of the mentioned table if it is a partitioned table
using this feature.

@Override
 public String[] getPartitionKeys(String loc, Job job)
 throws IOException {
 return null;
 }

You might have many partitions, but you may not be interested in all of them; in that
case, you can filter the partitions you want using the setPartitionFilter() method.
This method is a continuation of the getpartitionKeys() method, and it assumes
partition keys returned by the getpartitionKeys() method are actually available. You
will write an empty method if you do not have any partition filters like the following:

@Override
 public void setPartitionFilter(Expression pFilter) throws IOException {
}

You may not want to define a schema while loading data if the schema is already
available in the input directory. You can simply specify -schema in the load statement
so that it can automatically retrieve and define the schema for your relation. This
functionality is achieved by implementing the getSchema() method.

The following Java code implements the getSchema() method of the LoadMetaData
interface and returns the employee data set schema without defining it:

public ResourceSchema getSchema(String arg0, Job arg1) throws IOException {
 //define field and data type
 FieldSchema eno=new FieldSchema("eno", DataType.INTEGER);
 FieldSchema ename=new FieldSchema("ename", DataType.CHARARRAY);
 FieldSchema salary=new FieldSchema("salary", DataType.INTEGER);
 FieldSchema dno=new FieldSchema("dno", DataType.INTEGER);
 //add fields to list
 List<FieldSchema> fieldList=new ArrayList<Schema.FieldSchema>();
 fieldList.add(eno);
 fieldList.add(ename);
 fieldList.add(salary);

Chapter 13 ■ Writing Load and Store Functions

176

 fieldList.add(dno);
 //create a schema with list
 Schema empSchema=new Schema(fieldList);
 //return resource schema
 return new ResourceSchema(empSchema);
}

With the previous getSchema() method, the describe command will return the
schema even though the schema is not defined by you.

The following code displays the schema of the relation emp even though the schema
is not defined:

register customutils.jar;
emp = load 'employeedcolon.csv' using customutils.DoublecolonLoader() ;
describe emp;

emp: {eno: int,ename: chararray,salary: int,dno: int}

Improving Loader Performance
Rather than loading all the fields, it is a good idea to load only the required fields. This will
improve the performance of the loader a lot. You can push down some fields to the loader
using the LoadPushDown interface so that the loader loads those only fields. You need to
implement two methods of the LoadPushDown interface, as noted in Table 13-3.

Table 13-3.  The LoadPushDown Methods to Implement

The getFeatures() method returns a set of operations that can be pushed down.
The pushProjection() method informs the required field names to the loader.

Converting from bytearray
When you are writing the loader function, it is important not to lose data while reading it.
Data will be available in byte format; you need to convert it to the appropriate data type.
You can use the LoadCaster interface to convert the default data format (bytearray) to
other Pig Latin data types.

Chapter 13 ■ Writing Load and Store Functions

177

For example, the following code converts bytearray to the Pig Latin chararray data
type:

@Override
 public String bytesToCharArray(byte[] bytes) throws IOException {
 return new String(bytes);
 }

Table 13-4 contains all the methods to be implemented. You may not be required
to implement all the methods. You may provide a skeleton implementation wherever
required.

Table 13-4.  The Methods to Overload

Table 13-5.  LoadPredicatePushdown Methods to Implement

For example, TextLoader implements only bytesToCharArray as it does not require
the others.

Pushing Down the Predicate
Besides fields, you can also push down the operators and expressions you want.
LoadPredicatePushdown allows you to perform advanced pushdown operations. You
need to implement the three methods given in Table 13-5 to achieve this.

Chapter 13 ■ Writing Load and Store Functions

178

This feature is still a work in progress; currently only ORCStorage
implements it. You can define a set of operations to be pushed down using the
getSupportedExpressionTypes() method. You can choose operations types such as
EQUALS,NOT EQUALS using the OpType class.

Table 13-6 contains all the supported operations.

Table 13-6.  The Supported Operations

Now you will learn how to write a custom store function.

Writing a Store Function
You need to implement StoreFuncInterface or extend the StoreFunc abstract class to
write your own storage function. There is not much difference between them.

You use StoreFuncInterface if your class is already extending another class because
Java does not allow you to extend two or more classes. StoreFuncInterface is especially
useful for writing a single function for both loading and storing like the PigStorage
function. In such a case, you will extend the LoadFunc class and implement the
StoreFuncInterface interface. In either case, you need to implement the four methods
shown in Table 13-7.

Chapter 13 ■ Writing Load and Store Functions

179

The setStoreLocation() method will set the output location as the user input
given in the store command of a Pig Latin script. Relative paths will be resolved using the
method relToAbsPathForStoreLocation().

public void setStoreLocation(String loc, Job job) throws IOException {
 TextOutputFormat.setOutputPath(job, new Path(loc));
 }

The getOutputFormat() method will return the output format class. You can use
the MapReduce output format classes such as FileOutputFormt, TextOutputFormat,
and SequenceFileOutputFormat or the Pig output format classes such as the
PigTextOutputFormat class. You can also create your own output format class using the
MapReduce API.

The following code returns TextOutputFormat:

public OutputFormat getOutputFormat() throws IOException {
return new TextOutputFormat<WritableComparable,Text> ();
 }

The prepareToWrite() method is the starting point for storing data and called
before the putNext() method.

The following code is an example of the implementation of the prepareToWrite
method:

public void prepareToWrite(RecordWriter writer) throws IOException {
 rWriter=writer;
 }

The putNext() method is responsible for writing data to the output directory.
This method runs once per tuple and writes one field after another using a delimiter in
between them. It writes data in bytes after converting it into the appropriate data type.

The following store function writes data using a double colon as the delimiter. This is
a simple program to write normal data types; you need to enhance it to support advanced
data types.

Table 13-7.  The Four Methods to Implement

Chapter 13 ■ Writing Load and Store Functions

180

public class DoubleColonStorer extends StoreFunc {
 private RecordWriter rWriter = null;
 private String delim = "::";
 private static final int BUFFER_SIZE = 1024;
 private static final String UTF8 = "UTF-8";

 @Override
 public OutputFormat getOutputFormat() throws IOException {
 return new TextOutputFormat<WritableComparable, Text>();
 }

 @Override
 public void prepareToWrite(RecordWriter writer) throws IOException {
 rWriter = writer;
 }

 ByteArrayOutputStream out = new ByteArrayOutputStream(BUFFER_SIZE);

 @Override
 public void putNext(Tuple tuple) throws IOException {
 int tsize = tuple.size();
 for (int i = 0; i < tsize; i++) {
 Object field;
 try {
 field = tuple.get(i);
 } catch (ExecException ee) {
 throw ee;
 }

 putField(field);

 if (i != tsize - 1) {
 out.write(delim.getBytes());
 }
 }

 Text text = new Text(out.toByteArray());
 try {
 rWriter.write(null, text);
 out.reset();
 } catch (InterruptedException e) {
 throw new IOException(e);
 }

 }
 private void putField(Object field) throws IOException {

Chapter 13 ■ Writing Load and Store Functions

181

 switch (DataType.findType(field)) {
 case DataType.NULL:
 break;
 case DataType.BOOLEAN:
 out.write(((Boolean) field).toString().getBytes());
 break;

 case DataType.INTEGER:
 out.write(((Integer) field).toString().getBytes());
 break;

 case DataType.LONG:
 out.write(((Long) field).toString().getBytes());
 break;

 case DataType.FLOAT:
 out.write(((Float) field).toString().getBytes());
 break;

 case DataType.DOUBLE:
 out.write(((Double) field).toString().getBytes());
 break;

 case DataType.BYTEARRAY: {
 byte[] b = ((DataByteArray) field).get();
 out.write(b, 0, b.length);
 break;
 }

 case DataType.CHARARRAY:
 out.write(((String) field).getBytes(UTF8));
 break;

 default: {
 int errCode = 2108;
 String msg = "Unknown Data type: " + field;
 throw new ExecException(msg, errCode, PigException.BUG);
 }

 }
 }

 @Override
 public void setStoreLocation(String loc, Job job) throws IOException {
 TextOutputFormat.setOutputPath(job, new Path(loc));
 }

}

Chapter 13 ■ Writing Load and Store Functions

182

This program extends the StoreFunc class. You can try implementing
StoreFuncInterface. Please check the source code of PigStorage for a better
understanding of this concept.

Writing Metadata
You need to implement the StoreMetadata interface by providing the implementation for
the methods in Table 13-8 in order to store metadata in the output directory.

Table 13-8.  StoreMetadata Methods to Implement

The storeSchema() method is used for storing metadata into the output directory.
This method will create two hidden files, pig_header and pig_schema, under the output
directory. The pig_schema file will have a schema of the relation name used in the store
statement. And the schema will be stored in JSON format.

The following code stores metadata to the output directory:

public void storeSchema(ResourceSchema rSchema, String loc, Job job)
 throws IOException {
 JsonMetadata jsonMetadata=new JsonMetadata();
 jsonMetadata.storeSchema(rSchema, loc, job);

 }

Once the job is completed, you can check the metadata files using the hdfs dfs -ls
command that will list hidden files also.

The command below contains schema files .pig_schema and .pig_header.

hdfs@cluter10:~> hdfs dfs -ls empout
Found 4 items
-rw-r--r-- 3 hdfs hdfs 21 2016-07-19 02:26 empout/.pig_header
-rw-r--r-- 3 hdfs hdfs 426 2016-07-19 02:26 empout/.pig_schema
-rw-r--r-- 3 hdfs hdfs 0 2016-07-19 02:26 empout/_SUCCESS
-rw-r--r-- 3 hdfs hdfs 72 2016-07-19 02:26 empout/part-m-00000

If the script is run in local mode, you need to use the ls -a command that will list
hidden files.

Chapter 13 ■ Writing Load and Store Functions

183

You can check the schema in the pig_schema file that will be in JSON format, as
shown here:

hdfs@cluster10:~> hdfs dfs -cat empout/.pig_schema
{"fields":[{"name":"eno","type":10,"description":"autogenerated from Pig
Field Schema","schema":null},{"name":"ename","type":55,"description":"aut
ogenerated from Pig Field Schema","schema":null},{"name":"salary","type":10,
"description":"autogenerated from Pig Field Schema","schema":null},{"name":"dno",
"type":10,"description":"autogenerated from Pig Field Schema","schema":null}],
"version":0,"sortKeys":[],"sortKeyOrders":[]}

The storeStatistics() method is used to store statistics about data in the output
directory. As discussed, loading/storing statistics about data is a work in progress; you
can ignore this for now and just provide a skeleton implementation, as shown here:

public void storeStatistics(ResourceStatistics rStats, String loc, Job job)
 throws IOException {
}

Distributed Cache
The StoreResources class provides two methods to put files into the distributed cache
(see Table 13-9). The getShipFiles() method puts local files into the distributed cache,
and the getCacheFiles() method puts HDFS files into the distributed cache.

Table 13-9.  StoreResources Methods to Implement

The following Java code puts the departments.csv file of HDFS into the distributed
cache:

public List<String> getCacheFiles(){
 String dfsdno="/user/hdfs/dfs-departments.csv";
 List<String> smallfiles=new ArrayList<String>();
 smallfiles.add(dfsdno);
 return smallfiles;

 }

Chapter 13 ■ Writing Load and Store Functions

184

The following Java code puts the departments.csv file of the local file system into the
distributed cache:

 public List<String> getShipFiles(){
 String localdno="/home/hdfs/local-departments.csv";
 List<String> smallfiles=new ArrayList<String>();
 smallfiles.add(localdno);
 return smallfiles;
 }

As discussed earlier, you can avoid Reduce tasks by making use of the distributed
cache. Most importantly, you will store only small files in the distributed cache.

Handling Bad Records
You can handle bad records or processing errors in a better way using the ErrorHandler
and ErrorHandling interfaces. The ErrorHandler interface provides two methods, as
listed in Table 13-10. They are onError and onSuccess. You will implement them to
decide what to do when an error or a success occurs for a tuple.

Table 13-10.  ErrorHandler Methods to Implement

The following two methods increase the counters when an error or a success
happens so that you can check how many tuples failed and how many tuples succeeded:

public class StatusCounter implements ErrorHandler {
PigStatusReporter pigStatusReporter=PigStatusReporter.getInstance();
 public void onError(String arg0, Exception arg1, Tuple arg2) {
 pigStatusReporter.incrCounter("EmployeeRecords", "Failed", 1);
 }

 public void onSuccess(String arg0) {
 pigStatusReporter.incrCounter("EmployeeRecords", "succeeded", 1);
}
}

You need to implement the ErrorHandling interface in your UDF that returns the
appropriate ErrorHandler class. Error-handling functionality will be performed without
failing processing and when something goes wrong.

Chapter 13 ■ Writing Load and Store Functions

185

Accessing the Configuration
You can access the Hadoop configuration properties using the UDFContext class.

The following code gets a configuration object from UDFContext and gets a number
of Map tasks launched for running the job using the property mapred.map.tasks:

UDFContext ctx= UDFContext.getUDFContext();
Configuration conf=ctx.getJobConf();
String maptasks=conf.get("mapred.map.tasks");

The configuration class provides several methods to handle the underlying
properties. You can even modify or set a new value for a property.

The following code sets the number of Reduce tasks to ten:

conf.set("mapred.reduce.tasks","10");

Monitoring the UDF Runtime
You can monitor the UDF runtime so that you can time out long-running UDFs after a
certain amount of time. Pig provides the annotation @MonitoredUDF that can be used to
mark a UDF to monitor it.

@MonitoredUDF
public class SampleEval extends EvalFunc<Long> {

By default it will wait for ten seconds and will time out if the UDF runtime exceeds it.
You can even provide an amount of time that a UDF can run before a timeout, as shown
here:

@MonitoredUDF(timeUnit = TimeUnit.MILLISECONDS, duration = 100,
longDefault = 0)
public class SampleEval extends EvalFunc<Long> {

If a UDF times out, it will return the default value as 10. longDefault specifies
the default value if the UDF return type is Long. Similarly, you can specify intDefault,
DoubleDefault, stringDefault, and so on.

This feature is useful both for avoiding UDF going into an infinite loop and for
improving UDF performance.

Chapter 13 ■ Writing Load and Store Functions

186

Summary
In this chapter, you learned many things about custom load/store functions, such as the
following:

•	 How to write a custom load function to read double colon–
delimited data

•	 How to load the metadata of a data set using the LoadMetaData
interface

•	 How to load only specific fields using LoadPushDown to improve
loader performance

•	 How to convert from one data type to another while loading data

•	 How to write a custom store function to write double colon–
delimited data to an output directory

•	 How to write metadata using the StoreMetadata interface

•	 How to store small local files and HDFS files into a distributed
cache

•	 How to do error handling

•	 How to set and get configuration properties

187© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_14

CHAPTER 14

Troubleshooting

Many times you might get stuck both while developing applications and while running
applications. So, it is important to know how to troubleshoot Pig scripts. Pig provides
features and operators for troubleshooting. You will learn about some of them in this
chapter.

Illustrate
The Illustrate operator tells you how a Pig Latin script is transforming data. It generates
sample data from the data set and displays how that data is transformed from one relation
name to another. You can use the Illustrate operator on the relation name and also on
the Pig Latin script. Illustrate will not work if the schema is not defined. It is not well
maintained by the community, and many times it might not work. So, you should depend
on describe when it does not work.

Here’s the syntax:

Illustrate relname|scriptfile

Illustrate will also include the schema at every stage. See the following example:

grunt>emp = load 'employee.csv' using org.apache.pig.piggybank.storage.
CSVExcelStorage(',') as (eno:int,ename:chararray,sal:int);
grunt>grpall = group emp all;
grunt>cnt = foreach grpall generate COUNT_STAR(emp.eno);
grunt>illustrate cnt;

--
| emp | eno:int | ename:chararray | sal:int |
--
| | 300 | Nitya | 1500001 |
| | 200 | Nirupam | 2000002 |
--

Chapter 14 ■ Troubleshooting

188

| grpall | group:chararray |emp:bag{:tuple(eno:int,ename:chararray,
sal:int)}
2000002)}|

| cnt | :long |

| | 2 |

describe
You might face schema-related issues while running Pig Latin scripts. describe is useful
to correct them. As discussed earlier chapters, some operators like group, cogroup, and
join will have their own schema. describe will help you understand their schema so that
you continue writing appropriate code in the next lines of script.

Dump
You might face issues such as the Pig Latin script is not generating data. In such cases,
you can use the DUMP operator to check which line is having a problem. You can also use it
to check whether the script is generating the correct data or not.

Other operators such as LIMIT and SAMPLE can also be used for checking data in a
relation.

Explain
The Explain operator displays a set of operations that explain how the Pig Latin script is
converted and executed by Pig. This execution plan can be generated for one relation or
the entire script.

Here’s the syntax:

EXPLAIN [–script /path/to/pigscript] [–out /path/to/file] [–brief] [–dot]
[-xml] relname;

-script :
 Used to specify pig latin script path
-out :
 Used to specify file path where plan needs to be generated

Chapter 14 ■ Troubleshooting

189

-brief :
 Used to generate plan briefly

-dot :
 Used to generate DOT file to view plan in graph
-xml :
 Used to generate plan in XML format.
Relname :
 Relation name to be used for generating execution plan.

You now will see some examples for the explain operator.
The following code uses the explain operator in a relation from the Grunt shell:

Grunt>explain empcount;

The following code uses the explain operator in a Pig Latin script from the Grunt shell:

Grunt>explain -script /path/to/empcount.pig

The following code uses the explain operator in a Pig Latin script from a Unix prompt:

hdfs@cluster10:~> pig -x tez -e "expain -script /path/to/empcount.pig"

Plan Types
Three plans will be generated by the explain operator, as shown in Figure 14-1.

Figure 14-1.  The three plans

The execution engine plan can be a MapReduce plan or a Tez plan depending on the
execution engine you are using.

Chapter 14 ■ Troubleshooting

190

Logical Plan
A logical plan maps Pig Latin scripts to the internal logical operators of Pig. It will also
have a schema at every stage. Not much optimization is performed in a logical plan. This
is a simple mapping from a line of Pig Latin script to an internal logic operator.

Dotted lines represent the data flow, and the plan needs to be read from the bottom
to the top. The bottom statement is a load statement, and the top statement is a store
statement. Between the bottom and top statements, there are relation names, their
associated logical operators, and the schema.

Figure 14-2 shows a sample logical plan.

Figure 14-2.  A sample logical plan

Physical Plan
A physical plan will be generated after a logical plan is generated. A physical plan displays
input paths and output paths. The structure of the physical plan will be the same as the
logical plan; they both read from the bottom to the top, and the plan will be with respect
to relation names.

A physical plan contains extra statements such as the local rearrange, the global
rearrange, and the package. The local rearrange does the data preparation based on a key.
The global rearrange is used for partitioning and shuffling. A package prepares the data
required for a reducer.

Figure 14-3 shows a physical plan.

Chapter 14 ■ Troubleshooting

191

MapReduce Plan
Depending on the physical plan, Pig decides which operators should go in what stage
of the MapReduce plan. A MapReduce plan has three more categories; they are map,
combine, and reduce plans. The MapReduce plan is generated if you use MapReduce as
the execution engine.

The map plan lists both map operations and also internal classes involved to prepare
data required by the combiner and reducer stages. It also lists the loader function, file
system details, and input path.

Figure 14-4 shows a map plan containing a foreach statement with cast operations
and also COUNT_STAR#Initial , which does the data preparation required for the later
stages. It contains the loader function CSVExcelStorage that is used to read data from the
HDFS path /user/hdfs/employee.csv.

Figure 14-3.  A sample physical plan

Chapter 14 ■ Troubleshooting

192

Tez Plan
A Tez plan is generated if you use Tez as the execution engine. The Tez plan will be the
same as the MapReduce plan except that it lists the edges and vertices of the DAGs
involved. Like MapReduce, the Tez plan lists three plans that display the initial class,
intermediate class, and final classes of the Algebraic interface.

Figure 14-5 shows the first stage plan of the Tez plan.

Figure 14-5.  First stage

Figure 14-4.  A sample map plan

Chapter 14 ■ Troubleshooting

193

Modes
All explain plans can be generated in two modes, as shown in Figure 14-6. One is the text
mode, and the other is the graph mode.

Figure 14-6.  The two plan modes

Text mode can be further categorized into two modes: plain-text mode and XML
mode. Plain-text mode is the default mode that generates all the explain plans in human-
readable plain text, and by default the plan will be displayed on the console. The if -out
option is used, and the plan will be saved in the file name mentioned.

You use the -xml option to generate the plan in XML format.
The following code generates all the plans in XML format for the relation empcount,

and the partial XML is also shown:

grunt> explain -xml empcount;

<mapReducePlan>
 <mapReduceNode scope="25">
 <map>
 <POLocalRearrange scope="44">
 <alias>grpall</alias>
 <POProject scope="46"/>
 <POForEach scope="26">
 <alias>empcount</alias>
 <POProject scope="27"/>
 <POUserFunc scope="28">
 <POProject scope="29">
 <POProject scope="30"/>
 </POProject>
 </POUserFunc>
.
.
</map>
</mapreduce>
</mapreducePlan>

Chapter 14 ■ Troubleshooting

194

Graph mode generates code that can be used to view a plan in graph form. You can
use any graph editor such as GraphViz to view a plan. You use the option -dot to generate
the graph code.

The following code generates the explain plan in dot file format, and the partial
logical plan code is also shown:

grunt> explain -dot empcount;
#---
New Logical Plan:
#---
digraph plan {
compound=true;
node [shape=rect];
s602748972_in [label="", style=invis, height=0, width=0];
s602748972_out [label="", style=invis, height=0, width=0];
subgraph cluster_602748972 {
label="LOForEach"labelloc=b;
2010856706 [label="LOInnerLoad"];
2027549979 [label="LOInnerLoad"];
s210278405_in [label="", style=invis, height=0, width=0];
s210278405_out [label="", style=invis, height=0, width=0];
subgraph cluster_210278405 {
label="LOGenerate"labelloc=b;
1106933404 [label="Project0:(*)"];
1074868579 [label="Dereference"];
1906565212 [label="UserFunc"];
1106933404 -> 1074868579
1074868579 -> 1906565212
s210278405_in -> 1106933404 [style=invis];
969432090 [label="Project1:(*)"];
722764585 [label="Dereference"];
1657218305 [label="UserFunc"];
969432090 -> 722764585
722764585 -> 1657218305
s210278405_in -> 969432090 [style=invis];
};

You can save this dot code in a file and open it using a graph editor such as GraphViz.
Figure 14-7 displays the partial logical plan in the GraphViz software.

Chapter 14 ■ Troubleshooting

195

So far, you have learned about some operators for troubleshooting Pig Latin. Now
you will learn some other concepts to troubleshoot Pig Latin code.

Unit Testing
Unit testing is useful during the development phase. Even a Pig Latin script can be unit
tested. Though unit testing is time-consuming, it always improves the quality of reports.
Unit testing can be done using the PigTest class in Pig. You will now learn how to write
Java code for unit testing Pig Latin code.

Figure 14-7.  Partial logical plan

Chapter 14 ■ Troubleshooting

196

Inside a Java class, you can use the @Test annotation to mark the Java method as a
JUnit test method.

After that, you need to define some sample input data and the expected output data
that can be used for testing the script. You can declare both the input and output as a Java
string array.

The following code contains the input data:

String[] inputdata={"100,Bala,1000000,200",
 "101,Radha,1000000,300",
 "100,Nitya,1000000,100",
 "100,Pandu,1000000,"
 };

The following code contains the expected output data:

String[] outputdata={"(4)"};

You need to instantiate the PigTest class. The PigTest class constructor can take Pig
Latin code, Pig scripts, and cluster details.

The following code takes a Pig Latin script:

PigTest funtest = new PigTest("top_queries.pig", args);

PigTest provides many assert methods to check the expected output. The method
assertOutput takes the input relation, output relation, input data, and output data. Pig
runs scripts on the input data and generates the output data. If the generated output is
the same as the expected output, it marks the unit test as a success and otherwise as a
failure.

The following code contains the Pig Latin script:

hdfs@cluster10:~>cat /home/hdfs/empcount.pig
emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
grpall = group emp all;
empcount = foreach emp generate COUNT_STAR(emp.eno);
dump empcount;

The following is the complete Java code for unit testing the previously mentioned Pig
Latin script:

package pigtest;
import java.io.IOException;
import org.apache.pig.pigunit.PigTest;
import org.apache.pig.tools.parameters.ParseException;
import org.junit.Test;
public class CountTester {
@Test

Chapter 14 ■ Troubleshooting

197

 public void testalgebraic(){
 try {

 String[] inputdata={"100,Bala,1000000,200",
 "101,Radha,1200000,300",
 "102,Nitya,1500000,100",
 "103,Pandu,5000000,"};
 PigTest pt= new PigTest("/home/hdfs/empcount.pig");

 String[] outputdata={"(4)"};
 pt.assertOutput("emp",inputdata,"empcount",outputdata);
} catch (IOException e) {
 e.printStackTrace();
 } catch (ParseException e) {
 e.printStackTrace();
 }
}

}

If the previous program generates 4 as its output, then the unit test is successful;
otherwise, it is a failure. The previous program can run using Eclipse also. It requires
many JAR files such as the Pigunit.jar, junit.jar, log4j, and hadoop JARs.

Error Types
Many Pig errors include error codes. It is good to know more about error codes. Pig
throws four types of error codes. They are input, bug, user environment, and remote
environment.

These are not only important to troubleshoot errors but are also useful for adding
them in your applications for better exception handling.

An input error is thrown if there is an issue with the user input; most times these
errors are thrown during syntax checking or if the script cannot be parsed.

For example, error code 1003, which is Unable to find operator for an alias, is
thrown if Pig cannot resolve the operator.

Bugs are runtime errors. For example, error code 2043 is thrown if an unexpected
exception occurs during data processing.

User environment errors are related to the current user environment. For example,
error code 4010 is thrown if Pig cannot register the JAR file.

Most of the time, remote environment errors are related to other technologies such
as Hadoop. For example, error code 6015 is thrown because of Hadoop errors.

Table 14-1 contains the error range for the previously discussed error types.

Chapter 14 ■ Troubleshooting

198

Counters
MapReduce counters are useful for troubleshooting both Hadoop issues and its
abstractions like Pig. As discussed, Pig also provides support for counters; you can use
the PigStatusReporter class. It is always a good habit to write your own counters to
understand both data and data processing.

For example, to understand how many times methods of the Algebraic interface are
called, you can simply add three counters to three methods, as shown here:

public void accumulate(Tuple input) throws IOException {
 pigStatusReporter.incrCounter("Accumulator", "accumulate",1);
.
.
}
public Integer getValue() {
pigStatusReporter.incrCounter("Accumulator", "getvalue",1);
.
.
}
public void cleanup() {
pigStatusReporter.incrCounter("Accumulator", "cleanup",1);
.
.
}

Accumulator is the group name of counters, and the counter names are accumulate,
getvalue, and cleanup. You can use the MapReduce status command to see the
counters. It displays both built-in counters and user-defined counters.

hdfs@cluster10:~>mapred job -status <job-id>

Here are some sample counters:

Map-Reduce Framework
 Map input records=69450395
 Map output records=69450395
 Map output bytes=763954345

Table 14-1.  The Error Ranges

Chapter 14 ■ Troubleshooting

199

 Map output materialized bytes=230
 Input split bytes=3680
 Combine input records=69450395
 Combine output records=10
 Reduce input groups=1
 Reduce shuffle bytes=230
 Reduce input records=10
 Reduce output records=1
 Spilled Records=20
 Shuffled Maps =10
 Failed Shuffles=0
 Merged Map outputs=10
 GC time elapsed (ms)=139182
 CPU time spent (ms)=633900
 Physical memory (bytes) snapshot=16213774336
 Virtual memory (bytes) snapshot=47089934336
 Total committed heap usage (bytes)=15805710336
Accumulator
 accumulate=1000
 cleanup=1001
 getvalue=1000

Summary
In this chapter, you learned to troubleshoot Pig Latin code using both Pig Latin operators
and concepts, including the following:

•	 How to use the Illustrate operator to check the schema at every
stage of the Pig Latin code

•	 How to use the describe operator to check the schema of a
relation

•	 How to check the sample data of a relation using operators such
as dump, sample, and limit

•	 How to use explain plans such as logical and physical, and the
execution engine and modes (text and graph) of explain plans

•	 How to unit test Pig Latin code using the PigTest class

•	 That the four types of errors thrown by Pig Latin are user
environment, input, remote, and environment

•	 How to write MapReduce counters using PigStatusReporter

201© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_15

CHAPTER 15

Data Formats

Storing and maintaining a huge amount data is one of the problems created by big data.
In this chapter, you will learn how to store data efficiently using a few different data
formats and compression algorithms.

Compression
The Hadoop ecosystem supports codec algorithms such as Gzip, LZO, Snappy, and Bzip2.
A compression algorithm’s primary responsibility is to reduce the size of data. You also
need to check whether the algorithm supports splitting data; otherwise, the compression
codec will not be suitable for parallel computing technologies like Hadoop.

Table 15-1 describes the codecs.

Table 15-1.  Codecs

•	 Gzip is not splittable, as it is available on Unix by default. You can
use it if the data set’s size is less than the block size.

•	 Bzip2 is splittable and has better performance than Gzip, but it
is relatively slower than LZO and Snappy. It is also available by
default on many Unix-based systems.

•	 You need to install the LZO program on most Unix systems, and it
is not splittable by default but can become splittable after running
an index program. It has good performance and can be used on
data sets in the Hadoop ecosystem.

Chapter 15 ■ Data Formats

202

•	 Snappy is not splittable but has good performance. It is suitable
for intermediate data processing in MapReduce.

Most of these algorithms can be auto-processed by Pig and Hadoop tools. They can
auto-recognize codecs and process them.

It is also recommended that you apply compression for intermediate data for better
performance of jobs because compressed data consumes less space and the file transfer
is faster.

Sequence File
A sequence file is a binary file suitable for parallel computing.

It stores data in a key-value format. The first three characters, SEQ, say that it is a
sequence file, and the next lines contain the records and header. The header includes the
compression type used, the key and value classes, the metadata, and the sync marker.
Figure 15-1 shows the structure of a sequence file format.

Figure 15-1.  The sequence file format

Chapter 15 ■ Data Formats

203

The record contains the record length, the key length, the key, and the value. The
value could be plain or compressed. The sequence file supports two types of compression;
one is record-wise compression, and the other is block-wise compression. Record-wise
compression is performed on a single record, whereas block-wise compression is
performed on several records. Block-wise compression is preferred as it compresses the
data size a lot.

It is a suitable data format for parallel computing because the marker allows HDFS
clients to read data from multiple locations and often small files are combined to create
sequence files to avoid performance issues. A normal cat program does not support it; you
need to use the text command of the HDFS shell to see the content of the sequence file.

The following command displays the content of the sequence file:

hdfs dfs -text /path/to/seqfile

Pig Latin provides a multipurpose loader function called AllLoader that supports
sequence files also.

Hadoop provides the classes SequenceFileInputFormt and SequenceFileOutputFormat
that can be used to read and write sequence files. You can also use these classes to write
your own load/store function in Pig Latin.

Hadoop provides one more data format called MapFile that is a sorted sequence file.
The map file is sorted by key and also contains index data. Hadoop provides a class called
MapFile to represent map files.

The map file will have better read performance because index data helps the HDFS
client locate records easily.

Parquet
It is common to have a relation with a large number of columns, but a relation with a large
number of columns requires a lot of time and multiple I/O calls to choose user-specified
columns and process them. This problem is addressed by new data formats like Parquet.

Apache Parquet is a columnar storage-based data format that improves the
performance of data processing and also decreases the cost of data storage.

For example, say you have the employee data set shown in Table 15-2.

Table 15-2.  An Employee Data Set

Chapter 15 ■ Data Formats

204

Row-based data formats will store data one row after another, as shown here:

Parquet will store one column after another, as shown here:

With the same type of data stored in one place, Parquet can provide type-based
encoding. It can also perform better compression that will reduce greatly space
consumption. Data is stored in row groups; if there is a condition in the query, the client
can skip several row groups, which will result in less relation scanning. Parquet has good
read performance because of a fewer number of I/O calls.

Initially it was developed by Twitter using the data format explained in the Dremel
research paper; later Cloudera also contributed to Parquet. Now it is an open source
project that belongs to the Apache Software Foundation. Parquet libraries are available
in both Java and C++. Twitter says it has saved around 30 percent of storage, resulting in
petabytes.

Parquet stores data in pages, and a page will contain header information,
information about repetition levels and definition levels, and actual data. The data will be
encoded as well as encrypted.

Parquet is not bound to any tool or technology and currently supports technologies
such as Apache Hive, Cascading, Spark, Drill, Impala, and also Apache Pig. Many
technologies such as Presto are in the process of supporting it. The Parquet format also
works well on HDFS.

Parquet File Processing Using Apache Pig
Pig Latin provides the load function ParquetLoader to load Parquet files and the store
function ParquetStorer to store output as Parquet files.

You need to register Parquet JARs to use both the ParquetLoader and ParquetStorer
functions as these are not built-in functions yet.

The following code registers Parquet JARs and uses ParquetLoader:

register parquet-pig-1.2.2.jar ;
register parquet-encoding-1.2.5.jar;
register parquet-column-1.2.5.jar;
register parquet-common-1.2.5.jar;
register parquet-hadoop-1.2.5.jar;
register parquet-format-1.0.0.jar;
emp = load 'employee/' using parquet.pig.ParquetLoader as (eno:int,ename:cha
rarray,salary:int,dno:int);

Chapter 15 ■ Data Formats

205

The following code converts comma-separated data into the Parquet format:

emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
store emp into 'emp-parquet' using parquet.pig.ParquetStorer();

Files will have a .parquet extension, and the output folder will have a metadata file.
The following command lists the output directory that contains the Parquet file:

hdfs@cluster10-1:~> hdfs dfs -ls /home/hdfs/empparquet/
-rw-r--r-- 1 hdfs hadoop 0 Aug 1 02:35 _SUCCESS
-rw-r--r-- 1 hdfs hadoop 529 Aug 1 02:35 part-m-00000.parquet
-rw-r--r-- 1 hdfs hadoop 424 Aug 1 02:35 _metadata

The schema is considered as a message in Parquet. The field is defined using the
field name, type, and repetition. The type could be a primitive data type like int, long ,
and string or a group that represents a nested data. The repetition can be one of three
values: Optional, Required, and Repeated. Use Repeated to set the number of times it
occurs.

The following code defines the employee data set schema:

Message employee{
Required int eno;
Optional String ename;
Optional group address{
 Optional int roadnumber;
 Optional string city;
 Repeated string city;
 Required int pin;
 }

}

Optional means zero or one occurrences. Required means only one occurrence.
Repeated means zero or more occurrences.

Apache Parquet is mainly used for processing nested data. As Pig is also suitable
for processing nested data, Parquet and Pig make a good combination for processing
nested data.

Parquet is a relatively new project, and many features are on the road map.

ORC
Because of limitations in Record Columnar (RC) file format, new data format called
Optimized Row Columnar (ORC) has been introduced in Apache Hive. ORC is a
columnar file format that stores data in column after column instead of row after row.
Initially it was written to improve the performance of Apache Hive, and now it is separate
project in the Apache Software Foundation.

Chapter 15 ■ Data Formats

206

The ORC file format also mainly focuses on improving big data processing and also
decreasing storage usage like Apache Parquet.

It is suitable for Internet-scale data processing and already proven in production
at companies such as Facebook and Yahoo. Many technologies such as Apache Hive,
Apache Pig, Presto, and Spark can support the ORC format.

As you learned in Chapter 5, Apache Pig supports the ORC format using the
ORCStorage function that is used for both loading and storing ORC file formats.

The default compression used by ORCStorage is ZLib.

emp = LOAD 'employee.orc' USING OrcStorage();

Please check Appendix C for more options in the ORCStorage function.
Each ORC file is divided into stripes. And each stripe contains index information,

actual data, and a footer. At the end of stripes, there will be a file footer and PostScript.
The stripe works the same as an HDFC block, but its size will be bigger than the block.
The stripe default size is 256 MB, but you can change it.

Figure 15-2 shows the structure of the ORC file format.

Figure 15-2.  The ORC file format

http://dx.doi.org/10.1007/978-1-4842-2337-6_5

Chapter 15 ■ Data Formats

207

Index
Indexes are maintained at three levels: the file, stripe, and row levels. File and stripe
indexes maintain statistics about files and stripes, and these are stored in the file footer.
The row index contains statistics about the row group and also the start position of the
row group.

ACID
HDFS follows a “write-once, read-many-times” philosophy. If you have to update some
data, it is not a single straight step. You need to first delete and then create a file with the
new data. It is the same case for Apache Hive also.

The ORC file format takes Apache Hive to the next level by supporting updates and
also the atomicity, consistency, isolation, and durability (ACID) properties. For example,
streaming applications such as Flume, Kafka, and Storm can create transactions in
Apache Hive using the ORC file format.

The ORC file supports the ACID properties using base and delta files. For all updates,
delta files are created. If the delta files are large enough, they are rewritten to base
directories.

Transaction support in Hive requires the following properties to be present:

Set hive.support.concurrency ='true'
Set hive.enforce.bucketing ='true'
Set hive.exec.dynamic.partition.mode = nonstrict
Set hive.txn.manager = org.apache.hadoop.hive.ql.lockmgr.DbTxnManager
Set hive.compactor.initiator.on =' true'
Set hive.compactor.worker.threads =120;

Predicate Pushdown
The best part of the ORC format is that it can push down predicates to stripes. The
pushdown operations are supported by many tools such as Apache Hive, Cascading, and
Apache Pig. For example, if you have any condition after a load statement in Pig, it can
directly load data from the file that matches with the condition.

Data Types
ORC supports several data types such as integers, floats, strings, complex types, and
binary types.

Figure 15-3 lists the data types of ORC.

Chapter 15 ■ Data Formats

208

Benefits
The ORC file format is a more advanced file format than the RC and Parquet file formats.

These are some important benefits of ORC files:

•	 The best feature of ORC is its support for transactions.

•	 ORC has better read performance than Parquet as it stores
statistics about data.

•	 It reduces the data size better than Parquet.

Summary
You learned many important things about data formats in this chapter, including the
following:

•	 Codecs such as Gzip, Bzip2, LZO, and Snappy were covered.

•	 The sequence file format is suitable for parallel computing
because it is splittable.

•	 A map file will have better read performance than a sequence file
because it maintains index data.

•	 Apache Parquet is a columnar storage-based data format that
improves the performance of big data processing and decreases
the cost of big data storage.

•	 Apache ORC is a columnar data format that supports the ACID
properties in Apache Hive.

•	 Apache ORC supports predicate pushdown to load only the
required columns from the input data set.

•	 Apache ORC provides better performance and consumes less
space than Apache Parquet.

Figure 15-3.  The ORC data types

209© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_16

CHAPTER 16

Optimization

In big data processing, performance is important so that people can make quicker
decisions based on the available reports. You should not be happy with just having
output; you should also check how much time you have taken for that output and should
try decreasing the running time.

In this chapter, you will learn some optimization tips.

Advanced Joins
A join operation is a Reduce task, and it is one of the most costly operations in Pig Latin.
So, you need to take extra care with joins to improve their performance.

Pig Latin provides some advanced join operations that will provide better
performance.

Small Files
When some of your relations are small enough to fit into memory, Pig Latin will load them
into memory and read from there to perform the join. These are called replicated joins.
You will use the replicated keyword in the join operator to enable a replication join.

The following code contains replicated joins:

emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
dept = load 'department.csv' using PigStorage(',') as
(dno:int,dname:chararray);
empjn = join emp by dno,dept by dno using 'replicated';

Replicated joins are faster than normal joins because they do not require you to
perform a Reduce task. The maximum size of a relation that can be put into memory is
decided by the property pig.join.replicated.max.bytes. Its default value is 1 GB. If this
property value is exceeded, the join will fail.

Chapter 16 ■ Optimization

210

User-Defined Join Using the Distributed Cache
When you do join two data sets, MapReduce copies the output of the two Map tasks to
another node where the join is performed in a Reduce task.

For example, if you want to join the employee and department data sets, the output of
the employee Map task and the output of the department Map task are sent to the reduce
node where it performs the join functionality, matching the data from both map outputs.

A replicated join puts one or some of the data sets into the distributed cache so that
it can read the other data set from the same map node and it does not require any Reduce
task. If you can avoid a Reduce task, you can improve performance.

You can write your own Eval function for the join functionality that avoids the
Reduce task just like with a replicated join. In fact, you can have more control over the
joins by writing your join function. You will not have any size constraint.

Here you will write an Eval function that performs a join on the employee relation
and department.csv using the distributed cache.

The following is the sample employee data set:

Employee.csv

300,Nitya,1500001,100
301,bala,120001,200
302,pandu,1300002,300
303,balu,1000000,400
304,Nirupam,100000,

The following is the sample department data set:

Department.csv

100,it
200,support
300,hr
400,admin

The following code performs the join operation using the distributed cache:

public class CacheJoin extends EvalFunc<String> {

 @Override
 public String exec(Tuple input) throws IOException {
 Integer dno = (Integer) input.get(0);

 if (dno != null)
 return getdname("./department.csv", dno);
 else
 return "OTHERS";
 }

Chapter 16 ■ Optimization

211

 String getdname(String filename, int dno) throws FileNotFoundException {
 Scanner sc = new Scanner(new FileReader(filename));
 HashMap<Integer, String> map = new HashMap<Integer, String>();
 while (sc.hasNext()) {
 String[] values = sc.nextLine().split(",");
 map.put(new Integer(values[0]), values[1]);
 }
 String dname = map.get(new Integer(dno));
 if (dname != null) {
 dname = dname.toUpperCase();
 }
 return dname;

 }

 @Override
 public List<String> getCacheFiles() {
 ArrayList<String> dfsfiles = new ArrayList<String>();
 dfsfiles.add("/user/hdfs/department.csv");
 return dfsfiles;
 }

}

It also converts the department name into uppercase. And it returns OTHERS as the
department name if no department number is in the employee relation.

•	 The getdname() method reads the department.csv file from
the distributed cache and loads the department number and
department name into the HashMap. It retrieves the department
name for the department number and converts it into uppercase.

•	 The exec method returns the department name in uppercase
if the department number is not null or returns OTHERS as the
default department name.

The following code uses the CacheJoin function, which does not load department.
csv using the load statement, and no join operator is used. Still, it achieves the join
functionality.

Pig Latin Script

register customutils.jar;
emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
dnodname =foreach emp generate ename,customutils.CacheJoin(dno);
dump dnodname;

Chapter 16 ■ Optimization

212

OUTPUT

(Nitya,IT)
(bala,SUPPORT)
(pandu,HR)
(balu,ADMIN)
(Nirupam,OTHERS)

Big Keys
Sometimes it happens that one key will get a big volume of data and others will get less
data in the reduce stage. In such skewed data cases, the reduce node that is processing
the key with the big volume of data will have slow performance; sometimes it might even
fail the job.

Pig Latin provides an advanced join called a skewed join to address these skewed
data cases.

The following code uses a skewed join:

emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
dept = load 'department.csv' using PigStorage(',') as (dno:int,dname:chararray);
empjn = join emp by dno,dept by dno using 'skewed';

•	 The skewed joins work only with two-way joins, and the skewed
relation needs to be the first one.

•	 If more than two relations are involved in the join, it is better to
convert them into two-way joins.

•	 pig.skewedjoin.reduce.memusage allows you to choose the
amount of memory for the join operation. The default value is 0.5
GB. You can modify it and check the performance of the join.

•	 The primary goal of a skewed join is to avoid job failures.

Sorted Data
If the data is already sorted for both relations, Pig Latin provides an advanced join
called a sort-merge join that will avoid the Reduce task when joining two data sets. This
will improve the performance of the joins significantly because only the map phase is
involved and no sort and shuffle phases are required.

This sort-merge algorithm takes the right-side relation data as the side data, builds
an index on it, and performs a join with the left-side relation data by matching the left-
side data to the index data. There are many prerequisites for the successful completion of
the sort-merge join.

Chapter 16 ■ Optimization

213

The following code uses a sort-merge join:

emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
dept = load 'department*.csv' using PigStorage(',') as (dno:int,dname:chararray);
empjn = join emp by dno,dept by dno using 'merge';

The following are the rules to be followed by a sort-merge join:

•	 Data coming to the join statement should be from the load or
order by statement.

•	 Data needs to be sorted by common key in ascending order.

•	 If there are any statements between join and order by, they
should not change the order of columns.

These four join strategies are useful for improving the performance of join operations.

Best Practices
Now you will learn some best practices to be followed while writing Pig Latin code.

Choose Your Required Fields Early
You need to choose your required fields as early as possible so that you are not processing
unnecessary data that consumes I/O, CPU time, and sometimes disk space.

For example, it is a good idea to use a foreach statement immediately after a load
statement, as follows, instead of directly using group operations:

emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
emp = foreach emp generate eno,dno;
grp = group emp by dno ;
grpcnt = foreach grp generate FLATTEN(emp.dno),COUNT(emp.eno);

Define the Appropriate Schema
If a schema is not defined, Pig Latin will assign a default schema and will perform type
casting depending on the requirements.

For example, if you do not define a schema along with a load statement, Pig Latin
will assign the default data type bytearray and will convert to the double data type if
there are any arithmetic operations like in the following code:

Emp = load 'employee.csv' using PigStorage(',');
Newsal = foreach emp generate $2,$2*1.1;

Chapter 16 ■ Optimization

214

If you define a schema, you can avoid such internal operations. It will also be helpful
for query planning internally.

Unlike the earlier example, the following code defines the schema:

Emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
Newsal = foreach emp generate salary,salary*1.1;

Filter Data
It does not make sense to perform operations on unnecessary data. It will only increase
the running time of the job.

For better performance, you should remove data as early as possible and as many
times as possible.

The following code performs a filter after a group by operation:

emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
grp = group emp by dno ;
grpcnt = foreach grp generate FLATTEN(emp.dno),COUNT(emp.eno);
grpcnt = filter grpcnt by dno!=100;

You can move up the filter statement so that the group operation will process
relatively less data.

The following code moves the filter up and improves the performance of the job:

emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
emp = filter emp by dno!=100;
grp = group emp by dno ;
grpcnt = foreach grp generate FLATTEN(emp.dno),COUNT(emp.eno);

Store Reusable Data
You will perform cleaning operations in most of your data-processing projects. Cleaning
operations will remove tuples that are actually not valid. If you have 20 reports to be
generated, there is no point in performing cleaning operations in every report unless they
are specific to a report.

You need to store reusable data so that you can remove redundant operations. Of
course, maintaining the staging directory will consume extra space on the cluster.

Use the Algebraic Interface
Instead of directly going to the Reduce task from the Map task, it is better to have a
Combine task that will reduce the amount of data to be written to disk and also the load
on internal operations such as sort and shuffle.

Chapter 16 ■ Optimization

215

The Algebraic interface contains three stages: initial, intermediate, and final. These
cover the Map, Combine, and Reduce tasks.

•	 The performance of the Algebraic job will be improved if you use
the Algebraic function.

•	 You should also try to implement the Algebraic interface
whenever you are writing user-defined functions.

Use the Accumulator Interface
Not all functions fit into the Algebraic interface. So, to reduce load on the Reduce task,
you can implement the Accumulator interface.

As discussed earlier, Accumulator will send data to the Reduce task in parts rather
than all at once.

You should consider using the Accumulator interface if you are writing an UDF. You
can also use both the Algebraic and Accumulator interfaces at the same time.

Compress Intermediate Data
MapReduce writes intermediate data to disk and copies to the appropriate reduce node
from disk. There will be huge I/O operations involved, depending on the amount of
intermediate data.

It is a good idea to compress intermediate data for better performance. You can use
LZ0, Gzip, and Snappy codecs to do this.

You should first set the compression setting mapred.compress.map.output to true;
then you can specify the codec using mapred.map.output.compression.codec.

The following code enables compression for intermediate data:

set mapred.compress.map.output 'true' ;
set mapred.map.output.compression.codec ' org.apache.hadoop.io.compress.LzoCodec';

Pig also supports temporary file compression, and you can use the following
properties for better performance of a job:

set pig.tmpfilecompression 'true';
set pig.tmpfilecompression.codec 'Lzo';

Combine Small Inputs
Hadoop is most suitable for big files and less suitable for small files. Small files increase
disk seek operations that will impact job performance.

You should combine small files into one so that a single map can process them. Pig
Latin provides properties for such combine functionality.

Chapter 16 ■ Optimization

216

The following code sets the maximum amount of memory as 120 MB. Small files will
be combined up to 120 MB. The value is specified in bytes.

set pig.maxCombinedSplitSize '120000000'

Prefer a Two-Way Join over Multiway Joins
It is always a good idea to convert multirelation joins into two-way joins. This will help
you understand which join is taking more time. Also, it is suitable for applying advanced
joins like skewed joins. Two-way joins will also reduce the load on Reduce tasks, and you
will have fewer job failures.

Better Execution Engine
Apache Tez addresses the problems of MapReduce and also provides better resource
management such as container reuse. As it enables interactive data analysis, it is
recommended that you use Tez as an execution engine. In future releases, you can even
use Spark as the execution engine, which provides in-memory cluster computing.

The following code uses the Tez execution engine:

Pig -x tez -f /path/to/script.pig

Parallelism
The number of reducers is decided by the execution engine. Pig Latin also provides
properties to change the number of reducers.

The following code sets the data size per reducer:

set pig.exec.reducers.bytes.per.reducer '1200000000'

The following code sets the number of reducers:

set pig.exec.reducers.max '50'

Pig Latin will decide on the number of reducers based on the previous property
values and available data size for the reduce operation. It uses the following formula to
decide on the number of reducers:

Number of reducers = MIN(pig.exec.reducers.max, input_data_size_in_bytes/
bytes_per_reducer)

If you have the maximum number of reducers set to 20, the input data size as 50 GB,
and the amount of data per reducer as 1 GB, Pig Latin will launch 20 reducers.

Number of reducers = MIN (20,50 (GB)/1(GB))
Number of reducers = 20

Chapter 16 ■ Optimization

217

In a Pig Latin script, you can specify the number of reducers at the script level and
also at the operator level.

default_parallel sets the number of reducers at the script level, as shown here:

set default_parallel 50;

Many operators such as CROSS, JOIN, GROUP, COGROUP, and ORDER allow you to set the
number of reducers in Pig Latin. You can use the parallel keyword for them separately.

The following code sets the number of Reduce tasks as 10 for the order by operator:

Sortdno = order emp by dno parallel 10;

Job Statistics
It is a good habit to gather job statistics once a job finishes. You can gather information
such as how much data is processed, what data format is used, what operators are used,
and how much data is produced as output.

You can gather statistics using the counters generated by the job. The counters
will provide useful information such as how much data is spilled and how much data
is processed by the sort and shuffle tasks. When you make changes to a script, you can
check how changes are impacting internal tasks.

You can even enable useful counters for a Pig Latin script to check the performance
of a UDF.

•	 You can set the property pig.udf.profile to true so that Pig Latin
will generate performance-related counters.

•	 The approx_invocations counter tells you how many times the
UDF is called.

•	 The approx_microsecs counter will tell you the time taken by the
UDF.

The following code enables performance-related counters:

set pig.udf.profile true;
emp = load 'employee.csv' using PigStorage(',') as (eno:int,ename:chararray,
salary:int,dno:int);
emp = filter emp by dno!=100;
grp = group emp by dno ;
grpcnt = foreach grp generate FLATTEN(emp.dno),COUNT(emp.eno);
dump grpcnt;

The following are performance-related counters of the UDF called COUNT:

org.apache.pig.builtin.COUNT
 approx_invocations=100
 approx_microsecs=29900

Chapter 16 ■ Optimization

218

Rules
Pig provides many rules to optimize user scripts for better performance. All of these rules
are enabled by default. You can disable some rules if you want.

The following code disables ConstantCalculator and Splitfilter:

set pig.optimizer.rules.disabled ' ConstantCalculator,Splitfilter'

You can also use optimizer_off or the -t option to disable rules.
The following are examples to disable all rules:

pig -optimizer_off all -x local -f grpcnt.pig
pig -t all -x local -f grpcnt.pig

You can see a message on the console that says which rules are enabled and which
rules are disabled after running the script.

The following shows the RULES_ENABLED and RULES_DISABLED lines:

2016-07-28 11:20:02,653 [main] INFO org.apache.pig.newplan.logical.
optimizer.LogicalPlanOptimizer - {RULES_ENABLED=[LoadTypeCastInserter,
StreamTypeCastInserter], RULES_DISABLED=[AddForEach, ColumnMapKeyPrune,
ConstantCalculator, GroupByConstParallelSetter, LimitOptimizer, MergeFilter,
MergeForEach, PartitionFilterOptimizer, PredicatePushdownOptimizer,
PushDownForEachFlatten, PushUpFilter, SplitFilter]}

You will learn a few rules here.

Partition Filter Optimizer
Filter conditions immediately after the load can be pushed down to the load statements.
HCatalog does this by loading the required partition data only if the partition filter is
specified after the load statement.

The following code contains a filter that will be pushed to the loader statement:

Emp = load 'employee' using HCatalogLoader as (eno,ename,salary,dno);
Dept100=filter emp by dno==100;

Merge foreach
If you have two foreach statements consecutively, this will merge two of them to have
one foreach statement.

This will work if two are consecutive, the last one is not a nested foreach, and the
first one does not contain flatten.

Chapter 16 ■ Optimization

219

Pig latin code before rule

Emp = load '' using PigStorage() as (eno,ename,salary,dno);
Newsal=Foreach emp generate salary*1.1;
Nnewsal =foreach Newsal generate $0+10000;

Pig Latin code after Rule

Emp = load '' using PigStorage() as (eno,ename,salary,dno);
Newsal=Foreach emp generate salary*1.1+10000;

Constant Calculator
This will create a better expression for constants depending on user input.

Here is the Pig Latin code before the rule:

Sal= filter emp by salary>10000*10;

Here is the Pig Latin code after the rule is applied:

 Sal= filter emp by salary>100000;

Pig provides many such rules. You can check the Pig documentation for the rest of
the rules.

Cluster Optimization
After optimizing the Pig Latin script, you may still face performance issues if you do not
optimize the underlying platform. The platform includes the best memory settings for
Hadoop daemons, operating system settings, hard disk space, and Hadoop configuration.

You will learn a few things about the underlying platform here.

Disk Space
As MapReduce is disk-based, you will have a lot of disk operations. At least 20 percent
of the disk space should be reserved for I/O operations. Otherwise, you will see a
performance degradation on the cluster. It is a good idea to purge files periodically if they
are not useful.

For example, log files can be removed periodically. You can write and schedule a
shell script for file removal or you can configure log4j to do this.

Chapter 16 ■ Optimization

220

Separate Setup for Zookeeper
The entire cluster will be dependent on Zookeeper (covered in Chapter 17). It is
recommended that you have a dedicated disk for Zookeeper because it will have a lot
of I/O operations, and it will also add value to the cluster if you can maintain a separate
machine for Zookeeper.

Scheduler
There will be many cases where jobs fail or jobs do not get into running states because
of a lack of resources on the cluster. You need to use a better scheduler configuration to
avoid such cases.

The default scheduler is the capacity scheduler in most Hadoop distributions.
Configure a queue for critical jobs and try to assign resources as much as possible.

The following properties set the minimum capacity for the analytics queue as 50
percent and the maximum capacity as 100 percent:

yarn.scheduler.capacity.analytics.maximum-capacity=100
yarn.scheduler.capacity.analytics.capacity =50

For more details about the capacity scheduler, you can check the Hadoop web site at
http://hadoop.apache.org.

Name Node Heap Size
Many times the name node can go down depending on the number of files on the cluster.

One of reasons for the name node crash could be an insufficient heap size. You need
to increase the heap size depending on the number of files on the cluster. The hdfs fsck
command will display the number of files available on the cluster.

You need to change the HADOOP_NAMENODE_OPTS property value in hadoop-env.sh to
increase the heap size of the name node. Table 16-1 lists the heap size for the name node
against the millions of files in the cluster. For example, if you have 50 million files in the
cluster, you need to have 24320 MB as the heap size.

http://dx.doi.org/10.1007/978-1-4842-2337-6_17
http://hadoop.apache.org/

Chapter 16 ■ Optimization

221

Other Memory Settings
Many times you will see out-of-memory errors thrown by jobs and daemons. You can
increase the memory if you see an out-of-memory error.

You need to understand how much memory you can increase, how much you should
keep for the operating system, and, if you have HBase on the same cluster, how much
memory you should keep for it. However, it is recommended that you have a separate
cluster for HBase.

HBase and System Memory
Table 16-2 lists how much memory you should keep for HBase and the operating system.

Table 16-1.  How Heap Size Is Related to Number of Files

Chapter 16 ■ Optimization

222

For example, if you have a node memory of 64 GB, you can allocate 8 GB to the
system and 8 GB for HBase.

The rest of the memory you can use for Hadoop daemons and jobs.

Container Memory
You should also fine-tune the container memory depending on the node memory as per
Table 16-3.

Table 16-3.  Container Memory Related to RAM per Node

Table 16-2.  Memory Constraints

-

For example, if the node memory is 24 GB, you can allocate a minimum of 2048 MB
as the container size.

Increasing the container size will also improve the job performance but might
decrease the total number of jobs the cluster can run.

Chapter 16 ■ Optimization

223

Summary
In this chapter, you learned many optimization tips related to join strategies, best
practices for writing Pig Latin code, implicit rules in Pig, and cluster optimization tips.

The following are some important topics you learned:

•	 How to use replicated joins to avoid Reduce tasks in order to
improve job performance

•	 How to achieve join functionality without the join operator by
using the distributed cache

•	 How to avoid skewed data by implementing a skewed join

•	 How to implement a sort-merge join

•	 How to filter early, project early, and define the schema always

•	 How to store reusable data in a staging directory

•	 How to write the Algebraic function wherever applicable

•	 How to write the Accumulator function where Algebraic is not
applicable

•	 How to compress intermediate data for better performance

•	 How to combine small inputs using SequenceFileInputFormat

•	 How to decide on the number of Reduce tasks at the script level
and at the operator level

•	 How to enable performance-related counters for an UDF

•	 What optimization rules are enabled in Pig Latin

•	 How to decide on the memory size for the name node, HBase,
and container

225© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6_17

CHAPTER 17

Hadoop Ecosystem Tools

In this chapter, you will learn the basics of some other Hadoop ecosystem tools such as
Zookeeper, Cascading, Presto, Tez, and Spark.

Apache Zookeeper
Hadoop clusters can be scaled to thousands of nodes, and clusters can have multiple
data-processing tools too. As most of these tools follow a master-slave approach, the
slaves will be reporting to the master at regular intervals to signal they are alive. This
communication needs to happen in real time.

Besides this simple reporting, there are several occasions where real-time
communication needs to happen between nodes and services. Even a small delay in
communication can cause failures in distributed applications.

Apache Zookeeper is a real-time coordination system for distributed applications. It
is scalable, reliable, and tested in enterprise-level big data applications. It was originally
developed by Yahoo, and now it is part of the Apache Software Foundation.

Zookeeper provides many critical services such as high availability, configuration
management, and load sharing in big data clusters. In addition to these services, its
general applications include group membership, leader election, and group messaging.

The Zookeeper service is the backbone to any big data cluster. Directly or indirectly,
all technologies in big data clusters will depend on Zookeeper.

For example, Hadoop, Hive, Storm, Kafka, and HBase will directly depend on
Zookeeper, and all Hadoop abstractions will indirectly depend on Zookeeper.

A production cluster needs to have separate machines, cooling, power cables, and
switches for the Zookeeper service. It is also recommended that you have a dedicated
disk for Zookeeper for better I/O performance.

Terminology
Zookeeper nodes are called znodes. One znode can have any number of children nodes,
grandchildren nodes, great-grandchildren nodes, and so on.

Znodes are the same as directories in a file system. These nodes have data, versions,
and some other statistics such as creation time, modification time, and so on.

Chapter 17 ■ Hadoop Ecosystem Tools

226

Zookeeper has normal znodes, ephemeral znodes, and sequential znodes.

•	 Ephemeral nodes do not exist once a session is killed, and they do
not have any children nodes.

•	 Sequential nodes have unique counters associated with their
paths. Zookeeper adds a ten-digit number to a directory to
uniquely identify it.

Zookeeper contains a group of servers called an ensemble. An ensemble needs to
have 2*x+1 servers, where x represents a number of failures that can survive. For example,
if an ensemble has seven servers, it can survive three server failures. If more than three
servers are down, the Zookeeper service will not be available.

Zookeeper follows a “leader-follower” philosophy that says one of the Zookeeper
servers is the leader and the others are the followers. The leader will get first-hand
information from the Zookeeper clients, and the followers will be updated by the leader.
When you start the Zookeeper service, the first server will be elected as the leader, and
the others will become the followers.

For any reason if the leader election has not happened, the Zookeeper service will
not be available.

Zookeeper is a simple event-driven framework that can be used to develop powerful
applications. It even has watcher functionality in which a client can be the watcher for a
znode and Zookeeper will notify that client if any change is there in that znode.

Zookeeper uses this simple watcher functionality for most applications.

Applications
There are many Zookeeper applications. Some of them are group-related operations,
configuration management, lock services, and leader election.

You will learn how some of the Zookeeper applications are implemented.

Group Membership
The children of a znode will be considered a group. The Zookeeper client can get children
nodes of the Zookeeper node programmatically to perform group-related operations.
When a znode gets deleted, it will become out of that group.

Configuration
Every znode can contain some data that can be used as a configuration. Multiple
znodes can be created to store multiple configuration values. These values will become
centralized, and clients will be notified when values are changed so that the client can
perform the appropriate operations depending on the changes. Of course, clients need to
be in the watchers list of a particular znode.

Chapter 17 ■ Hadoop Ecosystem Tools

227

Lock Service
When multiple clients try to create a znode, the first client that succeeds in creating a
znode will get a lock on that znode, and the other clients will become watchers of that
znode.

When the lock holding the znode gets deleted, the znode watchers will be notified so
that they can try creating the znode and get a lock on it.

Most of the Hadoop high availability features such as the name node and the
resource manager are implemented using the Zookeeper lock service.

Open two terminals and connect to the Zookeeper CLI. In one terminal, create a
znode called samplenode and make it the watcher using the get watch command.

In the other terminal, delete that znode, which will notify the client on the first
terminal because it is the watcher of the znode sample.

Similarly, all watchers will be informed about the deletion of the znode so that they
can try creating the same znode again to get the lock.

Command-Line Interface
You can start using the Zookeeper command-line interface using the zkCLi.sh shell
script. It will be available under the bin folder of the Zookeeper home.

Figure 17-1 shows how to start the CLI of Zookeeper.

Figure 17-1.  Starting the CLI

Once you have started the command-line interface, you can use the following
commands to interact with Zookeeper. Use the help command to see a list of available
commands.

stat
The stat command will display statistics such as creation time, modified time, and
number of children of a znode. The command output will have statistics that are the same
as the ls2 command.

ls
The ls command displays a list of available znodes on Zookeeper. The ls2 command also
displays available znodes, including statistics creation time, modification time, number of
children, and so on.

Chapter 17 ■ Hadoop Ecosystem Tools

228

create
The create command creates a znode in Zookeeper. If data is specified, it also sets data.
Specifying data is optional when creating a command. The -e option is used to create an
ephemeral node, and the -s option is used to create a sequence node.

Figure 17-2 shows the create command usage.

Figure 17-2.  The create command

Figure 17-3.  A sample get command

get
The get command retrieves the data of a znode and also displays statistics about the
znode. You can even watch for data changes using the watch option.

The command in Figure 17-3 displays the data of samplenode and the client becomes
the watcher for this znode.

set
The set command sets new data for a given znode, and the watchers will be notified if
any are watching it.

delete
The delete command will delete the znode from Zookeeper, and also the watchers will
be notified after the deletion.

Chapter 17 ■ Hadoop Ecosystem Tools

229

Four-Letter Commands
Zookeeper provides four-letter commands that provide more information about the
Zookeeper service. All these commands will have four letters only. You will learn about
some four-letter commands here. All these commands need to be run using the Unix
telnet or nc program.

ruok
The ruok command is used to check whether a Zookeeper server is running. It returns
imok if it is running; otherwise, it returns nothing. It checks only the running state of
the server; if more information is required about the server, you need to use the srvr
command.

The following command uses the IP address and port number in the ruok command.
You can even use the host name instead of the IP address.

echo ruok | nc 127.0.0.1 2181
imok

srvr
The srvr command displays more details such as the number of connections, the node
count, and the mode of a server, as shown in Figure 17-4. The mode will inform you of
whether the server is a leader or a follower.

Figure 17-4.  Sample srvr command

stat
The stat command displays statistics about a server. The command output will be the
same as the srvr command except the client details.

Chapter 17 ■ Hadoop Ecosystem Tools

230

wchs
wchs displays a watchers list of a server. If you want a session-wise watchers list, you
need to use whch, and if you want a path-wise watchers list, you need to use the wchp
command.

Measuring Time
Time in Zookeeper is measured in ticks. You will define one tick value in milliseconds
using the ticktime property. Based on the tick time, Zookeeper will have two more
properties: the initial tick time and the sync tick time.

•	 The initial tick time is defined using the property init limit,
which is the number of ticks required for a client to establish a
connection with the Zookeeper server while it is initializing.

•	 The sync tick time is defined using the sync limit property,
which is the number of ticks required for a client to establish a
connection while the server is running.

Client connections will be refused if these times are exceeded.
With measuring time, you have completed the fundamentals of Apache Zookeeper.

For more information about Apache Zookeeper, you can visit https://zookeeper.
apache.org/.

Cascading
As discussed earlier in the book, Cascading is a Java-based MapReduce abstraction
that is used to build data pipelines. It is an open source library written by Chris Wensel.
Cascading uses plumbing terminology, so it is easy to correlate things. It can be used in
production as it has already been adopted by companies like Twitter.

Here you will learn some basic features such as how to define the source and sink
and how to use pipes and operations in Cascading. For more information, check its
official web site at www.cascading.org/.

Defining a Source
You now will see how to define a source in Cascading.

Fields
The TextLine class is used to define fields for text data. It will read the offset and line of
data the same as the output of the default Map task. Using TextLine, you can define both
the source fields and the sink fields.

https://zookeeper.apache.org/
https://zookeeper.apache.org/
http://www.cascading.org/

Chapter 17 ■ Hadoop Ecosystem Tools

231

The following code defines the field txtLine for the source data:

TextLine txtLine = new TextLine(new Fields(new String[]{"txtline"})

The TextDelimited class is used to define the fields for delimited text files. You can
specify a delimiter, and you can skip the header and the write header.

•	 When the skip header is specified, Cascading ignores the first line.

•	 When the write header is specified, it will write the header to the
output files while generating output.

The following code creates the fields eno, ename, salary, and dno for the employee
data set and asks Cascading to ignore headers and use a colon as a delimiter.

TextDelimited empfields=new TextDelimited(new Fields(new String[]{"eno",
"ename","salary","dno"}), true, ":");

Taps
Taps are responsible for both reading data from and writing data to the data location.
Here you will create a source tap that is responsible for reading data and a sink tap that is
responsible for writing data.

Some of the taps are discussed next.

HFS and LFS
The HFS tap is used to read data from and write data to the Hadoop distributed file system
(HDFS), and the LFS tap is used to deal with the local file system data. These taps will take
the schema and data set path.

The following code defines the source tap for the employee data set using its path:

TextDelimited empfields=new TextDelimited(new Fields(new String[]{"eno",
"ename","salary","dno"}), true, ":");
Tap sourceTap = new Hfs(empfields, "/data/emp");

•	 Cascading supports JDBC; you can read data from RDBMS
systems like Oracle, Derby, and MySQL. You can use the JDBC tap,
and it can read data from a data warehouse system like Teradata.

•	 Cascading also provides taps for reading data from and writing
data to NoSQL databases such as HBase, Accumulo, and
Cassandra.

•	 Cascading can also access Hive table data.

You can get more information about other taps at www.cascading.org/extensions/.

http://www.cascading.org/extensions/

Chapter 17 ■ Hadoop Ecosystem Tools

232

Defining a Sink
Defining a sink is not very different from defining source. A Cascading sink will have sink
mode information. A sink mode decides what to do with the existing output in the output
path. Cascading provides three sink modes, as listed in Figure 17-5.

Figure 17-5.  The three sink modes

•	 The default is the keep mode, which will fail application if the
output directory exists. This is also the default behavior for any
processing tools such as Pig and MapReduce.

•	 The replace mode will delete the output data and will write the
newly generated output to the output path.

•	 The update mode will append data in the existing output
directory.

The following code creates a sink tap that will replace the existing data in the output
path with the newly generated output:

Fields empout= new Fields(new String[]{"dno" ,"count"});
Tap sinkTap = new Hfs(empout, "/data/emp",SINKMODE.REPLACE);

Chapter 17 ■ Hadoop Ecosystem Tools

233

Pipes
In Cascading, the source tap and sink taps are connected by a collection of pipes. These
pipes will allow you to perform the required operations on the data. Cascading provides
pipes called each, every, group by, co-group, and subassembly.

•	 each will allow you to work on each row of data.

•	 every will allow you to work on every group key.

•	 group by is the same as a Pig Latin group that allows you to
perform group operations.

•	 cogroup is the same as the Pig Latin cogroup operator that will
allow you to perform joins.

•	 subassembly is the same as a Pig Latin macro that will allow you
to create reusable pipes in Cascading.

The following code performs an inner join on two tables, emp and dept, using the
common field dno:

CoGroup join=new CoGroup(emp, new Fields(new String[]{"dno"}), dept, new
Fields(new String[]{"dno"}),new InnerJoin());

Types of Operations
Cascading allows you to perform four types of operations on its pipes, as listed in
Figure 17-6.

Figure 17-6.  The four operations

Function
Function is a single-row function that performs the requested operation on a row and
returns zero or more rows. You specify Function using each pipe. You can use built-in
functions or you can use your own function.

You need to extend the BaseOperation class and implement the Function interface
to write your own function. You need to call super within the function constructor. The
super call specifies the number of incoming fields required and the output field name.

Chapter 17 ■ Hadoop Ecosystem Tools

234

The following constructor says one incoming field is required, and the output field
name is ename:

public class Upper extends BaseOperation implements Function {
public Upper(){
 super(1, new Fields(new String[]{"ename"}));
}

You will implement the operate method to write the business logic. First you will
take input fields using names or positions. You will write the necessary logic on those
fields and will write the result into a tuple that will be returned to the user.

The following code takes one field and converts its value into uppercase:

public void operate(FlowProcess fproc, FunctionCall fcall) {
 TupleEntry args = fcall.getArguments();
 String ename =(String)args.get(0);
 String enameupper=ename.toUpperCase();
 Tuple output = new Tuple();
 output.addString(enameupper);
 fcall.getOutputCollector().add(output);

}

The following program uses a custom function to convert employee names into
uppercase. This program can also be run using Eclipse as it is using Filetap.

public class UpperCase {

 public static void main(String[] args) {
 Tap srcTap = new FileTap(new TextDelimited(new Fields(new String[] {
 "eno", "ename", "salary", "dno" }), true, ","), "employee.csv");
 Tap sinkTap = new FileTap(new TextDelimited(new Fields(
 new String[] { "ename" })), "uppercase");
 Pipe emp = new Pipe("emp");
//will take only one field ename and perfrom upper case operation
 Pipe ename = new Each(emp, new Fields(new String[] { "ename" }),
 new Upper());
 Properties properties = new Properties();
 AppProps.setApplicationJarClass(properties, WordCount.class);
 LocalFlowConnector flowConnector = new LocalFlowConnector();
 Flow flow = flowConnector
 .connect("convertcase", srcTap, sinkTap, ename);
 flow.complete();

 }

}

Chapter 17 ■ Hadoop Ecosystem Tools

235

Filter
Filter is same as the Pig Latin filter operator that performs given conditions on each
row.

The following code performs a limit filter and returns two rows:

public class LimitN {

 public static void main(String[] args) {
 Tap srcTap = �new FileTap(new TextDelimited(new Fields(new String[]

{"eno","ename","salary","dno"}),true,",") , "employee.csv");
 Tap sinkTap = �new FileTap(new TextDelimited(new Fields(new String[]

{"eno","ename","salary","dno"})) , "employeelimit");
 Pipe emp=new Pipe("emp");
 Pipe ename=new Each(emp, new Limit(2));
 Properties properties = new Properties();
 AppProps.setApplicationJarClass(properties, LimitN.class);
 LocalFlowConnector flowConnector = new LocalFlowConnector();
 Flow flow = flowConnector.connect("limit", srcTap, sinkTap,ename);
 flow.complete();

 }

}

You can write your own filter by extending BaseOperation and implementing the
filter interface. You will implement the isRemove method, which will return a Boolean
value.

The following code removes the salary field with a null value:

public class SalryFilter extends BaseOperation implements Filter {

 public boolean isRemove(FlowProcess fproc, FilterCall fcall) {
 TupleEntry emptuple=fcall.getArguments();
 return null==emptuple.get(0);
 }

}

Aggregator
Aggregator is used to write multirow functions that perform group-level operations.
Aggregators can be used only with every pipe and cannot be used with each pipe.

Chapter 17 ■ Hadoop Ecosystem Tools

236

You can write your own aggregator extending BaseOperation and implementing
the Aggregator interface. You need to implement three methods: start, aggregate, and
complete.

•	 The start method will have the initialization logic.

•	 The aggregate method will have the logic for the group
operations.

•	 The complete method will be called in the end to perform
cleanup operations.

The following code contains the structure for the custom aggregator class:

public class SampleAggregator extends BaseOperation implements Aggregator {

public void start(FlowProcess fproc, AggregatorCall aCall) {
 }

 public void aggregate(FlowProcess fproc, AggregatorCall aCall) {
 }

 public void complete(FlowProcess fproc, AggregatorCall aCall) {
 }

}

Buffer
A buffer is the same as an aggregator that can be used to perform group-related
operations. Buffer provides an extra facility to iterate input tuples. This is useful for
performing operations such as ranking.

You can write your own buffer by extending BaseOperation and implementing the
Buffer interface. You need to implement the operate method from the Buffer interface.

The following code contains the structure for a custom buffer class:

public class SampleBuffer extends BaseOperation implements Buffer {

 public void operate(FlowProcess fproc, BufferCall bcall) {
 }

}

With this type of operation, you have completed the fundamentals of Cascading. For
more information about Cascading, visit www.cascading.org/.

http://www.cascading.org/

Chapter 17 ■ Hadoop Ecosystem Tools

237

Apache Spark
Apache Spark is in-memory parallel computing framework used for Internet-scale data
processing. It was first developed at the University of California – Berkeley, and now it is
part of the Apache Software Foundation.

As MapReduce is a disk-based data processing framework, it does not provide good
I/O performance, and it is suitable only for batch-processing jobs. Complementing
MapReduce, Spark provides in-memory computing and makes it suitable for interactive
data analysis.

Spark is mostly used in these two use cases:

•	 Iterative data analysis requires performing multiple operations
on the same data set until the required output is produced. Many
data science use cases are in this category.

•	 Interactive data analysis allows you to perform data analysis on
demand like you do using RDBMSs.

Apache Spark introduces a parallel computing paradigm called Resilient Distributed
Datasets (RDD). RDD allows you to perform in-memory computing in parallel and in a
fault-tolerant manner.

Spark provides five modules called Core, Spark SQL, Streaming, MLlib, and GraphX,
as listed in Figure 17-7.

Figure 17-7.  The five modules of Spark

•	 Core is the base module that is required by all the other modules.

•	 Spark SQL provides the SQL interface to process structured data.

•	 Streaming is used to process streaming data.

•	 MLlib is a machine learning library from Spark. Spark MLlib
provides high-performant and scalable machine learning
algorithms and supports R and Python. It can also integrate
with NumPy. As a machine learning algorithm requires iterative
computation, MLlib is most suitable for it.

•	 GraphX is a graph processing framework developed in Spark.
A use case of GraphX is the same as Apache Giraph that does
graph processing. The only difference is that Giraph is based on
MapReduce and involves disk operations, and GraphX does in-
memory graph processing and will be faster.

Chapter 17 ■ Hadoop Ecosystem Tools

238

Apache Spark supports NoSQL databases, warehouse systems such as Hive, RDBMSs
such as Oracle, and flat files.

You can write Spark applications in programming languages such as Java, Spark, and
Python. Here you will learn how to write Java applications.

Core
Core is a base module that provides a platform for all other modules in Spark. It provides
an API that includes RDD operations, scheduling, and task completion.

Configuration
You can create a configuration object for Spark using the SparkConf class. The SparkConf
class provides setter methods for setting the property value and getter methods for
retrieving property values within the Spark program.

You can set a master using the setMaster method. You can use local to run the
program in the local file system and local[number of core] to run the program in local
mode using the given number of cores.

If you want to run the program in cluster mode, you need to set the master to
spark://masternode:portnumber.

You can retrieve all the property values using the getAll method or you can retrieve
the value of a particular property using the get method.

The following code sets the master as local to run this program in local mode, sets
the application name as WordCount, and sets the executor memory as 8 GB.

SparkConf sparkConf = new SparkConf().setAppName("WordCount")
 .setMaster("local")
 .set("spark.executor.memory", "8g");

JavaSparkContext enables you to perform all the computing operations. You need to
create an object of it before calling RDD operations. You require the sparkconf object to
create JavaSparkContext. There will be only one Spark context per JVM.

The following code instantiates JavaSparkContext:

JavaSparkContext ctx = new JavaSparkContext(sparkConf);

Sourcing
You can specify the input path using the JavaSparkContext object. The text method
returns the RDD of each record for the input text files. The wholeTextFiles method
returns the RDD of the key-value pair where the key is the file path and the value is the
data of the file. This is used for small files.

You can use the binaryFiles method to read binary files and the sequenceFiles
method to read Hadoop sequence files. All these methods take the file path URI, which
can refer both to the local file system and to the Hadoop file system.

Chapter 17 ■ Hadoop Ecosystem Tools

239

The following code looks for the input path in the local file system if the set master
is local in the Spark configuration; otherwise, it looks for it in the Hadoop distributed file
system:

JavaRDD<String> lines = javaSparkContext.textFile("data\\in");

You can also read a file from Hadoop using a custom input file format. A specified
input format class needs to be available in the class path.

The following code specifies the HDFS file path:

javaSparkContext.hadoopFile("data\\in",FileInputFormat.class, LongWritable.
class, Text.class);

Specifying a Sink
Once you have required the output in RDD, you will write output to persistence storage.
You can write the output file as the text file, object file, and Hadoop file with a custom
format using methods in the JavaRDD class. You can also specify a codec while writing
data to the output directory.

The following code writes the output as the text file using the Gzip codec:

counts.saveAsTextFile("data\\wordcountout",GzipCodec.class);

Operations
All RDD operations are of two types: transformations and actions. Transformations will
transform data, and actions are metrics to be computed such as count, sum, and average.

For example, all map functions are transformations, and all reduce functions are
actions. Transformations are lazy, and they are not run until actions are called.

You can write all map functions and reduce functions as inline functions or you can
use lambda expressions.

The following code reads the employee name from the employee file containing the
employee number, employee name, salary, and department number and converts it into
uppercase:

JavaRDD<String> lineText = javaSparkContext.textFile("data\\employee");
 JavaRDD<String> uppername=lineText.map(new Function<String, String>() {

 @Override
 public String call(String str) throws Exception {

 String[] words=str.split(",");
 String uppername=words[1].toUpperCase();
 return uppername;
 }
 });

Chapter 17 ■ Hadoop Ecosystem Tools

240

You can also write the function in a separate class file and refer to that function
within the map function. You need to implement the call method of the Function
interface, as shown here:

public class FunUpperCase implements Function<String, String> {

 @Override
 public String call(String str) throws Exception {
 String[] empdetails = str.split(",");
 return empdetails[1].toUpperCase();
 }

}

This function will be called once per every line. You need to instantiate it within a
map function to invoke it, as shown here:

JavaRDD<String> uppername = lineText.map(new FunUpperCase());

Similarly, you can use existing reduce functions, and you can also write your own
reduce functions in Spark.

SQL
As discussed earlier, Spark provides a module called Spark SQL that provides the SQL
interface for processing structured data.

Spark SQL provides SQL support for the Hadoop-based warehouse Apache Hive,
RDBMSs like Oracle and Postgres using JDBC, and also file system data.

You can use programmatic SQL and also traditional SQL. You need to create an
object for SQLConntext for SQL support.

JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
SQLContext sqlContext = new SQLContext(javaSparkContext);

Spark SQL contains two concepts called data sets and data frames.

•	 Data sets are the same as in RDD that represent data sets with
better serialization.

•	 Data frames are similar to RDBMS tables that have column
names.

Source
You can provide the source using the DataFrameReader object. You can use the table
method to specify the table as a source, the jdbc method to specify the RDBMS table, and
the text method to specify the text data set as a source.

Chapter 17 ■ Hadoop Ecosystem Tools

241

You can specify ORC, Parquet, and JSON format files as a source using the orc,
parquet, and json methods.

The following are some examples for specifying the source. The read method on
sqlContext returns DataFrameReader.

The following code specifies the text data set as the source:

DataFrame df = sqlContext.read().text("data\\employee*");

The following code specifies the orc data format as the source:

DataFrame df = sqlContext.read().orc("data\\employee*");

The following code specifies the table from a Postgres database as the source:

DataFrame df = sqlContext.read().jdbc("jdbc:postgresql://localhost:5432/
empdb","employee");

Data-Processing Methods of Data Frames
Data frames provide many useful methods to perform data analysis operations. You will
learn about some of them here.

The show method displays records to the console, and you can also specify the
number of records to display.

The following code displays ten records from the source:

JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
SQLContext sqlContext = new SQLContext(javaSparkContext);
DataFrame dFrames = sqlContext.read().text("data\\in\\p*");
dFrames.show(10);

The printSchema() method works the same as the describe operator of Pig Latin.
The following code displays the default schema that is a single-column table:

dFrames.printSchema();

root
 |-- value: string (nullable = true)

You can specify conditions on a column like with the filter operator of Pig Latin
using the filter method.

The following code looks for the word bala in a column named value and displays
some 20 records. By default, the show method displays 20 records.

df.filter("value like '%bala%' ").show();

Spark SQL is intuitive, and it does not take much time to write applications.

Chapter 17 ■ Hadoop Ecosystem Tools

242

The following code prints the number of unique lines in a data set. This program sets
a directory with the bin\winutils.exe file as the Hadoop home directory so that it can
run within the Windows OS also.

public class FramesDemo {
 public static void main(String[] args) {
 System.setProperty("hadoop.home.dir", "hadoop-winutils");
 SparkConf sparkConf = new SparkConf().setAppName("FramesDemo")
 .setMaster("local").set("spark.executor.memory", "2g");
 sparkConf.set("spark.io.compression.codec",
 "org.apache.spark.io.LZ4CompressionCodec");
 JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
 SQLContext sqlContext = new SQLContext(javaSparkContext);
 DataFrame dFrames = sqlContext.read().text("data\\emp*");
 long rows = dFrames.orderBy("value").distinct().count();
 System.out.println(rows);
 javaSparkContext.stop();
 }

}

Running SQL Queries
You can also run SQL queries using Spark SQL. You need to register the input data as a
temporary table before running the SQL queries.

The following code displays the schema of the just-registered table named temp:

SQLContext sqlContext = new SQLContext(javaSparkContext);
DataFrame dFrames = sqlContext.read().text("data\\emp*");
dFrames.registerTempTable("temp");
DataFrame schema=sqlContext.sql("describe temp");
schema.show();

+--------+---------+-------+
|col_name|data_type|comment|
+--------+---------+-------+
| value| string| |
+--------+---------+-------+

You can even specify the schema whatever you want with respect to the data format
at run time.

	 1.	 You need to write a Plain Old Java Object (POJO) class that
contains setter and getter methods for all the columns. This
needs to implement the serializable interface so that data can
be transferred over the network.

Chapter 17 ■ Hadoop Ecosystem Tools

243

The following code contains the Employee data set schema:

public class Employee implements Serializable {
 private int eno;
 private String ename;
 private int salary;
 private int dno;
 public int getEno() {
 return eno;
 }
 public void setEno(int eno) {
 this.eno = eno;
 }
 public String getEname() {
 return ename;
 }
 public void setEname(String ename) {
 this.ename = ename;
 }
 public int getSalary() {
 return salary;
 }

 public void setSalary(int salary) {
 this.salary = salary;
 }
 public int getDno() {
 return dno;
 }
 public void setDno(int dno) {
 this.dno = dno;
 }

}

	 2.	 In the next step, you need to call all the setter methods inside
a map function, and it should return the JavaRDD of the
Employee record.

The following code applies the schema using the Employee
POJO class methods:

JavaRDD<Employee> emp=javaSparkContext.textFile("data\\in\\
emp*").map(new Function<String, Employee>() {

 @Override
 public Employee call(String str) throws Exception {
 String[] erecord=str.split(",");
 Employee emp=new Employee();

Chapter 17 ■ Hadoop Ecosystem Tools

244

 emp.setEno(Integer.parseInt(erecord[0]));
 emp.setEname(erecord[1]);
 emp.setSalary(Integer.parseInt(erecord[2]));
 emp.setSalary(Integer.parseInt(erecord[3]));

 return emp;
 }
 });

	 3.	 Now you need to convert JavaRDD into DataFrame, applying
the schema of the employee POJO class as shown here:

DataFrame empSchema = sqlContext.createDataFrame(emp, Employee.class);

	 4.	 As a final step, you need to register a temp table before
applying the SQL queries, as follows:

empSchema.registerTempTable("employee");

Now, you can run the SQL queries on the newly registered table employee.
The following code returns the schema of the new employee table.

sqlContext.sql("describe employee").show();

+--------+---------+-------+
|col_name|data_type|comment|
+--------+---------+-------+
dno	int	
ename	string	
eno	int	
salary	int	
+--------+---------+-------+

The following code returns the employee number and employee name of the
employee table whose name is bala.

sqlContext.sql("select eno,ename from employee where ename like '%bala%'").
show();
+---+-----+
|eno|ename|
+---+-----+
| 1| bala|
+---+-----+

You have completed the learning fundamentals about Spark Core and SQL. For more
information about Apache Spark, visit http://spark.apache.org/.

http://spark.apache.org/

Chapter 17 ■ Hadoop Ecosystem Tools

245

Apache Tez
MapReduce is a disk-based framework that involves a lot of I/O operations, so it can
support only batch-processing jobs. MapReduce performance bottlenecks are addressed
by Apache Tez.

Apache Tez is an execution engine that enables interactive data processing in the
Hadoop ecosystem.

In MapReduce, the Map task is mandatory before the Reduce task. Particularly
when you have multiple MapReduce jobs to be performed in a row, there will be many
unnecessary Map tasks involved, and there will be a lot of I/O operations involved as the
map output data is written to disk.

Figure 17-8 starts Map task map2 after completing Reduce task reduce1.

Figure 17-8.  The processing pipeline

Tez will reduce the number of Map tasks wherever necessary to improve job
performance. Tez also provides better resource management by reusing Hadoop containers.

Tez is built on top of YARN. It does not modify any data-processing logic. It only
optimizes data processing.

Client applications such as Hive, Pig, and Cascading can use Tez to improve
application performance.

As discussed earlier, you can choose Tez as the execution engine in Pig Latin using
the -x option, as shown here:

pig -x tez pigscript.pig

In Apache Hive, you can choose Tez using the hive.execution.engine property, as
shown here:

set hive.execution.engine=hive;

Tez supports both cluster mode and local mode. In cluster mode, it can access and
process HDFS data, and in local mode it can process local file system data. However,
only the client application will choose between the local file system and the Hadoop file
system.

For more information about Apache Tez, visit http://tez.apache.org.

Presto
Enterprises will have their data in multiple technologies. For example, some data may be
in RDBMSs, some might be in NoSQL databases, and some might be in file systems such
as HDFS. If you want to get a report from more than one source, you need to move all the
data to one platform so that you can generate the report.

http://tez.apache.org/

Chapter 17 ■ Hadoop Ecosystem Tools

246

Moving data to a different technology is a costly operation because you need to
maintain separate storage for it. Also, moving data takes time and cannot provide ad hoc
reporting. This problem is addressed by a product called Presto.

Presto is a parallel computing technology used as a SQL-based query engine that
allows you to perform interactive data analysis in a multisource environment.

Presto primarily provides two benefits.

•	 You need not move data to a common platform for data analysis.

•	 Presto launches low-latency jobs to provide faster results.

As it provides support for standard ANSI SQL, it is easy to adopt. It is an open
source product initially developed by Facebook; it has been tested on petabytes of data.
Several other companies such as Twitter, LinkedIn, Netflix, and Uber have also tested it
in production. Teradata is actively contributing to Presto and also provides commercial
support.

•	 Presto requires Linux or Mac OS, 64-bit Java 8, and Python 2.4 or
above.

•	 Presto is written in Java and can be installed on any Hadoop
cluster.

•	 Presto is not a MapReduce abstraction.

Architecture
Presto follows a master-slave architecture that contains two types of nodes: coordinator
and worker.

Figure 17-9 shows the Presto architecture.

Figure 17-9.  The Presto architecture

Chapter 17 ■ Hadoop Ecosystem Tools

247

•	 A coordinator node is responsible for query parsing, analyzing,
and planning. Once planning is done, it schedules the query on
one of the closest worker nodes and monitors the progress.

•	 A worker node is responsible for connecting to the source system
and retrieving the results from it and also for data processing.

Connectors
Presto provides connectors for RDBMSs such as MySQL and Postgres; for NoSQL
databases such as Redis, MongoDB, and Cassandra; and for Apache Hive.

You need to define their connection properties in the .properties file under the
etc/catalog folder.

Presto also supports business intelligence tools like Tableau and QlikView.

Pushdown Operations
Presto can push down predicates to the source system so that it has to fetch less data
to the worker node. For example, say you have a MySQL query to count the number of
employees in a department named IT, as shown here:

Select count(eno) from employee where dname='IT';

Presto retrieves only the IT department records to the worker node by pushing the
condition to the source system MySQL. The worker node performs the count operation to
provide the final result.

For more information, please visit the Presto official web site at https://prestodb.io/.

Summary
In this chapter, you learned the fundamentals of the Hadoop ecosystem tools Zookeeper,
Cascading, Apache Spark, Apache Tez, and Tez.

•	 You learned to use Zookeeper CLI commands such as get,
create, ls, and so on.

•	 You learned to use Zookeeper services such as group
membership, configuration management, and lock services.

•	 You learned to use the four-letter commands of Zookeeper such
as srvr, stat, ruok, and so on.

•	 You learned to define the Cascading source and sink using HFS
and LFS.

•	 You learned to use Cascading pipes such as each, every, group,
cogroup, and subassembly.

https://prestodb.io/

Chapter 17 ■ Hadoop Ecosystem Tools

248

•	 You learned to use Cascading operations such as Function,
Filter, Aggregator, and Buffer.

•	 You learned that Apache Spark contains five modules. They are
Core, SQL, Streaming, MLlib, and GraphX.

•	 You learned about configuration management in Apache Spark.

•	 You learned that Spark’s RDD operations are of two types:
transformations and actions.

•	 You learned how to run SQL queries on a file data source using
data frames.

•	 You learned that Apache Tez is an execution engine built on top of
YARN to address the performance issues of MapReduce.

•	 You learned that Presto is a parallel computing technology
used as a SQL-based query engine that allows you to perform
interactive data analysis in a multisource environment.

•	 You learned that Presto contains two types of nodes: coordinator
and worker.

•	 You learned that Presto provides connectors for MySQL, Postgres,
Redis, MongoDB, Cassandra, Apache Hive, and so on.

•	 You learned that Presto can push down predicates to source
systems.

249© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6

APPENDIX A

Built-in Functions

In this appendix, you will learn short definitions of built-in functions in Pig Latin.
Examples are included wherever necessary. The functions are sorted alphabetically.

ABS
Returns the absolute value of a given input value

AccumuloStorage
Function for both loading and storing data from/to Accumulo

ACOS
Returns the arc cosine value of the given input

AddDuration
Returns the date after adding a specified duration to the input date

ARITY
Returns the number of fields in the input tuple

Syntax:
ARITY(exp)

Eaxmple:

foreach emp generate ARITY(emptuple);

ASIN
Returns the arc sin value of a given input

ATAN
Returns the arc tan value of a given input

AVG
Computes the average value of a given input field for an available group in script

Syntax:
AVG(exp)

Example:

grp = group emp all;
Avgsalary = foreach grp generate AVG(emp.salary);

Appendix A ■ Built-in Functions

250

AvroStorage
Function for both loading and storing Avro data files

BagToString
Converts bag data to chararray data using the delimiter specified

BagToTuple
Converts a bag to a tuple with respect to its structure

BinStorage
Function for both loading and storing binary data

Bloom
Builds a small size of data for resource-intensive operations like joins

CBRT
Returns the cube root of the given input value

CEIL
Returns the next greater integer

CONCAT
Performs the concatenation operation on input fields

COR
Returns the correlation for input data sets

COS
Returns the cosing value of the given input

COSH
Returns the hyperbolic cosine value of the given input

COUNT
Calculates the count of rows in a group

COUNT_STAR
Calculates the count of all rows including null in a group

COV
Returns the covariance for the input data sets

CurrentTime
Returns the current time

DaysBetween
Returns the difference of two dates in days

DIFF
Computes the difference of two bags and returns tuples that are present in

only one bag

ENDSWITH
Checks whether one string ends with another string and returns a Boolean value

EqualsIgnoreCase
Checks whether two strings are equal irrespective of case

Appendix A ■ Built-in Functions

251

EXP
Computes Euler’s number e raised to the power of the given input number

FLOOR
Returns the output of the mathematical operation FLOOR

GetDay
Returns the day from the input date

GetHour
Returns the hour from the input date

GetMilliSecond
Returns only milliseconds

GetMinute
Returns minutes from the input date

GetMonth
Returns the month from the input date
Example:

mon = foreach dummy generate GetMonth(ToDate('12-04-2016','dd-MM-yyyy'));

Output:

(4)

GetSecond
Returns the second from the input date

GetWeek
Returns the week from the input date

GetWeekYear
Returns the week number of year from the input date

GetYear
Returns the year from the input date

HBaseStorage
Function for both loading and storing HBase tables

HiveUDAF
Allows you to use Hive UDAFs in Pig Latin scripts

Example:

define hivesum HiveUDAF('sum');
 emp = load 'employee' using PigStorage(',') as (eno:int,ename:chararray,
salary:double,dno:int);
dnogrp = group emp by dno;
dnosum = foreach dnogrp generate emp.dno,hivesum(emp.salary);

Appendix A ■ Built-in Functions

252

HiveUDF
Allows you to use Hive UDFs in Pig Latin scripts

HiveUDTF
Allows you to use Hive UDTFs in Pig Latin scripts

HoursBetween
Returns the difference of two dates in hours

INDEXOF
Returns the position of a string within another string

IsEmpty
Checks whether the input bag or tuple is empty

JsonLoader
Function for loading JSON files

JsonStorage
Function for storing JSON files

KEYSET
Returns the key set from the input map data

Example:
Input file:

hdfs@cluster10-11:~> cat empmap.csv
[100#bala],100000,121
[101#Nirupam],120000,122
[102#radha],200000,123
[103#Nitya],1600000,124

Pig Latin code:

emp = load 'empmap.csv' using PigStorage(',') as (empmap:MAP[],sal,dno);
emp = foreach emp generate KEYSET(empmap);
dump emp;

Output:

({(100)})
({(101)})
({(102)})
({(103)})

LAST_INDEX_OF
Returns the last position of a string within another string

LCFIRST
Returns the input string after converting the first character into lowercase

Appendix A ■ Built-in Functions

253

LOG
Returns the logarithm value of the given input

LOG10
Returns the logarithm value of base 10 for the given input

LOWER
Returns lowercase for the input string

LTRIM
Removes the left-side spaces of a string

MAX
Computes the maximum value from a group

MilliSecondsBetween
Returns the difference of two dates in milliseconds

MIN
Computes the minimum value from a group

MinutesBetween
Returns the difference of two dates in hours

MonthsBetween
Returns the difference of two dates in months

Example:

mondiff = foreach dummy generate MonthsBetween(ToDate('12-08-2016',
'dd-MM-yyyy'),ToDate('12-07-2016','dd-MM-yyyy'));

Output:

(1)

OrcStorage
Function for both loading and storing ORC format files

ParquetLoader
Load function used for loading Parquet data

ParquetStorer
Store function used for storing Parquet data

PigDump
Stores data in UTF-8 format

PigStorage
Default function for both loading and storing data sets

PluckTuple
Allows you to select required fields with RegEx

Appendix A ■ Built-in Functions

254

RANDOM
Returns random number between 0.0 <= RANDOM < 1.0

REGEX_EXTRACT
Returns string matched with the RegEx and position

REGEX_EXTRACT_ALL
Returns the strings matched with the RegEx

REPLACE
Replaces one string with another

ROUND
Returns the result of the mathematical round function

ROUND_TO
Returns the result of the mathematical round function after rounding to a specified

number of digits

RTRIM
Removes the right-side spaces

SecondsBetween
Returns the difference of two dates in seconds

SIN
Returns the sine value of the given input

SINH
Returns the hyperbolic sine value of the given input

SIZE
Returns the size of the argument depending on its data type (for example, bag

returns the number of tuples and bytearray returns the number of bytes)

SPRINTF
Converts the given string into the required format

SQRT
Returns the square root of the given number

STARTSWITH
Checks whether the first string starts with the second string

STRSPLIT
Splits the string using the RegEx

STRSPLITTOBAG
Returns a bag of strings after splitting the input string

SUBSTRING
Returns a substring from the input string

SUBTRACT
Returns the output of Bag1-Bag2; minus is a set operation

Appendix A ■ Built-in Functions

255

SubtractDuration
Returns the date after substracting the specified duration from the input date

SUM
Computes the sum of a field for a group

TAN
Returns the tan value of the given input

Example:

tan90 = foreach dummy generate TAN(90);

Output:

(-1.995200412208242)

TANH
Returns the hyperbolic tan value of input

TextLoader
Load function for unstructured data

TOBAG
Converts the given input to a bag

ToDate
Converts the given input to a date

TOKENIZE
Breaks the given input into words or characters called tokens using the specified

delimiter word or character

TOMAP
Çonverts the given input to a map

ToMilliSeconds
Converts the given input to milliseconds

TOP
Returns the top n rows

ToString
Converts the given date input to a string

TOTUPLE
Converts the given inputs to a tuple

ToUnixTime
Returns the Unix epoch time

TrevniStorage
Function for both loading and storing Trevni files

TRIM
Removes the spaces on both sides

Appendix A ■ Built-in Functions

256

UCFIRST
Returns the string in uppercase

UniqueID
Returns the unique ID for every record based on the task ID

UPPER
Returns an uppercase string

VALUELIST
Returns a list of values from the input map data that does not contain any duplicate

values

VALUESET
Returns a set of values from the input map data that does not contain any duplicate

values

WeeksBetween
Returns the difference of two dates in weeks

YearsBetween
Returns the difference of two dates in years

257© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6

APPENDIX B

Apache Pig in Apache
Ambari

Manually installing a Hadoop cluster and maintaining it is a tedious task. This problem is
addressed by products such as Cloudera Manager and Apache Ambari.

•	 Cloudera Manager is proprietary software from the Cloudera
company.

•	 Apache Ambari was developed by Hortonworks. Now it is an open
source product that belongs to the Apache Software Foundation.

Apache Ambari is a web application used for cluster provisioning, configuration
management, and monitoring the Hadoop cluster.

In this chapter, you will learn how to use Pig in Apache Ambari.
A Pig page in Ambari displays Summary, Configs, and Service Action options in the

Ambari UI, as shown in Figure B-1. The Summary tab displays the number of Pig clients
installed on the cluster. If you click Summary, it will display all the nodes where the Pig
clients are installed.

Figure B-1.  The Pig page

The Configs tab displays all the properties defined in the pig.properties, pig-env.
sh, and log4j.properties files.

You can modify Pig properties through this page in Ambari.

Appendix B ■ Apache Pig in Apache Ambari

258

Modifying Properties
If you modify a property in a required section and hit Save, Ambari 2.3 will ask you to
name the configuration changes. Once they are saved, Ambari will ask you to restart the
affected components so that the changes get applied.

Figure B-2 asks the user to restart seven components.

Figure B-2.  Restart prompt

Figure B-3.  Failure of the Pig service

For example, the exectype value is set to mapreduce by default. You can change it to
tez in the Advanced Pig Properties section, as shown here:

exectype=tez

Once you make any changes, Ambari will save its version; later you can just click it to
revert the changes.

Service Check
You can check the working status of Pig using the service check feature in the Ambari user
interface. If you click Run Service Check under Service Actions, Ambari will launch a new
Pig job and will check the status of that job.

If a job has failed, Ambari will fail the service check for Pig. It will also display an
error; you can check it from the OPS area in Ambari.

Most of the time a service check will fail if there is an issue with Apache Hadoop.
If the job succeeds, Ambari displays that the service check is successful, which

means Pig is in working status.
Figure B-3 shows that the service check for Pig has failed.

Appendix B ■ Apache Pig in Apache Ambari

259

Installing Pig
Manually installing Pig is a tedious task because you need to do it once per node. That is,
if you have a 100-node cluster, you need to do it 100 times.

Apache Ambari simplifies this by automating this setup process with a user-friendly
web interface.

You can install Pig using Ambari if it is not installed yet. You can click the Add Service
option under the Actions drop-down, which will display the technologies available for
installation. You can choose Pig and click Next. The rest of the steps are intuitive and can
easily be performed.

Pig Status
Ambari provides the REST API. You can check the status of Pig by using it. You need the
IP address where Ambari is running, the port number of Ambari, and the Hadoop cluster
name.

Here’s the syntax:

http://<IPaddress>:<portnumber>/api/v1/clusters/<clustername>/services/
PIG?fields=ServiceInfo/state

You can use this URL in a web browser, or you can use the curl command in a Unix
terminal. This will return output in JSON format, as shown here:

http://112.11.11.100:8080/api/v1/clusters/Cluster10/services/
PIG?fields=ServiceInfo/state

{
 "href" : "http://112.11.11.100:8080/api/v1/Cluster10/Cluster10/services/
PIG?fields=ServiceInfo/state",
 "ServiceInfo" : {
 "cluster_name" : "Cluster10",
 "service_name" : "PIG",
 "state" : "INSTALLED"
 }
}

This output says Pig is installed.
If you do not know the available Hadoop clusters, you can check using the clusters

option, as shown here, which will display the cluster names:

http://112.11.11.100:8080/api/v1/clusters/

Check All Available Services
You can even get all the available services from a cluster using the services option,
which will also include Pig if installed.

http://112.11.11.100:8080/api/v1/clusters/

Appendix B ■ Apache Pig in Apache Ambari

260

The following code displays the available services in a cluster named cluster10:

http://112.11.11.100:8080/api/v1/clusters/Cluster10/services

The following is the partial output:

{
 {
 "href" : "�http://112.11.11.100:8080/api/v1/clusters/Cluster10/

services/HDFS",
 "ServiceInfo" : {
 "cluster_name" : "Cluster10",
 "service_name" : "HDFS"
 }
 },
 {
 "href" : "�http://112.11.11.100:8080/api/v1/clusters/Cluster10/

services/PIG",
 "ServiceInfo" : {
 "cluster_name" : "Cluster10",
 "service_name" : "PIG"
 }
 },
.
.
.
 {
 "href" : "�http://112.11.11.100:8080/api/v1/clusters/Cluster10/

services/SPARK",
 "ServiceInfo" : {
 "cluster_name" : "Cluster10",
 "service_name" : "SPARK"
 }
 }
]
}

Summary
In this appendix, you learned about the Pig features in Apache Ambari, including the
following:

•	 How to change the Pig configuration using Ambari

•	 How to check the working status of Pig using a service check

•	 How to use the Ambari REST API to see all the installed services
in a cluster

http://112.11.11.100:8080/api/v1/clusters/Cluster10/services

261© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6

APPENDIX C

HBaseStorage and
ORCStorage Options

In this appendix, you will learn about the HBaseStorage and ORCStorage options.

HBaseStorage
The HBaseStorage function allows you to specify three types of conditions. They are
row-based conditions, timestamp-based conditions, and other types of conditions.

Row-Based Conditions
The following loads the row key as the first value in every tuple returned from HBase. Its
default value is false.

-loadKey=(true|false)

The following allows you to specify a greater-than condition on the row key. It
retrieves a tuple whose row is greater than the specified key value.

emp = �load 'hbase://employee' using org.apache.pig.backend.hadoop.hbase.
HBaseStorage('empdetails:*','-loadKey=true');

dump emp;
-gt=KeyValue

The following allows you to specify a less-than condition on the row key. It retrieves
a tuple whose row is less than the specified key value.

-lt=KeyValue

APPENDIX c ■ HBaseStorage and ORCStorage Options

262

The following allows you to specify regular expressions on the row key. It retrieves a
tuple whose row matches with the specified RegEx.

-regex=regexvalue

The following allows you to specify a greater-than or equals condition on the row
key. It retrieves a tuple whose row is greater than or equal to the specified key value.

-gte=KeyValue

The following allows you to specify a less-than or equals condition on the row key.
It retrieves a tuple whose row is less than or equal to the specified key value.

-lte=KeyValue

Timestamp-Based Conditions
The following will allow you to specify a greater-than or equal condition on the
timestamp. It will return values whose timestamps are greater than or equal to the
specified timestamp.

-minTimestamp=timestamp

The following example will allow you to specify a less-than or equal condition on the
timestamp. It will return values whose timestamps are less than or equal to the specified
timestamp.

emp = load 'hbase://emp' using org.apache.pig.backend.hadoop.hbase.
HBaseStorage('empdetails:*','-loadKey=true -minTimestamp=1466922018861') ;
dump emp;
-maxTimestamp=timestamp

This will allow you to specify the equal condition on the timestamp. It will return
values whose timestamps equal the specified timestamp.

-timestamp=timestamp

This will include the timestamp after the row key in the output:

-includeTimestamp=Record

Other Conditions
The following returns the specified number of rows per region:

-limit=numRowsPerRegion

APPENDIX c ■ HBaseStorage and ORCStorage Options

263

The following will keep the specified number of rows in the cache for faster access.
It also consumes more memory.

-caching=numRows

The following replaces the default delimiter with a user-specified delimiter:

-delim=delimiter

After replacing the default delimiter of whitespace, you can remove the whitespace
or not. The default value is true, which removes whitespace.

-ignoreWhitespace=(true|false)

The following is used to specify the caster class to convert values (the default is
Utf8StorageConverter).

-caster=(HBaseBinaryConverter|Utf8StorageConverter)

The following will fast-load data into HBase. By default it is disabled. You can set it to
true. Keep in mind that sometimes it results in data loss. (See http://hbase.apache.org/
book.html#perf.hbase.client.putwal.)

-noWAL=(true|false)

The following includes the tombstone marker on the store:

-includeTombstone=Record

OrcStorage
The following allows you to replace the default stripe size of 256 MB with the new
stripe size:

-s, --stripeSize

The following specifies the distance between entries in the row index:

-r, --rowIndexStride

The following sets the buffer size used for both compressing and storing the stripe:

-b, --bufferSize

The following is used to pad blocks to stripes:

-p, --blockPadding

APPENDIX c ■ HBaseStorage and ORCStorage Options

264

The following sets the generic compression that is used to compress the data. Valid
codec settings are NONE, ZLIB, SNAPPY, and LZO.

-c, --compress

employee = �load 'employee.csv' using PigStorage(',') as
(eno:int,ename:chararray,salary:int,deptno:int);

store employee into 'csvtoorc'using OrcStorage('-c SNAPPY');

The following allows you to specify the version of file to be written:

-v, --version

265

�       � A
ABS function, 78
Abstraction

Apache Hive, 15–16
Apache Pig, 16–18
cascading, 13–15

Accumulator function, 168, 215
Aggregator operation, 235–236
Algebraic function, 162

classes, 166–167
extend EvalFunc, 165
final data processing, 163
final stage, 165
initial data processing, 162
interface, 166, 214
intermediate data processing, 163
operations, 164
returning classes, 167

Ambari
Pig manual installation

available services, 259–260
status, 259

Pig page, 257
properties modification, 258
service check, 258

Apache Hadoop, 4
benefits, 12
components of, 5
HDFS, 5
MapReduce, 6–11
use cases, 12
word count, 6
YARN, 11–12

Apache Hive, 15–16
benefits, 16
use cases, 16

Assert operator, 51
Atomicity, consistency, isolation,

and durability (ACID), 207
AVG function, 80

�       � B
BagToString function, 81
Buffer operation, 236
Built-in functions

ABS, 249
AccumuloStorage, 249
ACOS, 249
AddDuration, 249
ARITY, 249
ASIN, 249
ATAN, 249
AVG, 249
AvroStorage, 250
BagToString, 250
BagToTuple, 250
BinStorage, 250
Bloom, 250
CBRT, 250
CEIL, 250
CONCAT, 250
COR, 250
COS, 250
COSH, 250
COUNT, 250
COUNT_STAR, 250
COV, 250
CurrentTime, 250
DaysBetween, 250
DIFF, 250
ENDSWITH, 250
EqualsIgnoreCase, 250

Index

© Balaswamy Vaddeman 2016
B. Vaddeman, Beginning Apache Pig, DOI 10.1007/978-1-4842-2337-6

■ INDEX

266

EXP, 250
FLOOR, 250
GetDay, 250
GetHour, 250
GetMilliSecond, 250
GetMinute, 251
GetMonth, 251
GetSecond, 251
GetWeek, 251
GetWeekYear, 251
GetYear, 251
HBaseStorage, 251
HiveUDAF, 251
HiveUDF, 251
HiveUDTF, 251
HoursBetween, 251
INDEXOF, 251
IsEmpty, 251
JsonLoader, 251
JsonStorage, 251
KEYSET, 251
LAST_INDEX_OF, 252
LCFIRST, 252
LOG, 252
LOWER, 252
LTRIM, 252
MAX, 252
MilliSecondsBetween, 252
MIN, 252
MinutesBetween, 252
MonthsBetween, 252
OrcStorage, 253
ParquetLoader, 253
ParquetStorer, 253
PigDump, 253
PigStorage, 253
PluckTuple, 253
RANDOM, 253
REGEX_EXTRACT, 253
REPLACE, 253
ROUND, 253
ROUND_TO, 253
RTRIM, 253
SecondsBetween, 253
SIN and SINH, 253
SIZE, 253
SPRINTF, 253
SQRT, 253
STARTSWITH, 254

STRSPLITTOBAG, 254
SUBSTRING, 254
SUBTRACT, 254
SubtractDuration, 254
SUM, 254
TAN, 254
TANH, 254
TextLoader, 254
TOBAG, 254
ToDate, 254
TOKENIZE, 254
TOMAP, 254
ToMilliSeconds, 254
TOP, 254
ToString, 254
TOTUPLE, 254
ToUnixTime, 254
TrevniStorage, 255
TRIM, 255
UCFIRST, 255
UniqueID, 255
UPPER, 255
VALUELIST, 255
VALUESET, 255
WeeksBetween, 255
YearsBetween, 255

�       � C
Cascading

benefits of, 15
fields, 230
flow of, 13
HFS and LFS, 231
operations, 233

aggregator, 235
buffer, 236
filter, 235
function, 233

pipes, 233
pipes and filters, 13
put() method, 14
sink definition, 232
source, 230
taps, 231
use cases, 15
word count program, 13

Casting error, 28–29
CEIL function, 77
clear command, 38

Built-in functions (cont.)

■ INDEX

267

Cluster optimization
disk space, 219
memory errors

container memory, 222
HBase and system

memory, 221
name node heap size, 220
scheduler, 220
Zookeeper, 220

cogroup operator, 72–73
Container memory, 222
coordinator.xml file

end, 94
frequency, 95
start, 94
timezone, 95
workflow integration, 95

COUNT function, 80
CUBE operator, 63

ROLLUP, 64
syntax, 64

CurrentTime function, 78

�       � D
Database management

systems (DBMS), 2
Data Definition Language (DDL)

alter statement, 106
create statement, 105
drop statement, 106

Data formats
compression, 201
ORC (see Optimized row

columnar (ORC))
Parquet, 203–204

file processing, 204–205
sequence file, 202–203

DataFu, 155
Data types

bigdecimal, 24
biginteger, 24
boolean, 23
boolean operators, 31
bytearray, 23
casting, 28–29
chararray, 23
comparison operators, 29–30
complex data types, 24

bag, 26
map, 25

summarization, 27
tuple, 26

datetime, 23
double, 23
float, 22
identifiers, 30
int, 22
mapping, 112–113
long, 22
Pig, 21
schema, 28
simple and complex categories, 22
summarization, 24

Data warehouse systems, 3–4
Data warehousing tools, 1
Date functions, 78
DAYSBETWEEN, 79
define operator, 54
delete command, 228
dfs and set commands, 106
distinct operator

MapReduce partitioner, 55
reduce task, 55

dryrun Pig Latin, 141
Dump operator, 48, 188

�       � E
Equi joins

inner joins, 70
outer joins

full outer join, 72
left outer join, 71
right outer join, 71

ErrorHandler methods, 184
Eval functions

accumulator, 168
algebraic, 162

classes, 166–167
extend EvalFunc class, 165
final data processing, 163
final stage, 165
initial data processing, 162
interface, 166
intermediate data processing, 163
operations, 164
returning classes, 167

filter functions, 168–169
MapReduce and Pig features

counters, 158
distributed cache, 157

■ INDEX

268

input and output
schema, 159, 161

reporiting progress, 159
exec command, 38
exec () method, 211
Explain operator

modes
code generation, 194
graph mode, 193
partial logical plan, 195
XML format, 193

plan types
logic plan, 189
MapReduce Plan, 191–192
physical plan, 190–191
Tez Plan, 192

syntax, 188
External macros, 140
Extract/transform/load (ETL) tools, 1

�       � F
Falcon

cluster, 124
command-line interface

entity, 129
resume, 130
schedule, 130
submit, 130
suspend, 130

entities, 123–124
feed management

cluster, 127
definition, 126
frequency, 126
file system, 126
late arrival, 127
table, 126
types, 126

interfaces, 124
locations, 125
process entities

cluster, 128
definition, 128
failures, 128
feed, 129
workflow, 129

replicate data
cluster entities, 132
HDFS DistCp program, 131–132

mirror button, 132
mirror job creation, 132–134
target cluster, 133

script
oozie workflow, 134
Pig script, 135

web interface
entity creation, 131
notifications, 131
search, 131

File browser
directory name, 119
downloading, 120
file box creation, 119
permissions, 121
search feature, 121
unzipping files, 120
utilities, 119

Filter operations, 235
Filter functions, 168–169
FLATTEN operator

bag structure, 54
tuple, 53

Foreach operator
boolean operators, 51
comparison operators, 51
filter, 50
Flatten, 49
functions, 49
nested blocks, 50
null, 50
projection, 49
schema, 49–50
syntax, 48

fs command, 34
Functions

built-in functions, 74
complex data type

TOBAG, 81
TOMAP, 82
TOP, 82
TOTUPLE, 81

date functions, 78
CurrentTime function, 78
DAYSBETWEEN, 79
GetDay function, 78
TODATE, 79
TOUNIXTIME, 80

EVAL
AVG, 80
BagToString, 81

Eval functions (cont.)

■ INDEX

269

COUNT, 80
MIN, 80

LCFIRST, 75
load/store

HBase, 86
HbaseStorage, 84–86
JsonLoader/JsonStorage, 83
loading data, 87
OrcStorage, 87
PigStorage, 83
TextLoader, 84

LOWER, 75
mathematical functions

(see Mathematical functions)
REPLACE, 75
string, 74
STRSPLIT, 76
SUBSTRING, 76
TRIM, 75
UniqueID, 76
UPPER, 75
user-defined functions, 74

�       � G
get command, 228
GetDay function, 78
getdname() method, 211
getInputFormat() method, 172
getnext() method, 172
getOutputFormat() method, 179
getPartitionKeys() method, 175
getSchema() method, 175–176
getStatistics() method, 175
Google File System (GFS), 4
GROUP operator, 59

partitioner, 60
reduce tasks, 60

Grunt
fs command, 34–35
modes, 33
sh command, 35
shell, 33–34
summarization, 39
utility commands

auto-completion feature, 40
clear, 38
exec, 38
help, 36
history, 36
kill, 37

quit, 36
run, 39
set, 37

�       � H
Hadoop distributed

file system (HDFS), 5, 231
Hadoop ecosystem tools

Apache Spark (see Spark)
cascading

fields, 230
HFS and LFS, 231
operations, 233
pipes, 233
sink definition, 232
source, 230
taps, 231

Presto, 245
architecture, 246
benefits, 246
connectors, 247
pushdown operations, 247

Tez, 245
Zookeeper (see Zookeeper)

HBase and system memory, 221
HBase function, 86
HbaseStorage function, 84–86

conditions, 262
row-based conditions, 261
timestamp-based conditions, 262

HCatalog
architecture of, 104
command-line interface

DDL commands, 105–106
show command, 104

dfs and set commands, 106
features of, 103
HCatLoader and HCatStorer

code running, 111
data reading, 110
data type mapping, 112–113
write data, 110

WebHCatalog, 107
directory, 109
HCatLoader function, 109
parameters, 107
Pig Latin code, 108
script file, 108

HCatLoader function, 109
help command, 36

■ INDEX

270

history command, 36
Hive Query Language (HQL), 15
Hue

file browser, 119
job browser, 121–122
Pig module

auto-suggestion option, 117
editor, 115
helper, 117
query history, 118
scripts, 116
UDF usage, 118

�       � I
Illustrate operator, 187
import operator, 54
Internal macros, 139

�       � J
Java

–cp option, 44
Hue, 44
JAR file, 149
Pig Latin Code, 150
PigServer class, 42
register, 149
source code, 43
UDF, 148

JavaScript
embed Pig Latin code, 152
Pig Latin, 151
register operator, 151
UDF, 150

job.properties file, 90, 94
Job statistics, 217
Join operation

big keys, 212
distributed cache, 210–212
replicated joins, 209
small files, 209
sorted data, 212

Join operators
cogroup, 72
cross operator, 73
equi joins, 70
join and cogroup data, 70
types, 69

JsonLoader/JsonStorage function, 83
Jython, 152–153

�       � K
kill command, 37

�       � L
LCFIRST function, 75
limit operator, 51
Load function

abstract methods, 172
bytearray (conversion), 176
configuration properties, 185
DoubleColonLoader class, 172–174
loader performance, 176
LoadPredicatePushdown

methods, 177
LoadPushDown methods, 176
metadata, 174–176
methods, 171
monitoring UDF runtime, 185
predicate pushing down, 177

Load operator, 45, 87
LOWER function, 75
ls command, 227

�       � M, N
Macros

chaining, 141
dryrun, 141
external macros, 140
input parameters, 144
internal macro, 139
rules

chaining validation, 143
grunt shell command, 143
nested block, 143
relations, 143
usage definition, 142

structure, 137
types, 138
use case, 138
without return type, 144

MapReduce, 6, 13, 18
abstraction (see Abstraction)
data classification, 1
eval functions

counters, 158
distributed cache, 157
input and output schema, 159, 161
reporting progress, 159

■ INDEX

271

explain Plan, 191–192
main class, 10–11
map class, 7–8
output, 8
parallel computing (see Parallel

computing technologies)
Pig, 62–63
reduce program, 9–10
running program, 11
small data processing, 1–4

Mathematical functions
ABS, 78
CEIL, 77
FLOOR, 76–77
RANDOM, 78
ROUND, 77–78

MIN function, 80
Mirror jobs

creation, 132
frequency settings, 134
name field, 132
submit, 134
target settings, 133
validity section, 133

�       � O
Online transaction processing (OLTP), 3
Oozie, 89

bunble, 96
command-line interface

information option, 98
kill, 98
retrieve server logs, 98
run option, 98
submit option, 98
suspend option, 98

Hue, 100
pig command, 96, 97
script (see Pig Latin)
types of, 89
user interface

info option, 100
workflow jobs, 99

workflow application, 89
job.properties file, 90
workflow.xml, 90

Optimization
accumulator interface, 215
algebraic interface, 214
appropriate schema definition, 213

cluster (see Cluster optimization)
execution engine, 216
filter data, 214
intermediate data, 215
job statistics, 217
join operation,

big keys, 212
distributed cache, 210–212
replicated joins, 209
small files, 209
sorted data, 212

multirelation joins, 216
parallelism, 216
required fields, 213
rules

constant calculator, 219
filter conditions, 218
merge foreach, 218

small inputs, 215
store reusable data, 214

Optimized row columnar (ORC), 87, 205
ACID, 207
benefits, 208
data types, 207
indexes, 207
predicate pushdown, 207
structure of, 206

OrcStorage, 87, 263
Order By operator, 57–58
Outer joins, 71

�       � P
Parallel computing technologies

Apache Hadoop, 4
GFS, 4

Parallelism, 216
Parquet, 203–204

file processing, 204–205
Pig, 16

Apache Hive, 18
cascading, 18
MapReduce, 18
philosophy

domestic animals, 19
fly, 19
live, 19
process, 19

use cases, 19
vs. tools, 17
word count program, 17

■ INDEX

272

PiggyBank, 154
Pig Latin, 41

code, 41
CUBE, 63–64
-e command, 42
-f command, 42
Grunt shell, 41
Hue (see Hue)
Java program

–cp option, 44
PigServer class, 42
source code, 43

MapReduce programs, 62–63
operators, 44

assert, 51
define, 54
distinct, 55
dump, 48
FLATTEN, 53
Foreach, 48
GROUP, 59–60
import, 54
limit, 51
load, 45
Order By, 57–58
rank operator, 55
RegEx characters, 46
sample, 53
split, 52
store, 47
union, 56–57
version, 48

parameter substitution
code inputs, 65
flow chart, 65
-param, 65
-paramfile, 66

scheduling workflow
coordinator.xml file, 94
job.properties file, 94
submit option, 96
upload files, 96

stream operator, 61
submit option, 93
upload files/HDFS, 93
workflow.xml, 91–93
Writing job.properties, 91

PigStorage function, 83
Plain Old Java Object (POJO), 242
prepareRead() method, 172
prepareToWrite() method, 179

Presto, 245
architecture, 246
connectors, 247
pushdown operations, 247

Prestobenefits, 246
printSchema() method, 241
putNext() method, 179

�       � Q
quit command, 36

�       � R
RANDOM function, 78
rank operator, 55
RegEx file path, 46
registerJar() method, 43
registerQuery() method, 43
registerScript() method, 43
Relational Database Management

Systems (RDBMSs), 3
REPLACE function, 75
Replication factor, 5
Resilient Distributed Datasets (RDD), 237
ROLLUP operator, 64
ROUND function, 77–78
run command, 39
ruok command, 229

�       � S
sample operator, 53
Sequence file, 202–203
set command, 37, 228
setLocation() method, 172
setStoreLocation() method, 179
sh command, 35
show command, 105
Small data processing

code explanation, 2
data warehouse systems, 3–4
output, 2
program flow, 2
RDBMSs, 3

Spark
configuration object, 238
core, 238
modules, 237
operations, 239
sink specification, 239

■ INDEX

273

sourcing, 238
SQL

data frames, 241–242
queries, 242–244
source, 240

use cases, 237
split operator, 52
srvr command, 229
stat command, 227
stat command, 229
Store function

configuration, 185
data program, 179–181
distributed cache, 183
handling bad records, 184
metadata, 182
methods, 178
monitoring UDF runtime, 185

store operator, 43, 47
storeSchema() method, 182
storeStatistics() method, 183
Stream operator

shell program, 61
Unix command, 61

String functions, 74
STRSPLIT, 76, 254
SUBSTRING, 76

�       � T
TextLoader function, 84
Tez, 245

explain operator, 192
TOBAG, 81
TODATE, 79
TOMAP, 82
TOP, 82
TOTUPLE, 81
TOUNIXTIME, 80
TRIM, 75
Troubleshooting

counters, 198
describe, 188
dump, 188
error types, 197
explain operator (see Explain

operator)

illustrate operator, 187
unit testing, 195–197

�       � U
Union operator, 56, 57
UniqueID function, 76
Unit testing, 195–197
Unix commands, 61
UPPER function, 75
User-defined functions (UDFs), 118

flowchart, 147
input and output schema, 159
Java

JAR file, 149
Pig Latin Code, 150
register, 149
UDF, 148

JavaScript (see JavaScript)
Jython, 152–153
languages, 148, 153–154
libraries

DataFu, 155
PiggyBank, 154

�       � V
version operator, 48

�       � W, X
wchs command, 230
WebHCatalog

directory, 109
HCatLoader function, 109
parameters, 107
Pig Latin code, 108
script file, 108

workflow.xml, 90–92
passing parameter values, 93
property tag, 92

Writing job.properties, 91

�       � Y
Yet Another Resource

Manger (YARN), 11

■ INDEX

274

�       � Z
Znodes, 225
Zookeeper, 225

command-line interface
create, 228
delete command, 228
get, 228
ls command, 227
set command, 228
stat, 227

configuration, 226
four-letter commands

ruok, 229
srvr command, 229
stat, 229
wchs, 230

group membership, 226
lock service, 227
terminology, 225
time measurment, 230

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: MapReduce and Its Abstractions
	 Small Data Processing
	 Relational Database Management Systems
	 Data Warehouse Systems

	 Parallel Computing
	 GFS and MapReduce
	 Apache Hadoop
	 HDFS
	 MapReduce
	 Writing a Map Class
	 Writing a Reduce Class
	 Writing a main Class
	 Running a MapReduce Program

	 YARN
	 Benefits
	 Use Cases

	 Problems with MapReduce
	 Cascading
	 Benefits
	 Use Cases

	 Apache Hive
	 Benefits
	 Use Cases

	 Apache Pig
	 Pig vs. Other Tools
	 MapReduce
	 Cascading
	 Apache Hive

	 Use Cases
	 Pig Philosophy
	 Pigs Eat Anything
	 Pigs Live Anywhere
	 Pigs Are Domestic Animals
	 Pigs Fly

	 Summary

	Chapter 2: Data Types
	 Simple Data Types
	 int
	 long
	 float
	 double
	 chararray
	 boolean
	 bytearray
	 datetime
	 biginteger
	 bigdecimal
	 Summary of Simple Data Types

	 Complex Data Types
	 map
	 tuple
	 bag
	 Summary of Complex Data Types

	 Schema
	 Casting
	 Casting Error

	 Comparison Operators
	 Identifiers
	 Boolean Operators
	 Summary

	Chapter 3: Grunt
	 Invoking the Grunt Shell
	 Commands
	 The fs Command
	 The sh Command

	 Utility Commands
	 help
	 history
	 quit
	 kill
	 set
	 clear
	 exec
	 run

	 Summary of Commands
	 Auto-completion
	 Summary

	Chapter 4: Pig Latin Fundamentals
	 Running Pig Latin Code
	 Grunt Shell
	 Pig -e
	 Pig -f
	 Embed Pig Code in a Java Program
	 Hue

	 Pig Operators and Commands
	 Load
	 RegEx in the File Path

	 store
	 dump
	 version
	 Foreach Generate
	 Projection
	 Flatten
	 Using Functions
	 New Schema
	 Nested Block

	 filter
	 null
	 Boolean Operators
	 Comparison Operators

	 Limit
	 Assert
	 SPLIT
	 SAMPLE
	 FLATTEN
	 Tuple Example
	 Bag Example

	 import
	 define
	 distinct
	 Choosing the Number of Reduce Tasks
	 Using the MapReduce Partitioner

	 RANK
	 Union
	 ORDER BY
	 Choosing Number of Reduce Tasks

	 GROUP
	 Using the Partitioner
	 Choosing Number of Reducers
	 Avoiding a Reduce Task

	 Stream
	 Using Unix Commands
	 Using a Shell Program

	 MAPREDUCE
	 CUBE
	 CUBE
	 ROLLUP

	 Parameter Substitution
	 -param
	 -paramfile

	 Summary

	Chapter 5: Joins and Functions
	 Join Operators
	 Equi Joins
	 Inner Joins
	 Outer Joins
	 Left Outer Join
	 Right Outer Join
	 Full Outer Join

	 cogroup
	 CROSS

	 Functions
	 String Functions
	 UPPER
	 LOWER
	 TRIM
	 REPLACE
	 STRSPLIT
	 UniqueID
	 SUBSTRING

	 Mathematical Functions
	 FLOOR
	 CEIL
	 ROUND
	 RANDOM
	 ABS

	 Date Functions
	 CurrentTime
	 GetDay
	 DAYSBETWEEN
	 TODATE
	 TOUNIXTIME

	 EVAL Functions
	 AVG
	 MIN
	 COUNT
	 BagToString

	 Complex Data Type Functions
	 TOTUPLE
	 TOBAG
	 TOMAP
	 TOP

	 Load/Store Functions
	 JsonLoader/JsonStorage
	 PigStorage
	 TextLoader
	 HbaseStorage
	 Storing Data into HBase

	 OrcStorage
	 Loading Data

	 Summary

	Chapter 6: Creating and Scheduling Workflows Using Apache Oozie
	 Types of Oozie Jobs
	 Workflow
	 job.properties
	 workflow.xml

	 Using a Pig Latin Script as Part of a Workflow
	 Writing job.properties
	 workflow.xml
	 Set a Value to a Property
	 Passing Parameter Values

	 Uploading Files to HDFS
	 Submit the Oozie Workflow

	 Scheduling a Pig Script
	 Writing the job.properties File
	 Writing coordinator.xml
	 start
	 end
	 frequency
	 timezone
	 Integrating with the Workflow

	 Upload Files to HDFS
	 Submitting Coordinator

	 Bundle
	 oozie pig Command
	 Command-Line Interface
	 Job Submitting, Running, and Suspending
	 Killing Job
	 Retrieving Logs
	 Information About a Job

	 Oozie User Interface
	 Developing Oozie Applications Using Hue
	 Summary

	Chapter 7: HCatalog
	Features of HCatalog
	Command-Line Interface
	show Command
	Data Definition Language Commands
	create Statement
	drop Statement
	alter Statement

	dfs and set Commands
	WebHCatalog
	Executing Pig Latin Code
	Running a Pig Latin Script from a File
	HCatLoader Example
	Writing the Job Status to a Directory

	HCatLoader and HCatStorer
	Reading Data from HCatalog
	Writing Data to HCatalog
	Running Code
	Data Type Mapping

	Summary

	Chapter 8: Pig Latin in Hue
	Pig Module
	My Scripts
	Pig Helper
	Auto-suggestion
	UDF Usage in Script
	Query History

	File Browser
	Job Browser
	Summary

	Chapter 9: Pig Latin Scripts in Apache Falcon
	cluster
	Interfaces
	Locations

	feed
	Feed Types
	File System
	Table

	Frequency
	Late Arrival
	Cluster

	process
	cluster
	Failures
	feed
	workflow

	CLI
	entity
	Submit
	 Schedule
	Suspend
	Resume

	Web Interface
	Search
	Create an Entity
	Notifications
	Mirror

	Data Replication Using the Falcon Web UI
	Create Cluster Entities
	Create Mirror Job

	Pig Scripts in Apache Falcon
	Oozie Workflow
	Pig Script

	Summary

	Chapter 10: Macros
	Structure
	Macro Use Case
	Macro Types
	Internal Macro
	External Macro

	dryrun
	Macro Chaining
	Macro Rules
	Define Before Usage
	Valid Macro Chaining
	No Macro Within Nested Block
	No Grunt Shell Commands
	Invisible Relations

	Macro Examples
	Macro Without Input Parameters Is Possible
	Macro Without Returning Anything Is Possible

	Summary

	Chapter 11: User-Defined Functions
	User-Defined Functions
	Java
	Writing Java UDF
	Creating a JAR File
	Registering the Java UDF
	Using a Java UDF in Pig Latin Code

	JavaScript
	Writing a JavaScript UDF
	Registering a JavaScript UDF with Pig
	Using a JavaScript UDF in Pig Latin
	Embedding Pig Latin Code

	Other Languages
	Jython
	Other Languages

	Other Libraries
	PiggyBank
	Apache DataFu

	Summary

	Chapter 12: Writing Eval Functions
	MapReduce and Pig Features
	Accessing the Distributed Cache
	Accessing Counters
	Reporting Progress
	Output Schema and Input Schema in UDF
	Examples of Output and Input Schemas

	Other EVAL Functions
	Algebraic
	Initial Data Processing
	Intermediate Data Processing
	Final Data Processing
	Algebraic Function Example
	Extend the EvalFunc Class
	Implement the Algebraic Interface
	Writing Classes
	Returning Classes

	Accumulator
	Filter Functions

	Summary

	Chapter 13: Writing Load and Store Functions
	Writing a Load Function
	Loading Metadata
	Improving Loader Performance
	Converting from bytearray
	Pushing Down the Predicate

	Writing a Store Function
	Writing Metadata
	Distributed Cache
	Handling Bad Records

	Accessing the Configuration
	Monitoring the UDF Runtime
	Summary

	Chapter 14: Troubleshooting
	Illustrate
	describe
	Dump
	Explain
	Plan Types
	Logical Plan
	Physical Plan
	MapReduce Plan
	Tez Plan

	Modes

	Unit Testing
	Error Types
	Counters
	Summary

	Chapter 15: Data Formats
	Compression
	Sequence File
	Parquet
	Parquet File Processing Using Apache Pig

	ORC
	Index
	ACID
	Predicate Pushdown
	Data Types
	Benefits

	Summary

	Chapter 16: Optimization
	Advanced Joins
	Small Files
	User-Defined Join Using the Distributed Cache
	Big Keys
	Sorted Data

	Best Practices
	Choose Your Required Fields Early
	Define the Appropriate Schema
	Filter Data
	Store Reusable Data
	Use the Algebraic Interface
	Use the Accumulator Interface
	Compress Intermediate Data
	Combine Small Inputs
	Prefer a Two-Way Join over Multiway Joins

	Better Execution Engine
	Parallelism
	Job Statistics
	Rules
	Partition Filter Optimizer
	Merge foreach
	Constant Calculator

	Cluster Optimization
	Disk Space
	Separate Setup for Zookeeper
	Scheduler
	Name Node Heap Size
	Other Memory Settings
	HBase and System Memory
	Container Memory

	Summary

	Chapter 17: Hadoop Ecosystem Tools
	Apache Zookeeper
	Terminology
	Applications
	Group Membership
	Configuration
	Lock Service

	Command-Line Interface
	stat
	ls
	create
	get
	set
	delete

	Four-Letter Commands
	ruok
	srvr
	stat
	wchs

	Measuring Time

	Cascading
	Defining a Source
	Fields
	Taps
	HFS and LFS

	Defining a Sink
	Pipes
	Types of Operations
	Function
	Filter
	Aggregator
	Buffer

	Apache Spark
	Core
	Configuration
	Sourcing
	Specifying a Sink
	Operations

	SQL
	Source
	Data-Processing Methods of Data Frames
	Running SQL Queries

	Apache Tez
	Presto
	Architecture
	Connectors
	Pushdown Operations

	Summary

	Appendix A:
Built-in Functions
	Appendix B
:Apache Pig in Apache Ambari
	Modifying Properties
	Service Check
	Installing Pig
	Pig Status
	Check All Available Services

	Summary

	Appendix C:
HBaseStorage and ORCStorage Options
	HBaseStorage
	Row-Based Conditions
	Timestamp-Based Conditions
	Other Conditions

	OrcStorage

	Index

