Beginning

HTML with CSS
and XHTIVIL

Modern Guide and Reference

Learn how to create modern, standards-compliant
HTML and CSS websites with no fuss.

David Schultz and Craig Cook

Foreword by Simon Collison, author of Beginning CSS Web Development

Apress:

ww.allitebooks.co

http://www.allitebooks.org

Beginning HTML with
CSS and XHTML

Modern Guide and Reference

David Schultz and Craig Cook

Apress’

[vww allitebooks.cond

http://www.allitebooks.org

Beginning HTML with CSS and XHTML: Modern Guide and Reference
Copyright © 2007 by David Schultz, Craig Cook

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-747-7
ISBN-10 (pbk): 1-59059-747-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Chris Mills

Technical Reviewer: Gez Lemon

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole Flores

Copy Editors: Nicole Abramowitz, Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor: Susan Glinert

Proofreader: Lisa Hamilton

Indexer: John Collin

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
WWW.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/Download
section.

[vww allitebooks.cond

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com
http://www.allitebooks.org

Contents at a Glance

FOrBWOId ... e xiii
About the AUTNOrS XV
About the Technical REVIBWETo i Xxvii
ACKNOWIBdgMENTS ... e Xix
INrOdUCTIONo e e e XXi
CHAPTER 1 Getting Started i 1
CHAPTER2 XHTMLand CSSBasiCscovvvviiiiiiiininnnnnnnn. 13
CHAPTER 3 Moving A<head> ...t M
CHAPTER4 AddingContent.......... ...t 51
CHAPTER 5 USINg IMages ...t i i 105
CHAPTER 6 Linkingtothe Web 131
CHAPTER 7 Using Tables ... i 153
CHAPTER 8 Building Formso 187
CHAPTER9 Adding Style to Your Documents: CSS 227
CHAPTER 10 Client-Side ScriptingBasicsc.coiiiiint. 251
CHAPTER 11 Putting It All Together..............o it 281
APPENDIX A XHTML 1.0 Strict Referenceccoiiiiiiiit. 327
APPENDIX B Color Namesand Valuescccviiiiinnnnnnnns 367
APPENDIX C Special Characters 381
APPENDIX D CSS Browser SUpport ..o, 387
INDEX .o 397

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Contents

FOrBWOId .. o e Xiii
About the AUThOrS o XV
About the Technical Reviewer e e i Xvii
ACKNOWIBdgMENTS ... e Xix
INErOdUCHION ...t XXi
CHAPTER1 GettingStarted ... 1
Introducing the Internet and the World Wide Web 1

What IS HTML? ... e e et i 2

The Evolution of HTML. ... e 3

One Language, Many Versionsccvvivininnnnnnnns. 3

One Version, Three FIavorscovee oo ieees 4

Validating Your Documentscoiiiii i 5

Separating Content from Presentation 6

Working with XHTMLand CSS ...t 7

Choosingan HTML Editorccoiiiiiiiii et 7

Choosinga Web Browser.c.oviiiiiiiieiie e 8

Hosting Your Web Site 8

Introducingthe URL i e 9

The Componentsofa URL. ..ot 9

Absolute and Relative URLS., 11

SUMMANY . e i 12

CHAPTER2 XHTMLandCSSBasics 13
The Parts of Markup: Tags, Elements, and Attributes 13

Block-Level and Inline Elements. 15

NestingElementsco i 16

White SPacecoiii e 16

Standard Attributes. 17

Adding Comments ...t e 19

[vww allitebooks.cond

http://www.allitebooks.org

vi CONTENTS

CHAPTER 3

CHAPTER 4

The XHTML Documentcooiiiiiii it 19
The DOCtYpe ... 20
ThehtmlElement..............c i 22
Andthe Rest. 24
The DocumentTreeo i 24

CSS Fundamentals ...t i 25
Anatomy of aCSSRule ... 25
CSS Selectors .. ovv v e 27
Specificity and the Cascadeccoiiiiiniant. 30
Attaching Style Sheets to Your Documents.................... 32
The Cascade Order.oeiiiiriiiiii i 34
important e 36
Formatting CSS. ... 36
CSS Comments. ..ot 38

SUMMANY . e i 38

Moving A<head>ll M

The head SeCtioNot e e 41
<head> ... e 4

The Supporting Elements ... 42
<baASE> ... e 42
<HNK> . e 44
<Ml . e e 45
D1] 46
SHYlE> e 47
<itle> L e 49

SUMMANY . e i 50

AddingContentl 51

Contentand Structure ...t 51

Abeautiful <body>c 52
0100 1 52

Meaningful Portionscciiiiiiii i 54
D et e i 54
Headings: h1, h2, h3,h4,h5,andh6......................... 56
blockquote. e 58
AAAIESS . ottt e e 59
0] 61

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS
S 62
] 62
Ol o e e e 64
[65
Definition Listscovvei i e 67
0 67
| 68
0 69
Phrase Elementso e 70
1 70
(0] o 71
0 PP 72
ettt e et e et e e e e e 74
iMoo e e 75
Abbreviations: abbr and acronym............... ... o 76
Revising Documents: delandinsccoovviiinnann 78
DO . . 79
Programming: code, kbd, samp, andvar...................... 80
0] 82
] 83
Multipurpose Elementsouviiiiiiiii i 85
QIV. e 85
] 072 86
Embedding External Contento, 87
0] 0] T 88
072 S 89
Presentational Elementsc.iiiiiiiiiiiii i 90
FaNd D . 91
bigandsmall...........coiiiiiii i 91
L 91
SUP AN SUD. ..ottt e e 91
Special Characterscc i i i e 92
Styling Contentwith CSS i 94
Declaring Base FontStyles ...t 94
Styling ListS. ..o 100
SUMMAIY ..t e i e e e 103

[vww allitebooks.cond

vii

http://www.allitebooks.org

viii

CONTENTS

CHAPTER 5

CHAPTER 6

CHAPTER 7

Usinglmages ... 105
How Digital Images Work ... 106
Web-Friendly Image Formatsooiieinn, 107
Including Images in Your Contentoiit 11
M0 e 111
ImagesinContext.........cooiiiiii i 118
Wrapping Text Around animageccoviiii i i 120
Background Images ...t e e e 122
Positioning a Background Imagecoeeiiinn 126
SUMMANY .o e 129
LinkingtotheWeb 131
The AnchorTag e 131
B 131
Usingthe <a>Tagcovviiiniiii i it i 133
Linking to Other Documentsccoviiiiiatt, 133
Linking to Non-XHTML Documents................ccovvinnnn. 136
Linking to E-Mail Addressesc.ovvvviiiiniinnnnnnns 138
Usinganimage Asalinkc.couiiiiiiiiiiininnnnns. 139
USING IDS .\t ti eae 140
Adding CSStothe AnchorTagccoviiiiiiiiii i, 141
Creating Image Mapsccooviiiiiiiiii i, 146
D11 147
B - 148
SUMMANY . e e e 152
UsingTables ..., 153
TheBasicsof Tables ..ot i 153
<dable> ... e 154
> 156
AU e 157
CodingaBasicTablecccoviiiiiiii i, 159
<CAPHION> ..t e e 161
<A e 163

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 8

CHAPTER 9

CONTENTS
Advanced Use of TableS ... 166
<dbody>. ... e 168
<thead>........... i 170
<Hoot> .o 171
<COlgIOUP> . . oo e 175
OOl . e 176
Using CSS to Add Styleto YourTablescoout.. 178
Adding Bordersoiiiii e 178
Aligning TextinaTable, 180
Adding Paddingto Cells...........cccviiii i, 182
Adding BackgroundstoTables............................. 184
SUMMANY . e e e 186
BuildingForms ... 187
How FormsWorko e 187
The Componentsof aFormo, 188
oMM 189
MPUL. e 191
button. ... 202
SBIBCT . . i e 203
OPHON . e 206
(0] 010 0TV 208
textared e 210
Structuring Forms ... 212
fleldset. . ..o 212
T =T T 214
label 216
Styling Forms with CSS o 219
Removing the Border from Field Sets........................ 221
Aligning Labels 222
Changing the Typeface in Form Controls..................... 224
SUMMANY . e e e 225
Adding Style to Your Documents: CSS 227
Using External Style Sheets, 227
Unitsof Measurecoiiiiiii i 229

[vww allitebooks.cond

ix

http://www.allitebooks.org

CONTENTS

CHAPTER 10

CHAPTER 11

LaYOUt ..o e 230
Containers. e e 230
Container Sizingand Flowt 234
Positioning a Container ...t 236

Backgrounds e e e 245

Styling TexXt ..o e 246

Media TYPES ..ttt e e 249

Compatibilityco i e 250

SUMMANY .o e 250

Client-Side Scripting Basics 251

What Is Scripting? ... e 251

Placement of JavaScript i 252

JavaScript, the Language ... 253
JavaScript Syntax Rules. 254
Operators and EXpressionsovviiiiiniiennnannnns 256
Statements ... e 258
010 01 T 265
FUNCLIONS . . .o e e e 270
ATy S, .ttt e 271

Advanced TOPICS ..o v vttt e e e e 272
HandlingEventsco i 272
The DOM ... e e e 276
FormValidation.............cooiii i e 276

SUMMANY . e e e 279

Putting It All Together 281

Introducing Our Case Study: Spaghetti & Cruft 281

The Design ProCeSSvvvrt i e 282
Step 1: Defining Goalsccoiiiiii i 283
Step 2: Contemplating Architecture 283
Step 3: Arranging the Template 284
Step 4: Creating the Design. ...t 286
Step 5: Assembling the Website.................... ... 287

StepB: Testing . ..o vt 288

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

CONTENTS
Building Spaghetti & Cruft ... 288
SettingUpthe Document., 288
MarkingUptheMasthead 289
Marking Up the Main ContentArea.......................... 291
Marking Up the Navigation 292
Marking Up the Tag Lineand Footer 292
The Completed Template. ..., 293
Designing Spaghetti & Cruft with CSS 295
Stylingthe PageBody ... 296
Stylingthe Masthead i, 302
LayingOutthe Page...........cooiiei i 307
Styling the Navigation L. 309
Stylingthe Footer ... 311
Assemblingthe Pages ... 312
TheMenuPage. ... i 312
The Reviews Pagecoviriiiiiii et 317
The ContactPage ...t e 320
SUMMANY . e e e 324
XHTML 1.0 Strict Reference 327
ColorNamesand Values 367
Special Characters 381
CSS Browser Support ...l 387
... 397

Xi

Foreword

In 1999, I bought a book about the web. This brave and still relatively new world had
caught my interest, and the pocket-sized Rough Guide to the Internet featured four or so
pages of rudimentary HTML. After about three hours I had built a web page and linked to
another one. This first web page looked awful, but I was excited. Later that day I somehow
managed to upload it to a domain, and I realized I had created a website—an actual website.

So naive was I back then thatI assumed I'd need to leave my home computer on in
order for other web users to see my pages! How amazed I was at work the next day when I
successfully called my little website up in front of the boss.

So, I decided to buy another book, called Learn HTML in a Weekend. It was a very long
weekend. This and other preliminary books taught me alot, but much of it badly; my code was
littered with font tags, frames, and tables for layout. CSS had not really taken hold back then.

In the beginning, we used HTML to do all the hard work because we didn’t know any
better. This difficult, limiting, and weighty approach to building websites was born out of
HTML'’s generosity, it being a rich language with early specifications offering rather too
much scope for abuse. I can accept that now, but I'm unsure why so many recent books
still preoccupy the reader with ill-advised and outdated techniques that can be achieved
much better and more easily with web standards.

I care about how people learn to build websites, and I know it can be impenetrable for
beginners. Equally, I worry that many professionals are still ripping off clients with shoddy
workmanship. This is why I'm so happy to introduce this book. David Schultz and Craig Cook
understand that building websites is a craft, and with Beginning HTML with CSS and
XHTML: Modern Guide and Referencethey bring you years of experience condensed into
an enjoyable, carefully structured reference focused on responsible, powerful HTML,
CSS, XHTML and even JavaScript—the perfect introductory package.

You'll find a wealth of practical examples that you can actually use. As a stickler for
top-notch code, I'm especially impressed that everything within validates as HTML Strict
(which you’ll learn more about soon) and that David and Craig have ensured all methods
work cross-browser and will stand up to whatever twists and turns the Internet takes next.

You are embarking upon a great adventure, but you have in your hands the best possible
map and two expert guides to hold your hand. Soon you’ll reach your destination and will
be waxing lyrical to anyone who'’ll listen about your grasp of web standards, wondering
why the old boys still work with their outdated methods. Mighty explorers, this book will
tell you all you need to know.

Simon Collison

Author of Beginning CSS Web Development, Apress 2006

Xiii

About the Authors

DAVID SCHULTZ is an IT team leader for a major national retailer. He
has more than 15 years of IT experience in various positions using
several different platforms and computer languages. He has a
bachelor of science degree in management information systems
from Oakland University located in Rochester, Michigan. His
interest in computers started when he received his first computer,
a Commodore 64, back in the 1980s. Today, his preference is to
work with Microsoft’s ASP.NET platform. David has been a technical reviewer on many

books from several publishers. He is also an author, reviewer, and editor for the www.
ASPToday . com website. In his spare time, he enjoys family time, video games, pinball,
and movies.

CRAIG COOK has been designing and building websites since 1998,
though he still silently harbors the aspiration to draw comic books.
His background is in traditional graphic design, and he has a degree
in commercial graphics from Pittsburg State University (Kansas).
Although he spent years learning how to make ink stick to paper, he
soon fell in love with the web, and the affair continues to this day.
In addition to his passions for design and technology, Craig has an
affinity for science-fiction novels, zombie movies, and black T-shirts. He occasionally
muses on these subjects and others at his personal website, waw.focalcurve. com. Craig
lives and works near San Francisco.

Xv

http://www.ASPToday.com
http://www.ASPToday.com
http://www.focalcurve.com

About the Technical Reviewer

GEZ LEMON works as an accessibility consultant for TPG. A keen accessibility advocate, Gez
participates in the Web Content Accessibility Guidelines Working Group and is a member
of the Web Standards Project’s Accessibility Task Force. In his spare time, Gez talks about
accessibility issues on his blog, Juicy Studio.

Xvii

Acknowledgments

Writing abookis no small task. Although the authors’ names go on the cover and they
get most of the credit, tons of people behind the scenes at Apress really make it happen. In
particular, I want to thank Chris Mills for approaching me and keeping me enthused about
the project throughout the life cycle. A ton of thanks goes to the technical editor, Gez Lemon,
for keeping me to the standards and providing really great feedback. Elizabeth Seymour
and Richard Dal Porto did a great job of keeping me on track and getting me through the
tedious process. Thanks to the Apress production team for making all those last-minute
changes and doing the magic that brings a manuscript to print. I also want to thank my
coauthor, Craig Cook, for the ideas and contributions he made to the book, which are all
much appreciated.

Finally, I would have never been able to complete this long journey without the under-
standing and support of my family—my wife, Kim, and my children, Justin, Jessica, and
Crystal.

David Schultz

I must first thank all of the authors, artists, designers, coders, bloggers, evangelists, and
gurus on whose shoulders I stand. I've been inspired and guided by the work and teachings of
John Allsopp, Douglas Bowman, Andy Budd, Dan Cederholm, Tantek Celik, Joe Clark,
Andy Clarke, Simon Collison, Derek Featherstone, Aaron Gustafson, Christian Heilmann,
Jon Hicks, Molly Holzschlag, Shaun Inman, Roger Johansson, Jeremy Keith, Ian Lloyd,
Scott McCloud, Eric Meyer, Cameron Moll, Keith Robinson, Richard Rutter, Dave Shea,
Jeffrey Zeldman . . . and many others equally deserving of being name dropped, but I'm
trying to keep this to one page.

I'should also extend gratitude to all the daily-grinders and cubicle-dwellers who strive
to build a better web—not for riches and adoration but simply because they love what they
do and care about doing it right. To everyone who has embraced web standards and accessi-
bility, furthering the cause in your own subtle ways and reclaiming the earth that was
scorched by the dark Browser Wars: you're making the web a better place to live. Take a bow.

Many kind thanks to everyone who contributed to making this book an eventual reality:
to Chris Mills, for sharing barbecued brisket and asking me to participate in this project; to
Gez Lemon, for pointing out my mistakes and oversights with gently brutal honesty; to
David Schultz, my coauthor, for doing so much of the hard work; to Elizabeth Seymour,
Richard Dal Porto, Grace Wong, Nicole Abramowitz, Kim Wimpsett, Laura Esterman, and

Xix

XX ACKNOWLEDGMENTS

everyone else at Apress, for their patience with my often-sluggish pace throughout this
entire process.

Special thanks must be given to my friends Jolene, Jannyce, and Bill. They were the
readers I imagined I was writing for whenever I struggled to find the right words. [hope I
succeeded.

I'm endlessly grateful of my parents, R.L. and Beverly, for instilling me with a desire to
learn, a passion to create, and a compulsion to instruct.

Craig Cook

Introduction

The World Wide Web has come along way in a relatively short period of time. Since its
debutin the early 1990s, the web has quickly evolved from an esoteric collection of academic
papers into a fully fledged and pervasive medium, an equal to print, radio, and television.
The web is a vast repository of information on every subject imaginable, from astrophysics
and ancient philosophy to the care and feeding of hermit crabs. It has become an integral
part of many people’s daily lives and is the platform for many aspects of modern business
and commerce. But at its heart, the web is still just a way to share documents.

This book will show you how to create documents of your own so you can share them
on the web. You'll become intimately familiar with the rules and constructs of HyperText
Markup Language (HTML), the computer language the web is built on. It’s a simple language,
and the basic rules are easy to pick up and put to use. HTML is a tool, and once you know
how to use it, you're limited only by your imagination.

Not very long ago, parts of HTML were frequently misused, and the rules were largely
ignored—because we had no other choice or simply didn’t know any better. But the web
has matured a lot in the last few years, and we’ve since learned that sometimes following
the rules really is the best approach. Unfortunately, many of the outdated methods that
came about during the web’s unruly, rebellious youth are still in common practice today.
This book will help you avoid the mistakes of the past and build a better web for the future.
You'll learn how to use HTML effectively and responsibly and to make your web documents
clean, meaningful, and accessible to as many people and devices as possible.

If you've been around the web for a little while, you've likely heard about Cascading
Style Sheets (CSS), and you may be curious about just what they are. In a nutshell, CSS is a
language that describes how web documents should be visually presented. It’s very powerful
and flexible and is also pretty dang cool. However, CSS is a rich, complex language in its
own right, and we can’t possibly cover every facet of it in these pages. But as you’ll soon
see, CSSis directly connected to HTML, and you'll first need to understand markup before
you can put CSS to good use. This book will introduce you to CSS and offer many practical
examples of how you can use it. We'll give you the solid grounding in HTML you’ll need as
a starting point to delve deeper into the art and craft of designing web pages with CSS.

Who This Book Is For

This book is for anyone interested in learning how to build web pages from the ground up
using modern best practices. We assume you’re familiar with the Internet and the World

XXii

INTRODUCTION

Wide Web, and you probably wouldn’t pick up a book with “HTML” in the title unless
you’d atleast heard of it. Beyond that, we don’t assume any prior knowledge of web design
or computer programming. As you advance through this book, the topics get a little more
advanced as well. But fear not: this is a book for beginners, and we’ll walk you through the
tough parts.

Even if you're not a beginner, this may be well worth a read. Only a few short years ago,
the common approach to building web pages was very different from how things are done
today. A lot has changed in recent times, so if you're a more experienced web developer
looking to get back to basics and see what all this “semantic XHTML and CSS” mumbo-
jumbo is about, this is the book for you.

How This Book Is Structured

Here we present a brief road map of where this book is going to take you. The first two
chapters lead you through the bare essentials you’ll need to start creating your own web
documents. Throughout the bulk of this book, Chapters 3 through 10, you'll dig into different
subject areas within HTML and XHTML, becoming familiar with all of the different elements
at your disposal. Along the way, you’ll also see examples of some of the many CSS tech-
niques you might use to visually design your pages. We finish up with Chapter 11, where
you'll see a case study that takes much of what you've learned throughout the previous
chapters and puts it together into a functional website, built from scratch with XHTML
and CSS.

e Chapter 1, “Getting Started,” takes a high-level view of how the web works and what
you'll need in order to create your own XHTML documents.

e Chapter 2, “XHTML and CSS Basics,” presents the basic syntax and rules to follow
when you assemble web documents and style sheets, laying the foundation for the
rest of the book.

e Chapter 3, “Moving A<head>,” introduces the document’s head element, explaining
why it’s so important and showing you the different components you can place
within it.

e Chapter 4, “Adding Content,” explores how you’ll add content to your documents
and give your text a stable, meaningful structure.

e Chapter 5, “Using Images,” describes how you can add pictures to your web pages
for meaningful communication as well as decoration.

INTRODUCTION

e Chapter 6, “Linking to the Web,” looks at how you can include links in your docu-
ments that point to other documents, either within your own site or elsewhere on
the Internet.

e Chapter 7, “Using Tables,” shows you how to structure complex data in tables,
organizing related information in sets of connected rows and columns.

e Chapter 8, “Building Forms,” will show you how to create forms that allow your
visitors to input their own information and interact with your website.

e Chapter9, “Adding Style to Your Documents: CSS,” dives deeper into the use of CSS,
covering a few of the more advanced topics you'll need to understand when you
visually style your web pages.

e Chapter 10, “Client-Side Scripting Basics,” outlines the basics of the JavaScript

language, which you can use to make your web pages more dynamic and interactive.

e Chapter 11, “Putting It All Together,” puts the topics discussed throughout the book
to use, taking you step-by-step through the creation of a functioning website.

At the back of the book, you'll find four appendixes for your reference. In order, they
cover XHTML 1.0 Strict, color names and values, special characters, and CSS browser
support.

Conventions Used in This Book

Throughout this book, we’ll provide numerous examples of XHTML and CSS coding. Most
of these examples appear in numbered listings, separated from the regular text. They look
something like Listing 1.

Listing 1. An Example Code Listing

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Just an Example</title>
</head>
<body>
<p>Hello, world!</p>
</body>
</html>

Xxiii

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

XXiv

INTRODUCTION

Sometimes aline of code is too long to fit within the limited width of a printed page, and
we're forced to wrap it to a second line. When that happens, we’ll use the symbol = to let
you know a line is wrapped only to fit the page layout; the real code would appear on a
single line.

We'll occasionally add notes, tips, and cautions that relate to the section you've just
read. They appear distinct from the main text, like so:

Tip Don't overlook these exira tidbits. They’re relevant to the current topic and deserve some special attention.

We may also sometimes wander off on a slight tangent that isn’t really part of the topic
at hand but is still important information you should know. To keep things flowing
smoothly, we’ll place such supplemental information in sidebars, which look like this:

SIDEBARS

Sidebars offer extra information, exploring a related topic in more depth without derailing the main
topic. The term sidebar comes from magazine and newspaper publishing, where these sorts of
accompanying stories are often printed in another column alongside the main article.

Downloading the Code

All the markup and CSS you'll see in this book is available for download in the Source
Code/Download section of the Apress website (http://www.apress.com). Once you've
downloaded and unzipped the file, you’ll find each chapter’s source code in a separate
folder; you can pickit apart and refer to it at your leisure. You can also find the source code
at this book’s companion website, http://www.beginninghtmlbook.com.

Contacting the Authors

You can contact David Schultz through e-mail at david. schultz@apress.com.
You can reach Craig Cook through his website at http://www.focalcurve.com.

http://www.apress.com
http://www.beginninghtmlbook.com
mailto:schultz@apress.com
http://www.focalcurve.com

CHAPTER 1

Getting Started

We’re going to ease you into the book with some general information about the Internet
and World Wide Web; this will lay a foundation of useful knowledge to help you as you
begin to create your own web pages with HTML and CSS. This chapter won’t be a compre-
hensive overview by any means, but it will get you up to speed on some of the terminology
and concepts you'll need to be familiar with throughout the rest of this book. If you feel
you're already pretty web-savvy, having used and worked with websites for some time,
you can probably skip ahead to Chapter 2 and start getting your hands dirty.

Introducing the Internet and the World Wide Web

“The Internet” is simply a catchall phrase referring to the vast, globe-spanning network of
computers that are connected to each other and are able to transmit and receive data,
shuttling information back and forth around the world at nearly the speed of light. It has
been around in some form for almost half a century now, ever since a few very smart
people figured out how to make one computer talk to another computer. The Internet has
since become so ubiquitous and pervasive, impacting so many aspects of modern life, that
it’s hard to imagine a world without it.

The World Wide Web is just one facet of the Internet, like a bustling neighborhood in
amuch larger city. It's made up of millions of files and documents residing on different
computers across the Internet, all cross-referenced and interconnected to weave a web
of information around the world, which is how it gets its name. In its relatively short
history, the web has grown and evolved far beyond the simple text documents it began
with, carrying other types of information through the same channels: images, video, audio,
and fully immersive interactive experiences. But at its core, the web is fundamentally a
text-based medium, and that text is usually encoded in HTML (more on that in a minute).

Many different devices can access the web: desktop and laptop computers, personal
digital assistants (PDAs), mobile phones, game consoles, and even some household appli-
ances. Whatever the device, it in turn operates software that has been programmed to
interpret HTML. These programs are technically known as user-agents, but the more

CHAPTER 1 GETTING STARTED

familiar term is web browsers. Aweb browser is specifically a program intended to visually
render web documents, whereas some user-agents interpret HTML but don’t display it.

Throughout this book we’ll often use the word browserto mean any user-agent capable
of handling and rendering HTML documents, and we’ll use the term graphical browser
when we’re specifically referring to one that renders the document in a visually enhanced
format, in full color, and with styled text and images. It’s important to make this distinc-
tion because some web browsers are not graphical and render only plain, unstyled text
without any images.

A browser or user-agent is also known as a client, because it is the thing requesting and
receiving service. The computer that serves data to the client is, not surprisingly, known
as a server. The Internet is riddled with servers, all storing and processing data and deliv-
ering it in response to client requests. The client and the server are two ends of the chain,
connected to each other through the Internet.

What Is HTML?

If the web is to be woven from connected bits of digital text, there must be some techno-
logical means to establish that connection. This is the basis of hypertext, wherein a string
of words in one document can be directly linked to another document somewhere else on
the web. HyperText Markup Language (HTML) is the computer coding language used to
convert ordinary text into active text for display and use on the web and also to give plain,
unstructured text the sort of structure human beings rely on to read it. Without some kind
of structure imposed on it, plain text would just run together with nothing to distinguish
one string of words from another.

HTML consists of encoded markers called tags that surround and differentiate bits
of text, indicating the function and purpose of the text those tags “mark up.” Tags are
embedded directly in a plain-text document where they can be interpreted by computer soft-
ware. They're called tagsbecause, well, that’s what they are. Just as a price tag displays the
cost of an item and a toe tag identifies a cadaver, so too does an HTML tag indicate the
nature of a portion of content and provide vital information about it. The tags themselves
are not displayed and are distinct from the actual content they envelop.

HTML has been carefully designed to be a simple and flexible language. It’s a free, open
standard, not owned or controlled by any company or individual. There is no license to
purchase or specialized software required to author your own HTML documents. Anyone
and everyone is free to create and publish web pages, and it’s that very openness that
makes the web the powerful, far-reaching medium it is. HTML exists so that we can all
share information freely and easily.

However, you do have to follow certain rules when you author documents in HTML—
there are certain ways they should be assembled to make certain they’ll work properly.
The rules are maintained by the World Wide Web Consortium (W3C), a nonprofit organi-
zation that defines many of the open technical standards the web is built on, collectively

CHAPTER 1 GETTING STARTED

referred to as web standards. Standardizing web languages allows everyone—authors as
well as people who make the software that interprets those languages—to adhere to the
same set of agreed-upon rules, like the rules of grammar and punctuation that help you
understand this sentence.

The Evolution of HTML

HTML first appeared in the early 1990s—based on the preexisting Standard Generalized
Markup Language (SGML)—and was created specifically for marking up documents for
use on the newly born World Wide Web. Since its inception, HTML has gone through
many changes and enhancements. New features have been added, while other features
have become outdated and removed from the specifications. The formal act of retiring a
feature from standard specifications is known as deprecation; deprecated features should
be phased out and avoided in new documents.

The technical specifications for all official versions of HTML are freely available from
the W3C at its website (http://www.w3.0rg). These specifications can be difficult to read
because they're extremely technical in nature, written primarily for computer scientists
and software vendors who program web user-agents. But this kind of standardization is
essential for the widespread adoption of the web, ensuring that websites operate consistently
across different browsers and operating systems. The web is intended to be “platform
independent” and “device independent,” and adherence to web standards is what makes
this possible.

In the early years of the web, the language specifications were not always followed as
closely as they should have been. Competing browsers supported different features and
introduced nonstandard features of their own. This made web development troublesome
for authors in those days, often leading them to create multiple versions of their sites aimed
at different browsers. Thankfully, this is no longer necessary. The web browsers of today
follow the standards much more consistently than the previous generation did, advancing
the web toward the ultimate goal of a truly universal medium.

One Language, Many Versions

As HTML has progressed and evolved over time, new versions of the language have been
released to introduce the new features and deprecate the old. The very first version of
HTML, 1.0, was published in 1993. It was further refined and extended with HTML 2.0 in
1995, followed closely by HTML 3.0 in 1996. Version 4.0 was published in 1997, and a few
minor (but significant) changes were released in 1999 as HTML 4.01. This was to be the
final, complete specification for the HTML language. A new kid called eXtensible HTML,
or XHTML, joined the class in 2000, and it was praised as the wave of the future.

XHTML is a reformulation of HTML following the more stringent rules of eXtensible
Markup Language (XML), which is a powerful language that allows web authors to create

http://www.w3.org

CHAPTER 1 GETTING STARTED

their own customized tags. XHTML, unlike XML, offers a finite set of predefined tags to
choose from. XHTML is similar to HTML 4.01, with just a few more rules dictating how it
must be written. XHTML 1.0 is the current version, and XHTML 1.1 and 2.0 are already
under development but haven’t yet been finalized as formal recommendations as of this
writing.

Throughout the rest of this book, you’ll be learning how to author your own web docu-
ments following the XHTML 1.0 specifications. Even so, HTML 4.01 is still very much alive
and kicking, so most of what you’ll learn from this book can be applied just as well to that
earlier language.

Note Though HTML 4.01 was long held as “the final version” of the HTML language, a recent initiative
within the W3C has started drafting a specification for HTML 5. The version is still in the early stages of devel-
opment and hasn’t yet been published as we write this book.

One Version, Three Flavors

As if all the different versions of HTML weren’t confusing enough, there are multiple versions
of those versions, each with slightly different rules and features. The three “flavors” of
XHTML are Strict, Transitional, and Frameset:

e XHTML 1.0 Strictis the most stringent in its rules. Deprecated features are forbidden
outright, and the rules must be followed to the letter if a document is to be well formed.

e XHTML 1.0 Transitional is a bit more relaxed than Strict, allowing some outdated
features to still linger in a well-formed document. This variant is intended for authors
making the transition from earlier versions of HTML to XHTML 1.0.

e XHTML 1.0 Frameset applies only to situations when frames are being used to lay
out a web page. (Frames are a feature from earlier versions of HTML that allowed a
page to be split into multiple panes, each displaying a different document. They’ve
been deprecated in XHTML Strict and Transitional, which is why this special flavor
exists.)

All of the markup examples you'll be seeing in this book follow the XHTML 1.0 Strict
rules. You can learn much more about the different versions of HTML and XHTML, and
the various flavors of each, at the W3C website (http://www.w3.0rg).

http://www.w3.org

CHAPTER 1 GETTING STARTED

Validating Your Documents

Having a strict set of rules is all well and good, but how can you be sure you’'ve followed
them correctly? An XHTML document can be automatically validated, checking it against
the chosen rule set to ensure that it’s put together properly, somethinglike a spell checker
for markup. The W3C has created an online validation tool (available at http://
validator.w3.org/, shown in Figure 1-1) for just this purpose. This web-based service
allows you to validate your documents by either entering the location of a page on the
web, uploading a file from your computer, or simply pasting your markup directly into a
form on the website.

W3€ h Markup Validation Servicevo74

Home About... News Docs Help & FAQ Feedback

Donate

Validate:

This is the W3C Markup Validation Service, a free service that checks Web documents in formats like HTML and by URL
XHTML for conformance to W3C Recommendations and other standards. 5 'i:{,; ﬁli'e"u"p ==
by direct Input

if you wish to validate specific content such as ASS/Atom feeds or CSS stylesheets or to find broken links, there are
other validators and tools available.

Validate Your Markup
Address: | Check

Enter the URL of the page you want to check. Advanced options are available from the Extended Interface.

Local File:| Browse... | Check

Select the file you want to upload and check. Advanced options are available from the Extended File Upload Interface.

Note: file upload may not work with Internet Explorer on some versions of Windows XP Service Pack 2, see our information
page on the W3C QA Website.

Figure 1-1. The W3C Markup Validation Service website

The W3C Markup Validation Service can automatically analyze your markup and
display any errors it encounters so you can correct them. It will also display validation
warnings, which are simply cautions about issues you might want to address but are not
quite as severe as errors; warnings can be ignored if you have good reason to do so, but
errors are flaws that really must be fixed. When no errors are found, you'll see a joyful
banner declaring that your document is valid. A well-formed document is one that is valid
and correctly assembled according to the rules of the language. Other validation tools are
also available—both online and offline—that can help you check your documents.

vww allitebooks.conl

http://validator.w3.org
http://validator.w3.org
http://www.allitebooks.org

CHAPTER 1 GETTING STARTED

Most web browsers are still able to interpret and render invalid documents, but only
because they’'ve been designed to compensate for minor errors. Valid, well-formed docu-
ments are much more stable, and you won'’t have to depend on a browser’s built-in error
handling to display them correctly.

Separating Content from Presentation

HTML is intended to bestow a meaningful structure upon unstructured text, designating
that different blocks of words are in fact different types of content. A headline is not the
same as a paragraph; those two types of content should be delineated with different tags,
making their innate difference emphatically clear to another computer. But human beings are
used to reading text that looks a certain way—we expect headlines to appear in a large,
boldfaced font to let us know that it’s a headline and not something else. Early browser
developers knew this, and they programmed their software to display different types of
content in different styles.

From its humble roots, the web quickly took off and soon was no longer the exclusive
domain of computer scientists. Graphic designers discovered this exciting new medium
and sought ways to make it more aesthetically appealing than ordinary, unadorned text.
However, HTML lacked a proper means of influencing the display of content; it was strictly
intended to provide structure. Designers were forced to repurpose many of the features
in HTML, taking advantage of the way browsers displayed content in an effort to create
something more visually compelling. Unfortunately, this resulted in many websites of the
day being built with presentational markup that was messy, overcomplicated, hard to
maintain, and had nothing to do with what the content meantbut only how it should look.

In the late 1990s, when the web was still in its infancy, a new technology called
Cascading Style Sheets (CSS) was introduced. It was an entirely different language; one
specifically intended to describe how HTML documents should be visually presented
while leaving the structural markup clean and meaningful. A style sheet written in CSS can
be applied to an HTML or XHTML document, adding an attractive layer of visual design
without negatively impacting the markup that serves as its foundation.

Separating content from presentation allows both aspects to become stronger and
more adaptable. An XHTML document can be easily modified without completely recon-
structing it to correct the design. An entire website can be redesigned by changing a single
style sheet without rewriting one line of structural markup.

It took some time for the popular browsers to catch up and fully support CSS as it was
intended, but today’s browsers (a few lingering bugs notwithstanding) support CSS well
enough that presentational markup can be a thing of the past.

CHAPTER 1 GETTING STARTED

Throughout this book, you’ll be learning to write meaningful, structural markup to
designate your content according to its inherent purpose. Along the way, you’ll see many
examples of how you can visually style your content with CSS, avoiding the trap of presen-
tational markup. Like XHTML, CSS is an open standard that you can learn about at the
W3C website (http://www.w3.0rg/Style/CSS/).

Working with XHTML and CSS

Though XHTML and CSS can seem overwhelming when you first dive in, creating your
own web pages is actually quite easy once you get the hang of it. All you really need is a way
to edit text files, a browser to view them in, and a place to store the files you create.

Choosing an HTML Editor

XHTML documents are plain text, devoid of any special formatting or style—all of the
visual formatting takes place when a graphical web browser renders the document. To
create and edit plain-text electronic documents, you’ll need to use software that can do so
without automatically imposing any formatting of its own. Fortunately, every operating
system comes with some kind of simple text-editing program:

* Windows users can use Notepad, which can be found under Start » All Programs »
Accessories » Notepad. WordPad is another Windows alternative, but it will format
documents by default. If you use WordPad, be sure to edit and save your documents
as plain text, not “rich text.”

¢ Linux users can choose from several different text editors, such as vi or emacs.

e Mac users can use TextEdit, which ships natively with OS X in the Applications
folder. Like WordPad for Windows, TextEdit defaults to a rich-text format. You can
change this by selecting Format » Make Plain Text.

In addition to these basic text editors, numerous other, more advanced text editors are
available for Windows, Linux, and Macintosh systems, many specially designed for editing
web documents. Some of them can even be had free of charge. There are also so-called
What You See Is What You Get (WYSIWYG, pronounced as “wizzy wig”) editors on the
market that offer a graphical interface wherein you can edit documents in their formatted,
rendered state while the software automatically produces the markup behind it. However,
this is no substitute for understanding how XHTML and CSS really work, and some WYSIWYG
editors can generate convoluted, presentational markup. Handcrafting your documents
in plain text is really the best way to maintain control over every aspect of your markup,
and many professionals swear by it.

http://www.w3.org/Style/CSS

CHAPTER 1 GETTING STARTED

Choosing a Web Browser

As we mentioned earlier, a web browser is the software you use to view websites, and you
almost certainly already have one. Every modern computer operating system comes with
some sort of web browser installed, or you can choose one of the many others on the market:

e Microsoft Internet Explorer is the default browser on Windows operating systems.
e Apple Safari is the default browser for Mac OS X.

e Modzilla Firefox is a free browser available for Windows, Mac OS X, and Linux
(http://www.mozilla.com/firefox/).

¢ Netscape Navigator is available for Windows, Mac OS X, and Linux and is based on
the same software that powers Firefox (http://browser.netscape.com).

e Opera is another free browser available for a wide range of operating systems
(http://www.opera.com).

* Konqueror is a free browser and file manager for Linux (http://www.konqueror.org).

* OmniWeb is abrowser for Mac OS X that costs a small fee, though a free trial version
is available (http://www.omnigroup.com/applications/omniweb/).

Ordinary XHTML documents don’t require any other software to operate. All of your
files can be stored locally on your computer’s hard drive, and you can view pages in their
rendered state by simply launching your browser of choice and opening the document
you want to view (you can find the command to open alocal file under the File menu in
most graphical browsers).

Hosting Your Web Site

You can save all of your work locally on your own computer, but when it’s time to make it
available to the World Wide Web, you need to move those files to a web server. You have a
few hosting options if you're building your own website:

» Using web space provided by your ISP: An Internet service provider (ISP) is a company
that connects you to the Internet. Many service providers offer a limited amount of
web space where you can host your own site. Ask your ISP whether web space is
included with your service contract and how you can use it.

http://www.mozilla.com/firefox
http://browser.netscape.com
http://www.opera.com
http://www.konqueror.org
http://www.omnigroup.com/applications/omniweb

CHAPTER 1 GETTING STARTED

» Using free web space: Many companies provide free web hosting, though freeis a
relative term since free web hosts are often supplemented by advertising. If you're
not bothered by such ads appearing on your website, free hosting may be a quick
solution to getting your files online.

* Paying for web hosting Perhaps the best option is to purchase service from a company
that specializes in hosting websites. Many offer hosting packages for as little as $10
(US) per month and include more robust features than free hosting or ISP hosting
provides (such as e-mail service, server-side scripting, and databases). Research
your options, and choose a host that can meet your needs.

We won’t go into all the particulars of getting your site online with a web host. After all,
this is still the first chapter, and numerous resources online can provide more information. To
learn more about hosting your websites when the time comes, just visit your favorite web
search engine and have alook around for information about “web hosting basics” or some
similar phrase. One good place to start is the Wikipedia entry about web hosting service
(http://en.wikipedia.org/wiki/Web_hosting), which offers a fairly detailed introduction
to set you on your way.

Introducing the URL

Every file or document available on the web resides at a unique address called a Uniform
Resource Locator (URL). The term Uniform Resource Identifier (URI) is sometimes used
interchangeably with URL, though URIis a more general term; a URLis a type of URL We'll
be using the term URL in this book to discuss addressed file locations. It’s this address that
allows a web-connected device to locate a specific file on a specific server in order to down-
load and display it to the user (or employ it for some other purpose; not all files on the web
are meant to be displayed).

The Components of a URL

A web URL follows a standard syntax that can be broken down into a few key parts,
diagrammed in Figure 1-2. Each segment of the URL communicates specific information
to both the client and the server.

The protocolindicates one of a few different sets of rules that dictate the movement of
data over the Internet. The web uses HyperText Transfer Protocol (HTTP), the standard
protocol used for transmitting hypertext-encoded data from one computer to another. The
protocol is separated from the rest of the URL by a colon and two forward slashes (://).

http://en.wikipedia.org/wiki/Web_hosting

10

CHAPTER 1 GETTING STARTED

Protocol Hostname Path File

]]]]
[[[| |

http://www.example.com/examples/example.html

L I 1 | L I 1 |
I I I I

Prefix Domain Name Extension

Figure 1-2. The basic components of a URL

A hostnameis the name of the site from which the browser will retrieve the file. The web
server’s true address is a unique numeric Internet Protocol (IP) address, and every computer
connected to the Internet has one. IP addresses look something like “65.19.150.101,” which
isn’t very easy on the eyes and is certainly a challenge to remember. A domain nameis a
more memorable alias that can be used to direct Internet traffic to an IP address. Many
web hostnames feature a domain prefix, further naming the particular server being accessed
(especially when there are multiple servers within a single domain), though that prefix is
frequently optional. A prefix can be almost any short text label, but “www” is traditional.
It’s possible for another entire website to exist separately within a domain under a different
prefix, known as a subdomain. A hostname will also feature a domain suffix (sometimes
called an extension) to indicate the category of domain the host resides in, such as “.com”
for a U.S. commercial domain, “.edu” for a U.S. educational institution, or “.co.uk” for a
commercial website in the United Kingdom.

The path specifies the directory on the web server that holds the requested document,
just as you probably save files in different virtual folders on your own computer. Files on
aweb server may be stored in subdirectories—like folders within folders—and each direc-
tory in the path is separated by a forward slash (/). This path is the route a client will follow
to reach the ultimate destination file. The top-level directory of a website (the one that
contains all other files and directories) is called the site root directory and doesn’t appear
in the URL.

The specific file to retrieve is identified by its file name and extension. You can give your
files just about any name you want, and a file extension indicates what type of file it is. An
HTML (or XHTML) document will have an extension of .html or .htm (the shorter version
is used on some servers that support only three-letter file extensions). CSS files use the .css
extension, JavaScript files use .js, and so forth. Aweb server can be configured to recognize
these extensions and handle the files appropriately, processing different types of files in
different ways.

You won’t see a file name and extension in every URL you encounter. Most web servers
are configured to automatically locate a speciallynamed file when a directory is requested
without a specified file name. This could be the file called index.html, default.html, or

CHAPTER 1 GETTING STARTED

some other name, depending on the way the server has been set up. Indeed, most of the
various parts of the URL may be optional depending on the particular server configuration.
The URL is the instrument that allows you to build links to other parts of the web,
including other parts of your own site. You'll use URLSs extensively in the XHTML and CSS
you author, which is why we’ve spent so much time exploring them in this first chapter.

Absolute and Relative URLSs

A URL can take either of two forms when it points to a resource elsewhere within the same
site. An absolute URLis one that includes the full string, including the protocol and host-
name, leaving no question as to where that resource is found on the web. You'll use an
absolute URL when you link to a site or file outside your own site’s domain, though even
internal URLs can be absolute.

A relative URLis one that points to a resource within the same site by referencing only
the path and/or file, omitting the protocol and hostname since those can be safely assumed.
It might look something like this:

examples/chapteri/example.html

Ifthe destination file is held within the same directory as the file where the URL occurs,
the path can be assumed as well so only the file name and extension are required, like so:

example.html

If the destination is in a directory above the source file, that relative path can be indi-
cated by two dots and a slash (. . /), instructing the browser to go up one level to find the
resource. Each occurrence of . ./ indicates one up-level directive, so a URL pointing two
directories upwards might look like this:

../../example.html

Almost all web servers are configured to interpret aleading slash in a relative URL as the
site root directory, so URLs can be “site root relative,” showing the full path from the site
root down:

/examples/chapteri/example.html
Lastly, if the destination is a directory rather than a specific file, only the path is needed:
/examples/chapter1/

Relative URLs are a useful way to keep file references short and portable; an entire site
can be moved to another domain, and all of its internal URLs will remain fully functional.

11

12

CHAPTER 1 GETTING STARTED

Summary

This chapter has provided a high-level overview of what the Internet and World Wide Web
are and how they work. You’ve been introduced to HTML and CSS and are beginning to
understand how you can make these languages work together to produce a rendered web
page. We covered a few different text editors you can use to create your documents and
some popular web browsers you can view them with. You've also learned a little about
web hosting and lot about the components of a URL, information you’ll find essential as
you begin assembling your own websites. We haven’t gone into all the gory details in this
introduction—after all, we’ve got the rest of the book to cover them. In the next chapter,
you'll finally get to sink your teeth into some real XHTML and CSS. Buckle up, this should
be a fun ride!

CHAPTER 2

XHTML and CSS Basics

Chapter 1 briefly introduced you to XHTML and CSS, and in this chapter we’ll show you
howyou can author markup and style sheets to create your own web pages. You'llbecome
familiar with the essential components of XHTML documents and how they should be
correctly assembled. As you know, you must adhere to some standards when authoring
a document for the web, and we’re going to be following the rules of XHTML 1.0 Strict
throughout this book. XHTML is an updated reformulation of HTML, with just a few more
stringent rules to obey, and we’ll point out the differences between the two languages in
this chapter.

Later in the chapter, we’ll guide you through the essentials of CSS so you can use it to
visually style your web pages. XHTML provides the structure that supports the content of
your web pages, while CSS provides the polish to make your content more attractive and
memorable. Designing websites with CSS isn’t possible without some solid bedrock of
markup underneath, so let’s begin at the beginning.

The Parts of Markup: Tags, Elements,
and Attributes

The linchpin of XHTML—as well as other markup languages—is the fag Tags are the coded
symbols that separate and distinguish one portion of content from another while also
informing the browser of what type of content it’s dealing with. A user-agent can interpret
thetags embedded in an XHTML document and treat different types of content appropriately.
Most of the tags available in XHTML have names that describe exactly what they do and
what type of content they designate, such as headings, paragraphs, lists, images, quotations,
and so on.

Tags in XHTML are surrounded by angle brackets (< and »>) to clearly distinguish them
from ordinary text. The first angle bracket (<) marks the beginning of the tag, immediately
followed by the specific tag name, and the tag ends with an opposing angle bracket (>). For
example, this is the XHTML tag that indicates the beginning of a paragraph:

<p>

13

14

CHAPTER 2 XHTML AND CSS BASICS

Notice that the tag name is written in lowercase, which is a requirement of XHTML; tag
names are not case-sensitive in HTML (and many web authors write them in uppercase to
make their markup more readable), but they must be lowercase in XHTML (that’s one of
those more stringent rules that separates XHTML from HTML).

Most tags come in matched pairs: one opening tag (also called a start tag) to mark the
beginning of a segment of content and one closing tag (also called an end tag) to mark its
end. For example, the beginning of a paragraph is indicated by the opening tag, <p>, and
the paragraph ends with a </p> closing tag; the slash after the opening bracket is what
distinguishes it as a closing tag. A full paragraph would be marked up as follows:

<p>Hello, world!</p>

These twin tags and everything between them forms a complete element, and elements
are the basic building blocks of an XHTML document. Some elements don’t require a closing
tag in older versions of HTML—the appearance of a new opening tag implies that the
previous element has ended and a new one is beginning. But in XHTML, all elements
must end with a closing tag . . . almost all, that is.

Some tags indicate empty elements, which are elements that do not, and in fact cannot,
hold any contents. Empty elements don’t require a closing tag but are instead “self-closed” in
XHTML with a trailing slash at the end of a single tag that represents the entire element.
For example, the following tag represents a line break, an empty element that forces the
text that follows it to wrap to a new line when a browser renders the document (you’ll learn
more about this element in Chapter 4):

The space before the trailing slash isn’t strictly required, but it will help older browsers
interpret the tag correctly—without that space, some rare, old browsers fail to notice the
tag’s closing bracket. Some empty elements are also known as replaced elements; the
element itself isn’t actually rendered by a graphical browser but is instead replaced by
some other content. Empty elements in HTML should not include a trailing slash.

An element’s opening tag can carry attributes to provide more information about the
element—specific properties that element should possess. An attribute consists of an
attribute name followed by an attribute value, like so:

<p class="greeting">Hello, world!</p>

This paragraph includes a class attribute with a value of “greeting,” making it distinct
from other paragraphs that don’t include that attribute (you’ll learn more about the class
attribute later). An attribute’s name and its value are connected by an equal sign (=), and
the value is enclosed in quotation marks. All attribute values must be quoted in XHTML,
using either single quotes (' ... ") or double quotes (" ... ") solong as both of them match
(quoting a value like " . .. ' wouldn’t be valid). Quoting attribute values was optional in
HTML butisrequired in XHTML Strict. Some attributes don’t require a value in HTML (an
attribute without a value is called a minimized attribute), but all attributes must have a

CHAPTER 2 XHTML AND CSS BASICS 15

value in XHTML—minimizing attributes isn’t allowed. Like tag names, attribute names
must be lowercase in XHTML but aren’t case-sensitive in HTML. Attribute values are
never case-sensitive, especially since some values might need to use capital letters. Even
so, it’s not a bad idea to use lowercase wherever practical, for consistency’s sake.

An element’s opening tag can include several attributes separated by spaces, and
attributes must appear onlyin an opening tag (or an empty element’s lone, self-closing
tag). Some elements require specific attributes, while others are optional—it all depends
on the individual element, and you’ll be learning about all of them throughout the rest of
this book, including which attributes each element may or must possess.

Figure 2-1 illustrates the components of an element.

Element

]
[|

Opening Tag Contents Closing Tag

] | |
| 1 1 1

<p class="greeting">Hello, world!</p>

L 11 |
I I

Name Value

L |
I

Attribute

Figure 2-1. The basic components of an XHTML element

Block-Level and Inline Elements

The entire range of elements can be divided into two basic types: block-level and inline.
A block-level element is one that contains a significant block of content that should be
displayed on its own line, to break apart long passages of text into manageable portions
such as paragraphs, headings, and lists. An inlineelement usually contains a shorter string
of text and is rendered adjacent to other text on the same line, such as a few emphasized
words within a sentence.

Many nonempty, block-level elements can contain other block-level elements, and all
can contain text and inline elements. A nonempty, inline element, on the other hand, can
contain only text or otherinline elements. For example, the em element is inline and is used
to add emphasis to the text within it, while the p element is block-level and designates a para-
graph of text. Because emis inline, it cannot contain block-level elements, so the following
example is wrong and invalid:

<p>Hello, world!</p>

16

CHAPTER 2 XHTML AND CSS BASICS

You'll find out which elements are block-level and which are inline as you progress
through this book, exploring each element in greater detail.

Nesting Elements

Elements can be nested like Russian nesting dolls, each one residing within its containing
element. They must be nested correctly, with each closing tag appearing in the correct
order to close an inner element before you close its container. The following markup is an
example of an improperly nested set of elements:

<p>Hello, world!</p>

The opening tag occurs after the opening <p> tag, but the closing </p> tag occurs
before the closing tag. To ensure correct nesting of elements, always close them in
the reverse order in which they were opened:

<p>Hello, world!</p>

White Space

When you create your XHTML documents as plain text, you're free to format them however
you want. Line breaks and indentions can help make your markup more readable as you
work, as you'll see in most of the markup examples in this book. Indenting nested, block-
level elements can make it easier to see where a particular element opens and closes, and
thus you're less likely to run into nesting problems or forget to end an element with the
correct closing tag.

Web browsers ignore any extra line breaks and carriage returns, collapsing multiple
spaces into a single space. To illustrate, here’s a bit of markup with a lot of extra space:

<p>

Wide open
spaces |
</p>

This is a rather extreme example—one you’d probably never commit yourself—but it
serves to demonstrate how all of those spaces are collapsed when a browser renders the
document. Although the spaces and returns are intact in the markup, your visitors would
see something like this:

Wide open spaces!

CHAPTER 2 XHTML AND CSS BASICS

Sometimes you may want to preserve extra spaces, tabs, and line breaks in your content—
when you’re formatting poetry or presenting computer code on your pages, for instance.
The pre element can delineate passages of preformatted text in just such cases, and you'll
learn more about that element in Chapter 4.

Standard Attributes

We'll be listing each element’s required and optional attributes as they're covered individ-
ually throughout this book. But some common attributes can be assigned to practically
any element (and are almost always optional). To spare you the repetition, we’ll cover
those attributes here, divided into a few categories.

Core Attributes

These attributes include general information about the element and can be validly included
in the opening tag of almost any element:

¢ class:Indicates the class or classes to which a particular element belongs. Elements
that belong to the same class may share aspects of their presentation, and classifying
elements can also be useful in client-side scripting. A class name can be practically
any text you like but can be made up only of letters, numbers, hyphens (-), and
underscores (_); other punctuation or special characters aren’t allowed in a class
attribute. Any number of elements may belong to the same class. Furthermore, a
single element may belong to more than one class, with multiple class names sepa-
rated by spaces in the attribute value.

e id: Specifies a unique identifier for an element. An ID can be almost any short text
label, but it must be unique within a single document; more than one element
cannot share the same identifier. The id attribute cannot contain any punctuation
or special characters besides hyphens (-) and underscores (_). The first character in
an ID must be a letter; it cannot begin with a numeral or any other character.

* style: Specifies CSS properties for the element. This is known as inline styling,
which you’ll learn more about later in this chapter. Although the style attribute
is valid with most elements, it should almost always be avoided because it mixes
presentation with your content.

e title: Supplies a text title for the element. Many graphical browsers display the
value of a title attribute in a “tooltip,” a small, floating window displayed when the
user’s cursor lingers over the rendered element.

17

18

CHAPTER 2 XHTML AND CSS BASICS

Internationalization Attributes

Internationalization attributes contain information about the natural language in which
an element’s contents are written (such as English, French, Latin, and so on). They can be
included in almost any element, especially those that contain text in a language different
from the rest of the document’s content.

e dir:Setsthe direction in which the text should be read, as specified by a value of 1tr
(left to right) or rt1 (right to left). This attribute usually isn’t needed, since a language’s
direction should be inferred from the lang and xml:lang attributes.

» lang: Specifies the language in which the enclosed content is written. Languages are
indicated by an abbreviated language code such as en for English, es for Spanish
(Espafiol), jp for Japanese, and so on. You can find a listing of the most common
language codes at http://webpageworkshop.co.uk/main/language_codes.

* xml:lang: Also specifies the language in which the enclosed content is written. This
is the XML format for the lang attribute, as it should be used in XML documents.
XHTML documents are both XML and HTML (depending on how the server delivers
them), so both the 1ang and xml:lang attributes may be applied to an element, both
with the same language code as their value.

Focus Attributes

When some elements—especially links and form controls—are in a preactive state, they
are said to have focusbecause the browser’s “attention” is concentrated on that element,
ready to activate it. You can apply these focus attributes to some elements to enhance
accessibility for people using a keyboard to navigate your web pages:

* accesskey: Assigns a keyboard shortcut to an element for easier and quicker access
through keyboard navigation. The value of this attribute is the character corresponding
to the access key. The exact keystroke combination needed to activate an access key
varies between browsers and operating systems.

e tabindex: Specifies the element’s position in the tabbing order when the Tab key is
used to cycle through links and form controls.

Note Numerous event attributes are available for client-side scripting, including onclick, ondblclick,
onkeydown, onkeypress, onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, and
onmouseup. Each of these events occurs when the user performs the indicated action upon the element. However,
use of such inline event handlers is strongly discouraged, so we won’t be covering these optional attributes in any
detail. Scripted behavioral enhancements are best separated from the document’s content and structure, just as
presentation should be separated. Chapter 10 offers a general introduction to client-side scripting.

http://webpageworkshop.co.uk/main/language_codes

CHAPTER 2 XHTML AND CSS BASICS

Adding Comments

It’s often useful to embed comments in your documents. They’re notes that won'’t be
displayed in a browser but that you (or someone else) can read when viewing the original
markup. Comments can include background on why a document is structured a particular
way, instruction on how to update a document, or arecorded history of changes. Comments
in XHTML use a specialized tag structure:

<!-- Use an h2 for subheadings -->
<h2>Adding Comments</h2>

A comment starts with <! --, a set of characters the browser recognizes as the opening
of a comment, and ends with -->. Web browsers won’t render any content or elements
that occur between those markers, even if the comment spans multiple lines. Comments
can also be useful to temporarily “hide” portions of markup when you’re testing your web

pages.

<!-- Hiding this for testing
<h2>Adding Comments</h2>
End hiding -->

Although a browser doesn’t visibly render comments, the comments are still delivered
along with the rest of the markup and can be seen in the page’s source code if a visitor
views it. Don’t expect comments to remain completely secret, and don’t rely on them to
permanently remove or suppress any important content or markup.

The XHTML Document

So far, we’ve been using the words documentand page repeatedly, and you might think
those terms are interchangeable. But generally speaking, when we refer to a document,
we're talking about the plain-text file that contains the XHTML source code, while a page
is the visible result when a graphical web browser renders that document. A document is
what you author, and a page is what you (and the visitors to your website) will see and use.

An XHTML document must conform to a rigid structure to be considered valid and well
formed, with a few required components arranged in a precise configuration. Listing 2-1
shows the basic skeleton of a well-formed document, with all the required pieces in their
proper places.

Listing 2-1. A Basic XHTML Document

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">

19

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

20

CHAPTER 2 XHTML AND CSS BASICS

<head>
<title>My first web page</title>
</head>
<body>
<p>XHTML is easy!</p>
</body>
</html>

As simple as it seems, this is actually a complete, valid, well-formed document. Every
web page you create will begin with a framework just like this. Next, we’ll discuss a few of
the components in a bit more detail.

The Doctype

An XHTML document begins with a Document Type Declaration (doctype, for short), a
required component that—as the name suggests—declares what type of document this is
and the set of standardized rules the document intends to follow. Each “flavor” of XHTML
has its own corresponding doctype.

* XHTML 1.0 Strict:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

e XHTML 1.0 Transitional:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

e XHTML 1.0 Frameset.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-frameset.dtd">

The doctype declaration is a sort of tag, but despite its enclosing angle brackets, it’s not
an element in XHTML, so it doesn’t require a closing tag or trailing slash. In fact, it’s not
truly part of the document’s markup at all; it merely relays information about the docu-
ment to the user-agent so it can determine what kind of document it’s dealing with and
render the page according to the proper rules.

The doctype must appear in your XHTML documents exactly as we’ve shown here,
complete with capitalization and quotes, though it doesn’t have to be broken onto two
lines. Other versions of HTML have their own doctypes, but we’ll be using XHTML 1.0
Strict throughout this book. For a more exhaustive investigation into the parts ofa doctype

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd

CHAPTER 2 XHTML AND CSS BASICS

declaration, see Brian Wilson’s informative explanation at http://www.blooberry.com/
indexdot/html/tagpages/d/doctype.htm.

Doctype Switching: Compliance Mode vs. Quirks Mode

When a web browser downloads an HTML or XHTML document, it must make a number
of programmed assumptions in order to parse the document’s markup and apply the
presentation suggested by the author’s CSS. The earliest browsers that supported CSS did
so largely according to their own rules, rather than following the standardized specifications.
This was a major stumbling block in the adoption of CSS and web standards in general. A page
might be rendered perfectly in one graphical browser and appear completely broken in
another.

As browsers improved their support of CSS—that is, moved toward better compliance
with web standards—they were faced with a dilemma. Many websites had already been
designed with built-in dependencies on the inconsistent, inaccurate renderings of older
browsers. Suddenly opting to follow the rules could cause millions of web pages to seem
“broken” in the latest version of a web browser when theylooked just fine the day before.
The site didn’t change overnight; only the browser’s method of rendering it did.

This dilemma inspired the introduction of the doctype switch. When a document
includes a full, correct doctype, a modern browser can assume the entire document is well
formed and authored according to web standards. The browser can then render the page
in amode intended to comply with the established standards for markup and CSS, amode
known as compliance mode or strict mode. If the doctype is missing, incomplete, or
malformed, the browser will assume it’s dealing with an outdated document and revert to
its loose and tolerant rendering mode, known as quirks mode because it’s intended to
adjust to the various quirks of nonstandard and improperly constructed markup (it’s also
sometimes called compatibility mode). Older browsers lack a built-in doctype switch and
so are forever locked in their outdated quirks modes.

To correctly invoke compliance mode in modern web browsers, a complete doctype
must be included as the very first line of text in a document; only white space is allowed
to appear before it. Any markup, text, or even comments appearing before the doctype
declaration will throw most modern browsers into quirks mode, with often-unpredictable
results. Designing websites with CSS is considerably easier and the results are more consistent
when the document is rendered in compliance mode. Hence, including a complete and
correct doctype is essential. And because a doctype is already a required part of a valid
web document, modern browsers will always render your pages in compliance mode if
you build your documents correctly.

Peter-Paul Koch offers additional information and opinions on quirks mode at his aptly
named website, Quirks Mode (http://www.quirksmode.org/css/quirksmode.html). To find
out just how documents are rendered differently in quirks mode, see Jukka Korpela’s article
“What Happens in Quirks Mode?” (http://www.cs.tut.fi/~jkorpela/quirks-mode.html).

21

http://www.blooberry.com
http://www.quirksmode.org/css/quirksmode.html
http://www.cs.tut.fi/~jkorpela/quirks-mode.html

22

CHAPTER 2 XHTML AND CSS BASICS

THE XML DECLARATION

To be honest, a proper XHTML document should include an XML declaration before the doctype. This
special declaration indicates that the document has been encoded as XML and optionally specifies the
XML version and the document’s character encoding:

<?xml version="1.0" encoding="UTF-8"?>

Internet Explorer for Windows is far and away the most common graphical web browser for the most
common computer operating system on the planet today, dominating 70% to 90% of the web-using world,
depending on which statistics you believe. And, unfortunately, Internet Explorer doesn’t recognize an XML
declaration, instead reverting to quirks mode when any text appears before the doctype.

Including an XML declaration in your XHTML documents, while absolutely correct, would simply result in
a vast number of your site’s visitors seeing your pages displayed in an outdated rendering mode, a sure-
fire recipe for frustration when you attempt to achieve consistent cross-browser presentation with
CSS. So we recommend against adding an XML declaration, though its omission might make some
XML purists cringe.

The html Element

The actual markup begins after the doctype with the html element, which acts as a container
for the entire document. This is known as the root element, the one from which all other
elements sprout and grow. The html element has no other properties of its own; it’s strictly
a container that defines where the document begins and ends. Any elements or content
that appear outside this element (apart from the doctype, which isn’t an element) will
make the entire document invalid.

Required Attributes

e xmlns: A URL specifying an XML namespace, which is http://www.w3.0rg/1999/
xhtml for XHTML documents

Optional Attributes

There are no optional attributes for the html element.
Standard Attributes
e dir

e id

http://www.w3.org/1999

CHAPTER 2 XHTML AND CSS BASICS

e lang
e xml:lang

A namespace is where element and attribute names are specified for XML languages.
XML is an extensible markup language, allowing authors to define their own customized
elements and attributes. For example, an animal element with a species attribute could be
useful for documents about animals, and such customized names could be defined in a
special namespace. XHTML 1.0, on the other hand, has a predefined set of element and
attribute names, and the correct URL of its namespace is http://www.w3.0rg/1999/xhtml
(XHTML 1.1 and 2 can be extended with a custom namespace, but those versions of XHTML
haven’t yet been released as official standards). The namespace is declared in an XHTML
document via the xmlns attribute of the root html element.

The standard 1ang and xml: lang attributes are optional for the html element (as they are
for most other elements). Because this is the root element from which all other elements
descend, the language declared here will be passed on to every other element in the docu-
ment, so it’'s recommended to include them.

CONTENT TYPES

Web servers and clients rely on standardized content types to differentiate one type of content from
another, in order to determine how the data should be processed. Plain, unformatted text is delivered
with a content type of text/plain, a JPEG image is delivered with a content type of image/ jpeg,
an MPEG video uses video/mpeg, and so on. Most of this goes on automatically, behind the scenes
between the server and the client, and a web author usually doesn’t need to be concerned with content
types. Content types are also known as Internet media types or MIME types (MIME stands for Multipur-
pose Internet Mail Extensions, but the standard is used on the web as well).

HTML documents use a content type of text/html, so both the server and the client know exactly
what that document is and how it should be handled. However, we’ve said before that XHTML is a refor-
mulation of HTML following the stringent rules of XML. But the truth is that XHTML is XML, and should
most correctly be served as such with a content type of application/xml+xhtml. Unfortunately,
many popular web browsers (most notably Internet Explorer for Windows, the most dominant browser in
the world) don’t correctly interpret XHTML documents served with the correct content type. Those browsers,
unable to cope with XHTML delivered as XML, will fail to render the document. This is simply unacceptable
for most web authors since the overwhelming majority of the browsing public would be unable to see
and use their sites.

Furthermore, devices that parse XML are required to stop processing the document on the first
error they encounter. A single validation error would make the entire web page fail if it was being treated
as true XML. As much as we might want to keep our documents strictly valid, it's simply not always
possible, especially when third-party software and content management systems are involved. Alas,
delivering XHTML documents with the correct content type is rarely practical at this time.

23

http://www.w3.org/1999/xhtml

24

CHAPTER 2 XHTML AND CSS BASICS

Luckily, XHTML documents can optionally be served with a content type of text/html, just as
other versions of HTML are. This effectively means XHTML is treated as if it were HTML 4.01, sacrificing
some of the power of XML for the sake of wider compatibility with web browsers. You still gain some
benefits from using XHTML, ensuring your documents are well formed and forward compatible, but for
all intents and purposes you’re simply writing HTML 4.01 with a few tighter constraints.

And the Rest...

The rest of the document consists of the head and body elements; the head element contains
information about the document itself (including the required title element), while the
body element contains all the content that will ultimately be rendered by a browser, to be
seen and used by your visitors. These elements are covered in detail in the next two chap-
ters (in fact, Chapter 3 is devoted entirely to the head element).

All in all, the basic structure of an XHTML document is quite simple, requiring only a
doctype, aroot element, a head with a title, and a body.

The Document Tree

It’s helpful to visualize the structure of an XHTML document as an inverted tree, with all
the elements represented as connected branches. The tree begins with the root element
at the top and all other elements descending downward, making it more like a family tree
than the leafy, wooden sort. Because of this, genealogy terms are often used to refer to the
relationships between elements. Figure 2-2 shows the family tree of a simple document.

In the diagram, the tree begins with the root element, which has two child elements: the
head and the body. That body element has two children of its own: alevel-one heading (the
h1 element, covered in Chapter 4) and a p element for a single paragraph (also covered in
Chapter 4). Those two elements are siblings of each other, sharing the body element as
their common parent. They're also descendants of the html element, which is their ancestor.
The paragraph contains an em element and an a element, sibling children of their parent
paragraph, descended from the ancestral body and html elements.

We'll use these terms—children, siblings, parents, descendants, and ancestors—often
throughout this book.

CHAPTER 2 XHTML AND CSS BASICS

html

head body

title h1 p

em d

Figure 2-2. A simple document tree

CSS Fundamentals

CSS can add style to your pages, enhancing and improving the presentation of your content.
The structure is supplied by XHTML—each element designates a different portion of
content, and attributes pass along more information about those elements. CSS acts as
another layer to influence the presentation of those XHTML elements when they’re rendered.
Colors, fonts, text sizes, backgrounds, and the arrangement of elements on the page are all
presentational aspects of your content, and all can be controlled through artful applica-
tion of CSS.

Anatomy of a CSS Rule

If elements are the building blocks of markup, the building block of CSS is the rule. It’s a
set of instructions that a browser can follow to alter the appearance of XHTML elements
based on the presentational values you supply. A CSS rule consists of a few component
parts, diagrammed in Figure 2-3.

[vww allitebooks.cond

25

http://www.allitebooks.org

26

CHAPTER 2 XHTML AND CSS BASICS

Rule

|
| 1

Selector Declaration

]]
[| [|

body { background-color: white; }

L 1 |
I I

Property Value

Figure 2-3. The components of a rule in CSS

The selector is the part of the rule that targets an element that will be styled. Its scope
can be very broad, affecting every instance of a particular element or very narrow and
specific, affecting only a few elements or even just one. We'll cover the different kinds of
selectors in the next section of this chapter.

A declaration comprises two more parts: a property and a value. The property is that
aspect of an element’s presentation that is being modified, such as its color, its width, or
its placement on the page. Dozens of properties are available in the CSS language, and
you’ll become familiar with many of them in the pages of this book.

The property value delivers the specific style that should be applied to the selected
element. The values accepted depend on the particular property, and some properties
accept multiple values, separated by spaces.

Declarations reside in a set of curly braces ({ and }), and multiple declarations can
apply to the same selector, thus modifying several aspects of an element’s presentation in
the course of a single rule. A property and its value are separated by a colon (:) and the
declaration ends with a semicolon (;). That semicolon is important to separate multiple
declarations, but if there’s only one declaration in the rule or if it’s the last declaration in
a series, the terminating semicolon is optional. It’s not a bad idea to get in the habit of
including a semicolon at the end of every declaration, even when there’s only one, just to
play it safe.

If your CSS doesn’t conform to this basic structure and syntax—if you forget the closing
brace or the colon separating a property from its value, for example—the entire rule or
even the entire style sheet might fail. Just like XHTML, a style sheet should be well formed
and properly constructed. The W3C provides a CSS validation service (http://jigsaw.
w3.org/css-validator/) that can help you catch goofs and glitches in your style sheets.

http://jigsaw.w3.org/css-validator
http://jigsaw.w3.org/css-validator

CHAPTER 2 XHTML AND CSS BASICS

CSS Selectors

A selector, as its name implies, selects an element in your XHTML document. A few
different types of selectors are available, with varying levels of specificity to target a large
number of elements or just a few. Specificity is a means of measuring a given selector’s
scope, in other words how many or few elements it selects. CSS is designed so that more
specific selectors override and supersede less specific selectors. Specificity is one of the
more nebulous and hard-to-grasp concepts in CSS but is also one of the most powerful
features of the language. We’ll cover the rules of specificity in more detail later, but let’s
first introduce the selectors.

Universal Selector

The universal selector is merely an asterisk (*) acting as a “wild card” to select any and all
elements in the document. For example, this rule:

* { color: blue; }

would apply a blue foreground (text) color to all elements. Headings, paragraphs, lists,
cells in tables, and even links—all would be rendered in blue because the universal selector
selects the entire universe. This is the least specific selector available, since it’s not specific
at all.

Element Selector

An element selector selects all instances of an element, specified by its tag name. This
selector is more specific than the universal selector, but it’s still not very specific since it
targets every occurrence of an element, no matter how many of them there may be. For
example, the rule:

em { color: red; }

gives every em element the same red foreground color, even if there are thousands of them
in a document. Element selectors are also known as type selectors.

Class Selector

A class selector targets any element that bears the given class name in its class attribute.
Because a class attribute can be assigned to practically any element in XHTML, and any
number of elements can belong to the same class, this selector is not extremely specific
but is still more specific than an element selector. In CSS, class selectors are preceded by
a dot (.) to identify them. For example, this rule will style any elements belonging to the
“info” class, whatever those elements happen to be:

.info { color: purple; }

27

28

CHAPTER 2 XHTML AND CSS BASICS

ID Selector

An ID selector will select only the element carrying the specified identifier. Practically any
element can have an id attribute, but that attribute’s value may be used only once within
a single document. The ID selector targets just one element per page, making it much
more specific than a class selector that might target many. ID selectors are preceded by an
octothorpe (#). (This is often called a hash, number sign, or pound, but octothorpe is the
character’s proper name. It also sounds cool and will impress people at dinner parties.)
The following rule would give the element with the ID “introduction” a green foreground
color:

#introduction { color: green; }

Pseudo Class Selector

A pseudo class is somewhat akin to a class selector (and is equal to classes in specificity),
but it selects an element in a particular state. It's preceded by a colon (:), and only a few
pseudo classes are available:

:1link { color: blue; }
:visited { color: purple; }
:active { color: red; }
thover { color: green; }
:focus { color: orange; }

The :1ink pseudo class selects all elements that are hyperlinks (which you’ll learn much
more aboutin Chapter 6). The :visited pseudo class selects hyperlinks whose destination
has been previously visited (recorded in a web browser’s built-in history). The :active
pseudo class selects links in an active state, during that interval while they’re being acti-
vated (while clicking a mouse or pressing the Enter or Return key). The :hover pseudo
class selects any element that is being “hovered” over by a user’s pointing device. Although
any element can be in a hover state, this most commonly applies to links (though some
older browsers supported this pseudo class only for links and no other elements). The
:focus pseudo class selects any element in a focused state. Some browsers don’t support
:focus, most notably Internet Explorer 6 for Windows. However, Internet Explorer does
(incorrectly) treat the :active pseudo class as if it were : focus, but only for links and not
any other elements.

Descendant Selector

One of the most useful and powerful selectors in the CSS arsenal, a descendant selector
can be assembled from two or more of the basic selector types (universal, element, class,
pseudo class, and ID), separated by spaces, to select elements matching that position in
the document tree. These are also called contextual selectorsbecause they target elements
based on their context in the document. For example:

CHAPTER 2 XHTML AND CSS BASICS

#introduction em { color: yellow; }

That rule will color any em element within the element with the id value introduction
yellow. Descendant selectors allow for very precise selection of just the elements you want
to target, based on the structure of your XHTML document. This more elaborate example:

#introduction .info p * { color: pink; }

would select all elements that are descendants of a p element that is a descendant of an
element with the class info that is a descendant of the element with the ID introduction.
You can see how the scope of a descendent selector can be very narrow indeed, targeting
only a few elements that meet the selector’s criteria.

Combining Selectors

You can combine two or more selector types, such as an element and an ID or an ID and
a class. These combinations can also narrow down the specificity of your selectors, seeking
out only the elements you want to style and leaving others alone. This rule:

p.info { color: blue; }

selects only paragraphs (p elements) belonging to the info class. Another element in that
class would be overlooked, and other paragraphs not belonging to the info class are also
left untouched.

Combining selectors within a descendant selector can target elements with surgical
precision:

p#tintroduction a.info:hover { color: silver; }

This rule would apply only to hovered links (a elements) belonging to the info class that
are descendants of the paragraph with the ID introduction.

Grouping Selectors

You can group several selectors together as part of a single rule so the same set of declara-
tions can apply to numerous elements without redundantly repeating them. A comma
separates each selector in the rule:

p, h1, h2 { color: blue; }

The previous rule applies the same color value to every instance of the p, h1, and h2
elements. The more complex set of selectors in this rule:

p#introduction em, a.info:hover, h2.info { color: gold; }

will target all emelements descended from the paragraph with the ID introduction and all
hovered links with the class info as well as h2 elements (a second-level heading) in the
info class (remember that different types of elements can belong to the same class).

29

30

CHAPTER 2 XHTML AND CSS BASICS

Grouping and combining selectors is a great way to keep your style sheets compact and
manageable.

Advanced Selectors

The selectors you've seen so far are all part of CSS 1, the first standardized version of CSS
introduced way back in 1996. This version of CSS is very well supported in today’s gener-
ation of graphical web browsers, so you can use all of these selectors with fair confidence
that most of your visitors will see their intended effect.

Since CSS 1, newer versions have come about, including CSS 2.1 and CSS 3. These
updates to the CSS specifications have introduced a number of new and exciting selectors:

» Attribute selectors target an element bearing a particular attribute and even an
attribute with a specified value.

* Pseudo element selectors target elements that don’t specifically exist in the markup
but are implied by its structure, such as the first line of a paragraph or the element
immediately before another element.

e Child selectors select an element that is an immediate child of another element and
not its other descendants.

* Adjacent sibling selectors target elements that are immediate siblings of another
element, sharing the same parent in the document.

Unfortunately, CSS 2.1 and CSS 3 haven’t yet been released by the W3C as official
recommendations, though you can see them in their draft status at the W3C website to
learn about these selectors and how they work (http://www.w3.0rg/Style/CSS/). These
advanced selectors are already supported by many of the latest graphical browsers, but
not all of them (and even some modern browsers don’t support all of these selectors).
Such advanced CSS features should be used with care combined with intensive cross-
browser testing. For the purposes of this book, we’ll stick with the CSS 1 selectors we've
covered here, and they're all you’ll need for most of what you may want to accomplish.

Specificity and the Cascade

As we mentioned earlier, each type of selector is assigned a certain level of specificity,
measuring how many possible XHTML elements that selector might influence. Examine
these two CSS rules, one with an element selector and the other with a class selector:

h2 { color: red; }
.title { color: blue; }

and this snippet of XHTML, an h2 element classified as a title:

http://www.w3.org/Style/CSS

CHAPTER 2 XHTML AND CSS BASICS

<h2 class="title">Specificity and the Cascade</h2>

The first rule selects all h2 elements, and the second rule selects all elements belonging
to the title class. But the element shown fits both criteria, causing a conflict between the
two CSS rules. A graphical browser must choose one of the two rules to follow to determine
the heading’s final color. In CSS, a more specific selector trumps a less specific selector.
Because a class selector is more specific than an element selector, the second rule has
greater specificity, and the heading is rendered in blue.

Modern web browsers follow a complex formula to calculate a selector’s specificity,
which can be rather confusing to noncomputers like us. Thankfully, you'll rarely need to
calculate a selector’s numeric specificity value if you just remember these few rules:

e Auniversal selector isn’t specific at all.

* An element selector is more specific than a universal selector.

* Aclass or pseudo class selector is more specific than an element selector.
e AnID selector is more specific than a class or pseudo class.

* Properties in an inline style attribute are most specific of all.

Specificity is also cumulative in combined and descendant selectors. Each of the base
selector types carries a different weight in terms of specificity—a selector with two classes
is more specific than a selector with one class, a selector with one ID is more specific than
a selector with two classes, and so on. The specificity algorithm is carefully designed so
that a large number of less specific selectors can never outweigh a more specific selector.
No number of element selectors can ever be more specific than a single class, and no
number of classes can ever be more specific than a single ID. Even if you assembled a
complex selector made up of hundreds of element selectors, another rule with just one ID
selector would still override it.

Understanding specificity will allow you to construct CSS rules that target elements
with pinpoint accuracy. For a more in-depth explanation of how specificity is calculated
by web browsers, see the W3C specification for CSS 2.1 (http://www.w3.0rg/TR/CSS21/
cascade.html#specificity) along with Molly Holzschlag’s more approachable clarifica-
tion athttp://www.molly.com/2005/10/06/css2-and-css21-specificity-clarified/.

At this point you might be wondering what happens when two selectors target the same
element and also have the same specificity. For example:

.info h2 { color: purple; }
h2.title { color: orange; }

If an h2 element belonging to the title class is a descendant of another element in the
info class, both of these rules should apply to that h2. How can the browser decide which
rule to obey? Enter the cascade, the Cin CSS.

31

http://www.w3.org/TR/CSS21/cascade.html#specificity
http://www.w3.org/TR/CSS21/cascade.html#specificity
http://www.molly.com/2005/10/06/css2-and-css21-specificity-clarified

32

CHAPTER 2 XHTML AND CSS BASICS

Assuming selectors of equal specificity, style declarations are applied in the order in
which they are received, so later declarations override prior ones. This is true whether the
declarations occur within the same rule, in a separate rule later in the same style sheet, or
in a separate style sheet that is downloaded after a prior one. It’s this aspect of CSS that
gives the language its name: multiple style sheets that cascade over each other, adding up
to the final presentation in the browser. In the earlier example, the h2 element would be
rendered in orange because the second rule overrides the first.

For another example, the following rule:

p { color: black; color: green; }

contains two declarations, but paragraphs will be rendered in green because that declara-
tion comes later in the cascade order.

The sometimes-complex interplay between specificity and the cascade can make CSS
challenging to work with in the beginning, but once you understand the basic rules, it all
becomes second nature. You’'ll learn more about the cascade order later in this chapter,
but first we’ll explain how you can attach style sheets to your XHTML documents.

Attaching Style Sheets to Your Documents

To style your pages with CSS, you’ll also need to connect your style sheets to your docu-
ments. When a graphical browser downloads the XHTML document and parses it for
rendering, it will automatically seek out CSS rules to instruct it on how the various elements
should be presented. You can include style sheets with your documents in a few ways,
each with its own benefits and some drawbacks.

Inline Styles

You can include CSS declarations within the optional style attribute of each element in
your markup. Inline styles aren’t constructed as rules, and there is no selector because the
properties and values are attached directly to the element at hand, as in Listing 2-2. An
inline style is the most specific of all because it applies to exactly one element and no others.

Listing 2-2. An Example of Inline Styles

<h2 style="color: red;">Good eats for hungry geeks</h2>

<p style="color: gray;">Our fresh pizzas, hearty pasta dishes, and
succulent desserts are sure to please. And don't forget about our
daily chalkboard specials!</p>

However, you should avoid using inline styles. They mix presentation with your structural
markup, thus negating one of the primary advantages of using CSS. They’re also highly
redundant, forcing you to declare the same style properties again and again to maintain

CHAPTER 2 XHTML AND CSS BASICS

consistent presentation. Should you ever want to update the site in the future—changing
all your headings from red to blue, for example—you would need to track down every
single heading in every single document to implement that change, a daunting task on a
large and complex website.

Still, an inline style might be an efficient approach on a few rare occasions, but those
occasions are very few and far between, and another solution is always preferable; inline
styles should be a last resort only when no other options are available.

Embedded Style Sheets

You can embed style rules within the head element of your document, and those rules will
be honored only for the document in which theyreside. An embedded style sheet (sometimes
called an internal style sheet) is contained within the style element, shown in Listing 2-3 and
covered in greater detail in Chapter 3.

Listing 2-3. An Example of an Embedded Style Sheet

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Spaghetti and Cruft : Our Menu</title>
<style type="text/css">
h2 { color: red; }
p { color: gray; }
</style>
</head>
<body>
<h2>Good eats for hungry geeks</h2>

<p>Our fresh pizzas, hearty pasta dishes, and succulent
desserts are sure to please. And don't forget about our
daily chalkboard specials!</p>
</body>
</html>

Embedding a style sheetin the head of your document does further separate presentation
from your structured content, and those rules will be applied throughout that document,
butitisn’t an efficient approach if you're styling more than one page at a time. Other
documents within the same website would require embedded style sheets of their own, so
making any future modifications to your site’s presentation would require updating every
single document in the site.

33

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

34

CHAPTER 2 XHTML AND CSS BASICS

External Style Sheets

The third and best option is to place all your CSS rules in a separate, external style sheet,
directly connected to your documents. An external style sheet is a plain-text file that you
can edit using the same text editing software you use to create your XHTML documents,
saved with the file extension . css. This approach completely separates presentation from
content and structure—they’re not even stored in the same file. A single external style
sheet can be linked from and associated with any number of XHTML documents, allowing
your entire website’s visual design to be controlled from one central file. Changes to that
file will propagate globally to every page that connects to it. It’s by far the most flexible and
maintainable way to design your sites, exercising the true power of CSS.

An XHTML document links to an external style sheet via a 1ink element in the docu-
ment’s head, and you’ll learn more about that in the next chapter. For now, Listing 2-4
shows a simple example.

Listing 2-4. Linking to an External Style Sheet

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Spaghetti and Cruft : Our Menu</title>
<link rel="stylesheet" type="text/css" href="styles.css" />
</head>
<body>
<h2>Good eats for hungry geeks</h2>

<p>Our fresh pizzas, hearty pasta dishes, and succulent
desserts are sure to please. And don't forget about our
daily chalkboard specials!</p>
</body>
</html>

When a graphical browser downloads and begins processing the document, it will
follow that link to retrieve the external style sheet and process it as well, automatically
following its rules to render the page. An external style sheet is downloaded only once and
then cached in the browser’s memory for use on subsequent pages, keeping your docu-
ments lighter and improving the speed of your entire website.

The Cascade Order

You're not limited to a single style sheet; several different CSS files can be linked to from
one document, with each style sheet having its own link element in the document’s head.
Depending on the complexity of your site, you might have one style sheet containing

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 2 XHTML AND CSS BASICS

general rules for the entire site while pages within a certain section can link to a second
style sheet to define specific styles for that subset of pages. You might also prefer to break
your styles apart based on their purpose: for example, one style sheet defining colors and
backgrounds and another style sheet defining your page layout.

You can also combine all three methods—inline, embedded, and external—to style
your web pages, although it’s rarely advisable. If just one page on your site needs some
additional rules, you might choose to include an embedded style sheet within that docu-
ment alone. You may even, very rarely, want to call out one element for special treatment
and use an inline style for just that element. In almost every case, external style sheets are
the best approach: they eliminate presentational markup, improve a site’s performance,
and are much easier to maintain.

With so many CSS rules being dictated from so many different sources, some overlap
is to be expected. You already have specificity on your side, with more specific selectors
overruling general selectors. But specificity alone isn’t enough to resolve all the potential
style conflicts a graphical browser might run into when trying to render a web page. Where
specificity fails, the cascade order steps in to sort things out.

CSSrules are applied to content in the order in which they are received; later rules over-
ride previous rules. Separate style sheets are downloaded in a particular order as well. In
the case of external style sheets, their order is indicated by the order in which the 1ink
elements appear in the document; rules in later linked style sheets override rules in previ-
ously linked style sheets. Rules embedded in a document’s style element are processed
after all external style sheets. If more than one style sheet is embedded in a document—
eachinits own style element—later embedded style sheets override previous ones. Inline
declarations in an element’s style attribute are applied even after embedded style sheets.

In addition to author style sheets, every modern graphical web browser has its own
built-in style sheet to define the default presentation of various elements. When you view
aweb page without any of the author’s CSS applied, you're simply seeing it rendered with
the browser style sheet, which comes first in the cascade order so all the author’s styles
override those defaults. To complicate matters just a bit further, most web browsers allow
the end user to attach their own customized style sheets—known as a user style sheet—
which comes second in the cascade order, thus overriding the browser’s default styles but
not the author’s.

To break it down, the cascade order for multiple style sources is as follows:

1. Browser style sheet

2. User style sheet

3. External author style sheets (in the order in which they're linked)
4. Embedded author style sheets (in the order in which they occur)

5. Inline author styles

35

36

CHAPTER 2 XHTML AND CSS BASICS

And don’t forget, the cascade works within each style sheet as well. To remember how
the cascade works, follow this rule of thumb: the style closest to the content wins. Which-
ever value is declared last will be the one applied when the content is rendered.

limportant

In some extremely rare cases where both specificity and the cascade may not be sufficient
to apply your desired value, the special keyword ! important (complete with preceding
exclamation point) can force a browser to honor that value above all others. This is a powerful
and dangerous tool and should be used only as a last resort to resolve conflicting styles
beyond your control (for example, if you're forced to work with third-party markup that
uses inline styles that you're unable to modify directly).

The !important directive must appear at the end of the value, before the semicolon, like so:

hi { color: red !important; }

A value declared as !important is applied to the rendered content regardless of where
that value occurs in the cascade or the specificity of its selector. That is unless another
competing value is also declared to be ! important; specificity and the cascade once again
take over in those cases. There’s one notable exception to be aware of: ! important values
in a user style sheet always take precedence, even overriding ! important values in author
style sheets. This gives the ultimate power to the user, which is only right; after all, it’s their
computer.

Formatting CSS

Like XHTML documents, external style sheet files are plain text. You're free to format your
CSS however you like, just as long as the basic syntax is followed. Extra spaces and carriage
returns are ignored in CSS; the browser doesn’t care what the plain text looks like, just that
it’s technically well formed. When it comes to formatting CSS, the most important factors
are your own preferences. Individual rules can be written in two general formats: extended
or compacted.

Extended rules break the selector and declarations onto separate lines, which many
authors find more readable and easier to work with. It allows you to see at a glance where
each new property begins and ends, at the expense of a lot of scrolling when you’re working
with long and complex style sheets. Listing 2-5 shows a few simple rules in an extended
format.

CHAPTER 2 XHTML AND CSS BASICS

Listing 2-5. CSS Rules in Extended Format

h1, h2, h3 {
color: red;
margin-bottom: .5em;
}
hi {
font-size: 150%;
}
h2 {
font-size: 130%;
}
h3 {

font-size: 120%;
border-bottom: 1px solid gray;

}

Compact formatting condenses each rule to a single line, thus shortening the needed
vertical scrolling, but it can demand horizontal scrolling in your text editor when a rule
includes many declarations in a row. Listing 2-6 demonstrates the same set of rules
compacted to single lines and with unnecessary spaces removed.

Listing 2-6. CSS Rules in Compacted Format

h1,h2,h3{color:red;margin-bottom:.5em;}
hi{font-size:150%;}

h2{font-size:130%;}
h3{font-size:120%;border-bottom:1px solid gray;}

Another advantage of compacted rules is a slight reduction in file size. Spaces, tabs, and
carriage returns are stored as characters in the electronic file, and each additional character
adds another byte to the overall file size that must be downloaded by a client. A long style
sheet might be a considerably larger file in an extended format because of all the extra
space characters. In fact, you could choose to remove all excess spaces and place your
entire style sheet on a single line for optimal compression, but that might be overkill and
make your CSS much harder to work with. To reconcile maximum readability with minimal
file size, some authors work with style sheets in an extended format and then automati-
cally compress the entire thing to a single line when moving it to a live web server.

37

38

CHAPTER 2 XHTML AND CSS BASICS

A few extra spaces in a compacted rule can at least make it easier to scan, spreading a
one-line rule out a bit by including spaces between declarations and values. For lack of a
better term, we’ll call this format semicompacted, as shown in Listing 2-7.

Listing 2-7. CSS Rules in Semicompacted Format

h1, h2, h3 { color: red; margin-bottom: .5em; }

h1 { font-size: 150%; }

h2 { font-size: 130%; }

h3 { font-size: 120%; border-bottom: 1px solid gray; }

In the end, the choice is entirely yours, and you should author your style sheets in a way
that makes sense to you.

CSS Comments

You can add comments to your style sheets for the same reasons you might use comments
in XHTML: to make notes, to pass alonginstructions to other web developers, or to tempo-
rarily hide or disable parts of the style sheet during testing. A comment in CSS begins with
/* and ends with */, and anything between those markers won’t be interpreted by the
browser. Just like comments in XHTML, CSS comments can span multiple lines.

/* These base styles apply to all heading levels. */
h1, h2, h3, h4, h5, h6 { color: red; margin-bottom: .5em; }
/* Adjust the size of each. */

h1 { font-size: 150%; }

h2 { font-size: 130%; }

h3 { font-size: 120%; }

/* Temporarily hiding these rules

hg { font-size: 100%; }

hs { font-size: 90%; }

hée { font-size: 80%; }

End hiding */

Summary

This chapter has covered a lot of ground to get you up to speed on the inner workings of
XHTML and CSS. You've seen how you can author XHTML documents, using tags to define
elements and adding attributes to relay more information about them. Throughout the
rest of this book, you’'ll become intimately familiar with most of the elements you’ll use
when you create your own web pages.

CHAPTER 2 XHTML AND CSS BASICS

HTML was first introduced in the early 1990s, but the language has already undergone
many changes in its short and bright career. XHTML is a stricter reformulation of earlier
versions of HTML, with just a few rules that differentiate the two, as shown in Table 2-1.

Table 2-1. HTML 4.01 Strict vs. XHTML 1.0 Strict

HTML 4.01 Strict XHTML 1.0 Strict

Tag and attribute names are not Tag and attribute names must be written in
case-sensitive. lowercase.

Some attributes can be minimized, and All attributes must have a specified value, and the
attribute values don’t require quotes. value must be quoted.

Some elements don’t require closing tags, All elements must be closed, either with a closing
and empty elements should not be closed tag for nonempty elements or with a trailing slash
with a trailing slash. for empty elements.

The second part of this chapter gave you a crash course in CSS, unveiling the mechanics
of this rich and powerful language. You learned about CSS selectors and how specificity
and the cascade work together to give you great control over how your content is presented.
You'll use XHTML to build the structure of your documents and then use CSS to apply a
separate layer of polished presentation. In the following chapters, you'll see glimpses of
how you can use CSS in different ways to create different visual effects. Chapter 9 will
delve a bit deeper to show you a few ways to use CSS to lay out your pages by placing
elements where you want them to appear on-screen, all without damaging their under-
lying structure.

From here on, we’ll assume you’ve reached an understanding of the basic rules of
syntax for authoring your own XHTML and CSS, and the rest of this book will dig into the
real meat of markup. To get things rolling, Chapter 3 is a detailed examination of the head
element, where you'll include vital information about the documents you create.

39

CHAPTER 3

Moving A<head>

The title of this chapter says it all; we’re moving ahead and starting to get into creating
XHTML documents. This chapter explains the head element, which contains information
about the document. While the head element and its contents aren’t displayed in the
browser, they can play a critical role in defining special features in your document, such
as JavaScript code, the name of your document, and any styling that your document
should have.

The head Section

Many people consider the head a section as well as an element. The head can contain
several other elements, which this chapter focuses on. One of the more interesting things
about the head element is that is doesn’t contain any elements that are actually displayed in
your document. The first thing you need to learn is how to create the head element itself.

Chapter 1 presented the basic structure of an XHTML document. Based on the sample
presented in Chapter 1 and the rules presented in Chapter 2, you should realize that the
head section is contained in the html section. The head section must contain the head
element, and it may contain any of the following elements as well: base, 1ink, meta, script,
style, and title. I describe each of these elements in detail throughout the remainder of
this chapter. Let’s start with the head element.

<head>

For each tag, I present a summary of the available attributes. I break the attributes down into
three sections: required, optional, and standard. A required attribute must be present if
you use the tag. An optional attribute is just that: it’s optional and may or may not be
present. If you need more detail on the standard attributes, refer back to Chapter 2.

The <head> tag contains information about the XHTML document, including key words
that describe the site, links to other files that the document is making use of such as CSS
files, and more. Nothing in the head section is displayed to users in the browser, except the
contents of the <title> element, in the browser’s title bar.

4

42

CHAPTER 3 MOVING A<HEAD>

Required Attributes

No attributes are required for the head element.

Optional Attributes

e Profile: A space-separated list of URLs that contains metadata information about
the document

Standard Attributes
o dir
e lang

e xml:lang

Usage

Listing 3-1 illustrates an empty head element that should help remind you where it lives.

Listing 3-1. An Empty head Element

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>

<head>

</head>

<body>

</body>
</html>

The Supporting Elements

The remainder of this chapter goes through each of the tags you can use within the head
element. Adding or removing any of these elements may or may not affect the visual
presentation of your document.

<base>

The <base> tag helps make links (discussed in Chapter 6) shorter and maintenance easier.
You use the <base> tag to specify a base URL for all the links in a document.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 3 MOVING A<HEAD>

Required Attributes

e href: Specifies a URL to be used as the base URL for links in the document

Optional Attributes

The base element doesn’t offer any optional attributes.

Standard Attributes

No standard attributes are available for the base element.

Usage

Asyou’lllearn in Chapter 5, when you wish to include an image in your XHTML document,
you need to specify where the image can be found. Using the <base> tag can make life
easier when several images reside in the same directory. For example, if your document
includes several images all from the same directory, you could use the <base> tag to
shorten the URL link. Also, if you decide to move the images to a new location, updating
the links would be a snap. All you would need to do is change the href attribute in the
<base> tag.

For example, let’s say you want to display an image that resides at the following URL
address:

http://waw.apress.com/images/logo.gif

Listing 3-2 shows you how to make use of the <base> tag.

Listing 3-2. Using the <base> Tag with an Image

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<base href=" http://www.apress.com/images/" />
</head>
<body>

</body>
</html>

When the browser goes to retrieve the image, it takes the base URL specified in the
<base> tag and combines it with the requested file. Using the <base> tag to retrieve images
is most effective when you have several images, because it saves on your typing and reduces
the overall size of your document.

43

http://www.apress.com/images/logo.gif
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.apress.com/images

44

CHAPTER 3 MOVING A<HEAD>

<link>

The link element defines defines the relationship between two linked documents. It is
most often used to link external style sheets into the current document.

Required Attributes

The link element does not require any attributes.

Optional Attributes

charset: Sets the character set used by the document being linked to. You can find a
listing of available character sets athttp://www.iana.org/assignments/character-sets.

href: The URL pointing to the document that is being linked.

media: Refers to the type of media intended for the document that is being linked to.
Common values include all, braille, print, projection, screen, and speech. The
media attribute allows you to specify a different style sheet for different media types.
For example, you may want the screen to be colorful and bright, but some of your
users may have a monochrome printer. This attribute allows you to use a different
style sheet for each media type.

rel: Defines the relationship between the document being linked to and the current
document. Common values include alternate, appendix, bookmark, chapter, contents,
copyright, glossary, help, home, index, next, prev, section, start, stylesheet, and
subsection.

rev: The opposite of rel, this attribute defines the relationship between the current
document and the document being linked to.

type: Specifies the Multipurpose Internet Mail Extensions (MIME) type of the target
URL. The most common values are text/css for external style sheets, text/javascript
for JavaScript files, and image/gif for .gif image files. The MIME type tells the browser
what type of file is being downloaded and how to handle it. You can find a listing of
common MIME types at http://www.webmaster-toolkit.com/mime-types.shtml.

Standard Attributes

class

dir

id

http://www.iana.org/assignments/character-sets
http://www.webmaster-toolkit.com/mime-types.shtml

CHAPTER 3 MOVING A<HEAD>

e lang
e style

e title

Usage

The following code shows you how to link to an external style sheet—a common use of the
link element:

<head>
<link rel="stylesheet" type="text/css" href="main.css" />
</head>

<meta>

The <meta> tag provides information about your document. Search engines often use this
information to catalog pages on the Internet. You use the <meta> tag to provide keywords
and descriptions that search engines can use to catalog your document. Another common use
is to allow for automated refreshes of your document within a browser using the http-equiv
attribute. The term metarefers to metadata, which is a term often described as data about
data. The <meta> tag provides data about the data in the document.

Required Attributes

* content: The value to be associated with a name or http-equiv

Optional Attributes

* http-equiv: Connects the content attribute value to a specific HTTP response header.
You can use this attribute to request the browser to do something or to reference
information about the document from an external source.

* name: Assigns extra information to a document. The value of this attribute comes
from the content attribute. Some common names include author, keywords,
description, and summary.

¢ scheme: Defines a format used to interpret the value set in the content attribute.

45

46

CHAPTER 3 MOVING A<HEAD>

Standard Attributes
o dir
e lang

e xml:lang

Usage

The best way to explain this tag is by simply showing a few short samples. Oftentimes, you
may want your document to be associated with specific keywords on a search site. By adding
the keywords name and a comma-separated list, you're providing clues for a search engine.
For example, you could use the following XHTML for this book:

<meta name="keywords" content="HTML, XHTML, CSS, Javascript" />

You could also use the description name value to provide a short description to search
engines about your document:

<meta name="description" content="This is an introduction to HTML/XHTML." />

Tip It's a good idea to always be concise in what you make available to search engines. People who use
a search engine are looking for specific information. The site http://www.webmarketingnow.com/
tips/meta-tags-uncovered.html#google has some really good examples and explanations of using
different meta elements.

The http-equiv attribute provides the ability to do some pretty neat things. First, you
can use it along with the refresh value to specify that you want your document to be
refreshed at a specific interval. This sample refreshes the document every 15 seconds
(bear in mind that you should use this with caution; otherwise, you may end up really
annoying your web site visitors!):

<meta http-equiv="refresh" content="15" />

You can find a listing of other http-equiv tags athttp://vancouver-webpages.com/META/
metatags.detail.html.

<script>

The <script> tag plays a key role in making your site more dynamic and feature-rich. It
allows you to add scripting languages to your XHTML documents that respond to user
actions. Chapter 10 covers the basics of JavaScript.

http://www.webmarketingnow.com
http://vancouver-webpages.com/META

CHAPTER 3 MOVING A<HEAD>

Required Attributes

* type: Defines the MIME type of the script included. You must set this attribute as
text/javascript when using JavaScript.

Optional Attributes
e charset: Defines the character encoding used in the script

e defer: Tells the browser that the script won’t generate any document content, so
the browser can continue parsing and drawing the page

e src: Uses a URL to point to a document that contains the JavaScript

Standard Attributes

e xml:space

Usage

The use of scripting can really bring life to your documents. In Chapter 10, you’ll dive into
the details of adding scripting to your documents.

<style>

The last chapter briefly introduced the <style> tag when discussing internal style sheets.
The sole purpose of the <style> tag is to create internal style sheets for your document.

Required Attributes

* type: Defines the style type and is pretty much always set to text/css, unless you are
using some kind of proprietary style language, which you shouldn’t really be doing
anyhow.

Optional Attributes

e media: Defines what media the style should affect. Some of the possible values include
screen, print, tty, tv, projection, handheld, braille, aural, and all. all is the
default media value, assumed when a media attribute is not specified. Visit http://
www.w3schools.com/css/css_mediatypes.asp for the specifics on the media types.

47

http://www.w3schools.com/css/css_mediatypes.asp
http://www.w3schools.com/css/css_mediatypes.asp

48 CHAPTER 3 MOVING A<HEAD>

Standard Attributes
e dir
e lang
o title

e xml:space

Usage

The media attribute lets you have different styles for different output devices. For example,
you may produce some online reports that users may want to print on their printer. Most
likely, you’d want to make the text on the screen larger and possibly in a different font than
that on a printed page. Listing 3-3 shows an example of a style sheet that makes the screen
font size 16 pixels, while making the text on the printed page 12 pixels. Both the screen and
printed media have normal font weight (as opposed to bold). Note the use of the @media
rule, which allows for the use of multiple media types within a single style sheet.

Listing 3-3. The style Element Using Several Different Media Types

<style type="text/css">
@media screen

{

ptext {font-size:16px}
}
@media print
{

ptext {font-size:12px}
}
@media screen,print
{

ptext {font-weight:normal}
}

</style>

CHAPTER 3 MOVING A<HEAD>

Tip CSS has an @import statement that instructs the browser to retrieve and use the styles from an
external style sheet. Typically, you use the @import statement in the <style> tag (it has to appear prior to
any other rules), as shown here, although it can also be used in external style sheets to import other stylesheets:

<style type="text/css">
@import "http://www.mysite.com/css/style.css"
</style>

Any rule that is in the external style sheet takes precedence over rules that precede the actual @import state-
ment. You can also use multiple @impoxrt statements to bring in several different style sheets. In addition, the
order of the @import statements is important. The rules are applied top down, so those at the top of the list
take precedence over those at the bottom of the @import list. For more information on using the @import
statement, refer to Chapter 9.

<title>

The <title> tagallows you to provide a title to your document. Browsers typically display
this value in their title bar, and they use it as the default name in a bookmark.

Required Attributes

No attributes are required for the title element.

Optional Attributes

There are no optional attributes for the title element.

Standard Attributes
e class
e dir
e id
e lang
e style

e xml:lang

49

http://www.mysite.com/css/style.css

50

CHAPTER 3 MOVING A<HEAD>

Usage

To add a title to your document, you simply need to put the text you wish to use between
the opening and closing tags of the title element, as Listing 3-4 shows.

Listing 3-4. Sample to Illustrate the title Element

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>This text will be displayed within the titlebar</title>
</head>
<body>
</body>
</html>

Figure 3-1 shows the results of Listing 3-4.

2 This text will be displayed within the titlebar - Micro...

J Back .J @ @ :h p Search
: File Edit View Favorites Tools Help
: Address |@ C:\HTML\Chapter 3\Chapter3-5.html V| Go

|

@ Done j My Computer

Figure 3-1. The title element displayed within a browser

Tip I1t's a good idea to always set a title, because it’s displayed in the title bar of the browser. This allows
users to know what document they’re viewing, even if they don’t have the full browser window displayed. If
you don’t specify a <title>, the document will display an empty title.

Summary

This chapter has explained the head section in detail, including each element and its
attributes. Several samples helped to enforce the point as needed. In Chapter 4, you’ll
learn how to add content to your document through the use of many new tags.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

CHAPTER 4

Adding Content

Now that you’ve got a handle on the basics, the real fun can begin: it’s time to start
adding content to your web pages. In this chapter, you’'ll learn about most of the XHTML
elements you’ll need to organize your content and give it a meaningful structure. Along
the way, you'll see examples of how the different elements are rendered by a web browser
with its default styling. Then we’ll show you a few simple ways you can use CSS to enhance
the presentation of your text.

Content and Structure

The content of your web page consists of everything your visitors will see, read, and use.
However, content is more than simply words and images; it’s also the message, the thing
your words and images are actually about. Your content is the information that you're
trying to communicate to your audience, and the web is a conduit for moving that infor-
mation from one place (you) to another (them).

The World Wide Web originated as a purely textual medium, built upon the written
word. Pictures were soon added to the mix, and eventually sound, animation, and video
made the web the rich multimedia tapestry it is today. But the vast bulk of online content
still takes the form of written text, and that is unlikely to change any time soon. Most of the
time you spend surfing the web is probably spent reading.

Human beings rely on some structure to make text readable and understandable. As
you read this book, you're looking for visual cues to help you organize the words into
concise pieces that you can process and comprehend. You recognize the significance of
such things as punctuation, capitalization, spacing, and font size. You know just by looking
at it that this paragraph ends after this sentence.

Computers don’t read the same way humans do—they can’t interpret a string of words
and grasp the concept behind them, they don’t see the visual cues we use to separate one
string of words from another, and they can’t automatically group related sentences into
useful blocks. Instead of visual cues, a computer requires a structure composed of clear
markers indicating the nature of each portion of text. That is the essence of a markup
language: embedded instructions that a computer can follow in order to make content

readable and usable by humans. 51

52

CHAPTER 4 ADDING CONTENT

In Figure 4-1, the “before” image shows a sample of text as it would appear in a web
browser without any XHTML structure. It’s nothing but a large mass of words, all mashed
together and difficult to read (even if you're fluent in pseudo-Latin filler text). You can
break down that blob of words into discernable, readable portions by adding a few bits of
structural markup. The “after” image is much more readable (the words are stillnonsense,
but we're making a point).

Lorem ipsum dolor sit amet, coesectetuer adipiscing elit. Pellensesque
orh VoRAPAC S0, et agua il s T ol ol Donce m:ﬁfwumms Ut unms el Lorem ipsum dolor sit amet
sickis naioeue

pemmxmu magais s pusrias mories, rmrmuum e mew sociosqy mlmnmqucmwemw

Enbgger telly . Denea T, Vi Cmmmlpmg elie, Peliennesque neﬁre ipsiam cursus accumsan dictum, enim orci volutpal jusio, egec
noa, -uqm. mm:unhlmﬂ Jasin, g m? \lrrnbi l)uhmln:mm . e nulls lscus #f massa. Nul n.n:uzpe pm welit a furpis. Ut ut misk. wlummmmﬂﬁ mfgq
Pracscat lbortis ectus at esat. Ui a odio. lml:sl:rf lis, Vestibulum L] ;cwmum;nmmmmmm Tispis epestis m.qnnmmnrm
convallis clementum, dui nisé lesnpor arew, in wllamcorper odo asse e Jorem. Sed Interdum nurpss 1 nisi, Pelleesesque
vl itigas sen. Mascenss s ik, valputee i, Esique 1, fermeaiumsed, clic pcucm.c il amet ane. Cum socie penagibus ¢t d Class
Macceras ef Joremn. Phasellus quam aibh, molls sed Ny torguent post, hymenacos. tellus. telhes, conare lat
facilisi, A:mnmumquh Nella venenats. Nullum cus. Pasoe oo vel s teap solcoodin Tacger K mmf:'wh::m m"m“"m""" dw““WM :‘m ";:,:‘m"‘::” ""B e Do
loctus ot g lamccrpe il Ut s e, I porm vulpeses
mm.qufml et e ol ek k. Fracec it Bhcep o A i ok DUl = Morbi sit amet risus
candimentuen soctor, Bosureny e, pretism vitse, dism. Nulla facifil, Musris ea mews, + Quisque tEmpas.

= Pracsest lobarts loctus af erst.

Ut a odio. Integer felis.

Vesshulum magna, Nollam consecteier. Eam sceleeisque, magaa in convallis elementuen, dud nisi smpos arce, in
e, Sed interdum furps af nisi. Pelientesque vulputate tristique sem. Masoenas bipis mi,
ulpuie i, mnmm rmmmmm elil. Pelkeniesque sit amet anic.

Macconas et losem. Phascllis quam nibt, mollls sed, adipiscing sed, culsmod nec, mrpis. Diuls wmpus cleifiend dolor.

Dulla facilisl. Atrean sagittis saginis el Nulla venenatis, Nullun eursus. Fusce et orci vel mauris iempor solieimdin.
Imeger id lectus at augue intexdu condimey llamcorper nisl. Ut eget Bbero. Ia pos

Before s s sl et ok e o After ’Mnrmal:kmmlm D loeem

Figure 4-1. Some example text, with and without structure

Providing a solid structure for your content will make it stronger and more flexible. By
using XHTML to insert encoded statements to the browser that tell it “this is a heading”
and “this is a paragraph” and “this word is emphasized,” you’ll make your content work
better, for both machines and people alike. And by organizing your content logically with
the proper elements, you'll also be building in the framework you’ll need to style your
pages with CSS.

A beautiful <body>

Before you can add content to your document, you'll need a place to put it. The head element
contains information about the document itself, none of which (apart from the title) is
displayed on-screen. All of your content resides in the body element.

body

The body element comes after the head element and must be closed before the closing </html>
tag, as seen in Listing 4-1—the head and body are both contained by the html element. Any
content appearing outside the body element will make the document invalid, and that
content might not be displayed.

CHAPTER 4 ADDING CONTENT

Listing 4-1. An XHTML Document with an Empty body Element

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Spaghetti and Cruft : Geek Pizzeria</title>
</head>
<body>

</body>
</html>

The body element is block-level and can only contain block-level children; any text or
inline elements must be nested in another block-level parent, not directly within the body
element. If you move to a new house, you'll put all your small items into boxes before
loading them onto the truck; otherwise, they would rattle around loose and probably
arrive broken. Think of the body element like that big moving truck, and all your smaller
bits of content need to be packed safely in their own containers. In the next section, you’ll
learn some of the major structural elements you’ll need to properly package your content.

Required Attributes

No attributes are required for the body element.

Optional Attributes

The body element doesn’t offer any optional attributes.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

53

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

54

CHAPTER 4 ADDING CONTENT

Caution oOlder versions of HTML allowed several presentational attributes to appear in the <body> tag:
background to define a background image, bgcolor to apply a background color, text to set the main text
color, 1ink to set the color of unvisited links, v1ink to color visited links, and alink to color active links.
These attributes have all been deprecated and are not valid in XHTML 1.0 Strict. Their effects are now achieved
with CSS.

You may also encounter the attributes topmargin, leftmargin, marginheight, and marginwidth in
the <body> tag of some older web documents. These were proprietary attributes introduced by browser
manufacturers and have never been part of any official standardized specification. They too are presenta-
tional, nonstandard, and invalid, and you shouldn’t use them.

Meaningful Portions

Semantics is the study of meaning in language. Web designers have borrowed the term
from the field of linguistics and use it to refer to the inherent meaning of an XHTML element
or attribute, as opposed to the way it would be visually rendered by a web browser. As you
work to keep your content and presentation separate, you should always be considerate
of an element’s semantic value, choosing the most meaningful element to fit the meaning
of the content inside it.

p

As you probablylearned in grammar school, a paragraph is one or more sentences expressing
a single thought or idea, or about one aspect of a topic. It’s the standard unit of written
prose. You can tell a web browser how to separate groups of sentences into easily digest-
ible portions by marking each paragraph’s boundaries with a p element. Listing 4-2 shows
two paragraphs in XHTML, where the beginning of one paragraph is indicated by an
opening <p> tag, and a closing </p> tag marks its end. Blank lines between elements aren’t
necessary, but they can help make your markup more readable as you work. Paragraphs
are block-level elements that are only allowed to contain text and inline elements.

Listing 4-2. Two Example Paragraphs

<p>Spaghetti and Cruft opened our doors in 1999, bringing great pizza and

pasta to the heart of the city's trendy Riverbend district. We handcraft

our pizzas on the spot using only the best ingredients, and then we bake them to
perfection in our rustic wood-fired brick oven. We sell pizza by the slice

or by the pie and even offer catering for any occasion all around the
neighborhood.</p>

CHAPTER 4 ADDING CONTENT

<p>0Our broad menu of pasta dishes puts a modern twist on O0ld Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll want
seconds anyway). But it's not all noodles and crust at Spaghetti and Cruft;
we also have fresh veggie sides, an all-you-can-eat salad bar, and the best
cannolis in town!</p>

Figure 4-2 shows what these paragraphs will look like in a browser. Because p is a block-
level element, each paragraph begins on a new line and is followed by a blank line of white
space. In the past, many web designers would inject empty paragraphs (<p></p>) into
their documents to add more vertical space on the page. This is presentational markup
and should be avoided—an empty paragraph has no meaning. If you need to add vertical
white space to your page layout, use CSS.

Spaghetti and Cruft opened our doors in 1999, bringing great pizza and pasta to the heart of the
city's trendy Riverbend district. We handcraft our pizzas on the spot using only the best
ingredients, and then we bake them to perfection in our rustic wood-fired brick oven. We sell
pizza by the slice or by the pie and even offer catering for any occasion all around the
neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served in heaping bowlfuls
sure to satisfy any appetite (though we bet you'll want seconds anyway). But it's not all noodles
and crust at Spaghetti and Cruft; we also have fresh veggie sides, an all-you-can-eat salad bar,
and the best cannolis in town!

Figure 4-2. The browser renders the two paragraphs as separate blocks.

Required Attributes

The p element doesn’t have any required attributes.

Optional Attributes

There are no optional attributes for the p element.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

55

56

CHAPTER 4 ADDING CONTENT

CmMm1Wwﬂmw@msdﬂMUmN@dmahmammmmmmmeSMMmmmmMMWh
level elements), allowing the designer to specify whether the contents should be aligned to the left or right,
centered, or justified (meaning the column is evenly aligned on both the left and right sides). The align attribute is
deprecated and should not be used in XHTML 1.0 Strict; its modern CSS equivalent is the text-align property.

Headings: h1, h2, h3, h4, h5, and h6

Headings act as titles to introduce a new section of content. XHTML offers a range of six
heading elements to indicate the relative importance of a heading or its rank in the docu-
ment’s hierarchy (and, by association, the importance or rank of the content that follows
the heading). You can organize your document as a simple outline, separated into specific
topics or areas of interest, sorted from the top down in order of importance, and with each
section containing subsections of its own.

Listing 4-3 shows some content marked up as headings and short paragraphs; each
heading introduces the content that follows it. Different heading levels imply a hierarchy
of importance; the top-level heading introduces the entire section, while the subheadings
beneath it introduce lesser sections within that.

Listing 4-3. A Mixture of Headings and Paragraphs

<h1>Praise for Spaghetti and Cruft: Geek Pizzeria</h1>
<p>See what people are saying about us!</p>

<h2>Customer feedback</h2>
<p>0ur loyal customers love us (and we love them).</p>

<h2>Reviews</h2>
<p>Even those stuffy restaurant critics can't resist our charms.</p>

The h1 element designates the top-level heading—the mostimportant one on the page.
Since there can logically be only one “most important” heading, it’s customary for only
one h1 to occur within a single document, often used for the name of the website or the
title of the page you're viewing. This isn’t a requirement of XHTML, but rather just a good
semantic rule of thumb. You should also try to keep your headings in the proper
sequence—an h5 shouldn’t come before an h2 unless it makes good sense to change their
natural order, which it rarely does.

Figure 4-3 shows the previous markup as rendered by a browser. Most graphical web
browsers will automatically display headings in a boldfaced font and at different sizes for
each level, h1 being the largest and h6 being the smallest. Because of this default styling,

CHAPTER 4 ADDING CONTENT

headings have often been abused in the past for their presentational effects. Avoid committing
this error, and use headings in a meaningful way. An h2 is “the second-most important
heading,” not “the second largest font.” You can use CSS to alter the default appearance
of headings, including their font size.

Praise for Spaghetti and Cruft: Geek Pizzeria

See what people are saying about us!

Customer feedback

Our loyal customers love us (and we love them).

Reviews

Even those stuffy restaurant critics can't resist our charms.

Figure 4-3. Different heading levels appear in different sizes by default.

Headings are block-level elements and may only contain text or inline elements.

Required Attributes

There are no required attributes for heading elements.

Optional Attributes

Heading elements don’t offer any optional attributes.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

57

58

CHAPTER 4 ADDING CONTENT

Caution As with paragraphs, previous versions of HTML allowed the presentational align attribute in
heading elements. This has since been deprecated and isn’t valid in XHTML 1.0 Strict. To change the align-
ment of text in block-level elements, use the CSS text-align property.

blockquote

The blockquote element designates along quotation, such as a passage from a book or ablurb
from areview. It’s ablock-level element and can only contain block-level children. Almost
any other structural markup can reside in a blockquote (paragraphs, headings, lists, and even
other blockquotes), but all of its contents should be part of the original quotation.

Ifyou're quoting an online source, even if the quotation comes from elsewhere on your
own website, you can include the URL of the original source in the optional cite attribute
of the opening <blockquote> tag. The cite attribute’s value should be a URL rather than a
name or title. To cite a source by name, use the cite element, which you'll learn about
later in this chapter.

Listing 4-4 shows a block quotation, including a source URL in the cite attribute. The
quoted text resides in a nested paragraph, not directly within the blockquote element.

Listing 4-4. Example Markup for a Block Quotation

<h2>Reviews</h2>
<p>Even those stuffy restaurant critics can't resist our charms.</p>

<blockquote cite="http://example.com/food/reviews/SpaghettiCruft/">
<p>Spaghetti and Cruft offers tasty wood-fired pizzas at affordable
prices, served in a hip, relaxed atmosphere. Comfortable seats, free
WiFi and abundant power outlets make this a popular spot for the
neighborhood technophiles to linger with their laptops.</p>
</blockquote>

Most graphical browsers will display the blockquote element as an indented block of
text, as you can see in Figure 4-4. In the past, some web designers misused this element
to create wider margins around their text, whether it was a quotation or not. Once again,
that’s presentational markup that confuses the content’s meaning. You should only use a
blockquote for actual quotations, and you should use CSS to control margins.

http://example.com/food/reviews/SpaghettiCruft

CHAPTER 4 ADDING CONTENT

Reviews

Even those stuffy restaurant critics can't resist our charms.

Spaghetti and Cruft offers tasty wood-fired pizzas at affordable prices, served in a hip, relaxed atmosphere.
Comfortable seats, free WiFi and abundant power outlets make this a popular spot for the neighborhood
technophiles to linger with their laptops.

Figure 4-4. The default rendering of a block quotation as an indented portion of text

Required Attributes

The blockquote element doesn’t have any required attributes.

Optional Attributes

e cite: The URL of the quotation’s original source

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

address

Contrary to this element’s name, address isn’t intended for just any postal address; its
purpose is to provide contact information for the person or organization responsible for
the particular document you're reading. The address element harkens back to the early
days when primarily academics and programmers used the web. A researcher at a univer-
sity might publish her findings on the Internet and include her name, position, and e-mail
address to stake her claim. In that sense, think of the address element more like a byline
or attribution than a physical location on a street in a town somewhere (though it can include

59

60

CHAPTER 4 ADDING CONTENT

a physical address as well). The address element says, “This is who is responsible for this
document, and here’s how to reach them.”

The address element is block-level and can only contain text or inline elements. With
nested block-level elements forbidden, you're somewhat limited in the elements you can
use to format the contents of an address. Listing 4-5 shows some contact information
wrapped in an address element, with line breaks inserted to provide some formatting
(you’ll learn more about the br element later in this chapter).

Listing 4-5. Contact Info Marked Up with the address Element

<address>

Andy Clarke

MODern Web Designer

1000 Stiff Upper Lip Street, Manchester, UK

http://stuffandnonsense.co.uk

</address>

This example would be semantically appropriate in a document authored by Andy
Clarke, but if you simply wish to name-drop Andy in a document that you're responsible
for, some other element would be called for (probably a paragraph).

The contents of an address element are usually displayed in an italicized font, as you
can see in Figure 4-5. Of course, if you don’t like the looks of it, you can always change its
presentation with CSS.

Andy Clarke

MODern Web Designer

1000 Stiff Upper Lip Street, Manchester, UK
hittp /istuffandnonsense co.uk

Figure 4-5. Most visual browsers display the address element in italics by default.

Required Attributes

The address element doesn’t have any required attributes.

Optional Attributes

There are no optional attributes for the address element.

Standard Attributes
e class

e dir

http://stuffandnonsense.co.uk

CHAPTER 4 ADDING CONTENT

e id

e lang
e style
e title

e xml:lang

pre

Asyoulearned in Chapter 2, white space in XHTML is “collapsed” when the document is
rendered by a browser; multiple spaces are reduced to a single space, and carriage returns
are ignored. However, you can use the pre element to define a block of preformatted text
in which white space and line breaks should be preserved exactly as they appear in the
markup. This element is especially useful for displaying computer code or poetry where
line breaks and indention are important, such as in the haiku in Listing 4-6.

Listing 4-6. Poetry Contained by a pre Element to Preserve Its Formatting

<pre>
Dough spins in the air
Tomato, cheese, in oven
Pizza nirvana
</pre>

The pre element is block-level and can only contain inline elements. Its contents are
typically rendered in a monospace typeface by default, as shown by Figure 4-6.

Dough spins in the air
Tomato, cheese, in oven
Pizza nirvana

Figure 4-6. The spaces and returns remain intact when the content is rendered.

Required Attributes

There are no required attributes for the pre element.

Optional Attributes

The pre element doesn’t offer any optional attributes.

61

62 CHAPTER 4 ADDING CONTENT

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

Caution In previous versions of HTML, the width atiribute allowed web designers to indicate the width
of a pre element, specified in the number of characters allowed on one line. This attribute has been deprecated and
should not be used in XHTML 1.0 Strict.

Lists

Alist is simply a collection of two or more related items. A list consisting of a single item is
perfectly valid and may even be semantically correct in same cases, but normally a list
groups several items together. There are three types of lists in XHTML: unordered lists,
ordered lists, and definition lists.

ul

An unordered list is designated by the ul element and is used for lists wherein the sequence of
the items isn’t especially significant, such as a list of ingredients—the order in which you
fetch them from the pantry doesn’t matter so long as you get everything on the list. Each
list item is in turn defined by its own 11 element, all contained by the surrounding
and tags. The ul element is block-level and only 1i elements are allowed as its chil-
dren; no text or elements can appear in an unordered list unless an 1i contains them.

Listing 4-7 shows the ingredients for making pizza dough in an unordered list, with
each item living in its own 1i element (more on that one in a moment).

CHAPTER 4 ADDING CONTENT

Listing 4-7. An Unordered Listing of Ingredients

<1i>1 cup warm water</1i>
1 packet active dry yeast
<1i>2 1/2 to 3 cups all-purpose flour</1i>
2 tablespoons olive o0il</1i>
<1i>1/2 teaspoon salt</1i>

By default, unordered lists are displayed in graphical browsers slightly indented and
with a bullet marking each list item, as seen in Figure 4-7. Later in this chapter, you'll see
how you can change the default bullet using CSS, replacing it with a different character or
even an image.

+ 1 cup warm water

+ 1 packet active dry yeast

+ 2 1/2 to 3 cups all-purpose flour
+ 2 tablespoons olive oil

+ 1/2 teaspoon salt

Figure 4-7. The bullets are rendered automatically when this list of ingredients is displayed in
a web browser.

Required Attributes

The ul element doesn’t have any required attributes.

Optional Attributes

The ul element doesn’t feature any optional attributes.
Standard Attributes

e class

e dir

e id

e lang

e style

o title

e xml:lang

63

64

CHAPTER 4 ADDING CONTENT

ol

The ol element defines an ordered list, one in which the items are meant to be read or
followed in a specific sequence, such as the steps in a recipe. Listing 4-8 shows an example.
Note that the items are not numbered in the XHTML markup.

Listing 4-8. A Deliberate Sequence of Steps, Marked Up As an Ordered List

Combine the water, yeast, oil, salt and two thirds of the
flour in a large bowl and mix thoroughly.</1i>
Gradually add the remaining flour until the dough holds
its shape, being careful not to let it become too dry. You may
not need all the flour.</1li>
Place the dough on a lightly floured surface and knead
for five minutes until it becomes smooth and elastic.
Transfer the dough to a lightly oiled bowl, cover with
plastic wrap and let it rise until it has doubled in size.</1i>
When the dough has risen, place it on a floured surface,
divide it into two equal portions rolled into balls. Allow the
dough to rest for 15 minutes before forming your pizzas.</1i>
</0l>

As you can see in Figure 4-8, each item in an ordered list is displayed with a number
beside it in a visual browser, with those numbers created automatically.

1. Combine the water, yeast, oil, salt and two thirds of the flour in a large
bowl and mix thoroughly.

2. Gradually add the remaining flour until the dough holds its shape, being
careful not to let it become too dry. You may not need all the flour.

3. Place the dough on a lightly floured surface and knead for five minutes
until it becomes smooth and elastic.

4. Transfer the dough to a lightly oiled bowl, cover with plastic wrap and let it
rise until it has doubled in size.

5. When the dough has risen, place it on a floured surface, divide it into two
equal portions rolled into balls. Allow the dough to rest for 15 minutes
before forming your pizzas.

Figure 4-8. The web browser numbers the list items automatically.

Like unordered lists, the ol element is block-level and can only have 1is as children.

Required Attributes

No attributes are required for the ol element.

CHAPTER 4 ADDING CONTENT 65

Optional Attributes

There are no optional attributes for the ol element.

Standard Attributes
e class
e dir
e id
* lang
e style
e title

e xml:lang

li

In both ordered and unordered lists, individual items are defined by the block-level 11
element. A list item can contain text or other elements—even more lists. Listing 4-9 shows
an elaborate list, including more lists nested inside it. The containing list has only a single
item in this example, but you could include several different specialty pizzas within that
list, each following the same pattern in its own 1i.

Listing 4-9. Example of a Complex, Unordered List

<h2>Specialty Pizzas</h2>

<h3>Barbecue Chicken Pizza</h3>
<p>This hearty American departure from Italian
tradition is one of our most popular pizzas.</p>

Spicy barbecue sauce.</1i>
Chunks of mesquite grilled chicken.</1i>
Blend of three cheeses:

66 CHAPTER 4 ADDING CONTENT

Mozzarella</1i>
Monterey Jack
Smoked Gouda</1i»

</1i>

<1i>Thin-sliced red onion.</1li>

Roasted red peppers.

</1i>

When one list is nested within another, the inner list will, by default, be styled differently
according to its level of nesting. Figure 4-9 shows how this list is rendered, and you can see
that each nested listis indented a bit further and displayed with a different style of marker.

Specialty Pizzas
« Barbecue Chicken Pizza

This hearty American departure from Italian tradition is
one of our most popular pizzas.
o Spicy barbecue sauce.
o Chunks of mesquite grilled chicken.
o Blend of three cheeses:
= Mozzarella
» Monterey Jack
= Smoked Gouda
o Thin-sliced red onion.
o Roasted red peppers.

Figure 4-9. The list as it appears in a browser with default styling

Required Attributes

There are no required attributes for the 1i element.

Optional Attributes

The 1i element doesn’t have any optional attributes.

Standard Attributes
e class

e dir

CHAPTER 4 ADDING CONTENT

e id

e lang
e style
e title

e xml:lang

Definition Lists

A definition list is not merely a collection of items, but rather a collection of items and
descriptions of each. Unlike ordered and unordered lists, a definition list doesn’t contain
listitem (1i) elements. Rather, items in a definition list may consist of definition terms (dt)
and definition descriptions (dd). A single term may have several associated descriptions,
or a single description may apply to several terms grouped before it. The list is segmented
wherever a dt immediately follows a dd, thus marking the beginning of a new sequence of
terms and descriptions.

There is an implied semantic connection between a term and its descriptions. The dt
and dd elements are bound to each other, paired together to form the structure of the list.
Because of this semantic symbiosis, definition lists are sometimes used to mark up content
thatisn’t technically a list of terms and definitions. A series of questions and their answers,
a set of images and their captions, or a sequence of dialog showing the names of the speakers
and their speeches are all potential uses of a definition list.

dl

The d1 element creates a definition list. It’s a block-level element, which in turn must
contain at least one term (dt) or atleast one description (dd)—only the dt and dd elements
are allowed as children of a d1.

Required Attributes

The d1 element doesn’t have any required attributes.

Optional Attributes

The d1 element doesn’t have any optional attributes.

67

68 CHAPTER 4 ADDING CONTENT

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

dt

The dt element, which is block-level and can only contain text and/or inline elements,
designates a term or item being described. A definition termis related to every description
that follows it until a new dt element appears to begin a new sequence (or until the list
ends with a closing </d1> tag).

Required Attributes

There are no required attributes for the dt element.

Optional Attributes

The dt element doesn’t have any optional attributes.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

CHAPTER 4 ADDING CONTENT

dd

The dd element contains a description of the dt elements that immediately precede it. In
the case of multiple descriptions for a single term, each one should be wrapped in its own
dd element. The element is block-level and may contain text, inline elements, and other
block-level elements. If your description spans several paragraphs, mark them up as para-
graphs (p) in a single dd rather than as separate dds—the entire contents of one dd element
should comprise one description.

Required Attributes

The dd element doesn’t require any attributes.

Optional Attributes

The dd element doesn’t offer any optional attributes.
Standard Attributes

e class

e dir

e id

* lang

style

title
e xml:lang

Listing 4-10 shows the markup for a brief definition list. In the example, the first term’s
description consists of two paragraphs, while the second term has two distinct descriptions.

Listing 4-10. A Definition List Featuring Two Terms

<dl>

<dt>Pizzac</dt>

<dd>
<p>A flat, open-faced baked pie of Italian origin, consisting of
a layer of bread dough covered with tomato sauce, cheese and a
wide variety of optional toppings.</p>
<p>Also called pizza pie.</p>

</dd>

69

70

CHAPTER 4 ADDING CONTENT

<dt>Pasta</dt>

<dd>Unleavened dough that is molded into any of a variety of shapes

and boiled.</dd>

<dd>A prepared dish containing pasta as its main ingredient.</dd>
</d1>

Most browsers will display dd elements slightly indented from their corresponding dt.
When a dd contains other structural markup (such as paragraphs), the default margins of
that nested element will apply. As you can see in Figure 4-10, the paragraphs in the first
term’s description have white space above and below them, while the second term’s two
descriptions have no top and bottom margins at all. You can modify all of this, of course,
with CSS.

Pizza
A flat, open-faced baked pie of Italian origin, consisting of
a layer of bread dough covered with tomato sauce, cheese
and a wide variety of optional toppings.
Also called pizza pie.

Pasta
Unleavened dough that is molded into any of a variety of
shapes and boiled.
A prepared dish containing pasta as its main ingredient.

Figure 4-10. The definition list rendered with default browser styling

Phrase Elements

We’ve covered most of the major structural elements you’ll use to organize your content
into meaningful, readable portions. Headings, paragraphs, and lists are the basic building
blocks of structured text. In the next few sections, we’ll be moving inside the blocks to pick
out smaller morsels of content for special attention.

These inline elements are called phrase elementsbecause they're intended to wrap
around a short string of a few words, or even a single word, to give it added meaning and
formatting that sets it apart from the other words that surround it. As you learned in
Chapter 2, inline elements are only allowed to contain text and other inline elements.

cm

The em element adds emphasis to a word or phrase. Its contents are displayed in an itali-
cized font in most visual web browsers, but other devices may apply emphasis differently.
For example, screen-reading software used by the visually impaired may read the contents
of an em aloud with a different vocal inflection.

CHAPTER 4 ADDING CONTENT I

Required Attributes

There are no required attributes for the em element.

Optional Attributes

The em element doesn’t have any optional attributes.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

strong

The strong element adds strong emphasis to text for those words or phrases that demand
more importance than an em element can provide. Text in a strong element is displayed in
a boldfaced font in graphical browsers, but may be emphasized differently by other devices.

Required Attributes

The strong element has no required attributes.

Optional Attributes

The strong element has no optional attributes.

Standard Attributes
e class
o dir

e id

72

CHAPTER 4 ADDING CONTENT

e lang

e style

o title

e xml:lang

Listing 4-11 shows a passage of text with some emphasized phrases. For yet another
level of emphasis, you can combine the strong and em elements (properly nested, of course),
effectively declaring that the text within has extra-strong emphasis, which most browsers
will display in a font that is both italicized and boldfaced.

Listing 4-11. A Paragraph Containing Some Emphasized Phrases

<p>A traditional pizza is round. Not only should a pizza be round,
but a proper pizza must be round. To reiterate,
real pizzas are round. Except when they're not.</p>

Figure 4-11 shows the rendered result of Listing 4-11.

A traditional pizza is round. Not only should a pizza be round,
but a proper pizza must be round. To reiterate, real pizzas are
round. Except when they're not.

Figure 4-11. The contents of em are italicized, the contents of strong are boldfaced, and the
combined elements show a combined style.

cite

The cite element designates a citation or reference to some resource: a person; the title of
abook, poem, song, or movie; or the name of a magazine, newspaper, or website. It’s espe-
cially useful when attributing quotations, as in Listing 4-12, which shows two applications
of the cite element: one to highlight the name of a source, and one to give attribution of a
block quotation.

Listing 4-12. Two Different Applications of the cite Element

<p>Restaurant critic <cite>Norm Deplume</cite> had this to say
about our eatery:</p>

CHAPTER 4 ADDING CONTENT 73

<blockquote cite="http://example.com/food/reviews/SpaghettiCruft/">
<p>Spaghetti and Cruft offers tasty wood-fired pizzas at affordable
prices, served in a hip, relaxed atmosphere. Comfortable seats, free
WiFi and abundant power outlets make this a popular spot for the
neighborhood technophiles to linger with their laptops.</p>
<p><cite>Gotham Examiner, November 22, 2006</cite></p>

</blockquote>

Graphical browsers usually render the contents of a cite element in an italicized font,
as shown in Figure 4-12, but—wait for it—you can change that with CSS.

Restaurant critic Norm Deplume had this to say about our eatery:

Spaghetti and Cruft offers tasty wood-fired pizzas at
affordable prices, served in a hip, relaxed atmosphere.
Comfortable seats, free WiFi and abundant power outlets
make this a popular spot for the neighborhood technophiles
to linger with their laptops.

Gotham Examiner, November 22, 2006

Figure 4-12. The cite element is italicized by default in most graphical browsers.

Required Attributes

No attributes are required for the cite element.

Optional Attributes

There are no optional attributes for the cite element.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

http://example.com/food/reviews/SpaghettiCruft

74

CHAPTER 4 ADDING CONTENT

q

The g element is intended to mark up short, inline quotations (as opposed to blockquote,
which you should use for longer quotations of more than a sentence or two). Like the
blockquote element, a q element may carry a cite attribute to include the URL of the
quotation source, as you see in Listing 4-13.

Listing 4-13. The g Element, Complete with a URL in a cite Attribute

<p>Norm Deplume, food critic for <cite>The Gotham Examiner</cite>, recently
commended our geek-friendly attitude, even saying that we're

<q cite="http://example.com/food/reviews/SpaghettiCruft/">a popular

spot for the neighborhood technophiles to linger with their laptops.</q></p>

According to the W3C specifications, a web browser should automatically render the
opening and closing quotation marks at the beginning and ending of a q element. However,
not all currently popular browsers support the element correctly, so it's unfortunately
impractical to use it. If you do make use of the q element, you shouldn’t include quotation
marks of your own—you’ll end up with duplicate punctuation in the browsers that render
the element correctly.

Figure 4-13 shows the q element as rendered by two popular browsers on two common
operating systems. Mozilla Firefox 2.0 for Mac OS X generates quotation marks automati-
cally, but Internet Explorer 6 for Windows XP doesn’t.

&l

‘@006 Spaghetti and Cruft : Geek Pizzeria =

@1 Spaghetti and Cruft : Geek Pizzeria - L._][_E.l_}m
Q‘J 'ﬁ_‘ @ filezfjjLw | & W+ Wikipec Q, File Edit View Favorites Tools Help 1?

Sy = 2 »
Norm Deplume, food critic for The Gotham Examiner, recently Q- © ¥ A G) search ¢ Favarites

commended our geek-friendly attitude, even saying that we're ;
“a popular spot for the neighborhood technophiles to linger with | “49== |1 Fr'BegnningHTHL \Code \Chapter4\0413.himl |ﬂ 5
their laptops.”

Norm Dephmme, food critic for The Garham Examiner, recently
commended our geel-friendly attitude. even saving that we're a
popular spot for the neighborhood technophiles to linger with
their laptops.

Firefox 2.0 | Internet Explorer 6.0
—— —d-"_—_' e R @ Done p J‘Cll'l'll:lt.lt&ri

o) Oerrors [Owarnings | 2 -

“Done

Figure 4-13. A view of the same markup from two different browsers: Firefox draws the
punctuation, but Internet Explorer doesn't.

Required Attributes

The g element doesn’t have any required attributes.

http://example.com/food/reviews/SpaghettiCruft

CHAPTER 4 ADDING CONTENT 75

Optional Attributes

e cite: The URL of the quotation’s original source

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

dfn

The dfn element is used to signify the defining instance of a term, especially one that may
reoccur throughout the rest of the page. If the term is defined in context, the dfn element
alone is enough to communicate that a new word is being introduced. If the term’s meaning
isn’t made clear by the adjacent text, you should include a brief definition in a title attribute.
A dfnis usually displayed (by graphical browsers) in an italicized font to set it off from the
surrounding text.

Required Attributes

There are no required attributes for the dfn element.

Optional Attributes

The dfn element doesn’t have any optional attributes.

Standard Attributes
e class
o dir

e id

[vww allitebooks.cond

http://www.allitebooks.org

76

CHAPTER 4 ADDING CONTENT

e lang

e style

o title

e xml:lang

Listing 4-14 shows an example of a dfn element that includes a short definition in its
title attribute.

Listing 4-14. A dfn Element with a Definition in Its title Attribute

<p>Spaghetti and Cruft offers free wireless broadband internet access so
laptop-toting patrons can check their e-mail, publish updates to their
<dfn title="short for weblog, a kind of online journal">blogs</dfn>, or
even do some honest work.</p>

Abbreviations: abbr and acronym

An abbreviation is a shortened form of a lengthy term. For example, etc. is an abbreviation
of et cetera (the Latin phrase meaning “and so forth”), and Inc. is an abbreviation of Incor-
porated. Abbreviations can also be formed from the initial letters of a multiword phrase
such as ATM for Automatic Teller Machine or CSSfor Cascading Style Sheets, or from initials
extracted from the syllables of a long word, such as DNA for deoxyribonucleic acid (these
are also called initialisms). You can indicate an abbreviation in XHTML with the abbr element.

An acronym is a specific type of abbreviation, being a pronounceable word formed
from the first letters of a multiword phrase—laser from light amplification by simulated
emission of radiation and PINfrom personal identification number—or the first portion of
each word, as in defcon from defense condition and sysadmin from system administrator.
You can mark up acronyms with the acronym element.

To know the difference between abbreviations and acronyms, just remember that
an acronym is a word that can be spoken; if you can’t pronounce it, it’s probably not an
acronym. Because acronyms are themselves abbreviations, there is considerable semantic
overlap between these two elements. It's important to distinguish the two on the web
because screen-reading software can be designed to read the initials in an abbr element,
but attempt to pronounce an acronym. Even so, many unpronounceable abbreviations
(such as ATM or CSS) are still thought of as acronyms. If in doubt, use abbr, the more
general of the two elements.

The abbr and acronym elements may be used similarly to dfn to point out the defining
instance of a term; thereafter, the term can be used normally. Of course, not every abbre-
viation needs to be specifically called out; common ones such as etc. and Inc. probably
don’t require explanation. Use your best judgment based on your understanding of the
content and your audience.

CHAPTER 4 ADDING CONTENT

Both abbr and acronym should include the expanded form of the term in a title
attribute, as seen in Listing 4-15.

Listing 4-15. A Bit of Content Featuring an Abbreviation and an Acronym

<p>We accept all major credit cards, as well as

<abbr title="Automatic Teller Machine">ATM</abbr> cards

(you'll need to provide your

<acronym title="Personal Identification Number">PIN</acronym>).</p>

Most modern browsers display these elements with a dotted underline, as Firefox does
in Figure 4-14. Many browsers display the value of the title attribute in a “tooltip” when
the user’s pointer lingers over the element, so even sighted readers can read the extended
form of an abbreviation.

‘We accept all major credit cards, as well as ATM cards (you'll need to provide your PIN).

Automatic Teller Machine

Figure 4-14. The content from Listing 4-15 as it appears in Firefox 2.0 for Mac OS X

Required Attributes

The abbr and acronym elements don’t have any required attributes.

Optional Attributes

There are no optional attributes for the abbr and acronym elements.

Standard Attributes
e class
e dir
e id
e lang
e style
o title

e xml:lang

77

78

CHAPTER 4 ADDING CONTENT

Revising Documents: del and ins

There may be times when you need to update a phrase in your document but would like

to clearly indicate what was updated. This is the purpose of the inline del and ins elements:

delindicates deleted text, and ins indicates inserted text. Both del and ins may optionally
include a cite attribute containing the URL of a page with details about the change and a
datetime attribute to mark the date and time the revision was made. You can also include
a short note about the change in a title attribute, as Listing 4-16 shows.

Listing 4-16. Revisions Noted with the del and ins Elements

<p>Beginning <del datetime="2007-01-04T06:49:15-08:00">January 5th
<ins datetime="2007-01-04T06:49:35-08:00" title="Delayed one week =
while we hire more wait staff">January 12th</ins>, we'll be open until
2AM on Fridays and Saturdays.</p>

In most graphical browsers, the contents of del are displayed as a strikethrough (a hori-
zontal line drawn through the text), and the ins element is displayed as underlined text, as
shown in Figure 4-15. It’s conventional for inserted text to follow the deleted text.

Beginning January-Sth January 12th, we'll be open until 2AM on Fridays and Saturdays.
Figure 4-15. Deleted text is displayed with a strikethrough, and inserted text is underlined.

Required Attributes

No attributes are required for the del and ins elements.

Optional Attributes
e cite: The URL of a document featuring information on why the change was made

e datetime: The date and/or time the change to the document was made

Standard Attributes
e class
e dir
e id

e lang

CHAPTER 4 ADDING CONTENT

e style
e title

e xml:lang

Note There are very specific requirements for formatting the value of the datetime attribute. See the
W3C specs for details (http://www.w3.0rg/TR/NOTE-datetime).

bdo

The bdo element (bidirectional override) defines a segment of text where the direction
should be reversed from the natural direction of the text surrounding it. The direction is
indicated by the required dir attribute, which can have a value of either 1tr for “left to
right” or rtl for “right to left.”

It’s a very rare element, only useful in multilingual documents where one passage appears
in alanguage that should be read in the opposite direction from the language used throughout
the rest of the document. The language any content is written in should be indicated by the
lang and xml : lang attributes, and in most cases, those attributes are sufficient; a browser
should understand that differentlanguages are read in different directions and render the text
correctly. However, some language combinations cause the direction to be miscalculated,
and the bdo element can counteract that error.

Listing 4-17 shows the bdo element used as if the emphasized word were written in
alanguage different from the rest of the document. This example uses English text for
demonstration purposes only—you would never do this in reality.

Listing 4-17. The bdo Element in Action

<p>A passage of text containing one <em lang="en" xml:lang="en">ws
<bdo dir="rtl">reversed</bdo> word.</p>

Figure 4-16 shows that the web browser reverses the text automatically.

A passage of text containing one desrever word.

Figure 4-16. When a browser renders the text, the contents of the bdo element are automati-
cally written in the direction specified by the dir attribute.

79

http://www.w3.org/TR/NOTE-datetime

80

CHAPTER 4 ADDING CONTENT

Required Attributes

¢ dir: The direction in which the enclosed text should be read: either 1tr or rtl

Optional Attributes

The bdo element doesn’t have any optional attributes.

Standard Attributes
e class
 id
e lang
e style
e title

e xml:lang

Programming: code, kbd, samp, and var

Several elements available in XHTML are specially intended for marking up computer
code, allowing computer scientists, programmers, and web developers to publish and
share their work. These are inline elements, and the same standard attributes apply to all.

The code element can be used to designate a portion of code. It’s not specific to any
programming language, so its contents could be CSS, JavaScript, PHP, Perl, C#, or any
computer language that needs to be distinguished from surrounding human-language
content. To aid readability, most graphical browsers display the contents of a code element in
a monospace typeface—one in which every character is the same width, such as Courier.

The kbd element defines text or commands that the user should enter, while the samp
element illustrates sample output of a program or script. Both of these are also typically
displayed in a monospace typeface.

The var element is used to designate a programming variable or argument, and is
usually displayed as italicized text.

The code, kbd, and samp elements are frequently combined with the pre element to
preserve the formatting of their contents, as you can see in Listing 4-18.

CHAPTER 4 ADDING CONTENT

Listing 4-18. A JavaScript Function Marked Up with a code Element

<pre><code>
function helloWorld() {
var button = document.getElementById("button");
if (button) {
button.onclick = function(){
alert("Hello world!");

}
}
}

</code></pre>

Figure 4-17 shows the markup as a web browser renders it. The computer code is rendered
in a monospace typeface (Courier, in this case).

function helloWorld({) {
var button = document.getElementById("button");
if (button) {
button.onclick = function(){
alert("Hello world!");

Figure 4-17. Nesting the code element within a pre element preserves the formatting just as it
appears in the markup.

Required Attributes

There are no required attributes for these programming-related elements.

Optional Attributes

These programming-related elements don’t feature any optional attributes.

Standard Attributes
e class
e dir
e id
e lang

e style

81

82

CHAPTER 4 ADDING CONTENT

e title

e xml:lang

br

Long lines of text on a web page wrap naturally to a new line when they reach the edge of
their container, with the break occurring in the space between two words. However, there
may be times when you’ll want to force text to wrap to a new line at a specific point. The
br element creates a line break for just such occasions. It’s an empty element, so it has no
text content and consists of a single tag, self-closed with a trailing slash (/>).

You saw some line breaks when you read about the address element earlier in this
chapter. Listing 4-19 shows another address, but this time its contents are all on a single
line with brs inserted at strategic points.

Listing 4-19. An address Element with Inserted Line Breaks

<address>
Jon Hicks
Illustrator and cheese lover
http://hicksdesign.co.uk
</address>

Figure 4-18 shows the rendered content. Browsers ignore carriage returns in markup,
but will forcefully break a line of text where directed.

Jon Hicks
Hlustrator and cheese lover
hitp:/ihicksdesign .co.uk

Figure 4-18. The markup from Listing 4-19 as it appears in a browser, with the text wrapping
at the specified points

In the past, line breaks were often misused to affect the layout of pages by stacking
several in a row to increase white space, to create lists by breaking between items, and to
simulate the appearance of paragraphs by forcing line breaks between blocks of text.
These are presentational hacks that shouldn’t be committed. Use CSS margins, padding,
and positioning to add space, and mark up lists and paragraphs as lists and paragraphs.
You should use the br element sparingly and only when the text requires it.

Required Attributes

The br element doesn’t have any required attributes.

http://hicksdesign.co.uk

CHAPTER 4 ADDING CONTENT

Optional Attributes

There are no optional attributes for the br element.

Standard Attributes
e class
e id
e style

o title

Caution 0lder versions of HTML featured a c1ear attribute for the br element, giving visual web browsers
instruction on how text and other elements should flow around the line break. This presentational attribute has
been deprecated in XHTML 1.0 Strict and replaced by the equivalent clear property in CSS.

hr

The block-level hr element creates a horizontal rule, a dividing line between sections of
content. It’s largely presentational, but the real semantic intent of an hr is to declare that
the previous section has ended and a new section is beginning. It’s an empty element and
must be closed with a trailing slash (/>), as shown in Listing 4-20.

Listing 4-20. A Horizontal Rule Separates Two Sections of Content

<h2>Customer feedback</h2>

<p>0Our loyal customers love us (and we love them).</p>

<hr />

<h2>Reviews</h2>

<p>Even those stuffy restaurant critics can't resist our charms.</p>

The hr element is block-level, so it will appear on its own line, but the amount of space
above and below it will vary slightly in different browsers. Figure 4-19 shows the hr element
rendered in Firefox 2.0 for Mac OS X. You can use CSS to specify the top and bottom margins
of an hr for some improved consistency across browsers.

83

84 CHAPTER 4 ADDING CONTENT

Customer feedback

Our loyal customers love us (and we love them).

Reviews

Even those stuffy restaurant critics can't resist our charms.

Figure 4-19. A horizontal rule rendered by a web browser

Required Attributes

The hr element doesn’t have any required attributes.

Optional Attributes

No optional attributes exist for the hr element.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

Caution oOlder versions of HTML included a number of presentational attributes for horizontal rules:
align to specify the alignment of the rule to the left, right, or center; size to specify the thickness of the
rule; width to define its width in pixels; and noshade to override the 3-D shading effect some browsers use
when rendering an hr. These are all deprecated and invalid in XHTML 1.0 Strict, and most of their effects can
now be achieved with CSS.

CHAPTER 4 ADDING CONTENT

Multipurpose Elements

Each of the elements we’ve covered so far has an inherent meaning and is meant to be
used for specific types of content and to serve specific purposes. There are also two generic
elements available in XHTML, to use when no other element quite meets your needs: div
and span. They are semantically neutral—they don’t really hold a specific meaning other
than to group and distinguish portions of content—so they are among the most versatile
elements in your markup tool kit.

div

The div element creates alogical division in your document, grouping related content and
elements together. It's semantically neutral but not entirely meaningless; a div essentially
states, “Everything in here belongs together and is separate from everything else.”

The div is extremely handy for organizing content into large blocks that you can then
style with CSS or manipulate with JavaScript. For example, you may want your company
logo, the name of your website, a set of navigation links, and a site search form to appear
at the top of your page, separated from the main content. These components should each
be marked up with their own meaningful elements, but they’re all related because they
form the overall branding and navigation of your site, so they could be collected in a single
div element. You can easily apply CSS styles to the contents of that div by giving it a unique
identifier via the id attribute. In Listing 4-21, a div identified as “main-content” wraps
around and contains all the important content on the page, separating it from other major
blocks such as site branding and navigation.

Listing 4-21. A Block of Content Wrapped in a div Element

<div id="main-content">
<h1>About Us</h1>

<p>Spaghetti and Cruft opened our doors in 1999, bringing great pizza and
pasta to the heart of the city's trendy Riverbend district. We handcraft

our pizzas on the spot using only the best ingredients, and then we bake them to
perfection in our rustic wood-fired brick oven. We sell pizza by the slice

or by the pie and even offer catering for any occasion all around the
neighborhood.</p>

<p>Our broad menu of pasta dishes puts a modern twist on 0ld Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll want
seconds anyway). But it's not all noodles and crust at Spaghetti and Cruft;
we also have fresh veggie sides, an all-you-can-eat salad bar, and the best
cannolis in town!</p>

</div>

85

86

CHAPTER 4 ADDING CONTENT

A divis block-level and can contain text and any other elements, both block-level and
inline. A div element’s only default styling is to behave like any other block-level element;
its contents begin on a new line and occupy the full available width. Because a div alone
imparts no deeper semantic meaning to its contents, any text within it should ideally be
nested in a more meaningful element.

Because divs are so versatile and act as useful boxes to be styled with CSS, there is a
tendency for some web designers to overuse them, crowding their markup with an exces-
sive number of divs for presentational purposes. This practice has come to be known as
“divitis,” and you should try to avoid it. Use divs wisely to support your content. Remember
that the div element is a content-organization device, not a page-layout device.

Required Attributes

The div element doesn’t have any required attributes.

Optional Attributes

There are no optional attributes for the div element.

Standard Attributes
e class
e dir
e id
e lang
e style
e title

e xml:lang

Caution Oider versions of HTML allowed the align attribute in div elements as well. It is now deprecated
and invalid in XHTML 1.0 Strict.

span

The div’s inline cousin is the span, which you can use to set apart an arbitrary segment of
text to act as a “hook” for CSS styling, or to carry additional information about its contents

CHAPTER 4 ADDING CONTENT

through attributes in the opening tag. As with divs, you should use spans only when
amore semantically valuable element doesn’t fit the bill.

Required Attributes

No attributes are required for the span element.

Optional Attributes

The span element has no optional attributes.

Standard Attributes
e class
e dir
e id

* lang

style

title
e xml:lang

Listing 4-22 shows a span nested within a top-level heading to distinguish the “last
updated” date from the other heading text. You could then style the contents of this span
with CSS to appear different from the rest of the heading. An em element could serve the
same purpose, but would add unwanted emphasis to the date.

Listing 4-22. A span Nested in a Heading

<hi>Latest News from Spaghetti and Cruft
Last updated on 11/22/2006</h1>

Embedding External Content

Most of the contents of your page will be part of the XHTML document, but there will often
be times when you need to embed external content such as images, Java applets, Flash

animations, or QuickTime videos. Such files must exist separately from the document, but
you can reference them in your XHTML markup so the browser will display them on your
page. You probably won’t need to make use of these elements until you're quite comfortable

87

88

CHAPTER 4 ADDING CONTENT

with the other parts of XHTML first. This is a pretty advanced topic for a beginning-level
book, so we’ll keep it short.

object

Theinline object element embeds a file or type of media that exists external to the XHTML
document. Many objects occur in data formats that web browsers may not be equipped to
handle, requiring a plug-in application to render them. You can use an object to place
an image on your page, but it’s more common to use the inline img element, covered in
Chapter 5.

Required Attributes

There are no required attributes for the object element.

Optional Attributes
e archive: A space-separated list of URLs pointing to archives relating to the object
e classid: URL specifying the location of the object’s implementation
e codebase: Specifies the base path of relative URLs
* codetype: The content type of the data expected when downloading the object
¢ data: The URL where the object’s data can be found
e declare: When present, this attribute makes the current object a declaration only
* height: The height of the object in pixels or a percentage of the parent element
* standby: Text that will be displayed as the object is downloaded
e tabindex: Specifies the object’s position in the document’s tabbing order
* type: The object’s content type
* usemap: Identifies a client-side image map to be used

e width: The width of the object in pixels or a percentage of the parent element

CHAPTER 4 ADDING CONTENT 89

Standard Attributes

e class
e dir

e id

e lang
* name
e style
e title

e xml:lang

Caution Previous versions of HTML included some presentational attributes for the object element:
align, border, hspace, and vspace. These have all been deprecated in favor of CSS. The width and
height attributes are also presentational but are still valid in XHTML.

param

A param element can be nested within an object element to define various object param-
eters and pass along additional information for the object to use. It’s an empty element,
so you should close it with a trailing slash (/>). A single object can contain several nested
param elements.

Required Attributes

e name: The specific parameter being declared

Optional Attributes
* type: The parameter’s content type
e value: The value of the parameter specified by the name attribute

* valuetype: The type of the value attribute: either data, ref, or object

90

CHAPTER 4 ADDING CONTENT

Standard Attributes
e id

Listing 4-23 shows an example of the object element being used to embed an MPEG video
onto a page. Within the object are some nested param elements declaring the source of the
video and a command to the plug-in application to begin playing the video automatically.

Listing 4-23. An Example of an MPEG Video Embedded with the object Element

<p>Here's a short video of Jeremy making pizza.</p>

<div><object data="makingpizza.mpg" type="video/mpeg" width="368" height="272">
<param name="src" value="makingpizza.mpg" />
<param name="autoplay" value="true" />

</object></div>

Figure 4-20 shows the result of the markup in Listing 4-23.

Here's a short video of Jeremy making pizza.

Figure 4-20. The video is displayed directly on the page, assuming the browser has the
necessary plug-in.

Presentational Elements

Throughout this book, we strongly discourage the use of presentational markup—those
elements and attributes that only affect the display of content and contribute nothing to
its function or meaning. Having said that, afew presentational elements remain valid even
in XHTML 1.0 Strict, so we're including them here in the interest of completeness. You
should be familiar with these elements, even if only to recognize them in order to avoid
them. Standard attributes apply to all of these.

CHAPTER 4 ADDING CONTENT

iand b

The i element designates text to be displayed in an italic font, and the b element desig-
nates boldfaced text. In nearly every case, when you need to italicize or embolden text,
you'll be doing so to add emphasis. To emphasize text, you should use the preferred em
and strong elements to deliver that message, to proudly declare that “this text means
something important, so pay attention” rather than simply “this text looks different but
doesn’t have much else to say.”

big and small

The text contained in a big element will be slightly larger than the text surrounding it,
while the text contained in a small element will be slightly shrunken. These elements have
little semantic value otherwise, and their presentational effects are usually best achieved
by using a more meaningful element styled with CSS.

t

The tt element stands for “teletype” and specifies that its text contents should be displayed
in a monospace typeface. It’s a presentational element that has no real meaning apart
from text styling, so it’s preferable to achieve the same result with the CSS equivalent,
font-family: monospace.

sup and sub

You may occasionally need to include superscript or subscript characters in your text,
especially of you're writing about mathematics or chemistry, or in certain languages that
require it (French, for example). In these cases, you can use the sup and sub elements, for
superscript and subscript, respectively. Superscript text is raised slightly higher than
surrounding text, while subscripts are slightly lower. Listing 4-24 shows an example of
these elements: sup is used in the Pythagorean Theorem for calculating right triangles, and
sub used in the chemical formula for sulfuric acid.

Listing 4-24. Examples of the sup and sub Elements

<p>a² + b² = c²</p>

<p>H₂S0₄</p>

91

92

CHAPTER 4 ADDING CONTENT

Figure 4-21 shows how a browser renders these elements. The contents of both
elements appear slightly smaller than the ordinary text surrounding them.

al+bl=¢2

H,S0,

Figure 4-21. The example markup from Listing 4-24 when viewed in a web browser

While the sup and sub elements are essentially presentational, there may be cases
where they communicate more meaning than a span would. A superscript numeral in a
mathematical formula can signify an exponent, so wrapping that numeral in a sup element
may be semantically preferable to styling it strictly with CSS; the sup element itself carries
that stylistic meaning. You should exercise your own judgment and use these elements
only when the content warrants it.

THE FONT ELEMENT

In the early days of the World Wide Web, authors and designers lacked a means to alter the typography
of their pages—that is, to choose different typefaces, colors, and sizes from whatever default settings
were built into the web browsers of the day. The font element was soon introduced to HTML, giving
web designers some influence over the presentation of text by simply wrapping it in a bit of additional markup:

Typography in action (sort of)

However, peppering a document with dozens of presentational font elements added a lot of extra
data to the file that did nothing to improve the real quality or utility of the content. And in the event of a
redesign, every one of those tags in every document over an entire site had to be located and
modified. It wasn’t pretty.

The advent of CSS a few years later finally gave designers the means to influence typography
without extra markup, and to update the design of even the largest sprawling website by editing a single
file. The font element was officially made obsolete. This element is strictly presentational, has no
semantic value whatsoever, and has been deprecated for a decade. It should never be used. Ever.

Special Characters

You know by now that an XHTML document is simply plain text. There’s nothing special
atall about the file format; it’s just written in a language that web devices are programmed
to understand. Tags within that plain-text document are enclosed by angle brackets (< and
>) to distinguish them from ordinary text. When a browser encounters those symbols,

CHAPTER 4 ADDING CONTENT

it can assume it’s dealing with markup and behave accordingly. This raises one issue, of
course: what if you need to use angle brackets in your text? If the browser treats them as
part of a tag, the entire document falls apart.

XHTML includes a large number of character references, which offer a way to encode
special characters that aren’t part of the regular English alphanumeric set of characters
(A-Z, a-z, 0-9, and most common punctuation). A character reference begins with an
ampersand (&) and ends with a semicolon (;). Between those symbols there are two
different ways to invoke the special character you desire: with a character entity name
or a numeric character reference.

A character entity name is simply a predefined name referring to a particular symbol,
like a nickname. The entity for the “less than” symbol (<) is 81t; and its counterpart, the
“greater than” symbol (>), is 8gt;. You can use these entities to render the symbols in your
content and prevent them from being treated as tags.

Your other option, the numeric character reference, refers to a character by its assigned
Unicode number, and is specified by an octothorpe (#) after the ampersand. The numeric
character reference for the “less than” symbol is < and “greater than” is 8#62 ;. Most of
the time, the much-easier-to-remember entity names are sufficient, but to ensure maximum
compatibility with devices that parse XML but may not support the full range of entity
names, numeric character references are usually recommended for XHTML documents.

Encoding special characters in this manneris known as escaping because these embedded
codes are excluded from the parsing of regular XHTML markup. One character you must
be careful to escape is the ampersand itself; a non-escaped ampersand in your markup
will be treated as the beginning of a character reference. In order to display an ampersand
in your content, encode it with the entity & or the numeric reference &. This also
goes for ampersands in URLs within an attribute (such as cite, src, or href).

Table 4-1 lists some of the most common (and useful) characters you may need, and
you'll find the complete list in Appendix C of this book.

Table 4-1. Common Character References

Character Description Entity Numeric Reference
& ampersand & &

< less than < <

> greater than > &4#62;

‘ left single quotation mark ‘ &1#t8216;

’ right single quotation mark ’ ’

“ left double quotation mark “ “

" right double quotation mark ” ”

non-breaking space

- en dash – –

93

94

CHAPTER 4 ADDING CONTENT

Table 4-1. Common Character References (Continued)

Character Description Entity Numeric Reference
— em dash — &1#8212;

© copyright © &4#169;

™ trademark ™ &18482;

® registered trademark ® ®

Caution A non-breaking space is a single character of white space that a browser will not treat as a
break between words when text is wrapped. Many web designers use non-breaking spaces to force extra
white space that won’t be collapsed to a single space (such as indenting the first line of a paragraph), or as a
placeholder in nonempty elements that have no content, to prevent them from being treated as empty (for
example, <p> </p>). Using non-breaking spaces to force white space where it doesn’t ordinarily
belong should usually be avoided as presentational markup.

Styling Content with CSS

All of the examples you've seen so far show content rendered in a browser’s default style,
with its default fonts, colors, and spacing. CSS allows you to modify the presentation of
almost every element on the page. Chapter 2 offers a general introduction to the basic
concepts of CSS, but it’s a broad and powerful language in its own right. Explaining every
facet of its depths is well beyond the scope of this book. For more detailed instruction in
the ways of CSS, we recommend Simon Collison’s Beginning CSS Web Development
(Berkeley, CA: Apress, 2006) as an excellent follow-up to the book you're reading right now.

But until then, we’ll whet your appetite for CSS by showing you just a few ways you can
use style sheets to make your text more distinctive and attractive.

Declaring Base Font Styles

A graphical web browser draws text on-screen using font files installed on your visitor’s
computer. Unfortunately, this limits your options to the few typefaces that are very common
in most operating systems—ones with familiar names such as Times New Roman, Helvetica,
Arial, Verdana, Georgia, Trebuchet, and Courier. However, you can achieve great things
even with such a limited palette. Good typography is about more than just choosing a nice
typeface; it’s also about how you arrange text on the page.

CHAPTER 4 ADDING CONTENT 95

Font Family

A font family is, well, a family of fonts. Also called a typeface, a font family consists of a set
of variations on a single type design. The typeface known as Times New Roman, for example,
includes normal, italic, bold, and bold italic versions in a few different sizes. Each of these
variants is actually a distinct font—“12 point Times New Roman bold” is one font within
the Times New Roman font family. These days, the terms “font,” “typeface,” and “font
family” are often used interchangeably.

In CSS, a font family is declared using the font-family property, followed by a comma-
separated list of your desired typefaces, in order of preference. When the browser renders
the page, it looks on the user’s computer system for the first font family listed. If it doesn’t
find that one, it will continue to the next, and so on. If it doesn’t find any, the browser will
simply fall back on its default typeface.

Listing 4-25 shows an example of a CSS style rule declaring a sequence of font families
for the body element.

Listing 4-25. A CSS Rule Setting the Font Family for an Element

body {
font-family: Georgia, "Times New Roman", Times, serif;

}

Note The typeface Times New Roman has a name that includes spaces, so its name appears in quotation
marks to group those words together. Font families with single-word names don’t require quotes.

One very important aspect of CSS is the concept of inheritance. The values of some prop-
erties in CSS can be passed down from an ancestor element to its descendent elements,
including most font-related properties. Since every element on the page is descended
from the body element, they will all inherit their font styles from that common ancestor,
without the need to redeclare the same styles over and over. You can then override or alter
this base font family for different elements elsewhere in the style sheet.

Revisiting the style rule for the body element, let’s say you've decided you’d prefer a
sans serif typeface such as Trebuchet, whose full name is Trebuchet MS, so it will need to
appear in quotes. If the browser doesn’t find that one, you’ll settle for Helvetica, and if the
reader doesn’t have Helvetica installed, you'll accept Arial. If it has none of these, then
you’d at least like the text to be drawn in some kind of sans serif typeface, so you should
end with the generic family name, sans-serif (the phrase “sans serif” must be hyphen-
ated in CSS). You can see the revised rule in Listing 4-26.

96

CHAPTER 4 ADDING CONTENT

Listing 4-26. The Updated font-family Declaration, Listing a Variety of Sans Serif Typefaces

body {

font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;

Figure 4-22 shows a “before and after” view of a sample web page. The left side shows
the text in the default browser font (Times, in this case), and the right shows the same text

after the new CSS has been applied.

About Us

Spaghetti and Cruft opened our doors in 1999, bringing great
pizza and pasta to the heart of the city's trendy Riverbend
district. We handcraft our pizzas on the spot using only the best
ingredients, and then we bake them to perfection in our rustic
wood-fired brick oven. We sell pizza by the slice or by the pie
and even offer catering for any occasion all around the
neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old
Italia, served in heaping bowlfuls sure to satisfy any appetite
(though we bet you'll want seconds anyway). But it's not all
noodles and crust at Spaghetti and Cruft; we also have fresh
veggie sides, an all-yon-can-eat salad har, and the best cannolis

in town! Before

About Us

Spaghetti and Cruft opened our doors in 1999, bringing
great pizza and pasta to the heart of the city's trendy
Riverbend district. We handcraft our pizzas on the spot
using only the best ingredients, and then we bake them
to perfection in our rustic wood-fired brick oven. We
sell pizza by the slice or by the pie and even offer
catering for any occasion all around the neighborhood.

Our broad menu of pasta dishes puts a modern twist on
Old Italia, served in heaping bowlfuls sure to satisfy any
appetite (though we bet ueu’llwant caconds anyway).
But it's not all noodle After kghettl‘ and Cruft;
we also have fresh ve T you-can-eat salad

bar, and the best cannolis in town!

Figure 4-22. Some example text rendered in the browser’s default typeface, and then in

Trebuchet through the power of CSS

GENERIC FONT FAMILIES

There are five generic font family names built into the CSS language. Using any of these in a font-family
declaration will instruct the browser to render text in whatever default typeface it’s configured to use for

that generic family.

o Serif. A typeface featuring serifs, which are ornamental crosslines at the ends of a character’s
main strokes. Times New Roman and Georgia are serif typefaces.

e Sans serif. Literally, “without serif”; a typeface that lacks those ornamental flourishes. Helvetica

and Arial are sans serif typefaces.

e Monospace: Atypeface in which every character, including punctuation, occupies the same width.

Courier and Monaco are monospace typefaces.

CHAPTER 4 ADDING CONTENT

e (Cursive: A fancy typeface modeled after handwriting. Brush Script MT and Apple Chancery are

common cursive typefaces.

e Fantasy. A decorative or highly stylized typeface. Impact and Copperplate are fairly common fantasy

typefaces.

Serif typefaces are best for print, as they remain readable at small sizes. On screen, however, the
fine points of the serifs tend to be lost or blocky when rendered in pixels, so sans serif typefaces are
generally easier to read on the web (though serifs can be quite lovely at larger sizes). Monospace type-
faces are best for displaying computer code, where it’s important to accurately make out each and every
character. Cursive and fantasy typefaces are more decorative and can be difficult to read, so they should
only be used for large headings or avoided entirely; never use a cursive or fantasy typeface for body text.

Font Size

You've changed the font family, but what about the size? Most browsers today render body
text at a default size of 16 pixels, which might be a bit too large for your tastes. You can
change this with the font-size property, and by applying the declaration to the body element,
every other element on the page will inherit the same value. Listing 4-27 shows the style
rule with a font-size declaration added, setting the base size to 12 pixels.

Listing 4-27. A font-size Declaration Has Been Added to the body Style Rule

body {

font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;

font-size: 12px;

}

Figure 4-23 shows the change in text size.

About Us

Spaghetti and Cruft opened our doors in 1999, bringing great pizza and
pasta to the heart of the city’s trendy Riverbend district. We handcraft
our pizzas on the spot using only the best ingredients, and then we bake
them to perfection in our rustic wood-fired brick oven. We sell pizza by
the slice or by the pie and even offer catering for any occasion all around
the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll
want seconds anyway). But it's not all noodles and crust at Spaghetti and
Cruft; we also have fresh veggie sides, an all-you-can-eat salad bar, and
the best cannolis in town!

Figure 4-23. The browser renders the text at the specified size, rather than its default size.

97

98

CHAPTER 4 ADDING CONTENT

The heading, an h1, has also become a bit smaller than it was previously. The default
font size of headings is relative to the base size for normal text. When the font size is changed
for the body element, the headings are resized in proportion to that value. But if you're not
happy with the heading at its default size, you can modify it with a new style rule—this
time for the h1 element, as you see in Listing 4-28. Thanks to inheritance, there’s no need
to restate the desired font family—only the font-size property with the new size to use for
h1 elements.

Listing 4-28. Adding a New Rule to Declare the Font Size of the h1 Element

body {
font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;
font-size: 12px;

}
h1 {

font-size: 160%;
}

Figure 4-24 shows the result of the new declaration added in Listing 4-28.

About Us

Spaghetti and Cruft opened our doors in 1999, bringing great pizza and
pasta to the heart of the city’s trendy Riverbend district. We handcraft
our pizzas on the spot using only the best ingredients, and then we bake
them to perfection in our rustic wood-fired brick oven. We sell pizza by
the slice or by the pie and even offer catering for any occasion all around
the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll
want seconds anyway). But it's not all noodles and crust at Spaghetti and
Cruft; we also have fresh veggie sides, an all-you-can-eat salad bar, and
the best cannolis in town!

Figure 4-24. The heading has been resized.

The new rule specifies the font size as a percentage of whatever size was inherited from
the element’s ancestor—160% of 12 pixels in this case, which turns out to be around 19 pixels.
You can declare font sizes using any of several units of measure: pixels, millimeters, centi-
meters, inches, points, picas, ems (one em is the height of a capital letter from top to baseline),
exes (one ex is the height of a lowercase letter from top to baseline), or a percentage. You
can also declare font sizes using a predefined set of keywords: xx-small, x-small, small,
medium, large, x-large, and xx-large.

CHAPTER 4 ADDING CONTENT

A keyword, em, ex, or percentage is a relative unit, calculated as a proportion of a size
declared elsewhere. The others are all absolute units: a pixel is a pixel, and an inch is an
inch. Some of these units are less practical than others; you'll probably never need to
specify a font size in inches, millimeters, or centimeters, while points and picas are units
used in printing that aren’t really appropriate for screen display (though are perfect for an
alternative printable style sheet). Most of the time, you’ll want to use ems, percentages,
keywords, and sometimes pixels for font sizes.

Most modern web browsers are able to resize text to suit the user’s preference, so any
size you specify in your CSS is more like a suggestion than a command. Always be aware
that your visitors may see text larger or smaller than you originally intended.

Line Height

Line height is the height of a line of text measured from its baseline to the baseline of the
preceding line (the baselineis the invisible line the text rests on; letters such as gand q
have descenders that drop below the baseline). Line height shouldn’t be confused with
leading, which is the typographic term for added space between two lines, measured from
the bottom of one line to the top of the following line. CSS doesn’t offer a means to specify
true leading, but you can achieve the same effect by increasing the line height of the text.

In the example you've been working with, let’s say that you think the default line height
is a little too close. Spreading those lines further apart will help the eye move through the
text a bit more easily, so add aline-height declaration to your CSSrule for the body element,
as you see in Listing 4-29. Every other element on the page will also inherit this value.

Listing 4-29. Adding a line-height Declaration to the body Rule

body {
font-family: "Trebuchet MS", Helvetica, Arial, sans-serif;
font-size: 12px;
line-height: 1.5em;

}

You should specify line height with a relative unit—an em, in this case—which is calcu-
lated relative to the text size. A value of 1.5em means the line height will be one and a half
times an element’s font size, whatever that size happens to be. You could achieve the same
effect with the value 150%; it’s really just a matter of personal preference. You can see the
result in Figure 4-25—each line of text has a bit more breathing room.

99

100 CHAPTER 4 ADDING CONTENT

About Us

Spaghetti and Cruft opened our doors in 1999, bringing great pizza and
pasta to the heart of the city’s trendy Riverbend district. We handcraft
our pizzas on the spot using only the best ingredients, and then we bake
them to perfection in our rustic wood-fired brick oven. We sell pizza by
the slice or by the pie and even offer catering for any occasion all around
the neighborhood.

Our broad menu of pasta dishes puts a modern twist on Old Italia, served
in heaping bowlfuls sure to satisfy any appetite (though we bet you'll
want seconds anyway). But it's not all noodles and crust at Spaghetti and
Cruft; we also have fresh veggie sides, an all-you-can-eat salad bar, and
the best cannolis in town!

Figure 4-25. Each line of text is separated by a little more white space by increasing the
line height.

Styling Lists

Lists are useful elements in XHTML. They're the right tool to reach for any time you need
to arrange connected portions of content into a sequence of memorable chunks. Unfor-
tunately, lists are rather unattractive by default, but you have the power of CSS on your
side to compensate for their aesthetic shortcomings.

Changing Unordered List Markers

A special character marks each item in an unordered list to help the reader distinguish one
item from the next. The list marker you're probably most familiar with is the bullet: a solid
dot that’s the same color as the list’s text. CSS includes a few predefined alternative list
markers, declared using the 1ist-style-type property: disc (this is the default bullet),
circle (an empty circle), or square (a solid square). The size of the marker is proportional
to the text size. Listing 4-30 demonstrates the list-style-type property, replacing the
standard round bullet with a small square.

Listing 4-30. Using the list-style-type Property

ul {
list-style-type: square;
}

Figure 4-26 shows the results of the rule in Listing 4-30.

CHAPTER 4 ADDING CONTENT

= 1 cup warm water

= 1 packet active dry yeast

= 2 1/2 to 3 cups all-purpose flour
= 2 tablespoons olive oil

= 1/2 teaspoon salt

Figure 4-26. Unordered lists are now presented with a small square marking each item.

If you like, the declaration list-style-type: none; will disable the item markers entirely
without affecting the format of the list.

Using an Image As a List Marker

If none of the three standard list markers quite satisfies your creative desires, you can provide
your own graphic to use via the list-style-image property, as shown in Listing 4-31.

Listing 4-31. Using the list-style-image Property

ul {
list-style-image: url("/images/mybullet.gif");
}

The property’s value is the file’s URL, denoted by the url keyword with the URL itself
contained in parentheses—the quotation marks are optional. The URL can be either abso-
lute or relative (you learned about absolute and relative URLs in Chapter 1). As you see in
Figure 4-27, a browser will load that image file in place of its standard bullet.

2 1 cup warm water

2 1 packet active dry yeast

2 21/2 to 3 cups all-purpose flour
2 2 tablespoons olive oil

2 1/2 teaspoon salt

Figure 4-27. The image now appears next to each list item.

Images used for list markers should be small and certainly no taller than the text size.
Large images might push your list items apart to make room, as Figure 4-28 demonstrates.

101

102 CHAPTER 4 ADDING CONTENT

D2
1 cup warm water

.> 1 packet active dry yeast
.> 2 1/2 to 3 cups all-purpose flour

.> 2 tablespoons olive oil

.> 1/2 teaspoon salt

Figure 4-28. The list is unpleasantly reformatted, forced apart by the large image.

Changing the Style of Ordered Lists

By default, items in an ordered list are numbered with Arabic numerals (1, 2, 3, etc.). You
can change this with CSS, once again using the 1ist-style-type property, and this time
choosing from another set of accepted values:

* upper-roman: Uppercase Roman numerals (I, I, III, IV, etc.)
e lower-roman: Lowercase Roman numerals (i, ii, iii, iv, etc.)
* upper-alpha: Uppercase English letters (A, B, C, D, etc.)
* lower-alpha: Lowercase English letters (a, b, ¢, d, etc.)
e decimal: Arabic numerals (this is the default)

You can see this in action in Listing 4-32.

Listing 4-32. Declaring Ordered Lists to be Rendered with Uppercase Roman Numerals

ol {
list-style-type: upper-roman;
}

Figure 4-29 shows the on-screen results of Listing 4-32.

CHAPTER 4 ADDING CONTENT

. Combine the water, yeast, oil, salt and two thirds of the flour in a large bowl and
mix thoroughly.

Il. Gradually add the remaining flour until the dough holds its shape, being careful
not to let it become too dry. You may not need all the flour.

ll. Place the dough on a lightly floured surface and knead for five minutes until it
becomes smooth and elastic.

IV. Transfer the dough to a lightly oiled bowl, cover with plastic wrap and let it rise
until it has doubled in size.

V. When the dough has risen, place it on a floured surface, divide it into two equal

portions rolled into balls. Allow the dough to rest for 15 minutes before forming

your pizzas.

Figure 4-29. The browser generates the Roman numerals automatically.

As with unordered lists, the declaration 1ist-style-type: none; will prevent the display
of any list item markers while the list remains intact.

Summary

Whew! We’ve covered a lot of ground in this chapter—in fact, a majority of the elements
in the entire XHTML language. You learned how to organize your content into bite-sized
pieces using meaningful elements that will communicate the true intent of your words,
how to insert some useful special characters, and just a few ways you can use CSS to affect
the presentation of text. You've also learned a few things you should notdo when marking
up your content. Be semantically responsible and choose elements for what they mean,
not how they look.

Most of this chapter has been about adding text content to your documents, but not
all content is text. In the next chapter, you’ll learn how to add images to your web pages
to communicate ideas that text alone just can’t get across (at least not with less than a
thousand words).

103

CHAPTER 5

Using Images

Chapter 4 was all about adding text content to your web pages, but now it’s time to put
the multiin multimedia and punch up your pages with pictures. Imagery of some sort is
an important part of most websites to make them visually stimulating and memorable.
The graphical elements of a design can form the basis of your site’s branding and visual
identity and can set your site apart from the millions of others on the World Wide Web.

Images can decorate, but they can also communicate; pictures are content too, and
some ideas are much better communicated visually. Photos, illustrations, logos, icons, maps,
charts, and graphs can get your ideas across in ways that text alone might not accomplish.
Even so, it's important to remember that not everyone who visits your website will be able
to see the images, and it’s your responsibility as a web author to help everyone access the
same vital information. This chapter shows you how to improve your site’s accessibility by
providing text alternatives when your images aren’t available.

Images that you're using as content can be referenced from your XHTML document
with the img element and will be rendered in the web browser right alongside your text.
You can also use theobject element, covered in Chapter 4, to embed images in your pages.
However, current browser support of the object element is sketchy and inconsistent, so
the img element remains the preferred, tried-and-true method. You should attach images
that are strictly decorative (rather than informative) to your page with CSS, keeping your
presentation separated from your content.

In this chapter, you'll learn how to use images in your web pages. You'll learn a few
basics about digital image files, explore the inline img element to embed a graphic into the
meat of your content, and see just a few ways you can use CSS to style inline images and
integrate them into your page’s layout. You'll also discover CSS background images, allowing
you to improve the look of your page without changing its semantic structure.

105

106

CHAPTER 5 USING IMAGES

How Digital Images Work

Like anything else that lives in a computer’s electronic memory, a digital image is nothing
more than data in the form of ones and zeros, collected into a virtual file. A computer reads
that array of digits (each digit is a bif) and translates each set of bits into a signal that can
be sent to a display device where the bits are converted into tiny dots of colored light that
human beings can see—bright red, dark blue, pale gray, and so on. The file also includes
encoded instructions abouthow these dots oflight (called pixels, short for “picture elements”)
should be arranged, like a mosaic of tiles, to make up a discernable image. You can see the
individual pixels if you look closely at a computer or television screen, or you can check
out the extreme close-up in Figure 5-1.

Figure 5-1. Zooming in on a digital image reveals the tiny pixels that comprise it.

Because these images are assembled from a “map of bits,” they're called bitmapped
images, and bitmaps are what we use to display images on the web. Storing the color and
location of every single pixel adds up to alot of data, especially when there are hundreds of
thousands of pixels in the typical picture and millions of possible colors (up to 16,777,216
unique colors in a 24-bit image to be exact).

Images for the web are usually compressedto decrease the file size so that downloading
a web page is tolerable, even on slower Internet connections. By either reducing the number
of colors stored or reducing the number of pixels memorized, you can greatly reduce the
overall file size as well. If you've ever downloaded a large file over a slow Internet connec-
tion, you know how grueling it can be. The goal of compressing an image is to achieve the
smallest possible file without sacrificing too much of the original picture quality.

CHAPTER 5 USING IMAGES

VECTOR GRAPHICS

In addition to bitmaps, there are also digital images whose data is stored as a set of mathematical
instructions that a computer can follow to draw shapes on the screen or on paper. These are called
vector graphics, and they can be rendered at any size without changing the original image’s appearance
or quality. Unfortunately, interpreting and rendering vector images requires specialized software that
isn’t included in most web browsers, so nearly all images used on the web are bitmaps.

There is an ongoing initiative to develop a vector graphic format specifically for use on the web.
Based on XML, the Scalable Vector Graphics (SVG) language is not yet widely supported by web browsers, so
its practical applications are limited for the time being. You can learn more about SVG at the W3C website
(http://www.w3.0rg/Graphics/SVG/).

Web-Friendly Image Formats

You can compress digital images for the web using three formats: JPEG, GIF, and PNG.
These formats each use a different means of compression, and each has its own particular
benefits and drawbacks. Most web browsers (those that can display images, that is) have
built-in software that will interpret and render files in these formats. Web browsers may
notbe able to render other formats, so you should stick to JPEG, GIF, and PNG. Almost any
program you might use for creating or editing digital images will be able to export files in
all of these formats.

JPEG

JPEG (pronounced “jay-peg”) stands for Joint Photographic Experts Group, the organiza-
tion that invented the format. The compression scheme reduces the size of the file by
sampling the average color values of the pixels and then removing excess redundant pixels
from the image. When the image is later decompressed and rendered, those deleted pixels
are re-created based on the stored samples.

Because JPEG compression loses some information, the compression is said to be lossy,
and decompressed JPEGs will never be quite the same quality as the originals. JPEG is in
fact a variable-lossformat and can be compressed at different levels—more compression
means more pixels are discarded to create a smaller file, but the price is paid in quality.
Highly compressed JPEGs will tend to appear blurry or with blocky smudges, called artifacts,
where the pixels have been regenerated. In Figure 5-2 you see three pictures of Jolene,
each the same JPEG image saved at a different level of compression (shown here at twice
the original size for clarity). The file gets smaller as the image is more compressed, but the
quality also declines.

107

http://www.w3.org/Graphics/SVG

108

CHAPTER 5 USING IMAGES

Low Compression Medium Compression High Compression
56kb 12kb 4kb

Figure 5-2. The same JPEG image at three different levels of compression. The version on the
far right is the smallest file, but the image quality has suffered greatly.

Furthermore, every time you edit and save a JPEG image, you're essentially recompressing
an image that has already been compressed, losing a bit more data in the process. Every
generation of JPEG compression will degrade the image quality a little more, like making
a photocopy of a photocopy. You should keep original, uncompressed versions of your
images to work from, compressing to a JPEG file only when you're ready to put your
images on the web.

The JPEG format saves disk space by sacrificing pixels but will store a lot of color infor-
mation in a relatively small file, making it ideal for photographs and other images with
many different colors or images where one color blends smoothly into another (called
continuous tone). JPEG files use the file extension .jpeg or .jpg—the shorter version
became customary because some computer operating systems don’t allow four-letter
(or more) file extensions.

GIF

GIF stands for Graphic Interchange Format; it compresses images by reducing the overall
number of colors saved in the file, but it preserves the location of every pixel. Because GIF
is considered to be a lossless format, it’s a good choice for logos, icons, or graphics that
feature text and need to maintain sharp outlines for readability. A GIF image can contain
a maximum of 256 different colors but may contain fewer than that; storing fewer colors
makes for a smaller file. Graphs, maps, line drawings, and any images with large areas of
solid color, or few colors overall, are ideal candidates for GIF.

CHAPTER 5 USING IMAGES

GIF images may also have some areas that are transparent, allowing whatever is behind
the image to show through. Any given pixel is either completely transparent or completely
opaque, so there will be a jagged edge where the transparent and opaque areas border
each other. Most graphic editing programs enable you to specify a matte color for trans-
parent GIFs, which can be the same as your page’s background color to minimize “the
jaggies.” Figure 5-3 shows a transparent GIF against a checkerboard background. You can
see the white matte surrounding the image, which would blend seamlessly with a solid
white background color.

Spaghetti
*Cruft

Figure 5-3. A transparent GIF with a white matte. The checkerboard background is just for
demonstration.

Another special trait of GIF is support for rudimentary animation. The image can consist
of anumber of frames to be displayed in sequence, allowing for some very cool (and also
some very annoying) effects. Of course, each frame in an animated GIF is additional infor-
mation to store and will naturally increase the size of the file.

GIF files use the .gif extension.

Note There’s some debate about just how to pronounce the acronym GIF. Some people (including the
people who invented the format) pronounce it like “jif,” with a soft g sound. But in common usage it’s often
pronounced with a hard g, as in “gift.” The truth is that both ways are equally correct, so say it whichever way
sounds most natural to you.

PNG

Portable Network Graphic (PNG) is a format invented to be a free successor to the patented
GIF, and it improves on its predecessor in several ways. Like a GIF, a PNG image can also
contain a maximum of 256 colors (known as 8-bit color, since 256 different values are the
most that can be described using only 8 bits of data per pixel), and it supports transparency
