
Beginning
Carekit
Development

Develop CareKit Applications Using Swift
—
Christopher Baxter

www.allitebooks.com

http://www.allitebooks.org

 Beginning CareKit
Development

 Develop CareKit Applications
Using Swift

Christopher Baxter

www.allitebooks.com

http://www.allitebooks.org

Beginning CareKit Development

Christopher Baxter
North Yorkshire
United Kingdom

ISBN-13 (pbk): 978-1-4842-2225-6 ISBN-13 (electronic): 978-1-4842-2226-3
DOI 10.1007/978-1-4842-2226-3

Library of Congress Control Number: 2016959390

Copyright © 2016 by Christopher Baxter

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Aaron Black
Technical Reviewer: Idriss Juhoor
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jessica Vakili
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.allitebooks.org

 I’d like to dedicate this book to my gorgeous wife, Melanie,
and my amazing children, Jason and Holly, who mean everything to me.

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

 ■Chapter 1: Getting Started .. 1

 ■Chapter 2: CareKit Hello World ... 19

 ■Chapter 3: Care Plan Store ... 33

 ■Chapter 4: Building the Care Card .. 55

 ■Chapter 5: Symptom and Measurement Tracker 75

 ■Chapter 6: Insights ... 101

 ■Chapter 7: Connect ... 123

 ■Chapter 8: Extending CareKit Apps ... 143

 ■Chapter 9: Enhancing CareKit Apps .. 165

 ■Appendix: Resources .. 169

Index .. 173

v

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

 ■Chapter 1: Getting Started .. 1

Understanding the Core Elements of CareKit .. 1

Framework Organization ... 2
User Interface Modules... 3

Data Modules .. 9

Key Data Types ... 10

CareKit Framework Architecture ... 11
Presentation Layer .. 12

Data Layer .. 13

Anatomy of the Sample CareKit-Based Application 14
Application Design .. 15

Application Architecture ... 15

Best Practices ... 16
Privacy .. 16

Security .. 17

Accessibility .. 17

Summary ... 17

vii

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

 ■Chapter 2: CareKit Hello World ... 19

Create the Workspace and Project .. 19

Import CareKit and ResearchKit .. 21

Confi gure the Project with Data Protection ... 23

Hello World! ... 24

Creating a Care Card... 24

Adding the Care Plan Store ... 26

Adding an Intervention Activity ... 27

Introducing ZombieCare .. 31

Summary ... 31

 ■Chapter 3: Care Plan Store ... 33

OCKCarePlanStore ... 33

Storage ... 34

Initialization .. 34

Security .. 35

Accessing the Care Plan Store .. 35

Adding to the ZombieCare App ... 35

OCKCarePlanActivity ... 39

OCKCarePlanEvent .. 46

OCKCarePlanEventResult .. 47

Reading Data from the Store ... 47

Additional CareKit Methods .. 49

Synchronizing the Functions .. 50

OCKCarePlanStoreDelegate ... 51

Clearing the Store ... 53

Summary ... 54

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

 ■Chapter 4: Building the Care Card .. 55

Building and Presenting a Care Card ... 55
A Closer Look at the Care Card ... 58

Updating the Care Card ... 59

Customizing the Behavior of OCKCareCardViewController 60

Customizing the Care Card Appearance .. 63
Changing Activity Event Colors ... 63

Hide/Display Event Row Indicators ... 65

Changing the Mask Tint Color and Mask Images ... 65

Changing the Tab Icon .. 67

Custom Care Card Detail View .. 67

Summary ... 74

 ■Chapter 5: Symptom and Measurement Tracker 75

Build and Present a Symptom and Measurement Tracker 76
Reviewing What’s Been Presented ... 77

Implementing the ResearchKit Task ViewController 82
Refactoring the Assessment Activity Models .. 82

Presenting the Task View Controller ... 83

Setting the Symptom Tracker Delegate .. 84

Adding a ResearchKit Task ... 84

Handling Task Completion .. 86

Creating Assessment Activity Results ... 87

Adding HealthKit Capabilities ... 89

How to Retake Assessments .. 90

Updating the Symptom and Measurement Tracker 90

Integrating Results with HealthKit ... 91
About HealthKit Integration .. 91

Integrating HealthKit with the Example .. 92

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

x

Adding Support for HealthKit Data .. 93

Creating HealthKit Data .. 95

Implementing a Custom Feedback Controller 96
Defi ning a Custom Task .. 97

Adding the Custom Task ... 98

Summary ... 99

 ■Chapter 6: Insights ... 101

Insight Data Types ... 102

Creating Messages .. 103

Creating Charts ... 104

ZombieCare App Insights ... 106
ZombieCare Message Insights.. 106

ZombieCare Chart Insights ... 106

Creating Insights ... 107

Building and Presenting the Insights Scene .. 110

Creating a Document ... 114

Summary ... 121

 ■Chapter 7: Connect ... 123

Connect Data Types ... 123

Creating Contacts .. 124

Onboarding Contacts ... 124
Adding and Loading Contact Data .. 125

Adding the Onboarding Views ... 126

Add the Onboarding .. 128

Presenting the Connect ViewController ... 135

Sharing Insights with Connections .. 138

Summary ... 142

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xi

 ■Chapter 8: Extending CareKit Apps ... 143

HealthKit Primer .. 143

Defi ning HealthKit Requirements ... 144

Updating to the Insights Document .. 144

Fetching Additional HealthKit Data ... 146

Refactoring to Include the New Data .. 147

Today Extensions ... 149

Defi ning the Today Extension Requirement .. 150

Sharing Data with Today Extensions... 150

Loading and Saving Shared Data.. 151

Setting the Activity Status .. 152

Including App Group Capabilities .. 153

Apple Watch .. 155

Apple Watch App ... 155

About Apple Watch Connectivity ... 156

Adding Watch Connectivity to the iPhone App .. 157

Adding Watch Connectivity to the Watch App ... 157

Apple Watch Notifi cations ... 160

Summary ... 163

 ■Chapter 9: Enhancing CareKit Apps .. 165

App Design .. 165

ResearchKit ... 166

HealthKit .. 166

Notifi cations .. 167

Apple Watch .. 167

Motion Sensors ... 167

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xii

Asynchronous APIs .. 167

Networking and Remote Services ... 168

Summary ... 168

 ■Appendix: Resources .. 169

Apple Documentation .. 169

CareKit .. 169

ResearchKit .. 169

HealthKit ... 169

iOS Human Interface Guidelines ... 169

App Development Tutorial (Swift) ... 169

ViewController Programming Guide for iOS .. 170

Local and Remote Notifi cation Programming Guide ... 170

Core Motion Framework Reference .. 170

Concurrency Programming Guide ... 170

Networking with NSURLSession ... 170

Apple Watch Programming Guide ... 170

App Extension Programming Guide .. 170

Apple Open Source Repositories ... 170

CareKit Repository .. 170

ResearchKit Repository .. 171

Source Code Version control Systems ... 171

Github ... 171

Bitbucket .. 171

Package Managers .. 171

CocoaPods .. 171

Carthage ... 171

Swift Package Manager.. 171

Index .. 173

 About the Author

 Christopher Baxter has vast experience in creating mobile
apps, and has been the lead iOS engineer and architect
on more than 50 apps in a wide variety of industries.
With over 26 years experience in software development,
Chris has been working with iOS since its first
publication in 2008, as well as with the Android
platform and Windows Phone. He is also the founder
and director of a mobile consultancy based in the UK.
He can be reached via his consultancy business at
 www.catalystmobile.co .

xiii

http://www.catalystmobile.co/

 About the Technical Reviewer

 Idriss Juhoor is a world-travelling software engineer
from a small island in the middle of the Indian Ocean.
He’s worked for both small startups and large
companies in different parts of the globe and now
focuses on mobile healthcare. When he’s not writing
health apps, he’s connecting stuff to his phone using
solder and Bluetooth chips. You can find him on twitter:
@foiegras33.

xv

 Acknowledgments

 This book would not be possible without the existence of Apple and its new language
Swift, which inspired me to write it.

 I’d like to express my gratitude to Apress for publishing this book and to the
following editors, who have put a lot of energy into making this a great book: Aaron
Black, Jessica Vakii, and James Markham.

 I’d also like to thank Idriss Juhoor, who has been the technical reviewer for the
book. He is a keen advocate of applying good engineering practices to software projects
and is involved in the digital healthcare sector.

 Lastly, I’d like to thank my close friend Tom Gleeson who set the barrier for success
so high I had to raise my game and write a book.

xvii

Introduction

Welcome to Beginning CareKit Development. My goal is to provide a practical guide for
developers to create CareKit-based applications using the Swift language.

I’ve started with the basics, using a step-by-step approach to learning all aspects of
creating a CareKit iOS application that could serve as the basis for a digital patient Care
Plan. You’ll see the key modules and concepts of CareKit, starting off by installing and
building the open source framework.

Examples within demonstrate how to customize CareKit modules and integrate
them with other frameworks, such as ResearchKit and HealthKit, and how to extend the
application with Today extensions and an Apple Watch app.

By the end of the book you’ll to be able to fully utilize CareKit for your own personal
Care Plans. This is the future of patient care: health-tracking apps that put patients in
control of their day-to-day care.

xix

1

 CHAPTER 1

 Getting Started

 This chapter introduces you to Apple’s CareKit. After some background on CareKit’s base
classes and modules and the example app, we’ll then move on to gain an understanding
of how the framework is organized, the architecture of the CareKit framework, and
the anatomy and key modules provided within the framework, along with some best
practices for working with it.

 Understanding the Core Elements of CareKit
 CareKit was first introduced by Apple at a media event in March 2016. It’s an open source
framework that enables developers to build apps that “empower people to take on an
active role in their care.” iPhone apps that support this framework allow users to track
their ongoing condition, symptoms, and medication to get an overall wider view of their
health and share this with their care team or personal contacts. CareKit can support a
wide range of care plans—from managing chronic illnesses to recovery programs after
injury or surgery, and general care plans to improve health.

 The CareKit framework was released as open source on April 29, 2016, and is
accompanied by four example applications. The following apps are all available on the
App Store and showcase the core features of CareKit, demonstrating real-world digital
patient care:

• One Drop is for managing diabetes. It helps you track your food
and medication intake, as well as activity. There’s an Apple Watch
app, too.

• Start covers the monitoring, treatment, and medication of
depression, helping to diagnose mental health problems and
track progress of the treatments.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2226-3_1) contains supplementary material, which is available to
authorized users.

© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3_1

http://dx.doi.org/10.1007/978-1-4842-2226-3_1

CHAPTER 1 ■ GETTING STARTED

2

• Glow Nurture is a pregnancy tracker. It helps you track all the
important milestones within a pregnancy, such as due dates,
doctor’s appointments, and so on, and also allows you to enter
symptoms and measurements such as weight.

• Glow Baby is made by the same company as Glow Nurture, taking
up the mantle after the baby is born. It covers breastfeeding,
sleep, feeding, and diaper cycles.

 You can see that the four sample applications are very different from each other,
although they share the same underlying anatomy and structure that all CareKit apps
do. In some cases, the CareKit integration is just one part of the care plan, which might
include a broader set of features.

 CareKit applications can be customized beyond the basic appearance of the standard
module controllers provided within CareKit. We talk more about this in Chapter 4 .

 Apple has open sourced CareKit, and the source code comes with one example
application called OCKSample, which demonstrates all the key models within CareKit.

 Links to the source code, documentation, and other information can be found on
 www.apple.com/researchkit/ and www.carekit.org . The source code is hosted on
Github at https://github.com/carekit-apple .

 Fundamentally, CareKit manages various scenes for scheduling patient activities,
monitoring treatment, and providing feedback to the patient and their connections.
You can find an overview of these modules and the key data classes in the official
documentation. If you’ve already read the documentation, you may want to skip to the
“CareKit Framework Architecture” section.

 Framework Organization
 There are six modules in CareKit. Four relate to providing the user interface, and two are
for managing data.

 User interface modules:

• Care Card

• Symptom and Measurement Tracker

• Insights

• Connect

 Data modules:

• Care Plan Store

• Documents Exporter

 As you will see, generally most CareKit classes are easily recognizable as they are
prefixed with OCK . We can now take a closer look at each module.

http://dx.doi.org/10.1007/978-1-4842-2226-3_4
http://www.apple.com/researchkit/
http://www.carekit.org/
https://github.com/carekit-apple

CHAPTER 1 ■ GETTING STARTED

3

 User Interface Modules
 CareKit provides a number of ViewController-derived objects that take care of loading
the appropriate data and presenting it to the user. Each ViewController interacts with the
Care Plan Store and various key data objects that represent the care plan.

 Care Card
 The Care Card manages intervention activities that a user needs to perform as
part of the treatment for their condition. The Care Card is a scene managed by the
OCKCareCardViewController object and presents the intervention activities to the user.
Intervention activities are basically scheduled tasks that the user must perform as part of
their treatment—for example, taking medication three times a day.

 You can read more about the Care Card scene and what it’s used for in the official
documentation. Chazpter 4 covers creating, presenting, and interacting with the Care
Card view.

 Figure 1-1 shows a typical Care Card ViewController.

 Figure 1-1. Care Card ViewController

CHAPTER 1 ■ GETTING STARTED

4

 Figure 1-2. Care Card detail view

 Figure 1-2 shows the detail view for a specific intervention activity.

 Symptom and Measurement Tracker
 The Symptom and Measurement Tracker manages activities that are used to evaluate the
effectiveness of the treatments. There are two types of these activities:

• Subjective activities allow users to record symptoms like their
mood or pain scales. You as the developer can implement your
own tasks to record these symptoms or integrate with existing
tasks provided through ResearchKit.

• Objective activities are measurements that can be
entered manually or recorded from devices or even
HealthKit—for example, blood pressure. The Symptom
and Measurement Tracker scene is managed by the
OCKSymptomTrackerViewController.

CHAPTER 1 ■ GETTING STARTED

5

 More details on the Symptom and Measurement Tracker scene can be found on
the official documentation site too. I’ll be covering how to present and interact with the
scene using ResearchKit, and in Chapter 5 how to develop your own custom task views.
Figure 1-3 shows a typical Symptom and Measurement ViewController.

 Figure 1-3. A typical Symptom and Measurement ViewController

http://dx.doi.org/10.1007/978-1-4842-2226-3_5

CHAPTER 1 ■ GETTING STARTED

6

 Figure 1-4. An activity task view

 Figure 1-4 shows an activity task view prompting the user to choose a scaled value.

 Insights
 Insights display charts and messages to inform the user on the progress of their Care Plan.
The CareKit framework provides two types of views for this: chart views and messages.

 There is just one chart type provided by CareKit: a horizontal bar chart. This chart
enables a user to visualize the correlation between a treatment’s intervention activities
and the assessment activities.

 A good example of an insight might be to view a chart that compares the users daily
pain scales to the recorded medication they’ve taken. One could extend this to data
recorded in a survey from other patients too, potentially by integrating ResearchKit into
the application (more about this later).

CHAPTER 1 ■ GETTING STARTED

7

 Messages can also be displayed to the user to provide tips or alerts to help the
user stay on track with their health goals. Potentially this might also integrate in with a
broader solution that allows doctors or other members of the care team to communicate
information about treatment updates to the patient.

 The Insights scene is managed by the OCKInsightsViewController and you can read
a little more detail about this on the official documentation site. Later chapters cover the
implementation to present and interact with the Insight view.

 ■ Note Charts and messages are not restricted to CareKit data; any arbitrary data can be
displayed. In Figure 1-5 , there is a single message insight and a chart insight that compare
the values of Head Pain to the related Medication Adherence.

 Figure 1-5. Typical Insights dashboard

CHAPTER 1 ■ GETTING STARTED

8

 Connect
 Connect is a scene that helps a user communicate and share their progress and Insights
with their Care Team and personal connections such as family and friends. This module
displays a list of connections. The user can select a connection and choose to call or
email the selected person as well as send them a report or an attachment of photos or
documents.

 The Connect scene is managed by the OCKConnectViewController and again more
details can be found on the official document. Our focus will remain on how to present
and interact with the Connect scene and how to populate it with connection data.
Figure 1-6 displays details of a typical Care Team. which may include carers and also
friends and family.

 Figure 1-6. The Connect ViewController

CHAPTER 1 ■ GETTING STARTED

9

 When a specific connection is selected, the details view is presented as shown in
Figure 1-7 .

 Figure 1-7. A contact details view

 Data Modules
 CareKit provides a number of modules to handle all the data for your Care Plan.

 Care Plan Store
 CareKit has a persistent database that stores the data used by the Care Card and Symptom
and Measurement Tracker and Insights scenes.

 This store is not accessible directly, but only through the OCKPlanStore object.
CareKit will automatically load the store data when it is created and save any changes.

 Under the hood, CareKit uses CoreData backed with a NSSQLiteStoreType data store
which is secured using NSFileProtectionComplete.

 We’ll delve deeper into the workings of the Care Plan Store in Chapter 3 to see how to
use it and discuss its relation to various key data types.

http://dx.doi.org/10.1007/978-1-4842-2226-3_3

CHAPTER 1 ■ GETTING STARTED

10

 Documents Exporter
 An OCKDocument object is used to create reports with insight data. It can create reports as
PDF or HTML which include text, charts, and images, and these can then be shared with
connections.

 Key Data Types
 The key modules and objects just reviewed depend on a few key data objects for storing
and managing data.

 Intervention Activity
 The OCKCarePlanActivity object is used to represent an intervention activity. Typically,
multiple intervention activities make up a user’s Care Plan. These activities are defined
with the OCKCarePlanActivityTypeIntervention type and are stored in the Care Plan Store
to be used by the Care Card.

 Assessment Activity
 The OCKCarePlanActivity is also used to represent an assessment activity. Potentially,
there will be multiple assessment activities used for monitoring and evaluating the
patient treatment, and these will be displayed in the Symptom and Measurement Tracker.
These activities are defined with the OCKCarePlanActivityTypeAssessment type and
again are stored in the Care Plan Store.

 Intervention Event
 An intervention event is a scheduled task that a user is expected to perform in association
with the intervention activity. CareKit will generate one or more OCKCarePlanEvent
objects related to an active activity. For example, if there is an activity to take some
medication three times a day, then CareKit will generate three events for each day. Events
have a completion status.

 Assessment Event
 An assessment event is a scheduled task that a user is expected to perform in association
with an assessment activity. CareKit will generate one or more OCKCarePlanEvent
objects related to an active assessment activity. For example, if there is an activity to
monitor pain once a day, CareKit will generate one event for each day. Developers
will be responsible for creating an OCKCarePlanEventResult to record the result of an
assessment task.

CHAPTER 1 ■ GETTING STARTED

11

 Contact
 An OCKContact object represents a contact being displayed in the Contacts module.

 Chart
 A concrete OCKChart subclass is used to create the visual representation of the Care Plan
data in the Insights module.

 CareKit Framework Architecture
 Before expanding on details of how these CareKit modules fit within an application,
let’s have a quick overview of the overall architecture of the CareKit framework to better
understand the responsibilities and relationships between the core classes and objects.

 To begin with, we’ll see a logical design of the overall CareKit framework and then
drill down into some specifics on the presentation and data layers, as presented in
Figure 1-8 .

 Figure 1-8. Logical overview

CHAPTER 1 ■ GETTING STARTED

12

 Figure 1-9. Presentation layer

 If we take a high-level view of the layers within the framework, we can see this is
divided into two key layers that represent the classes and data types described earlier in
the chapter: the presentation layer and the data layer.

 It’s worth noting that CareKit has a dependency on the HealthKit framework too.
CareKit event results can be based on HealthKit Samples, Correlation, and Category
types.

 The data layer also has a dependency on CoreData, which it uses for persistence.

 Presentation Layer
 Figure 1-9 takes a look at the presentation layer in more detail.

 We can see that each of the main scenes in CareKit is represented by a
ViewController, and each ViewController is rendering data through a number of different
controls, including some customer headers and standard table views. The Care Plan and
Symptom and Measurement Tracker ViewControllers also share a week ViewController.
Here are a few pointers to take along the way:

• The OCKCareCardViewController and
OCKSymptomTrackerViewController both implement a single
PageController, which in this case is the OCKWeekViewController
within common controls.

CHAPTER 1 ■ GETTING STARTED

13

• Whereas OCKCareCardViewController and
OCKConnectViewController have their own respective detail
ViewControllers, the OCKSymptomTrackerViewController
provides the OCKSymptomTrackerViewControllerDelegate ,
which must be implemented by the developer. The
CareKit sample application OCKSample demonstrates
this by integrating with ResearchKit to present a single
step task using ORKQuestionStep, ORKOrderedTask, and
ORKTaskViewController. The host application in this case handles
the ORKTaskViewControllerDelegate when a task is completed.
You can, of course, implement and present your own assessment
tasks if required.

 We’ll see and implement these classes in detail when constructing our own sample
application in later chapters.

 Data Layer
 To support the presentation, we have the data layer, outlined in Figure 1-10 .

 Figure 1-10. Architecture data layer

CHAPTER 1 ■ GETTING STARTED

14

 You’ll see more details about the classes in the data layer in Chapter 3 when we
discuss the Care Plan Store in detail. For now, it’s sufficient to understand the basic
relationship between the key types:

• Developers do not access the CareKit database directly. All
interaction is done through the Care Plan Store, which provides
all the CRUD methods for activities, events, and results. More
specifically, it handles the following:

• Storing and deleting activities

• Setting an activity’s end date

• Reading activities and events

• Creating and updating events

• Classes named with the CD acronym represent the internal
CoreData–managed objects and relationships for activities,
events, and event results, that is, OCKCDCarePlanActivity,
OCKCDCarePlanEvent, and OCKCDCarePlanEventResult. The
Care Plan Store object implements all CoreData functionality and
is backed by a SQL Store with NSSQLiteStoreType type.

• The Care Plan Store integrates with HealthKit. In the scenario
where assessment results are stored in Healthkit, the Care
Plan Store can load results from HealthKit and initialize an
OCKCarePlanEventResult using HKSample objects. This is
implemented in a HealthKit category and uses the UUID stored
with the sample to avoid duplicates.

• Each activity has either a daily or a weekly schedule.

• Each activity can have one or more events, and each event has a
single result.

 Anatomy of the Sample CareKit-Based
Application
 The OCKSample application provided with CareKit provides a reference solution when
developing CareKit applications. It’s based on some hard-coded activities, insights, and
connections that use the default controllers to allow users to interact with them. Although
simple and a little contrived, it does demonstrate the basic behavior of a CareKit
application and includes some integration with ResearchKit and HealthKit.

 Readers should note, though, that a real-world application using CareKit is more
likely to have a broader set of features, some customization, and back-end support and be
related to a specific treatment or Care Plan.

 In this section we’ll delve into the design and architecture of the sample application,
which will give you some further practical insight into how to use and integrate CareKit.

http://dx.doi.org/10.1007/978-1-4842-2226-3_3

CHAPTER 1 ■ GETTING STARTED

15

 Application Design
 OCKSample is a tab-based application which uses a separate tab for each default CareKit
controller: Care Card tab, Symptom and Measurement tab, Insights tab, and Connect Tab.

 The application does not actually specify treatment for a particular illness or health
problem; rather, it presents a few hard-coded activities, assessment tasks, and contacts.

 Application Architecture
 The application consists of the following key components:

• In the presentation layer we have a UITabController called
RootViewController, which creates and instantiates the four main
CareKit controllers, placing each one in a NavigationController.

• The data layer consists of numerous concrete activity classes and
an extension protocol. There’s a factory class for creating insights
and a couple of NSOperations to handle asynchronous activity
event queries, and lastly a singleton class that provides a wrapper
to the Care Plan Store.

• We also have a SampleData class, which represents some sample
data.

 The other classes include some extensions, helpers, standard UIKit and Foundation
classes, and storyboard.

 Controllers
 RootViewController is a standard implementation of UITabViewController and adds
the default CareKit Controllers. It creates the CarePlanStoreManager singleton, which it
stores a reference property to and which is used to pass a reference to the Care Plan Store
to the controllers when instantiated. It also creates the SampleData object. Lastly, the
RootViewController also implements two delegates.

 The OCKSymptomTrackerViewControllerDelegate provides the
 didSelectRowWithAssessmentEvent(...) method, which, as its name indicates, is used
to handle the event when a user selects an assessment activity in the Symptom and
Measurement Tracker view. This delegate method is used to look up the activity type,
return the activity object from the sample data, and, if the assessment event has not been
completed, create a ResearchKit ORTaskViewController, which is pushed onto the stack.

 The main thing to notice here is that the activity itself is responsible for creating the
ResearchKit task using the task() method. This then also has a dependency on HealthKit
types.

 The RootViewController also conforms to the ORKTaskViewControllerDelegate
and implements the didFinishWithReason(...) method. The purpose of this
implementation is to handle the completion of an activity assessment as presented
earlier. In this case, the implementation will create an OCKCarePlanEventResult object.
The result is then converted to a HealthKit sample and stored in the HealthKit database
or, failing that, stored in the CareKit Care Plan Store.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ GETTING STARTED

16

 CareStorePlanManager
 The CareStorePlanManager is a singleton. It creates the CareKit Store (OCKPlanStore)
and handles its delegate events. It’s also responsible for building insights, based on
the data in the store. All interaction with the Care Plan Store is done through the
CareStorePlanManager.

 The CareStorePlanManager then implements the two methods from
OCKCarePlanStoreDelegate, which are used to update insights when an activity is
changed or updated in the stores database.

 Finally, the CareStorePlanManager defines its own CarePlanStoreManagerDelegate,
which is used to notify delegate handlers when insights have been updated. This
delegate is actually only handled by the RootViewController, which in turn updates the
InsightsViewController items property.

 This basically outlines the anatomy of the sample application. As you can see,
there is literally no UI custom coding required, as it’s all handled by the default CareKit
ViewControllers. The sample app simply coordinates the provisioning of some sample
activities and displays for the ViewControllers, handling a few updates, and leaves the
responsibility of UI updates to the Care Plan Store and the default controllers.

 Best Practices
 The CareKit framework uses a local data store but does not integrate with any remote
servers. Developers will need to write their own code to transmit and store data on a
remote server as part of a wider solution. You can choose to use any data solution you
like, but care should be taken to ensure data privacy and security.

 Privacy
 Patient privacy is a core principal within the healthcare industry. Medical apps must
ensure the highest level of security to maintain the privacy of one’s data. The following
principals should be followed:

• Have a privacy policy. Note this will be enforced for CareKit apps
that are posted on the App Store.

• Use touch ID or PIN access to control access to an app.

• Do not store data in iCloud.

CHAPTER 1 ■ GETTING STARTED

17

 Security
 Although privacy protects access to users’ data, there is also data security to consider.
Developers should do the following:

• Use the highest levels of file protection . On iOS this can be
achieved by using the iOS NSFileProtectionComplete or
NSFileProtectionCompleteUnlessOpen APIs. These ensure that
all stored data is encrypted automatically.

• Consider a cryptographic wrapper to protect data in transit . For
example, a Cryptographic Message Syntax (CMS) envelope can be
used to encrypt data before transmitting.

• Transmit data only over SSL .

 Accessibility
 Apple recommend that all CareKit applications should follow a minimum set of rules
when adding new user interface elements to the open source CareKit framework,
including the following:

• All UI elements should be reachable with VoiceOver enabled and
have proper accessibility labels.

• Add accessibility hints and traits to describe UI elements whose
purposes might be difficult to describe with just a label.

• Actions such as tapping, swiping, and other interaction with UI
elements should be possible to perform with VoiceOver enabled.

• When possible, follow the accessibility conventions and patterns
embraced by Apple’s own apps.

 Summary
 This chapter has outlined the core modules and data types that are used in CareKit
and that represent a Care Plan for a patient. You’ve gained a deeper understanding of
the architecture of the CareKit framework and its integrations with ResearchKit and
HealthKit. You’ve also seen that CareKit has its own CoreData store, which is held locally
on the device, noting that developers will need to build their own back-end server for a
broader solution. Lastly, I gave you an overview of the sample application provided with
the CareKit source demonstrating how the core components are used together. As with all
healthcare applications, data privacy and security are essential considerations, and care
should be taken to follow these best practices.

 In the next chapter we will work together setting up a simple Hello World app to
demonstrate how to integrate CareKit into your project.

19© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3_2

 CHAPTER 2

 CareKit Hello World

 In this chapter, we will be creating a simple Hello World app using CareKit. You will learn
how to integrate CareKit, alongside ResearchKit and HealthKit, into your Xcode project,
as well as configure the project with data protection.

 I will present the Care Card controller with one simple Hello World task using
ResearchKit to demonstrate that the integration is working. At the end of the chapter I’ll
introduce you to the fun sample application: a care plan for the Zombie Virus (as it’s fairly
current these days) called the ZombieCare app.

 Let’s get started and build the Hello World app.

 Create the Workspace and Project
 Prepare your project workspace by doing the following:

 1. In the folder of your choice (I use /Users/user_name/
Development/mobile), create a new folder called carebook
(that is, mkdir carebook).

 2. cd in the folder using the command cd /Users/user_name/
development/mobile/carebook , substituting your own
project root folder.

 3. Note that we will be using Xcode 7.3.1 and Swift 2.2. Open
Xcode and select File ➤ New ➤ Workspace. You will be
presented with a dialog. Change to your carebook project
folder and enter your workspace name as CareKitBook .

 These next steps demonstrate how to add a simple Xcode application to your
workspace:

 1. With the Xcode workspace open, click the + button from the
bottom left of the project navigator and select New Project.

 2. Now select the Single View Application template and click
Next, as demonstrated in Figure 2-1 .

CHAPTER 2 ■ CAREKIT HELLO WORLD

20

 3. Create a new HelloWorldCK project using the settings as
shown in the project properties dialog in Figure 2-2 .

 Figure 2-1. New project

CHAPTER 2 ■ CAREKIT HELLO WORLD

21

 Import CareKit and ResearchKit
 You will now add the CareKit open source framework along with ResearchKit and verify
that the application builds okay:

 1. Switch to the terminal app and cd into the /Users/user_name/
development/mobile/carebook folder you created earlier.

 2. Run the following command to download the latest stable
build of CareKit and its dependencies. This will create a
subfolder in your project folder called carekit.

 git clone -b stable --recurse-submodules
https://github.com/carekit-apple/carekit.git

 3. Drag and drop CareKit.xcodeproj from the newly cloned
carekit folder into your HelloWorkCK project, as depicted in
Figure 2-3 . Then repeat the same for ResearchKit.xcodeproj,
which is in the /carekit/dependency folder.

 Figure 2-2. Project settings

CHAPTER 2 ■ CAREKIT HELLO WORLD

22

 4. Now embed the framework libraries into your project as
dynamic frameworks. Select the top level HelloWorldCK
project in your workspace and ensure the General tab is
selected. Use the + button in the Embedded Binaries section
to add both the ResearchKit and CareKit iOS frameworks, as
demonstrated in Figure 2-4 .

 Figure 2-3. Adding CareKit and ResearchKit

CHAPTER 2 ■ CAREKIT HELLO WORLD

23

 Your HelloWorldCK app is now ready to build. Press Command+B to build the app.
The absence of build errors indicates successful integration of ResearchKit in the project.

 ■ Note You can also import ResearchKit and CareKit in your project using the
dependency manager such as Cocoapods or Carthage. It’s likely that there will also be
support in Swift3 with the Swift Package Manager, so keep a look out for that in the future.

 Configure the Project with Data Protection
 As mentioned earlier, privacy and data protection are both very important for healthcare
apps. We set up data protection for the app before adding any further code. By enabling
Data Protection, a level of security is added to all files stored on disk by the app in the
apps container. For more information, see Apple’s documentation on Data Protection.

 1. Select the Capabilities tab and open the section for Data
Protection.

 2. Turn the switch on for Data Protection, as shown in Figure 2-5 . At this
point you may find Xcode will prompt you to select your developer
account, as Data Protection entitlements need to be added to your
provisioning profile when building the application.

 Figure 2-4. Including libraries

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html

CHAPTER 2 ■ CAREKIT HELLO WORLD

24

 Hello World!
 At this point we’re now ready to add some basic CareKit functionality into your
application. Build and run your application in the simulator to ensure it’s all working by
pressing Command+R on the keyboard. For now you will simply see the default single
view–based application with a blank screen.

 Creating a Care Card
 In the next few steps we are going to create and present a simple Care Card with a single
intervention activity. To achieve this we need to do the following:

 1. Instantiate the app’s single Care Plan Store.

 2. Add our Hello World activity.

 3. Present the Care Card controller and view.

 Figure 2-5. Configuring Data Protection

CHAPTER 2 ■ CAREKIT HELLO WORLD

25

 First, we want to prepare our template project and default controller with a button in
order to have an action we can call:

 1. Open the project and select the Main.storyboard file in the
project navigator. You will see the storyboard with the default
View Controller Scene. Select the ViewController and from the
menu, click Editor ➤ Embed In ➤ Navigation Controller.

 2. Switch focus back to the ViewController and add a new
button, changing the text to Show Care Card . Align the button
using the auto layout constraints for Horizontal and Vertical
layout in Container, as in Figure 2-6 .

 3. Next we will add the button click event handler to the default
ViewController, as shown in Figure 2-7 . Show the Assistant
Editor by clicking the button on the toolbar with the two
concentric circles. Now, while holding down the Ctrl key, drag
across to the ViewController and drop the cursor within the
class implementation. Enter the method name showCareCard
into the dialog.

 Figure 2-6. Adding a button

CHAPTER 2 ■ CAREKIT HELLO WORLD

26

 Your handler is now ready. This will be where we will write our code to display the
Care Card.

 Adding the Care Plan Store
 Now that we’ve prepared our Hello World project, we can take the first step to adding
support for our Card Card into the application.

 In the ViewController.swift file, import the CareKit framework by adding the
following line at the top of the file:

 import CareKit

 Now add the following constant and init method to the ViewController.swift file:

 let store: OCKCarePlanStore
 required init?(coder aDecoder: NSCoder) {
 // 1.
 let fileManager = NSFileManager.defaultManager()
 guard let documentDirectory = fileManager.URLsForDirectory

(.DocumentDirectory, inDomains: .UserDomainMask).last else {
 fatalError("*** Error: Unable to get the document directory! ***")
 }

 Figure 2-7. Button handler

CHAPTER 2 ■ CAREKIT HELLO WORLD

27

 let storeURL = documentDirectory.URLByAppendingPathComponent
("HelloCareKitStore")
 //2.
 if !fileManager.fileExistsAtPath(storeURL.path!) {
 try! fileManager.createDirectoryAtURL(storeURL,

withIntermediateDirectories: true, attributes: nil)
 }
 //3.
 store = OCKCarePlanStore(persistenceDirectoryURL: storeURL)
 super.init(coder: aDecoder)
 }

 Here we declare a new constant to hold our Care Plan Store. You only need one Care
Plan Store per app, so that’s why it is a constant as it should be long-lived through the
lifecycle of the app.

 We then add an initializer to our controller, which does the following:

 1. Generates a URL to a directory inside the apps document
directory using the NSFileManager.

 2. Verifies that the directory exists and if not creates it.

 3. Instantiates the Care Plan Store and assigns it to the constant
variable for later use. Note at this point you could assign
the store’s delegate too, so you can reposed to the changes
in the store, but we’ll come back to that later in our sample
application.

 Note that for this simple, contrived example, there is only some rudimentary error
checking, but in a real-world application, better care should be taken to handle errors
properly.

 When the store is instantiated, it will automatically load any existing activities and
save any further changes you make.

 Adding an Intervention Activity
 In the next step we will add our Hello World activity. This activity will be an intervention
activity, scheduled three times a day. It tasks the user to say Hello and provides some
advice on the activity details.

 Add the following createActivity() function to the ViewController.swift file:

 func createActivity() {
 //1.
 let MyMedicationIdentifier = "HelloActivity"
 //2.
 store.activityForIdentifier(MyMedicationIdentifier) { (success,

foundActivity, error) in

CHAPTER 2 ■ CAREKIT HELLO WORLD

28

 //3.
 guard success else {
 // perform real error handling here.
 fatalError("*** An error occurred \(error?.

localizedDescription) ***")
 }
 if let activity = foundActivity {
 //activity already exists
 print("Activity found - \(activity.identifier)")
 }
 else {
 // 4.
 let startDay = NSDateComponents(year: 2016, month: 3, day: 15)
 let thriceADay = OCKCareSchedule.

dailyScheduleWithStartDate
(startDay, occurrencesPerDay: 3)

 //5.
 let medication = OCKCarePlanActivity(
 identifier: MyMedicationIdentifier,
 groupIdentifier: nil,
 type: .Intervention,
 title: "Hello World",
 text: "Say aloud",
 tintColor: nil,
 instructions: "Say Hello to the world 3 times a day.

This should make you feel better. It is not recommended
to drive with this medication. For any severe side
effects, please contact your physician.",

 imageURL: nil,
 schedule: thriceADay,
 resultResettable: true,
 userInfo:nil)
 //6.
 self.store.addActivity(medication, completion: {
 (success, error) in guard success else {
 // perform real error handling here.
 fatalError("*** An error occurred \(error?.

localizedDescription) ***")
 }
 })
 }
 }
 }

CHAPTER 2 ■ CAREKIT HELLO WORLD

29

 The following numbered points are an explanation of the createActivity()
function. The numbered points are displayed as comments in the code:

 1. Declare a constant for activity identifier, as each activity has a
unique identifier.

 2. Check to see if the activity already exists in the store using the
identifier. If not, then we can add the activity.

 3. We place a guard statement around the success value
returned to ensure that the call was successful.

 4. At this point we can create the activity. Start by creating a
schedule with an instance of the OCKCareSchedule class.
Here we are creating a daily schedule for three occurrences
per day. You should read up on the API for further options on
this, including weekly schedules and schedules that skip days.

 5. Finally we create an instance of an activity with
OCKCarePlanActivity, passing it the schedule and identifier
and setting a few other parameters, including the title, text,
and some instructions.

 6. The HelloWorld activity is then added to the store and we
check that this is successful in the completion block.

 Note that the activity object is immutable, meaning that its properties cannot be
changed once it’s been created. We set its activity type to .intervention. This ensures it
appears in the Care Card. The properties are mandatory, including a schedule, title, text,
and the instructions.

 With this activity we should see that the schedule sets three circles to be filled in each
day. The title and text fields will be displayed on the Care Card, and the instructions will
appear in the activities detail view. The other parameters are optional. We’ll go into more
detail in the sample app later.

 We then call the createActivity() method from within the ViewDidLoad:

 override func viewDidLoad() {
 super.viewDidLoad()
 //Add a single hello world activity to the store
 createActivity()
 }

 Finally, we can present the activity to the user using the Care Card ViewController as
follows:

 @IBAction func showCareCard(sender: AnyObject) {
 let careCardViewController = OCKCareCardViewController(carePlanSto
re: store)
 // presenting the view controller modally
 self.navigationController?.pushViewController(careCardViewController,

animated: true)
 }
 }

CHAPTER 2 ■ CAREKIT HELLO WORLD

30

 Figure 2-8. Hello World Care Card

 In the button handler, we first instantiate the OCKCareCardViewController
controller, making sure we pass the Care Plan Store to it and then push it onto the
navigation controller.

 From this point on, CareKit automatically updates the Care Card whenever there are
changes to the Care Plan Store.

 Go ahead and run the application in the simulator using Command+R. Tap on the
button to show the Care Card, and you should see the screens, as shown in Figure 2-8 .
(Note, we’ve already tapped on two circles to demonstrate filling up the circles and heart.)

CHAPTER 2 ■ CAREKIT HELLO WORLD

31

 Introducing ZombieCare
 Moving forward from this chapter we will be developing on an app named ZombieCare
and a Care Plan for a fictitious condition called zombification. This will keep things
fun and interesting while demonstrating all the key aspects of a Care Plan, the CareKit
framework modules, and integration with ResearchKit and HealthKit.

 As we all know, a cure for zombification is theoretically impossible, as zombies are
already dead, but that won't stop us trying. The CarePlan will include certain treatments
and ways to assess the severity of the virus.

 This sample app will be developed as close to a real production style app as possible,
so all things will be considered including architecture, software patterns, error checking,
and more.

 You can find the base ZombieCare project on the Github repository. Download and
open the project from within the Chapter 3 folder.

 Summary
 In this chapter you learned how to create a basic application and integrate CareKit along
with ResearchKit frameworks into the app. You were introduced to the Care Plan Store
and a single activity, which was presented in a Care Card. You also learned a little about
the ZombieCare project we will be building on for the rest of the book.

 In the next chapter we’ll be taking a look at the Care Plan Store in more detail. We’ll
introduce a Store Management class and look at how to manage activities and events and
respond to changes in the store.

http://dx.doi.org/10.1007/978-1-4842-2226-3_3

33© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3_3

 CHAPTER 3

 Care Plan Store

 In this chapter we will get an in-depth look at the Care Plan Store. You will learn about
the Care Plan Store and its delegates and the key data types, how data is stored and read,
and how the Care Plan Store responds to changes, as well as some housekeeping such
as clearing the store. This chapter also introduces a set of classes that we will use in the
ZombieCare app for handling the Care Plan Store and its data.

 This is a long and detailed chapter, so allow some time to read and absorb its
contents.

 OCKCarePlanStore
 CareKit provides us with the OCKCarePlanStore object which is used to store a patient’s
treatment plan in what we refer to as the Care Plan Store. When activities are added to the
store they are automatically saved, and the store will record the progress as treatment and
assessment events are completed by the patient.

 There are a number of options open to developers on how activities are created.
For instance, they can be simply hard-coded into an app, like in the CareKit OCKSample
application. They might be generated as a result of a survey taken by the user, or simply
stored as internal resources, such as a JSON file. ResearchKit might be an option to survey
the user and depending on the results, a set of activities could be created. Depending on
your resources and app design, it may be that you download your patient’s records or
their treatment plan from a server and parse the data into activities on the app at runtime.

 Once added to the store, the activities can only have their endDate updated or
removed, and at runtime these changes will be reflected in the provided Care Card and
Symptom and Measurement Tracker ViewControllers as they observe the Care Plan Store
for changes by implementing the OCKCarePlanStoreDelegate. Any part of your app may
also observe events from the Care Plan Store; I’ll demonstrate this later in the chapter.

CHAPTER 3 ■ CARE PLAN STORE

34

 Storage
 The Care Plan Store uses CoreData to create a SQLite database located at the URL
specified in the initializer of the OCKPlanStore object. This is how the URL is created:

 let searchPaths = NSSearchPathForDirectoriesInDomains
(.ApplicationSupportDirectory, .UserDomainMask, true)
 let applicationSupportPath = searchPaths[0]
 let persistenceDirectoryURL = NSURL(fileURLWithPath: applicationSupportPath)
 if !NSFileManager.defaultManager().fileExistsAtPath(persistenceDirectoryURL.
absoluteString, isDirectory: nil) {
 try! NSFileManager.defaultManager().createDirectoryAtURL

(persistenceDirectoryURL, withIntermediateDirectories: true,
attributes: nil)

 }

 You start by specifying the persistent directory URL using the application support
directory. Then check if the directory exists, and if not, use the NSFileManager’s
 createDirectoryURL() method passing the new persistenceDirectoryURL you created in
the first step.

 Initialization
 To initialize the Care Plan Store, you instantiate an instance passing the
persistenceDirectoryURL to the initializer:

 let store = OCKCarePlanStore(persistenceDirectoryURL:
persistenceDirectoryURL)

 The OCKPlanStore initializer will create the CoreData Managed Object Context and
related CoreData objects such as the NSPersistentStoreCoordinator.

 When creating the Care Plan Store instance, developers must create it on the main
thread of the application, but its methods can be called from any thread within the
app. Internally the Care Plan Store initializes the NSManagedObject context using the
NSPrivateQueueConcurrencyType.

 After initializing the Care Plan Store, all method calls work to a FIFO background
queue using the NSManagedObjectContext’s performBlock:^ method. As soon as the
work is done, a completion handler is called on an anonymous background thread with
the results. Users of the API should dispatch the results back onto the main thread. We’ll
demonstrate this in the ZombieCare app.

CHAPTER 3 ■ CARE PLAN STORE

35

 Security
 When the Care Plan Store is initialized, and it creates the database, it is encrypted
using standard file encryption by way of NSFileProtectionComplete as an option on the
NSPersistentStoreCoordinator. This prevents data from being read or written to when a
device is locked or booting.

 This is all handled internally by the Care Plan Store, and though it’s useful to
understand, you don’t have to do anything directly yourself.

 Accessing the Care Plan Store
 When working with CareKit data you don’t access data directly. Instead the Care Plan
Store provides methods to add or remove activities to the store. Once an activity has been
added, only the endDate of an activity can be changed using the setEndDate:forActivity:c
ompletion method.

 You can query the store to obtain the following:

• Get all the activities in the store

• Get all the activities of a given type (intervention or assessment)
in the store

• Get the activity for a given identifier

• Get activities for a given group identifier

• Get the events of a type (intervention or assessment) for a given
date

• Get the events for a given activity for a given date

• Enumerate all the events for a given activity for a range of dates

• Enumerate the completion status for a given type (intervention or
assessment) for a range of dates

 Now that you have an understanding of the Care Plan Store’s role and a little insight
to its inner workings, we’ll work our way through a practical example that we’ll add to the
ZombieCare app, and we’ll explain as we go along the different data types used within
CareKit.

 Adding to the ZombieCare App
 Let’s get started by opening the ZombieCare workspace and project from Chapter3_start\
ZombieCare.xcworkspace.

 This project already has CareKit and ResearchKit integrated using the same
approach we took in Chapter 2 with the Hello World app. The ZombieCare app is based
on the single view app template. In this chapter our goal will be to work through the
creation of a set of activities and add them to the Care Plan Store. We’re going to make
this as real world as possible, because after all, we know there are Zombies about and
they certainly need some treatment.

http://dx.doi.org/10.1007/978-1-4842-2226-3_2

CHAPTER 3 ■ CARE PLAN STORE

36

 The concept behind our app is that we’ll be loading a Care Plan from a mock remote
resource and so emulate what we might do in a production application. In this chapter
we have provided the mock Care Plan service in such a way that you can extend it with
additional real services if you want to. In theory the patient using the app could feed back
their insights to the care team and receive an updated Care Plan back through the service
with additional messages, activities, and amendments to the Care Plan if needed.

 The Care Plan will therefore be updatable and include everything we need to create
scheduled activities, connections, messages, and so on, which we will implement in
stages.

 Setup
 In the project folder, look for the file careplan.json. This file represents the ZombieCare
plan in JSON format. We’ve included this file in the resources of the project and will
load it using the MockService services. This JSON could just as easily be returned from
a remote server in response to an HTTP request. In the file you will find some general
fields relating to the Care Plan and a number of intervention and assessment activities.
I’ll explain all these fields in more detail as we load and map the data into the Care Plan
Store.

 You will also find a few other classes already provided that are used for loading
the Care Plan and converting the JSON into some local objects that can be used by the
application. This section offers a brief explanation of the classes.

 The ZCService file includes the ZCServiceType and a protocol with a single method
called request, which takes some generic parameters including the request resource and
response. The ZCAPIResource is a request configuration that can include fields such
as paths, request headers, parameters, and so on. You can customize this further if you
need to have additional fields. For our mock service, we just require the paths field. The
ZCAPIResponse is another simple protocol that defines the required initializer with the
init?(date: NSData?).

 The ZCServiceProvider file contains a helper method to allow us to load a specific
service. As mentioned, we have provided just one mock service. We can request from the
provider a new service of type .Mock, which will return a new instance of MockService.
The MockService conforms to the ZCService protocol and therefore provides an
implementation of the request method that loads the careplan.json and returns this in
the completion handler. By following this pattern, making use of generics and protocols,
you can implement your own ZCServiceType, which might, for example, use some
networking code to load the Care Plan from a remote server.

 Additional Files
 There are two additional files you need to know about that we will extend shortly to
support the creation of CareKit activities.

 Open Activity.swift. You will see we have defined an activity protocol and the
beginnings of our ZCActivity struct which defines an activity . The ZCActivity struct
provides an initializer that parses the activity-specific JSON into local immutable
properties.

CHAPTER 3 ■ CARE PLAN STORE

37

 Now open CarePlan.swift. The first thing to note is that the CarePlan struct conforms
to the ZCAPIResponse protocol. The initializer will deserialize the JSON file, parse the
JSON, and instantiate all the plans properties and activities.

 Implementation
 Now that you understand the core classes and implementation for loading our Care
Plan, let’s implement them. Open ViewController.swift and add the following code to the
 viewdidload() method:

 let service = newZCService(.Mock)
 let mockResource = MockResource(path: "careplan", method: nil, headers: nil,
parameters: nil)
 service.request(mockResource) { (response : CarePlan?, error) in
 if error == nil {
 print("\(response!.title) loaded.")
 }
 return
 }

 We start by creating a new service of type .Mock by using our ZCService helper
method newZCService. Then create the MockResource specifying the careplan in the
path. Recall that careplan is the name of our bundled careplan.json file. You can ignore
the other parameters as our MockService doesn’t use them. Finally we can call the mock
service request() method.

 Build the project and check that it compiles using Command+B. Then Command+R
to run the app in the simulator. If all goes well, you should see the app load after the
service request method is called. If it has successfully loaded the Care Plan from the
JSON, it will print out in the Debug window the title of the ZombieCare Plan. You may
want to play around with this. Try and place a breakpoint in the completion handler and
inspect the response in the debugger. You will find it’s an instance of CarePlan, and all its
properties have been set including an array of ZCActivities.

 You will note at this stage we’ve not used CareKit at all. All we’ve done is provide a
way to load a Care Plan from another resource and map this to some local objects that
represent our application business model. Next we will extend these objects to create
CareKit activities and load them into the Care Plan Store while providing a more detailed
explanation of the CareKit activity, schedule, and event data types.

 In this next step we’re going to add some support to create CareKit activities. Firstly
we’ll extend the Activity protocol to specify a createActivity() method and then update
ZCActivity to conform to the protocol.

 Open Activity.swift from the project navigator. Replace the existing Activity protocol
with the following code:

 protocol Activity {
 var activityType: ActivityType { get set}
 func carePlanActivity() -> OCKCarePlanActivity
 }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ CARE PLAN STORE

38

 Now add the following method to the ZCActivity struct below the initializer:

 func carePlanActivity() -> OCKCarePlanActivity {

 //creates a schedule based on the internal values for start and end dates
 let startDateComponents = NSDateComponents(date: self.startDate, calendar:
NSCalendar(calendarIdentifier: NSCalendarIdentifierGregorian)!)

 let activitySchedule: OCKCareSchedule!

 switch self.scheduleType {
 case .Weekly :
 activitySchedule = OCKCareSchedule.weeklyScheduleWithStartDate(startDate

Components, occurrencesOnEachDay: self.schedule)

 case .Daily:
 activitySchedule = OCKCareSchedule.dailyScheduleWithStartDate(startDate

Components, occurrencesPerDay: self.schedule[0].unsignedIntegerValue)
 }

 //creates and returns the approprate CareKit OCKCarePlanActivity
 switch activityType {
 case .Intervention:
 let activity = OCKCarePlanActivity.interventionWithIdentifier(
 identifier,
 groupIdentifier: nil,
 title: title,
 text: text,
 tintColor: UIColor.greenColor(),
 instructions: instructions,
 imageURL: nil,
 schedule: activitySchedule,
 userInfo: nil)

 return activity
 case .Assessment:
 let activity = OCKCarePlanActivity.assessmentWithIdentifier(
 identifier,
 groupIdentifier: nil,
 title: title,
 text: text,
 tintColor: UIColor.greenColor(),
 resultResettable: true,
 schedule: activitySchedule,
 userInfo: nil)

 return activity
 }
 }

CHAPTER 3 ■ CARE PLAN STORE

39

 The carePlanActivity() function first creates a CareKit OCKCareSchedule instance
using the activities’ properties. Note that it uses the Gregorian calendar. It creates an
instance of either an intervention or assessment OCKCarePlanActivity, depending on the
activity type. The new OCKCarePlanActivity instance is then returned by the function.

 Check that the project compiles okay by pressing Command+B.
 Let’s now take a closer look at the OCKCarePlanActivity and OCKCareSchedule

classes in more detail to better understand what they do and how they work.

 OCKCarePlanActivity
 An instance of the OCKCarePlanActivity class represents a task that the user/patient
must complete. Each activity must have a unique identifier, and it has a schedule
(OCKCareSchedule) also created by the developer. The schedule determines the number
of occurrences of this task for a given day, and each occurrence will be represented by an
instance of the OCKPlanEvent, which you’ll learn a little more about later.

 There are two types of activities defined by the OCKCarePlanActivityType
enumeration in CareKit:

• Intervention activities are defined by the
OCKCarePlanActivityTypeIntervention enum value. These
activities are used in the Care Card.

• Assessment activities are defined by the
OCKCarePlanActivityTypeAssessment enum value. These
activities are used by the Symptoms and Measurement Tracker.

 As you’ve seen, developers are responsible for creating activities and their
schedules, and we’ll see shortly how we can add them to the Care Plan Store using the
 OCKPlanStore.addActivity() method. But first let’s just be clear on the difference
between the two types.

 Intervention Activities and Events
 Intervention activities are for asking the user to do a task related to their treatment. This
can be anything you like—for example, taking medication, doing some exercises, or
drinking water. These events are displayed in the Care Card.

 You’ll see later in our example how an intervention activity is presented to the user.
For now, all you need to know is that once added to the Care Plan Store, the Care Card
ViewController will interact with the Care Plan Store (OCKPlanStore instance) to toggle
the state of an activities events. The Activity object will report the completion state of the
activity to the Care Plan.

 Assessment Activities and Events
 Assessment activities are for tracking symptoms and measuring results. They look
very similar to intervention activities, but there are two key differences. First, they are
resettable. This specifies whether the user is allowed to retake the assessment. Although

CHAPTER 3 ■ CARE PLAN STORE

40

there is no visual representation of this in the Symptom and Measurement Tracker
view, the developer can still decide the behavior if a user wants to redo a completed
assessment.

 Second, though the intervention activity event just gets its state set to completed or
not completed via the Care Card ViewController, with assessment activities the developer
is responsible for creating their own custom task or, as mentioned briefly earlier, using
ResearchKit tasks.

 Once added to the Care Plan Store, the store will lazily generate OCKPlanEvent
objects on demand and based on the activity’s schedule.

 OCKCareSchedule
 The OCKCareSchedule specifies the start and end data as well as the recurrence pattern
of an activity’s schedule. Each activity must have a schedule, and this is based on the
Gregorian calendar.

 Schedule Types

 CareKit provides two predefined schedule types, OCKCareScheduleTypeDaily
and OCKCareScheduledTypeWeekly, both of which have supporting initializers
in the OCKCareSchedule class implementation. As the names imply, the
OCKCareScheduleTypeDaily provides an implementation that returns the number
of occurrences of an activity per day, and OCKCareScheduleTypeWeekly provides an
implementation that returns the number of occurrences of activity for each day in a week.

 There are two classes provided for creating a schedule:

• OCKCareDailySchedule

• OCKCareWeeklySchedule

 Each class provides two static class functions to create a schedule.

 A Daily Schedule

 OCKCareDailySchedule defines a schedule that has the same number of occurrences
each day as follows:

 let startDate = NSDateComponents(year: 2016, month: 01, day: 01)
 OCKCareSchedule.dailyScheduleWithStartDate(startDay, occurrencesPerDay: 3)

 In the preceding example you can see that we create a schedule starting on first day
of January 2016. The schedule will create three occurrences of the task per day, or:

 let startDate = NSDateComponents(year: 2016, month: 01, day: 01)
 OCKCareSchedule.dailyScheduleWithStartDate(startDay, occurrencesPerDay: 1,
daysToSkip: 0, endDate: nil)

CHAPTER 3 ■ CARE PLAN STORE

41

 The preceding code is a slight variance on the first method, as it has the additional
parameters daysToSkip and endDate. daysToSkip means the number of days between two
active days in this period to skip (that is, when no tasks appear). endDate simply means
the last day of this schedule. If no endDate is specified, then the schedule is ongoing.

 A Weekly Schedule

 Alternatively, you might want to create a weekly calendar as follows.
OCKCareWeeklySchedule defines a schedule which repeats every week:

 let startDate = NSDateComponents(year: 2016, month: 01, day: 01)
 let schedule = OCKCareSchedule.weeklyScheduleWithStartDate(startDate,
occurrencesOnEachDay: [2, 1, 2, 2, 2, 2, 2])

 In the preceding example, the schedule again starts on January 1, 2016. But this
time we’ve specified an array of 7 Ints. Each Int maps to a day of the week running from
Sunday to Saturday. The value of the Int represents the number of occurrences the task
will be scheduled for on its day. In this case, we can see all days have two tasks except
Monday, which has one.

 Custom Schedules

 Developers can also create their own custom schedules.
 A third schedule type, OCKCareScheduleTypeOther can be used if you want to

subclass the OCKCareSchedule class to support any other type of schedule. For example,
you may need a monthly schedule or something more granular like an hourly schedule.

 Unfortunately, at the time of writing the CareKit framework has a problem when
used with the Swift language (this is not an issue with Objective-C projects) in that you
cannot inherit from the OCKCareSchedule class as documented, as the initializer is
private. Expect this to be updated in the next point release of the framework. The issues
have been acknowledged by the open source development team.

 Now that you have a more comprehensive understanding of our activities and their
related schedules, we’ll complete our implementation in the ZombieCare app and add
them to the Care Plan Store.

 Adding Activities to the ZombieCare App

 First we need to update the CarePlan class so it can retrieve a list of
OCKCarePlanActivities by calling the carePlanActivity() method on each ZCActivity
we added earlier. Add the following two methods to CarePlan.swift class file after the
 init() method:

 func interventionActivities(completion:(activities: [OCKCarePlanActivity])->
Void) {
 let interventionActivities = activities.filter(){$0.activityType ==

.Intervention}

CHAPTER 3 ■ CARE PLAN STORE

42

 let ckinterventionActivities = interventionActivities.map({
 $0.carePlanActivity()
 })
 completion(activities: ckinterventionActivities)
 }

 This preceding function first filters and then returns an array of CareKit intervention
OCKCarePlanActivity objects by using the filter() and map() and swift functions. The
conversion is handled by the carePlanActivity() method we implemented earlier on
the ZCActivity class:

 func assessmentActivities(completion:(activities:
[OCKCarePlanActivity])-> Void) {

 let assessmentActivities = activities.filter(){$0.activityType ==
.Assessment}

 let ckassessmentActivities = assessmentActivities.map({
 $0.carePlanActivity()
 })
 completion(activities: ckassessmentActivities)
 }

 As you can see, we do the same for assessment activities. We will actually simplify
this later by having a single method to return all CareKit activities, which excludes the
filter, but at this stage it seems convenient to be able to retrieve separate lists.

 Finally, we need a class that will provide the glue between the CarePlan and
ZCActivities we created earlier and for instantiating the CareKit Care Plan Store.

 Adding the Care Plan Store Manager

 In your ZombieCare project, select the ZombieCare group in the project navigator
and then click File ➤ New. Select the iOS Source Swift file and give it the name
ZCCarePlanStoreManager. Now copy the following code into the file:

 import CareKit
 class ZCCarePlanStoreManager : NSObject {
 // MARK: Properties
 let store: OCKCarePlanStore
 let carePlan : CarePlan!

 init(carePlan:CarePlan) {
 // Determine the file URL for the store.
 let searchPaths = NSSearchPathForDirectoriesInDomains

(.ApplicationSupportDirectory, .UserDomainMask, true)
 let applicationSupportPath = searchPaths[0]
 let persistenceDirectoryURL = NSURL(fileURLWithPath:

applicationSupportPath)

CHAPTER 3 ■ CARE PLAN STORE

43

 if !NSFileManager.defaultManager().fileExistsAtPath(persistenceDirec
toryURL.absoluteString, isDirectory: nil) {

 try! NSFileManager.defaultManager().createDirectoryAtURL
(persistenceDirectoryURL, withIntermediateDirectories: true,
attributes: nil)

 }

 // Create the store.
 store = OCKCarePlanStore(persistenceDirectoryURL:

persistenceDirectoryURL)
 self.carePlan = carePlan
 super.init()
 }
 }

 The ZCCarePlanStoreManager imports the CareKit framework. It has two key
properties: a reference to the OKCarePlanStore and an instance of our CarePlan struct.

 Earlier, I described briefly how the Care Plan Store is initialized, and we’ve now
implemented this in the ZCCarePlanStoreManager initializer, providing the directory URL
as expected. We also set the carePlan property passed as an instance to the initializer.
Now add the following private updateStore() function after the initializer :

 private func updateStore()-> Void {
 carePlan.interventionActivities { (activities) in
 for activity in activities {
 self.store.addActivity(activity) { success, error in
 if !success {
 print(error?.localizedDescription)
 }
 else {
 print("Intervention activity \(activity.

identifier) added to careplan store")
 }
 }
 }
 }

 carePlan.assessmentActivities { (activities) in
 for activity in activities {
 self.store.addActivity(activity) { success, error in
 if !success {
 print(error?.localizedDescription)
 }

CHAPTER 3 ■ CARE PLAN STORE

44

 else {
 print("Assessment activity \(activity.identifier)

added to careplan store")
 }
 }
 }
 }
 }

 In this method we retrieve the list of activities that are now converted to our
OCKCarePlanActivity objects, and we add each one individually into the Care Plan Store.

 Next, call this method in the initializer. Place the following code after the call to
 super.init() in the classes initializer:

 self.updateStore()

 Finally, you need to create am instance of our ZCCarePlanStoreManager. Open
the ViewController.swift file and place the following line after the print statement in the
service completion handler:

 _ = ZCCarePlanStoreManager(carePlan: response!)

 Build and run the project by pressing Command+R. When the application now
runs, it loads and parses our ZombieCare Plan. On success it creates an instance of
ZCCarePlanStoreManager passing it the Care Plan. In the debugger, you should see some
print statements when adding the activities to the CareKit Care Plan Store.

 Congratulations! You’ve now populated your CareKit database. At this stage you
might think this is complete, but there’s one more thing we need to take care of. You may
recall that an activity has a unique identifier field and that you cannot add an activity to
the store with the same identifier as one already added. Also we can only actually change
the endDate on an activity.

 ■ Note At the time of writing there is an issue with the addActivity() method in CareKit.
The success parameter in the completion handler is not returning the correct response,
and therefore it allows us to add an activity even though one exists with the same identifier.
When this is corrected in 1.0.1 and you try running the app again, you will find the error is
reported. For now, take care how you handle the success value when the method completes.

 We will assume that the success code returned in addActivity() will be solved
shortly and provide a solution to handle this situation where we want to update an
activity. We’ll solve the problem by querying the Care Plan Store first, and if an activity
exists, we’ll remove it and add the new one as we can’t update it. We’ll also optimize our
routine by adding the method to list all activities from our CarePlan.

CHAPTER 3 ■ CARE PLAN STORE

45

 Add the following method to the CarePlan above the other filter methods:

 func allActivities(completion:(activities: [OCKCarePlanActivity])-> Void) {
 let ckallActivities = activities.map({
 $0.carePlanActivity()
 })
 completion(activities: ckallActivities)
 }

 You can see this is bit simpler, as we’ve removed the filter method, and it
should now perform a little faster. Replace the updateStore() method in the
ZCCarePlanStoreManager class with this updated version and the new private method to
add the activity:

 private func updateStore()-> Void {
 carePlan.allActivities { (activities) in
 for newactivity in activities {
 self.store.activityForIdentifier(newactivity.identifier,

completion: { (success, activity, error) in
 if success && activity != nil {
 self.store.removeActivity(activity!, completion: {

(success, error) in
 if success {
 self.addActivityToStore(newactivity)
 }
 })
 }
 else {
 self.addActivityToStore(newactivity)
 }
 })
 }
 }
 }

 private func addActivityToStore(activity: OCKCarePlanActivity) {
 self.store.addActivity(activity) { success, error in
 if !success {
 print(error?.localizedDescription)
 }
 else {
 print("Activity \(activity.identifier) added to careplan

store")
 }
 }
 }

CHAPTER 3 ■ CARE PLAN STORE

46

 We’ve now handled the scenario where we might be trying to add an existing
activity. Be careful, though, when deleting an activity from the store like this—all related
events and event results past and present will also be deleted. A better approach might
be to set the endDate on the existing activity, leave it in the store, and then add the new
activity with a new identifier. You’ll want to develop your own strategy on this.

 It’s worth mentioning at this point that the design of the classes we’ve used to
implement this loading and adding of activities to the Care Plan Store is testable. We’ve
included some tests in the testTheMockService() test in the ZombieCareTests target.

 To recap on our progress so far, we have now completed the following:

• We defined a ZombieCare Plan that could be stored in JSON
format.

• We used a MockService to load the JSON.

• We developed some Care Plan and Activity protocols and classes
to model our ZombieCare Plan and activities that are initialized
using the JSON data and provide a mechanism to map them to
CareKit-specific activities.

• We then added a store manager to coordinate the creation of a
CareKit CoreData store and add our activities to it.

 The next section discusses how to query the Care Plan Store for activities, events,
and event results and how to subscribe to the Care Plan Store delegate to receive
updates on changes to the store. To begin, we need to understand two more data types:
OCKCarePlanEvent and OCKCarePlanEventResult.

 OCKCarePlanEvent
 An instance of OCKCarePlanEvent is an occurrence of an event. As demonstrated earlier,
an activity has a schedule, and each schedule has an array of occurrences plus a method
that returns the number of events on a given date.

 Each event has two unique indices that define it:

• numberOfDaysSinceStart : This indicates the number or index of
this event since the start date. For example, if the event is on the
second day, its index would be 1.

• occurrenceIndexOfDay : This is the index of the event on a given
day, because we can have an activity that has multiple events in
day. For example, if an event has three occurrences in a day, then
it would be represented by three OCKCarePlanEvent instances
with indices from 0,1,2.

 Other properties include the following:

• date : The date that this event occurs.

• activity : A reference to its related parent activity.

CHAPTER 3 ■ CARE PLAN STORE

47

• state : An OCKCarePlanEventState can have one of three states:
Initialized, NotComplete, and Completed.

• result : A reference to an OCKCarePlanEventResult.

 The good news is that we do not have to create OCKCarePlanEvents. This is all
handled by the OCKPlanStore when an activity is referenced via its API. But you can
query the store for events and get notified of updates to events by subscribing to the
OCKCarePlanStoreDelegate, and you can update the state of an event. The OCKPlanStore
provides an API for these procedures.

 OCKCarePlanEventResult
 The OCKCarePlanEventResult class provides us with an instance of a result for the
OCKPlanEvent. You can create an instance of a result and attach it to an an event using
the OCKPlanStore API. OCKCarePlanEventResult will be used to create results for
assessment activity events only.

 There are three properties of OCKCarePlanEventResult:

• creationDate : The time the result was created

• valueString : A string representation of the result value

• unitString : A string representation of the result unit

 In addition to the simple result type, OCKCarePlanEventResult extends HealthKit.
This can be useful when creating a result that can be related to a Healthkit sample,
category, or correlation type—for example, a weight measurement. It makes sense to
store this value in Healthkit when we record it so it can be used by other applications,
which lets us avoid saving duplicate data.

 In this case you initialize the OCKCarePlanEventResult instance with the HealthKit
sample and then add this to the store. The store only saves the sample UUID and
formatting parameters and thus it enables it to fetch the actual HealthKit sample when
required. In later chapters we’ll work through an example of this.

 Reading Data from the Store
 CareKit’s Care Card ViewController and the Symptom and Measurement Tracker
ViewController are both used to display all the events for the intervention and assessment
activities, respectively. You can build an app that uses these modules and never have to
actually query the Care Plan Store for activities at all. However, it might prove to be useful
and even prudent to do so.

 We’ve already seen when working with a Care Plan that we can load from a remote
resource, and that we need to be careful about how we add and update activities,
because it will not accept duplicates. Chapter 1 also outlined the method for querying
for activities. This section gives examples of additional methods provided on the
OCKPlanStore API.

http://dx.doi.org/10.1007/978-1-4842-2226-3_1

CHAPTER 3 ■ CARE PLAN STORE

48

 This is the query we used earlier to check whether an activity with the same identifier
already existed in the Care Plan Store. You implemented this in the previous section:

 store.activityForIdentifier("ActivityID") { (success, activity, error) in
 guard success else {
 error!.localizedDescription
 }
 //Do something with the activity
 }

 This query finds all actives with the same group identifier—it could be useful when
you want to logically group activities:

 store.activitiesWithGroupIdentifier("OurCustomGroup") { (success, activities,
error) in
 guard success else {
 error!.localizedDescription
 }
 //Do something with the activities

 }

 This query fetches actives for a specific type, such as .Intervention or .Assessment:

 store.activitiesWithType(.Intervention) { (success, activities, error) in
 guard success else {
 error!.localizedDescription
 }
 //Do something with the activities
 }

 The following fetches all activities:

 store.activitiesWithCompletion { (success, activities, error) in
 guard success else {
 error!.localizedDescription
 }
 //Do something with the activities

 }

 You can determine your own requirements to see if you need to call any of the
queries. For ZombieCare we’ll stick with the activityForIdentifier query as demonstrated.

 There are no limitations to the number of events that an activity can have, so we
need to be careful about how we query the Care Plan Store—otherwise we could end up
with a very large memory footprint in the app. CareKit therefore provides APIs that only
allow us to query for events for a single day.

CHAPTER 3 ■ CARE PLAN STORE

49

 The following is an example of a query that reads all intervention events for the
Ibuprofen activity for today:

 guard let calendar = NSCalendar(calendarIdentifier:
NSCalendarIdentifierGregorian) else {
 fatalError("This should never fail.")
 }

 let today = calendar.components([.Day, .Month, .Year], fromDate: NSDate())
 store.eventsForActivity(ibuprofenActivity, date: today) { (events,
errorOrNil) in

 guard success else {
 fatalError(error!.localizedDescription)
 }

 // do something with the events.
 }

 First we create a Gregorian calendar and set its components for day, months, and
year for today. Then call eventsForActivity() passing the ibuprofenActivity activity
and the NSDateComponent object. In the completion handler, you receive all events for
the activity for that date or an error. Note here that CareKit uses the NSDateComponent
object so that we can specify a unique date from the user’s perspective, regardless of their
time zone.

 Additional CareKit Methods
 There are two additional higher order methods that CareKit provides to help you iterate
over a larger numbers of events:

 store.dailyCompletionStatusWithType(ibuprofenActivity, startDate: startDate,
endDate: endDate, handler: { (date, completed, total) in
 // This block is called once for each date.
 let percentComplete = Double(completed) / Double(total)
 completionData.append((dateComponents, percentComplete))
 }) { (success, error) in
 // This block is called after the last date's handler

returns.
 guard success else {
 fatalError(error!.localizedDescription)
 }

 }

CHAPTER 3 ■ CARE PLAN STORE

50

 This first method gets the number of completed events for each day. Let’s look at the
method more closely. The first parameter passed is the activity we want to find events for.
We specify the date range using startDate and endDate.

 The first completion handler returns a date, the number of completed events on
that day, and the total events on that day. This handler is called for each date in the date
range. The second completion handler is called after the last date handler returns.

 The dailyCompletionStatusWithType method is useful if, for example, you want to
display the percent status for each individual day. In fact, the Care Card and Symptom
and Measurement Tracker ViewControllers both use this to update their weekly view and
overall heart indicators.

 In the next function, we can query for all the events of an activity within a given date
range:

 store.enumerateEventsOfActivity(ibuprofenActivity, startDate: startdate,
endDate: endDate, handler: { (event, stop) in
 // This block is called once for each event
 if let event = eventOrNil,
 result = event.result,
 value = Double(result.valueString) {
 }
 }) { (success, error) in
 // This block is called after the last event's handler returns.
 guard success else {
 // Add proper error handling here...
 fatalError(error!.localizedDescription)
 }
 }

 This second function also passes the activity and date range as parameters to the
function.

 The first completion handler is called for each event and passes the event and
second parameter that we’ve called stop. stop is the address of a bool, and you can set this
to true in your handler to break out of the enumeration. The second completion handler
is called after the last event has been returned.

 The enumerateEventsOfActivity method is useful for fetching a list of events—for
example, if we want to query all the events and generate some insights.

 Synchronizing the Functions
 Note that both functions are asynchronous. It’s possible that you may need to
synchronize your calls to these functions. One option is to use GCD. Using GCD you can
surround your calls using a couple of different approaches.

 One approach might be to use a semaphore. This would look similar to this:

 let semaphore = dispatch_semaphore_create(0)
 // Call the function and process handler

CHAPTER 3 ■ CARE PLAN STORE

51

 // Use the semaphore to signal that the query is complete in the completion
handler.
 dispatch_semaphore_signal(semaphore)
 // After the function call wait for the semaphore to be signalled.
 dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER)

 Another approach might be to use GCD despatch groups. This is useful if you want to
call both asynchronous events one after the other and then collate the results once both
have completed.

 ■ Note If you’re not familiar with GCD, you can find more information in Apple’s
documentation.

 Other alternative functions for retrieving events from the Care Plan Store include the
following:

 store.eventsOnDate(date, type: .Intervention) { (eventsGroupedByActivity,
error) in
 //
 }

 The preceding gets all the OCKCarePlanEvent objects for a given date. Note that
events are grouped by activity:

 store.eventsForActivity(activity, date: date) { (events, error) in
 //
 }

 The preceding gets events on a given date that belong to a OCKCarePlanActivity.
 You’ve now seen how to query the Care Plan Store for events and when you might

want to use the different methods. In the next few chapters we’ll apply one or more of
these functions in the ZombieCare app. But first you will learn how to get notified when
changes are made to the Care Plan Store and how we can use this in our ZombieCare app
to to update the app.

 OCKCarePlanStoreDelegate
 CareKit provides us with the OCKCarePlanStoreDelegate delegate. You can implement
this delegate to subscribe to changes in the store.

 didReceiveUpdateOfEvent() is used to get notified when an activity event is
updated, and carePlanStoreActivityListDidChange() is called when an activity is
added or removed from the store.

CHAPTER 3 ■ CARE PLAN STORE

52

 Our ZombieCare app needs to respond to these events for two reasons:

• We need to update the Insights view dashboard if there are
changes to events.

• If we have a custom Care Card or Symptom and Measurement
Tracker view, then we need to handle updates from the Care Plan
Store after events have been updated.

 Whereas the Care Card ViewController registers and handles both the preceding
events, the Symptom and Measurement Tracker ViewController registers for and handles
the events update method only. The Insights ViewController does neither. The reason
for this is that the Insights dashboard has no direct relation or use for activities or events.
Instead it relies only on insight items. An insight to the patient’s condition is something
that might be created from a number of different sources, not just activity events.

 Let’s extend our ZCCarePlanStoreManager to subscribe to the
OCKCarePlanStoreDelegate activity and event changes. This will enable us to get notified
of the Care Plan Store changes, which we can notify other objects about if required.

 Open the ZCCarePlanStoreManager.swift file. At the bottom of the file, add the
following extension:

 extension ZCCarePlanStoreManager: OCKCarePlanStoreDelegate {
 func carePlanStoreActivityListDidChange(store: OCKCarePlanStore) {
 print("Care Plan Store Activity list updated")
 }

 func carePlanStore(store: OCKCarePlanStore, didReceiveUpdateOfEvent
event: OCKCarePlanEvent) {

 print("Care Plan Store event updated")
 }
 }

 Now register the ZCCarePlanStoreManager object as the delegate so it gets notified
of changes by adding the following code below the call to super.init() in the initializer:

 store.delegate = self

 Press Command+R to build and run the app in the simulator. You should now see
the message “Care Plan Store Activity list updated” printed out in the Debug window,
which indicates to us that the ZCCarePlanStoreManager object has received notifications
when activities are added to the store.

 Notice that we are not seeing any messages about event updates. The reason
for this is that events are not created until the Care Plan Store is queried. This would
usually happen when the Care Card ViewController or Symptom and Measurement
ViewController views are opened.

 Let’s now extend ZCCarePlanStoreManager with its own new delegate that other
objects can register to if they need updates. We’re going to be fairly specific here and have
a delegate that will notify observers of changes when there are updated insights only.

CHAPTER 3 ■ CARE PLAN STORE

53

 Add the following delegate protocol to the bottom of the ZCCarePlanStoreManager.
swift file:

 protocol ZCCarePlanStoreManagerDelegate: class {
 func zcCarePlanStoreManager(manager: ZCCarePlanStoreManager,

didUpdateInsights insights: [OCKInsightItem])
 }

 This protocol defines the didUpdateInsights method, which includes a list of CareKit
OCKInsightItems.

 Add the following property above the declaration of the Care Plan Store property:

 weak var delegate: ZCCarePlanStoreManagerDelegate?

 We’ve now prepared the ZCCarePlanStoreManager to respond to updates when
activities or events are changed, added, or removed, and we’ve added a mechanism for us
to notify other objects if and when we create any insights as a result of the changes.

 Clearing the Store
 Before closing this chapter, there is one more item to address. In some cases , particularly
when testing, it might be useful to clear the store of all items. Apple provides a method to
demonstrate how to do this, and it looks like this:

 private func _clearStore() {
 print("*** CLEANING STORE DEBUG ONLY ****")
 let deleteGroup = dispatch_group_create()
 let store = self.store
 dispatch_group_enter(deleteGroup)
 store.activitiesWithCompletion { (success, activities, errorOrNil) in
 guard success else {
 // Perform proper error handling here...
 fatalError(errorOrNil!.localizedDescription)
 }
 for activity in activities {
 dispatch_group_enter(deleteGroup)
 store.removeActivity(activity) { (success, error) -> Void in
 print("Removing \(activity)")
 guard success else {
 fatalError("*** An error occurred: \(error!.

localizedDescription)")
 }
 print("Removed: \(activity)")
 dispatch_group_leave(deleteGroup)
 }
 }

CHAPTER 3 ■ CARE PLAN STORE

54

 dispatch_group_leave(deleteGroup)
 }
 // Wait until all the asynchronous calls are done.
 dispatch_group_wait(deleteGroup, DISPATCH_TIME_FOREVER)
 }

 Summary
 This chapter has covered a lot. We’ve learned what the Care Plan Store is and how to
create it. We’ve added, updated, and removed activities and we’ve seen how to query
the store in different ways for activities and events. We’ve also seen how to get notified
of changes in the store. We also extended our working example in the ZombieCare app
to load a Care Plan from JSON, parse it, load its data into the store, and then receive
notifications when activities or events are updated. Finally, we provided a mechanism for
other objects in our app to get notified by ZCCarePlanStoreManager when insights are
created or updated.

 The next chapter covers the Care Card ViewController in more detail. You will learn
how to create and display the Care Card ViewController, see how it gets updated, and
customize its appearance. You will then add a custom Care Card Detail ViewController.

55© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3_4

 CHAPTER 4

 Building the Care Card

 Chapter 1 gave you an introduction to the Care Card ViewController, and Chapter 3 talked
about the underlying data model and types used by the Care Plan and, ultimately, the
CareKit views. In this chapter we’ll take a closer look at the Care Card ViewController user
interface, learn how to create one and display it, and then customize it. We’ll do this by
extending our ZombieCare app.

 The user interface for the ZombieCare app is deliberately going to remain simple,
starting out as a single view application. The template provided is in the folder \chapter4_
start and begins where we left off in chapter3_final with a few additions. Load the project
and run it in the simulator now.

 You will see that we’ve added a new introductory view to the ZombieCare Plan called
CarePlanViewController.swift. This will be our initial ViewController in the application,
and its purposes are to introduce the user to the ZombieCare Plan and provide an entry
point to the Care Plan itself. You may want to design a different user experience, but
this serves our purpose well and allows us to add some additional onboarding in later
chapters.

 In addition to the CarePlanViewController, you’ll see we’ve added an additional
TabBarController into the storyboard. The TabBarController will host our CareKit
modules, and there will be an entry point to load the TabBarController from
CarePlanViewController.swift.

 Building and Presenting a Care Card
 Open CarePlanViewController.swift from the project navigator.

 In viewDidLoad() replace the call to the existing service.request method with the
following:

 service.request(mockResource) { (response : CarePlan?, error) in
 if error == nil {
 print("\(response!.title) loaded.")
 self.careplanManager = ZCCarePlanStoreManager(carePlan:

response!)

http://dx.doi.org/10.1007/978-1-4842-2226-3_1
http://dx.doi.org/10.1007/978-1-4842-2226-3_3

CHAPTER 4 ■ BUILDING THE CARE CARD

56

 self.carePlanTitle.text = self.careplanManager?.carePlan.
title

 self.carePlanDescription.text = self.careplanManager?.
carePlan.carePlanDescription

 }
 return
 }

 This now reads the title and description from the Care Plan and displays the text in
the view.

 Next, add the following createCareCardViewController() method to the bottom of
the class:

 private func createCareCardViewController() -> OCKCareCardViewController {
 let viewController = OCKCareCardViewController(carePlanStore:

careplanManager!.store)

 // Setup the controller's title and tab bar item
 viewController.title = NSLocalizedString(“Zombie Care Card",

comment: "")
 viewController.tabBarItem = UITabBarItem(title: viewController.

title, image: UIImage(named:"carecard"), selectedImage:
UIImage(named: "carecard-filled"))

 return viewController
 }

 First, this creates an instance of the OCKCareCardViewController, passing to it the
Care Plan Store object.

 The ViewControllers title is localized, and then we added a UITabBarItem, which
consists of the tab title and its image.

 In the BuildCareCard() button handler, add the following:

 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 let tabbarcontroller = storyboard.instantiateViewControllerWithIdentifier
("TabBarController") as! UITabBarController
 let careCardViewController = createCareCardViewController()
 tabbarcontroller.viewControllers = [UINavigationController(rootViewControll
er: careCardViewController)]

 self.presentViewController(tabbarcontroller, animated: true, completion: nil)

 In the preceding code, we first load the TabBarController from the main storyboard
using its Storyboard ID. We then make a call to createCarCardController() to build the
Care Card ViewController, which is then attached to the TabBars array of ViewControllers.

CHAPTER 4 ■ BUILDING THE CARE CARD

57

 ■ Note The Care Card ViewController must be embedded in a UINavigationController—
otherwise, CareKit will Assert. This is because Care Card uses a navigation controller to push
and display the Care Card detail view.

 In the last line we present the tab bar, which loads and displays the Care Card.
 Press Command+R to build and run the app in the simulator. You should be

presented with the CarePlanViewController, which has a button to “Begin Your
Treatment.” Tap the button, and your CareKit Tab should be loaded with the Card Card
presented as the one and only tab. The Care Card should look like Figure 4-1 .

 Figure 4-1. Zombie Care Card

CHAPTER 4 ■ BUILDING THE CARE CARD

58

 A Closer Look at the Care Card
 Let’s examine the Card Card a little closer. At the top of the Care Card, the localized title
we set earlier is displayed in the navigation bar. Underneath this is the week view, which
defaults to Today. In the week view, a heart image is displayed for each day of the week.
Each one of these hearts is color filled with the percentage of tasks complete for their
respective days.

 Below this is a larger heart for the current day. Again this indicates the percentage of
tasks completed for the displayed day. You can try selecting different days and then toggle
tasks to on and off to see the varying results.

 Below the week view we have a list of intervention activities presented in a table
view. Each row displays the activities’ title and summary property. Within each activity
there are a number of events, each represented by a circular image button.

 You should also see that the Care Card has loaded all the .Intervention activities
automatically from the Care Plan Store. It has also generated all the scheduled events for
each activity as green circle buttons. Under the hood, the OCKCareCardViewController
has made a call to the OCKPlanStore instance to fetch all the events by calling
 eventsOnDate() , which returns a list of OCKPlanEvents grouped by activity.

 There are a few more items to take notice of. The OCKCareCardViewController
only supports up to 14 events for each activity. You will need to test and ensure that your
schedule does not exceed this—otherwise, an exception will be thrown. Any changes you
make will be automatically saved by the Care Plan. For instance when toggling the state
of an event. Only activities with the OCKCarePlanActivityType .Intervention type are
displayed in the Care Card.

 Each activity row has a disclosure button. Selecting a row will present the
OCKCareCardDetailsViewController, which displays additional details for the selected
activity—for instance, the instructions.

 Figure 4-2 shows the default Care Card details view.

CHAPTER 4 ■ BUILDING THE CARE CARD

59

 Figure 4-2. Default Care Card detail view

 At this point it would be a good idea to try and experiment a bit. Try modifying your
Care Plan with additional activities and then re-run the app to see the effects.

 Updating the Care Card
 As mentioned in the previous section, the Care Card is automatically updated when
changes are made to the Care Plan Store. Let’s take a moment to understand how this
works. This will prove useful if you’re considering presenting your own custom view of
the Care Plan.

 The approach taken in OCKCareCardViewController is to first subscribe to changes
from the Care Plan store by implementing the OCKPlanStoreDelegate.

 carePlanStoreActivityListDidChange() is called when an activity is added or
removed from the store. In this case, the OCKCareCardViewController calls its own
 fetchEvents() method (described in the next section).

CHAPTER 4 ■ BUILDING THE CARE CARD

60

 didReceiveUpdateOfEvent() is called when one of the events in the Care Plan Store
is updated. In this case, the controller finds the related activity, and if the UI is displaying
an event for the same day as the modified event, it updates the UI.

 The fetchEvents() method on the controller is also called when the view is first
loaded—or more specifically, when a particular week day is selected. This method will
query the Care Plan Store using the API method eventsOnDate() . On completion, the
context is switched to the main thread, and the list of events returned in the query is
copied to a local mutable array before updating the UI.

 Customizing the Behavior of
OCKCareCardViewController
 In addition to handling the OCKPlanStoreDelegate, you can also handle events on
OCKCareCardViewControllerDelegate to customize some of its behavior—for example, if
you wanted the user to perform some activity to complete an event.

 One delegate we can handle is the shouldHandleEventCompletionForActivity() ,
which works in combination with the didSelectButtonWithInterventionEvent() event.
You can choose this to handle these delegate events if you want to customize the behavior
when setting the state of an event—for example, if you want the user to complete an
additional task, or ask them a question.

 To demonstrate this, we’ll extend the ZombieCare app to prompt the user to confirm
that they want to change an events state.

 The first step to handling the delegate is to refactor our application slightly so we can
write an extension delegate which handles the OCKCareCardViewControllerDelegate
methods. Open the project and add a new file called ZCCarePlanTabViewController.swift.
Add the following class implementation:

 import UIKit
 import CareKit

 class ZCCarePlanTabViewController : UITabBarController {
 var careplanManager : ZCCarePlanStoreManager?
 }

 We declare the class and add a property for our ZCCarePlanStoreManager, which
we’ll need to access to get to the Care Plan Store.

 Now open the Main.storyboard in interface builder. Select the TabViewController
and change it to use the our new custom class ZCCarePlanTabViewController in the
attributes inspector, as in Figure 4-3 .

CHAPTER 4 ■ BUILDING THE CARE CARD

61

 Figure 4-3. Changing TabbarController class

 Now open CarePlanViewController.swift and in the BuildCareCard() method
change the implementation so it loads our custom tab bar class as follows:

 let tabbarcontroller = storyboard.instantiateViewControllerWithIdentifier
("TabBarController") as! ZCCarePlanTabViewController

 Below this add the following line to set the property of the CarePlanStoreManager:

 tabbarcontroller.careplanManager = self.careplanManager

 By injecting our Care Plan Store manager into the ZCCarePlanTabViewController
property, it is still testable and allows the controller delegate to access the CareKit store.

 We can now implement OCKCareCardViewControllerDelegate. Open the
ZCCarePlanTabViewController.swift file and add the following extension code to the
bottom of the file:

 extension ZCCarePlanTabViewController : OCKCareCardViewControllerDelegate {

 func careCardViewController(viewController: OCKCareCardViewController,
shouldHandleEventCompletionForActivity interventionActivity:
OCKCarePlanActivity) -> Bool {

 return false;
 }

 func careCardViewController(viewController: OCKCareCardViewController,
didSelectButtonWithInterventionEvent interventionEvent:
OCKCarePlanEvent) {

 let alert = UIAlertController(title: "Confirmation", message: "Are
you sure you want to mark this event as done?", preferredStyle:
UIAlertControllerStyle.Alert) alert.addAction(UIAlertAction

 (title: "No", style: UIAlertActionStyle.Default, handler: nil))

CHAPTER 4 ■ BUILDING THE CARE CARD

62

 alert.addAction(UIAlertAction(title: "Yes", style:
UIAlertActionStyle.Default, handler: { (alert) in

 self.careplanManager?.store.updateEvent(interventionEvent,
withResult: nil, state: .Completed, completion: { (success,
event, error) in

 print("Yes confirmed - Event updated")
 })
 }))

 self.presentViewController(alert, animated: true, completion: nil)
 }
 }

 We first handle the ‘shouldHandleEventCompletionForActivity()’ event and return
false. This tells the Card Card ViewController that we have some custom logic we want to
implement for the completion activity.

 We then handle the didSelectButtonWithInterventionEvent() , event which is
called when the user taps on an intervention event button. Now this is where we can
implement our own custom behavior to complete the event. In our example we simply
present an AlertView to ask the user to confirm that they want to change the events status.
You could quite easily present your own custom ViewController to the user with another
task or questionnaire at this point.

 On confirmation, the event status is changed to .Complete by calling the
 updateEvent() method on the Care Plan Store.

 ■ Note You cannot just change the properties of an event directly yourself. This has to be
handled via the Care Plan Store API.

 Another event, the willDisplayEvents() delegate method, is called from within the
OCKCareCardViewControllers fetchEvents() method, that is, after it loads all events from
the Care Plan Store.

 ■ Note Be careful because the documentation is not entirely accurate
here. It says that this event is called when an event date changes or when the
carePlanStoreActivityListDidChange delegate method is called.

 Handling this method can be useful because it provides an opportunity to update the
store. For example, you may want to get updated data from HealthKit or elsewhere. We’ve
not implemented this.

 In the following section we will implement the
 didSelectRowWithInterventionActivity() event to enable us to present our own Care
Card Detail ViewController.

CHAPTER 4 ■ BUILDING THE CARE CARD

63

 Customizing the Care Card Appearance
 The default appearance of the Care Card can be modified in a number of ways:

• Change activity colors

• Display or hide the activity row edge indicators.

• Change the mask images and tint color (for example, replace the
heart with something else)

• Provide a custom Care Card details view

 We’ll learn how to accomplish all of these in the next steps with our ZombieCare app.

 Changing Activity Event Colors
 You can change the color of the event display buttons for an activity, and each activity can
have a different color.

 The OCKCarePlanActivity class has a tintColor property. When the event for an
activity is loaded and displayed in a TableViewCell, this property is referenced to set the
color of the event buttons in the cell.

 Lets see this in action. We’re going to update our Care Plan to give each intervention
activity a different color and see this reflected automatically in the view. To achieve this,
we will update the activities in careplan.json with an additional color property as a string.
We’ve also provided a UIColor extension that can convert the color string values to a
UIColor.

 Go ahead and modify your careplan.json to include the following color attributes:

 "intervention_activities": [
 {
 ...
 "color": "Gold",
 ...
 },
 {
 ...
 "color": "Purple",
 ...
 },
 {
 ...
 "color": "Orange",
 ...
 }
],

CHAPTER 4 ■ BUILDING THE CARE CARD

64

 "assessment_activities": [
 {
 ...
 "color": "Gold",
 ...
 },
 {
 ...
 "color": “Purple",

 },
 {
 ...
 ”color”: "Orange",
 ...
 }
]

 Now you will update the ZCActivity struct to support loading and parsing the colors.
 Add the optional color property to ZCActivity:

 let colorcolorcolor : UIColor?

 Add the following to initialize the color from the JSON source in the initializer:

 let colorcolorcolorString = json["colorcolorcolor"].string!
 self.colorcolorcolor = UIColor.ColorWithString(colorcolorString)

 Now in the carePlanActivity() method, modify the OCKCarePlanActivity
initializers with the color as follows:

 switch activityType {
 case .Intervention:
 let activity = OCKCarePlanActivity.interventionWithIdentifier(
 identifier,
 groupIdentifier: nil,
 title: title,
 text: text,
 tintColor: color,
 instructions: instructions,
 imageURL: nil,
 schedule: activitySchedule,
 userInfo: nil)

CHAPTER 4 ■ BUILDING THE CARE CARD

65

 return activity
 case .Assessment:
 let activity = OCKCarePlanActivity.assessmentWithIdentifier(
 identifier,
 groupIdentifier: nil,
 title: title,
 text: text,
 tintColor: color,
 resultResettable: true,
 schedule: activitySchedule,
 userInfo: nil)

 return activity
 }

 ■ Note Our ZombieCare app currently only supports the three colors: gold, purple, and
orange. You can look to create your own solution for parsing colors depending on your
requirement.

 You can now run the app in the simulator by pressing Command+R. When you
display the Care Card, it should now show the events in their own colors.

 Hide/Display Event Row Indicators
 Event row indicators are a color strip on the left edge of each row in the list of
activities. You can toggle the display of this strip of color by simply turning on or off the
showEdgeIndicators property on the OCKCareCardViewController.

 Let’s turn these on. In our CarePlanViewController.swift file, scroll down to the
 createCardViewController() method. Add the following code below the line which
creates the UITabBarItem:

 viewController.showEdgeIndicators = true

 Run the app and you will see the strips being displayed in the same color as the
round buttons.

 Changing the Mask Tint Color and Mask Images
 Changing the mask tint color is straightforward. Simply set the maskImageTintColor
property when creating the CareCardViewController:

 viewController.maskImageTintColorColorColor = UIColor.
MaskTintColorColorColor()

CHAPTER 4 ■ BUILDING THE CARE CARD

66

 We do this in the CarePlanViewController.createCareCardViewController()
method. Note the MaskTintColor() is implemented in our extension on UIColor.

 We can further customize the Care Card interface by changing the heart images in
the WeekView to our own custom images.

 There are two image properties we can set on the OCKCareCardViewController:

• smallMaskImage : This is the image that will be used to fill in the
week days at the top of the week view. You should provide three
sizes: @3x is 94 x 80, @2x is 62 x 52, and @1x is 31 x 26.

• maskImage : This is the image that will be used to fill in the
percentage complete for the week. You should provide three sizes:
@3x is 352 x 296, @2x is 234 x 197, and @1x is 118 x 99.

 For both images you should provide a .png that has an outline that is best matched to
your tint color, a white fill, and a transparent background.

 In our ZombieCare app, I’ve already provided you with a collection of image masks
(Figure 4-4) called brain and small-brain in the Assets catalog of Chapter4_final. (It
seemed appropriate given that the Zombie virus affects the brain.)

 Figure 4-4. Custom image masks

CHAPTER 4 ■ BUILDING THE CARE CARD

67

 Changing the Tab Icon
 You may notice in Figure 4-4 that we’ve also added a custom tab bar icon.

 TabBar icons should be included in the Assets catalog. You will find two images in
chapter4_final: one for normal state and one for the selected state. For each image, you
should provide three sizes: @3x is 90 x 90, @2x is 60 x 60, and @1x is 30 x 30.

 You tell the Care Card to use your specific icons when creating the tabbaritem, which
we did earlier in the CarePlanViewController.createCareCardViewController()
method:

 viewController.tabBarItem = UITabBarItem(title: viewController.title, image:
UIImage(named:"carecard"), selectedImage: UIImage(named: "carecard-filled"))

 Custom Care Card Detail View
 There are a couple of approaches to customizing the Care Card detail view:

• You can add an image to the default detail view.

• You can replace the default OCKCareCardDetailViewController
with a custom controller and view.

 Adding an Image to the Intervention Activity
 The OCKCarePlanActivity class has an optional property to specify an imageURL. As
an NSURL, your image could be served from a remote server or simply bundled as a
resource within the application.

 This can be very useful—for instance, if you need to provide some visual instructions
to help the patient take their treatment.

 To demonstrate this feature, you will include an image resource in careplan.json.
However, for convenience we will bundle the resources in the application. Our image will
show a zombie how to eat an apple, as they might be in a bit of a confused state and may
have forgotten how to do it.

 ■ Note Because we cannot specify an NSURL path to our Assets catalog, our image is
bundled as a standard resource file in the project.

 Open careplan.json and add the image attribute for the first intervention activity as
follows:

 "imageURL": "zombie.jpg",

 Now open the Activity.swift file and you will modify the initialiser to load the
imageurl as follows:

 if let imageString = json["imageURL"].string {
 let componentsOfString = imageString.

componentsSeparatedByString(".")

CHAPTER 4 ■ BUILDING THE CARE CARD

68

 if let pathForResource = NSBundle.mainBundle().pathForResource
(componentsOfString[0], ofType: componentsOfString[1]){

 self.imageURL = NSURL(fileURLWithPath: pathForResource)
 }
 }

 Thats all there is to it, as you’ve already specified the imageURL property on the
OCKPlanActivity initializer.

 Press Command+R to run in the simulator, navigate to the Care Card detail view for
the intervention activity you added the image to, and you should see your zombie image,
as in Figure 4-5 .

 Figure 4-5. Images with the Care Card detail view

69

CHAPTER 4 ■ BUILDING THE CARE CARD

 Writing Your Own Custom Care Card Detail View
 The second approach to customizing the Care Card detail view is to substitute the default
controller with your own custom implementation.

 In this section you will learn how to do this by creating a new ViewController that
displays information with a different layout and also uses the additional activity property
userinfo for some custom data properties. This enables us to add and save some custom
data with the OCKCarePlanActivity that can also be used or displayed in our new detail
view. Here are the steps we need to achieve our goal:

 1. Add some custom data to the care plan.

 2. Provide support in the ZCActivity to parse, save, and retrieve
the custom data.

 3. Create the custom detail view and controller implementation.

 4. Implement careCardViewController.didSelectRowWith
InterventionActivity() to load and display the custom
detail view.

 For the first step you are going to add some additional information about the treatment
medication and also an image of it to the Care Plan. This should help the zombies.

 Add the following to each of the intervention activities after the instructions field:

 "intervention_activities": [
 {
 ...
 "medication" : "There are two types of

golden apple. You need to find and eat a
golden apple that is glowing. If its not
glowing then it won't work.",

 "medicationimage" : "glowingapple.png"
 },
 {
 ...
 "medication" : "Potion of weakness is

generally applied by your physician who will
splash it on you, but you can drink it as
well.",

 "medicationimage" : "potionweakness.png"
 },
 {
 ...
 "medication" : "This assumes you are in a

condition to walk. If you can't, just move
any part of your body repeatably - like
nodding your head.",

 "medicationimage" : "zombiepressup.png"
 }
],

70

CHAPTER 4 ■ BUILDING THE CARE CARD

 ■ Note If you’re not sure how to add this, you can always look at the source code from
the chapter4_final folder.

 Next, you need to load, parse, and include the new custom data to the
OCKPlanActivities. To do this, you need to provide a custom object that supports
NSCoding.

 From the project navigator in the ZombieCare project, select New File. Select Swift
File and call it Medication .

 Now copy the following into the file:

 import Foundation

 class Medication : NSObject, NSCoding {
 let medication : String
 let imageURL : NSURL

 init?(medication : String, imageURL : NSURL) {
 self.medication = medication
 self.imageURL = imageURL
 }

 // MARK: NSCoding
 required convenience init?(coder decoder: NSCoder) {

 let medication = decoder.decodeObjectForKey("medication") as! String
 let imageURL = decoder.decodeObjectForKey("imageURL")as! NSURL

 self.init(medication:medication, imageURL: imageURL)
 }

 func encodeWithCoder(coder: NSCoder) {
 coder.encodeObject(self.medication, forKey: "medication")
 coder.encodeObject(self.imageURL, forKey: "imageURL")

 }
 }

 Import the Foundation framework, because it needs this to provide support for
NSObject and NSCoding.

 In the class implementation you have two properties: one for the medication string
and the other for an image URL. Then it provides a custom initialiser and support for
NSCoding. This class is now ready to represent the new custom medication fields.

 You then need to update the ZCActivity struct so it can use the Medication class. Add
the following property below the existing properties:

 var medication : Medication? = nil

71

CHAPTER 4 ■ BUILDING THE CARE CARD

 And add the following code to the end of the init method:

 if let medication = json["medication"].string,
 let medicationImageString = json["medicationimage"].string {
 let componentsOfString = medicationImageString.

componentsSeparatedByString(".")
 let pathForResource = NSBundle.mainBundle().pathForResource

(componentsOfString[0], ofType: componentsOfString[1])

 self.medication = Medication(medication: medication, imageURL:
NSURL(fileURLWithPath: pathForResource!))

 }

 This first line parses the medication properties from the JSON and then instantiates a
Medication object using the parsed values before assigning it to the property.

 The last task for this step is to add this Medication object to our OCKCarePlanActivity
when it is created. In the carePlanActivity() method add the following just before the
switch activityType statement:

 var medicationDict : [String : Medication]? = nil

 if let meds = medication {
 medicationDict = ["medication":meds]
 }

 This creates an optional dictionary.
 Now in the switch statement set the userinfo parameter in the intervention initializer

from nil to the following:

 userInfo: medicationDict)

 userInfo takes a dictionary of objects that support NSCoding. You can add more than
one object if you like.

 Thats it for the second step. Press Command+B to check that the project still
compiles okay.

 The third step is to create the custom detail ViewController to replace the
default OCKCareCardDetailViewController. Select File ➤ New from the project navigator
again. This time select Cocoa Touch Class from the iOS section. Give it the name
 ZCCareCardDetailViewController and ensure its a subclass of UIViewController. Select
Next and then Create. You now have the basic template of the new class.

 In this new class you need to provide a custom initializer, a property to hold
our OCKPlanActivity, and some custom layout. Let’s start with the property. Add the
following line to set the intervention property at the top of the class:

 let interventionActivity : OCKCarePlanActivity?

72

CHAPTER 4 ■ BUILDING THE CARE CARD

 And then add the following initializers:

 init(withInterventionActivity:OCKCarePlanActivity) {
 self.interventionActivity = withInterventionActivity
 super.init(nibName: nil, bundle: nil)
 }

 required init?(coder aDecoder: NSCoder) {
 self.interventionActivity = nil
 super.init(coder: aDecoder)
 }

 You’ve added a custom initializer with a parameter for the OCKPlanActivity, and,
because we inherit from UIViewController, you are required to provide an additional init
with coder initializer. In the case of the latter, you are just setting the property to nil as you
won’t be using this initializer in the project.

 Because this is just a demonstration for learning, we’re going to keep the UI simple
and just implement the medication properties. Add the following code to the class:

 override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)

 self.view.backgroundColor = UIColor.whiteColor()

 if let medication = self.interventionActivity?.
userInfo!["medication"] as? Medication {

 let label = UILabel()
 label.numberOfLines = 0
 label.lineBreakMode = .ByWordWrapping
 label.textAlignment = .Center
 label.translatesAutoresizingMaskIntoConstraints = false
 label.text = medication.medication
 self.view.addSubview(label)
 view.addConstraints([
 NSLayoutConstraint(item: label, attribute: .Top, relatedBy:

.Equal, toItem: view, attribute: .Top, multiplier: 1.0,
constant: 120.0),

 NSLayoutConstraint(item: label, attribute: .Leading,
relatedBy: .Equal, toItem: view, attribute: .Leading,
multiplier: 1.0, constant: 20.0),

 NSLayoutConstraint(item: label, attribute: .Trailing,
relatedBy: .Equal, toItem: view, attribute: .Trailing,
multiplier: 1.0, constant: -20.0)

])

CHAPTER 4 ■ BUILDING THE CARE CARD

73

 if let image = UIImage(contentsOfFile: medication.imageURL.
path!) {

 let imageView = UIImageView(image: image)
 imageView.translatesAutoresizingMaskIntoConstraints = false

 self.view.addSubview(imageView)
 //Manually add some constraints
 view.addConstraints([
 NSLayoutConstraint(item: imageView, attribute: .Top,

relatedBy: .Equal, toItem: label, attribute: .Bottom, multiplier: 1.0,
constant: 20.0),

 NSLayoutConstraint(item: imageView, attribute:
NSLayoutAttribute.CenterX, relatedBy: NSLayoutRelation.
Equal, toItem: view, attribute: NSLayoutAttribute.
CenterX, multiplier: 1, constant: 0),

])
 }
 }
 }

 In the viewWillAppear() method we are setting the background color. Then if we
have a valid Medication object, we create and display a label and image with medication
properties being displayed on the label and imageView.

 Now press Command+R to run the application. Navigate to the Care Card and view
each of the new card detail views. Note that the Care Card detail view is already provided
and wired up by CareKit. You should see the results as shown in Figure 4-6 .

74

CHAPTER 4 ■ BUILDING THE CARE CARD

 Summary
 In this chapter we’ve built and presented the default Care Card ViewController. You
learned how to customize its appearance by changing the tint colors, mask images and
added an image to the details ViewController. At the end of the chapter you learned how
to add some additional custom data on your activity and display this data in a custom
detail ViewController.

 In the next chapter you will learn more about the System and Measurement Tracker
scene.

 Figure 4-6. Custom Care Card details view

75© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3_5

 CHAPTER 5

 Symptom and Measurement
Tracker

 In this chapter we will take a detailed look at the Symptom and Measurement Tracker
views. We’ll extend the ZombieCare app by adding assessment activities and retrieving
feedback from the user.

 Chapter 1 introduced you to the Symptom and Measurement Tracker module,
and you learned that CareKit provides the OCKSymptomTrackerViewController.
This controller and its associated views behave in a similar manner to the Care Card
ViewController in that it automatically loads activities. However, the similarity ends there.
In the Symptom and Measurement module there is no detail view. When a user selects an
activity, they must be presented with a view that leads the user through a task to complete
their assessment on the activity.

 You will learn how to present the default OCKSymptomTrackerViewController and
allow it to update automatically from the Care Plan Store. You will add tasks based on a
couple of different ResearchKit tasks and steps, capture the results, and store the results
in the Care Plan Store. Then you will add a second custom feedback controller. The
ResearchKit task will also demonstrate how results can then be added and synchronized
with HealthKit.

 Before progressing, take note of a few technical design changes within the
application. Open the project provided in \chapter5_start. This chapter introduces a
new design pattern called Flow Controllers. This is a useful design pattern that prevents
controllers from needing to know about each other and helps reduce the amount of logic
we place in ViewControllers. The design is implemented by introducing Coordinators and
their respective delegates. The Coordinators take responsibility for deciding which
interface to present and interacting with the ViewControllers in that interface. In the
example app, the new Coordinators are located in the group called Coordinators, and all
navigation will in future be handled by them.

http://dx.doi.org/10.1007/978-1-4842-2226-3_1

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

76

 Build and Present a Symptom and Measurement
Tracker
 The steps for creating a Symptom and Measurement Tracker scene are similar to creating
a Care Card, though it involves using an extra delegate object.

 The assessment activities for this chapter are already part of your ZombieCare Plan
and are already being loaded into the Care Plan Store. Follow the steps in this section to
create and present the OCKSymptomTrackerViewController.

 Open ZCCareKitTabCoordinator.swift from the project navigator. Add the following
method below the createCareCardViewController() method:

 private func createSymptomtrackerViewController() ->
OCKSymptomTrackerViewController {
 let viewController = OCKSymptomTrackerViewController(carePlanStore:

carePlanManager.store)

 // Setup the controller's title and tab bar item
 viewController.title = NSLocalizedString("Zombie Assessment",

comment: "")
 viewController.tabBarItem = UITabBarItem(title: viewController.

title, image: UIImage(named:"symptoms"), selectedImage:
UIImage(named: "symptoms-filled"))

 viewController.showEdgeIndicators = true;

 return viewController
 }

 Now call this method from the start() method. Add the following code after the
call to createCareCardViewController() and update the line below to include the
symptomTrackerController in the tab bars ViewController array:

 let symptomTrackerController = createSymptomtrackerViewController()
 tabbarcontroller.viewControllers = [UINavigationController(rootViewController:
careCardViewController),
UINavigationController(rootViewController: symptomTrackerController)]

 That’s it. Press Command+R and you will see the new Symptom Tracker view
presented in the activities in the tab (see Figure 5-1).

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

77

 ■ Note We have already included the “symptom” and “symptom-filled” icons in this
version of the source code.

 Let’s have a closer look at the view to see what is there.

 Reviewing What’s Been Presented
 In a similar manner to the Care Card, you will see the Week Day and overall assessment
completion progress. The progress tint color currently defaults to blue, which you
can change by simply setting the tint color as before. Let’s do that quickly. In the
 createSymptomTrackerViewController() method, add the following line before
returning the controller:

 viewController.progressRingTintColor = UIColor.MaskTintColor()

 Figure 5-1. The Default Symptom and Measurement Tracker view

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

78

 The tint color will now display green so it’s consistent with the Care Card.
 Below the progress indicator is the list of assessment activities. In the ZombieCare

Plan there are some activities specified as daily activities and some as weekly, and on
some days of the week there are multiple occurrences. So CareKit interprets the number
of occurrences on the shown date, but instead of a circular button representing each
occurrence or event of the activity on a single row, this view presents a separate row for
each occurrence.

 The reason for this is because the user will need to see the results of each assessment
task individually and, of course, to activate the assessment task views independently too.

 At this stage you cannot see the result because we haven’t implemented the delegate
yet. You will, however, see what appear to be duplicate items in the list. This highlights a
problem with the ZombieCare Plan we specified.

 As you’ve learned already, an activity has a schedule, and this schedule specifies
the number of occurrences of an activity for a day. This is the same for daily or weekly
schedules.

 In the case of the ZombieCare Plan, the daily schedule for the Weight activity has
been set to 2. And the Rage weekly task has three items scheduled for each day of the
week. When CareKit generates the relevant events for each occurrence, it simply creates
multiple instances of OCKCarePlanEvents where required for each day.

 One might argue that this a limitation in CareKit when defining activities. It would
probably be more useful to be able to specify multiple time values for each event. For
example, If there were 2 events on a day, one might occur at 8 a.m. in the morning and
another at 5 p.m. This would, of course, add a complication when defining events for an
activity, so Apple simplified it and specified the number of events only. However, each
event does include a property to indicate the index of its occurrence.

 The Symptom Tracker view only orders these events by index but shows no visual
indication of that, which can be confusing to the user. When using the default Symptom
Tracker controller it seems appropriate, therefore, to only specify a separate singular
activity for each event where required
(each activity has one occurrence regardless of whether it is a daily or weekly schedule).

 Let’s modify the ZombieCare Plan accordingly. Replace the list of assessment
activities with the following JSON:

 "assessment_activities": [
 {
 "identifier": "004",
 "group_identifier": "",
 "title": "Weight",
 "color": "Gold",
 "text": "Early morning or Late Evening",
 "startdate": "20160531T120000+0000",
 "scheduletype": "Daily",
 "schedule": "1",
 "task": {
 "identifier": "Task1",
 "steps": [
 {

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

79

 "identifier": "001",
 "title": "Input your weight",
 "format": "Quantity",
 "unit": "lb"
 }
]
 }
 },
 {
 "identifier": "005",
 "group_identifier": "",
 "title": "Pain",
 "color": "Purple",
 "text": "Record Pain level around mid day",
 "startdate": "20160531T120000+0000",
 "scheduletype": "Weekly",
 "schedule": "1,1,1,1,1,1,1",
 "task": {
 "identifier": "Task1",
 "steps": [
 {
 "identifier": "001",
 "title": "How was your pain today?",
 "format": "Scale",
 "maxvaluedescription": "Very high",
 "minvaluedescription": "Very low",
 "maxvalue": 10,
 "minvalue": 1,
 "defaultvalue": -1,
 "stepvalue": 1,
 "vertical": false
 }
]
 }
 },
 {
 "identifier": "006",
 "group_identifier": "",
 "title": "Morning Rage",
 "color": "Orange",
 "text": "Record your mood in the moring",
 "startdate": "20160531T120000+0000",
 "scheduletype": "Weekly",
 "schedule": "1,1,1,1,1,1,1",
 "task": {
 "identifier": "Task1",
 "steps": [

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

80

 {
 "identifier": "001",
 "title": "On a sale of 1 to 10, how

do you rate your temper?",
 "format": "Scale",
 "maxvaluedescription": "Very Angry",
 "minvaluedescription": "Calm",
 "maxvalue": 10,
 "minvalue": 1,
 "defaultvalue": -1,
 "stepvalue": 1,
 "vertical": false
 }
]
 }
 },
 {
 "identifier": "007",
 "group_identifier": "",
 "title": "Midday Rage",
 "color": "Orange",
 "text": "Record your mood at midday",
 "startdate": "20160531T120000+0000",
 "scheduletype": "Weekly",
 "schedule": "1,1,1,1,1,1,1",
 "task": {
 "identifier": "Task1",
 "steps": [
 {
 "identifier": "001",
 "title": "On a scale of 1 to 10, how

do you rate your temper?",
 "format": "Scale",
 "maxvaluedescription": "Very Angry",
 "minvaluedescription": "Calm",
 "maxvalue": 10,
 "minvalue": 1,
 "defaultvalue": -1,
 "stepvalue": 1,
 "vertical": false
 },
 {
 "identifier": "002",
 "title": "On a scale of 1 to 10, how

irrated are you?",
 "format": "Scale",
 "maxvaluedescription": "Very

Irritated",

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

81

 "minvaluedescription": "Not Much",
 "maxvalue": 5,
 "minvalue": 1,
 "defaultvalue": -1,
 "stepvalue": 1,
 "vertical": false
 }
]
 }
 },
 {
 "identifier": "008",
 "group_identifier": "",
 "title": "Evening Rage",
 "color": "Orange",
 "text": "Record your mood in the evening",
 "startdate": "20160531T120000+0000",
 "scheduletype": "Weekly",
 "schedule": "1,1,1,1,1,1,1",
 "task": {
 "identifier": "Task1",
 "steps": [
 {
 "identifier": "001",
 "title": "On a sale of 1 to 10, how

do you rate your temper?",
 "format": "Scale",
 "maxvaluedescription": "Very Angry",
 "minvaluedescription": "Calm",
 "maxvalue": 10,
 "minvalue": 1,
 "defaultvalue": -1,
 "stepvalue": 1,
 "vertical": false
 }
]
 }
 }
]

 In this case, the Weight activity is set to one per day, and we’ve created separate
activities for recording Rage levels at different intervals in the day.

 It’s not ideal, but I wanted to highlight how you as the developer need to take care
when defining the Care Plan, and at least things should be a little clearer to the user now.

 In the next section you will learn how to implement the
OCKSymptomTrackerViewControllerDelegate and present a ResearchKit task.

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

82

 Implementing the ResearchKit Task
ViewController
 The OCKSymptomTrackerViewControllerDelegate protocol defines two methods. An
object that adopts this protocol is responsible for presenting the appropriate controller
to perform an assessment. It also allows the object to modify or update the events before
they are displayed.

 The didSelectRowWithAssessmentEvent() function tells the delegate when the user
selected an assessment event. The willDisplayEvents() function tells the delegate when
a new set of events is fetched from the Care Plan Store.

 In this section you will learn how to adopt the protocol and display a ResearchKit
task when a user selects an activity.

 Refactoring the Assessment Activity Models
 Before implementing the delegate, the data model needs to be refactored to better
support the loading of assessment activities and their steps. You can find the updated
model code in the chapter_05_start folder.

 Let’s look at what’s changed and what’s been added:

• The activity protocol and struct has been refactored now to use
protocol extensions to implement the correct behavior for an
intervention activity.

• An assessment protocol, extension, and struct have been added
to provide assessment-specific behavior, such as for creating
assessment activities and tasks and parsing the assessment-
specific JSON.

• An ActivityStep protocol and extension have been added to
support loading the specific activity step JSON.

• The CarePlan has a new helper method called
findAssessmentActivity to get an assessment based on its
identifier.

• careplan.json has been cleaned up so we can demonstrate
loading different style assessment activities and steps.

 Now that you’re up to date with the model changes, we can continue to add support
to load a ResearchKit Assessment task and then store the results. The steps are as follows:

 1. Implement the OCKSymptomTrackerViewControllerDelegate
 didSelectRowWithAssessmentEvent() method and present
the ResearchKit ORKTaskViewController.

 2. Implement the ORKTaskViewControllerDelegate
 didFinishWithReason() method to retrieve the task results.

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

83

 3. Build an OCKCarePlanEventResult from the task results
and store this along with the updated state of the
OCKCarePlaneEvent in the Care Plan Store.

 4. Dismiss the ORKTaskViewController and view the updated
results in the OCKSymptomTrackerViewController.

 5. Add the HealthKit capability to the application, as this is
required by ResearchKit.

 Presenting the Task View Controller
 You can follow these steps by making the necessary changes to Chapter05_start or, if you
prefer, just open Chapter05_final and follow through.

 Open the ZCCarePlanTabViewController.swift file and add the following extension to
the end of the file:

 extension ZCCarePlanTabViewController :
OCKSymptomTrackerViewControllerDelegate {

 func symptomTrackerViewController(viewController:
OCKSymptomTrackerViewController, didSelectRowWithAssessmentEvent
assessmentEvent: OCKCarePlanEvent) {

 // Lookup the assessment the row represents.
 guard let sampleAssessment = self.careplanManager?.carePlan.

findAssessmentActivity
(assessmentEvent.activity) else { return }

 /*
 Check if we should show a task for the selected assessment event
 based on it’s state.
 */
 guard assessmentEvent.state == .Initial ||
 assessmentEvent.state == .NotCompleted ||
 (assessmentEvent.state == .Completed && assessmentEvent.

activity.resultResettable) else { return }

 // Create an assessment task and `ORKTaskViewController` for the
assessment's task.

 let taskViewController = ORKTaskViewController(task:
sampleAssessment.createTask(), taskRunUUID: nil)

 viewController.navigationController!.presentViewController(taskViewC
ontroller, animated: true, completion: nil)

 }

 }

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

84

 The preceding extension handles the didSelectRowWithAssessmentEvent() event
from the OCKSymptomTrackerViewControllerDelegate.

 First, it loads the assessment activity instance for the selected assessment event
(OCKCarePlanEvent). It validates that the event is in the correct state. Note that it also
checks for the resultResettable property. We’ll discuss this in more detail shortly.

 The next step creates a ResearchKit ORKTaskViewController. The initializer for this
controller takes an instance of a ResearchKit ORKTask object.

 Setting the Symptom Tracker Delegate
 At this point, the application will not compile because we still need to add support
to the assessment activity to create a task. We’ll do that next, but first note that
the TabBarController needs to be set to be its delegate and then present the
ORKTaskViewController instance via the navigation controller.

 ■ Note ResearchKit provides a series of models and controllers that can be used to
collect information from a user for the purposes of a clinical study. There are numerous
types of tasks a user might be presented with, and ResearchKit supports a variety of
tasks, from collecting signatures and filling out forms to performing active tasks such as
monitoring a user walking. ORKTaskViewController presents these tasks modally. If you’re
not familiar with ORKTaskViewController, you may need to further read up on ResearchKit
here http://researchkit.org/docs/Classes/ORKTaskViewController.html .

 Open the ZCCareKitTabCoordinator.swift file and add the following line in start()
after the call to createSymptomTrackerViewController() :

 symptomTrackerController.delegate = tabbarcontroller

 This assigns the TabBarController to be the delegate object for the
SymptomTrackerViewController.

 Adding a ResearchKit Task
 In this section you’ll learn how to create a ResearchKit task which can be used by the
supporting views. Open Assessment.swift. At the top of the file, change the assessment
protocol to the following by adding the createTask() method declaration:

 protocol Assessment : Activity {

 var taskIdentifier : String { get set }
 var steps : [ActivityStep] {get set}
 func createTask() -> ORKTask
 }

http://researchkit.org/docs/Classes/ORKTaskViewController.html

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

85

 Now add the following implementation to the Assessment extension:

 func createTask() -> ORKTask {

 var steps : [ORKQuestionStep] = []

 for step in self.steps {

 let stepidentifier = NSLocalizedString(step.stepIdentifier,
comment: "")

 let stepquestion = NSLocalizedString(step.question, comment: "")

 var answerFormat : ORKAnswerFormat?

 switch step.format {

 case .Quantity:

 let quantityType = HKQuantityType.quantityTypeForIdentifier
(HKQuantityTypeIdentifierBloodGlucose)!

 let unit = HKUnit(fromString: step.unit)
 answerFormat = ORKHealthKitQuantityTypeAnswerFormat(quantity

Type: quantityType, unit: unit, style: .Decimal)

 case .Scale:

 // Get the localized strings to use for the task.
 let maximumValueDescription = NSLocalizedString(step.

maxValueDescription, comment: "")
 let minimumValueDescription = NSLocalizedString(step.

minValueDescription, comment: "")

 // Create a question and answer format.
 answerFormat = ORKScaleAnswerFormat(
 maximumValue: step.maxValue,
 minimumValue: step.minValue,
 defaultValue: step.defaultValue,
 step: step.step,
 vertical: step.vertical,
 maximumValueDescription: maximumValueDescription,
 minimumValueDescription: minimumValueDescription
)
 }

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

86

 let questionStep = ORKQuestionStep(identifier: stepidentifier,
title: stepquestion, answer: answerFormat)

 questionStep.optional = false

 steps.append(questionStep)

 }

 // Create an ordered task with a single question.
 let task = ORKOrderedTask(identifier: activityType.rawValue, steps:

steps)

 return task
 }

 The createTask() method will return a ResearchKit ORKTask instance.
 The ZombieCare Plan has specified that each assessment activity can have a single

task, and each task can have one or more steps. There are two types of question/answers
supported:

• A question with a quantity answer—that is, the answer is a value
between two other values, where the min and max values are
specified.

• A question with a single value input that specifies a unit of
measurement.

 By specifying these two different answer types, ResearchKit will display the
appropriate task form.

 The createTask() method creates an array of ORKQuestionSteps that are passed as
a parameter to the ORKOrderedTask initializer.

 It is possible that you may want to support alternative question types and even
different tasks. You can implement other types of ResearchKit tasks or even create your
own. To do that, you will need to define the structure of your data differently and adapt
your model and methods appropriately.

 You should now be able to build and run the application. Press Command+R
and run the app in the simulator. Navigate to the Symptom Tracker tab and select
one of the assessment events. You should be presented with the ResearchKit
ORKTaskViewController and the relevant task view. You will notice, however, that
the view will not close at this stage. That’s because you haven’t yet implemented the
ORKTaskViewControllerDelegate.

 Handling Task Completion
 Open the ZCCarePlanTabViewController.swift and scroll down to the
 didSelectRowWithAssessmentEvent() delegate handler. Add the following delegate
assignment after the line that creates the ORKTaskViewController:

 taskViewController.delegate = self

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

87

 Now add the ORKTaskViewControllerDelegate extension code and the
completeEvent helper method to the bottom of the file:

 private func completeEvent(event: OCKCarePlanEvent, inStore store:
OCKCarePlanStore, withResult result: OCKCarePlanEventResult) {
 store.updateEvent(event, withResult: result, state: .Completed) {

success, _, error in
 if !success {
 print(error?.localizedDescription)
 }
 }
 }

 extension ZCCarePlanTabViewController: ORKTaskViewControllerDelegate {

 func taskViewController(taskViewController: ORKTaskViewController,
didFinishWithReason reason: ORKTaskViewControllerFinishReason, error:
NSError?) {

 defer {
 dismissViewControllerAnimated(true, completion: nil)
 }
 }

 If you run the app now, you will find you can close the task view after having
completed the task.

 In the next section you will retrieve the result from the task and create a CareKit
OCKCarePlanResult that can be associated with the assessment event and stored in the
Care Plan.

 Creating Assessment Activity Results
 Add the following code in the task delegate handler after the defer block so the handler
looks like the following:

 func taskViewController(taskViewController: ORKTaskViewController,
didFinishWithReason reason: ORKTaskViewControllerFinishReason, error:
NSError?) {

 defer {
 dismissViewControllerAnimated(true, completion: nil)
 }
 guard reason == .Completed else { return }

 guard let navController = self.viewControllers?[1] as?
UINavigationController,let symptomTrackerViewController =
navController.viewControllers[0] as? OCKSymptomTrackerViewController
else { return }

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

88

 guard let assessmentEvent = symptomTrackerViewController.
lastSelectedAssessmentEvent,

 let assessment = self.careplanManager?.carePlan.findAssessment
Activity(assessmentEvent.activity) else { return }

 let carePlanResult = assessment.buildResultForCarePlanEvent
(assessmentEvent, taskResult: taskViewController.result)

 completeEvent(assessmentEvent, inStore: (self.careplanManager?.
store)!, withResult: carePlanResult)

 }
 }

 The defer keyword ensures that the ORKTaskViewController will be dismissed
regardless of when this method completes. This is very useful when you have multiple
guard statements that return.

 After the defer statement, there are a few guard calls that return if the event has
not been completed. The assessment activity instance is then retrieved using the
 findAssessmentActivity() method from the CarePlan class, and this is followed up by a
call to a new assessment method called buildResultForCarePlanEvent() .

 The buildResultForCarePlanEvent() returns a new instance of a CareKit
OCKCarePlanEventResult object. You need to add this method to the assessment
extension as follows:

 func buildResultForCarePlanEvent(event: OCKCarePlanEvent, taskResult:
ORKTaskResult) -> OCKCarePlanEventResult {

 guard let firstResult = taskResult.firstResult as? ORKStepResult,
stepResult = firstResult.results?.first else { fatalError("Unexpected
task results") }

 if let scaleResult = stepResult as? ORKScaleQuestionResult, answer =
scaleResult.scaleAnswer {

 return OCKCarePlanEventResult(valueString: answer.stringValue,
unit’string: "out of 10", userInfo: nil)

 }
 else if let numericResult = stepResult as? ORKNumericQuestionResult,

answer = numericResult.numericAnswer {
 return OCKCarePlanEventResult(valueString: answer.stringValue,

unit’string: numericResult.unit, userInfo: nil)
 }
 fatalError("Unexpected task result type")
 }

 The assessment event is then updated in the Care Plan Store with the associated
result (Figure 5-2).

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

89

 At this stage, if you run the application you will find that when you complete
a task, the event is updated as stated and the user interface is returned to the
SymptomTrackerViewController, which now displays the result adjacent to the event.

 There are now only two things left to do: add the Healthkit capability and discuss the
resultResettable property.

 Adding HealthKit Capabilities
 Because we’ve included ResearchKit and tasks that require using HealthKit quantity
units, it’s a requirement to include the HealthKit entitlement to the app.

 Select the ZombieCare project and target in Xcode and select the Capabilities tab.
From here you can turn on HealthKit, as shown in Figure 5-3 .

 Figure 5-2. Displaying assessment event results

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

90

 How to Retake Assessments
 As promised, here’s one final note on the resultResettable property. You may recall this was
checked when the selection of an event was handled in the SymptomTrackViewController
and the handler returned if this was set to true:

 guard assessmentEvent.state == .Initial ||
 assessmentEvent.state == .NotCompleted ||
 (assessmentEvent.state == .Completed && assessmentEvent.

activity.resultResettable) else { return }

 The resultResettable is a property of OCKCarePlanActivity that specifies whether
or not to allow the user to retake the assessment. It defaults to no and is only used by
.Assessment activities. In the ZombieCare app, this has been set to true for all activities,
so a user can retake the assessment task, but it can be adjusted depending on the
requirements.

 Updating the Symptom and Measurement Tracker
 As you learned in the previous section, by updating the underlying data in your Care Plan
Store, the SymptomTrackerViewController updates automatically. This is for free—you
don’t need to change anything.

 Figure 5-3. Turning on HealthKit capabilities

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

91

 Under the hood, the SymptomTrackerViewController subscribes to changes in the
store by conforming to the OCKCarePlanStoreDelegate just like the Care Card did. When
a change event is signalled, it then fetches the latest events and updates the user interface
accordingly.

 Integrating Results with HealthKit
 CareKit, ResearchKit, and HealthKit all focus on sharing health information. HealthKit
itself provides a structure for storing health information that can be shared between apps
while protecting a user’s privacy.

 As we acquire health data in CareKit, it makes a lot of sense to be able to share it with
HealthKit so it’s only stored once, securely, and potentially the information can be used
by other apps. For instance, some common data fields like weight or temperature are
supported by HealthKit.

 About HealthKit Integration
 CareKit provides support for creating HealthKit-related OCKCarePlanEventResults based
on HealthKit data. Depending on your requirements you can create results with the
following HealthKit types:

• HKQuantitySample object : Represents a piece of data with single
numeric value, such as height, weight, heart rate, or calories. You
must provide a supported HKUnit type.

• HKCorrelation object : Groups multiple data entries in a single
data entry. Note, though, that CareKit only supports the
HKCorrelationTypeIdentifierBloodPressure Correlation type in 1.0.

• HKCategorySample object : Describes samples whose values are
represented by predefined enumeration values, such as sleep
data, which has an enumeration for sleep analysis.

 ■ Note You can find out more about HealthKit sample types from Apple’s documentation.

 The way in which CareKit associates an OCKCarePlanEventResult with HealthKit
data is through the UUID and sample type properties on an HKSample object. When you
create an instance of an HKSample with HealthKit, you specify the sample or quantity type
in the initializer. HealthKit will generate a UUID at the time of construction. For example:

 let quantityType = HKQuantityType.quantityTypeForIdentifier(HKQuantityType
IdentifierBodyMass)!
 let quantity = HKQuantity(unit: unit, doubleValue: weightAnswer.doubleValue)
 let now = NSDate()
 let sample = HKQuantitySample(type: quantityType, quantity: quantity,
startDate: now, endDate: now)

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

92

 Now when you create an instance of an OCKCarePlanEventResult with the preceding
sample, CareKit will store the HKSample and HKUnit information and will also set
properties for the sample UUID and sample type. When it comes time to load events for
an activity, the Care Plan Store will query the Health Store for all the HealthKit samples
using the sampleUUID and date and then will use those samples to instantiate the
OCKCarePlanEvent and OCKCarePlanEventResult object. Otherwise, it falls back to the
default initializers.

 ■ Note A lot of different sample types and units can be used with HealthKit. You will
need to read the HealthKit documentation to understand what relevant types to use for your
application.

 You will learn next how to integrate your ZombieCare data with HealthKit. To do so,
you need to make a few technical choices on how you might determine whether an activity
should or can be saved to the HealthStore.

 Integrating HealthKit with the Example
 The approach taken by the OCKSample application that comes with CareKit uses
protocols for some hard-coded activity types. In particular, it creates a protocol called
HealthSampleBuilder, which is adopted by the Weight assessment activity. In the Zombie
example, it’s a little more difficult because we are loading data dynamically and using a
more generic implementation for our activities.

 The logic used to determine whether one of the Zombie activities can be saved to the
HealthKit store is based on inspecting the format field of the assessment task steps. If the
step is of type .Quantity, we will assume that a valid unit is provided.

 ■ Note HKUnit only supports a predefined list of strings. It will throw an exception if you
use an invalid string.

 The logical place to save data to the Health Store is in the
ORKTaskViewControllerDelegate didFinishWithReason() method you worked on
earlier. You will modify the method to include support for storing results in the HealthKit
store. To do so, follow these steps:

 1. Check whether the assessment event can be stored in
HealthKit.

 2. Create a HealthKit sample from the assessment task result.

 3. Create an instance of the HealthKit store and request
authorization from the user.

 4. If authorized, attempt to save the sample to the store.

 5. Finally, update the CareKit store with the result.

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

93

 Adding Support for HealthKit Data
 Prior to completing the preceding steps, it is necessary to add a few helper methods to the
assessment object, which can generate some of the additional data required.

 After the buildResultForCarePlanEvent() method in the Assessment extension,
add the following:

 func supportsHealthKit() ->Bool {

 guard let firstStep = self.steps.first as? ZCActivityStep else
{return false}

 if firstStep.format != .Quantity {
 return false
 }

 return true
 }

 func getHKQuantityType() -> HKQuantityType {

 guard let firstStep = self.steps.first as? ZCActivityStep else
{fatalError("Unable to retrieve Task step")}

 var quantityType : HKQuantityType

 switch firstStep.unit {
 case "lb":
 quantityType = HKQuantityType.quantityTypeForIdentifier(HKQu

antityTypeIdentifierBodyMass)!
 default:
 fatalError("unit not supported")
 }

 return quantityType

 }

 func getHKUnit() -> HKUnit {

 guard let firstStep = self.steps.first as? ZCActivityStep else
{fatalError("Unable to retrieve Task step")}

 return HKUnit(fromString:firstStep.unit)
 }

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

94

 func buildHKSampleWithTaskResult(result: ORKTaskResult) ->
HKQuantitySample {

 guard let firstResult = result.firstResult as? ORKStepResult,
stepResult = firstResult.results?.first else {
fatalError("Unexpected task results") }

 let now = NSDate()
 let quantityType = getHKQuantityType()
 var numericAnswer : Double = 0

 if let scaleResult = stepResult as? ORKScaleQuestionResult, answer =
scaleResult.scaleAnswer {

 numericAnswer = answer.doubleValue
 }
 else if let numericResult = stepResult as? ORKNumericQuestionResult,

answer = numericResult.numericAnswer {
 numericAnswer = answer.doubleValue
 }

 let hkUnit = self.getHKUnit()
 let quantity = HKQuantity(unit: hkUnit, doubleValue: numericAnswer)

 return HKQuantitySample(type: quantityType, quantity: quantity,
startDate: now, endDate: now)

 }

 func localizedUnitForSample(sample: HKQuantitySample) -> String {

 let formatter = NSMassFormatter()
 formatter.forPersonMassUse = true
 formatter.unit’style = .Short

 let value = sample.quantity.doubleValueForUnit(self.getHKUnit())
 let formatterUnit = NSMassFormatterUnit.Pound

 return formatter.unit’stringFromValue(value, unit: formatterUnit)
 }

 These methods provide support for the following:

• supportsHealthKit() : Returns a bool to indicate if this
assessment result can be stored in the HealthKit store.

• getHKQuantityType() : Returns the appropriate HKQuantityType
of the given activity steps unit string.

• getHKUnit() : Return an HKUnit for the assessments unit string.

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

95

• buildHKSampleWithTaskResult() : Creates an HKQuantitySample
from the task result that can be stored in the HealthKit store.

• localizedUnitForSample() : Returns localized unit string for the
given assessment unit that be used when saving the sample to the
HealthKit store.

 Creating HealthKit Data
 Finally, we can now add support to the didFinishWithReason delegate method in
ZCCarePlanTabViewController.swift. Scroll down to the bottom and replace the call to
 completeEvent() with the following code:

 if assessment.supportsHealthKit() {
 let sample = assessment.buildHKSampleWithTaskResult(taskViewCont

roller.result)
 let sampleTypes: Set<HKSampleType> = [sample.sampleType]
 let healthStore = HKHealthStore()
 healthStore.requestAuthorizationToShareTypes(sampleTypes,

readTypes: sampleTypes, completion: { success, _ in

 if !success {
 self.completeEvent(assessmentEvent, inStore: (self.

careplanManager?.store)!, withResult: carePlanResult)
 return
 }

 healthStore.saveObject(sample, withCompletion: { success, _ in
 if success {
 let healthKitAssociatedResult =

OCKCarePlanEventResult(
 quantitySample: sample,
 quantityStringFormatter: nil,
 displayUnit: assessment.getHKUnit(),
 displayUnit’stringKey: assessment.localizedUnit

ForSample(sample),
 userInfo: nil
)

 self.completeEvent(assessmentEvent, inStore:
(self.careplanManager?.store)!, withResult:
healthKitAssociatedResult)

 }

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

96

 else {
 self.completeEvent(assessmentEvent, inStore: (self.

careplanManager?.store)!, withResult: carePlanResult)
 }
 })
 })

 }
 else {
 completeEvent(assessmentEvent, inStore: (self.careplanManager?.

store)!, withResult: carePlanResult)
 }

 This completes the steps mentioned earlier to now store the assessment task results
in HealthKit and fallback to storing the details in the CareKit store. All the preceding code
is in the chapter05_final/ZombiCare.workspace.

 If you run the application now using Command+R, navigate to the weight
assessment task and complete the task. You will be prompted to authorize the use of the
HealthKit store, after which the data is stored and the view is dismissed.

 ■ Note When you’ve authorized HealthKit once, you will not be prompted unless you
reinstall the application.

 That completes the section on HealthKit integration. Generally the process of saving
to HealthKit is quite easy. The trickier technical decisions will be how you determine
what can be saved and formatting the data appropriately as you’ve seen.

 Implementing a Custom Feedback Controller
 In previous sections, you’ve seen how to integrate ResearchKit and HealthKit to prompt
a user with tasks to assess the progress of their treatment. ResearchKit has a considerable
number of well-thought-out tasks including the standard Ordered or Navigable Stepped
tasks and also the Active tasks. These are pretty flexible too, with multiple answer formats,
so I recommend understanding your choices first before writing a set of custom tasks.

 But you may not be able to use one of these supported tasks for one reason or
another. Perhaps they don’t exist, or maybe you need to style and present the tasks
differently? In this section you will learn how to create a simple task that you can use
and plug in to your own application.

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

97

 There are a couple of approaches you might take when creating your own custom
task:

• Create your own custom task by subclassing ResearchKit
ORKActiveStep and ORKActiveStepViewController.

• Create your own bespoke task from scratch with your own
ViewController and task results.

 You now have a good understanding of how to implement a ResearchKit task, so
we’ll skip that option and learn how to create a task from scratch without the ResearchKit
support. If you’re interested in custom ResearchKit tasks, you may want to read further on
the ResearchKit API documentation.

 In the ZombieCare application, the custom task will be a cognitive brain test for the
Zombie. It will test to see whether the zombie understands what is food and what is not
food based on a series of pictures presented in a Tinder style swipe selector. I think the
less accurate a zombie is, the more affected by the zombie virus they are.

 For this task, it’s best to follow through the solution already implemented in the
Chapter_05_final source code.

 Defining a Custom Task
 To support the Tinder style selection, we’ve included a set of classes that originated from
a Swift open source project.

 ■ Note Open source Tinder style code was created by Richard Kim, which you can
find here (https://github.com/cwRichardKim/TinderSimpleSwipeCards). This was
subsequently ported to Swift by Brandon Gao (x https://github.com/reterVision/
TinderSwipeCardsSwift).

 In the Xcode project, navigate to the CareTab/BrainTest group. You will find
OverlayView, DraggableView, and DraggableViewBackground. These are the base files
for implementing the swipe feature. The files have been modified slightly to be a bit more
task specific and to include a couple of new structs we want to specify: the cards and task
results. BrainTask and TaskResult structs have been added:

• BrainTask : Hold the information for a card, including the image to
display and the expected result.

• TaskResult : Used to record the results form the user’s selection.

 The DraggableViewBackground class has been modified to be more task specific and
has a new delegate added so it can notify delegates when all the cards have been swiped:

 func didCompleteSwiping(view: DraggableViewBackground) -> Void

https://github.com/cwRichardKim/TinderSimpleSwipeCards
https://github.com/reterVision/TinderSwipeCardsSwift
https://github.com/reterVision/TinderSwipeCardsSwift

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

98

 BrainTestViewController is the main task controller and it’s the class that will be
instantiated when presenting the task to the user in replacement of the ResearchKit tasks
used earlier. It has a simple delegate to indicate when the task is complete in a similar way
to previous task controllers:

 func didFinishWithResult(result: TaskResult)

 Now that the project is using a different type of task controller, there needs to
be a way to identify which controller to use for which class. There’s a number of
different approaches one might take. For this example, we’re simply going to use the
groupIdentifier property on Activity to distinguish this task from others. If you look in
careplan.json, there is an additional brain assessment task that has been added with the
group identifier brain.

 Adding the Custom Task
 Now that you have an understanding of the supporting classes for the cognitive brain test,
let’s look at how it’s implemented. Open the ZCCarePlanTabViewController.swift file and
find the BrainTestViewControllerDelegate extension. This extension is very similar to
the other extension for handling ORKTaskViewControllerDelegate. The main difference
is that the delegate passes back the TaskResult, which is checked and passed to the
Assessment object so it can create a new OCKCarePlanEventResult based on this custom
TaskResult.

 Finally, in the OCKSymptomTrackerViewControllerDelegate handler in
ZCCarePlanTabViewController, we need to decide which task ViewController to load. In
our simplistic example, we just check the assessment activities group identifier and load
appropriately:

 if assessmentEvent.activity.groupIdentifier == kBrainGroupIdentifier {

 let taskViewController = BrainTestViewController()
 taskViewController.delegate = self
 viewController.navigationController!.presentViewController(taskV

iewController, animated: true, completion: nil)
 }
 else {
 let taskViewController = ORKTaskViewController(task: sampleAssessment.

createTask(), taskRunUUID: nil)
 taskViewController.delegate = self
 viewController.navigationController!.presentViewController

(taskViewController, animated: true, completion: nil)
 }

 Press Command+R to view the results in the simulator. Navigate to the Brain
Assessment task and swipe to complete the tests. On completion, the view is dismissed,
and the results are viewable in the SymptomTrackerViewController (Figure 5-4).

CHAPTER 5 ■ SYMPTOM AND MEASUREMENT TRACKER

99

 There are a number of approaches you might take to customizing your task
views. This section demonstrated just one of those. The key items to do are to
handle the presentation and completion of the task view and convert the result to a
OCKCarePlaneEventResult, which can be recorded in the Care Plan Store.

 Summary
 In this chapter you’ve learned more details about CareKit’s Symptom and Measurement
Tracker scene and how to present it, use ResearchKit tasks, and integrate the results
with HealthKit. You also found out how to create and use your own custom task
ViewController.

 That completes the chapter on the Symptom and Measurement Tracker module. In
the next chapter you will learn about the Insights dashboard.

 Figure 5-4. Swipe custom task ViewController

101© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3_6

 CHAPTER 6

 Insights

 Chapter 1 briefly introduced you to Insights, and you learned that CareKit provides the
OCKInsightsViewController. This controller and its associated views and data types
behave quite differently than the previous Care Card and Symptom and Measurement
Tracker modules. Unlike activities and events, insights are not stored in the Care Plan
Store. In fact, they are not persisted at all, but generated at runtime. They have also
been designed to be subclassed to enable developers to present data in their own
unique way.

 The Insights scene or dashboard is where a user can visualize data related to their
care plan. Data can be presented as either messages, such as Tips or Alerts regarding
the treatment, or by a chart, which can show the correlation between a treatment plan’s
intervention and assessment activities. This is where a patient or Care Team can get real
value out of CareKit because it enables you to present meaningful analysis. Consider what
you can do:

• Visualize the effect of a treatment in relation to the patient’s
assessment. Does more or less medication have a direct impact
on the patient’s outcome?

• Display some running commentary on the treatment plan to help
incentivize the patient (for example, advise the patient about
whether they are adhering to their medication).

• Share the charts and insights with your connections (Care Team,
friends, and relatives).

• Provide effective feedback. The Care Team could present
additional tips or commentary after reviewing the patient’s
progress and present this in a message (assuming your Care Plan
can be updated remotely).

• Share industry news about a condition, which can be displayed in
the messages view.

• Display any arbitrary data using the Insights scene’s charts and
messages (it’s not restricted to CareKit data). You can create
insights from any other sources.

http://dx.doi.org/10.1007/978-1-4842-2226-3_1

CHAPTER 6 ■ INSIGHTS

102

 In addition to all these flexible sources and presentations, as a developer you can
also create your own subclasses to present data in your own unique or purposeful way.

 The Insights scene provides you with an opportunity to take your Care Plan full circle
from treatment and assessment to analysis and presentation of feedback and insights to
the patient.

 In this chapter you will learn how to implement the Insights dashboard and view
insights in both message and chart format. You’ll also learn how this scene can be
extended to receive feedback from the Care Team with tips on improving the user’s
condition. The chapter concludes with an inspection of the CareKit Document class and
show how this can be shared.

 Insight Data Types
 Before adding insights to the ZombieCare project, you need to understand the insight
data types. CareKit provides the OCKInsightItem abstract class as the base model for
items in the OCKInsightsViewController. It has three properties:

• title : A string indicating the title of the item

• text : A string indicating the description of the item

• tintColor : The display tint color of the item

 The OCKInsightItem class cannot be instantiated directly because it’s an abstract
class, but CareKit does include two concrete implementations for messages and charts:

• OCKMessageItem : An object that can display text or alerts

• OCKChart : An abstract class that provides a model for charts

 In addition, CareKit provides the OCKBarChart, a concrete implementation of
OCKChart that represents a vertical grouped bar chart, as seen in Figure 1-5 from Chapter 1 .

 The OCKInsightsViewController displays an array of OCKInsightItem
objects. It consists of a UITableView and some custom cell types. One
for messages (OCKInsightsMessageTableViewCell) and one for charts
(OCKInsightsChartTableViewCell). The controller determines which cell type to use
depending on the class type.

 An interesting point here is that although the documentation advises that you can
use your own concrete subclasses of OCKInsightItem, it’s only practically possible to
provide a subclass of OCKChart—at least in the current version, which is 1.0 at the time of
writing. The reason for this is because the OCKInsightsMessageTableViewCell expects the
concrete type OCKMessageItem. Although you might inherit from OCKMessageItem, the
cell class will only render the specific OCKMessageItem fields, for example, title, text, and
symbol. So it would be pointless to subclass it.

 On the other hand, the OCKInsightsChartTableViewCell expects the abstract
OCKChart object and renders its view properly along with the title and text properties
through polymorphism. You will need to take this into account if you’re planning to
present some custom insights.

http://dx.doi.org/10.1007/978-1-4842-2226-3_1

CHAPTER 6 ■ INSIGHTS

103

 As mentioned earlier, none of these types is included or used by the CareKit Care
Plan Store. You will need to provide your own plan on how you utilize these classes in
your project and plan how your Insights view will correlate to your Care Plan treatment
and assessment activities. Let’s first look at how to create messages in more detail.

 Creating Messages
 Messages can display simple text messages using the OCKMessageItem class. There are
two types of messages defined in the OCKMessageItemType enumeration:

• Alerts : The Alert message type is defined by the
OCKMessageItemTypeAlert. If medication adherence is below a
certain threshold, you may want to advise the user using this type.

• Tips : The Tip message is defined by the OCKMessageItemTypeTip
type. Tips can be provided by the Care Team, for instance, or be
based on some analysis of the assessment results.

 When displayed, the message type is recognizable by the tint color and symbol
appended to the end of the message title.

 Apple provides an example with the OCKSample app of a formatted Tip, which
indicates a user’s percentage adherence to their taking of medication. It’s a useful example
that demonstrates how a message can convey an insight derived from the data itself.
Alternatively, as suggested earlier, the message might actually be retrieved from a server
which is updated by the Care Team. Either way, the following code creates a simple
message example for an Alert that advises the user if they have missed their medication on
the current day:

 let completedMedicationTasks = 5
 let totalMedicationTasks = 7

 let message = OCKMessageItem(
 title: "Medication Alert",
 text: "You've only completed \(completedMedicationTasks) out of

\(totalMedicationTasks) tasks today",
 tintColor: UIColor.redColor(),
 messageType: .Alert)

 This would look like figure 6-1 when displayed in the Insights view.

CHAPTER 6 ■ INSIGHTS

104

 Figure 6-1. Displaying an OCKMessageItem Alert

 Note how the Alert icon and edge indicator both use the tint color. In the next section
you’ll learn how to create a chart insight item.

 Creating Charts
 Creating charts is a good deal more complicated than messages. It requires some
considerable thought and planning on how to format the data. There are numerous steps
involved to creating a chart.

 The most difficult task with respect to creating charts is collecting the data. In some
cases this might be from the Care Plan Store, or it may be from another source—for
instance, from a remote server. In both cases you’ll likely need to make one or more
asynchronous calls to the data source and then combine the data using completion
handlers. You learned in Chapter 3 how to access data asynchronously from the Care Plan
Store, and we’ll utilize those methods in this chapter to populate the chart.

 Because you will be learning to create an OCKBarChart in this chapter, let’s first take
a look at the classes provided by CareKit to see how it works.

 Figure 6-2. Entity relationship diagram for CareKit charts

http://dx.doi.org/10.1007/978-1-4842-2226-3_3

CHAPTER 6 ■ INSIGHTS

105

 As you can see, OCKChart species two properties:

• chartView : This is a UIView and is the method which needs to be
overridden to provide a custom chart view.

• animateView(..) : This method is called for visible charts to
provide a custom animation.

 These two properties are used by the OCKInsightsViewController to present the
chart.

 The OCKBarChart is a concrete subclass of OCKChart and has a number of read only
properties for labels and data series. It also has an array of data (dataSeries) represented
by OCKBarSeries that is used by a single OCKGroupBarChartView view, which is the
concrete chartView.

 All the properties are initialized via a custom initializer, initWithTitle(...) .
 You don’t really need to understand the inner details of these classes. You just need

to know that when OCKBarChart is initialized, it will take the role of the chartViews data
source and coordinate the creation of the chart view using an array of OCKBarSeries and
its associated labels.

 That means the first step to creating a chart is to define the data series and instantiate
one or more OCKBarSeries objects for your chart from your data. For example, the
following code demonstrates the creation of two series of data that represent the values
collated from the Rage assessment activity results and a medication series taken from the
ZombieCare app:

 let rageBarSeries = OCKBarSeries(
 title: "Rage",
 values: rageValues,
 valueLabels: rageLabels,
 tintColor: UiColor.redColor())

 let medicationBarSeries = OCKBarSeries(
 title: "Medication Adherence",
 values: medicationValues,
 valueLabels: medicationLabels,
 tintColor: UIColor.greenColor())

 Once the series have been defined then the chart can be created as follows:

 let chart = OCKBarChart(
 title: "Rage",
 text: nil,
 tintColor: UIColor.redColor(),
 axisTitles: axisTitles,
 axisSubtitles: nil,
 dataSeries: [rageBarSeries, medicationBarSeries])

CHAPTER 6 ■ INSIGHTS

106

 The OCKInsightsViewController can now be initialized with an array of insight items that
includes the chart.

 Now that you’ve learned the basics of how to create messages and chart insight
items, we can take the next step of creating the Insights scene for the ZombieCare app.

 ZombieCare App Insights
 Your care team will most likely present you with a requirement for some specific and
relevant insights along with your care plan. In the ZombieCare app, we will present two
messages and a chart.

 ZombieCare Message Insights
 The following messages are presented:

• A message Tip : This will advise the user that if they eat the golden
apple before they take the purple potion the medication will be
more effective.

• A message Alert : A percentage of the medication adherence for all
medication taken in the previous week will be displayed.

 ZombieCare Chart Insights
 We will present two data series:

• Series one will represent the average Rage values for each day of
the week: the average of the morning, mid-day, and evening Rage
values recorded in the assessment view.

• Series two will represent the accumulated medication values for
each day of the week: the number of completed tasks for each day
of the week.

 With this approach, the patient will be able to see a correlation between the
medication they’ve taken and the level of their rage. One would hopefully see that the
more the patient adheres to their medication, the lower their temper or rage is, which
would indicate the medication is working.

 Now that we’ve defined the data series, we want to visualize in the chart there is one
further issue that needs to be addressed. The scale and format of the two data series are
different. The medication values for the golden apple, purple potion, and outdoor walk are
simple values of 0 or 1 (that is, done or not done), whereas the values range on a scale of
between 0.0 and 10.0. To display an accurate and meaningful correlation between the two,
one or the other series needs to be adjusted so the series use the same range and scale.

 One approach to use is a multiplier to scale or offset the data in one series so it
matches the other. For example if the Medication series uses the scale 0.0–1.0, and the
Rage scale is based on 0.0–10.0, then we can multiply the medication values by 10 and the
scales will be the same.

CHAPTER 6 ■ INSIGHTS

107

 For the ZombieCare app, this approach will work fine, but we’ll also need to use the
sum of the daily medication and the average of the assessment result values. For example:

 Daily Medication value = SUM(completed Golden Apple +
completed potion of weakness + completed outdoor walks)

 Daily Rage value = AVERAGE(morning Rage + mid-day Rage +
evening Rage)

 Now that the requirement has been defined in terms of what insights to display in
the Insights scene, an approach to retrieve the data and create the insights that can be
used by the InsightsViewController must also be defined.

 For the first message insight there is no dependence on data; it's simply a Tip, so
we can hard-code it or perhaps load from the ZombieCare plan. But the other message
will require us to make a calculation based on the event results of the intervention
activities, and the chart will require us to generate some values based on the assessment
event results. This data can all be retrieved from the Care Plan Store and converted into
InsightItems.

 When loading data from the Care Plan Store, it is necessary to ensure that one
adheres to certain principles:

• The data must be loaded asynchronously.

• The results should be dispatched back onto the main thread.

• Only load a limited data set.

 You learned in Chapter 3 that CareKit provides an API for querying the Care Plan
Store. Apple has also provided a nice example of loading data in its OCKSample using
some of the CareKit APIs. In the ZombieCare app you will follow a similar approach and
base the implementation on Apple’s example, from which you’ll learn to query the Care
Plan Store and convert events and event results into OCKInsightItems.

 Creating Insights
 The approach taken by Apple’s OCKSample app is to use NSOperations, blocks, and
queues to query the Care Plan Store and convert the results to InsightItems.

 ■ Note If you’re not familiar or unaware of how NSOperations work, you should read up
on Apple’s documentation before proceeding.

http://dx.doi.org/10.1007/978-1-4842-2226-3_3

CHAPTER 6 ■ INSIGHTS

108

 Let’s take a look at at how this works. To begin, take a look at what the
implementation actually consists of. There are two key NSOperation subclasses:

• The QueryActivityEventsOperation subclass is used to
query the Care Plan Store for Activity Events using the
 enumerateEventsOfActivity() API method. This operation also
has a method for finding events based on the specified activity
identifier.

• The BuildInsightsOperation subclass that creates
two OCKSInsightItems, an OCKMessageItem, and an
OCKChartItem by using a copy of the data queried from the
QueryActivityEventsOperation operation.

 Another helper class called InsightsBuilder creates, aggregates, and enqueues
the preceding two operations and ensures that they run in order by setting their
dependencies. Results are then stored in an Insights property, which can then be used by
other classes when the completion handler is triggered.

 There are a few interesting points to note about this implementation:

• Although the QueryActivityEventsOperation is fairly generic
in that it can query for different events based on the activity
identifier string, the BuildInsightsOperation is not, because it is
creating two very specific Insight items.

• The preceding operation classes make extensive use of the
GCD semaphores and queues to coordinate the running of
asynchronous queries on the CareKit Plan Store.

• The InsightsBuilder class makes use of the NSBlockOperation
operation in order to aggregate the results from the query
operations into the BuildInsightsOperation.

• The InsightsBuilder class uses the .addDependency() method to
set the dependencies of all operations to ensure that they run in
the correct order.

• The completion block is specified only on the last running
operation, that is, the BuildInsightsOperation.

 The classes under discussion have already been added to the project source code in /
chapter_06_start.

 In the ZombieCare app you will need to provide the following additional steps:

• Call the InsightsBuilder operations whenever an activity or event
is updated in the CareKit Plan Store.

• Provide a mechanism to update the UI when insights have been
updated.

CHAPTER 6 ■ INSIGHTS

109

 You may recall from Chapter 3 that you learned about the ZCCarePlanStoreManager
class, which provided a wrapper around the CareKit Plan Store and also received notification
when the CareKit Plan Store was updated by implementing the OCKCarePlanStoreDelegate
delegate. You will now use this class to be the entry point to using the InsightsBuilder
on initialization and also when these updates occur. In addition, it will provide its own
 ZCCarePlanStoreManagerDelegate.didUpdateInsights() delegate method, which can be
used to update the insights property on the OCKInsightsViewController, thereby completing
the lifecycle of insights.

 This whole process can be a little tricky to follow, especially if you’re new
to NSOperations, so we’ll take it step by step and implement the classes into the
ZombieCare app.

 The insights differ slightly from the OCKSample. In Apple’s example, it is preparing
insights for just two specific types of activities, whereas in the ZombieCare app the results
required are based on numerous activities. For instance, it’s required to measure the
percentage medication adherence on all .Intervention activities and the average of the
Rage values based on all the Rage activities.

 To facilitate this requirement, a group identifier called rage has been specified and
added in the ZombieCare Plan to all Rage activities. This means the app can query the CareKit
store using the group identifier.

 The insights implementation within the ZombieCare app is based on the Apple
example. If you open /chapter06_start, you will find a refactored version of the classes
mentioned. The changes include the following:

• The QueryActivityEventsOperation class is initialized with the
ZCCarePlanStoreManager and an array of activity structs. The
 main() method has also been refactored from the original example
as it iterates through the array of activities, finds the equivalent
OCKCarePlanActivity using the ZCCarePlanStoreManager.
findActivity() method. Note that a new innersemaphore has
been included to help synchronize calls when enumerating
activities.

• The BuildInsightsOperation class has a new method
to create a message Tip, called createTipMessage().
createMedicationAdherenceInsight() has been
refactored slightly to display an Alert OCKMessageItem
if there are no completed events. Finally, the the original
 createBackPainInsight() method has been refactored to
 createRageInsight() , and this method now calculates the
average Rage values for all the events for each day as per the new
requirement.

• The InsightsBuilder class remains largely the same.
Minor differences include passing an instance of
ZCCarePlanStoreManager to the QueryActivityEventsOperation
initializer and filtering the activities array so only relevant
activities are passed as parameters when initializing.

http://dx.doi.org/10.1007/978-1-4842-2226-3_3

CHAPTER 6 ■ INSIGHTS

110

 Building and Presenting the Insights Scene
 With the preceding classes in place, it’s time to update the source from chapter06_
start to use the classes to create insights and update the project to include the
OCKInsightsViewController. The steps to achieve this include the following:

 1. Initialize the InsightsBuilder in the ZCCarePlanStoreManager.

 2. Update the OCKCarePlanStoreDelegate functions in
ZCCarePlanStoreManager so that insights are updated when
the CareKit Care Plan Store is updated.

 3. Add an extension to ZCCareKitTabCoordinator to provide an
implementation of the ZCCarePlanStoreManagerDelegate so
it knows when insights are updated.

 4. Add a method to the ZCCareKitTabCoordinator to create and
add the OCKInsightsViewController to the tab.

 Start by opening ZCCarePlanStoreManager.swift from the project navigator and find
the init(carePlan:CarePlan) method. Add the following properties above the init method:

 var insights: [OCKInsightItem] {
 return insightsBuilder.insights
 }
 private var insightsBuilder: InsightsBuilder

 Before the call to super.init() , add the following line to initialize the
InsightsBuilder in the init method:

 self.insightsBuilder = InsightsBuilder()

 After the super.init() line set the careplanManager property as self so it is the
current instance for ZCCarePlanStoreManager:

 self.insightsBuilder.carePlanManager = self

 That completes the first step to initialize an instance of the InsightsBuilder and store
it as a property in ZCCarePlanStoreManager. Now update the OCKCarePlanStoreDelegate
implementation as follows:

 extension ZCCarePlanStoreManager: OCKCarePlanStoreDelegate {
 func carePlanStoreActivityListDidChange(store: OCKCarePlanStore) {
 updateInsights()
 }

 func carePlanStore(store: OCKCarePlanStore, didReceiveUpdateOfEvent
event: OCKCarePlanEvent) {

 updateInsights()
 }
 }

CHAPTER 6 ■ INSIGHTS

111

 Add the following as the last line in the init(carePlan:CarePlan) method:

 updateInsights()

 Now add the updateInsights() method immediately after the cleanStore()
method:

 func updateInsights() {
 insightsBuilder.updateInsights { [weak self] completed, newInsights in
 // If new insights have been created, notifiy the delegate.
 guard let storeManager = self, newInsights = newInsights where

completed else { return }
 storeManager.delegate?.zcCarePlanStoreManager(storeManager,

didUpdateInsights: newInsights)
 }
 }

 That completes steps 1 and 2. Build the project by pressing Command+B to ensure
everything compiles okay.

 Now open ZCCareKitTabCoordinator in order to add the
ZCCarePlanStoreManagerDelegate and create the Insights ViewController.

 At the bottom of the file, include the add the following extension:

 extension ZCCareKitTabCoordinator: ZCCarePlanStoreManagerDelegate {
 func zcCarePlanStoreManager(manager: ZCCarePlanStoreManager,

didUpdateInsights insights: [OCKInsightItem]) {
 insightsController!.items = insights
 }
 }

 This extension handles the ZCCarePlanStoreManagerDelegate.
didUpdateInsights() function. In the function it simply sets the Insights parameter to
the items property on the InsightsViewController.

 At the top of the class add a property for the Insights ViewController:

 var insightsController : OCKInsightsViewController?

 A reference to this property is stored so it can be accessible when the preceding
delegate method is called to update the insights on the ViewController.

 Now in the init(..) method, add the following to set self as the Care Plan manager’s
delegate:

 self.carePlanManager.delegate = self

CHAPTER 6 ■ INSIGHTS

112

 It’s now possible to build and present the Insights scene. Add the following method
to the end of the class:

 private func createInsightsViewController() -> OCKInsightsViewController {

 let viewController = OCKInsightsViewController(insightItems:
carePlanManager.insights, headerTitle: "Zombie Insights", headerSubtitle:
"And fun")

 // Setup the controller's title and tab bar item
 viewController.title = NSLocalizedString("Zombie Insights", comment: "")
 viewController.tabBarItem = UITabBarItem(title: viewController.title,
image: UIImage(named:"insights"), selectedImage: UIImage(named: "insights-
filled"))

 viewController.showEdgeIndicators = true;
 return viewController
 }

 This method is similar to the other creation methods to create and return the
Insights ViewController.

 Modify the start() method to call createInsightsViewController() and add the
controller to the tab as follows:

 insightsController = createInsightsViewController()
 tabbarcontroller.viewControllers = [UINavigationController(rootViewController:
careCardViewController),
 UINavigationController(rootViewC
ontroller: sympTomTrackerController),
 UINavigationController(rootViewC
ontroller: insightsController!)]

 That’s it. You’ve now successfully created and added the Insights ViewController to
the main care tab. The Insights builder is initialized in the Care Plan manager, and when
activities are updated in the Care Plan Store, its delegate is handled so that the insights
can be updated and refreshed on the Insights ViewController.

 Build and run the project using Command+R. If you immediately navigate to the
Insights tab, you should see a couple of default message insights with the Tip and an Alert
advising there are no treatments completed. That’s because there are no event results
from any activities, as the actives are being re-initialized every time the app runs in the
simulator.

CHAPTER 6 ■ INSIGHTS

113

 Now try to complete some of the intervention activities and do some of the rage
assessment activities for the previous week. You will then see the Tip message and the
Alert message above an updated chart, as illustrated in Figure 6-4 .

 Figure 6-3. Default Insights view

CHAPTER 6 ■ INSIGHTS

114

 This concludes building, updating, and presenting insights. In the next section, you
will learn how to create a document based on the insights and share it.

 Creating a Document
 CareKit provides a set of classes for creating HTML or PDF documents that can be shared
with a Care Team, friends, or family. The document consists of a title, page header, and
one or more elements, including:

• Subtitles

• Paragraphs

• Images

• Charts

• Tables

 Figure 6-4. Updated Insights view

CHAPTER 6 ■ INSIGHTS

115

 You’ll learn how to create a document and add each of these elements in turn.
 The steps to create document include the following:

 1. Creating the document elements

 2. Creating the document with the elements

 3. Accessing and viewing the document data

 It’s most likely that you will want to generate a document from the CareKit
Connections controller when you’re looking to share it with one of your connections,
although this may not always be the case.

 As you can see, it’s also possible to create a document that may contain some
elements derived from insights and elements from other sources. It’s important therefore
to structure the code to make both the document elements and document accessible
from different parts of the application, and to generate the document only when required.

 The logical place to generate a document in the ZombieCare app is in the
ZCCarePlanStoreManager class, because it receives updates from the Insights builder and
has a property with all the insights.

 The required document elements for the ZombieCare app are as follows:

• Title and a subtitle. The title is simply the name of the Care Plan,
and the subtitle should read “The following is an assessment for
treatment of Zombiefication.”

• Image of the zombie we use in the app, just to demonstrate this
element

• Paragraph saying “Below are some insights with respect to the
patient’s treatment and self-assessment.”

• Table of message insights

• Insight chart

• Paragraph with the patient’s comments.

• Subtitle called “Summary”

• Summary paragraph with Lorem Ipsum (nonsensical boilerplate
language)

• Page header specifying the name, version, and date of the
application this document was created from

CHAPTER 6 ■ INSIGHTS

116

 Open ZCCarePlanStoreManager.swift and scroll to the bottom of the class
implementation. Add the following method to generate a document:

 func generateDocument(comment: String?) -> OCKDocument? {

 var elements: [OCKDocumentElement] = []

 let subtitleElement = OCKDocumentElementSubtitle(subtitle:
"Assessment for the treatment of Zombification")

 elements.append(subtitleElement)

 let zombieImage = UIImage(named: "Zombie")
 let imageElement = OCKDocumentElementImage(image: zombieImage!)
 elements.append(imageElement)

 if self.insights.count > 0 {

 let introElement = OCKDocumentElementParagraph(content: "Below
are some insights with respect to the patients treatment and
self assessment.")

 elements.append(introElement)

 let insightHeaders : [String]? = ["Messages"]
 var insightRows : [[String]]? = [[]]

 for insight in self.insights {
 if insight.isKindOfClass(OCKMessageItem) {
 insightRows![0].append(insight.text!)
 }
 }

 let tableElement = OCKDocumentElementTable(headers:
insightHeaders, rows: insightRows)

 elements.append(tableElement)

 for insight in self.insights {
 if insight.isKindOfClass(OCKChart) {
 let chartElement = OCKDocumentElementChart(chart: insight

as! OCKChart)
 elements.append(chartElement)
 break;
 }
 }
 }

 let subtitleCommentsElement = OCKDocumentElementSubtitle(subtitle:
"Patient Comments")

 elements.append(subtitleCommentsElement)

CHAPTER 6 ■ INSIGHTS

117

 if let theComment = comment {
 let commnetsElement = OCKDocumentElementParagraph(content:

theComment)
 elements.append(commnetsElement)
 }
 else {
 let commentsElement = OCKDocumentElementParagraph(content: "No

Comments")
 elements.append(commentsElement)
 }
 let subtitleSummaryElement = OCKDocumentElementSubtitle(subtitle:

"Summary")
 elements.append(subtitleSummaryElement)

 let summaryparagraphElement = OCKDocumentElementParagraph(conte
nt: "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.")

 elements.append(summaryparagraphElement)

 let document = OCKDocument(title: "Zombie Care Plan", elements:
elements)

 document.pageHeader = "Zombie Care, Version 1.0, - \(NSDate())"

 return document
 }

 The generateDocument() method is quite self-explanatory. It begins by generating
each document element type as specified. Note the table element is generated by iterating
through the existing insights and creates a new row item for each message insight.

 There is an optional comment added, which allows the patient to add their own
comments to the document in its own section. Finally, the document is created with the
elements array.

CHAPTER 6 ■ INSIGHTS

118

 Now open the ZCCarePlanCoordinator.swift file. Replace the empty
viewDocument(sender:CarePlanViewController) action with the following
implementation:

 func viewDocument(sender: CarePlanViewController) {

 let alertController = UIAlertController(title: "Comments?", message:
"Add your comments to be included in the document", preferredStyle:
.Alert)

 let confirmAction = UIAlertAction(title: "Add", style: .Default) { (_) in
 if let field = alertController.textFields?.first {
 self.showDocument(field.text)
 } else {
 self.showDocument("")
 }
 }

 let cancelAction = UIAlertAction(title: "Skip", style: .Cancel) { (_) in
 self.showDocument("")
 }

 alertController.addTextFieldWithConfigurationHandler { (textField) in
 textField.placeholder = "Comment"
 }

 alertController.addAction(confirmAction)
 alertController.addAction(cancelAction)

 self.navigationController.presentViewController(alertController,
animated: true, completion: nil)

 }

CHAPTER 6 ■ INSIGHTS

119

 And now add the method to show the document:

 func showDocument(comment: String?) {

 if let document = self.carePlanManager?.generateDocument(comment) {
 document.createPDFDataWithCompletion { (PDFData, errorOrNil) in
 if let error = errorOrNil {
 // perform proper error checking here...
 fatalError(error.localizedDescription)
 }
 let documentViewController = DocumentViewController(document:

PDFData)
 self.navigationController.pushViewController(documentView

Controller, animated: true)
 }
 }
 else {
 let alertController = UIAlertController(title: "Error!",

message: "Document cold not be created", preferredStyle: .Alert)
 let confirmAction = UIAlertAction(title: "Ok", style: .Default)

{ (_) in}
 alertController.addAction(confirmAction)
 self.navigationController.presentViewController(alertController,

animated: true, completion: nil)
 }
 }

 The viewDocument() method has already been wired up. First it prompts the user
to enter a comment (the user can optionally skip this step). The generateDocument()
method is then called and once successfully created it is presented in a web view.

 Once the preceding code has been added, press Command+R to build and run the
application in the simulator. Before viewing the document, enter the Care Plan section
and update the treatment and assessment activities for the previous week as you did
before. Check the Insights view is updated accordingly and then select Back from the Care
Card tab to return to the main view in the app.

 Now select View Document. After entering your comment, you should be presented
with a view of the document similar to Figure 6-5 .

CHAPTER 6 ■ INSIGHTS

120

 This demonstrates creating and displaying an OCKDocument instance using most of
the elements available. In this example you also learned how to access and view the PDF
document data. OCKDocument also has a property called .HTMLContent that provides
the document in HTML format.

 Now that you’ve learned how to generate a document from patient insights,
the document data is easily accessible and can be shared through any channel you
like. For instance, you might post the data to the remote server, email the PDF as an
attachment, or even use the HTML data directly in an HTML-formatted email using
MFMailComposeViewController.

 All the code for everything we’ve been discussing is located in the /chapter06_final
project source code.

 Figure 6-5. Insights document view

CHAPTER 6 ■ INSIGHTS

121

 Summary
 In this chapter you learned about the data types and controllers provided by CareKit to
formulate insights related to the patient’s treatment and self-assessment. You’ve learned
how to generate insights from the activity event results in the Care Plan Store and display
this both in the Insights dashboard/scene and as a PDF document.

 In the next chapter you will learn about connections.

123© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3_7

 CHAPTER 7

 Connect

 Chapter 1 introduced you to the Connect scene, and you learned that CareKit provided
the OCKConnectViewController. This controller and its views are used to display your
Care Plan connections and share details of your Care Plan and its insights to them.

 In this chapter we will focus on the onboarding of new connections to the sample
ZombieCare app and loading in the Care Team connections from the mock service.

 The onboarding step will be displayed when the application is first loaded. It
integrates with the user’s address book to allow the user to select and add connections of
their choice. This will be followed by loading and processing of any connections from the
Care Plan service.

 The user will then be able access their connections, which will be presented in the
OCKConnectViewController. You will also learn about the sharing options available to users.

 Connect Data Types
 Contacts in CareKit are represented by the OCKContact class. The class provides
information about the contact and includes the following properties:

• type : CareKit defines two types of contacts, .CareTeam and
.Personal.

• name : A string representing the contact’s full name

• relation : A string to indicate the relationship of the contact

• tintcolor : A tint color used to display the contact details—if not
specified, the app tint color will be used

• phoneNumber : The contact’s phone number (optional)

• messageNumber : A phone number used for messaging the contact
(optional)

• emailAddress : A string used to email the contact (optional)

• monogram : A string indicating the monogram for the contact
(optional)

• image : A string indicating an image name for the contact
(optional)

http://dx.doi.org/10.1007/978-1-4842-2226-3_1

CHAPTER 7 ■ CONNECT

124

 ■ Note A contact must have either a monogram or an image of the initializer, or else the
OCKContact class will assert. If the image is not provided, then the ContactViewController will
expect to find and display a monogram and vice versa.

 As with insights, contacts are not loaded into the CareKit Care Plan Store, but
instantiated at runtime and passed to the OCKConnectViewController initializer.

 Creating Contacts
 The following code demonstrates how to create a single Care Team contact:

 let contact = OCKContact(contactType: .CareTeam, name: "Holly
Helpful", relation: "Nurse", tintColor: UIColor.greenColor(),
phoneNumber: CNPhoneNumber(stringValue: "888-555-5512"), messageNumber:
CNPhoneNumber(stringValue: "888-555-5512"), emailAddress: "helpful@
zombiecare.com", monogram: "HH", image: "holly")

 In this example all properties have a valid value, but you can set the optional properties
to 0 if required. Notice also that the phone and message numbers are represented by the
CNPhoneNumber object. CNPhoneNumber is a class provided by Apple’s ContactsUI
framework.

 Onboarding Contacts
 Now that you’ve got an understanding of the CareKit contact data types and how to create
a CareKit contact, it’s time to learn how to onboard contacts in the ZombieCare app. The
process of doing this includes numerous steps, as follows:

 1. Create a struct to represent Contact data in the app.

 2. Load contacts from the careplan.json into the ZombieCare Plan.

 3. Add a new ConnectionsViewController, storyboard, and flow
coordinator for the onboarding views. Then modify the initial
ZCAppCoordinator to load this when the app first runs.

 4. Provide support in the ConnectionsViewController to access
the Contacts database and select new contacts, which are then
added to the Care Plan.

 5. Update the app to use these classes and present the onboarding
views when it starts or when selected from the main view.

 Once these steps have been completed, the app will be ready to present the CareKit
Connections scene.

CHAPTER 7 ■ CONNECT

125

 Adding and Loading Contact Data
 Start by loading the project source code in /chapter_07_start into Xcode . You will find
that there are some classes that have been prepared and added to support the loading of
contacts.

 Open contact.swift from the Model group in the project navigator. This class follows a
similar pattern as activities but represents a contact. There are a couple of key differences:

 1. There are two custom initializers, one to initialize a contact
from JSON that will be used to load data from the service, and
another to initialize a contact from a ContactUI CNContact
class, which will be used when selecting a contact from the
user’s Address book.

 2. There is a function called createCareKitContact that returns an
instance of an OCKContact object.

 The ZCContact struct will provide you a concrete Contact object that can be used
within the application.

 Let’s complete steps 1 and 2 by providing support within the app to load and store the
contacts in the app’s Care Plan. Open CarePlan.swift and add the following property to hold
the list of contacts:

 var connections : [Contact] = []

 Now add the following two functions to the end of the struct implementation:

 func allCKContacts()-> [OCKContact] {
 let ckcontacts = connections.map({
 $0.createCareKitContact()
 })
 return ckcontacts
 }

 mutating func AddContact(contact : ZCContact) {
 self.connections.append(contact)
 }

 The first function, allContacts() , returns an array of CareKit OCKContact objects by
using the map function to convert the list of ZCContact objects. The second function is a
mutating function that lets you add contacts to the existing list.

CHAPTER 7 ■ CONNECT

126

 Now, in the CarePlan ZCAPIResponse extension initializer, add the following code
after the loop that adds assessment activities:

 if let contacts = json["connections"] as? Array<NSDictionary> {
 for contact in contacts {
 let contact = ZCContact(json: JSON(contact))
 connections.append(contact)
 }
 }

 This loop parses the array of connections from the given JSON, creates an instance of
an ZCContact object for each one, and adds them to the list of connections in the Care Plan.
By adding the preceding, the Care Plan now supports the loading of all connections from
the careplan.json file. Check that the app builds by pressing Command+B.

 Adding the Onboarding Views
 For the next step, the project has already been prepared with some classes to support
onboarding. The classes in the Connections group include the following:

• ConnectionsViewController : The onboarding ViewController to be
loaded when the application is initially started. This ViewController
provides a simple implementation to guide the user into selecting
more contacts from the iOS Contacts database.

• Connections.storyboard : A storyboard to represent the UI for the
ConnectionsViewController.

 Following is the class in the Coordinators group:

• ZCOnboardingCoordinator : This class is similar to other
coordinators and is responsible for the flow of loading and
dismissing the onboarding views.

 Let’s have a look at each class in more detail to get a better understanding of how
contacts are loaded. Although not necessarily specific to CareKit, it helps to have a basic
understanding of the classes implementation before adding support to the app to use them.

 ConnectionsViewController and Connections.storyboard
 This ConnectionsViewController manages a single view that represents the ZombieCare
app’s onboarding. The associated view in the connections.storyboard is quite simple
in that it just prompts the user to select contacts and has a label to display how
many contacts were selected. The user can tap the Done button, which calls the
ConnectionsViewControllerDelegate to pass the selected contacts to the Care Plan and
closes the view.

CHAPTER 7 ■ CONNECT

127

 To select contacts, this view controller will load the Contacts
CNContactPickerViewController and handle its delegate methods to receive the selected
contacts—or Cancel. Note that the app must first request access to the Contacts UI before it
can be used.

 This example suffices for the purposes of this book, but you should take into
consideration a couple more points:

• In a real production app, you will probably want the ability to
display and edit the list of selected contacts. The sample application
does not provide this feature and does not prevent duplicates from
being added.

• CareKit requires some additional fields that are not in the Contacts
database (or potentially some other source) as you may have noted
in the OCKContact data type. For instance, relation, color, and
monogram. It might be useful to provide a way to edit selected
contacts to set these properties directly.

• In the Contacts database there are numerous different keys and
fields for phone numbers and addresses. You may need to adjust
this to your requirements if you
use it.

 The ConnectionsViewControllerDelegate provides two methods:

• didSelectContacts(..) : Is called when the view is closed and
passes the list of selected contacts to the coordinator, which acts as
the delegate handler.

• didCancel(...) : Is called when the Contacts view is cancelled.

 ZCOnboardingCoordinator
 The ZCOnboardingCoordinator class has the same responsibilities as other coordinators
and follows the same pattern for loading the onboarding ViewController and storyboard
with the start() function. It also handles the ConnectionsViewControllerDelegate
methods.

 The didSelectContacts(..) handler takes responsibility for adding the selected
contacts to the ZombieCare Plan. It loops through the list of CNContact contacts and calls
the careplan.AddContact() function, which converts each one to a ZCContact object and
stores it in the app’s Care Plan. The handler then calls its own delegate method to close the
view.

 That covers the onboarding implementation. You will now provide support within the
ZombieCare app to use these classes. There are a lot of code changes coming up, so if you
prefer you can refer to the final source of this chapter if you get stuck.

CHAPTER 7 ■ CONNECT

128

 Add the Onboarding
 The final step to making use of the onboarding classes involves some refactoring of
the ZCAppCoordinator. This includes modifying the initial startup code to switch
between loading the onboarding views or the main app view and implementing the
ZCOnboardingCoordinatorDelegate delegate methods.

 Launching the Onboarding Views
 Open the ZCAppCoordinator.swift file from the project navigator. Replace the class
declaration with the following code to include the ZCOnboardingCoordinatorDelegate:

 public class ZCAppCoordinator : ZCOnboardingCoordinatorDelegate ,
ZCCarePlanCoordinatorDelegate, ZCCareKitTabCoordinatorDelegate {
 ...

 Replace the showMainView() functions with the following code:

 private func showMainView()->Void {

 if(self.carePlanManager == nil) {
 let service = newZCService(.Mock)
 let mockResource = MockResource(path: "careplan", method: "GET",

headers: nil, parameters: nil)

 service.request(mockResource) { (response : CarePlan?, error) in
 if error == nil {
 self.carePlanManager = ZCCarePlanStoreManager(carePlan:

response!)
 self.loadView()
 }
 else {
 fatalError("Plan failed to load")
 }
 }
 }
 else {
 loadView()
 }
 }

CHAPTER 7 ■ CONNECT

129

 Then add these two new methods after the showMainView() function:

 func loadView() {
 if self.onBoardingDisplayed == false {
 self.loadOnboardingView()
 }
 else {
 self.loadCarePlanView()
 }
 }

 private func loadOnboardingView() {

 let onboardingCoordinator = ZCOn-boardingCoordinator
(navigationController: self.rootViewController)

 onboardingCoordinator.delegate = self
 onboardingCoordinator.carePlanManager = self.carePlanManager

 self.childCoordinators.removeLastObject()
 self.childCoordinators.addObject(onboardingCoordinator)

 onboardingCoordinator.start()
 }

 The showMainView() function has been modified to call the new function loadView() .
The new function loadView() includes some simple logic to switch between calling the
 loadOnboardingView() or the loadCarePlanView() .

 It’s possible you’ll require some more sophisticated loading logic or even persist the
state of the application in NSUserDefaults, but this example is sufficient to demonstrate the
ZombieCare app requirement.

 The new loadOnboardingView() function is very similar to the loadCarePlanView()
but differs in that it uses the ZCOnboardingCoordinator class instead.

 Closing the Onboarding
 You can now implement the ZCOnboardingCoordinatorDelegate. Add the following to the
end of the class implementation:

 func didCloseOnboarding(sender: ZCOnboardingCoordinator) {
 onBoardingDisplayed = true
 self.rootViewController.viewControllers.removeAll()
 self.start()
 }

 This delegate handler sets a flag to indicate that the user has finished with the
onboarding and then reloads the views.

CHAPTER 7 ■ CONNECT

130

 Load the Onboarding View from the Care Plan
 The last part of the puzzle is to enable the user to load the onboarding views from the Main
Care Plan view. This will enable the user to access and add more contacts to the Care Plan
at any time.

 Open the CarePlanViewController.swift file and replace the
CarePlanViewControllerDelegate class with the following:

 protocol CarePlanViewControllerDelegate: class {
 func didBuidCareCard(sender: CarePlanViewController)
 func viewDocument(sender: CarePlanViewController)
 func selectContacts(sender: CarePlanViewController)
 }

 This just adds a new function selectContacts(..) . Then replace the
 selectContacts() IBAction, which has already been wired up to the storyboard, with this
code:

 @IBAction func selectContacts(sender: AnyObject) {
 delegate?.selectContacts(self)
 }

 Now open ZCCarePlanCooridnator.swift and you can add support for the updated
CarePlanViewControllerDelegate. Add the following function after the viewDocument()
function:

 func selectContacts(sender: CarePlanViewController) {
 self.delegate?.didSelectContacts(self)
 }

 This function is the implementation for the selectContacts delegate
function. It defers the method onto to its on delegate handler. Then replace the
ZCCarePlanCoordinatorDelegate with the following:

 protocol ZCCarePlanCoordinatorDelegate {
 func didClose(sender: ZCCarePlanCoordinator)
 func didSelectContacts(sender: ZCCarePlanCoordinator)
 }

 Next you will need to uncomment a few lines of code in the ZCOnboardingCoodinator.
swift file. Open the file, find the didSelectContacts method, and uncomment the loop that
adds contacts to the Care Plan.

CHAPTER 7 ■ CONNECT

131

 Finally you can now set up the selectContacts delegate handler in the
ZCAppCoordinator. Open ZCAppCoordinator and at the end of the class implementation
add this handler:

 func didSelectContacts(sender: ZCCarePlanCoordinator) {
 self.rootViewController.viewControllers.removeAll()
 self.loadOnboardingView()
 }

 That completes all the changes you need to make. The user can now select a button on
the Main Care Plan view to restart the onboarding step, and the new delegates enable us to
handle the switching of the views.

 Press Command+R to build and run the application in the simulator. The first view you
see should be the main onboarding view (Figure 7-1).

 Figure 7-1. The initial onboarding view

CHAPTER 7 ■ CONNECT

132

 Figure 7-2. The contacts picker view

 This view represents the ConnectionsViewController for onboarding.
 To add one or more contacts from the address book, select the button, and you should

be presented with a contacts view like the one shown in Figure 7-2 .

 The CNContactPickerViewController allows the user to select one or more contacts.

 ■ Note The first time a user runs the app they will be prompted to request access to the
Contacts database. Once allowed, the request box will not be displayed again.

 Users can tap Cancel to close the view without selecting any contacts or Done to add
any selected ones.

CHAPTER 7 ■ CONNECT

133

 Select a couple of contacts and tap the Done button. The
CNContactPickerViewController view will close, and the previous onboarding view will
now be displayed, as shown in Figure 7-3 .

 As you can see, the view has been updated with a label that indicates the number of
contacts selected, and a Done button is now selectable. As mentioned previously, this view
in a real production app could do with a more detailed table or collection view and allow
the user to modify the contact details.

 At this stage the selected contacts have not been added to the ZombieCare Plan. To
do that, select the Done button. When the Done button is tapped, the selected contacts are
added to the ZombieCare Plan and the onboarding view is then closed. The user is then
navigated back the Main Care Plan view (Figure 7-4).

 Figure 7-3. The updated onboarding view reflects how many contacts have been selected

CHAPTER 7 ■ CONNECT

134

 At this stage it’s a little difficult to see what’s changed, but if you look at the Xcode
debug view (Figure 7-5), you can see some printouts for each contact added.

 Figure 7-4. The Main Care Plan view is displayed after contacts have been added

 Figure 7-5. Debug view of added contacts

CHAPTER 7 ■ CONNECT

135

 This concludes the section on onboarding new contacts into the ZombieCare app.
 Now that you’ve successfully loaded the Care Team and some personal contacts into

the ZombieCare Plan, you will be able to display these contacts in the CareKit Connect
scene.

 Presenting the Connect ViewController
 The apps contacts are now safely stored in the Care Plan in a property array called
connections. In this section you will learn how to add the CareKit Connect scene to the
Care tab and interact with the contacts displayed.

 As with the other CareTabs previously added, there is just one step required to
include a Connect tab: add support to the ZCCareKitTabCoordinator to add the CareKit
OCKConnectViewController.

 In the project navigator open ZCCareKitTabCoordinator.swift file and add the
following function at the end of the class implementation:

 private func createConnectViewController() -> OCKConnectViewController {
 let viewController = OCKConnectViewController(contacts:

carePlanManager.carePlan.allCKContacts())
 viewController.title = NSLocalizedString("Zombie Connections",

comment: "")
 viewController.tabBarItem = UITabBarItem(title: viewController.

title, image: UIImage(named:"connect"), selectedImage: UIImage(named:
"connect-filled"))

 viewController.showEdgeIndicators = true;
 return viewController
 }

 Now replace the start() function with the following:

 func start() {
 //Load the TabBarcontroller from the storyboard
 let storyboard = UIStoryboard(name: "CareTab", bundle: nil)
 let tabbarcontroller = storyboard.instantiateViewControllerWith

Identifier("TabBarController") as! ZCCarePlanTabViewController

 tabbarcontroller.careplanManager = self.carePlanManager

 // Create the Care Card Viewcontroller
 let careCardViewController = createCareCardViewController()
 careCardViewController.delegate = tabbarcontroller

 //Create the Symptom tracker Viewcontroller
 let sympTomTrackerController = createSymptomTrackerViewController()
 sympTomTrackerController.delegate = tabbarcontroller

CHAPTER 7 ■ CONNECT

136

 //Create the Insights Viewcontroller
 insightsController = createInsightsViewController()

 //Create the Connect Viewcontroller
 let connectionController = createConnectViewController()

 //Load all the controllers into the tab bar. note the care card
viewcontroller must be in a navigation controller

 tabbarcontroller.viewControllers = [UINavigationController
(rootViewController:
careCardViewController),

 UINavigationController
(rootViewController:
sympTomTrackerController),

 UINavigationController(rootView
Controller: insightsController!),

 UINavigationController(rootView
Controller: connectionController)]

 //Display the Tab bar with the care card
 self.navigationController.presentViewController(tabbarcontroller,

animated: true, completion: nil)
 }

 The createConnectViewController() function instantiates the
OCKConnectViewController and passes the array of OCKContact objects from
the Care Plan to the controller’s initializer. The start() method now calls the
 createConnectViewController() function and adds the controller to the tab’s controller
array.

 That’s it. You are now able to run the app in the simulator by pressing Command+R.
Run through the steps to add a few contacts and then select the Begin your Treatment
button from the Main Care Plan view. Once displayed, you should be able to select the
Zombie Connections tab.

 The first thing to note about the Connect scene is that it now displays the two separate
sections for the Care Team and Friends & Family, as shown in Figure 7-6 .

CHAPTER 7 ■ CONNECT

137

 Note also that in your version, you may not have an image for the personal contacts
you selected, and only the monogram will be displayed. If you want to test and see a
contacts image, you will need to run the Contacts app in the simulator and edit one of the
contacts you selected to add their image. If you then rerun the app and select the contact,
you should see their image in the Connect scene.

 Next select one of your contacts to view their details. You should be presented with a
view similar to Figure 7-7 .

 Figure 7-6. The CareKit Connect scene with contacts loaded

CHAPTER 7 ■ CONNECT

138

 As you can see, the details view now includes the contact’s contact details, and,
depending on their properties, there should be Call, Message, and Email options to enable
the user to contact that person directly. All the logic for these actions is handled internally
by the CareKit OCKConnectionViewController.

 There is just one key thing missing from the details view now: the Sharing option
enables you to share data with the contact. You will learn how to add this in the next
section.

 Sharing Insights with Connections
 The CareKit framework provides support for sharing data with the contacts listed in the
Connect module. It provides support for this by way of a delegate.

 Figure 7-7. The CareKit Contact details view

CHAPTER 7 ■ CONNECT

139

 The OCKConnectViewControllerDelegate is provided with two delegate functions:

• didSelectShareButtonForContact(..) : Tells the delegate when
the user selected the share button for a contact.

• titleForSharingCellForContact(..) : Asks the delegate for the
title to be shown in the sharing cell for a contact.

 Adding sharing support to the ZombieCare app is quite trivial. First, set the delegate for
the OCKConnectViewController in the ZCCareKitTabCoordinator by adding the following
line after creating the OCKConnectViewController in the start function, so it looks like this:

 let connectionController = createConnectViewController()
 connectionController.delegate = tabbarcontroller

 This sets the TabBarController to be the delegate in the same way we did for the Care
Card and Symptom Tracker.

 Now add the delegate extension to the tab bar implementation. Open
ZCCarePlanTabViewController.swift, scroll to the bottom, and add the following extension
code to the end of the file:

 extension ZCCarePlanTabViewController : OCKConnectViewControllerDelegate {

 /// Called when the user taps a contact in the
`OCKConnectViewController`.

 func connectViewController(connectViewController:
OCKConnectViewController, didSelectShareButtonForContact contact: OCKContact,
presentationSourceView sourceView: UIView) {
 let document = self.careplanManager?.generateDocument("")
 document!.createPDFDataWithCompletion { (PDFData, errorOrNil) in
 if let error = errorOrNil {
 // perform proper error checking here...
 fatalError(error.localizedDescription)
 }
 let activityViewController = UIActivityViewController(activityIte

ms: [PDFData], applicationActivities: nil)
 self.presentViewController(activityViewController, animated:

true, completion: nil)
 }
 }
 }

 The extension provides an implementation for the
 didSelectShareButtonForContact() delegate method. The code first calls the
 generateDocument() method from the Careplan Manager class to generate a document
based on the users insights. On success, it then creates a PDF which is then loaded into an
UIActivityViewController for sharing.

CHAPTER 7 ■ CONNECT

140

 Figure 7-8. The contact details view with Sharing options

 In this example there is limited error handling because it simply demonstrates how
to share the patient’s insight document that you learned to generate in previous chapters.
Note also that you’re not limited to generating or sharing insights only. In fact, you can
create any form of data you like and also share it using other mechanisms, such as by
calling some API with the data. It all depends on your requirements and the resources
available in your application.

 Run the app in the simulator using Command+R and after going through the steps
of adding contacts again navigate to a contact’s detail view. It should include the Sharing
section, as shown in (Figure 7-8).

 Finally, if you select the Sharing button, you will be presented with the
UIActivityViewController, as demonstrated in Figure 7-9 . As you can see, it includes some
default options on the simulator to share: Mail, Copy, or Print. You may want to experiment
on an actual device to share the Insights PDF using other options.

CHAPTER 7 ■ CONNECT

141

 ■ Note If you try and share on the simulator using the Mail option, the
MailCompositionService throws an exception and quits—so try running on a device.

 This concludes the sharing section. We’ve not implemented the other delegate
function, but try it out and change the text title displayed in the Sharing Cell for a contact.

 Figure 7-9. The UIActivityViewController

CHAPTER 7 ■ CONNECT

142

 Summary
 In this chapter you’ve learned about the CareKit OCKContact data type, how to load
contacts from a Care Plan service or the address book, and how to create new OCKContact
objects that can be used by the Connect scene. You then learned how to display the Contact
scene with the contacts and share the patient’s insights using the UIActivityViewController.

 This concludes the key functionality provided by the CareKit framework. By now you
should feel confident enough to write your own CareKit applications.

 In the next chapter you will learn how to extend your application and integrate it with
HealthKit, Apple Watch, and today extensions to make it more useful to the user.

143© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3_8

 CHAPTER 8

 Extending CareKit Apps

 In this chapter we’ll investigate further options for developers to extend the usefulness
of their CareKit apps through integration with HealthKit and developing an Apple Watch
app and a Today extension. You will learn how an Apple Watch app can communicate
with a CareKit iPhone app and receive notifications. By extending the iPhone app, you
will learn how patients can benefit from combining these technologies and therefore
improve their after-care experience. The chapter concludes by wrapping up the
ZombieCare example application.

 HealthKit Primer
 HealthKit has been available on the iPhone since iOS 8 and on the Apple Watch since
WatchOS 2. This section introduces the reader to the basics of HealthKit integration, but
it’s not a comprehensive guide to HealthKit itself.

 The benefits of each of Apple’s healthcare frameworks (HealthKit, ResearchKit,
and CareKit) are quite well documented, and there are plenty of blogs where you can
read a lot of information about them. What’s less understood is how to combine the
technologies into a practical solution other than in fitness apps.

 With CareKit, this opportunity becomes clearer. With user permissions, you can
incorporate HealthKit data into your app’s assessments, store or save data to HealthKit so
it can be used by other applications, and even retrieve data from the HealthKit data store
to use in the Insights Report that users can send to their Care Team. We’ll work next to
include this functionality into the ZombieCare app.

 ■ Note You can find additional reference documentation and an overview on HealthKit at
 https://developer.apple.com/reference/healthkit .

https://developer.apple.com/reference/healthkit

CHAPTER 8 ■ EXTENDING CAREKIT APPS

144

 In Chapter 5 you learned how to provide some basic HealthKit integration with the
Symptom and Measurement Tracker, which stores the weight measurements entered by a
user in HealthKit. You may recall there were a few steps involved:

• Authorizing HealthKit

• Storing data in the HealthKit store (weight)

• Synchronizing the CareKit store data with the HealthKit data

 In this chapter we will extend the application by adding the following additional data
to the Insights Report: age, gender, weight, height, and heartRate. All these items will be
of benefit to the Care Team when assessing the patient’s condition.

 Defining HealthKit Requirements
 Open the project source from /chapter_08_HealthKit. In this version of the project you
will find there are a few helper classes already added to the project. From the project
navigator, find and open ZCHealthManager.swift form the Services/HealthKit group.

 ZCHealthManager is a class that provides a number of methods to help authorize the
user with HealthKit and query the Health Store for some specific types of data (called age,
gender, height, weight, and heartRate).

 Next open HKHealthStore+AAPLExtensions.swift. This file contains an extension
method on the HKHealthStore called mostRecentQuantitySampleOfType() . This method
creates and executes queries for data.

 That’s all you need in order to authorize and access the specific data required for
ZombieCare. For a more sophisticated application, you might want to extend this class
with functions to write data to HealthKit or query for other types.

 The ZombieCare requirement is to update the Insights document with HealthKit
data. To achieve this, you need to complete the following steps:

 1. Update the ZCCarePlanStoreManager.generateDocument()
method to include the additional parameters for health data
and add the health elements to the document.

 2. Modify the ZCCarePlanCoordinator.showDocument()
function to include calls to the health manager class before
generating the document.

 3. Refactor the ZCCarePlanTabViewController
connection delegate call to ZCCarePlanStoreManager.
generateDocument() to pass the new parameters.

 Updating to the Insights Document
 Begin step 1 by opening ZCCarePlanStoreManager.swift and navigating to the
 generateDocument() function. Change the signature of the function from this:

 func generateDocument(comment: String?) -> OCKDocument? {...}

http://dx.doi.org/10.1007/978-1-4842-2226-3_5

CHAPTER 8 ■ EXTENDING CAREKIT APPS

145

 To this:

 func generateDocument(comment: String?, age: Int?, gender:
HKBiologicalSexObject?, height: Double? , weight : Double?, heartRate:
Double?) -> OCKDocument? {...}

 Doing so enables the function to receive the additional optional values.
 Now replace the comment “Add HEALTHKIT data here” in the function with the

following code snippet:

 //Add data from healthKit
 if let theAge = age,
 let theGender = gender,
 let theHeight = height,
 let theWeight = weight,
 let theHeartRate = heartRate {

 let subtitleDetailsElement = OCKDocumentElementSubtitle
(subtitle: "Patient Details")

 elements.append(subtitleDetailsElement)
 let ageElement = OCKDocumentElementParagraph(content:

"Age: \(theAge)")
 elements.append(ageElement)
 let genderElement = OCKDocumentElementParagraph

(content: "Gender: \(genderString(theGender))")
 elements.append(genderElement)
 let heightElement = OCKDocumentElementParagraph(content:

"Height: \(theHeight)")
 elements.append(heightElement)
 let weightElement = OCKDocumentElementParagraph(content:

"Weight: \(theWeight)")
 elements.append(weightElement)
 let hrElement = OCKDocumentElementParagraph(content: "Heart

Rate: \(theHeartRate)")
 elements.append(hrElement)
 }

 The function is now prepared to accept the HealthKit parameters, and if all fields
are available it adds each individual element to the document. Note that the application
won’t build at this stage until we’ve completed steps 2 and 3.

CHAPTER 8 ■ EXTENDING CAREKIT APPS

146

 Fetching Additional HealthKit Data
 For step 2, open the ZCCarePlanCoordinator.swift file and navigate to the
 showDocument() function. Replace the function with the following new showDocument()
function:

 func showDocument(comment: String?) {
 CMHealthManager.sharedInstance.authorizeHealthKit { (success, error) in
 if error == nil {
 dispatch_async(dispatch_get_main_queue(), {
 () -> Void in
 let age = CMHealthManager.sharedInstance.fetchAge()
 let gender = CMHealthManager.sharedInstance.fetchSex()

 let height = CMHealthManager.sharedInstance.fetchHeight()
 let weight = CMHealthManager.sharedInstance.

fetchWeight()
 let heartrate = CMHealthManager.sharedInstance.

fetchHeartRate()
 print("User stats \(age) - \(gender) - \(height) -

\(weight) - \(heartrate)")
 if let document = self.carePlanManager?.

generateDocument(comment, age: age, gender:
gender, height: height, weight: weight,
heartRate: heartrate) {

 document.createPDFDataWithCompletion { (PDFData,
errorOrNil) in

 if let error = errorOrNil {
 // perform proper error checking here...
 fatalError(error.localizedDescription)
 }
 let documentViewController = DocumentView

Controller(document: PDFData)
 self.navigationController.pushViewController

(documentViewController, animated: true)
 }
 }
 else {
 let alertController = UIAlertController(title:

"Error!", message: "Document cold not be
created", preferredStyle: .Alert)

 let confirmAction = UIAlertAction(title: "Ok",
style: .Default) { (_) in}

CHAPTER 8 ■ EXTENDING CAREKIT APPS

147

 alertController.addAction(confirmAction)
 self.navigationController.presentViewController

(alertController, animated: true, completion: nil)
 }
 })
 }
 }
 }

 The function has been refactored to first request the user to authorize the app to
access the HealthKit store. If you have a look at the authorizeHealthKit() method in the
ZCHealthKitManager class, you will find that it specifically requests read-only permission
for the data types required.

 Once authorized, the healthStore is queried for each item of data in turn. HealthKit
queries are normally asynchronous, meaning that these helper methods have each
implemented dispatch semaphores so that the data can be returned synchronously.

 Potentially the required data may not have been added to the Health Store, so in this
example the functions simply return optional values. Also the functions expect to receive
all the data. You may want to optimize this for your requirements.

 Once the HealthKit data items have been fetched, the generateDocument method
can be called, passing the new parameters.

 Refactoring to Include the New Data
 Lastly, you will need to update the other call to generateDocument() in the
ZCCarePlanTabViewController.swift file. Open the file and find the call to
 generateDocument() .

 In this case we will not pass any HealthKit data to the function, so simply replace the
function call with the following:

 let document = self.careplanManager?.generateDocument("", age: nil, gender:
nil, height: nil, weight: nil, heartRate: nil)

 As you can see, we just pass in nil for all the optional parameters, and this will allow
the app to compile. If you prefer, you can add the call to fetch data as we did before.

 That completes the steps to support the new HealthKit requirement. Build and run
the app by pressing Command+R. Once the app is running, skip the add contacts and
select View Document from the main screen.

 You will initially be presented with the HealthKit authorization screen shown in
Figure 8-1 . Select All Categories and then select Allow.

CHAPTER 8 ■ EXTENDING CAREKIT APPS

148

 After adding a comment, you will now be presented with the Insights document.
At this point you may or may not have the Personal Details data displayed in the report.
That depends on whether you have the data in the HealthKit store. If all items are
available, then they will be presented as shown in Figure 8-2 . However, if any data items
do not exist, then the whole section will be missing. You can at this stage decide to either
manually enter the data in the HealthKit app, run on a device that includes the data
items, or even modify the code you added to display some alternative text if the data is
missing—for example, “Not Available”.

 Figure 8-1. HealthKit authorization screen

CHAPTER 8 ■ EXTENDING CAREKIT APPS

149

 This concludes the section (and example) on integrating HealthKit data into a
CareKit application. ZombieCare is just one brief example of how this integration might
be applied, but you are only limited by your imagination. You can make use of any of
the HealthKit data as long as you request permission for the right data types. On the
other hand, any data captured in the application can also be written and shared to the
HealthKit data store, which will enable other applications to have access to it.

 Today Extensions
 Today extensions—or widgets, as they are now called on iOS—give users quick access
to information that’s important right now. It’s easy to see how this can be applicable to
patients. Users tend to open the Today view frequently, and with some new focus on
extending the lock and home screens in iOS 10, it’s a safe assumption to think users might
expect the information they’re interested in to be immediately available and potentially
actionable in those places.

 Figure 8-2. HealthKit data included in the Insights document

CHAPTER 8 ■ EXTENDING CAREKIT APPS

150

 You will learn how to extend the ZombieCare app to present a summary of today’s
intervention activities and allow the user to mark an activity as being completed. The
completed activity will then be updated within the main app.

 To demonstrate adding a Today extension to the ZombieCare app, the project has
been prepared with a Today extension that includes a new extension target and the
ZombieCareWidget project source files. The user interface files have also been prepared
so you can focus on the key elements of sharing data to and from the application.

 ■ Note You can find further information in Apple’s documentation on how to add a Today
extension at https://developer.apple.com/library/ios/documentation/General/
Conceptual/ExtensibilityPG/ .

 Defining the Today Extension Requirement
 Begin by opening the project source from the /chapter_08_TodayExtension folder.
You will find the new ZombieCareWidget project source files in the group called
ZombieCareWidget and a new target called ZombieCareWidget.

 Before looking at the files and adding support for sharing data with the extension,
let’s consider what’s required. There are three requirements:

 1. To display a list of today’s incomplete intervention activity
events in the Today extension

 2. To enable users to complete an intervention activity event
from within the Today screen and update the view

 3. To synchronize and view the updated intervention activity
events in the main containing application

 The key to supporting these requirements is to provide a mechanism for sharing
data between the extension and the main application. First, a list of incomplete activities
needs to be shared with the Today extension. Then the extension needs to notify the
containing app when an activity has been completed.

 If you’re not familiar with Today extensions, you may find it helpful to read up more
information on the architecture of a Today extension before continuing.

 Sharing Data with Today Extensions
 Even though an app extension bundle is nested within its containing app’s bundle,
the running app extension and containing app have no direct access to each other’s
containers (Figure 8-3). One of the approaches recommended by Apple for sharing data
is to set up an App group in the target entitlements, and then both the containing app and
the extension can use NSUserDefaults to share access to some data.

https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/

CHAPTER 8 ■ EXTENDING CAREKIT APPS

151

 Figure 8-3. Sharing application data

 This is the approach taken in the ZombieCare app. A new type called ActivityData has
been added to the Model group in the project navigator. This class supports being serialized
to the NSUserDefaults and includes properties to represent the basic details of an activity,
its state, and an identifier to reference its corresponding CareKit Activity and event. The
containing app will use two lists for storage: one for the incomplete activities created by the
containing app, and another for the completed activities created by the extension.

 ■ Note It also possible to shared data using other mechanisms such as a shared
CoreData store and NSFilePresenter.

 Once the data is available within the shared container, the two processes can
synchronize their access to the data in order to present the correct information.

 Loading and Saving Shared Data
 To support the loading and storing of shared data, the ZCCarePlanStoreManager class has
been updated with three new functions.

• saveInCompleteActivitiesToSharedStorage() : Converts an
array of ActivityData objects to NSData and saves this to the
shared storage.

• loadCompletedActivitiesFromSharedStorage() : Loads NSData
from shared storage and converts it to a list of ActivityData
objects. Once converted, the list of ActivityData objects is passed
to another function called updateEvents() for processing. The
completed list is then deleted from shared storage.

• updateEvents() : Iterates through the list of completed
ActivityData objects, finds the respective CareKit
OCKCarePlanEvent object from the Care Plan Store, and updates
its status to .Complete.

CHAPTER 8 ■ EXTENDING CAREKIT APPS

152

 As mentioned earlier, the project source has already been prepared with the new
Today extension target and project source files. All that’s required to see the Today
extension in action is to call the preceding functions at the appropriate time.

 Open ZCAppCoordinator.swift from the main app project navigator and navigate to
the loadCarePlanView() function. Uncomment the two lines to loadCompletedActivities
FromSharedStorage() and saveInCompleteActivitiesToSharedStorage() .

 The loadCompletedActivitiesFromSharedStorage() function is called first so it
can process all incomplete activities. saveInCompleteActivitiesToSharedStorage() is
called to save back to storage the fresh list of incomplete activities.

 This is all that’s required to do for the containing app because the presentation of
activities remains the same.

 Now open the TodayViewController.swift file from the ZombieCareWidget source
files. This file is the main interface controller for the widget. At the top of the file you will
find two properties. One is for the list of completed activities, and the other is for the
list of incomplete activities. Now scroll down and inspect the loadData() function. This
function simply loads the incomplete activities from shared storage when the widget is
activated.

 The user interface for the ZombieCareWidget is just a table that presents a list of the
incomplete activities and a button on each row to set the activity to complete. You will see
that the tableView DataSource has already been implemented.

 Setting the Activity Status
 The final step to complete the ZombieCareWidget is to provide the implementation to
set an activity to complete. This is done by handling a delegate on the activity row button
action.

 In the cellForRowAtIndexPath() function, uncomment the line that sets the
delegate:

 cell.buttonDelegate = self

 Now uncomment the TodayViewController extension at the bottom of the same file.
This class extension handles the event when a button is tapped in an activity row, which
then calls updateStoredData() , which in turn marks and saves the completed activity in
the shared storage container.

 That completes the implementation of both the widget and its containing app to
support the sharing of data. There is one final step you need to complete: adding an App
group to your project to support shared storage.

CHAPTER 8 ■ EXTENDING CAREKIT APPS

153

 Figure 8-4. Adding the App group

 At this point, you may be prompted to log in to your development portal account,
as Xcode will need to update your project entitlements. Once done, select the
ZombieCareWidget target and do the same.

 That should now complete all the steps for adding the ZombieCare widget. Check
that the app compiles by pressing Command+B.

 You can test the ZombieCareWidget in the iPhone simulator. To do so, you will need
to first run the main app. Ensure that the ZombieCare scheme is selected in the Project
Schemes dropdown and run the app using Command+R. This will install and run the new
app and extension bundles. The app should look no different than before. Select Skip to
bypass the contacts view, and the app will store a list of today’s incomplete activity events
in the shared storage.

 To view the extension, first pull down the Today screen by dragging down with your
mouse from the top of the simulator screen. The extension will not yet be displayed
because it needs to be installed. Select Edit, add the ZombieCare widget, and then click
Done. You should now see the ZombieCare widget displayed with a list of activities, as
shown in Figure 8-5 .

 Including App Group Capabilities
 Select your top level ZombieCare project from the project navigator, choose the
ZombieCare target, and then click the Capabilities tab. Turn on the App Groups section
and add a group called group.ZombieCare, as shown in Figure 8-4 .

CHAPTER 8 ■ EXTENDING CAREKIT APPS

154

 Figure 8-5. The Today screen before and after completing an event

 Try now to set one of the activities to complete by tapping on ita circular button. If
successful, the activity will be removed. You can now close the Today screen.

 Once it’s closed, you can select Begin Treatment from within the ZombieCare app.
You should now see the activity you completed in the Today screen marked also as
complete on the main Care Card.

 This is a very brief example to demonstrate the usefulness of a Today extension
used with CareKit. Your own production solution may well introduce some additional
requirements and display other data and fields.

 Here are a few key points to take away before developing your own solution:

• You cannot include the CareKit framework and implementation
directly within the Today extension because the extension and
the container cannot share the same CareKit data store—because
they are running in their own separate sandboxed processes.

• You will need to provide support for your own data types to be
shared between the processes. These data types need to contain
some kind of identifier in order to look up the CareKit objects
when synchronizing updates. This is similar to when sharing data
with HealthKit, which you learned about when saving weight
data with the assessment activities, where CareKit uses a UUID to
reference result data.

CHAPTER 8 ■ EXTENDING CAREKIT APPS

155

• There are other options for storing and accessing data, and you
will need to provide a mechanism to synchronize the data both
ways.

 There are many different ways you might present and interact with your CareKit data
from a Today extension. This example has merely demonstrated one approach to show
what’s feasible.

 Apple Watch
 Like Today extensions, the Apple Watch is also a very useful way to give users quick
information about their app and enable them to interact with it in a variety of ways. For
instance, you can create glances, notifications, and a Watch app that can also integrate
directly with HealthKit. At the time of writing, WatchOS 2 cannot use the CareKit
framework, but we are able to communicate with the iPhone application and synchronize
data.

 In this final section you will learn how to create a simple Apple Watch app for
ZombieCare to present a summary of today’s incomplete intervention activities and allow
the user to mark an activity as being completed, just like the Today extension. In addition,
you’ll see how to receive notifications from the application.

 To demonstrate adding an Apple Watch app for the ZombieCare app, the project
has been prepared with a new Apple Watch and Apple Watch extension targets, which
include project source code and assets files.

 Open the Project workspace from /chapter_08_AppleWatch. You will find two new
folders for ZombieCareWatch and ZombieCareWatch extension. Notice also that the
ActivityData class file used by the Today extension has also been included in the target
membership for the ZombieCareWatch extension.

 The requirement for the Watch app is exactly the same as the Today extension,
and as before your focus will be on how to share data rather than on the mechanics of
building a Watch app. If you’ve not built an Apple watch app before, then you may want
to familiarize yourself with Apple’s documentation.

 Let’s focus initially on the Apple Watch app and then move on to the notifications
later.

 Apple Watch App
 The prepared project you’ve opened already contains all the source code for loading and
displaying a list of ActivityData items, and the UI is all wired up for displaying the data.

 Start by opening the InterfaceController.swift file, where you will find a couple of
property arrays for holding the complete and incomplete activities. In the updateUI()
method, the activities are added to a table view for display.

 When the Watch app is activated, the incomplete activities are loaded from local
NSUserDefaults storage in a similar way to the Today extension. This is a convenient
approach for caching data received from the main iPhone app.

 Unlike the Today extension, the Apple Watch does not use a shared storage option
with App groups. The reason for this is because as of WatchOS 2, Watch apps run

CHAPTER 8 ■ EXTENDING CAREKIT APPS

156

independently in their own process on a physically different device—the Apple Watch.
The communication and sharing of data therefore has to be different. The next section
talks briefly about how it works.

 About Apple Watch Connectivity
 A new framework called WatchConnectivity provides bidirectional communications
between two processes and lets you transfer data and files in the foreground or
background. The framework offers several different options for sending and receiving
data, and you need to choose which method is suitable for your application. You will
need to read up on the different options, but for the ZombieCare app, the approach taken
is as follows.

 When sending data from the iPhone app to the Watch app, the
 updateApplicationContext() method is used. This method can send small amounts of
data and is appropriate as it supports background transfers, and the Watch app does not
have to be running at the time data is sent.

 The Watch app uses a different method called sendMessage() . This method sends
data immediately to its counterpart app and can also include a reply handler to check the
success of the update, as shown in Figure 8-6 .

 When data is received on either the Watch app or the iPhone app, it is cached in
NSUserDefaults, and the UI loads the data from this cache.

 The iPhone app saves data to the same shared App group (group.ZombiCare) as
it did before. This is convenient because the changes can be handled using the same
implementation used for the Today extension.

 Figure 8-6. The separate devices communicate using WatchConnectivity and cache the
data separately

CHAPTER 8 ■ EXTENDING CAREKIT APPS

157

 Adding Watch Connectivity to the iPhone App
 With this understanding of the general communication channels for sharing data, you
can now look at the actual implementation within the project.

 In Xcode, find and open WatchSessionManager.swift within the iPhone Apps
AppleWatch group folder. This class is a singleton and has three main responsibilities:

 1. Initializing and activating a Watch Connectivity session with
WCSession

 2. Sending data using the updateApplicationContext()
method

 3. Receiving data using the didReceiveMessage() method

 At the top of the file you will find that session management is handled using some
lazy initialization. Below that are the Send and Receive functions.

 The updateApplicationContext() function loads the incomplete activities from the
shared App group.

 The didReceiveMessage() function is the implementation for the
WCSessionDelegate method to receive data that was sent using SendMessage() from
the watch. When data is received, it simply stores the data in the local shared App group
storage container.

 When the iPhone application is started, it needs to now initialize the
WatchSessionManager. To do this, open the AppDelegate.swift file and in the
 didFinishLaunchingWithOptions() function, uncomment the following line:

 WatchSessionManager.sharedManager.startSession()

 In the ZCCarePlanStoreManager.swift file, find and uncomment the
 sendDataToWatchApp() function. This is the function that transmits data to the Watch app.

 Now in the ZCAppCoordinator, you can send the data. Open ZCappCoordinator.swift
and find the loadCarePlanView() function. Uncomment the following line:

 self.carePlanManager?.sendDataToWatchApp()

 The iPhone app implementation is now complete and will send data to the Watch
app, loading the Care Plan immediately after synchronizing with the Today extension.
Note that data will only be sent to the Watch app if it is installed.

 Adding Watch Connectivity to the Watch App
 Now let’s have a look at the Watch app implementation. Navigate to the ZombieCareWatch
Extension folder, and you will see a group folder called Communications. In this folder
there are two files: WatchSessionManager.swift and Datasource.swift. These two files
handle all data comms for the Watch app.

CHAPTER 8 ■ EXTENDING CAREKIT APPS

158

 DataSource is a simple struct that unarchives an NSData object into
its corresponding array of ActivityData objects. This class is used by the
WatchSessionManager and the Apple Watch InterfaceController to handle the data.

 The WatchSessionManager, although named the same as the iPhone version
described earlier, is similar but different. It is a singleton and has the same responsibilities
with respect to initialization, sending, and receiving, but the implementation is different
and it includes an additional delegate that will advise when the DataSource has been
updated.

 When the WatchSessionManager is initialized, it creates an array of
DataSourceDelegates. It also provides functions for adding and removing delegates to the
array.

 In the WatchSessionManager extension, there are three methods including a method
for sending data using SendMessage() and another WCSessionDelegate handler for
 didReceiveApplicationContext() . When the app receives data, it calls all the registered
DataSourceDelegates with a copy of the new data.

 With this background on the classes provided, let’s update the source to make use of
these classes. First, open the ExtensionDelegate.swift file and uncomment the line that
initializes the WatchSessionManager:

 WatchSessionManager.sharedManager.startSession()

 Now open the InterfaceController.swift file. At the top of the file, change the
declaration so it conforms to the DataSourceDelegate as follows:

 class InterfaceController: WKInterfaceController,DataSourceChangedDelegate,
ActivityRowDelegate{
 ...
 }

 In the WillActivate() function, add the following at the beginning to register with
the DataSourceDelegate:

 WatchSessionManager.sharedManager.addDataSourceChangedDelegate(self)

 And then add the corresponding call to de-register for updates in the didDeactivate()
function.

 WatchSessionManager.sharedManager.removeDataSourceChangedDelegate(self)

 Now add the DataSourceDelegate handler at the end of the class as follows:

 func dataSourceDidUpdate(dataSource: DataSource) {
 if let activityData = dataSource.activityData
 {

CHAPTER 8 ■ EXTENDING CAREKIT APPS

159

 let sharedDefaults = NSUserDefaults.standardUserDefaults()
 NSKeyedArchiver.setClassName("ActivityData", forClass:

ActivityData.self)
 let archiveData = NSKeyedArchiver.archivedDataWithRootObject

(activityData)
 sharedDefaults.setValue(archiveData, forKey: kActivityData)
 sharedDefaults.synchronize()
 updateUI()
 }
 }

 This function will be called when data is received by the WatchSessionManager
as described earlier. It will take the data from the DataSource and cache it locally in
 NSUserDefaults() before telling the UI to update.

 Finally, in the updateStoredData(..) function, add the following code after the call
to default.synchonize() :

 let dict = [kCompletedActivityData: completedarchivedObject, kActivityData :
archivedObject]
 WatchSessionManager.sharedManager.sendMessageData(dict)

 The updateStoredData(..) function is called when a user completes an activity.
Once the data arrays have been updated and stored locally, a call is made to the
WatchSessionManager to send the data to the iPhone application.

 That completes the implementation of the Watch Connectivity. Try to build
the app using Command+B. If you have any difficulties, you can find the complete
implementation in the /chapter_08_final folder.

 You can test the ZombieCare Watch in the iPhone and Watch simulators. To do so,
you will need to run the main app. First ensure that the ZombieCare scheme is selected
in the Project Schemes dropdown and run the app. This will install and run the new app.
The app should look no different than before. Select Skip to bypass the contacts view, and
the app will store a list of today’s incomplete activity events in the shared storage. At this
stage, it will not send data because the Watch app has not been installed on the Watch
simulator.

 Now select the ZombiCareWatch scheme from the project Schemes dropdown and
ensure the 48 mm Watch simulator is selected. Select Run, and the Watch simulator will
start. You may see a blank screen at this point. If you do, run the iPhone app again in the
simulator and then try the Watch app again. When successful, you should see the screen
display the list of incomplete activities shown in Figure 8-7 . Complete an activity, and the
screen should update in the same way we saw on the Today extension.

CHAPTER 8 ■ EXTENDING CAREKIT APPS

160

 Switch back to the iPhone simulator. You can now select Begin Treatment from
within the ZombieCare app. All going well, you should now see the activity you
completed in the Watch app marked also as complete on the main Care Card.

 That concludes the demonstration on how to use an Apple Watch app with a CareKit
application. This has just been a brief introduction focusing on how to share CareKit
data with an Apple Watch. It’s more likely that in a production application the Watch app
would have more than one display, and you may need to make choices with respect to
navigation and what features would make a good Watch app. You may also want to use
Glances to display a summary of the user’s Care Plan state.

 Apple Watch Notifications
 Notifications can be incredibly useful for a CareKit application. In the scenario where a
patient has a number of treatments or tasks that are scheduled to occur at different times,
to get notified about the tasks is a good use of the technology.

 By wearing an Apple Watch, a user or patient can receive notifications without
opening the iPhone. There are two different types of notifications to consider: push
notifications and local notifications. You can implement both or one or the other in your
solution. The result on the Watch app is the same—the user will receive the notification
and can potentially take further action.

 To demonstrate this in the context of a CareKit application, the ZombieCare app will
be updated with some local notifications, and you will be able to receive the notification
on the Watch app and view the message.

 The requirement within the ZombieCare app is relatively simple:

 1. When the app launches it will clear any previously set
notifications.

 2. After the Care Plan is loaded, the app will set new local
notifications for each incomplete task. The notifications will
be set for mid-day. Where there are multiple occurrences of
an activity task, then the app will set one only.

 This will suffice for the ZombieCare app, but in a real production app you will likely
want to use either push notifications from your Care Plan server or implement a more

 Figure 8-7. The Watch app before and after completing an event

CHAPTER 8 ■ EXTENDING CAREKIT APPS

161

accurate and specific plan for notification delivery. You will also want to implement a
notification for each occurrence of an activity and quite possibly have reminders for other
actions too, including assessments. It’s also worth remembering that the user may not be
running the app every day, and setting notifications in advance may well be a good idea.

 Let’s begin by continuing to use the same project source as the last section on the
Apple Watch app and open the ZCCarePlanStoreManager.swift file. After the function
 sendDataToWatchApp() , add the following function:

 func postLocalNotifications() -> Void{

 UIApplication.sharedApplication().cancelAllLocalNotifications()

 let calendar = NSCalendar.currentCalendar()
 let now = NSDate()

 let date = NSDateComponents(date: now, calendar: calendar)
 self.store.eventsOnDate(date, type: .Intervention, completion:

{ (eventsGroupedByActivity, error) in

 dispatch_async(dispatch_get_main_queue(), {

 let midday: NSDate = calendar.dateBySettingHour(12, minute:
0, second: 0, ofDate: now, options: NSCalendarOptions())!

 for events in eventsGroupedByActivity{
 let activity = events.first!.activity
 for event in events {
 if event.state != .Completed {
 let localNotification = UILocalNotification()
 localNotification.fireDate = midday
 localNotification.soundName =

UILocalNotificationDefaultSoundName
 localNotification.timeZone = NSTimeZone()
 localNotification.alertBody = "\(activity.text)

is due."
 UIApplication.sharedApplication().scheduleLocalN

otification(localNotification)
 //we can ignore remainning events as we've set a

notification
 break;
 }
 }
 }
 })
 })
 }

CHAPTER 8 ■ EXTENDING CAREKIT APPS

162

 This function handles both the requirements. First, it cancels any existing
notifications. It then iterates over all the current CareKit activities and if it finds an
incomplete event it sets up a local notification for mid-day.

 Depending on what time you’re running through this exercise, you may want to
adjust the time set for the notification to a minute or two after the current time for testing
purposes.

 With this method in place you can now call the function. Open the
ZCAppCoodinator.swift file and add the following code after the call
 sendDataToWatchApp() :

 self.carePlanManager?.postLocalNotifications()

 Finally, you need to prompt the user to allow notifications by registering for
user notifications in the app delegate. Add the following lines to the application
 didFinishLaunchingWithOptions() function:

 let types:UIUserNotificationType = ([.Alert, .Sound, .Badge])
 let settings:UIUserNotificationSettings = UIUserNotificationSettings(forTyp
es: types, categories: nil)
 application.registerUserNotificationSettings(settings)

 Build and run the application, and notifications will be set. To test notifications you
will need to run the app on a physical device. If you don’t have an Apple Watch, you can
see the result in the simulator by running the ZombieCareWatch(notification) scheme.

 ■ Note See the AppleWatch documentation to learn about simulating local notifications
on the Apple Watch simulator.

 This concludes the section on adding local notifications to the ZombieCare app.
This has been a simple demonstration on how notifications can enhance your CareKit
application. Consider the following as ideas that might be useful for a real production
app:

• Include dynamic notification actions that prompt the user to
complete an activity. When actioned, the app would load to the
appropriate view and the user could then complete the activity.

• Choose a suitable time for your notifications.

• When there is more than one event per activity, only send one
notification so the user is not swamped with notifications.

• If you’re connecting to a remote Care Plan server, it may be worth
implementing server-side push notifications.

• Notifications can also be categorized.

• Make use of notifications badges and sounds.

CHAPTER 8 ■ EXTENDING CAREKIT APPS

163

 Those are just a few ideas that might improve an app’s user experience. One thing
above all is to ensure that notifications are used judiciously so as not to annoy users.

 Summary
 In this chapter you learned how to integrate HealthKit to extend a CareKit application.
You saw that there are multiple reasons for doing this, such as sharing captured data
with other applications and leveraging other HealthKit information that can be shared
with the user’s connections. You also learned how to share CareKit application data with
Today extensions and the Apple Watch app, including notifications to engage a user and
facilitate their updating of important information.

 These are just examples of how you can extend a CareKit app, focused on how to
share the data between these different processes and devices. In the next chapter you
will learn a little more about how a CareKit application might take advantage of device
sensors and other application frameworks and APIs.

165© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3_9

 CHAPTER 9

 Enhancing CareKit Apps

 This chapter is about going further with iOS frameworks, features, and capabilities
to enhance a CareKit app. CareKit itself is designed to leverage other existing iOS
technologies and design patterns, but although the framework does facilitate the
process of creating quality treatment apps, a good understanding of app design and
other frameworks and tools will help you understand how to best use the framework,
incorporate its features into other apps, and go beyond the basic functionality that the
framework provides, as demonstrated in Chapter 8 .

 Apple’s iOS SDK includes a large number of frameworks with features and
capabilities that can greatly enhance your CareKit application. This chapter highlights a
few of these features with examples on how the features can be incorporated in a CareKit
app or in an app’s assessments or reports that can be shared with a Care Team or other
connections.

 App Design
 iOS apps are generally designed as a series of interconnecting scenes . Scenes can be
presented in different ways, and we’ve seen as apps have matured and become quite
innovative, a multitude of different animations and innovations come together to provide
great user experiences.

 CareKit provides a number of these scenes as Care Modules. As we’ve seen in the
CareKit OCKSample application and the ZombieCare app, the examples have focused on
presenting these scenes in tabs only.

 It’s quite likely that your app will contain more than just the CareKit scenes
incorporated as part of a broader experience and set of features, which may (or may
not) feature tabs. A number of design patterns are available to developers for managing
multiple scenes, so learning how to create and combine them is vital when building
complex iOS apps.

 If you’re new to iOS development, consider reading through some of Apple’s
tutorials. The appendix presents a list of resources you may find useful, including
references to Apple’s human interface guidelines and programming guides.

http://dx.doi.org/10.1007/978-1-4842-2226-3_8

CHAPTER 9 ■ ENHANCING CAREKIT APPS

166

 ResearchKit
 Earlier chapters introduced you to ResearchKit, and you learned how to integrate some
of its features into a CareKit application. For instance, you learned how an assessment
activity can use ResearchKit tasks.

 Generally, CareKit and ResearchKit have been developed as complementary
frameworks to help simplify the app-creation process, and CareKit does not try to
duplicate any ResearchKit features. So it’s recommended that CareKit apps incorporate
ResearchKit features directly where possible. The examples provided in this book have
focused on some simple ordered tasks, however, ResearchKit has many more features
that you will find useful.

 Task modules range from simple question-and-answer steps and dynamic forms to
presenting multiple questions together. There are also multiple-answer formats available,
including scaled answers, boolean values, value pickers, image choices, single text choice,
multiple text choice, numeric answers, time of day, date, unlimited text, limited text,
validated text, email answer, location answer, and vertical scales.

 In addition to survey-related tasks, ResearchKit includes Active tasks. Active tasks
invite users to perform activities under partially controlled circumstances using iPhone
sensors to collect data. These tasks include Motor activities using the accelerometer
and gyroscope, Fitness activities like walks using the GPS and gyroscope, cognition
tests such as spatial memory, or reaction times using multi touch, accelerometers, and
gyroscopes—even voice and audio-related tasks.

 The predefined tasks can be extremely useful for assessing patient conditions, and all
can be incorporated into CareKit apps, saving developers a lot of effort.

 ResearchKit also includes numerous charts: pie charts, line graphs, multiple-line
graphs, discreet graphs, and discrete graphs with multiple points. It’s quite possible for
you to use these charts within a CareKit dashboard.

 Consider having a look at the ResearchKit framework and familiarize yourself with
the various features. Links are provided in the appendix.

 HealthKit
 We’ve covered incorporating HealthKit into CareKit apps with two examples. In the first
instance you learned how to save data captured during assessment activities and then
later you learned how to make uses of HealthKit data that did not originate from the
example app into the Insights reports.

 HealthKit data is stored securely and is a central database of a wide range of health
data which, with the correct permissions granted by the user, can provide very useful
information to a Care Team. The HealthKit store is also directly accessible from the Apple
Watch.

 For more information on HealthKit, go to https://developer.apple.com/
healthkit/ .

https://developer.apple.com/healthkit/
https://developer.apple.com/healthkit/

CHAPTER 9 ■ ENHANCING CAREKIT APPS

167

 Notifications
 iOS notifications alert users to useful information in your app. You’ve seen examples
of this where you learned to send local notifications about scheduled activities in the
ZombieCare app that can be viewed on an iPhone or an Apple Watch.

 There is plenty of potential for using notifications. Apple gives one example where
you might want to notify a user if they are taking a large number of steps, which was
detected in your app, when they are supposed to be resting or recovering from surgery.

 You can read more about local and remote notifications in Apple’s guide at https://
developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/Chapters/Introduction.html .

 Apple Watch
 Chapter 8 introduced you to the Apple Watch, and you learned how to build a custom
watchOS app that incorporated data from your CareKit app. Although a custom app can
play a useful part in your solution, it’s not always necessary because it can still receive
notifications that are forwarded from a paired iPhone.

 There are lots of other features of an Apple Watch you can take advantage of. The
watch comes with numerous sensors and records large amounts of useful information,
including activity summaries, step counts, heart rate samples, and more. This data is all
synced to HealthKit, which can be accessed on the iPhone app.

 To explore the features available on Apple watchOS, go to https://
developer.apple.com/library/watchos/documentation/General/Conceptual/
WatchKitProgrammingGuide/index.html .

 Motion Sensors
 Core Motion is an Apple framework that lets developers access data from an iOS device’s
motion coprocessor. This framework enables you to determine whether a user is
stationary, walking, running, cycling, or even driving.

 ResearchKit has a number of tasks that use the Core Motion framework, so look for
suitable tasks there first—otherwise, consider accessing the framework yourself with your
own custom tasks.

 Asynchronous APIs
 CareKit uses asynchronous reads and writes to the Care Plan Store. When reading
or writing data, work is placed on a background thread, after which methods return
immediately. When results are ready they are returned in completion handlers.

 A number of options are available to developers for working with background
threads, including GCD and closures, dispatch queues, native threads, and NSOperation
Queues. It’s worth exploring these options if you have no experience with them so that
your app can be responsive and you will be able to better understand how CareKit makes
use of background threads.

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/Introduction.html
http://dx.doi.org/10.1007/978-1-4842-2226-3_8
https://developer.apple.com/library/watchos/documentation/General/Conceptual/WatchKitProgrammingGuide/index.html
https://developer.apple.com/library/watchos/documentation/General/Conceptual/WatchKitProgrammingGuide/index.html
https://developer.apple.com/library/watchos/documentation/General/Conceptual/WatchKitProgrammingGuide/index.html

CHAPTER 9 ■ ENHANCING CAREKIT APPS

168

 For further information on concurrency programming, see the appropriate links in
the appendix. You may also find it useful to watch the video on “Advanced NSOperations”
from WWDC 2015 (https://developer.apple.com/videos/play/wwdc2015/226/).

 Networking and Remote Services
 In the example ZombieCare app, a mock service was used to load the Care Plan.
This example was used to demonstrate how you might architect an app that requires
information from a remote service. In a real production application, you may be required
to download medical records, Care Plans, and other information from remote servers.

 I have included a new node service you can run as an example of a remote service
(albeit on your local machine). Download the careplanserver source code folder and
follow the readme instructions to install it and run it on your local machine.

 Open the source code from the /project_folder/chapter_09 and you will find a new
service called TestService has been added to the project. This version of the project
has been modified to load the TestService by default (see the ZCServiceProvider.
userbackendType() method).

 If you run this version of the project, resources will be loaded from the service and
not the local resource in the app bundle. This simply demonstrates an alternative method
of loading data from a remote HTTP resource. The test service is still just returning a full
Care Plan in JSON format but is easily extendable to be a fully RESTFul service.

 If you’re interested in following the development of a new fully RESTful Care Plan
service, you can register at http://catalystcare.co . Apple also provides APIs for
networking technologies. Refer to the appendix for URL session programming guides.

 Summary
 In this chapter you’ve read about just a few of the iOS frameworks and technologies
available to developers building CareKit applications.

 There are a lot more. And in addition to Apple’s iOS SDK, there are plenty of third-
party libraries and products (open source and commercial) that you might be able to use
in your CareKit apps to give the best features and user experience. If you’re looking for
further resources, consider looking at the Cocoapods or Carthage package managers, and
at some point soon, the Swift Package Manager.

https://developer.apple.com/videos/play/wwdc2015/226/
http://catalystcare.co/

169© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3

 APPENDIX

 Resources

 This appendix lists useful tools and links for building iOS and CareKit applications. It
provides various resources and tools that you might find useful when building CareKit
applications. Although not an exhaustive list, it should give you a head start if you’re new
to iOS development.

 Apple Documentation
 CareKit
 http://carekit.org/docs/docs/Overview/Overview.html

 ResearchKit
 http://researchkit.org/docs/docs/Overview/GuideOverview.html

 HealthKit
 https://developer.apple.com/healthkit/

 iOS Human Interface Guidelines
 https://developer.apple.com/ios/human-interface-guidelines/

 App Development Tutorial (Swift)
 https://developer.apple.com/library/ios/referencelibrary/GettingStarted/
DevelopiOSAppsSwift/index.html

http://carekit.org/docs/docs/Overview/Overview.html
http://researchkit.org/docs/docs/Overview/GuideOverview.html
https://developer.apple.com/healthkit/
https://developer.apple.com/ios/human-interface-guidelines/
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/index.html
https://developer.apple.com/library/ios/referencelibrary/GettingStarted/DevelopiOSAppsSwift/index.html

APPENDIX ■ RESOURCES

170

 ViewController Programming Guide for iOS
 https://developer.apple.com/library/ios/featuredarticles/
ViewControllerPGforiPhoneOS/

 Local and Remote Notification Programming Guide
 https://developer.apple.com/library/ios/documentation/NetworkingInternet/
Conceptual/RemoteNotificationsPG/Chapters/Introduction.html

 Core Motion Framework Reference
 https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/
CoreMotion_Reference/index.html

 Concurrency Programming Guide
 https://developer.apple.com/library/ios/documentation/General/Conceptual/
ConcurrencyProgrammingGuide/Introduction/Introduction.html

 Networking with NSURLSession
 https://developer.apple.com/videos/play/wwdc2015/711/NSURLSession
Programming Guide
 https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/
URLLoadingSystem/URLLoadingSystem.html

 Apple Watch Programming Guide
 https://developer.apple.com/library/watchos/documentation/General/
Conceptual/WatchKitProgrammingGuide/index.html

 App Extension Programming Guide
 https://developer.apple.com/library/ios/documentation/General/Conceptual/
ExtensibilityPG/

 Apple Open Source Repositories
 CareKit Repository
 https://github.com/carekit-apple/CareKit

https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/ios/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/Introduction.html
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CoreMotion_Reference/index.html
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CoreMotion_Reference/index.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
https://developer.apple.com/videos/play/wwdc2015/711/NSURLSession
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/URLLoadingSystem/URLLoadingSystem.html
https://developer.apple.com/library/watchos/documentation/General/Conceptual/WatchKitProgrammingGuide/index.html
https://developer.apple.com/library/watchos/documentation/General/Conceptual/WatchKitProgrammingGuide/index.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/
https://github.com/carekit-apple/CareKit

APPENDIX ■ RESOURCES

171

 ResearchKit Repository
 https://github.com/ResearchKit/ResearchKit

 Source Code Version control Systems
 Github
 https://github.com

 Bitbucket
 https://bitbucket.org

 Package Managers
 CocoaPods
 https://cocoapods.org

 Carthage
 https://github.com/Carthage/Carthage

 Swift Package Manager
 https://swift.org/package-manager/

https://github.com/ResearchKit/ResearchKit
https://github.com/
https://bitbucket.org/
https://cocoapods.org/
https://github.com/Carthage/Carthage
https://swift.org/package-manager/

173

 A, B
 Accessibility

 VoiceOver , 17
 Activities

 creating , 39, 82, 87–89, 108s
 presenting

 OCKCareCardView
Controller , 3, 60, 65

 schedule , 3, 10, 27–30, 36, 40, 41,
78–81

 App design
 design patterns , 165

 Apple Watch
 connectivity

 addDataSourceChanged
Delegate , 158

 DataSource class , 157
 DataSourceDelegate , 158–159
 didReceiveApplicationContext()

function , 158
 didReceiveMessage()

function , 157
 NSUserDefaults , 155, 156, 159
 removeDataSource

ChangedDelegate , 158
 sendMessage() function , 156, 157
 updateApplicationContext()

function , 156, 157
 WatchSessionManager

class , 157, 158
 WCSessionDelegate , 157

 notifi cations
 postLocalNotifi cations()

function , 161, 162
 watchOS , 143, 155–156, 167

 ZombieCareWatch
Extension target , 155, 157

 ZombieCareWatch target , 155, 157

 C
 Care Card

 build
 createCareCardViewController()

function , 56, 66, 67, 76, 135
 ZCCarePlanStoreManager class ,

55, 60
 customisation

 didReceiveUpdateOfEvent()
function , 51, 60

 mask images , 63, 65–66
 OCKCareCardView

ControllerDelegate , 60–62, 65
 row indicators , 65
 shouldHandleEvent

CompletionForActivity()
function , 60, 61

 TabBar Icons , 67
 tint color , 63, 65–66
 ZCCarePlanTabViewController

class , 60, 61
 intervention activities

 .Intervention , 3, 10, 58
 OCKCarePlanActivityType , 10, 39,

71
 present

 OCKCareCardDetails
ViewController , 58

 OCKCareCardView
Controller , 3, 29, 58, 59

 Tabbar Controller , 56

 Index

© Christopher Baxter 2016
C. Baxter, Beginning CareKit Development, DOI 10.1007/978-1-4842-2226-3

■ INDEX

174

 updating
 carePlanStore

ActivityListDidChange()
function , 51, 59

 didReceiveUpdateOfEvent()
function , 60

 eventsOnDate() function , 60
 fetchEvents() function , 59, 60
 OCKPlanStoreDelegate , 59

 CareKit Framework
 architecture

 data layer , 11, 13–14
 presentation layer , 12–13, 15

 documentation , 2, 10
 open sourced

 github repository , 2
 Care Plan Store

 CoreData , 9, 34, 46
 NSManagedObject , 30
 NSPrivateQueue

ConcurrencyType , 34
 SQLite database , 34

 create
 OCKPlanStore type , 9, 34
 persistenceDirectoryURL , 34, 43

 key data types , 9, 10
 OCKCarePlanStore

 clearing , 53–54
 creating , 52
 initialisation , 34
 OCKCarePlanStoreDelegate

type , 16, 33, 51–53
 query

 enumerate , 35
 identifi er , 35

 security
 encryption , 35
 NSFileProtection

Complete , 9, 17, 35
 updateEvent() function , 151
 updateEvent() method , 62

 Connect
 call , 8, 138
 email , 8, 123, 138
 message , 138
 on-boarding

 careplan.json , 124, 126
 CNContactPickerView

Controller , 132, 133
 Connections.storyboard , 126–127

 ConnectionsView
Controller , 124, 126–127, 132

 ConnectionsView
ControllerDelegate , 126

 contact struct , 125
 loadOnboardingView() function ,

129, 131
 ZCContact struct , 125
 ZCOnboardingCoordinator , 126–128
 ZCOnboarding

CoordinatorDelegate , 128, 129
 presenting

 createConnectViewController()
function , 135, 136

 OCKConnectView
Controller , 8, 13, 135

 ZCCareKitTabCoordinator , 135
 Connect data types

 allCKContacts() function , 125, 135
 OCKContact

 CNPhoneNumber , 124
 image , 123, 124
 monogram , 123

 D, E, F, G
 Data protection

 entitlements , 23
 Documents

 creating
 createPDFDataWith

Completion() , 119, 139, 146
 generateSampleDocument()

function , 117, 119, 139, 144, 147
 HTMLContent , 120
 viewDocument() function , 118,

119, 130
 ZCCarePlanCoordinator , 118

 document elements
 OCKDocument , 10, 117, 120, 144
 OCKDocumentElement , 116, 145
 OCKDocumentElementChart , 116
 OCKDocumentElement

Image , 116
 OCKDocumentElement

Paragraph , 116, 117, 145
 OCKDocumentElementSubtitle ,

116, 117, 145
 OCKDocumentElementTable , 116

 html , 10, 114
 pdf , 10, 114, 120

Care Card (cont.)

■ INDEX

175

 H
 HealthKit

 authorizeHealthKit()
function , 146, 147

 generateDocument() function ,
144–146

 HealthKit store , 92, 94–96,
144, 147, 148, 166

 insight reports , 143, 166
 synchronising , 144
 ZCHealthManager , 144

 Hello World Project
 framework libraries

 CareKit , 21–23
 ResearchKit , 21–23

 integration
 CareKit.xcodeproj , 21
 github , 31
 ResearchKit.xcodeproj , 21

 project , 19–21
 workspace , 19–21

 I, J, K, L
 Insights

 creating insights , 107–109
 NSOperation

 BuildInsightsOperation , 108
 InsightsBuilder , 108
 QueryActivityEvents

Operation , 108–109
 presenting insights

 createInsightsViewController()
function , 112

 didUpdateInsights()
function , 109, 111

 OCKInsightsChartTable
ViewCell , 88

 OCKInsightsMessage
TableViewCell , 102

 OCKInsightsView
Controller , 110, 111

 updateInsights()
function , 110, 111

 ZCCareKitTab
Coordinator , 110, 111

 ZCCarePlanStore
ManagerDelegate , 110, 111

 scale and format , 106

 Interface modules
 Care Card , 3–4
 connect , 8–9
 insights , 6–7
 symptom and measurement

tracker , 4–6

 M
 Messages

 creating charts , 104–106
 creating messages , 103–104
 OCKChart

 chartView , 105
 OCKBarChart , 105
 OCKBarSeries , 105
 OCKGroupBarChartView , 105

 OCKInsightItem , 102
 OCKMessageItem , 102–104, 108, 109

 alert icon , 104
 alerts , 102
 OCKMessageItem

TypeAlert , 103
 OCKMessageItem

TypeTip , 103
 tips , 103

 N, O
 Networking

 remote services , 168
 URLSession , 168

 Notifi cations
 local notifi cations , 160–163, 167
 push notifi cations , 160–163

 P, Q
 Privacy

 PIN , 16
 touchID , 16

 R
 ResearchKit

 active tasks , 84, 96, 166
 answer formats , 96
 charts , 166
 tasks , 4, 13, 40, 75, 84, 86,

89, 96, 98, 99, 166, 167

■ INDEX

176

 Resources
 Apple Links

 App Development Tutorial , 167
 Apple watch programming

guide , 168
 CareKit , 167
 concurrency programming , 168
 core motion framework , 167
 HealthKit , 166
 iOS Human Interface

Guidelines , 165
 networking with

URLSession , 168
 notifi cations programming

guide , 165
 ResearchKit , 143, 166
 URLSession programming

guide , 168
 ViewController

Programming Guide,
 bitbucket,
 cocoapods , 23, 168
 github , 2, 31
 repositories

 CareKit repository,
 ResearchKit repository,

 swift package manager , 23, 168

 S
 Schedule

 OCKCareSchedule
 OCKCareScheduledType

Weekly type , 40
 OCKCareScheduleTypeDaily

type , 40
 OCKCareScheduleType

Other type , 41
 Security

 encryption , 35
 SSL , 17

 Sensors
 activity , 167
 heart rate , 167
 motion sensor , 167
 step count , 167

 Sharing
 generateDocument() function

 pdf , 139
 OCKConnectView

ControllerDelegate

 didSelectShareButton
ForContact() method , 139

 titleForSharingCellForContact , 139
 Symptom & Measurement Tracker

 assessment activities
 .Assessment , 82, 88, 90
 fi ndAssessmentActivity()

function , 88
 OCKCarePlanActivity , 90
 OCKCarePlanResult , 87

 build
 createSymptomtracker

ViewController() function , 76
 ZCCarePlanStoreManager

class , 44, 109, 115, 151
 HealthKit

 authorisation , 92
 capabilities , 89, 90
 HK Sample , 91, 92
 HK Unit , 89, 91, 92
 UUID , 91
 Xcode , 89

 present
 OCKSymptomTracker

ViewController , 75
 TabbarController , 76

 Research Kit
 createTask()method , 84, 86
 didFinishWithReason()

function , 82
 didSelectRowWith

AssessmentEvent() , 82
 OCKCarePlanEventResult , 83, 87,

88, 91, 95, 98
 ORKOrderedTask , 86
 ORKQuestionSteps , 86
 ORKTaskViewController ,

 83, 86–88, 92, 98
 ORKTaskViewController

Delegate , 82, 86, 87, 92, 98
 updating

 OCKCarePlanStoreDelegate , 91

 T, U, V, W, X, Y
 Th reading

 asynchronous APIs , 167–168
 dispatch queues , 167
 GCD , 167
 native threads , 167
 NSOperation , 167

■ INDEX

177

 Today extensions
 AcitivityData struct , 157
 architecture , 150
 intervention activities , 150, 155
 loadCompletedActivitiesFrom

SharedStorage() function , 151
 saveInCompleteActivitiesTo

SharedStorage() function , 151
 shared NSUserDefaults , 150, 155
 sharing data , 150, 154
 TodayViewController class , 152
 updateEvents() method , 151
 ZombieCareWidget , 150

 Z
 ZombieCare

 care plan
 CarePlan class , 41
 careplan.json , 36, 37,

63, 67, 82, 98, 124, 126
 JSON , 33, 36, 37, 46,

54, 78, 125, 126
 loading , 36, 37, 123, 129, 151
 ZCActivity , 36, 37, 41, 64, 69, 70, 93

 CarePlanViewController , 55, 57, 61,
65, 67, 118, 130

 createCareCardView
Controller , 56, 66, 67, 76

 createSymptomtracker
ViewController() function ,
76–77, 84, 135

 customisation
 BrainTestViewController , 98

 fi ndAssessmentActivity() function , 88
 mock service

 ZCAPIResource , 36
 ZCService , 36, 37, 128
 ZCServiceProvider , 36, 168
 ZCServiceType , 36

 OCKSymptomTrackerViewController
Delegate , 13, 15, 82–84, 98

 project , 31, 42, 70, 89, 102, 152
 ResearchKit

 buildResultForCarePlanEvent()
function , 88

 createTask() function , 84, 86
 workspace , 35, 96, 155
 ZCCareCardDetailViewController

 initialisers , 71
 ZCCareKitTabCoordinator

class , 76, 84, 110, 111,
128, 135, 139

 ZCCarePlanStoreManager
 updateStore() function , 43, 44

 ZCCarePlanTabViewController ,
60, 61, 83, 86, 87, 95, 98, 135,
139, 144, 147

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Understanding the Core Elements of CareKit
	Framework Organization
	User Interface Modules
	Care Card
	Symptom and Measurement Tracker
	Insights
	Connect

	Data Modules
	Care Plan Store
	Documents Exporter

	Key Data Types
	Intervention Activity
	Assessment Activity
	Intervention Event
	Assessment Event
	Contact
	Chart

	CareKit Framework Architecture
	Presentation Layer
	Data Layer

	Anatomy of the Sample CareKit-Based Application
	Application Design
	Application Architecture
	Controllers
	CareStorePlanManager

	Best Practices
	Privacy
	Security
	Accessibility

	Summary

	Chapter 2: CareKit Hello World
	Create the Workspace and Project
	Import CareKit and ResearchKit
	Configure the Project with Data Protection
	Hello World!
	Creating a Care Card
	Adding the Care Plan Store
	Adding an Intervention Activity

	Introducing ZombieCare
	Summary

	Chapter 3: Care Plan Store
	OCKCarePlanStore
	Storage
	Initialization
	Security

	Accessing the Care Plan Store
	Adding to the ZombieCare App
	Setup
	Additional Files
	Implementation

	OCKCarePlanActivity
	Intervention Activities and Events
	Assessment Activities and Events
	OCKCareSchedule
	Schedule Types
	A Daily Schedule
	A Weekly Schedule
	Custom Schedules
	Adding Activities to the ZombieCare App
	Adding the Care Plan Store Manager

	OCKCarePlanEvent
	OCKCarePlanEventResult

	Reading Data from the Store
	Additional CareKit Methods
	Synchronizing the Functions

	OCKCarePlanStoreDelegate
	Clearing the Store
	Summary

	Chapter 4: Building the Care Card
	Building and Presenting a Care Card
	A Closer Look at the Care Card

	Updating the Care Card
	Customizing the Behavior of OCKCareCardViewController
	Customizing the Care Card Appearance
	Changing Activity Event Colors
	Hide/Display Event Row Indicators
	Changing the Mask Tint Color and Mask Images
	Changing the Tab Icon
	Custom Care Card Detail View
	Adding an Image to the Intervention Activity
	Writing Your Own Custom Care Card Detail View

	Summary

	Chapter 5: Symptom and Measurement Tracker
	Build and Present a Symptom and Measurement Tracker
	Reviewing What’s Been Presented

	Implementing the ResearchKit Task ViewController
	Refactoring the Assessment Activity Models
	Presenting the Task View Controller
	Setting the Symptom Tracker Delegate
	Adding a ResearchKit Task
	Handling Task Completion
	Creating Assessment Activity Results
	Adding HealthKit Capabilities
	How to Retake Assessments

	Updating the Symptom and Measurement Tracker
	Integrating Results with HealthKit
	About HealthKit Integration
	Integrating HealthKit with the Example
	Adding Support for HealthKit Data
	Creating HealthKit Data

	Implementing a Custom Feedback Controller
	Defining a Custom Task
	Adding the Custom Task

	Summary

	Chapter 6: Insights
	Insight Data Types
	Creating Messages
	Creating Charts
	ZombieCare App Insights
	ZombieCare Message Insights
	ZombieCare Chart Insights
	Creating Insights

	Building and Presenting the Insights Scene
	Creating a Document
	Summary

	Chapter 7: Connect
	Connect Data Types
	Creating Contacts
	Onboarding Contacts
	Adding and Loading Contact Data
	Adding the Onboarding Views
	ConnectionsViewController and Connections.storyboard
	ZCOnboardingCoordinator

	Add the Onboarding
	Launching the Onboarding Views
	Closing the Onboarding
	Load the Onboarding View from the Care Plan

	Presenting the Connect ViewController
	Sharing Insights with Connections
	Summary

	Chapter 8: Extending CareKit Apps
	HealthKit Primer
	Defining HealthKit Requirements
	Updating to the Insights Document
	Fetching Additional HealthKit Data
	Refactoring to Include the New Data

	Today Extensions
	Defining the Today Extension Requirement
	Sharing Data with Today Extensions
	Loading and Saving Shared Data
	Setting the Activity Status
	Including App Group Capabilities

	Apple Watch
	Apple Watch App
	About Apple Watch Connectivity
	Adding Watch Connectivity to the iPhone App
	Adding Watch Connectivity to the Watch App
	Apple Watch Notifications

	Summary

	Chapter 9: Enhancing CareKit Apps
	App Design
	ResearchKit
	HealthKit
	Notifications
	Apple Watch
	Motion Sensors
	Asynchronous APIs
	Networking and Remote Services
	Summary

	Appendix: Resources
	Apple Documentation
	CareKit
	ResearchKit
	HealthKit
	iOS Human Interface Guidelines
	App Development Tutorial (Swift)
	ViewController Programming Guide for iOS
	Local and Remote Notification Programming Guide
	Core Motion Framework Reference
	Concurrency Programming Guide
	Networking with NSURLSession
	Apple Watch Programming Guide
	App Extension Programming Guide

	Apple Open Source Repositories
	CareKit Repository
	ResearchKit Repository

	Source Code Version control Systems
	Github
	Bitbucket

	Package Managers
	CocoaPods
	Carthage
	Swift Package Manager

	Index

