
Beginning
Laravel

A beginner’s guide to application
development with Laravel 5.3
—
Sanjib Sinha

www.allitebooks.com

http://www.allitebooks.org

Beginning Laravel
A beginner’s guide to application

development with Laravel 5.3

Sanjib Sinha

www.allitebooks.com

http://www.allitebooks.org

Beginning Laravel

Sanjib Sinha
Howrah, West Bengal, India

ISBN-13 (pbk): 978-1-4842-2537-0 ISBN-13 (electronic): 978-1-4842-2538-7
DOI 10.1007/978-1-4842-2538-7

Library of Congress Control Number: 2016962198

Copyright © 2017 by Sanjib Sinha

This work is subject to copyright. All rights are reserved by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any
other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes
no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Nikhil Karkal
Technical Reviewer: Yogesh Sharma & Gaurav Yadav
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Prachi Mehta
Copy Editor: Brendan Frost
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate,
or promotional use. eBook versions and licenses are also available for most titles. For
more information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text
are available to readers at www.apress.com. For detailed information about how to locate
your book’s source code, go to www.apress.com/source-code/. Readers can also access
source code at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

IN MEMORY OF DR. BAIDYANATH HALDAR.

Sir, I truly miss you.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author �� ix

About the Technical Reviewers �� xi

Acknowledgments �� xiii

 ■Chapter 1: Composer �� 1

 ■Chapter 2: Laravel Homestead, Virtual Box, and Vagrant ��������������� 7

 ■Chapter 3: File Structure �� 15

 ■Chapter 4: Routing, a Static Method ��� 21

 ■Chapter 5: Controller Class ��� 29

 ■Chapter 6: View and Blade ��� 41

 ■Chapter 7: Environment �� 47

 ■Chapter 8: Database Migration ��� 49

 ■Chapter 9: Eloquent �� 53

 ■Chapter 10: Model, View, Controller Workflow ����������������������������� 59

 ■Chapter 11: SQLite Is a Breeze! �� 63

 ■Chapter 12: Fiddly Feelings of Forms ��� 65

 ■Chapter 13: A CRUD Application ��� 67

 ■Chapter 14: Authentication and Authorization ����������������������������� 81

 ■Chapter 15: More About Validation ��� 91

 ■Chapter 16: Eloquent Relations �� 123

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents at a GlanCe

vi

 ■Chapter 17: How Security and Authentication Work Together ��� 153

 ■Chapter 18: How Request, Response Work in Laravel 5 ������������� 161

 ■Chapter 19: Contracts vs� Facades ��� 167

 ■Chapter 20: Middleware, Layer Filter, and Extra Security ���������� 173

Index �� 187

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author �� ix

About the Technical Reviewers �� xi

Acknowledgments �� xiii

 ■Chapter 1: Composer �� 1

 ■Chapter 2: Laravel Homestead, Virtual Box, and Vagrant ��������������� 7

2.1 Installing Virtual Box and Vagrant .. 7

2.2 Installing Homestead Vagrant Box ... 9

2.3 Homestead Installation and Configuration 10

 ■Chapter 3: File Structure �� 15

3.1 SOLID Design Principle ... 17

3.2 Interfaces and Method Injection .. 19

 ■Chapter 4: Routing, a Static Method ��� 21

4.1 Routing Best Practices ... 25

4.2 Named Routes .. 26

4.3 Organize Files Through Route .. 27

4.4 Advanced Concept of Routing and Anonymous Functions 28

 ■Chapter 5: Controller Class ��� 29

5.1 RESTful Controller .. 32

5.2 Role of a Controller .. 33

5.3 Resourceful Controller ... 34

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

viii

5.4 Controller, IoC Container, and Interface .. 35

5.5 Summary .. 38

 ■Chapter 6: View and Blade ��� 41

 ■Chapter 7: Environment �� 47

 ■Chapter 8: Database Migration ��� 49

8.1 Summary .. 52

 ■Chapter 9: Eloquent �� 53

 ■Chapter 10: Model, View, Controller Workflow ����������������������������� 59

10.1 Summary .. 61

10.1.1 Our Next Challenge ... 61

 ■Chapter 11: SQLite Is a Breeze! �� 63

 ■Chapter 12: Fiddly Feelings of Forms ��� 65

 ■Chapter 13: A CRUD Application ��� 67

 ■Chapter 14: Authentication and Authorization ����������������������������� 81

 ■Chapter 15: More About Validation ��� 91

15.1 Conditional Rules ... 112

15.2 Custom Validation .. 113

15.3 How Form Validation Works ... 119

 ■Chapter 16: Eloquent Relations �� 123

 ■Chapter 17: How Security and Authentication Work Together ��� 153

 ■Chapter 18: How Request, Response Work in Laravel 5 ������������� 161

 ■Chapter 19: Contracts vs� Facades ��� 167

 ■Chapter 20: Middleware, Layer Filter, and Extra Security ���������� 173

Index �� 187

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Sanjib Sinha writes stories and codes—not always in the same order.
He started with C# and .NET framework and won the Microsoft Community

Contributor Award in 2011. Later, the open source software movement attracted him and
he became a Linux, PHP, and Python enthusiast, specializing and working on White Hat
Ethical Hacking.

As a beginner he always had to struggle a lot to find an easy way to learn coding. No
one told him that coding is like writing—envisioning an image and bringing it down on
the Earth with the help of words and symbols.

Through all his books, he has tried to help beginners from their perspective—as a
beginner.

www.allitebooks.com

http://www.allitebooks.org

xi

About the Technical
Reviewers

Yogesh Sharma I am a web developer, IT consultant and an entrepreneur based in
Pune, India. I have experimented with many IT paradigm liked Cloud Services, NoSQL,
Middleware but programming is at my heart.Graduated from Vidyalankar School of
Information Technology, I am currently employed with a fortune 500 company as Senior
Infrastructure Engineer.

I really like to see the big picture with eye for distinctive intricacies. I have 8 years
of cumulative experience across various domains in IT and also served clientele across
the globe developing projects ranging from Asset Management to Manufacturing and
Logistics. I like to tinker with IoT, AI, Speech and Simulation. If I am not these, you might
find me brewing an espresso shot!"

Gaurav Yadav is a Full Stack Web Developer and blogger. Sportsperson by heart and loves
football. He has experience with various frameworks in php, python and javascript. Loves
to explore new frameworks and evolve with the trending technology.

www.allitebooks.com

http://www.allitebooks.org

xiii

Acknowledgments

KARTICK PAUL, SYSTEM MANAGER, AAJKAAL, KOLKATA: Without his persistent and
inspiring help, I could not have written this book.

1© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_1

CHAPTER 1

Composer

Composer is a dependency management tool in PHP (Figure 1-1). For any PHP project
you need to use your library of codes. Composer easily manages that task on your behalf,
helping you to declare those codes. You can also install or update any code in your library
through Composer. Please visit https://getcomposer.org for more details.

Figure 1-1. Composer home page

In the opening page of https://getcomposer.org, click the ‘getting started’ link
(Figure 1-2).

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2538-7_1) contains supplementary material, which is available
to authorized users.

https://getcomposer.org/
https://getcomposer.org/
http://dx.doi.org/10.1007/978-1-4842-2538-7_1

Chapter 1 ■ Composer

2

In the page shown in Figure 1-2, you find two links: ‘locally’ and ‘globally’. It stands
for two options. Suppose you don’t want to run Composer globally or centrally in your
system. In that case, you have to download and install Composer each time for every
project. But the global option is always preferable because once Composer is installed in
your system bin folder, you can call it anytime for any project.

If you are already accustomed to any Linux distribution like Ubuntu, you know that
for any local PHP project we used to go to ‘/var/www/html’ folder. Suppose we are going
to build a simple Laravel project and we want to name it ‘MyFirstLaravelProject’. Open up
your Ubuntu terminal (ctrl+alt+t) and go to that folder first.

To reach there, you need to type the following command on your terminal:

cd /var/www/html/

Once you’ve reached it, you can make a directory here with a simple command:

sudo mkdir MyFirstLaravelProject

It will ask for your ‘root’ user password. Type the password and a folder called
‘MyFirstLaravelProject’ will be created.

Next in this folder we’ll download and install ‘composer’. Considering you are a
beginner, for the sake of brevity I want to download and install Composer locally on our
Laravel project.

Figure 1-2. Getting started page in Composer website

Chapter 1 ■ Composer

3

Next, issue these two commands, one after another. First you type this:

 sudo php -r "copy('https://getcomposer.org/installer',
'composer-setup.php');"

It’ll take some time. Next type this:

sudo php composer-setup.php

It’ll organize your Composer setup file to go further. Actually your Composer is ready
to download packages for your coming project. You can test it by creating a ‘composer.
json’ file inside your ‘MyFirstLaravelProject’ folder. In that ‘composer.json’ file type this:

{
 "require": {
 "monolog/monolog": "1.0.*"
 }
}

What does this mean? It means you’re installing ‘monolog’ PHP package for your
Laravel project. Will it come to any immediate use? The answer is ‘NO’. We’re actually
testing our Composer installer and want to see how it works.

Now you can issue the command that will install ‘monolog’ package for you. Type
this command on your terminal:

sudo php composer.phar install

It’ll take a little time to install the ‘monolog’ package. It depends on your Internet
speed.

After the installation is over you’ll find a ‘vendor’ folder and a few ‘composer’ files
inside your project. Feel free to discover what is inside the ‘vendor’ folder. There you’ll
find two folders: ‘composer’ and ‘monolog’. Again you can see what they have inside
them. As a beginner it’s an endless journey to discover new things. Try to get acquainted
with everything new you have found.

The time has come to install Laravel 5.2 through Composer. You can install Laravel
just like monolog. It means that you can write that instruction in your ‘composer.json’ file
and just update your Composer. But as a beginner I recommend following the simplest
method.

Open up your terminal and write the following:

sudo composer create-project --prefer-dist laravel/laravel blog

It’ll install Laravel latest version in the folder ‘blog’ in your Laravel project
‘MyFirstLaravelProject’. Once it’s done you’ll get this message on your terminal:

 Application key
[base64:FrbQTSPezY8wQq+2+bZ/ieA8InA4KjA9N4A44AMbqas=] set
successfully.

Chapter 1 ■ Composer

4

It’s a random key generated each time you install Laravel. It means you have
successfully installed Laravel 5.3.

•	 First step completed: you’ve installed Laravel in the ‘/var/www/
html/MyFirstLaravelProject/blog’ folder. Now you can go inside
that folder and issue a Linux command ‘ls -la’ to see what’s inside.
You can also type ‘php artisan serve’ command to run your first
Laravel application so that you can go to http://localhost:8000
to see the welcome page. This installation has been done locally.

There is another, easier method. You can install Composer globally in your Linux
system. Open your terminal and make a directory named ‘Code’ on the desktop. Open up
your terminal and type this:

cd /Desktop

Now you are inside your desktop. You’re going to make the ‘Code’ directory there.
Type the following:

mkdir Code

Now you must go inside your ‘Code’ directory by writing ‘cd Code’ on your terminal.
Next, inside ‘Code’ folder make a directory ‘test’, where you’ll create your first Laravel
application.

Not only that, after the ‘Laravel/Homestead’ is installed, you can type http://test.
app to run your first Laravel application. I’ll show you that step by step.

Now it’s time to install Composer globally. Type these commands one after another:

 sudo php -r "copy('https://getcomposer.org/installer',
'composer-setup.php');"

 sudo php composer-setup.php

 sudo php composer.phar install

It’ll take a few minutes to install Composer globally. Once you have done it, you can
create any Laravel project anywhere.

Next you can create your first Laravel project inside the ‘Code/test’ folder by typing
this command:

sudo composer create-project --prefer-dist laravel/laravel blog

Inside the ‘test’ folder, the Laravel project is installed as ‘blog’. While installing, you
can change this name to your choice.

It’ll take a few minutes depending on the speed of your Internet connection.

http://localhost:8000/
http://test.app/
http://test.app/

Chapter 1 ■ Composer

5

Once done, it’ll give this message:

 Application key
[base64:FrbQTSPezY8wQq+2+bZ/ieA8InA4KjA9N4A44AMbqas=] set
successfully.

You have installed the latest version of Laravel 5.2.4 on your ‘/Desktop/Cd/test/
blog’ folder. And you have done it globally. Feel free to create any folder and subfolders
anywhere in your machine and install Laravel through Composer.

•	 Second step completed: Laravel installed in ‘/Desktop/Code/test/
blog’ folder, and you’ve done it globally.

In the next chapter, we’ll learn a little about installing Laravel Homestead.

7© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_2

CHAPTER 2

Laravel Homestead, Virtual
Box, and Vagrant

Laravel Homestead is an official, prepackaged Vagrant box. An absolute beginner may
find that concept a little bit quirky. You can imagine it as a scaffold platform or magical
box that contains everything for building Laravel applications on your local machine.
I encourage you to search and learn about the Laravel Homestead package. If you
have Laravel Homestead installed, you need not worry about the latest PHP and Linux
versions. It also comes with a web server and all types of server software that you need to
develop some awesome PHP applications besides Laravel!

Before running Laravel/Homestead you must have Virtual Box 5.x:

https://www.virtualbox.org/wiki/Downloads.

You also must install Vagrant:

http://www.vagrantup.com/downloads.html.

2.1 Installing Virtual Box and Vagrant
The first question that comes to our mind is the following: why do we need a “virtual box”
when we have a default operating system in place? There are several reasons. The most
important reason is that in Virtual Box we can play with any operating system without
any fear of messing it up, even breaking it. There is every possibility that while testing a
hacking tool we could break a system. I encourage you to do that. It is a virtual machine.
So, go ahead. Test everything that comes to mind. Another great reason of using Virtual
Box is the safety. When you visit a web site you might consider it to be safe but in reality
it could not be so. But nothing matters in the case of Virtual Box. It is not your original
machine with confidential data. Visiting unsafe web sites is not annoying (or worse) any
more.

There is only one thing you need to remember. Stay within the law. While testing
your hacking tools or running codes, you can’t jeopardize any other system.

The Oracle Virtual Box official web site offers plenty of download options. You can
choose any one of them. According to your OS, you go to the “download” section and see
what is available for you. From Figure 2-1, you will gain an idea of how to proceed further.

https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads.html

Chapter 2 ■ LaraveL homestead, virtuaL Box, and vagrant

8

The selected line in Figure 2-1 shows the default operating system I am running
currently. That is “Ubuntu 14.04 (Trusty)” and the architecture is “AMD64”.

Virtual Box is very easy to install. Whatever your OS is—Mac OS X, Windows, or
Linux—you can install it. First you need to know about your operating system itself. It
could be either 32-bit or 64-bit architecture. In any Linux distribution it is extremely easy
to learn. Just open up the terminal and type “uname -a”.

The terminal will spit out some vital information that includes all data regarding the
current default system. In this case, Linux is version 3.19.0 and the superuser’s name is
“hagudu”; finally, it also indicates what type of system architecture is being used.

As in my case, it is “x86_64” which stands for 64 bit. In the Virtual Box official
download page for all Linux distribution, you first download the required packages and
then install them according to the nature of your OS. For Red Hat, Fedora, or any Linux
distribution belonging to that category, you will notice that the last extension is “.rpm”. In
that case you can move to the Virtual Box folder and issue commands like “rpm -i” or
“yum install” in case you run Red Hat or Fedora.

But there are simpler methods to install Virtual Box.
For absolute beginners, it is very helpful to run “UBUNTU” Linux distribution as

your default OS. You can install Virtual Box from the software center directly without
opening up the terminal or issuing any command.

“UBUNTU” software center has many categories. One of them shows the “Installed”
software.

Figure 2-1. Virtual Box download section for Linux hosts

Chapter 2 ■ LaraveL homestead, virtuaL Box, and vagrant

9

You may not find it there by default. In that case it is extremely easy to install. You
can just type “Virtual Box” on the search text box and it will pop up. Move ahead and
press the installation button and it will get installed in your system. Installing Vagrant is
also easy. Go to the official web site and download it according to your operating systems.
The installation process is also easy. For Ubuntu, just extract the content anywhere and
install it according to the procedure mentioned in the site. Search the Internet you’ll get a
ton of guides.

Through Virtual Box you can run different operating systems on your machine
(Figure 2-2).

Figure 2-2. A Virtual Box running Kali Linux and Windows XP

Having installed Virtual Box you can issue 'vagrant -v' command on your terminal
and the message will pop up as 'vagrant 1.8.5'. It’s running.

Now it’s time to install Laravel/Homestead.

2.2 Installing Homestead Vagrant Box
Once you have installed Virtual Box and Vagrant, you can add ‘laravel/homestead’ box to
your Vagrant box using this command on your terminal:

vagrant box add laravel/homestead

It will take some time, anywhere from 15 minutes to an hour, depending on your
Internet speed.

Chapter 2 ■ LaraveL homestead, virtuaL Box, and vagrant

10

2.3 Homestead Installation and Configuration
Next you can install Homestead by cloning Homestead repository to your ‘/home/
Homestead’ folder using this command:

 git clone https://github.com/laravel/homestead.git
Homestead

It’ll take a few seconds. Next you need to initialize your Homestead and create the
configuration file.

bash init.sh

Next, run an 'ls -la' command to find out the hidden './homestead' directory.
Type 'cd ./homestead' command to enter into it and run 'ls -la' command again.
You’ll find a file called 'Homestead.yaml'. You may consider this file as the brain of your
‘laravel/homestead’ local developmental environment.

Through this file, you can instruct the local web server. You can mention the path of
your project root. You can decide the name of your local application. I think it’s always
wise to adopt the same name that you are going to use in your production environment.
Suppose your final application in the production level will be named ‘www.example.com’;
in that case, it’s good to use the same name locally so that you can type http://example.
com in your browser to test the application locally.

Before editing ‘Homestead.yaml’ file, you can do two more things. First, check your
‘laravel/homestead’ version and if necessary run this command: 'sudo composer global
require laravel/homestead:v2.0.8'. Always try to keep the latest one. Check it in the
Internet. Next, you can run this command also: 'export PATH="~/.composer/vendor/
bin:$PATH"'. It’ll help you to run 'homestead' command from anywhere on your system.

Now you need to edit the ‘Homestead.yaml’ file for keeping two major things in
place. The first is the provider. Run 'sudo gedit Homestead.yaml' command to open up
the file on the text editor. By default you’d see 'provider: virtualbox' in your file. So
you need not change this. Next, you check this part.

The second part is very important. By default the ‘Homestead.yaml’ file comes up
with this folder and site structure:

folders:
 - map: ~/Code
 to: /home/vagrant/Code

sites:
 - map: homestead.app
 to: /home/vagrant/Code/Laravel/public

http://www.example.com/
http://example.com/
http://example.com/

Chapter 2 ■ LaraveL homestead, virtuaL Box, and vagrant

11

We have already installed Laravel at the ‘Code/test/blog’ folder on the desktop. So
we need to add that in this folder and site section first.

folders:
 - map: ~/Code
 to: /home/vagrant/Code
 - map: ~Desktop/Code/test/blog
 to: /home/vagrant/ Desktop/Code/test/blog

sites:
 - map: homestead.app
 to: /home/vagrant/Code/Laravel/public
 - map: test.app
 to: /home/vagrant/ Desktop/Code/test/blog/public

The added lines are marked in red. Please note that I have mentioned the full path.
Wherever you keep your Laravel application, you need to mention the full path. So, we
have almost come to the close.

You’ve probably noticed that we‘ve named our application ‘test.app’. Next you need
to add the “domains” for your local sites to the ‘hosts’ file on your machine. The ‘hosts’ file
will redirect requests for your Homestead sites into your Homestead machine. On Mac
and Linux, this file is located at ‘/etc/hosts’. Open this file in your text editor.

sudo gedit /etc/hosts/

Generally it comes up with two lines on the top. You must add your ‘test.app’ after
the two lines.

 127.0.0.1 localhost 127.0.0.1 hagudu-H81M-S1 192.168.10.10
test.app

Everything done, you may now fire up Vagrant and run your site. Go to the Laravel
folder 'cd /Desktop/Code/test/blog' and issue this command: 'vagrant up'.

The terminal usually looks like the image in Figure 2-3. It may look different
depending on your operating system.

Chapter 2 ■ LaraveL homestead, virtuaL Box, and vagrant

12

It normally takes a few seconds to fire it up. Give it that time, and next you can safely
type http://test.app on your browser to see the Laravel welcome page.

Being on your Laravel folder, you may run ‘php artisan serve’ command to run the
same application. In that case, you must type http://localhost:8000 on your browser.

However, there are lots of differences with the Homestead server. When you run
Homestead you get the latest php version that is php 7.

Look at the following image. I have simply kept the ‘phpinfo()’ method in my ‘test.
app’ Laravel home page (Figure 2-4).

Figure 2-3. The terminal after issuing ‘vagrant up’ command

http://test.app/
http://localhost:8000/

Chapter 2 ■ LaraveL homestead, virtuaL Box, and vagrant

13

Figure 2-4. test.app running the php 7 information

I hope you can do it. If by any chance if you’re stuck, feel free to drop me a line at
sanjib12sinha@gmail.com. I’ll definitely try to help.

http://sanjib12sinha@gmail.com

15© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_3

CHAPTER 3

File Structure

Let us see what’s inside the installed Laravel folder ‘blog’. It has folders like ‘app’,
‘bootstrap’, ‘config’, ‘database’, ‘public’, ‘resources’, ‘storage’, ‘tests’, ‘vendor’, and a few more
files, including a ‘composer.json’ file.

Let us first see how the file structure looks (Figure 3-1).

Figure 3-1. Laravel 5.3.18 file structure

As you see, each folder and its included files have their own roles clearly defined. You
should not try to change or tweak any source code.

The ‘app’ folder is extremely important. It has, again, many significant folders inside.
Presently we’ll look forward for the ‘Http’ folder that has controllers, middleware, models,
and the ‘routes.php’ file. Actually, we put our business logic in this folder through route
and controllers. It helps us maintain the loosely coupled object-oriented design pattern.

Chapter 3 ■ File StruCture

16

The ‘bootstrap’ folder is needed for the startup of Laravel, and you need ‘config’
folder for many configuration files. As a PHP programmer, you know that session
configuration or authentication configuration is important. Laravel manages it through
this ‘config’ folder.

The role of ‘database’ folder is also very vital for migrations and seeds, which we
will discuss later in great detail. Presently you may think of database migrations as PHP
files that write SQL codes and perform database operations directly on your application.
You need not go to any MySQL interface like PHPMYADMIN. You write PHP codes and
through the Laravel command line you can execute database operations. You can fill
database tables with data, manipulating them accordingly. I think it’s one of the greatest
features of Laravel.

In the 'public' folder we have files that are available publically: '.htaccess',
'robots.txt', 'favicon.ico', and index.php'. These files play important roles in
keeping your project in the search engines. The 'resources' folder has the important
sub-folders like ‘views’, where your viewable PHP/HTML codes are stored. In ‘storage’,
cache and log files are kept, and the ‘tests’ folder is exclusively for unit testing. Finally, you
meet the 'vendor' folder again here, but it’s only for the third-party packages that Laravel
uses.

I encourage you to enter each folder, open every file, and see how they are written.
You only remember one thing: never change any source code.

Our Laravel installation is complete. We’ve first installed it in the '/var/www/html/
MyFirstLaravelProject/blog' folder. Next we have installed it in '/Desktop/Code/
test/blog' folder. The first one will be used for the MySQL database operations and the
second one will be used for SQLite database operations.

All we now need to see is that it works perfectly. Let us go the first one. Open up your
terminal and write the following:

cd /var/www/html/MyFirstLaravelProject/blog

We have reached our Laravel project. Now issue this command:

php artisan serve

It will start the local development environment server so that if you open your web
browser and type http://localhost:8000, it will open up the home page of your Laravel
project.

It should look like this (Figure 3-2):

http://localhost:8000/

Chapter 3 ■ File StruCture

17

All browsers usually give simple HTML output. In that sense, there must be some
HTML codes hidden somewhere in our Laravel project.

In Chapter 4, we’ll see how we can change this HTML output. Besides that, we’ll very
briefly discuss some points of ‘views’ folder where we actually need to store these HTML
codes.

Later in the book, in the ‘views and blades’ chapter, we’ll learn it in detail.

3.1 SOLID Design Principle
Yes, this is quite an advanced thing that you need to learn better beforehand. From
Laravel 4 the SOLID design principle has been maintained, and in Laravel 5 it becomes
more familiar so that you can avoid hard coding and write cleaner codes. Let us see what
this SOLID design principle is.

This book is not the place to put forward a detailed description of the SOLID
principle. But at least we can present something about it in a nutshell.

SOLID consists of the five design principles articulated by Robert “Uncle Bob”
Martin. Here they are in brief, one by one. In the final part I will discuss it in detail, and
hopefully by that time you will have become acquainted with the basic principles of
Laravel application logic.

Figure 3-2. Laravel 5.3.18 home page

http://dx.doi.org/10.1007/978-1-4842-2538-7_4

Chapter 3 ■ File StruCture

18

SOLID stands for

 1) Single Responsibility Principle

 2) Open Closed Principle

 3) Liskov Substitution Principle

 4) Interface Segregation Principle

 5) Dependency Inversion Principle

The Single Responsibility Principle means a class should have one, and I mean only
one, reason to change. Limiting class knowledge is important. The class’s scope should
be narrowly focused. A class would do its job and not be affected at all by the change
that takes place on its dependencies. Remember, if we can build a library of small classes
with well-defined responsibilities, our code will be more decoupled and easy to test and
run. The Open Closed Principle means a class is always open for extension but closed for
modification. How is that? Nothing except that any changes to behavior should be made
without modification of source codes. If you can do your job without touching the source
code, then you are following the Open Closed Principle! Remember what Uncle Bob says:
“Separate extensible behavior behind an interface and flip the dependencies.” The thing
is that any time you modify your code, there is a possibility to break the old functionalities
completely, adding new bugs.

But if you can plan your application in the beginning based on Open Closed
Principle, you could modify your code base as quickly as possible without getting
affected. What is the Liskov Substitution Principle? Don’t get frightened. This looks
intimidating, but as a principle it is extremely helpful and easy to understand. It says:
Derived classes must be substitutable for their based class. It means objects should be
replaceable with instances of their subtypes without altering the correctness of program.
If you can’t follow that, just move on; I will explain these principles in detail with
examples and screenshots, so that the picture will be much clearer.

The Interface Segregation Principle is an echo of Singular Responsibilities. If it is
broken, Singular Responsibility is broken. In a nutshell, it says that interface is granular
and focused. No implementation of interface should be forced on methods that it
does not use. Accordingly, break into small interfaces as you require them for your
implementation. Plan it before and enjoy the decoupled easy-going ride.

Finally, the Dependency Inversion Principle states that high level codes should not
depend on low level codes. Instead the high level code depends on ‘Abstraction’ that acts
as a middle-man between high level and low level. The second aspect is that abstraction
does not depend upon details but details depend upon abstractions. For beginners, these
principles may look not comfortable enough, but don’t worry, as we will discuss it in
detail with examples; by that time you will have gained enough confidence to tackle this
conceptual lingo. You have already found the terms “Interface” and “Abstraction” more
than once, perhaps many times, to be a deserving candidate for discussion. So let’s spend
some time with those omnipresent terms that we so often come across in our Laravel
application.

Chapter 3 ■ File StruCture

19

3.2 Interfaces and Method Injection
Abstraction in OOP involves extraction of relevant details. Consider the role of a car
salesman. There are many types of consumer. Everyone wants to buy a car, no doubt, but
each one has different criteria. Each of them is interested in one or two certain features.
This attribute varies accordingly. Shape, color, engine power, power steering, price …
the list is endless. The salesman knows all the details of the car but does he repeat the
list one by one until someone finds his or her choice? No. He presents only the relevant
information to the potential customer. As a result the salesman practices “Abstraction”
and presents only relevant details to customer.

Now consider abstraction from the perspective of a programmer who wants a user to
add items to list. Abstraction does not mean that information is unavailable but it assures
that the relevant information is provided to the user.

PHP 5 introduces abstract classes and methods. Classes defined as abstract may
not be instantiated and any class that contains at least one abstract method must also be
abstract. Remember that abstract methods can not define the implementation. On the
other hand, object interfaces allow you to create code which specifies which methods a
class must implement, without having to define how these methods are handled.

Interfaces are defined with the interface keyword, in the same way as a standard
class, but without any of the methods having their contents defined.

All methods declared in an interface must be public; this is the nature of an interface.
I have a .NET background and found the usage of interfaces there almost ubiquitous. And
in Laravel, the injection of interfaces to the classes is seen frequently, so you better get
acquainted with the conceptual background.

In Laravel Interface is considered as a Contract.
Contract between whom? And why? Because an interface does not contain any

code but it only defines a set of methods that an object implements. Having said that,
I hope you now understand that they are interrelated. We talked about maintaining a
library of small classes with clearly defined scopes, and this is achievable with the help of
Interfaces. As the book progresses, you will find a lot of examples of Interfaces, so don’t
worry, you will find these two words pretty often in the examples. Till then, have patience
and read on.

For a clear picture, I would like to give a small example so that we can understand
this property of encapsulated contract behavior of Interface quickly.

Let us imagine I have a ‘Connection’ folder inside a folder called ‘Bengaliana’ in
which I have a connection class that would connect us to the database ‘sanjib’ and
retrieve some data from the respective tables ‘users’ and ‘tasks’.

I don’t want to make the ‘ConnectionClass’ know our data target. All it will do is just
get the connection and retrieve the one attribute from a table. The attribute and table
name I would like to supply dynamically so that from one method I can retrieve many
kinds of data. It could be user names or simple task titles, et cetera. That will also conform
to the homomorphism nature of our objects.

Chapter 3 ■ File StruCture

20

In Laravel 5, as document says, all major components implement interfaces which
are located in the ‘illuminate/contracts’ repository. This repository has no external
dependencies. Having a centralized set of interfaces make you free to use alternative
optional decoupled classes and do some dependency injection more freely without
Laravel Facades. It sets your choices more open and user friendly. Well, there are a lot
of new staffs you will find as you progress and the new features will make your journey
absolutely enjoyable. To name a few, there are Route Cache, Middleware, Controller
Method Injection, and many more.

In Laravel 5, authenticating users becomes easier, and the user registration,
authentication, and password reset controllers are now included out of the box so that
they can be easily used. Okay, enough introduction. Now it is time to catch the web
artisans and do some codes so that we can make some awesome applications in the
future.

21© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_4

CHAPTER 4

Routing, a Static Method

Routing is the concept of setting up a new URI like http://localhost:8000/hello. It will
take you to a destination web page. Laravel makes it extremely simple. It’s a static method
that accepts two things: a URI and an anonymous function or Closure.

In the 'app/Http/routes.php' it’s been defined primarily. Start your favorite text
editor and open the file. What you see?

You see some code like this:

Route::get('/', function () {
 return view('welcome');
});

Here 'Route' is a class that has a static method ‘get’ that returns a ‘view’ method
which presents a web page. When a user visits the home page he is taken to the ‘welcome’
page. This ‘welcome’ is actually a PHP file: 'welcome.blade.php'. It was stored by default
in the ‘views’ folder while we had been installing Laravel. When we discuss the concept
of ‘view’ and ‘blade’ template engine you’ll fully understand what’s happening in the
presentation layer.

Using HTTP protocol you can send another request instead of the default route.

Route::get('/', function () {
 return 'welcome';
});

It will simply return the word ‘welcome’ on your home page. Try it or anything else.
Look at the code; there is an anonymous function also. As a PHP programmer I

assume you know about anonymous function or closure. It’s a very useful function we
often use in building applications. Laravel also uses this concept.

Now we have not yet defined our route, so if we hit the browser on the URL http://
localhost:8000/hello we will get an error page. So let us create it first. Go to the ‘routes.
php’ file and add this code:

//requesting a new page
Route::get('/hello', function () {
 echo '<h1>Hello</h1>';
});

www.allitebooks.com

http://localhost/blog/hello
http://localhost/blog/hello
http://localhost/blog/hello
http://www.allitebooks.org

Chapter 4 ■ routing, a StatiC Method

22

Let us see how it looks and if we can add any new HTML code into it to change the
look.

Primarily it looks like this (see Figure 4-1):

Figure 4-1. Routing to http://localhost:8000/hello URL

Now we’d like to add more CSS style into it. I change the previous code into this:

//requesting a new page
Route::get('/hello', function () {
 echo "<html>"
 "<head><title>Laravel</title>
 <style>
 html, body {
 height: 100%;
 }
 body {
 margin: 0;
 padding: 0;
 width: 100%;
 display: table;

http://localhost:8000/hello

Chapter 4 ■ routing, a StatiC Method

23

 font-weight: 100;
 font-size: 20px;
 font-family: 'Lato';
 }
 .container {
 text-align: center;
 display: table-cell;
 vertical-align: middle;
 }
 .content {
 text-align: center;
 display: inline-block;
 }
 .title {
 font-size: 110px;
 }
 </style>
 </head>
 <body>
 <div class='container'>
 <div class='content'>
 <div class='title'>Hello, Dear Reader</div>
 <div class='container'>
 <div class='content'>How are you? I hope you would
 love this book!
 </div>
 </div>
 </div>
 </div>
 </body>"
"</html>";
});

This code is quite big. It’s because I have added a small CSS style into it. You need
not write this code. Just try to understand the power of this small file 'routes.php'. You
can virtually add any functionality into your application through this file. But never do
this. The file ‘routes.php’ is not meant for this. Laravel has made separate places to put
your CSS styles and HTML pages. We’ll see to it later in detail. Just before that we have
just wanted to play with it.

Now it looks completely different in your browser. Just have a look (see Figure 4-2):

Chapter 4 ■ routing, a StatiC Method

24

With a new CSS style it looks very special. Later we will give the same output using
Laravel’s ‘blade’ template engine.

Now, routing has many other important functions. Let us consider them one by one.
First of all, we can add route parameter and pass data through the URL. It’s

something like you have an http://localhost:8000/hello page and want to say ‘hello’
to your friend. Laravel manages it nicely. Through the anonymous function we can pass
this parameter such as http://localhost:8000/hello/reader and the output will be
‘Hello reader.’ Let us see how we can do that.

Add this code to your ‘routes.php’:

Route::get('hello/{name}', function ($name){
 echo "Hello " . $name;
});

Now you can pass any data through the URL http://localhost:8000/hello/reader
as route parameter. I passed ‘reader’, you can pass any other data as you like.

I hope you get a basic idea how to use Route class. You also have come to know
that Route class has some static methods like ‘GET’ and other methods. Through these
methods Route class help the user reach her URL destination.

Other routing methods are like this:

Route::get();
Route::post();
Route::patch();
Route::put();

Figure 4-2. Routing to http://localhost:8000/hello URL

http://localhost:8000/hello
http://localhost:8000/hello/reader
http://localhost:8000/hello/reader
http://localhost:8000/hello

Chapter 4 ■ routing, a StatiC Method

25

Route::delete();
Route::any();

I find the 'any()' method very interesting. You can register any route that responds
to any HTTP verbs with this method.

Route::any('any', function (){
 return "Anything is possible if you try hard!";
});

Go to ‘http://localhost:8000/any’ and see this simple output.

4.1 Routing Best Practices
Suppose you want to protect your application throughout from cross-site request forgery
(better known as CSRF). What you can do? Is there any single command we can issue to
protect our site from the ‘Crackers’ or ‘Bad Guys’? Yes, there are. Let us see how we can do
this. Write this code in your routes.php:

Route::when('*', 'csrf', ['post', 'put', 'patch']);

Voila! This is all you need to protect your site and from the next time you launch your
Laravel application, it will take care of all types of CSRF.

Especially in a large application, where lots of users put plenty of posts and your
server is busy, this is a major headache. But wait a minute. There are lot of uncommon
things in ‘Route’ class; let me call it magical, waiting for us to explore it.

First of all, we will discuss about ‘implicit’ and ‘explicit’ routing. If you have a
‘CodeIgniter’ experience, you probably have seen instances of 'implicit' routing. When we
write like this:

Route::controller('admin', 'AdminController');

It implicitly redirects us to 'View/admin' folder through 'AdminController'. Okay,
you are new to the concept of Controllers, but don’t worry: in the next chapter we will
tackle all the controller staff, so read on. I suggest that you reread this chapter later to
understand the magic better.

The question is as follows: can we explicitly 'route' this? Yes, we can. Let us try:

Route::get('test/test', 'HomeController@showTest');
Route::get('home/index', 'HomeController@showIndex');
Route::get('home/about', 'HomeController@About');
Route::get('home/contact', 'HomeController@showContact');
Route::get('php/php training in kolkata', 'PhpController@showIndex');
Route::get('php/variable and data type', 'PhpController@phpFirstPage');
Route::get('codeigniter/codeigniter training in kolkata',
'CodeIgniterController@showIndex');

http://localhost:8000/any

Chapter 4 ■ routing, a StatiC Method

26

Route::get('codeigniter/how to start codeigniter', 'CodeIgniterController@
CIFirstPage');
Route::get('wordpress/how to start wordpress', 'WpController@showIndex');

Let me pick up the last line:

Route::get('wordpress/how to start wordpress', 'WpController@showIndex');

It says: in the ‘View/wordpress’ folder, we have a page like ‘how-to-start-wordpress.
blade.php’ and our controller ‘WpController’ got a public function called ‘showIndex’,
which has something inside it so that our end point is ‘how to start wordpress.blade.php’.

Now the question is as follows: can we group this long list of controller routing?
Yes, we have a handy tool called Route::group(). Suppose we are only concerned

with the ‘home’ controllers. We can group it; no problem. The entire ‘home’ blade can
come under one group like this:

Route::group(['prefix']=>'home', function()
{
Route::get('/', 'HomeController@showIndex');
Route::get('/about', 'HomeController@About');
Route::get('/contact',
'HomeController@showContact');
});

You see, inside the group, we need not write ‘home’ anymore. It is explicitly told
to our router. In the command line you can always check how your work is proceeding
through this command:

php artisan routes

Ultimately, it shows all the controllers I have used in my ‘routes.php’ file and written
before. To get hold of all ‘home’ controller we can do another thing. Considering that
‘home’ as my ‘resource’ I can write like that:

Route::resource('home', 'HomeController');

There are more to come. Another best practice is ‘naming a route’.

4.2 Named Routes
Suppose you have a Login page and you are going to use session for accomplishing the
task. Now to start with, we can write like this to reach our Login page:

//example of named routes
Route::get('/', function(){
 return link_to_route('session/create', 'Login');
});

Chapter 4 ■ routing, a StatiC Method

27

We can write the same route using our controllers like this:

Route::get('session/create','SessionController@create');

But all these are normal procedures that we have seen before. Then, you may have
asked, where is the named route?

Okay, here it is:

Route::get('session/create', ['as'=>'create',
'use'=>'SessionController@create']);
//equivalent to
Route::get('/', function(){
 return route('create');
});

And there are a lot of staff still waiting for you. It is your preference what you would
have used, as the choice is yours.

Route::get('register', [
 'before'=>['guest'],
 'as'=>['register'],
 'use'=>['SessionController@register']
]);

You can write it like this also:

Route::get('register', [
 'as'=>['register'],
 'use'=>['SessionController@register']
])->before('guest');

4.3 Organize Files Through Route
Yes, you can organize your files through your Route. And sometimes that could be very
handy. Suppose you have a folder structure like this:

app/routes/admin.php
app/routes/login.php
app/routes/register.php

Now we can declare this structure in your ‘routes.php’ in a single command like this:

(File::allFiles(_DIR_, '/routes') as $partial)
 {
require_once $partial->getPathname;
}

Chapter 4 ■ routing, a StatiC Method

28

4.4 Advanced Concept of Routing and
Anonymous Functions

Being able to define your own function by yourself is a great thing that you can do as a
programmer, and you have to do it in the course of developing an application. In Laravel
we have seen the concept of closures. What is that? Seasoned programmers know it very
well but for the beginners it requires some more explanation. This is nothing but called
an anonymous function. It is also called ‘lambdas’. An anonymous function is nothing but
a function without a name.

$hello = function($name){
echo “Hello ” . $name;
}
$hello('World'); //output: Hello World

This is not sheer madness; of course it has purpose. Many functions in PHP take
functions as arguments, so it comes to help in those situations.

Consider a situation like this:

function yourName($value){
//do something
}
array_map ('yourName', $names);

But instead of that, you just use an anonymous function in-line and define it like this:

array_map(function($value){
//do something with $value
}, $names)

Finally, an anonymous function can be used as closures in PHP, a fairly advanced
concept but less common in PHP; it is pretty often used in JavaScript. And in Laravel you
have already found it in the route-level usability of an anonymous function.

Route::get('/', function(){
return 'Hello World!'
});

29© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_5

CHAPTER 5

Controller Class

In MVC framework controller has a definite role. It primarily controls the flow between
model and view. In ‘routes.php’ file we’ve seen how we send the request using HTTP
protocol. Now we want to organize the same behavior using controller class.

Let us remember the first route method. When you install Laravel it normally comes
with this default route method.

Route::get('/', function () {
 return view('welcome');
});

In this route method we get a view. As the route method says: return a view. The
question is: where are models and controllers? We are not supposed to create only views
using a Closure, are we?

Suppose we have 100 pages in our application. We can’t make a route for every single
page. We can’t put all our HTML and CSS codes in that ‘routes.php’ file. That design is
simply ugly and unthinkable. We shouldn’t put our application logic in the ‘routes.php’
file either. To solve this problem the concept of controller class enters the scene.

Controller means controlling the application. It’s quite literal: it controls or manages
the application layers. What are the layers?

A nicely designed application always has some hidden, inner layers. Users should
not get any hint of it. All they should see is the presentation layer. Application logic should
always stay hidden.

As a beginner, you should get accustomed to this layer division. A good object-oriented
programming sense will always guide you to separate the application logic from the
presentation logic.

A controller is a transporter. It transports application logic to the presentation layer.
A good design principle always encourages you write your application logic in a separate
hidden file. A controller will only execute those methods and return a view. It will never
know what it carries.

To start with let us quickly create a controller. It’s a good practice that you should
plan it first. Suppose you want to make a simple controller that will only return a view.
How about giving a name 'MyController'? We keep this controller in 'app/Http/
Controllers' folder.

Chapter 5 ■ Controller Class

30

Here is the code of our MyController.php file:

<?php
namespace App\Http\Controllers;
use Illuminate\Http\Request;
use App\Http\Requests;

class MyController extends Controller
{
 // returning a simple page using view
 public function returningASimplePage() {
 return view('newpage');
}
}

I have written this code manually on my text editor. Actually you can create any
controller automatically through command line using 'artisan' command. We’ll learn
about 'artisan' command in detail later. After that we will also learn about models and
views and connect them together to get a total understanding of model, view, controller
flow. In fact, later you’ll find more usages of the 'artisan' command in creating database
migrations, controllers, models, and many more. Just go to your Laravel folder and issue
this command: php artisan. Then, observe the output.

Now it’s time to use this controller in our 'routes.php' file. Till now, we have only
used routing to go to the view page. A view page is actually a presentation layer. Let us
think in an object-oriented way.

For the first time we’re going to use something different: a controller. In the ‘routes.
php’ file we add this code:

Route::get('newpage', 'MyController@returningASimplePage');

Let us understand this line word by word. The first part is quite okay. Route
class uses a static method giving a URL: 'newpage'. In the second part we write the
name of the controller ‘MyController’ and use a special ‘@’ sign to call the function
'returningASimplePage'.

If you go back and have a look at your MyController code you’ll find that this
‘returningASimplePage’ function simply returns a ‘newpage’. We have already stored
this 'newpage.blade.php' file in our ‘views’ folder before. I don’t want to give that long
HTML code. It’s almost same as the HTML code we had used in our ‘routes.php’ file
before.

Now we may type http://localhost:8000/newpage to see what it shows!
(Figure 5-1.)

http://localhost:8000/newpage

Chapter 5 ■ Controller Class

31

It’s a nice little output and we have produced this output from a controller. We’ve
progressed a little bit!

As you have just seen in 'MyController.php' file, it’s a class. It must have a public
function; otherwise, Laravel can’t route it.

While writing a controller class you need to remember few things.
First, we render a view using a controller class always using public functions.

public function index() {
 return view('home');
 }

Second, in the ‘routes.php’ file, we no longer use the anonymous function or
Closure. We route the controller instead.

Route::get('home', 'MyController@index');

In this first part of controller class, we’re not diving in too deep. Let us first see how
model and view work in unison with a controller class. After that, in the second part of
controller class, we’ll see more functionality and try to build up a dynamic database-
oriented application.

Figure 5-1. A simple page view through a simple controller

Chapter 5 ■ Controller Class

32

5.1 RESTful Controller
Before we start this chapter, let’s realize one thing. REST (Representational State Transfer)
is a an architectural protocol through which we imagine our URLs as nouns and give
them common verbs like GET, POST, PUT, or DELETE. Every URL is a representation
of an imaginary resource. I hope I can discuss this interesting topic in the sequel to this
basic Laravel Learner book. As I used this term before, I assume you have already become
familiar with the term ‘RESTful’. What does it mean? In a simple sense it offers some
solutions. When we route to Closures we can define the HTTP verb in the method form.

Route::get('index','Customer\Profiling\ProfileController@showIndex');

But we are now concerned with Controller, so we must get a solution for that
also. Hence, ‘RESTful’ comes to our rescue. Now we can explicitly tell our transport
mechanism: what kind of verbs we should use and how. How we can do that? ‘app/
Contrllers/profile.php’ can be written like this:

namespace Customer\Profiling;

class ProfileController extends BaseController

{

 public function getProfile()

 {

 return View::make('profile');

 }
 public function postCreate()
 {
 //some form here to collect data
 }
}

These methods could have been more. The number really does not matter. We can
add ‘delete’ verb also. Now in our ‘routes.php’ we can use all those HTTP verbs in a single
command like this:

Route::controller('profile','Customer\Profiling\ProfileController');

Through this command we can route all HTTP verbs used in the ‘ProfileController’
class. Our intention is pretty simple. We tried to show up a form where users will fill up
their names and other details. After that we take up those data and post them to our
database. In Laravel 3.2, we used to write it differently, but the ‘get’ or ‘put’ prefixes are
there also.

Chapter 5 ■ Controller Class

33

5.2 Role of a Controller
The very first question is the following: what is a controller? As you have seen in the
examples given so far, it is nothing but a kind of transport mechanism. It takes your users
or viewers to the presentation layer. We remember the law that a class should have a
singular task. The Controller class takes you to the presentation layer and its job should
be finished there. It should not know your application or domain logic. Why not? Because
it is a transport mechanism, nothing else. It is like a data cable to a TV monitor. There are
plenty of other things in your application going on in the background, and you should
take care of that so that an outsider could not reach there. Imagine a situation like this:

class UserController extends BaseController {
public function getIndex()
{
 $users = User::all();
return View::make('users.index',compact('users'));
}}

This ‘User::all()’ refers to Eloquent ORM proposition. Don’t worry, we will come to
that chapter very soon in the database part and will discuss about ‘Eloquent ORM’ in
great detail. Presently you need know only that it keeps contact with the data layer. Now,
should we connect to the database directly from our Controllers? Should a transport
mechanism which is supposed to communicate with our presentation layer also talk
to the data layer? A data layer is a vulnerable spot, and it will put us in a tight spot if
someone puts some dirty codes into it. Remember, controller is a carrier, so it will carry it
back to the data layer and we will have to face the mess!

So, it’s better to keep it in the dark about the domain logic or data layer and make its
job singular by decoupling it in a way suitable to our application. How we can do that? Here,
Interface comes to our rescue: a great thing indeed. In the Interfaces chapter we talked about
coming back to it, and so here we are once again. Interfaces can save us by encapsulating the
actual logic. We are safe. As we don’t want to hit the database directly from our Controller
class, we keep a shield in between them, namely, Interfaces. It will act as a medium between
Eloquent ORM and Controller. Our Controller will never know from where the data comes.
It will do its job and forget about it. It has many advantages like Abstract classes. But there
is a subtle difference between them. An Interface defines the syntactical contract that all
the derived classes should follow. Specifically, the interface defines the ‘what’ part of the
syntactical contract and the derived classes will describe the ‘how’ part of the contract.

interface OrderDetails {
 public function UpdateCustomerStatus(array
$user, $amount);
}
class UserClass implements OrderDetails {
 public function UpdateCustomerStatus(array
$user, $amount) {
 //do something through Eloquent
 }
}

Chapter 5 ■ Controller Class

34

You can use several interfaces between them; don’t worry about using them
throughout your application. The more you use it, the better. Some people may object to
the extra typing, but personally I think that using Interfaces would make your application
more robust and agile. You can test them without hitting your domain logic from your
web layer.

5.3 Resourceful Controller
Resourceful controller is one of the greatest new controller staffs that Laravel 4 comes
with. The resource method of controller class sometimes can do the magic for us, and we
are going to see how it takes place! Let’s take a look at my artisan command and find if
there is anything about the Controller staff. Type the following:

php artisan –list

And we see a controller:make method to make a resourceful controller. Very nice
to have found out that in a much improved php artisan command line we can make
resourceful controller.

Let’s create a resourceful controller using the php artisan command and see what
happens. We can issue the command like this:

php artisan controller:make UserController

Now if we leave it that way, it will create a resourceful controller in my project’s
controller folder. The sky’s the limit for what you can do with your UserController
resourceful controller. You can show any user with its ID, you can edit, update and
create, and even destroy or delete the records. Presently we are interested in the first two
methods, that is, index and show($id). Let us declare a new Route::resource() method in
our routes.php file. It is something like this:

Route::resource('sanjib', 'UserController',

['only'=>['index', 'show']]);

As you see, we can call our resource ‘sanjib’ and that resource is handled by the
‘UserController’ and that only handles the ‘index’ and ‘show’ method.

Now if you type http://localhost:8000/sanjib you see a nice output of anything
that you return from your ‘UserController’ index method. And besides, if you type
http://localhost:8000/sanjib/1, it will give a nice output with the passing $id, which
is 1 here.

So this is a great step forward from Laravel 3, where this ‘$id’ passed as a method.
Anyway, if you write like Route::resource('sanjib', 'UserController'), it will
produce all seven methods I have just shown you. And finally you can create, store,

http://localhost:8000/sanjib
http://localhost:8000/sanjib/1

Chapter 5 ■ Controller Class

35

edit, update, and delete your users from these methods. Now we can attach filter to
every single method either at one go or singlehandedly. Let us make a change in our
UserController code, adding a line of calling constructor filter like this:

//UserController.php
public function __construct() {
 $this >beforeFilter('sanjib');
 }

And with it we are going to attach filter to all of my methods in ‘routes.php’ file like
this:

Route::filter('sanjib', function(){
 return 'This filter is attached to every
method of resource sanjib';
});

Now we can restrict this filter to the only ‘index’ or any method you wish. That is also
a piece of cake now. If you want to attach it to the ‘index’, just write down the following:

public function __construct() {
 $this >beforeFilter('sanjib', ['only' => ['index']]);
 }

That way, only ‘index’ method is filtered, nothing else. I hope the role of a controller
is pretty clear now and we can do some tweaking with the dynamically built-up ‘View’
page and see how we can control and pass our data through controller and build a simple
web site.

5.4 Controller, IoC Container, and Interface
Till now, we have talked a lot about what a Controller should know. But, you may ask,
where is its implementation? Exactly! That is what I am going to show you now and
this is the pure beauty of Laravel 4.2’s code-happy approaches. And we all want to be
code happy, don’t we? We should be able to write some decent code: if we’re not as
accomplished as Taylor Otwell, at least we could try some fancy stuff that would satisfy
our in-born aesthetic.

So let us try some good practices. As we wanted to limit the knowledge of a
controller, we implement an interface and make our controller ignorant of any other
activities except the transport mechanism. If inside our UserController we write
something like this:

$user = User::all();
return View::make('user.index')
 >with('user', $user);

Chapter 5 ■ Controller Class

36

our controller directly hits the database. That we don’t want. So what can we do
instead?

Let us create an interface ‘AllUser’ in our model folder. The code is simple.

<?php
/*
* this interface gets all users through a class
called GetAllUsers
*/
interface AllUsers {
 public function getUsers();
}

This interface will work as a contract between our classes ‘GetAllUsers’ and our
controller ‘Usercontroller’. Let us create a class ‘GetAllUsers’ like this:

<?php
/*
* this class implements AllUsers interface and
bound in IoC Container
*/
class GetAllUsers implements AllUsers {
 public function getUsers(){
 $users = User::all();
 return $users;
 }
}

Through this class we retrieve all of our users from the database table users. We still
did not cover view, model, Eloquent ORM, and database, so don’t worry. All you need
to know now that we have a user table inside our database and we are retrieving all staff
from the users table.

Now finally how does our controller ‘UserController’ look like?

<?php
class UserController extends \BaseController {
protected $users;
 public function __construct(AllUsers
$users) {
 $this >users = $users;
 }
 public function getUsers(){
 $user = $this >users >getUsers();
 return View::make('user.index') ->with('user', $user);
 }
 public function index()
{
//

Chapter 5 ■ Controller Class

37

}
public function create()
{
//
}
public function store()
{
//
}
public function show($id)
{

//

}
public function edit($id)
{
//
}
public function update($id)
{
//
}
public function destroy($id)
{
//
}
}

This part is particularly important:

protected $users;
 public function __construct(AllUsers $users) {

 $this >users = $users;
 }
 public function getUsers(){
 $user = $this- >users- >getUsers();
 return View::make('user.index') ->with('user',

$user);
 }

We have implemented the interface and through our class ‘GetAllUsers’ we finally
got the whole users table. Now in ‘index’ View we just loop through the ‘user’ object and
extract the ‘username’ like this:

foreach ($user as $value) {
 echo $value >username . "
";
}

Chapter 5 ■ Controller Class

38

Now the logic is clear and very lucid to follow. Now we are free to change the data
target any time just changing inside the class or creating another class. Here we have used
‘MySql’ but we can change it any time to any database you like. The most important thing
is that our controller would never know what is going on inside. But the final hacking lies
inside our ‘route’ file, because we have to bind the class and the interface and the great
IoC container plays the pivotal role here. This is very simple with your ‘App’ Facades. The
code is as follows:

App::bind('AllUsers', 'GetAllUsers');

As you see, our ‘App’ Facades bind the class and interface together so that a nice layer
has been included between our data source and the transport mechanism. Moreover, our
controller does not know about what has been going on inside that layer. Our application
becomes more decoupled and you easily test it with ‘phpUnit’ without directly hitting the
database.

5.5 Summary
We normally organize our transport mechanism or web layer through controller class. So
this is a good practice to make it ignorant about our domain logic and use interfaces as a
medium between web and data layer. Through controller classes we organize our route-
level logic and besides we can use modern features like dependency injections.

Use interface and let controllers maintain their singularity of job which should be
concerned only with the web layer. Since we use Composer to autoload our PHP classes,
it can live anywhere in the file system as long as controller knows about it. And routing to
controller is entirely decoupled from the file system.

Resourceful controllers usually make RESTful controller around resources.
Finally, we can conclude with the filter part, which is extremely important in

managing the administration of an application. You can either control it through route
level or explicitly use it inside your controller.

Route::get('profile', array('before' => 'auth',
'uses' => 'UserController@showProfile'));

Or you may specifically mention it inside the controller:

Class UserController extends BaseController {
public function __construct()
{
$this >beforeFilter('auth', array('except' =>
'getLogin'));
$this >beforeFilter('csrf', array('on' =>
'post'));
$this >afterFilter('log', array('only' =>
array('fooAction', 'barAction')));
}
}

Chapter 5 ■ Controller Class

39

And finally filter can be used through constructor like this:

class UserController extends BaseController {
public function __construct()
{
$this >beforeFilter(function()
{
// some code
});
}
}

After mastering the basic controller, it is good to consult the Laravel official
documentation to hone your skills.

41© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_6

CHAPTER 6

View and Blade

In the MVC framework, the part ‘view’ has an important role. First of all it should look
good and appealing. It deals with HTML, CSS, JavaScript, and many other codes that
make a page look great.

At present a little knowledge is necessary. You need not be an expert to learn this
chapter. ‘Views’ folder stays inside ‘resources’ folder. You need to keep your html codes
here. To make it look awesome, you may wish to have a great CSS style! That CSS file and
other necessary JavaScript files should go to inside ‘public’ folder. Laravel connects them
easily.

We’ll learn this process step by step.
First we’ll create few static pages. Second we’ll pass dynamic data so that we can later

build a dynamic application on the top of that.
Suppose we want to have an ‘About’ page in your application. Let us create it and

connect it to our 'MyController' and finally route it to the browser.
It’s quite natural that we won’t stop at having only one static page. Later we might

need a ‘Contact Us’ page or any number of other pages. Keeping that perspective in mind
let’s create a folder ‘pages’ inside ‘views’ folder. In the ‘pages’ folder we first create a
'master.blade.php' file. This is a master layout page. It’s not compulsory that we should
always call it a ‘master’. We can call it 'layout.blade.php' or 'default.blade.php' or
we can choose any other meaningful name. This master page is a blueprint of our basic
layout that other pages will follow.

Remember, you can always create separate folders to keep separate master layouts
for other pages. It’s needless to say that you should always have only one master layout for
your entire application.

Let us keep our master layout simple enough. Before going to write the codes, we
may want to learn one thing: what does the term ‘blade’ mean?

Well, ‘blade’ is the template engine of Laravel and it should be written in php. It
has its own functions to make your life easier. And for that reason you need to add an
extension of ‘blade.php’.

Let us write a simple ‘master.blade.php’ code and it’ll have some special ‘blade’
templating functions.

//resources/views/pages/master.blade.php
<!DOCTYPE html>
<html>
 <head>

Chapter 6 ■ View and Blade

42

 @yield('head')
 <link rel='stylesheet' href='/css/style.css'>
 <title>
 @yield('title')
 </title>
 </head>
<body>
<div class="container">
 <div class="heading">
 @yield('heading')
 </div>
<div class="content">
@yield('content')
 </div>
<div class="footer">@yield('footer')</div>
</div>
</body>
</html>

As you see, we have used only one function—'yield'—inside the master page. We
call that function with a ‘@’ sign. This function has a literal meaning. It really yields or
produces or generates something.

We have segmented our HTML codes into a few parts so that they can be easily
remembered. In the ‘head’ part we have two ‘yield’ functions: ‘head’ and ‘title’. Under
the ‘@yield(‘head’)’ function we have our CSS style link and the other ‘yield’ function
has ‘title’ inside it. The rest part follows the CSS style division classes. In the ‘heading’ we
keep a large point heading. In the content part we have defined body point, font style, et
cetera.

Let us see our CSS style code that we have kept in the ‘public/css’ folder.

//public/css/style.css
html, body {
 height: 100%;
 }
 body {
 margin: 10;
 padding: 10;
 width: 90%;
 display:compact;
 font-weight: 100;
 font-family: 'Lato';
 font-size: 22px;
 }
 .container {
 text-align:left;
 display: table-cell;
 vertical-align: middle;
 }

www.allitebooks.com

http://www.allitebooks.org

Chapter 6 ■ View and Blade

43

 .content {
 text-align:left;
 display: inline-block;
 }
 .footer {
 text-align:right;
 display:compact;
 font-family: 'Lato';
 font-size: 14px;
 color: red;
 }
 .heading {
text-align:center;
 font-size: 136px;
 text-height:max-size;
 color:indianred;
 }
 .h1 {
 text-align:center;
 font-size: 66px;
 font-family:fantasy;
 color:tomato;
 }
 .h2 {
 text-align:center;
 font-size: 46px;
 font-family:cursive;
 color:coral;
 }

So far, we have defined our ‘master.blade.php’ file and ‘style.css’ file. You have
probably noticed that in the ‘master.blade.php’ file in the ‘head’ section we give the CSS
style link. Now there is an option where you can place this CSS file link in your ‘about.
blade.php’ page.

Let us first write down the ‘about.blade.php’ file.

//resources/views/pages/about.blade.php
@extends('pages.master')
@section('head')
@stop
@section('title')
 It's a test page
@stop
@section('heading')
{{ $name }} {{ $profession }}
@stop
@section('content')
<div class='h1'>

Chapter 6 ■ View and Blade

44

 Every Writing is a Problem!
</div>
<p>
 There was a problem few minutes back. There was a problem few minutes

back.
 There was a problem few minutes back. There was a problem few minutes

back.
 There was a problem few minutes back.
</p>
<div class='h2'>
 I have just solved it.
</div>
<p>
 Have a nice time folks.
</p>
@stop
@section('footer')
 Home of Sanjib Sinha
@stop

At the top we use the function ‘extends’, which literally extends the modularity of the
master page. After that, we continually use only two functions: ‘section’ and ‘stop’. These
functions actually connect to the CSS styles you have defined earlier.

Each section has its own division: ‘head’, ‘title’, ‘heading’, ‘content’, and ‘footer’. Each
‘section’ contains its own contents and then we use ‘stop’ function to stop that ‘section’.

Inside the ‘head’ section of ‘master.blade.php’, we have used the CSS style link. You
can also use the same link inside the ‘about.blade.php’. In that case, you need not use
the CSS style link inside the ‘master.blade.php’ file. The top part of our ‘about.blade.php’
page turns out to be like this:

//resources/views/pages/about.blade.php
@extends('pages.master')
@section('head')
<link rel='stylesheet' href='/css/style.css'>
@stop

But using CSS style inside ‘master.blade.php’ is always preferable.
Now, hopefully you can make out a relationship between the functions of ‘master.

blade.php’ and ‘about.blade.php.’ The master page plays the role of a parent and the
about page is its child. The logic flows down from parent to the child.

In the ‘about.blade.php’ we encounter two foreign terms in the ‘heading’ section:

//resources/views/pages/about.blade.php
@section('heading')
{{ $name }} {{ $profession }}
@stop

Chapter 6 ■ View and Blade

45

You are smart enough to guess that they are the names of the variables that we have
used in our controller. Otherwise, how they’d appear in our ‘about.blade.php’ files? We
have not seen them in our master page.

You have guessed right: they come from the controller, 'MyController.php' file.
Earlier, we have talked about passing data dynamically through controller to the view
blade. Since it’s an ‘about’ page we can pass a few pieces of interesting data about us.

We have decided to pass two important data points through the controller: ‘name’
and ‘profession’. Let us see the MyController code first.

//app/Http/Controllers/MyController.php
public function about() {
 $name = 'John Doe,';
 $profession = 'A Writer';
 return view('pages.about', compact('name', 'profession'));
 }

You see that we have defined two variables first and then return those variables
using ‘view’ method to the ‘pages.about’. Here the term ‘pages’ refers to the folder name
'resources/views/pages'. The second part—‘about’—refers to the ‘about.blade.php’
file. We could have written it as 'pages/about' in MyController. But I personally prefer
the ‘.’ notation as it reflects the object-oriented approach.

This passing of data can be done using many tricks. We have shown the PHP
‘compact’ method. But it could have been done this way also.

//app/Http/Controllers/MyController.php
public function about() {
 $name = ' John Doe ';
 return view('pages.about')->with('name', $name);
}

Or we could have passed it as an array value, and you can pass a long array this way.

//app/Http/Controllers/MyController.php
public function about() {
 return view('pages.about')->with([
 'name'=>'John Doe',
 'profession'=>'A Writer'
]);
}

Finally, we can check how it looks in our favorite browser. Type http://localhost:
8000/about and it opens up the page (Figure 6-1).

http://localhost:8000/about
http://localhost:8000/about

Chapter 6 ■ View and Blade

46

So far, we have learned a few tricks that will enable us to create static pages with
some dynamically generated data through the controller.

Having progressed a little bit, we have gained some confidence, and we can probably
venture out now to take on some more difficult tasks.

Figure 6-1. We have dynamically passed data to view

47© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_7

CHAPTER 7

Environment

Laravel comes with many stunning features. One of them is definitely database
migrations. In the next chapter we’ll discuss migration in detail.

Before that we need to understand our environment properly. What is environment
in Laravel? If you look at the document root you will find an ‘.env’ file. It basically tells us
about the database connections. Where would we get that default database setup file? In
the ‘config’ folder, we have a ‘database.php’ file. Open it up and see the content.

We see a line that tells us about the default database connection.

//config/database.php
'default' => env('DB_CONNECTION', 'mysql'),

It’s MySQL. We’re not going to change it for now although it’s temporary, because in
the later part of the book we’ll see how we can work with SQLite database. At present just
keep it as it is – our default database is MySQL. Now opening up our ‘.env’ file we add our
database, username, and password.

//.env
DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=testdb
DB_USERNAME=root
DB_PASSWORD=pass

There is a catch, of course. Suppose we’d like to place our project in any cloud
repository like ‘github’. In that case, our secrets may come out.

Laravel has thought this through.
In the '.gitignore' file, it has already added this line:

//.gitignore
/vendor
/node_modules
/public/storage
Homestead.yaml
Homestead.json
.env

Chapter 7 ■ environment

48

When you place the whole project, it’ll automatically ignore the listed folders and
files. Homestead.yaml and Homestead.json are among them.

We’ve set up our environment and now we can safely move to our next big chapter:
database migrations. After that we’ll discuss Eloquent, and then we’ll finally see how
Model, View, and Controller workflow works. We’ll also see how we can “create, retrieve,
update, and delete” our SQLite database.

49© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_8

CHAPTER 8

Database Migration

Database migration is one of the best features that Laravel provides. As a beginner, you
may find acquiring the concept a little bit difficult. But once you have learned about
database migration, the experience of working with any kind of database becomes
extremely easy and pleasant.

In the past you need to create a database, table, and columns either by SQL coding
or by using a tool like PHPMyAdmin. The task seems to be daunting sometimes. With
Laravel, it’s no longer difficult.

Besides, we have an extra advantage. As a developer, working in a team, you may get
your database job well synchronized with your colleagues. In that sense it’s become like a
version control. You can easily roll out your database table and update with new features
through php codes inside your application.

All you need to do is write a few lines of PHP code and Laravel will look after the next
steps. It’s that simple.

Let’s start with a simple ‘tasks’ table.
We’ve already mentioned the database names and other staff in our ‘.env’ file. Now

it’s time to create a ‘task’ table and add some columns to it.
Before starting a new migration let us go to our 'database/migrations/' folder;

we find that two PHP files have already been stored there. These migration files are
‘users’ and ‘password resets’. Laravel comes with them so we can have a look and try to
understand how it works actually.

Open the ‘users’ table. It has a long name: '2014_10_12_000000_create_users_
table.php'.

//database/migrations/2014_10_12_000000_create_users_table.php
<?php
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateUsersTable extends Migration
{
 public function up()
 {
 Schema::create('users', function (Blueprint $table) {
 $table->increments('id');
 $table->string('name');

Chapter 8 ■ Database Migration

50

 $table->string('email')->unique();
 $table->string('password');
 $table->rememberToken();
 $table->timestamps();
 });
 }
 public function down()
 {
 Schema::drop('users');
 }
}

As you see, there are only two functions: ‘up’ and ‘down’. The instructions written
inside are fairly simple to understand. It tells us about creating columns in ‘users’ table. It
mentions the characteristics of the columns: whether it’ll be ‘string’, or ‘text’, or have any
extra feature of uniqueness. The method ‘up’ means you generate or update the tables.
The method ‘down’ has a significant meaning. It means you can roll back your migrations
any time, and generate it again.

Suppose in the ‘tasks’ table, you suddenly think about changing the name of a
certain column. You can roll back your old migration. You can update it in your migration
PHP file and then you can run the command again.

Let’s start creating our new ‘tasks’ table. Open up your terminal and issue this
command:

//making migration
php artisan make:migration create_tasks_table --create="tasks"

Once you have issued this command, it’ll automatically run the migration and it’ll
show it up on your terminal.

After creating the ‘tasks’ table, it’ll also show you the other migrations that have been
shipped with Laravel.

//run the migrate command
php artisan migrate

After a successful migration it will show all migrations at one place.

//showing the migrations
Migration table created successfully.
Migrated: 2014_10_12_000000_create_users_table
Migrated: 2014_10_12_100000_create_password_resets_table
Migrated: 2016_08_30_024812_create_tasks_table

Now we actually have three tables at hand. The new table ‘tasks’ has also been
created successfully. You can either check it on your terminal or open up your MySQL
tool and see it. Besides, we need to see how the migration PHP file has been created in
our 'database/migrations' folder.

Chapter 8 ■ Database Migration

51

There should be a file called '2016_08_30_024812_create_tasks_table.php' in
that folder. Let us open it see what it has in store for us.

//database/migrations/2016_08_30_024812_create_tasks_table.php
<?php
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateTasksTable extends Migration
{
 public function up()
 {
 Schema::create('tasks', function (Blueprint $table) {
 $table->increments('id');
 $table->timestamps();
 });
 }
 public function down()
 {
 Schema::drop('tasks');
 }
}

You see the difference between the default ‘users’ table and the newly created ‘tasks’
table. Our ‘tasks’ table comes up with two methods—as usual, ‘up’ and ‘down’—but it has
only two columns: ‘id’ and ‘timestamps’.

Remember, whenever you run a migration, a PHP file is generated inside 'database/
migrations' folder and it looks like this. Now, it’s our responsibility to add columns into
it and again issue the migration command. We did the same thing here. We have changed
this part. We’ve added title and body columns to complete our ‘tasks’ table.

//database/migrations/2016_08_30_024812_create_tasks_table.php
public function up()
 {
 Schema::create('tasks', function (Blueprint $table) {
 $table->increments('id');
 $table->string('title');
 $table->text('body');
 $table->timestamps();
 });
 }

We run ‘migrate’ command again to update the database table.
After that it automatically updates itself.

//run the migrate command
php artisan migrate

Chapter 8 ■ Database Migration

52

In this step, suppose we have forgotten a column in the newly created ‘tasks’ table.
Can we add it after all the migrations are over? Yes, we can do that.

The greatness of Laravel is it has already thought about every possibility that might
happen. This time the command is slightly different.

//adding a new column to the table
php artisan make:migration add_reminder_to_tasks_table --table="tasks"
Created Migration: 2016_08_30_035529_add_reminder_to_tasks_table

We forgot to add a column ‘reminder’ into our ‘tasks’ table. We have just added it
using migration command. Now we can have a look at our newly created ‘tasks’ database
table in our phpMyAdmin tool (Figure 8-1).

Figure 8-1. The ‘tasks’ table at phpMyAdmin tool

Our ‘tasks’ table has all the columns now: ‘id’, ‘title’, ‘body’, ‘timestamps’, and finally
‘reminder’, which we added later.

8.1 Summary
Database migration in Laravel is a technique that helps us to create, update, or delete
the table and its columns. In a developmental scenario, when you work on a project
participating from different destinations, you can easily modify or manipulate your
database through a few simple php commands.

53© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_9

CHAPTER 9

Eloquent

Eloquent Model class is used for Laravel’s ‘active record implementation’ methods.
It literally means that we can easily ‘CREATE, RETRIEVE, UPDATE, or DELETE’ any
database record using this Eloquent Model class.

In the Laravel PHP artisan command we generate files through ‘make’. We have seen
it before in case of ‘controllers’, ‘migrations’. Now we can do the same thing in our Model
class.

Remember one thing: if you have a table called ‘tasks’, then you must have a model
called ‘Task’. If we have a table called ‘songs’, we must have a model called ‘Song’. In the
model, the name starts with the capital letter and the last letter of the table is ignored.

Let us create our first model class ‘Task’.
As usual we open our terminal and issue this command:

//creating model task
php artisan make:model Task
Model created successfully.

Once we have issued this command, in the ‘app’ folder a PHP file is automatically
generated.

//app/Task.php
<?php
namespace App;
use Illuminate\Database\Eloquent\Model;
class Task extends Model
{
}
//code ended

It’s a simple PHP file with an empty class and you can’t realize its power at one
glance.

But the reality is different. The ‘Task’ class extends ‘Model’ class, which is a fairly
complex class with every kind of database functionality. It has many complex methods that
actively implement many things. To name a few, there are ‘save’, ‘find’, ‘update’ methods and
many more. You can save your record. You can update your record. You can issue a mass
assignment. There is more functionality that we are going to see in the future course.

Chapter 9 ■ eloquent

54

Let us first fill our database table ‘tasks’ with a few tasks.
To do that we can either add or update records through an administrative dashboard

that has forms to take inputs or we can use any other trick.
At present we’ve not learned anything about the usages of forms. We’ll learn it later.

So we can use ‘Tinker’ on our terminal to add a few quick records to test our ‘Task’ model.
What is ‘Tinker’?
It’s an artisan command that comes with Laravel and allows us to work directly on

Laravel code base through terminal.
If we issue this command: php artisan tinker, it just opens up a nice interface on the

terminal to work ceaselessly.

//adding to database table ‘tasks’ by tinker
php artisan tinker
Psy Shell v0.7.2 (PHP 5.5.9-1ubuntu4.14 — cli) by Justin Hileman
>>> $task = new App\Task;
=> App\Task {#632}
>>> $task
=> App\Task {#632}
>>> $task->title = 'My First task';
=> "My First task"
>>> $task->body = 'I will wake up early in the morning tomorrow.';
=> "I will wake up early in the morning tomorrow."
>>> $task->reminder = 'Do not forget';
=> "Do not forget"
>>> $task->toArray();
=> [
 "title" => "My First task",
 "body" => "I will wake up early in the morning tomorrow.",
 "reminder" => "Do not forget",
]
>>> $task->save();
 => true
>>>
//adding completed

Actually we have created a ‘task’ object using the ‘Task’ class. Now that object can
automatically access the columns almost like properties. Watch this part of the previous
tinker operation.

>>> $task->title = 'My First task';
=> "My First task"

It actually keeps those values in memory. When you finally call the save() method, it
saves all the records in the table.

Let us fill with another set of records.

 //create new set of record
 php artisan tinker

Chapter 9 ■ eloquent

55

 Psy Shell v0.7.2 (PHP 5.5.9-1ubuntu4.14 — cli) by Justin Hileman
 >>> $task = new App\Task;
=> App\Task {#632}
 >>> $task->create(['title' => 'My Second Task', 'body'
=> 'I would like to get up early in the morning',
'reminder' => 'I need to buy medicines']);
 => App\Task {#643
 title: "My Second Task",
 body: "I would like to get up early in the morning",
 reminder: "I need to buy medicines",
 updated_at: "2016-08-30 04:45:10",
 created_at: "2016-08-30 04:45:10",
 id: 2,
 }
 >>>
 //created successfully

Can we update the first record now? Yes, of course we can.
There are two methods through which you can update your previous records. The

first method is the old method of writing it again and calling the save() method like
before.

 //now you want to update the first record
 >>> $task = App\Task::find(1);
 => App\Task {#631
 id: "1",
 title: "My First task",
 body: "I would like to go to market by nine.",
 created_at: "2016-08-30 04:20:53",
 updated_at: "2016-08-30 04:37:52",
 reminder: "You must go. You need to buy medicines.",
 }
 >>> $task->body = 'I will wake up in the morning.';
 => "I will wake up in the morning."
 >>> $task->save();
=> true
 >>> $task->reminder = 'I must do.';
 => "I must do."
 >>> $task->save();
 => true
 >>>
 //record successfully updated

There is another method where you can call update() method directly to update your
record.

 //another update method
 >>> $task->update(['reminder' => 'I must do and not forget!']);

Chapter 9 ■ eloquent

56

 => true
 >>>
 //record successfully updated

Finally we want to test a mass assignment using eloquent model class.

 >>> $task = new App\Task;
 => App\Task {#633}
 >>> $task->create(['title' => 'My Third Task', 'body'
=> 'I have to start car engine', 'reminder' => 'Battery
will choke']);
 => App\Task {#646
 title: "My Third Task",
 body: "I have to start car engine",
 reminder: "Battery will choke",
 updated_at: "2016-08-31 05:36:16",
 created_at: "2016-08-31 05:36:16",
 id: 3,
 }
 >>>

It didn’t give any error. But it would have given the error had we not already changed
the eloquent ‘Task’ model class.

We had earlier added this line into that empty class.

 //app/Task.php
 <?php
 namespace App;
 use Illuminate\Database\Eloquent\Model;
 class Task extends Model
 {
 protected $fillable = [
 'title',
 'body',
 'reminder'
];
 }

We have added a property $fillable and we instruct Laravel Task model class to
remember that three columns—‘title’, ‘body’, and ‘reminder’—should be fillable through
mass assignment. These columns may be mass assigned at any time.

Finally, we can conclude that after migrating the database, eloquent model class
actually allows us to do database operations more flexibly. But it is not the end; rather it’s
a great start. Eloquent model class has many more surprising gifts for developers. Now
we’ll learn them through a complete Model-View-Controller workflow.

To do that, we will create a new controller and a few view pages that will render the
database output. We’ve already created a model—‘Task’—so we need not create that
again. And using artisan command ‘tinker’, we have added two or three records into our
MySQL database table.

Chapter 9 ■ eloquent

57

We’ll use the controller class to use the eloquent model class abstraction in turn to
produce a nice-looking view of our database table on the browser.

It will look like the image in Figure 9-1:

This view is a product of a Model-View-Controller workflow.
In the next chapter we’ll see how it works.

Figure 9-1. A view of database table ‘tasks’

59© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_10

CHAPTER 10

Model, View, Controller
Workflow

So far we have learned a few important things, including routing, controller, view,
database migrations, and eloquent model. Actually we’ve learned a lot and done a lot of
things that cannot be done in such a short period of time with such small lines of code.

We’ve used MySQL database to build a simple task table where we can now create,
retrieve, update, and finally delete our tasks using tinker on our terminal.

In fact we’ve done a lot of things quite easily with less code. You’ve built a full-
fledged CRUD (create, retrieve, update, delete) application without writing a single line of
SQL code.

If you didn’t use Laravel you would have to write several hundred lines of php and
sql codes. Laravel has done it in an object-oriented way. If you wanted to do that single-
handedly, you need to create at least 25 php files to get that taste of layer divisions.
Moreover, you would have to use a MySQL tool like phpMyAdmin. Now it may seem
cumbersome.

What is the most striking feature that we’ve discovered so far?
What strikes me most is the universality of this application. Many things have been

housed under one roof. You don’t have to go outside your application to do anything.
You can do the database migrations by creating, updating, or deleting database tables
with the help of just a few lines of php code. You can create, update, or delete data into
the database with a few lines of php code without worrying about any MySQL tool.
Everything is so simple.

Staying inside your application and doing difficult things without going outside are
no joke. Laravel has done it for us.

Now we have a full database table that has stored few tasks. Next, we’ll see how easy
it is to retrieve that data and present on a web page. All we need is a controller, a view
page, and a model.

Actually, we already have a model called ‘Task’, so we need not create it anymore. Let
us build the controller class first that will fetch the data from database on a view page.

Let us register the controller first in our ‘routes.php’.

Route::get('task', 'TaskController@index');

Chapter 10 ■ Model, View, Controller workflow

60

Now we can create a controller using artisan command. Let us do it.

php artisan make:TaskController

It creates a controller class—a php file—‘TaskController.php’, in ‘app/Http/
Controllers’ folder. It’s a simple class without any methods defined. Let us create a
method called ‘index’ that will fetch all the records from our ‘tasks’ table in the database.

To do that we need our eloquent model class ‘Task’ that we’ve already defined in the
previous chapter. We need to use that class on the top of the ‘TaskController.php’ file and
just call the ‘all()’ method from it.

$tasks = Task::all();
 return $tasks;

It looks pretty clean and simple. The output comes in ‘json’ like this:

 [{"id":1,"title":"My First task","body":"I will wake up in the
morning.","created_at":"2016-08-30 04:20:53","updated_at":"2016-08-30
04:53:22","reminder":"I must do and not forget!"}
.....
//the rest is omitted for brevity

Laravel knows that the output from a database might be used for any API. So the
‘json’ format is the answer to it.

In just two lines of code we retrieved all our data from a database table. But, we want
to get that data on our view page. We need to create a view page. We have learned how to
do that. We’ve also learned how to pass data from a controller to a view page.

So finally, our TaskController class stands out with clean and simple codes that fetch
all data from the database using eloquent ‘Task’ model class.

<?php
namespace App\Http\Controllers;
use App\Task;
use Illuminate\Http\Request;
use App\Http\Requests;

class TaskController extends Controller
{
 public function index() {
 $tasks = Task::all();
 return view('pages.task', compact('tasks'));
 }
}

Chapter 10 ■ Model, View, Controller workflow

61

Now you must create a ‘task.blade.php’ file inside ‘resources/views/pages’ folder.
I won’t repeat the HTML part. You need to understand one important thing. In your
TaskController you catch all data from database in a variable called ‘$tasks’. The previous
‘json’ output shows that it’s actually an array. What you need is a ‘foreach’ loop to retrieve
them inside your ‘task.blade.php’ page.

@foreach ($tasks as $task)
 <h3>
 {{ $task->title }}
 </h3>
 <div class='h2'>
 {{ $task->body }}
 </div>
 Reminder :
 <div class='h1'>
 {{ $task->reminder }}
 </div>
 @endforeach

For each ‘$tasks’ as ‘$task’ we can directly get the data. The workflow is completed.

10.1 Summary
It started from building up an environment file where we mentioned the default database
as MySQL and named the database as ‘testdb’. Next we did the database migrations and
using ‘tinker’ added and updated a few tasks. Further, we moved ahead and created an
eloquent model class ‘Task’ since our database table name was ‘tasks’. Next we registered
the route and created a TaskController class and through it we passed the data using
‘Task’ model to our view page ‘task.blade.php’.

10.1.1 Our Next Challenge
For a small text-based database application, SQLite is fine. It’s fast and file based. Let us
build a database-driven application that will create, retrieve, update, and delete ‘reviews’.
This time we’ll not use ‘tinker’ for database operations. Instead we’ll learn about forms
and build separate pages for those jobs.

The ‘review’ page of a certain user, John Doe for example, will have a home page
that will list the titles. If someone clicks that title she can read that review in a separate
page. At the same time John can manage the whole database through a dashboard where
authentication will be needed. Through that dashboard he will manage the ‘CRUD’. This
time we use our Laravel/homestead box and name this application as ‘review.app’, so
that if you type http://review.app you can see John’s reviews. And you can also insert,
update, and delete data; it will be a total CRUD application.

Let us stomp our feet on the beach!
It’s fun…

http://review.app/

63© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_11

CHAPTER 11

SQLite Is a Breeze!

We’d like to make this application entirely based on SQLite database. Normally, for a big
application people opt for MySQL or PgSQL as it can tackle more visitors. SQLite may not
be big enough and basically file based and light in nature, but it can easily tackle small to
medium applications with a hundred thousand visitors. So we can feel free to use it for
our CRUD application. Especially for Laravel, SQLite is a breeze to use. In a minute you’ll
understand why I sound so confident.

To use SQLite in Laravel you need to change the default database setup. Two lines
need to be changed.

//Code/test/blog/config/databse.php
'default' => env('DB_CONNECTION', 'sqlite'),

In the second line, you need to mention the SQLite database file path.

//Code/test/blog/config/databse.php
'connections' => [

'sqlite' => [
 'driver' => 'sqlite',
 //'database' => storage_path('database.sqlite'),
 'database' => env('DB_DATABASE', database_path('/../database/database.

sqlite')),
 'prefix' => '',

],

We are going to keep our SQLite file in the 'Code/test/blog/database/' folder.
Many people go for the storage folder. Any one of them will work.

Secondly, we need to change the ‘.env’ file. In the original file that comes with
Laravel, the default database is mentioned as this:

//Code/test/blog/.env
DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306

Chapter 11 ■ SQLite iS a Breeze!

64

DB_DATABASE=testdb
DB_USERNAME=root
DB_PASSWORD=pass

You must change it to this:

//Code/test/blog/.env
DB_CONNECTION=sqlite
DB_HOST=127.0.0.1
DB_PORT=3306

Therefore, from now on, whatever database operation you’d do on your application
will automatically be registered on SQLite database file that you create in the 'Code/
test/blog/database' folder. Normally, people don’t go for creating a new SQLite file
in 'Code/test/blog/database' folder. They choose the 'Code/test/blog/storage/
databse.sqlite' file that comes with Laravel by default. In that case, in your database
path 'Code/test/blog/config/databse.php' you need to change the path.

We want to take a little break from usual path and create a ‘database.sqlite’ at 'Code/
test/blog/database' folder. To do that you must go to the desired folder first.

cd Code/test/blog/database

Next we have to use ‘touch’ command to create the file.

touch database.sqlite

Now you’re ready to make an awesome CRUD application using SQLite. And to do
that, the first thing you have to do is fill up the forms with inputs. Through those inputs,
you can insert or update data into your file-based SQLite database.

65© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_12

CHAPTER 12

Fiddly Feelings of Forms

To fill up the forms, you need to feel the forms first. Since Laravel 5.2.45 this feeling is a
little bit different. It’s become little bit tricky.

You need to install HTML form builder so that you can use Laravel form blade template;
this is really important for security reasons. But, there is a catch. Since Laravel 5.2.45 the old
trick will not work. You can no longer use 'composer require illuminate/html' command
to add form builder templates to your project. Instead, you have to issue this command:

sudo composer require laravelcollective/html

It’ll take few minutes for composer to update your system. Next it’ll search for
'providers' and 'aliases'. So you must open 'Code/test/blog/config/app.php' file
and this line inside 'providers' array.

//Code/test/blog/config/app.php
'providers' => [

 /*
 * Laravel Framework Service Providers...
 */
 ...
 'Collective\Html\HtmlServiceProvider',
],

Next you must add two lines between the 'aliases' array.

//Code/test/blog/config/app.php
'aliases' => [
...
 'Form' => 'Collective\Html\FormFacade',
 'Html' => 'Collective\Html\HtmlFacade',

],

Now you’re fully loaded to use the Laravel form template. In the next chapter we’ll
see extensive use of the forms.

67© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_13

CHAPTER 13

A CRUD Application

I don’t want to elaborate this application because I believe you’re smart enough to follow
what will take place in a few minutes when you’ll have a look at the subsequent codes.

The application we’re going to make is very simple. John Doe is a user who wants to
create a review page for his web site. He must have an index page. From that index page
one can go the detail section of the reviews he has been keeping. To do that, he has a
database migration file first.

First we create that file (consult the database migration chapter). Our file is named
something like this: 2016_09_03_015541_create_reviews_table.php.

The code is like this:

<?php
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateReviewsTable extends Migration
{
 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('reviews', function (Blueprint $table) {
 $table->increments('id');
 $table->string('category');
 $table->string('title');
 $table->text('content');
 $table->string('rating');
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.

Chapter 13 ■ a CrUD appliCation

68

 *
 * @return void
 */
 public function down()
 {
 Schema::drop('reviews');
 }
}

You have already chosen SQLite database file to keep your data. So the next part is
pretty simple. Write down the Model, Views, and Controllers.

The model we use in this case, the old ‘Task’ model will not work any more. We need
to create a new ‘Review’ model. Create it according to the trick you’ve learned. Issue the
artisan command. It’ll automatically be created.

The 'Review.php' file is created in your 'Code/test/blog/app' folder.

//Code/test/blog/app/ Review.php
<?php
namespace App;
use Illuminate\Database\Eloquent\Model;

class Review extends Model
{
 protected $fillable = [
 'category',
 'title',
 'content',
 'rating'
];
}

Next you create a controller class. You have learned before how to create the
controller class: 'TaskController.php' file.

//Code/test/blog/app/Http/Controllers/ReviewController.php
<?php
namespace App\Http\Controllers;

use App\Review;
use App\Http\Requests;
use Illuminate\Http\Request;

class TaskController extends Controller
{

 protected $reviews;
 protected $requests;

Chapter 13 ■ a CrUD appliCation

69

 public function __construct(Review $reviews, Request $requests) {

 $this->reviews = $reviews;
 $this->requests = $requests;
 }

 public function index() {
 $tasks = $this->reviews->all();
 return view('pages.index', compact('tasks'));
 }
 public function show($id) {
 //return $tasks by id;
 $tasks = Review::findOrFail($id);
 return view('pages.show', compact('tasks'));

 }
 public function create() {
 return view('pages.create');
 }
 public function store(Request $request){
 //$input = Request::all();
 //return $input;
 //return $request->title;
 $review = new Review();
 $review->category = $request->category;
 $review->title = $request->title;
 $review->content = $request->content;
 $review->rating = $request->rating;
 $review->save();
 return "Success";
 }
 public function editreview() {
 $tasks = $this->reviews->get();
 //return all $tasks;
 return view('pages.editreview', compact('tasks'));

 }
 public function edit($id)
 {
 $tasks = $this->reviews->find($id);
 return View('pages.edit', compact('tasks'));
 }

 public function update($id)
 {
 $review = $this->reviews->find($id);
 $request = $this->requests;
 $review->category = $request->category;

Chapter 13 ■ a CrUD appliCation

70

 $review->title = $request->title;
 $review->content = $request->content;
 $review->rating = $request->rating;
 $review->save();
 return "Success";
 }

}

From the controller class you understand that there are a few new methods other
than the 'index'. The index method shows the home page of John Doe’s review page
(Figure 13-1).

Figure 13-1. The review page of John Doe

The controller method is like this:

public function index() {
 $tasks = $this->reviews->all();
 return view('pages.index', compact('tasks'));
}

The code of ‘index.blade.php’ page in the views folder is a mere repetition of the
previous codes we had used in our early application development. It extends a master
layout and follows a few simple rules.

Chapter 13 ■ a CrUD appliCation

71

//resources/views/pages/index.blade.php
@extends('pages.master')
@section('head')

@stop
@section('title')
 It's a newly created Task page
@stop
@section('heading')
 Review page of John Doe
 <p></p><p></p><p></p> <p></p><p></p><p></p>
@stop
@section('content')
 <p></p><p></p><p></p> <p></p><p></p><p></p>
 @foreach ($tasks as $task)
 <h3>
 Category : {{ $task->category }}
 </h3>
 <h3>
 Title : id }}">{{ $task->title }}
 ⋅⋅⋅⋅⋅
 Title : id]) }}">{{
$task->title }}
 ⋅⋅⋅⋅⋅
 Title : id) }}">{{ $task->title }}
 </h3>
 @endforeach
@stop
@section('footer')
<p></p>
 <p></p><p></p><p></p><p></p><p></p><p></p>
<p></p><p></p><p></p><p></p>
⋅⋅⋅⋅⋅
 Create New Reviews
 ⋅⋅⋅⋅⋅
 <p></p>
 <p></p><p></p><p></p><p></p><p></p><p></p>
<p></p><p></p><p></p><p></p>
 Home of John Doe
@stop

The required route for this page will be quite simple. We assume reviewing is our
new task so we keep it as a simple task.

 //app/Http/routes.php
 Route::get('task', 'TaskController@index');

Chapter 13 ■ a CrUD appliCation

72

Once this index page of John Doe’s review has shown up, the visitor will be happy to
click the titles and read the reviews. For that we’ve used the special ‘url’ function. Watch
this part of the ‘index.blade.php’ page.

<h3>
 Title : id }}">{{ $task->title }}
 ⋅⋅⋅⋅⋅
 Title : id]) }}">{{
$task->title }}
⋅⋅⋅⋅⋅
Title : id) }}">{{ $task->title }}

We’ve used three methods just to show you the various flexible methods. In the real
world you must use only one. If you ask my preference, I’ll vote for any one of them!

The clickable links will take the visitors to the ‘show.blade.php’ page in the views
folder (Figure 13-2).

Figure 13-2. The detail of the review page

It’s fairly simple in our ‘TaskController’ part. Watch this code segment.

//TaskConreoller.php
public function index() {
 $tasks = $this->reviews->all();
 return view('pages.index', compact('tasks'));
 }
 public function show($id) {

Chapter 13 ■ a CrUD appliCation

73

 $tasks = Review::findOrFail($id);
 return view('pages.show', compact('tasks'));
 }

The code of the ‘show.blade.php’ is a little bit tricky. But it needs no explanation at
this stage.

//show.blade.php
@extends('pages.master')
@section('head')
@stop
@section('title')
 It's a newly created Task page
@stop
@section('heading')
 Review page of John Doe
@stop
@section('content')
 <h3>
 Category : {{ $tasks->category }}
 </h3>
 <h3>
 Title : {{ $tasks->title }}
 </h3>
 <div class='h2'>
 Review : {{ $tasks->content }}
 </div>
 <div class='h1'>
 Rating : {{ $tasks->rating }}
 </div>
<p></p>
 Back Home
 ⋅⋅⋅⋅⋅
@stop
@section('footer')
<p></p>
 Create New Reviews
 Home of John Doe
@stop

Now we can route this page through the ‘routes.php’ file like this:

//routes.php
Route::get('task/{id}', 'TaskController@show');

Now the important part of the application comes up slowly. First comes the creation
part. John Doe wants to create or add reviews to his pages. He will add categories, title,
content and rating, one after another (Figure 13-3).

Chapter 13 ■ a CrUD appliCation

74

The process is not very difficult. In a simple php application it’d have taken probably
a few hundred lines of code to make such an application. But Laravel makes life much
simpler.

In the ‘TaskController’ class the segment seeks your attention. We’ve written this part
with two methods consecutively.

//TaskController.php
public function create() {
 return view('pages.create');
 }
 public function store(Request $request){
 //$input = Request::all();
 //return $input;
 //return $request->title;
 $review = new Review();
 $review->category = $request->category;
 $review->title = $request->title;
 $review->content = $request->content;
 $review->rating = $request->rating;
 $review->save();
 return "Success";
 }

Next we must have a blade template view page where we can use the forms. The code
of ‘create.blade.php’ is like the following.

Figure 13-3. Create review page

Chapter 13 ■ a CrUD appliCation

75

//create.blade.php
@extends('pages.master')
@section('head')

@stop
@section('title')
 Creating Reviews
@stop
@section('heading')
 John Doe's going to Create new Reviews
@stop
@section('content')

<div class="form group">
 {!! Form::open(['url' => 'create/task']) !!}
 <div class="form group">
{!! Form::label('category', 'Category') !!}
{!! Form::text('category', null, ['class' => 'form control',
'required'])!!}
</div>
<div class="form group">
{!! Form::label('title', 'Title') !!}
{!! Form::text('title', null, ['class' => 'form control',
'required'])!!}
</div>
<p>

</p>
<div class="form group">
{!! Form::label('content', 'Content') !!} {!!
Form::textarea('content', null, ['class' => 'form control',
'required']) !!}
</div><p></p>
<div class="form group">
{!! Form::label('rating', 'Rating') !!}
{!! Form::text('rating', null, ['class' => 'form control',
'required'])!!}
</div>
<p>
<p></p>
<p></p>
{!! Form::submit("Create Reviews") !!}
{!! Form::close() !!}
</div>
@stop
@section('footer')
John Doe is not in the mood to add
 new reviews so he's going back home to edit his old reviews!

Chapter 13 ■ a CrUD appliCation

76

Home of John Doe
@stop

And to register the required route, we have to write this piece of code in our ‘routes.
php’ file.

//routes.php
Route::get('create', 'TaskController@create');
Route::post('create/task', 'TaskController@store');

Finally, the most tricky part of our CRUD application is about to come. It sounds
tricky but Laravel makes it much easier with the concept of model binding. Since the
model ‘Review’ essentially plays the main role behind the scene, the ‘edit’ section is
basically dealt by a special method.

First thing is our controller part.

//TaskController.php
public function edit($id)
 {
 $tasks = $this->reviews->find($id);
 return View('pages.edit', compact('tasks'));
 }
 public function update($id)
 {
 $review = $this->reviews->find($id);
 $request = $this->requests;
 $review->category = $request->category;
 $review->title = $request->title;
 $review->content = $request->content;
 $review->rating = $request->rating;
 $review->save();
 return "Success";
 }

As you see, we needed two methods. The first is the ‘edit’ method, which takes us to
the ‘edit.blade.php’ page. The second part is obviously the ‘update’ method, which does
the work behind. But at the end of the day, it’s the model binding that does the real trick
behind the scene.

First comes the ‘editreview’ page. If John Doe wants to edit his reviews, he will type
this URL into his browser: http://test.app/editreview.

We’re going to see the code in our ‘editreview.blade.php’ page.

//editreview.blade.php
@extends('pages.master')
@section('head')

@stop
@section('title')

http://test.app/editreview

Chapter 13 ■ a CrUD appliCation

77

 It's a newly created Task page
@stop
@section('heading')
John Doe's going to edit Review page
@stop
@section('content')
 @foreach ($tasks as $task)
 <h3>
 Category : {{ $task->category }}
 </h3>
 <h3>
Title : id) }}">{{ $task->title }}
 </h3>
 @endforeach

@stop

@section('footer')

 Create New Reviews

 Home of John Doe
@stop

There’s nothing very special on this page. He clicks a link and reaches the ‘edit’ page.
The code of ‘edit.blade.php’ is tricky on one line. Watch out for this! (See Figure 13-4.)

Figure 13-4. Edit page of John Doe’s review

Chapter 13 ■ a CrUD appliCation

78

The edit page where the actual editing will take place will be a little different.

//edit.blade.php
@extends('pages.master')
@section('head')

@stop
@section('title')
 It's a newly created Task page
@stop
@section('heading')
John Doe's going to edit Review page
@stop
@section('content')

<div class="form group">
{!! Form::model($tasks, ["url" => "update/$tasks->id", "method" => "PATCH"])
!!}

 {{ Form::label('category', 'Category:') }}
 {{ Form::text('category') }}

 {{ Form::label('title', 'Title:') }}
 {{ Form::text('title') }}

 {{ Form::label('content', 'Content:') }}
 {{ Form::textarea('content') }}

 {{ Form::label('rating', 'Rating:') }}
 {{ Form::text('rating') }}

 {{ Form::submit('Update', array('class' => 'btn btn-info')) }}

{!! Form::close() !!}

</div>

@stop

@section('footer')

 Create New Reviews

Chapter 13 ■ a CrUD appliCation

79

Home of John Doe
@stop

This part is tricky:

{!! Form::model($tasks, ["url" => "update/$tasks->id", "method" => "PATCH"])
!!}

The subsequent route will be registered in the ' routes.php' file.

//routes.php
Route::get('editreview', 'TaskController@editreview');
Route::get('edit/{id}', 'TaskController@edit');
Route::patch('update/{id}', 'TaskController@update');

The edit page of the John Doe’s review looks like this when he clicks the relevant title
to edit them (Figure 13-5).

Figure 13-5. The editing page of John Doe’s review

Our application is complete in a simple few lines of code. You did not need to write a
hundred thousand of lines of code to accomplish this complex task.

The index page shows the titles of the reviews. When somebody clicks the titles, she
can reach the review page. The ‘show’ method in the ‘TaskController.php’ has taken her
to the detail of the reviews. When John Doe wants to add reviews it’s quite easy. He adds it
just by filling up his forms. Next comes the easiest part: the editing section. He clicks the
title and reaches the edit page.

81© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_14

CHAPTER 14

Authentication and
Authorization

Laravel 5.3 makes Authentication extremely simple, and if you’re familiar with .NET
Framework, it will remind you of the ASP.NET login and logout process.

In fact you need not have to do anything at all. Everything is ready at your doorstep;
all you need is just plug in and switch on, and the Authentication process will work like a
breeze. People coming from Laravel 3.2 or 4.2 backgrounds, find it unbelievable at times.
In fact you are not supposed to write long lines of code. It is so easy and handy. It works
just out of the box because everything has been configured beforehand and you can go
through the code of ‘config/app.php’. When you install Laravel 5, you see two controllers
have already been set up in ‘app/Http/Controllers/Auth/’ folder. These two controllers
are ‘AuthController’ and ‘PasswordController’. Let us see how ‘AuthController’ works. It
is used for new user registration and login purposes. And through ‘PasswordController’ a
user can reset her password. Each of these controllers uses Traits to have their necessary
methods. So you initially you should not change these controllers, unless you are in a very
special situation where you would like to customize your registration and login process.
Let us see first what lies inside this ‘AuthController’ Controller, so that we can understand
how it works out of the box.

<?php

namespace App\Http\Controllers\Auth;

use Illuminate\Support\Facades\Auth;

use App\User;

use Validator;

use App\Http\Controllers\Controller;

use Illuminate\Foundation\Auth\ThrottlesLogins;

use

Chapter 14 ■ authentiCation and authorization

82

Illuminate\Foundation\Auth\AuthenticatesAndRegistersUsers;

use App\Http\Requests;

use Illuminate\Http\Request;

class AuthController extends Controller

{

 /*

 | Registration & Login Controller-------------------------------

 -------------------| Th is controller handles the registration of new
users, as well as the

 | authentication of existing users. By default, this controller uses

 | a simple trait to add these behaviors. Why don't you explore it?

 */

 use AuthenticatesAndRegistersUsers, ThrottlesLogins;

 protected $redirectPath = '/dashboard';

 protected $loginPath = 'auth/login';

 /**

 * Create a new authentication controller instance.

 *

 * @return void

 */

 public function __construct()

 {

 $this >middleware('guest', ['except' =>

'getLogout']);

 }

Chapter 14 ■ authentiCation and authorization

83

 /**

 * Get a validator for an incoming registration request.

 *

 * @param array $data

 * @return

\Illuminate\Contracts\Validation\Validator

 */

 protected function validator(array $data)

 {

 return Validator::make($data, [

 'name' => 'required|max:255',

 'email' => 'required|email|max:255| unique:users',

 'password' => 'required|confirmed| min:6',

]);

 }

 /**

 * Create a new user instance after a valid registration.

 *

 * @param array $data

 * @return User

 */

 protected function create(array $data)

 {

 return User::create([

Chapter 14 ■ authentiCation and authorization

84

 'name' => $data['name'],

 'email' => $data['email'],

 'password' =>

bcrypt($data['password']),

]);

 }

}

When you create an instance of Authentication, it automatically calls back the
‘middleware’ property, and in your route you can set it so that if want to protect any page
from unsigned visitor or guest you just mention it in your route.

public function __construct()

 {
 $this >middleware('guest', ['except' =>
'getLogout']);
 }

The validator() method at the same time works so that when someone registers he is
guided properly to maintain the rule.

protected function validator(array $data) {

 return Validator::make($data, [

 'name' => 'required|max:255',

 'email' => 'required|email|max:255|

unique:users',

 'password' => 'required|confirmed|min:6',

]);

 }

So in a nutshell the ‘AuthController’ is shipped with all the guns to fire up in a crisis.
Now let us start building up a nice Authentication process through which we can register
and log in. And at the same time we will see how we can use ‘middleware’ property to

Chapter 14 ■ authentiCation and authorization

85

guard our users’ dashboards. To start with you need to create a ‘users’ table. You are
supplied with a default user migration file in your ‘database/migration’ file. Let us set it
up first like this:

public function up()

 {

 Schema::create('users', function

(Blueprint $table) {

 $table->increments('id');

 $table >string('name');

 $table->string('email')->unique();

 $table->string('password', 60);

 $table >rememberToken();

 $table->timestamps();

 });

 }

You see I have set up the columns. Now issue the following command:

php artisan migrate

I have set up a database ‘MyApp’ in the ‘.env’ file beforehand so the ‘users’ have been
added to that database now. Now we add four view pages to our ‘views’ folder. These
pages are ‘login.blade.php’, ‘register.blade.php’, ‘dashboard.blade.php’, and ‘home.blade.php’.

//codes of 'login.blade.php' starting

@extends('auth.master')

@section('title')

 Login Page

@stop

@section('content')

Chapter 14 ■ authentiCation and authorization

86

<h1>

 Sign In

</h1>

@foreach ($errors->all() as $error)

 {{ $error }}

@endforeach

<div class="form group">

 {!! Form::open(["url" => "auth/login",

"method" => "POST"]) !!}

<div class="form group">

{!! Form::label('Name : ') !!} {!!

Form::text('name')!!}

</div>

<p></p>

<div class="form group">

{!! Form::label('Email : ') !!} {!!

Form::email('email')!!}

</div>

<p></p>

<div class="form group">

{!! Form::label('Password : ') !!} {!!

Chapter 14 ■ authentiCation and authorization

87

Form::password('password')!!}

</div>

<p></p>

<p></p><p></p>

{!! Form::submit('Sign In') !!}

{!! Form::close() !!}

</div>

@stop

@section('footer')

 Users Registration page

@stop

//code ended

Now let us create register page.

//code of 'dashbaord.blade.php' starting

@extends('auth.master')

@section('title')

Registration Page

@stop

@section('content')

<h1>

 Register

</h1>

@foreach ($errors->all() as $error)

Chapter 14 ■ authentiCation and authorization

88

 {{ $error }}

@endforeach

<div class="form group">

 {!! Form::open(["url" => "auth/register",

"method" => "POST"]) !!}

<div class="form group">

{!! Form::label('Name : ') !!} {!!

Form::text('name')!!}

</div>

<p></p>

<div class="form group">

{!! Form::label('Email : ') !!} {!!

Form::email('email')!!}

</div>

<p></p>

<div class="form group">

{!! Form::label('Password : ') !!} {!!

Form::password('password')!!}

</div>

<p></p>

<div class="form group">

{!! Form::label('Password Confirmation : ') !!}

{!! Form::password('password_confirmation')!!}

</div>

Chapter 14 ■ authentiCation and authorization

89

<p></p><p></p>

{!! Form::submit('Register') !!}

{!! Form::close() !!}

</div>

@stop

@section('footer')

 Registration Page

@stop

//code ended

For brevity we will skip the codes for dashboard and home. Everything is the same
except for one logout option. That is like this:

<div class="form group">

 {!! Form::open(["url" => "auth/logout",

"method" => "POST"]) !!}

<p></p><p></p>

{!! Form::submit('Sign Out') !!}

{!! Form::close() !!}

Now finally we add these methods ‘routes.php’

//codes of 'routes.php' starting

// Authentication routes

 Route::get('auth/login',

'Auth\AuthController@getLogin');

 Route::post('auth/login',

'Auth\AuthController@postLogin');

 Route::get('auth/logout',

Chapter 14 ■ authentiCation and authorization

90

'Auth\AuthController@getLogout');

 Route::post('auth/logout',

'Auth\AuthController@getLogout');

 // Registration routes

 Route::get('auth/register',

'Auth\AuthController@getRegister');

 Route::post('auth/register',

'Auth\AuthController@postRegister');

//how to protect your users page

Route::group(['middleware' => 'auth'], function ()

{

 Route::get('home', function () {

 return view('auth.home');

 });

 Route::get('dashboard', function () {

 return view('auth.dashboard');

 });

 //it works

 //Route::get('test', 'MyController@test');

 });

//code ended

Now your register page automatically does the server-side validation. You see the
‘register.blade.php’ page $errors >all() method. It does the trick. If a user fills up all
the fields properly and presses the register button, he will directed to the home page
automatically. And if he logs in he will redirected to the dashboard. There he can signs
out. So we can conclude that Authentication in Laravel 5 is just like a cakewalk. All you
need to do is set the users table, create a few view pages, and add the necessary routes.

91© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_15

CHAPTER 15

More About Validation

Okay, there is nothing new in the word validation. Even if you are a beginner you already
know what the term validation means. Very simple. Sending blank forms might cause
major problem for the server and as a developer you would also suffer from that. Another
big problem is the user itself. The rule of thumb is not to trust the user. And that is true.
You want user’s e-mail and some text is being supplied instead. How will tackle this
menace? The answer is validation. And Laravel has made it really easy. Not only easy, but
with so many choices, it really becomes something where the possibilities are endless. Let
us consider a form like before:

{{ Form::open(array('url' => '/')) }}

{{ Form::label('username', 'Username') }}

{{ Form::text('username') }}

{{ Form::label('email', 'E Mail Address') }}

{{ Form::email('email', 'me@sanjib.me') }}

{{ Password field. }}

{{ Form::label('password', 'Password') }}

{{ Form::password('password') }}

{{ Password confirmation field. }}

{{ Form::label('passwordConfirmation', 'Password

confirmation') }}

{{ Form::password('passwordConfirmation') }}

{{ Form::open(array('url' => '/')) }}

Chapter 15 ■ More about Validation

92

{{ Form::hidden('hagu', 'mutu') }}

{{ Form::open(array(

'url'

=> 'test/test',

'files' => true

)) }}

{{ Form::label('avatar', 'Avatar') }}

{{ Form::file('avatar') }}

{{ Form::submit('Submit') }}

{{ Form::close() }}

//end of code

The form is simple enough with some tricks included. But it targets the main
opening page that can be changed to something like ’registration.blade.php’ or anything
you like. And by default it uses ‘POST’ request verb. Now, how can we validate this
form so that no one sends a blank request, causing severe problems for our application
and burdening our server? Our first priority should be the form fields that should not
have been left blank. A user must fill in the forms. Our application would look into that
matter internally. Remember, the greatness of Laravel is that it usually looks after this
mechanism fantastically. You need not worry about it at all. As you see, we can set more
rules for our users here. For example, in username, there must be some alphanumeric
value. We should force our user to follow the rule, otherwise it will not be maintained. As
I say, the possibilities are endless; there are many more options. The rule is very simple.
And Laravel will take the main responsibilities so you need not worry about it at all.

It goes something like this:

Route::post('/', function()

{

$postdata = Input::all();

//we are going to handle the form

});

//end of code

Chapter 15 ■ More about Validation

93

And the next step would be pretty simple:

Route::post('/', function()

{

$postdata = Input::all();

$check = array(

'username' => 'alpha_num'

);

});

//end of code

As you see, we set our users follow a rule which says that you should provide some
alphanumeric value. Okay, I hope this is enough to provide a sample of how it works.
Before embarking on a new journey to Laravel validation, we would like to see if we could
have done some validation on our own if we were not given a superpower like Laravel! It
will help us to clear up the concepts.

We’re going to test almost same form making it a little shorter for brevity. We have
three files: ‘form.php’, ‘validate.php’, and ‘action.php’. In the first file, ‘form.php’, the form
will show up and is ready for checking two fields: username and e-mail. We force our
users to obey some rules, like no blank submissions, e-mail must look like e-mail, et
cetera.

//first the form view page:

 <h1>

 The Crazy By Cycle Club

 </h1>

 <h2>

 Please Fill up your Credentials for the

crazy tour!

 </h2>

 <form method="POST" action="action.php"

accept charset="UTF 8">

Chapter 15 ■ More about Validation

94

 <input name="_token" type="hidden"

value="EMnZhqPbryk7oVPcrjwxuTrlHto">

<label for="username">Your Name</label>

<p>

<input name="username" type="text" value="Your name" id="username">

<p>

<label for="email">Your Email</label>

<p>

<input name="email" type="text" value="your email"

id="email">

<p>

<input type="submit" value="Register">

/end of code

It’s a very simple form page where you are about to register your username and
e-mail. Let us see how we can make it validate it in our ‘validate.php’ class. The validation
class code goes like this:

//code starts

<?php

/*

* .validate class checks two things in user name

field

* 1) user name should not be left blank

* 2) user name must be between 3 to 8 characters

* Secondly it checks the email field

* email should have a @ sign

Chapter 15 ■ More about Validation

95

*/

trait ValidateTrait {

 public function checked() {

 return "Okay, Your Data has been saved";

 }

 public function unchecked() {

 return "You have not provided proper data.";

 }

}

interface ValidateInterface {

 public function make($value);

}

class Validate implements ValidateInterface {

 use ValidateTrait;

 public $_value = array();

 public function make($value) {

 $this >_value = $value;

 if (strlen($value) === 0 || strlen($value)

< 3 || strlen($value) > 8){

 return FALSE;

 }

 elseif(is_string($value) && trim($value)

=== ''){

 return FALSE;

 }

Chapter 15 ■ More about Validation

96

 elseif (is_array($value)) {

 return FALSE;

 }

 elseif (preg_match("/\@.\/i", $value)) {

 return FALSE;

 }

 return TRUE;

 }

}

//end of code

Next in ‘action.php’ we will validate this form data. The code is like this:

//code starts

<?php

/*

* validating form

*/

require 'validate.php';

if ($_POST['_token'] === "EMnZhqPbryk7oVPcrjwxuTrlHto"){

 $value = [$_POST['username'],

$_POST['email']];

 $validate = new Validate();

 if ($validate >make($value[0]) && $validate

>make($value[1])){

 echo $validate >checked();

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ More about Validation

97

 }

 else {

 echo $validate >unchecked();

 }

}

else {

 echo 'You Crackers! Go back!';

}

//end of code

We have passed a hidden token and matched it with our form data so that it cannot
be sent by an outsider. But it could be written in a better way. For brevity we have caught
data directly but accessing super global array directly is not a good practice. It can be
done like this:

//code starts

<?php

/*

* validating form

*/

require 'validate.php';

$token = filter_input(INPUT_POST, '_token',

FILTER_SANITIZE_FULL_SPECIAL_CHARS);

$user = filter_input(INPUT_POST, 'username',

FILTER_SANITIZE_FULL_SPECIAL_CHARS);

$email = filter_input(INPUT_POST, 'email',

FILTER_SANITIZE_EMAIL);

if ($token === "EMnZhqPbryk7oVPcrjwxuTrlHto"){

Chapter 15 ■ More about Validation

98

 $value = [$user, $email];

 $validate = new Validate();

 if ($validate >make($value[0]) &&
$validate->make($value[1])){

 echo $validate->checked();

 }

 else {

 echo $validate >unchecked();

 }

}

else {

 echo 'You Crackers! Go back!';

}

//end of code

If lines of coding and making things come together do matter to you, you will prefer to
delegate your task to Laravel. The creator Taylor Otwell and the Laravel chore team look after all
the possibilities and kept close to the principle that no stone should be unturned. So everything
goes into its proper place and you are rendered with every possible option to optimize your
application. Let us go to our old bicycle form and see how we can validate it, forcing our users
to go through many tasks that are available in Laravel. We have ended here before:

Route::post('/', function()

{

$postdata = Input::all();

$check = array(

'username' => 'alpha_num'

);

});

//end of code

Chapter 15 ■ More about Validation

99

Now we know what it tells. But how we can validate this? Is there any validate class?
Yes, there is! Let us find out how it can be used. To do that we need to set up our validate
object that will check whether the rule is strictly followed or not! The code goes like this:

//code starts

Route::post('/', function()

{

// Fetch all request data.

$postdata = Input::all();

// Build the validation constraint set.

$check = array(

'username' => 'alpha_num'

);

// Creating instance that should be passed.

$validatingData = Validator::make($postdata,

$check);

});

//end of code

This code is not complete, as you have guessed, as our validation instance should be
passed through a rigorous test. We will do that shortly. This ‘postdata’ can be anything as
you define it accordingly. No matter. Finally, the full text of the code goes like this:

//code starts

Route::post('/', function()

{

// Fetch all request data.

$postdata = Input::all();

// Build the validation constraint set.

Chapter 15 ■ More about Validation

100

$check = array(

'username' => 'alpha_num'

);

$validatingData = Validator::make($postdata,

$check);

if ($validatingData >passes()) {

// when it passes you can insert, update your //database. If it did not pass
you can return redirect to a //failure page also return 'Data was saved.'

}

return Redirect::to('/success');

});

//end of code

Now you have got the main arsenal, and how you fire from it is up to you. There are
obviously many other options available alongside the alphanumeric characters. In this
form, if we put a name like ‘sanjib65’ it will pass throughout and the data will be saved.
But instead of alphabetical or numerical value we put some strange characters like ‘@!!&*’,
it will fail. In such case, we can use our code this way:

//code starting

Route::post('/', function()

{

// Fetch all request data.

$postdata = Input::all();

// Build the validation constraint set.

$check = array(

'username' => 'alpha_num'

);

$validatingData = Validator::make($postdata,

Chapter 15 ■ More about Validation

101

$check);

if ($validatingData >fails()) {

// Normally we would do something with the data.

return Redirect::to('/failure');

}

return 'Data saved.';

});

//end of code

It is fairly simple, so no explanation is needed. Let us see how we can add many
more features to our ‘$check’ array. Suppose we want our username to be a minimum of
six characters long. What we can do? Very simple. Laravel makes it writing like a explicit
description: min:6. This ‘min:6’ can be changed to ‘min:4’ or ‘min:5’ or any length you
need to adopt. The code is almost the same, with a little change, as you supposed.

//code starting

Route::post('/registration', function()

{

// Fetch all request data.

$postdata = Input::all();

// Build the validation constraint set.

$check = array(

'username' => 'min:6'

);

$validatingData = Validator::make($postdata, $check);

if ($validatingData >passes()) {

// Normally we would do something with the data. return 'Data was saved.';

}

Chapter 15 ■ More about Validation

102

return Redirect::to('/success');

});

//end of code

Instead of ‘alpha_num’ you write ‘min:6’ and that is it. But wait! There is more.
Suppose you can add both features to your username. What can you do? Laravel’s greatest
feat is that it makes things so simple and elegant that you cannot imagine before using it
how it is being rendered. The full code goes like this:

//code starting

Route::post('/registration', function()

{

// Fetch all request data.

$postdata = Input::all();

// Build the validation constraint set.

$check = array(

'username' => 'alpha_num|min:6'

);

$validatingData = Validator::make($postdata,

$check);

if ($validatingData ->passes()) {

// Normally we would do something with the data.

return 'Data was saved.';

}

return Redirect::to('/success');

});

//end of code

Chapter 15 ■ More about Validation

103

Now you already know that Laravel ships with a lot of validation facilities. And all
the tricks have emerged from the Validation class. You are free to check out the chore
what are all the methods that are being used. Besides, you can go throughout the
documentation that nicely explains the rules, one after another. Here I am trying to give
you a glimpse of what you can do with this Validation class. Let us check this code again:

//code starting

$validatingData = Validator::make(

array('name' => 'Sanjib'),

array('name' => 'required|min:6')

);

//end of code

Validator class has a make method which takes the first argument as the data that are
to be checked. And the second argument shows the requirements. You can either use the
‘pipe’ character or you can use array to separate elements like this:

//code starting

$validatingData = Validator::make(

array('name' => 'Sanjib'),

array('name' => array('required', 'min:6'))

);

//end of code

You can also use multiple fields:

//code starting

$validatingData = Validator::make(

array(

'name' => 'Sanjib',

'password' => 'mypassword',

'email' => 'me@sanjib.me'

Chapter 15 ■ More about Validation

104

),

array(

'name' => 'required',

'password' => 'required|min:8',

'email' => 'required|email|unique:users'

)

);

//end of code

You have already seen how we can use ‘passes’ and ‘fails’ methodology to save or
reject form data. We can also use ‘message’ method to get the error messages. It is very
simple:

//code starting

$validatingData = Validator::make(

array('name' => 'Sanjib'),

array('name' => 'required|min:6')

);

$validatingData = Validator::make(

array(

'name' => 'Sanjib',

'password' => 'mypassword',

'email' => 'me@sanjib.me'

),

array(

'name' => 'required',

'password' => 'required|min:8',

'email' => 'required|email|unique:users'

Chapter 15 ■ More about Validation

105

)

);

$messages = $validator->messages();

//end of code

There is another option to retrieve error messages through ‘failed’ method.

$failedMessage = $validator >failed();

By using this method, you can grab all the failed rules that your user did not properly
obey while filling up the form data. Now obviously, question is how we can retrieve
the error messages or failed rules? When you call the ‘message’ method on a Validator
instance, it usually comes up with an array. Obviously, you have set many parameters like
this:

//code starting

array(

'name' => 'required',

'password' => 'required|min:8',

'email' => 'required|email|unique:users'

)

//end of code

Now you can get one by one – just like this:

echo $messages->first('email');

Or you can get it as a whole:

//code starting
 foreach ($messages >get('email') as $message)

{

echo $message . "
";

}

//end of code

Chapter 15 ■ More about Validation

106

Suppose you have a code like this where you have already set plenty of validating
rules and you want to grab all the error messages at one go. How you can do that?

//code starting

$validatingData = Validator::make(

array('name' => 'Sanjib'),

array('name' => 'required|min:6')

);

$validatingData = Validator::make(

array(

'name' => 'Sanjib',

'password' => 'mypassword',

'email' => 'sanjib12sinha@gmail.com'

),

array(

'name' => 'required',

'password' => 'required|min:8',

'email' => 'required|email|unique:users'

)

);

$errorMessages = $validator->messages();

foreach ($errorMessages >all() as $message)

{

echo $message . “
”;

}

//end of code

Chapter 15 ■ More about Validation

107

Do you want your error messages in a nice formatted way? Laravel thinks about this
also. You can write your whole code like this:

//code starting

$validatingData = Validator::make(

array('name' => 'Sanjib'),

array('name' => 'required|min:6')

);

$validatingData = Validator::make(

array(

'name' => 'Sanjib',

'password' => 'mypassword',

'email' => 'me@sanjib.me'

),

array(

'name' => 'required',

'password' => 'required|min:8',

'email' => 'required|email|unique:users'

)

);

$errorMessages = $validator >messages();

foreach ($errorMessages->all(':message')

as $message)

{

echo $message . "
";

}

//end of code

Chapter 15 ■ More about Validation

108

As you see, there are plenty of options. Taylor and his team have thought of almost
all possibilities and tried to give you support in every possible way. Now let us imagine
a more concrete example, where we have a ‘register.blade.php’ in our ‘views’ folder. We
have a form like this:

//code starting

{{ Form::open(array('url' => '/')) }}

{{ Form::label('username', 'Username') }}

{{ Form::text('username') }}

{{ Form::label('email', 'E Mail Address') }}

{{ Form::email('email', 'me@sanjib.me') }}

{{ Password field. }}

{{ Form::label('password', 'Password') }}

{{ Form::password('password') }}

{{ Password confirmation field. }}

{{ Form::label('password_confirmation', 'Password confirmation') }}

{{ Form::password('password_confirmation') }}

{{ Form::open(array('url' => '/')) }}

{{ Form::hidden('hagu', 'mutu') }}

{{ Form::open(array(

'url'

=> 'test/test',

'files' => true

)) }}

{{ Form::label('avatar', 'Avatar') }}

{{ Form::file('avatar') }}

{{ Form::submit('Submit') }}

Chapter 15 ■ More about Validation

109

{{ Form::close() }}

//end of code

Now in our route we can write something like this:

//code starting

Route::get('register', function()

{

return View::make('user.register');

});

Route::post('register', function()

{

$rules = array(...);

$validator = Validator::make(Input::all(),

$rules);

if ($validator->fails())

{

return Redirect::to('register')
->withErrors($validator);

}

});

//end of code

Now when the validating rules fail and error messages generate, the $error variable
is automatically defined to the session. The way Laravel tackles this problem is quite
intelligent. You need not explicitly bind the error messages to your view in GET route.
Laravel looks after this. How does it happen? Laravel always checks for the errors in
session and binds them to the view. So if it is available, on every request $error variable is
present in the view. Do you want anything more? :) So check for any field like this:

echo $errors->first('email');

Chapter 15 ■ More about Validation

110

Now it is time for checking for all the Validation rules. There are plenty and you can
get the full list in the documentation. But let me get some of them so that you can get
acquainted with them.

//code starting

array(

'field' => 'accepted'

);

array(

'field' => 'alpha'

);

array(

'field' => 'url'

);

array(

'field' => 'size:8'

);

array(

'field' => 'alpha_dash'

);

array(

'field' => 'active_url'

);

array(

'field' => 'after:16/04/15'

);

Chapter 15 ■ More about Validation

111

array(

'field' => 'before:09/02/15'

);

array(

'field' => 'unique:users,username'

);

array(

'field' => 'between:4,9'

);

array(

'field' => 'same:age'

);

array(

'field' => 'confirm'

);

array('field' => 'date');

array('field' => 'required_without:age,height');

array('field' => 'required_with:age,height');

array('field' => 'required_if:username,sanjib');

array('field' => 'required');

array('field' => 'numeric');

//end of code

I hope you would happily search for more validation rules in the Laravel
documentation. You will get more and make your Validation rules more interesting. Here
briefly I will have some discussion.

Chapter 15 ■ More about Validation

112

array(

'field' => 'numeric'

);

Here you guess it correctly. The field must have a numeric value. A few of them are
pretty interesting, like this one:

array(

'field' => 'size:7'

);

Here ‘size’ stands for everything—numerical value, string, byte of an image—literally
everything. As you know, size sometimes really matters for someone! Isn’t it very handy?

15.1 Conditional Rules
Sometimes in your input array a field may not be present but you want to check it. What
can you do for that? Don’t worry! Laravel thinks about it already and ships with some
solutions for your problem. For one field it is not a big problem as you can declare your
variable like this:

$validatingData = Validator::make($data, array(

'email' => 'sometimes|required|email',

));

But in a complex scenario it is quite different, as you have presumed. Suppose you
are operating a hotel registration and booking site where there are more than one field
for you to validate. For doing this, you need to check your client’s requests for rooms and
number of people presentation.

You can check this conditional statement like this:

$validatingData = Validator::make($data, array(

'email' => 'sometimes|required|email',

'rooms'=>'required|numeric'

));

Chapter 15 ■ More about Validation

113

Now presumably you may want to ask why more than one room are requested. So
in ‘sometimes’ method you can add that argument and hold it in your ‘input’ data target
in the closure which is passed as third argument. There are more instances and for a
detailed example the Laravel documentation will come handy. In this validation section,
last but not the least is the Custom Validation part. Let us see how we can make some
progress in it.

You can pass a custom message like this:

$yourmessage = array(

'required' => 'The :attribute field is neccessary.',

);

$validator = Validator::make($input, $rules, $yourmessage);

And you can pass an array of messages no matter how big you want it!

15.2 Custom Validation
So validation does not require much effort if you do know the tricks. The thing is, you
need to know the classes and variables defined by default. But besides that you can also
do some own customary validation rules. Laravel has a tremendous capacity to extend
itself and even encourage you to write some awesome methods. So never feel shaky and
always try to do justice to this expandable technique. Write your own staff and let the
world know about it. Let us try to do some Custom Validation.

//custom validation

Validator::extend('customValidator',

function($field, $value, $parameters)

{ return $value == 'customValidator';

});

Route::get('/', function()

{

return View::make('form');

});

Route::post('/registrationPage', function()

Chapter 15 ■ More about Validation

114

{

// Getting all requested data.

$data = Input::all();

// Let us build the validation constraint set.

$rules = array(

'username'

=> 'customValidator',

);

// Creating a new validator instance.

$validatingData = Validator::make($data, $rules);

if ($validatingData ->passes()) {

// here usually we do some database staff return 'Data was saved.';

}

return Redirect::to('/') ->withErrors($validatingData);

});

//end of code

As you see, I just extended the Validator class with a method ‘extend’. Basically what
we wanted to do is build some custom validation rules. So in Validator::extend()
method we need to pass those rules. We have used a Closure to do that. If we have a close
look at the extend() method:

Validator::extend('customValidator',

function($field, $value, $parameters)

{

return $value == 'customValidator';

});

//end of code

Chapter 15 ■ More about Validation

115

We see that the first parameter is a nickname, nothing else. But the second
parameter is the closure, which plays the main role.

It passes $field, $value, $parameters. The first parameter is the field (here it is
‘username’), and the second one is the value of the field. But what about the third one
which passes the parameters? It is an array of any parameters that have been passed to
the validation rules. You can customize it throughout a custom class. No problem. And
finally just to show the example I keep the following in our app/routes.php file:

Validator::extend('customValidator',

function($field, $value, $parameters)

{

return $value == 'customValidator';

});

But you can keep it in any file in your ‘app’. And the same rule applies to the awesome
custom class you are going to write. Suppose in ‘app’ you create a folder called ‘validator’
and keep your Custom Validation class inside it like this:

//custom validation class

class MyCustomValidation

{

public function customValidator($field, $value, $parameters)

{

return $value == 'customValidator';

}

}

//end of code

The question is: how you can use it inside your ‘routes.php’? As you see inside the
class, we return the nickname ‘customValidator'. We can bind it to the extend() method
just like this:

//starting of code

//custom validation

Chapter 15 ■ More about Validation

116

Validator::extend('customValidator',

MyCustomValidation@customValidator);

Route::get('/', function()

{

return View::make('form');

});

Route::post('/registrationPage', function()

{

// Getting all requested data.

$data = Input::all();

// Let us build the validation constraint set.

$rules = array(

'username'

=> 'customValidator',

);

// Creating a new validator instance.

$validatingData = Validator::make($data, $rules);

if ($validatingData >passes()) {

// here usually we do some database staff return 'Data was saved.';

}

return Redirect::to('/')
 >withErrors($validatingData);

});

//end of code

Chapter 15 ■ More about Validation

117

The custom validation message is fairly simple and will not take much effort. In the
existing custom validation rules you can do this. And no matter, it will not put you to a
hard test. Let me reassure you that it is a painless and blissful coding experience. Let us
see how we can use a custom validation message along with our 'MyCustomValidation'
class.

//starting the code

//custom validation message

//custom validation

::extend('customValidator',

function($field, $value, $params)

{

return $value == 'customValidator';

});

Route::get('/', function()

{

return View::make('form');

});

Route::post('/registrationPage', function()

{

// Getting all requested data.

$data = Input::all();

// Let us build the validation constraint set.

$rules = array(

'username'

=> 'min:3',

);

Chapter 15 ■ More about Validation

118

//

$errorMessages = array('min' => 'Not less than three characters.');

// Creating a new validator instance.

$validatingData = Validator::make($data, $rules, $errorMessages);

if ($validatingData >passes()) {

// here usually we do some database staff return 'Data was saved.';

}

return Redirect::to('/') ->withErrors($validatingData);

});

//custom validation class

//in app/validator/MyCustomValidation.php

class MyCustomValidation

{

public function customValidator($field, $value, $parameters)

{

return $value == 'customValidator';

}

}

//end of code

In the preceding code, this part is extremely important.

$errorMessages = array(

'min' => 'Not less than three characters.'

);

// Creating a new validator instance.

Chapter 15 ■ More about Validation

119

$validatingData = Validator::make($data, $rules, $errorMessages);

if ($validatingData >passes()) {

// here usually we do some database staff return 'Data was saved.';

}

return Redirect::to('/')->withErrors($validatingData);

});

//end of code

You see, in this $validatingData = Validator::make($data, $rules,
$errorMessages); method, the third parameter is optional for passing error messages.
It passes an array of messages. If you don’t define it or customize it, it will pass a default
message. If you have customary message it will override the default message. That is it.
Here exactly the same thing happens.

15.3 How Form Validation Works
Form validation in Laravel 5 becomes extremely easy. You have seen that in the previous
chapter. You don’t have to validate your form fields separately. You just declare it in your
Controller method and the scaffolding of Model and Views are ready to obey that rule.
Let see how we can do it in the shortest way! We assume that we have a 'songs' table. I
hope you didn’t forget. I showed you before how to add new records through the form
blade. Now let us check the 'SongsController' codes. Is there any validation method?
No, so we need to create it first. Remember, Laravel’s base controller class uses the
'ValidatesRequests' trait, which actually treats every HTTP request with a very powerful
validation mechanism. So you need not worry about that. You need to add the validate()
method only and once it has been added it will take care of every single HTTP request.

//code starting

public function store()

 {

 $this >validate($this >request, [

 'title' => 'required|unique:songs|

max:255',

 'slug' => 'required||max:255'

Chapter 15 ■ More about Validation

120

]);

 $this ->songs ->title = $this >request

>title;

 $this->songs >slug = $this >request >slug;

 $this->songs->lyrics = $this >
request >lyrics;

 $this ->songs- >save();

 return 'Saved';

 }

//code ended

And subsequently we added an $errors ->all() method in our 'createsongs.blade.php'
page like this:

@foreach ($errors- >all() as $error)

 {{ $error }}

@endforeach

On your 'createsongs.blade.php' page you can catch your errors by this logic also:

@if (count($errors) > 0)

 <div class="alert alert danger">

 @foreach ($errors- >all() as

$error)

 {{ $error }}

 @endforeach

Chapter 15 ■ More about Validation

121

 </div>

 @endif

So there are many ways you can make your validation rules work. Please consult the
documentation for the whole list of validation rules available. For an example, let us try a
simple one. Change this line from that:

'title' => 'required|unique:songs|max:255',

to this:

'title' => 'required|unique:songs|max:255|min:2',

Now if you fill up the title field with one character, it immediately catches the error
and shows it. The title must be at least two characters. And there are lot of options for
you if want to make a custom Validation rule. You can use your artisan tool to create the
custom validator class like this:

php artisan make:request StoreSongsPostRequest

Now the generated class will be stored in the 'app/Http/Requests' directory. Then
you can add some custom rules like before:

public function myrules()

 {

 return [

 'title' => 'required|unique:songs|

:255',

 'slug' => 'required||max:255|min:2',

 'lyrics' => 'required',

];

 }

Now how can you get this custom Validation working? Very simple, you can either
create the instance of newly created class in your construct or else use the store() method
by type hinting the request object like this:

Chapter 15 ■ More about Validation

122

//code starting

public function store(StoreSongsPostRequest $request)

 {

 $request >myrules($this >request, [

 'title' => 'required|unique:songs|

max:255|min:2',

 'slug' => 'required||max:255|min:2',

 'lyrics' => 'required',

]);

 $this >songs >title = $this >
request >title;

 $this->songs->slug = $this >request >slug;

 $this >songs >lyrics = $this >
request >lyrics;

 $this >songs >save();

 return 'Saved';

 }

//code ended

At the end of this chapter, we can conclude that from Laravel 5 onward, the
framework has made a developer’s life much easier with a lot of tricks supplied. In fact,
unless there is an extraordinary situation, you need not customize your Validation rules.

123© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_16

CHAPTER 16

Eloquent Relations

Now we have learned to create tables through Migration and Tinker. We can also use
Eloquent ORM to do the same. We also have learned to update or edit our database
records. Suppose we have made three tables: ‘users’, ‘songs’, and ‘singers’. Now in our
‘songs’ table we have two table cells, as you have probably noticed. One is ‘user_id’ and
the other is ‘singer_id’. So presumably, a user inserts a song, and he has an ID. In my
database I have inserted three users: first, second, and third. So they have user IDs like 1,
2, and 3, respectively.

I also inserted 10 songs, which of course have 10 respective song IDs. Finally I have
five singers who have their songs in the ‘songs’ table. Remember, these singers might
have one or two songs. Someone may not have any song at all. Besides, these singers also
have a foreign key ‘user_id’; that is, when a user inserts a singer’s name in that table his
ID is inserted along with it. So there is a relationship among these three tables, and these
relationship can be explained in many formatted versions. But Eloquent makes the job of
managing and working with these relationships easy, and supports several different types of
relationships. They are as follows:

•	 One to One

•	 One to Many

•	 Many to Many

•	 Has Many Through

•	 Polymorphic Relations

•	 Many to Many Polymorphic Relations

Now we are going to explore these relationships one by one using Eloquent ORM in
Laravel 4 also. After all, what is Eloquent ORM? Till now you have heard about MVC, that
is Model View Controller methodology, but we did not say anything about the Model part.

Now, based on that theory, we assume that with each database table we have an
associated Model. We can interact with the table much easily.

We have already seen how Laravel has made the whole database operation quite
easy, and Eloquent is the new addition to it.

If you want a definition, Eloquent is the Active Record implementation for database
operations. Now what is Active Record pattern? This is a technique that wraps database
into objects. Suppose you have a ‘user’ table. You can present the data of that table as a
class and every row as an object.

Chapter 16 ■ eloquent relations

124

Now each database table has a corresponding Model that will do every operation
that CRUD does. You know CRUD: create, retrieve, update, and delete. Now you can do
them quite easily through Eloquent ORM. What is ORM? Object relation mapping. That
is, you can have a defined set of relations between the corresponding tables.

As we have seen in our database query building process, a table may have lot of
relations among other tables. Eloquent ORM has a built-in relationship. It makes our life
much easier.

From Laravel 4.1 Eloquent becomes more powerful as it has attached a much-
requested feature: polymorphic Many to Many relationship. Now you need not write a lot
of code to establish a polymorphic Many to Many relationship between tables. Eloquent
does that quite easily. We have ‘users’ table and we have a ‘User’ class in our Model like
this:

//code starting

//models/User.php

<?php

use Illuminate\Auth\UserTrait;

use Illuminate\Auth\UserInterface;

use Illuminate\Auth\Reminders\RemindableTrait;

use Illuminate\Auth\Reminders\RemindableInterface;

class User extends Eloquent implements

UserInterface, RemindableInterface {

use UserTrait, RemindableTrait;

/**

* The database table used by the model.

*

* @var string

*/

protected $table = 'users';

/**

* The attributes excluded from the model’s JSON form.

Chapter 16 ■ eloquent relations

125

*

* @var array

*/

protected $hidden = array('password', 'remember_token');

 }

//end of code

Now in our routes.php we have a code like this:

//code starting

//routes.php

Route::get('/', function()

{

 $user = User::all();

 var_dump($user);

});

//end of code

Since we have four users till now, the preceding output shows them one by one
throughout the key=>value pair. It starts from 0 and ends at 3.

What does it say? It says this representation is of an object of Model User class. In the
User class you have defined two properties already:

//code snippet from User.php

/**

* The database table used by the model

*

* @var string

*/

Chapter 16 ■ eloquent relations

126

protected $table = 'users';

/**

* The attributes excluded from the model’s JSON form

*

* @var array

*/

protected $hidden = array('password', 'remember_token');

//code is incomplete

Now compare them with these two lines: protected ‘table’ => string ‘users’ (length=5)
protected ‘hidden’ => array (size=2) …

I hope this comparison will inspire you to define more properties in the User class!
And what can be defined is being said in the preceding output.

There are lot of properties like ‘connection’, ‘relations’, ‘guarded’, ‘fillable’, et cetera.
Now hopefully you understand that these properties can be defined in your User class:
not only in the User class in your Models folder, but in any class you’re going to write by
yourself. Suppose we have another table called ‘contacts’. We can create a Contact class in
our Models folder. Let us create it with few properties.

//code starting

//models/Contact.php

<?php

class Contact extends Eloquent{

/**

* The database table used by the model

*

* @var string

*/

protected $table = 'contacts';

}

Chapter 16 ■ eloquent relations

127

//end of code

Now let us go to our routes.php and change the code to this:

//code starting

//routes.php

Route::get('/', function()

{

 $usercontacts = Contact::all();

 var_dump($usercontacts);

});

//end of code

We have the same output as before like ‘users’ table, with one exception only. The
only exception is in this line:

protected 'table' => string 'contacts' (length=8)

Basically, except this, every property is predefined but anytime you can override
them like this. In your User class, you write something like this:

//code starting

//User.php

class User extends Eloquent {

protected $guarded = array('password');

}

//end of User.php

It means that the ‘password’ of ‘users’ table is no longer mass assignable. You can
even block all attributes from mass assignment like this:

protected $guarded = array('*');

So the possibilities are endless. And we will later come back to these properties
and discuss in a detailed manner. Before that I would look at some typically defined
query building throughout our Models. Suppose we want to find the country of the first

Chapter 16 ■ eloquent relations

128

contacts. Laravel Eloquent ORM ships with reasonably moderate methodology that may
help you to find it quite easily.

Consider this code:

Route::get('/', function()

{

 $usercontacts = Contact::find(1);

 var_dump($usercontacts >country);

});

Can we see all the contacts in a nicely formatted JSON way? Let’s see:

Route::get('/', function()

{

 $usercontacts = Contact::all();

 foreach ($usercontacts as $key => $value) {

 echo $key . "=" . $value . "
";

 }

});

The JSON output is like this:

0={"id":"1","user_id":"1","address":"Address of Admin","country":"Mars","ph
one":"12445"}

1={"id":"2","user_id":"2","address":"Address of Sanjib","country":"Jupiter"
,"phone":"456"}

2={"id":"3","user_id":"3","address":"Address of Debangshu","country":"Moon"
,"phone":"567"}

3={"id":"4","user_id":"8","address":"Address of Mana","country":"Sun","pho
ne":"234"}

It seems that Laravel has thought about it earlier and is trying to use the advantage of
JSON or JavaScript Object Notation. Essentially it is a human readable way of storing the
value of an array or of an object as strings. Just pick up the first value from the first row of
our Contacts table and see what it says.

Chapter 16 ■ eloquent relations

129

0={"id":"1","user_id":"1","address":"Address of
Admin","country":"Mars","phone":"12445"}

It says: our $contact object produces an array which has all the values of ‘contacts’
table. The first key, which is 0 obviously, represents the first row of ‘contacts’ table.

Now you may ask, why does Laravel choose JSON? There are many reasons but one
of them is definitely speed. The common usage of JSON is when a front-end part of your
application wants data from the back end without page load.

The same goal can be achievable by JavaScript with an AJAX request. Speed really
matters when you deal with a pretty big application, doesn’t it?

It will not out of context if we discuss a bit about JSON here. I hope you would
permit me to tell you something more. For a beginner it is good to learn that PHP starts
serializing arrays and objects to JSON from its version 5.2.0. You may have heard about
serialize() and unserialize() methods in PHP. It is nothing but converting an object to
string and reversing to a new instance to get back its value.

I said JSON is a human readable way, but practically it is not really very readable as
JSON stores data without white space between them. Why? As I said, speed matters! Now
back to our old discussion. The output means every contact row object has been included
in an array. So we can break them to get more out of it like this:

Route::get('/', function()

{

 $contact = Contact::all();

 foreach ($contact as $value) {

 var_dump($value);

 }

});

Now the output is extremely important, and it explicitly shows how Contact class
behaves and creates its object. Here we see four contact objects, with each having their
properties well defined. We have extended our Contact class from Eloquent and thereby
we have inherited those properties.

We are interested about the first part of the preceding output:

object(Contact)[141]

protected 'table' => string 'contacts' (length=8)

protected 'connection' => null

protected 'primaryKey' => string 'id' (length=2)

Chapter 16 ■ eloquent relations

130

protected 'perPage' => int 15

public 'incrementing' => boolean true

public 'timestamps' => boolean true

protected 'attributes' =>

array (size=5)

'id' => string '1' (length=1)

'user_id' => string '1' (length=1)

'address' => string 'Address of Admin' (length=16)

'country' => string 'Mars' (length=4)

'phone' => string '12445' (length=5)

protected 'original' =>

array (size=5)

'id' => string '1' (length=1)

'user_id' => string '1' (length=1)

'address' => string 'Address of Admin' (length=16)

'country' => string 'Mars' (length=4)

'phone' => string '12445' (length=5)

protected 'relations' =>

array (size=0)

empty

......

You see this output is incomplete, but it serves the purpose. There are lots of
properties like ‘table’, ‘connection’, ‘attributes’, ‘original’, et cetera. Each property is an
array. And ultimately Laravel produces them in JSON. Now to retrieve all data you just get
the key and the value will come out like this:

//code starting

Chapter 16 ■ eloquent relations

131

Route::get('/', function()

{

$contact = Contact::all();

 foreach ($contact as $value) {

 echo "Contact ID = " . $value->id . "
";

 echo "User ID = " . $value->user_id .

"
";

 echo "Address = " . $value->address .

"
";

 echo "Country = " . $value->country .

"
";

 echo "Phone = " . $value->phone .

"

";

 //var_dump($value) . "
";

 }

});

//end of code

And the output is quite expected. It shows every contacts detail with user ID.

//the output

Contact ID = 1

User ID = 1

Address = Address of Admin

Country = Mars

Phone = 12445

Chapter 16 ■ eloquent relations

132

Contact ID = 2

User ID = 2

Address = Address of Sanjib

Country = Jupiter

Phone = 456

Contact ID = 3

User ID = 3

Address = Address of Debangshu

Country = Moon

Phone = 567

Contact ID = 4

User ID = 8

Address = Address of Mana

Country = Sun

Phone = 234

//end of output

The crux of Eloquent model is this. Now let us do some querying with our Eloquent
Model. First we will check on the basis of user age. We have User class defined earlier.
First, we want to check two users who have corresponding ages of more than 18.

//code starting

Route::get('/', function()

{

 $users = User::where('age', '>', 18)
 >take(2)

>get();

 foreach ($users as $user)

Chapter 16 ■ eloquent relations

133

 {

 var_dump($user >username);

 }

});

//end of code

Remember, we have only three users in our users table who have ages above 18. We
get the first two.

//output

string 'admin' (length=5)

string 'sanjib' (length=6)

//end of output

It produces on the basis of user ID. It goes on 1, 2, 3, and so on. If there are millions of
users and you don’t need to process them all to avoid eating up your memory, one good
method is chunk(). With only four users it is difficult to show you how it works but still we
can have a try and have some fun indeed.

//code starting

User::chunk(100, function($users)

{

foreach ($users as $user)

{

 //grab the $user here

}

});

//end of code

Inserting, updating, or deleting with the help of Eloquent is quite easy as you have
assumed already. You need not write a lot of code; instead you only write two or three
lines of code to get your job done in a secured way.

Chapter 16 ■ eloquent relations

134

//code starting

Route::get('/', function()

{

 $user = new User();

 $user->username = 'NewUser';

 $user->password = password_hash('pass', PASSWORD_BCRYPT);

 $user ->token = 'kljhnmbgfvcdsazxwetpouytresdfhjkmnbbvcdsxza';

 $user >age = 27;

 $user->created_at = time();

 $user >updated_at = time();

 $user >save();

 return 'Saved NewUser';

});

//end of coding

Let us see how the new user ‘NewUser’ has been created in our ‘users’ table. To see
his details is very easy now. We know his age, that is, 27. So write down this code:

//code starting

Route::get('/', function()

{

 $users = User::where('age', '=', 27) >get();

 foreach ($users as $user) {

 var_dump($user);

 }

});

//end of coding

Chapter 16 ■ eloquent relations

135

Now we have come to know how this new user object will look when we use var_
dump() method. There are several create() method of Eloquent Models. You can create
many users at one go. Besides, you can retrieve and update any user with a minimum
amount of coding like this:

//code starting

Route::get('/', function()

{

 $user = User::find(2);

 $user >username = 'babu';

 $user ->save();
 return 'Saved!';

});

//end of coding

We know that second user was ‘sanjib’ but now it has successfully been saved to
‘babu’. Deleting is much easier than before. If we want to delete user ‘NewUser’ we need
to write sql like this:

"DELETE FROM `sanjib`.`users` WHERE `users`.`id` = 10"?

Is it not fairly long? Because before this line you need to have to manually connect to
your database, et cetera. In Eloquent Models it is much easier, as you have all things set
up beforehand. The code is simple:

//code starting

$user = User::find(10);

$user ->delete();

//end of coding

Before concluding our Eloquent discussion, I would like to say something about
those properties again. Whenever you are going to create a new class in your Eloquent
Models, you have some properties already defined and set. Laravel has done that
by default. We have seen those properties before. One of them is Timestamps. By
default Eloquent maintains the created_at and updated_at columns of your database
automatically and you need not bother about it.

Suppose you run code like this to get all users belonging to the age less than 28
group.

Chapter 16 ■ eloquent relations

136

//code starting

Route::get('/', function()

{

 $users = User::where('age', '<', 28)
 >take(2)->get();

 foreach ($users as $user)

 {

 var_dump($user);

 }

});

//end of code

We know the output and so we don’t repeat it anymore. But look at those properties,
like ‘timestamps’, ‘fillable’, or ‘guarded’. As long as Eloquent maintains them, it is no
problem but if we want to change them according to our criteria: then what happens?

Let us see to it. Suppose we want to make timestamps ‘false’ and also bring some
changes to ‘fillable’ and ‘guarded’ properties. The code is like this in our User class before
changing the properties:

//code starting

//models/User.php

<?php

use Illuminate\Auth\UserTrait;

use Illuminate\Auth\UserInterface;

use Illuminate\Auth\Reminders\RemindableTrait;

use Illuminate\Auth\Reminders\RemindableInterface;

class User extends Eloquent implements

UserInterface, RemindableInterface {

use UserTrait, RemindableTrait;

Chapter 16 ■ eloquent relations

137

/**

* The database table used by the model.

*

* @var string

*/

protected $table = 'users';

 /**

* The attributes excluded from the model’s

JSON form.

*

* @var array

*/

protected $hidden = array('password', 'remember_token');

 public $timestamps = false;

 protected $fillable = array('username', 'token');

 protected $guarded = array('id', 'password');

 }

 //end of code

As you see, I have commented out those properties. Now we are going to change the
User class, and the final code is like this:

//code starting

//models/User.php

<?php

use Illuminate\Auth\UserTrait;

use Illuminate\Auth\UserInterface;

Chapter 16 ■ eloquent relations

138

use Illuminate\Auth\Reminders\RemindableTrait;

use Illuminate\Auth\Reminders\RemindableInterface;

class User extends Eloquent implements

UserInterface, RemindableInterface {

use UserTrait, RemindableTrait;

/**

* The database table used by the model.

*

* @var string

*/

protected $table = 'users';

/**

* The attributes excluded from the model’s

JSON form.

*

* @var array

*/

protected $hidden = array('password', 'remember_token');

 public $timestamps = false;

 protected $fillable = array('username', 'token');

 protected $guarded = array('id', 'password');

}

//end of code

Chapter 16 ■ eloquent relations

139

Database tables have relations among them. It is quite obviously true that one user
would place her order knowing that the order will be added to her account. Three tables
are associated instantly. Eloquent makes this managing part quite easy. In our previous
database ‘sanjib’ we have two related tables: ‘users’ and ‘contacts’. In our User class let us
write a method that corresponds to the Contact Model. That is, one User has one Contact.
Laravel has the method already: hasOne(), which passes one parameter that has relation
with that Model.

//code starting

//models/User.php

<?php

use Illuminate\Auth\UserTrait;

use Illuminate\Auth\UserInterface;

use Illuminate\Auth\Reminders\RemindableTrait;

use Illuminate\Auth\Reminders\RemindableInterface;

class User extends Eloquent implements

UserInterface, RemindableInterface {

use UserTrait, RemindableTrait;

/**

* The database table used by the model

*

* @var string

*/

protected $table = 'users';

 /**

* The attributes excluded from the model’s

JSON form

*

Chapter 16 ■ eloquent relations

140

* @var array

*/

protected $hidden = array('password', 'remember_token');

 public $timestamps = false;

 protected $fillable = array('username', 'token');

 protected $guarded = array('id', 'password');

 public function contact()

 {

 return $this- >hasOne('Contact');

 }

}

//end of code

In our ‘users’ table, user name ‘mana’ has user ID 8. In ‘contacts’ she has primary ID
4 but has a corresponding user_id 8. So our intention is to reach ‘contacts’ table through
User Model. For that reason we have added this methodology to the User Model:

public function contact()

 {

 return $this->hasOne('Contact');

 }

Now when we write in our routes.php, code like this:

//code starting

//routes.php

Route::get('/', function()

{

 $contact = User::find(8)->contact;

Chapter 16 ■ eloquent relations

141

 var_dump($contact);

});

//end of code

We actually reach ‘contacts’ table through our User Model and find whose user_id
is 8. The output comes out directly from the ‘contacts’ table and produces the detailed
contacts of user ‘mana’.

There is nothing new in it. Basically the SQL performed in this code is corresponding
to this:

//SQL statement

select * from users where id = 8

select * from phones where user_id = 8

//end of SQL statement

This relationship is called One to One. You can define the inverse of the relationship
on the Contact Model using belongsTo() method passing the name of the table as its first
parameter. In that case in our Contact Class we will write code like this:

//code starting

//models/Contact.php

<?php

class Contact extends Eloquent{

/**

* The database table used by the model.

*

* @var string

*/

protected $table = 'contacts';

 public function user()

 {

Chapter 16 ■ eloquent relations

142

 return $this >belongsTo('User');

 }

}

//end of code

Now if we write this code in our routes.php:

//code starting

//routes.php

Route::get('/', function()

{

 $contact = Contact::find(4)->user;

 var_dump($contact);

});

//end of code

It means in our ‘contacts’ table we search throughout the ID and see whether it has a
corresponding user_id with that. Presently, in our ‘contacts’ table we have corresponding
user_id 10 with the contacts ID 4. This relationship means the contacts ID 4 has all the
user’s detail in the ‘users’ table and it looks upon on its corresponding user_id to see
what the number is there. In this case, contacts ID 4 has a corresponding user_id 10. So
it is convinced that in ‘users’ table it has an ID 10. In users table the ID 10 belongs to our
newly created User ‘NewUser’. A few pages back, we created ‘NewUser’ through insert
method using Eloquent.

Ultimately, it brings out the output of ‘NewUser’. Now you need to understand that
little tricky difference between these two methods:

//User.php

public function contact()

 {

 return $this->hasOne('Contact');

 }

//Contact.php

Chapter 16 ■ eloquent relations

143

public function user()

 {

 return $this->belongsTo('User');

 }

This hasOne() in User Class searches for corresponding user_id in ‘contacts’
table and belongsTO() in Contact.php just relates its primary ID to the corresponding
user_id in that table. Both ways, user_id plays the vital role and defines that One to One
relationship, but, in a different way.

The same way very easily we can establish One to Many relationship among tables.
Suppose one user has many posts in our ‘posts’ table. How can we get all of his articles in
one go?

There is one method, hasMany(), that passes similarly parameters that can do that
SQL query very easily. In our User Model first we should define that method in this way:

//code starting

//models/User.php

<?php

use Illuminate\Auth\UserTrait;

use Illuminate\Auth\UserInterface;

use Illuminate\Auth\Reminders\RemindableTrait;

use Illuminate\Auth\Reminders\RemindableInterface;

class User extends Eloquent implements

UserInterface, RemindableInterface {

use UserTrait, RemindableTrait;

/**

* The database table used by the model

*

* @var string

*/

Chapter 16 ■ eloquent relations

144

protected $table = 'users';

 /**

* The attributes excluded from the model’s

JSON form

*

* @var array

*/

protected $hidden = array('password', 'remember_token');

 public $timestamps = false;

 protected $fillable = array('username', 'token');

 protected $guarded = array('id', 'password');

 public function contact()

 {

 return $this->hasOne('Contact');

 }

 public function post()

 {

 return $this->hasMany('Post');

 }

}

//end of code

And after that, we will catch every article written by any user_id mentioned in ‘posts’
table in our routes.php file. And the code is as follows:

//code starting

//routes.php

Chapter 16 ■ eloquent relations

145

Route::get('/', function()

{

 $posts = User::find(10) >post;

 foreach ($posts as $value) {

 echo "This Post made by
User ID : {$value >user_id}
";

 echo "Intro: " . $value->intro . "
";

 echo "Article: " .$value->article

"
";

 echo "Tags: " .$value->tag

"

";

 }

});

//end of code

Finally, we get all the posts submitted by the ‘NewUser’ whose user ID is 10. Basically
the articles shown here are for testing purposes. Now you can, hopefully, write your
own CMS based on Laravel. Finally we will check Many to Many relationship. There
are some situations where users may have different roles at the same time. Let us first
add a table to our database : roles. Then assign some column like id, name, created_at,
and updated_at. Now we have four roles: Administrator, Moderator, Contributor, and
Member. We have had five users. Some of them have common roles: for example, user
‘admin’ is Administrator, Moderator, and Contributor. The user ‘NewUser’ is also like that.
The rest of them have different roles: for example, user ‘babu’ is Moderator and as well
as Contributor, et cetera. This is a very complex relationship but Laravel ships with a very
simple solution. It has a method called belongsToMany() method that would define that
relationship, but we need an intermediary table to join two tables: users and roles. That
intermediary table is called ‘role_user’. The name is derived from the alphabetical order
of the related Model names. The table ‘role_user’ should have two columns: role_id and
user_id. That way, you can build Many to Many relations quite easily.

/* We have role_user table filled up with different responsibilities. You
can run that SQL at one go to test your application. Just create the table
'role_user' in your database 'sanjib' and run this SQL: */

//role_user.SQL

Chapter 16 ■ eloquent relations

146

-- phpMyAdmin SQL Dump

-- version 4.0.10deb1

-- http://www.phpmyadmin.net

--

-- Host: localhost

-- Generation Time: Mar 30, 2015 at 08:43 PM

-- Server version: 5.5.41-0ubuntu0.14.04.1

-- PHP Version: 5.5.21-1+deb.sury.org~precise+2

SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";

SET time_zone = "+00:00";

/*!40101 SET

@OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

/*!40101 SET

@OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

/*!40101 SET

@OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;

/*!40101 SET NAMES utf8 */;

--

-- Database: `sanjib`

--

-- --

--

-- Table structure for table `role_user`

--

Chapter 16 ■ eloquent relations

147

CREATE TABLE IF NOT EXISTS `role_user` (

`id` int(11) NOT NULL AUTO_INCREMENT,

`user_id` int(11) NOT NULL,

`role_id` int(11) NOT NULL,

`created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON

UPDATE CURRENT_TIMESTAMP,

`updated_at` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',

PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=13 ;

--Laravel Learner - 608

-- Dumping data for table `role_user`

--

INSERT INTO `role_user` (`id`, `user_id`, `role_id`, `created_at`, `updated_
at`)

VALUES

 (1, 1, 1, '2015-03-30 15:10:21', '0000-00-00 00:00:00'),

 (2, 1, 2, '2015-03-30 15:10:46', '0000-00-00 00:00:00'),

 (3, 1, 3, '2015-03-30 15:10:55', '0000-00-00 00:00:00'),

 (4, 10, 1, '2015-03-30 15:11:06', '0000-00-00 00:00:00'),

 (5, 10, 2, '2015-03-30 15:11:22', '0000-00-00 00:00:00'),

 (6, 10, 3, '2015-03-30 15:11:31', '0000-00-00 00:00:00'),

 (7, 2, 2, '2015-03-30 15:11:43', '0000-00-00 00:00:00'),

 (8, 2, 3, '2015-03-30 15:11:51', '0000-00-00 00:00:00'),

 (9, 8, 3, '2015-03-30 15:12:38', '0000-00-00 00:00:00'),

 (10, 8, 4, '2015-03-30 15:12:45', '0000-00-00 00:00:00'),

Chapter 16 ■ eloquent relations

148

 (11, 3, 3, '2015-03-30 15:12:53', '0000-00-00 00:00:00'),

 (12, 3, 4, '2015-03-30 15:12:59', '0000-00-00 00:00:00');

/*!40101 SET

CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;

/*!40101 SET

CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

/*!40101 SET

COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

//end of role_user.SQL

Now first of all we would set the method in our User Model like this:

//code starting
//models/User.php
<?php

protected $table = 'users';

protected $hidden = array('password', 'remember_token');

 public $timestamps = false;

 protected $fillable = array('username', 'token');

 protected $guarded = array('id', 'password');

 public function contact()

 {

 return $this->hasOne('Contact');

 }

 public function post()

 {

 return $this->hasMany('Post');

Chapter 16 ■ eloquent relations

149

 }

 public function role()

 {

 return $this->belongsToMany('Role');

 }

}

//end of code

In this method:

public function role()

 {

 return $this->belongsToMany('Role', 'role_user');

 }

You can explicitly pass the pivot table as the second parameter. Suppose you want to
use table name ‘users_role’ instead ‘role_user’; then you can write the following:

public function role()

 {

 return $this >belongsToMany('Role', 'users_role');

 }

That’s it. And equally now you can use the inversion in the Role Model. The code is
like this:

//code starting

//models/Role.php

<?php

class Role extends Eloquent{

/**

Chapter 16 ■ eloquent relations

150

* The database table used by the model.

*

* @var string

*/

protected $table = 'roles';

 public function user()

 {

 return $this->belongsToMany('User');

 }

 }

//end of code

Now the time has come to test our code. Many to Many relationship works like a
breeze now. The first user ‘admin’ has three different roles: Administrator, Moderator, and
Contributor. Let us check whether in our routes we can get it or not:

//code starting
//routes.php
Route::get('/', function()

{

 $roles = User::find(1)->role;

 foreach ($roles as $value) {

 var_dump($value);

 }

});

//end of code

Chapter 16 ■ eloquent relations

151

We are trying to find out what kind of roles the user ‘admin’ has. The user ‘admin’ has
three roles: Administrator, Moderator, and Contributor. It has been shown up throughout
the User Model. Now we can have an inversion of this Model. Now we are going to find
out which users are Administrator or Moderator or Contributor or Member. Like, in our
routes.php we can write the code this way:

//code starting

//routes.php

Route::get('/', function()

{

 $roles = Role::find(1)->user;

 foreach ($roles as $value) {

 var_dump($value);

 }

});

//end of code

In this code, we actually want to find out who the Administrators are, because role
ID 1 is Administrator. Here are two users who are Administrators. They are ‘admin’ and
‘NewUser’. The detailed data about them has been taken out from the ‘users’ table. From
‘roles’ table through the Role Model, you can search any role that has been assigned to
the users. There could be thousands of Members or Contributors. But in a few lines of
codes, Laravel makes your task much simpler. In the next chapter, we will see some more
features of Laravel that deal with database.

153© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_17

CHAPTER 17

How Security and
Authentication Work
Together

Laravel implements authentication in such a simple way that you have everything just
out of the box. To do that, Laravel returns an array in ‘app/config/auth.php’ where these
things are defined and it also well documented. In this file it is clear that the driver
will be Eloquent, the model will be User, and the table is ‘users’. There is another table:
‘password_reminder’. We will discuss it later. So by default it has been defined; now all
you have to do is use the static methods Laravel ships with. To make your password
stronger, Laravel has ‘Hash’ class that provides secure Bcrypt hashing. You can make your
password stronger with this method:

$password = Hash::make('yourpassword');

We can check how it works. Let us go to our routes.php and first find what the
password of the user ‘NewUser’ is.

//code starting

//routes.php

Route::get('/', function()

{

 $user = User::find(10);

 echo $user ->password;

});

Chapter 17 ■ how SeCurity and authentiCation work together

154

//end of code

The output is:

$2y$10$XTne1FYOoTLqGYPIiu/7F.4AxUae9akpjpFV.xizdq3IytI9N1Nim

We make this password with PHP password_hash() method like this:

$user >password = password_hash('pass', PASSWORD_BCRYPT);

//end of password_has() method

Now we can update this password with Laravel’s own Hash::make() method and see
how it looks like. First update the password:

//code starting

Route::get('/', function()

{

 $user = User::find(10);

 $user >password = Hash::make('pass');

 $user ->save();

});

//end of code

Now the output looks like:

//output

$2y$10$NI9gu2x3q78dzE2J.h9kweJaD4I1M27kHokiZ.yfABynpABbNA/zW

//end of output

We can check the length of the password. It is a string and length is 60. If we
var_dump($user) in our routes.php we get all detail about the user ‘NewUser’ through
the User model, and the output will state the password length.

We can again go back to our old password_hash() method and change the password
of user ‘NewUser’ like this:

//code starting

//routes.php

Chapter 17 ■ how SeCurity and authentiCation work together

155

Route::get('/', function()

{

 $user = User::find(10);

 $user >password = password_hash('pass', PASSWORD_BCRYPT);

 $user- >save();

});

//end of code

Run the code and again we var_dump($user) and see the output of password now:

//output

'password' => string

'$2y$10$zjBulZIfVmMZu/QDGdoCROoKlQysWs/hAVKFTGLNp60EiG5K5zl

WO' (length=60)

//end of output

The password has been updated. The length is 60 anyway. You may wonder why
I spend so much time on the discussion of passwords! First of all, as far as security is
concerned, you need to be careful about passwords. You should make them stronger.
What I wanted to prove here is that Laravel always uses the most advanced technology
available in PHP. The same result is available through code with the help of Laravel. Now
we will try some authentication process using the default interfaces and methods Laravel
ships with.

As of we find some methods that point to the authentication process. We can use
them in our User Model like this:

//code starting

//models/User.php

<?php

use Illuminate\Auth\UserTrait;

use Illuminate\Auth\UserInterface;

use Illuminate\Auth\Reminders\RemindableTrait;

Chapter 17 ■ how SeCurity and authentiCation work together

156

use Illuminate\Auth\Reminders\RemindableInterface;

class User extends Eloquent implements

UserInterface, RemindableInterface {

use UserTrait, RemindableTrait;

/**

* The database table used by the model.

*

* @var string

*/

protected $table = 'users';

 /**

* The attributes excluded from the model’s JSON form

*

* @var array

*/

protected $hidden = array('password', 'remember_token');

 public $timestamps = false;

 protected $fillable = array('username', 'token');

 protected $guarded = array('id', 'password');

 public function getAuthIdentifier(){

 return $this->getKey();
 }

 public function getAuthPassword() {

 return $this->password;

 }

Chapter 17 ■ how SeCurity and authentiCation work together

157

 public function post()

 {

 return $this->hasMany('Post');

 }

 public function contact()

 {

 return $this->hasOne('Contact');

 }

 public function role()

 {

 return $this->belongsToMany('Role', 'role_user');

 }

}

//end of code

Now you can create a ‘dashboard’-type authentication system for our administration.
It is fairly simple and short but you get the idea and I hope you can build your ‘CRUD’
based on this concepts.

Now it is time to use ‘Auth’ and ‘Session’ class and necessary static methods in our
‘routes.php’ to make this authentication mechanism successful.

//code starting

//routes.php

::get('/', 'HomeController@home');

Route::get('/login', 'HomeController@login');

Route::post('login', function(){

 if(Auth::attempt(Input::only('username', 'password'))) {

 return Redirect::intended('/');

Chapter 17 ■ how SeCurity and authentiCation work together

158

 } else {

 return Redirect::back()->withInput()- >with('error', "Invalid
credentials");

 }

});

Route::get('logout', function(){

 Auth::logout();

 return Redirect::to('/')->with('message', 'You are now logged out');

});

Route::group(array('before'=>'auth'), function(){

 Route::get('/', 'HomeController@home');

 Route::get('user/{id}', 'HomeController@user');

});

//end of code

Now let us explain the steps one by one: First we need to have a protected 'index'
page. To do that all we need to do is use the following:

Route::group(array('before'=>'auth'), function(){

 Route::get('/', 'HomeController@home');

 Route::get('user/{id}', 'HomeController@user');

});

By this group routing we can define which pages are only for authenticated users. We
have defined two pages as per our planning: ‘index’ and ‘users’.

We can also use the Auth::logout() method to end the session, it redirects the
user to the ‘index’ page again, which is nothing but the ‘login’ page. We will conclude
this chapter with a few authentication methods that Laravel ships with by default. For
passwords, you can use these methods:

//code starting

Hash::make('yourpassword');

Chapter 17 ■ how SeCurity and authentiCation work together

159

Hash::check('yourpassword', $hashedPassword);

Hash::needsRehash($hashedPassword);

//end of code

And for authentication, you can use these methods:

//code starting

Auth::check();

Auth::user();

Auth::attempt(array('email' => $email, 'password'=> $password));

Auth::attempt($usercredentials, true);

Auth::once($usercredentials);

Auth::login(User::find(1));

Auth::loginUsingId(1);

Auth::logout();

Auth::validate($usercredentials);

Auth::basic('username');

Auth::onceBasic();

Password::remind($usercredentials,

function($message, $user){});

//end of code

161© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_18

CHAPTER 18

How Request, Response
Work in Laravel 5

What Does Request Mean?
When a user requests some pages, what happens? You have just learned that in the

previous chapter. We can obtain that request instance and see how it looks. To do that
we would like to make a kind of type hinting our ‘Illuminate\Http\Request’ class on our
controller constructor or method. Suppose we have a ‘TestController’.

So the code will look like this:

//code starting

<?php namespace App\Http\Controllers;

 use Illuminate\Http\Request;

 use Illuminate\Routing\Controller;

class TestController extends Controller

 {

 protected $request;

 /**

 * @param Request $request

 * @return Response

 */

 public function testRequest(Request $request)

 {

Chapter 18 ■ how request, response work in LaraveL 5

162

 $this->request = $request;

 $uri = $request->path();

 var_dump($uri);

 }

 }

//code ended

Besides we have a route in our ‘routes.php’, like this:

//code starting

get('test', 'TestController@testRequest');

//code ended

Now if we go to our browser and type http://localhost:8000/test we get a
response like this:

string 'test' (length=4)

If we type in our browser like this:
http://localhost:8000/test/hagudu/class=5/school=Don%20Bosco and in our

route level we pass two more variables like this:

//code starting

get('test/{name}/{class}/{school}', 'TestController@testRequest');

//code ended

We get an output like this:

string 'test/hagudu/class=5/school=Don%20Bosco'

(length=38)

So your user sends a request and we trace the URL path through our request object.
In Laravel 5 this is done by dependencies injection. We will discuss this in great detail. So
if you are an absolute beginner, just don’t get frightened. It appears we can do lot of stuff
through this Request object. We can send some inputs through a form and receive it in
our Controller and update User’s profile. We can manage payments and many more.

Now if want the full URL path we can type in our controller like this:

http://localhost:8000/test
http://localhost:8000/test/hagudu/class=5/school=Don Bosco

Chapter 18 ■ how request, response work in LaraveL 5

163

$url = $request->url();

And the output changes to this:

string 'http://localhost:8000/test/hagudu/class=5/school=Don%20Bosco'
(length=60)

You get the full URL instead of only URI path. There are many Request methods you
will find very useful later. Since you have not started Laravel yet, we don’t want to dig very
deep. There are few methods you may just want to know, such as this:

$name = $request->input('name');

In this case, you get a name from your form fields. You can get an array also, and the
retrieval is not very complex.

$input = $request->only('username', 'password');
$input = $request->except('credit_card');

In this case you only get the user name and password except the credit card
information. There are a lot more examples, and we will come to them when proper time
comes.

What Does Response Mean?
Basically, what all routes and controllers send back to the browser is Response. Users

send Requests and the Server sends back Response. The basic mechanism is simple
enough to understand what is going on under the hood. Laravel can do many things and
is equipped with several ways to send Responses.

But the foremost Response is string in a Route like this:

Route::get('/', function () {

 return 'Hello World';

 });

But this is a pretty simple string. Laravel can do much more, like returning an
‘Illuminate\Http\Response’ instance or a complete View. What does this returning a
full ‘Response’ instance mean? It actually allows you to customize the response’s HTTP
status code and headers. A ‘Response’ instance inherits from the ‘Symfony\Component\
HttpFoundation\Response’ class, providing a variety of methods for building HTTP
responses. After installing Laravel, if you open the ‘vendor/symfony’ directory, you will
not find the ‘Symfony\Component\HttpFoundation\Response’ class that Laravel inherits
there. But if you ever individually work with and install ‘Symfony’ components you will
find that class.

The HttpFoundation defines an object oriented layer for the HTTP specification.
It provides an abstraction for requests, responses, uploaded files, cookies, sessions, et
cetera. You won’t get it inside Laravel, but for your knowledge and understanding just
know that we use Symfony components like this:

Chapter 18 ■ how request, response work in LaraveL 5

164

use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\Response;

$request = Request::createFromGlobals();

echo $request- >getPathInfo();

And we use the Response object like this:

$response = new Response('Not Found', 404, array('Content Type' => 'text/
plain'));

$response- >send();

And in Laravel we basically return Response like this:

use Illuminate\Http\Response;

 Route::get('home', function () {

 return (new Response($content, $status)) - >header('Content Type',
$value);

 });

You may send a JSON Response like this:

Route::get('/', function () {

 return response()->json(['name' =>
'Sanjib', 'location' => 'Pluto']);

 });

And you have an output like this on your browser:

{"name":"Sanjib","location":"Pluto"}

A pure JSON output is a readable human format. Another good example of Response
is Redirect. You can use two helper methods to Redirect users as necessary. When you use
Redirect responses, they are actually instances of the ‘Illuminate\Http\RedirectResponse’
class. They contain the proper headers needed to redirect the user to another URL. There
are several ways to generate a ‘RedirectResponse’ instance. The simplest method is to use
the global ‘redirect’ helper method:

Route::get('yourpage', function () {

Chapter 18 ■ how request, response work in LaraveL 5

165

 return redirect('/yourpage');

 });

And there are also back methods that also come ready to hand. If you want to
make your user fill up certain forms and want to validate that with input, you can use
something like this:

Route::post('your/profile', function () {

 // Validate the request

 return back()->withInput();

 });

When you learn more about named routing and controller actions, you may want to
use them like this:

return redirect()->route('login');

Or like this:

return redirect()->action('HomeController@index');

167© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_19

CHAPTER 19

Contracts vs. Facades

By so far you have understood that the total Laravel 5 framework depends on many
blocks of Interfaces, classes, and other packaged versions that package developers have
developed so far. Laravel 5 has happily used them, and I encourage you to do the same
by following the SOLID principle and loose coupling. To master the Framework properly,
you need to understand the core services that run Laravel 5. What are the main resources
behind the scene? Basically, Contracts come in between regarding this scenario.
Contracts are interfaces that provide this core services. Like ‘Illuminate\Contracts\Mail\
Mailer’ defines the process of sending mails and doing that, this interface simply pools
in the implementation of mailer classes powered by the SwiftMailer. Now what are the
‘Facades’? This chapter’s heading is ‘Contracts vs. Facades’. Do they have any similarity or
relationship or anything else? Let me mention something about Facades first.

Facades are also interfaces. But they have a distinct difference from Contracts. First
of all, Facades are static interfaces that supply methods to the classes of service container.
You have already seen a lot of Facades already. Remember ‘App’, ‘Route’, ‘DB’, ‘View’, et
cetera. The main quality of Facades is that you can use them without type hinting. Like in
your ‘routes.php’ file you can write this code:

Route::bind('books', function ($id){

 return App\Book::where('id', $id)- >first();

});

This ‘Route’ Facade directly resolves the contracts out of service container. Though
Facades are static interfaces, they have more expressive syntaxes and provide more
testability and flexibility than traditional static methodology. But the advantage of
‘Contracts’ is that you can define explicit dependencies for your classes and make your
application more loosely coupled. Of course, for most applications Facades work fine.
But in some cases if you want to innovate something more, you need to use Contracts.
How you could implement a contract? It is extremely simple and one example can
illuminate the whole concept. Actually, you have used it already! Suppose you have a
‘BookController’ through which you want to maintain a long list of your favorite books. To
do that you need to store books in database. To do that you can bind your ‘Book’ Model in
your ‘routes.php’ first, and then using resource you can do all kinds of CRUD operations.
In doing so, you need to log in.

Chapter 19 ■ ContraCts vs. FaCades

168

Consider this code:

public function store(Request $request)

 {

 if (Auth::check()) {

 // The user is logged in

 }

 }

You can check whether the user is logged in or not. And depending on that you can
add only your favorite books. For checking you use ‘Auth’ Facade. That’s fine; As long as
you don’t want more decoupled state it works great. But if you’d rather follow the SOLID
principle and want a more decoupled state then instead of depending on concretion you
should adopt a more robust abstract approach. And in that case Contract comes to your
rescue. Taylor Otwell himself keeps git hub repositories on Contracts, so you better have a
look around it. All of the Laravel Contracts live there:

https://github.com/illuminate/contracts

Now let us go back to our previous topic. So we can either use our ‘Auth’ Facade.
But try to understand one thing; when you use facade it assumes the framework and is
very tightly coupled with a concretion. But considering the SOLID principle, you want a
decoupled state. What to do? Let us consider another scenario. We can inject our ‘Auth’
Facade through constructor like this and rewrite our whole code this way:

use Illuminate\Http\Request;

use App\Http\Requests;

use App\Http\Controllers\Controller;

use Illuminate\Auth\Guard as Auth;

class BooksController extends Controller

{

 /**

 * Display a listing of the resource

 *

Chapter 19 ■ ContraCts vs. FaCades

169

 * @return Response

 */

 protected $auth;

 public function __construct(Auth $auth) {

 $this ->auth = $auth;

 }

public function store(Request $request)

 {

 $this >auth->attempt();

 }

}

Now you might opine that it is much better as we have injected ‘Auth’ instance
through our constructor. Yes, it is better than before but still it lacks the SOLID design
principle. It depends upon a concrete class like the following:

namespace Illuminate\Auth;

use RuntimeException;

use Illuminate\Support\Str;

use Illuminate\Contracts\Events\Dispatcher;

use Illuminate\Contracts\Auth\UserProvider;

use Symfony\Component\HttpFoundation\Request;

use Symfony\Component\HttpFoundation\Response;

use Illuminate\Contracts\Auth\Guard as GuardContract;

use Illuminate\Contracts\Cookie\QueueingFactory as CookieJar;

use Illuminate\Contracts\Auth\Authenticatable as UserContract;

use Symfony\Component\HttpFoundation\Session\SessionInterface;

Chapter 19 ■ ContraCts vs. FaCades

170

class Guard implements GuardContract {....}

//code is incomplete for brevity

As you see, when we use this line of code in our ‘BookController’: use Illuminate\
Auth\Guard as Auth, we actually inject an instance based on concretion not abstraction.
When we unit test our code, we will have to rewrite our codes. Moreover, whenever you
call any methods through this instance it is aware of your framework. But we need to
make it completely unaware of our Framework and become loosely coupled. To do that
we just have to change one line of code in our ‘BookController’.

Instead of that line of code:

use Illuminate\Auth\Guard as Auth;

We write this line of code:

use Illuminate\Contracts\Auth\Guard as Auth;

And that is it! Now our ‘Auth’ instance is completely loosely coupled. And now we
can change that line of code in store() method:

if (Auth::check()) {

 // The user is logged in

}

to this line of code:

$this- >auth->attempt();

And it is done. Now your application has achieved more sophistication by following
the SOLID design principle and becomes completely loosely coupled. Finally, if we
were to check the interface Illuminate\Contracts\Auth\Guard, what would we see? Just
have a look, so that you can understand what happens behind the scenes. The code of
that interface is pretty big, so for brevity we just cut the attempt() method out of it. The
interface looks like this:

namespace Illuminate\Contracts\Auth;

interface Guard

{

/**

 * Attempt to authenticate a user using the
given credentials.

Chapter 19 ■ ContraCts vs. FaCades

171

 *

 * @param array $credentials

 * @param bool $remember

 * @param bool $login

 * @return bool

 */

 public function attempt(array $credentials = [], $remember = false,
$login = true);

.....

}

//this code is incomplete

Now your code is not coupled to any vendor or even to Laravel. You are not
compelled to follow a strict methodology by a concrete class. You can simply implement
your own, alternative methodology out of any contract.

I hope this comparison between “contract” and “facade” makes sense.

173© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7_20

CHAPTER 20

Middleware, Layer Filter,
and Extra Security

HTTP Middleware is one of the best facilities Laravel 5 ships with. It not only adds extra
security to your application but also gives you enough freedom to create your own
security mechanism alongside the default Laravel Authentication mechanism. As you
know already, when a user requests for a page, the browser sends the request and the
server responds. Sometimes, this request response mechanism is simple and sometimes
it is fairly complicated. But at the end of the day whenever a user requests for a page a
HTTP request enters your application. Most of the time it is innocuous, but as the proverb
goes you cannot and should not rely on user’s input or request so it needs to filtered. It
has to be filtered when your application needs an extra bit of authentication or security
measures to be taken. Middleware does this out of the box.

Laravel 5 ships with ‘Authenticate’ middleware. It is default so that you need not
tweak it to add some extra security to your application. The mechanism is very simple. It
verifies the user’s credentials and permits it to enter your application and proceed further.
But besides this default Middleware we can add our own functionalities.

Next, in the construct level it instantiates this ‘auth’ so that in the handle function it
can check whether the user is a guest or an authenticated user. A fairly simple task, but
there is something more. In that folder, there is another file: ‘RedirectIfAuthenticated.
php’. Let us see its code also:

<?php

 namespace App\Http\Middleware;

use Closure;

use Illuminate\Contracts\Auth\Guard;

class RedirectIfAuthenticated

{

 /**

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

174

 * The Guard implementation.

 *

 * @var Guard

 */

 protected $auth;

 /**

 * Create a new filter instance.

 *

 * @param Guard $auth

 * @return void

 */

 public function __construct(Guard $auth)

 {

 $this >auth = $auth;

}

 /**

 * Handle an incoming request.

 *

 * @param \Illuminate\Http\Request $request

 * @param \Closure $next

 * @return mixed

 */

 public function handle($request, Closure $next)

 {

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

175

 if ($this->auth->check()) {

 return redirect('/home');

 }

 return $next($request);

 }

}

It does almost the same thing. It is checking user’s authentication and permits it to
go to the desired location. Here it is:

1. if ($this->auth->check()) {

2. return redirect('/home');

3. }

Now, the question is, how does it work out of the box? To find out our answer, we
need to go to our ‘routes.php’ page. Here we have already seen how we can use the ‘log in,
log out, and register’ process using the default authentication mechanism. Doing that, we
had to write a piece of code like this:

1. Route::group(['middleware' => 'auth'], function () {

2. Route::get('home', function () {

3. return view('auth.home');

4. });

5.
6. Route::get('dashboard', function () {

7. return view('auth.dashboard');

8. });

9. });

You go through the first line and hopefully it now makes sense with the default
Middleware logic. In our Route Group, we used

['middleware' => 'auth']

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

176

And it distantly connects with the in-built Authentication Middleware. Actually it is
defined in ‘app/Kernel.php’ as a protected property.

 1./**

 2. * The application's route middleware.

 3. *

 4. * @var array

 5. */

 6. protected $routeMiddleware = [

 7. 'auth' =>
\App\Http\Middleware\Authenticate::class,

 8. 'auth.basic' =>
\Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,

 9. 'guest' =>
\App\Http\Middleware\RedirectIfAuthenticated::class,

10.];

How the default Authenticate Middleware works is now clear compiled. How about
adding some our own functionalities? We saw in our Authentication chapter that a user
logs in and she goes to the ‘/dashboard’. Well, we need to add some extra functionalities
in our ‘users’ table first, so that one of the users will be the administrator and only she can
check into a ‘blog’ page.

Since we need to test our own Middleware at the ground Laravel, we have decided
to make it the simplest one. So we keep a link to that ‘Blog’ page in our ‘Dashboard’ page.
Now every user logs in and clicks that link. But our Middleware will check whether that
user is administrator or not. If she is an administrator, she can land on the ‘Blog’ page
with special Administrative power, and if she is not, she will sent back to the home page
for general users. This is our simple administrator Middleware building procedural step.
Let us start.

First, we need to set up one extra column in our ‘users’ table cell. We need to migrate
for that. You can do it manually in your PHPMyAdmin or directly use Tinker to add that
column. But migration is simpler.

Open up the terminal, go to our Laravel application, and issue this command:

php artisan make:migration add_is_admin_to_user_table –table=users

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

177

Go to the ‘database’ folder and see that your new migration has been created. Now
before migrating starts we need to tweak the up() and down() method like this:

 1. <?php

 2.

 3. use Illuminate\Database\Schema\Blueprint;

 4. use Illuminate\Database\Migrations\Migration;

 5.

 6. class AddIsAdminToUserTable extends Migration

 7. {

 8. /**

 9. * Run the migrations.

10. *

11. * @return void

12. */

13. public function up()

14. {

15. Schema::table('users', function (Blueprint $table) {

16. $table->boolean('is_admin')->default(false);

17. });

18. }

19.

20. /**

21. * Reverse the migrations.

22. *

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

178

23. * @return void

24. */

25. public function down()

26. {

27. Schema::table('users', function (Blueprint
$table) {

28. $table ->dropColumn('is_admin');

29. });

30. }

31.

}

Now we are ready to migrate, so issue this command:

php artisan migrate

Check your ‘users’ table; you’ll see that one extra column has already been added,
and each one is false. So you choose any one user and make her the administrator so that
when we check the authentication it comes out true. Our database setup is ready. Now
we can proceed to the next step. This step involves creating our own Middleware logic
which will check whether the user is administrator or not. If she is the administrator, she
can go the ‘Blog’ page. Otherwise she will sent back to the Home page for general users.
We can create our custom Middleware through the console. In our terminal, we issue this
command:

php artisan make:middleware RoleMiddleware

As you see, we name our Middleware ‘RoleMiddleware’. You can name it differently.
No problem. It will immediately shoot back with a prompt that says that your middleware
has been successfully created. Let us go to the ‘app/Http/Middleware’ folder and check it.
Yes, it has been created. It comes up with a handle() method as usual. Now all we need is
to add this line of code on top of the page first:

use Illuminate\Contracts\Auth\Guard;

We need to check the user’s authenticity. The full code looks like this:

 1.<?php

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

179

 2.

 3. namespace App\Http\Middleware;

 4. use Closure;

 5. use Illuminate\Contracts\Auth\Guard;

 6. use Illuminate\Http\RedirectResponse;

 7. //use App\User;

 8.

 9. class RoleMiddleware

10.

{

11. protected $auth;

12.

13. public function __construct(Guard $auth) {

14. $this ->auth = $auth;

15. }

16.

17.

18. /**

19. * Handle an incoming request.

20. *

21. * @param \Illuminate\Http\Request $request

22. * @param \Closure $next

23. * @return mixed

24. */

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

180

25. public function handle($request, Closure $next)

26. {

27. if ($this- >auth- >check())

28. {

29. if ($this->auth->user()->is_admin == TRUE)

30. {

31. return $next($request);

32. }

33. }

34.

35. return new

RedirectResponse(url('/auth/login'));
36. }
37.

38. }

Lines 27 and 29 are very important; in fact, it ultimately plays the crucial part in our
own Middleware.

The logic is fairly simple. Our ‘RoleMiddleware’ class is called up whenever an
instance of ‘Guard’ is created and that will take care of further authentication process. So
in our handle() method that passes two parameters, ‘request’ and ‘Closure $next’, we will
add some extra spices so that when it checks the credentials of the user, it looks up and
asks if she is the administrator. If not, it sends her back to the login page. So if someone
just types the URL and try to enter into our ‘Blog’ page she will be sent back to the login
page. Now if she is a registered user she can log in but ends up at the ‘Dashboard’ page.
To facilitate this ‘RoleMiddleware’ we need to add an extra Route Group in our ‘routes.
php’ file like this:

 1. Route::group(['middleware' => 'auth'], function () {

 2. Route::get('home', function () {

 3. return view('auth.home');

 4. });

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

181

 5.

 6. Route::get('dashboard', function () {

 7. return view('auth.dashboard');

 8. });

 9. });

10.

 Route::group(['middleware' => 'role'], function ()

 {

11.

12. Route::get('blog', function () {

13. return view('blog.index');

14. });

15.

16. });

You see at line 10, we add an extra Route Group Middleware, ‘role’. But the question
is how our application will learn about it. Okay, our steps have been incomplete till now.
We need to register it to ‘app/Kernel’ so the ‘app/Kernel.php’ code looks like this:

1. protected $routeMiddleware = [

2. 'auth' => \App\Http\Middleware\Authenticate::class,

3. ' auth.basic' => \Illuminate\Auth\Middleware\
AuthenticateWithBasicAuth:

 :class,

4. 'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,

5. 'iplog' => \App\Http\Middleware\RequestLogger::class,

6. 'role' => \App\Http\Middleware\RoleMiddleware::class,

7.];

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

182

Watch out for line 6. We have registered our

 'role' => \App\Http\Middleware\RoleMiddleware::class,

And it will now work like a breeze. The next steps are left to create one Controller and
View page. That you can do. In the next chapter we will officially launch a administrator
facility and will create a Administrative dashboard where an administrator can create,
edit, and delete users.

So far you have seen how we can control access to the users by using various types
of Middleware. Use your imagination to build up all the crazy Middleware, and the
procedure is simple enough. You can handle it by yourself. Suppose we want to check
the points users have earned in a forum. We can do some more weird staff like checking
whether a user’s name begins with any particular letter, et cetera. We can use ‘before’ and
‘after’ Middleware so that our application will handle something beforehand and execute
something after.

Suppose we want to check the forum points of a user. We can create a Middleware
like this:

1. namespace App\Http\Middleware;

2.

3. use Closure;

4.

5. class PointMiddleware

6. {

7. /**

8. * Run the request filter.

9. *

10. * @param

 \Illuminate\Http\Request $request

11. * @param \Closure $next

12. * @return mixed

13. */

14. public function handle($request, Closure $next)

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

183

15. {

16. if ($request->input('point') <= 500) {

17. return redirect('home');

18. }

19.

20. return $next($request);

21. }

22.

23.

}

Now we can also handle this before and after like this:

 1. namespace App\Http\Middleware;

 2.

 3. use Closure;

 4.

 5. class BeforeMiddleware

 6. {

 7. public function handle($request, Closure
 $next)

 8. {

 9. // Perform action

10.

11. return $next($request);

12. }

13. }

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

184

14.

 namespace App\Http\Middleware;

15.

16. use Closure;

17.

18. class AfterMiddleware

19. {

20. public function handle($request, Closure
 $next)

21. {

22. $response = $next($request);

23.

24. // Perform action

25.

26. return $response;

27. }

28. }

So there are lots of actions waiting to be explored inside this Middleware section.
We will conclude with a logging Middleware that will log every request coming to your
application: very simple and elegant. You have learned how to create a Middleware. So
create a ‘IPLogger’ Middleware first. And add one line of code in your handle() method
like this:

 1. <?php

 2.

 3. namespace App\Http\Middleware;

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

185

 4.

 5. use Closure;

 6.

 7. class IPLogger

 8. {

 9. /**

10. * Handle an incoming request.

11. *

12. * @param \Illuminate\Http\Request $request

13. * @param \Closure $next

14. * @return mixed

15. */

16. public function handle($request, Closure $next)

17. {

18. \Log::info($request ->getClientIp());

19. return $next($request);

20. }

21.

 }

Next in your ‘routes.php’ add this Middleware Group:

 1. Route::get('/', ['middleware' => 'iplog', function ()

 {

 2. return view('index');

 3. }]);

Chapter 20 ■ Middleware, layer Filter, and extra SeCurity

186

So that each time a user sends request to the index page, his ‘ip address’ will be
stored in the ‘storage/logs/laravel.log’ like this:

 1. [2015 08 22 18:16:14] local.INFO: ::ip address

 2. [2015 08 22 18:16:55] local.INFO: ::ip address

I should mention that you should have registered your ‘IPMiddleware’ in ‘app/Http/
Kernel.php’ like this:

 'iplog' => \App\Http\Middleware\IPLogger::class,

And it is done!
Please have a look into the documentation for more valuable inputs like Middleware

parameters and Terminable Middleware, where you start a session, which is stored and
terminated after your task has been accomplished.

187© Sanjib Sinha 2017
S. Sinha, Beginning Laravel, DOI 10.1007/978-1-4842-2538-7

��������� A
Abstraction, 18
Anonymous functions, 28
Authentication and authorization, 81

AuthController, 81–84
config/app.php, 81
database/migration file, 85
login.blade.php, 85–86, 88–89
logout option, 89–90
validator() method, 84

��������� B
Blade. See Views and blade

��������� C
Composer

centrally/globally, 2
commands, 2–3
file type, 3
globally, 4
home page, 1
installation of Laravel 5.3, 4
Internet connection, 4
Laravel 5.2, 3
locally, 2
monolog package, 3
start page, 1–2

Contracts vs. Facades
attempt() method, 170
BookController method, 170
CRUD operations, 167
interfaces, 167
SOLID principle, 168–169
store() method, 170

Controller class, 29
controller, 35
IoC container, and interface, 35
layers, 29
MyController.php file, 30–31
page view, 31
presentation layer, 29
resourceful controller, 34
RESTful, 32
role of, 33
routes.php file, 29–30

Cross-site request forgery (CSRF), 25
CRUD (create, retrieve, update, delete)

application, 59
controller method, 70
create.blade.php, 74–76
creation (review page), 74
edit page, 77, 79
editreview.blade.php page, 76
index.blade.php page, 70–72
index page, 79
page view, 76
review page, 70, 72
review.php file, 68
routes.php file, 73, 76
show.blade.php, 73
table.php file, 67–68
TaskController.php file, 68, 69, 72, 74
url function, 72

��������� D
Database migration, 49

advantage, 49
.env file, 49
migrate command, 51
PHP file, 50–51

Index

■ INDEX

188

phpMyAdmin tool, 52
tasks table, 50
up and down function, 50
users table, 49

��������� E
Eloquent relations

advantage of, 128
belongsTo() method, 141
chunk() method, 133
contact class, 126–127
contact() method, 140
contacts details, 131–132
contacts table, 129
creation, 53
crux of, 132
database tasks table, 57, 124
definition, 123
empty class, 56
final source code, 137, 139
function(), 129
hasMany() method, 143–144
hasOne() method, 139, 143
insert, update/delete, 133–134
interface, 54
JSON format and

output, 128
mass assignment, 56, 127
model class, 53
NewUser method, 134, 142–143
ORM, 123
output result, 129–131
PHP file, 53
posts table, 144–145
properties, 127, 136
role() method, 149–150
role_user table, 145–149
routes.php, 125, 140, 151
save() method, 54–55
serialize() and unserialize()

methods, 129
SQL statement, 141
tables creation, 123
tasks table, 54
types of, 123
update() method, 55
user class, 124–125

User.php, 125–126
var_dump() method, 135–136

��������� F, G
Facades, 167
File structure

app folder, 15
bootstrap folder, 16
database folder, 16
home page, 17
installation, 16
interfaces and method, 19
Laravel 5.3.18, 15
public folder, 16
SOLID design principle, 17

Forms, 65
aliases array, 65
providers array, 65

��������� H
Homestead

folder and site section, 11
Homestead.yaml file, 10
installation and configuration, 10
test.app, 13
Vagrant box and Vagrant, 9
vagrant up command, 12

��������� I, J, K
Interfaces and method injection, 19

��������� L
Laravel Homestead, 7

��������� M
Middleware, layer filter and

security, 173
app/Kernel.php file, 176, 181
authentication, 173
blog page, 176
construct level, 173
handle() method, 178–180, 184–185
middleware, 182–184
RedirectIfAuthenticated.php, 173

Database migration (cont.)

■ INDEX

189

RoleMiddleware, 178
routes.php file, 175, 180–181, 185
storage/logs/laravel.log, 186
up() and down() method, 177–178

Model, view, controller and workflow, 59
all() method, 60
routes.php file, 59
task.blade.php page, 61
TaskController.php file, 60
task model class, 60

ModelViewController methodology, 123

��������� N, O
Named routes, 26

��������� P, Q
PHP 5, 19

��������� R
Representational State

Transfer (REST), 32
Request

meaning, 161
output, 163
TestController, 161–162
URI path, 163

Resourceful controller, 34
Response method

components, 163
helper method, 164–165
JSON, 164
meaning, 163
output, 164
Route function(), 163

returningASimplePage function, 30
Routing, 21

anonymous functions, 21, 28
any() method, 25
app/Http/routes.php file, 21
best oractices, 25
concept, 28
CSS style, 22
HTML code, 22
HTTP protocol, 21
methods, 24
named routes, 26
organize files, 27
routes.php file, 21, 24
web browser, 23

��������� S, T, U
Security and authentication, 153

Auth, 158–159
index page, 158
make() method, 154
NewUser method, 153
password_hash() method, 154
password_reminder table, 153
routes.php, 157–158
User model table, 155–157
var_dump method, 155

SOLID design principle, 17
SQLite database, 63

database.sqlite file, 64
.env file, 63
file path, 63

Staticmethod. See Routing

��������� V, W, X, Y, Z
Vagrant,7. See also Homestead
Validation

action.php, 96
conditional rules, 112–113
custom validation, 113–118
error messages, 104–107
$error variable, 109
form, 91–92

validation, 119–120, 122
view page, 93

meaning, 91
MyCustomValidation class, 117
parameters, 105
register.blade.php, 108–109
registration.blade.php file, 92
rules, 110–112
source code, 97–103
validate.php class, 94–95

Views and blade
about.blade.php file, 43, 44
compact method, 45
CSS style code, 42
dynamically passed data, 46
master.blade.php code, 41
MyController code, 45
process, 41

Virtual box, 7
download section, 8
installation, 7
Kali Linux and Windows XP, 9
UBUNTU software, 8

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Chapter 1: Composer
	Chapter 2: Laravel Homestead, Virtual Box, and Vagrant
	2.1 Installing Virtual Box and Vagrant
	2.2 Installing Homestead Vagrant Box
	2.3 Homestead Installation and Configuration

	Chapter 3: File Structure
	3.1 SOLID Design Principle
	3.2 Interfaces and Method Injection

	Chapter 4: Routing, a Static Method
	4.1 Routing Best Practices
	4.2 Named Routes
	4.3 Organize Files Through Route
	4.4 Advanced Concept of Routing and Anonymous Functions

	Chapter 5: Controller Class
	5.1 RESTful Controller
	5.2 Role of a Controller
	5.3 Resourceful Controller
	5.4 Controller, IoC Container, and Interface
	5.5 Summary

	Chapter 6: View and Blade
	Chapter 7: Environment
	Chapter 8: Database Migration
	8.1 Summary

	Chapter 9: Eloquent
	Chapter 10: Model, View, Controller Workflow
	10.1 Summary
	10.1.1 Our Next Challenge

	Chapter 11: SQLite Is a Breeze!
	Chapter 12: Fiddly Feelings of Forms
	Chapter 13: A CRUD Application
	Chapter 14: Authentication and Authorization
	Chapter 15: More About Validation
	15.1 Conditional Rules
	15.2 Custom Validation
	15.3 How Form Validation Works

	Chapter 16: Eloquent Relations
	Chapter 17: How Security and Authentication Work Together
	Chapter 18: How Request, Response Work in Laravel 5
	Chapter 19: Contracts vs. Facades
	Chapter 20: Middleware, Layer Filter, and Extra Security
	Index

