
Analytics for Data Scientists
—
Bringing data science to the database
—
Bradley Beard

Beginning
SQL Server R
Services

www.allitebooks.com

http://www.allitebooks.org

 Beginning SQL
Server R Services

 Analytics for Data Scientists

 Bradley Beard

www.allitebooks.com

http://www.allitebooks.org

Beginning SQL Server R Services: Analytics for Data Scientists

Bradley Beard
Palm Bay, Florida
USA

ISBN-13 (pbk): 978-1-4842-2297-3 ISBN-13 (electronic): 978-1-4842-2298-0
DOI 10.1007/978-1-4842-2298-0

Library of Congress Control Number: 2016958725

Copyright © 2016 by Bradley Beard

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Technical Reviewer: Kathi Kellenberger
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/
http://www.allitebooks.org

 This book is dedicated to the memory of my late grandmother,
Bessie Dejaynes, who passed away during the writing of this book.

I love you, I miss you, and I will see you again.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Part I: Setup and Installation .. 1

 ■Chapter 1: Setup and Installation of SQL Server 2016 .. 3

 ■Chapter 2: Setup and Installation of R Tools for Visual Studio 33

 ■Chapter 3: Project Scenario Defi nition .. 73

 ■Part II: Learning the Basics .. 87

 ■Chapter 4: Building R Models with RTVS ... 89

 ■Chapter 5: Plotting in RTVS ... 119

 ■Part III: Creating and Viewing Reports ... 131

 ■Chapter 6: Confi guring SQL Server Reporting Services 133

 ■Chapter 7: Report Builder Installation and Data Preparation 149

 ■Chapter 8: Building Reports Using Report Builder .. 181

 ■Chapter 9: Viewing the Reports in Report Server .. 209

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS AT A GLANCE

vi

 ■Part IV: Appendices .. 223

 ■ Appendix A: Installing a SQL Server 2016 Instance in a SQL Server 2014
Installation .. 225

 ■Appendix B: Software Requirements Document .. 253

 ■Appendix C: R Plot and Tabular Code for R Tools for Visual Studio 255

Index ... 259

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Part I: Setup and Installation .. 1

 ■Chapter 1: Setup and Installation of SQL Server 2016 .. 3

Planning ... 4

Beginning the Installation... 4

Product Key .. 6

License Terms ... 7

Install Rules .. 7

Feature Selection .. 8

Instance Confi guration .. 10

Server Confi guration ... 11

Database Engine Confi guration .. 13

Reporting Services Confi guration ... 17

Consent to install Microsoft R Open ... 18

Ready to Install ... 19

Installation Progress ... 20

Install Complete .. 20

Services Verifi cation ... 21

SQL Server Management Tools .. 22

Summary .. 32

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

 ■Chapter 2: Setup and Installation of R Tools for Visual Studio 33

SQL Server Data Tools .. 33

Visual Studio .. 34

Download R Tools for VS ... 39

Download Microsoft R Open ... 41

Visual Studio Environment ... 46

Session ... 47

Plots .. 48

Data .. 48

Working Directory ... 48

Windows ... 49

Install Microsoft R Client… .. 49

Change R to Microsoft R Client ... 49

Microsoft R Products… .. 49

RTVS Documentation and Samples .. 49

R Documentation .. 50

Feedback .. 50

Check for Updates .. 50

Survey/News .. 50

Editor Options ... 50

Options ... 51

Data Science Settings .. 51

Exploring Samples .. 53

A First Look at R ... 53

Summary .. 71

 ■Chapter 3: Project Scenario Defi nition .. 73

Scope Creep ... 73

Project Defi nition Phases ... 74

Phase I: Requirements Gathering ... 74

Spiral Development Process ... 75

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

Software Change Request Process .. 76

Phase II: Initial Interface Design ... 78

Loading the R Solution ... 79

Summary .. 86

 ■Part II: Learning the Basics .. 87

 ■Chapter 4: Building R Models with RTVS ... 89

Exploring Samples .. 89

R Package Manager ... 96

Plotting in R .. 100

Linear Regression in R ... 107

Regression Diagnostics .. 110

The Model Object ... 111

Summary .. 118

 ■Chapter 5: Plotting in RTVS ... 119

Report 1: Average Wind Speed by Airport ID... 119

Importing the Dataset ... 120

Opening a Script Pane .. 122

Preparing the Dataset ... 123

Average Wind Speed by Airport ID (Tabular) ... 124

Average Wind Speed by Airport ID (Plot) ... 126

Report 2: Average Temperature by Airport ID (°F) ... 128

Average Temperature by Airport ID (Tabular) .. 128

Average Temperature by Airport ID (Plot) .. 129

Summary .. 130

 ■Part III: Creating and Viewing Reports ... 131

 ■Chapter 6: Confi guring SQL Server Reporting Services 133

Connecting to an Instance .. 133

Service Account ... 135

Web Service URL .. 136

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

Database .. 137

Web Portal URL ... 138

E-mail Settings ... 139

Execution Account .. 141

Encryption Keys .. 142

Subscription Settings ... 143

Scale-out Deployment .. 144

Power BI Integration ... 145

Summary .. 148

 ■Chapter 7: Report Builder Installation and Data Preparation 149

Download Report Builder ... 149

Setup New Database and Tables .. 158

Importing Weather Data ... 162

Generating the Binary Data .. 175

Summary .. 180

 ■Chapter 8: Building Reports Using Report Builder .. 181

Report 1: Average Wind Speed by Airport ID... 181

Setting up the Report Layout .. 182

Data Confi guration ... 185

Adding the Dynamic Image .. 195

Report Body Properties .. 202

Running the Report .. 204

Report 2: Average Temperature by Airport ID ... 206

Summary .. 208

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

xi

 ■Chapter 9: Viewing the Reports in Report Server .. 209

Viewing Reports ... 209

Managing Reports .. 211

Properties ... 212

Data Sources .. 212

Subscriptions .. 215

Dependent Items .. 219

Caching ... 219

History Snapshots... 220

Security .. 221

Saving Reports ... 221

Summary .. 222

 ■Part IV: Appendices .. 223

 ■ Appendix A: Installing a SQL Server 2016 Instance in a SQL Server 2014
Installation .. 225

Getting Started ... 225

Product Key .. 227

License Terms .. 228

Install Rules .. 229

Feature Selection ... 230

Instance Confi guration ... 232

Server Confi guration .. 234

Database Engine Confi guration .. 237

Server Confi guration ... 238

Data Directories .. 239

TempDB .. 240

FILESTREAM ... 242

Reporting Services Confi guration ... 242

Consent to Install Microsoft R Open ... 243

 ■ CONTENTS

xii

Ready to Install ... 244

Complete .. 247

Summary .. 251

 ■Appendix B: Software Requirements Document .. 253

Project .. 253

Author ... 253

Prepared for ... 253

Problem .. 253

Solution .. 253

Language/Platform ... 254

Medium .. 254

 ■Appendix C: R Plot and Tabular Code for R Tools for Visual Studio 255

Average Temperature by Airport ID (Plot) ... 255

Average Temperature by Airport ID (Tabular) .. 256

Average Wind Speed by Airport ID (Plot)... 256

Average Wind Speed by Airport ID (Tabular) ... 257

Index ... 259

xiii

 About the Author

 Bradley Beard is a software engineer with more than 15 years’ experience
writing dynamic, interactive web sites using ColdFusion and SQL Server.
He graduated from the Florida Institute of Technology in 2007 with a
Master of Science in Computer Information Systems, and studied for his
undergraduate degrees in CIS and Technology Management at Herzing
University. In 2013, he earned the MCSA: SQL Server 2012 certification
from Microsoft. In 2016, he earned the MCSE: Business Intelligence
certification as well. His continual quest for learning has earned him
shelves full of books at home and at work, most of which are about SQL
Server, ColdFusion, or general web architectures or frameworks.

 He lives in Palm Bay, Florida, with his wife, Jessica, and children, Josh,
Kaylee, Matthew, and Emma. He also apparently runs an animal shelter made
up of his dogs, Lady and Bella, and cats, Spice, Simba, Mercury, and Dobby.
In his free time, he enjoys fishing and spending time with his wife and kids.

 Bradley is available for consultation and third-shift remote employment on ColdFusion and SQL Server
by contacting him at bradley.beard@gmail.com .

xv

 About the Technical Reviewer

 Kathi Kellenberger , known to the SQL Server community as Aunt Kathi, is
an independent SQL Server consultant associated with Linchpin People
and a Data Platform MVP. She loves writing about SQL Server and has
contributed to more than a dozen books as an author, co-author, or
technical reviewer. Kathi enjoys spending free time with family and
friends, especially her five grandchildren. When she is not working or
involved in a game of hide-and-seek with the kids, you may find her at the
local karaoke bar. Kathi’s blog is at www.auntkathisql.com .

http://www.auntkathisql.com/

xvii

 Acknowledgments

 Another big thanks to both Jonathan Gennick and Jill Balzano for guiding me through the process of getting
this book published. You guys are awesome.

 To my first mentor once again, John Wysocki, who is currently enjoying semi-retirement in some lavish
resort somewhere: I can’t thank you enough for stoking the fire of creativity in me.

 To my newest mentor, Suzy Moore, who is hands down the smartest person I know: I can’t wait to learn
more from you.

 To the one and only Chester Flake: Thank you for your guidance on certifications. Anyone needing
any sort of certification training needs to go to www.certificationcamps.com and sign up today. You won’t
be sorry.

 To my brother Brian, niece Holly, sister-in-law Andie, and Drew, Austin, and Sam: Mom said no
fireworks past 10:00 PM!

 To my parents Richard and Carolyn, my in-laws Steve and Carey, my out-laws Al and Val, other brothers
Joe, Rick, Zimmer, and Dave, and other sisters Morgan, Erika, Jennifer, Kim, and Michelle, and everyone else
I forgot.... Well, you know me

 And finally, to my wife, Jessica, and kids—Josh, Kaylee, Matthew, and Emma, who had to deal with me
leaving for hours on end while writing this book: Thank you so much.

 Oh, yeah…. I can’t forget my best fraaaaaaaand Courtney. She’s such a little cutie patootie!!

http://www.certificationcamps.com/

xix

 Introduction

 In an effort to not sound like a complete Microsoft fan boy, SQL Server 2016 has some seriously cool
additions. Not the least of these is the inclusion of a massive data analysis tool widely used throughout the
industry. This tool is called, simply, R. Some of you might be asking why Microsoft would possibly include
this tool, since it isn’t really a database thing as it is an analysis or graphing tool.

 The reason, I think, is fairly simple to deduce: Microsoft is expanding their reach. It seems to me that
R is a great way to do that. The inclusion of R Tools as a part of the Visual Studio toolset and the SQL Server
database instance will most definitely be a game changer for SQL Server development. It used to be where
the database developer would have to prepare the data to be consumed by some service for analysis; not
anymore. R Tools for Visual Studio (RTVS) allows the user to either prepare their scripts in Visual Studio, or
directly in SQL Server Management Studio. Although this isn’t recommended by Microsoft, it is still possible.

 What We Will Cover
 What this book covers is pretty simple and straightforward. We will…

• Set up a new instance on SQL Server 2016

• Set up the necessary R resources to properly create, consume, and execute R

• Briefly review the history, syntax, and functions within R

• Create a custom R solution using R Tools for Visual Studio

• Configure SQL Server Reporting Services

• Install and configure Report Builder

• Create reports in Report Builder based on R code developed in R Tools for
Visual Studio

• Consume those reports through Reporting Services

 It is important to note a few things at this point. Specifically, …

• R Tools for Visual Studio is a brand-new release, so the chances of it being buggy are
pretty good.

• We are fully installing SQL Server 2016 as a completely new instance because I
wanted to be able to show the advantages that a user stands to gain by incorporating R
into their workflow, even though they may not be completely sold on the benefits of R.

 All the components needed to install and configure what is necessary to run R within SQL Server 2016
are covered on MSDN. As of now, the link for the resources is at https://msdn.microsoft.com/en-us/
library/mt604883.aspx . Please note that Microsoft may not keep that same link forever, so remember that
Google is your friend. I will explain what is needed to get it up and running. It may be up to you to find the
necessary tools on Microsoft.com.

https://msdn.microsoft.com/en-us/library/mt604883.aspx
https://msdn.microsoft.com/en-us/library/mt604883.aspx

 ■ INTRODUCTION

xx

 Why R?
 Good question. Why R? The answer is actually quite simple… I think because Microsoft wants to expand
their reach into the data science field with SQL Server, so it makes sense that they would want the best
product out there for data analysis, which is arguably R. Microsoft’s Business Intelligence offerings are
already extremely sharp, so if they could find a way to …

• Acquire a data analysis product already in heavy usage

• Incorporate that product into their existing database platform

• Offer a GUI which integrates seamlessly into Visual Studio

• Make it all available for free

 … then the (data analysis) world would be their oyster! To my knowledge, there isn’t any other database
system that will allow for such complete interaction with R. There are plenty of instances where data is
prepared in a database and then imported to R, but this is a totally different level of interaction.

 SQL Server 2016 actually runs an instance of the R engine as native to the database engine. Fascinating!
For those of you that have worked with SQL Server when they radically changed to SQL Server 2005, you
remember the shock of Integration Services and “what happened to my DTS scripts??” This is on that same
sort of level; for those intrigued by data analysis or business intelligence, the implications of the addition of
R are guaranteed to be long-reaching and will most certainly result in some amazing advancements in data
science. I, for one, can’t wait to be a part of that.

 Also, just to get this out of the way…

 The MIT License (MIT)
 Copyright (c) 2016 Microsoft
 Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:
 The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 In other words, thank you, Microsoft, for letting me use a whole lot of your stuff! I really appreciate it.
 If you read my first book, Practical Maintenance Plans in SQL Server (Apress, 2016), then you are already

familiar with my writing style. I tend to try and keep the mood a bit light and sometimes quirky, without
sacrificing technical content. At times, I might divert down a rabbit hole, but I always have a point at the end.
Most of the time, it might take me a while to get there, but I do eventually get there in the end.

 Right now—before we get into installing and setting up our environment—is a great time for you to take
a few minutes to get familiar with R and what it can do.

 Once you’ve done that, let’s begin our journey as data scientists!

PART I

Setup and Installation

3© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_1

CHAPTER 1

Setup and Installation of
SQL Server 2016

One of the major updates to SQL Server 2016 is the addition of R as an integral part of the database engine.
R began in 1993 as a data analysis language developed by Robert Gentleman and Ross Ihaka at the
University of Auckland. It started as a language that could rival the S language in statistical analysis and
evolved into arguably the most popular language in the world for statistical computing, data analysis, and
machine learning.

With the business world making a major shift toward business intelligence and data analysis, the
addition of R as an integral part of SQL Server is a smart business move for Microsoft. Not only is Microsoft
introducing new functionality into an already widely accepted platform, but they are also leaving the core of
the language intact so that current R statisticians can easily move onto the SQL Server platform to enhance
their statistical computing methodology. In the end, this enhances visibility for Microsoft in the business
intelligence field, and hopefully, leads to even greater acceptance for SQL Server in everyday data analysis
operations.

In 2016, Microsoft bought Revolution Analytics, which is built around R and provides both an open
source (Revolution R Open) and commercial (Revolution R Enterprise) development platform for R. Heavy
integration of R into existing products is now Microsoft’s focus, with the obvious choice of SQL Server and,
eventually, Azure. This is an exciting release, because it gives Azure hosted services the opportunity to
deliver content based on R computations done in an Azure site or database.

Since R has been added as an installation portion of SQL Server 2016, all we need to do is select the
option during installation to add it and then run through some minor configuration tasks.

There are certain things that we need to check and install to make sure that R runs, but I will show
all that when we get there. For now, download SQL Server 2016, and then follow along with me on how to
install it. It is worth noting that your installation screens may vary slightly from mine, depending on the
service packs or if Microsoft decides to change the install screens, but I think that the gist of the content will
be the same.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

4

Planning
First things first though. Once you download SQL Server 2016, you want to plan out the basics, such as the
account that you’re going to use and where your default file locations are going to be. If you read my last
book, then you know that I have a very particular way in which I organize my file system for SQL Server. For
this book, I make a separate logical disk (E:\) with the following folder structure:

•	 E:\SQL Server

•	 Backups

•	 Data

•	 Logs

So, one main folder, SQL Server, and then three folders inside of that folder to hold the different bits as
needed. There can be other folders, such as DTSX or Output, which you can use for other things, but for the
most part, those three subfolders inside of the main folder work nicely.

 ■ Note there are other locations that SQl Server wants to place files in during installation; this is fine, since
this is how SQl Server wants to categorize the system files to keep everything copacetic. We will have control
over our data, logs, and backups in the folders specified earlier.

As far as which account you should use to run the functionality of SQL Server 2016, this should be a
no-brainer. It needs to run as if it were a regular database installation, so it needs to have the account
assigned that it would normally have. To be clear, assign the same account that you are currently using for
whatever version of SQL Server you are running. Most times, this needs to be an administrator in order to
install programs.

A quick side-note here: if you haven’t read the hardware and software requirements for SQL Server
2016, you probably want to do that. Also, Appendix A covers installation of SQL Server 2016 onto an existing
SQL Server 2014 server. If you are running SQL Server 2014 and want to try SQL Server 2016 on the same
server, then look to Appendix A for guidance. (But in no case should you ever use a production server to
follow along with this book).

Beginning the Installation
Here we go! Double-click the setup.exe file in the download folder. You should see what’s shown in
Figure 1-1.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

5

If you see the screen asking to make changes to your system, go ahead and say Yes.
Figure 1-1 shows the first screen that you should see when you start installation. This screen should look

pretty familiar to you, if you have ever installed SQL Server before. Click the Installation link on the left. You
should see what is shown in Figure 1-2.

Figure 1-1. Initial SQL Server 2016 installation screen

Figure 1-2. SQL Server 2016 installation options

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

6

Once here, click the top link, titled New SQL Server stand-alone installation or add features to an
existing installation.

Note that the very bottom option is something new. It says New R Server (Standalone) installation.
You would select this option if you only wanted to install R Server as either a server (standalone,
self-contained data analysis server, in other words) or a client (manipulating data from a remote SQL
Server R Services installation). Note that you need the SQL Server 2016 services running as well, so this
would be to add R services to an existing SQL Server 2016 installation.

Product Key
Next is to enter your product key. Figure 1-3 shows the screen you see after continuing from Figure 1-2 in the
prior section. Here you can specify that you wish to run the free edition, or you may enter a product key in
order to run a licensed edition.

Figure 1-3. Product Key screen

SQL Server 2016 can be installed in one of three free editions:

•	 Evaluation: A full set of features; basically, the Enterprise version of SQL Server
2016, but only good for 180-day spans.

•	 Developer: A full set of features, but cannot be used for production database work.

•	 Express: The smallest, bare-bones installation of SQL Server 2016; does not expire
and can be used for production use.

If you would like to choose an option other than Evaluation, go right ahead. Just understand the
implications of choosing that option; for example, the Express option doesn’t support R so I wouldn’t choose
this option. For what you need here, the Evaluation version is perfect, because you certainly decide within 180
days if this new functionality is something you want to permanently include in your SQL Server installation.

When you have chosen the version you are most comfortable with, click Next to continue.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

7

License Terms
The next screen, shown in Figure 1-4, simply asks you to accept the license terms.

Figure 1-4. License terms

I honestly have never read this license all the way through. I can’t say that I know anyone who has.
Obviously, just click the I accept the license terms check box and then click Next to move on.

Install Rules
This screen shows you what happens as SQL Server goes through the preliminary steps to check for a clean
installation. If you get any errors or warnings, you should look at correcting them so that you can install as
cleanly as possible.

My screen flashed a few times and I eventually ended up at the screen shown in Figure 1-5.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

8

It’s worth noting that there could be an update to SQL Server 2016 that gets downloaded and installed
during this step, so if a message comes up with that information, go ahead and install it.

So everything looks good except for my firewall rule. Since no connections come from a network on my
laptop, this should be fine, so I’m going to click Next to continue.

Feature Selection
Now we get to choosing what we want as part of the actual installation. Figure 1-6 shows the screen we have
been waiting for.

Figure 1-5. Install Rules

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

9

At this point, we need to choose just the bare minimum of what we need to test the functionality of R
within our database instance. In this book, we get familiar with R and create charts using R Tools for Visual
Studio, and then duplicate those results in SSMS, ultimately serving those results in reports through Reporting
Services. Because of this, we only install R Services (In-Database) and Reporting Services – Native. This gives
us everything we need to really get a feel for R and what it can do for us. It also means that we don’t need to
install the entirety of SQL Server 2016. Figure 1-7 shows the selected options that you should have at this time.

Figure 1-6. Feature Selection

Figure 1-7. Selected options

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

10

Click Next here to move on. It takes a second to think about what it wants to do, but eventually, you see
the Instance Configuration screen shown in Figure 1-8.

Figure 1-8. Instance Configuration

Instance Configuration
Since this is a new installation and there isn’t a previous version of SQL Server installed, the option is
available for Default Instance. We can certainly do this with no issue, but I usually prefer to name my
instances. I leave this up to you, but understand that I will use a Named instance and not a Default instance
for the remainder of this book.

At this point, we need to define our new instance. If you look on the Installed Instances section, you
see that there is nothing there. We choose the Named Instance option and call it SQL2016RS for SQL Server
2016 R Services. The Instance ID field should be updated to SQL2016RS as well. Once you do that, you see
what is shown in Figure 1-9.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

11

Pay attention to the Named Instance field, the Instance ID field, the SQL Server directory location,
and the Reporting Services directory location listed on this screen. Those need to all have SQL2016RS
referenced in them. Once you are satisfied that everything is as it should be, click Next to continue.

When you are ready, click Next to move on.

Server Configuration
The next screen is where we define the service accounts and startup types for the services. This screen is
shown in Figure 1-10.

Figure 1-9. Updated Instance Configuration screen

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

12

The only service to really pay attention to here is the SQL Server Launchpad service. This service handles
the execution of R within the database engine, so if R isn’t behaving as expected, check this service first.

The SQL Browser service is running under the context of local services, so there isn’t a new service
account being created. We won’t worry about that one, in other words.

These service accounts are the default, but can always be changed to your own service accounts, if you
have them. If you don’t have your own service accounts, you can keep these suggested service accounts.
I know a lot of server administrators that insist on employing the principal of least privilege for services,
so if that is the case for your particular environment, then you need to get the service name and login
information from the server administrator in order to proceed. Another way you can go about this is to copy
these service names and include them in a summary to your system administrator regarding the accounts
that were created during installation, so that the system administrator can audit the permissions for this
user as needed. It is important to note here that I am referring to a separate individual or entity for “system
administrator” that is not a database administrator, but rather the Windows-level administrator. The person
in charge of the operating system level, one step up from the Application layer, in other words.

We only want to change a little bit here; specifically, set the SQL Server Agent service Startup Type to
Automatic. That is the only change we need to make. Figure 1-11 shows what you should see at this point.

Figure 1-10. Server Configuration

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

13

Notice that we cannot set the password for any of these accounts. This is the same as it has been for
every installation of SQL Server that I have ever seen. If you were to change the Account Name box from the
default to a custom service account name, then the Password box would become active and accept input.
Otherwise, the password is controlled by SQL Server and Windows.

Notice also that there is a new Grant Perform Volume Maintenance Task privilege to SQL Server
Database Engine Service check box underneath the default services listed. For what we’re doing in this
book, it’s not necessary to check this box. In future installations, or for production environments, it would
probably be a good idea to enable this.

At this point, all of our services are configured correctly. Notice that we aren’t going to bother with the
Collation tab. This should have SQL_Latin1_General_CP1_CI_AS specified in the tab by default. That’s it. Go
ahead and click Next to move on.

Database Engine Configuration
The next screen is Database Engine Configuration, shown in Figure 1-12. Here you set options for the engine
in four different tabs, as specified in the subsections to follow.

Figure 1-11. Server Configuration updated

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

14

Server Configuration
This tab lets you specify the authentication mode and the administrators for this instance of the database
engine. Because this is just for testing and evaluation, I am going to add myself in Windows Authentication
Mode as the administrator by clicking the Add Current User button at the bottom of the screen and
selecting Windows Authentication Mode. Figure 1-13 shows these options selected.

Figure 1-12. Database Engine Configuration

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

15

Data Directories
Do you recall how I had my file system set up? The Data Directories section describes the locations of those
data directories within the file structure I specified. Figure 1-14 shows what this screen looks like initially.
Figure 1-15 shows my selected options. You can leave these however you like, but my personal preference is
to not put the files I want in the default labyrinth of folders.

Figure 1-13. Server Configuration tab with options

Figure 1-14. Initial Data Directories tab

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

16

TempDB
Usually, I leave this TempDB option alone. However, in this case, I set the options to mirror the file system
that I have enabled. Figure 1-16 shows the default settings and Figure 1-17 shows the updated settings.

Figure 1-15. Updated Data Directories tab

Figure 1-16. TempDB default settings

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

17

The changes I made were slight. I first highlighted the existing option in the Data directories field and
then clicked the Remove button. Then I clicked the Add button and added E:\SQL Server\Data instead.
This location was mirrored in the Log directory field, so I changed it to E:\SQL Server\Logs instead. That’s
it for this tab.

FILESTREAM
Just leave the FILESTREAM tab alone. We won’t be using FILESTREAM for this book.

Once you’ve got all the other Database Engine Configuration tabs filled in, click Next.

Reporting Services Configuration
Now we get to configure Reporting Services. We configure Reporting Services further in Chapter 7 and
onward. We install it now using the Install and configure option, which is selected by default. Figure 1-18
shows that option.

Figure 1-17. TempDB updated settings

http://dx.doi.org/10.1007/978-1-4842-2298-0_7

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

18

Also note that the Install only option is selected for when you are installing Reporting Services
SharePoint Integrated Mode. You can leave the option as it is, since there isn’t another choice anyway.

One quick thing while we’re talking about the configuration of Reporting Services; if you go in later
and want to install Reporting Services because you didn’t install it with the database engine, you only have
the Install only option available to you. The reason for this is because Reporting Services Configuration
Manager must be used to configure Reporting Services after a database engine instance has been added.

Ensure that the Install and configure option is selected on the top, and then click Next on the
Reporting Services Configuration screen to move on.

Consent to install Microsoft R Open
The addition of R into SQL Server is a major change, as I noted before. In the pre-release editions of SQL
Server 2016, it was mandatory to install the components separately in order for R to run correctly. Microsoft
updated the installation process gradually through the editions until the final version, which included the
full download and installation of the R components. Note that the version of R used in SQL Server 2016
is called out as Microsoft R Open, which is “an enhanced distribution of R made available by Microsoft
under the GNU General Public License v2.” R, the language, remains the copyright of the R Foundation
for Statistical Computing. Microsoft is careful to spell that out exactly in the figure shown in 1-19. This is
important, I believe, because Microsoft is making an entirely new software package available to SQL Server;
for this reason, we must consent to installing Microsoft R Open and therefore accept any patches or updates
issued by Microsoft.

Figure 1-18. Reporting Services Configuration

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

19

Click the Accept button. The Next button becomes enabled. Go ahead and click Next to move on.

Ready to Install
Figure 1-20 shows the Ready to Install screen that you should now see. Read it over and ensure that you
match these settings if you’re going to do the exercises in this book.

Figure 1-20. Ready to install

Figure 1-19. Consent to install Microsoft R Open

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

20

Once you are ready, click Install. Your screen will flash a few times while it is loading and installing
what it needs.

Installation Progress
Figure 1-21 shows what you should see while your installation is running. The progress bar shows overall
progress, so you can gauge how far along you are and how much time is remaining. Wait patiently. Watch the
progress bar. Or go for coffee.

Install Complete
The install takes a little while, but eventually finishes with the screen shown in Figure 1-22. My installation
took about 10 minutes to complete. Scroll down to see if everything installed correctly, and then click Close.

Figure 1-21. Installation Progress

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

21

Let’s take a second to plan out what else we want to do in this chapter. We are already pretty far along so
far, but we have a bit more before we can stop and rest.

•	 What we’ve done so far

•	 Installed the SQL Server 2016 components that we need to test the new
R functionality

•	 What we will do next

•	 Verify the SQL Server 2016 services all started correctly

•	 Install SQL Server Management Tools

That second bullet there might throw you off a bit. Why do we need to install SQL Server Management
Tools? Because, for some strange reason that I’m sure Microsoft can justify, SQL Server Management
Studio does not ship as part of the installation for SQL Server. I have never seen this before in any previous
installation, so I can assume that this is the new norm for SQL Server.

Services Verification
Let’s go make sure that the services that needed to start all started correctly. Start your Services window by
pressing your Windows key and then typing services. You should see the Services desktop app appear as an
option, as shown in Figure 1-23. Go ahead and click the Services app to continue. Alternatively, you could
also press your Windows key, type services.msc, and press Enter. This opens the Services window without
having to search for it.

Figure 1-22. Complete

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

22

Everything looks good to me. What do you think? All are running as expected and all are set to an
Automatic startup type.

Congratulations! You have successfully installed SQL Server 2016 and verified that everything is
copacetic by confirming that the services all started as expected.

SQL Server Management Tools
Next, we need to install the SQL Server Management Tools. This installation task is part of the SQL Server
Installation Center that should still be open on your desktop. Figure 1-25 shows the current state of the SQL
Server Installation Center screen.

The application starts as normal, so scroll down to the SQL services. They should be sorted by Name by
default, so to jump to a letter, just type it. You will get there a lot faster than by scrolling. Figure 1-24 shows
you the relevant SQL Server services and their current status.

Figure 1-24. Services

Figure 1-23. Services location

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

23

Figure 1-25. SQL Server Installation Center

Notice that the link for SQL Server Management Tools has become highlighted since SQL Server 2016
was installed. That’s where we want to click now. Figure 1-26 shows the results of this action.

Figure 1-26. Download SQL Server Management Studio

When we clicked the Install SQL Server Management Tools link on the SQL Server Installation Center,
a web page opened on Microsoft.com, where we can download SSMS. Go ahead and click that blue link
titled Download SQL Server Management Studio now. The download was 806MB at the time of this writing.

While that is downloading, let’s plan out what we want to do next. Essentially, we need to “finish” the
installation of SQL Server by verifying that R is correctly installed and communicating normally with the
database engine.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

24

Click this button to begin the install, or go to your Downloads folder and double-click the file named
SSMS-Setup-ENU.exe to begin the installation of SQL Server Management Studio. Figure 1-28 shows the
initial installation screen.

Figure 1-28. SSMS installation

You almost forgot this was a book about R, didn’t you? I know, this chapter has been a ridiculously long
one, but we really did need to get all of the pieces up and running in order to show what R can do in the
current context.

Eventually, the download completes. In your browser you should a button similar to what’s shown
Figure 1-27.

Figure 1-27. Download complete

 ■ Tip You might end up with a different release number than mine, considering that Microsoft may
release a newer version in the time between when this was written and when you downloaded SQl Server
Management tools.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

25

It sits here for a minute or so loading packages, so just let it do its thing and install what it needs. The
first major package that gets installed is .NET Framework 4.6.1. It then progresses to other packages, like
Visual Studio 2015 Shell. This will be important later on, once we start looking at the different IDEs for
developing R projects.

Eventually, the installation completes and we settle on the screen shown in Figure 1-30.

Figure 1-29. Initial installation interface

Well, that’s certainly a new installation interface. I would think this was closer to Visual Studio, but
it’s not. The instructions are right there for us; click Install to begin. Figure 1-29 shows the interface after
clicking Install.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

26

Next, open SQL Server Management Studio and connect to your newly installed instance. Press your
Windows key and type ssms to show the Microsoft SQL Server Management Studio desktop app. Go ahead
and click the app to start the application.

 ■ Tip If you aren’t logged in as the local administrator account, you may need to right-click the desktop app
icon that appears in the Start menu and choose run as administrator instead.

Figure 1-30. Restart required

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

27

That needs to load the interface and then, finally, we get to the SSMS login screen. Figure 1-32 shows
how different this looks from previous versions of SSMS.

Figure 1-31. SQL Server Management Studio

Figure 1-32. Connect to Server

Figure 1-31 shows how the initial interface for SSMS looks in this updated version.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

28

Pay attention to the named instance and the SQL Server version shown. You may need to expand the
interface to see the version number, but it will be there unless Microsoft takes it away from the interface. My
version is 13.0.1601-5, which is the latest stable release at the time of this writing. As always, you may have
a different version of SQL Server 2016. That’s fine, considering that Microsoft hasn’t deprecated anything
major, which would affect the outcome of this book. This also means that we have successfully connected to
our new instance and we are ready to get going.

Before we get into anything else, let’s turn on the line numbers in SSMS. It’s a pet peeve of mine. Go to
Tools ä Options, expand Text Editor, and click All Languages. Figure 1-34 shows the location of this setting.

Just check that box and click OK—and you’re good to go.

Recall that I named the new SQL Server 2016 instance SQL2016RS, so that’s the instance I am going to
connect to. The format for the Server name field is SERVER\INSTANCE, so that’s how I have formatted my
connection. You can also pull down the menu and navigate to another instance you may have installed from
there. However you are more comfortable is fine, as long as you get there. Click Connect to log in to your
instance.

The Object Explorer initial screen you should see now resembles Figure 1-33.

Figure 1-33. SQL Server Management Studio

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

29

Microsoft has put out a post-configuration procedure, which we are going to run first. This may possibly
be removed and added to the installation in the future, but for now, follow along to complete installation.

Open a New Query window in SQL Server Management Studio and type the following command:

exec sp_configure 'external scripts enabled', 1
Reconfigure with override

This is the result of executing this code in SSMS:

Configuration option 'external scripts enabled' changed from 0 to 1. Run the RECONFIGURE
statement to install.

 ■ Note We already ran the reConfIGure statement as part of the query.

Notice that we are executing against the master database and that the query has executed successfully.
This means that R scripting is now enabled in SQL Server. This script is essential because, without it, we
cannot execute R code within the database engine. The reason for this is because the sp_execute_external_
script stored procedure is disabled by default; it must be enabled manually.

Next, we need to verify that R is indeed running. To do this, Microsoft says to restart the SQL Server
instance and run the following script. Restart the instance first, and then open a New Query window and
type the following:

exec sp_execute_external_script
@language =N'R',
@script=N'OutputDataSet<-InputDataSet',
@input_data_1 =N'select 1 as hello'
with result sets (([hello] int not null));
go

Figure 1-34. Line numbers

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

30

Excellent! The successful execution of this simple script shows us that R is alive and well, and
communicating normally with the SQL Server instance. We can see from the results in Figure 1-43 that we
had a very simple query defined as select 1 as hello, which we return as a column named [hello] using
a data type of, which is not null.

For those that haven’t yet memorized every single system stored procedure, you won’t recognize that
sp_execute_external_script is a brand-new stored procedure introduced to execute external scripts. This
stored procedure can be invoked with:

•	 @language

•	 The name of the supported language. Currently, only R is supported.

•	 @script

•	 The script that is executed (you can either type it all in to the stored procedure
or reference it as a variable).

•	 @input_data_1

•	 The SQL query you’re using to gather data from the database goes here.

•	 @input_data_1_name

•	 The data frame that acts as the result set of the @input_data_1 query. This
attribute is optional.

•	 @output _data_1_name

•	 The data frame variable in @script that holds the output data. This attribute is
optional.

Believe it or not, there are just a few more things that Microsoft says we need to do, so let’s get that out of
the way next.

For the Windows users out there, press Windows key + R, type lusrmgr.msc, and then hit Enter. You
should see your Local Users and Groups, as shown in Figure 1-36.

Figure 1-35. R installed and communicating correctly

Press F5 to execute the script. The anticipated results are shown in Figure 1-35.

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

31

Do you see that? Twenty new user accounts were created during installation and each of them are specifically
created to interact with R Services. These 20 accounts are added to a new Group called SQLRUserGroup<instance_
name>, where <instance_name> is the name of your instance. So in my case, my group is named
SQLRUserGroupSQL2016RS. If you followed this naming convention, yours will be named that as well.

Click the Groups option on the left of your screen. You should see what’s shown in Figure 1-37.

Figure 1-36. Local Users and Groups (Users)

Figure 1-37. Local Users and Groups (Groups)

Chapter 1 ■ Setup and InStallatIon of SQl Server 2016

32

Double-click the SQLRUserGroupSQL2016RS link. You should see what is shown in Figure 1-38.

Figure 1-38. SQLRUserGroupSQL2016RS detail

The way that this is configured, we can work just fine from this server. We don’t need to define anything
else or add any other user accounts, since we have already verified that R is working correctly in the
database. Microsoft has some pretty good articles about how to configure the database instance to accept
R scripts from external developers, which essentially entails adding the SQLRUserGroupSQL2016RS group
as a new login in SQL Server. That way, when a user connects to the database instance to run R scripts, one
of those 20 new user accounts is used to execute the script through the Launchpad service on behalf of the
user. Microsoft has dubbed this implied authentication, since a user in the group would then be able to
access SQL Server R Services remotely.

Summary
Let’s briefly review what we covered in this chapter.

•	 Installed a full SQL Server 2016 instance

•	 Installed SQL Server Management Tools

•	 Configured R after installation

•	 Verified that R is installed correctly by running the script specified earlier

This was a pretty important first chapter. We covered a lot of ground, so if anything was unclear, now is a
great time to go back through and try it again.

Next, we install R Tools for Visual Studio, which we will use to write our R code. This first part was
obviously necessary to get the R functionality and the database instance installed at the server level. We now
shift our focus to getting the client side set up with our development tools.

33© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_2

 CHAPTER 2

 Setup and Installation of R Tools
for Visual Studio

 Now that we’ve got SQL Server 2016 installed correctly, we need to have some sort of IDE to develop our
code in. Microsoft has made Visual Studio 2015 even better by introducing a brand-new R GUI as part of
Visual Studio. This is simply named R Tools for Visual Studio.

 There are other R GUIs that you can use, if you would like. You are not constrained or forced to use R
Tools for Visual Studio at all. If you currently have a favorite IDE, then by all means, continue to use that one.

 SQL Server Data Tools
 One quick thing before we get started. We will not be using SQL Server Data Tools for this book. Instead,
we will use R Tools for Visual Studio. That much should be obvious by the chapter title. The reason is pretty
simple, but it took me a minute to figure it out. Let’s look at the difference between the two.

• SQL Server Data Tools

• Develops solutions for Analysis Services, Reporting Services, or Integration
Services. Allows for connected database development; that is, the “live” editing
of databases.

• R Tools for Visual Studio

• Specifically designed as an R GUI for current Microsoft users who want to stay
with a familiar interface while learning about R. Does not interact with the R
instance in SQL Server, so needs to have a separate installation called Microsoft
R Open in order to execute any R code.

 The main reason that we are using R Tools for Visual Studio (RTVS) and not SQL Server Data Tools
(SSDT) for this book is because RTVS can be used to develop R code, and SSDT cannot. SSDT can connect to
the database instance and run queries against the database, but it is not an IDE for R. Alternatively, RTVS is
an IDE for R, but in the constraints of this book, we are not connecting to the database instance directly.

 That should help you figure that out quickly. The main difference to me is that SSDT runs an internal
process, while RTVS runs an external process. You may find other differences between the two, so if you do,
good work. As I said, though, we use RTVS in this book.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

34

 Visual Studio
 In addition to the installation of Visual Studio, you need to download the extensions for R that go into
Visual Studio. That way, RTVS has a version of R to execute code against. To get this done easily and with
instructions all in one place, Microsoft has a site that explains R Tools for Visual Studio (RTVS). It is at
 https://beta.visualstudio.com/vs/rtvs/ . A portion of this site is shown in Figure 2-1 .

 Figure 2-1. R Tools for Visual Studio site

 Figure 2-2. Download Community 2015

 The first step, as I mentioned, is to get Visual Studio. Go ahead and click the Free Visual Studio link
shown in Figure 2-1 . It is the white box in the top-right corner. Another page opens, as shown in Figure 2-2 ,
with a download link for Visual Studio Community on the left of the page.

 We can see from the graphic that pretty much anything can be developed by Community 2015. Scroll
down and click the Download button underneath the purple rocket ship graphic. You should see what is
shown in Figure 2-3 .

www.allitebooks.com

https://beta.visualstudio.com/vs/rtvs/
http://www.allitebooks.org

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

35

 If you take a look in the Downloads folder, you see that the installer has downloaded. It’s a tiny 209KB
install, which is very likely to download before you can even open your Downloads folder to check for it.

 You can go through the survey mentioned in Figure 2-3 if you really want, but I said No thanks. Sorry,
Microsoft!

 Go to your Downloads folder and double-click the file named vs_community_<random string that
looks like a GUID>.exe . Of course, you have a different random string than I did, so look for the file that
begins with vs_community . That’s the one that you want to double-click. You should then see Figure 2-4 on
screen. You are about to begin the install, which consumes several gigabytes of bandwidth.

 Figure 2-3. Installer download begins

 Figure 2-4. Open File

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

36

 Eventually, you get to Figure 2-6 , which shows the configuration options for Visual Studio Community 2015.

 Figure 2-5. Initializing setup

 Figure 2-6. Choose installation type

 Go ahead and click Run . You will see Figure 2-5 pop into view.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

37

 From here, we can either choose Default or Custom . We really only need the basic functionality of
Visual Studio, so keep the default option selected and click Install .

 The screen shown in Figure 2-7 then appears; this begins the actual installation of Visual Studio
Community 2015.

 Figure 2-7. Installation begins

 The installation runs for quite a while until completion. Note that there are probably required updates
that need to be downloaded along with the actual application; so be patient and let it do its thing.

 You eventually get to see Figure 2-8 , which shows that the application has completed installation
successfully.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

38

 Visual Studio is now installed. Next, we need to download R Tools for Visual Studio, but first restart your
machine by clicking the Restart Now button, or closing and saving everything first and then restarting.

 Once you restart, you may see Figure 2-9 , which shows a nice little splash screen saying that Visual
Studio has been installed.

 Figure 2-9. Welcome to Visual Studio

 Figure 2-8. Setup Completed

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

39

 If you didn’t see this screen come up after rebooting, that’s probably okay. As long as you successfully
installed Visual Studio, you should be good to go. Read further for installing the rest of what we need to start
testing R functionality.

 Download R Tools for VS
 The second step, shown in Figure 2-1 , is to Download R Tools for Visual Studio. Clicking the Download
R Tools for Visual Studio link, also shown in Figure 2-1 , starts a download of what I need to install. The
downloaded file is named RTVS_2016-06-23.7.exe , as shown in Figure 2-10 .

 Figure 2-10. RTVS file name

 Figure 2-11. R Tools 0.4 for Visual Studio

 You may end up having a different file name than this, but that’s okay. Microsoft manages the future
releases of this product, so we can assume that it is fine to install whatever application is presented from the
link that you have clicked.

 Run the executable once it’s downloaded. You’ll see the Figure 2-11 , showing that you are ready to begin
installing the R Tools. Click the Install button to start the installation process.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

40

 The installer starts doing its thing, eventually showing the completed R Tools installation interface in
Figure 2-12 .

 Figure 2-12. R Tools 0.4 for Visual Studio installation complete

 Figure 2-13. Opened web page

 Clicking the Close button, as shown in Figure 2-12 , also opens a web page, so let’s take a look at that
next in Figure 2-13 .

 Isn’t that nice! Microsoft gives us a nice page all lined up with resources and everything. This page may
change when you set yours up, but it probably will be fairly similar. I strongly urge you to go through the
listed resources to gather as much information about R as you can. Once we get into the interface of RTVS,

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

41

I show you an even better way for getting documentation on R, but for now, just peruse this site generally so
that you are aware of what is available.

 Back to the setup screen shown in Figure 2-12 , press Close . R Tools for Visual Studio has now been
successfully installed.

 Download Microsoft R Open
 The final step to getting the installation all working is to install Microsoft R Open. Go back to the web page
provided by Microsoft and shown in Figure 2-1 and click the Download Microsoft R Open link. At this point,
another web page opens; its URL is https://mran.revolutionanalytics.com/download/ . Figure 2-14
shows the Microsoft R Open download page that you should see at this point.

 Figure 2-14. Opened web page

 Notice that the download for Microsoft R Open is available for 64-bit platforms only . Microsoft R Open
is available for 64-bit versions of Windows (7 SP1, 8.1, 10, Server 2008 R2 SP1, and Server 2012), Ubuntu
(14.04 and 15.04), Red Hat Enterprise Linux (7.1 and 6.5), and SUSE Linux Enterprise Server 11.

 Go ahead and click the link for your operating system; the download should start. At the time of this
writing, the file name is microsoft-r-open-3.3.1.msi for the Windows installation and it is 131MB in size.
The executable takes a little while to download, so go grab a drink or something while you’re waiting .

 Has Microsoft R Open finished downloading? Good. Then let’s go ahead and install it now. Double-click
the executable that you’ve just downloaded. Figure 2-15 shows what you should see at this point.

https://mran.revolutionanalytics.com/download/

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

42

 Click Next . You should be taken to the screen shown in Figure 2-16 . This screen provides some detail
about the impending installation. Read over the information given, click the I Acknowledge check box, and
then click Next when you are ready.

 Figure 2-16. Information

 Figure 2-15. Starting Microsoft R Open installation

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

43

 The next screen, shown in Figure 2-17 , shows the Install Math Kernel Library (Intel© MKL)
installation option.

 Figure 2-17. Install Math Kernel Library (Intel© MKL) option

 This is completely your decision to install or not, since it is not a required installation portion, but it is
recommended that you install it. The reason it is selected by default is that the addition of the math kernel
library allows your R code to use all available resources to generate a result, which means that it gets done a
lot faster (depending on the speed of your machine and the available resources). I also recommend leaving
this option checked. Click Next when you are ready to move on.

 Next, we have to accept the license terms for the MKL that we are installing. This is shown in Figure 2-18 .
 At this point, make sure that you click the I accept check box, and then click Next to move on.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

44

 Next, the screen in Figure 2-19 shows the destination location information. Click Next to accept the
target folder.

 Figure 2-18. Accept MKL license terms

 Figure 2-19. Select Destination Location

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

45

 Click Next here. The following screen, shown in Figure 2-20 , lets us begin the installation; click Install
when you are ready.

 Figure 2-20. Ready to install

 Figure 2-21. Installing

 Figure 2-21 shows the installation running. It doesn’t take very long, thankfully.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

46

 Finally, we are done installing Microsoft R Open. Figure 2-22 shows the final screen you should see at
this point in the installation .

 Figure 2-22. Installing

 Click the Finish button, as shown in Figure 2-22 , to finish the installation. No reboot is needed at this
point. You have all you need to be up and running with R in Visual Studio .

 Visual Studio Environment
 Now that we have everything installed according to Microsoft, let’s take a look around our new development
environment and see what is new, changed, or different. For those of you that have used Visual Studio before
(and that’s probably a large number of you), you see the familiar Visual Studio environment. For those of you
that haven’t used Visual Studio before, I invite you to spend a little time poking around in the various menu
sections to see how comfortable you are with the user interface. Again, if you have a familiar IDE that you
would rather use to write R code, by all means, go ahead and use that one instead. I will guide you along a
quick introduction to the menus specifically pertaining to the new R functionality in Visual Studio 2015.

 Go ahead and start Visual Studio. You might see screens prompting you to connect to developer
services. If you see this, go ahead and press Maybe Later . Those are expected. You eventually get to the main
IDE screen shown in Figure 2-23 . Look at the menu bar for the R Tools menu that is just a bit to the right of
the center of the menu toolbar.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

47

 The R Tools menu is home to all the R functionality now available from Visual Studio. Opening this
menu shows the options in Figure 2-24 .

 Figure 2-24. R Tools menu options

 Figure 2-23. R is installed as part of Visual Studio

 Let’s take a look at those menu options. The following subsection gives a brief description of what each
menu option does for you and what that menu option allows you to control.

 Session
 The Session option lets you conduct R sessions. The following are the available options:

• Interrupt R

• Attach Debugger

• Reset

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

48

• Load Workspace…

• Save Workspace As…

 Plots
 The Plots option lets you define how you want your results to be shown. The following are your available
options:

• Previous Plot

• Next Plot

• Save as Image

• Save as PDF

• Copy as Bitmap

• Copy as Metafile

• Remove Plot

• Clear All Plots

 Clearly, you can see that this is a huge help. The ability to export these plots as the various types
mentioned is already a pretty big advantage over some other systems that only generate in Flash or
Silverlight, for example.

 Data
 The Data option lets you define how you want to consume data that already exists. The following are you
available options:

• Import Dataset into R Session from Web URL…

• Import Dataset into R Session from Text File…

• Delete All Variables

 I wonder if we will get the option to connect to different databases and/or installations in the future…?
It would be an interesting development, should Microsoft decide to pursue that path. I think that making
more data sources available for consumption is only going to enhance the usability of the product.

 Working Directory
 The Working Directory option allows you to change your working directory. Your working directory is
different from where the installation of R is installed, for example. A working directory means that this is
where you save the files that you are working on.

• Set Working Directory to Source File Location

• Set Working Directory to Project Location

• Select Working Directory…

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

49

 Windows
 The Windows menu lets you open new windows to monitor what is going on with your R scripts. The
following are the available options:

• Source Editor

• R Interactive

• Help

• History

• Files

• Plots

• Packages

• Variable Explorer

 These options replace the regular views that you may have for class view or stack traces, apparently.
Since R is a totally different beast, it stands to reason that there are different ways of viewing the data and the
development tasks.

 Install Microsoft R Client…
 You select the Install Microsoft R Client option when you want to install the R client as a download from
Microsoft. We don’t want to do this, so just leave this alone. I explain the different components to Microsoft’s
R products shortly.

 Change R to Microsoft R Client
 You select Change R to Microsoft R Client when you havea local installation of R that you want to convert
to an instance of Microsoft R Client. The implication is that Microsoft R Open is installed, since that is a
prerequisite to running R Client. In the instance, we also don’t want to change to an R client. This implies
that we are connecting to a remote database instance, which we are not. We are connecting locally.

 Microsoft R Products…
 The Microsoft R Products menu option is essentially a shortcut to a URL. Selecting the option takes your web
browser to https://www.microsoft.com/en-us/cloud-platform/r-server , where you can view Microsoft’s
product options for R Server.

 RTVS Documentation and Samples
 The RTVS Documentation and Samples option takes you to documentation and samples relating specifically
to R Tools for Visual Studio. Two sub options are available:

• Documentation : This option takes you to a web site (http://microsoft.github.
io/RTVS-docs) that goes through the documentation for the tool.

• Samples : This option takes you to a web site (http://microsoft.github.io/RTVS-
docs/samples.html) that lets you see a rather large sample of R scripts available. We
will come back to this section in a little while .

https://www.microsoft.com/en-us/cloud-platform/r-server
http://microsoft.github.io/RTVS-docs
http://microsoft.github.io/RTVS-docs
http://microsoft.github.io/RTVS-docs/samples.html
http://microsoft.github.io/RTVS-docs/samples.html

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

50

 R Documentation
 The R Documentation menu item provides easy access to documentation on the R language itself. There are
four options available here:

• Intro to R : Clicking this option takes you to https://cran.r-project.org/doc/
manuals/r-release/R-intro.html . I thought this was an interesting addition.
Microsoft linked the entire R documentation set right into Visual Studio. All you have
to do is click the link—and you’re there.

• Task Views : This link goes to https://cran.r-project.org/web/views/ , which
shows a list of task views that can be downloaded and installed. A task view, in this
context, is a group of libraries that work together for a common purpose. There are a
lot of them here, so go explore them when you get a chance.

• Data Import/Export : This link goes to https://cran.r-project.org/doc/manuals/r-
release/R-data.html , which is another documentation set. Light reading, no big deal.

• Writing R Extensions : Finally, this link goes to https://cran.r-project.org/doc/
manuals/r-release/R-exts.html , which is yet another extensive documentation set.

 There is a lot of information available on R from these menu options. Take advantage of what’s available
anytime you have questions about the language. I highly recommend reading through the documentation, at
least briefly, so you can get familiar with how R works syntactically. That makes the later part of this chapter
much easier to work with.

 Feedback
 Select the Feedback menu option to rate the product. The following are the available options:

• Report issue on GitHub

• Send Smile via E-mail

• Send Frown via E- mail

 Any feedback that you choose to send gets routed eventually to Microsoft.

 Check for Updates
 Select Check for Updates to check for and download updates to R Tools for Visual Studio.

 Survey/News
 Choose the Survey/News option to be taken to http://rtvs.azurewebsites.net/news/ , where Microsoft
posts news about R. There is also the Survey option, which at this time is “experimental.”

 Editor Options
 Choose Editor Options to get into customizing the interface options. This is the same action as Tools ä
 Options in the regular menu, except this menu confines the options by default to the R context menu. There
are various options, including how IntelliSense operates, formatting, and the general sort, such as line
numbers and word-wrap features.

https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/web/views/
https://cran.r-project.org/doc/manuals/r-release/R-data.html
https://cran.r-project.org/doc/manuals/r-release/R-data.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://rtvs.azurewebsites.net/news/

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

51

 Options
 This option lets you customize the environment options. This is different than the Editor Options menu
because the Editor Options menu only dealt with the options available from the Editor context. The Options
menu lets you deal with the actual environment options for R, such as debugging, CRAN mirror location,
general help settings, and the R installation location.

 Data Science Settings
 Selecting this option opens up a modal dialog window shown in Figure 2-25 . You are given the option to
reconfigure Visual Studio for use by so-called data scientists. You’ll get a window layout and some keyboard
shortcuts that Microsoft deems useful to those doing data analysis in R.

 Figure 2-26. Reset keyboard options

 Figure 2-25. Reset options

 Go ahead and click Yes . Another screen might open, as you can see in Figure 2-26 .

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

52

 You can see that I have my interface laid out so that R Interactive is the main window in the bottom-left
corner. On the right, I have Variable Explorer and Solution Explorer at the top. R Plot, R Help, and R History
are all laid out nice and neat at the bottom. This is proof of concept that R is installed and working correctly.

 Let’s briefly discuss what Microsoft makes available in their R product line.

• Microsoft R Server : An enterprise-class platform running Hadoop, Teradata DB, or
even Linux to provide powerful interactions with data. Uses ScaleR technology for
 parallelization .

• Microsoft R Client : A free data science tool that works with Microsoft R Open.
R Client uses remote data and processes the operations locally. Uses ScaleR
technology for parallelization.

• Microsoft R Open : Microsoft’s “version” of R. Called MRO for short, it is fully
compatible with R code in every way. It does not reference the proprietary ScaleR
technology though.

• SQL Server R Services : Integrates R into SQL Server’s database engine natively.
ScaleR is available in Enterprise Edition only though.

 Additionally, R Server is a server-class analysis platform and R Client is a client-based tool. MRO
provides the interface to R from a client. So, for example, in a typical data analysis environment, there would
be an R Server running an instance of SQL Server R Services, Hadoop, Teradata DB, or Linux, with one or
more R Client connections running MRO to interact with the data in the R Server or in the SQL Server R
Services instance. The clients could either consume the resources on their local workstations using the
ScaleR functions, or do the computing on the R Server using SQL Server R Services or one of the other
analysis tools (Hadoop, Teradata DB) on either Windows or Linux servers.

 For the examples in this book, the R Server instance is our SQL Server R Services database instance and
the R Client is our installation of RTVS with MRO.

 If you would like to reset your keyboard shortcuts while using RTVS, click Yes ; otherwise, click No .
 We can now see an updated interface. Take a look at Figure 2-27 for a look at the changes.

 Figure 2-27. Updated interface

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

53

 Exploring Samples
 Let’s go back to the Samples link in the RTVS Documentation and Samples menu item. That link is
 http://microsoft.github.io/RTVS-docs/samples.html . On that page, there is a download of a .zip file
containing examples that we will use to get familiar with the new R environment. Unzip that .zip file to a
location that you can access, and then navigate to RTVS-docs-master/examples and double-click README.
MD . This opens this doc in RTVS. Figure 2-28 shows this document once opened.

 Figure 2-28. Readme file

 We need to get a little bit familiar with R as a language before we attempt to get into any sort of
development activity, so let’s step through some of the examples given in A First Look at R . In the tutorial
featured later in this book, we deal with the R Server aspect a lot more, since we will directly interface with
SQL Server R Services to create a report with embedded information.

 There is an awful lot of information about R on the internet, so if you already know about it, then you
can consider this a refresher course. If not, no worries. I’m not going to get into the complete history of R and
I’m not going to make this a comprehensive guide to all of R’s functionality. Instead, I highlight the basics—
and we can go from there. I think that will be enough to whet the proverbial whistle and get our minds keen
on the practicality of using R for serious data analysis.

 A First Look at R
 Navigate to RTVS-docs-master\examples\A first look at R and double-click the README.MD file in
that directory. Figure 2-29 shows what you should see at this point.

http://microsoft.github.io/RTVS-docs/samples.html
http://microsoft.github.io/RTVS-docs/samples.html

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

54

 That document tells us that we get to “take R for a test drive” by running R scripts provided by Microsoft
in the .zip file that we downloaded earlier. Navigate back to the RTVS-docs-master\examples\A first
look at R directory and double-click 1-Getting_Started_with_R.R . The script is opened in RTVS, as shown
in Figure 2-30 .

 Figure 2-30. Getting Started with R script

 Figure 2-29. A first look at R README

 At this point, all that we are going to do is step into this R script and execute some portions to get an
idea of how R is laid out syntactically and how it might compare to other languages. We pretty much go line
by line through the Getting Started with R script so that we can really understand what this introduction is
getting across.

 It is worthwhile to read through the first 75 lines of comments, as this sets up your basis as a new R user,
or refreshes your memory if you’re a legacy R user. Either way, there is something for everyone here, so be
sure you read it thoroughly, particularly the R Resources and R Blogs sections. The Help section is always
good, so don’t skip over that one either.

 Line 76 is the first executable R script. That line is very simply installed.packages() . This simple line
lets us see what packages are already installed; so highlight line 76 and press Ctrl+Enter to execute it. Note
that your R Interactive window (which should still be up) starts loading up a lot of information, as shown in
Figure 2-31 .

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

55

 You can scroll up in the R Interactive window to see exactly what happened, but it’s strictly
informational, at this point. It can be useful to peruse this generated content to ensure that you have the
latest version of an installed package, for example, but for general use, it’s good to know that it’s there.

 ■ Note there is now a value in the R History window as well. This is very handy in case we ever need to
re-execute a line of code. All you need to do is highlight the code you want to re-execute and press Enter . This
moves the code from the R History window to the R Interactive window. From here, press Ctrl+Enter to execute
the line of code as normal.

 Highlight line 79, which reads search() , and execute it. This gives us a listing of the currently loaded
packages for this R session. Next, we attach a package using the library() function, which is how R makes
functionality particular to a specific package available to the session.

 Skip down to line 85, which reads library(foreign) . This means that we include the foreign library
functionality in the current session. Highlight line 85 and press Ctrl+Enter to execute it. As soon as you see
the caret at the bottom of the R Interactive window turn back to the greater than sign (>), then you know that
the code has completed executing. Figure 2-32 shows what you should see at this point.

 Figure 2-31. R Interactive window

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

56

 This isn’t in the R script we are working with, but if you go back now and execute line 79 again, you
should see what is shown in Figure 2-33 .

 Figure 2-32. Line 85 execution

 Figure 2-33. Line 79 execution showing foreign library

 Note how R Interactive shows the listed items? It is done in groups of four, with the starting n-index
number being shown as the leftmost column, followed by four packages. The next line begins with the n+4
index, and then lists another four packages, and so on. Now see how the first execution of search() showed

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

57

 You can close that documentation. Next, skip down to line 90. We are going to install ggplot2 , which
is probably the most popular and robust charting package available for R. Highlight line 92 through 94 and
press Ctrl+Enter to execute. Figure 2-35 shows the result of this.

12 packages, but we can now see 13 packages returned in the newly returned search() command. We can
see the addition of the foreign package as the reason for this, so that is our proof that the package was
successfully added to our current R session.

 When packages are added to the R mirrors, they always include a Help section. You can reference this
Help section by highlighting line 88 and pressing Ctrl+Enter . This opens the help documentation as another
page within the top frame in RTVS. Figure 2-34 shows this result.

 Figure 2-34. Help documentation for foreign library

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

58

 Now that ggplot2 is loaded, we need to run the library() function in order to load it into the current
R session. This is shown in line 97; highlight this line and execute it, and then execute line 98 as well. Line 98
says search() shows the currently loaded packages. Notice that ggplot2 is now added to the list of currently
installed packages for this session.

 Next, we look at a simple regression example, as shown in the script. First, I need to point out
that the ggplot2 package comes preloaded with quite a few sets of data that is to be used to test the
functionality of the package. This data is accessed as shown on line 105, using the syntax data(package =
"ggplot2")$results . This syntax says that we want to run the data() function against the ggplot2 package
and return the subset of the output referenced as results to the screen, as shown in Figure 2-36 .

 Figure 2-35. Loading ggplot2 package

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

59

 Consequently, we could also execute the command data(package = "ggplot2") to see a listing of the
datasets included in the package. Figure 2-37 shows this result.

 Figure 2-36. ggplot2 results

 Figure 2-37. ggplot2 Datasets

 Go ahead and close that window, but keep your R script open. We’ve got the executed result of
 data(package = "ggplot2")$results shown in the R Interactive window, so skip down to line 109 next. This
line says data(diamonds, package = "ggplot2") . The syntax of this says that we want to run the data()
command against the diamonds dataset in the ggplot2 package. Highlight that line and press Ctrl+Enter to
execute it. There isn’t any huge change or anything here; all that happened was that the diamonds dataset was
just made available for analysis. The way you know that it was just loaded is to check your Variable Explorer
window. Figure 2-38 shows what the Variable Explorer window should look like at this point.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

60

 So there is our diamonds dataset, loaded and ready to go. Go down to line 112 next, which says ls() .
That line by itself, without any arguments, only returns the datasets or functions defined by the user in
the current session. Running this simple line of code in this instance only results in the output of a single
word: diamonds . The reason for this is that this is the only dataset loaded for this session. If you were to
execute this line inside of a function with no arguments, you would be able to see the local variables for that
particular function. As you can tell, this can be a useful debugging tool.

 Now go down and execute line 115, which says str(diamonds) . This command allows us to examine the
structure of the dataset passed in as an argument. Figure 2-39 shows the structure displayed in RTVS.

 Figure 2-38. diamonds dataset loaded

 Figure 2-39. str(diamonds) output

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

61

 Briefly look at the returned data there; you can see that there is a lot of information but it appears to be
truncated. Have no fear; take a look at your Variable Explorer again. You see that there is a very slight change:
there is now an indicator next to diamonds, as opposed to just a table graphic. Click this indicator; you
should see what is shown in Figure 2-40 .

 Figure 2-40. diamonds detail information

 This is much easier for me to read and decipher. Across the top, just above the blue bar shown in
Figure 2-40 , the columns are defined as Name, Value, Class, and Type. Go ahead and browse around in there
for a minute and get familiar with how it looks. This is a very cool feature that allows the introspection of
data before it is really analyzed.

 Go to line 118 next. This line says head(diamonds) , which simply instructs R to output the first six rows
of data in the dataset. Conversely, line 121 says tail(diamonds) , which, as you’ve probably guessed, outputs
the last six rows of data in the dataset. The results of these two executions are shown in Figure 2-41 .

 Figure 2-41. head() and tail() demonstrated

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

62

 Line 127 is next, which says dim(diamonds) . The dim() function allows us to see the dimension of the
object passed as an argument, which would be diamonds in this case. Executing this line simply shows what
we have already gathered by examining the Variable Explorer earlier: there is one dataset returned with
53940 objects of 10 variables .

 Next, we move on to plotting in R. There are three main packages used for charting in R: base , lattice ,
and ggplot2 . This is also referenced on line 136.

 Lines 133 and 134 say the following: diamondSample <- diamonds[sample(nrow(diamonds), 5000),]
 dim(diamondSample)

 Let’s break the syntax of this apart before anything else.

• diamondSample : Declares an object for storage of the results of the command.

• <- : An assignment operator that declares that the result of the command(s) on the
right are to be assigned to the object on the left.

• diamonds : References the diamonds dataset.

• [sample(nrow(diamonds), 5000),] : draw a random sample of 5000 data points from
the diamonds dataset

• dim(diamondSample) : show the dimension of the diamondSample object

 As expected, the result of the dim(diamondSample) command was the output [1] 5000 10 , which
means that one dataset and 5000 objects in 10 variables were returned.

 Next, we go to line 140, which reads: theme_set(theme_gray(base_size = 18)) . This means that we
set the font size to 18pt and use the gray theme. Go ahead and highlight and execute that line, then skip
down to lines 143 and 144. Those lines show the following code:

 ggplot(diamondSample, aes(x = carat, y = price)) +
 geom_point(colour = "blue")

 First off, note that this is on two different lines, but it is actually one long command. The presence of the
plus sign indicates a line continuation character, outside of usage inside a function or argument.

 Let’s take a look at the syntax of this command before we move on.

• ggplot : Defines the function to be executed.

• diamondSample : References the diamondSample object as the active dataset.

• aes : Defines the aesthetic qualities of the chart; in this example, the x axis is the
 carat set and the y axis is the price set.

• geom_point : Customizes the points once they are charted .

 So this means that we will generate a chart. Highlight these two rows and press Ctrl+Enter to execute
them. Figure 2-42 shows the result of this action.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

63

 Notice that the R Plot window came into focus here? That’s pretty handy. Notice also that the x axis is
 carat and the y axis is price , as we defined in the aes() command.

 Go down to lines 147 through 149 next. You’ll see there is a very slight addition of scale_x_log10() .
This gives us a nice little logarithmic scale on the x axis (which is also stated in line 146) so go ahead and
highlight and execute lines 146 through 149 now. Figure 2-43 shows what you should see now.

 Figure 2-42. Our first chart!

 Figure 2-43. Logarithmic scale addition

 That’s starting to make a bit more sense now. Next, another line is added to let us add another
logarithmic scale on the y axis. This is on lines 152 through 155; so highlight these lines and press Ctrl+Enter
to execute them. Figure 2-44 shows what you should see now.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

64

 The chart is even better now, I think.
 Next, we look at linear regression in R within the confines of the loaded dataset. Linear regression

is basically the way that statisticians define the relationship between a scalar variable and one or many
explanatory variables. Simple linear regression is when there is only one explanatory variable, which is
essentially what we will be dealing with in this example.

 In R, we must first build a model of the data before we can access that model. To do that, take a look at
line 163, which says model <- lm(log(price) ~ log(carat) , data = diamondSample) . Again, let’s look
at the syntax of this before we move on.

• model : Defines the object that inherits what is defined in the command.

• <- : An assignment operator that declares that the result of the command(s) on the
right are to be assigned to the object on the left.

• lm : Defines a linear model.

• log(price) : A logarithmic scale of the price data (also the scalar variable).

• ~ : Separates the scalar variable and the explanatory variable(s). Scalar variables are
shown to the left of this symbol and explanatory variables are shown to the right.

• log(carat) : A logarithmic scale of the carat data (also the explanatory variable).

• ,data = diamondSample : Defines the data object to be used (diamondSample , in
this case).

 Highlight line 163 and execute it. Notice that there is no discernible action taken in the IDE; so let’s
check the Variable Explorer again. There is now another data object in there referenced as model . Figure 2-45
shows what you should be looking at now.

 Figure 2-44. Logarithmic scale on x and y axes

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

65

 Line 166 simply says summary(model) . Go ahead and execute that line. A lot of information is shown in
the R Interactive window now. Take a look at Figure 2-46 .

 Figure 2-46. summary(model) information

 Figure 2-45. model dataset

 Take a look at what is returned by this action. You have a lot of really useful information returned about the
model here, so understand that this is a great place to get meaningful statistical information about a model.

 Head on down to lines 170 through 172, which show the following code:

 coef(model)
 coef(model)[1]
 exp(coef(model)[1])

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

66

 Line 169 says that we extract the model coefficients. So let’s highlight those lines and execute them now.
Figure 2-47 shows what you should see in your R Interactive window now .

 Figure 2-48. Charted result

 Figure 2-47. model coefficients

 Now that we’ve got that, let’s take a look at the next bit of code on lines 175 through 179. This code is
defined as follows:

 ggplot(diamondSample, aes(x = carat, y = price)) +
 geom_point(colour = "blue") +
 geom_smooth(method = "lm", colour = "red", size = 2) +
 scale_x_log10() +
 scale_y_log10()

 We’ve already stepped through the syntax of this command, but I see that there is a line that says
geom_smooth(method = "lm", colour = "red", size = 2) + that we didn’t define before. The addition of
this line of code adds a thin red trend line to the chart. Highlight these lines and execute them now.
Figure 2-48 shows what you should see as a result.

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

67

 Line 204 shows the summary of the model; so highlight this line and execute it. Figure 2-50 shows the
result of this action.

 That is one meaningful chart! The charts are getting progressively better and more interesting, as you can see.
 Skip down to line 202 now. This line says model <- lm(log(price) ~ log(carat) + ., data =

diamondSample) and it is closely related to the model we built before, but this time, we declared log(price)
~ log(carat) + . , which means that we want to model the log of the price column against all the other
columns in the dataset. In other words, this is true linear regression and not simple linear regression.

 Highlight line 202 and execute it. Notice that Variable Explorer now shows List of 13 where it once
showed List of 12 ; this means that we have added the model to the list and it is now available in the dataset.
You can always double-click model to view the data contained within, if you would like.

 Figure 2-49. model value increased

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

68

 This is significant (bad pun) because the R-squared value is 98%, so that means that 98% of the data fits
closely to the regression. Not bad!

 Lines 211 through 214 show that we are going to now create a data frame, which is how R structures data
within its models. These lines are defined as follows:

 predicted_values <- data.frame(
 actual = diamonds$price,
 predicted = exp(predict(model, diamonds))
)

 Figure 2-50. summary(model) information

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

69

 So, again, let’s step through this to get a feel for what the syntax is doing here.

• predicted_values : The object that holds the result of the command.

• data.frame : The way that R handles structured data, similar to a table.

• actual = diamonds$price : Sets a column variable named actual equal to the value
represented by the price values in the diamonds dataset.

• predicted = exp(predict(model, diamonds)) : Sets a column variable named
 predicted equal to the exponential value of the predicted values in the model linear
model in the diamonds dataset .

 Execute lines 211 through 214. You’ll see that nothing happens again, which is expected. Look at your
Variable Explorer again; you’ll see that there is now another dataset available called predicted_values ,
which we just added. Figure 2-51 shows what you should now see.

 Figure 2-52. head(predicted_values)

 Figure 2-51. predicted_values dataset

 Line 217 is next, which says head(predicted_values) . We saw this before, so recall that the head()
command allows us to see the first six rows of data. Execute this. You should see what is shown in Figure 2-52 .

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

70

 Next is the big show. Lines 220 through 224 contain the ggplot command that charts all this out for us.
So far, we’ve laid out the data.frame object with the actual and predicted columns. Now we see what that
data looks like visualized. The R code for this command is defined as follows:

 ggplot(predicted_values, aes(x = actual, y = predicted)) +
 geom_point(colour = "blue", alpha = 0.01) +
 geom_smooth(colour = "red") +
 coord_equal(ylim = c(0, 20000)) +
 ggtitle("Linear model of diamonds data")

 I’m pretty sure that we can read that and decipher what the syntax says, but basically, we are running
the ggplot command against the predicted_values dataset. We use the aesthetic value for the x axis to
be the actual data and the y axis to be the predicted data. The data points are blue with a varying alpha
(transparency), depending on the data value, with a red trend line, a y-limit of 20000 (which forces scale),
and a title.

 Figure 2-53 shows what you should see after you execute lines 220 through 224.

 Figure 2-53. ggplot of predicted_values

 Really, really useful chart there, don’t you think? If you got this far with no problems, excellent work!
You’ve actually learned quite a bit about the basics of R syntax now and you have seen real-world application
of the most commonly used R plotting package, ggplot2 .

CHAPTER 2 ■ SETUP AND INSTALLATION OF R TOOLS FOR VISUAL STUDIO

71

 Summary
 Let’s review what we’ve done in this chapter.

• Read the documentation for RTVS at http://microsoft.github.io/RTVS-docs

• Went through the samples at http://microsoft.github.io/RTVS-docs/samples.html

• Reviewed the R documentation at https://cran.r-project.org/doc/manuals/r-
release/R-intro.html

• Reviewed the task views at https://cran.r-project.org/web/views/

• Reviewed how data import/export works in R at https://cran.r-project.org/doc/
manuals/r-release/R-data.html

• Learned about R extensions at https://cran.r-project.org/doc/manuals/r-
release/R-exts.html

 Do I expect you to be an expert in R right now? No. Do I expect you to pore over the preceding URLs in
great detail? No. What I do expect is a minimum of the following:

• Visual Studio is installed correctly.

• R Tools for Visual Studio is installed correctly.

• SQL Server 2016 is installed correctly and is communicating with the R engine.

• You have at least briefly gone over the documentation listed earlier in order to get
familiar with R syntax.

 The installation of these tools may be different with subsequent service packs. Either way, there should
be a clear path to get to the solutions I just outlined though. At a minimum, these four things listed should
be met before you move forward with this. If any of them aren’t functioning 100%, go back and work out
the issue. For example, the script I gave earlier in Chapter 1 showed that SQL Server was working with the R
engine. Figure 2-29 showed that Visual Studio is configured for R as well. Therefore, we should all be on the
same page at this point.

 In the next chapter, we go over our project scenario definition. That’s where we clearly define what we
want the project to accomplish and the steps we’re going to take to get there. After that, we begin to develop
our solution and implement it using SQL Server 2016 and R Tools for Visual Studio.

http://microsoft.github.io/RTVS-docs
http://microsoft.github.io/RTVS-docs/samples.html
https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/web/views/
https://cran.r-project.org/doc/manuals/r-release/R-data.html
https://cran.r-project.org/doc/manuals/r-release/R-data.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://dx.doi.org/10.1007/978-1-4842-2298-0_1

73© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_3

 CHAPTER 3

 Project Scenario Definition

 Before we get started with this chapter, I want to take a second and explain that this chapter deals with the
program management side of development, and not the actual development side. Sometimes, dealing
with the management side can be perhaps the most frustrating part of your job, but it is still necessary. For
those that don’t have a lot of experience in this area, I included this chapter. Hopefully, it will help you to
understand how essential it is to have a plan moving forward in your next project.

 The first thing that we want to do is make sure that everything is working together as it should be. Recall
from Chapter 1 that R is set up correctly from SQL Server’s point of view. Chapter 2 shows us that RTVS is
also set up correctly. That means that the software portion of what we’re doing is good to go. What’s left?

 This chapter focuses more on the management side of a program, as opposed to the development side.
The reason for this is to prepare you for the eventuality that you will one day have to manage a program,
if you haven’t already. While this is in no way meant to be everything you need to know about technical
program management, it does give you a pretty good primer into the world of managing expectations from
a technical point of view. I’ve found that the best managers are those that can put on different hats as the
situation demands; they can be either technical or managerial, as the situation demands.

 Whenever you start a new project, it is always best to have a good idea about what you want to do and
how to get where you want to go. Just as with starting a road trip, you have to be sure that you have a map
and directions for how to get to your destination; otherwise, you will just drive around in circles and never
really get anywhere. This is exactly the analogy to describe a poorly managed project; lots of hours are
expended, lots of money is spent, but the project is never really finished. This is the hallmark for a poorly
managed program. In my professional life, I’ve seen a lot of projects fail because of improper or incomplete
planning, and I can tell you that it’s very easy to fall victim to the biggest obstacle facing new development,
and that is the element of scope creep .

 Scope Creep
 What exactly is scope creep? It’s when the requirements of the project are not firmly adhered to. Plain and
simple. There really is no point in going through all the time, trouble, energy, and effort of defining project
requirements if they aren’t going to be followed. In this case, it would be easier if development started, and
then ad hoc requests came from the customer as to the intended development for that day or week. The flip
side of this is to have a firm set of requirements that are agreed on by the customer and followed religiously
by the development team. Hence, no misinterpretation from anyone, because everything is very clearly laid
out and agreed upon from the beginning. We get into this a bit later in this chapter.

 My favorite example of scope creep is to describe it using a rock. Pretend that you are on one side of a
fence and your customer is on the other. Your customer shouts over the fence that they would like a painted
rock. You respond that you are very good at painting rocks and that you will get it to them ASAP. So, you look
around and find a decently sized rock, and then find your most popular color of paint. You are very good at
this after all, so you’re assuming what your customer wants. The finished rock looks fantastic, so you throw

http://dx.doi.org/10.1007/978-1-4842-2298-0_1
http://dx.doi.org/10.1007/978-1-4842-2298-0_2

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

74

it over the fence to your customer. They immediately throw it back, because it is not the right color. When
was the color defined? Well, it wasn’t. You assumed that your color was what the customer wanted; but turns
out, it wasn’t right at all. So instead of learning your lesson, you decide to paint the rock a different color
and then toss it back over the fence. The customer immediately tosses it back, because it is again the wrong
color. Now you’re getting frustrated because you know this is the correct color—it has to be! Finally, you ask
the customer what color they would like; they answer “blue.” Not a problem, because you’ve got blue. So,
you paint the rock blue and then toss it over the fence. Guess what. They throw it right back over, saying it
isn’t the right shade of blue. This goes on and on until you finally get the right shade of blue. But they throw
the rock back over again! Why? This time, they’re complaining that the shape of the rock isn’t correct, and
actually, the rock is also the wrong kind of rock all together.

 So the project started out as an assumption from “paint this rock,” and then into “use this particular
shade of paint for this particular shape of rock on this particular kind of rock.” See that? It’s very frustrating,
I can tell you. Unfortunately, a lot of projects are managed exactly like this. And if you’re one of the
unfortunate souls on the development side and not the managerial side, you get the most amount of grief
because you constantly deliver things that may make perfect sense technically, but zero sense aesthetically
to the customer. It becomes particularly painful when it becomes obvious that the development team is the
last in the line of those taking orders to fulfill customer requirements, so ultimately, the on-time and under-
budget status of a project is the responsibility of the development team. For this reason, it is important to
stick to the agreed upon requirements and to not deviate.

 I’ve found that the best way to manage any large task is to break it into smaller, more manageable tasks.
This is commonly known as modularization, and is a fantastic way to handle just about anything. Splitting a
task into phases is what makes sense to me in this aspect, so let’s concentrate on that for a minute.

 Project Definition Phases
 Instead of going through all the trouble of scope creep, it’s best to have a very structured idea of what
is expected, when it is expected, and how it is expected. There are clearly defined phases for project
development, which I discuss shortly. Trust me; it would serve you very well to adopt these phases, or
something very similar, in your next project, if you aren’t already using something to manage the project. The
need for very specific goal posts is very important, no matter the size of your project. Please understand that
this is in no way the only way to handle project management. I’m sure that there will be disagreements about
the methodology and the necessary steps involved. But what I really want you to take from this if you’ve never
had to deal with this before, is that a management plan is an absolute necessity when planning a project.

 Phase I: Requirements Gathering
 This phase consists of both software and hardware definitions. This is perhaps the most important phase
in the entire process, because if this is wrong or incomplete, it affects all phases after it. For that reason, we
need to be absolutely sure that our definitions are complete and agreed upon by all parties and stakeholders.
This phase requires a set of documentation to be created by the development team, delivered by the
development team to the customer, and signed and dated by the customer. At this point, the documentation
set is then considered to be the official scope of the project.

 What needs to take place in this requirements gathering phase? The following is a list of what needs
to occur.

• Development team needs to produce a software requirements document .

• A problem or issue needs to be clearly defined.

• Get as much detail as possible from the customer, including how this
problem affects their day-to-day work or how much more expedient they
could work with the addition of a certain feature.

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

75

• A solution to the stated problem needs to be broadly defined.

• This means that it is not answered in the minutia just yet. Offer many
different solutions, if possible, so the customer is aware of their varying
choices.

• The software language and technology needs to be determined.

• Details are provided on the languages and technologies used to develop the
interface or application.

• The medium needs to be determined.

• The medium in which it will be delivered; usually, either web-based or on
the desktop.

• A structured software design document needs to be produced by the development team .

• This document provides details on the interface presented to the customer. It
needs to be pointed out to the customer that this interface will more than likely
change slightly over time, depending on current web or desktop trends and
options available in the language you’re working in. The large majority of this
document will consist of mock screen shots and report scenarios.

• A structured database requirements document needs to be produced by the
development team.

• This document provides details about the database tables and scripts that
will be created to present the interface, and ultimately, the entire solution
to the customer. Notice that this document encompasses the design and the
requirements of the database. The reason for this is because the customer,
for the most part, is not bothered with the mundane details of the database
such as data type or length of the field. While this can certainly be presented
to the customer in a different document, it is probably best to keep this
information at more of an arm’s length away, so as not to overload the customer
with meaningless information (from their point of view). What is the overall
purpose of this document? Much more important than you may realize at first.
This document can be used to provide a mapping of the database for future
interaction with different, remote databases, for example. For this reason, it is
imperative that this be the last document created, in case something changes in
the database and the documentation does not reflect this change.

 This list represents what I consider the minimum amount of documentation to deliver as part of a
formal request. There could be more, but this is a good start.

 Once this phase is complete and a documentation set has been produced, a formal acceptance and
signature is required. It needs to be clearly related to the customer that there are no changes of any kind after
the documents are signed and development begins. If there is a change that needs to be made, you have a
choice to make. You can either begin a spiral development process, or implement a software change request
system . I highly recommend a software change request system. What are the differences?

 Spiral Development Process
 Spiral development is a particularly heinous form of development that occurs when scope creep is actually
allowed and encouraged on a project. The horrors! Can you see the implications of allowing too much
scope creep? That’s correct; the project is never truly done . The project constantly stays in the definition and
development phases, and never progresses to completion.

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

76

 For those of us who get paid by the project, it is entirely unacceptable to encourage scope creep. Think
about it like this: if you estimate a project will take 10 hours and you charge $500 for the project, you’re
making $50 an hour. There is no guarantee that you will be done in 10 hours, though. Let’s say it takes you
20 hours; you’re now at $25 an hour. Even worse, it takes you 100 hours. Wow! You’re making $5 an hour.

 Obviously, this is not how you want to work. Instead, you should just deliver what was agreed upon,
and any changes are considered “over and above” what was estimated and paid for, and subject to a new
agreement. I can tell you from experience that it keeps everyone happy when there is a very clear definition
of what is expected to be done .

 Another danger in the spiral development process is like I said: the project is never truly done. It just
continues on and on because the customer is getting more than what they paid for, and the developer is
oftentimes too timid to bring up that something is, in fact, outside the agreed-upon scope of the project.
Does this work for you? Would you like a reputation as someone who takes the time to go through all the
motions of correct management techniques, and then cave to the customers’ unsubstantiated request
for change in the middle of a project? I don’t think you would. I think we all would like the reputation of
the competent developer that has the integrity to call the customer out on possible or overt deviations or
expectation of deviation from the contract. In this case, there needs to be a clearly defined remediation
clause in a contract that deals specifically with the steps necessary to enforce the rigidity of the original
contract and the scope therein.

 Software Change Request Process
 Formal change requests are what I recommend when making changes to a project and its scope. The reason
is very simple: the project stays structured! The initial project is completed and is labeled as v1.0, right?
Any change you make after this would be v1.1 for a small change, or maybe 2.0 for a major change.
The software change request process has different steps that need to be followed in a workflow to facilitate a
complete change request. It isn’t a customer sending an e-mail; it is a full process that has sign-offs at each
step of the workflow.

 Request Submission
 In this step, any user can request a change to the software. Requests need to be complete and organized
though, and not just vague statements like “I would like a rock painted blue.” Request submission is
generally a fairly complex step, with the user being forced to provide a large amount of information
pertaining to the request. Be sure to gather not just the customer information, but the specific task needing
to be done.

 Administrator Approval
 The administrator then receives a notification that a change has been requested. At this point, the admin can
either accept or reject the change. There is also the case that the administrator could contact the requestor
for more information, then reject the request so that the originator can expound on the original request. This
is very common, since nine times out of ten, regular users don’t understand the complexity requirements
needed to properly fulfill their request.

 Design
 Once you have an accepted request, the first step is to design the solution. Sometimes, literally drawing out the
solution is best. It gives you a good idea of what to expect for layout and the space necessary to fulfill the solution.
The customer expects to see something like screen mockups in Photoshop or something similar, more than likely

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

77

in a PDF. This isn’t always a requirement, but if the user wants to be kept aware of the progress of the request, then
it is a good idea. Either way, whether the customer is involved or not, it’s always worth taking a few minutes to
sketch out a quick picture and perhaps a short pseudo code example of what is going on.

 Code
 Next is the fun part: writing the code. This could be in whatever language is necessary to get the job done,
and whatever is used to deliver solutions in your application. In some cases, you have multiple languages. In
web development, this is very common. I often use a pretty steady mixture of HTML, ColdFusion, CSS, and
jQuery in my day-to-day application building. Some days are heavier in certain languages than others, but
that’s just about the gist of what I do. This is the second-longest activity in the process though; the longest is
… the documentation.

 Document
 Easily the most overlooked part of development is the documentation of the changes made. Make sure that
this step is followed religiously! This is different from the inline documentation that all good developers
do regularly. Those are fantastic too, don’t get me wrong. This documentation, specifically, is for the user.
It consists of two documents, but they really only see one of them. One of the documents needs to define
the request and the steps taken to implement the request. The reason for this is so that the change can be
essentially rewound, if necessary. The second document is the test script for the user to test the change.
This needs to be fairly simple and straightforward; something along the lines of “Click the OK button.”
It needs to be spelled out exactly what is expected to happen when an action occurs, and what the failure
condition is as well .

 Unit Test
 This means testing the solution by itself, in a modular setting. Does it do what is required by itself, or is
interaction with another unit or module necessary? It should be as tightly contained as possible, in other
words. If it requires other things to run, you maybe want to reconsider this particular technique. Is it possible
that it can be rewritten to be cleaner and more modular using native code? These are questions that must be
answered objectively in this phase.

 Regression Test
 This is where you test the solution as part of an over-arching solution that encompasses the entire
application. In other words, how does this solution work with the current application? Does it “mesh” or is it
inconsistent and in need of further work? Most times, it seamlessly integrates, but other times—not so much.
For this reason, it is best to look at the change as part of the application as a whole, instead of as the modular
way in the unit test. Consider the success and failure paths of the change (if there are separate paths). Do
they make sense, considering the paths of the rest of the system? How well does it do what it is billed to do?

 Acceptance Test
 This is after the solution has passed all the other tests and documentation is complete. This is the only step
that the requesting user should see. Everything else should be a black box to that user, lest you fall into the
spiral development trap. Don’t do it! This step is very simply a single line stating that the customer agrees
to the change and it was delivered as expected. A signature and the current date is all that is needed to
complete this step.

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

78

 Installation
 After the solution has been accepted by the customer, it needs to be installed. This is sort of obvious, but still
a necessary part of the process. This needs to be documented as well, although much more leniently. Make
sure you take a backup of the database immediately before the installation. I recommend a server image if
you’re running a virtual instance, or a system image with backup if you’re on a regular server. The reason
for this should be clear; to recover quickly in case everything goes pear-shaped. Once everything loads
correctly, delete any backups to retain space on your system .

 Archiving
 Finally, after installation, the solution needs to be archived. This entails two things: first, the solution should
be zipped with all documentation and added to a source repository of some kind. I’ll leave it to you to decide
which to use. Second, the physical record of the request on the web site or bulletin board should be removed
and added to an archived or completed section for later review, if necessary.

 Please note that the preceding workflow is not all encompassing, but rather is intended to get you
started with understanding exactly what a software change request workflow looks like.

 So now you understand what scope creep and spiral development mean and how they are both
detrimental to a project. You also understand the software change process and how it is beneficial to just
about any system. What’s next? Let’s continue to define the separate phases of the project definition, and
then discuss some more factors contributing to the success and sometimes to the failure of the project .

 Phase II: Initial Interface Design
 This phase allows the developer to create an initial user interface, if applicable. Sometimes, projects don’t
have an interface, because they happen “under the covers.” If that’s the case with your project, just skip to
the next phase. If that’s not the case, and you have to create an interface, then this is the place for you.

 Initial interface design is fairly self-explanatory: you want to create an initial interface based on the
requirements documents and by using any other information gathered from the customer. Note that this
does not involve going back to the customer for ideas or suggestions. Basically, they had their chance to
suggest implementation changes before, and it is simply too late to implement them now, without falling
into the dreaded spiral development cycle . Remember how you got the customer to sign off on the scope of
the project? Just like they aren’t allowed to come to you, you technically shouldn’t go back to them. If you
discover an authentic issue with the way that the interface needs to be implemented, or an issue that is
preventing you from completing the job, then you obviously want to interact with the customer. The point
to this is “training the customer” to understand that you work strictly from the requirements document
and nothing more. That way, when you deliver what was requested, you know that it is technically and
functionally 100% correct, according to the requirements document.

 We have already gathered our requirements, which I lay out in the example download for this book.
The download contains our requirements documents and initial dataset. Make sure that you have these
following two documents, or you will have a really hard time following along; they are available from this
book’s catalog page on the publisher’s web site:

• Software Requirements Document.docx

• Weather_Sample. csv

 For reference, the Weather_Sample.csv file is the same document provided in the download available
from Microsoft that we downloaded earlier. We use the same example in this book by permission.

 With that in mind, let’s take a look at the reports that we have agreed to provide and plan out a solution.

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

79

 Loading the R Solution
 Recall that back in Chapter 2 , we downloaded a .zip file from https://microsoft.github.io/RTVS-docs/
samples.html . It contains everything that we need for what we will ultimately build. Extract that .zip file
somewhere easy for you to access, because we’re going to load the solution in it now.

 Start Visual Studio and go to File ä Open ä Project/Solution… . Navigate to where you saved and
unzipped the .zip file. Follow the folders down to RTVS-docs-master/examples/Examples.sln . Select it and
click Open , as shown in Figure 3-1 .

 Figure 3-1. Open Project

http://dx.doi.org/10.1007/978-1-4842-2298-0_2
https://microsoft.github.io/RTVS-docs/samples.html
https://microsoft.github.io/RTVS-docs/samples.html

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

80

 Double-click the bottom README file; the one not inside either of the folders. Figure 3-3 should be
what you see at this point.

 Figure 3-2. Solution Explorer files

 Figure 3-3. README file

 It takes a second to open the project, and then loads the solution file into Visual Studio.
 Notice in your Solution Explorer window (if it’s not up, press Ctrl+Alt+L to make it appear) that there is

a set of files, as shown in Figure 3-2 .

 Does that look familiar? We saw this in Chapter 2 , Figure 2-30 , before we started stepping through the R
examples. Note that there are also more README files inside of the directories for even more guidance from
the R gurus at Microsoft.

 Expand the A first look at R folder in Solution Explorer and then click the Getting_Started_with_R.R
file in the right pane. You should see something similar to what is shown in Figure 3-4 .

http://dx.doi.org/10.1007/978-1-4842-2298-0_2
http://dx.doi.org/10.1007/978-1-4842-2298-0_2#Fig30

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

81

 Just to be clear, the top-left pane is the opened file and the bottom-left pane is the R Interactive window
(basically, the results of the R operations). At the top right corner of the screen are the Solution Explorer
and Variable Explorer panes, and at the bottom right are the R Plot, R Help, and R History panes. You can
rearrange your windows however you like so that it is comfortable for you, as long as you have them readily
available in case you need them later.

 I want to go over a couple of things before we end this chapter. First, let me pose two questions for you.
Which version of R is running in the database? Which version of R is running in Visual Studio? I had to stop
and think about this for a while, and I finally reached the conclusion that I could not tell from SQL Server
what version of R is installed. I could easily tell what version of R was running from Visual Studio though,
because it was prominently displayed in the R startup messages from within RTVS, as shown in Figure 3-5 .

 Figure 3-4. Getting Started with R initial screen

 Figure 3-5. R version in RTVS

 How interesting! What if I were running two different versions of R? Certainly that would cause
problems, particularly if I write code in RTVS and then want the same result from SSMS. Wouldn’t this give
me different results? Logic says that it more than likely would. So, obviously, we want to mitigate this as
much as possible.

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

82

 Recall the stored procedure that we use to execute R in SQL Server? Here is that procedure once again:

 exec sp_execute_external_script
 @language =N'R',
 @script=N'OutputDataSet<-InputDataSet',
 @input_data_1 =N'select 1 as hello'
 with result sets (([hello] int not null));
 go

 Let’s rewrite this procedure to get the version of R that is executing this code. Our rewrite is a simple
little script that you may want to keep in your bag of tricks, just in case it is needed later on. You may want to
switch to Results to Text by pressing Ctrl+T while in the New Query Window. Here is the script:

 exec sp_execute_external_script
 @language =N'R',
 @script=N'OutputDataSet<-InputDataSet;
 message (R.Version()$version.string);'
 with result sets (([Version] varchar));
 go

 I’m sure we’re all familiar with generic scripting practices, so we can see that I am using R’s message()
function to return the version of R by invoking R.Version()$version.string .

 The result of this operation is shown in Listing 3-1 .

 Listing 3-1. R Version in SQL Server 2016

 Version

 (0 row(s) affected)

 STDERR message(s) from external script:
 R version 3.2.2 (2015-08-14)

 We have just verified that Visual Studio is running R version 3.3.1 and SQL Server is running R
version 3.2.2. The reason for this is because SQL Server R Services is the server version, and RTVS is the
client version. What we want to do is point RTVS to R version 3.2.2, that way we get the same results from
RTVS to SQL Server. To do this, open Visual Studio, navigate to the R Tools menu, and then click Options .
Figure 3-6 shows this menu location.

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

83

 A screen opens, as shown in Figure 3-7 .

 Figure 3-6. Options menu

 Figure 3-7. R Tools Advanced options

 In the screen shown in Figure 3-7 , the R Engine (64-bit) option is selected, and the value of this
selection is C:\Program Files\Microsoft\MRO-3.3.1\ . This needs to be changed to C:\Program Files\
Microsoft SQL Server\MSSQL13.SQL2016RS\R_SERVICES , since that is the location where SQL Server is
referencing the in-database R library. Note that your folder location may be different from mine, so find
your R_SERVICES folder location and use that instead. Once you replace this folder location, click OK .
You are prompted to restart Visual Studio, so go ahead and close down Visual Studio and open it again.
Once it opens again, notice that the R Interactive window holds some pretty important information for us.
Listing 3-2 shows this information.

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

84

 Listing 3-2. Updated R Information

 R version 3.2.2 (2015-08-14) -- "Fire Safety"
 Copyright (C) 2015 The R Foundation for Statistical Computing
 Platform: x86_64-w64-mingw32/x64 (64-bit)

 R is free software and comes with ABSOLUTELY NO WARRANTY.
 You are welcome to redistribute it under certain conditions.
 Type 'license()' or 'licence()' for distribution details.

 R is a collaborative project with many contributors.
 Type 'contributors()' for more information and
 'citation()' on how to cite R or R packages in publications.

 Type 'demo()' for some demos, 'help()' for on-line help, or
 'help.start()' for an HTML browser interface to help.
 Type 'q()' to quit R.

 Microsoft R Server version 8.0 (64-bit):
 Microsoft packages Copyright (C) 2016 Microsoft Corporation

 Type 'readme()' for release notes.

 This proves that we have now successfully synced our versions of SQL Server and Visual Studio. The
next step is to update the packages, which we can easily do via R Package Manager. Recall from Chapter 2
that we need to install two packages (and their dependents): ggplot2 and data.table .

 Open the R Package Manager in Visual Studio by going to R Tools ä Windows ä Packages . Figure 3-8
shows the R Package Manager once opened.

 Figure 3-8. R Package Manager

http://dx.doi.org/10.1007/978-1-4842-2298-0_2

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

85

 In the top pane, click the Available line, to show what is seen in Figure 3-9 .

 Figure 3-9. Available R packages

 Figure 3-10. Finding ggplot2

 All we need to do is search for ggplot2 ; so type it in the Search box at the top of the window. The
 ggplot2 package appears in the left pane. Figure 3-10 shows this result.

 Next, we just need to click the Install button in the ggplot2 pane on the right to install the package. The
installation is done in the background here, but you can always check the R Interactive window to see the
current status of the installation.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ PROJECT SCENARIO DEFINITION

86

 Once the package has finished installing, you see what is shown in Figure 3-11 .

 Figure 3-11. ggplot2 installed

 Notice that there is no Install button any longer, and the left pane now shows a circle next to ggplot2 .
This indicates that the package was installed normally.

 Next, we need to repeat these same instructions for the data.table package. I will leave this as an
exercise for you, but you can replicate the instructions I just gave as a repeatable process to install any
package you wish.

 Summary
 Excellent work so far, if you have kept up and gotten everything going as expected. If you haven’t, again,
please go back and re-run the installations so that you are seeing what I’m showing in the examples. If
you aren’t, I’m afraid that you really aren’t getting the full value of this book. It is going to get a lot more
complicated in the next chapters, so you want to be prepared for it. In your spare time, make sure that you
are brushing up on R scripting and functions, including the fantastic ggplot2 package. Big spoiler: We’re
going to use it a lot later on.

 Review time! Let’s quickly go over what we did in this chapter.

• Learned about scope creep and the project definition phases

• Learned the importance of a software change process in a completed application

• Became familiar with the initial interface for R Tools for Visual Studio

 Next, in Chapter 4 , we actually start figuring out what we need and we put it together in a useable report.

http://dx.doi.org/10.1007/978-1-4842-2298-0_4

 PART II

 Learning the Basics

89© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_4

 CHAPTER 4

 Building R Models with RTVS

 We left off in Chapter 3 with loading up a solution in RTVS and then testing that we could work successfully
within the R environment. In this chapter, we actually build the models in R and then display the
information contained within that model in a series of charts. The charts become progressively more
advanced until we reach the final culmination of the data visualization.

 We also cover most of the syntax for the code that generates the models. We do this by essentially
stepping line by line into a file provided by Microsoft in a .zip file that we download. This way, we can see
what is happening as it happens and hopefully reach a greater understand of not only what is happening,
but why it is happening.

 Exploring Samples
 Let’s go back to the Samples link in the RTVS Documentation and Samples menu item in R Tools for Visual
Studio (RTVS). That link is http://microsoft.github.io/RTVS-docs/samples.html . On that page, there is
a download of a .zip file containing examples that we will use to get familiar with the new R environment.
Unzip that .zip file to a location that you can access, navigate to RTVS-docs-master/examples , and double-
click README.MD . This opens the readme doc in RTVS. Figure 4-1 shows this document once opened.

 Figure 4-1. Readme file

http://dx.doi.org/10.1007/978-1-4842-2298-0_3
http://microsoft.github.io/RTVS-docs/samples.html

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

90

 We need to get a little bit familiar with R as a language before we attempt to get into any sort of
development activity, so let’s step through some of the examples given in A First Look at R . In the tutorial
featured later in this book, we will deal with the R Server aspect a lot more, since we will directly interface
with SQL Server R Services to create a report with embedded information.

 There is an awful lot of information about R on the internet, so if you already know about it, then you
can consider this a refresher course. If not, no worries. I’m not going to get into the complete history of R and
I’m not going to make this a comprehensive guide to all of R’s functionality. Instead, I highlight the basics—
and we can go from there. I think that will be enough to whet the proverbial whistle and get our minds keen
on the practicality of using R for serious data analysis.

 Navigate to RTVS-docs-master\examples\A first look at R and double-click the README.MD file
in that directory. Figure 4-2 shows what you should see at this point.

 Figure 4-2. A First Look at R README

 That document tells us that we get to “take R for a test drive” by running R scripts provided by Microsoft
in the .zip file we downloaded earlier. Navigate back to the RTVS-docs-master\examples\A first look at
R directory and double-click 1-Getting_Started_with_R.R. The script is then opened in RTVS, as shown in
Figure 4-3 .

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

91

 At this point, all that we are going to do is step into the R script and execute some portions in order
to get an idea of how R is laid out syntactically and how it might compare to other languages. We will go
pretty much line by line through the Getting Started with R script so we can really understand what this
introduction is getting across.

 It is worthwhile to read through the first 75 lines of comments, as this sets up your basis as a new R user,
or refreshes your memory if you’re a legacy R user. Either way, there is something for everyone here, so be
sure you read it thoroughly, particularly the R Resources and R Blogs sections. The Help section is always
good, so don’t skip over that one either.

 Line 76 is the first executable R script. That line is very simply installed.packages() . This simple line
lets us see what packages are already installed; so highlight line 76 and press Ctrl+Enter to execute it. Note
that your R Interactive window (which should still be up) starts loading up a lot of information, as shown in
Figure 4-4 .

 Figure 4-3. Getting Started with R script

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

92

 You can scroll up in the R Interactive window to see exactly what happened, but it’s strictly
informational, at this point. It can be useful to peruse this generated content to ensure that you have the
latest version of an installed package, for example, but for general use, it’s good to know that it’s there.

 ■ Note There is now a value in the R History window as well. This is very handy in case we ever need to
re-execute a line of code. All you need to do is highlight the code you want to re-execute and press Enter . This
moves the code from the R History window to the R Interactive window. From here, press Ctrl+Enter to execute
the line of code as normal.

 Highlight line 79, which reads search() and execute it. This gives us a listing of the currently loaded
packages for this R session. Next, we attach a package using the library() function, which is how R makes
functionality particular to a specific package available to the session.

 Skip down to line 85, which reads library(foreign) . This means that we will include the foreign
library functionality in the current session. Highlight line 85 and press Ctrl+Enter to execute it. As soon as
you see the caret at the bottom of the R Interactive window turn back to the greater than sign (>), then you
know that the code has completed executing. Figure 4-5 shows what you should see at this point.

 Figure 4-4. R Interactive window

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

93

 This isn’t in the R script we are working with, but if you go back now and execute line 79 again, you
should see what is shown in Figure 4-6 .

 Figure 4-5. Line 85 execution

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

94

 Note how R Interactive shows these listed items? It is done in groups of four, with the starting n-index
number being shown as the leftmost column, followed by four packages. The next line begins with the n+4
index, and then lists another four packages, and so on. Now see how the first execution of search() showed
12 packages, but we can now see 13 packages returned in the newly returned search() command. We can
see the addition of the foreign package as the reason for this, so that is our proof that the package was
successfully added to our current R session .

 When packages are added to the R mirrors, they always include a Help section. You can reference this
Help section by highlighting line 88 and pressing Ctrl+Enter . This opens the help documentation as another
page within the top frame in RTVS. Figure 4-7 shows this result.

 Figure 4-6. Line 79 execution showing foreign library

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

95

 You can close that documentation. Next, skip down to line 90. We are going to install ggplot2 , which
is probably the most popular and robust charting package available for R. Highlight line 92 through 94 and
press Ctrl+Enter to execute. Figure 4-8 shows the result of this.

 Figure 4-7. Help documentation for foreign library

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

96

 Now that ggplot2 is loaded, we need to run the library() function in order to load it into the current
R session. This is shown in line 97; highlight this line and execute it, and then execute line 98 as well. Line 98
says search() , which if you recall, shows the currently loaded packages. Notice that ggplot2 is now added to
the list of currently installed packages for this session.

 R Package Manager
 The installation of R Tools for Visual Studio includes an R Package Manager. If you navigate to R
Tools ➤ Windows and choose Packages , shown in Figure 4-9 , a page opens, showing you a lot of really cool
information about the installed R packages, as shown in Figure 4-10 .

 Figure 4-8. Loading ggplot2 package

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

97

 Figure 4-10. R Package Manager

 Figure 4-9. Location of Packages selection

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

98

 The addition of a package manager is very useful, because otherwise, users would be forced to
manually manage packages through the command line. While some users may be more comfortable with
this approach, it is sort of defeating the purpose of rapid application development. With this feature, a user
can now view their installed packages and alternatively choose to update them from this interface instead of
using installed.packages() .

 Feel free to explore around in this area a bit. For example, the top-left corner contains three options:

• Available : This menu option shows all of the packages available from the current
CRAN mirror you are currently pointing to. Packages can be downloaded and
installed by clicking the Install button located on the right of the interface.

• Installed : This option shows all the packages currently installed on your system. If
an update is available to an installed package, a blue icon appears in the left pane
and an Update button appears in the right pane.

• Loaded : This option shows all the packages currently loaded in your project.

 To expound on this information, the Available menu option is shown in Figure 4-11 .

 Figure 4-11. Available menu option

 Notice the Install button on the right. Clicking this button installs the currently selected package into
your R installation.

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

99

 The Installed menu option appears as shown in Figure 4-12 . Note that I scrolled to the bottom of the left
pane in order to show the updatable packages.

 Figure 4-13. RUnit needs updating

 Figure 4-12. Installed menu option

 Notice that RUnit and survival both need to be updated. Clicking the RUnit package name in the left
pane changes the interface to what is shown in Figure 4-13 .

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

100

 Notice that the Update button now appears in the right pane.
 Finally, the Loaded menu option appears, as shown in Figure 4-14 .

 Figure 4-14. Loaded menu option

 There isn’t much you can do with this area except see what is already loaded. Go ahead and close the R
Package Manager window. Let’s continue on.

 Plotting in R
 Next, we look at a simple regression example, as shown in the script. First, I need to point out that
the ggplot2 package comes preloaded with quite a few sets of data that is to be used to test the
functionality of the package. This data is accessed as shown on line 105, using the syntax data(package =
"ggplot2")$results . This syntax says that we want to run the data() function against the ggplot2 package
and return the subset of the output referenced as results to the screen, as shown in Figure 4-15 .

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

101

 Consequently, we could also execute the command data(package = "ggplot2") to see a listing of the
datasets included in the package. Figure 4-16 shows this result.

 Figure 4-16. ggplot2 datasets

 Figure 4-15. ggplot2 Results

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

102

 Go ahead and close that window, but keep your R script open. We’ve got the executed result of
 data(package = "ggplot2")$results shown in the R Interactive window, so skip down to line 109 next.
This line says data(diamonds, package = "ggplot2") . The syntax of this says that we want to run the
 data() command against the diamonds dataset in the ggplot2 package. Highlight that line and press
 Ctrl+Enter to execute it. There isn’t any huge change or anything here; all that happened was that the
 diamonds dataset was just made available for analysis. The way you know that it was just loaded is to check
your Variable Explorer window. Figure 4-17 shows what the Variable Explorer window should look like at
this point.

 Figure 4-17. diamonds dataset loaded

 So there is our diamonds dataset, loaded and ready to go. Go down to line 112 next, which says ls() .
That line by itself, without any arguments, only returns the datasets or functions defined by the user in
the current session. In this instance, running a simple line of code only results in the output of a single
word: diamonds . The reason for this is that this is the only dataset loaded for this session. If you were to
execute this line inside of a function with no arguments, you would be able to see the local variables for that
particular function. As you can tell, this can be a useful debugging tool.

 Now go down and execute line 115, which says str(diamonds) . This command allows us to examine the
structure of the dataset passed in as an argument. Figure 4-18 shows the structure displayed in RTVS.

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

103

 Briefly look at the returned data there. You can see that there is a lot of information but it appears to be
truncated. Have no fear; take a look at your Variable Explorer again. You see that there is a very slight change,
in that there is now an indicator next to diamonds, as opposed to just a table graphic. Click this indicator.
You should see what is shown in Figure 4-19 .

 Figure 4-18. str(diamonds) output

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

104

 This is much easier for me to read and decipher. Across the top, just above the blue bar shown in
Figure 4-19 , the columns are defined as Name, Value, Class, and Type. Browse around in there for a minute
to get familiar with how it looks. This is a very cool feature that allows the introspection of data before it is
really analyzed.

 Go to line 118 next. This line says head(diamonds) , which simply instructs R to output the first six rows
of data in the dataset. Conversely, line 121 says tail(diamonds) , which, as you’ve probably guessed, outputs
the last six rows of data in the dataset. The results of these two executions are shown in Figure 4-20 .

 Figure 4-19. diamonds detail information

 Figure 4-20. head() and tail() demonstrated

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

105

 Line 127 is next, which says dim(diamonds) . The dim() function allows us to see the dimension of the
object passed as an argument, which would be diamonds in this case. Executing this line simply shows what
we have already gathered by examining the Variable Explorer earlier: there is one dataset returned with
53940 objects of 10 variables.

 Next, we move on to plotting in R. There are three main packages used for charting in R: base , lattice ,
and ggplot2 . This is also referenced on line 136.

 Lines 133 and 134 say the following:

 diamondSample <- diamonds[sample(nrow(diamonds), 5000) ,]
 dim(diamondSample)

 Let’s break the syntax of this apart before anything else.

• diamondSample : Declares an object for storage of the results of the command.

• <- : An assignment operator that declares that the result of the command(s) on the
right are to be assigned to the object on the left.

• diamonds : References the diamonds dataset.

• [sample(nrow(diamonds), 5000),] : Draws a random sample of 5000 data points
from the diamonds dataset.

• dim(diamondSample) : Shows the dimension of the diamondSample object.

 As expected, the result of the dim(diamondSample) command was the output [1] 5000 10 , which
means that one dataset and 5000 objects in 10 variables were returned.

 Next, we go to line 140, which reads: theme_set(theme_gray(base_size = 18)) . This says that we set
the font size to 18pt and use the gray theme. Highlight and execute that line, then skip down to lines 143 and
144. Those lines show the following code:

 ggplot(diamondSample, aes(x = carat, y = price)) +
 geom_point(colour = "blue")

 First off, note that this is on two different lines, but it is actually one long command. The presence of the
plus sign indicates a line continuation character, outside of usage inside a function or argument.

 Let’s take a look at the syntax of this command before we move on.

• ggplot : Defines the function to be executed.

• diamondSample : References the diamondSample object as the active dataset.

• aes : Defines the aesthetic qualities of the chart; in this example, the x axis is the
 carat set and the y axis is the price set.

• geom_point : Customizes the points once they are charted.

 So this means that we will generate a chart. Highlight these two rows and press Ctrl+Enter to execute
them. Figure 4-21 shows the result of this action.

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

106

 Notice that the R Plot window came into focus here? That’s pretty handy. Notice also that the x axis is
 carat and the y axis is price , as we defined in the aes() command.

 Go down to lines 147 through 149 next. You’ll see there is a very slight addition of scale_x_log10() .
This gives us a nice little logarithmic scale on the x axis (which is also stated in line 146) so go ahead and
highlight and execute lines 146 through 149 now. Figure 4-22 shows what you should see now.

 Figure 4-21. Our first chart !

 Figure 4-22. Logarithmic scale addition

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

107

 That’s starting to make a bit more sense now. Next, another line is added to let us add another
logarithmic scale on the y axis. This is on lines 152 through 155; so highlight these lines and press Ctrl+Enter
to execute them. Figure 4-23 shows what you should see now.

 Figure 4-23. Logarithmic scale on x and y axes

 The chart is even better now, I think .

 Linear Regression in R
 Next, we look at linear regression in R within the confines of the loaded dataset. Linear regression is basically
the way that statisticians define the relationship between a scalar variable and one or many explanatory
variables. Simple linear regression is when there is only one explanatory variable, which is essentially what
we are dealing with in this example.

 In R, we must first build a model of the data before we can access that model. To do that, take a look at
line 163, which says model <- lm(log(price) ~ log(carat) , data = diamondSample) . Again, let’s look
at the syntax of this before we move on.

• model : Defines the object that inherits what is defined in the command.

• <- : An assignment operator that declares that the result of the command(s) on the
right are to be assigned to the object on the left.

• lm : Defines a linear model.

• log(price) : A logarithmic scale of the price data (also the scalar variable).

• ~ : Separates the scalar variable and the explanatory variable(s). Scalar variables are
shown to the left of this symbol and explanatory variables are shown to the right.

• log(carat) : A logarithmic scale of the carat data (also the explanatory variable).

• ,data = diamondSample : Defines the data object to be used (diamondSample , in this
case).

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

108

 Highlight line 163 and execute it. Notice that there is no discernible action taken in the IDE, so let’s
check the Variable Explorer again. There is now another data object in there referenced as model . Figure 4-24
shows what you should be looking at now.

 Figure 4-24. model dataset

 Figure 4-25. summary(model) information

 Line 166 simply says summary(model) . Go ahead and execute that line. A lot of information is shown in
the R Interactive window now. Take a look at Figure 4-25 .

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

109

 Take a look at what is returned by this action. You have a lot of really useful information returned about
the model here, so understand that this is a great place to get meaningful statistical information about a
model.

 Head on down to lines 170 through 172, which show the following code: coef(model)
 coef(model)[1]
 exp(coef(model)[1])

 Line 169 says that we extract the model coefficients. Let’s highlight those lines and execute them now.
Figure 4-26 shows what you should see in your R Interactive window now.

 Figure 4-26. model coefficients

 Now that we’ve got that, let’s take a look at the next bit of code on lines 175 through 179. This code is
defined as follows:

 ggplot(diamondSample, aes(x = carat, y = price)) +
 geom_point(colour = "blue") +
 geom_smooth(method = "lm", colour = "red", size = 2) +
 scale_x_log10() +
 scale_y_log10()

 We’ve already stepped through the syntax of this command, but I see that there is a line that says geom_
smooth(method = "lm", colour = "red", size = 2) + that we didn’t define before. The addition of this
line of code adds a thin red trend line to the chart. Highlight these lines and execute them now. Figure 4-27
shows what you should see as a result.

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

110

 That is one meaningful chart! The charts are getting progressively better and more interesting, as you
can see.

 Regression Diagnostics
 Next, go down and take a look at lines 190 through 192. They are defined as follows:

 par(mfrow = c(2, 2))
 plot(model, col = "blue")
 par(mfrow = c(1, 1))

 So in this example, we set the plot layout to generate a 2×2 grid of charts, show the plotted information
within the model dataset, and then reset the plot layout back to a 1×1 grid again. Let’s take a further look at
the syntax of these statements.

• par : This function combines multiple different charts into a single chart as specified
by the mfrow() argument.

• mfrow = c(2, 2) : This argument passes in the values for (rows × columns), which
determine how the grid is laid out on the stage.

• plot(model, col = "blue") : This function determines what is to be plotted (model)
and the color (col) of the plotted data points.

 Feel free to play around with this or any other function a bit, just to get a feel for what the syntax does
and how the subtle changes you make to the functions affect the generated output. I typically find this to be
a great way to learn about the functions, so maybe you will like this method as well. For example, change the
 col value to blue or green, and see what happens to your charts. Change the c() value to 3, 3 instead of 2, 2.
Notice how the charts are realigned.

 Figure 4-27. Charted result

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

111

 ■ Tip If you ever get stuck with an error that says Error in plot.new(): figure margins too large , run
the commands dev.off() and par(mar=c(1,1,1,1)) to clear the error. They may need to be run multiple times
to reset the graphics component. Huge thanks to Stack Overflow (http://stackoverflow.com) for this tip!

 Highlight lines 190 through 192 and execute them. Figure 4-28 shows what you should now see.

 Figure 4-28. Multiple chart results

 That looks fantastic. Notice how most of the data points lay fairly close the red line? That indicates that
this dataset is pretty reliable and does not contain an overwhelming number of outliers.

 The Model Object
 Line 198 has us look at the structure of the model object. Highlight and execute this line. You see a flurry of
activity in the R Interactive window. Figure 4-29 shows this returned data. This is to be expected, so go back
through the R Interactive window and take a look at how the data was returned.

http://stackoverflow.com/

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

112

 Notice that the returned data is actually pretty unreadable and might not make a lot of sense right now.
This is just one way that we can view the model object, fortunately. Look at your Variable Explorer window
and expand the model entry. Figure 4-30 shows what you should see now.

 Figure 4-29. Returned object data

 Figure 4-30. model entry

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

113

 Notice that the entries in the Name column follow those columns that were aligned next to the dollar signs
in the R Interactive window. If you were to double-click the residuals column in the Variable Explorer window,
another window opens on the top-left pane that is titled R Data: $residuals . Figure 4-31 shows this window.

 Figure 4-31. R Data: $residuals window

 This window contains the data that makes up the dataset. This procedure can be repeated for any
column that can be expanded, as seen in the Name column of the Variable Explorer.

 Next is line 199, defined simply as model$coefficients . This line basically means that we want to view the
 coefficients column in the model object. Execute line 199. Figure 4-32 shows you what you should see now.

 Figure 4-32. coefficients displayed in text format

 Consequently, we could also see this same data by double-clicking the coefficients column in Variable
Explorer, as shown in Figure 4-33 .

 Figure 4-33. coefficients displayed in tabular format

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

114

 So again, there are two ways to do the same thing and we have verified that the data is correct.
 Skip down to line 202 now. This line says model <- lm(log(price) ~ log(carat) + ., data =

diamondSample) and it is closely related to the model we built before, but this time, we declared log(price)
~ log(carat) + . , which means that we want to model the log of the price column against all the other
columns in the dataset. In other words, this is true linear regression and not simple linear regression.

 Highlight line 202 and execute it. Notice that Variable Explorer now shows List of 13 where is once
showed List of 12 , which means that we have added the model to the list and it is now available in the
dataset. Figure 4-34 shows this updated value. You can always double-click model to view the data
contained within, if you would like.

 Figure 4-34. model value increased

 Line 204 shows the summary of the model; so highlight this line and execute it. Figure 4-35 shows the
result of this action.

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

115

 This is significant (bad pun) because the R-squared value is 98%, so that means that 98% of the data fits
closely to the regression. Not bad!

 Figure 4-35. summary(model) information

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

116

 Lines 211 through 214 show that we create a data frame, which is how R structures data within its
models. These lines are defined as follows:

 predicted_values <- data.frame(
 actual = diamonds$price,
 predicted = exp(predict(model, diamonds))
)

 So, again, let’s step through this to get a feel for what the syntax is doing here.

• predicted_values : The object that holds the result of the command.

• data.frame : The way that R handles structured data; similar to a table.

• actual = diamonds$price : Sets a column variable named actual equal to the value
represented by the price values in the diamonds dataset.

• predicted = exp(predict(model, diamonds)) : Sets a column variable named
 predicted equal to the exponential value of the predicted values in the model linear
model in the diamonds dataset.

 Execute lines 211 through 214. You’ll see that nothing happens again, which is expected. Look at your
Variable Explorer again. You’ll see that there is now another dataset available called predicted_values ,
which we just added. Figure 4-36 shows what you should now see.

 Figure 4-36. predicted_values dataset

 Line 217 is next, which says head(predicted_values) . We saw this before, so recall that the head()
command allows us to see the first six rows of data. Execute this. You should see what is shown in
Figure 4-37 .

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

117

 Next is the big show. Lines 220 through 224 contain the ggplot command that charts all of this out for
us. So far, we’ve laid out the data.frame object with the actual and predicted columns, Now we see what
that data looks like visualized. The R code for this command is defined as follows) :

 ggplot(predicted_values, aes(x = actual, y = predicted)) +
 geom_point(colour = "blue", alpha = 0.01) +
 geom_smooth(colour = "red") +
 coord_equal(ylim = c(0, 20000)) +
 ggtitle("Linear model of diamonds data")

 I’m pretty sure that we can read that and decipher what the syntax says, but basically, we are running
the ggplot command against the predicted_values dataset. We are using the aesthetic value for the x axis
to be the actual data and the y axis to be the predicted data. The data points are blue with a varying alpha
(transparency), depending on the data value, with a red trend line, a y-limit of 20000 (which forces scale),
and a title.

 Figure 4-38 shows what you should see after you execute lines 220 through 224.

 Figure 4-37. head(predicted_values)

CHAPTER 4 ■ BUILDING R MODELS WITH RTVS

118

 Really, really useful chart there, don’t you think? If you got this far with no problems, excellent work!
You’ve actually learned quite a bit about the basics of R syntax now and you have seen real-world application
of the most commonly used R plotting package: ggplot2 .

 Summary
 We have done quite a bit in this chapter, including getting the data models built and verified that we are
returning data into our object variable. We also looked at charting these values and the different ways that
we can look at the data via different kinds of charts. Next, we get into more advanced plotting in R with R
Tools for Visual Studio.

 Figure 4-38. ggplot of predicted_values

119© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_5

 CHAPTER 5

 Plotting in RTVS

 Picking up right where we left off in Chapter 4 , we are probably comfortable enough with R to begin getting
into the task of creating the reports specified in the software requirements document created in Chapter 3 .
Understand that I am in no way intimating that we are experts in this language. Quite the opposite, actually.
We are far enough along to understand some basics and we are now going to expound on that knowledge by
pressing forward, while still recognizing that we are crawling and not yet walking.

 Let’s review the reports that were promised as outlined in our software requirements document. These
are the reports:

• Average Wind Speed per AirportID

• Average Temperature per AirportID (°F)

 With this in mind, let’s start planning out the solution in R Tools for Visual Studio and seeing if we can
get them working correctly.

 Report 1: Average Wind Speed by Airport ID
 In this first part, we calculate the Average Wind Speed per Airport. This is done by simply adding all the wind
speed values for each Airport ID, and then dividing by the number of records. R provides a quick way for us
to do this by using core functionality called data.table . What is data.table ? It’s a package freely available
with a lot of really cool ways of slicing and dicing large amounts of numerical data. You need the data.table
package if you want to calculate mean, sum, or just about any R built-in function easily.

 Open R Tools for Visual Studio. You should see what is shown in Figure 5-1 . Notice that we are working
with a fresh instance of RTVS and not using the old interface from the previous chapters.

http://dx.doi.org/10.1007/978-1-4842-2298-0_4
http://dx.doi.org/10.1007/978-1-4842-2298-0_3

CHAPTER 5 ■ PLOTTING IN RTVS

120

 The reason that we are working in a fresh environment is because we are importing datasets and
working with that data. I don’t want there to be any chance of working with the wrong data and possibly
getting incorrect results.

 Importing the Dataset
 The first thing that we have to do, as data scientists, is to gather our data. This sounds easy when you have a
file location or URL to get the data from. When you don’t have the data available and you have to define it, it
is consequently much more difficult to ascertain. Luckily, that is not the case, since we have a complete set of
data ready to be imported.

 First, make sure that you have unzipped the file we downloaded from Chapter 4 , RTVS-docs-master.
Within this .zip file, navigate to RTVS-docs-master\examples\MRS_and_Machine_Learning\Datasets . In
this directory is a file named Weather_Sample.csv . This file is our data source for this example, so you can
either leave it there or copy it to another location on your PC that is easier to remember.

 Now, with RTVS up and running, we go to R Tools ➤ Data ➤ Import Dataset into R Session from
Text File... to get that data into our environment. Once you click the Import Dataset into R Session from
Text File menu option, an interface appears that prompts you to navigate to the file that you want to import.
We will use Weather_Sample.csv , so navigate to the location where you saved that file and click the Open
button.

 You should see what is shown in Figure 5-2 .

 Figure 5-1. R Tools for Visual Studio

http://dx.doi.org/10.1007/978-1-4842-2298-0_4

CHAPTER 5 ■ PLOTTING IN RTVS

121

 Pretty impressive! We can see that the first 19 rows of data were brought in, which is probably meant to
give us a good sample size of the data types and lengths.

 Note that you can click the top-right corner between Input File and Data Frame to see the raw data vs.
the formatted data.

 When you are done looking at this, click OK . You then see what is shown in Figure 5-3 .

 Figure 5-2. Initial data view

 Figure 5-3. Variable Explorer

CHAPTER 5 ■ PLOTTING IN RTVS

122

 Note that the R Interactive window also generated the following code:

 ̀Weather_Sample` <- read.csv(file="C:/Users/Bradley Beard/AppData/Local/Temp/Weather_Sample.
csv.utf8", header=TRUE, row.names=NULL, encoding="UTF-8", sep=",", dec=".", quote="\"",
comment.char="")

 This is interesting, because this shows us from R’s point of view how data gets imported into the current
working project .

 Opening a Script Pane
 Now that we’ve loaded the dataset, we can open a Visual Studio pane for executing R scripts to prepare and
analyze our data. Close the Start Page shown in the top-left pane of Figure 5-3 . Then open a fresh R script by
pressing Ctrl+N , clicking R in the left pane, and choosing R Script , as shown in Figure 5-4 .

 Figure 5-4. New R Script

 Click the Open button to open a blank script window. You should now have an interface similar to what
is shown in Figure 5-5 .

CHAPTER 5 ■ PLOTTING IN RTVS

123

 Now that our data is loaded correctly and we have a fresh interface to work in, we can move on to the
next section .

 Preparing the Dataset
 How on earth do you prepare a dataset? Isn’t it already prepared? Well, yes and no: yes, because the data is
already well-formed and meaningful, so now we get to see what it is really trying to say; no, because it isn’t
ready to be analyzed by R yet because it’s still raw. We need to do some auxiliary things to the data first, to get
it ready for analysis.

 To get the data ready for analysis, type the following code into your Script1.R window:

 install.packages("data.table")

 library(data.table)

 Weather_Sample <- data.table(Weather_Sample)

 setkey(Weather_Sample, AirportID)

 Figure 5-6 shows how your Visual Studio window should look after entering the code that I’ve just given.

 Figure 5-5. Ready to work!

CHAPTER 5 ■ PLOTTING IN RTVS

124

 Now, let’s go over what this code is actually doing.

• install.packages("data.table") : This code simply installs the data.table
package

• library(data.table) : This code makes data.table package available to the current
R session

• Weather_Sample <- data.table(Weather_Sample) : This code sets an empty object
named Weather_Sample equal to the data.table representation of the Weather_
Sample dataset.

• setkey(Weather_Sample, AirportID) : This code allows for grouping on a specific
 column .

 Now that we understand what is happening here, we see that there is no code that actually provides
analysis. You are correct in that generalization, because we haven’t actually begun the analysis, we have
only begun to prepare the dataset for analysis. This is an important first step, because it is sort of like the
foundation for what we do next, which is create the reports we need to generate as part of the software
requirements document.

 Executing the lines of code that I provided in Figure 5-6 shows that the chron package was also
downloaded along with data.table . It is important to point out that any dependent packages to a requested
package for download is always downloaded as well. This eliminates the possibility of errors occurring
because of package dependencies. In case you haven’t already executed those lines of code, go ahead and do
it now.

 Average Wind Speed by Airport ID (Tabular)
 The first report that we are going to work on is Average Wind Speed by Airport ID. This report takes the data
available and calculates the average wind speed per airport, and then displays the values in a chart. The
columns we need to concern ourselves with are named WindSpeed and AirportID . We know that we have to
have an object instantiated to hold the plot data and we know that we need to return the data to the object as
a data.frame so that it can be interpreted into a chart correctly. We can start writing our code as follows:

 avg_windspeed_by_ID <- as.data.frame(Weather_Sample)

 Figure 5-6. Preparation

CHAPTER 5 ■ PLOTTING IN RTVS

125

 ■ Tip Using the as keyword in front of the data.frame declaration indicates that we want to force the
referenced dataset to be returned as a data frame.

 That code doesn’t quite do what we need yet, because we haven’t yet figured out the mean() of the
 WindSpeed column yet. To do this, we need to update our code as follows:

 avg_windspeed_by_ID <- as.data.frame(Weather_Sample[, mean(WindSpeed)])

 That code looks closer to what we need, but it’s not complete yet. What if there are blank rows in the
data? This will surely affect our output, so let’s get rid of those values by updating our code to the following:

 avg_windspeed_by_ID <- as.data.frame(Weather_Sample[, mean(WindSpeed, na.rm = TRUE)])

 We can now see that na.rm = TRUE will remove the “missing” values in a dataset.
 Finally, we add a sorting column on the end. Keep in mind that this is different than the setkey()

function we called earlier, because the setkey() function grouped the data. To sort the data by a column,
update your code to the following:

 avg_windspeed_by_ID <- as.data.frame(Weather_Sample[, mean(WindSpeed, na.rm = TRUE),
by = AirportID])

 Now, highlight the command we just finished writing and press Ctrl+Enter . After that, type avg_
windspeed_by_ID , highlight what you just wrote, and press Ctrl+Enter to execute it. You should see the
following output in the R Interactive window at this time:

 > avg_windspeed_by_ID
 AirportID V1
 1 10140 7.594268
 2 10299 6.708183
 3 10397 6.554401
 4 10423 5-991983
 5 10529 5-377292
 6 10693 4.686593
 7 10713 6.993095
 8 10721 8.713368
 9 10800 4.193095
 10 10821 5-095719

 Note that I scrolled up to the top of the returned data in order to show the top 10 results returned out of
66 rows. The following is the entire script to generate this result:

 install.packages("data.table")

 library(data.table)

 Weather_Sample <- data.table(Weather_Sample)

 setkey(Weather_Sample, AirportID)

CHAPTER 5 ■ PLOTTING IN RTVS

126

 avg_windspeed_by_ID <- as.data.frame(Weather_Sample[, mean(WindSpeed, na.rm = TRUE),
by = AirportID])

 avg_windspeed_by_ID

 Save your script as avgWindspeedByAirportID.tabular.R . This is the first part of the report that we are
going to generate.

 Average Wind Speed by Airport ID (Plot)
 Next, open a new R script window. In that new window, you want to type in the following code:

 library(data.table)

 Weather_Sample <- data.table(Weather_Sample)

 chart_by_ID <- as.data.frame(Weather_Sample[, mean(WindSpeed, na.rm = TRUE), by =
AirportID])

 library(ggplot2)

 ggplot(chart_by_ID, aes(x = AirportID, y = V1)) + geom_point(stat = "identity") + geom_
smooth(method = "lm", formula = y ~ splines::bs(x, 3)) + scale_x_continuous(name = "Airport
ID") + scale_y_continuous(name = "Average Wind Speed") +
 geom_text(aes(label = AirportID), size = 3, vjust = 1.0) +
 geom_text(aes(label = round(V1, digits = 2)), size = 3, vjust = 2.0)

 Let’s take a look at this code before we move on.

• Weather_Sample <- data.table(Weather_Sample) : We are using Weather_Sample
as our object variable name, and then populating that object with the data.table
representation of the data contained in the dataset Weather_Sample (which is shown
by reference). There is a reference to the data, in other words, to create the analysis.

• chart_by_ID <- as.data.frame(Weather_Sample[, mean(WindSpeed, na.rm =
TRUE), by = AirportID]) : First, we’re setting the variable name as before to chart_
by_ID . Then, we’re setting this variable equal to the data frame equivalent of the
mean of the WindSpeed column in the dataset (na.rm=TRUE means to remove the N/A
values) grouped by the AirportID . Does this make sense? It is imperative that you
understand how this statement is structured, so that you can go back in and create
custom reports from this data on your own. If you haven’t gotten it yet, keep looking
at it until it makes sense.

• library(ggplot2) : This command makes the newly installed ggplot2 package
available to this project.

• ggplot(chart_by_ID, aes(x = AirportID, y = V1)) + geom_point(stat =
"identity") + geom_smooth(method = "lm", formula = y ~ splines::bs(x,
3)) + scale_x_continuous(name = "Airport ID") + scale_y_continuous(name
= "Wind Speed") + geom_text(aes(label = AirportID), size = 3, vjust =
1.0) + geom_text(aes(label = round(V1, digits = 2)), size = 3, vjust =
2.0) : This is a big one. This is just one huge command that controls how the chart
looks and renders. The individual parts of this statement are:

CHAPTER 5 ■ PLOTTING IN RTVS

127

• ggplot(: This is the plotting function.

• chart_by_ID, : Feeds the data.frame of Weather_Sample into this variable

• aes(x = AirportID, y = V1)) + : aes is the aesthetic definition for ggplot2. It
is saying that the x axis (horizontal) shows AirportID and that the y axis (vertical)
shows V1, which is going to the average wind speed, in this instance.

• geom_point(stat = "identity") + : The geom_point() function lets you define
how you want the points on the plot defined. In this case, we want them shown as an
identity.

• geom_smooth(method = "lm", formula = y ~ splines::bs(x, 3)) + : This lets us
add a conditional average to the plot.

• scale_x_continuous(name = "Airport ID") + : This lets us continuously scale the
x axis.

• scale_y_continuous(name = "Wind Speed") + : This lets us continuously scale the
y axis.

• geom_text(aes(label = AirportID), size = 3 , vjust = 1.0) + : This lets us
label and offset the x-axis label.

• geom_text(aes(label = round(V1, digits = 2)), size = 3 , vjust = 1.0) :
This lets us label and offset the y-axis label.

 Note that there is a plus sign at the end of some of the lines. This counts as a continuous character; in
other words, the statement continues on the next line, which is not a separate statement.

 Once you’ve got that all typed in, press Ctrl+A to select all, and then Ctrl+Enter to run it. You then see
what is shown in Figure 5-7 .

 Figure 5-7. Plotted information

CHAPTER 5 ■ PLOTTING IN RTVS

128

 So we’ve got Airport ID on the x axis and Average Wind Speed on the y axis. Save that script as
 avgWindspeedByAirportID.plot.R .

 Very nice so far! That finishes up the basics of the first report, so let’s move on to the second one.

 Report 2: Average Temperature by Airport ID (°F)
 Our next task is to report the average temperature by airport ID. The code involved is very similar to that for
the Average Wind Speed by Airport ID report, so you shouldn’t have any trouble in following along.

 We’ll approach our task in two steps. First we’ll compute the average temperature values. Then we’ll
plot them in the graph. This is exactly how we created the first report as well.

 Average Temperature by Airport ID (Tabular)
 Notice that the data is still loaded and available to us, so we can skip the step of loading the data and get right
into computing our average temperatures. Following is the code to do that:

 install.packages("data.table")

 library(data.table)

 Weather_Sample <- data.table(Weather_Sample)

 setkey(Weather_Sample, AirportID)

 avg_temperature_by_ID <- as.data.frame(Weather_Sample[, mean(DryBulbFarenheit,
na.rm = TRUE), by = AirportID])

 avg_temperature_by_ID

 Type that in, press Ctrl+A to select all, and then press Ctrl+Enter to execute it. At this point, your R
Interactive window should show the following information:

 AirportID V1
 1 10140 62.76688
 2 10299 45-91877
 3 10397 68.61980
 4 10423 74.13576
 5 10529 58.44648
 6 10693 65-93558
 7 10713 57.59134
 8 10721 60.77466
 9 10800 71.38043
 10 10821 62.85850

 That’s the first 10 rows of what you should see.
 If you scroll down, you see that all 66 rows have been returned. Now save the script as avgTemperatureB

yAirportID. tabular .R .

CHAPTER 5 ■ PLOTTING IN RTVS

129

 Average Temperature by Airport ID (Plot)
 We have the data that we need, so let’s plot it onto a chart now. The code for this plot is based on the
previous plot, so let’s look at that code now:

 Weather_Sample <- data.table(Weather_Sample)

 chart_by_ID <- as.data.frame(Weather_Sample[, mean(DryBulbFarenheit, na.rm = TRUE),
by = AirportID])

 install.packages("ggplot2")

 library(ggplot2)

 ggplot(chart_by_ID, aes(x = AirportID, y = V1)) + geom_point(stat = "identity") + geom_
smooth(method = "lm", formula = y ~ splines::bs(x, 3)) + scale_x_continuous(name = "Airport
ID") + scale_y_continuous(name = "Average Temperature") +
 geom_text(aes(label = AirportID), size = 3, vjust = 1.0) +
 geom_text(aes(label = round(V1, digits = 2)), size = 3, vjust = 2.0)

 This code should look very familiar. I only changed the WindSpeed text in the chart_by_ID section to
 DryBulbFarenheit , and the scale_y_continuous name to Average Temperature instead of Average Wind
Speed .

 Once you get this code typed into RTVS, press Ctrl+A to select all, and then press Ctrl+Enter to execute
the code. Figure 5-8 shows what you should see at this point.

 Figure 5-8. Plotted data

CHAPTER 5 ■ PLOTTING IN RTVS

130

 Excellent! That shows us our data—and even a moving average line thrown in for good measure.
 Save that script as avgTemperatureByAirportID.plot.R . The following are the four files that you should

have saved:

• avgTemperatureByAirportID.plot. R

• avgTemperatureByAirportID.tabular.R

• avgWindspeedByAirportID.plot.R

• avgWindspeedByAirportID. tabular.R

 Summary
 Let’s review this chapter really quick. We actually did an awful lot here. You should be feeling pretty good
about yourself and your growing knowledge of R. Here’s what we’ve accomplished:

• Gone through the basics of plotting in R

• Loaded an external data source (Weather_Sample.csv) into Visual Studio

• Wrote custom R scripts based on this data in accordance with the software
requirements document

• Generated both tabular data and plots based on this data

 The next chapter is gets into the Reporting Services aspect of the delivery of these reports.

 PART III

 Creating and Viewing Reports

133© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_6

 CHAPTER 6

 Configuring SQL Server Reporting
Services

 Recall back in Chapter 1 that we installed Reporting Services as part of the initial SQL Server installation.
When we installed Reporting Services, we selected the Install and configure option. Now we have to
configure the Reporting Services instance that we installed. Keep in mind that Reporting Services was
already installed and configured (and operational) at the point that the Install and configure option was
selected when SQL Server was installed. The purpose of this chapter is to familiarize you with the options
available within Reporting Services Configuration Manager, so that if you need to change a setting in your
own installation, you have the knowledge and confidence of how to make the required change and where to
look for the solution.

 First, we’ll run Reporting Services Configuration Manager and connect to our newly installed instance,
and then we’ll go through a number of configuration options at our disposal.

 Connecting to an Instance
 Go to the Windows Start menu. Reporting Services Configuration Manager should show in the Recently
Added box. If it’s not there, open the Windows Start menu, click All Apps , and then scroll down to Microsoft
SQL Server 2016. It should be inside that folder. If not, just start typing Reporting Services and it will pop up.
Click it to continue. You then see what is shown in Figure 6-1 .

http://dx.doi.org/10.1007/978-1-4842-2298-0_1

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

134

 Click the Connect button here to connect to your instance. You’ll then see the home configuration page
shown in Figure 6-2 .

 Figure 6-1. Reporting Services Configuration Connection

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

135

 The home configuration page, which is my own name for it, tells you general information about your
Reporting Services instance. Most importantly, note that the service has started. We won’t get very far
otherwise.

 Let’s take a quick look at this interface before we move on. I will introduce the areas in the following
subsections, and then we go back and update the fields so that our report server starts and runs successfully.

 Service Account
 The settings in the Service Account area can actually stay just as they are by default. If you’ve changed the
 Use built-in account option shown in Figure 6-3 , the default setting is Virtual Service Account . This is an
account that was created when you installed Reporting Services in order to connect to the report server.
You could also choose Local System, Local Service, or Network Service. I would advise against that, because
these accounts have heightened privileges that aren’t necessary to run the report server.

 Figure 6-2. Report Server Status

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

136

 You can also specify another domain account to interact with this service, if you prefer. This is the
choice for a lot of professionals, because they can tailor the user account to be specific to this instance of this
application, for example. If you choose this method, go right ahead and put the username and password for
this account in the appropriate boxes.

 Keep in mind that if you choose a custom service account, the account specified more than likely
needs to be reviewed by a server or domain administrator in your organization for security purposes and
for adherence to corporate policies. In my experience, it is best to have the server or domain administrator
provide a list of service accounts that can be used for the various purposes needed within a database or
application server.

 Web Service URL
 Figure 6-4 shows that this area allows you to configure a URL where the reports generated by the Reporting
Server are to be generated and provided to authorized users. This area is already set up, unless you wanted
to give your virtual directory a different name. In that case, go ahead and do that.

 Figure 6-3. Service Account

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

137

 Figure 6-4. Web Service URL

 Note that there are default values that have been pre-populated for you.
 The only setting I would advise on adding is the HTTPS Certificate option. If you happen to have an SSL

certificate, make sure that the certificate is provided here, if you want to run over HTTPS port 443.

 Database
 Figure 6-5 shows that this area allows you to configure the database that the report server is going to connect
to for data.

 Note that the Current Report Server Database options are also filled in. This indicates the database
server that hosts the SQL Server Reporting Services databases. Microsoft did this for us when we selected the
 Install and configure option back in Chapter 1 .

http://dx.doi.org/10.1007/978-1-4842-2298-0_1

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

138

 Next, we get to set up the database that we want to point the report server to. This means that the report
server looks at this specific database, by default. Obviously, this can be changed with separate installations
and instances of Report Server, but for now, we’ll just stick with this one since that is sort of beyond the
scope of this book. This also implies that other databases, apart from the Reporting Services databases, can
be used as sources of data.

 Web Portal URL
 Notice that we now have a hyperlink on the screen that reads http://BRADLAPTOP:80/Reports_SQL2016RS ?
If you are happy with that default URL, then everything is fine for this area. Figure 6-6 shows that this area
allows you to define a custom URL for access to the web portal, in case you aren’t happy with the default
value. I advise you to leave the Virtual Directory value alone, since the default value works just fine and this
is just for evaluation purposes.

 Note that the Web Service URL (discussed earlier in this chapter) must be defined before this area can
be defined.

 Figure 6-5. Database

http://bradlaptop/Reports_SQL2016RS

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

139

 E-mail Settings
 Figure 6-7 shows that this area allows you to specify e-mail settings. Obviously, this would be useful if you
wanted to send e-mails with the reports attached. The default values are not selected. You must fill these
options in yourself.

 Figure 6-6. Web Portal URL

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

140

 As you can see in Figure 6-8 , I have provided the general format for how you want to fill in the fields
shown.

 Figure 6-7. E-mail Settings

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

141

 When you have updated your settings, click Apply to save them.

 ■ Note Obviously, your settings will be different than the ones shown here.

 Execution Account
 Figure 6-9 shows that this area allows you to specify an execution account.

 Figure 6-8. E-mail Settings, updated

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

142

 We don’t need to worry about an execution account for this book, so just bypass this for now.

 Encryption Keys
 Figure 6-10 shows that this area allows you to backup, restore, change, or delete encryption keys.

 I highly recommend backing up your encryption keys immediately. Without these keys, you cannot
decrypt any encrypted database. It is of vital importance that the keys be backed up regularly and stored
securely.

 Figure 6-9. Execution Account

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

143

 Subscription Settings
 Figure 6-11 shows that this area allows you to configure an account that is used by remote users to access
your available file share subscriptions. Note that a file share subscription is necessary when e-mail delivery
is not allowed.

 Figure 6-10. Encryption Keys

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

144

 Since this deployment is strictly for testing, we can leave this area alone .

 Scale-out Deployment
 Figure 6-12 shows that this area allows you to view information about a scale-out deployment. A scale-out
deployment is essentially a load-balancing model, which increases scalability in a server cluster. As more
users of the Reporting Services instance consume resources, the load can be shared to another server that
shares the same encrypted data as the original server. At this time, the scale-out deployment option is only
available in Enterprise edition for production instances.

 Figure 6-11. Subscription Settings

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

145

 Power BI Integration
 Figure 6-13 shows that this area allows you to set up integration with Power BI with a single click.
Unfortunately, Power BI is beyond the scope of this book, so leave these settings at their defaults.

 Figure 6-12. Scale-out Deployment

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

146

 First of all, how cool is it that Power BI can integrate right into Reporting Services—and with a single
click?

 Now, go back to the Web Portal URL page and click the hyperlink shown on the page. The location of
this hyperlink is shown in Figure 6-14 .

 Figure 6-13. Power BI Integration

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

147

 When you click the hyperlink, you should see what is shown in Figure 6-15 .

 Figure 6-14. Hyperlink location

CHAPTER 6 ■ CONFIGURING SQL SERVER REPORTING SERVICES

148

 If you see anything except this screen, then something went wrong with your installation or
configuration of SQL Server Reporting Services. Sometimes, depending on the operating system and the
browser settings that you currently have in place, you might get an error screen. In this instance, you may
need to run your browser instance as a local administrator (if you’re running on a local computer). It’s
doubtful that you need to uninstall everything, so that’s the good news. In the event of an error at this point,
it is recommended to take a look at the Reporting Services error log.

 Summary
 This is a good time to stop and take a breather for a second. We’ve actually done quite a bit in these past few
pages, so let’s recap.

• Verified that Reporting Services installed correctly

• Configured our new installation of Reporting Services

• Verified that the web portal is working as advertised

 Note that there is no content yet in the web portal. This is to be expected, as it is a brand-new
installation and we haven’t begun writing reports yet.

 In the next chapter, we install and configure Report Builder, which we use to create the reports that
consume the R data for use in our reports. Configure an account to be used by subscriptions to access file
shares. Use an account with as minimum permissions as possible and an account that is different from the
account used for the Reporting Services service account.

 Figure 6-15. Initial reports interface

149© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_7

CHAPTER 7

Report Builder Installation and
Data Preparation

Now that we have SQL Server Reporting Services installed, we need to figure out how to create and deliver
the reports requested by the customer in our software requirements document. Probably the best way
to create the reports is using Report Builder, a free download from Microsoft. The best way to deliver the
reports, obviously, is to use the built-in functionality from SQL Server Reporting Services, as previously
configured in Chapter 6.

Keep in mind that, if the customer only wanted flat-file reports (meaning just the data in CSV or XML
format, for example) we could do that with a simple export of the data from SQL Server without interaction
from SQL Server Reporting Services in the slightest. But the real point of this exercise is to show the power of
R when integrated with SQL Server; so, using Report Builder, we’re going to incorporate those charts that we
created in Chapter 5 into a slick-looking report. We can then deal with little things like formatting and such,
but the most important part is making sure that the report can be built first.

Download Report Builder
To start this chapter off, we need to download Report Builder. The link for this is at https://www.microsoft.
com/en-us/download/details.aspx?id=52674, but that could change. Google is your friend, remember.

 ■ Tip You can also download Report Builder from the SQL Server Reporting Services Web Portal that we saw
at the end of Chapter 6 by clicking the down arrow in the top-right corner.

Figure 7-1 shows the page where Report Builder can be downloaded. Note that this interface could
change in the future, but the Download button should stay clearly visible.

http://dx.doi.org/10.1007/978-1-4842-2298-0_6
http://dx.doi.org/10.1007/978-1-4842-2298-0_5
https://www.microsoft.com/en-us/download/details.aspx?id=52674
https://www.microsoft.com/en-us/download/details.aspx?id=52674
http://dx.doi.org/10.1007/978-1-4842-2298-0_6

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

150

Click the button to download. You should see what is shown in Figure 7-2.

Figure 7-1. Report Builder download screen

Figure 7-2. Download in progress

A file called ReportBuilder3.msi is being downloaded in the background. Once the download gets done,
you should be able to click it in the browser bar to begin the installation. If you don’t see the downloaded file
here, just go to your Downloads folder and sort by date. The file will show up there.

Figure 7-3 shows the first screen that is shown for the installation.

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

151

Obviously, we click Next to continue to the license terms shown in Figure 7-4.

Figure 7-3. Microsoft SQL Server 2016 Report Builder Installation

Figure 7-4. License Agreement

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

152

Click the I accept the terms in the license agreement radio button and then click Next.
Next, we get to choose our features. Figure 7-5 shows the default feature selection screen.

Figure 7-5. Feature Selection

We want to install everything for this, so pull down the menu on the disk in the white area. Choose
Entire feature will be installed on local hard drive to continue.

Figure 7-6 shows the correct selection for this.

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

153

This makes sure that we have absolutely everything possible for Report Builder. When you’re ready,
click Next to continue.

We are now presented with an interface that asks for the Default Target Server, as shown in Figure 7-7.

Figure 7-6. Correct selection

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

154

The value that needs to be entered into Default target server URL (optional) is the value from the Web
Service URL section of the Reporting Services Configuration Manager that we did in Chapter 6, which in
my case is http://bradlaptop/ReportServer_SQL2016RS, so enter your own specific URL in the box. You
should have something similar to what is shown in Figure 7-8.

Figure 7-7. Default Target Server

http://dx.doi.org/10.1007/978-1-4842-2298-0_6
http://bradlaptop/ReportServer_SQL2016RS

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

155

Click Next when you are ready to move on. You are then shown Figure 7-9, which says that we are ready
to install.

Figure 7-8. Default Target Server, updated

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

156

If you need to make any changes, click Back and take care of them; otherwise, click Install.
Report Builder is a fairly small installation, so it loads fairly quickly. Figure 7-10 shows the completed

installation screen, which you should see at this point.

Figure 7-9. Ready to Install

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

157

Click Finish and you’re done. Now that we’ve got Report Builder installed, click Report Builder in your
Start menu. You should initially see what is shown in Figure 7-11.

Figure 7-10. Completed installation

Figure 7-11. Report Builder splash screen

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

158

Eventually, the interface loads and we see that Report Builder is authenticating to the SQL2016RS
instance we specified earlier. This is shown in Figure 7-12.

Figure 7-12. Report Builder login interface

Figure 7-13. Report Server detail

It takes a minute to load because it has to authenticate to the Report Server specified during setup. Take
a quick look at the bottom-left corner of the initial login interface. I’ve shown this in Figure 7-13 zoomed in
so we can see it.

This quick reference section tells us right away which instance we are connected to. It gives us the
opportunity to disconnect from this instance and either reconnect this same instance or connect to another
SQL Server Reporting Services instance, if we like.

Setup New Database and Tables
So now that we are all set up and ready to go, let’s do a bit of refresher work.

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

159

Recall back in Chapter 5 that we created a couple of reports that were to be delivered to the customer.
These reports were based on the Weather_Sample.csv data. Later on, we will import this data into SQL
Server and then manipulate it. First, let’s take a cursory look at the data though.

Let’s set up some of the database infrastructure before we go any further. We need to set up a new
database and then create one table to act as the data source for the data.

In SSMS, right-click Databases and choose the New Database option. A screen appears, which allows
for the creation of a new database. The initial tab, shown in the left pane of the New Database screen shown
in Figure 7-14, is named General. Make the changes shown in this screen.

Figure 7-14. New Database creation

Click the OK button when you are finished. The new database named SQL2016RS is created.
Next, open a new Query window, change the active database to SQL2016RS, and then type the

following:

CREATE TABLE [dbo].[chartBinary] (
[uid] int identity(1,1) PRIMARY KEY,
[title] varchar(100) NULL,
[binData] varbinary(max) NULL
)

Press F5 to execute that code—and voilà! There’s our table. Figure 7-15 shows this table.

http://dx.doi.org/10.1007/978-1-4842-2298-0_5

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

160

Now we’ve got a table to store the binary data and a title for the chart. Next, we need to generate the
actual binary data. I realize that there are ways to pull this binary data directly into Reporting Services, but
I think that it is important to understand how the data works with the Report Server to take the generated
binary data and create a chart. You will certainly learn more about the chart creation process this way, as
opposed to learning the point-and-click method some may prefer.

Recall back in Chapter 5 how we were able to import the Weather_Sample.csv file into the interface and
then generate the charts. This is the code to do that:

Weather_Sample <- read.csv(file="C:/Users/Bradley Beard/AppData/Local/Temp/Weather_Sample.
csv.utf8", header=TRUE, row.names=NULL, encoding="UTF-8", sep=",", dec=".", quote="\"",
comment.char="")

Instead of pointing to the Temp directory, I am copying the Weather_Sample.csv file from the .zip file
that we downloaded earlier and put that right in the root of C, strictly to make it a shorter file location. This is
the updated code:

Weather_Sample <- read.csv(file="C:\\Weather_Sample.csv", header=TRUE, row.names=NULL,
encoding="UTF-8", sep=",", dec=".", quote="\"", comment.char="")

Note that I changed the single backslash to a double backslash in order to escape the \W command.
R throws an error when there is an escaped character, so ensure that you have converted any single
backslashes to double backslashes.

So, I assume that we will be able to pop that into the stored procedure and have that data available. Is
that a correct assumption? As it turns out... yes!

Consider the following code.

exec sp_execute_external_script
@language =N'R',
@script=N'Weather_Sample <- read.csv(file="C:\\Weather_Sample.csv",
header=TRUE, row.names=NULL, encoding="UTF-8", sep=",", dec=".", quote="\"", comment.
char="");
print(unique(Weather_Sample$AirportID));'

Figure 7-15. chartBinary table

http://dx.doi.org/10.1007/978-1-4842-2298-0_5

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

161

Breaking it apart, we can see that the @script attribute contains a declaration of Weather_Sample to be
the result of a read() operation of the CSV located at C:\Weather_Sample.csv, with the header information,
without row.names, encoded to UTF-8, comma separated, with decimal points if needed, with escaped
quotes and comments. We are then simply printing the unique values in the AirportID column of the
Weather_Sample dataset. Type that into SSMS. Figure 7-16 shows what happens once the code is executed.

Figure 7-16. Script execution

Those are the unique Airport IDs in the data. We can do this with any other column you would like as
well. How about AdjustedDay? Just change the last bit to AdjustedDay from AirportID. Your code should
look like the following.

exec sp_execute_external_script
@language =N'R',
@script=N'Weather_Sample <- read.csv(file="C:\\Weather_Sample.csv",
header=TRUE, row.names=NULL, encoding="UTF-8", sep=",", dec=".", quote="\"", comment.
char="");
print(unique(Weather_Sample$AdjustedDay));'

Run that in SSMS. You should see what’s shown in Figure 7-17.

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

162

So essentially, this shows us that we could use the existing data in CSV format as part of a local report.
Recall that I mentioned earlier that we are going to add this data to SQL Server; so let’s do that now.

Importing Weather Data
What we want to do is pretty simple: import the dataset so we can work with it. The trick this time is that we will
import it directly into SQL Server as a table named Weather_Sample. To do this, we need to expand SQL Server
Management Studio until you see the Tables menu in the SQL2016RS database, as shown in Figure 7-18.

Figure 7-17. AdjustedDay script

Figure 7-18. Tables location

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

163

Right-click SQL2016RS and choose Tasks ➤ Import Data. That opens up the SQL Server Import and
Export Wizard window. You are probably very familiar with this, if you regularly deal with manual data
manipulation. This is shown in Figure 7-19.

Figure 7-19. Import/Export Data initial screen

Click Next here. You see what is shown in Figure 7-20.

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

164

Pull down the Data Source menu at the top and choose Flat File Source. You are then shown
Figure 7-21, which shows the default values for this screen.

Figure 7-20. Choose a Data Source

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

165

Click the Browse... button and navigate to where you have saved the Weather_Sample.csv file. You
need to pull down the file type menu and change the selected option to search for .csv files in order to
find the file we are looking for. Once you find the Weather_Sample.csv file, click the Open button and the
interface populates with information from the selected file. My example is shown in Figure 7-22.

Figure 7-21. Default values for Flat File Source

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

166

Note that SQL Server automatically pulled in the values for those columns, so it knows what the data
types and formats are.

Notice that yellow warning on the bottom? Click the Columns tab in the upper left and then click the
General tab again. Figure 7-23 shows what happened when I did this.

Figure 7-22. Populated values

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

167

No big deal, doing this action just made that warning disappear because the columns were mapped
once the Columns section was selected. Everything else is the same, but I guess the interface needed to be
refreshed. At any rate, we are good to go with this screen, so click Next. Figure 7-24 shows what you will
see next.

Figure 7-23. The disappearing warning

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

168

This section allows you to choose a delimiter for the file, if needed. We don’t need one since the default
works just fine, so just click Next.

We now come to the screen where we can choose our destination file, shown in Figure 7-25.

Figure 7-24. Character delimiter section

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

169

We want to change the Destination to SQL Server Native Client 11.0 here. The reason for this is
because we aren’t connecting over the other destination types (.Net and OLE DB). This is the native client.
Make this change. You should see what is shown in Figure 7-26.

Figure 7-25. Destination location

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

170

We want to keep these default values, so click Next at this screen. You see the source and destination
information shown in Figure 7-27.

Figure 7-26. Updated Destination

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

171

This basically says that we take the data represented in the Source column on the left and put it into the
destination on the right.

The source points to the Weather_Sample.csv file we originally downloaded.
The destination points to our database named instance. A table is specified by [dbo].[Weather_Sample].
Click Next to see the Save and Run options shown in Figure 7-28.

Figure 7-27. Source and Destination information

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

172

When you see this, just click Finish. You’re then shown a screen that gives a quick recap of what we’re
going to do, as shown in Figure 7-29. Go ahead and click Finish here, too.

Figure 7-28. Save and Run

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

173

The installation runs for a few seconds, but eventually, you will see what is shown in Figure 7-30.

Figure 7-29. Complete the Wizard

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

174

Go ahead and click Close. We’ve now got that external data brought in to SQL Server as internal data.
Don’t worry, we’re not off track yet. We will generate that binary data very soon, but we have to take care of
the leg work first.

Recall that we were getting the Average Wind Speed by Airport ID earlier. In SQL, now that we have that
data in the database, the query looks like this:

SELECT AirportID, AVG(CONVERT(float, WindSpeed)) as WindSpeed
FROM [Weather_Sample]
GROUP BY AirportID
ORDER BY AirportID

Type that into a new query window and press F5 to execute the code. You should see what is shown in
Figure 7-31.

Figure 7-30. Import was successful

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

175

Excellent! This shows us that we have the data in the correct table and that we can query it normally.
That is going to be absolutely vital to generating the chart data shortly.

Generating the Binary Data
Next, we want to figure out the stored procedure syntax that we need to use to get the binary data of the chart
we need to produce. Borrowing heavily from the previous work we did with creating the charts earlier, we
can deduce that it is probably similar to the following.

EXEC sp_execute_external_script
@language = N'R',
@script = N'
library("ggplot2");
img <- inputDataSet;
image_file = tempfile();
png(filename = image_file, width=800, height=600);
print(ggplot(img, aes(x = AirportID, y = WindSpeed)) +
labs(x = "Airport ID", y = "Wind Speed") +
theme(axis.text.x = element_text(angle=90, hjust=1, vjust=0)) +
geom_point(stat = "identity") +
geom_smooth(method = "loess", aes(group = 1)) +

Figure 7-31. Query execution

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

176

geom_text(aes(label = AirportID), size = 3, vjust = 1.0) +
geom_text(aes(label = round(WindSpeed, digits = 2)), size = 3, vjust = 2.0));
dev.off();
OutputDataset <- data.frame(data=readBin(file(image_file,"rb"),what=raw(),n=1e6));',
@input_data_1 = N'SELECT AirportID, AVG(CONVERT(float, WindSpeed)) as WindSpeed FROM
[Weather_Sample] GROUP BY AirportID ORDER BY AirportID;',
@input_data_1_name = N'inputDataSet',
@output_data_1_name = N'OutputDataset'
WITH RESULT SETS ((plot varbinary(max)));

 ■ Note We are generating a PnG image here, not a JPG. this will be important to remember once we
dynamically generate these charts using Report Builder.

Entering this into a new query window and executing it gives me a binary data result. Figure 7-32 shows
what you should see in SSMS at this point.

Figure 7-32. Binary data

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

177

Recall that we created a table to store our charts in. We are now going to insert this binary data into the
table within the stored procedure by using the following code.

Now, we just need to rewrite the stored procedure to automatically insert the data. Any idea how to do
this? That’s right, we’re going to use INSERT INTO ... EXEC.

So how do we build the query? It’s actually very easy. I’m sure some of you already know how this is
done, but for those of us that don’t, it’s looks like this:

INSERT INTO chartBinary (binData)
EXEC sp_execute_external_script
@language = N'R',
@script = N'
library("ggplot2");
img <- inputDataSet;
image_file = tempfile();
png(filename = image_file, width=800, height=600);
print(ggplot(img, aes(x = AirportID, y = WindSpeed)) +
labs(x = "Airport ID", y = "Wind Speed") +
theme(axis.text.x = element_text(angle=90, hjust=1, vjust=0)) +
geom_point(stat = "identity") +
geom_smooth(method = "loess", aes(group = 1)) +
geom_text(aes(label = AirportID), size = 3, vjust = 1.0) +
geom_text(aes(label = round(WindSpeed, digits = 2)), size = 3, vjust = 2.0));
dev.off();
OutputDataset <- data.frame(data=readBin(file(image_file,"rb"),what=raw(),n=1e6));',
@input_data_1 = N'SELECT AirportID, AVG(CONVERT(float, WindSpeed)) as WindSpeed FROM
[Weather_Sample] GROUP BY AirportID ORDER BY AirportID;',
@input_data_1_name = N'inputDataSet',
@output_data_1_name = N'OutputDataset';

That updated our binData column, but left our title column without a value. Since this is the first
record in the table, the UID is set to 1; so make sure that your WHERE clause is set to specify that. To update the
title value for this chart, run this UPDATE query after you run that first query.

UPDATE chartBinary
SET title = 'Average Wind Speed by Airport ID'
WHERE uid = 1

That should do it. To verify, run the following query to view your data.

SELECT title, binData FROM [dbo].[chartBinary] ORDER BY uid

The results should be what you see in Figure 7-33.

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

178

Next, we need to build the query for the other report, but this is actually quite easy since we’ve already
done the hard work for it. The following code is what you need for this action.

INSERT INTO chartBinary (binData)
EXEC sp_execute_external_script
@language = N'R',
@script = N'
library("ggplot2");
img <- inputDataSet;
image_file = tempfile();
png(filename = image_file, width=800, height=600);
print(ggplot(img, aes(x = AirportID, y = Temperature)) +
labs(x = "Airport ID", y = "Temperature") +
theme(axis.text.x = element_text(angle=90, hjust=1, vjust=0)) +
geom_point(stat = "identity") +
geom_smooth(method = "loess", aes(group = 1)) +
geom_text(aes(label = AirportID), size = 3, vjust = 1.0) +
geom_text(aes(label = round(Temperature, digits = 2)), size = 3, vjust = 2.0));
dev.off();
OutputDataset <- data.frame(data=readBin(file(image_file,"rb"),what=raw(),n=1e6));',

Figure 7-33. Query results

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

179

@input_data_1 = N'SELECT AirportID, AVG(CONVERT(float, DryBulbFarenheit)) as Temperature
FROM [Weather_Sample] GROUP BY AirportID ORDER BY AirportID;',
@input_data_1_name = N'inputDataSet',
@output_data_1_name = N'OutputDataset';

And once again, to set the title column:

UPDATE chartBinary
SET title = 'Average Temperature by Airport ID'
WHERE uid = 2

Run those two code blocks, and then run the following query to check and make sure that everything
was inserted correctly.

SELECT title, binData FROM [dbo].[chartBinary] ORDER BY uid

At this point, you should see what is shown in Figure 7-34.

Figure 7-34. Query results

ChaPteR 7 ■ RePoRt BuiLdeR inStaLLation and data PRePaRation

180

There we go! Two results, just like we wanted. Now that this data is loaded into the table correctly, we
can start building our reports to be delivered to the customer. Don’t forget to verify our progress with what
we have in the software requirements document periodically.

Summary
Let’s review what we did in this chapter, because it was actually quite a lot.

•	 Downloaded and installed Report Builder

•	 Loaded our weather data into SQL Server

•	 Generated charts as binary based on this weather data

That doesn’t seem like a lot, but it is. Be sure that you have gone through this chapter very carefully,
because you aren’t going to get very far in the next chapter without that binary data.

Next, we tie this all together into the actual reports to be delivered to the customer. If you made it
through this chapter without a headache, you are probably doing it wrong. Seriously, there was an awful
lot of information to digest. I highly recommend going back and re-reading the steps that generated the
binary data in SQL Server. The individual attributes of the ggplot2 function, in particular, are actually really
fun to play around with. You can customize your charts just about any way you can dream of. There is even
information on the Internet about how to create your own R packages for private use or general distribution.

We’re almost done now! Keep going—we will get this wrapped up shortly. If you’ve made it this far, I
congratulate you and encourage you to go for just a bit longer. I promise that it will be worth it!

181© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_8

 CHAPTER 8

 Building Reports Using Report
Builder

 Up until now, we’ve dealt with an awful lot of information in this book. We’ve performed a new installation
of SQL Server R Services, installed R Tools for Visual Studio, configured Reporting Services, and installed
and configured Report Builder. We learned quite a bit about R and how it works and we generally got a lot of
experience with writing code in general. If you have gotten this far, nice work! This is really sort of advanced
stuff, since it’s basically brand-new functionality. It’s pretty safe to assume that R will continue to be offered
as part of SQL Server for future releases, so it’s best to go ahead and get acquainted with it now instead of
having to deal with the learning curve later.

 In this chapter, we create a report using the binary data we created in Chapter 7 . This binary data is
going to be converted into images dynamically. That sounds pretty complicated, but luckily, Report Builder
makes it actually pretty easy for us.

 Here’s what we’re doing in this chapter:

• Build the Average Wind Speed by Airport ID report.

• Build the Average Temperature by Airport ID report.

 We’re only going to do two things? That’s correct. This chapter is sort of quick compared to the other
chapters, which are a lot more in-depth. Consequently, this chapter is much shorter than the others, but
hopefully you can still find this information useful.

 Report 1: Average Wind Speed by Airport ID
 Recall that the software requirements document specifically called out two reports that the customer wanted
delivered. The first of these reports was the average wind speed by airport ID report. This particular report
is important to the customer, so we are going to put a little time into setting it up, and then use that same
format to create our second report. Keep in mind that, once the first report is written, it really is much faster
to create any subsequent reports because we already have a general idea of how it is done. All we really
need to do from that point is apply any specific formatting to the report, disregarding the image itself since
that is generated from the database using pre-compiled binary data.

 First of all, start up Report Builder and run it as Administrator. The initial interface is shown in
Figure 8-1 .

http://dx.doi.org/10.1007/978-1-4842-2298-0_7

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

182

 Recall that we have already stepped through the features of this interface, so let’s just get right into it.

 Setting up the Report Layout
 Click Blank Report at the bottom of the Getting Started screen. The layover window should disappear, so
that you are left with what is shown in Figure 8-2 .

 Figure 8-1. Report Builder initial interface

 Figure 8-2. Blank Report

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

183

 Click inside of the box labeled Click to add title and type Average Wind Speed by Airport ID . And then
stretch the box to the height and width of the text. After that, center the text using the controls at the top of
the screen. Figure 8-3 shows what your report should now look like.

 Figure 8-3. General formatting of Title

 Next, we want to just do some really basic formatting for the body, so right-click anywhere in the middle
part of the report and choose Body Properties . The location of this option is shown in Figure 8-4 .

 Figure 8-4. Option location

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

184

 Selecting that option opens another screen, shown in Figure 8-5 .

 Figure 8-5. Report Body Properties

 Now, we don’t want to have a fill color except for plain white, but if you want to get adventurous, go
right ahead. We also don’t want a background image, so leave that blank for now. Like I said, if you want to
change that, go right ahead. It’s your report!

 Click the Border option on the left; you should see what’s shown in Figure 8-6 .

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

185

 Just click the Outline option in the top-right corner and then click OK . That screen closes. You can’t
really see a border on the page, but it’s there. You will see it when you preview the report.

 Data Configuration
 Now we need to set up our data source and our dataset. Isn’t that sort of the same thing? In this context, a
data source (connection to the data in the database) feeds a dataset (a query to the data source), much like a
lot of other examples dealing with these concepts.

 You can’t have a dataset without a data source and a data source is useless without a dataset.

 First, we have to set up the data source. To do this, right-click the Data Sources option on the left of the
screen and select Add Data Source… . Figure 8-7 shows the location of this menu option.

 A screen appears , as shown in Figure 8-8 .

 Figure 8-6. Border properties

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

186

 Update that screen to what is shown in Figure 8-9 .

 Figure 8-8. Data Source Properties

 Figure 8-7. Menu option

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

187

 We need to configure that connection string, so click the Build… button; you should see what is shown

 Figure 8-9. Updated values

in Figure 8-10 .
 Update that screen to what is shown in Figure 8-11 .

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

188

 Obviously, you want to keep in mind that your settings are probably different than mine.

 Figure 8-10. Connection Properties

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

189

 Once you get here, you can click the Test Connection button to verify that you’re talking to the
database. Figure 8-12 shows the result of clicking this button.

 Figure 8-11. Updated values

 Figure 8-12. Test connection succeeded

 Click OK here and then click OK again to save the Connection information. Figure 8-13 shows what you
should see now.

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

190

 Figure 8-13. Updated values

 So there’s our connection string value all done. Again, you can click the Test Connection button here to
verify connectivity, but I think we’re pretty much good for this area. Click OK to close this window.

 Notice that Figure 8-14 shows that we now have a data source available.

 Figure 8-14. Data Source updated

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

191

 Next, we need to add our dataset. To do this, right-click the Datasets option on the left and select Add
Dataset… , as shown in Figure 8-15 .

 Figure 8-15. Add Dataset

 This opens the interface shown in Figure 8-16 .

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

192

 Update that interface to match what is shown in Figure 8-17 .

 Figure 8-16. Dataset Properties

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

193

 The query I wrote to get the data for this report is:

 SELECT title, binData
 FROM [dbo].[chartBinary]
 WHERE uid = 1

 Super simple, yet effective.
 The options on the left don’t really apply to this section, but you can play with those later. Click OK to

set up the dataset. You should be returned to the blank report screen shown in Figure 8-18 .

 Figure 8-17. Dataset Properties updated

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

194

 Notice that there are now entries under the Data Sources and Datasets folders, respectively.
 Let’s change that title text to the title we entered in our query. Go ahead and delete the title that you

entered earlier (Average Wind Speed by Airport ID). Just highlight the text and then press Delete . You should
see what is shown in Figure 8-19 .

 Figure 8-18. Main screen

 Figure 8-19. Deleted initial title value

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

195

 Next, click and drag the title value under the AvgWS_DS option on the left to inside the title box on the
main screen. Figure 8-20 shows what you should see now.

 Figure 8-20. Title addition

 That’s perfect! So now, when the report is run, the value of the title is displayed.

 Adding the Dynamic Image
 Next, we need to add our image. Right-click anywhere in the body and hover the Insert… selection until a
submenu appears. This submenu contains an Image option. Figure 8-21 shows the location of this menu
option.

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

196

 Consequently, you could also click the Insert menu option at the top of the window and then click the
 Image option. However is more comfortable for you is fine, since they both accomplish the same task.

 Once you have selected to put an image on the report, an interface appears, as shown in Figure 8-22 .

 Figure 8-21. Image option

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

197

 We need to update these values to match what is shown in Figure 8-23 . Notice that I only updated the
Name, ToolTip, and image source fields.

 Figure 8-22. Image Properties

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

198

 Pull down the Use this field menu option and select the value =First(Fields!binData.Value, "AvgWS_
DS") . It is easy to select the wrong value, so be sure you’re choosing the binData.value option.

 For MIME type, we want to choose image/png .
 The finished product is shown in Figure 8-24 .

 Figure 8-23. Updated Image Properties screen

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

199

 Next, click the Size option on the left. Figure 8-25 shows this interface.

 Figure 8-24. Updated values

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

200

 Choose the Fit to size option here. That keeps the image inside the printable area. Click OK . You should
see something very similar to what is shown in Figure 8-26 .

 Figure 8-25. Size options

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

201

 At this point, we only see the image placeholder, since the image is generated dynamically from the
database. Once the report is run, the image is shown, as you would expect.

 Before we move on, just grab the image on the screen and manually align it to the left of the screen
inside the white space. Figure 8-27 shows the result of this action.

 Figure 8-26. Main screen, updated

 Figure 8-27. Image left-aligned

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

202

 Report Body Properties
 Recall that the image we created was 800×600, so let’s update the style of the report. Right-click the gray area
and choose Report Properties… from the menu. Figure 8-28 shows this action.

 Figure 8-28. Report Properties location

 This opens up the interface shown in Figure 8-29 .

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

203

 All that we need to do is change the Orientation value to Landscape and then click OK . We need to
check the size of the page to adjust the image. A little experimenting shows that we want to be right around
9×5 for the stage dimensions (just click and drag them to that size) and the Figure 8-30 shows what this
should look like.

 Figure 8-29. Report Properties

 Figure 8-30. Stage resizing

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

204

 I colored my footer blue with white text, but you can do whatever you want as far as styling to make this
report your own.

 Running the Report
 Go ahead and click the Run button in the top-left corner. Get ready for a big surprise. Figure 8-31 shows
what you should see after this happens.

 Figure 8-31. Completed Report

 Not bad! Now click the Print Layout button in the menu bar. Figure 8-32 shows this result.

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

205

 There it is, nicely laid out for us on one page, with our rendering time displayed in the blue footer.
 Click the Design button in the top-left corner and then click Ctrl+S to save the report. The default

location and values are shown in Figure 8-33 .

 Figure 8-32. Print Layout view

 Figure 8-33. Default report location

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

206

 We can see that the default location is on our report server, so that’s perfect. Update the Name of the file
to AverageWSbyID.rdl , as shown in Figure 8-34 .

 Figure 8-34. Updated name information

 Press the Save button here to save the report.
 This report is now saved to the report server. We will view it right after we get the other report going.

 Report 2: Average Temperature by Airport ID
 Watch how easy it is to create the second report. I hope that you are starting to see the flexibility that this
technology gives you!

 Press Ctrl+N to open a new report (be sure to save the old one). You are immediately shown a blank
report, just like before. You can also go to the File menu and choose New… to choose a different type.

 We need to essentially follow the exact same instructions as before, except this time, when we create the
dataset, we need to change the WHERE clause to show where the UID is equal to 2 instead of 1. I am going to
leave making that change as an exercise for you to complete on your own. It’s a trivial change to make.

 When you are done setting it up, your screen should look similar to Figure 8-35 .

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

207

 And your report should be very similar to what is shown in Figure 8-36 .

 Figure 8-35. Average Temp report layout

 Figure 8-36. Second report

 Excellent work! Be sure to save that report as AvgTempByID.rdl .

CHAPTER 8 ■ BUILDING REPORTS USING REPORT BUILDER

208

 Summary
 I hope you learned a lot in this chapter. I encourage you to continue your journey as data scientists by
learning as much as you possibly can about R and business intelligence as you can. This is guaranteed to be
a very lucrative career field in the future and I am very excited to be a part of it.

 If any part of this chapter didn’t make sense, as I have said in previous chapters, please be sure to go
back and redo the examples.

 Chapter 9 shows you how to access these reports from the Report Server. It is going to be a fun chapter,
not only because it’s the last chapter, but because it’s the culmination of our work in this book.

http://dx.doi.org/10.1007/978-1-4842-2298-0_9

209© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_9

 CHAPTER 9

 Viewing the Reports in Report
Server

 Now that we have built the required reports in Report Builder, we can view them through the report server
web portal. Later in this chapter, we get into other aspects of Report Server, but for now, let’s take a look at
our reports.

 Viewing Reports
 Recall back in Chapter 6 when we set up the report server, we specified the URL as http://bradlaptop:80/
Reports_SQL2016RS . Type your web portal address into your browser and click Enter . You should see
something similar to what is shown in Figure 9-1 .

 Figure 9-1. Web portal

 Clicking the AverageWSbyID report on the left shows what you see in Figure 9-2 .

http://dx.doi.org/10.1007/978-1-4842-2298-0_6
http://bradlaptop/Reports_SQL2016RS
http://bradlaptop/Reports_SQL2016RS

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

210

 The same happens when you click the AvgTempByID link on the home page. Figure 9-3 shows this.

 Figure 9-2. Generated report

 Figure 9-3. Generated report

 So there you have it… a complete report using binary data to create images from original R code.

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

211

 Managing Reports
 With this release of Report Server, as with previous versions, there is the capability to manage the
reports from the Report Server interface. Managing reports in Report Server requires that the user is an
administrator (which we are, or should be) and belongs to the Content Manager group. The following
security roles are available in Report Server:

• Browser : This role can view folders and reports in specified folders, and it can
subscribe to reports. This role cannot create reports, though. This would be a regular
read-only user role.

• Content Manager : This role manages the content in Report Server. This is the
administrator account for Report Server and can do anything within the confines of
Report Server.

• My Reports : This role can publish reports and manage user folders they are
specifically designated to access. This would be a regular read/write “power user”
account type.

• Publisher : This role can only publish reports and linked reports to Report Server.
 This would be a write-only user role.

• Report Builder : This role can manage and view the report definitions and attributes.
 This would be a role reserved for specific users that need to configure the reports, but
don’t need to be full administrators (in the Content Manager role).

 Keep in mind that the Content Manager role can do anything we need in this instance, so the principal
of least privilege is really overlooked here.

 Click the ellipse, as shown in Figure 9-4 . Select the Manage option from the pop-up menu.

 Figure 9-4. Manage menu

 A page appears, as shown in Figure 9-5 , which allows you to edit some of the properties of the report.

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

212

 Properties
 Notice that we are in the Properties section on the left-hand side. Across the top, there are the following
options: Edit in Report Builder , Download , Replace , Move , Delete , and Create linked report . Most of
these are self-explanatory, except for Create linked report . The Create linked report option allows you to
create a report that retains the layout and data source information of an existing report, but still allow for
the editing of the other parameters of the report, such as subscriptions and report parameters. Think of this
sort of like a template creator. You essentially create a template of one report and have an entirely new report
created from the basic skeleton of that report (data source and report layout), but then you can populate the
body of the skeleton with entirely different report information.

 On this page, we can add a description to the report in the Description box shown in Figure 9-5 . If you
were to scroll down, you would see there is another area titled Advanced . This area allows you to change the
report timeout period, but since this is a dynamically generated report, I am going to leave this alone. There
could be an instance where network traffic is keeping my report from being generated quickly. I don’t want
to cause the report to fail just because of that.

 Data Sources
 The next section, shown on the menu on the left, is Data Sources. This section allows us to update or change
our existing data sources. The keyword here is existing . We cannot create new data sources from Report
Server; they must be created in Report Builder first.

 Figure 9-6 shows the top part of this screen, which has the data source information we specified back in Report
Builder. Notice that we have the option here to change anything , because we are in the Content Manager role.

 Figure 9-5. Properties

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

213

 Figure 9-6. Data source information

 Figure 9-7. Credentials information

 The lower part of this screen is shown in Figure 9-7 . This section allows us to define or edit the
credentials necessary to connect to the data source. Clearly, this Credentials section already works as we
have it set up, or we wouldn’t have been able to see the reports we created in this Report Server interface.
Figure 9-7 shows our options here.

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

214

 Notice that we can choose from four different login types.

 ■ Note This option may change for your particular installation, depending on your individual requirements.

 On the Credentials screen, we want to scroll to the bottom and click the Test Connection button.
Figure 9-8 shows what you should see at this point.

 Figure 9-8. Test Connection unsuccessful

 Figure 9-9. Error message

 Figure 9-10. Credentials information, updated

 Additionally, an error message appears next to the Test Connection button, shown in Figure 9-9 .

 Next, we want to click the Using the following Credentials radio button and update the interface to what
is shown in Figure 9-10 . Your information is more than likely different than the information shown in the figure.

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

215

 Notice that the check box shown on the screen is not checked; this is essential to creating subscriptions
in the next section. Once you have the information updated, click the Test Connection button at the bottom
of the screen. Figure 9-11 shows the result of this operation.

 Figure 9-11. Connection successful

 The last thing we need to do is click the Save button, which updates the report.

 ■ Note At this point, you may want to run the report again and make sure that it still renders correctly.

 Once the connection information is saved, it becomes immediately available to the users that have
subscribed to the report.

 Subscriptions
 Click the Subscriptions link in the left menu. An interface opens, as shown in Figure 9-12 ; it can be used to
create subscriptions to reports.

 Figure 9-12. Subscriptions

 Notice that there is a button labeled New subscription with a plus sign to the left of the text. Go ahead
and click the New subscription button. You should see what is shown in Figure 9-13 .

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

216

 First, we want to update the Description field to say Wind Speed Report . Next, we are going to edit the
schedule, but leave the subscription type alone. Clicking the blue Edit schedule link allows you to change
the current schedule. Figure 9-14 shows the initial interface when clicking the Edit schedule option.

 Figure 9-13. New subscription

 Figure 9-14. Edit schedule (top)

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

217

 Notice that this is the top part of the Edit Schedule interface. Click the Once radio button and then
enter a time that is just a few minutes away from your current time.

 The bottom part of this interface is shown in Figure 9-15 . In this area, we need to just click the Apply button.

 Figure 9-15. Edit schedule (bottom)

 At this point, the subscription interface updates to show the new schedule information. Figure 9-16
shows this updated schedule information, as well as the next part that we need to update.

 Figure 9-16. Destination and E-mail options

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

218

 We want to leave the destination set to E-mail and to update the rest of the information, as shown in
Figure 9-17 .

 Figure 9-17. Destination and E-mail options, updated

 Notice that I entered my actual e-mail address into the To: field, as well as changed the Render Format
to PDF .

 ■ Note Available render formats (currently) are Word, Excel, PowerPoint, PDF, TIFF, MHTML, CSV, XML, and
Data Feed.

 Next, just add some text in the Comment field, as shown in Figure 9-18 .

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

219

 Click the Create Subscription button and we are done with this area. Wait a few minutes. You should
see an e-mail appear in your inbox. Opening it displays something similar to what is shown in Figure 9-19 .

 Figure 9-18. Added comment information

 Figure 9-19. E-mail received

 You have now successfully created an e-mail subscription for this report.

 Dependent Items
 The Dependent Items section has no configurable areas, so we’ll just leave this area alone.

 Caching
 The Caching section allows you to choose whether or not you want your reports cached or not. Figure 9-20
shows the initial interface for the Caching section.

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

220

 Personally, I would choose the Always run this report with the most recent data option, just in case
the report is run out of sequence or outside of the normal scheduled run (in the case of a subscription).
There are instances where the Cache copies of this report and use them when available option would be a
better option; for instance, if this were strictly a subscription-based server and there were no contingencies
for users to run reports at their leisure, then it would make sense to generate the report once and then server
can serve the cached copy of the report when requested. The last option, Always run this report against
pregenerated snapshots , means that the report is generated from a specific point in time, referred to as a
snapshot, which is discussed in the next section.

 History Snapshots
 This section allows you to generate snapshots of the report. This enables the option discussed earlier to
become in this context. Clicking the New history snapshot button shown in Figure 9-21 creates a snapshot
of the report based on data from the current date and time.

 Figure 9-20. Caching interface

 Figure 9-21. History snapshots

 Referring back to the Caching section, if you were then to select the Always run this report against
pregenerated snapshots option after generating a snapshot, then any subsequent reports generated would
be run against this snapshot.

 ■ Note If you created a snapshot at this point, go ahead and delete it unless you are planning on using it in
the future.

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

221

 Security
 The Security section allows you to customize your users and roles. The Group or user information comes
from the Windows subsystem. The Roles are based in SQL Server Reporting Services.

 Figure 9-23. Home screen

 Figure 9-22. Security options

 Note that we don’t need to change anything here either.

 Saving Reports
 Apart from subscriptions, there is still a way to save a generated report in Reporting Services. To do this, just
run the report by clicking the name of the report on the Home screen, as shown in Figure 9-23 .

 This opens the report that we have seen before. Figure 9-24 shows the Save dialog, which is shown by
clicking the disk icon in the report toolbar.

CHAPTER 9 ■ VIEWING THE REPORTS IN REPORT SERVER

222

 So again, we have the same render options as we did when we configured the E-mail settings earlier.
You can save the report in any format you wish, at this point.

 And with that, we are done.

 Summary
 Congratulations! We have reached the end of this journey into the beginnings of data science. Understand
that this is just the very tip of the iceberg as far as what R can do. In no way is this book everything that you
ever need to know about the language in order to function in an R environment. Quite the opposite, in fact;
the purpose of this book is to introduce you into the now-blended world of R and SQL Server, in hopes that
you continue your journey of discovery, if you haven’t already. I encourage you to press onward and make
future versions of SQL Server R Services even better through greater community involvement.

 Until the next time, thank you so much for taking the time to read this book. I hope you enjoyed reading
this book as much as I enjoyed writing it!

 Figure 9-24. Save options

 PART IV

 Appendices

225© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_10

 APPENDIX A

 Installing a SQL Server 2016
Instance in a SQL Server 2014
Installation

 These instructions closely follow the instructions in Chapter 1 , but instead of installing an instance of SQL
Server 2016 on a server by itself, we install an instance of SQL Server 2016 on an existing SQL Server 2014
installation.

 We are also not going to install absolutely everything like we did in Chapter 1 either. Instead, we are
only installing R Services, the SQL Server 2016 database engine, and SQL Server 2016 Reporting Services. We
need Reporting Services to provide us with the R content later on.

 If you choose to install SQL Server 2016 on top of SQL Server 2014, understand that there are
implications to this, such as relying on older versions of Analysis Services or Integration Services. If you are
okay with this, then that is why this Appendix was created.

 Getting Started
 Let’s begin the install. Double-click the setup.exe file in the download folder. You should see Figure A-1 .

http://dx.doi.org/10.1007/978-1-4842-2298-0_1
http://dx.doi.org/10.1007/978-1-4842-2298-0_1

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

226

 If you see the screen asking to make changes to your system, go ahead and click Yes .
 Figure A-1 shows the first screen that you should see when you start installation.
 This screen should look pretty familiar to you. Click the Installation link on the left to see what is shown

in Figure A-2 .

 Figure A-1. Initial SQL Server 2016 installation screen

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

227

 Once here, click the New SQL Server stand-alone installation or add features to an existing
installation link at the top.

 Note that the very bottom option is something new. It says New R Server (Standalone) installation .
You would select this option if you only wanted to install R Server as either a server (standalone, self-
contained data analysis server, in other words) or a client (manipulating data from a remote SQL Server R
Services installation). Note that you need the SQL Server 2016 services running as well, so this would be to
add R services to an existing SQL Server 2016 installation. It cannot be added to previous versions of SQL
Server, in other words.

 Product Key
 Now it’s time to enter a product key , or to choose to install the free edition of the product. In other words,
if you happen to have a licensed copy of SQL Server, you would have gotten a 25-character license key, so
you can enter that here. Otherwise, you can always select a free edition. The purpose of this book is for
evaluation purposes, so go ahead and pick Evaluation from the drop-down menu. Figure A-3 shows the
screen you see after continuing from Figure A-2 in a stand-alone install process.

 Figure A-2. SQL Server 2016 Installation options

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

228

 SQL Server 2016 can be installed in one of three free editions:

• Evaluation : A full set of features, basically the Enterprise version of SQL Server 2016,
but only good for 180-day spans.

• Developer : A full set of features, but cannot be used for production database work.

• Express : The smallest, bare-bones installation of SQL Server 2016 that does not
expire and can be used for production use.

 If you would like to choose an option other than Evaluation, go right ahead. Just understand the
implications of choosing that option. For what we need, the Evaluation version is perfect because we will
decide certainly within 180 days if this new functionality is something we want to permanently include in
our SQL Server installation.

 When you have chosen the version you are most comfortable with, click Next to continue.

 License Terms
 The next screen, shown in Figure A-4 , simply asks you to accept the license terms.

 Figure A-3. Product Key screen

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

229

 I honestly have never read this license all the way through and I can’t say that I know anyone who has.
Obviously, just click the I accept the license terms check box and then Next to move on.

 Install Rules
 My screen flashed a few times and eventually ended up at the screen shown in Figure A-5 .

 Figure A-4. License terms

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

230

 It’s worth noting that there could be an update to SQL Server 2016 that gets downloaded and installed
during this step; so if a message comes up with that information, go ahead and install it.

 So everything looks good except for my .NET application security and firewall rule. This should be fine,
so I’m going to click Next to continue.

 Feature Selection
 Now we get to it. Figure A-6 shows the screen we have been waiting for.

 Figure A-5. Install Rules

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

231

 At this point, we could just press Select All and that would be it. If you take a look at the options though,
you see what they actually mean. We definitely want to choose R Services (In-Database) ; otherwise, you
can stop reading here. Once we choose that, we see that Database Engine Services also gets selected.
We also want to select Reporting Services – Native , which we’ll use in Chapter 7 . We don’t want to select
anything except these three options, though. Figure A-7 shows what you should see selected at this point.

 Figure A-6. Feature Selection

http://dx.doi.org/10.1007/978-1-4842-2298-0_7

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

232

 Notice how the bottom shows the default instance root directory and my shared feature directories are
pointing to my E drive. That’s where I keep my SQL Server stuff for easy retrieval .

 Click Next here to move on.

 Instance Configuration
 It takes a second to think about what it wants to do, but eventually, you see the Instance Configuration
screen shown in Figure A-8 .

 Figure A-7. Feature Selection with options

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

233

 At this point, we need to define our new instance. If you look on the Installed Instances section, you
see that there is already an installed version of SQL Server 2014. We don’t want to wipe that out by installing
on top of it, so we choose the Named Instance option and call it SQL2016RSVCS for SQL Server 2016 R
Services.

 Note that this value is different from the instance name given in Chapter 1 . This is to differentiate
between the two instances.

 Enter that value for the Named Instance field. You see what is shown in Figure A-9 .

 Figure A-8. Instance Configuration

http://dx.doi.org/10.1007/978-1-4842-2298-0_1

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

234

 Pay attention to the Named Instance field, the Instance ID field, the SQL Server directory location,
and the Reporting Services directory location listed on this screen. Those need to all have SQL2016RSVCS
referenced in them. Once you are satisfied that everything is as it should be, click Next to continue.

 Server Configuration
 The next screen is where we define the service accounts and startup types for the services. That screen is
shown in Figure A-10 .

 Figure A-9. Updated Instance Configuration screen

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

235

 The following are the service accounts created by SQL Server 2016:

• NT Service\SQLAgent$SQL2016RSVCS : Starts and manages the SQL Server Agent
service.

• NT Service\MSSQL$SQL2016RSVCS : Starts and manages the SQL Server service.

• NT Service\ReportServer$SQL2016RSVCS : Starts and manages the Reporting
Services service.

• NT Service\MSSQLLaunchpad$SQL2016RSVCS : Starts and manages the R Services
service.

 The SQL Browser service is running under the context of the Local Service, so that isn’t a new service
account being created. We won’t worry about that one, in other words.

 These services are the default, but can always be changed to your own service accounts, if you have
them. If you don’t have your own service accounts, you can keep these suggested service accounts. I know
many server administrators that insist on employing the principal of least privilege for services, so if that
is the case for your particular environment, then you need to get the service name and login information
from the server administrator in order to proceed. Another way you can go about this is to copy these
service names and include them in a summary to your system administrator regarding the accounts that
were created during installation, so that the system administrator can audit the permissions for this user
as needed. It is important to note here that I am referring to a separate individual or entity for “system
administrator” that is not a database administrator, but rather the Windows-level administrator. The person
in charge of the Operating System level, one step up from the Application layer, in other words.

 We only want to change a little bit here; specifically, set the SQL Server Agent service Startup Type to
 Automatic . That is the only change we need to make. Figure A-11 shows what you should see at this point .

 Figure A-10. Server Configuration

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

236

 Notice that we cannot set the password for any of these accounts. This is the same as it has been for
every installation of SQL Server that I have ever seen. If you were to change the Account Name box from the
default to a custom service account name, then the Password box would become active and accept input;
otherwise, the password is controlled by SQL Server.

 Notice also that there is a new Grant Perform Volume Maintenance Task privilege to SQL Server
Database Engine Service check box underneath the default services listed. For what we’re doing in this
book, it’s not necessary to check this box. In future installations or for production environments, it would
probably be a good idea to enable this.

 At this point, all of our services are set to Automatic. Notice that we aren’t going to bother with the
Collation tab. This should have SQL_Latin1_General_CP1_CI_AS specified in the tab by default. That’s it. Go
ahead and click Next to move on.

 Figure A-11. Server Configuration updated

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

237

 Database Engine Configuration
 The next screen is the Database Engine Configuration screen shown in Figure A-12 . It lets you set options for
the engine in four different tabs.

 Figure A-12. Initial Database Engine Configuration screen

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

238

 Server Configuration
 This tab lets you specify the authentication mode and the administrators for this instance of the database
engine. Because this is just for testing and evaluation, I am going to add myself in Windows Authentication
Mode as the administrator by clicking the Add Current User button at the bottom of the screen with
 Windows Authentication Mode selected. Figure A-13 shows these options selected.

 Figure A-13. Server Configuration tab with options

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

239

 Figure A-14. Initial Data Directories tab

 Data Directories
 Recall the way that I had my file system set up. This is where that comes into play. Figure A-14 shows what
this screen looks like initially and Figure A-15 shows what my selected options are. You can leave these
however you like, but my personal preference is to not put the files I want in the labyrinth of folders that are
the default.

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

240

 TempDB
 Usually, I leave this option alone. However, in this case, I set the options to mirror the file system that I have
enabled. Figure A-16 shows the default settings and Figure A-17 shows the updated settings.

 Figure A-15. Updated Data Directories tab

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

241

 Figure A-16. TempDB default settings

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

242

 The changes I made were slight. I first highlighted the existing option in the Data directories field and
then clicked the Remove button. Then I clicked the Add button and added E:\SQL Server\Data instead. This
location was mirrored in the Log directory field, so I changed that to E:\SQL Server\Logs instead. That’s it
for this tab.

 FILESTREAM
 Just leave the FILESTREAM tab alone. We won’t be using FILESTREAM in this book.

 Reporting Services Configuration
 Once you’ve got those tabs all filled in, click Next . Figure A-18 shows you what you should see now.

 Figure A-17. TempDB updated settings

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

243

 This is where we get to configure Reporting Services. We configure this further in Chapter 7 and onward,
so we installed it now, using the Install and configure option that is selected by default.

 One quick thing while we’re talking about this; if you go in later and want to Reporting Services because
you didn’t install it with the database engine, you only have the Install only option available to you. The
reason for this is because the Reporting Services Configuration Manager must be used to add Reporting
Services to an existing database engine instance. Ideally, you should use the principal of least installation
here, which is a concept that states that, when installing new software, you should only install what is
needed and disregard what is not. In this case particularly, that makes perfect sense and is exactly what we
are doing my not installing all of SQL Server 2016 right now. In certain other cases, it makes perfect to install
the deluxe bells and whistles version of the software, but just keep in mind that this isn’t always the case.

 Ensure that the Install and configure option is selected and click Next at the Reporting Services
Configuration screen to move on.

 Consent to Install Microsoft R Open
 You should now see what is shown in Figure A-19 .

 Figure A-18. Reporting Services Configuration

http://dx.doi.org/10.1007/978-1-4842-2298-0_7

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

244

 This is pretty cool. Before the full version of SQL Server 2016, you had to download the separate
components for R and then install them individually. In this release, you just authorize the download here
instead. Click the Accept button. The Next button becomes enabled. Go ahead and click Next to move on.

 Ready to Install
 Figure A-20 shows the Ready to install screen that you should now see. Read it over and ensure that you
match these settings before moving on, if you’re going to do the exercises in this book.

 Figure A-19. Consent to Install Microsoft R Open

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

245

 Once you are ready, cross your fingers and click Install . Your screen flashes a few times while it is
loading and installing what it needs. Figure A-21 shows what you should see when it starts running.

 Figure A-20. Ready to install

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

246

 At this point, it is installing normally. It takes a little while, but eventually finishes with the screen shown
in Figure A-22 .

 Figure A-21. Installation Progress

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

247

 Complete
 This is the screen you really want to see at this point. If you don’t see this screen and instead you see an error,
then something bad happened. If you followed the directions in this Appendix, then there was probably a
conflict with the existing SQL Server 2014 installation.

 My installation took about 10 minutes to complete. Scroll down in there to see if everything installed
correctly, and then click Close .

 Congratulations! You have installed SQL Server 2016 R Services. According to Microsoft, we still have a
little work to do though.

 Open SQL Server Management Studio (yes, the 2014 one) and connect to your newly installed instance.
Figure A-23 shows how to connect to the instance.

 Figure A-22. Complete

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

248

 Recall that I named the new SQL Server 2016 instance SQL2016RSVCS, so that’s the instance I am going
to connect with. The format for the Server name field is SERVER\INSTANCE, so that’s how I have formatted
my connection. You can also pull down the menu and navigate to an instance from there. However you are
more comfortable is fine, as long as you get there. Click Connect to log in to your instance.

 The initial screen resembles Figure A-24 .

 Figure A-24. SQL Server Management Studio connected to SQL Server 2016 instance

 Figure A-23. Connecting to the new instance

 Pay attention to the named instance and the SQL Server version shown. This means that we have
successfully connected to our new instance and we are ready to get going.

 Microsoft has put out a post-configuration procedure that we are going to run first. I fully expect for this
to be removed and added to the installation in the future, but for now, follow along to complete installation.

 Open a New Query window in SQL Server Management Studio and type the following command:

 Exec sp_configure 'external scripts enabled', 1
 Reconfigure with override

 Figure A-25 shows this action.

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

249

 Notice that we are executing against the master database.
 Run that. You should see Figure A-26 , which tells us that the execution was successful.

 Figure A-25. Command ready for execution

 Figure A-26. Success

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

250

 Next, we need to verify that R is indeed running. To do this, Microsoft says to restart the SQL Server
instance and run the following script. Restart the instance first. Then open a New Query window and type
the following:

 exec sp_execute_external_script
 @language =N'R',
 @script=N'OutputDataSet<-InputDataSet',
 @input_data_1 =N'select 1 as hello'
 with result sets (([hello] int not null));
 go

 For those that haven’t yet memorized every single system stored procedure, you won’t recognize that
 sp_execute_external_script is a brand-new stored procedure introduced to execute external scripts. This
stored procedure can be invoked with the following:

• @language : The name of the supported language.

• @script : The script executed (you can either type it all in to the stored procedure or
reference it as a variable).

• @input_data_1 : The SQL query you’re using to gather data from the database goes
here.

• @input_data_1_name : The data frame that acts as the result set of the @input_data_1
query. This attribute is optional.

• @output _data_1_name : The data frame variable in @script that holds the output
data. This attribute is optional.

 Press F5 to execute the script. The anticipated results are shown in Figure A-27 .

 Figure A-27. R is alive!

APPENDIX A ■ INSTALLING A SQL SERVER 2016 INSTANCE IN A SQL SERVER 2014 INSTALLATION

251

 Excellent! R is alive and well, and communicating normally with the SQL Server instance.

 Summary
 Let’s briefly review what we have covered in this Appendix.

 1. Installed a SQL Server 2016 named instance on top of an existing SQL Server
2014 default instance.

 2. Configured R after installation.

 3. Verified that R is installed correctly by running the script specified earlier.

 So, essentially, that is how you install SQL Server 2016 on top of SQL Server 2014.
 Keep in mind that, as I mentioned earlier, there could still be some conflicts with how the instances

are configured. It may be better to just upgrade your instance to 2016, but you should never, ever upgrade
a mission critical server just because the latest and greatest version of some application was released. You
always want to check and do your homework to make sure that the OS is supported, and that there isn’t a
huge difference between the versions that you are upgrading. This is the main reason why the primary focus
of this book is about installing on a new server, and not one with an existing SQL Server installation.

 If you are comfortable with this installation and you are ready to move on, go ahead and start at Chapter 2
now. You should still be able to complete the exercises and examples in this book, but you need to follow those
directions to get R Tools for Visual Studio and Reporting Services installed and configured correctly.

http://dx.doi.org/10.1007/978-1-4842-2298-0_2

253© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_11

 APPENDIX B

 Software Requirements Document

 Project
 Beginning SQL Server R Services

 Author
 Bradley Beard, Lead Developer, We R Pros, LLC

 Prepared for
 R. Customer, Chief Information Officer, PleaseGiveUs-R-AnalysisData.com

 Problem
 PleaseGiveUs-R-AnalysisData.com (“Customer”) has approached We R Pros, LLC (“Vendor”) with a unique
request.

 Customer has a finite amount of data related to the weather, but Customer does not have the means to
analyze this data. Customer would like Vendor to suggest products and services that could be gleaned from
the analysis of the data sets.

 In essence, Customer does not exactly know what it wants, but knows that it wants something and
is relying on the expertise and experience that Vendor has to provide a solution or set of solutions for
Customer. The data is quite valuable and is surely hiding quite a few “diamonds in the rough.”

 Solution
 Upon initial inspection of Customer’s data, the following information was gathered:

• The data file is 1 Microsoft Excel file.

• The file is approximately 5.5MB.

• The file is exactly 113,333 rows long, minus one header column.

APPENDIX B ■ SOFTWARE REQUIREMENTS DOCUMENT

254

• The file consists of the following headers:

• Year

• AdjustedMonth

• AdjustedDay

• AirportID

• AdjustedHour

• Timezone

• Visibility

• DryBulbFarenheit

• DryBulbCelsius

• DewPointFarenheit

• DewPointCelsius

• RelativeHumidity

• WindSpeed

• Altimeter

 Based on these columns, it was determined that the following reports shall be created:

• Average Wind Speed per AirportID

• Average Temperature per AirportID (°F)

 It is noted that many more reports could be gathered, but the customer specifically requested that these
reports be created.

 Language/ Platform
 This solution will use SQL Server 2016 to collect and store the data, R to analyze the data, and SQL Server
Reporting Services to provide reports based on the data.

 Medium
 The medium of delivery for reports shall be as requested by the Customer; reports can be delivered in image
format, Excel format, or PDF format. The specificity of the format can be determined at a later date, since the
delivery method via SQL Server Reporting Services allows for exporting of the reports in a variety of formats.

255© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0_12

 APPENDIX C

 R Plot and Tabular Code for R
Tools for Visual Studio

 First, a couple of notes about this appendix:

• The full code for the samples in Chapter 5 are here, but you still need to import the
data into RTVS from the Weather_Sample.csv file in order to actually do anything.

• You may not need to run the install.packages() references, but they are there just
in case. If you have already installed them, then it won’t be necessary to install the
packages again.

 Average Temperature by Airport ID (Plot)
 This code gives the average temperature by airport ID in graphical format. Notice that the mean() function
contains the DryBulbFarenheit attribute, which indicates that this is keying on the temperature field, and
not the wind speed field. Also, the presence of the ggplot2 reference indicates that this is the plot code, and
not the tabular code.

 install.packages("data.table")

 library(data.table)

 Weather_Sample <- data.table(Weather_Sample)

 chart_by_ID <- as.data.frame(Weather_Sample[, mean(DryBulbFarenheit, na.rm = TRUE),
by = AirportID])

 install.packages("ggplot2")

 library(ggplot2)

 ggplot(chart_by_ID, aes(x = AirportID, y = V1)) + geom_point(stat = "identity") + geom_
smooth(method = "lm", formula = y ~ splines::bs(x, 3)) + scale_x_continuous(name = "Airport
ID") + scale_y_continuous(name = "Average Temperature") +
 geom_text(aes(label = AirportID), size = 3, vjust = 1.0) +
 geom_text(aes(label = round(V1, digits = 2)), size = 3, vjust = 2.0)

http://dx.doi.org/10.1007/978-1-4842-2298-0_5

APPENDIX C ■ R PLOT AND TABULAR CODE FOR R TOOLS FOR VISUAL STUDIO

256

 Average Temperature by Airport ID (Tabular)
 This code gives the average temperature by airport ID in tabular format. Notice that the mean() function
contains the DryBulbFarenheit attribute, which indicates that this is keying on the temperature field, and
not the wind speed field. Also, the absence of the ggplot2 reference indicates that this is the tabular code,
and not the plot code.

 install.packages("data.table")

 library(data.table)

 Weather_Sample <- data.table(Weather_Sample)

 setkey(Weather_Sample, AirportID)

 avg_temperature_by_ID <- as.data.frame(Weather_Sample[, mean(DryBulbFarenheit,
na.rm = TRUE), by = AirportID])

 avg_temperature_by_ID

 Average Wind Speed by Airport ID (Plot)
 This code gives the average wind speed by airport ID in graphical format. Notice that the mean() function
contains the WindSpeed attribute, which indicates that this is keying on the wind speed field, and not the
temperature field. Also, the presence of the ggplot2 reference indicates that this is the plot code, and not the
tabular code.

 install.packages("data.table")

 library(data.table)

 Weather_Sample <- data.table(Weather_Sample)

 chart_by_ID <- as.data.frame(Weather_Sample[, mean(WindSpeed, na.rm = TRUE), by =
AirportID])

 install.packages("ggplot2")

 library(ggplot2)

 ggplot(chart_by_ID, aes(x = AirportID, y = V1)) + geom_point(stat = "identity") + geom_
smooth(method = "lm", formula = y ~ splines::bs(x, 3)) + scale_x_continuous(name = "Airport
ID") + scale_y_continuous(name = "Average Wind Speed") +
 geom_text(aes(label = AirportID), size = 3, vjust = 1.0) +
 geom_text(aes(label = round(V1, digits = 2)), size = 3, vjust = 2.0)

APPENDIX C ■ R PLOT AND TABULAR CODE FOR R TOOLS FOR VISUAL STUDIO

257

 Average Wind Speed by Airport ID (Tabular)
 This code gives the average wind speed by airport ID in tabular format. Notice that the mean() function
contains the WindSpeed attribute, which indicates that this is keying on the wind speed field, and not the
temperature field. Also, the absence of the ggplot2 reference indicates that this is the tabular code, and not
the plot code.

 install.packages("data.table")

 library(data.table)

 Weather_Sample <- data.table(Weather_Sample)

 setkey(Weather_Sample, AirportID)

 # OBJECT NAME DATA FRAME DATASET NAME DATA COLUMN REMOVE N/A GROUP
BY COLUMN
 avg_windspeed_by_ID <- as.data.frame(Weather_Sample[, mean(WindSpeed, na.rm = TRUE), by =
AirportID])

 avg_windspeed_by_ID

259© Bradley Beard 2016
B. Beard, Beginning SQL Server R Services, DOI 10.1007/978-1-4842-2298-0

 A, B, C
 Acceptance test , 77

 D
 Database , 137–138
 Database Engine Confi guration

 data directories , 239
 FILESTREAM , 242
 TempDB , 240, 242

 Data confi guration, report builder
 connection properties , 188
 dataset properties , 192
 data source properties , 185–186
 data source updated , 190
 title value , 194–195

 Data directories , 15–16
 Download Microsoft R Open

 destination location , 44
 installation , 45
 Install Math Kernel Library (Intel© MKL) , 43
 MKL licensing information , 44

 E, F, G, H
 E-mail settings , 139, 141
 Encryption keys , 142–143
 Execution account , 141–142

 I, J, K
 Initial interface design , 78
 Installation . See Setup and installation

 L
 Linear regression

 dataset model , 108
 ggplot of predicted_values , 118

 model coeffi cients , 109
 syntax , 107

 M, N, O
 Microsoft R Open install , 18
 Model object

 coeffi cients , 113
 head(predicted_values) , 117
 predicted_values dataset , 116
 $residuals , 113

 P, Q
 Package manager

 available , 98
 installed , 99
 loaded , 100
 RUnit , 99

 Plotting
 diamonds dataset , 102, 104–106
 ggplot2 , 101
 logarithmic scale , 106–107
 temperature by

airport ID , 128, 130
 wind speed by airport ID

 dataset, import , 120–122
 dataset preparation , 123–124
 plotted information , 127
 script pane , 122–123

 Power BI integration , 145–146, 148
 Project defi nition phases

 ggplot2 , 85–86
 initial interface design , 78
 package manager , 84
 README fi le , 80
 requirements gathering , 74–75
 software change request process , 76–78
 Solution Explorer , 80
 spiral development , 75–76

 Index

■ INDEX

260

 R
 Regression diagnostics , 110–111
 Report builder

 dataconfi guration (see Data confi guration,
report builde)

 dynamic image
 properties , 197
 size options , 200–201
 updated values , 199

 temperature by airport ID , 206–207
 wind speed by airport ID

 blank report , 182
 border properties , 185
 properties , 202–203

 Report builder installation
 binary data , 175, 177–179
 database and tables , 158, 160, 162
 weather data

 character delimiter section , 167–168
 data source , 163–164
 destination location , 168–169
 disappearing warning , 166–167
 fl at fi le source , 164–165
 import/export data , 163
 populated values , 165–166
 query execution , 174–175
 save and run , 171–172
 source and destination information , 170–171
 updated destination , 169–170

 Reporting Services Confi guration , 242–243
 Report server

 manage
 caching interface , 219
 data sources , 212–215
 dependent items , 219
 properties , 212
 security , 221
 snapshots , 220
 subscriptions , 215–219

 save , 221
 view , 209–210

 R models
 execution , 93–94
 foreign library , 95
 ggplot2 package , 96
 readme fi le , 89, 90
 R interactive , 92

 R tools for Visual Studio (RTVS)
 change R to Microsoft R client , 49
 data , 48
 data science settings , 51–52
 documentation and samples , 49
 Download Community 2015 , 34–37

 Download Microsoft R Open , 41–44, 46
 Editor Options , 50
 feedback , 50
 Free Visual Studio , 34
 Install Microsoft R Client , 49
 Microsoft R Products , 49
 plots , 48, 255–256
 R documentation , 50
 readme fi le

 diamonds dataset , 60–62
 execution , 56
 foreign library , 57
 ggplot2 package , 58–59
 logarithmic scale , 63–64
 model dataset , 65–66, 68–69
 predicted_values dataset , 69–70
 R interactive , 55

 session , 47
 survey/news , 50
 tabular code , 256–257
 Visual Studio Community , 34
 Windows , 49
 working directory , 48

 S
 Scale-out deployment , 144
 Service account , 135
 Services verifi cation , 21–22
 Setup and installation

 confi guration
 database engine , 14
 instance , 10–11
 reporting services , 18
 server , 12–13, 15

 data directories , 15
 feature selection , 8–9
 folder structure , 4
 installation window , 5
 install rules , 7–8
 license terms , 7
 Microsoft R Open , 19
 options , 5
 product key , 6
 ready to install screen , 19–20
 RTVS (see R Tools for Visual Studio (RTVS))
 SQL Server 2016 (see SQL Server 2016)
 TempDB , 16

 Software change request process
 acceptance test , 77
 administrator approval , 76
 archiving , 78
 code , 77
 design , 76

■ INDEX

261

 document , 77
 installation , 78
 regression test , 77
 request submission , 76
 unit test , 77

 Software requirements document , 253–254
 Spiral development process , 75
 SQLRUserGroupSQL 2016RS , 31–32
 SQL Server , 2014, 247–250
 SQL Server , 2016

 complete , 247–250
 consent to install Microsoft R Open , 243–244
 Database Engine Confi guration

 data directories , 239
 FILESTREAM , 242
 TempDB , 240–241

 feature selection , 230–232
 install rules , 229–230
 instance confi guration , 233–234
 license terms , 228–229
 product key , 227–228
 ready to install , 244–245
 Reporting Services Confi guration , 242–243
 Server Confi guration , 234–235

 SQL Server Data Tools (SSDT) , 33

 SQL server management tools
 connecting to server , 27–28
 installation center , 23
 installation interface , 25
 line number settings , 29
 local users and groups , 31
 R install and communication , 30
 SQLRUserGroupSQL2016RS detail , 32
 SSMS download , 23
 SSMS installation , 24

 SSDT . See SQL Server Data Tools (SSDT)
 Subscription settings , 143–144

 T
 TempDB , 16–17

 U, V
 Unit test , 77

 W, X, Y, Z
 Web Portal URL , 138–139
 Web Service URL , 136

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Setup and Installation
	Chapter 1: Setup and Installation of SQL Server 2016
	Planning
	Beginning the Installation
	Product Key
	License Terms
	Install Rules
	Feature Selection
	Instance Configuration
	Server Configuration
	Database Engine Configuration
	Server Configuration
	Data Directories
	TempDB
	FILESTREAM

	Reporting Services Configuration
	Consent to install Microsoft R Open
	Ready to Install
	Installation Progress
	Install Complete

	Services Verification
	SQL Server Management Tools
	Summary

	Chapter 2: Setup and Installation of R Tools for Visual Studio
	SQL Server Data Tools
	Visual Studio
	Download R Tools for VS
	Download Microsoft R Open
	Visual Studio Environment
	Session
	Plots
	Data
	Working Directory
	Windows
	Install Microsoft R Client…
	Change R to Microsoft R Client
	Microsoft R Products…
	RTVS Documentation and Samples
	R Documentation
	Feedback
	Check for Updates
	Survey/News
	Editor Options
	Options
	Data Science Settings

	Exploring Samples
	A First Look at R

	Summary

	Chapter 3: Project Scenario Definition
	Scope Creep
	Project Definition Phases
	Phase I: Requirements Gathering
	Spiral Development Process
	Software Change Request Process
	Request Submission
	Administrator Approval
	Design
	Code
	Document
	Unit Test
	Regression Test
	Acceptance Test
	Installation
	Archiving

	Phase II: Initial Interface Design

	Loading the R Solution
	Summary

	Part II: Learning the Basics
	Chapter 4: Building R Models with RTVS
	Exploring Samples
	R Package Manager
	Plotting in R
	Linear Regression in R
	Regression Diagnostics
	The Model Object
	Summary

	Chapter 5: Plotting in RTVS
	Report 1: Average Wind Speed by Airport ID
	Importing the Dataset
	Opening a Script Pane
	Preparing the Dataset
	Average Wind Speed by Airport ID (Tabular)
	Average Wind Speed by Airport ID (Plot)

	Report 2: Average Temperature by Airport ID (°F)
	Average Temperature by Airport ID (Tabular)
	Average Temperature by Airport ID (Plot)

	Summary

	Part III: Creating and Viewing Reports
	Chapter 6: Configuring SQL Server Reporting Services
	Connecting to an Instance
	Service Account
	Web Service URL
	Database
	Web Portal URL
	E-mail Settings
	Execution Account
	Encryption Keys
	Subscription Settings
	Scale-out Deployment
	Power BI Integration
	Summary

	Chapter 7: Report Builder Installation and Data Preparation
	Download Report Builder
	Setup New Database and Tables
	Importing Weather Data
	Generating the Binary Data
	Summary

	Chapter 8: Building Reports Using Report Builder
	Report 1: Average Wind Speed by Airport ID
	Setting up the Report Layout
	Data Configuration
	Adding the Dynamic Image
	Report Body Properties
	Running the Report
	Report 2: Average Temperature by Airport ID
	Summary

	Chapter 9: Viewing the Reports in Report Server
	Viewing Reports
	Managing Reports
	Properties
	Data Sources
	Subscriptions
	Dependent Items
	Caching
	History Snapshots
	Security

	Saving Reports
	Summary

	Part IV: Appendices
	Appendix A: Installing a SQL Server 2016 Instance in a SQL Server 2014 Installation
	Getting Started
	Product Key
	License Terms
	Install Rules
	Feature Selection
	Instance Configuration
	Server Configuration
	Database Engine Configuration
	Server Configuration
	Data Directories
	TempDB
	FILESTREAM

	Reporting Services Configuration
	Consent to Install Microsoft R Open
	Ready to Install
	Complete
	Summary

	Appendix B: Software Requirements Document
	Project
	Author
	Prepared for
	Problem
	Solution
	Language/Platform
	Medium

	Appendix C: R Plot and Tabular Code for R Tools for Visual Studio
	Average Temperature by Airport ID (Plot)
	Average Temperature by Airport ID (Tabular)
	Average Wind Speed by Airport ID (Plot)
	Average Wind Speed by Airport ID (Tabular)

	Index

