
Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Beginning
SharePoint® 2010
Development

Steve Fox

Fox

 $39.99 USA
 $47.99 CAN Programming (.NET/C) / Microsoft Office 2010

Put the power of
SharePoint 2010 into practice

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

As a first-class platform that has evolved significantly since its
previous release, SharePoint 2010 now provides several advancements
for the developer (native Visual Studio tools support, services and
extensibility enhancements, and APIs), and many new capabilities
(improved data programmability, line-of-business interoperability,
and sandboxed solutions). With this authoritative guide, industry
veteran Steve Fox provides expert guidance on developing applications
as he walks you through the fundamentals of programming, explores
the developer toolset, and provides practical code examples to teach
you how to use many of SharePoint’s new developer features. You’ll
quickly discover how SharePoint’s rich platform supports great
collaboration, extensibility, and interoperability.

Beginning SharePoint 2010 Development:

• Guides you through the creation of your first SharePoint 2010 application

• Addresses working with SharePoint 2010 sites, lists, and Web parts

• Describes developing SharePoint applications using SharePoint
Designer 2010

• Reviews standard and Visual Web parts, as well as data view Web parts

• Details integrating SharePoint with Microsoft® Office

• Explains how to secure your SharePoint 2010 applications

Steve Fox is a Technical Evangelist in the Developer Platform Evangelism group
at Microsoft. He presents at many conferences and has written numerous articles.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

SharePoint
® 2010 D

evelopm
ent

Beginning

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books
Beginning SharePoint 2010 Administration: Windows SharePoint Services 4
and Microsoft SharePoint Server 2010
978-0-470-59712-5
Packed with step-by-step instructions, tips and tricks, and real-world examples, this book dives into the basics of how to install,
manage, and administrate SharePoint 2010 in an effective and secure manner.

Beginning SharePoint 2010: Building Team Solutions with SharePoint
978-0-470-61789-2
Beginning SharePoint 2010: Building Team Solutions with SharePoint provides you with extensive knowledge and expert advice,
empowering you to become a SharePoint champion within your organization.

Beginning Microsoft SharePoint Designer 2010
978-0-470-64316-7
Covering both the design and business applications of SharePoint Designer, this complete Wrox guide brings you thoroughly
up to speed on how to use SharePoint Designer in an enterprise.

Professional SharePoint 2010 Administration
978-0-470-53333-8
Written by a team of SharePoint experts, this book covers installation, upgrading, configuration, architecture and capacity
planning, monitoring, backups, and disaster recovery.

Professional SharePoint 2010 Branding and User Interface Design
978-0-470-58464-4
SharePoint allows influence over key branding issues like site design, how the user interface affects site visitors’ experience,
ease of use, and other branding topics. This book, from a team of SharePoint branding experts, covers it all.

Professional SharePoint 2010 Development
978-0-470-52942-3
This comprehensive book shows readers how to build field-tested solutions and create custom content management applications.

Professional Microsoft FAST Search: Customizing, Designing, and Deploying Search
for SharePoint 2010 and Internet Servers
978-0-470-58466-8
FAST is Microsoft’s intelligent search-based technology that boasts an ability to integrate business intelligence with Search.
This guide provides you with advanced coverage on FAST search and shows you how to use it to plan, customize, and deploy
your search solution, with an emphasis on SharePoint 2010 and Internet-based search solutions.

Real World SharePoint 2010: Indispensable Experiences from 20 SharePoint MVPs
978-0-470-59713-2
Containing contributions from nearly a score of SharePoint MVPs, this book is an anthology of best practices for all areas
of SharePoint 2010.

http://www.wrox.com

BEGINNING
SharePoint 2010 DEVELOPMENT

Introduction. . xxiii

Part⊲⊲ I	 Welcome to SharePoint 2010

Introduction to SharePoint 2010Chapter 1	 . . 3

Getting Started with SharePoint 2010 DevelopmentChapter 2	 25

Part I⊲⊲ I	 Getting Started with SharePoint 2010 Development

SharePoint 2010 Developer ToolsChapter 3	 . . 69

Common Developer Tasks in SharePoint 2010Chapter 4	 . . 129

Programming Against SharePoint 2010 ListsChapter 5	 . . 159

Building and Deploying SharePoint Chapter 6	 Web Parts . . 217

Creating Your First SharePoint 2010 ApplicationChapter 7	 . . 249

Part II⊲⊲ I	 Advanced Topics for SharePoint 2010 Development

Integrating Line-of-Business Data Using Chapter 8	

Business Connectivity Services. . 277

Creating Enhanced User Experiences for SharePoint Chapter 9	

with Silverlight . . 317

Developing Service-Oriented Applications for SharePoint 2010Chapter 10	 363

Integrating SharePoint with Microsoft OfficeChapter 11	 . . 399

Securing Your SharePoint 2010 ApplicationsChapter 12	 . . 433

Part ⊲⊲ IV	Appendi x

Where to Go from HereAppendix 	 . . 449

Index. . 451

584637ffirs.indd 1 5/3/10 10:41:36 AM

584637ffirs.indd 2 5/3/10 10:41:36 AM

Beginning

SharePoint® 2010 Development

584637ffirs.indd 3 5/3/10 10:41:36 AM

584637ffirs.indd 4 5/3/10 10:41:36 AM

Beginning

SharePoint® 2010 Development

Steve Fox

584637ffirs.indd 5 5/3/10 10:41:36 AM

Beginning SharePoint® 2010 Development

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-58463-7
ISBN: 978-0-470-88182-8 (ebk)
ISBN: 978-0-470-88183-5 (ebk)
ISBN: 978-0-470-90477-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010926824

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. SharePoint is a registered trademark of Microsoft Corporation
in the United States and/or other countries. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc. is not associated with any product or vendor mentioned in this book.

584637ffirs.indd 6 5/3/10 10:41:36 AM

http://www.wiley.com
http://www.wiley.com/go/permissions

For my wife

584637ffirs.indd 7 5/3/10 10:41:36 AM

584637ffirs.indd 8 5/3/10 10:41:36 AM

About the Author

Steve Fox  of Redmond, WA, is a Senior Technical Evangelist in the Developer Platform Evangelism
group at Microsoft. He’s worked in the IT industry for more than 15 years, and has worked in the
areas of natural language, search, developer tools, and, more recently, Office Business Application and
SharePoint development. Fox also presents at both domestic and international conferences (such as
TechEd, PDC, DevConnections, and SAP TechEd, among others), and has written a number of books
such as Professional SharePoint 2007 Development using Silverlight 2 (Indianapolis: Wiley, 2009)
and Microsoft .NET and SAP (Redmond, WA: Microsoft Press, 2009), as well as articles for MSDN
Magazine and other technical magazines.

584637ffirs.indd 9 5/3/10 10:41:36 AM

584637ffirs.indd 10 5/3/10 10:41:36 AM

About the Technical Editors

Darrin Bishop  is a speaker, author, and developer focusing on Microsoft SharePoint Technologies.
He is the president and lead developer for Darrin Bishop Group, Inc., a Midwest-based Microsoft
Partner focusing on SharePoint Technologies, portals, and collaboration. He is the author of The
Rational Guide to Building SharePoint Web Parts (Greenland, N.H: Rational Press, 2008), as well
as several articles in various magazines. Bishop is an international speaker and speaks at many
SharePoint conferences, SharePoint Saturdays, MOSS Camps, and User Groups. He has been work-
ing with SharePoint Technologies since the release of SharePoint Portal Server 2001.

Eli Robillard  designs and guides the delivery of global SharePoint solutions as a Principal
Architect at Infusion Development Corporation. He is a SharePoint Server MVP, a co-author of
Professional SharePoint 2007 Development (Indianapolis: Wiley, 2007), founder of the Toronto
SharePoint Users Group, co-chair of the Toronto SharePoint Camp, and past chair of a group of
high-profile industry influencers and early-adopters known as the ASPInsiders. Robillard lives in
Toronto, Ontario, Canada where he also plays music and goes on adventures with Dawn, Irina, and
their dog, Dakota.

Kenneth Schaefer  is an independent developer and designer focusing on SharePoint and Web-
based solutions.

Brendon Schwartz  has worked in the Atlanta area User Group scene, and is known around
town as one of the Atlanta .NET Regular Guys (www.devcow.com). He is currently on the INETA
Board of Directors as the Vice President of Technology, and is a Microsoft MVP for ASP.NET.
Today, Brendon works to solve real-world business problems with Microsoft technologies, such as
SharePoint, Office, BizTalk, VSTS, and .NET technologies. In addition to presenting at local User
Groups, he helped create the “Free Training 1,2,3!” series (www.freetraining123.com) to help
developers learn Microsoft technologies. He presented material at the first SharePoint 1,2,3! event
(www.sharepoint123.com), along with other members of the Atlanta Microsoft Professionals.
Schwartz has helped on the leadership teams of five different User Groups. At the first Atlanta Code
Camp in 2005, he presented material on ASP.NET mobile controls.

584637ffirs.indd 11 5/3/10 10:41:36 AM

584637ffirs.indd 12 5/3/10 10:41:36 AM

Credits

Acquisitions Editor
Paul Reese

Project Editor
Kevin Shafer

Technical Editors
Darrin Bishop
Eli Robillard
Ken Schaefer
Brendon Schwartz

Production Editor
Eric Charbonneau

Copy Editor
Foxxe Editorial

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Associate Director of Marketing
David Mayhew

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositor
Jeff Lytle, Happenstance Type-O-Rama

Proofreader
Beth Prouty, Word One

Indexer
Johnna VanHoose Dinse

Cover Designer
Michael E. Trent

Cover Image

© Slobo Mitic/istockphoto

584637ffirs.indd 13 5/3/10 10:41:36 AM

584637ffirs.indd 14 5/3/10 10:41:37 AM

Acknowledgments

When it comes to writing a book,  no man is an island. It takes countless hours and resources to
compile a book of this nature. That said, I’d like to thank Jim Minatel and Paul Reese for taking on
the project, and to Kevin Shafer for marshaling the book through the editorial and review process.

A number of technical editors helped review chapters, so a big thanks to Darrin, Eli, Ken, and
Brendan. The comments were great and helped create a better end product. They also taught me a
few things along the way.

I’d also like to say a blanket thanks to all of the content and production editors. All of you made
the book possible and, at the end of the day, a much better product for the beginning SharePoint
developer.

On a personal note, I’d like to thank my wife who put up with me locking myself away for hours at
a time. Nicole, you are ever-tolerant and I’m deeply indebted to you.

584637ffirs.indd 15 5/3/10 10:41:37 AM

584637ffirs.indd 16 5/3/10 10:41:37 AM

Contents

Introduction	 xxiii

Welcome to SharePoint 201Part I: 0

Introduction to SharePoint 2010	Chapter 1: 3

Getting to Know SharePoint	 4
Addressing the Needs of the Developer	 8

Extension and Enrichment for Developers	 9
Breaking It Down for Developers	 10

SharePoint 2010: The Platform 	 12
SharePoint 2010 Capabilities	 14
Site Collection and Sites	 15
Server APIs and Client APIs	 17
Data Modeling and Programmability	 18

SharePoint Central Administration	 19
Application Management	 20
Monitoring	 21
Security	 21
General Application Settings	 21
System Settings	 21
Backup and Restore	 21
Upgrade and Migration	 22
Configuration Wizards	 22

Summary	 22
Recommended Reading	 24

Getting Started with Chapter 2:
SharePoint 2010 Development	 25

Core Developer Features for SharePoint 2010	 26
Developer Productivity	 26
Rich Platform Services	 30
Flexible Deployment	 32

Key Skills for the SharePoint Developer	 34
Your Development Environment	 36

Installing and Configuring Windows Server Hyper-V	 37
Installing SharePoint Server 2010	 42

Getting Familiar with SharePoint 2010	 45
Working with SharePoint Sites	 46

584637ftoc.indd 17 5/3/10 10:42:24 AM

xviii

CONTENTS

Working with SharePoint Lists	 50
Working with SharePoint Web Parts	 58

Setting Permissions for a SharePoint Site	 63
Summary	 64
Recommended Reading	 66

Getting Started with SharePoint 2010 DevelopmenPart II: t

SharePoint 2010 Developer Tools	 6Chapter 3: 9

SharePoint Development Across Developer Segments	 70
Web-Based Development in SharePoint	 71

Site Settings	 72
Inline Rich Text and HTML Editing	 74
Adding Multimedia to a Site	 76

Developing SharePoint Applications Using SharePoint Designer 2010	 78
Customizing a Site Page	 80
Managing Other Data Sources in SharePoint Designer	 85
Using JavaScript in SharePoint Designer	 86
Master Pages	 91

Developing SharePoint Applications Using Visual Studio 2010	 98
Development Using the Expression Blend Suite	 116
Summary	 126
Recommended Reading	 127

Common Developer Tasks in SharePoint 2010	 12Chapter 4: 9

Creating Web Parts	 130
Standard and Visual Web Parts	 130
Data View Web Parts	 133

Creating Lists, Site Columns, and Content Types	 135
Working with SharePoint Data	 141
Creating Event Receivers	 147
Creating aspx Pages	 150
Creating Master Pages	 153
Summary	 157
Recommended Reading	 158

Programming Against SharePoint 2010 Lists	 15Chapter 5: 9

Overview of SharePoint Lists	 159
Programmatically Accessing Lists	 162

Programming Against Lists Using the Server-Side Object Model	 163
Programming Against Lists Using ASP.NET Web Services	 171

584637ftoc.indd 18 5/3/10 10:42:24 AM

xix

CONTENTS

Programming Against Lists Using the Client Object Model	 186
Programming Against Lists Using a Custom WCF Service	 197
REST-Based Services and List Development	 202

Creating Event Receivers for a SharePoint List 	 210
Summary	 215
Recommended Reading	 216

Building and Deploying Chapter 6: SharePoint
Web Parts	 217

Understanding Web Parts	 217
Web Part Architecture	 220
Custom Web Parts	 223
Visual Web Parts	 233
Custom Web Part Properties	 244
Summary	 246
Recommended Reading	 248

Creating Your First SharePoint 2010 Chapter 7:
Application	 249

Requirements	 250
Solution Design	 251
Customer Sales and Total Sales Lists	 252
Building the Application	 254

Adding a Record to the Sales List	 254
Viewing the Customer Sales	 258
Viewing the Total Sales	 262
Adding a Chart Web Part	 268
Final Dashboard	 271

Summary	 272
Recommended Reading	 274

Advanced Topics for SharePoint 2010 DevelopmenPart III: t

Integrating Line-of-Business Data Chapter 8:
Using Business Connectivity Services	 277

Understanding Office Business Applications (OBAs)	 278
OBAs and BCS	 280
Anatomy of an External Content Type	 284
Connectivity Options with BCS	 287
Developing Your First Application Using BCS	 289

Creating the External Data Source	 290

584637ftoc.indd 19 5/3/10 10:42:24 AM

xx

CONTENTS

Creating the External Content Type	 291
Setting Permissions for External Content Types	 306
Taking the External List Offline	 307

Summary	 313
Recommended Reading	 315

Creating Enhanced User Experiences Chapter 9:
for SharePoint with Silverlight	 317

Understanding Silverlight	 317
Why Integrate Silverlight and SharePoint?	 325
Integrating Silverlight with SharePoint	 326

No-Touch Integration	 328
Low-Touch Integration	 331
High-Touch Integration	 343

Summary	 361
Recommended Reading	 362

Developing Service-Oriented Chapter 10:
Applications for SharePoint 2010	 363

ASP.NET Web Services	 365
Native Web Service	 366
Custom ASP.NET Services 	 370

WCF Web Services	 378
RESTful Web Services	 387
Azure and SharePoint	 390
Summary	 396
Recommended Reading	 398

Integrating SharePoint Chapter 11:
with Microsoft Office	 399

Content Type as a Document Template	 400
Using InfoPath in Your SharePoint Solutions	 404
Managing Office Documents through a SharePoint Workflow	 406
Integrating Office Documents with SharePoint List Data	 410
Server-Side Services	 418

Visio Services	 418
Excel Services	 420
Word Services	 426
Access Services	 427

Summary	 429
Recommended Reading	 431

584637ftoc.indd 20 5/3/10 10:42:24 AM

xxi

CONTENTS

Securing Your Chapter 12:
SharePoint 2010 Applications	 433

Authorization	 434
Solution Trust	 436
Secure Store Service	 440
Federated Authentication	 442

Forms-Based Authentication	 442
Claims-Based Authentication	 443

Summary	 444
Recommended Reading	 446

AppendiPart IV: x

Where to Go from Here	 44Appendix : 9

Index	 451

584637ftoc.indd 21 5/3/10 10:42:24 AM

584637flast.indd 22 5/2/10 7:11:44 PM

Introduction

My first experience with SharePoint  was the task of integrating multiple SharePoint 2003
sites into one all-up organizational portal — a fairly straightforward project that integrated four
sites into one. This one project got me curious, and, in the process, not only exposed me to the
inner workings of SharePoint, but also got me hooked on the technology.

As I learned more about SharePoint, I realized the path was longer than I had originally thought. Since
that time, I’ve seen the platform mature quite a bit, and interest from developers like yourself swell to
what is now a very high rate of growth and adoption. And the market for SharePoint is also growing at
a very rapid pace — one that is currently outpacing the growth of the SharePoint developer community.

What you’ll learn in this book is that SharePoint 2010 has a lot to offer the developer. You can move
from the small-scale development project where you’re building custom Web parts, to the larger,
enterprise-grade solution that leverages Web services and integrates with other Microsoft and non-
Microsoft technologies. This is the incredible part about SharePoint — it is a platform with huge
potential in multiple directions. And, as a beginning SharePoint developer, you should strap yourself
in, because you’re in for a great ride.

Who This Book Is For

Simply put, this book is aimed at the developer who is new to SharePoint. The book assumes that
you have some programming experience and a passion to learn how to develop for SharePoint. But
this book does not assume that you’ve programmed against SharePoint before. If this somewhat fits
with you, then this book is absolutely for you.

With regard to your general development background, the two assumptions in this book are that
you have some familiarity with Web development, and you have an understanding of .NET pro-
gramming. With regard to Web development, this book assumes that you understand HTML,
and may have an understanding of Cascading Style Sheets (CSS), Extensible Markup Language/
Extensible Stylesheet Language (XML/XSL), and dynamic languages such as JavaScript. You may
have a light understanding of ASP.NET and are looking to apply this knowledge to the SharePoint
space. In any case, you have some understanding of the fundamentals of Web and .NET develop-
ment, and are looking to apply those to the SharePoint space.

What This Book Covers

SharePoint 2010 is a significant leap forward from the 2007 release, and you will find that there are
a ton of features built into the platform for you to leverage in your solution development. Because
SharePoint is a broad platform that covers a lot, this book also covers quite a bit of ground surface.
As a Wrox Beginning book, the goal of the book is to get you started with many of the fundamen-
tals so that you can continue on to advanced programming beyond this book.

584637flast.indd 23 5/2/10 7:11:44 PM

xxiv

introduction

In this book, you can expect to see coverage of the following:

Getting started with development for SharePoint 2010➤➤

Becoming familiar with tools that you will use to develop for SharePoint➤➤

Becoming familiar with common SharePoint development tasks➤➤

Programming against lists and developing custom Web parts➤➤

Integrating line-of-business (LOB) data with SharePoint and Microsoft Office➤➤

Integrating Silverlight and SharePoint➤➤

Creating service-oriented solutions for SharePoint➤➤

Integrating SharePoint and Microsoft Office➤➤

Security fundamentals in SharePoint ➤➤

This book will not cover SharePoint 2007, but will cover areas that span SharePoint Foundation 2010
and SharePoint Server 2010. You can also expect to find references to other resources as you work
through the book — resources such as blogs, Microsoft Developer Network (MSDN) articles, C9 train-
ing modules, and source code — all of the things that you need to get started developing for SharePoint.

How This Book Is Structured

This book is structured in four parts:

Part I: Welcome to SharePoint 2010➤➤  — ​ This includes the following:

Chapter 1, “Introduction to SharePoint”➤➤

Chapter 2, “Getting Started with SharePoint Development”➤➤

Part II: Getting Started with SharePoint 2010 Development➤➤  — This includes the following:

Chapter 3, “SharePoint 2010 Developer Tools”➤➤

Chapter 4, “Common Developer Tasks in SharePoint 2010”➤➤

Chapter 5, “Programming Against SharePoint 2010 Lists”➤➤

Chapter 6, “Building and Deploying SharePoint Web Parts”➤➤

Chapter 7, “Creating Your First SharePoint 2010 Application”➤➤

Part III: Advanced Topics for SharePoint 2010 Development➤➤  — This includes the following:

Chapter 8, “Integrating Line-of-Business Data Using Business Connectivity Services”➤➤

Chapter 9, “Creating Enhanced User Experiences for SharePoint with Silverlight”➤➤

Chapter 10, “Developing Service-Oriented Applications for SharePoint 2010”➤➤

584637flast.indd 24 5/2/10 7:11:44 PM

xxv

introduction

Chapter 11, “Integrating SharePoint with Microsoft Office”➤➤

Chapter 12, “Securing Your SharePoint 2010 Applications”➤➤

Part IV: Appendix➤➤  — This includes the following:

Appendix, “Where to Go from Here”➤➤

The goal is to quickly take you from the basics of SharePoint, to installing and configuring a
development environment, and then into how you can develop for SharePoint. The book is heavy
on coding exercises, but tries to stick to a common set of .NET patterns to ensure you walk away
understanding the different ways in which you can code for SharePoint. Moving from beginning to
advanced means that you can expect the walkthroughs and chapters to become increasingly more
complex within each chapter and throughout the book. The walkthroughs have been created to be
concise and to guide you through all of the steps you must accomplish to complete a coding task.

The structure of the book mimics the development ramp-up cycle for SharePoint. That is, you must
first understand the breadth of the SharePoint platform. You then install it and the development
environment; and then you begin to code — simple at first, but tasks that grow increasingly more
complex. You will find that when coding against SharePoint, you may do certain things more (such
as programming against lists and creating custom Web parts). As such, these topics are covered in
Part II of the book. Also, you may find that, as you advance in your SharePoint development, you
will need to incorporate either Silverlight or Web services in your SharePoint solutions. Because you
would likely combine these types of tasks inside of a custom Web part, list-based application, or
event receiver, these were placed in Part III of the book.

To help you along, this book has source code samples you can download at the Wrox Web site
(http://www.wrox.com). You’ll also find some video screencasts here to accompany some of the more
challenging developer tasks to provide you with more insight on how to walk through the exercises.

What You Need to Use This Book

To use this book, the following hardware is recommended:

64-bit compliant hardware➤➤

8 GB RAM➤➤

150 GB hard drive space➤➤

Dual processor (or reasonably close)➤➤

And the following software is recommended:

Windows operating system, specifically the following:➤➤

Windows Server 2008 or 2008 R2 (for installation or Hyper-V)➤➤

Windows 7 (for installation)➤➤

SharePoint Server 2010➤➤

584637flast.indd 25 5/2/10 7:11:44 PM

xxvi

introduction

SQL Server 2008 (Express or above)➤➤

Visual Studio 2010 (Professional)➤➤

Silverlight Tools and SDK➤➤

SharePoint Designer 2010➤➤

Office 2010 (Professional Plus)➤➤

Expression Blend (Optional) ➤➤

NOTE  ​You can download a virtual machine that has all of the necessary
software on it. It runs in Hyper-V and can be downloaded from http://www
.microsoft.com/downloads/details.aspx?FamilyID=0c51819b-3d40-435c-

a103-a5481fe0a0d2&displaylang=en. Chapter 2 discusses this in more depth.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Examples that you can download and try out for yourself generally appear in a box like this:

Try It Out	

The Try It Out is an exercise you should work through, following the text in the book.

	1.	 They usually consist of a set of steps.

	2.	 Each step has a number.

	3.	 Follow the steps through with your copy of the database.

How It Works

After each Try It Out, the code you’ve typed will be explained in detail.

WARNING  ​Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

584637flast.indd 26 5/2/10 7:11:45 PM

xxvii

introduction

NOTE  ​Tips, hints, tricks, and asides to the current discussion are offset and
placed in italics like this.

As for styles in the text:

We ➤➤ highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.➤➤

We show filenames, URLs, and code within the text like so: ➤➤ persistence.properties.

We present code in two different ways:➤➤

In code examples, we highlight new and important code with a boldface font.
The boldfacing is not used for code that’s less important in the present context,
 or has been shown before.

Source Code

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All of the source code used in this
book is available for download at http://www.wrox.com. Once at the site, simply locate the book’s
title (either by using the Search box, or by using one of the title lists) and click the Download Code
link on the book’s detail page to obtain all the source code for the book.

NOTE  ​Because many books have similar titles, you may find it easiest to search
by ISBN. This book’s ISBN is 978-0-470-58463-7.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

NOTE  ​This book provides a lot of code samples — you’ll see many of the code
samples focus on the core processing code for a specific API or feature. When
you leverage what you learn from this code in your production coding, you will,
of course, want to apply proper coding practices, such as error trapping and
exception handling. For more information on coding best practices, visit the
MSDN Patterns and Practices site at http://msdn.microsoft.com/en-us/
practices/default.aspx.

584637flast.indd 27 5/2/10 7:11:45 PM

xxviii

introduction

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books (such as a spelling mistake
or faulty piece of code), we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and, at the same time, you will be helping us provide even
higher-quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link.
On this page you can view all errata that has been submitted for this book and posted by Wrox edi-
tors. A complete book list including links to each book’s errata is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent edi-
tions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies, and to interact
with other readers and technology users. The forums offer a subscription feature to email you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

	 1.	 Go to p2p.wrox.com and click the Register link.

	 2.	 Read the terms of use and click Agree.

	 3.	 Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

	 4.	 You will receive an email with information describing how to verify your account and com-
plete the joining process.

NOTE  ​You can read messages in the forums without joining P2P, but, in order
to post your own messages, you must join.

584637flast.indd 28 5/2/10 7:11:45 PM

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

xxix

introduction

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the “Subscribe to this Forum” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

584637flast.indd 29 5/2/10 7:11:45 PM

584637flast.indd 30 5/2/10 7:11:45 PM

Part I
Welcome to SharePoint 2010

Chapter 1:⊲⊲ Introduction to SharePoint 2010

Chapter 2:⊲⊲ Getting Started with SharePoint 2010 Development

584637c01.indd 1 5/2/10 7:11:56 PM

584637c01.indd 2 5/2/10 7:11:56 PM

Introduction to SharePoint 2010

What You'll Learn in This Chapter:

Getting familiar with the core functionality and features of SharePoint➤➤

Understanding the basics of SharePoint architecture➤➤

What's available to developers in SharePoint 2010➤➤

SharePoint is an exciting Web-based technology. In its fourth version, SharePoint has undergone
quite an evolution since the 2003 release, and the types of things you can do with SharePoint run
far and wide. Those who have had the chance to see the product grow up will be surprised and
happy with many of the changes that are now built into the platform. In fact, existing SharePoint
developers will witness what arguably is a significant change in the features and functionality that
SharePoint provides, as well as an evolution in the tools supported and the developer community
that rallies around the technology. Aspiring SharePoint developers will realize there is quite a bit
of power in the platform that you should be able to put into practice by the end of this book.

SharePoint has matured into a first-class platform that will enable you to build and deploy
a wide array of solutions, as well as take advantage of the build-and-publish model that
SharePoint users and developers have come to enjoy. In fact, SharePoint 2010 offers such a
wide array of features that it is challenging for any one person to claim to be an expert across
all of the SharePoint workloads. You will need to dedicate some time to becoming an expert,
but the journey will be worth it.

With that in mind, this chapter introduces you to what SharePoint is and examines some of
the high-level features for the developer. This chapter will also describe the capabilities that
make SharePoint a platform that is interesting and compelling for you, the developer, to learn.
Specific topics include the types of platform services to expect, data programmability, and the
ways in which you can build and deploy a SharePoint solution. Toward the end of this chapter,
you’ll be introduced to Central Administration, where you’ll find an array of administrative
capabilities for SharePoint.

1

584637c01.indd 3 5/2/10 7:11:56 PM

4  ❘  Chapter 1   Introduction to SharePoint 2010

Getting to Know SharePoint

Microsoft describes SharePoint 2010 as the business productivity platform for the enterprise and
the Internet. To provide you with an idea of the types of things that you can do with SharePoint,
Figure 1-1 breaks down SharePoint into three separate areas:

Collaborate➤➤  — As you move throughout this book, you’ll see the notion of collaboration
is a very strong theme for SharePoint. This is because SharePoint is about bringing people
together through different types of collaboration, such as enterprise content management
(ECM), Web content management (WCM), social computing through the use of wikis or
blogs, creating dashboards to fulfill your business intelligence (BI) needs, and so on.

Interoperability➤➤  — SharePoint is also about bringing this collaboration together through
interoperability. This means Office client and Web-based document integration, and the
capability to build and deploy Office business applications (OBAs) — custom solutions that
integrate line-of-business (LOB) data with SharePoint and Office, integrating with Web 2.0
technologies, or deploying applications to the cloud. It also means enhanced security through
an evolved security model called Claims-Based Authentication that helps facilitate integration
with other line-of-business (LOB) systems.

Platform➤➤  — ​As you’ll see, SharePoint is a platform that supports not only interoperability
and collaboration but also extensibility, through a rich object model, a solid set of developer
tools, and a growing developer community.

• ECM & WCM
• Social Computing
• Search
• Portals/Sites
• Business Intelligence

Collaborate

• Client Integration
• OBA
• Web 2.0
• S+S
• Intranet/Internet

Interoperability

• 1st Class Developer
 Platform
• Visual studio
• SharePoint Designer
• Rich Community
• MS Product Integration

Platform

Figure 1-1  SharePoint as a platform

These are three key themes that you will find crop up throughout most discussions of SharePoint
and implicitly through many of the capabilities you’ll get to explore throughout this book.

At its essence, SharePoint is a Web-based platform that provides the following:

A set of native capabilities to support productivity and collaboration ➤➤

An extensible set of APIs and services ➤➤

A configuration engine that provides rich administrative abilities➤➤

584637c01.indd 4 5/2/10 7:11:57 PM

Getting to Know SharePoint  ❘  5

However, depending on the role of the person who is using SharePoint (for example, the end user ver-
sus the developer versus the IT professional), the stated definition may take on a slightly different hue.

For example, for the end user, SharePoint enhances productivity by providing a core set of con-
nected applications that essentially act as the Web-based application platform. The applications
enable people to connect using wiki sites, workspaces, lists, document libraries, and integration with
Microsoft Office applications, such as Outlook, Excel, and Word 2010.

From an organizational point of view, the unified infrastructure enables the organization to rally
around a central point of collaboration — be it through an organizational portal, a team site, or
a personal My Site. It also enables organizations to integrate LOB systems, such as SAP, Siebel,
PeopleSoft, and Microsoft Dynamics, into the information worker experience through SharePoint.

The response to business needs arrives through the capability to use SharePoint as a toolset in the
everyday work lives of an organization’s employees — for example routing documents through man-
aged processes, providing BI dashboards, or supplying audit tracking for documents in the Record
Center. In essence, SharePoint 2010 represents a platform that offers the organization a lot of func-
tionality to do many different things, with collaboration lying at the heart of them.

By stating that SharePoint is the platform for the enterprise and the Internet, Microsoft is implying
that SharePoint has predominantly excelled in two spaces.

The first (and historically predominant) is the enterprise, which means that many large companies
are attracted by what SharePoint offers, and are attracted to its lower cost compared to competitive
products or technologies. This is because, for example, the platform is tightly integrated with Office,
other Microsoft technologies (such as SQL Server and Silverlight), and external technologies and
LOB systems.

While the enterprise has been an historical stronghold for SharePoint, there have been some inter-
esting movements into the small and medium-sized business (SMB) space for SharePoint as well.
This is evidenced by the fact that SharePoint comes in a variety of flavors and editions, as shown in
Figure 1-2, and some of these can be leveraged by SMB developers to deliver some great experiences
for SharePoint consumers. (Note that these were the editions as of this writing, and may be subject
to change. For the latest editions, see http://sharepoint2010.microsoft.com.)

For example, among the different SharePoint editions shown in Figure 1-2 is SharePoint Foundation
2010. SharePoint Foundation (roughly equivalent to Windows SharePoint Services 3.0 in the 2007
release) is a free version of SharePoint and offers a baseline set of capabilities such as a set of site
templates, security and administration, and web collaboration capabilities. Further, SharePoint
Server 2010 (which is roughly equivalent to Microsoft Office SharePoint Server (MOSS) in 2007)
is an edition that provides richer capabilities built into the platform such as a wider array of server-
side services and collaboration options. You need to pay for SharePoint Server 2010, but the key is
that these different editions offer you some choice as to where you want to start and the types of
solutions you can build. Thus, companies have great flexibility when deciding upon what flavor of
SharePoint to implement.

Because SharePoint is essentially a Web-based technology, you interact with SharePoint from your
Internet browser. The Web-based experience is managed through an intranet, an extranet, or the
Internet. For example, Figure 1-3 shows the SharePoint 2010 interface invoked from the Internet
Explorer browser. (SharePoint is cross-browser, so you can use other Internet browsers such as

584637c01.indd 5 5/2/10 7:11:57 PM

6  ❘  Chapter 1   Introduction to SharePoint 2010

Safari or Firefox with SharePoint.) This view is the default Team Site template (one of the site tem-
plates that ships with SharePoint) that is typical of a SharePoint intranet site.

INTRANET

ON PREMISE

INTERNET

Microsoft®
SharePoint 2010

Microsoft®
SharePoint Foundation 2010

Microsoft®
SharePoint Server 2010

Microsoft®
FAST Search Server 2010
for SharePoint

Microsoft®
SharePoint Server 2010
for Internet Sites, Standard Edition

Microsoft®
SharePoint Server 2010
for Internet Sites, Enterprise Edition

Microsoft®
FAST Search Server 2010
for Internet Sites

Microsoft®
SharePoint Online

Microsoft®
SharePoint Online
for Internet Sites

CLOUD

Figure 1-2  SharePoint 2010 Editions

Figure 1-3  SharePoint, Hello World!

As you can see in Figure 1-3, the main portion of the page consists of three different components:

Some text (“Hello World!!!”), ➤➤

A link to Microsoft Office documents➤➤

A default image➤➤

584637c01.indd 6 5/2/10 7:11:58 PM

Getting to Know SharePoint  ❘  7

Also note that, down the left-hand side of the page, you have the Quick Launch navigation pane, which
enables you to link to other functionality and sites within the SharePoint site. A ribbon at the top (very
similar to the Office 2007 and 2010 Office client ribbon) provides centralized groups of elements that
also load different functionality into the main content window. There is also a search option that con-
nects you to other core SharePoint sites, functionality, and content within the site located in the top
right of the page. And, lastly, you also have a set of other links, such as one to your My Site on this
Web site, located in the upper right-hand corner of the page. As you’ll find out throughout this book,
SharePoint is very user-friendly. The view you see in Figure 1-3 can be edited and customized by the
user, it can be integrated with Office documents, and it can be branded with a specific theme.

Thus, the Web-based experience that SharePoint provides intrinsically facilitates an out-of-the-box
experience and integrates core (as well as external) applications and functionality that end users can
employ during their daily work lives.

In Figure 1-4, you’ll note that the default view has changed. This is because the site is now in Edit
mode, which enables you to customize the SharePoint site. In this view, you can see that the user has
clicked a part of the SharePoint page, and is now trying to insert an instance of the Content Editor
Web part (which provides HTML and source-code editing capabilities) from the Authoring Web
part category. The fact that you can quickly put a site into Edit mode, make some changes, and then
save those changes back to the server is one of the great advantages of SharePoint.

Figure 1-4  Editing a SharePoint site

While the experiences in Figure 1-3 and Figure 1-4 are the out-of-the-box default intranet site expe-
riences (for viewing and editing), SharePoint also offers a full publishing-to-the-Web experience.
This manifests in a special publishing template to meet your WCM needs, and provides you with
templates, theming, a default site experience, workflow, and so on, so that you can create and pub-
lish content to your Internet Web sites.

584637c01.indd 7 5/2/10 7:11:58 PM

8  ❘  Chapter 1   Introduction to SharePoint 2010

You may be surprised to learn that innumerable companies are using SharePoint for their Internet-
facing Web sites. For example, Figure 1-5 shows the Ferrari Internet Web site that is built using
SharePoint. You’ll also note that the site is rendered in Firefox.

Figure 1-5  Ferrari Web site built using SharePoint

For organizations, this can provide a one-stop shop for leveraging the SharePoint infrastructure both
for internal sites, to manage your day-to-day project needs, and as an external publishing workflow
and infrastructure to manage your publicly facing sites as well. The key point is that SharePoint pro-
vides the infrastructure for both intranet and Internet publishing and development, as well as many
different options provided through a set of product editions to map to a host of scenarios and budgets.

As you’ll see throughout this book, the native SharePoint experience is, in many ways, customiz-
able. For example, Figure 1-4 shows the default site that SharePoint creates for you. However, you
can apply your own master page to this default view to customize and brand the user’s experience.
This could be as simple as changing the colors, or it could be as deeply branded as the Ferrari site.
You could even reconstruct the navigation through the use of Silverlight to simply leverage the
SharePoint infrastructure and re-create your own customized user experience through the user inter-
face (UI). And this is just the tip of the iceberg.

Addressing the Needs of the Developer

If you define SharePoint as a business productivity platform, you may be wondering exactly where
the developer fits into this description. Although it seems like a convenient and common-sense way
of viewing SharePoint from an end-user perspective, what about the needs of the developer? To

584637c01.indd 8 5/2/10 7:11:58 PM

Addressing the Needs of the Developer  ❘  9

understand how SharePoint applies to the developer, you must get past the surface definition and
drive toward the platform capabilities. Here, you’ll begin to see some interesting and compelling piv-
ots for the developer.

Let’s look at a practical example. As you have seen, a business productivity platform implies hav-
ing a platform for end users to make them more productive in their day-to-day work lives — and
SharePoint can certainly do that. In short order, it can be used as an application for end users. For
example, a Human Resources (HR) department might use SharePoint to manage employee reviews,
or a sales team might use it to manage a monthly sales-forecasting dashboard for BI.

In both of these scenarios, SharePoint represents an end-user application (or bundle of applications),
but developers are not necessarily called out at this level. However, because SharePoint represents a
platform, you know that you can build on this platform, or extend its capabilities.

So, when your HR manager comes to you and asks you to design a SharePoint site collection that
integrates data from SQL Server or SAP, you get excited. When that same HR manager asks you to
map a custom document template to a SharePoint 2010 content type (that also pulls data in from
PeopleSoft), you become equally excited. And when the sales manager asks you to get data from an
Excel 2010 worksheet and then render that data inside of a Silverlight application in SharePoint, you
really start to jump up and down.

Extension and Enrichment for Developers
While SharePoint 2010 represents a set of connected applications (such as dashboards, document
libraries, and the like), it still has a vast array of opportunities for developers to extend and enrich
that end-user experience at multiple levels. This experience is obviously important when you think
about SharePoint in the context of the enterprise developer. However, when the independent soft-
ware vendors (ISVs) begin to think about that custom experience they want to deploy to their cus-
tomers, it becomes vital that they have a reliable platform beneath their feet that they can deploy
to and use to customize their SharePoint solutions. Their business depends on this stability and
predictability. Thus, SharePoint 2010 has done a very good job of providing a scalable platform that
supports multiple types of developers with different end goals and design ambitions.

So, SharePoint provides both an end-user paradigm (where the applications that make up SharePoint
serve the needs of the end user) and a development paradigm (where developers can develop on top
of SharePoint).

In a paper available through Forester Research (www.forrester.com/rb/Research/now_is_time_
to_determine_sharepoints_place/q/id/45560/t/2) entitled “Now Is the Time to Determine
SharePoint’s Place in Your Application Development Strategy,” John R. Rymer and Rob Koplowitz
reinforce this model. The two authors propose that SharePoint has an application level, where end users
integrate with the out-of-the-box collaboration and productivity applications. They then add a customi-
zation layer, where either power users or developers can begin to customize the SharePoint experience
for the end user. And lastly, they have a third layer, which is the application development layer.

It is at this application development layer where things get very interesting for developers. Here is where
you’ll find the solution developer who builds and deploys (or integrates through existing SharePoint
artifacts) applications or business solutions — such as creating a SharePoint list that is capable of read-
ing and writing data into an external LOB system, such as SAP or Siebel, or a Silverlight-enabled busi-
ness application that is deployed as a Web part into your SharePoint infrastructure.

584637c01.indd 9 5/2/10 7:11:58 PM

10  ❘  Chapter 1   Introduction to SharePoint 2010

Breaking It Down for Developers
What you may have gathered so far in this chapter is that SharePoint development can, indeed,
mean a number of things. For example, if you want to simply customize SharePoint, you may only
have to interact with page layouts or master pages (that is, the way in which you structure content
in SharePoint). This type of work would entail a baseline understanding of HTML editing, CSS,
and some understanding of how ASP.NET master pages work. However, if you want to do deeper-
level solution development, you may be interacting with the SharePoint object model, and leverag-
ing .NET and Web services to do this. This type of development would entail using managed-code
(that is, C# and Visual Basic, or VB.NET) solutions that are built and deployed into SharePoint — a
potentially more complex type of coding experience for the developer.

You could argue that the people performing both tasks are equally identified as developers on the
SharePoint platform, but what this brings to bear is the fact that actual development can range from
HTML/XHTML, AJAX, and XSLT to .NET and service-based development — and a few things
in between. So, what you might find are both developers and power users of SharePoint operating
at this level. However, this is not only symptomatic of SharePoint being a broad platform but also a
symptom of the different standards, applications, and interoperability that SharePoint must support
as a good citizen of the Web.

Thus, if you break down the use
of SharePoint across the three
levels shown in Figure 1-6, you’ll
find the largest population of
SharePoint consumers interact-
ing with the Applications level.
These are the end users, and they
represent your core audience when
building and deploying your cus-
tom applications to SharePoint.
Next, you may also operate at the
Customization level, where power users possess a high degree of SharePoint knowledge. In some
cases, you may work with these people, and in others you will work independently of one another.

Lastly, there is you: the developer. You are, in many cases, the person who is developing those cus-
tom applications for SharePoint. You are the one who is developing that next killer app in the ISV
ecosystem. And you are the one for whom this book has been written.

Therefore, while the original definition of SharePoint highlights Microsoft’s core messaging for the
SharePoint 2010 platform, it may not necessarily strike a deep chord with the developer. To capture
this, let’s expand the original definition and re-frame the context for you, the developer:

SharePoint 2010 is about developer productivity, the availability of rich platform services,
and the capability to manage and deploy your applications with maximum flexibility.

With regard to developer productivity, this means that you can use either Visual Studio 2010 or
SharePoint Designer (SPD) 2010 as your core set of developer tools. As a professional developer,
you’ll likely use Visual Studio 2010 as your core toolset — especially if you’re a .NET program-
mer looking to get into the SharePoint space. As for SPD, you’re more than likely going to use it to
edit master pages and page layouts, as well as to build declarative or rules-based workflows using a

Application Development
Developer

Customization
Developer/Power User

Applications
End User

Figure 1-6  Three levels of SharePoint

584637c01.indd 10 5/2/10 7:11:58 PM

Addressing the Needs of the Developer  ❘  11

visual rules approach (for example, using Visio 2010 and SPD 2010). And as a complement to these
tools, you may also use Expression Blend — either as a way to build more advanced and interactive
UIs (through Expression Blend) or through Expression Web for baseline Web sites.

NOTE  ​Chapter 3 explores developer tools in more detail.

In terms of rich platform services, SharePoint 2010 offers the developer much more in the way of
getting, managing, and updating objects and data within a SharePoint site. In this book, you’ll learn
about new application programming interfaces (APIs) and services that will allow you to do this,
and you’ll also learn about how to enable LOB system integration to bring external data into your
SharePoint applications. You’ll see many of the new and still-supported APIs and services through-
out the entire book.

You obviously have a number of deployment options at your fingertips. For example, you can import
a standard Windows SharePoint Services Solution Package (WSP) into your SharePoint farm. You
can build and deploy a solution to a SharePoint instance within the corporate firewall, and you can
also build and deploy solutions to a SharePoint site hosted on the wider Internet. What the latter
looks like is very similar to the on-premises version of SharePoint; what is different is the fact that
you don’t need to worry about management of that SharePoint server.

Figure 1-7 shows these as the three core pillars that map to the SharePoint developer experience.

Developer Productivity

• Visual Studio 2010
• SharePoint Designer
• Developer Dashboard
• Expression Suite
• . . .

Rich Platform Services

• SharePoint Object Model
• Services
• LINQ for SharePoint
• LOB Integration
• . . .

Flexible Deployment

• ALM
• WSP Standardization
• On-Premises Deployment
• SharePoint Online
• . . .

Figure 1-7  Developer tenets in SharePoint 2010

You should keep in mind a number of key points with regard to these three core pillars of the devel-
oper experience within SharePoint:

SharePoint 2010 has a rich object model, as well as a set of services and APIs that can be lev-➤➤

eraged when developing custom solutions.

Visual Studio 2010 now has an out-of-the-box experience for building and deploying ➤➤

SharePoint solutions.

584637c01.indd 11 5/2/10 7:11:59 PM

12  ❘  Chapter 1   Introduction to SharePoint 2010

You have a number of ways available to interact with the SharePoint object model using Web ➤➤

services, Windows Communication Foundation (WCF), REST, and the SharePoint Client
Object Model.

Data programmability using Language Integrated Query (LINQ) for SharePoint, Business ➤➤

Connectivity Services (BCS) and External Lists makes SharePoint 2010 a first-class platform
to extend LOB applications.

There are multiple integration points across other Microsoft and third-party applications (such ➤➤

as Office 2010, SAP, PeopleSoft, Microsoft Dynamics, Microsoft Silverlight, and so on).

A standard deployment methodology now exists for SharePoint 2010 that is defined using the ➤➤

WSP standard deployment method.

You can deploy SharePoint 2010 solutions on premises or to the cloud (that is, SharePoint ➤➤

Online).

These points represent just a sampling of what you can do with SharePoint, and the goal of this
book is to show you how you can get started with all of these and more. Keep in mind that, when
SharePoint references business productivity, it not only means the applications that you’ll be build-
ing and customizing for your end users, but it also means for the developers themselves through all
of the enhancements in SharePoint 2010.

Now, let’s take a closer look at SharePoint at the platform level.

SharePoint 2010: The Platform

SharePoint 2010 is a rich platform on which you can build and
deploy your applications. And it is also an environment that can
be customized for your audience or end user. This much you
know. What hasn’t been discussed yet, though, is what exactly
this platform looks like. For example, what is the architecture of
SharePoint? What are the specific capabilities of SharePoint? What
are the objects and APIs that you, as a developer, have access to?

The first thing to understand is the architecture of SharePoint 2010.
Figure 1-8 provides a high-level overview of the technology stack
for SharePoint 2010. From the bottom up, note first that SharePoint
2010 runs on the Windows operating system (OS), namely
Windows Server 2008 or 2008 R2.

When you install SharePoint, there is also a dependence on SQL
Server and ASP.NET. SharePoint is built on the ASP.NET founda-
tion. Thus, if you’re familiar with ASP.NET, many of the founda-
tional programming concepts will be familiar to you, such as Web
parts or master pages, both in the architecture and programmatically.

In SharePoint 2010, you have two main pieces that make up
SharePoint: SharePoint Foundation 2010 and SharePoint Server 2010.
While these essentially represent two different editions of SharePoint, SharePoint Server 2010 is built on
top of SharePoint Foundation 2010.

Custom Solutions

Customization

Microsoft SharePoint Server

Microsoft SharePoint Foundation

ASP.NETSQL Server

Windows Server

Figure 1-8  Baseline SharePoint
architecture

584637c01.indd 12 5/2/10 7:11:59 PM

SharePoint 2010: The Platform   ❘  13

NOTE  ​You can also install SharePoint on Windows 7 (64 bit), Windows Vista SP1
(64 bit), or Windows Vista SP2 (64 bit).

NOTE  ​When this book refers to SharePoint 2010 (or just SharePoint), both
SharePoint Foundation 2010 and SharePoint Server 2010 are included in this
reference.

SharePoint Foundation ships as a free, downloadable install on the Windows OS, and represents a core
part of SharePoint. It includes a number of features such as security and administration, user and team
site collaboration, and document libraries and lists. In essence, it provides a baseline set of features
that will enable you to get started with both using SharePoint and developing for SharePoint.

While the functionality that ships in SharePoint Foundation is less broad than that which ships in
SharePoint 2010, it costs you nothing to download and install SharePoint Foundation. You can get
up and running very quickly with this version and begin your development work using it.

However, SharePoint Server 2010 offers a wealth of features that make the leap to buy worth it. For
example, you get additional features such as additional Web parts, Office server-side services such as
Word and Excel Services, enhanced search versions, enhanced BI, and much, much more. You can also
choose to purchase the Internet-specific edition (SharePoint 2010 For Internet Sites), which will provide
you with the rich publishing templates and workflow that you can use to create and deploy SharePoint
sites to the wider Web (for example, building a scalable SharePoint site for public, anonymous access).

As a developer, you have the capability to customize any of the SharePoint editions — you just have
more to customize and leverage with the SharePoint Server 2010 edition. For example, you could
create a custom master page and apply it to a team site using SharePoint Foundation, or you can do
the same thing in SharePoint Server 2010 and apply it to, for example, a publishing site (a specific
type of site that you can use to build and deploy externally facing Web sites).

Beyond thematic or branding customizations, you can also develop and deploy custom solutions.
These are, for example, .NET applications that you build using C# or Visual Basic, and then deploy
into SharePoint as solutions comprising one or more features. Further, with the full version of
SharePoint, you’ll have a wider array of services, APIs, and objects that you can either code against,
or leverage. This will ultimately make the development experience much richer for you.

If you drill into the SharePoint part of the architecture (that is, the Microsoft SharePoint Server and
SharePoint Foundation boxes), you’ll find additional functionality within the SharePoint platform
that you can leverage. Figure 1-9 shows a high-level overview of the components of the platform.

In this diagram, SharePoint is broken out across a number of areas, including a core set of capabili-
ties, site collection and sites, server APIs and client APIs, and data modeling and programmability.

The “SharePoint Capabilities” provide a convenient way for Microsoft to break out the core compe-
tencies of SharePoint. You can consider these the topmost way of breaking out the feature areas of
SharePoint. Because SharePoint exists as a Web-based solution, you’ll note that the next level down
is called “Site Collection and Sites,” which is how SharePoint organizes itself as a set of related sites

584637c01.indd 13 5/2/10 7:11:59 PM

14  ❘  Chapter 1   Introduction to SharePoint 2010

within a site hierarchy. The “Server APIs” and “Client APIs” essentially represent the different ways in
which you can interact with the SharePoint objects, such as data in a list or document libraries. And,
finally, “Data Modeling & Programmability” represents the ways in which developers can program
against the different data objects within SharePoint (for example, list data).

Let’s look at each of these in greater detail.

SharePoint 2010 Capabilities
At the top of Figure 1-9, you see the “SharePoint
Capabilities.” These are the core ways in which SharePoint
partitions itself into its respective and related parts. You
may also hear Microsoft refer to these capabilities as work-
loads. These workloads (which are shown in Figure 1-10)
provide a way to talk about the different capabilities of
SharePoint coming together, and you should see these
workloads as not only representing a core set of related
applications but also as opportunities for your application
development.

Within each of the capabilities, you’ll find many different
development opportunities. For example, the Table 1-1 shows
the capabilities in the left-hand column, describes the out-of-
the-box features in the next column, and then lists out some
examples of extensibility for SharePoint in the third column.

Sites

Search

Communities

Content

Composites

Insights

Figure 1-10  SharePoint 2010 workloads

SharePoint Capabilities (Workloads)

Site Collection and Sites

Client-Side APIsServer APIs

Data Modeling and Programmability

Figure 1-9  SharePoint platform
capabilities

584637c01.indd 14 5/2/10 7:12:00 PM

SharePoint 2010: The Platform   ❘  15

Table 1-1  Key SharePoint Capabilities

Capability Native Features Example Extensibility

Sites Sites is where you’ll predominantly find the collabora-
tive aspects of SharePoint. Sites contain an abundance
of features, including the capability to create, store,
and retrieve list data and document content. You also
have connectivity into the Microsoft Office 2010 client
applications through the list and document library.

Web parts, workflow,
master pages, site
pages, Office Web
parts

Communities Provides social APIs and networking capabilities, along
with the capability to search against profiles and locate
and interact with people through their profile meta-
data, relationships, tagging, and rating of content.

Search customization,
rating and tagging
capabilities, blogs, wikis

Content The capability to collaboratively manage content
using Web pages, document libraries, workflow, or
content types.

Field controls, content
types, workflows, Word
or Excel Services

Search The power to search content inside and outside of
SharePoint, including information in structured data-
base systems and external LOB systems such as SAP,
Siebel, and Microsoft Dynamics.

Search customization,
Business Connectivity
Services (BCS), FAST
for SharePoint

Insights Predominantly about BI that supports, for example,
the capability to integrate Microsoft Access into
SharePoint, leverage Excel and SQL Server to access
and display data on a Web page, dashboards, and key
performance indicators (KPIs) to transform raw data
into actionable information.

Excel Services,
Access Services,
dashboards, BCS,
PerformancePoint
Services

Composites The capability for business users to create their own
BI solutions through connection, InfoPath, and Access
Data Services integration, customization, and business
process management.

Web parts, external
lists, workflows , BCS

Site Collection and Sites
Site collection and sites represent the site hierarchy when you create a new site or extend an existing
one. As shown in Figure 1-11, a SharePoint server farm (which can comprise one or more physical
servers), can be broken out into three major parts:

The Web application that lives in Internet Information Services (IIS)➤➤

The site collection, which represents the root SharePoint site➤➤

The individual sites that live under the site collection➤➤

584637c01.indd 15 5/2/10 7:12:00 PM

16  ❘  Chapter 1   Introduction to SharePoint 2010

SharePoint Server Farm

Web Applications (IIS)

SharePoint Sites (Child Sites)

SharePoint Site Collection (Root Site)

Figure 1-11  SharePoint site hierarchy

SharePoint uses IIS as its Web server. So, when you install it and open IIS, you’ll see an entry for
SharePoint that uses the standard port 80 in IIS. If you open IIS, you should also see a separate
Web application entry in IIS for the SharePoint Central Administration site collection. This will be
located on a separate port.

If you set up a standalone instance of SharePoint (which you’ll do in Chapter 2), you should note
that the default site created for you is a site collection. The site collection is the uppermost, root site
that you’ll work from within SharePoint. The site collection is also a site that you can customize and
interact with. You grow your SharePoint site collection by adding additional Web sites to it. Any
site you create underneath the site collection is called a site (and is sometimes referred to as a Web).
Furthermore, any site you create within that site is a subsite. This may seem confusing, but just
think of the site collection being the parent and the sites within that collection being children sites.

Within the site, you will predominantly create subsites and interact with lists and list items, document
libraries, and a host of other, more discrete features of SharePoint. However, you can also develop
against many of the UI-level features that are new to SharePoint 2010. For example, key functionality
includes features such as site pages that can be customized and stored in a pages library, the capability
to edit text inline (with HTML source or rich text) and more easily add images to a Web part, to utilize
Silverlight applications to improve the look, feel, and experience of a user, to transform your pages from
XML to HTML using XSLT, and much more. Each of these activities can be accomplished at the site
level through the page interface (and, of course, through the developer tools). You should think of each
of these as part of a cadre of opportunities for your SharePoint development.

One of the core parts of the SharePoint 2010 UI that is customizable is the ribbon, which integrates
JavaScript with XML to provide developers with a way to deploy customized elements. You can
see in Figure 1-12 that there are tabs with controls on them. The tabs are contextually driven and
change depending on what you’re doing within SharePoint.

The ribbon is a significant change from earlier versions of SharePoint. The reason that Microsoft
changed the ribbon was to make the functions available to the user more central, and to create

584637c01.indd 16 5/2/10 7:12:01 PM

SharePoint 2010: The Platform   ❘  17

an experience similar to that of the Office 2010 UI client ribbon. As a developer, you’re probably
already asking yourself how you can build a custom ribbon. You can do this using XML (that repre-
sents the structure of the ribbon), and then mapping JavaScript to that XML document.

As you can see in Figure 1-13, outside of the ribbon, the page structure of a SharePoint Web page is
similar to one in SharePoint 2007. There is an area where you add content to the page and an area
for your navigation links. The content essentially means anything that you create for the SharePoint
site (for example, wiki text, photos, and Web parts). The area that surrounds the content within
SharePoint is called the chrome.

Figure 1-12  SharePoint ribbon

Ribbon

Navigation

Content

Figure 1-13  SharePoint 2010 ribbon and page structure

Server APIs and Client APIs
At some point, you will integrate your solution at some level with the SharePoint object model. For
example, you may want to get data out of, or put it into, a SharePoint list, and this will require you
to have a “mediation” point to integrate with SharePoint.

584637c01.indd 17 5/2/10 7:12:01 PM

18  ❘  Chapter 1   Introduction to SharePoint 2010

In previous versions of SharePoint, you could interact with the SharePoint object model in a
couple of different ways (such as through ASP.NET Web services, or by using a server-side refer-
ence, and coding directly against the object model). SharePoint 2007 supported ASP.NET Web
services out of the box, so you could create and deploy Web services with some degree of ease to
either the SharePoint “hive” (that is, the _vti_bin folder within the SharePoint folder hierarchy),
or you could create and deploy a Web service to IIS. WCF services were also supported by way of
IIS deployment, but were not supported out-of-the-box when deploying to the SharePoint file sys-
tem — you needed to create a spe-
cial VirtualPathProvider object
to handle the .svc extension on the
WCF service.

SharePoint 2010, however, has
made a significant advancement
in supporting services. SharePoint
2010 supports interacting with
SharePoint through multiple ser-
vice endpoints. Specifically, it sup-
ports the ASP.NET (.asmx) Web
service standard, WCF services,
and RESTful services. It also sup-
ports the server-side object model,
which enables you to access key
SharePoint artifacts from server-
deployed assemblies. This gives
you a wide array of choices as you
embark on your solution devel-
opment, which, in some way,
involves a service-based approach.
Figure 1-14 provides an overview of
these options.

NOTE  ​You’ll see more Web service coverage in Chapter 10.

Furthermore, SharePoint 2010 also provides you with a client object model, which means that you
can program against SharePoint from Silverlight, JavaScript, or Windows Presentation Foundation
(WPF) clients (or, more generally, .NET applications) simply by adding a DLL reference to your
application and leveraging a new set of APIs. This eliminates the need to use a Web service reference
whenever you want to interact with, for example, a SharePoint list, and allows you to have an API
that you can use to directly interact with the list and its properties without a service connection.

Data Modeling and Programmability
Within each SharePoint site that you create, you’re going to find many different opportunities to
program against data. In fact, you’ll very often start off with your data and design around it.

SharePoint
OM

Developers

SharePoint 2010

SharePoint
COM

ASMX

WCF

REST

Figure 1-14  Server API and client API options

584637c01.indd 18 5/2/10 7:12:01 PM

SharePoint Central Administration  ❘  19

In the world of SharePoint, data can mean many different things. For example, it might mean con-
necting a Microsoft Access 2010 database to SharePoint by way of Access Data Services by creat-
ing a database in Access and then publishing it to SharePoint. It might also mean interacting with
SQL Server data, or interacting with service endpoints through BCS to integrate with LOB and
non-Microsoft systems. Further, it might also mean leveraging SQL Server Reporting Services or
PerformancePoint Server to bring enhanced BI into your solutions. And, lastly, the data might actu-
ally come from a SharePoint list (where users manually enter the list data, and you programmati-
cally code against it).

Each of these examples will require different ways of interacting with data within SharePoint.
However, each of them will have different implications for you. For example, you’ll find it very easy
to create read/write SharePoint lists that connect to SQL Server using a connection string. However,
you’ll need to think more deeply about authentication to an outside LOB system when connecting
using the BCS. Also, you could leverage the SharePoint client object model or an out-of-the-box Web
service to interact with SharePoint list data, so you’ll need to understand how you design your appli-
cation to work with that data.

You should be interested not only in how you connect to your data sources but also in how you
interact with them. For example, in many cases, you will want to query data when you have created
a connection to it from within your SharePoint site. This may mean creating SQL queries or, more
optimally, it may mean leveraging LINQ in your applications. Because SharePoint 2010 has the
capability to abstract objects such as list data into strongly typed data objects, you can use LINQ to
query that data within your applications, making interacting and managing your data a much more
efficient process.

In a nutshell, those who are new to SharePoint will find a myriad of opportunities to select when
interacting with data. And those who were familiar with SharePoint 2007 will be extremely happy
to discover many advancements in SharePoint 2010.

SharePoint Central Administration

While this is not a book on administration, this section provides a high-level introduction to the
topic. As a developer, there may be cases where you want to leverage the capabilities built into
SharePoint Central Administration.

After you install SharePoint 2010, a separate site collection is created for your use in performing the
different administrative functions that you might do on a daily basis. This site collection is called
the Central Administration site. This site collection is run as its own Web application in IIS and
is separate from the site collections you create. But it is still the central point of administration for
your SharePoint site. All farm server administrators can access this site, and, much like your regular
SharePoint sites, you can edit and customize the Central Administration site.

Many of you who will develop for SharePoint 2010 will also be the person who administers certain
aspects of your SharePoint site. For example, this might mean that you would have to install and
configure SharePoint, understand how to upgrade some of your solutions from SharePoint 2007 to
2010, or even create new Web applications or sites using the Central Administration functions. And,
while this book is not necessarily meant to be a comprehensive overview of SharePoint 2010 Central
Administration, it does provide an introduction.

584637c01.indd 19 5/2/10 7:12:02 PM

20  ❘  Chapter 1   Introduction to SharePoint 2010

With this in mind, Figure 1-15 shows the SharePoint 2010 Central Administration site that lists the
core administration features. Within the Central Administration site, you can manage a number of
activities, which are broken out into the following eight areas:

Application management➤➤

Monitoring➤➤

Security➤➤

General application settings➤➤

System settings➤➤

Backup and restore➤➤

Upgrade and migration➤➤

Configuration wizards➤➤

Figure 1-15  SharePoint 2010 Central Administration

Application Management
Application Management is the place where you can, for example, create new Web applications and
site collections, and, more generally, manage the services that are installed on your SharePoint site
(for example, Excel Services or BCS) and manage your content database. (The content database stores
SharePoint data, and is the reason why SharePoint takes a dependency on SQL Server upon instal-
lation.) Using the application management options, you can accomplish tasks such as modifying the
properties of the content database, activating features, creating new site collections, and so on.

584637c01.indd 20 5/2/10 7:12:02 PM

SharePoint Central Administration  ❘  21

Monitoring
Monitoring is the central place within Central Administration to manage reporting, monitoring,
and the status of your SharePoint site. The Monitoring site is broken down into three areas:

Health status➤➤  — Health status provides a place for you to manage the status of different ser-
vices on your SharePoint server (such as Visio services or farm-level services). You can see
which services are failing, for example, through reports that are surfaced here. Health status
also enables you to define rules (such as the scheduling of application pool recycles).

Timer jobs➤➤  — Timer jobs enable you to define specific jobs to run, and when to run them
(such as search crawl log cleanup or audit log trimming jobs).

Reporting➤➤  — Reporting provides you with a set of tools that enables you to create and man-
age reports, run diagnostic logging, and view reports on various server-side activities.

Security
Security covers a number of areas, including the management of administrator accounts, the config-
uration and management of service accounts, the management of password change settings and poli-
cies, and the specification of authentication providers, trusted identity providers, antivirus settings,
blocked file types, Web part security, self-service security, and secure token services. The security
settings here supplement the security in the main browser UI, where users and site administrators
can assess specific permissions that relate to users for their sites.

General Application Settings
The General Application Settings site is where you configure a number of general options for your
SharePoint site collections and sites. For example, you’ll often find that you’ll want to have the capa-
bility for your SharePoint site to send mail to users. You configure these options from within this
part of the site.

Also, in the context of WCM, you may want to manage a number of deployment and approval
options (such as content deployment location and approvers of that content). You also manage that
type of activity from within the General Application Settings.

In general, think of this site as the generic settings for your SharePoint sites.

System Settings
Conversely to using the SharePoint site settings, you may also want to configure more server-centric
settings such as farm-level or access features, or even manage the services (for example, Excel
Services) that are available to users of the site collection. You manage these types of settings from
within the System Settings site.

Backup and Restore
At some point, you may find that you must back up and restore your SharePoint site. The “Backup
and Restore” features within Central Administration enable you to create and schedule regular

584637c01.indd 21 5/2/10 7:12:02 PM

22  ❘  Chapter 1   Introduction to SharePoint 2010

backups for your SharePoint, perform ad hoc backups, restore from a previously backed-up
SharePoint site, and so on. Essentially, this is your point of entry if you want to ensure that you have
a failover plan for backing up a site.

While you think you may never need this, there is sometimes the convergence of heightened per-
missions settings with user error, which can result in new users deleting parts of a site by acci-
dent — which may include something you’ve created as a developer.

Upgrade and Migration
At some point, you may find yourself wanting to upgrade from one version of SharePoint to
another — for example, moving from SharePoint Standard to SharePoint Enterprise. This requires a
license and a server-driven process to upgrade one version of SharePoint to another.

You can do this type of action from within the “Upgrade and Migration” part of the Central
Administration site. Note that you can also install service patches and check on installation and
upgrade progress from within this part of the administration toolset.

Configuration Wizards
The Configuration Wizard is simply a step-by-step wizard that configures your SharePoint server for
you. You should have seen this wizard when you first installed SharePoint. However, if you want to
run it again after installation to change some of the configurations on your SharePoint server, you
can do so.

Summary

This chapter provided a first look at SharePoint — both for those who have never seen it and for
those who are returning SharePoint developers — and answered the question of what it is and what
the high-level architectural pieces and capabilities of SharePoint are.

In this chapter, SharePoint was broadly defined as a business productivity platform for the enterprise
and the Internet. More specifically, for the developer (and in the context of this book), this definition
was recast as a platform that supports developer productivity, has extensive platform services, and
can support multiple deployment options.

One of the key takeaways from this chapter should be that SharePoint is a rich developer platform.
There are an abundance of APIs, an object model, and a powerful set of services that can be lever-
aged to create some very compelling applications. There is also a great set of tools that will support
your efforts at evolving or improving your SharePoint development skills.

In Chapter 2, you will begin to work through a number of exercises that cover installation, configu-
ration, and development.

584637c01.indd 22 5/2/10 7:12:02 PM

Summary  ❘  23

Exercises	

	 1.	 Define what SharePoint is for both the end user and the developer.

	 2.	 What are the three ways in which you can look at SharePoint from a developer’s perspective?

	 3.	 What are some of the key developer features in SharePoint 2010?

	 4.	 What are some of the key administrative features in SharePoint 2010?

584637c01.indd 23 5/2/10 7:12:02 PM

24  ❘  Chapter 1   Introduction to SharePoint 2010

What You Learned in This Chapter⊲⊲

Item Description

SharePoint Business productivity platform for the enterprise and the Internet.

SharePoint for the Developer SharePoint 2010 is about developer productivity, the availabil-
ity of rich platform services, and the capability to manage and
deploy your applications with maximum flexibility.

SharePoint Foundation Core edition for SharePoint 2010. It ships as a free down-
load. (This was called Windows SharePoint Services 3.0 in
SharePoint 2007.)

SharePoint Server 2010 Enterprise edition that is covered in this book, and will be
referred to as SharePoint throughout the book. (This was called
Microsoft Office SharePoint Server (MOSS) in the 2007 release.)

SharePoint Architecture SharePoint is built on ASP.NET and installs on a number of
64-bit Windows operating systems.

SharePoint Online Hosted version of SharePoint that is managed by Microsoft for
you in the cloud.

SharePoint Central Administration The site collection that you use to administer your SharePoint site.

Recommended Reading

There is a vast array of resources out there to get you started on developing for SharePoint 2010.
Following are some key resources:

MSDN SharePoint Developer Center at ➤➤ http://msdn.microsoft.com/en-us/sharepoint/

default.aspx

Channel 9 SharePoint Developer Learning Center at ➤➤ http://channel9.msdn.com/learn/

courses/SharePoint2010Developer/

SharePoint 2010 SDK at ➤➤ http://msdn.microsoft.com/en-us/library/

ee557253%28office.14%29.aspx

584637c01.indd 24 5/2/10 7:12:02 PM

Getting Started with SharePoint
2010 Development

What You'll Learn in This Chapter:

Getting to know the core developer pillars in SharePoint 2010 ➤➤

(including tools, platform services, and deployment options)

Becoming familiar with the primary tools to develop and deploy ➤➤

SharePoint solutions

Performing a number of installation, configuration, and simple devel-➤➤

opment tasks

Understanding site-level security settings within SharePoint➤➤

In Chapter 1, you learned about some of the basics of SharePoint 2010, including what it is
and some of the high-level features for developers. You also became familiar with some of the
basic architectural concepts, as well as the overall look and feel of a SharePoint site — both the
SharePoint site you would interact with on a daily basis and the Central Administration site.

This chapter dives deeper into the developer features of SharePoint 2010, building on the
discussion from Chapter 1. This chapter also walks you through some how-to examples that
show you some basic Web-based actions, and then progresses into some more in-depth devel-
opment samples. This chapter addresses some of the technical skills that you can expect to
learn and hone as you get more involved with SharePoint development.

Thus, the goals of this chapter are twofold:

To get you more familiar and comfortable with some of the core developer features of ➤➤

SharePoint

To begin to show how you can programmatically interact with SharePoint➤➤

2

584637c02.indd 25 5/2/10 7:12:12 PM

26  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

So, let’s jump in and get started by talking about some of the core developer features for SharePoint.

Core Developer Features for SharePoint 2010

As mentioned in Chapter 1, the major features for the SharePoint developer can be broken down
into three main categories:

Developer productivity➤➤

Rich platform services➤➤

Flexible deployment ➤➤

These three areas, in turn, can be broken down into greater detail. By doing so, you’ll see that there
exist a number of developer-centric features you can take advantage of.

Developer Productivity
For developer productivity, a significant advance for SharePoint 2010 is the tooling support that
ships with Visual Studio 2010. Included with Visual Studio are a number of project-level templates
and item-level templates that you can use to create and deploy a wide array of features and solutions
to SharePoint. For example, Figure 2-1  shows the different templates available to you, which are
described in the following list:

Import SharePoint Solution Package➤➤  — This option imports a SharePoint Solution Package
(a file with a .WSP extension), the standard way of building and deploying SharePoint solu-
tions into your current project that can be redeployed into another SharePoint instance of
your choice.

State Machine Workflow➤➤  — This represents a workflow that is based on the system or appli-
cation state and can be deployed to SharePoint. It leverages Windows Workflow and is a spe-
cial template that enables automated deployment to SharePoint.

Event Receiver➤➤  — This allows you to create server-side code that can be called and executed
by a feature or solution. Event receivers are often created to respond to a user action (for
example, when a user adds an item to a list, an event is triggered to update a log entry).

Empty Project➤➤  — An empty SharePoint project can be used as a blank starting point for proj-
ect development. You can add lists, Web parts, event receivers, and so on, to an empty proj-
ect, and then deploy it to SharePoint.

Module➤➤  — This provides a way to deploy a specific file to a SharePoint site. It allows for the
bundling and provisioning of files for a feature. So, when the feature is activated, the files are
deployed to the specified file location.

Business Data Catalog Model➤➤  — This is used to create connections to line-of-business (LOB)
systems. This is similar to what is created by SharePoint Designer 2010 (see Chapter 8), but
Visual Studio uses a more code-centric approach for more advanced and complex connectiv-
ity scenarios.

584637c02.indd 26 5/2/10 7:12:12 PM

Core Developer Features for SharePoint 2010  ❘  27

Content Type➤➤  — A custom content type (for example, a template, document, list column, and
so on) can be repurposed across SharePoint.

Sequential Workflow➤➤  — This represents a workflow that works in a sequential manner
through a set of activities and can be deployed to SharePoint. It also leverages Windows
Workflow and is a specific template that enables automated deployment to SharePoint.

List Definition➤➤  — This is used to define and deploy a list to a SharePoint site. For example,
you can define fields or columns when you create the list definition.

Import Reusable Workflow➤➤  — This is used to import a declarative workflow (only the XML
part of the declarative workflow) that has been created by SharePoint Designer 2010, and
converts it into a code workflow that a developer can then further customize.

Site Definition➤➤  — This is used to define and deploy a site into a site collection. Your site can
also contain elements such as lists or Web parts — items that are available from the Project
Item templates.

Visual Web part➤➤  — This is an ASP.NET-based Web part that you can use to build and deploy
Web parts using drag-and-drop controls. You can then write ASP.NET event handlers for
those controls.

Figure 2-1  Visual Studio 2010 project templates

584637c02.indd 27 5/2/10 7:12:12 PM

28  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

NOTE  ​You can also add item-level templates after you create a Visual Studio
project, but that will be examined in greater detail in Chapter 4. Of note is the
fact that you can also extend Visual Studio 2010 SharePoint templates to create
more custom project-level or item-level templates. For example, one interesting
community example is the creation of a Visual Web part project template that
can be deployed to SharePoint Online via a sandboxed solution.

For your SharePoint development, you may find yourself using not only Visual Studio 2010 but also
SharePoint Designer 2010, which is particularly useful for a number of key developer tasks (for
example, building rules-based or declarative workflows, creating and editing master pages and page
layouts, and creating connections to LOB systems via an ADO.NET or Web service connection).
Figure 2-2  illustrates the new SharePoint Designer 2010 interface, and, in this particular instance,
shows the creation of an external content type that maps data sources to a SharePoint list (which is
called an external list).

Figure 2-2  SharePoint Designer interface

584637c02.indd 28 5/2/10 7:12:12 PM

Core Developer Features for SharePoint 2010  ❘  29

Interestingly, professional developers historically shied away from SharePoint Designer because
it was mainly used for page layout and design. However, because the 2010 version offers more
ease of use for building workflow (that builds out in a format that is interchangeable with Visual
Studio 2010) and LOB connectivity features, developers most likely will be returning to this tool.
SharePoint Designer has made tremendous strides in the 2010 release, and it’s also free — two rea-
sons why this should be a part of your developer toolkit.

Another key productivity advance for SharePoint 2010 is the operating system support for develop-
ers. With SharePoint 2007, developers were required to use a Windows Server operating system
(OS), such as Windows Server 2003 or 2008, to host and develop for SharePoint. However, with
SharePoint 2010, you can now develop on a client OS like Windows 7. The flip side to this, though,
is that SharePoint 2010 requires a 64-bit machine on which to run.

Another developer-centric feature in SharePoint 2010 is the developer dashboard, which provides
statistics and reports about code that is executed against your SharePoint site. Those who have
coded against SharePoint in the past may have used tools like Fiddler to understand how custom
code was executing against SharePoint. The developer dashboard now tracks how your custom
code interacts with SharePoint to show where performance bottlenecks or exceptions may occur.
Figure 2-3  shows a SharePoint command that turns on the developer dashboard in the SharePoint
site in ondemand view — meaning you can toggle the view on and off as you wish.

Figure 2-3  PowerShell command

You get a variety of performance and query details for the objects on a given SharePoint page with
the developer dashboard, so you can troubleshoot potential problem areas in your custom code. For
example, you can expect information such as request/response times for your operations, Web part
load times, and database response times.

The developer dashboard is accessible through PowerShell commands, an object model, or through
stsadm commands. Figure 2-3  showed you the command using the ondemand parameter, but you
could also replace the same command with on or off to either have the developer dashboard turned
on (and have it on all the time), or turned off. Figure 2-4  shows the developer dashboard.

584637c02.indd 29 5/2/10 7:12:12 PM

30  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

Figure 2-4  Developer dashboard

There are other features that you’ll see throughout this book within the area of developer productiv-
ity. But, from a high level, you can expect to see great opportunities to build your SharePoint appli-
cations using Visual Studio 2010 or SharePoint Designer 2010. Many of the examples throughout
this book will leverage these two tools.

Through template-specific discussions and coverage of Visual Studio 2010, you’ll also learn about
some of the application lifecycle management (ALM) capabilities. Examples of ALM include having
the capability to import existing .WSP packages and using the Team Foundation Server features of
Visual Studio for your SharePoint 2010 development.

NOTE  ​While Visual Studio 2010 and SharePoint Designer 2010 should be
treated as your primary ways of developing for SharePoint, the Expression
Blend Suite also offers some value for the developer when building advanced
user interfaces (UI) for SharePoint, such as a Silverlight-based UI.

Rich Platform Services
In terms of rich platform services, SharePoint has evolved quite a bit from SharePoint 2007. For
example, you have a rich set of UI objects that you can develop against (such as the SharePoint rib-
bon), and you have a core set of SharePoint artifacts that can be used to build out your SharePoint
site (such as Web parts and lists), which you’ll get a chance to test out later in this chapter.

Beyond these core SharePoint artifacts, you also have a set of services you can leverage in your
SharePoint development and client-side application programming interfaces (APIs) that can be used
in your application development. As discussed in Chapter 1, these services range from ASP.NET (for
example, Lists.asmx) to native and custom Windows Communication Foundation (WCF) support
(for example, myCustomService.svc) to RESTful services (for example, ListData.svc). SharePoint
2010 also supports the capability to build and deploy custom services into the SharePoint 2010

584637c02.indd 30 5/2/10 7:12:13 PM

Core Developer Features for SharePoint 2010  ❘  31

folder hierarchy (now referred to as the SharePoint root), or you can deploy ASP.NET and WCF ser-
vices to Internet Information Server (IIS) — you’ll see this in detail in Chapter 10.

NOTE  ​In SharePoint 2007, the server file system was often called the
“SharePoint hive.” In SharePoint 2010, it is now referred to as the “SharePoint
root.” However, you may hear developers refer to either of these terms, which
mean the same thing: the SharePoint file system (<drive>:\Program Files\
Common Files\Microsoft Shared\Web Server Extensions\14).

Beyond the core support for services, SharePoint 2010 also ships with a number of services out of
the box that are extensible and can be used in a variety of ways. For example, one of the services
that really accelerates SharePoint 2010 development for the beginning professional is the use of the
Business Connectivity Services (BCS), which is discussed more in Chapter 8. In essence, BCS enables
you to quickly integrate LOB system data with SharePoint and Office 2010.

Another set of server-side services that extend the capabilities of the Office client technologies to
SharePoint is Excel services and Word services, which are server-side ways of interacting with your
Microsoft Office documents. For example, you can use Word Services to batch process the transla-
tion of .docx files (the standard format of documents created with newer versions of Word) into PDF
or XPS files on the server — which provides a huge cost savings when manipulating data into docu-
ments and then processing those documents for mass distribution to your customers. You’ll also see
coverage of other server-side services in this book, including Visio services (which provide diagram-
ming and workflow capabilities for SharePoint) and Access services (which enable publishing of
Access data to SharePoint).

Data programmability capabilities represent another significant advancement in SharePoint 2010.
Key to any application design is knowing what data source or service you’re programming against.
SharePoint development is no different. If you understand the data source or the Web methods that
connect into that data source, you can design your middle-tier and UI experience from there.

In SharePoint development, your data could be represented as a SharePoint list or derive from exter-
nal data sources that are either ADO.NET-based or integrated using a service-based architecture.
This data programmability will become especially apparent in the way in which you connect lists
to back-end data sources, and the ways in which you can query and filter that data once you’ve suc-
cessfully created a connection to it through, for example, Language Integrated Query (LINQ) for
SharePoint (which applies the principles of LINQ to data that resides in SharePoint).

The following code snippet shows the capability to retrieve data from a SharePoint list and then
treat that list as a strongly typed object by using LINQ (shown in boldface). The query enables
you to filter the data and then bind it to the data-display object, which, in this case, is a datagrid
called myGrid. This represents a great way to query and filter with data that is being retrieved from
SharePoint.

protected void Page_Load(object sender, EventArgs e)
{
 ProjectsDataContext dataContext = new ProjectsDataContext
 (“http://stefoxdemosvr/customers);
 EntityList<MyCustomers> Customers = dataContext.GetList<MyCustomers>

584637c02.indd 31 5/2/10 7:12:13 PM

32  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

 (“Customers”);

 var custQuery = from customer in Customers
 where cust.Sales >= 3000000
 orderby cust.Name
 select new { cust.Name, cust.Sales };

 myGrid.DataSource = custQuery;
 myGrid.DataBind();
}

Another major investment in SharePoint 2010 is the capability to support Silverlight applications
out of the box. You will see that just this one feature alone will open up quite a few opportunities
for you to really begin to explore and build exciting and dynamic experiences for your users using
Silverlight support.

This support comes in two primary ways:

You can use the Silverlight Web part as ➤➤

a container for your Silverlight applica-
tion, as shown in Figure 2-5.

Silverlight development on SharePoint ➤➤

2010 comes already configured and sup-
ported — so, for example, you have no
additional server-side configuration you
must do to prepare your environment.
(In SharePoint 2007, there were a num-
ber of configuration steps you needed to
undertake to get Silverlight to work.)

There are many, many more platform services (such as list lookups and relationships, workflow
enhancements, site theming with live preview, XLST-supported customization, and so on), some
of which are explored throughout this book and others that you’ll discover as you get more deeply
entrenched in SharePoint development. In fact, there are too many to fully articulate in one chapter.
However, your key takeaway should be that there are a ton of great platform services you can lever-
age to get started developing for SharePoint 2010.

Flexible Deployment
With SharePoint 2010, you have two primary deployment options:

On-premises➤➤  — The on-premises version of SharePoint is where you or your company own
the assets on which the instance of SharePoint runs. For example, you deploy it on your cor-
porate network behind the firewall, you manage the hardware and updates to that hardware,
and you manage the administration of the site. Subsequently, you absorb the costs of running
SharePoint for your organization.

SharePoint Online➤➤  — SharePoint Online is a hosted version of SharePoint that Microsoft
runs for you out of its data centers. In SharePoint Online, you build and deploy your

Figure 2-5  Silverlight Web part

584637c02.indd 32 5/2/10 7:12:13 PM

Core Developer Features for SharePoint 2010  ❘  33

SharePoint solutions to a sandboxed environment — a ring-fenced environment that runs in
the cloud within the purview of a site collection. For example, you can build a solution that
reads and writes to a contact list within a site collection. This works on-premises, and can
equally work in SharePoint Online.

The functionality of the two is very similar. However, following are a couple of major differences:

When you navigate to SharePoint Online, you are accessing an instance of SharePoint in the ➤➤

cloud (so you are accessing it from the Web, as opposed to behind a corporate firewall or
private network).

As a developer, you have some restrictions because you are primarily deploying custom solu-➤➤

tions into a managed environment within the site collection. This environment is managed by
Microsoft’s IT staff.

However, the latter notwithstanding, if you combine a new feature in SharePoint 2010 called
sandboxed solutions with SharePoint Online, you can maintain a very comfortable price point for
SharePoint and still reach many development goals. For enterprise-level deployments of SharePoint,
you will more than likely deploy to the on-premises version of SharePoint, and sandboxed solu-
tions can also be used here. However, small and medium-sized businesses may find that SharePoint
Online is the way to go. Either way, you should know that there is a good developer story, and if you
want to have symmetry across both on-premises and SharePoint Online, then sandboxed solutions
are one of the ways in which you can achieve that.

Sandboxed solutions also enable developers to have more control over their site collections. This
frees up the farm-level administrators from the developers/site collection administrators, and enables
both to have a tighter level of management over their environments, as well as the code running in
that environment. The challenge was creating and deploying solutions you could trust not to do bad
things to the SharePoint farm. With sandboxed solutions, site collection administrators have the
authority to manage the applications (or delegate that authority to others) in their site collection.
And developers have more flexibility, at the cost of using a limited subset of SharePoint, to create
solutions they know will be deployed in a safe and rapid manner.

In essence, what you’re deploying to SharePoint is a partially trusted application that runs in a spe-
cial “sandbox.” This sandbox runs at the site-collection or site level, as opposed to the farm level,
and gives you more flexibility for building custom solutions for a surface area in which you have a
vested interest and potential site ownership. What runs within a sandboxed solution is a subset of
the SharePoint object model. For example, using sandboxed solutions, you can build and deploy list
definitions and instances, content types, customize navigation, create and deploy modules or custom
files, a limited set of event receivers, Web parts, custom actions, and workflows.

For example, let’s say you want to build a custom ASP.NET application and deploy it as a Web part
to a site within a site collection. You create the Web part as a partial trust application, so, when
it comes time to deploy that application, Visual Studio knows where to deploy it — that is, in the
Sandboxed Solutions Gallery, where you can activate or de-activate it. With this model, this type of
solution development will broaden the pipeline and really open up SharePoint development opportu-
nities. Figure 2-6  shows the Solutions Gallery, where you upload and activate your custom solution.

584637c02.indd 33 5/2/10 7:12:13 PM

34  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

Figure 2-6  Sandboxed Solutions Gallery

Key Skills for the SharePoint Developer

There are a number of skills that are important to learn before you can become proficient at devel-
oping SharePoint 2010 applications. Admittedly, there are many different types of development that
you can accomplish with SharePoint 2010 and still call yourself a SharePoint developer. However,
there is a set of core skills you’ll want to have in your back pocket.

The first is a baseline understanding of how Web pages are structured and rendered using Hypertext
Markup Language (HTML) standards. SharePoint 2010 is a Web-based technology and is built
on ASP.NET. Thus, it is rendered as pages with an .aspx extension (for example, foo.aspx). This
means that if you have a baseline understanding of how .aspx pages are structured and where
HTML meets ASP.NET, then you can get up and running very quickly in terms of creating and cus-
tomizing SharePoint site pages.

One example of how you might edit the content on a SharePoint Web page is using the inline HTML
editing capabilities, where you can edit HTML within an editor and then save the HTML code
to render on the SharePoint page. For example, Figure 2-7  illustrates the new wiki experience in
SharePoint, and shows how you can edit the HTML source when the page is in Edit mode through
the HTML Source editor (select Site Actions ➪ Edit, click on the top region of the actual wiki page
(in the content area of the page), and then choose “Markup and Edit HTML Source”). When you
save, SharePoint saves your HTML changes to the wiki page, and renders the content. Note that this
method of HTML source injection into the page also supports other mark-up standards and syntax
(for example, JavaScript or CSS).

Another example of how you might edit your SharePoint site pages is with your page design and
layouts from within SharePoint Designer 2010. SharePoint Designer is a much richer development
environment than the inline HTML editors that you use in the browser. It enables you to drag and
drop controls onto a page, view design-time changes that you’re making to the page, create data
views, explore the files and folders that live on your SharePoint site through a site hierarchy, and so
on. If you contrast this with the HTML Source editor (which only provides page content saving and
rendering), SharePoint Designer is a more feature-rich experience, enabling you to create, edit, and
manage content across the entire SharePoint site.

584637c02.indd 34 5/2/10 7:12:13 PM

Key Skills for the SharePoint Developer  ❘  35

Figure 2-7  HTML editing on a SharePoint page

If you’re using SharePoint Designer, you may want to use Cascading Style Sheets (CSS), which is
a way of providing custom formatting and structure to your Web pages. (You can apply the CSS
transformations at design-time with SharePoint Designer to see the changes.) And you may also
want to include JavaScript functions, which you can also use in SharePoint Designer.

Thus far, you’ve seen three technologies about which you may want to have some level of under-
standing — HTML, CSS, and JavaScript. One that has not been mentioned but that you’ll come
across in your SharePoint development is Extensible Markup Language (XML). SharePoint makes
good use of XML throughout its architecture and programming model, and you’ll see references to
it throughout this book. Further, to translate XML into styled or structured HTML pages, you may
need to leverage Extensible Stylesheet Language (XSL) and XSL Transformations (XSLT).

These are the baseline languages you want to be sure that you have some familiarity with, and
there’s no reason why you couldn’t exist solely in this space and become a proficient SharePoint
developer. Several people who focus their time on this type of SharePoint customization make a
good living doing so.

However, if you want to move into the solution-development aspect of SharePoint (which is what
this book drives you toward), you must jump into the world of .NET development. SharePoint 2010
is built on ASP.NET as a foundational technology, so, by virtue of this architecture, you can build
and deploy ASP.NET applications to SharePoint with relative ease.

584637c02.indd 35 5/2/10 7:12:13 PM

36  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

An example of this is building and deploying a Web part that uses ASP.NET controls and events.
Further, when you enter into the world of .NET (if you’re not there already), you’ll begin to real-
ize that there are a lot of things that you can do with SharePoint within the wider scope of .NET.
This is because you can deploy custom assemblies (that is, compiled applications using C# or Visual
Basic) that you create using the .NET Framework and install those as solutions on top of SharePoint.
These solutions can run the gamut; they could be simple .NET applications that leverage a small set
of ASP.NET controls, or they could be more complex Silverlight applications that are still based on
.NET but are more centric to an advanced UI design and experience.

So, as a recommendation for the skills you’ll want to develop as you embark on your SharePoint devel-
opment career, the following is a list you might think about working down as you learn SharePoint:

The first item is an understanding of HTML, XML/XSL, and CSS as a structural baseline to ➤➤

understand page rendering in SharePoint. Having some dynamic Web language experience
would also be good (such as JavaScript).

The second item is an understanding of ASP.NET. If you don’t have skills in these first two ➤➤

items out of the gate, you’ll certainly gain them as you develop more with SharePoint. For
those who are ASP.NET developers today, the transition to SharePoint development will be
much easier.

The third item is a baseline understanding of one of the managed code languages — that is, ➤➤

C# or Visual Basic (VB.NET). These are object-oriented languages that fully leverage the
.NET Framework, and both are supported within Visual Studio 2010 for SharePoint 2010
development.

The last is a wider understanding of the .NET Framework such as Windows Workflow ➤➤

Foundation or WCF. Again, this is something that will come with experience, but be open to
learning .NET because you’ll begin to understand elements you can apply to your SharePoint
development efforts.

This book presupposes that you have a baseline understanding of building Web sites and some base-
line knowledge of how .NET works.

You may discover along the way that there are other languages that you want to learn — for
example, you may be interested in integrating dynamic languages such as Ruby, Python, or PhP into
SharePoint — and this is possible but out of scope of this book. This book is about the basics of pro-
fessional development, which targets the technologies described previously.

With all this talk of development, it’s time to put this theory to practice. In the next section, you’ll
get a standalone version of SharePoint 2010 up and running and set up your development environ-
ment so that you can get started with a couple of end-user and developer-oriented walkthroughs.

Your Development Environment

Now that you understand some of the core developer features of SharePoint, as well as some of the key
developer skills you’ll need, you’re probably eager to get started developing. Before you can start devel-
oping, though, you must set up your development environment. Let’s first tackle the baseline software
requirements and then examine the different options you have in setting up your environment.

584637c02.indd 36 5/2/10 7:12:13 PM

Your Development Environment  ❘  37

Following is the baseline software you need to set up your development environment:

A Windows 64-bit-compliant operating system (for example, Windows Server 2008 R2 or ➤➤

Windows 7)

SharePoint Foundation 2010 and SharePoint Server 2010➤➤

SharePoint Designer 2010➤➤

Microsoft Office (Professional Plus) 2010➤➤

Visual Studio 2010 ➤➤

.NET Framework 4.0 ➤➤

Microsoft Expression Blend (optional, but recommended for Silverlight programming)➤➤

SQL Server (Express) 2008➤➤

Not only will having this software enable you to follow along with the coding examples used
throughout this book, but you will also find that these are the baseline requirements to get yourself
up and running for SharePoint 2010 development in your organization.

However, you do have a choice as to whether you should build this out “on the metal” (that is,
install all of the software on the hard drive of your development machine) or create a virtual image
and install all of the software on that image. Many developers prefer to build out a virtual envi-
ronment to host all of the bits that they need to code against and then use that as the development
environment.

For example, for SharePoint 2007, many developers used Virtual PC or Virtual Server (virtualiza-
tion technologies) to create a virtual hard disk so that they could then rebuild that environment on
a regular basis without having to disrupt their primary working environment. Further, they could
keep the environment isolated and then, when finished with the development within the virtual envi-
ronment, move the code into a production environment. Virtualized environments are also useful if
you require a more portable environment, such as demo or prototype environments.

NOTE  ​You can download a preconfigured virtual machine from Microsoft’s
Download Center at www.microsoft.com/downloads/details.aspx?
FamilyID=0c51819b-3d40-435c-a103-a5481fe0a0d2&displaylang=en.
You will also find instructions on the Download Center page to add the virtual
machine to an instance of Hyper-V.

Installing and Configuring Windows Server Hyper-V
In Windows 2008 R2 (64 bit), you can use the Hyper-V Manager to manage and run your virtual
machines. The environment is a role you set up when configuring your Windows operating system.
For example, after you install Windows Server 2008 R2, you can add the Hyper-V role through the
Server Manager.

584637c02.indd 37 5/2/10 7:12:13 PM

38  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

Figure 2-8  shows an example of the Add Roles Wizard at the Server Roles step in the wizard. You
can see that, when you invoke the wizard, you have a place where you can click the checkbox beside
the Hyper-V role, and then Windows installs it for you. Note that in this figure, the Hyper-V role
has been added to the machine.

Figure 2-8  Hyper-V role

Assuming that you already have your Windows operating system in place, let’s walk through the
process of installing the Hyper-V role.

Installing Hyper-VTry It Out	

Installing Hyper-V is an alternative to setting up an “on-the-metal” development environment. To
install Hyper-V, follow these steps:

	1.	 Click Start ➪ Administrative Tools ➪ Server Manager.

	2.	 In the Server Manager, scroll to the Roles Summary, and then click Add Roles. Select Hyper-V
from the list.

	3.	 Server Manager takes you through a number of steps. Accept the default options, and click Next
until the Install button is enabled.

584637c02.indd 38 5/2/10 7:12:13 PM

Your Development Environment  ❘  39

	4.	 Click Install to complete the Hyper-V installation. Note that Windows will prompt you for a sys-
tem restart. Restart your computer to complete the Hyper-V installation.

	5.	 After you have Hyper-V installed, you can then add a Hyper-V compliant .vhd file if your team
has already prepared one (see the download location noted previously), or you can go about creat-
ing one from scratch.

	6.	 To add an existing image, open the Hyper-V snap-in by clicking Start ➪ Administrative Tools ➪
Hyper-V Manager.

	7.	 Under Actions, click New ➪ Virtual Machine. Specify a Name and Location for the image, and
click Next.

	8.	 You’ll then need to assign a level of RAM to the image. Specify 6,500 MB or more.

	9.	 Accept the default option for Configure Networking and click Next.

	10.	 Click the radio button beside “Use an Existing Hard Disk,” and then browse to that disk and
click Finish.

NOTE  ​If you want to create an image from scratch, you can select the first
option (“Create a Virtual Hard Disk”) and then select one of the options for how
you want to install the operating system on the new image. An easy way to
install the image is to have the Windows DVD in your machine’s CD/DVD drive
and select the second option. Associate a specific drive with the installation
process (the drive that contains the Windows Installation DVD). When the wiz-
ard completes, it will automatically begin installing the OS from that drive, after
which you can install all of the software needed for your development.

Once you’ve completed the process of installing Hyper-V and adding a (or creating a new) virtual
hard disk, the last (and optional) step is to set up a network switch with your Hyper-V instance.
This will make it easy for you to both remotely access your Hyper-V development environment and
create a network share on your virtual hard disk where you can move software to be installed on
your virtual hard disk.

Creating a Network SwitchTry It Out	

The network switch enables you to remote into your virtual machine. To configure the network switch
with Hyper-V, follow these steps:

	1.	 In your Hyper-V Manager, click Virtual Network Manage from the Actions pane.

	2.	 Select New virtual network and Internal, then click Add. Provide a name for the network, select
Internal Only, and click OK, as shown in Figure 2-9.

584637c02.indd 39 5/2/10 7:12:13 PM

40  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

Figure 2-9  Adding a network adapter

	3.	 On the host machine, click Start ➪ Control Panel ➪ Network and Internet ➪ Network and Sharing
Center.

	4.	 Click Change Adapter Settings, and right-click the network adapter you just added. Select
Properties.

	5.	 Select Internet Protocol Version 4 (TCP/IPv4), and click Properties.

	6.	 Click “Use the following IP Address,” add a unique IP address in the IP address field (for example,
192.168.1.1), and click the Subnet mask field to have one automatically generated for you, as
shown in Figure 2-10.

	7.	 The last step is to configure the network adapter on the virtual hard disk. To do this, start the
image by clicking Start ➪ Connect in the Hyper-V Manager.

	8.	 Log in to your virtual image, and then click Start ➪ Control Panel ➪ Network and Internet ➪
Network and Sharing Center.

	9.	 Click Change Adapter Settings.

584637c02.indd 40 5/2/10 7:12:14 PM

Your Development Environment  ❘  41

	10.	 Configure the network adapter properties as you did earlier by right-clicking the network adapter
that is present by default on the image. Select Properties ➪ Internet Protocol Version 4 (TCP/IPv4),
and then change the IP address to be something unique (for example, 192.168.1.50). Lastly, tab to
the Subnet mask to have one automatically generated for you.

	11.	 Click OK to complete the process.

	12.	 To test the remote desktop, click Start ➪ All Programs ➪ Accessories ➪ Remote Desktop
Connection. Type the IP address you configured within the virtual hard disk, and then click
Connect. Windows will connect you to your development environment via Remote Desktop.

Figure 2-10  IP properties

How It Works

Using these instructions, you now have an environment that leverages the Hyper-V role within
Windows Server 2008 R2. What this means is that you can have a virtualized instance of SharePoint
on a virtual image (that is, a .vhd file) that you can start, save, and stop using the features of Hyper-V.
It works by virtue of the Hyper-V role hosting the images and running them in what effectively
becomes a separate environment. The separate (or virtualized) environment can be integrated with the
host or parent environment through the network switch that you set up to open up the resources avail-
able to the virtual image.

584637c02.indd 41 5/2/10 7:12:14 PM

42  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

Installing SharePoint Server 2010
At this point, you should have successfully created and mounted a virtual machine, and you should
have configured the network switch so that you can remote into your development environment. You
can continue to work with this virtual machine and install all of the software, or if you want to install
all of the software on your machine, you can do that as well. While this chapter won’t cover all of the
software prerequisites, it will briefly walk you through the SharePoint 2010 installation procedures.

There are a number of different ways of installing SharePoint within an environment. A SharePoint
server farm may consist of one or more servers providing various services to the farm. You can also
configure SQL Server when installing SharePoint. (SharePoint uses SQL Server to store all of its
content.) All of the services can be balanced between one or more servers in the farm. A multi-server
farm is typically a higher-end administrative function and one that, at this point, should remain a
goal for your future learning.

For now, install the standalone SharePoint 2010 instance to get started. This will provision a single-
server instance for you without too much configuration hassle, but, more importantly, it will be
simple to set up and configure. This installation method will also give you a baseline development
environment to test out the examples in this book.

WARNING  ​This would not be the option you choose when deploying a SharePoint
2010 server to production. There are a number or restrictions that come along
with the standalone installation — for example, content database size restrictions.
When you do get ready for production-ready SharePoint development, build a rep-
licated production environment that sits in a development (and staging) environ-
ment before you drop your code into a production environment.

Installing a Standalone Instance of SharePoint 2010Try It Out	

There are various ways to install and configure SharePoint 2010, one of which is a standalone server
installation. To install a standalone instance of SharePoint, follow these steps:

	1.	 Click the Setup.exe file on your SharePoint 2010 installation DVD (or from your installation
location).

	2.	 You’ll be prompted to “Agree to the License Terms.” Click the “I accept the terms of this agree-
ment” checkbox and click Continue, as shown in Figure 2-11.

	3.	 At the next step, you have the opportunity to select different installation options. Click the
Standalone button to invoke the standalone installation.

	4.	 SharePoint will then work through the installation process.

	5.	 When it has completed the installation process, you will be prompted with a dialog where you
can choose to run the Configuration Wizard, which configures things like the services, content
database, and so on, for first-time use, as shown in Figure 2-12. Click the “Run the SharePoint
Products and Technologies Configuration Wizard now” checkbox and click Close. The
Configuration Wizard is automatically invoked upon closing this dialog.

584637c02.indd 42 5/2/10 7:12:14 PM

Your Development Environment  ❘  43

Figure 2-11  SharePoint 2010 license terms

Figure 2-12  Configuration Wizard

	6.	 SharePoint works through a series of 10 configuration steps to complete the installation process.

	7.	 When complete, it will prompt you with a Configuration Successful dialog. Click Finish to com-
plete the process.

584637c02.indd 43 5/2/10 7:12:14 PM

44  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

	8.	 SharePoint should automatically prompt you with the standalone SharePoint instance you created.
Upon first opening, it will ask you to select a type of site. Explore the different site templates that
are available to you, but choose Team Site and click OK. Leave the default security options and
click OK. Your site will then be created and will open at the default landing page, as shown in
Figure 2-13.

Figure 2-13  Default site

How It Works

The installation process installs all of the SharePoint server files on your local development machine.
Since you opted to do a standalone installation, SharePoint uses the name of your server as the default
name for your base SharePoint site collection that is created during the installation process. When it
is installed, you can navigate to the SharePoint root to explore the files and folders that were installed
as a part of the SharePoint installation (../Program Files/Common Files/Microsoft Shared/Web
Server Extensions/14).

584637c02.indd 44 5/2/10 7:12:14 PM

Getting Familiar with SharePoint 2010  ❘  45

At this point, you now either have a site collection up and running through a virtual hard disk, or you
have a site that is running “on the metal” on your development machine. If you’ve opted to install on
the metal, remember that you would now install the other products listed as prerequisites for the devel-
opment environment (for example, Visual Studio 2010, .NET, Microsoft Office, SharePoint Designer
2010, and, optionally, Expression Blend). You may also want to upgrade the default SQL Server
Express edition to the SQL Server Standard edition. From here on out, this chapter will not provide
guidance on what specific environment you should use. Rather, it will walk you through the examples
assuming that you are comfortable in whatever environment you have created for yourself.

Now, let’s move on to getting you more familiar with the SharePoint UI, from the perspectives of
both an end user and a future SharePoint developer.

Getting Familiar with SharePoint 2010

As discussed in Chapter 1, the architecture of SharePoint extends from an entry in IIS as a Web
application through to site collections, sites (and subsites), and, of course, all of the elements that
make up a site (such as lists, document libraries, content types, and so on). During the installation
process, SharePoint created a default site collection, and, as you configured the site for first use, the
walkthrough instructed you to create a Team Site, which is a specific site template.

SharePoint has a number of different site templates that you can use when creating new sites such
as Team site, Blank site, Meeting Space, Wiki, Blog, and so on. You likely explored these as you
completed the installation process. You could think of the site template as simply providing you with
a predefined structure for your SharePoint site, that includes items such as an Announcements or
Calendar list, or specific Web parts that may be pertinent to the type of site you’re trying to create
(for example, business intelligence Web parts for a Reports Center site).

You can use the out-of-the-box templates that ship with SharePoint to begin crafting your site, and then
use that as your foundation for customization, or you can completely build a site template from scratch
and build on that. Get familiar with each of the site templates first, to understand their functionality
and their points of extensibility, before moving on to the custom site templates (which take a little more
effort and understanding to build). SharePoint provides you with a lot of infrastructure for sites out of
the box, so you won’t be short on functionality for a site within your development efforts.

The URL of my root site collection is http://fabrikamhockey, which was essentially created by
using the name of my server. The Team site (which is the default site template for a new SharePoint
site) is a straightforward template and includes a number of default options.

For example, in Figure 2-13, on the Quick Launch Toolbar, you can see that the Team site was cre-
ated with Site Pages and Shared Documents libraries, which represent special lists where you can
store Web pages and documents, respectively. You’ll also notice that there is a Calendar list and a
Tasks list, along with a Team Discussion. Within the content portion of the site collection, you have
a welcome message with some text and a couple of Web parts that display a default image and sur-
face the Shared Documents on the landing page of the site collection.

To get you more familiar with SharePoint 2010, let’s walk through a few exercises.

584637c02.indd 45 5/2/10 7:12:14 PM

46  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

Working with SharePoint Sites
While this book is about development, you will want to learn some of the fundamental aspects of
SharePoint administration. Having some knowledge in this space will help you quite a bit in your
development efforts.

For administration, there are a few things that you’ll need to do as a developer. For example, you
may need to create a site collection within which you can create and add SharePoint sites. You may
also need to configure email to be sent from that site, or ensure that specific SharePoint services
(such as Excel Services or BCS) are configured with the appropriate security configurations.

One common activity you (or your farm administrator) will use SharePoint Central Administration
for is the provisioning of a new SharePoint site collection (which SharePoint did for you already
through the installation process you walked through earlier in this chapter). Let’s tackle that now.

Creating a Site Collection in Central AdministrationTry It Out	

Site collections are the main point of entry for you when you are interacting with SharePoint. To create
a site collection using the Central Administration features, follow these steps:

	1.	 Click Start ➪ All Programs ➪ Microsoft SharePoint 2010 Products. Select SharePoint 4.0
Central Administration. This will open your browser and load the SharePoint Central
Administration home page.

	2.	 After Central Administration has loaded, click Create Site Collections.

	3.	 On the Create Site Collection page shown in Figure 2-14, add a Title, Description, and URL. Select
the type of template you want to use for the site (for this example, choose Team Site). Add the pri-
mary and secondary site administrators, and leave the Quota Template set to its default (No Quota).

Figure 2-14  Central Administration Create Site Collection page

584637c02.indd 46 5/2/10 7:12:14 PM

Getting Familiar with SharePoint 2010  ❘  47

	4.	 After you click OK, SharePoint will provision a new SharePoint site collection based on the infor-
mation you provided. You will also be taken to the Top-Level Site Successfully Created page,
shown in Figure 2-15, where you can then click the link to your new site collection to load it.

Figure 2-15  Top-Level Site Successfully Created page

How It Works

Central Administration is the place where you create new site collections. In this walkthrough,
SharePoint used your selection (that is, the Team Site template) to structure a site for you. The Central
Administration process amended the IIS Web application to include any newly generated files, which
were also added to your SharePoint file system. Any new sites or subsites you add to the site collection
will further amend the file system hierarchy.

With your top-level site collection created, you can now create and add a site. In the next exercise,
you create a new site within your site collection.

NOTE  ​If you’re using the virtual machine from the Microsoft Download Center,
then the appropriate trust and application settings should already be set for you
in your Internet browser. However, if you’ve set up your environment on the metal,
then you may need to set your intranet site as trusted, enable script, and so on.
For Internet Explorer, this can be done from the Security tab (click Tools ➪ Internet
Options).

Creating a Site within a Site CollectionTry It Out	

Site collections can include multiple sites and/or subsites. To create a site within the site collection, fol-
low these steps:

	1.	 Navigate to the home page of your SharePoint site by opening Internet Explorer and entering in the
SharePoint URL (for example, http://fabrikamhockey.com).

	2.	 Click Site Actions ➪ View All Site Content.

	3.	 Click Create. This launches a Silverlight-enabled Create gallery.

584637c02.indd 47 5/2/10 7:12:14 PM

48  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

	4.	 Click Site ➪ Team Site.

	5.	 Enter some text for the Title, Description (optional), and the URL name (for example, sprocks)
for your Web site address, as shown in Figure 2-16.

Figure 2-16  Creating your first team site

	6.	 Click Create to complete the process of creating the new team site.

SharePoint creates a new site, with all of the basic plumbing, that maps to the specific SharePoint tem-
plate you selected (the Team site). The result of this quick walkthrough should be a number of default
navigation options down the left-hand side, a standard ribbon structure, and some default content in
the main content portion of the page.

If you disable Silverlight in your browser, this will disable the Silverlight-enabled Create view that you
used in the previous walkthrough. To disable (or enable) Silverlight in your browser, click Tools ➪
Internet Options ➪ Programs ➪ Manage add-ons. You then find Silverlight in the list and either click
Enable or Disable. If you disable, an HTML view of the Create page will be displayed instead of the
Silverlight-enabled view.

Let’s now perform a couple of editing functions against this page. Follow these steps:

	1.	 Click Site Actions ➪ Edit Page. This opens the page in Edit mode.

	2.	 Write some text in the wiki content by clicking in the top part of the content window and typing
some text. Note that there are formatting options available to you, so you can resize and format
text for a specific size and look.

	3.	 To exit the site, click Save and Close.

584637c02.indd 48 5/2/10 7:12:14 PM

Getting Familiar with SharePoint 2010  ❘  49

	4.	 After your team site exits Edit mode, under the “Getting Started links on the Home Page for a
Team Site,” click “Change site theme” and change the theme. Click Apply.

If you don’t want to commit to the theme you selected, then you can click Preview and SharePoint will
display your SharePoint site in Preview mode. You may need to allow pop-ups from your site to view
the preview.

How It Works

With the site collection acting as the parent Web site, the site creation process again leverages the Team
Site template to build a new team site and deploy it to the site hierarchy. Here again, the SharePoint file
system and IIS settings are amended to handle the new site that was added.

Although using Central Administration is one way to create a site, another way is to programmati-
cally create a site using the SharePoint project templates within Visual Studio 2010. This is useful
when you want to create site templates that can be used within your team or across the organization
with specific customizations in place.

Create a Simple SharePoint Site ProgrammaticallyTry It Out	

You have the option to create a site through the Web-based features in SharePoint or to use Visual
Studio 2010. To create a simple site programmatically using Visual Studio 2010, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New ➪ Project. Select the Site Definition project tem-
plate under the SharePoint 2010 templates folder.

	2.	 Provide a name and location for your project, and click OK.

	3.	 Specify the site and click Validate to test the connection to the site. By default, sites can only be
deployed as full-trust solutions (that is, farm solutions), so you do not have the option to deploy
the site as a sandboxed solution. Select "Deploy as a farm solution" and then click Finish to create
the project, as shown in Figure 2-17.

Figure 2-17  Site and security level dialog

584637c02.indd 49 5/2/10 7:12:14 PM

50  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

	4.	 If you didn’t change anything within the project, you could right-click the project and select
Deploy. SharePoint would then deploy the new site template within the specified site collection.
However, the site would essentially be a blank site template with no other objects (such as lists,
document templates, or features) associated with it. Thus, you’d likely want to add some sort of
customization to the site. You can do this, for example, by editing the onet.xml file (which Visual
Studio opens by default) and the default.aspx files that are created as a part of the solution.

	5.	 When your site has successfully deployed, it is now available as a site template — similar to the
Team Site template or Blank template.

	6.	 To use your template, navigate to your site collection landing page and click All Site Content. Click
Create and select “Sites and Workspaces.”

	7.	 Provide a name, description, and URL for your site, and, in the SharePoint Customization tab,
select the site template you deployed to SharePoint. Click Create.

How It Works

Similar to using the SharePoint administrative and site-creation functionality to create a new site,
Visual Studio can programmatically create and deploy the site template and site to SharePoint. Whereas
SharePoint provides you with some limited metadata (such as template, name and URL), the programmatic
way of building out a site provides you access to an underlying XML layer where you can customize the site
with more options. Further, you can use Visual Studio to add other artifacts to your site (for example, Web
parts, list definitions and instances, content types, and so on). So, when users provision a site using your
custom template, all of these options will be available to them after the site is created.

Working with SharePoint Lists

Now that you have a site collection up and running, let’s jump in and look at some of the things that
you can do with the site. The first exercise you’ll walk through is creating a list in SharePoint and
manually adding some data to that list. While you can programmatically add data to and remove it
from a list, this exercise will help you understand what the end user would go through when inter-
acting with the list. For this exercise, disable the Silverlight add-on so you can also see the HTML
view that SharePoint provides.

Creating a List and Adding Data to the ListTry It Out	

Lists are one of the major entry points for developers in SharePoint. To create a list and add some data
to that list using the Web-based interface, follow these steps:

	1.	 Navigate to the home page of your newly created SharePoint site collection (for example, the home
site collection page that was created during the installation process).

	2.	 Click All Site Content.

	3.	 Click Create. This invokes the Create page, where you can select a specific item to create and pro-
vide a name for that item.

	4.	 Select the Custom List option. Enter Customers into the Name field, and a description in the
Description field. Leave the Quick Launch navigation setting on Yes, and Click Create.

584637c02.indd 50 5/2/10 7:12:15 PM

Working with SharePoint Lists  ❘  51

This will create a new custom list for you; however, there will only be one column in the list. Let’s add
three columns, called Region, Size, and Sales.

	1.	 To add the Region column, click the Create Column button on the SharePoint ribbon. This will
invoke the Create Column form. Enter Region in the Name field, and select Choice as the type of
field. Then, add four choices in the choices settings: East, West, North, and South. Leave all other
default selections and click OK.

	2.	 To add the Size column, click the Create Column button. Add Size to the Name field, and select
Choice as the type of field. Then, add three choices: Small, Medium, and Enterprise. Click OK.

	3.	 To add the Sales column, click the Create Column button. Add Sales to the Name field, and
select the “Single line of text” field. Click OK.

	4.	 Lastly, change the name of the default Title field (the one field that is created by default when you
create a custom list). To do this, click the List Settings button on the SharePoint ribbon. Click the
Title link, and then change the name of the column from “Title” to “Name.” Click OK.

	5.	 Even though you changed the display name of the default column name from “Title” to “Name,”
programmatically, in some cases, you’ll still need to develop using the Title string. To test
this out, click the List Settings button and then mouse over the Name field. Take note of the
Field=Title in the URL, as shown in see Figure 2-18.

Figure 2-18  Field=Title

	6.	 To add some items to the list, click the Customers link to the list in the Quick Launch, and then
click the Add New Item link. Enter data into the New Item form, and then repeat to add a few
records into the list. When complete, your list entries should look something like Figure 2-19.

Figure 2-19  Completed Customer list

How It Works

When you create a list, you create a structure that has columns and rows, and represents an object
within SharePoint that can not only be populated by end users but can also be programmed against by
you. This process simply generated a default list, which has some hidden properties and some properties
that can be edited by the user.

584637c02.indd 51 5/2/10 7:12:15 PM

52  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

If you are new to SharePoint, you’ve created your first SharePoint list — and this is something that
you (and all of your end users) will do on a regular basis. Lists are one of the most commonly used
objects in SharePoint. As you’ll see in Chapter 5, you can program against lists in many different
ways. However, in this chapter, you’ll complete a simple programming exercise to kick-start your
application development. So, now that you’ve created a simple list in SharePoint, let’s write a little
code that does something with that Customers list.

The next example walks you through how to programmatically establish a connection to a
SharePoint list and update the data in that list using the Lists ASP.NET Web service that ships with
SharePoint 2010. For those that are new to SharePoint, you won’t have seen the Lists Web service. It
is one of the native ways in which you can interact with SharePoint. For those who have developed
against SharePoint, you’ll recognize this service as an API that has persisted forward.

There are a number of ways to interact with a list; this example uses the native Lists Web service
that enables you to interact with SharePoint lists. However, to showcase that you can leverage
SharePoint data from applications that don’t necessarily live inside SharePoint, you’ll create a WPF-
based application that adds data to a SharePoint list from a WPF application. The application is
simple, but it is illustrative of the following:

The connectivity to SharePoint➤➤

Interacting with the list➤➤

Accomplishing this from an application outside of the SharePoint domain➤➤

Programming Against a List Using the Lists Web ServiceTry It Out	

Code file [WPFSPListApp.zip] available for download at Wrox.com.

You can also program against lists in SharePoint 2010, which enables you to manage, create, read,
update, and delete (CRUD) operations against the list. To program against a list, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New ➪ Project. In the New Project dialog, navigate to
the Windows templates under the Installed Templates gallery and select “WPF application.”

	2.	 Provide a name for your application (for
example, WPFSPListApp) and a location,
and then click OK. Visual Studio 2010
will create a new solution for you that
includes a number of files. Right-click the
MainWindow.xaml file, and select View
Designer (if the view is not already open).

	3.	 Add five labels, four textboxes, and three
buttons to your Designer from the Toolbox
so that the UI looks similar to Figure 2-20.

Table 2-1 provides a summary of the con-
trol types and names that you will add to
the WPF application.

Figure 2-20  SharePoint List app UI

584637c02.indd 52 5/2/10 7:12:15 PM

Working with SharePoint Lists  ❘  53

Table 2-1  Control Types and Names

Control Type Control Name

Label lblTitle, lblCompanyName, lblRegion, lblSize, lblSales

Textbox txtbxCompanyName, txtbxSize, txtbxSales

Button btnUpdate, btnClear, btnExit

	4.	 The UI uses a type of XML syntax called Extended Application Markup Language (XAML), which
is specific to Windows WPF and Silverlight applications. The XML must be well formed, and,
when you drag and drop controls from the Toolbox onto the designer surface, the XAML will
automatically be generated for you. You’ll need to add a couple of event handlers to the button
controls to manage the loading of the SharePoint list data into the application. So, after you add
the button controls to the Designer, go to the XAML code view, click your mouse within the but-
ton element, and press the spacebar. This will trigger IntelliSense, allowing you to select the Click
event. Accept the default event handler name, and Visual Studio will add a method for your but-
tons in the code behind. The XAML for your application should look something like the following:

<Window x:Class=”WPFListApp.MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”MainWindow” Height=”300” Width=”500”>
 <Grid Height=”270”>
 <Label Content=”SharePoint List Data”
 Height=”28”
 HorizontalAlignment=”Left”
 Margin=”21,14,0,0”
 Name=”lblTitle”
 VerticalAlignment=”Top”
 Width=”162”
 FontWeight=”Bold”
 FontSize=”13” />
 <Label Content=”Company Name:”
 Height=”28”
 HorizontalAlignment=”Left”
 Margin=”21,56,0,0”
 Name=”lblCompanyName”
 VerticalAlignment=”Top”
 Width=”120” />
 <Label Content=”Region:”
 Height=”28”
 HorizontalAlignment=”Left”
 Margin=”21,90,0,0”
 Name=”lblRegion”
 VerticalAlignment=”Top”
 Width=”120” />
 <Label Content=”Size:”
 Height=”28”
 HorizontalAlignment=”Left”
 Margin=”21,124,0,0”
 Name=”lblSize”
 VerticalAlignment=”Top”

584637c02.indd 53 5/2/10 7:12:15 PM

54  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

 Width=”120” />
 <Label Content=”Sales:”
 Height=”28”
 HorizontalAlignment=”Left”
 Margin=”21,158,0,0”
 Name=”lblSales”
 VerticalAlignment=”Top”
 Width=”120” />
 <TextBox Height=”23”
 HorizontalAlignment=”Left”
 Margin=”119,56,0,0”
 Name=”txtbxCompanyName”
 VerticalAlignment=”Top”
 Width=”245” />
 <TextBox Height=”23”
 HorizontalAlignment=”Left”
 Margin=”119,90,0,0”
 Name=”txtbxRegion”
 VerticalAlignment=”Top”
 Width=”245” />
 <TextBox Height=”23”
 HorizontalAlignment=”Left”
 Margin=”119,124,0,0”
 Name=”txtbxSize”
 VerticalAlignment=”Top”
 Width=”245” />
 <TextBox Height=”23”
 HorizontalAlignment=”Left”
 Margin=”119,158,0,0”
 Name=”txtbxSales”
 VerticalAlignment=”Top”
 Width=”245” />
 <Button Content=”Update”
 Height=”23”
 HorizontalAlignment=”Left”
 Margin=”29,218,0,0”
 Name=”btnUpdate”
 VerticalAlignment=”Top”
 Width=”75”
 Click=”btnUpdate_Click” />
 <Button Content=”Clear”
 Height=”23”
 HorizontalAlignment=”Left”
 Margin=”119,218,0,0”
 Name=”btnClear”
 VerticalAlignment=”Top”
 Width=”75”
 Click=”btnClear_Click” />
 <Button Content=”Exit”
 Height=”23”
 HorizontalAlignment=”Left”
 Margin=”210,218,0,0”
 Name=”btnExit”
 VerticalAlignment=”Top”
 Width=”75”
 Click=”btnExit_Click” />

584637c02.indd 54 5/2/10 7:12:15 PM

Working with SharePoint Lists  ❘  55

 </Grid>
</Window>

	5.	 Right-click the MainWindow.xaml file, and then click View Code. This will open up the code view.

	6.	 Right-click the References project node, and select Add Service Reference. On the Add Service
Reference dialog, click the Advanced button and then click Add Web Reference on the Service
Reference Settings dialog.

	7.	 In the Add Web Reference dialog, click the Web services on the local machine link. This will search
for and display all of the Web services that are located on your developer machine, which will
include the SharePoint Web services, as shown in Figure 2-21.

Figure 2-21  SharePoint Web service

	8.	 One of the Web services is the Lists service (with the endpoint listed as http://<server name>/_
vti_bin/Lists.asmx). Select this service. Note that you may need to change the Web service
URL to reflect your local server, for example http://fabrikamhockey/_vti_bin/Lists.asmx.
Provide a name for the service (for example, MySPWebService) and click Add Reference. (You can
also explore the Web methods that are a part of that service before you click Add Reference.)

	9.	 At this point, you can add an event handler for each of the buttons in your WPF UI (which should
already be stubbed out for you). The Update button is the one button that will leverage the
Web service connection to SharePoint. You’ll also require a set of class-level variables to get the
user input and pass that into the Lists Web service. When you call the Lists Web service, you’ll
also need to create an XML construct that passes the data from your WPF application to your
SharePoint list. This XML is called the Collaborative Application Markup Language (CAML).

584637c02.indd 55 5/2/10 7:12:15 PM

56  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

	10.	 The following code snippet illustrates the three event handlers, one for each of the buttons. The
bolded code is what you will need to add to the default code that is created for you by Visual
Studio. If you use the accompanying source code, you’ll need to ensure that you update the Web
service reference (by re-adding the service to the Visual Studio project), and update any URL refer-
ences in the code. For example, you would need to update the following line of code:
 myListService.Url =
 “http://<your server name>/_vti_bin/Lists.asmx”;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.Xml;
using System.Xml.Linq;

namespace WPFSPListApp
{

 public partial class MainWindow : Window
 {
 string strCompanyName = ““;
 string strRegion = ““;
 string strSize = ““;
 string strSales = ““;
 string strListID = ““;
 string strViewID = ““;

 public MainWindow()
 {
 InitializeComponent();
 }

 private void btnUpdate_Click(object sender, RoutedEventArgs e)
 {

 strCompanyName = txtbxCompanyName.Text;
 strRegion = txtbxRegion.Text;
 strSize = txtbxSize.Text;
 strSales = “$” + txtbxSales.Text;

 WPFSPListApp.MySPWebService.Lists myListService =
 new MySPWebService.Lists();
 myListService.Credentials =
 System.Net.CredentialCache.DefaultCredentials;
 myListService.Url =
 “http://fabrikamhockey/_vti_bin/Lists.asmx”;

 XmlNode myListView = myListService.GetListAndView(“Customers”, ““);

584637c02.indd 56 5/2/10 7:12:15 PM

Working with SharePoint Lists  ❘  57

 strListID = myListView.ChildNodes[0].Attributes[“Name”].Value;
 strViewID = myListView.ChildNodes[1].Attributes[“Name”].Value;

 XmlDocument myListDoc = new XmlDocument();
 XmlElement batchXML = myListDoc.CreateElement(“Batch”);

 batchXML.InnerXml = “<Method ID = ‘1’ Cmd=’New’><Field Name=’Title’>” +
 strCompanyName + “</Field><Field Name=’Region’>” + strRegion +
 “</Field><Field Name=’Size’>” + strSize +
 “</Field><Field Name=’Sales’>” + strSales +
 “</Field>” + “</Method>”;

 XmlNode myListReturn = myListService.
 UpdateListItems(strListID, batchXML);
 MessageBox.Show(“SharePoint List was updated!”);
 }

 private void btnClear_Click(object sender, RoutedEventArgs e)
 {
 txtbxCompanyName.Text = ““;
 txtbxRegion.Text = ““;
 txtbxSales.Text = ““;
 txtbxSize.Text = ““;
 }

 private void btnExit_Click(object sender, RoutedEventArgs e)
 {
 Application.Current.Shutdown();
 }
 }
}

	11.	 Assuming that your code reflects what is shown here, you should now be able to press F5 and run
the application in Debug mode, add some string entries to the WPF application, and click Update
to add the record to your SharePoint list, as shown in Figure 2-22.

Figure 2-22  Updated list

How It Works

The SharePoint Web services offer quite a range of functionality for the developer and should be one
of your first stops when developing for SharePoint (to leverage what already ships with SharePoint).
Many of these are services that were available in SharePoint 2007 and have evolved to be supported
in SharePoint 2010. For those who used them in production code in 2007, this is good news, because
upgrading your 2007 code should not prove too difficult.

584637c02.indd 57 5/2/10 7:12:15 PM

58  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

For this example, you used the Lists Web service, which provides a number of different ways to interact
with a list — for example, you can add or delete a list, add an attachment to a list, get the list, and so
on. In this example, you used the GetListAndView Web method, which returns a schema for a list that
you pass in as a parameter to the GetListAndView method call. Note that, in this call, you passed the
name of the list, Customers, and mapped the return value to an XMLNode object.

XmlNode myListView = myListService.GetListAndView(“Customers”, ““);

The example also used CAML to insert data back into the SharePoint list. Admittedly, CAML is a little
verbose, as you can see from the following line of code. (You’ll see different ways to interact with a list
in Chapter 5, ones that are less syntactically verbose and more lightweight to code.)

batchXML.InnerXml = “<Method ID = ‘1’ Cmd=’New’><Field Name=’Title’>” +
 strCompanyName + “</Field><Field Name=’Region’>” + strRegion +
 “</Field><Field Name=’Size’>” + strSize + “</Field><Field Name=’Sales’>”
 + strSales + “</Field>” + “</Method>”;

The last key piece in this example was the UpdateListItems method, which passed the list ID (that is,
the name of the list) and the list schema that was mapped to the CAML construct (which was further
tied to the data in the WPF client).

XmlNode myListReturn = myListService.UpdateListItems(strListID, batchXML);

While this method leverages native Web services, there are both pros and cons to using them. Pros
include ease of use and service plumbing that exists, as opposed to your having to create a custom Web
service. Cons include potential performance hits with service integration and syntax verbosity with the
CAML construct.

If you followed along with this example and successfully updated your SharePoint list, then con-
gratulations! You just wrote your first application against SharePoint 2010 that interacts with a
SharePoint list.

Now, let’s take a look at Web parts.

Working with SharePoint Web Parts

Web parts are also very common artifacts in SharePoint. In fact, you’ll find that the Web part is one
of the most commonly customized objects for SharePoint developers because it represents a core
building block for SharePoint and can be customized to do many different things.

You add a Web part from the Web Part Gallery, which provides you with categories that help clas-
sify Web parts. To add a Web part to a SharePoint wiki page, you click Site Actions ➪ Edit Page ➪
Insert and select Web Part from the ribbon menu. If you create a Web part page (which is a site page
with a predefined structure), you can also add a Web part, but the steps to do it are a little differ-
ent. You click Site Actions ➪ Edit Page ➪ “Insert a web part.” Then select the type of Web part you
want to add from the Web Part Gallery and click Add. The Web Part Gallery exposes the Web parts
that are available as either part of the SharePoint installation, or those custom Web parts that have
been deployed to your SharePoint server.

584637c02.indd 58 5/2/10 7:12:15 PM

Working with SharePoint Web Parts  ❘  59

Web parts can act as containers for your custom functionality (for example, a custom ASP.NET
application), and they can also act as a container for a list or document library. For example, let’s
add the Customers list you created in the last section of the chapter to the home page of your new
site collection as a Web part.

Add the Customers List as a Web PartTry It Out	

Web parts are very important building blocks, and you will use them often. To add a list as a Web part
to a page, follow these steps:

	1.	 Click Site Actions ➪ Edit Page ➪ Insert ➪ Web Part.

	2.	 Click Web Part to load the Web Part Gallery options.

	3.	 Click “Lists and Libraries” and select the Customers list.

	4.	 Click Add. SharePoint loads the list within a Web part at the top of the page.

NOTE  ​You could continue to run your WPF application against the list, and the
changes would be reflected in this list. This is because this list is a view of the
actual data that is rendered within a Web part.

Figure 2-23  shows the Customers list rendered within the Web part. Test out the WPF application
again, and add some data to the list to test the rendering of that data within the Web part.

Figure 2-23  Customer list as a Web part

584637c02.indd 59 5/2/10 7:12:15 PM

60  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

Web parts are very customizable. In fact, you’ll see a number of ways in which you can interact with
Web parts programmatically within this book, ranging from visual Web parts to Silverlight applica-
tions embedded within Web parts.

In this next exercise, you’ll create your first Web part. It won’t be pretty, but it’ll be simple and illus-
trative of how you can apply your ASP.NET coding skills to a custom SharePoint object.

Create a Custom Web Part ProgrammaticallyTry It Out	

Code file [MyFirstWebPart.zip] available for download at Wrox.com.

You can programmatically customize Web parts using Visual Studio 2010. To customize and deploy a
Web part, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New ➪ Project. Navigate to the SharePoint 2010
template folder, and select Empty SharePoint Project. Give your project a name (for example,
MyFirstWebPart) and location. Click OK.

	2.	 In the Project Wizard, ensure that the site URL is pointing to your local SharePoint site. Click
Validate to test the connection to the site. You can select either deployment method (that is, as
Sandboxed Solution or Farm Solution).

	3.	 After Visual Studio creates the project for you, right-click the project and select Add ➪ New Item.
In the SharePoint 2010 folder, select Web Part.

	4.	 Navigate to the Web part code file (for example, MyFirstWebPart.cs) and add the bolded code in
the following code listing to this project file.

NOTE  ​If you use the accompanying source code, be sure to open the code and
then change the Site URL property to point to your local SharePoint site. Click
the project and then, in the Properties window, change the Site URL property.
You can also use the Import SharePoint Solution Package (the .wsp file that ships
with the accompanying source code) project template.

using System;
using System.ComponentModel;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace MyFirstWebPart.MyFirstWebPart
{
 [ToolboxItemAttribute(false)]
 public class MyFirstWebPart : WebPart
 {
 Label lblUserEntry = new Label();

584637c02.indd 60 5/2/10 7:12:15 PM

Working with SharePoint Web Parts  ❘  61

 TextBox txtbxUserEntry = new TextBox();
 Label lblFinalCost = new Label();
 TextBox txtbxFinalCost = new TextBox();
 Button btnCalcTax = new Button();
 double totalTax = 0.00;
 double prodTax = 0.11;

 public MyFirstWebPart()
 {
 }

 protected override void CreateChildControls()
 {
 lblUserEntry.Text = “Cost of Widget:”;
 lblFinalCost.Text = “Final Cost: “;
 btnCalcTax.Text = “Calc.”;
 txtbxUserEntry.Text = “59.30”;
 this.Controls.Add(lblUserEntry);
 this.Controls.Add(txtbxUserEntry);
 this.Controls.Add(new LiteralControl(“<p>”));
 this.Controls.Add(lblFinalCost);
 this.Controls.Add(txtbxFinalCost);
 this.Controls.Add(new LiteralControl(“<p>”));
 this.Controls.Add(btnCalcTax);
 btnCalcTax.Click +=
 new EventHandler(btnCalcTax_Click);

 base.CreateChildControls();
 }

 void btnCalcTax_Click(object sender, EventArgs e)
 {
 double prodCost = Convert.ToDouble
 (txtbxUserEntry.Text);
 totalTax = Math.Round(prodCost -
 (prodCost * prodTax),2) *100/100;
 txtbxFinalCost.Text = totalTax.ToString();
 }

 protected override void RenderContents
 (HtmlTextWriter writer)
 {
 base.RenderContents(writer);
 }
 }
}

	5.	 Press F6 to test to see if the project builds successfully.

	6.	 After it builds successfully, press F5 to test the Web part deployment in Debug mode. (You can
optionally set a breakpoint at the btnCalcTax_Click event.)

	7.	 On your SharePoint site, select Site Actions ➪ Edit Page. Then, click to activate the content portion
of the SharePoint site — that is, the area beneath one of the other SharePoint Web parts.

584637c02.indd 61 5/2/10 7:12:16 PM

62  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

	8.	 Select Insert on the SharePoint ribbon and select Web Part. In the Custom category, you’ll find
the Web part that you just built and deployed, as shown in Figure 2-24. Select the Web part and
click Add.

Figure 2-24  Custom Web part

	9.	 This adds the Web part to your SharePoint site, as shown in
Figure 2-25. You can test the Web part by adding a decimal currency
value in the Cost of Widget field and clicking the Calc. button. This
executes the btnCalcTax_Click event, and then adds the final cost
of the Widget to the Final Cost field.

And there you go! You just built your first custom Web part. It was sim-
ple, and, yes, used absolutely no design skills at all. But it did illustrate the
use of pure ASP.NET code for a Web part.

How It Works

SharePoint is built on top of ASP.NET. So, when you create Web parts for SharePoint, you are leverag-
ing the members and classes of the ASP.NET namespaces. This was evident in the MyFirstWebPart
class declaration, which derives from the System.Web.UI.WebControls namespace.

public class MyFirstWebPart : WebPart

When you derive from WebPart, this provides a set of controls that you can use to build out your UI.
For example, in this exercise, you used Label, Button, and Textbox controls. In this case, these con-
trols were hand-coded, but if you’re not familiar with all of the available controls, an easy way to learn
about them is to first create the Visual Web part project and then use the Designer to drag and drop the
available controls.

Label lblUserEntry = new Label();
TextBox txtbxUserEntry = new TextBox();

Figure 2-25  Deployed
Web part

584637c02.indd 62 5/2/10 7:12:16 PM

Working with SharePoint Web Parts  ❘  63

Label lblFinalCost = new Label();
TextBox txtbxFinalCost = new TextBox();
Button btnCalcTax = new Button();

Each of the controls that you instantiate must be added to the Controls collection, which is the way in
which the Web part displays the controls. This was done by calling the Controls.Add method and then
passing in the name of the control to add to the Web part.

Lastly, the event for the button was created simply by typing btnCalcTax.Click+= and then pressing
the Tab key twice, which auto-generates a stubbed method for you to use. In this example, the code
converted the user entry into a value it could handle, calculated the final cost of the widget, and dis-
played that cost in the txtbxFinalCost textbox control.

 void btnCalcTax_Click(object sender, EventArgs e)
 {
 double prodCost = Convert.ToDouble(txtbxUserEntry.Text);
 totalTax = prodCost - (prodCost * prodTax);
 txtbxFinalCost.Text = totalTax.ToString();
 }

If you’re already familiar with ASP.NET, this is great; you’ll be able to apply a wealth of your
knowledge within the SharePoint space. If you’re not, have no fear, because you’ll surely pick some
up along the way as you move through the book. You’ll also learn about some more advanced UI
experiences using Silverlight. You’ll get a sense for how this is done in Chapter 9.

Setting Permissions for a SharePoint Site
One key aspect of SharePoint is the different security permissions you’ll need to provision for a
given site. This is important more from an end-user perspective, but for those of you who are new
to SharePoint, what’s key here is that you, as the owner of a SharePoint site (or other object within
SharePoint), can assess certain levels of security.

Edit Permissions for a SharePoint SiteTry It Out	

Security is very important in SharePoint. You must understand how you can control the different levels
of permission that are available to you in SharePoint 2010. To edit permissions for a SharePoint site,
follow these steps:

	1.	 Navigate to the home page of the site you created in the last exercise (for example, http://
fabrikamhockey/sprocks).

	2.	 Click Site Actions ➪ Site Permissions. This opens the Permissions page, which displays the different
options available to you, as shown in Figure 2-26.

	3.	 To provide a particular person with specific permissions, click on one of the permission types (for
example, Team Site Members) and then click New ➪ Add Users. Add the user (or the group) to the
Users/Groups field. You can also optionally send a welcome email to the individual (or group) by
checking the “Send welcome email to the new users” checkbox and adding a title and some wel-
come text for the mail.

584637c02.indd 63 5/2/10 7:12:16 PM

64  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

Figure 2-26  Permissions

How It Works

SharePoint uses Active Directory, so when users are added (or sites are provisioned by an administrator),
an Active Directory identity is associated with the users. Further, those users who are added to the site can
be given specific levels of permission (such as Viewer, Member, Administrator, and so on). You can also
create security groups for SharePoint to create custom security groups for specific sites or objects within
sites. The groups are simply aggregations of individual entries in Active Directory. This walkthrough sim-
ply enabled you to provision access for a specific Active Directory entry that existed in the context of your
SharePoint server. Chapter 12 provides more information about security in SharePoint.

Summary

This chapter discussed the types of skills that you (as an aspiring SharePoint developer) should know
or learn as you embark on your journey. Key to these skills, though, is the understanding that differ-
ent meanings are associated with SharePoint development. For example, if you simply want to play
in the content and page customization space, then perhaps ASP.NET, HTML, and CSS are all you
will need (and perhaps JavaScript). However, if you want to get deeper into building managed code
solutions for SharePoint 2010, then you’ll want to learn more about C# and VB.NET, and, more
generally, the .NET Framework.

This chapter also provided an introduction to the Visual Studio 2010 templates, and introduced you
to SharePoint Designer 2010. Both of these applications should definitely be an important part of
your development toolkit, which is explored in greater detail in Chapter 3. This chapter also dis-
cussed the skills you’d need to get started as a SharePoint developer, specifically calling out HTML,
XML, XSL, JavaScript, CSS, and one of C# or VB.NET as your managed code languages.

584637c02.indd 64 5/2/10 7:12:16 PM

Summary  ❘  65

This chapter also walked you through a number of examples that enabled you to get a hands-on
understanding not only of the SharePoint interface but also of some of the more basic ways to pro-
gram against SharePoint. The rest of the book will continue to build these basic examples into more
advanced examples of programming against SharePoint.

Exercises	

	 1.	 What are the different ways of setting up and configuring SharePoint for development?

	 2.	 How is using Hyper-V better or worse than installing SharePoint “on the metal”?

	 3.	 What are some of the common project templates you’ll find in Visual Studio 2010?

	 4.	 What are the different levels of security that can be assessed against an individual in
SharePoint 2010?

584637c02.indd 65 5/2/10 7:12:16 PM

66  ❘  Chapter 2   Getting Started with SharePoint 2010 Development

What You Learned in This Chapter⊲⊲

Item Description

Developer Tools High-level feature descriptions of Visual Studio 2010 and SharePoint
Designer 2010, and how they can be used.

SharePoint 2010 Platform
Services

The different services and APIs that make up the SharePoint 2010 plat-
form, such as enhanced Web services (for example, support for WCF
and ASP.NET); improved data programmability; REST and ADO.NET
Data Services, and LINQ support; and LOB integration using BCS.

SharePoint 2010
Deployment Options

The capability to deploy SharePoint solutions on-premises or to a
hosted SharePoint instance online (called SharePoint Online) using
sandboxed solutions.

Recommended Reading

SharePoint virtual machine download at ➤➤ http://www.microsoft.com/downloads/

details.aspx?FamilyID=0c51819b-3d40-435c-a103-a5481fe0a0d2&displaylang=en

SharePoint Development Center on MSDN at ➤➤ http://msdn.microsoft.com/en-us/

sharepoint/default.aspx

Channel 9 SharePoint Developer Learning Center at ➤➤ http://channel9.msdn.com/learn/

courses/SharePoint2010Developer/

584637c02.indd 66 5/2/10 7:12:16 PM

Part II
Getting Started with
SharePoint 2010 Development

Chapter 3:⊲⊲ SharePoint 2010 Developer Tools

Chapter 4:⊲⊲ Common Developer Tasks in SharePoint 2010

Chapter 5:⊲⊲ Programming Against SharePoint 2010 Lists

Chapter 6:⊲⊲ Building and Deploying SharePoint Web Parts

Chapter 7:⊲⊲ Creating Your First SharePoint 2010 Application

584637c03.indd 67 5/2/10 7:12:25 PM

584637c03.indd 68 5/2/10 7:12:25 PM

SharePoint 2010 Developer Tools

What You’ll Learn in This Chapter:

Understanding the different ways of developing for SharePoint➤➤

Getting to know the primary developer tools and environments for ➤➤

SharePoint 2010

Using Visual Studio 2010, SharePoint Designer 2010 and Expression ➤➤

Blend when developing for SharePoint

At this stage in the book, you’ve been introduced to what SharePoint is. You’ve learned how
to set up a development environment (either virtualized or on the metal), and you’ve read
about some of the developer features in SharePoint 2010. From here on out, you will become
more practical in your interaction with this book, and you will begin to write applications for
SharePoint 2010.

In this chapter, you learn about the different tools that you will want to have in your developer
toolkit. You may have more or less than what is described in this chapter, but ultimately this
chapter is about the core developer tools you should either use or be aware of when embarking
on your SharePoint development projects.

This chapter examines the following four main developer tools/environments:

Browser-based development➤➤

SharePoint Designer 2010➤➤

Visual Studio 2010➤➤

Expression Blend➤➤

3

584637c03.indd 69 5/2/10 7:12:26 PM

70  ❘  Chapter 3   SharePoint 2010 Developer Tools

Depending on your skills and design goals, you may use these environments or tools in different
ways. So, this chapter introduces you to these different possibilities and walks you through some
practical examples.

SharePoint Development Across
Developer Segments

In Chapter 1, you saw the different types of users that interact with SharePoint, as well as the dif-
ferent ways in which they use SharePoint. If you remember that discussion, there are end users who
use SharePoint as an application platform, and then there are power users, designers, and develop-
ers who, in some way, engage in administration, configuration, or development against SharePoint.
Thinking about a development lifecycle for each of these types of users, you can imagine that there
are ways in which these people might work together, or they may act independently with something
that was created specifically for them.

For example, the end user is the ultimate consumer of the product, while the power user config-
ures it. Thus, they are downstream from the development process. Further upstream, you have the
developer and the designer, who may work together to deliver both the code and the user experience
(branded or otherwise) to the power user and, ultimately, to the end user. The point is that there is
a range of people interacting with SharePoint — from the developer all the way downstream to the
end user. Figure 3-1 illustrates the range of these types of users.

Developer Designer Power User End User

Figure 3-1  Who interacts with SharePoint 2010

With this in mind, users require different ways to develop for SharePoint — and, in this case, users
would primarily include developers, designers, and power users. That is what this chapter is all
about — talking about the different tools that these various types of users can use to develop for
SharePoint.

Figure 3-2 shows an interesting way to divide up what have traditionally been associated with
SharePoint development — namely, Visual Studio and SharePoint Designer. This chapter proposes
the Web interface as an end-user and power-user “tool,” SharePoint Designer as a Web developer
tool, and Expression Blend as more of a designer tool for the development experience. Visual Studio,
then, would be for a more managed-code development experience.

On the designer/power-user side, you will invariably use the Web-based interface as a user with
augmented permissions — for example, full control — so you could perform the duties of a site
administrator. What this means is that you may be creating artifacts like custom lists, inserting Web
parts, editing content, creating master pages, and the like. You may get into coding here, and more
than likely that will involve HTML, XML, CSS, ASP.NET, JavaScript, and other dynamic lan-
guages. You may also get into some integration with Silverlight, as you will see in an example where
a Silverlight banner ad is integrated with an ASP.NET master page.

584637c03.indd 70 5/2/10 7:12:26 PM

Web-Based Development in SharePoint  ❘  71

Web, SharePoint Designer
and Expression Blend

Create lists and doc libs

Form Design

Design/Code views

WPF/Silverlight Design

Microsoft Visual Studio

Custome Artifacts (Web Parts, Lists, etc.)

Site Definitions

Content Types

Workflow

Microsoft®
Visual Studio

Figure 3-2  Range of tools for users

On the managed side of the house, you will find development that is more centric to C# or VB.NET
(managed-code languages), and you may also find scripted languages here. Using Visual Studio, you
will also find that development efforts may be managed as a part of an application lifecycle, which is
more broadly called application lifecycle management (ALM). During ALM, source code is checked
into team folders (in Team Foundation Server, for example). You can add SharePoint development
projects to those folders and centrally manage them. You’ll also find custom solutions that lever-
age other parts of the .NET Framework, such as solutions based on Windows Workflow (WF), or
service-based applications built and deployed as Web parts or event receivers.

Ultimately for you, the benefits of these two development paradigms are choices offered along the
spectrum of SharePoint development. Depending on what you’re trying to develop for SharePoint,
each of these tools (or interfaces) will have pros and cons for the task at hand.

Let’s walk through each of these development experiences so that you can get a better sense for how
you might leverage each of them in different ways.

Web-Based Development in SharePoint

As mentioned, SharePoint development can be defined in a number of ways. A light developer (or
power user) may leverage more of the native SharePoint features to do development through the
Web-based environment. This type of user will require escalated permissions on a SharePoint site,
and, thus, will be able to accomplish tasks such as the following:

Configure a new theme to the site➤➤

Add a new Web part to the site➤➤

584637c03.indd 71 5/2/10 7:12:26 PM

72  ❘  Chapter 3   SharePoint 2010 Developer Tools

Create and deploy multimedia for sitewide consumption➤➤

Manage sandboxed solutions➤➤

Activate and deactivate features➤➤

Write and format text inline➤➤

Add HTML or JavaScript to a page➤➤

Configure and customize search capabilities➤➤

Map master pages to sites➤➤

While some might argue these are merely tasks that a power user or IT professional might perform,
one thing about SharePoint is that the line is sometimes blurred where one role starts and another
ends. For example, with many of the Web-based functions that you can perform when develop-
ing for SharePoint, there is a direct relationship to a development task. Thus, you might see the
SharePoint Web interface as an endpoint to the development experience.

For example, if you create a custom Web part, you must load that Web part into a SharePoint site
using the Web Part Gallery. Or, if you’re working with a designer to create a new master page, you
must associate that new master page with a specific site through the Site Settings of that SharePoint
site. The types of Web-based tasks that you can perform go on and on.

The key take-away from this is that, as a SharePoint solution developer, you will be interacting
with the Web-based features in SharePoint, as well as potentially leveraging other tools that will be
examined in this chapter.

Site Settings
An important part of SharePoint to be familiar with is the Site Settings page. You’ll find most con-
figuration options for your site here, so it’s a good place to start when trying to understand where
you can, for example, change the theme of your site, activate features, upload sandboxed solutions,
and so on.

Figure 3-3 shows the Site Settings page. Note that the core features of the Site Settings page are split
up into major categories. For example, most of your security settings are available to you in the
“Users and Permissions” category.

The features that you develop and deploy to SharePoint will appear in the Feature Gallery. To see
the Feature Gallery, locate the Site Actions area and click “Manage site features.” Note that the
Feature Gallery also indicates which features are active or deactivated. When you develop and
deploy a feature to SharePoint, this is where you will activate and deactivate it.

Farm or site administrators can use the Feature Gallery as a place where they can activate and deac-
tivate the features in a SharePoint site collection. In Figure 3-4, notice that at the top of the Feature
Gallery is a feature called the AnnouncementListEvent Feature1. This is an example of a custom
feature built and deployed to SharePoint, and it can be activated or deactivated at any time by the
person with the appropriate permissions.

584637c03.indd 72 5/2/10 7:12:27 PM

Web-Based Development in SharePoint  ❘  73

Figure 3-3  Site Settings page

Figure 3-4  Feature Gallery

Take some time to explore the different parts of the Site Settings page to become familiar with all it
offers for configuring SharePoint sites.

584637c03.indd 73 5/2/10 7:12:27 PM

74  ❘  Chapter 3   SharePoint 2010 Developer Tools

Inline Rich Text and HTML Editing
When you return to the home site of your SharePoint site, click Site Actions ➪ Edit. The functions
available to you at this point range from inserting native and custom Web parts, to editing and gen-
erating custom lists. If you click inside the top-level Web part to expose the in-context ribbon, you
will see that you can now edit the page using the ribbon controls. Thus, while the Site Settings pro-
vide you with configurable settings for the applications that you deploy to SharePoint (or for chang-
ing the configuration of the site that hosts your applications, such as themes or master pages), the
Edit mode enables those who have elevated permissions to contribute to the development of content
on the site, as shown in Figure 3-5.

Figure 3-5  Inline HTML and text editing

The editing experience ranges from text, HTML, and JavaScript formatting to the inclusion of
images or multimedia. For example, let’s say that you’ve created a training video, and you now want
to embed that video in a Web part on a page. You can use the Site Actions ➪ Edit menu to open the
Insert Web part, where you can then insert a Web part that supports multimedia. While this may
not constitute hard-core, managed-code development, you are still advancing the content of your
site, so, in a sense, you are technically “developing” your site.

Let’s try this out by walking through an example.

Testing Out the Inline Editing ExperienceTry It Out	

The new SharePoint ribbon experience enables you to quickly customize and edit SharePoint pages. To
edit a SharePoint page inline, follow these steps:

	1.	 Open your SharePoint site.

	2.	 Navigate to the home page of your site, and click All Site Content.

	3.	 Click Create.

584637c03.indd 74 5/2/10 7:12:27 PM

Web-Based Development in SharePoint  ❘  75

	4.	 On the Create Gallery page, click Page ➪ Web Part Page, and click Create.

	5.	 Provide a name for the new Web part page (for example, WroxWPP), as shown in Figure 3-6. Leave
the default options and click Create.

Figure 3-6  Creating a new Web part page

	6.	 By default, SharePoint should open the page in Edit mode. If it doesn’t, click Site Actions ➪ Edit
Page, which will open the page in Edit mode.

	7.	 Click the top Web part Zone, and click “Add a web part.”

	8.	 Select the “Media and Content” category, and then select Content Editor. SharePoint adds a
Content Editor Web part for you in the top zone, and you can now add and edit text and images
using the contextual ribbon.

	9.	 Add some text and format it. When you have finished, click the Page tab on the ribbon and click
Stop Editing to save your changes to the Web part.

How It Works

This initial example was a simple illustration of using the Site Actions menu to open up Edit options.
Essentially, when you have a SharePoint page in Edit mode, it exposes a set of features to you, depend-
ing on your permissions level for the site.

For example, if you had only read permissions, then you would not have the same functionality avail-
able to you as you would if you had full control rights to the SharePoint site. What it did do, though,
was expose the functionality of the new SharePoint ribbon. The ribbon is a major leap forward in
SharePoint 2010 and provides you with a number of different contextually driven capabilities across
SharePoint.

The Content Editor Web part represents a way for you to add rich text or HTML source to the page
(beyond the default behavior of a wiki page). When the site is loaded, text or source in this Web part

584637c03.indd 75 5/2/10 7:12:27 PM

76  ❘  Chapter 3   SharePoint 2010 Developer Tools

is treated as part of the page and is rendered. So, for example if you were to click View Source on your
browser, you’d see that the simple content you just added to your Content Editor Web part in this exer-
cise would be rendered as HTML as a part of the page.

As you saw in this example, you’re not limited to only rich text when using the Content Editor Web
part. You can add source code (such as HTML or JavaScript) that will also run when the page loads.
This makes the Content Editor Web part a versatile way to inject rich text or source code into the
page to run scripts or set formatting at page load.

Adding Multimedia to a Site
Let’s move on to something a little different and add the video mentioned earlier in the chapter.
However, let’s do so inside of a new wiki site, which, in SharePoint 2010, is a type of Web content
management (WCM) site that enables authors to contribute rich text and multimedia to a shared
Web experience.

WCM sites in SharePoint can be traced back historically to the Microsoft Content Management
System (MCMS) days when Microsoft acquired CMS and integrated it with SharePoint 2003. What
this provided for SharePoint was a way to have a managed workflow around content that could be
published to the Web. Originally, the publishing framework targeted more Internet-facing sites, so
developers and designers could build and deploy a controlled and managed publishing environment
to get Web content out to these Internet-facing sites. In SharePoint 2007, you found the WCM tem-
plates under the Publishing tab when creating a new site collection.

In SharePoint 2010, you have a Publishing template called the Enterprise Wiki, which allows you
to build a rich wiki experience — quite a leap from the simpler, one-dimensional wiki site that was
available in SharePoint 2007. The template is here because, in SharePoint 2010, the wiki is part of
the WCM offerings for SharePoint, and, thus, it represents an enterprise-wide publishing portal.
Also, wiki sites now support a wider array of features, including tagging, author attribution, and
multimedia content. To create one, you will need to start out in Central Administration.

Let’s first create an enterprise wiki, and then use the Web-based features in SharePoint to develop
some content for the wiki site. Note that, for this exercise, you will need a sample video file (that is,
a .wmv file). It could be any file you have handy, but you will upload the video file as a part of this
walkthrough.

Creating and Editing a Wiki SiteTry It Out	

Wiki sites provide a way to enable informal social networking across a community. To create and edit a
wiki site, follow these steps:

	1.	 Click Start ➪ All Programs ➪ Microsoft SharePoint 2010 Products ➪ SharePoint Central
Administration.

	2.	 Under Application Management, click Create Site Collections.

	3.	 Provide a name for the new site (for example, MyWroxWiki), a description, and a URL (for exam-
ple, wroxwiki). Then, using the template selector, click the Publishing tab and select Enterprise
Wiki, as shown in Figure 3-7.

584637c03.indd 76 5/2/10 7:12:27 PM

Web-Based Development in SharePoint  ❘  77

	4.	 Provide an administrator for the site. Leave the other default options, and then click OK.

	5.	 After SharePoint finishes creating the new site collection, it will provide a link that you can click to
navigate to the new site collection you have created. Click that link to navigate to your new wiki site.

	6.	 After you’ve landed on the home page of the wiki site, click Site Actions ➪ Edit Page.

Figure 3-7  New wiki site

	7.	 Click the Insert page, and then select “Video and Audio.” This automatically adds a special
Silverlight control into the wiki page. Click that control to expose more options on the contextual
ribbon menu.

	8.	 In the Options tab, click the Change Media button and select From Computer.

	9.	 Upload to SharePoint a sample .wmv file that you have, to test the video. Complete the fields during
the uploading process to complete uploading the video to SharePoint.

	10.	 After you’ve uploaded the .wmv file, click the small Save icon beside the Site Actions menu to save
the page and exit Edit mode.

	11.	 You should now see the video embedded into the Wiki page, as shown in Figure 3-8, and you
should now be able to click the Play button to play the video.

How It Works

SharePoint 2010 natively supports Silverlight, which, as you will see in this chapter and in later chapters
in the book, makes integrating Silverlight with SharePoint a lot easier. There are two out-of-the-box
Web parts intended to support Silverlight.

584637c03.indd 77 5/2/10 7:12:27 PM

78  ❘  Chapter 3   SharePoint 2010 Developer Tools

The first is the generic Silverlight Web part, which represents a “host container” for Silverlight applica-
tions. The second is the Multimedia Web part, which is, in essence, a Silverlight Web part that supports
and serves the multimedia that is associated with the Web part.

Figure 3-8  Completed media Web part

So, in the previous example, you “mapped” a video with the Multimedia Web part, which further
enabled you to view the video when you clicked the Play button. The generic Multimedia control is nice
in that it provides a set of controls to play, pause, and stop the video, as well as increase the volume,
or toggle between thumbnail and full-screen views. The mapping of the video essentially represents a
source property that is being set behind the scenes, so that the MediaElement object (a native part of
the Silverlight video-playing capabilities) understands where to find and play the video.

The previous examples reinforce the fact that development for SharePoint can go beyond perhaps
what many feel is typical development, and reinforce the whole spectrum of development from Web
to design to managed code.

So, let’s move on to the second environment in which you may find yourselves doing SharePoint
development: SharePoint Designer 2010.

Developing SharePoint Applications Using
SharePoint Designer 2010

SharePoint Designer 2010 is a great tool to have in your development toolkit because you will
discover some new features in SharePoint Designer 2010 that will make some of what you do
as a developer much easier. You’ll also find that SharePoint Designer integrates really well with
SharePoint 2010.

584637c03.indd 78 5/2/10 7:12:27 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  79

Chapter 2 provided you with a glimpse of the new SharePoint Designer 2010 UI, so you saw that it
leverages the ribbon and has a new navigation pane with the common site objects you will interact with
as a SharePoint developer. Also, similar to the other Office 2010 applications, you have the Backstage
feature, which provides more generic features and shortcuts (such as Open Site, New, and so on).

One of the core features that you will use quite frequently within
SharePoint Designer is the navigation pane, which is shown in Figure 3-9.

The navigation pane provides a way for you to navigate across the major func-
tional areas of SharePoint Designer to quickly get to the things that you need
to do. The navigation pane provides links to the following functionality:

Lists and Libraries➤➤  — Allows you to create, edit, and manage lists
and libraries.

Workflows➤➤  — Facilitates the creation of rules-based, declarative
workflow (that can be imported into Visual Studio and extended).

Site Pages➤➤  — Provides the capability to create, customize, and edit
site-level Web pages, or edit existing SharePoint site pages.

Site Assets➤➤  — Provides a listing for different types of resources (for
example, JavaScript files that you want to globally reference across
a SharePoint site).

Content Types➤➤  — Provides the capability to create, edit, and manage content types. (Content
types are reusable objects and metadata, such as columns, custom documents, and site
columns.)

Site➤➤ Columns — Supports the creation, editing, and management of site columns. (Site col-
umns are reusable columns that can be repurposed across a SharePoint site collection.)

External Content Types➤➤  — Enables you to create ADO.NET or Web service-based exter-
nal content types for deployment using the new Business Connectivity Services (BCS)
functionality.

Data Sources➤➤  — Enables you to create and manage data source connections to a SharePoint site.

Master Pages➤➤  — Enables you to create, edit, and manage the master pages mapped to a spe-
cific SharePoint site. (Master pages provide a way to structure and brand your site.)

Site Groups➤➤  — Displays the groups of sites within your SharePoint site.

Subsites➤➤  — Shows the subsites within the site collection.

All Files➤➤  — Displays all files in the SharePoint site.

Depending on your level of permission to a given site, some of these features may be hidden to you
from within the SharePoint Designer IDE. For example, without administrator privileges, you will
not see the Master Pages link in the navigation pane, so you will not be able to build and deploy
master pages to that SharePoint site.

Figure 3-9  SharePoint
Designer Navigation
options

584637c03.indd 79 5/2/10 7:12:27 PM

80  ❘  Chapter 3   SharePoint 2010 Developer Tools

Customizing a Site Page
There are some very useful features in SharePoint Designer, and to cover them all would take a separate
book. However, let's at least take a look at a few to get you started and get you familiar with SharePoint
Designer. In this chapter, you will use SharePoint Designer to create site pages and master pages. In later
chapters, you will also use SharePoint Designer to create external content types and workflow.

To get you started, let’s walk through some of the functionality associated with creating and cus-
tomizing a site page.

Customizing a Site PageTry It Out	

Code file [XMLEmployee.zip] available for download at Wrox.com.

As a SharePoint developer, you will be asked to customize many sites, which is a strength of SharePoint
Designer. To customize a site, follow these steps:

	1.	 Open SharePoint Designer 2010.

	2.	 On the left-hand navigation list, click Site Pages. This opens the default Site Pages page in the IDE
(see Figure 3-10), which enables you to manage permissions for specific sites, preview the page in a
browser, check in and check out the site page for editing, and so on.

Figure 3-10  Properties view for site page

	3.	 On the ribbon, click Web Part Page to create a new Web part page. Rename the new page that is
created for you to Employee.aspx.

	4.	 Right-click Employees.aspx, and select Check Out. This marks the file as locked exclusively by
you for editing.

584637c03.indd 80 5/2/10 7:12:27 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  81

	5.	 After you check out the file, click the link to open the Properties pane.

	6.	 Under Customization, click Edit File.

	7.	 Click Code to change the view to code view.

	8.	 Add a set of <div> tags within which you will add an ASP.NET control.

	9.	 In the Toolbox, under the Standard ASP.NET controls, drag and drop the XML control to the Site
Page Designer between the <div> tags you just added and rename the default ID to xmlEmployee.
The code should now look similar to the boldfaced code that follows:

…
<WebPartPages:WikiContentWebpart frametype=”none” runat=”server” partorder=”1”
 __WebPartId=”{B33365D3-49F7-43F6-B833-B06139DB7AD4}”
 id=”g_b33365d3_49f7_43f6_b833_b06139db7ad4”>
 <content>
 <div>
 <asp:Xml runat=”server” id=”xmlEmployee”></asp:Xml>
 </div>
 </content>
</WebPartPages:WikiContentWebpart>
…

	10.	 Click Design to change the view to design view.

	11.	 Click the new XML control you added to the page, and then click the Tag Properties tab.

	12.	 Under Behavior, you can upload a DocumentSource (an XML file that contains the data) and a
TransformSource (XSLT that formats the XML data), as shown in Figure 3-11.

Figure 3-11  XML control

	13.	 Upload your own XML file and a corresponding XLST file. If you don’t have anything handy,
some sample XML code follows that you can use for this walkthrough.

The first file (Employee.xml) represents the data file. This well-formed XML document is com-
posed of multiple employees, as is denoted by the Employee element that is the child element

584637c03.indd 81 5/2/10 7:12:27 PM

82  ❘  Chapter 3   SharePoint 2010 Developer Tools

of the Employees element. Each employee record comprises a Name element and an EmpID (or
employee ID) element.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<Employees>
 <Employee>
 <Name>John Doe</Name>
 <EmpID>77804</EmpID>
 </Employee>
 <Employee>
 <Name>Jane Doe</Name>
 <EmpID>09029</EmpID>
 </Employee>
 <Employee>
 <Name>Ken Smith</Name>
 <EmpID>10290</EmpID>
 </Employee>
 <Employee>
 <Name>Kendra LaMont</Name>
 <EmpID>76802</EmpID>
 </Employee>
 <Employee>
 <Name>Ahmed Banerjee</Name>
 <EmpID>89300</EmpID>
 </Employee>
 <Employee>
 <Name>Pierre LaCroix</Name>
 <EmpID>00918</EmpID>
 </Employee>
</Employees>

The second file (Employee.xls) represents the XSLT style sheet that formats the data. Note that,
in the style sheet, Cascading Style Sheets (CSS) styles build out a table to format and display the
data from the Employee.xml file. Also note that for-each and select statements iterate through
the Employee.xml file and load the data into the page.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<xsl:stylesheet version=”1.0”
xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:template match=”/”>
<html>
<head>
<title>Employee</title>
<style type=”text/css”>
.style2 {
 border-collapse: collapse;
 font-size: 6.0pt;
 font-family: Calibri, sans-serif;
 color: #376092;
 border-left-style: none;
 border-left-color: inherit;
 border-left-width: medium;
 border-right-style: none;

584637c03.indd 82 5/2/10 7:12:28 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  83

 border-right-color: inherit;
 border-right-width: medium;
 border-top: 1.0pt solid #4F81BD;
 border-bottom: 1.0pt solid #4F81BD;
}
</style>
</head>
<body bgcolor=”#8FACC7” text=”#ffffff” link=”#808040”>
<h1>
<left>Employee Information</left>
</h1>
<table border=”0” cellpadding=”0” cellspacing=”0” class=”style2”
 style=”mso-border-top-alt: solid #4F81BD 1.0pt;
 mso-border-top-themecolor: accent1; mso-border-bottom-alt:
 solid #4F81BD 1.0pt;
 mso-border-bottom-themecolor: accent1; mso-yfti-tbllook: 1184;
 mso-padding-alt: 0in 5.4pt 0in 5.4pt”>
 <thead>
 <tr style=”mso-yfti-irow:-1;mso-yfti-firstrow:yes”>

 <th align=”left”>
 Emp. Name
 </th>
 <th align=”left”>
 Emp. ID
 </th>
 </tr>
</thead>
<tbody>
<xsl:for-each select=”Employees/Employee”>
 <tr style=”mso-yfti-irow:0”>
 <td style=”width:159.6pt;border-top:solid #4F81BD 1.0pt;
 mso-border-top-themecolor:accent1;border-left:
 none;border-bottom:solid #4F81BD 1.0pt;
 mso-border-bottom-themecolor:accent1;border-right:none;
 padding:0in 5.4pt 0in 5.4pt” valign=”top” width=”213”>
 <p class=”MsoNormal”>
<xsl:value-of select=”Name” />
 <span style=”color:#376092;mso-themecolor:accent1;
 mso-themeshade:191”></p>
 </td>
 <td style=”width:159.6pt;border-top:solid #4F81BD 1.0pt;
 mso-border-top-themecolor:accent1;border-left:none;
 border-bottom:solid #4F81BD 1.0pt;
 mso-border-bottom-themecolor:accent1;border-right:none;
 padding:0in 5.4pt 0in 5.4pt” valign=”top” width=”213”>
 <p class=”MsoNormal”>
<xsl:value-of select=”EmpID” />
 <span style=”color:#376092;mso-themecolor:accent1;
 mso-themeshade:191”></p>
 </td>
 </tr>
</xsl:for-each>

584637c03.indd 83 5/2/10 7:12:28 PM

84  ❘  Chapter 3   SharePoint 2010 Developer Tools

</tbody>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

	14.	 After you’ve uploaded the two files, click the Preview in Browser button to test out the look and
feel of the XML file and style sheet formatting. If you used the XML and XLST that has been pro-
vided here, the data that is displayed in your browser should look similar to Figure 3-12.

Figure 3-12  Transformed and rendered XML object

How It Works

When you create a style sheet, you leverage a set of commands that enable you to load specific parts of the
XML data, and then decorate that data with HTML. Using this method, you can create relatively simple
articulations of the XML data by using HTML only, or you can get complex by leveraging CSS. In this
example’s style sheet, you can see that there is a simple CSS style at work that is defined as .style2.

…
<style type=”text/css”>
.style2 {
 border-collapse: collapse;
 font-size: 6.0pt;
 font-family: Calibri, sans-serif;
 color: #376092;
 border-left-style: none;
 border-left-color: inherit;
 border-left-width: medium;
 border-right-style: none;
 border-right-color: inherit;
 border-right-width: medium;
 border-top: 1.0pt solid #4F81BD;

584637c03.indd 84 5/2/10 7:12:28 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  85

 border-bottom: 1.0pt solid #4F81BD;
}
</style>
…

style2 is then used in the styling of the table, as you can see in the following bolded code.

…
<table border=”0” cellpadding=”0” cellspacing=”0” class=”style2”
 style=”mso-border-top-alt: solid #4F81BD 1.0pt;
 mso-border-top-themecolor:
 accent1; mso-border-bottom-alt: solid #4F81BD 1.0pt;
 mso-border-bottom-themecolor:
 accent1; mso-yfti-tbllook: 1184; mso-padding-alt: 0in 5.4pt 0in 5.4pt”>
…

With the CSS styling, and some inline styling as well, SharePoint Designer loads the two files and then
maps them, so when the XML Web part loads into the page, it merges the XML data file with the
XSLT style sheet.

Managing Other Data Sources in SharePoint Designer
XML is not the only data source you tap into to create data-based custom site pages with SharePoint
Designer. You can also leverage other data connections such as Access or SQL Server databases, or even
Web services. For example, you can create simple data connections in SharePoint Designer that can be
subsequently used when building out custom site pages or Web parts from within SharePoint Designer.

To add a data source, you click the Data Sources link in the navigation pane. You then click the
appropriate button on the ribbon to select which data source you want to connect. To create a
database connection, click the Database Connection button, and then work through the wizard to
configure the database. Or, you can create the database connection when creating the actual custom
Web part page.

For example, click Site Pages in the navigation pane and then
click Web Part Page ➪ Edit File. You can now add data sources to
the page by clicking Data Sources on the ribbon and then select-
ing from existing SharePoint data sources (for example, lists). If
you insert controls into the Web part zones on the custom page,
such as an ASP.NET GridView, you can associate database con-
nections with that GridView, as shown in Figure 3-13.

You can create new connections using this entry point as well.
For example, after you add the GridView, in the Common
GridView Tasks menu, select New Data Source in Choose Data
Source. Click Database, provide a name for your connection,
and then connect to a database you have on your machine by configuring a new connection to that

Figure 3-13  Adding SQL data
sources to site page

584637c03.indd 85 5/2/10 7:12:28 PM

86  ❘  Chapter 3   SharePoint 2010 Developer Tools

database. As shown in Figure 3-14, you can select which columns you want to expose from your
database, and you can test the connection from within SharePoint Designer by clicking Test Query.

After you’ve created the connection, you have a connection between the database and your data grid
in the SharePoint Designer IDE, as shown in Figure 3-15.

Figure 3-14  Configuring Data Source page of the wizard

Figure 3-15  Data view in SharePoint Designer

Using JavaScript in SharePoint Designer
Beyond XML and database connectivity, there are many other useful developer features within
SharePoint Designer. One key feature that you will likely use is the capability to create JavaScript-
enabled pages so that you can insert dynamic scripting when loading specific pages.

When adding script to SharePoint pages, many developers opt to insert smaller sets of code into their
Web pages. Where larger, more complex code is required, developers often build out managed-code
assemblies that then get deployed to the global assembly cache (GAC). Site pages are one such example
of where you can deploy JavaScript to add dynamic capabilities to your SharePoint Web page.

Let’s try this out now.

584637c03.indd 86 5/2/10 7:12:28 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  87

Integrating JavaScript with a Custom Site PageTry It Out	

Dynamic script languages like JavaScript can provide some powerful augmentations to your page. To
add JavaScript to a custom site page, follow these steps:

	1.	 Open SharePoint Designer 2010. Open a specific SharePoint site and click Site Pages.

	2.	 Click Web Part Page on the ribbon to create a new page. Right-click the default site that is created
for you and click Rename. Provide a name for the Site page (for example, WroxPage.aspx), and
then click the link to open the Properties page for the new page. To edit the new Web part page,
click Edit File.

	3.	 You can toggle between different views, which include a code view, design view, and a split view.
Open the Toolbox to see the different controls that are available for use.

	4.	 Open the page in code view. You’ll notice that there are some shaded and unshaded portions of
the page. The unshaded portions of the page are where you can edit. Use the following sample
code to build out your custom Web part, adding the bolded code between the Content tags
within your Web part.

…
<WebPartPages:WikiContentWebpart runat=”server” AllowEdit=”True”
 AllowConnect=”True” ConnectionID=”00000000-0000-0000-0000-000000000000”
 Title=”“ IsIncluded=”True” Dir=”Default”
 IsVisible=”True” AllowMinimize=”True”
 ExportControlledProperties=”True” ID=”g_086fe54d_7b3b_464b_aa61_f2cbe884276d”
 PartImageSmall=”“ FrameType=”None” FrameState=”Normal” ExportMode=”All”
 AllowHide=”True” SuppressWebPartChrome=”False” DetailLink=”“ ChromeType=”None”
 HelpLink=”“ MissingAssembly=”Cannot import this Web part.” AllowRemove=”True”
 HelpMode=”Modeless” Directive=”<%@ Register
 TagPrefix="SharePoint"
 Namespace="Microsoft.Sharepoint.WebControls"
 Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c" %>”
 AllowZoneChange=”True” PartOrder=”1”
 Description=”“ PartImageLarge=”“ IsIncludedFilter=”“
 __MarkupType=”vsattributemarkup” __WebPartId=”{086FE54D-7B3B-464B-AA61-
 F2CBE884276D}” WebPart=”true” Height=”“ Width=”“>
<Content>

<div>
 <asp:Label runat=”server” Text=”Developer Book Info” id=”Label1”
 Font-Bold=”True” Font-Size=”Medium”></asp:Label>

</div><div>
 <asp:Image runat=”server” id=”Image1” Width=”413px” Height=”55px”
 ImageUrl=”http://fabrikamhockey/Shared%20Documents/WroxLogo.jpg” />

</div><div>
 <asp:Table runat=”server” id=”customTable”>
 <asp:TableHeaderRow></asp:TableHeaderRow>
 <asp:TableRow>
 <asp:TableCell>
 <asp:Label runat=”server” Text=”Books:” Font-Bold=”True”
 id=”lblBooks2”></asp:Label>

584637c03.indd 87 5/2/10 7:12:28 PM

88  ❘  Chapter 3   SharePoint 2010 Developer Tools

 </asp:TableCell>
 <asp:TableCell>
<select id=’dropdiv’ onchange=”getBookInfo(this)”>
 <option value=’1’>Professional SharePoint 2007
 Development</option>
 <option value=’2’>Beginning ASP.NET 3.5</option>
 <option value=’3’>Professional SharePoint Development using
 Silverlight</option>
 </select>

<script language=”javascript” type=”text/javascript”>
function getBookInfo(object)
{
var selected = object.options[object.selectedIndex].value;
var ISBN;
var Price;
var Message;

if (selected == ‘1’)
{
 ISBN = “091283900129”;
 Price = “$39.99”;
 Message = “Book Info: “ + ISBN + “ | “ + Price;
 alert(Message);
}
else if (selected == ‘2’)
{
 ISBN = “298734689102”;
 Price = “$42.99”;
 Message = “Book Info: “ + ISBN + “ | “ + Price;
 alert(Message);
}

else if (selected == ‘3’)
{
 ISBN = “948302381002”;
 Price = “$36.99”;
 Message = “Book Info: “ + ISBN + “ | “ + Price;
 alert(Message);
}
}

 </script>
 </asp:TableCell>
</asp:TableRow>
 </asp:Table>
 </div>
</Content>
</WebPartPages:WikiContentWebpart>
…

	5.	 Once you’ve added the code to the Web part
page, your custom Web part should look
similar to Figure 3-16.

Figure 3-16  Custom Web part page in SharePoint
Designer

584637c03.indd 88 5/2/10 7:12:28 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  89

	6.	 Click Preview in Browser to ensure that the custom Web part loads as you’ve designed it.

	7.	 Now that you’ve completed the design, click the drop-down box and change the selection. You
should see an alert message pop-up with some additional information about that book, as shown in
Figure 3-17.

Figure 3-17  Web part page running JavaScript

How It Works

This is a straightforward example, but it illustrates the marriage of ASP.NET controls with dynamic
scripting languages such as JavaScript.

JavaScript is a dynamic language that runs on the client. What that means is when the client loads the
browser and subsequently the page, it runs the script that you’ve embedded within the page. However,
one of the key things you must be aware of when using JavaScript for developing for SharePoint is that
it doesn’t maintain state natively, so you have to incorporate this into the design of your applications.

You’ll note that there are a number of things happening in the code shown in this exercise. For exam-
ple, you have an ASP Label control and an ASP Image control — which are controls that run on the
server when the page loads. You also have a select HTML object that provides you with a type of
HTML listbox with three options — different books that have been added as selections. You also have
a JavaScript function called getBookInfo() that is called every time you change your selection in the
drop-down box. What is more important in this example code, however, is that you’re adding the code
inline to the ASPX page. Alternatively, you could add the JavaScript code to the Content Editor Web
part or to the master page of the SharePoint site.

As you can see from the following code, JavaScript events are encapsulated within the script tag. In
this example, the events live on the page within which they are called. This is not the only way to call
JavaScript code, however. You can also store the code in a separate file (for example, foo.js) that can
be stored within SharePoint as a site asset. If you were to store the JavaScript separately, you would not
encapsulate the script in script tags. You would merely add the methods and any helper functions to
that .js file so that it is executed when called from the page.

…
<script language=”javascript” type=”text/javascript”>
function foo()

584637c03.indd 89 5/2/10 7:12:28 PM

90  ❘  Chapter 3   SharePoint 2010 Developer Tools

{
...

}
 </script>
…

With the previous example using in-line JavaScript, the getBookInfo method call is triggered when the
user changes his or her selection within the ListBox. You can see that the event that is triggered is the
onChange event.

…
<select id=’dropdiv’ onchange=”getBookInfo(this)”>
 <option value=’1’>
Professional SharePoint 2007 Development
 </option>
 <option value=’2’>
Beginning ASP.NET 3.5
 </option>
 <option value=’3’>
Professional SharePoint Development using Silverlight
 </option>
</select>
…

Depending on what the user selects, you can see that the object (that is, the selected item) is passed with
the call to getBookInfo. The variable called selected then gets the value of the selected item, which
further enables the code to run a conditional check against the selected item. So, if the selected item is
the first item, other variables are set and then subsequently concatenated and pushed out in an alert
event to the user.

NOTE  ​One item worth mentioning is that, when you’re integrating script within
a SharePoint page, you can use the ClientScriptManager object to add and
manage scripts within a Web application. For example, the following code snip-
pet shows a simple method that ensures only one instance of each script is
added to a page:

 public static void RegisterScript
 (ref ClientScriptManager csm,
 string key, string url)
 {
 if (!csm.IsClientScriptBlockRegistered(key))
 csm.RegisterClientScriptInclude(key, url);
 }

For more information on the ClientScriptManager, see http://msdn.microsoft
.com/en-us/library/system.web.ui.clientscriptmanager.aspx.

584637c03.indd 90 5/2/10 7:12:28 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  91

Master Pages
The example you just saw was a SharePoint site page, which could exist on any site. Interestingly,
when the site page loads, however, it does not just appear without some help. Behind the scenes, it
leverages what is called a master page, which provides some structure and styling for the SharePoint
page. Master pages can be a little tricky, so before you jump into editing them, you will want to
understand a little bit about their structure and purpose.

SharePoint is built on ASP.NET, so many of the artifacts that are core to SharePoint extend
from ASP.NET. Master pages are an ASP.NET concept leveraged in SharePoint. However,
the master pages in SharePoint are a little different, because they involve having multiple core
ContentPlaceHolder controls that must exist within a master page for those site pages within a
SharePoint site to be displayed correctly.

For example, earlier in this chapter, you saw that one of the new features of SharePoint is the rib-
bon, and the master page provides a content placeholder object on the page to handle the rendering
of the ribbon. Likewise, there are other objects that require the ASP ContentPlaceHolder object as
well, such as the navigation bars.

The following code snippet shows a set of ASP ContentPlaceHolder objects within a div tag that
support navigation functionality:

…
<div style=”display:none;”>
<asp:ContentPlaceHolder id=”PlaceHolderLeftNavBar” runat=”server” />
<asp:ContentPlaceHolder id=”PlaceHolderNavSpacer” runat=”server” />
<asp:ContentPlaceHolder id=”PlaceHolderBodyLeftBorder” runat=”server” />
<asp:ContentPlaceHolder id=”PlaceHolderPageImage” runat=”server” />
<asp:ContentPlaceHolder id=”PlaceHolderTitleLeftBorder” runat=”server” />
<asp:ContentPlaceHolder id=”PlaceHolderSearchArea” runat=”server” />
<asp:ContentPlaceHolder id=”PlaceHolderTitleAreaClass” runat=”server” />
<asp:ContentPlaceHolder id=”PlaceHolderTitleAreaSeparator” runat=”server” />
</div>
…

While SharePoint requires a specific set of these content placeholders to be present (being without
them would break the page), you can also create very powerful branding experiences through the
master page. This can be done by using any number of techniques.

For example, in the last exercise, you customized a site page using JavaScript. You could equally add
JavaScript into a master page to render a specific script at page load time. Or, you could have a spe-
cific object (such as an image or even a compiled Silverlight application) that equally appears each
time you leverage the master page.

What this means, though, is that for each page that uses the master page, the object or code that you
add to that master page (or the way in which you style that master page using HTML or CSS) will
also equally apply to that site page. This is an important point to remember, but, at the same time, it
can strengthen the case for using master pages to provide branding and structure for your sites.

Let’s look at an example.

584637c03.indd 91 5/2/10 7:12:28 PM

92  ❘  Chapter 3   SharePoint 2010 Developer Tools

NOTE  ​For this exercise, you will use a community-created minimal
master page. You can download the master page from Codeplex at http://
startermasterpages.codeplex.com/. For this exercise, some small adjust-
ments were made to the minimal master page. The amended master page
(Wrox_Master_Page.master) is available as part of the code that accompa-
nies this book, which you may find at www.wrox.com.

Customizing a Master PageTry It Out	

Code files [Wrox_Master_Page.master and MyBannerAd.zip] available for download at Wrox.com.

Master pages are files that provide structure and branding across a SharePoint site. To customize a
master page, follow these steps:

	1.	 Open SharePoint Designer and open your SharePoint site.

	2.	 In the navigation pane, click Master Pages.

	3.	 Click Blank Master Page, and provide a name for your master page (for example,
SharePoint_2010_Master.master).

	4.	 Open the Foundation Starter master page in Notepad. Copy and replace the code from the down-
loaded master page to your new master page while in code view.

	5.	 Toggle to design view to see the master page as it would look in the browser (see Figure 3-18).

	6.	 To set this master page as the default master page for your SharePoint site, click Master Pages in
the navigation pane. Right-click the master page and select Set as Default Master Page.

	7.	 Browse to your SharePoint site to test the look and feel of your new master page.

Figure 3-18  Minimal master page in SharePoint Designer

584637c03.indd 92 5/2/10 7:12:28 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  93

At this point, the master page renders the site in a fairly vanilla way — with only the minimal number
of controls showing on the page. In the SharePoint site shown in Figure 3-19, a number of controls (for
example, sidebar navigation) have been commented out to remove many of the active placeholder con-
trols beneath the ribbon. This is because, as a part of this exercise, you will add a Silverlight application
in the master page to show that you can brand a SharePoint site with a master page in combination
with other .NET technologies.

Figure 3-19  Minimal master page rendered in browser

First, though, let’s change the brand of the site to be a little different from the brand shown in
Figure 3-19. To do this, follow these steps:

	1.	 Upload a new image and add it to a custom directory you will need to create in the _layouts/
images directory within the SharePoint 14 root (for example, _layouts/images/WroxImages).
The direct path to this directory is: ...\Program Files\Common Files\Microsoft Shared\Web
Server Extensions\14\TEMPLATE\IMAGES.

	2.	 Change the following code to include this new image:

…
<SharePoint:SiteLogoImage id=”onetidHeadbnnr0”
 LogoImageUrl=”/_layouts/images/WroxImages/FictionalCompanyLogo.jpg”
 runat=”server”/></td>
…

	3.	 Save the new master page and then switch to your browser and refresh the page. Your new
SharePoint site should now look similar to Figure 3-20 (at least in terms of your image showing up
in the master page).

Figure 3-20  Minimal master page customized using an image

584637c03.indd 93 5/2/10 7:12:29 PM

94  ❘  Chapter 3   SharePoint 2010 Developer Tools

Using images is an easy way to quickly customize and brand a SharePoint site by using a minimal mas-
ter page with minimal changes. However, you’re probably already wondering how you can do some-
thing more advanced.

So, what if you want to add an additional branding element, such as a banner ad, to your master page
that you want available to all of the sites that leverage this master page? You could create a simple ban-
ner ad using Photoshop, or, as many companies are doing nowadays, you could build a more dynamic
banner ad using Silverlight.

Let’s build a simple Silverlight application and then incorporate that into the new branded master page.
This will do a couple of things. First, it will introduce you to Silverlight if you haven’t previously used
this technology. It will also show you one way to incorporate Silverlight into SharePoint. And, lastly,
it will show you how to integrate a managed-code application such as Silverlight with a master page to
change the look and feel of all site pages that leverage that master page.

Follow these steps:

	1.	 Open Visual Studio and select File ➪ New ➪ Project ➪ Silverlight.

	2.	 Provide a name for your project (for example, MyBannerAd), and click OK.

	3.	 Uncheck the “Host the Silverlight app in a new Web site” checkbox.

	4.	 When the new solution is created, right-click the project and select Add New Folder. Name the
folder Images. Right-click the new Images folder, and then select Add Existing. Add two images:
one called gear.png, and the other called branded.png. The two images are provided for you in
a zipped file called Images.zip in the companion download site. Note that these images are to be
used only for learning purposes, and are not licensed for reuse in any production or public code.

	5.	 Right-click the MainPage.xaml file and select View in Designer. Replace the default code that
exists between the UserControl elements with the following code:

<UserControl x:Class=”MyBannerAd.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”700” d:DesignWidth=”400”>
 <Grid x:Name=”LayoutRoot” Height=”700” Width=”400”>
 <Rectangle
Margin=”66,42,152,20”
Stroke=”#FF000000”
RadiusX=”0”
RadiusY=”0”>
 <Rectangle.Fill>
 <LinearGradientBrush
x:Name=”MRGB”
EndPoint=”0.5,1”
StartPoint=”0.5,0”>
 <GradientStop Color=”#FF000000” Offset=”0”/>
 <GradientStop Color=”#FF5E0805” Offset=”0.478”/>

584637c03.indd 94 5/2/10 7:12:29 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  95

 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Image Margin=”48,49,128,20”
 x:Name=”brandedImage”
 Source=”Images/brand.png”/>
 <TextBlock x:Name=”titleTextBlock”
 Margin=”75,59,161,0”
 FontFamily=”Arial”
 FontSize=”24”
 FontWeight=”Bold”
 TextWrapping=”Wrap”
 Foreground=”#FFF9F4F4”
 TextAlignment=”Center”
 Height=”56”
 VerticalAlignment=”Top”
 Text=”Life Without Borders”>
 </TextBlock>
 <TextBlock x:Name=”footerTextBlock”
 Margin=”75,564,161,0”
 FontFamily=”Arial”
 FontSize=”16”
 FontWeight=”Bold”
 TextWrapping=”Wrap”
 Foreground=”#FFF9F4F4”
 TextAlignment=”Center”
 Height=”56”
 VerticalAlignment=”Top”
 Text=”Fabrikam, Inc.”>
 </TextBlock>
 <Image Margin=”121,559,216,14”
 x:Name=”gearImage”
 Source=”Images/gear.png”/>
 </Grid>
</UserControl>

	6.	 When finished, your Silverlight application in Visual Studio should look like Figure 3-21.

	7.	 When it is complete, press F5 to build and test the application to make sure it works. This will
invoke an instance of your default browser and instantiate the banner ad.

	8.	 Next, go to your SharePoint site and create a new Document library called XAPS. When it’s com-
plete, navigate to the bin\debug directory of the solution you just created in Visual Studio (for
example, …\Source\CSharp\MyBannerAd\MyBannerAd\Bin\Debug) and upload the .xap file (for
example, MyBannerAd.xap) to the XAPS document library.

Now, this banner ad is fairly simple, but you could get creative and add animations and additional
graphics, swap out videos to play every few seconds, and so on using Silverlight (which is discussed
in more detail later in this book). In this sense, Silverlight is a very powerful option for you to use to
brand your sites.

584637c03.indd 95 5/2/10 7:12:29 PM

96  ❘  Chapter 3   SharePoint 2010 Developer Tools

Figure 3-21  Silverlight application in Visual Studio 2010 IDE

With the XAP file in the XAPS document library, you can now reference and load that Silverlight applica-
tion within SharePoint in different ways. For this example, let’s embed some code within the master
page so that when the page renders, it displays the Silverlight application by default. Follow these steps:

	1.	 Go back to SharePoint Designer and open your master page. Click Master Pages in the Navigation
list and select the new master page (for example, SharePoint_2010_Master.master). Click Edit
File to open the master page in Edit mode.

	2.	 Add the following JavaScript script into your master page near the bottom of the file. If you used
the master page from the code download, you will see a commented out ContentPlaceHolder
object called PlaceHolderUtilityContent. Uncomment this code and add the following bolded
code to your master page. Save the file when complete, and then return to the browser and refresh
the browser. (Note that you will need to update the server reference in the value variable to point
to your SharePoint server and .xap file URL.)

…
<asp:ContentPlaceHolder id=”PlaceHolderUtilityContent” runat=”server”>

<div id=”silverlightBannerAd” />

<script language=”JavaScript” type=”text/javascript”>
var slDIV = document.getElementById(‘silverlightBannerAd’);
slDIV.appendChild(slDIV);

584637c03.indd 96 5/2/10 7:12:29 PM

Developing SharePoint Applications Using SharePoint Designer 2010  ❘  97

slDIV.innerHTML = ‘<object data=”data:application/x-silverlight,”
 type=”application/x-silverlight” width=”400” height=”800”>
 <param name=”source” value=”http://fabrikamhockey/XAPS/MyBannerAd.xap”
 /></object>’;
</script>

</asp:ContentPlaceHolder>
…

	3.	 You will now see a SharePoint site that uses a custom, minimal master page using an image and a
Silverlight application — see Figure 3-22. You may want to add additional CSS styling or position
the banner (and most definitely improve the look and feel of the banner). But, at the end of the day,
any time you build out a site using this as the default master page, this would be the baseline tem-
plate you would start from.

Figure 3-22  Master page rendered in browser with image and Silverlight application

How It Works

As a SharePoint developer, you should take an interest in Silverlight. This is one of the key directions
that Microsoft is taking when it comes to building out Rich Internet Applications (RIAs). And, for
SharePoint, Silverlight offers some amazing potential not only for building out some simple branding
customizations as shown here, but also because of its great potential to build out hard-core business
applications that have dynamic user experiences. (Some of these will be explored later in the book.)

584637c03.indd 97 5/2/10 7:12:29 PM

98  ❘  Chapter 3   SharePoint 2010 Developer Tools

With SharePoint 2010 arrives the native support for Silverlight capabilities. This is contrary to
SharePoint 2007, where there were a number of required configurations within the web.config file, for
example, just to get up and running. So, this one version represents a huge leap for SharePoint.

It is the out-of-the-box support for Silverlight in SharePoint 2010 that provides a lot of the behind-the-
scenes support for this “Try It Out” example. By using JavaScript within the master page, you can create a
reference to the Silverlight application through the slDIV var object, and then set the inner HTML of the
var to further set the properties of an HTML object to render the Silverlight application.

As you can see from the discussion thus far on SharePoint Designer, quite a bit is possible. In some
cases, absolutely no code was required to get started with your development process (which is why
you will see SharePoint Designer being picked up and used by those with a variety of skills and back-
grounds). In other cases, you saw the combination of JavaScript with HTML, and then the integration
of Silverlight (using Visual Studio 2010 to build the .xap files) with master pages through JavaScript.

Your key takeaway from this discussion so far, then, should be threefold:

SharePoint Designer is a versatile tool and should absolutely be a part of your developer toolkit.➤➤

There are many things you can do with SharePoint Designer, ranging from no-code to code.➤➤

In some cases, SharePoint Designer has a great hand-in-glove relationship with Visual ➤➤

Studio 2010.

However, many developers live and breathe Visual Studio, so let’s move on to examine SharePoint
development using Visual Studio 2010.

Developing SharePoint Applications Using
Visual Studio 2010

Visual Studio 2010 now ships with a standard set of project-level and item-level templates that make
SharePoint development much, much easier (and more accessible) than in previous versions. It’s not
that development wasn’t possible before; it’s just that there were many ways to skin the cat, so to
speak. And this lack of consistency across the development tools caused disconnects in the developer
community over the best way to productively and consistently develop for SharePoint.

Microsoft settled on shipping standard project templates out of the box with an additional set of
project item templates. For example, if you create an Empty SharePoint Project, you have the option
of building out that empty SharePoint project using a number of different item-level templates.
These templates were described to you in Chapter 2, and you will see most (if not all) of them in use
throughout this book in some capacity. In this chapter, you will walk through a couple of examples
to get used to developing in Visual Studio so that you can be prepared to tackle the many other
examples you will come across throughout the book.

Beyond the wealth of templates available to you, there are also some other great features that Visual
Studio supports. For example, the Server Explorer lets you see the components of your SharePoint
site. Figure 3-23 shows an abbreviated view of the different objects found in a demo SharePoint site

584637c03.indd 98 5/2/10 7:12:29 PM

Developing SharePoint Applications Using Visual Studio 2010   ❘  99

(http://fabrikamhockey). The great thing about this
view is that it shows both custom and native objects, so
if you create a custom workflow and deploy it to your
SharePoint site, it will appear in the Server Explorer.

Another great feature of Visual Studio 2010 is the way in
which it structures a new SharePoint project. For example,
a SharePoint Visual Studio solution contains SharePoint
Features, each containing one or more SharePoint ele-
ments (for example, Web parts or List Templates). These
Features are then packaged for release as a SharePoint
Solution Package (WSP). The WSP is the standard way
of building a SharePoint solution — one that SharePoint
natively understands. A SharePoint feature contains items
(which are represented through XML files that live on the
server file system) that are deployed into your SharePoint
site for activation and use.

Each feature is deployed into a specific folder in the
SharePoint root (...\Program Files\Common Files\
Microsoft Shared\Web Server Extensions\14\

Template\Features). Within the Features directory, you will note that each feature is created and
deployed within its own folder. The folder for a feature contains XML configuration files that lever-
age the Collaborative Application Markup Language (CAML), a standard XML syntax you will see
throughout this book that SharePoint natively understands. A manifest file lives in each folder, which
provides feature-specific information such as GUIDs, version info, and any dependencies that are
required by the feature.

For example, following is an example of a feature.xml file for the PPSSiteMaster feature (a
PerformancePoint Server feature). You can see that this feature has multiple dependencies listed.

<Feature Id=”0B07A7F4-8BB8-4ec0-A31B-115732B9584D”
 Title=”$Resources:ppsma,SiteMaster_ContentType_Title”
 Description=”$Resources:ppsma,SiteMaster_ContentType_Description”
 Version=”14.0.0.0”
 Scope=”Web”
 SolutionId=”7ED6CD55-B479-4EB7-A529-E99A24C10BD3”
 Hidden=”FALSE”
 DefaultResourceFile=”core”
 xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <ElementManifests/>
 <ActivationDependencies>
 <!-- PPS Site Collection Feature -->
 <ActivationDependency FeatureId=”A1CB5B7F-E5E9-421B-915F-BF519B0760EF” />
 <!-- PPS content List -->
 <ActivationDependency FeatureId=”481333E1-A246-4D89-AFAB-D18C6FE344CE” />
 <!-- Bi Center DataConnections library template -->
 <ActivationDependency FeatureId=”26676156-91A0-49F7-87AA-37B1D5F0C4D0” />
 <!-- Bi Center Dashboards library template -->
 <ActivationDependency FeatureId=”F979E4DC-1852-4F26-AB92-D1B2A190AFC9” />

With SharePoint 2010 arrives the native support for Silverlight capabilities. This is contrary to
SharePoint 2007, where there were a number of required configurations within the web.config file, for
example, just to get up and running. So, this one version represents a huge leap for SharePoint.

It is the out-of-the-box support for Silverlight in SharePoint 2010 that provides a lot of the behind-the-
scenes support for this “Try It Out” example. By using JavaScript within the master page, you can create a
reference to the Silverlight application through the slDIV var object, and then set the inner HTML of the
var to further set the properties of an HTML object to render the Silverlight application.

As you can see from the discussion thus far on SharePoint Designer, quite a bit is possible. In some
cases, absolutely no code was required to get started with your development process (which is why
you will see SharePoint Designer being picked up and used by those with a variety of skills and back-
grounds). In other cases, you saw the combination of JavaScript with HTML, and then the integration
of Silverlight (using Visual Studio 2010 to build the .xap files) with master pages through JavaScript.

Your key takeaway from this discussion so far, then, should be threefold:

SharePoint Designer is a versatile tool and should absolutely be a part of your developer toolkit.➤➤

There are many things you can do with SharePoint Designer, ranging from no-code to code.➤➤

In some cases, SharePoint Designer has a great hand-in-glove relationship with Visual ➤➤

Studio 2010.

However, many developers live and breathe Visual Studio, so let’s move on to examine SharePoint
development using Visual Studio 2010.

Developing SharePoint Applications Using
Visual Studio 2010

Visual Studio 2010 now ships with a standard set of project-level and item-level templates that make
SharePoint development much, much easier (and more accessible) than in previous versions. It’s not
that development wasn’t possible before; it’s just that there were many ways to skin the cat, so to
speak. And this lack of consistency across the development tools caused disconnects in the developer
community over the best way to productively and consistently develop for SharePoint.

Microsoft settled on shipping standard project templates out of the box with an additional set of
project item templates. For example, if you create an Empty SharePoint Project, you have the option
of building out that empty SharePoint project using a number of different item-level templates.
These templates were described to you in Chapter 2, and you will see most (if not all) of them in use
throughout this book in some capacity. In this chapter, you will walk through a couple of examples
to get used to developing in Visual Studio so that you can be prepared to tackle the many other
examples you will come across throughout the book.

Beyond the wealth of templates available to you, there are also some other great features that Visual
Studio supports. For example, the Server Explorer lets you see the components of your SharePoint
site. Figure 3-23 shows an abbreviated view of the different objects found in a demo SharePoint site

Figure 3-23  Server Explorer

584637c03.indd 99 5/2/10 7:12:29 PM

100  ❘  Chapter 3   SharePoint 2010 Developer Tools

 <!-- Status Lists template -->
 <ActivationDependency FeatureId=”065C78BE-5231-477e-A972-14177CC5B3C7” />
 <!-- DocumentLibrary Feature -->
 <ActivationDependency FeatureId=”00BFEA71-E717-4E80-AA17-D0C71B360101”/>
 <!-- CustomList Feature -->
 <ActivationDependency FeatureId=”00BFEA71-DE22-43B2-A848-C05709900100”/>
 </ActivationDependencies>
</Feature>

While the packaging and deployment of features in SharePoint 2010 is mostly automated, it is still
useful to understand how it works for the times you need more than what automation provides.
For example, in previous versions of SharePoint, you may have had to hand-code the aforementioned
feature.xml file, or edit it using Visual Studio. However, with Visual Studio 2010, this file is some-
what obfuscated from your view, leaving you to focus on the fun part of development — building the
code for the custom solutions. You still could edit the file, but Visual Studio abstracts the XML configu-
ration away from your view so that you can focus on core development tasks. As you work through the
example in this section of the chapter, you will eventually see where the feature file is built and deployed
in SharePoint, but you don’t necessarily need to interact with it during the development process.

Beyond the feature.xml file (which you could think of as the core file that defines the feature), you
will also have other XML configuration files (for example, an elements.xml file), code-behind files,
and any dependencies files or assemblies. All applications and solutions are built using a standard
packaging and deployment method with the feature framework lying at the heart of this package.

While this is often taken for granted by .NET developers, the SharePoint tools also facilitate a great
F5 experience (for example, connection to worker processes, landing on key SharePoint pages to
kick off the debug process, and so on), as well as some additional capabilities for tasks that were
previously difficult to do, such as deployment and retraction. For example, retraction often meant
either issuing commands through a command-line tool or, in some cases, going into the SharePoint
file system and deleting folders.

In Visual Studio 2010, you can build and deploy applications through the Build menu, and then right-
click your project to retract it from the server. You can also select Retract from the Build menu. Visual
Studio does all the cleanup for you — exactly what you’d expect when cleaning your solutions from
your local development machines.

Figure 3-24 shows the options that are now available to you
from within your SharePoint Build menu. You can see your
Build and Rebuild solutions, but then you also see the Deploy
(which deploys the solution to SharePoint) and Clean Solution
functionality, as well as many other features.

Another work item that was difficult to accomplish with pre-
vious versions of SharePoint was source-code control. There
existed no native project templates in Visual Studio, which
made it difficult (or near impossible) to team-track source-
code projects. However, with the ALM features built into
Team Foundation Server, you can now manage your source
code in a streamlined way. For example, when you create Figure 3-24  Build Menu in Visual

Studio 2010 SharePoint project

584637c03.indd 100 5/2/10 7:12:29 PM

Developing SharePoint Applications Using Visual Studio 2010   ❘  101

a new project, as
Figure 3-25 shows,
you can click “Add to
source control” to add
your project to a Team
Foundation Server
instance.

Let’s walk through a couple of examples to explore some of the Visual Studio 2010 features. In the first
walkthrough, you will create an empty SharePoint project and then add a new Web part to that project.

Creating a New Web Part ProjectTry It Out	

Code file [WroxSPProject.zip] available for download at Wrox.com.

A Web part is one of the most common objects you will create for SharePoint. It is a core building block
of the platform. To create a new Web part project, follow these steps:

	1.	 Open Visual Studio and click File ➪ New ➪ Project ➪ Empty SharePoint Project in the SharePoint
2010 templates directory. Provide a name for the project (for example, WroxSPProject), and click
OK. When prompted, select "Deploy as farm solution" and click Finish.

	2.	 After Visual Studio sets up your project, right-click the project and select Add ➪ New Item. In the
SharePoint 2010 templates directory, choose Web Part, as shown in Figure 3-26. Provide a name
(for example, SimpleWebPart), and click Add.

Figure 3-26  Web Part item template

 <!-- Status Lists template -->
 <ActivationDependency FeatureId=”065C78BE-5231-477e-A972-14177CC5B3C7” />
 <!-- DocumentLibrary Feature -->
 <ActivationDependency FeatureId=”00BFEA71-E717-4E80-AA17-D0C71B360101”/>
 <!-- CustomList Feature -->
 <ActivationDependency FeatureId=”00BFEA71-DE22-43B2-A848-C05709900100”/>
 </ActivationDependencies>
</Feature>

While the packaging and deployment of features in SharePoint 2010 is mostly automated, it is still
useful to understand how it works for the times you need more than what automation provides.
For example, in previous versions of SharePoint, you may have had to hand-code the aforementioned
feature.xml file, or edit it using Visual Studio. However, with Visual Studio 2010, this file is some-
what obfuscated from your view, leaving you to focus on the fun part of development — building the
code for the custom solutions. You still could edit the file, but Visual Studio abstracts the XML configu-
ration away from your view so that you can focus on core development tasks. As you work through the
example in this section of the chapter, you will eventually see where the feature file is built and deployed
in SharePoint, but you don’t necessarily need to interact with it during the development process.

Beyond the feature.xml file (which you could think of as the core file that defines the feature), you
will also have other XML configuration files (for example, an elements.xml file), code-behind files,
and any dependencies files or assemblies. All applications and solutions are built using a standard
packaging and deployment method with the feature framework lying at the heart of this package.

While this is often taken for granted by .NET developers, the SharePoint tools also facilitate a great
F5 experience (for example, connection to worker processes, landing on key SharePoint pages to
kick off the debug process, and so on), as well as some additional capabilities for tasks that were
previously difficult to do, such as deployment and retraction. For example, retraction often meant
either issuing commands through a command-line tool or, in some cases, going into the SharePoint
file system and deleting folders.

In Visual Studio 2010, you can build and deploy applications through the Build menu, and then right-
click your project to retract it from the server. You can also select Retract from the Build menu. Visual
Studio does all the cleanup for you — exactly what you’d expect when cleaning your solutions from
your local development machines.

Figure 3-24 shows the options that are now available to you
from within your SharePoint Build menu. You can see your
Build and Rebuild solutions, but then you also see the Deploy
(which deploys the solution to SharePoint) and Clean Solution
functionality, as well as many other features.

Another work item that was difficult to accomplish with pre-
vious versions of SharePoint was source-code control. There
existed no native project templates in Visual Studio, which
made it difficult (or near impossible) to team-track source-
code projects. However, with the ALM features built into
Team Foundation Server, you can now manage your source
code in a streamlined way. For example, when you create

Figure 3-25  ALM in Visual Studio 2010

584637c03.indd 101 5/2/10 7:12:29 PM

102  ❘  Chapter 3   SharePoint 2010 Developer Tools

	3.	 Before you go any further, click Build ➪ Deploy Solution. Don’t switch to SharePoint in your
browser yet to inspect the deployed Web part. You’ll see what you built a little later in the
walkthrough.

At this point, you will see that Visual Studio adds a number of items to your solution. For example,
as shown in Figure 3-27, it adds a new feature (called Feature1.feature). A new node called
SimpleWebPart is added that contains a number of files within it as well. Although you can’t see it,
some of the configuration XML behind the scenes is also updated.

Figure 3-27  SharePoint project

If you double-click the Feature1.feature node, this will open another new part of the SharePoint fea-
ture set in Visual Studio, called the Feature Designer. This designer provides you with a graphical view
of the features that make up the current WSP package within your solution. It also provides you with
the capability to set the deployment level for the feature (for example, site or farm). You can add and
remove features from the package from this view. You can configure your deployment options, and you
can even edit the XML for the files here as well.

584637c03.indd 102 5/2/10 7:12:30 PM

Developing SharePoint Applications Using Visual Studio 2010   ❘  103

Given that you only have one feature (that is, the Web part) added to this project, you only have one
feature shown in Figure 3-28.

Figure 3-28  Visual Studio 2010 SharePoint Feature Designer

You can also see the core files that are associated with the feature:

Elements.xml➤➤

SimpleWebPart.cs➤➤

SimpleWebPart.webpart➤➤

Each one of these files has a specific function in the context of the feature. For example, the Elements.
xml file provides some basic configuration options for the feature. The SimpleWebPart.cs file contains
the core code behind, and the SimpleWebPart.webpart file is an XML file that represents the metadata
for the Web part project.

If you open up each of the three core files that make up the SimpleWebPart feature, you will find a
number of things going on. For example, the following code snippet shows the Elements.xml file,
which defines the elements that make up the feature. Here you can see that, because you only have a
Web part currently in your feature, this is the only module that is listed in the Elements.xml file.

<?xml version=”1.0” encoding=”utf-8”?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/” >
 <Module Name=”SimpleWebPart” List=”113” Url=”_catalogs/wp”>
 <File Path=”SimpleWebPart\SimpleWebPart.webpart” Url=”SimpleWebPart.webpart”
 Type=”GhostableInLibrary”>
 <Property Name=”Group” Value=”Custom” />
 </File>
 </Module>
</Elements>

If you open the SimpleWebPart.cs file, you will see that Visual Studio has generated some default code
for you that you can extend to, in this case, build out a custom Web part. Here, the code has created

584637c03.indd 103 5/2/10 7:12:30 PM

104  ❘  Chapter 3   SharePoint 2010 Developer Tools

an instance of the SimpleWebPart object and contains two override methods that will be used when
building out the Web part functionality later on in this walkthrough.

using System;
using System.ComponentModel;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace WroxSPProject.SimpleWebPart
{
 [ToolboxItemAttribute(false)]
 public class SimpleWebPart : WebPart
 {
 public SimpleWebPart()
 {
 }

 protected override void CreateChildControls()
 {
 base.CreateChildControls();
 }

 protected override void RenderContents(HtmlTextWriter writer)
 {
 base.RenderContents(writer);
 }
 }
}

The last major file of concern here is the SimpleWebPart.webpart file, which contains metadata about
the simple Web part you’re about to build out. You have, for example, editable properties such as Title
and Description that can actually make it more intuitive for a user to interact with your custom Web
part within SharePoint.

<?xml version=”1.0” encoding=”utf-8”?>
<webParts>
 <webPart xmlns=”http://schemas.microsoft.com/WebPart/v3”>
 <metaData>
 <type name=”WroxSPProject.SimpleWebPart.SimpleWebPart,
 $SharePoint.Project.AssemblyFullName$” />
 <importErrorMessage>$Resources:core,ImportErrorMessage;</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name=”Title” type=”string”>SimpleWebPart</property>
 <property name=”Description” type=”string”>My WebPart</property>
 </properties>
 </data>
 </webPart>
</webParts>

584637c03.indd 104 5/2/10 7:12:30 PM

Developing SharePoint Applications Using Visual Studio 2010   ❘  105

Now, follow these steps:

	1.	 Navigate to the SimpleWebPart.webpart file and double-click it to open it in the code view.
Within the properties element, amend the Title and Description to be more descriptive, similar
to the following:
…
 <properties>
 <property name=”Title” type=”string”>Wrox Book Delivery</property>
 <property name=”Description” type=”string”>Web part that
 calculates cost for delivery on Wrox developer books. </property>
 </properties>
…

	2.	 Open the SimpleWebPart.cs file and amend the code, adding the following bolded code:

using System;
using System.ComponentModel;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using System.Text;

namespace WroxSPProject.SimpleWebPart
{
 [ToolboxItemAttribute(false)]
 public class SimpleWebPart : WebPart
 {
 Label lblBook = new Label();
 ListBox lstbxBooks = new ListBox();
 Label lblDelMethods = new Label();
 ListBox lstbxDeliveryMethods = new ListBox();
 Label lblDelDate = new Label();
 TextBox txtbxDelDate = new TextBox();
 Label lblFinalPrice = new Label();
 TextBox txtbxFinalPrice = new TextBox();
 Button btnCalc = new Button();

 public SimpleWebPart()
 {
 }

 protected override void CreateChildControls()
 {
 lblBook.Text = “Book Name:”;
 lblFinalPrice.Text = “Final Cost:”;
 lblDelDate.Text = “Del Date:”;
 lblDelMethods.Text = “Del Methods:”;
 btnCalc.Text = “Calc.”;

 lstbxBooks.Items.Add(“Professional SharePoint 2007 Development”);

584637c03.indd 105 5/2/10 7:12:30 PM

106  ❘  Chapter 3   SharePoint 2010 Developer Tools

 lstbxBooks.Items.Add(“Beginning ASP.NET Development”);
 lstbxBooks.Items.Add(“WPF Programming”);

 lstbxDeliveryMethods.Items.Add(“Ground”);
 lstbxDeliveryMethods.Items.Add(“Express”);
 lstbxDeliveryMethods.Items.Add(“Overnight”);

 txtbxDelDate.Enabled = false;
 txtbxFinalPrice.Enabled = false;

 StringBuilder sb1 = new StringBuilder();
 sb1.AppendLine(“<table border=’0’><tr><td>”);
 StringBuilder sb2 = new StringBuilder();
 sb2.AppendLine(“</td><td>”);
 StringBuilder sb3 = new StringBuilder();
 sb3.AppendLine(“</td></tr><tr><td>”);
 StringBuilder sb4 = new StringBuilder();
 sb4.AppendLine(“</td><td></td></tr></table>”);

 this.Controls.Add(new LiteralControl(sb1.ToString()));
 this.Controls.Add(lblBook);
 this.Controls.Add(new LiteralControl(sb2.ToString()));
 this.Controls.Add(lstbxBooks);
 this.Controls.Add(new LiteralControl(sb3.ToString()));
 this.Controls.Add(lblDelMethods);
 this.Controls.Add(new LiteralControl(sb2.ToString()));
 this.Controls.Add(lstbxDeliveryMethods);
 this.Controls.Add(new LiteralControl(sb3.ToString()));
 this.Controls.Add(lblDelDate);
 this.Controls.Add(new LiteralControl(sb2.ToString()));
 this.Controls.Add(txtbxDelDate);
 this.Controls.Add(new LiteralControl(sb3.ToString()));
 this.Controls.Add(lblFinalPrice);
 this.Controls.Add(new LiteralControl(sb2.ToString()));
 this.Controls.Add(txtbxFinalPrice);
 this.Controls.Add(new LiteralControl(sb3.ToString()));
 this.Controls.Add(btnCalc);
 this.Controls.Add(new LiteralControl(sb4.ToString()));

 btnCalc.Click += new EventHandler(btnCalc_Click);

 base.CreateChildControls();

 }

 void btnCalc_Click(object sender, EventArgs e)
 {
 double finalCost = 0.00;
 double costOfDel = 0.00;
 double costOfBook = 0.00;
 double salesTax = .08;
 double numOfDays = 0;
 DateTime today = DateTime.Now;
 DateTime delDate;
 string strBook = lstbxBooks.SelectedItem.ToString();

584637c03.indd 106 5/2/10 7:12:30 PM

Developing SharePoint Applications Using Visual Studio 2010   ❘  107

 string delMethod = lstbxDeliveryMethods.SelectedItem.ToString();

 if (strBook == “Professional SharePoint 2007 Development”)
 {
 costOfBook = 39.99;
 }
 else if (strBook == “Beginning ASP.NET Development”)
 {
 costOfBook = 42.99;
 }
 else if (strBook == “WPF Programming”)
 {
 costOfBook = 28.99;
 }

 if (delMethod == “Ground”)
 {
 costOfDel = 3.99;
 numOfDays = 5;
 }
 else if (delMethod == “Express”)
 {
 costOfDel = 7.99;
 numOfDays = 3;
 }
 else if (delMethod == “Overnight”)
 {
 costOfDel = 11.99;
 numOfDays = 1;
 }

 finalCost = costOfDel + costOfBook;
 finalCost = Math.Round(finalCost + (finalCost * salesTax), 2)/100*100;
 txtbxFinalPrice.Text = “$” + finalCost.ToString();
 delDate = today.AddDays(numOfDays);
 txtbxDelDate.Text = delDate.ToShortDateString();
 }

 }
}

	3.	 When you’ve completed the addition of this code to your Web part (and amended the
SimpleWebPart.webpart), click Build ➪ Deploy Solution. This builds the solution and runs
through a number of steps to deploy it to your SharePoint site — the site that was validated and
associated with the project when you first created your project.

	4.	 As your project builds, click View ➪ Output. In the Output window, you will see the processing of
the default build and deploy steps that Visual Studio runs through as it builds out your project.

If you followed along with the instructions and built the project once already, you will see something simi-
lar to the following. Note that Visual Studio has discovered the fact that you already deployed this solu-
tion once and is now retracting it and removing all conflicts, as shown in the following bolded output:

------ Build started: Project: WroxSPProject, Configuration: Debug Any CPU ------
 WroxSPProject -> C:\Authoring\Beginning_SP_Dev\Chap4_Pro_SP_Dev_Tools\

584637c03.indd 107 5/2/10 7:12:30 PM

108  ❘  Chapter 3   SharePoint 2010 Developer Tools

 Source\CSharp\WroxSPProject\WroxSPProject\bin\Debug\WroxSPProject.dll
 Successfully created package at:
 C:\Authoring\Beginning_SP_Dev\Chap4_Pro_SP_Dev_Tools\Source\
 CSharp\WroxSPProject\WroxSPProject\bin\Debug\WroxSPProject.wsp
------ Deploy started: Project: WroxSPProject, Configuration: Debug Any CPU ------
Active Deployment Configuration: Default
Run Pre-Deployment Command:
 Skipping deployment step because a pre-deployment command is not specified.
Recycle IIS Application Pool:
 Recycling IIS application pool ‘SharePoint - 80’...
Retract Solution:
 Deactivating feature ‘WroxSPProject_Feature1’ ...
 Retracting solution ‘wroxspproject.wsp’...
 Deleting solution ‘wroxspproject.wsp’...
Add Solution:
 Found 1 deployment conflict(s). Resolving conflicts ...
 Deleted file ‘http://fabrikamhockey/_catalogs/wp/
 SimpleWebPart.webpart’ from server.
 Adding solution ‘WroxSPProject.wsp’...
 Deploying solution ‘WroxSPProject.wsp’...
Activate Features:
 Activating feature ‘Feature1’ ...
Run Post-Deployment Command:
 Skipping deployment step because a post-deployment command is not specified.
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========
========== Deploy: 1 succeeded, 0 failed, 0 skipped ==========

After you’ve deployed the SharePoint project, a new folder is created in
the Features directory. For example, if you browse to the Features
directory, this project has created the subdirectory structure shown in
Figure 3-29.

If you open the Feature.xml file, you will see that it refers to an
ElementManifest object that corresponds to the folder struc-
ture within the WroxSPProject_Feature1 folder (that is, the
SimpleWebPart folder, which contains the Elements.xml file and the SimpleWebPart.webpart file).
Thus, you can see how your project is packaged and deployed. The appropriate assemblies are built and
deployed to the GAC (because you built this as a farm-level solution), and the XML configuration files
live in the Features directory.

<?xml version=”1.0” encoding=”utf-8”?>
<Feature xmlns=”http://schemas.microsoft.com/sharepoint/”
 Id=”e9577309-e63d-482a-8815-6b17916f2bfd” Scope=”Site”
 Title=”WroxSPProject Feature1”>
 <ElementManifests>
 <ElementManifest Location=”SimpleWebPart\Elements.xml” />
 <ElementFile Location=”SimpleWebPart\SimpleWebPart.webpart” />
 </ElementManifests>
</Feature>

Now that you have an understanding of where the glue and the bits are deployed to, follow these steps:

Figure 3-29  Feature directory

584637c03.indd 108 5/2/10 7:12:30 PM

Developing SharePoint Applications Using Visual Studio 2010   ❘  109

	1.	 Open your SharePoint site. (Note that you will walk through some long-hand steps in this walk-
through that will be shortened in the next walkthrough by using the F5 debug function.)

	2.	 Click All Site Content and click Create.

	3.	 Click Sites in the left-hand pane and select Blank Site Template. Provide a name and URL, and
click Create.

	4.	 When the new site is created, click Site Actions ➪ Edit Page.

	5.	 While in Edit mode, click “Add a web part.” This displays the Web Part Gallery.

	6.	 Navigate to the Custom category, and you will find the Web part that you just deployed to
SharePoint. Note that the title and the description that you provided in the .webpart file are dis-
played in the appropriate places, as shown in Figure 3-30.

Figure 3-30  Adding a Web part to a page

	7.	 Click Add. This will add the Web part you just
created in your SharePoint project to the Web
part page, as shown in Figure 3-31. You can test
out the functionality of the Web part by selecting
entries in the listbox and clicking the Calc. button.
The appropriate delivery date and final cost are
calculated for you and displayed in the (disabled)
textboxes.

How It Works

This was a more elaborate example than the others
that you’ve walked through in this chapter, so let’s talk through some of the key parts of the custom
solution.

First, you used the core SharePoint project file, and then added a Web part to that empty project. The
nice thing about using the SharePoint project file is that you can add multiple SharePoint elements to
the solution, and Visual Studio understands how to handle these — it builds, packages, and deploys
them in the right place in the SharePoint Root.

Figure 3-31  Custom Web part rendering
in browser

584637c03.indd 109 5/2/10 7:12:30 PM

110  ❘  Chapter 3   SharePoint 2010 Developer Tools

Second, the Web part is a standard ASP.NET server control and can, therefore, contain other nested
ASP.NET controls. Because of this, you can leverage all of the different controls and framework power
that derives from this inheritance. In this example, you used a number of controls (for example, Label,
Textbox, and Button) to create the main user interface. In the Web part, you created these controls
and then used the Add method to add each control (after you set the properties of the control) to the
Controls collection — which enables you to build out and format the UI with specific ASP.NET
controls. Within the CreateChildControls event, many of the controls that are added as class-level
objects are assigned values. For example, items are added to each of the listboxes as mock data, and
text properties are set for the different UI objects. Also, in the CreateChildControls method, each of
the controls is added to the Controls collection (after the properties are set), which enables the controls
to be displayed in the Web part.

You’ll also note that the literalcontrol object directly writes the object into the HTML stream
(built out using the StringBuilder object) to create a table that provides some formatting for the UI.
Otherwise, the UI controls will display in an unorganized way.

The literalcontrol is not the only object to emit HTML to SharePoint in this manner. You could
also use StringWriter and HTMLTextWriter objects to write HTML to the Web part as well. For
example, the following code creates a simple StringBuilder object, then writes that through using the
StringWriter and HtmlTextWriter objects:

StringBuilder sb = new StringBuilder();
sb.AppendLine(“<table border=’0’><tr><td>”);
StringWriter spStrWriter = new StringWriter(sb);
HtmlTextWriter htmlTxtWriter = new HtmlTextWriter(spStrWriter);
Page.RenderControl(htmlTxtWriter);

Admittedly, the use of multiple literalcontrol objects is not the most elegant of ways to emit HTML
when rendering Web parts. ASP.NET provides a rich framework for writing HTML out to the page,
which includes the HtmlTextWriter class.

Third, you tied a specific event to the controls that enabled you to interact with the controls on the page
and then acted on that interaction — this was the btnCalc_Click event. This event will take informa-
tion from the data selected in the two listboxes and calculate the final cost of the book given a specific
book selection and the type of delivery the user wants. Note that the btnCalc_Click event also rounds
the final cost of the book, and then converts it to a string. It sets the Text property of the txtbxFinal-
Cost object — which is set to be disabled, as is txtbxDelDate.

Based on what the user has selected, the btnCalc_Click method runs a number of conditional if state-
ments to assign specific book costs and delivery costs to help calculate the final cost of the book. This
method also takes the number of days associated with the delivery method specified by the user, and adds
that number of days to the current date, to provide the user with an estimated delivery date for the book.

Lastly, Visual Studio deployed the Web part to the appropriate places in SharePoint, and the appro-
priate files were created so that the Web part would be displayed in the Custom Web Part Gallery.
This capability to build and deploy custom solutions for SharePoint is an immense improvement over
SharePoint 2007, where you would have had to use one of a handful of methods to build and deploy a
Web part to a SharePoint site.

584637c03.indd 110 5/2/10 7:12:30 PM

Developing SharePoint Applications Using Visual Studio 2010   ❘  111

One thing about the Web part you just built is that it was self-contained. It didn’t rely on any
other part of SharePoint or an external system. While you can build some very powerful Web
parts using this design, you will often want to integrate the SharePoint element you’re building
with some other part of either SharePoint or an external system (such as a database, Web service,
or even a Web 2.0 technology).

You’ll see a number of service-based and database integration examples throughout the book that
discuss how to integrate with external systems. Next, you will walk through a Web 2.0 example that
shows how you can leverage some community code to integrate a custom Visual Web part with Twitter.

Creating a Custom Twitter Visual Web PartTry It Out	

Code files [MyTwitterFeedWebPart.zip and Twitterizer.Framework-1.0.1.129.zip] available for download at Wrox.com.

You can integrate many Web 2.0 applications with SharePoint, one of which is Twitter. To create a cus-
tom Twitter Web part, follow these steps:

	1.	 Open Visual Studio and click File ➪ New ➪ Project. Navigate to SharePoint 2010, and
select the Visual Web Part project template. Provide a name for your project (for example,
MyTwitterFeedWebPart), and click OK. Visual Studio creates a SharePoint project for you and
then adds a Visual Web part to the solution.

	2.	 If you want to rename the Visual Web part to something more intuitive (as opposed to the
default VisualWebPart1), then right-click the visual Web part and rename it (for example,
TwitterWebPart). Note that you may need to click Edit,
click Find and Replace, and then select Quick Replace to
replace all instances of VisualWebPart1 with your new
Web part name.

	3.	 Right-click the user control file (for example,
TwitterWebPartUserControl.ascx), and select View in
Designer.

	4.	 Create a user interface that includes three textboxes and
two buttons all structured within a table, as shown in
Figure 3-32.

Table 3-1 provides a summary of the names and control types for the application

Table 3-1  Control Types and Names

Control Types Control Names

Textbox txtbxUsername, txtbxPassword, txtbxTweet

Button btnTweet, btnClear

Figure 3-32  Twitter Web part in
Visual Web Part Designer

584637c03.indd 111 5/2/10 7:12:30 PM

112  ❘  Chapter 3   SharePoint 2010 Developer Tools

	5.	 The code for this UI looks like the following. Note that to auto-generate the two events associated
with the buttons, you double-click on each of the buttons, and the method stubs in the code behind
will be generated for you.

<%@ Assembly Name=”$SharePoint.Project.AssemblyFullName$” %>
<%@ Assembly Name=”Microsoft.Web.CommandUI, Version=14.0.0.0,
 Culture=neutral, PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”SharePoint” Namespace=
 “Microsoft.SharePoint.WebControls”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0,
 Culture=neutral, PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”Utilities” Namespace=”Microsoft.
 SharePoint.Utilities” Assembly=
 “Microsoft.SharePoint, Version=14.0.0.0,
 Culture=neutral, PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”asp” Namespace=”System.Web.UI”
 Assembly=”System.Web.Extensions,
 Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” %>
<%@ Import Namespace=”Microsoft.SharePoint” %>
<%@ Register Tagprefix=”WebPartPages” Namespace=
 “Microsoft.SharePoint.WebPartPages”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0,
 Culture=neutral, PublicKeyToken=71e9bce111e9429c” %>
<%@ Control Language=”C#” AutoEventWireup=”true”
 CodeBehind=”TwitterWebPartUserControl.ascx.cs”
 Inherits=”MyTwitterFeedWebPart.TwitterWebPart.
 TwitterWebPartUserControl” %>
<p>My 'Tweetin Web part</p>
<table border=”0”>
<tr><td>Username:</td><td>
 <asp:TextBox ID=”txtbxUsername” runat=”server”></asp:TextBox>
</td></tr><tr>
<td>Password:</td><td>
 <asp:TextBox ID=”txtbxPassword” runat=”server”></asp:TextBox>
</td></tr><tr><td>My Tweety:</td><td>
 <asp:TextBox ID=”txtbxTweet” Height=”25” runat=”server”>
 </asp:TextBox>
</td></tr><tr><td>
 <asp:Button ID=”btnTweet” runat=”server” Text=”Tweet”
 onclick=”btnTweet_Click” /></td><td>
 <asp:Button ID=”btnClear” runat=”server” Text=”Clear”
 onclick=”btnClear_Click” />
</td></tr></table>

	6.	 When you’ve created the new UI, you’re now ready to create the code for the capability to submit
a “tweet” from your SharePoint Web part. To do this, you’re going to leverage a community .NET
wrapper for the Twitter API, called the Twitterizer. To get the API, go to the following link and down-
load the zipped DLL to your local development machine: http://twitterizer.googlecode.com/
files/Twitterizer.Framework-1.0.1.130.zip. Unzip the zipped file in a readily accessible folder.

584637c03.indd 112 5/2/10 7:12:30 PM

Developing SharePoint Applications Using Visual Studio 2010   ❘  113

	7.	 You now want to add the Twitterizer.Framework DLL to your Web part project, which will
enable you to very easily call the Twitter API using .NET code. To do this, right-click References
and select Add Reference. Choose Browse, and then navigate to where you unzipped the
Twitterizer.Framework DLL file.

	8.	 Now, go to your code-behind file (for example, TwitterWebPartUserPartControl.ascx.cs) and
add the following boldfaced code to this file. You can see that you need two using statements to ref-
erence the added DLL, and that you’re going to set three class-level string variables (the text that the
user enters). You can also see an instance of the Twitter object, which “tweets” the message that the
user enters into the “My Tweety” textbox. The Clear button resets all of the textboxes to null.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

using Twitterizer;
using Twitterizer.Framework;

namespace MyTwitterFeedWebPart.TwitterWebPart
{
 public partial class TwitterWebPartUserControl : UserControl
 {
 string strTweet = ““;
 string myTweetUsername = ““;
 string myTweetPassword = ““;

 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void btnTweet_Click(object sender, EventArgs e)
 {
 myTweetUsername = txtbxUsername.Text;
 myTweetPassword = txtbxPassword.Text;
 strTweet = txtbxTweet.Text;

 Twitter myTweet = new Twitter(myTweetUsername,
 myTweetPassword);
 myTweet.Status.Update(strTweet);
 }

 protected void btnClear_Click(object sender, EventArgs e)
 {
 txtbxTweet.Text = ““;
 txtbxPassword.Text = ““;
 txtbxUsername.Text = ““;
 }
 }
}

584637c03.indd 113 5/2/10 7:12:30 PM

114  ❘  Chapter 3   SharePoint 2010 Developer Tools

	9.	 When you’re finished adding the code, press F5 to build and debug the application. This builds,
deploys, and attaches the Visual Studio debug process to the relevant worker processes.

	10.	 After you press F5, Visual Studio invokes Internet Explorer and opens SharePoint at the Create
Web Part page. Here you can provide a name for the Web part page and click Create. Then, click
“Add a web part” to add the new Tweet Visual Web part, as shown in Figure 3-33.

	11.	 SharePoint now exposes the Web Part Gallery, so navigate to the Custom category, as shown in
Figure 3-34, and you will see the new Tweety Bird Web part. Click Add to add it to the new Web
part page.

	12.	 After you’ve added the Tweety Bird Web part, enter your username and password and add a tweet.
Click Tweet to update your Twitter account with your new message, as shown in Figure 3-35.
(Note that you need Internet connectivity and a Twitter account for this example to work.)

Figure 3-33  Creating a new Web part page for the Twitter Web part

Figure 3-34  Adding the Web part to the page

584637c03.indd 114 5/2/10 7:12:31 PM

Developing SharePoint Applications Using Visual Studio 2010   ❘  115

	13.	 When you are done, navigate to your Twitter
page to test if your tweet was posted, as shown
in Figure 3-36.

How It Works

The Visual Web part is a new type of Web part for
SharePoint 2010 that provides the developer with the
capability to create ASP.NET user controls using a
WYSIWYG design surface. This user control is then
wrapped by Visual Studio in a class that implements
the user control as a Web part. In this example, you
used the Twitter .NET wrapper that provides a lot
of the core functionality to interact with
Twitter from remote .NET client applica-
tions — such as the one you created here.
The nice thing about the .NET wrapper for
Twitter is that you don’t have to manage
the REST calls to Twitter; they are handled
through the .NET APIs.

REST (Representation State Transfer) is a lightweight way to interact with Web-based data using an
HTTP protocol. You will learn more about REST in Chapter 5 and Chapter 10.

In this simple example, you built the ASP.NET UI to accept some limited user input — that is, the user-
name, password, and the tweet. The key lines of code that enabled the communication with Twitter were
the two lines of code within the btnTweet_Click event, which are bolded in the following code snippet.

 protected void btnTweet_Click(object sender, EventArgs e)
 {
 …

 Twitter myTweet = new Twitter(myTweetUsername,
 myTweetPassword);
 myTweet.Status.Update(strTweet);
 }

Here, an instance of the Twitter object (myTweet) is created using the user-entered password and username
as parameters. myTweet then uses the Update method on that object, passing it the tweet message. This is a
super-simple way to message tweets to Twitter from your UI (albeit with very little error-checking code).

In general, Visual Studio 2010 has evolved tremendously in the support for SharePoint 2010 devel-
opment. If you’re new to SharePoint development, your thinking may be that this is just the way it
should be. However, if you’re a returning SharePoint developer, you should be having a “hallelujah”
moment right now, given the disparate ways in which development was done in the past using Visual
Studio. With this in mind, as you move through the book, know that you will continue to walk
through exercises where Visual Studio is at the core of the development experience.

Now that you’ve learned a little bit about Visual Studio 2010, let’s move on to Expression Blend.

Figure 3-35  Visual Web part rendered on the page

Figure 3-36  Successful Twitter call

584637c03.indd 115 5/2/10 7:12:31 PM

116  ❘  Chapter 3   SharePoint 2010 Developer Tools

Development Using the Expression Blend Suite

Visual Studio 2010 and SharePoint Designer 2010 are your two core developer tools for SharePoint
2010, so you won’t see as much coverage here for Expression Blend as you did for the aforemen-
tioned tools. However, it’s still important to at least get an introduction to Expression Blend. The
reason is that Expression Blend provides a great suite of applications that support dynamic and
more complex UI design.

NOTE  ​You can download and try Expression Blend for 30 days. For more informa-
tion, go to www.microsoft.com/expression/products/Blend_Overview.aspx.

One of the main reasons for introducing it here is that Expression Blend offers a great way to design
WPF, Silverlight, and Deep Zoom applications. Silverlight, as you will see later in the book, is a
great way to create very dynamic applications — and this dynamic user experience begins with the
use of Expression Blend. Further, Deep Zoom can also provide some interesting media experiences
with images. For example, the Hard Rock Memorabilia site (http://memorabilia.hardrock.com)
leverages the Deep Zoom capabilities within a Silverlight application embedded within an HTML
page, as shown in Figure 3-37.

Figure 3-37  Hard Rock Cafe Memorabilia site

584637c03.indd 116 5/2/10 7:12:31 PM

Development Using the Expression Blend Suite  ❘  117

The type of experience on the site is one that enables you to zoom in to the different images on the
page — with remarkable clarity of the images because the application refocuses each time it zooms
in to an image. For example, when you zoom in to the center of the Silverlight application on the
Hard Rock Cafe site, as shown in Figure 3-38, one of the many images is displayed, along with
some metadata about that particular image — in this case a Keith Moon robe.

Figure 3-38  Zooming in on memorabilia

While you can create Deep Zoom applications like the one shown here, you can also create more every-
day business applications using Silverlight. For example, much as you’d create a WinForm application
using Visual Studio 2010, you could equally create a Silverlight application using Expression Blend. The
added value is that you get more functionality built into Expression Blend, which provides support for
animation, behaviors, action triggers, gradient design, and so on — so it truly provides much more of a
design experience than the “Cider” UI designer that ships with Visual Studio 2010.

NOTE  ​Note that Expression Blend 3 and Visual Studio 2010 are conversant. So,
when you build a Silverlight application in Expression Blend, it actually builds
it as a Visual Studio–compatible solution. You can try this by right-clicking the
MainPage.xaml in Visual Studio and selecting Open in Expression Blend.

584637c03.indd 117 5/2/10 7:12:31 PM

118  ❘  Chapter 3   SharePoint 2010 Developer Tools

Let’s create a simple application using Expression Blend.

Creating a Silverlight Application Using Expression BlendTry It Out	

Code file [MyFirstSilverlightApp.zip] available for download at Wrox.com.

Expression Blend can be used to create UI elements for SharePoint. To create an application using
Expression, follow these steps:

	1.	 Open Expression Blend and click File ➪ New ➪ Project. Provide a name for your application (for
example, MyFirstSilverlightApp), and click OK.

	2.	 After Expression Blend creates your project, you will see that the main view is of the
MainPage.xaml file. This is the main UI of your application. To keep things simple, click the chevron
toward the bottom of the left-hand controls. This opens a fly-out menu that lists eight options, one of
which is Controls. Click the Controls link to see the different controls available to you, as shown in
Figure 3-39. Drag two labels, a button, a textbox, and a calendar control onto the design surface.

Figure 3-39  Expression Blend visual IDE

Table 3-2 provides a summary of the names and control types for the application.

584637c03.indd 118 5/2/10 7:12:31 PM

Development Using the Expression Blend Suite  ❘  119

Table 3-2  Control Types and Names

Control Types Control Names

Label lblTitle, lblDate

Textbox txtbxDate

Button btnDate

Calendar clndrControl

	3.	 Arrange the controls so that they look like Figure 3-40. Note that you can add some gradient to the
control by clicking the control and then clicking different areas of the color palette in the Properties
window.

Figure 3-40  Designing controls in Expression Blend

	4.	 You could add more sophisticated behaviors, but, for now, save the application and close
Expression Blend. You’ll add some event handlers for the application — but you’re going to do this
using Visual Studio.

	5.	 Open Visual Studio 2010 and then open the Silverlight project. Note that when you open it, the
project structure will look like Figure 3-41. However, the look and feel of the UI that you designed
in Expression remains intact.

584637c03.indd 119 5/2/10 7:12:31 PM

120  ❘  Chapter 3   SharePoint 2010 Developer Tools

Figure 3-41  Silverlight application in Visual Studio

	6.	 Inspect the XAML that makes up the UI (see the following code snippet). Note the gradient ele-
ments that provide the richer brush strokes for the calendar and button controls. This was a result
of your clicking within the color palette.

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/
 presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:controls=”clr-namespace:
 System.Windows.Controls;assembly=
 System.Windows.Controls”
 xmlns:d=”http://schemas.microsoft.com/expression/
 blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/
 markup-compatibility/2006”
 xmlns:dataInput=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data.Input”
 x:Class=”MyFirstSilverlightApp.MainPage”
 Width=”640” Height=”480” mc:Ignorable=”d”>

 <Grid x:Name=”LayoutRoot” Background=”White”>

584637c03.indd 120 5/2/10 7:12:31 PM

Development Using the Expression Blend Suite  ❘  121

 <Button
x:Name=”btnDate”
HorizontalAlignment=”Left”
Margin=”51,0,0,160”
VerticalAlignment=”Bottom”
Width=”75”
Content=”Get Date”
Background=”#FFF81911”/>
 <controls:Calendar
x:Name=”clndrControl”
HorizontalAlignment=”Left”
Margin=”51,61,0,0”
VerticalAlignment=”Top”>
 <controls:Calendar.Background>
 <LinearGradientBrush
EndPoint=”0.5,1”
StartPoint=”0.5,0”>
 <GradientStop Color=”#FFD3DEE8” Offset=”0”/>
 <GradientStop Color=”#FFD3DEE8” Offset=”0.16”/>
 <GradientStop Color=”#FFFCFCFD” Offset=”0.16”/>
 <GradientStop Color=”#FFE01A1A” Offset=”1”/>
 </LinearGradientBrush>
 </controls:Calendar.Background>
 </controls:Calendar>
 <dataInput:Label
x:Name=”lblTitle”
HorizontalAlignment=”Left”
Margin=”51,29,0,0”
VerticalAlignment=”Top”
Width=”200”
Content=”Simple Silverlight Application” FontWeight=”Bold”/>
 <TextBox
x:Name=”txtbxDate”
Margin=”106,0,0,212”
TextWrapping=”Wrap”
HorizontalAlignment=”Left”
VerticalAlignment=”Bottom”
Height=”25”
Width=”124”/>
 <dataInput:Label
x:Name=”lblDate”
HorizontalAlignment=”Left”
Margin=”51,0,0,212”
VerticalAlignment=”Bottom”
Width=”51”
Content=”Date:”/>
 </Grid>
</UserControl>

	7.	 You currently have no events tied to the UI that you created in Expression Blend. So, navigate to
the button element and place your cursor right before the end of the element. Press the space bar.

584637c03.indd 121 5/2/10 7:12:31 PM

122  ❘  Chapter 3   SharePoint 2010 Developer Tools

This will invoke the IntelliSense. Find the Click event and then click and accept the default event
handler name to add a Click event to the application, as shown in Figure 3-42.

Figure 3-42  Adding Click event to Button control

The resulting XAML will be amended as shown in the following bolded addition:

…
<Button
x:Name=”btnDate”
HorizontalAlignment=”Left”
Margin=”51,0,0,160”
VerticalAlignment=”Bottom”
Width=”75”
Content=”Get Date”
Background=”#FFF81911”
Click=”btnDate_Click”/>
…

	8.	 Right-click MainPage.xaml and select View Code. This opens the code-behind view — much the
same experience you went through earlier in this chapter when creating the banner ad for use
within SharePoint Designer. Add the following bolded code in the code behind:

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace MyFirstSilverlightApp
{
 public partial class MainPage : UserControl
 {
 string strSelectedDate = ““;
 DateTime userSelectedDate = new DateTime();

 public MainPage()

584637c03.indd 122 5/2/10 7:12:31 PM

Development Using the Expression Blend Suite  ❘  123

 {
 // Required to initialize variables
 InitializeComponent();
 txtbxDate.IsEnabled = false;
 }

 private void btnDate_Click(object sender, RoutedEventArgs e)
 {
 userSelectedDate = (DateTime)clndrControl.SelectedDate;
 strSelectedDate = userSelectedDate.ToString();

 if (strSelectedDate.Contains(“12/25/2009”))
 {
 MessageBox.Show(“Voice of Reason:
 You shouldn’t be working!”);
 }
 else
 {
 txtbxDate.Text = strSelectedDate;
 }
 }
 }
}

	9.	 After you’ve added the code, press
F5 to debug the application in your
default browser. The result should
look similar to Figure 3-43.

	10.	 After you’ve successfully tested the
application, click Build ➪ Build
Solution to build the application
one last time.

	11.	 In the Solution Explorer, click the
Show All Files button to show all
of the solution files in the Solution
Explorer.

	12.	 Navigate to the Bin/Debug folder
and right-click. Select Open Folder
in Windows Explorer.

	13.	 Copy the file path, and then open SharePoint.

	14.	 Navigate to the XAPS document library you created earlier in the chapter. (If you didn’t create a
document library called XAPS, you can do that now.) Click Add Document and then click Browse.

	15.	 Paste the folder path to your Silverlight application, and then select the .xap file that is in that
folder (for example, MyFirstSilverlightApp.xap) and click OK. When the file has been added
to the folder, right-click and select Copy Shortcut.

	16.	 Click All Site Content and then click Create. Select the Pages option along the left-hand side, and
then select Web Part Page.

Figure 3-43  Testing the Silverlight application

584637c03.indd 123 5/2/10 7:12:31 PM

124  ❘  Chapter 3   SharePoint 2010 Developer Tools

	17.	 Provide a name for the page (for example, BlendTest), and click Create.

	18.	 Click Site Actions ➪ Edit Page, and in one of the Web part zones, click "Add a web part."

	19.	 Select the Media Content Web part, and then select Silverlight Web Part and click Add. SharePoint
will prompt you for a URL to the .xap file, so paste the shortcut to the .xap file you added to the
XAPS directory.

	20.	 Click Stop Editing to test your new Silverlight application in SharePoint. The result should look
similar to Figure 3-44.

Figure 3-44  Adding a Silverlight application to SharePoint

How It Works

Congratulations! You have built another Silverlight application, but you added a little design to it
by starting out in Expression Blend and providing some enhancements to the UI. You next opened
that same Silverlight application in Visual Studio and added some code behind. You then added the
Silverlight application, using SharePoint’s built-in Silverlight Web part — a native Web part that acts as
a container for Silverlight applications.

Expression Blend 3 is compatible with Visual Studio 2010, which is one of the nice integrations for
designers and developers working together on Silverlight projects. However, with the new project tem-
plates in Visual Studio 2010, the integration across these two developer tools is even more important.

The integration in this exercise was illustrated through the creation of a Silverlight application using the
more feature-rich design environment of Expression Blend, and then opening that application in Visual
Studio (you can right-click the .xaml file and select Open in Expression Blend from Visual Studio or, alter-
natively, as you did in this walkthrough, open the project in Visual Studio 2010). You created the XAML-
based UI using Expression Blend, and then added the code behind for the XAML in Visual Studio.

The btnDate button is associated with an event handler called btnDate_Click. The event handler is
triggered, or “fires,” when the button is clicked.

584637c03.indd 124 5/2/10 7:12:32 PM

Development Using the Expression Blend Suite  ❘  125

In the code behind, you set two class-level variables called strSelectedDate and userSelectedDate.
These variables were used to store a string representation of the date that the user selected on the cal-
endar control and a DateTime object that would also be used to store the date the user selected (casting
the return variable from the selection to a DateTime object). Finally, the code behind asserts a condi-
tional statement (the if statement) to see if you’re working on Christmas day. Note that the Contains
method is used because the complete string that is returned from selecting the date in the calendar con-
trol includes a time element as well (so a direct string comparison would not work in this case).

…

namespace MyFirstSilverlightApp
{
 public partial class MainPage : UserControl
 {
 string strSelectedDate = ““;
 DateTime selectedDate = new DateTime();

 public MainPage()
 {
 InitializeComponent();
 txtbxDate.IsEnabled = false;
 }

 private void btnDate_Click(object sender,
 RoutedEventArgs e)
 {
 userSelectedDate = (DateTime)clndrControl.SelectedDate;
 strSelectedDate = userSelectedDate.ToString();

 if (strSelectedDate.Contains(“12/25/2009”))
 {
 MessageBox.Show(“Voice of Reason:
 You shouldn’t be working!”);
 }
 else
 {
 txtbxDate.Text = strSelectedDate;
 }
 }
 }
}

And, if you did select December 25, 2009, then a message would be issued to you via the
MessageBox.Show event.

Expression Blend enables you to tap into your design and creative juices to begin to build out a com-
pelling and rich UI for SharePoint. It can be applied to WPF applications that run on the client, or
it can be used (as was shown here) in the context of Silverlight applications. In Chapter 9, you will
have an opportunity to explore Expression Blend a little more. You should spend some time with
this tool, because it can dramatically enhance the design of your UI.

584637c03.indd 125 5/2/10 7:12:32 PM

126  ❘  Chapter 3   SharePoint 2010 Developer Tools

Summary

This chapter provided an overview of the major development environments that you will work in
as a SharePoint developer. You saw Web-based development (or what some might call “developer
configuration” or “power-user tasks”), development within SharePoint Designer 2010, development
using Visual Studio 2010, and then development integrating Expression Blend with Visual Studio
2010. You’ll see more of each of these as you make your way through the book, but at this point,
you should have a baseline understanding of the types of things that you can do within each of the
environments.

Also, hopefully you’re beginning to see how much power there is with the new tooling with
SharePoint 2010 — much more than ever before. And, given the evolution in the design tools as
well, there are great opportunities here, not only for the designers and developers to work together
but also for generating some dynamic and rich Silverlight experiences for SharePoint.

In this chapter, you were introduced to the different ways of developing for SharePoint. You also had
a chance to get some coding practice in with these different tools. In Chapter 4, you will learn about
some common developer tasks to further put these tools into practice.

Exercises	

	 1.	 What are the types of developer tasks you might manage through the browser?

	 2.	 What are the major differences in the way you would use SharePoint Designer over Visual
Studio? Can you think of places where they might be complementary?

	 3.	 In what ways can you see Expression Blend contributing to your overall solution design
experience?

584637c03.indd 126 5/2/10 7:12:32 PM

Recommended Reading  ❘  127

What You Learned in This Chapter⊲⊲

Item Description

Ways to develop
for SharePoint

You will typically use tools such as SharePoint Designer and Visual Studio to
develop for SharePoint. However, there are also some higher-level develop-
ment tools built into the Web-based experience (for example, inline text, HTML
and script editing, and developer dashboard).

SharePoint
Designer 2010

SharePoint Designer is a free tool that enables developers to edit site pages,
create master pages, workflows, and all sorts of SharePoint objects such as
lists or content types.

Visual Studio 2010 Visual Studio is a professional-grade developer tool that provides a number of
in-box project and item templates with a full F5 experience.

Expression Blend Expression Blend is a suite of tools that can be used to design and custom-
ize the user experience. For SharePoint, you can build advanced and custom
Silverlight UIs.

Recommended Reading

SharePoint Development Center on MSDN at ➤➤ http://msdn.microsoft.com/en-us/

sharepoint/default.aspx

Channel 9 SharePoint Developer Learning Center at ➤➤ http://channel9.msdn.com/learn/

courses/SharePoint2010Developer/

SharePoint Designer Home Page at ➤➤ http://sharepoint2010.microsoft.com/product/

related-technologies/Pages/SharePoint-Designer-2010.aspx

Visual Studio 2010 Home Page at ➤➤ http://www.microsoft.com/visualstudio/en-us/

products/2010/default.mspx

Expression Blend Home Page at ➤➤ http://www.microsoft.com/expression/products/

Blend_Overview.aspx

584637c03.indd 127 5/2/10 7:12:32 PM

584637c03.indd 128 5/2/10 7:12:32 PM

Common Developer Tasks in
SharePoint 2010

What You’ll Learn In This Chapter:

Creating different types of Web parts, including standard, Visual, and ➤➤

Data View Web parts

Understanding site columns and content types, and how you can use ➤➤

them when creating lists

Understanding how to interact with SharePoint and data in ➤➤

SharePoint using the native APIs

Creating and editing site pages and master pages using SharePoint ➤➤

Designer

So far, you’ve become familiar with SharePoint and learned how to get started with instal-
lation and setting up your development environment. Now that you have a sense of what
SharePoint is all about, you’re no doubt hungrily awaiting some coding exercises.

This chapter discusses a set of common development tasks for beginning SharePoint develop-
ers. Although this examination will not be comprehensive, it will get you started and intro-
duce you to a set of key tasks that you will likely do over and over again in your SharePoint
development career.

The discussions in this chapter have been included as the result of first thinking about com-
mon developer tasks and then culling information from community conversations with
SharePoint MVP friends. This has resulted in the following set of developer tasks that will be
addressed in this chapter:

Creating Web parts➤➤

Creating site columns, content types, and lists➤➤

Accessing and managing data➤➤

4

584637c04.indd 129 5/2/10 7:12:41 PM

130  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

Creating Event receivers➤➤

Creating ➤➤ aspx pages

Creating master pages➤➤

This chapter explores each of these developer tasks through a high-level description, or simple,
straightforward walkthroughs. In many cases, you will see a lot of these tasks showing up in greater
detail in other walkthroughs throughout the book. The goal of this chapter, then, is to introduce
you to a common set of developer tasks for SharePoint and to get you started down the path of
beginning SharePoint development.

Creating Web Parts

One of the most common developer tasks you’ll likely engage in is the creation and deployment of
a Web part. You’ve seen this already and have, hopefully, worked through the walkthroughs to get
a sense for how to do this. Web parts will be covered in detail in Chapter 6, so you should think of
this section as an early introduction to what will be covered in detail later in the book.

Standard and Visual Web Parts
SharePoint 2010 includes primarily two different Web parts you will be working with: Standard
and Visual. The standard Web part provides the core infrastructure that enables you to create and
deploy a Web part into SharePoint. Because SharePoint is built on ASP.NET, you can apply many of
the same coding techniques that you may have learned through ASP.NET to the creation of a stan-
dard Web part.

For example, you can create and apply many of the same objects and events when building out a
standard Web part that you may have used when building out an ASP.NET Web part. The following
is a short code snippet that includes a Textbox, Label, and Button control that are being instanti-
ated and properties set, as well as a Click event that corresponds to the Button control:

…

namespace MyFirstDevTask.TaskOneWebPart
{
 [ToolboxItemAttribute(false)]
 public class TaskOneWebPart : WebPart
 {
 Label myLabel = new Label();
 TextBox myTextbox = new TextBox();
 Label myResponse = new Label();
 Button myButton = new Button();

 protected override void CreateChildControls()
 {
 myLabel.Text = “Enter Text:”;
 myResponse.Text = ““;
 myTextbox.Enabled = true;

584637c04.indd 130 5/2/10 7:12:41 PM

Creating Web Parts  ❘  131

 myTextbox.Text = ““;
 myButton.Text = “Click Me”;
 this.Controls.Add(myLabel);
 this.Controls.Add(myTextbox);
 this.Controls.Add(new LiteralControl(“
”));
 this.Controls.Add(myResponse);
 this.Controls.Add(new LiteralControl(“
”));
 this.Controls.Add(myButton);

 myButton.Click += new EventHandler(myButton_Click);
 }

 void myButton_Click(object sender, EventArgs e)
 {
 string userResponse = myTextbox.Text;
 myResponse.Text = userResponse;
 }
 }
}
…

In this code snippet, you can see that the four controls are declared
at the class level. Then, in the CreateChildControls method, the
properties for those objects are set. The Add method is called to add
the controls to the Controls collection (to display them in the Web
part), and the myButton_Click event is called to render the user’s
entry as text in one of the labels. Figure 4-1 shows this code in action.

If you have not coded Web parts before, this is pretty standard — that is, creating the controls, set-
ting the properties for those controls, adding the controls to the Controls collection, and also add-
ing any event handlers for those controls.

The standard Web part is an item-level template in Visual Studio 2010, so you can only add this to
a parent project such as an Empty SharePoint project template. It is, though, a standard template
available in Visual Studio, so creating and deploying your Web parts is very easy.

The Visual Web part is different from the standard Web part in that you have a designer experience
you can use to create the user interface (UI) for the Web part (as opposed to what you did in the pre-
vious example where you were manually creating the controls that make up your UI). Furthermore,
the Visual Web part has both project-level and item-level templates in Visual Studio 2010, so you
can have both a parent and a child project that are Visual Web parts.

Using the Designer experience in Visual Studio 2010 to create the Web part UI, you can drag and
drop a wide array of library controls from the Toolbox onto the Designer surface. Unlike with the
standard Web part where you would manually code and use IntelliSense to create controls or events,
with the Visual Web part, you would double-click the control in the Designer, and then jump to the
code behind to add your events.

For example, in the Visual Web part, if you were to implement the same code as shown in the dis-
cussion of the standard Web part, then you would have an ASP.NET user control (ascx file) that

Figure 4-1  Deployed Web part

584637c04.indd 131 5/2/10 7:12:42 PM

132  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

represents the UI with a code-behind file. (ascx is the file extension for the ASP.NET user control
file.) The ascx user control code would look like the following:

…
<asp:Label ID=”myLabel” runat=”server” Text=”Enter Text:”></asp:Label>
 <asp:TextBox ID=”myTextbox” runat=”server”></asp:TextBox>
<p>
 <asp:Label ID=”myResponse” runat=”server” Text=”Label”></asp:Label>
</p>
<asp:Button ID=”myButton” runat=”server” onclick=”myButton_Click”
 Text=”Click Me” />
…

The code behind for the ascx user control would look like the following:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace MyFirstDevTask.TaskTwoWebPart
{
 public partial class TaskTwoWebPartUserControl : UserControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void myButton_Click(object sender, EventArgs e)
 {
 string userResponse = myTextbox.Text;
 myResponse.Text = userResponse;
 }

 }
}

Note that the control declarations do not appear in this specific ascx code behind. However, there is
a reference to the ascx control in the core Web part class that loads the user control you build with
the Designer experience at runtime. The following shows the code that represents this reference
inside of the core Web part class. Note that the _ascxPath object simply represents a file-system
path to the location of the ascx file you created using the Designer.

…
public class TaskTwoWebPart : WebPart
 {
 private const string _ascxPath =
 @”~/_CONTROLTEMPLATES/MyFirstDevTask/TaskTwoWebPart/
 TaskTwoWebPartUserControl.ascx”;

 protected override void CreateChildControls()
 {

584637c04.indd 132 5/2/10 7:12:42 PM

Creating Web Parts  ❘  133

 Control control = Page.LoadControl(_ascxPath);
 Controls.Add(control);
 }
 }
…

Code file [MyFirstDevTask.zip] available for download at Wrox.com.

Although you have the same functionality built into the Web part, you have now seen two slightly
different ways of building out the Web part.

Data View Web Parts
While the Data View Web part is not discussed in great detail in this book, it is worth mention-
ing in this chapter. This is because the Data View Web part is not only accessible to developers but
also can be useful for power users or even information workers. Part of the problem, however, is
that many times, nondevelopers feel that data-centric work should be left to the developer. With the
advance in tools for SharePoint, this trend is starting to wane. Information workers are working
more and more with data.

The Data View Web part is interesting in that it is capable of retrieving data from various data
sources in the form of Extensible Markup Language (XML). However, the format of the data
does not necessarily have to exist as XML, because this Web part understands the data set and
transforms it using Extensible Stylesheet Language Transformations (XSLT). XSLT is a sup-
ported standard in SharePoint 2010 and enables you to transform well-formed XML into an
HTML-rendered format.

The Data View Web part is also versatile. It can consume data, share it, define the formatting of the
data in SharePoint, and enable editing against the data. For example, create a new SharePoint list
called Sales and add three columns to the list — Customer (of type "Single line of text"), Total
Sales (of type Number), and Ranking (of type Number). Add some data to the list, so the list looks
similar to Figure 4-2.

Figure 4-2  Sample sales list

The list will serve as a way for you to rank the top accounts based on the amount of total sales. The
Data View Web part will come into play when you use SharePoint Designer to create a Web part
that is essentially a view into the list. The major difference, though, is when you create some auto-
matic formatting based on the values in the list.

Using the list you just created, let’s walk through how you create the Data View Web part.

584637c04.indd 133 5/2/10 7:12:42 PM

134  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

Creating a Data View Web PartTry It Out	

A Data View Web part can be a great way for both developers and end users to provide some automatic
and dynamic formatting for a list. To create a Data View Web part, follow these steps:

	1.	 Open your SharePoint site and click Site Actions ➪ Edit in SharePoint Designer.

	2.	 After SharePoint Designer 2010 opens, click Site Pages.

	3.	 You now want to create a new Web part page. To do this, click the Web part page down-arrow
on the ribbon and then select one of the predefined templates. Replace the default filename (for
example Untitled_1.aspx) with your own filename (for example, WroxWebPartPage.aspx). Press
Enter when done.

	4.	 To edit the file, first click the file and then click Edit File in the main Web part page properties
window.

	5.	 Click one of the Web part zones, and then click the Insert tab on the
ribbon and select Data View. Then, as shown in Figure 4-3, select the
Sales list (which is the list you created earlier in this chapter).

	6.	 After SharePoint Designer updates the view with the most recent data in
the list, you can add some automatic formatting.

	7.	 To keep things simple, you’ll change the background color of the
Ranking column, according to the value of the ranking. To do this,
select the first <div> in the Ranking column. (Be sure that you select the
full cell.)

	8.	 Under Conditional Formatting, select Format Column and under the
Field Name, select Ranking. Make the Comparison value Equals. Then,
add the value of 1 in the Value field. Click the Set Style button to change
the background of the cell to be green. Do this for all of the Ranking
fields using different colors for different Ranking numbers (for example,
green for 1, yellow for 2, and red for 3). When you are finished, you
should have something similar to Figure 4-4.

Figure 4-4  Data View of list in SharePoint Designer

	9.	 Save the Web part page.

	10.	 Open SharePoint, and navigate to the Web part page. The list should look similar to Figure 4-5.

Figure 4-3  Selecting
the Sales list

584637c04.indd 134 5/2/10 7:12:42 PM

Creating Lists, Site Columns, and Content Types  ❘  135

Figure 4-5  Completed Data View Web part

	11.	 To test the conditional formatting, open the Sales list and change the ranking to another number.
Navigate back to the Data View Web part. For example, change the Fabrikam ranking from 1 to 2.
The background should now change to yellow.

How It Works

A list is the most common structure for data in SharePoint, which the Data View Web part uses as the
primary way it reformats the list. For example, in this walkthrough, SharePoint Designer provided a
way for you to reformat the background setting of the cell based on the value of the number in that cell.
To accomplish this, the Data View Web part uses HTML and ASP.NET formatting capabilities.

The reformatting of the background was also a simple illustration of what could be accomplished. You
can also build more complex, calculated formatted views through SharePoint Designer.

This example was fairly straightforward, and there are many more interesting conditions that you
could set against a Data View Web part with more complex calculations that render different types
of conditional formatting. While you saw some Web part coding already in this book, you’ll see
more in-depth coding for standard and Visual Web parts in Chapter 6.

Creating Lists, Site Columns, and Content Types

You’ll often find yourself creating different objects in SharePoint, such as lists, site columns, and
content types. As you’ll see in Chapter 5, lists are a core part of SharePoint, and they have a rich
object model that you can use to code against them.

As a potential part of lists, site columns are reusable column definitions that can be created and
then repurposed across the SharePoint site. For example, if you need a very specific site column
called Tax Rate that has a calculation embedded within it, you can use that site column to enforce
some level of consistency across your lists and sites.

Content types are also reusable objects that can be repurposed across your SharePoint site. Content
types can come in different shapes and sizes. For example, you might define a content type as a set of
columns, or you might define it as a custom document template. One common use of content types is
to create custom documents (for example, a legal contract with boilerplate text), and then create the
content type and bind that content type to a document library. You’ll see how to do this in Chapter 9.

584637c04.indd 135 5/2/10 7:12:42 PM

136  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

You can create site columns, content types, and lists in a variety of ways. For example, you can cre-
ate each one of these objects through the SharePoint Web interface. You can also leverage SharePoint
Designer 2010 to create all of these objects, or even use Visual Studio 2010 to create content types
and list definitions. Using Visual Studio 2010 makes it possible to begin integrating list definitions
into other applications, or redeploying a custom list definition across multiple SharePoint sites.

Let’s take a look at how you can use SharePoint Designer and Visual Studio to build custom site col-
umns for lists.

Creating a Site Column and ListTry It Out	

Site columns are reusable columns that you can customize and leverage to build lists. To create a cus-
tom site column and use it in a list, follow these steps:

	1.	 Open SharePoint and then click Site Actions ➪ Edit in SharePoint Designer.

	2.	 Click Site Columns in the navigation pane.

	3.	 Click New Column.

	4.	 Select Choice as the type of column, and then provide a name
(for example, State) and description. Click New Group and
provide a name for the new group (for example, Customer_
By_State) and click OK, as shown in Figure 4-6.

	5.	 Add the choices to the Column Editor dialog (for example,
WA, IL, and CA) and select Radio Button in the “Display
as format” drop-down list. Update the Default value field to
map to one of the choices you entered, and leave the rest of
the options at their defaults and click OK. Click the Save but-
ton to save the new site column to SharePoint.

	6.	 You should now have an entry as a custom category that
looks similar to Figure 4-7.

Figure 4-7  Entry in Site Columns Gallery

	7.	 Navigate in SharePoint to the list you created earlier (that is, Sales).

	8.	 Click the List tab and then List Settings.

	9.	 Click “Add from existing site columns.”

	10.	 In the Groups drop-down, select the custom group (for example, Customers_By_State). Then,
select the site column you created (for example, State) and click Add (to add to the “Columns to
add” view) and then click OK. This adds the site column to your list.

Figure 4-6  Creating a site column

584637c04.indd 136 5/2/10 7:12:42 PM

Creating Lists, Site Columns, and Content Types  ❘  137

	11.	 Return to the list view and edit each of the records to include a different state for each of the cus-
tomers, as shown in Figure 4-8.

Figure 4-8  List with newly added site column

How It Works

A site column is the constituent part of a list and is composed of one or more columns. Site columns are
created and stored at the site level and, thus, can be reused across your SharePoint site. In this example,
you created a site column and added that site column to the Sales list. You could also leverage this
type of column in other lists across your site — thus, this is a primary factor distinguishing the normal
columns from site columns.

While you can create lists in SharePoint Designer 2010, you may have the need to create a site col-
umn, list definition, or content type using Visual Studio (for example, if you want to package and
distribute a content type with a larger solution). Using the new built-in project templates, this is
much easier to create than in past versions of SharePoint.

When you do create objects such as site columns, list definitions, or content types using Visual
Studio, though, you will need to be familiar with the Collaborative Application Markup Language
(CAML) syntax and structure for the objects you’re trying to create. (CAML is an XML syntax that
is specific to SharePoint.)

For example, the following XML defines a site column that can be deployed to a SharePoint site and
then reused across the site. The site column defines a reusable list of customer types for a program
a company is running. Note that there are a number of properties that are set. These are the same
properties that SharePoint created for you when you used SharePoint Designer earlier in the section.

<?xml version=”1.0” encoding=”utf-8”?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <Field ID=”{5644d23d-325f-4882-8fd2-09d455f4910e}”
 Type= “Choice” AllowDeletion=”FALSE” Description=”Type of program.”
 FillInChoice=”TRUE”
 Name=”CustomerType”
 DisplayName=”Customer Type”
 Group=”Customers”>
 <CHOICES>
 <CHOICE>Premier</CHOICE>
 <CHOICE>Gold</CHOICE>
 <CHOICE>Silver</CHOICE>

584637c04.indd 137 5/2/10 7:12:42 PM

138  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

 <CHOICE>Bronze</CHOICE>
 <CHOICE>Non-Affiliated</CHOICE>
 </CHOICES>
 <Default>Bronze</Default>
 </Field>
</Elements>

Let’s use Visual Studio 2010 to create this site column and deploy it to SharePoint.

Creating a Site Column using Visual Studio 2010Try It Out	

Code file [MyFirstListDefinition.zip] available for download at Wrox.com.

The project templates in Visual Studio 2010 make it convenient for you to create site columns, content
types, and lists. To create a custom site column using Visual Studio, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New ➪ Project.

	2.	 Select the Empty SharePoint Project in the SharePoint 2010 project node. Provide a name (for
example, MyFirstListDefinition) for the project and click OK.

	3.	 In the Project Creation Wizard, ensure that your SharePoint site is typed in correctly and then
select the Farm-Level solution for the level of trust. Click Finish.

	4.	 Visual Studio creates an empty SharePoint project for you. When it’s completed, right-click the top-
level project node and select Add ➪ New Item.

	5.	 Select the Empty Element template, as shown in Figure 4-9. Provide a name (for example,
CustomerType) for the file and click Add.

Figure 4-9  Empty Element project template

584637c04.indd 138 5/2/10 7:12:42 PM

Creating Lists, Site Columns, and Content Types  ❘  139

	6.	 Add the following bolded code to the Elements.xml file that is created in the default project:

<?xml version=”1.0” encoding=”utf-8”?>
<Elements xmlns=”http://schemas.microsoft.com/sharepoint/”>
 <Field ID=”{5644d23d-325f-4882-8fd2-09d455f4910e}”
 Type= “Choice” AllowDeletion=”FALSE” Description=”Type of program.”
 FillInChoice=”TRUE”
 Name=”CustomerType”
 DisplayName=”Customer Type”
 Group=”Customers”>
 <CHOICES>
 <CHOICE>Premier</CHOICE>
 <CHOICE>Gold</CHOICE>
 <CHOICE>Silver</CHOICE>
 <CHOICE>Bronze</CHOICE>
 <CHOICE>Non-Affiliated</CHOICE>
 </CHOICES>
 <Default>Bronze</Default>
 </Field>
</Elements>

	7.	 After you’ve completed this, press F6 to build the project. When the project successfully builds,
click Build ➪ Deploy Solution to deploy the site column to SharePoint.

	8.	 Navigate to your SharePoint site and click Site Actions ➪ Site Settings. Under Galleries, click Site
Columns. You should now see a Customers group with a Customer Type site column, as shown in
Figure 4-10.

Figure 4-10  Customers group in Site Columns Gallery

	9.	 Navigate to the Sales list you created earlier.

	10.	 Click the List tab and then select List Settings.

	11.	 Click the “Add from existing site columns” link.

	12.	 In the Groups drop-down menu, select Customers and then select Customer Type. Click Add.

	13.	 Click OK to add the new site column you created to the list.

	14.	 Edit each of the list items and add a new customer type to each one of the customer entries, as
shown in Figure 4-11.

584637c04.indd 139 5/2/10 7:12:42 PM

140  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

Figure 4-11  Leveraging the custom site column in Sales list

	15.	 Your newly amended list should now look similar to Figure 4-12.

Figure 4-12  Final list with new Customer Type site column

How It Works

In much the same way that you created a site column with SharePoint Designer, you created a site col-
umn using Visual Studio. However, the way in which you did it was quite a bit different — even though
the end result was very similar.

Whereas SharePoint Designer abstracts the XML configuration files and deploys the site column to
the appropriate place within SharePoint. Visual Studio treats the site column like any other SharePoint
project. It creates a feature and then deploys the XML elements file (which represents the definition of
the site column) to the appropriate place within SharePoint.

584637c04.indd 140 5/2/10 7:12:42 PM

Working with SharePoint Data  ❘  141

Working with SharePoint Data

One of the most common tasks when working with SharePoint is interacting with the various data
sources such as lists or document libraries. The great thing about SharePoint 2010 is that you have a
number of different options to do that. For example, you have the server object model (which carries
forward a lot of the 2007 APIs), the client object model (which is a new API to interact with lists),
the RESTful service (which leverages WCF Data services to treat lists as entities), ASP.NET Web
services (which ship in-box and cover a wide array of scenarios), and Business Connectivity Services
(which provide a rich set of APIs for working with external data systems such as SAP, Microsoft
Dynamics CRM, and PeopleSoft).

You will see each of these methods of working with data discussed throughout the book. However,
this section provides some select examples of tasks that you’ll likely do on a daily basis across some
of these services and APIs.

Before you can do anything with SharePoint programmatically, however, you must establish a con-
nection and context with your SharePoint site. For the most part, this means adding a reference to
your project (for example, a reference to Microsoft.SharePoint.dll, Microsoft.SharePoint.
Client.dll, or a Web service reference such as http://<server>/_vti_bin/Lists.asmx). With
the appropriate references added to your project, you can begin to set the context (or implement the
service), and then code within that site context.

For example, you can set the context for a SharePoint site using the server object model by adding
the Microsoft.SharePoint.dll to your project reference and then use the following using state-
ments to wrap your code. In this code snippet, you set the site collection context and can call the
OpenWeb method on that site context or use the RootWeb property to set the context of the SPSite
object (that is, mySiteCollection). You would then add your code where the comment indicates.

…
using (SPSite mySiteCollection = new SPSite(mySiteUrl))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)
 {
 //Code here.
 }
 }
…

One of the innovations in SharePoint 2010 is the SharePoint client object model, which is a
more performance-oriented way to read and write data from SharePoint lists. After adding the
Microsoft.SharePoint.Client.Runtime.dll and Microsoft.SharePoint.Client.dll refer-
ences, you can use the following code to set the context with your SharePoint site. Then, when
you’ve created your application code, you call the ExecuteQuery method to batch-process that code.
The final statement (that is, the Close method) disposes of the context from memory.

…
String mySiteUrl = “http://fabrikamhockey/acme”;

584637c04.indd 141 5/2/10 7:12:42 PM

142  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

ClientContext mySPSiteContext = new ClientContext(mySiteUrl);

//Code here.

mySPSiteContext.ExecuteQuery();
mySPSiteContext.Close();
…

You will find yourself using both the server object model and client object model in different scenar-
ios. For server-side only applications, you can use the server object model. For remote client applica-
tions, you can use the SharePoint client object model.

Another way to program against SharePoint is by using the native Web services. This is a great way
to interact with SharePoint because the services already have context, and they are deployed to
SharePoint. To use the Web services, you add a Web reference to your Visual Studio project and then
implement the service in your code.

One of the most commonly used Web services is the Lists Web service. Following is a code snippet
that shows the instantiation of the Lists Web service proxy (called wsProxy) and the setting of the
credentials. (SharePoint must trust the call from the code through an authenticated user.) You must
also set the URL of the Web service.

…
MySPListWSRefernce.Lists wsProxy = new MySPListWSRefernce.Lists();
wsProxy.Credentials = System.Net.CredentialCache.DefaultCredentials;
wsProxy.Url = “http://fabrikamhockey/_vti_bin/Lists.asmx”;
 ​//Code here
wsProxy.Dispose();
…

One of the things you’ll need to understand is the way in which SharePoint passes data using the
ASP.NET Web services — through XML payloads. To query SharePoint using these services often
requires CAML constructs, which can get a bit hairy. You’ll see coverage of Web services through-
out the book, and you most certainly will learn about some of the basics of CAML. Specifically,
Chapter 10 provides more information on Web services.

After you’ve obtained context with the SharePoint object model, you can then interact with data
that resides on SharePoint. For example, you can iterate over every list in SharePoint and get the title
of the list. You can retrieve views of specific lists, or you can update properties or list items in lists
programmatically.

In the following code snippet, you can see that the server object model is used to get the SharePoint
site context. Now, however, it iterates through the lists (see bolded code) on the SharePoint site and
adds each list title to a listbox.

…
string mySiteUrl = “http://intranet.contoso.com/acme/”;
string myListItemInfo = ““;

using (SPSite mySiteCollection = new SPSite(mySiteUrl))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)

584637c04.indd 142 5/2/10 7:12:43 PM

Working with SharePoint Data  ❘  143

 {
 foreach (SPList mySPList in mySPSite.Lists)
 {
 myListItemInfo = mySPList.Title.ToString();
 lstbxListTitles.Items.Add(myListItemInfo);
 }
 }
 }
…

Again, you can do similar types of list interaction by using the SharePoint client object model.
In the following code snippet, you can see that the site context is set, but the bolded code shows
that a list called Inventory is retrieved from SharePoint, and then loaded with a query to filter
on the Salmon field.

…
String spURL = “http://fabrikamhockey/acme”;
ClientContext spSiteContext = new ClientContext(spURL);
List myProducts = spSiteContext.Web.Lists.GetByTitle(“Inventory”);
spSiteContext.Load(spSiteContext.Web);
spSiteContext.Load(myProducts, list => list.Fields.Where(field =>
 field.Title == “Salmon”));
spSiteContext.ExecuteQuery();
spSiteContext.Close();
…

When updating list data, you can again use one of the different options discussed in this section
(that is, server object model, client object model, or native ASP.NET Web services). One example is
to use the server object model and then call the Update method to update items on a SharePoint list.

The following code takes the same site context code shown earlier and then, instead of iterating
through the list, it creates an instance of a specific list and then adds a record, comprising two fields,
to the list: Product_Name and Product_SKU. In this case, you can see that the final call is to the
Update method to add the new item (newListItem) to the SharePoint site.

…
using (SPSite mySPSite = new SPSite(“http://fabrikamhockey/acme”))
 {
 using (SPWeb mySPWeb = mySPSite.OpenWeb())
 {
 SPList productsList = mySPWeb.Lists[“Products”];
 SPListItem newListItem = productsList.Items.Add();
 newListItem[“Product_Name”] = “Salmon”;
 newListItem[“Product_SKU”] = “SLM-30989”;
 newListItem.Update();
 }
 }
…

Another task you might find yourself doing quite a bit is querying SharePoint data. This book outlines
a few ways to do this, such as CAML queries, conditionals, and Language Integrated Query (LINQ)
statements. LINQ is a very effective way to query data, which is supported in SharePoint 2010.

584637c04.indd 143 5/2/10 7:12:43 PM

144  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

The following LINQ statement is a simple statement that retrieves the list item (from a list repre-
sented through the myCustomerList object) where the customer name (represented as c) is Acme:

…
var customers =
 from c in myCustomerList
 where c == “Acme”
 select c;
…

One LINQ technique that you’ll use in SharePoint is to create a list collection and class, and then popu-
late that object with data (you’ll see this used throughout this book). The class is a custom class you
create, and the list collection is a collection of those custom class instances. In the preceding code snip-
pet, myCustomerList is the list collection. Another technique, though, is to use a tool called SPMetal to
transform your lists into an entity model that can be queried directly using LINQ statements.

Let’s check out an example of using LINQ.

Using LINQ in SharePointTry It Out	

Code file [MyFirstSPLinqProject.zip] available for download at Wrox.com.

LINQ is a very effective and efficient way to query data. You can prepare your SharePoint lists for LINQ
by using SPMetal. To prepare your list and create an application that uses LINQ, follow these steps:

	1.	 Open a command prompt (running as administrator).

	2.	 Navigate to the folder c:\Program Files\Common Files\Microsoft Shared\web server
extensions\14\bin and enter the following command (ensure that you replace the <servername>
with your SharePoint URL, for example http://fabrikamhockey):

spmetal.exe /web:http://<servername> /code:SPEntityModel.cs /language:csharp

	3.	 The SPMetal command tool will create a C# file called SPEntityModel.cs that you can then use
in an application to issue LINQ queries against a modeling of the SharePoint lists (SPMetal essen-
tially translates all of the lists in your SharePoint site into an entity model that is strongly typed).

	4.	 To leverage this entity model in a SharePoint project, open Visual Studio 2010.

	5.	 Click File ➪ New ➪ Project. Select Empty SharePoint Project. Provide a name (for example,
MyFirstSPLinqProject) and click OK. Set the trust for the solution to be farm level and click Finish.

	6.	 Right-click the project and select Add ➪ Existing Item. Then, navigate to the previously described
folder (where you created SPEntityModel.cs) and add the file that SPMetal created (that is
SPEntityModel.cs) to the project.

	7.	 Right-click the project and select Add ➪ New Item. Select the Web Part item template, provide a
name (for example, MySPLinqWebPart), and click Add.

	8.	 Right-click the References and select Add Reference. Click Browse and navigate to the folder c:\
Program Files\Common Files\Microsoft Shared\web server extensions\14\ISAPI. Select
Microsoft.SharePoint.Linq.dll and click OK.

	9.	 Right-click the core Web part class file (for example, MySPLinqWebPart.cs), and select View Code.

584637c04.indd 144 5/2/10 7:12:43 PM

Working with SharePoint Data  ❘  145

	10.	 Add the following bolded code to the core Web part class file:

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.SharePoint.Linq;
using System.Linq;

namespace MyFirstSPLinqProject.MySPLinqWebPart
{
 [ToolboxItemAttribute(false)]
 public class MySPLinqWebPart : WebPart
 {
 Label myLabel = new Label();
 ListBox listTitles = new ListBox();
 Button myButton = new Button();

 protected override void CreateChildControls()
 {
 myLabel.Text = “Lists:”;
 myButton.Text = “Get Lists”;

 this.Controls.Add(myLabel);
 this.Controls.Add(listTitles);
 this.Controls.Add(new LiteralControl(“
”));
 this.Controls.Add(myButton);

 myButton.Click += new EventHandler(myButton_Click);
 }

void myButton_Click(object sender, EventArgs e)
 {
 //Be sure to update the server reference
 //below to point to your server.
 using (SPEntityModelDataContext dataContext =
 new SPEntityModelDataContext
 (“http://intranet.contoso.com”))
 {
 var salesInfo = from data in dataContext.Sales
 select data;

 foreach (var salesItem in salesInfo)
 {
 listTitles.Items.Add(salesItem.Title.ToString() + “ | “ +
 salesItem.CustomerType.ToString());
 }
 }
 }
 }
}

584637c04.indd 145 5/2/10 7:12:43 PM

146  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

	11.	 Edit the .webpart file to include the following bolded code:

<?xml version=”1.0” encoding=”utf-8”?>
<webParts>
 <webPart xmlns=”http://schemas.microsoft.com/WebPart/v3”>
 <metaData>
 <type name=”MyFirstSPLinqProject.MySPLinqWebPart.MySPLinqWebPart,
 $SharePoint.Project.AssemblyFullName$” />
 <importErrorMessage>$Resources:core,ImportErrorMessage;</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name=”Title” type=”string”>Customer Types</property>
 <property name=”Description” type=”string”>Web Part that lists customers
 and customer types (using SP LINQ).</property>
 </properties>
 </data>
 </webPart>
</webParts>

	12.	 When finished, click Build ➪ Deploy Solution.

	13.	 After the Web part successfully builds and deploys, navigate to the home site on your team site and
click Site Actions ➪ Edit Page. Click on the wiki portion of the page, and
click Insert ➪ Web Part.

	14.	 Click the Custom category. Select the Customer Types Web part and
click Add.

	15.	 When the Web part is added to the page and you click Get Lists, it
should look similar to Figure 4-13.

How It Works

You used the standard Web part in this walkthrough, which, as discussed earlier in the chapter, is the
most common, baseline Web part you can create and deploy to SharePoint. However, one of the key ele-
ments in this exercise was the fact that you ran SPMetal against your SharePoint site. Doing this creates
an entity model of all of the lists in your site — which essentially means that you now have strongly
typed objects that you can query using LINQ. One optimization you gain by running SPMetal against
your site is the capability to query a strongly types object with LINQ, as opposed to populating a list
collection of custom items first, and running LINQ against that list collection.

The key lines of code in the sample application are those within the using statement, which set the
context for the application code to use the dataContext object (which SPMetal generated for you). The
bolded code within the following using statement issued the LINQ query (the equivalent of a SELECT *
SQL statement) against the Sales list, and then iterated through each record in the returned data (sales-
Info) and added the Title and CustomerType to the list.

…
using (SPEntityModelDataContext dataContext =
 new SPEntityModelDataContext
 (“http://intranet.contoso.com”))
 {

Figure 4-13  Finished
Web part

584637c04.indd 146 5/2/10 7:12:43 PM

Creating Event Receivers  ❘  147

 var salesInfo = from data in dataContext.Sales
 select data;

 foreach (var salesItem in salesInfo)
 {
 listTitles.Items.Add(salesItem.Title.ToString() + “ | “ +
 salesItem.CustomerType.ToString());
 }
…

 }
…

The nice thing about using SPMetal is that you can generate an entity model for your SharePoint lists
and, even if the data changes within your list, the entity model can still apply. If you do add lists to
SharePoint, though, you’ll want to regenerate the entity model using SPMetal.

Creating Event Receivers

SharePoint supports a wide array of event receivers. Event receivers are events that are triggered
through a system or user action, such as updating a list or adding a new document to a document
library. You can create event receivers for a wide variety of objects, such as lists, list items, sites,
and so on.

For example, say that you want to load external data as additional company metadata (for example,
company or national holidays) when a user creates a new calendar item. You can use an event
receiver to load additional metadata into the calendar when the user creates a new calendar list item.
You might also want to log a transaction when certain lists are updated, which is another effective
way to use event receivers.

You can also build event receivers against feature activations or deactivations if you want. This can
be particularly handy when you need to clean up dependent features or assemblies when a feature
is activated or deactivated. The event receiver can help remove any ancillary files or dependent Web
parts from the Web Part Gallery or the file system.

Event receivers are very easy to build and deploy to SharePoint. You create event receivers using a
Visual Studio 2010 Event Receiver project or item template.

Let’s create a simple event receiver to get you familiar with the process.

Creating a Simple Event ReceiverTry It Out	

Code file [SimpleEventReceiver.zip] available for download at Wrox.com.

Event receivers are effective ways to add triggers into your SharePoint solutions. To create a simple
event receiver, follow these steps:

	1.	 Open your SharePoint site and create a new list called TestList. Leave the new list with only the
default Title column.

584637c04.indd 147 5/2/10 7:12:43 PM

148  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

	2.	 Open Visual Studio 2010 and click File ➪ New Project. Select Event Receiver in the SharePoint
2010 project template folder.

	3.	 Provide a name for your project (for example, SimpleEventReceiver), and click OK. Set the proj-
ect security level to farm level by selecting “Deploy as farm solution” and then click Next.

	4.	 When prompted in the wizard, select the List Item Events option under the type of event receiver
you want to associate your event with. Select the Announcements list under the event source and
“An Item is being added” as the specific event.

	5.	 Click Finish.

	6.	 In the SimpleEventReceiver.cs file, add the following bolded code. This will apply some of the
code discussed thus far and add a new list item in another list.

using System;
using System.Security.Permissions;
using Microsoft.SharePoint;
using Microsoft.SharePoint.Security;
using Microsoft.SharePoint.Utilities;
using Microsoft.SharePoint.Workflow;

namespace SimpleEventReceiver.EventReceiver1
{
 public class EventReceiver1 : SPItemEventReceiver
 {
 public override void ItemAdding(SPItemEventProperties properties)
 {
 string eventName = “Event List: “;
 base.ItemAdding(properties);
 logAnAnnouncement(properties, eventName);
 }

 private void logAnAnnouncement(SPItemEventProperties properties,
 string eventName)
 {
 string listTitle = properties.List.Title;
 //Be sure to replace the URL reference below with your
 //SharePoint server URL.
 string mySiteURL = “http://intranet.contoso.com”;
 DateTime currentDate = DateTime.Now;

 using (SPSite mySiteCollection = new SPSite(mySiteURL))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)
 {
 SPList mySPList = mySPSite.Lists[“TestList”];
 SPListItem newListItem = mySPList.Items.Add();
 newListItem[“Title”] = eventName + listTitle + “ @ “ +
 currentDate.ToLongTimeString();
 newListItem.Update();
 }
 }
 }
 }
}

584637c04.indd 148 5/2/10 7:12:43 PM

Creating Event Receivers  ❘  149

	7.	 Click Build ➪ Deploy Solution to build and deploy the event receiver project to your SharePoint
site.

	8.	 Navigate to the Announcements list, and click Add Item to add a new announcement. When you
are finished, click Save.

	9.	 Navigate to the TestList list, and you will see a new list item.

How It Works

An event receiver is, in essence, a custom DLL that is deployed to the global assembly cache (GAC) on
your SharePoint server. Using the project template, Visual Studio creates a feature that then references
the custom assembly in the GAC when the action that triggers the event occurs.

In this example, you added an event that is triggered whenever someone adds an event to the
Announcements list. Specifically, the ItemAdding event was a default event handler that was cre-
ated. It is here that you can add your code. For example, in the following snippet, the bolded method
(logAnAnnouncementEvent) is a method you added that will contain your event handler code. You’ll
note that you’re passing the properties of the event, which you can use when building out your event
handler code, and the string eventName.

…
 public override void ItemAdding(SPItemEventProperties properties)
 {
 string eventName = “Event List: “;
 base.ItemAdding(properties);
 logAnAnnouncement(properties, eventName);
 }
…

Within the logAnAnnouncementEvent page, you can see that the one property used is the Title of the
List, which is then stored in the listTitle object. You’re also adding a date-stamp, and then convert-
ing that to a long string when adding the list item to the TestList list.

 private void logAnAnnouncement(SPItemEventProperties properties,
 string eventName)
 {
 string listTitle = properties.List.Title;
 //Be sure to replace the URL reference below with your
 //SharePoint server URL.
 string mySiteURL = “http://intranet.contoso.com”;
 DateTime currentDate = DateTime.Now;

 using (SPSite mySiteCollection = new SPSite(mySiteURL))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)
 {
 SPList mySPList = mySPSite.Lists[“TestList”];
 SPListItem newListItem = mySPList.Items.Add();
 newListItem[“Title”] = eventName + listTitle + “ @ “ +
 currentDate.ToLongTimeString();

584637c04.indd 149 5/2/10 7:12:43 PM

150  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

 newListItem.Update();
 }
 }
 }

Most of the other code should now be familiar to you, since you’ve already seen how you add an item
to a list. As you explore event receivers, be sure to try out some other types of events that are more
complex and involve other parts of the SharePoint site — or external data that can be leveraged within
your SharePoint site.

Creating aspx Pages

For those who are familiar with ASP.NET, you’ll recognize the .aspx file extension. This is an
ASP.NET Web page. Because SharePoint is built on ASP.NET, you’ll find the individual pages
within SharePoint are this specific type.

What sets SharePoint aspx pages apart from other ASP.NET sites is that you get more capabilities
built into a SharePoint page when you create it. For example, SharePoint ships with a number of
capabilities such as edit functionality and Web part capabilities. When you create a new aspx page,
it inherits features, and loads and registers dependent assemblies that are required to render the page
(and controls on that page) correctly.

For example, if you examine the code in the following default Web part aspx page, you’ll see that
there exists a number of directives that register specific assemblies to the page. SharePoint requires
that these directives exist. Now, don’t worry. You won’t have to memorize what all of these are.
SharePoint Designer creates a lot of these for you by default, so that you can focus on page creation
and customization.

<%-- _lcid=”1033” _version=”14.0.4736” _dal=”1” --%>
<%-- _LocalBinding --%>
<%@ Page language=”C#” MasterPageFile=”~masterurl/default.master”
 Inherits=”Microsoft.SharePoint.WebPartPages.WebPartPage,
 Microsoft.SharePoint,Version=14.0.0.0,Culture=neutral,PublicKeyToken
 =71e9bce111e9429c” meta:webpartpageexpansion=”full”
 meta:progid=”SharePoint.WebPartPage.Document” %>
<%@ Register Tagprefix=”SharePoint” Namespace=”Microsoft.SharePoint.WebControls”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”Utilities” Namespace=”Microsoft.SharePoint.Utilities”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Import Namespace=”Microsoft.SharePoint” %>
<%@ Assembly Name=”Microsoft.Web.CommandUI, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”WebPartPages” Namespace=
 “Microsoft.SharePoint.WebPartPages”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
…

584637c04.indd 150 5/2/10 7:12:43 PM

Creating aspx Pages  ❘  151

You can create a simple aspx page for SharePoint without any of the frills that the Web part
pages deliver. The code for this type of page looks more readable, as the following snippet shows.
However, note that it does not contain any of the standard SharePoint controls and does not inherit
the structure and style that is laid out by the master page.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<%@ Page Language=”C#” %>
<html dir=”ltr” xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
<meta name=”WebPartPageExpansion” content=”full” />
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8” />
<title>Untitled 1</title>
</head>
<body>
<form id=”form1” runat=”server”>
</form>
</body>
</html>

While there are a couple of different paths to creating aspx pages for SharePoint, using SharePoint
Designer 2010 is a straightforward way to create and edit them. This is because not only is code like
this created for you, but there are also templates that you can use to create Web part pages — a spe-
cial type of aspx page that have Web parts located in specific ways on the page (using different Web
part zone layouts). You could alternatively use Visual Studio 2010 to create aspx pages, but you’d
have to ensure that you added the previously indicated namespace registration directives manually,
and then manually add the pages to the appropriate page on the site. By default, SharePoint Designer
can save the aspx pages you create in a number of places (for example, the Site Assets library).

Beyond the assemblies that are registered through the directives, you also have HTML markup
interlaced with ContentPlaceHolder controls and ASP.NET controls. Again, if you’re familiar with
ASP.NET, these concepts won’t be new to you. If you’re not, using ContentPlaceHolder controls
and ASP.NET controls is how you render functional controls or applications on the aspx page.

For example, one of the default ContentPlaceHolder controls is the search control, which is
expressed in the following code:

…
<asp:Content ContentPlaceHolderId=”PlaceHolderSearchArea” runat=”server”>
 <SharePoint:DelegateControl runat=”server” ControlId=”SmallSearchInputBox”/>
</asp:Content>
…

Depending on the level of complexity of your aspx page, you might have more or fewer of these con-
trols — some that work independently of one another and others that work hand in glove with one
another.

SharePoint Designer 2010 provides quite a bit of control over your aspx pages. For example,
Figure 4-14 shows the default view of the aspx page (also called a site page) in SharePoint Designer.
You can see here that you can edit the permissions of the page. (SharePoint automatically inherits
the permissions from the parent site when you create the page.) You can see the version history of

584637c04.indd 151 5/2/10 7:12:43 PM

152  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

the page, you can view and manage the properties of the page, and you can edit the page. Editing
the aspx page provides you with a Design, Source, and Split view (which shows both the source
code and design view), and you also have a Toolbox experience, where you can drag and drop con-
trols onto the Designer as you create your aspx page.

Figure 4-14  Creating a site page in SharePoint Designer

To get you started, let’s create a simple aspx Web part page using SharePoint Designer 2010.

Creating a Simple Web Part PageTry It Out	

Web part pages are a great way to create a predefined aspx page template that you can then customize.
To create one, follow these steps:

	1.	 Open your SharePoint site and click Site Actions ➪ Edit with SharePoint Designer.

	2.	 SharePoint Designer opens your SharePoint site and loads all of the options into the navigation
pane.

	3.	 Click the Site Pages link in the navigation pane.

	4.	 Right-click the default file and select Rename. Provide a name for the page (for example,
WroxTestPage.aspx).

	5.	 Click Edit the File in the main window, and then change the view to Split view.

	6.	 Click the View tab. Click Task Panes and select Toolbox. This opens the Toolbox, where you
have some default controls to use. Inspect the different controls in the Toolbox. Note that the Page
Fields and Content Fields are only accessible if you’re creating a SharePoint site that is of type
Publishing (that is, a WCM site).

584637c04.indd 152 5/2/10 7:12:43 PM

Creating Master Pages  ❘  153

	7.	 Under the ASP.NET Standard controls, drag a drop-down
list to one of the Web part zones. Click Edit Items, then add
some sample items (for example, Item_One, Item_Two, and
Item_Three) to the drop-down list.

	8.	 When you are finished, click the Save icon in the upper-
left hand corner, and then click Preview in Browser on the
SharePoint Designer ribbon. Your simple aspx page should
now look similar to Figure 4-15.

How It Works

ASP.NET implicitly understands how to handle and render aspx pages. You can also create and render
a wide array of controls on an aspx page. In this example, you used a simple drop-down list control
and added some hard-coded controls to the drop-down list. You then added that control to the aspx
page. You could similarly add other types of controls to the aspx page.

Creating Master Pages

Master pages are an ASP.NET creation that SharePoint inherits from being built on ASP.NET.
SharePoint uses master pages to provide a consistent structure and layout for each of the pages in a
SharePoint site. Similar to a single CSS file providing structure for many Web pages, a single mas-
ter page can serve multiple sites, and define the look, feel, and behavior that you want for all of the
pages of that site. Using the master page as the structural foundation of your site, you can then add
other content, custom applications, or Web parts to your SharePoint site.

When you install SharePoint, it installs a small set of master pages to your SharePoint site by
default. You can then create a copy of the default.master master page and customize it to your
liking, or add a new, custom master page that provides the branding and behavior you want for your
SharePoint site. SharePoint Designer 2010 provides some great capabilities for managing, creating,
and editing master pages. For example, you can edit and view your changes from within SharePoint
Designer and then check the page in for approval to your SharePoint site.

When a user navigates to a SharePoint site, the site or content page references a master page, which
is then merged with the site page. This produces an output that combines the layout of the master
page with the content from the site page. If you remember the discussion earlier in the chapter on
site pages, the master page was included as a part of the page directives. The following bolded code
shows a token reference (the token being ~masterurl/default.master) to the master page that was
used for that site:

…
<%@ Page language=”C#” MasterPageFile=”~masterurl/default.master”
 Inherits=”Microsoft.SharePoint.WebPartPages.WebPartPage,
 Microsoft.SharePoint,Version=14.0.0.0,Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” meta:webpartpageexpansion=”full”
 meta:progid=”SharePoint.WebPartPage.Document” %>
…

Figure 4-15  Simple Web part page
with control

584637c04.indd 153 5/2/10 7:12:43 PM

154  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

A master page is characterized by the .master file extension. The master page itself can contain an
array of objects. For example, the master page can contain HTML, JavaScript, CSS, and ASP.NET
server controls.

When you examine the syntax of the master page, you’ll see text and controls that will render a look
and feel that is specific to SharePoint. This is especially true when you look at the default.master
master page, which includes all of the breadcrumbs and default menu and navigation options that
are specific to SharePoint. However, you’ll also see a series of ContentPlaceHolder objects (which
were discussed earlier) within a master page, which define regions where content or controls can
appear.

When you’re customizing SharePoint master pages, there is a set of ContentPlaceHolder controls
that you need to have on the page (for example, global breadcrumb, top-level navigation, search,
and title). You can add more ContentPlaceHolder controls than are required by default. However,
you cannot remove the ones that are required, or else your content or site pages may fail to render.

NOTE  ​For the complete list of required controls, go to the MSDN article at
http://msdn.microsoft.com/en-us/library/ms467402.aspx.

The following code snippet shows some of the different items that you can embed within a
SharePoint master page. Note that these are taken from the default.master, which ships with all
versions of SharePoint 2010. You can explore the full set of code and controls that ship with this
master page by reviewing the file from within SharePoint Designer.

<%@ Master Language=”C#” %>
<%@ Register Tagprefix=”SharePoint” Namespace=”Microsoft.SharePoint.WebControls”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %> <%@ Register Tagprefix=”Utilities”
 Namespace=”Microsoft.SharePoint.Utilities” Assembly=”Microsoft.SharePoint,
 Version=14.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c” %>
…
<title id=”onetidTitle”><asp:ContentPlaceHolder id=”PlaceHolderPageTitle”
 runat=”server”/>
</title>
<SharePoint:CssLink runat=”server” Alternate=”true”/>
<SharePoint:Theme runat=”server”/>
<SharePoint:CssRegistration Name=”minimalv4.css” runat=”server”/>
<SharePoint:CssRegistration Name=”layouts.css” runat=”server”/>
<SharePoint:ULSClientConfig runat=”server”/>
…

<a href=”javascript:;” onclick=”javascript:this.href=’#mainContent’;” class=”ms-
 SkiptoMainContent” accesskey=”<%$Resources:wss,
 maincontent_accesskey%>” runat=”server”>
<SharePoint:EncodedLiteral runat=”server” text=”<%$Resources:wss,
 mainContentLink%>” EncodeMethod=”HtmlEncode”/>

584637c04.indd 154 5/2/10 7:12:44 PM

Creating Master Pages  ❘  155

…
<asp:ContentPlaceHolder id=”PlaceHolderWelcomeMenu” runat=”server”>
<div class=”lb ms-mini-trcMenu”>
<wssuc:Welcome id=”IdWelcome” runat=”server” EnableViewState=”false”>
</wssuc:Welcome>
<wssuc:MUISelector runat=”server”/>
</div>
</asp:ContentPlaceHolder>
…
<div>
<asp:ContentPlaceHolder id=”PlaceHolderTitleBreadcrumb” runat=”server” />
</div>
…
<div id=”DeveloperDashboard” class=”ms-developerdashboard”>
<SharePoint:DeveloperDashboard runat=”server”/>
</div>
…
</body>
</html>

When managing your master pages, you’ll want to be very mindful of any changes you make to the
existing master pages. In fact, at all costs, avoid editing any of the default master pages that ship
with SharePoint. Always copy and edit renamed copies so that you never lose a snapshot to which
you can safely return. Also, if you will be doing a lot of master page customization in the future,
start with a minimal master page (which contains the bare minimum set of controls necessary for a
SharePoint site), and add onto that as practice to get familiar with how they work.

Let’s check out how to edit a master page.

Editing a Custom Master PageTry It Out	

Master pages provide a great way to structure and brand your SharePoint site. To edit a custom master
page, follow these steps:

	1.	 Open your SharePoint site.

	2.	 Click Site Settings ➪ “Edit in SharePoint Designer.”

	3.	 After SharePoint Designer opens, click the Master Pages link to view all of the master pages that
are saved to SharePoint.

	4.	 Click the v4.master master page, and then select Edit File. Do not check out the file.

	5.	 Select all of the text in v4.master, and then copy it to your clipboard. Close the file without
saving it.

	6.	 Click the Blank Master Page button on the main ribbon. Select all of the default code and delete it.
Copy the v4.master code from your clipboard to the new master page file.

	7.	 Save the file and provide a name you’ll remember (for example, MyNewMasterPage.master).

584637c04.indd 155 5/2/10 7:12:44 PM

156  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

	8.	 Somewhere after the body element, add some arbitrary text. For example, add a short message in
between the <H1> tags, as shown in the following bolded code snippet:

…

<SharePoint:DelegateControl runat=”server” ControlId=”GlobalNavigation”/>
<h1>Hello there!</h1>
<div id=”s4-ribbonrow” class=”s4-pr s4-ribbonrowhidetitle”>
…

	9.	 Save your new master page, then right-click the master page in
the navigation pane and select Check In.

	10.	 Select “Publish a major version,” as shown in Figure 4-16. When
prompted to approve the master page, click Yes. This automati-
cally invokes a SharePoint master page approval page, where you
will find your new master page listed at the top of the page.

	11.	 Click the drop-down menu beside the master page. Select
Approve and select the Approved radio button. Click OK. Your
master page is now saved and approved in SharePoint.

	12.	 Navigate to your top-level site collection, and click Site Actions
➪ Site Settings.

	13.	 Under Look and Feel, select the Master Pages link. For both the
Site and System Master Page settings, select your new master
page from the drop-down menu.

	14.	 Click OK.

	15.	 When you navigate back to the master page, you will see
whatever text you entered on the page rendered, as shown in
Figure 4-17. Any site that you create using this master page
will have this text on it.

How It Works

The master page can be a tricky part of SharePoint. Understanding what ContentPlaceHolder con-
trols are required, the structure and layout, and how to add code takes a little practice. Furthermore,
you may find yourself needing to brush up on some design elements as you build CSS into your master
page. However, the resulting master page can be very compelling and useful as you apply structure and
branding across your site.

In this example, you created a simple amendment to an existing master page and then applied that mas-
ter page using the options within SharePoint. Thus, when SharePoint rendered the page, it changed the
master page token to point to your newly amended master page.

The text amendment (that is, “Hello There!”) used as an example here is vaguely interesting; a more
interesting amendment would be the addition of an image or even some JavaScript to enhance the page.
You’ll be amazed at what you can do to alter the branding of a page by using some of the native themes
that ship with SharePoint and some artistic images such as logos or photos.

Figure 4-16  Publishing a master
page

Figure 4-17  New master page
rendered in SharePoint

584637c04.indd 156 5/2/10 7:12:44 PM

Summary  ❘  157

Summary

This chapter presented a few of the more common developer tasks that you’ll find yourself doing in
SharePoint 2010. The chapter covered standard and visual Web parts (you’ll see detailed coverage
of these two types of Web parts in Chapter 6), as well as Data View Web parts, to provide some dis-
cussion of customizing your Web parts. This chapter also covered customizing lists by using site col-
umns and content types, and discussed how you can leverage the SharePoint object model and Web
services to interact with SharePoint data. The chapter also provided some coverage of event receivers
and showed you how you can create a custom aspx page and master page.

As you move throughout this book, you’ll see many of the topics covered in this chapter resurface as
you write more code and explore more of the programmatic capabilities that SharePoint has to offer.
For example, in Chapter 5, you’ll see more coverage on how you interact with lists, and you’ll learn
about the client object model, ASP.NET Web services, server object model, and custom Web services
in greater detail.

Exercises	

	 1.	 Using Visual Studio 2010, create a simple standard Web part and Visual Web part using the
code snippets in this chapter.

	 2.	 Create a calculated site column for the Sales list that leverages the Total Sales column to
calculate tax based on a 7 percent state tax for all states.

	 3.	 Create a custom aspx page that leverages two or more controls from the ASP.NET Toolbox,
and publish it to SharePoint.

	 4.	 Create a simple master page that has a logo and some header text. Use the minimal master
page that ships with SharePoint.

	8.	 Somewhere after the body element, add some arbitrary text. For example, add a short message in
between the <H1> tags, as shown in the following bolded code snippet:

…

<SharePoint:DelegateControl runat=”server” ControlId=”GlobalNavigation”/>
<h1>Hello there!</h1>
<div id=”s4-ribbonrow” class=”s4-pr s4-ribbonrowhidetitle”>
…

	9.	 Save your new master page, then right-click the master page in
the navigation pane and select Check In.

	10.	 Select “Publish a major version,” as shown in Figure 4-16. When
prompted to approve the master page, click Yes. This automati-
cally invokes a SharePoint master page approval page, where you
will find your new master page listed at the top of the page.

	11.	 Click the drop-down menu beside the master page. Select
Approve and select the Approved radio button. Click OK. Your
master page is now saved and approved in SharePoint.

	12.	 Navigate to your top-level site collection, and click Site Actions
➪ Site Settings.

	13.	 Under Look and Feel, select the Master Pages link. For both the
Site and System Master Page settings, select your new master
page from the drop-down menu.

	14.	 Click OK.

	15.	 When you navigate back to the master page, you will see
whatever text you entered on the page rendered, as shown in
Figure 4-17. Any site that you create using this master page
will have this text on it.

How It Works

The master page can be a tricky part of SharePoint. Understanding what ContentPlaceHolder con-
trols are required, the structure and layout, and how to add code takes a little practice. Furthermore,
you may find yourself needing to brush up on some design elements as you build CSS into your master
page. However, the resulting master page can be very compelling and useful as you apply structure and
branding across your site.

In this example, you created a simple amendment to an existing master page and then applied that mas-
ter page using the options within SharePoint. Thus, when SharePoint rendered the page, it changed the
master page token to point to your newly amended master page.

The text amendment (that is, “Hello There!”) used as an example here is vaguely interesting; a more
interesting amendment would be the addition of an image or even some JavaScript to enhance the page.
You’ll be amazed at what you can do to alter the branding of a page by using some of the native themes
that ship with SharePoint and some artistic images such as logos or photos.

Figure 4-16  Publishing a master
page

584637c04.indd 157 5/2/10 7:12:44 PM

158  ❘  Chapter 4   Common Developer Tasks in SharePoint 2010

What You Learned in This Chapter⊲⊲

Item Description

Web Part SharePoint is built on the ASP.NET framework and provides different types of
Web parts to use when building solutions. This chapter introduced the standard
Web part (baseline Web part available in SharePoint), Visual Web part (adds a
Designer experience for the UI to standard Web parts), and Data View Web parts
(expose list data in a custom-formatted way).

Site Column Custom column that can be reused across a SharePoint site.

Content Type Custom object with metadata that can range from predefined columns to custom
documents that can be reused across a SharePoint site.

List Standard way of representing data in SharePoint.

Event Receiver An event that is triggered when the system or user performs an action.

aspx Page The standard page in SharePoint. Built on ASP.NET, SharePoint supports simple
aspx pages (no controls) or more complex pages that come predefined with con-
trols and layouts (for example, a Web part page).

Master Page A master page provides a single point of branding and structure that can be lev-
eraged across a SharePoint site.

Recommended Reading

Channel 9 Learning Course on Lists and Events at ➤➤ http://channel9.msdn.com/learn/

courses/SharePoint2010Developer/ListsAndSchemas/

ASP.NET master pages overview at ➤➤ http://msdn.microsoft.com/en-us/library/

wtxbf3hh.aspx

SharePoint master page article at ➤➤ http://msdn.microsoft.com/en-us/library/

ms467402.aspx

584637c04.indd 158 5/2/10 7:12:44 PM

Programming Against
SharePoint 2010 Lists

What You'll Learn in This Chapter:

Understanding the structure and function of a SharePoint 2010 list➤➤

Programming against SharePoint lists through client- and server-side ➤➤

object models, ASP.NET Web services, WCF, and RESTful services

Understanding when to use one method over the other➤➤

Developing against SharePoint 2010 lists➤➤

In Chapter 2, you were introduced to the SharePoint list from both the end-user perspective
and the developer perspective. You were also introduced to a simple application that interacted
with a list programmatically.

This chapter dives into more detail about the list and will provide you with some additional
information about the different ways in which you can programmatically interact with a list
(specifically, reading and writing items). You will learn about different application program-
ming interfaces (APIs) and ways to develop against a list. This chapter also provides you with
an introduction to list events and teaches you how to create and exploit them.

Overview of SharePoint Lists

In addition to the Web part, the list will be one of the more common objects you code against
in SharePoint (and one of the most commonly used artifacts by end users). A list is essentially
a type of data structure in SharePoint. A list represents a collection of items comprising objects
of similar types. Similar in structure and behavior to a database, a SharePoint list contains
rows, columns, and fields. It can react to events you customize and deploy into SharePoint.

5

584637c05.indd 159 5/3/10 11:43:59 AM

160  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

The data in a list is referred to as a list item. A list item com-
prises a field, and fields contain specific data. Each field within a
list item has a specific field type, such as “Single line of text” or
Choice. For example, Figure 5-1 shows the default options that
are available to you when you create a list and then add columns
to that list from the SharePoint Web interface.

You can create a list through the Internet browser interface, pro-
grammatically through an array of APIs, through a Web service, or
through defining the list by an XML schema, and then deploying
to your SharePoint site. (The out-of-the-box lists are essentially list
templates that have a predefined schema.)

There are many types of lists in SharePoint. For example, there
is a Calendar list that supports calendar functionality (and
synchronizes with Outlook), an Announcements list that stores announcements you’d like to dis-
play on your site, and a Tasks list that enables you to create tasks and delegate to people in your
organization. Lists also include document libraries, which is where you store files and metadata.
Furthermore, you can map workflow and event receivers to lists or even list items (as you’ll see later
in this chapter) that react to actions such as creating, deleting, or updating items. You can also cus-
tomize filters for lists and create views that are specific to your liking.

While many of the out-of-the-box lists ship as a predefined structures, you can also customize a list.
You did this in Chapter 4 when you created a content type, site column, and custom column, which
you then used to create the list. This list, known as the Custom list, is a versatile list because you
define it however you want.

A Custom list can be as simple or as complex as you want. For example, Table 5-1 shows the struc-
ture of a simple Custom list structure called Customers that contains a set of list items. The list
items are made up of Customer Name and Customer Email. Each of the fields within the list items
are of the “Single line of text” data type, and each field within the list item contains data (for exam-
ple, John Doe and John.doe@acme.com). Table 5-1 illustrates what the Customers list might look
like with three mock records.

Table 5-1  Sample List — Customers

Customer Name Customer Email

John Doe John.doe@acme.com

Jane Doe Jane.doe@acme.com

Jim Doe Jim.doe@acme.com

Another (more advanced) type of Custom list is the External list. The External list dynamically loads
data from external data sources into a SharePoint list. It can connect to different service connections
such as Windows Communication Foundation (WCF) or ASP.NET, and can also be programmed
against using a standard set of APIs. External lists are covered in greater detail in Chapter 8.

Figure 5-1  Column field types

584637c05.indd 160 5/3/10 11:43:59 AM

Overview of SharePoint Lists  ❘  161

Regardless of whether a list is a custom or standard list,
you can program against a list. And, as mentioned earlier,
SharePoint offers multiple points of entry for the developer
to program against a list. When programming against lists,
you can think of the data as living within a specific object
within the list. For example, Figure 5-2 shows you a simple
taxonomy of how you might conceptually get at the specific
data within a list.

While the structure of lists may look like databases, they
are quite a bit different. For example, you would expect to
find much more transactional and referential integrity in a
SQL Server database than in a list, as well as tools-specific
support for database administrators and a richer query
model. However, lists can be very useful when displaying
data in SharePoint, and, as you’ll see, have a straightfor-
ward method for extensibility.

While Figure 5-2 illustrates the conceptual structure of a
list, the way in which you programmatically interact with the list is a little different. For example,
while the list collection comprises one or more lists, the column is one of the constituent components
of the list, and the rows are just instances of the different columns that make up that list. Further,
the data lives in the field within the column. For example, let's say you want to traverse a list. Using
a specific set of objects within the SharePoint object model, you can access methods and properties
to iterate through a SharePoint Web site to get all of the lists in that site, or iterate through a list to
get all of the rows (or SPListItems) in that list, among many other programmatic activities.

Figure 5-3 shows an example of the SharePoint object model
hierarchy starting with the SPSite object as your point of entry.

To put the object model hierarchy shown in Figure 5-3 to prac-
tice, the following code snippet sets the SPSite object to the cur-
rent SharePoint site collection, sets the list to a specific list, and
then creates a CAML query to query against that list to get all
results in the list that are greater than 10. (CAML, which stands
for Collaborative Application Markup Language, is the XML
query structure that you use when querying SharePoint data.) As
illustrated in the following code snippet, you build CAML con-
structs, and then use the SharePoint API to interact with the list.

…
SPSite mySPSiteCollection = SPContext.Current.Site;
SPList mySPList = mySPSiteCollection.AllWebs[“Sales”].Lists[“Products”];

SPQuery myCAMLQuery = new SPQuery();
myCAMLQuery.Query = “<Where><Gt><FieldRef Name=’Price’/>” +
 “<Value Type=’Number’>10</Value></Gt></Where>”;
SPListItemCollection mySPListCollection = mySPList.GetItems(myCAMLQuery);
…

List Collection

List

Rows

Columns

Field

Data

Figure 5-2  List structure

SPSite

SPWeb

SPList

SPListItem

Figure 5-3  List object model

584637c05.indd 161 5/3/10 11:44:00 AM

162  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

This example is simple, but illustrative, of one way in which you can interact with SharePoint list
data. As you’ll see throughout this chapter, lists are versatile data structures in SharePoint, and there
are many different ways to program against them as well. So, let’s get started!

Programmatically Accessing Lists

In SharePoint 2010 you programmatically access and code against lists in a number of different
ways:

You use the ➤➤ Microsoft.SharePoint namespace (that is, the server-side object model) to
access lists on the server. What this means, though, is that any application you build must
reside (or be consumed) on the server that it is accessing.

Second, you can use the Lists Web service — an ASP.NET Web service that ships with ➤➤

SharePoint.

Third, you can build a custom ASP.NET Web service that you deploy to Internet Information ➤➤

Services (IIS), or deploy into the SharePoint file system (for example, into the ISAPI folder).

Fourth, you can build a custom WCF service that you deploy to IIS or to the SharePoint root. ➤➤

Fifth, you can also use the SharePoint client object model, which supports remote program-➤➤

matic access to lists from Silverlight, .NET, and JavaScript applications.

Lastly, you can use REST APIs that provide lightweight access to SharePoint list data. ➤➤

NOTE  ​ SharePoint is flexible in that you can deploy a custom ASP.NET or WCF
Web service directly into the SharePoint root to interact with your list. While
this is a convenient way to take advantage of being a “trusted” service within
SharePoint, the drawback is that if you ever upgrade your SharePoint server,
you run the risk of having your custom Web services deleted from the vti_bin
or layouts folder.

Table 5-2 provides a summary of each of the options available to you and indicates when you might
use one over the other.

Table 5-2  SharePoint List APIs/Services

Type of Service/API When to Use

Server-side object model Core SharePoint DLL that is used for building applications that are
deployed to or reside (or consumed) on the server.

Client object model Client-based DLL used for coding against SharePoint on remote clients.
It is supported in .NET, Silverlight, and JavaScript applications.

584637c05.indd 162 5/3/10 11:44:00 AM

Programmatically Accessing Lists  ❘  163

Type of Service/API When to Use

WCF Data Services REST-based service that provides lightweight GET and POST functional-
ity against a SharePoint list. You use this service to interact with Excel
spreadsheets. (Note that the WCF Data Services were formerly called
ADO.NET Data Services.)

Lists Web service ASP.NET Web service that provides legacy service functionality for inter-
acting with lists. Good for rapid development and deployment, as well as
service-based applications.

Custom WCF service Option where you design a custom WCF service application and
deploy into the SharePoint hive or IIS. This is useful when you
require a custom service because the functionality does not exist
within SharePoint.

Custom ASP.NET service Option where you design a custom ASP.NET service application and
deploy it in the SharePoint hive or IIS. This is useful when you require
a custom service because the functionality does not exist within
SharePoint.

After you programmatically access a SharePoint list using any one of the methods shown in
Table 5-2, you can then begin to write solutions that leverage the list in different ways. For
example, you can use the different methods to issue, create, read, update, and delete capabili-
ties, or you can add more complex events that interact with other parts of the SharePoint object
model, or even initiate a workflow that manages business processes through system or user inter-
action with the list.

Let’s examine each of the methods introduced in Table 5-2 and discuss how you can use each
method to program against SharePoint lists.

Programming Against Lists Using the Server-Side Object Model
One way to develop applications against a SharePoint list is to leverage the Microsoft
.SharePoint namespace (the server-side object model). Using the Microsoft.SharePoint
namespace is relatively easy. However, it is predominantly used for applications that reside on
the server.

Before you start the walkthrough, you’ll need to create a simple list in your SharePoint site called
Products. You can create this manually by navigating to your SharePoint site and clicking Site
Actions ➪ View All Site Content. Then click Create ➪ Lists ➪ Custom List. Enter Products as
the name of the list and click Create. After the site is created, you’ll want to add two more col-
umns beyond the Title column. To add two columns, click the List tab, and then List Settings ➪
Create Column. Add a column named Product_SKU and another column named Price. You can

584637c05.indd 163 5/3/10 11:44:00 AM

164  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

leave both columns with the default “Single line of text” type. After you create the list, you are
now ready to begin the walkthrough.

NOTE  ​In this first walkthrough, you’ll create a very simple WPF application that
interacts with a SharePoint list. The goal of the walkthrough is less about the
application and more about you learning how to use the SharePoint server-side
object model. You saw the server object model being used in Chapter 4, so
think of this as another way to leverage the object model.

Programming Against Lists Using the Server-Side Object ModelTry It Out	

Code file [SPListApp.zip] available for download at Wrox.com.

The list is a core artifact in SharePoint. The server-side object model is one way of interacting with a
list. You can build different types of applications that live on the server and interact with the server
object model, such as WinForm or WPF utility tools, Web parts, or event receivers. To build a WPF
application that interacts with a list using the server-side object model, follow these steps:

	1.	 Open Visual Studio and click File ➪ New ➪ Project ➪ WPF Application. Ensure that you select
.NET Framework 3.5 in the drop-down menu at the top of the New Project dialog, or else you will
have compilation issues when building your application.

	2.	 Give your project a name (for example, WPFSPTestApp), and click OK.

	3.	 When your solution is set up, right-click the project and select Add Reference. Select the Browse
tab and then browse to c:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\14\ISAPI. Select the Microsoft.SharePoint.dll and click OK.

	4.	 Right-click the MainWindow.xaml and select View Designer. Add five labels, five textboxes, and
three buttons. Arrange the controls on the designer as shown in Figure 5-4.

Table 5-3 shows the control type and the name of the controls that you should add to the WPF
designer.

Table 5-3  Control Types for WPF Application

Control Type Control Name

Label lblSPUrl, lblListName, lblProductSKU, lblProdName,

lblProductPrice

Textbox txtbxSPURL,txtbxListName, txtbxProductSku, txtbxProductPrice

Button btnLoad, btnClear, btnExit

584637c05.indd 164 5/3/10 11:44:00 AM

Programmatically Accessing Lists  ❘  165

Figure 5-4  WPF Client UI for server-side object model list call

The XAML that corresponds to this UI is as follows:

<Window x:Class=”WPFSPTestApp.MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”MainWindow” Height=”350” Width=”525”>
<Grid Width=”387” Height=”258”>
 <Label
Content=”Site URL:” Height=”28” HorizontalAlignment=”Left” Margin=”36,30,0,0”
Name=”lblSPURL” VerticalAlignment=”Top” Width=”94” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”136,30,0,0”
Name=”txtbxSPURL” VerticalAlignment=”Top” Width=”212” />
 <Label
Content=”List Name:”Height=”28” HorizontalAlignment=”Left” Margin=”36,66,0,0”
Name=”lblListName” VerticalAlignment=”Top” Width=”94” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”136,66,0,0”
Name=”txtbxListName” VerticalAlignment=”Top” Width=”212” />
 <Label
Content=”Product Name:”Height=”28” HorizontalAlignment=”Left” Margin=”590,230,0,0”
Name=”lblProductSKU” VerticalAlignment=”Top” Width=”94” />
 <TextBox

584637c05.indd 165 5/3/10 11:44:00 AM

166  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

Height=”23” Margin=”0,101,39,0” Name=”txtbxProdName”
VerticalAlignment=”Top” HorizontalAlignment=”Right” Width=”212” />
 <Button
Content=”Load” Height=”23” HorizontalAlignment=”Left” Margin=”67,214,0,0”
Name=”btnLoad” VerticalAlignment=”Top” Width=”75” Click=”btnLoad_Click” />
 <Button
Content=”Clear” Height=”23” HorizontalAlignment=”Left” Margin=”158,214,0,0”
Name=”btnClear” VerticalAlignment=”Top” Width=”75” Click=”btnClear_Click” />
 <Button
Content=”Exit” Height=”23” HorizontalAlignment=”Left” Margin=”247,214,0,0”
Name=”btnExit” VerticalAlignment=”Top” Width=”75” Click=”btnExit_Click” />
 <Label
Content=”Product Name:”Height=”28” HorizontalAlignment=”Left” Margin=”36,101,0,0”
Name=”lblProdName” VerticalAlignment=”Top” Width=”120” />
 <Label
Content=”Product SKU:” Height=”28” HorizontalAlignment=”Left” Margin=”36,135,0,0”
Name=”lblProductSku” VerticalAlignment=”Top” Width=”120” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”136,135,0,0”
Name=”txtbxProductSku”VerticalAlignment=”Top” Width=”212” />
 <Label
Content=”Product Price:” Height=”28” HorizontalAlignment=”Left” Margin=”36,169,0,0”
Name=”lblProductPrice” VerticalAlignment=”Top” Width=”120” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”136,169,0,0”
Name=”txtbxProductPrice” VerticalAlignment=”Top” Width=”212” />
 </Grid>
</Window>

	5.	 Double-click the Exit button and add the following code to exit the application:

…
private void btnExit_Click(object sender, RoutedEventArgs e)
 {
 Application.Current.Shutdown();
 }
…

	6.	 Double-click the Clear button and add the following code to clear the fields:

…
 private void btnClear_Click(object sender, RoutedEventArgs e)
 {
 txtbxListName.Text = ““;
 txtbxSPURL.Text = ““;
 txtbxProdName.Text = ““;
 txtbxProductSku.Text = ““;
 txtbxProductPrice.Text = ““;

 }
…

	7.	 While still in the Windows.xaml.cs code behind, add the following using statement at the top of
the application:

using Microsoft.SharePoint;

584637c05.indd 166 5/3/10 11:44:00 AM

Programmatically Accessing Lists  ❘  167

	8.	 Add the following five class-level variables (boldfaced in the following code), which represent the
user input, and then navigate back to the Designer view:

…

 public partial class MainWindow : Window
 {

 string strSPSiteURL = ““;
 string strSPListName = ““;
 string strProductName = ““;
 string strProductSKU = ““;
 string strProductPrice = ““;

 }
…

	9.	 Double-click the Load button and add the following code to add a new record to a SharePoint list:

…
private void btnLoad_Click(object sender, RoutedEventArgs e)
 {
 strSPSiteURL = txtbxSPURL.Text;
 strSPListName = txtbxListName.Text;
 strProductName = txtbxProdName.Text;
 strProductSKU = txtbxProductSku.Text;
 strProductPrice = txtbxProductPrice.Text;

 using (SPSite site = new SPSite(strSPSiteURL))
 {
 using (SPWeb web = site.OpenWeb())
 {
 web.AllowUnsafeUpdates = true;

 SPList list = web.Lists[strSPListName];
 SPListItem Item = list.Items.Add();
 Item[“Title”] = strProductName;
 Item[“Product_SKU”] = strProductSKU;
 Item[“Price”] = strProductPrice;
 Item.Update();

 web.AllowUnsafeUpdates = false;
 }
 }

 }
…

	10.	 The full application code listing (with the code you added listed in bold) for the code behind is
as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;

584637c05.indd 167 5/3/10 11:44:00 AM

168  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using Microsoft.SharePoint;

namespace WPFSPTestApp
{

 public partial class MainWindow : Window
 {
 string strSPSiteURL = ““;
 string strSPListName = ““;
 string strProductName = ““;
 string strProductSKU = ““;
 string strProductPrice = ““;

 public MainWindow()
 {
 InitializeComponent();
 }

 private void btnExit_Click(object sender, RoutedEventArgs e)
 {
 Application.Current.Shutdown();
 }

 private void btnClear_Click(object sender, RoutedEventArgs e)
 {
 txtbxListName.Text = ““;
 txtbxSPURL.Text = ““;
 txtbxProdName.Text = ““;
 txtbxProductSku.Text = ““;
 txtbxProductPrice.Text = ““;

 }

 private void btnLoad_Click(object sender, RoutedEventArgs e)
 {
 strSPSiteURL = txtbxSPURL.Text;
 strSPListName = txtbxListName.Text;
 strProductName = txtbxProdName.Text;
 strProductSKU = txtbxProductSku.Text;
 strProductPrice = txtbxProductPrice.Text;

 using (SPSite site = new SPSite(strSPSiteURL))
 {
 using (SPWeb web = site.OpenWeb())
 {

584637c05.indd 168 5/3/10 11:44:00 AM

Programmatically Accessing Lists  ❘  169

 web.AllowUnsafeUpdates = true;

 SPList list = web.Lists[strSPListName];
 SPListItem Item = list.Items.Add();
 Item[“Title”] = strProductName;
 Item[“Product_SKU”] = strProductSKU;
 Item[“Price”] = strProductPrice;
 Item.Update();

 web.AllowUnsafeUpdates = false;
 }
 }

 }

 }
}

	11.	 When you’re finished adding the code, press F5 to debug the application. When prompted by the
UI, enter some product information into the dialog, as shown in Figure 5-5.

Figure 5-5  Compiled WPF application using server-side
object model

	12.	 Now, open your SharePoint site and navigate to the list you updated (for example, Products list).
You will find that the application has updated the SharePoint list, as shown in Figure 5-6.

Figure 5-6  Updated list

584637c05.indd 169 5/3/10 11:44:01 AM

170  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

How It Works

When you’re developing applications that are running on the server, you can leverage the server-side
object model that is exposed using the Microsoft SharePoint.dll. For example, in this walkthrough,
you built a simple WPF-based application that was running on the server (assuming that you were
building and deploying it on your server machine). Very simply, the application took a number of
string inputs from the WPF UI and used the server-side object model to add this input to a list on your
SharePoint site. The five string variables were declared as follows:

…
 string strSPSiteURL = ““;
 string strSPListName = ““;
 string strProductName = ““;
 string strProductSKU = ““;
 string strProductPrice = ““;
…

You’ll note that, per the earlier example, the code leverages the using statements to set the context for
the SharePoint site and then sets the Web to allow updates, creates an SPList object and SPListItem
object, and then proceeds to set the specific column fields with the data that was entered by the users.
Finally, the Update method is called to add the data to the list.

…
 using (SPSite site = new SPSite(strSPSiteURL))
 {
 using (SPWeb web = site.OpenWeb())
 {
 web.AllowUnsafeUpdates = true;

 SPList list = web.Lists[strSPListName];
 SPListItem Item = list.Items.Add();
 Item[“Title”] = strProductName;
 Item[“Product_SKU”] = strProductSKU;
 Item[“Price”] = strProductPrice;
 Item.Update();

 web.AllowUnsafeUpdates = false;
 }
 }
…

NOTE  ​The preceding walkthrough showed you how to use the server-side
object model using a Windows client application. You can also use the server-
side object model on the server. To help you see what the project structure of
a Web part application looks like, this chapter also provides an additional code
sample where a Web part issues the same update action that the WPF applica-
tion does. This Web part code sample (ServerSideObjectModel.zip) is avail-
able for download for you at the companion download site (www.Wrox.com).

584637c05.indd 170 5/3/10 11:44:01 AM

Programmatically Accessing Lists  ❘  171

Programming Against Lists Using ASP.NET Web Services
The second way to interact with lists programmatically is to use the Lists ASP.NET Web service that
ships with SharePoint 2010. You might think of this as being not only a convenient service-based
way of coding against SharePoint, but also as support for legacy code that may be based on the set
of Web methods within the Lists service.

To develop using the ASP.NET service, you create a new application, set a reference to the ASP.NET
Web service, and then program against the Web reference (or more accurately, the service proxy you
add to the application code). For example, following is a code snippet that creates an instance of the
Lists Web service, sets the credentials of the service call as the default credentials, and then sets the
absolute URL to the service:

…
MySharePointData.SPListGetData.Lists proxy = new
 MySharePointData.SPListGetData.Lists();
proxy.Credentials = System.Net.CredentialCache.DefaultCredentials.
proxy.URL = “http://fabrikamhockey/_vti_bin/lists.asmx”;
…

Within the Lists Web service, there are a number of Web methods that you can use when program-
ming against SharePoint lists, content types, list items, and files. To access the Web service, you set
your Web reference to http://<server name>/_vti_bin/Lists.asmx and then use the reference
to the service in your code to manage data sent to and from SharePoint.

Table 5-4 provides a sampling of the list of the Web methods that are available in the Lists Web ser-
vice, along with a description of what the Web method does.

Table 5-4  Sample Lists Web Service Members

Method Name Description

AddAttachment Adds an attachment to a specific list item in a list

AddList Creates a list in a SharePoint site based on specific name, descrip-
tion, and list template ID

CheckInFile Allows documents to be checked in to a SharePoint document
library remotely

CheckOutFile Allows documents in a SharePoint document library to be checked
out remotely

DeleteAttachment Removes the attachment from the specified list item

DeleteList Deletes a specified list

GetList Returns the schema for a specified list

GetListAndView Returns list and view schemas for the specified list

continues

584637c05.indd 171 5/3/10 11:44:01 AM

172  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

Method Name Description

GetListCollection Returns the names and globally unique identifiers (GUIDs) for all lists
in the site

GetListContentType Returns the content type definition schema for the specified list con-
tent type

GetListItemChanges Returns any changes made to a list since a specified date and time

GetListItems Returns information about items in a list based on a specified query

UndoCheckOut Undoes the check-out of a given document in a SharePoint docu-
ment library

UpdateList Updates a list based on a specified field definition and list properties

UpdateListItems Adds, deletes, or updates specified items in a list on a SharePoint site

NOTE  ​You can find more information about the Lists Web service members at
http://msdn.microsoft.com/en-us/library/lists.lists_members.aspx.

You’ve walked through an exercise how to program against lists using the server-side object
model, so let’s try out another example using the Lists Web service. In this example, you’ll create
an Office add-in that will read and write data from the document to the SharePoint list, and vice
versa. (Note that if you completed the first walkthrough, you can use the same Products list in
this example as well.)

Programming Against Lists Using the Lists Web ServiceTry It Out	

Code file [ProductsList.zip] available for download at Wrox.com.

The ASP.NET Web services are a great way to leverage the out-of-the-box capabilities when programming
against lists. To programmatically interact with a list using the Lists Web service, follow these steps:

	1.	 Create a new Custom list and call it Products. Leave the default Title field and add two more
fields called Product_SKU and Price. All fields should be of type “Single line of text.” Add some
data to the list, as shown in Figure 5-7.

Figure 5-7  Sample data in list

Table 5-4  (continued)

584637c05.indd 172 5/3/10 11:44:01 AM

Programmatically Accessing Lists  ❘  173

	2.	 After you’ve created the list, open Visual Studio 2010 (as Administrator).

	3.	 Select File ➪ New ➪ Project. Be sure to select the .NET Framework 3.5 in the drop-down list in the
New Project dialog.

	4.	 Select Office in the Installed Templates, and then select the Excel 2010 Add-In project template.

	5.	 Provide a name (for example, ProductsList) and a location for your project, as shown in
Figure 5-8. Click OK.

Figure 5-8  Office Excel project template

	6.	 Visual Studio 2010 creates a solution structure for you, which includes a number of default files.
Right-click the main project file and select Add ➪ New Item. Navigate to the WPF node and select
WPF User Control.

	7.	 Provide a name for your user control (for example, ProductsUserControl.xaml), and click OK.
Visual Studio adds a WPF-based control to your project.

	8.	 Right-click the new control in the Solution Explorer and select View in Designer.

	9.	 Use the Toolbox to drag four labels — a listbox, two textboxes, and two buttons — onto the
designer surface. When done, arrange the user interface controls as shown in Figure 5-9.

Table 5-5 shows the control type and the name of the controls that you should add to the WPF
user control.

584637c05.indd 173 5/3/10 11:44:01 AM

174  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

Figure 5-9  WPF custom task pane UI

Table 5-5  Control Types for WPF User Control

Control Type Control Name

Label lblProduct, lblSku, LblPrice, lblTitle

Textbox txtBxSku, txtbxPrice

Listbox lstBxProducts

Button btnUpdate, btnLoadData

Adding controls to the designer surface auto-generates XAML code (the XML mark-up that
defines the UI for the application). If you explore the XAML code for the UI, it will look very
close to the following code sample. Note that you can edit the properties of the UI either directly
from the XAML or by using the Properties window in Visual Studio.

<UserControl x:Class=”ProductsList.ProductsUserCtrl”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

584637c05.indd 174 5/3/10 11:44:01 AM

Programmatically Accessing Lists  ❘  175

 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 mc:Ignorable=”d”
 d:DesignHeight=”243” d:DesignWidth=”223”>
 <Grid Width=”220” Height=”239”>
 <Button
Content=”Update” Height=”23” HorizontalAlignment=”Left” Margin=”118,173,0,0”
Name=”btnUpdate” VerticalAlignment=”Top” Width=”75” />
 <Button
Content=”Load” Height=”23” HorizontalAlignment=”Left” Margin=”22,173,0,0”
Name=”btnLoadData” VerticalAlignment=”Top” Width=”75” />
 <Label
Content=”Product:” Height=”28” HorizontalAlignment=”Left” Margin=”22,48,0,0”
Name=”lblProduct” VerticalAlignment=”Top” Width=”55” />
 <Label
Content=”SKU:” Height=”28” HorizontalAlignment=”Left” Margin=”22,82,0,0”
Name=”lblSku” VerticalAlignment=”Top” Width=”55” />
 <Label
Content=”Price:” Height=”28” HorizontalAlignment=”Left” Margin=”22,116,0,0”
Name=”lblPrice” VerticalAlignment=”Top” Width=”55” />
 <Label
Content=”Products Data” Height=”28” HorizontalAlignment=”Left” Margin=”22,12,0,0”
Name=”lblTitle” VerticalAlignment=”Top” Width=”120” FontWeight=”Bold” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”73,82,0,0”
Name=”txtBxSku” VerticalAlignment=”Top” Width=”120” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”73,116,0,0”
Name=”txtBxPrice” VerticalAlignment=”Top” Width=”120” />
 <ListBox
Height=”28” HorizontalAlignment=”Left” Margin=”73,45,0,0”
Name=”lstBxProducts” VerticalAlignment=”Top” Width=”120” />
 </Grid>
</UserControl>

	10.	 Double-click each of the buttons to add event handlers for each of them in the code behind. (Note
that this will update the XAML, so be sure to inspect the XAML to see these changes.)

	11.	 Next, add a reference to the Lists Web service. To do this, right-click the project and select Add
Service Reference. Click the Advanced button in the Add Service Reference dialog, and then click
Add Web Reference in the Service Reference Settings dialog.

	12.	 If you’re developing on the same machine as your SharePoint site, you can click “Web services on
local machine” to discover the services on your development machine. (Otherwise, you’ll need to
add the service URL into the URL field.)

	13.	 Visual Studio loads all of the available services on the local machine, one of which should be the
SharePoint Lists service, as shown in Figure 5-10.

	14.	 When you click the Lists service, you will see a list showing all of the available Web methods.

584637c05.indd 175 5/3/10 11:44:01 AM

176  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

Figure 5-10  Add Web Reference dialog

	15.	 Provide a name for the service reference (for example, SPListWS) in the Web reference name field,
and then click Add Reference. You can now begin leveraging the Lists Web service in your applica-
tion. After you finish adding the Web service reference, add the following using statements at the
top of the class:

using Excel = Microsoft.Office.Interop.Excel;
using System.Web.Services.Protocols;

	16.	 Right-click the WPF-based user control, and select View Code.

	17.	 In the code behind, you’re going to add some code to handle reading data from the SharePoint list
into the active Excel document and then some to handle writing back to the SharePoint list from
the Excel worksheet. The first set of code you’ll need is the code that defines your in-memory data
object. To add a class to the project and provide a name (for example, Product), right-click the
project and select Add ➪ Class. The Product class contains three public string properties, which
are shown in boldface in the following code sample:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ProductsList
{
 class Product
 {
 public string productTitle { get; set; }
 public string productSKU { get; set; }
 public string productPrice { get; set; }
 }
}

584637c05.indd 176 5/3/10 11:44:01 AM

Programmatically Accessing Lists  ❘  177

	18.	 Data is managed in the application through the use of a list collection called myProducts
(which appears in bold in the following code snippet). Using an in-memory object that is of type
IEnumerable or a List collection makes it easier to query and bind data to controls in your
applications.

namespace ProductsList
{

 public partial class ProductsUserCtrl : UserControl
 {
 List<Product> myProducts = new List<Product>();

 public ProductsUserCtrl()
 {
 InitializeComponent();
 }
 …

 }
 }

	19.	 After you’ve added the code for your class, you must handle the two button events and the changed
event for the listbox. The following code snippet represents the event that is triggered when the
user clicks the Load button (that is, the btnLoadData_Click event). Within the btnLoadData_
Click event, the application implements the Lists Web service and then, through the use of the
GetListItems method, within the Lists Web service. Much of the code within the try block essen-
tially builds out an XML document using the returned data from the Web service call. It next looks
for specific XML elements (that is, ows_Title, ows_Product_SKU, and ows_Price). It then iter-
ates through each record in the XML document and populates the Product list collection (as well
as adds the names of the products that are being returned to the listbox in the UI).

private void btnLoadData_Click(object sender, RoutedEventArgs e)
 {
 SPListWS.Lists myListReadProxy = new SPListWS.Lists();
 myListReadProxy.Credentials =
 System.Net.CredentialCache.DefaultCredentials;
 myListReadProxy.Url = “http://fabrikamhockey/_vti_bin/Lists.asmx”;

 try
 {
 XmlNode myListItems = myListReadProxy.GetListItems
 (“Products”, null, null, null, null, null, null);
 XElement newRootElement = new XElement(“ProductData”);

 foreach (XmlNode outerNode in myListItems.ChildNodes)
 {
 if (outerNode.NodeType.Equals(System.Xml.XmlNodeType.Element))
 {
 foreach (XmlNode node in outerNode.ChildNodes)
 {
 if (node.NodeType.Equals(System.Xml.
 XmlNodeType.Element))
 {
 XmlNode listFieldTitle = node.Attributes.

584637c05.indd 177 5/3/10 11:44:01 AM

178  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

 GetNamedItem(“ows_Title”);
 XmlNode listFieldProductSKU = node.Attributes.
 GetNamedItem(“ows_Product_SKU”);
 XmlNode listFieldPrice = node.Attributes.
 GetNamedItem(“ows_Price”);

 Product tempProduct = new Product();
 tempProduct.productTitle = listFieldTitle.InnerText;
 tempProduct.productSKU =
 listFieldProductSKU.InnerText;
 tempProduct.productPrice = listFieldPrice.InnerText;

 myProducts.Add(tempProduct);
 lstBxProducts.Items.Add(tempProduct.productTitle);
 }
 }
 }
 }
 }
 catch (SoapException ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

	20.	 The following code provides the methods that handle the btnUpdate_Click event. In this code,
you create an instance of the Excel worksheet so that you can inject the data coming from the
SharePoint list into a specific set of cells. The code does not format the cells, but you could assert
some formatting for the worksheet programmatically if you chose. Then, depending on the product
name in the cell, the code sets an integer variable called index, which is the specific row of data
that you will update if you make any changes to the data in the spreadsheet. Then, similar to the
btnLoadData_Click event, you create an instance of the Lists Web service. However, this time,
you call the UpdateListItems method. You’ll notice the CAML construct that is created and
passed with the UpdateListItems method. This construct defines the command (Update) and then
provides the specific index to be updated through the aforementioned index variable.

…
private void btnUpdate_Click(object sender, RoutedEventArgs e)
 {
 Excel.Worksheet myProductWorksheet = Globals.ThisAddIn.
 Application.ActiveSheet as Excel.Worksheet;
 int index = 0;
 string strProductUpdate = myProductWorksheet.
 Cells[2, 1].Value2.ToString();
 string strProductSkuUpdate = myProductWorksheet.
 Cells[2, 2].Value2.ToString();
 string strProductPriceUpdate = myProductWorksheet.
 Cells[2, 3].Value2.ToString();

 if (strProductUpdate == “Bauer XXXX”)
 {
 index = 1;
 }
 else if (strProductUpdate == “CCM Tacks”)
 {

584637c05.indd 178 5/3/10 11:44:01 AM

Programmatically Accessing Lists  ❘  179

 index = 2;
 }
 else if (strProductUpdate == “Nike Air”)
 {
 index = 3;
 }

 SPListWS.Lists myListUpdateProxy = new SPListWS.Lists();
 myListUpdateProxy.Credentials =
 System.Net.CredentialCache.DefaultCredentials;
 myListUpdateProxy.Url = “http://fabrikamhockey/_vti_bin/Lists.asmx”;

 System.Xml.XmlNode xmlListView =
 myListUpdateProxy.GetListAndView(“Products”, ““);
 string strListID = xmlListView.ChildNodes[0].Attributes[“Name”].Value;
 string strViewID = xmlListView.ChildNodes[1].Attributes[“Name”].Value;

 XmlDocument xmlDoc = new XmlDocument();
 XmlElement xmlBatchElement = xmlDoc.CreateElement(“Batch”);
 xmlBatchElement.SetAttribute(“OnError”, “Continue”);
 xmlBatchElement.SetAttribute(“ListVersion”, “1”);
 xmlBatchElement.SetAttribute(“ViewName”, strViewID);

 xmlBatchElement.InnerXml = “<Method ID=’1’ Cmd=’Update’>”+
 “<Field Name=’ID’>” + index + “</Field>”+”<Field Name=’Title’>”
 + strProductUpdate + “</Field><Field Name=’Product_SKU’>” +
 strProductSkuUpdate + “</Field><Field Name=’Price’>” +
 strProductPriceUpdate + “</Field>” + “</Method>”;
 try
 {
 XmlNode xmlReturn = myListUpdateProxy.UpdateListItems
 (“Products”, xmlBatchElement);
 System.Windows.MessageBox.Show(“Product Information Added!”);
 }
 catch (SoapException ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
…

	21.	 The last event that is handled is the lstBxProducts_SelectionChanged event, which updates the
worksheet. To create the lstBxProducts_SelectionChanged event double-click the listbox. In
the following code, the in-memory list collection, myProducts, is being queried using a LiNQ state-
ment. The results can then be mapped to the textboxes and then added to the spreadsheet.

…
private void lstBxProducts_SelectionChanged
 (object sender, SelectionChangedEventArgs e)
 {
 string strSelectedProd = lstBxProducts.SelectedItem.ToString();

 var products = from p in myProducts
 .Where(p => p.productTitle == strSelectedProd)

584637c05.indd 179 5/3/10 11:44:01 AM

180  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

 select new {p.productSKU, p.productPrice};

 foreach (var d in products)
 {
 txtBxSku.Text = d.productSKU;
 txtBxPrice.Text = d.productPrice;
 }

 Excel.Worksheet myProductWorksheet =
 Globals.ThisAddIn.Application.ActiveSheet as Excel.Worksheet;
 myProductWorksheet.Cells[1, 1].Value2 = “Product”;
 myProductWorksheet.Cells[1, 2].Value2 = “SKU”;
 myProductWorksheet.Cells[1, 3].Value2 = “Price”;
 myProductWorksheet.Cells[2, 1].Value2 = strSelectedProd;
 myProductWorksheet.Cells[2, 2].Value2 = txtBxSku.Text;
 myProductWorksheet.Cells[2, 3].Value2 = txtBxPrice.Text;

 }

 }
}
…

	22.	 While the three methods were split out for your reference, the following listing includes the full
code for the solution described earlier. You’ll note that, as you work through other examples in the
chapter, many of the generic .NET features can equally apply to different ways of retrieving data
from SharePoint. For example, you can equally use LINQ and in-memory objects to query and fil-
ter data while using the client object model, which is discussed later in this chapter.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.Xaml;
using System.Xml;
using System.Xml.Linq;
using Excel = Microsoft.Office.Interop.Excel;
using System.Web.Services.Protocols;

namespace ProductsList
{

 public partial class ProductsUserCtrl : UserControl
 {
 List<Product> myProducts = new List<Product>();

 public ProductsUserCtrl()

584637c05.indd 180 5/3/10 11:44:01 AM

Programmatically Accessing Lists  ❘  181

 {
 InitializeComponent();
 }
 private void btnLoadData_Click(object sender, RoutedEventArgs e)
 {
 SPListWS.Lists myListReadProxy = new SPListWS.Lists();
 myListReadProxy.Credentials =
 System.Net.CredentialCache.DefaultCredentials;
 //Be sure to replace the URL below with your SharePoint server name.
 myListReadProxy.Url = “http://fabrikamhockey/_vti_bin/Lists.asmx”;

 try
 {
 XmlNode myListItems = myListReadProxy.GetListItems(“Products”,
 null,
 null, null, null, null, null);
 XElement newRootElement = new XElement(“ProductData”);

 foreach (XmlNode outerNode in myListItems.ChildNodes)
 {
 if (outerNode.NodeType.Equals(System.Xml.XmlNodeType.Element))
 {
 foreach (XmlNode node in outerNode.ChildNodes)
 {
 if (node.NodeType.Equals
 (System.Xml.XmlNodeType.Element))
 {
 XmlNode listFieldTitle = node.Attributes.
 GetNamedItem(“ows_Title”);
 XmlNode listFieldProductSKU = node.Attributes.
 GetNamedItem(“ows_Product_SKU”);
 XmlNode listFieldPrice = node.Attributes.
 GetNamedItem(“ows_Price”);

 Product tempProduct = new Product();
 tempProduct.productTitle = listFieldTitle.InnerText;
 tempProduct.productSKU =
 listFieldProductSKU.InnerText;
 tempProduct.productPrice = listFieldPrice.InnerText;

 myProducts.Add(tempProduct);
 lstBxProducts.Items.Add(tempProduct.productTitle);
 }
 }
 }
 }
 }
 catch (SoapException ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void btnUpdate_Click(object sender, RoutedEventArgs e)
 {
 Excel.Worksheet myProductWorksheet = Globals.ThisAddIn.

584637c05.indd 181 5/3/10 11:44:01 AM

182  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

 Application.ActiveSheet as Excel.Worksheet;
 int index = 0;
 string strProductUpdate = myProductWorksheet.Cells[2, 1].
 Value2.ToString();
 string strProductSkuUpdate = myProductWorksheet.Cells[2, 2].
 Value2.ToString();
 string strProductPriceUpdate = myProductWorksheet.Cells[2, 3].
 Value2.ToString();

 if (strProductUpdate == “Bauer XXXX”)
 {
 index = 1;
 }
 else if (strProductUpdate == “CCM Tacks”)
 {
 index = 2;
 }
 else if (strProductUpdate == “Nike Air”)
 {
 index = 3;
 }

 SPListWS.Lists myListUpdateProxy = new SPListWS.Lists();
 myListUpdateProxy.Credentials =
 System.Net.CredentialCache.DefaultCredentials;
 myListUpdateProxy.Url = “http://fabrikamhockey/_vti_bin/Lists.asmx”;

 System.Xml.XmlNode xmlListView =
 myListUpdateProxy.GetListAndView(“Products”, ““);
 string strListID = xmlListView.ChildNodes[0].Attributes[“Name”].Value;
 string strViewID = xmlListView.ChildNodes[1].Attributes[“Name”].Value;

 XmlDocument xmlDoc = new XmlDocument();
 XmlElement xmlBatchElement = xmlDoc.CreateElement(“Batch”);
 xmlBatchElement.SetAttribute(“OnError”, “Continue”);
 xmlBatchElement.SetAttribute(“ListVersion”, “1”);
 xmlBatchElement.SetAttribute(“ViewName”, strViewID);

 xmlBatchElement.InnerXml = “<Method ID=’1’ Cmd=’Update’>”+
 “<Field Name=’ID’>” + index + “</Field>”+”<Field Name=’Title’>”
 + strProductUpdate + “</Field><Field Name=’Product_SKU’>” +
 strProductSkuUpdate + “</Field><Field Name=’Price’>” +
 strProductPriceUpdate + “</Field>” + “</Method>”;
 try
 {
 XmlNode xmlReturn = myListUpdateProxy.UpdateListItems
 (“Products”, xmlBatchElement);
 System.Windows.MessageBox.Show(“Product Information Added!”);
 }
 catch (SoapException ex)
 {
 MessageBox.Show(ex.Message);
 }
 }

 private void lstBxProducts_SelectionChanged(object sender,

584637c05.indd 182 5/3/10 11:44:02 AM

Programmatically Accessing Lists  ❘  183

 SelectionChangedEventArgs e)
 {
 string strSelectedProd = lstBxProducts.SelectedItem.ToString();

 var products = from p in myProducts
 .Where(p => p.productTitle == strSelectedProd)
 select new {p.productSKU, p.productPrice};

 foreach (var d in products)
 {
 txtBxSku.Text = d.productSKU;
 txtBxPrice.Text = d.productPrice;
 }

 Excel.Worksheet myProductWorksheet = Globals.ThisAddIn.
 Application.ActiveSheet as Excel.Worksheet;
 myProductWorksheet.Cells[1, 1].Value2 = “Product”;
 myProductWorksheet.Cells[1, 2].Value2 = “SKU”;
 myProductWorksheet.Cells[1, 3].Value2 = “Price”;
 myProductWorksheet.Cells[2, 1].Value2 = strSelectedProd;
 myProductWorksheet.Cells[2, 2].Value2 = txtBxSku.Text;
 myProductWorksheet.Cells[2, 3].Value2 = txtBxPrice.Text;

 }

 }
}

	23.	 Although you have your UI working now, you should not press F5 to debug the application just
yet. You’ve only set up what will be the UI for your custom task pane. To ensure that, when Excel
starts, your custom task pane is displayed, you must add a user control to your application and
then add some code in the ThisAddIn_StartUp method. To do this, right-click your project and
click Add. Then select User Control (WPF). Give the user control a name (for example, XAMLHost)
and make the height 800 and the width 350. Press F6 to build the project.

	24.	 When you build the project, your WPF control will display in the Toolbox. Open the user control
you just created. Drag and drop the WPF control onto the user control. You can resize the WPF
control until all of the controls are visible.

	25.	 Now, right-click on the ThisAddIn class and amend the code in that class with the following bold-
faced code. This code creates an instance of the WinForm user control you just created (which is
now hosting the XAML control), creates an instance of the custom task pane object, and creates a
title variable that you’ll need for the custom task pane. The code leverages the Add method to add
the user control and title to the CustomTaskPanes collection, which is then set to be visible and
docked to the right of the document.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Xml.Linq;
using Excel = Microsoft.Office.Interop.Excel;
using Office = Microsoft.Office.Tools;
using Microsoft.Office.Tools.Excel;

584637c05.indd 183 5/3/10 11:44:02 AM

184  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

using System.Windows.Forms;

namespace ProductsList
{
 public partial class ThisAddIn
 {
 XAMLHost ctrl = new XAMLHost();
 string ctrlTitle = “Product Data”;
 Office.CustomTaskPane ctp;

 private void ThisAddIn_Startup(object sender, System.EventArgs e)
 {
 ctp = this.CustomTaskPanes.Add(ctrl, ctrlTitle);
 ctp.Visible = true;
 ctp.DockPosition = Microsoft.Office.Core.MsoCTPDockPosition.
 msoCTPDockPositionRight;
 }

 private void ThisAddIn_Shutdown(object sender, System.EventArgs e)
 {
 }

 private void InternalStartup()
 {
 this.Startup += new System.EventHandler(ThisAddIn_Startup);
 this.Shutdown += new System.EventHandler(ThisAddIn_Shutdown);
 }

 }
}

	26.	 At this point, you can press F5 to build and debug the application. You should see something simi-
lar to Figure 5-11. Click Load to load the data from SharePoint. Select an item within the Product
listbox to populate the SKU and Price fields, and then add data into the Excel worksheet. You can
then make some changes in one of the cells and click Update. That will update your SharePoint list.

Figure 5-11  Excel application leveraging Lists Web service

584637c05.indd 184 5/3/10 11:44:02 AM

Programmatically Accessing Lists  ❘  185

How It Works

You can call the Lists Web service from a variety of client applications, and the code will more often
than not look very similar to the way it was used here. What could be different would be how the data
is consumed after the client application retrieves it. For example, in this exercise, you added the data
from SharePoint to the spreadsheet by using the Office object model. Per the following code, you cre-
ated an instance of the worksheet and then mapped the data to hard-coded cells:

…
 Excel.Worksheet myProductWorksheet = Globals.ThisAddIn.
 Application.ActiveSheet as Excel.Worksheet;
 myProductWorksheet.Cells[1, 1].Value2 = “Product”;
 myProductWorksheet.Cells[1, 2].Value2 = “SKU”;
 myProductWorksheet.Cells[1, 3].Value2 = “Price”;
 myProductWorksheet.Cells[2, 1].Value2 = strSelectedProd;
 myProductWorksheet.Cells[2, 2].Value2 = txtBxSku.Text;
 myProductWorksheet.Cells[2, 3].Value2 = txtBxPrice.Text;
…

The Lists Web service works by relaying XML documents (or data payloads) back from the server to
the calling application. Depending on the payload, the XML can be quite lengthy to parse. For exam-
ple, in this exercise, you called the GetListItems method and then walked through an XML document
and built out your in-memory object, as reflected in the following code snippet:

…
XmlNode myListItems = myListReadProxy.GetListItems(“Products”, null, null,
 null, null, null, null);
 XElement newRootElement = new XElement(“ProductData”);

 foreach (XmlNode outerNode in myListItems.ChildNodes)
 {
 if (outerNode.NodeType.Equals(System.Xml.XmlNodeType.Element))
 {
 foreach (XmlNode node in outerNode.ChildNodes)
 {
 if (node.NodeType.Equals(System.Xml.
 XmlNodeType.Element))
 {
 XmlNode listFieldTitle = node.Attributes.
 GetNamedItem(“ows_Title”);
 XmlNode listFieldProductSKU = node.Attributes.
 GetNamedItem(“ows_Product_SKU”);
 XmlNode listFieldPrice = node.Attributes.
 GetNamedItem(“ows_Price”);

 Product tempProduct = new Product();
 tempProduct.productTitle = listFieldTitle.InnerText;
 tempProduct.productSKU =
 listFieldProductSKU.InnerText;
 tempProduct.productPrice = listFieldPrice.InnerText;

 myProducts.Add(tempProduct);

584637c05.indd 185 5/3/10 11:44:02 AM

186  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

 lstBxProducts.Items.Add(tempProduct.productTitle);
 }
 }
 }
 }
…

This might be perceived as a lot of programmatic moving parts and, depending on your payload, could
affect performance. It is, though, a proven and accepted way of interacting with SharePoint data.

With that said, you can optimize the previous code in any number of ways. For example, you could
move the Excel header row to be added on startup, or assert LINQ directly against your XML docu-
ments to increase performance and sanitize your code.

As you refine your applications, you’ll certainly craft your applications with better designs in mind.
However, one way to optimize the calling code into SharePoint is to leverage the SharePoint client-
side object model, instead of using the native Lists Web service.

Programming Against Lists Using the Client Object Model
The client object model is a new feature in SharePoint 2010, and enables developers to program
against SharePoint lists using remote clients. For example, you can create a WinForm or WPF appli-
cation, a Silverlight application, or a JavaScript application that all can use the client object model to
manage data sent in and out of SharePoint through that remote client.

Depending on what you’re trying to do with SharePoint, you’ll find the syntax of your code is some-
what cleaner than the earlier Web service example. For example, if you want to issue a SELECT *
type query against a SharePoint list, the client object model, in some cases, auto-generates CAML
for you. Also, it’s easier to manage data in in-memory data objects, with which you can then use
LINQ, enumerables, collections, and so on, to quickly and efficiently query and filter that data into
your applications.

Let’s try an example where you read data from a SharePoint list, and display it within a Windows
Form application. In this example, you'll again leverage the Products list you created earlier.

Using the Client-Side Object Model to Programmatically Read List DataTry It Out	

The client object model provides a powerful way to program against lists from a remote client applica-
tion. To use the client object model when programming against lists, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New Project ➪ Windows Forms application. Provide a
name for your project (for example, ReadSPListData). Be sure to select the .NET Framework 3.5
in the drop-down list in the New Project dialog.

	2.	 Add a label, textbox, datagrid view, and two buttons to the Windows form in the Designer view,
as shown in Figure 5-12.

Table 5-6 shows the control type and the name of the controls that you should add to the
Windows Form designer.

584637c05.indd 186 5/3/10 11:44:02 AM

Programmatically Accessing Lists  ❘  187

Figure 5-12  WinForm UI

Table 5-6  Control Types for Windows Form Application

Control Type Control Name

Label lblSPURL

Textbox txtbxSPURL

Datagrid View dtgrdSPListData

Button btnLoadData, btnExit

	3.	 You must add a class to the project, so right-click the project name and select Add ➪ Class.
Provide a name (for example, ProductInfo). Add three properties to the class that map to the
same Products class you created earlier in the chapter. The code for this will look like the bold-
faced code in the following code snippet:

using System;
using System.Collections.Generic;
using System.Linq;

584637c05.indd 187 5/3/10 11:44:02 AM

188  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

using System.Text;

namespace ReadSPListData
{
 class ProductInfo
 {
 public string productName { get; set; }
 public string productSKU { get; set; }
 public string productPrice { get; set; }
 }
}

	4.	 Next, you want to double-click the two buttons to add events in the code behind for the Load but-
ton and the Exit button. The Exit code for WinForm applications is easy, so add that first:

 private void btnExit_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }

	5.	 The btnLoadData_Click event is a little more complex, but add that next. Before you begin cod-
ing using the new client object model, you must add the appropriate references. To add these refer-
ences, right-click the project and select Add Reference. Select the Browse tab, and then browse to
c:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\ISAPI
and add the Microsoft.SharePoint.Client.dll and the Microsoft.SharePoint.Client
.Runtime.dll to your project. After you’ve added these references, add the following using
statements at the top of your main application:

using ClientOM = Microsoft.SharePoint.Client;
using Microsoft.SharePoint.Client;

When using the client object model, you may run into namespace conflicts (for example, with the
Form class in Windows Forms applications). To get around this, you can add the following line of
code to your application:

using ClientOM = Microsoft.SharePoint.Client;

This gives you a “custom” namespace reference that enables you to avoid namespace conflicts.

	6.	 You’ll next add some code to handle the loading of the data from the SharePoint list using this
feature. You’ll note that the syntax for retrieving the data from SharePoint in this case is slightly
different from that of the Lists Web service. You are still achieving pretty much the same function,
but doing it in a more syntactically clean way.

In the following code sample, note that the application uses the string variable entered into the text-
box as the SharePoint site context (that is, the URL). It then uses a number of in-memory objects to
manage the data coming from SharePoint (for example, myListItems and myProducts). However,
the key differentiating code is where you begin to set the context by using the ClientContext object.
This is one of the key features of the client object model — the process of setting context and then
calling ExecuteQuery (a batch query method) when interacting with the SharePoint list. You will
again use LINQ to populate an object and iterate through the contents of that object to get the data

584637c05.indd 188 5/3/10 11:44:02 AM

Programmatically Accessing Lists  ❘  189

into a bindable object that can be mapped directly to the datagrid. One key item within the foreach
loop is that you’ll see values are assigned using the ElementAt property. This is the specific element
index where the data lives within the SharePoint list. If you were to set a breakpoint right after the
LINQ statement and inspect the values within the returnedListData object, you could see all of the
different values that are returned and the correlating index value.

…
private void btnLoad_Click(object sender, EventArgs e)
 {
 string SPUrl = txtbxSPURL.Text;
 IEnumerable<ClientOM.ListItem> myListItems;
 List<ProductInfo> myProducts = new List<ProductInfo>();

 ClientOM.ClientContext SPContext = new ClientOM.ClientContext(SPUrl);
 ClientOM.Web mySPSite = SPContext.Web;
 ClientOM.ListCollection myListCollection = mySPSite.Lists;
 var productsList = SPContext.Web.Lists.GetByTitle(“Products”);
 ClientOM.CamlQuery myCamlQuery = new CamlQuery();
 IQueryable<ClientOM.ListItem> myList = productsList.
 GetItems(myCamlQuery);
 myListItems = SPContext.LoadQuery(myList);
 SPContext.ExecuteQuery();

 var returnedListData = from prod in myListItems
 select prod;

 foreach (ClientOM.ListItem tempListItem in returnedListData)
 {
 ProductInfo tempProd = new ProductInfo();
 tempProd.productName = tempListItem.FieldValues.
 Values.ElementAt(1).ToString();
 tempProd.productSKU = tempListItem.FieldValues.
 Values.ElementAt(4).ToString();
 tempProd.productPrice = tempListItem.FieldValues.
 Values.ElementAt(5).ToString();
 myProducts.Add(tempProd);
 }

 dtgrdSPListData.DataSource = myProducts;
 }
…

Taken together, the full code sample for the WinForm code behind is as follows:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

584637c05.indd 189 5/3/10 11:44:02 AM

190  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

//Be sure to add this along with your other using statements.
using ClientOM = Microsoft.SharePoint.Client;
using Microsoft.SharePoint.Client;

namespace ReadSPListData
{
 public partial class Form1 : System.Windows.Forms.Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void btnExit_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }

 private void btnLoad_Click(object sender, EventArgs e)
 {
 string SPUrl = txtbxSPURL.Text;

 IEnumerable<ClientOM.ListItem> myListItems;
 List<ProductInfo> myProducts = new List<ProductInfo>();

 ClientOM.ClientContext SPContext = new ClientOM.ClientContext(SPUrl);
 ClientOM.Web mySPSite = SPContext.Web;
 ClientOM.ListCollection myListCollection = mySPSite.Lists;
 var productsList = SPContext.Web.Lists.GetByTitle(“Products”);
 ClientOM.CamlQuery myCamlQuery = new CamlQuery();
 IQueryable<ClientOM.ListItem> myList = productsList.
 GetItems(myCamlQuery);
 myListItems = SPContext.LoadQuery(myList);
 SPContext.ExecuteQuery();

 var returnedListData = from prod in myListItems
 select prod;

 foreach (ClientOM.ListItem tempListItem in returnedListData)
 {
 ProductInfo tempProd = new ProductInfo();
 tempProd.productName = tempListItem.FieldValues.
 Values.ElementAt(1).ToString();
 tempProd.productSKU = tempListItem.FieldValues.
 Values.ElementAt(4).ToString();
 tempProd.productPrice = tempListItem.FieldValues.
 Values.ElementAt(5).ToString();
 myProducts.Add(tempProd);
 }

 dtgrdSPListData.DataSource = myProducts;
 }
 }
}

584637c05.indd 190 5/3/10 11:44:02 AM

Programmatically Accessing Lists  ❘  191

When you run the application and provide the URL to the
SharePoint site (for example, http://fabrikamhockey),
the application displays the data within the datagrid after
you click the Load button, as shown in Figure 5-13.

The SharePoint client object model is not only useful for reading data from a SharePoint list, but it’s
also very useful for writing to that list. And again, you have the opportunity to clean up the syntax
of your code by not having to use CAML as a part of your call to push data back into SharePoint.

To put this into practice, the next example continues to leverage the Products list but, this time,
uses a WPF client application that leverages the client object model to submit data back to the
SharePoint list.

Using the Client Object Model to Programmatically Write List DataTry It Out	

Code file [SPWriteListApp.zip] available for download at Wrox.com.

The client object model is an effective way to write back to a SharePoint list programmatically. To cre-
ate a simple application that writes to a list using the client object model, follow these steps:

	1.	 Open Visual Studio. Click File ➪ New ➪ Project ➪ WPF Application (under the Windows cat-
egory). Be sure to select the .NET Framework 3.5 in the drop-down list in the New Project dialog.
Also, provide a name for your project (for example, SPWriteListApp) and click OK.

	2.	 Add four labels and textboxes to your WPF Designer surface, and then add three buttons. When
finished, the layout of your UI should look similar to Figure 5-14.

Table 5-7 shows the control type and the name of the controls that you should add to the WPF
application.

Table 5-7  Control Types for WPF Application

Control Type Control Name

Label lblSPUrl, lblProdName, lblProdSku, lblProdPrice

Textbox txtbxURL, txtbxProdName, txtbxProdPrice, txtbxProdSKU

Button btnAdd, btnClear, btnExit

Figure 5-13  WinForm application running
against a list

584637c05.indd 191 5/3/10 11:44:02 AM

192  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

Figure 5-14  WPF UI for writing data to list

The XAML code that maps to this UI will look like the following code snippet:

<Window x:Class=”SPWriteListApp.MainWindow”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”SharePoint List Data” Height=”350” Width=”525”>
 <Grid>
 <Button
Content=”Add” Height=”23” HorizontalAlignment=”Left” Margin=
 “70,240,0,0”
Name=”btnAdd” VerticalAlignment=”Top” Width=”75” Click=”btnAdd_Click” />
 <Button
Content=”Clear” Height=”23” HorizontalAlignment=”Right” Margin=
 “0,240,258,0”
Name=”btnClear” VerticalAlignment=”Top” Width=”75” Click=”btnClear_Click” />
 <Label
Content=”SharePoint Site:” Height=”28” HorizontalAlignment=”Left” Margin=
 “70,43,0,0”
Name=”lblSPUrl” VerticalAlignment=”Top” Width=”120” />
 <Label
Content=”Product Name:” Height=”28” HorizontalAlignment=”Left” Margin=

584637c05.indd 192 5/3/10 11:44:02 AM

Programmatically Accessing Lists  ❘  193

 “70,85,0,0”
Name=”lblProdName” VerticalAlignment=”Top” Width=”120” />
 <Label
Content=”Product SKU:” Height=”28” HorizontalAlignment=”Left” Margin=
 “70,129,0,0”
Name=”lblProdSku” VerticalAlignment=”Top” Width=”120” />
 <Label
Content=”Product Price:” Height=”28” HorizontalAlignment=”Left” Margin=
 “70,173,0,0”
Name=”lblProdPrice” VerticalAlignment=”Top” Width=”120” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”206,43,0,0”
Name=”txtbxURL” VerticalAlignment=”Top” Width=”248” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”206,90,0,0”
Name=”txtbxProdName” VerticalAlignment=”Top” Width=”248” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”206,134,0,0”
Name=”txtbxProdSKU” VerticalAlignment=”Top” Width=”248” />
 <TextBox
Height=”23” HorizontalAlignment=”Left” Margin=”206,173,0,0”
Name=”txtbxProdPrice” VerticalAlignment=”Top” Width=”248” />
 <Button
Content=”Exit” Height=”23” HorizontalAlignment=”Left” Margin=”268,240,0,0”
Name=”btnExit” VerticalAlignment=”Top” Width=”75” Click=”btnExit_Click” />
 </Grid>
</Window>

	3.	 Before you begin coding using the new client object model, you must add the appropriate refer-
ences. To add these references, right-click the project and select Add Reference. Select the Browse
tab, and then browse to c:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\14\ISAPI and add the Microsoft.SharePoint.Client.dll and the Microsoft.
SharePoint.Client.Runtime.dll to your project. After you’ve added these references, add the
following using statements to your application:

using ClientOM = Microsoft.SharePoint.Client;
using Microsoft.SharePoint.Client;

	4.	 After you’ve created the UI, you’ll want to add the event handlers to each of the buttons you’ve
added to the Designer surface. For the Clear and Exit buttons, this code is similar to earlier exam-
ples in this chapter. But the new code that you may not have seen before is the client object model
code that adds a new record to a list. This corresponds to the Add button in the WPF UI and is
shown here. You’ll first note that this code snippet is a slight improvement over the use of CAML
constructs to push data back into SharePoint. Note that it’s not because CAML goes away; it’s
because in this example SharePoint abstracts it away — it is now created dynamically.

In the following code snippet, the updating of the list leverages class-level variables that are set via the
data that users enter via the textboxes. Then, you use the ClientContext object to set the context
of the SharePoint site (again leveraging the user entry from the txtbxURL textbox). The code then
gets the list by name (that is, Products) and loads the list in memory. After the list is in memory, you

584637c05.indd 193 5/3/10 11:44:02 AM

194  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

can then create a new ListItem object and set the values of this new item through the data that was
entered into the textboxes. To update the list, you must call the ExecuteQuery method again.

…
 private void btnAdd_Click(object sender, RoutedEventArgs e)
 {
 strSPURL = txtbxURL.Text;
 strProdName = txtbxProdName.Text;
 strProdSKU = txtbxProdSKU.Text;
 strProdPrice = txtbxProdPrice.Text;

 ClientOM.ClientContext mySPContext = new ClientContext(strSPURL);
 ClientOM.List productsList = mySPContext.Web.Lists.GetByTitle
 (“Products”);
 mySPContext.Load(mySPContext.Web);
 mySPContext.Load(productsList);
 mySPContext.ExecuteQuery();

 ListItemCreationInformation newProdRecord =
 new ListItemCreationInformation();
 ClientOM.ListItem newProdItem = productsList.AddItem(newProdRecord);

 newProdItem[“Title”] = strProdName;
 newProdItem[“Product_SKU”] = strProdSKU;
 newProdItem[“Price”] = strProdPrice;
 newProdItem.Update();

 mySPContext.ExecuteQuery();

 }
…

The full code listing for the UI code behind is as follows.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using Microsoft.SharePoint.Client;
using ClientOM = Microsoft.SharePoint.Client;

namespace SPWriteListApp
{
 public partial class MainWindow : Window
 {

584637c05.indd 194 5/3/10 11:44:02 AM

Programmatically Accessing Lists  ❘  195

 string strSPURL = ““;
 string strProdName = ““;
 string strProdSKU = ““;
 string strProdPrice = ““;

 public MainWindow()
 {
 InitializeComponent();
 }

 private void btnExit_Click(object sender, RoutedEventArgs e)
 {
 Application.Current.Shutdown();
 }

 private void btnClear_Click(object sender, RoutedEventArgs e)
 {
 txtbxURL.Text = ““;
 txtbxProdName.Text = ““;
 txtbxProdSKU.Text = ““;
 txtbxProdPrice.Text = ““;
 }

 private void btnAdd_Click(object sender, RoutedEventArgs e)
 {
 strSPURL = txtbxURL.Text;
 strProdName = txtbxProdName.Text;
 strProdSKU = txtbxProdSKU.Text;
 strProdPrice = txtbxProdPrice.Text;

 ClientOM.ClientContext mySPContext = new ClientContext(strSPURL);
 ClientOM.List productsList = mySPContext.Web.Lists.GetByTitle
 (“Products”);
 mySPContext.Load(mySPContext.Web);
 mySPContext.Load(productsList);
 mySPContext.ExecuteQuery();

 ListItemCreationInformation newProdRecord =
 new ListItemCreationInformation();
 ClientOM.ListItem newProdItem = productsList.AddItem(newProdRecord);

 newProdItem[“Title”] = strProdName;
 newProdItem[“Product_SKU”] = strProdSKU;
 newProdItem[“Price”] = strProdPrice;
 newProdItem.Update();

 mySPContext.ExecuteQuery();

 }
 }
}

584637c05.indd 195 5/3/10 11:44:02 AM

196  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

	5.	 When you run the application, it will invoke the WPF interface and you can enter information, as
shown in Figure 5-15.

Figure 5-15  Running the WPF application

	6.	 When you enter the data and click Add, this will execute the client object model code, and add a
new record to the SharePoint list, as shown in Figure 5-16.

Figure 5-16  Updated list data

How It Works

For both of the previous exercises, you used the client-side object model to read data from a SharePoint
list and write data back to that same list. In many ways, the underlying calls for SharePoint don’t neces-
sarily change. For example, the client object model leverages the services that are native to SharePoint
beneath the covers to make the call into SharePoint. However, this is abstracted away from you.

What this means is that the client object model essentially represents a layer that translates object-
model calls (through object instantiation, property setting, and batch method execution) into LINQ
queries that dynamically create CAML queries. (Note that where you require more complex queries,
you would still need to use CAML to interact with SharePoint using the client object model.) Thus, the
XML is handled for you within the inner workings of the client object model. For the developer, this
can result in cleaner syntax.

Another option beyond leveraging the client-side object model is the creation of custom WCF ser-
vices. These are ideal when you want to host your own service or Web application in IIS, or make
the code reusable across multiple clients. (Custom WCF services can be leveraged from a broad array
of client applications, including all of the ones you’ve seen in this chapter.)

584637c05.indd 196 5/3/10 11:44:02 AM

Programmatically Accessing Lists  ❘  197

Programming Against Lists Using a Custom WCF Service
While Chapter 10 provides more coverage on service-oriented application development in
SharePoint, it should be mentioned here because it’s also a viable option when developing applica-
tions that interact with lists.

Earlier in this chapter, you saw an ASP.NET example of the Lists Web service being leveraged to code
against a SharePoint list. However, ASP.NET Web services are not the only type of service-based
application you can develop for SharePoint. In SharePoint 2010, you can also build WCF-based appli-
cations. While WCF applications can range in size, shape, and functionality, you can leverage them for
developing and deploying applications that interact with SharePoint lists.

There are two primary types of WCF applications that you can build that will interact with
SharePoint lists:

The first is a standard WCF service application that is deployed to either IIS or to the ➤➤

SharePoint 2010 root.

The second is the new REST-based service that is accessible natively through the ➤➤ ISAPI folder.

When you choose the standard WCF option, you can leverage, say, the native SharePoint object
model, and deploy a service to the SharePoint server. For example, if you take the earlier server-side
list update code that you ran against the Products list and create a WCF service from it, you can
test how you can develop against SharePoint using WCF.

To leverage WCF, you follow these primary steps:

	 1.	 Create the service code.

	 2.	 Publish and deploy the service code.

	 3.	 Consume the service code in a client application.

Let’s discuss each of these in the context of updating the Products list using the same code you used
in the WPF application you created earlier.

First, to create the service code, you use the standard Visual Studio 2010 project templates (for
example, the WCF Service Application). Similar to the earlier exercises in this chapter, you must target
.NET Framework 3.5 if you’re going to be using the SharePoint object model. If you want to lever-
age the SharePoint object model within a service, you create a new service and add the Microsoft.
SharePoint.dll to the project. You can then access the SharePoint object model within the service.

If you were to create a simple service, you would need to create a contract as well as service code
that handles the interaction with SharePoint — these are standard structural elements of a WCF ser-
vice. The contract that you might build for the service could look like the following (the boldfaced
code represents code you would add to the service):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;

584637c05.indd 197 5/3/10 11:44:02 AM

198  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

using System.Text;

namespace UpdateSPList
{
 [ServiceContract]
 public interface IService1
 {
 [OperationContract]
 void updateProduct(string SPSite, string prodName,
 string prodSKU, string prodPrice);
 }

}

Note that, in this service, there is only one method that you expose to calling applications that will
handle four parameters: the URL of the site (for example, http://fabrikamhockey), product name,
product SKU, and product price (three fields within the Products list). Following is the service code
(with the boldfaced code that you would add to the solution) that corresponds to this service contract:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;
using System.Text;
using Microsoft.SharePoint;

namespace UpdateSPList
{
 public class Service1 : IService1
 {
 public void updateProduct(string SPSite, string prodName,
 string prodSKU, string prodPrice)
 {
 string strDashListRoot = SPSite;
 using (SPSite site = new SPSite(strDashListRoot))
 {
 using (SPWeb web = site.OpenWeb())
 {
 web.AllowUnsafeUpdates = true;
 SPList list = web.Lists[“Products”];
 SPListItem Item = list.Items.Add();
 Item[“Title”] = prodName;
 Item[“Product_SKU”] = prodSKU;
 Item[“Price”] = prodPrice;
 Item.Update();
 web.AllowUnsafeUpdates = false;
 }
 }
 }
 }
}

584637c05.indd 198 5/3/10 11:44:03 AM

Programmatically Accessing Lists  ❘  199

After you’ve created a WCF service application, you can deploy the service code to IIS. Deploying to
IIS requires that you first create a folder on your server file system, publish your code to your folder,
and then map that folder (as a virtual directory) to your IIS Web site. You may also need to add
information from your web.config file (an XML file that contains configuration information spe-
cific to your service) to the SharePoint web.config file (which is also an XML-based configuration
file, but this file lives in c:\Inetpub\wwwroot\wss\VirtualDirectories\<Site Name>) to ensure
that your WCF service will run properly on the SharePoint server. Figure 5-17 illustrates where you
select the virtual directory from within IIS.

Figure 5-17  Publishing the WCF service to IIS

After you create your Web site in IIS, you can test out the service by right-clicking Browse in
IIS. Figure 5-18 illustrates what the result of this test looks like. You should note that the URL in
Figure 5-18 is the service reference that you would then use when creating a client application and
mapping the service to the client.

After you’ve tested the service, you can then create a client (or server-based) application that will
consume your WCF service. Doing this is similar to what you did when adding a reference to
the ASP.NET Web service — you right-click Reference in Visual Studio 2010, click Add Service
Reference, and then add the URL that was exposed by the earlier test. Figure 5-19 shows the Add
Reference dialog where you add the WCF service endpoint.

584637c05.indd 199 5/3/10 11:44:03 AM

200  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

Figure 5-18  Testing the WCF service

Figure 5-19  Adding service reference

584637c05.indd 200 5/3/10 11:44:03 AM

Programmatically Accessing Lists  ❘  201

After you add the service, you can now
code against the service reference. For
example, you can create the same WPF
application interface you used earlier in
the chapter, and then hook up the ser-
vice code to the Add button, as shown in
Figure 5-20.

The following boldfaced code displays
how you can implement the service you
created and deployed to IIS. This is the
code that is mapped to the Add button
(btnAdd).

…
 private void btnAdd_Click(object sender, RoutedEventArgs e)
 {
 strSPURL = txtbxURL.Text;
 strProdName = txtbxProdName.Text;
 strProdSKU = txtbxProdSKU.Text;
 strProdPrice = txtbxProdPrice.Text;

 SPWriteListApp.WCFWSUpdateProduct.Service1Client myWCFProxy =
 new WCFWSUpdateProduct.Service1Client();
 myWCFProxy.updateProduct(strSPURL, strProdName, strProdSKU,
 strProdPrice);
 myWCFProxy.Close();
 }
…

Once you’ve implemented the service in your client code, the result of the WCF service call would be
similar to the other applications you built in this chapter — they can read or write to a SharePoint
list. In this case, the code updates a SharePoint list with new information. Figure 5-21 shows how
this code successfully updated the list.

Figure 5-21  Successfully updating the list

The WCF service code shown earlier leverages the server-side object model. However, one of the
key differentiating factors between the WCF framework and the client object model is that you’re

Figure 5-20  Testing the WCF service

584637c05.indd 201 5/3/10 11:44:03 AM

202  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

creating a service that can be consumed remotely and is deployed for use across multiple clients. For
example, you could create many different client applications that consume the same list service code
discussed earlier. You’re also deploying your service to IIS. Both of these sit on top of the server-side
object model and, if needed, not only provide a more scalable and portable solution, but also pro-
vide remote clients with a way to call into SharePoint.

NOTE  ​There are a number of discrete (and sometimes tricky) steps that are
required when you build and deploy WCF services. It is recommended that at
each of the three steps mentioned earlier, you test your code to ensure that it
works. Chapter 10 includes a complete exercise on how to create and deploy
custom WCF services for SharePoint. Specifically, you will deploy a WCF ser-
vice, and then consume that service within a Visual Web part.

The last method of interacting with lists you’ll see in this chapter is the RESTful service, which is a
WCF Data service.

REST-Based Services and List Development
Beyond building a custom WCF service, you can also leverage the new REST (Representational
State Transfer)–based WCF Data services as well. For example, in SharePoint 2010, there is a new
service called ListData.svc that resides in the ISAPI folder. This is a special REST-based service
that returns Atom feeds and enables you to interact with your SharePoint site.

This service leverages WCF Data services to enable applications to expose data as a data service,
which can then be consumed by client applications, such as Web clients, .NET clients, and so on.
The REST Web service not only works with SharePoint list data, but it also works with other data
sources (for example, it also works with Excel data and Windows Azure cloud data).

The WCF Data service is reachable via a regular HTTP request, and uses standard HTTP verbs
such as GET, POST, PUT, and DELETE to perform CRUD (Create, Read, Update, and Delete) opera-
tions against the services and sources of data. To leverage the REST APIs in SharePoint 2010, you
must have the latest WCF Data services installed in your environment.

NOTE  ​To use REST in SharePoint 2010, you must install the WCF Data Services
separately after you have SharePoint installed and configured. It is a simple
installation process that requires you to first install the services and then do
a system reboot. You can get more information and download the WCF Data
Services bits from http://msdn.microsoft.com/en-us/data/bb931106.aspx.

After you install WCF Data services (and reboot your machine), the quickest way to test the REST-
based list service is to reference the service in your browser’s URL; for example:

http://<your_server>/_vti_bin/ListData.svc/

584637c05.indd 202 5/3/10 11:44:03 AM

Programmatically Accessing Lists  ❘  203

This uses the WCF Data services and REST-based protocols (for example, Atom, AtomPub, and
RSS) to return an XML-based Atom feed of the lists in your SharePoint site. The return feed will
look similar to the following XML sample, which has been trimmed to include a couple of lists and
the Products list that has run through the examples in this chapter:

NOTE  ​You can return data in two different views in your Internet browser:
one has feed reading turned on (formatted view of return XML data) and the
other has feed reading turned off (raw XML view). To turn off the RSS Feed to
get the raw XML view of output from the REST call for Internet Explorer, you
click Tools ➪ Internet Options. Click the Content tab, and click Settings under
“Feeds and Web Slices.” Uncheck “Turn on feed reading view.”

<?xml version=”1.0” encoding=”utf8” standalone=”yes” ?>
 <service xml:base=”http://fabrikamhockey/_vti_bin/ListData.svc/”
 xmlns:atom=”http://www.w3.org/2005/Atom” xmlns:app=
 “http://www.w3.org/2007/app” xmlns=”http://www.w3.org/2007/app”>
 <workspace>
 <atom:title>Default</atom:title>
 <collection href=”Announcements”>
 <atom:title>Announcements</atom:title>
 </collection>
…
 <collection href=”Products”>
 <atom:title>Products</atom:title>
 </collection>
…
<collection href=”XAPS”>
 <atom:title>XAPS</atom:title>
 </collection>
 </workspace>
 </service>

To query and filter on specific lists or list items, you can append additional commands to the REST
URL. Following is the generic syntax for these commands:

…/_vti_bin/ListData.svc/{Entity}[({identifier})]/[{Property}].

If you apply the REST command syntax to the Products list you’ve been using throughout the
chapter, you can see the Products list through an Atom feed by typing the following in the URL
address bar:

http://<your_ server>/_vti_bin/ListData.svc/Products

Within the REST URL syntax, there exist a number of parameters that can be used to query and
filter the returned data. These parameters are known as QueryString parameters. Following are the
more commonly used QueryString parameters for REST:

$filter➤➤

$expand➤➤

584637c05.indd 203 5/3/10 11:44:03 AM

204  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

$orderby➤➤

$skip➤➤

$top➤➤

$metadata ➤➤ (which will bring back all the XML metadata about the object)

If you apply the $filter QueryString filter to the data that the REST returns from the call to the
list of Products by the price of a product, you can use the following command:

http://fabrikamhockey/_vti_bin/ListData.svc/Products?$filter=(Price eq ‘389.99’).

The results returned from this query are displayed as shown in Figure 5-22 (which now has feed
reading view turned on).

Figure 5-22  Returned data from RESTful service call

Another example for the Products list would be querying a specific list item in the list. For example,
the following REST command returns the third list item:

http://fabrikamhockey/_vti_bin/ListData.svc/Products(3).

The return data for this query (where the reader feed has now been turned off) is as follows:

<?xml version=”1.0” encoding=”utf8” standalone=”yes” ?>
 <entry xml:base=”http://fabrikamhockey/_vti_bin/ListData.svc/”
 xmlns:d=”http://schemas.microsoft.com/ado/2007/08/dataservices”
 xmlns:m=”http://schemas.microsoft.com/ado/2007/08/dataservices/metadata”
 m:etag=”W/”3”“ xmlns=”http://www.w3.org/2005/Atom”>
 <id>http://fabrikamhockey/_vti_bin/ListData.svc/Products(3)</id>
 <title type=”text”>Nike Air</title>
 <updated>20091121T19:47:1608:00</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”ProductsItem” href=”Products(3)” />
 <link rel=”http://schemas.microsoft.com/ado/2007/08/dataservices/related/

584637c05.indd 204 5/3/10 11:44:03 AM

Programmatically Accessing Lists  ❘  205

 Attachments” type=”application/atom+xml;type=feed” title=
 “Attachments” href=”Products(3)/Attachments” />
 <category term=”Microsoft.SharePoint.DataService.ProductsItem”
 scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme” />
 <content type=”application/xml”>
 <m:properties>
 <d:ContentTypeID>0x0100E03B378FDA26EF44AA88B2A3D4CD3E8F</d:ContentTypeID>
 <d:Title>Nike Air</d:Title>
 <d:Product_SKU>NKAIR788</d:Product_SKU>
 <d:Price>389.99</d:Price>
 <d:ID m:type=”Edm.Int32”>3</d:ID>
 <d:ContentType>Item</d:ContentType>
 <d:Modified m:type=”Edm.DateTime”>20091121T19:47:16</d:Modified>
 <d:Created m:type=”Edm.DateTime”>20091121T11:06:40</d:Created>
 <d:CreatedByID m:type=”Edm.Int32”>1</d:CreatedByID>
 <d:ModifiedByID m:type=”Edm.Int32”>1</d:ModifiedByID>
 <d:Owshiddenversion m:type=”Edm.Int32”>3</d:Owshiddenversion>
 <d:Version>1.0</d:Version>
 <d:Path>/Lists/Products</d:Path>
 </m:properties>
 </content>
 </entry>

REST-based development is not just about submitting commands via a URL. You can also create
applications using the WCF Data services. For example, what if you want to leverage the SharePoint
list data and surface that data inside of a .NET client application using the REST service? You can
do this simply by creating a new client application that leverages the REST service. When you add
the service, it creates the data context for you (similar to creating other WCF Data services in Visual
Studio), and then you can develop against SharePoint using this context.

Using RESTful Services to Program Against ListsTry It Out	

Code file [RESTSPListExample.zip] available for download at Wrox.com.

Using the built-in REST support is an efficient and lightweight approach to programming against lists.
To leverage REST when programmatically interacting with lists, follow these steps:

	1.	 Open Visual Studio. Click File ➪ New ➪ Project ➪ Windows Form Application. Provide a name
for the project (for example, RESTSPListExample) and click OK.

	2.	 After Visual Studio creates the project for you, right-click the References node and select Add
Service Reference. Type your SharePoint site URL into the Address field and click Go, as shown in
Figure 5-23. Visual Studio will discover the ListData.svc service for you, and it will also expose
the lists that belong to your site.

	3.	 Provide a namespace for the service reference (for example, SPSiteRestService), and then click OK.

	4.	 Visual Studio adds a number of objects to the solution, including a service reference and entities
that are pulled from the SharePoint site through the REST service context. To view the entities
within your site in Visual Studio, click Data ➪ Show Data Sources. This will open the Data Sources
pane in Visual Studio.

584637c05.indd 205 5/3/10 11:44:03 AM

206  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

Figure 5-23  Add Service Reference dialog

	5.	 Select the Products list that you’ve been using throughout the chapter in the Data Sources pane,
and drag it onto the Designer surface.

	6.	 You can now edit the look and feel of the datagrid in the designer (for example, lock it to the
Designer surface and select which columns you want to display in the application). Right-click the
datagrid and select Edit Columns to add and remove columns as you desire.

	7.	 To load the data using the REST service, you must add some code to the form. Double-click the
top portion of the form to generate a Form1_Load event, where you’ll add your code.

	8.	 You’ll need to add a couple of using statements, a service proxy, and some binding code to load
the data — all of which appears in boldface in the following code snippet. For example, in the fol-
lowing code snippet you’ll add two using statements, one for the WCF Data services and the other
for the REST service, that were added to the project. Also note that you will create a service proxy
called myRestSvc and pass an explicit reference to the ListData.svc endpoint URL. This is done
at the class level. After this, there are three lines of code you can add in the Form1_Load event to
manage the credentials to call into SharePoint by using the DefaultNetworkCredentials, create
a LINQ query (which essentially selects all items from the list), and bind the return data from the
LINQ query to the Products list binding source (productsBindingSource), which will automati-
cally display the data from the SharePoint list.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

584637c05.indd 206 5/3/10 11:44:03 AM

Programmatically Accessing Lists  ❘  207

using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Data.Services.Client;
using RESTSPListExample.SPSiteRestService;
using System.Net;

namespace RESTSPListExample
{
 public partial class Form1 : Form
 {
 //Be sure to replace the URL in the code below
 with your SharePoint site URL.
 TeamSiteDataContext mySPContext = new TeamSiteDataContext (
 new Uri(“http://fabrikamhockey/_vti_bin/listdata.svc/”));

 public Form1()
 {
 InitializeComponent();
 }

 private void Form1_Load(object sender, EventArgs e)
 {
 mySPContext.Credentials =
 System.Net.CredentialCache.DefaultNetworkCredentials;

 var q = from p in myRestSvc.Products
 select p;

 this.productsBindingSource.DataSource = q;

 }
 }
}

	9.	 After you’ve completed the code additions, press
F5. The data from the SharePoint list will be
automatically populated within the datagrid, as
shown in Figure 5-24.

	10.	 You can adjust the LINQ query to filter on
specific data from your SharePoint list. For
example, if you add the following (boldfaced)
where clause to your LINQ statement, this will
return only those results where the price is listed
as 389.99, as shown in Figure 5-25.

…
var q = from p in myRestSvc.Products
 .Where(p => (p.Price == “389.99”))
 select p;
…

Figure 5-24  Querying data in WinForm application

584637c05.indd 207 5/3/10 11:44:03 AM

208  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

	11.	 The REST APIs also enable updates to your
SharePoint list. To test this, add three labels,
three textboxes, and two buttons to your
Designer surface beneath the datagrid, as shown
in Figure 5-26. Double-click the Refresh but-
ton and add the same code you have in the
Form1_Load event (or create a helper method, and reference that method from both the btnRe-
fresh_Click event and the Form1_Load event).

Figure 5-26  Extending the WinForm UI

Table 5-8 shows the control type and the name of the controls that you should add to the WPF
application.

Table 5-8  Control Types for WPF Application

Control Type Control Name

Label lblName, lblSKU, lblPrice

Textbox txtbxName, txtbxSku, txtbxPrice

Button btnRefresh, btnAdd

Figure 5-25  Result of Where clause

584637c05.indd 208 5/3/10 11:44:03 AM

Programmatically Accessing Lists  ❘  209

	12.	 Next, double-click the Add button to add some code behind, and add the following code to the
btnAdd_Click event. This code will take the user entries, create a new ProductsItem (which has
been set up for you via the REST Data service), and assign the user entries to the three fields (that
is, Title, Product, and Price). It then calls the AddToProducts method and the SaveChanges
method to add the data as a new record to the SharePoint list.

…
private void btnAdd_Click(object sender, EventArgs e)
 {
 string prodName = txtbxName.Text;
 string prodSKU = txtbxSku.Text;
 string prodPrice = txtbxPrice.Text;

 ProductsItem newItem = new ProductsItem();
 newItem.Title = prodName;
 newItem.Product_SKU = prodSKU;
 newItem.Price = prodPrice;

 mySPContext.AddToProducts(newItem);
 mySPContext.SaveChanges();

 }
…

	13.	 To test the new additions, press F5, add
some data, click the Add button, and then
click the Refresh button. You should see
the new data appear in the datagrid, which
is issuing the query to the SharePoint list,
as shown in Figure 5-27.

How It Works

The RESTful services work in a slightly dif-
ferent way than the other ways you’ve seen
in this chapter. Specifically, they leverage the
Listdata.svc service and Data services to treat
SharePoint lists as data constructs. The querying
against the list works similarly to other ways in
which you query entities. You use LINQ as the
standard way to query and filter the data, and
then manipulate that data into your application.

At this point, you’ve seen a number of different ways to programmatically interact with SharePoint
lists. According to your needs, you may find yourself choosing one method over another. For exam-
ple, if you’re looking for a clean syntax and you want to code using Silverlight, then perhaps using
the client object model would be your choice. On the server, you might find yourself building util-
ity tools or Web parts, so you will want to use the server-side object model as opposed to the client

Figure 5-27  Successful data query

584637c05.indd 209 5/3/10 11:44:04 AM

210  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

object model. Alternatively, if you wanted to have a more portable solution that multiple applica-
tions could call simultaneously, then perhaps the service-oriented architecture is more along your
design. Either way, you have options as a SharePoint developer — in fact, more options than you’ve
ever had before.

Let’s now discuss event receivers for SharePoint lists.

Creating Event Receivers for a SharePoint List

A powerful feature that has evolved across SharePoint versions is the event receiver. The event
receiver is in essence a managed-code assembly that is deployed to SharePoint and reacts to an event,
such as adding an item to a list, creating a new list item, provisioning a new SharePoint site, and so
on. The fact that you can create custom managed code to execute against events provides quite a bit
of power over your lists and any events attached to the lists. The managed-code assembly is strongly
typed and signed, and, using Visual Studio 2010, is deployed as a feature into the global assembly
cache (GAC), where it’s instantiated when the corresponding event is fired.

In earlier versions of SharePoint, you could create an event receiver to document libraries. Then,
SharePoint 2007 added a host of event receivers that were supported across the different lists in
SharePoint. Further, there were a number of out-of-the-box event receivers that developers could use
when developing against lists. These event receivers ranged from list events and list items to feature
and Web events.

In SharePoint 2010, the following dozen new event receivers have been added:

List events:➤➤

List is being added.➤➤

List is being deleted.➤➤

List was added.➤➤

List was deleted.➤➤

List Item events:➤➤

List received a context event.➤➤

Workflow:➤➤

Workflow is starting.➤➤

Workflow has started.➤➤

Workflow has completed.➤➤

Workflow was postponed.➤➤

List Email:➤➤

List received an email message.➤➤

Web:➤➤

Site is being provisioned.➤➤

Site was provisioned.➤➤

584637c05.indd 210 5/3/10 11:44:04 AM

Creating Event Receivers for a SharePoint List   ❘  211

Not only does SharePoint 2010 support a wide variety of event receivers, but the tooling also sup-
ports quickly creating and deploying event receivers against SharePoint objects. This means that, if
you were, for example, manually building classes to implement the SPListEventReceiver class to
build and deploy event receivers, you can now use the native project templates within Visual Studio
2010 to build your event receivers.

Creating an Event Receiver for a ListTry It Out	

Code file [SPListEventReceiver.zip] available for download at Wrox.com.

List event receivers come in many different shapes and sizes. To create a simple event receiver that
writes a log entry to your local file system, follow these steps:

	1.	 Open Visual Studio. Click File ➪ New ➪ Project ➪ Event Receivers (in the SharePoint 2010 tem-
plate category). Provide a name for your new project (for example, AnnouncementListEvent), and
click OK.

	2.	 Select Deploy as Farm Solution, and click Next. In the next step, select List Item Events for the
type of event receiver and Announcements for the item to be the event receiver. Click the checkbox
beside “An item is being added,” as shown in Figure 5-28. Click Finish. This will create a project
that will enable you to create some custom code that is tied to the Announcements list that will fire
every time an item is added to the list.

Figure 5-28  List event receivers

	3.	 In the EventReceiver1.cs class, you’ll see the main event handler for the Announcements list.
This is the ItemAdding event.

namespace AnnouncementListEvent.EventReceiver1
{
 public class EventReceiver1 : SPItemEventReceiver

584637c05.indd 211 5/3/10 11:44:04 AM

212  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

 {
 public override void ItemAdding(SPItemEventProperties properties)
 {
 base.ItemAdding(properties);
 }

 }
}
…

	4.	 Add the following two using statements at the top of the application code:

using System.IO;
using System.Text;

	5.	 In the ItemAdding event, add some code (that is, the bolded code in the snippet that follows) that
will call a method to log some data to a log file. For example, in the following code sample, the
writeDataToLogFile passes the SPItemEventProperties and a string that represents the item
event. So, when a user adds a new announcement, the event receiver will add an entry to a log file
(that is, mySPLog.txt). Note that the method also sets the permissions to access the file system
(although this may not be necessary if you’re accessing the system as an administrator).

…
namespace AnnouncementListEvent.EventReceiver1
{

 public class EventReceiver1 : SPItemEventReceiver
 {

 public override void ItemAdding(SPItemEventProperties properties)
 {
 base.ItemAdding(properties);
 writeDataToLogFile(properties, “An Event”);
 }

 private void writeDataToLogFile(SPItemEventProperties properties,
 string eventName)
 {
 FileIOPermission myPermissions = new
 FileIOPermission(PermissionState.Unrestricted);
 myPermissions.AddPathList(FileIOPermissionAccess.AllAccess,
 “c:\\Authoring”);

 StreamWriter sw = File.AppendText(@”C:\Authoring\mySPLog.txt”);
 StringBuilder sb = new StringBuilder();
 sb.AppendFormat(“Date, Event and List:\n {0} {1} {2} “,
 DateTime.Now.ToString(), eventName, properties.
 ListTitle);
 sw.WriteLine(sb.ToString());
 sw.Close();
 }

 }
}
…

584637c05.indd 212 5/3/10 11:44:04 AM

Creating Event Receivers for a SharePoint List   ❘  213

	6.	 When you’ve finished adding the code, select the Build menu and select Deploy Solution.

	7.	 Open the Announcements list in your SharePoint site, and add a new Announcement, as shown in
Figure 5-29.

Figure 5-29  Triggering the event

	8.	 Once you’ve added a new item to the Announcement list, navigate back to the place where your
log file exists (for example, c:\Authoring), as shown in Figure 5-30.

Figure 5-30  Log file created

	9.	 You can also add events that interact with other parts of the SharePoint site. For example, let’s
add another event that writes an entry into a separate list called Log. To do this, add the following
boldfaced code to your event receiver application:

…
namespace AnnouncementListEvent.EventReceiver1
{

 public class EventReceiver1 : SPItemEventReceiver

584637c05.indd 213 5/3/10 11:44:04 AM

214  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

 {

 public override void ItemAdding(SPItemEventProperties properties)
 {
 base.ItemAdding(properties);
 writeDataToLogFile(properties, “ItemAdding Event”);
 writeListItemToCustomList(properties, “ItemAdding Event”);
 }

 …

 private void writeListItemToCustomList(SPItemEventProperties properties,
 string eventName)
 {
 string spLog = ““;
 DateTime currentTime = DateTime.Now;
 spLog = eventName + “ “ + currentTime.ToString();

 using (SPSite site = new SPSite(“http://fabrikamhockey”))
 {
 using (SPWeb web = site.OpenWeb())
 {
 web.AllowUnsafeUpdates = true;
 SPList list = web.Lists[“Log”];
 SPListItem Item = list.Items.Add();
 Item[“Title”] = properties.ListTitle.ToString();
 Item[“Log Entry”] = spLog;
 Item.Update();
 }
 }

 }

 }
}
…

	10.	 Redeploy the application by clicking Build ➪ Deploy Solution. Visual Studio retracts your old solu-
tion and replaces it with your new one.

	11.	 Create a Log list with a Title and Log Entry column. Then add an item to your Announcements
list. The event receiver code will create another entry to your file system log, and also create an
entry in your SharePoint list, as shown in Figure 5-31.

Figure 5-31  Log entry in list

584637c05.indd 214 5/3/10 11:44:04 AM

Summary  ❘  215

How It Works

When you’re creating event receivers, you’re essentially writing code that fires when a particular
event occurs in your SharePoint site. For example, in this example, whenever someone created a new
Announcement, it would fire an event that would add a log entry in a file on the system and on the list.
While you repurposed some of the server-side list and updated a file on the system, you can literally tie
any number of events to, for example, list updates such as workflow, custom timer jobs, and so on.

Summary

This chapter provided an overview of the different ways in which you can develop against
SharePoint lists. The chapter started with a glimpse into the use of the server-side object model (that
is, using Microsoft.SharePoint.dll), which provided a brief look into the types of things that you
could do by leveraging the Microsoft.SharePoint namespace. However, when you move beyond
server-side applications, you often need service-based applications, and SharePoint 2010 provides
you with a number of native ASP.NET Web services that you can leverage.

One key Web service is the Lists service, which has a number of members that are very useful. The
Lists Web service is good in that it provides interactivity with SharePoint lists, but it does require
some heavy syntax and XML serialization — which is often achieved through CAML constructs.

As you saw, leveraging the new client object model and the RESTful service can move you “some-
what” beyond the need for CAML queries, and provide a very powerful platform for interacting
with lists. This statement is qualified with “somewhat” because CAML never entirely disappears.
In some cases, it just gets abstracted away from your view. For example, a general query (</View>)
auto-generates CAML queries that are then issued against the SharePoint list. So, while you don’t
see CAML, it is still there behind the scenes.

At the end of the day, one of the most commonly coded objects in SharePoint is the list. And, in
SharePoint 2010, you have quite a few more choices that really begin to open up (and provide
choice) to the way you develop against lists.

As you move on to Chapter 6, you’ll see more ways to code against one of the other, more com-
monly coded against objects in SharePoint — the Web part. So, hang tight. The journey to becoming
a SharePoint developer continues!

Exercises	

	 1.	 What are the different ways in which you can program against lists?

	 2.	 Can you generally classify when to use one over the other?

	 3.	 How is using RESTful services and the new SharePoint client object model different from the
other ways? What do they abstract away from the development process?

	 4.	 What are the different event receivers for lists? What user or system action might you map
these events to?

584637c05.indd 215 5/3/10 11:44:04 AM

216  ❘  Chapter 5   Programming Against SharePoint 2010 Lists

What You Learned in This Chapter⊲⊲

Item Description

List structure and function A list is one of the fundamental artifacts in SharePoint.

List Object Model You programmatically interact with a list using a specific object
model. This object model can be accessed using different APIs.

Ways to program against a list There are a number of ways to program against a list, including
the Lists Web service, client object model, server-side object
model, REST, and custom WCF services.

Recommended Reading

SharePoint 2010 SDK: ➤➤ http://msdn.microsoft.com/en-us/library/

ee557253(office.14).aspx

Lists Web Service Members: ➤➤ http://msdn.microsoft.com/en-us/library/lists.lists_

members.aspx.

Channel 9 Lists and Schema Module: ➤➤ http://channel9.msdn.com/learn/courses/

SharePoint2010Developer/ListsAndSchemas/WCF Data Services on MSDN: http://

msdn.microsoft.com/en-us/data/bb931106.aspx

584637c05.indd 216 5/3/10 11:44:04 AM

Building and Deploying
SharePoint Web Parts

What You'll Learn in This Chapter:

Understanding Web parts and how you can create one➤➤

Understanding the difference between a standard and Visual Web part➤➤

Using Visual Studio to build and deploy Web parts to SharePoint➤➤

In Chapter 5, you learned about the different ways you can program against one of the pri-
mary SharePoint artifacts — lists. In this chapter, you’ll learn about another core building
block in SharePoint — the Web part. The Web part is not unique to SharePoint. It is a set of
integrated ASP.NET server controls. Because SharePoint is built on ASP.NET, it inherits the
capabilities that are native to ASP.NET Web parts.

Developers can use Web parts to create Web sites, and, once rendered on a SharePoint site,
users can then modify the content, behavior, or appearance of the Web part page using their
Internet browser to personalize their experiences with the Web site.

SharePoint 2010 offers a wide array of out-of-the-box Web parts and, especially relevant to
this chapter, an easier way to build and deploy Web parts into a SharePoint site. With that
in mind, this chapter provides a high-level overview of Web parts, discusses the differences
between standard and Visual Web parts, and walks through some ways to create custom Web
parts for a SharePoint site.

Understanding Web Parts

Similar to lists, Web parts are some of the most commonly customized objects in SharePoint.
Web parts also provide a great opportunity for developers to leverage some very powerful
capabilities that are native to ASP.NET.

6

584637c06.indd 217 5/2/10 7:13:15 PM

218  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

Developers work with Web parts in a couple of different ways. For example, you might create a
Web part as an individual server control that you deploy to your SharePoint site. You can also create
SharePoint Web part pages that leverage existing Web parts (whether those Web parts are custom or
native to SharePoint), or integrated through a Web part connection (that is, connected Web parts).

As you build out server controls or pages to host your Web parts, you can use tools such as Visual
Studio 2010 or SharePoint Designer 2010. If you have a more dynamic UI for your Web parts (for
example, a Silverlight-based UI), then you may opt for Expression Blend as well. In Visual Studio 2010,
you’ll find an enhanced designer experience with the Visual Web part project template that makes it
much easier to drag and drop controls onto the designer surface to create custom Web parts. You can
also use Visual Studio to leverage the ASP.NET Web part framework — using all of the ASP.NET con-
trols (for example, calendar, textbox, datagrid, and so on) to create your custom Web part.

While, in this chapter, you’ll be only leveraging the ASP.NET Web part namespace (System.Web
.UI.WebControls.WebParts), it is worth mentioning that there is also a Web part namespace for
SharePoint as well (Microsoft.SharePoint.WebPartPages.WebPart). However, it is generally
recommended that, when you create Web parts for SharePoint, you stick to using the ASP.NET Web
part namespace. The ASP.NET Web part namespace provides a more popular and comprehensive
set of controls and classes for developers. Web parts also require a framework to work on the ASP.
NET page. Because SharePoint is built on top of ASP.NET, it leverages the Web part framework.

After you’ve built and deployed Web parts to a SharePoint site, end users can then modify a
SharePoint site depending on the following:

The level of permissions they have in SharePoint➤➤

The different out-of-the-box Web parts that are available to them (which would depend on ➤➤

the version of SharePoint they’re using)

The type of custom Web parts you have deployed to that SharePoint site➤➤

The more permissions users have for a site, the more they can customize and design the site for the
users of that site.

Once a Web part is on a page, users can configure the Web part(s) on that page. For example, users
can minimize, remove, or hide the Web part. They can also drag the Web part to a different part of
the Web part page (into a different Web part zone), alter the properties of the Web part (to change
the look, feel, or appearance), or even export/import the Web part for use in other pages or sites.

When you deploy a Web Part to SharePoint, it shows up in the Web Part Gallery. The Web Part
Gallery is a management application that provides a way to manage Web parts for a site collection.
With the Web Part Gallery, you can do things like view, edit, upload, delete, and manage permis-
sions against Web parts. You access the Web Part Gallery within a site collection by clicking Site
Actions ➪ Site Settings, and, under Galleries, select Web Parts.

What helps users integrate Web parts into a SharePoint site is the in-context ribbon experience that
surfaces the different Web parts that live in the Web Part Gallery and makes them available for users
to add to a Web part page. For example, if you click Site Actions ➪ Edit Page, this exposes the Insert
tab. If you click the Web part ribbon control, this exposes all of the available Web parts for the
SharePoint site — which includes custom Web parts you have built and deployed to your site.

584637c06.indd 218 5/2/10 7:13:16 PM

Understanding Web Parts  ❘  219

NOTE  ​If you use Visual Studio 2010 to create a custom Web part, it is automati-
cally deployed to the Web Part Gallery. You can use a “manual” command to
deploy a Web part assembly, in which you case, you would need to manually
add it to the Web Part Gallery.

The in-context ribbon experience is a great productivity improvement over the 2007 experience
(which was a gallery you invoked as a separate window, and scrolled to find your Web part) and
makes it easier to interact with Web parts.

When you navigate to the Web Part Gallery, you are presented with two views:

One view enables you to see all of the Web parts in the site collection.➤➤

The other view provides you with a more detailed view of the Web part (and its metadata). ➤➤

The top-level view of the Web Part Gallery is shown in Figure 6-1, and in it you can see an enumera-
tion of the available Web parts in SharePoint, along with properties for those Web parts.

Figure 6-1  Web Part Gallery

NOTE  ​If you click on the Web part link (for example, AdvancedSearchBox.dwp),
SharePoint launches and renders the Web part in a separate Web part page.

584637c06.indd 219 5/2/10 7:13:16 PM

220  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

Web Part Architecture
The architecture of an .aspx Web page integrates a number of different zones, configurations, and
objects that are associated with those zones. Core to the Web part architecture is the WebPartManager
object, which manages all of the Web parts on a page. The WebPartManager control is the central
command center for the Web parts on a page. There is only one WebPartManager control instance on
a SharePoint Web part page, and it works only with authenticated site users.

The WebPartManager also holds a reference to the collection of Web part zones (that is, the WebZone
class), which are containers for Web parts. Depending on the site or Web page template, Web part
zones can be positioned differently on the page. Any page using one or more Web parts must have
an instance of the WebPartManager and a Web part zone to put the part in. The WebPartManager
is also declared in the SharePoint master page, so the out-of-the-box master pages will already have
the WebPartManager declaration included.

Within each Web part zone, you have the Web parts. These are the server controls/applications you
will build and deploy to SharePoint in this chapter.

It is important to think not just about the single SharePoint Web part page, but also think about
the structure that the page inherits from the master page (and the page layout that is defined within
that master page). Master pages and page layouts define the overall look, feel, and structure for the
SharePoint site. Master pages contain server controls that are shared across multiple sites (for example,
ribbon navigation and search controls). It is within the page layouts and pages that you will see the Web
parts.

As mentioned previously, to support the Web part
on a page, you must have a WebPartManager and a
WebPartZone for each WebPart object. Figure 6-2
illustrates the high-level architecture starting from
the master page and extending into the Web part
on an ASPX page.

SharePoint 2010 provides a number of Web parts
out-of-the-box. (The number and type of Web parts
available will depend on the SharePoint version.)
For example, you have the Chart Web part, Excel
Web Access Web part, Business Data Catalog Web
part, and so on, that you can leverage when build-
ing custom solutions. SharePoint also offers you the
capability to create custom Web parts.

As a developer, you’ll want to understand the out-
of-the-box Web parts so that you don’t replicate this functionality in your custom solutions — evaluat-
ing the out-of-the-box Web parts should always be your first thought. You’ll also want to understand
this native functionality so that you can complement your custom Web parts with those that ship with
SharePoint.

Adding an out-of-the-box or custom Web part is straightforward. You click Edit Page ➪ “Add a web
part” (or, if you’re on a wiki page, you click the Insert tab and then click Web Part), and then select
the Web part you want to add to your site. However, you must have a site or Web part page that will
play host to the native or custom Web parts.

Master Page

Page Layout

WebPartZone

WebPartManager

WebPartZone

WebPart Web Part

ASPX Web

Figure 6-2  Web part architecture

584637c06.indd 220 5/2/10 7:13:16 PM

Web Part Architecture  ❘  221

In the following exercise, you’ll create a Web part page that you’ll use throughout this chapter for
both native and custom Web parts. The first exercise will require you to create a new list in your
SharePoint site. Name the list Sales, then rename the Title column to Customer and add a Sales
column (of type Number). Add some data resembling what is shown in Figure 6-3.

Figure 6-3  Customer list

After you’ve created the list, you are ready for the first exercise in this chapter.

Creating a Web Part Page and Chart Web PartTry It Out	

A Web part page is a type of .aspx page in SharePoint that provides you with some predefined struc-
ture. After you create a Web part page, you can insert either native or custom Web parts to that page.
To create a Web part page, follow these steps:

	1.	 Navigate to your SharePoint site, and click All Site Content.

	2.	 Click Create.

	3.	 In the Create dialog, navigate to the Page option and click Web Part Page, as shown in Figure 6-4.
Click the Create button on the right side of the screen.

Figure 6-4  Web Part Page option

	4.	 This invokes a separate page where you can provide a name for the page and select the structure
of the page from a set of predefined layout templates. Provide a name for the page (for example,
Wrox_Web_Page.aspx), and select one of the layout templates (for example, “Header, Footer, 3
Columns”).

	5.	 You can also choose to save the Web part page in a specific location — such as the Shared
Documents or Site Assets document library. Leave the default option set to Site Assets, as shown in
Figure 6-5, and click OK.

584637c06.indd 221 5/2/10 7:13:16 PM

222  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

	6.	 The result of this is a new Web part page that is structured using the “Header, Footer, 3 Columns”
layout template, as shown in Figure 6-6. The page is also rendered in Edit mode by default.

Figure 6-5  Naming the Web part page

Figure 6-6  Adding a Web part

584637c06.indd 222 5/2/10 7:13:16 PM

Custom Web Parts  ❘  223

	7.	 Click “Add a web part” and then navigate to the Miscellaneous
category. Select Chart Web Part. Click Add to add the out-of-the-
box Web part to the new Web part page.

	8.	 After the Web part is added to the Web part zone, click the
Chart Web Part Menu and click Connect to Data, as shown in
Figure 6-7.

	9.	 Follow the wizard to connect the Chart Web part to your newly
created Sales list. Accept the default options as you work
through the wizard, and then click Finish to complete the connect-
ing of the data to the Chart Web part. When you’re finished, your
new Chart Web part will look like Figure 6-8.

How It Works

The Chart Web part is a new addition to SharePoint 2010
and provides you with a number of options to display data
in SharePoint from different sources. You saw in this walk-
through how the native functionality of the Chart Web part
used the SharePoint list you created as a data source and
then displayed that data graphically as a bar chart.

As you saw in the walkthrough, this is a great way to expose
list data in Web parts to create a relationship across different
parts of your SharePoint site. Note that you can create differ-
ent types of charts when linking the Chart Web part to data
sources, and you can customize the chart in different ways.

It’s important to understand the out-of-the-box Web part functionality. However, this book is
geared toward developers, the remainder of this chapter discusses how you can create custom
Web parts.

Custom Web Parts

In SharePoint, you can build sites using the out-of-the-box Web parts without the need to do any
coding. Or, you can develop custom Web parts.

Custom Web parts leverage the ASP.NET server controls and can be deployed as individual Web
parts (that is, no interaction or connectivity with other Web parts), or you can create connected Web
parts (that is, Web parts that can have a summary and detail view of data). Your custom Web parts
can also be very simple (for example, leveraging one to two controls), or they can be complex (mul-
tiple controls and connected).

One of the key aspects of custom Web parts to remember is that, while you leverage the ASP.NET
controls to create the Web parts, the Web part namespace provides the personalization capabilities
discussed earlier — that is, the capability for users to configure the Web part the way they want to.

Figure 6-7  Connect Web
part to data

Figure 6-8  Chart Web part

584637c06.indd 223 5/2/10 7:13:16 PM

224  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

NOTE  ​You can find a good article on MSDN at http://msdn.microsoft.com/
en-us/library/ms469765.aspx that walks you through how to create a con-
nected Web part.

There are great tools available for you to create custom Web parts for SharePoint in Visual Studio
2010. Specifically, there are two types of templates that you can use to build the custom Web parts:
the standard Web part and the Visual Web part. At the end of the day, the Web part capabilities for
each of the templates are the same — they both derive from the same namespace. The difference,
though, is in the ways of creating the custom Web parts using the templates.

For the standard Web part template, you must manually create the UI. With the Visual Web part,
there is a designer experience that enables you to drag and drop controls onto a designer surface to
create your Web part UI. However, the functionality that you can build into the Web parts (that is,
your code behind) is the same.

When you create and deploy a custom Web part to SharePoint using Visual Studio 2010, a folder
that contains a set of project files is created in your project. In Chapter 3, you saw that Visual Studio
deploys Web parts as a feature. To be able to create a feature, Visual Studio creates a project structure
with a number of project files — which include feature files, solution package, class files, and so on.

As you get started with Web part development in Visual Studio using the standard Web part tem-
plate, you will find yourself interacting with the following three primary files:

elements.xml➤➤  — ​This provides configuration information that is used by the feature defini-
tion file.

foo.webpart➤➤  — This configuration file provides information that SharePoint needs to dis-
play the Web part (such as title and description).

foo.cs➤➤  — This core Web part class file that contains all of the custom code you create as the
core functionality of your Web part application.

The following code snippet provides a snapshot of the default code that is generated when you create
a standard Web part in Visual Studio 2010:

…
namespace WroxWebPartProject.CustomerInformation
{
 [ToolboxItemAttribute(false)]
 public class CustomerInformation : WebPart
 {

 public CustomerInformation()
 {
 }

 protected override void CreateChildControls()
 {
 base.CreateChildControls();
…

584637c06.indd 224 5/2/10 7:13:16 PM

Custom Web Parts  ❘  225

 }

 protected override void RenderContents(HtmlTextWriter writer)
 {
 base.RenderContents(writer);
 }
 }
}
…

Next, you will create a standard Web part using the Web part item template available within Visual
Studio 2010. This means that you must have a parent SharePoint project (that implements a feature)
to which you would add this item-level template.

Let’s create a standard Web part using Visual Studio 2010.

Creating a Simple Standard Web PartTry It Out	

Code file [WroxWebPartProject.zip] available for download at Wrox.com.

Standard Web parts can be very powerful and perform any number of functions. To create a standard
Web part, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New ➪ Project.

	2.	 Navigate to the SharePoint folder and select the Empty SharePoint Project template. Provide a
name for your project (for example, WroxWebPartProject) and click OK. When prompted, select
“Deploy as farm solution.” Click Finish. This creates the skeletal structure of a SharePoint project.

	3.	 Right-click the project and click Add ➪ New Item.

	4.	 From the SharePoint 2010 Item templates, select Web Part.

	5.	 Provide a name for the Web part (for example, CustomerInformation), and click Add. Visual
Studio adds the core elements of the Web part files to the empty SharePoint project.

	6.	 You’ll now want to add a class to the Web part project, so right-click the new Web part project
and select Add ➪ Class. Provide a name for the class (for example, CustomerData), and click OK.

	7.	 In the new class, add the following bolded code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace WroxWebPartProject
{
 class CustomerData
 {
 public string companyName {get; set;}
 public string contactName {get; set;}
 public string contactEmail {get; set;}
 public string companyFY08Sales {get; set;}

584637c06.indd 225 5/2/10 7:13:17 PM

226  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

 public string companyFY09Sales {get; set;}
 }
}

	8.	 Right-click the core Web part code file (for example, CustomerInformation.cs), and select
View Code.

	9.	 Add the following bolded code into that core Web part class:

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using System.Collections.Generic;

namespace WroxWebPartProject.CustomerInformation
{
 [ToolboxItemAttribute(false)]
 public class CustomerInformation : WebPart
 {

 DataGrid myCustomers = new DataGrid();
 List<CustomerData> myCustomerDataList = new List<CustomerData>();

 protected override void OnPreRender(EventArgs e)
 {
 CustomerData cust1 = new CustomerData();
 CustomerData cust2 = new CustomerData();
 CustomerData cust3 = new CustomerData();
 CustomerData cust4 = new CustomerData();

 cust1.companyName = “Fabrikam”;
 cust1.contactName = “Harvey Kitell”;
 cust1.contactEmail = “mrpink@fabrikam.com”;
 cust1.companyFY08Sales = “$530,002.00”;
 cust1.companyFY09Sales = “$650,102.00”;
 myCustomerDataList.Add(cust1);

 cust2.companyName = “Contoso”;
 cust2.contactName = “Ahmed Kroll”;
 cust2.contactEmail = “ahemd@contoso.com”;
 cust2.companyFY08Sales = “$1,577,044.00”;
 cust2.companyFY09Sales = “$1,653,112.00”;
 myCustomerDataList.Add(cust2);

 cust3.companyName = “Acme”;
 cust3.contactName = “Jansen Terrace”;
 cust3.contactEmail = “jansen@acme.com”;
 cust3.companyFY08Sales = “$3,270,000.00”;
 cust3.companyFY09Sales = “$2,953,100.00”;
 myCustomerDataList.Add(cust3);

 cust4.companyName = “Wingtip”;

584637c06.indd 226 5/2/10 7:13:17 PM

Custom Web Parts  ❘  227

 cust4.contactName = “Hally Cantrall”;
 cust4.contactEmail = “hally@wingtip.com”;
 cust4.companyFY08Sales = “$578,982.00”;
 cust4.companyFY09Sales = “$620,100.00”;
 myCustomerDataList.Add(cust4);

 myCustomers.DataSource = myCustomerDataList;
 myCustomers.DataBind();
 }

 protected override void CreateChildControls()
 {
 this.Controls.Add(myCustomers);
 }
 }
}

	10.	 Next, double-click the .webpart file (for example, CustomerInformation.webpart), and amend
the title and description of the Web part, as shown in the following bolded code:

<?xml version=”1.0” encoding=”utf-8”?>
<webParts>
 <webPart xmlns=”http://schemas.microsoft.com/WebPart/v3”>
 <metaData>
 <type name=”WroxWebPartProject.CustomerInformation.CustomerInformation,
 $SharePoint.Project.AssemblyFullName$” />
 <importErrorMessage>$Resources:core,ImportErrorMessage;</importErrorMessage>
 </metaData>
 <data>
 <properties>
 <property name=”Title” type=”string”>Customer Info Web Part</property>
 <property name=”Description” type=”string”>A Web Part that displays
 customer information.</property>
 </properties>Web Part
 </data>
 </webPart>
</webParts>

	11.	 You can now build the standard Web part and deploy it to your SharePoint site. To do this, click
Build ➪ Deploy Solution.

	12.	 After you’ve deployed the Web part to your SharePoint site, navigate to your SharePoint site and to
the new Web part page you created earlier. Click Site Actions ➪ Edit Page ➪ “Add a web part” to
add the newly created standard Web part to the page.

	13.	 Navigate to the Custom category. You should see the CustomerInformation Web part you
just deployed (assuming that
you named your Web part
CustomerInformation). Click Add
to add it to your SharePoint Web
part page. You should have some-
thing similar to Figure 6-9 added to
your SharePoint site. Figure 6-9  Rendered datagrid

584637c06.indd 227 5/2/10 7:13:17 PM

228  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

How It Works

This walkthrough was fairly straightforward. You first created a standard Web part using the Visual
Studio 2010 template, which added the core class and configuration files to the empty SharePoint proj-
ect. You then created a simple class, which defined five properties of a customer object. You then used
an in-memory object to generate some data that was then data-bound to a datagrid control. The appli-
cation created the in-memory object using a list collection of the custom CustomerData object (myCus-
tomerDataList), which was instantiated in the following line of code:

List<CustomerData> myCustomerDataList = new List<CustomerData>();

The application then created four CustomerData objects (cust1, cust2, cust3, and cust4) and added
them to the list collection, which was then bound as a data source to the datagrid control.

You’ll notice that there was no special formatting that you created for the datagrid, and the header row
took the individual property names as the field data. However, you could add some formatting to the
datagrid to improve the look and feel of it. For example, if you added the following bolded code to the
OnPreRender method, you could alter the look and feel of your datagrid:

myCustomers.Width = Unit.Percentage(100);
myCustomers.CellPadding = 1;
myCustomers.HeaderStyle.Font.Bold = true;
myCustomers.HeaderStyle.HorizontalAlign = HorizontalAlign.Left;
myCustomers.HeaderStyle.CssClass = “ms-vh1”;
myCustomers.GridLines = GridLines.Horizontal;
myCustomers.BorderWidth = Unit.Pixel(3);
myCustomers.DataSource = myCustomerDataList;
myCustomers.DataBind();

Using this styling, the table that you deploy into SharePoint takes on a slightly different look and feel,
as shown in Figure 6-10.

Figure 6-10  Formatted datagrid

When you build and deploy the standard Web part to SharePoint, you create a feature using the three
core Web part files (discussed earlier in the chapter). The Web part DLL, which is the core functionality
for the Web part, is deployed into the global assembly cache (GAC).

While, in this case, you created a simple Web part that leveraged an in-memory object, you can also
load data from an external data source (and, more often than not, you will want to do this). This data
could be in the form of a Web service, a SharePoint list, an XML packet or file, or other Web 2.0 ser-
vice that draws data from other non-SharePoint Web assets.

For example, say that you created an XML file that looks like the following XML code snippet and
saved it to your local drive (for example, in a folder called c:/XML_Data). You could very easily map

584637c06.indd 228 5/2/10 7:13:17 PM

Custom Web Parts  ❘  229

that XML file to a dataset, and then bind the dataset to the datagrid — and repurpose some of the code
you’ve already written.

<?xml version=”1.0” encoding=”utf-8” ?>
<Customers>
 <Customer>
 <CompanyName>Fabrikam</CompanyName>
 <Contact>John Kelly</Contact>
 <ContactEmail>jkelly@fabrikam.com</ContactEmail>
 <FY08Sales>$3,500,398.00</FY08Sales>
 <FY09Sales>$3,750,302.00</FY09Sales>
 </Customer>
 <Customer>
 <CompanyName>Contoso</CompanyName>
 <Contact>Ahmed Zain</Contact>
 <ContactEmail>ahmed@contoso.com</ContactEmail>
 <FY08Sales>$50,980,990.00</FY08Sales>
 <FY09Sales>$52,880,980.00</FY09Sales>
 </Customer>
 <Customer>
 <CompanyName>Acme</CompanyName>
 <Contact>Jane Doe</Contact>
 <ContactEmail>jane.doe@acme.com</ContactEmail>
 <FY08Sales>$7,099,289.00</FY08Sales>
 <FY09Sales>$7,029,001.00</FY09Sales>
 </Customer>
 <Customer>
 <CompanyName>Wingtip</CompanyName>
 <Contact>Janice Wang</Contact>
 <ContactEmail>janice@wingtip.com</ContactEmail>
 <FY08Sales>$980,298.00</FY08Sales>
 <FY09Sales>$1,209,109.00</FY09Sales>
 </Customer>
 <Customer>
 <CompanyName>Metro</CompanyName>
 <Contact>Steve James</Contact>
 <ContactEmail>stevej@metro.com</ContactEmail>
 <FY08Sales>$1,090,989.00</FY08Sales>
 <FY09Sales>$1,300,092.00</FY09Sales>
 </Customer>
 <Customer>
 <CompanyName>Standard</CompanyName>
 <Contact>John McLean</Contact>
 <ContactEmail>johnm@standard.com</ContactEmail>
 <FY08Sales>$45,092,981.00</FY08Sales>
 <FY09Sales>$47,200,189.00</FY09Sales>
 </Customer>
</Customers>

If you used the same project that you created in the last walkthrough, instead of using the list collec-
tion, you would simply create a new class-level instance of a DataSet object and path to the XML file.

DataSet myCustomerDataset = new DataSet();
string xmlCustomerFilePath = “c:/XML_Data/Customers.xml”;

584637c06.indd 229 5/2/10 7:13:17 PM

230  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

You’d then substitute all of the code within the OnPreRender method with the following code snippet
to bind the data.

myCustomerDataset.ReadXml(xmlCustomerFilePath, XmlReadMode.InferSchema);
myCustomers.DataSource = dataset;
myCustomers.DataBind();

You can then add the myCustomers list collection to the Controls collection in the
CreateChildControls method, as in the following line of code:

this.Controls.Add(myCustomers);

The net effect is very similar to the way in which the previous data looked in the datagrid using the list
collection. However, in this case, you are now using an external data source to populate the datagrid in
your custom Web part. The result of this code is shown in Figure 6-11.

Figure 6-11  Datagrid using external data

As you build more complex Web parts, you’ll want to add event handlers that map to the controls
(for example, buttons or listboxes) — that is, events that are tied to users interacting with controls
within your Web parts. For example, let’s assume that you want to build out a UI that loads some
data from a SharePoint list, and then displays that data in a listbox. Let’s walk through an example.

 Creating Event Handlers in Standard Web PartsTry It Out	

Code file [SPWebPartEvent.zip] available for download at Wrox.com.

Creating events for a Web part is a core part of building Web parts. To create an event handler using
the standard Web part project template, follow these steps:

	1.	 Open Visual Studio 2010 and create a new Empty SharePoint project. Provide a name for the proj-
ect (for example, SPWebPartEvent) and click OK. When prompted, select “Deploy as farm solu-
tion” and click Finish.

	2.	 Right-click the project and add a new Web part to the project by clicking Add ➪ New Item,
and then selecting the Web part item template. Provide a name for the Web part (for example,
SampleEventWebPart) and click OK.

	3.	 Open the .webpart file (for example, SPCOMWebPart.webpart) and amend the Title and
Description properties as shown in the following bolded code snippet.

…
 <properties>
 <property name=”Title” type=”string”>SP Site Lists Web Part</property>

584637c06.indd 230 5/2/10 7:13:17 PM

Custom Web Parts  ❘  231

 <property name=”Description” type=”string”>List of lists from
 SharePoint site.</property>
 </properties>
…

	4.	 Open the core Web part class file (for example, SPCOMWebPart.cs) and amend the code as shown
in the following bolded code. Replace the string mySiteURL (http://intranet.contoso.com)
with the name of your SharePoint server.

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace SPWebPartEvent.SampleEventWebPart
{
 [ToolboxItemAttribute(false)]
 public class SampleEventWebPart : WebPart
 {
 //Be sure to replace mySiteURL with your server URL.
 string mySiteURL = “http://intranet.contoso.com”;
 Button getLists = new Button();
 ListBox mySPLists = new ListBox();
 string listInfo = ““;

 protected override void OnPreRender(EventArgs e)
 {
 getLists.Text = “Click”;
 }
 protected override void CreateChildControls()
 {
 this.Controls.Add(getLists);
 this.Controls.Add(mySPLists);
 getLists.Click += new EventHandler(getLists_Click);

 }

 void getLists_Click(object sender, EventArgs e)
 {
 using (SPSite mySiteCollection = new SPSite(mySiteURL))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)
 {
 foreach (SPList myList in mySPSite.Lists)
 {
 listInfo = myList.Title.ToString();
 mySPLists.Items.Add(listInfo);
 }
 }
 }

584637c06.indd 231 5/2/10 7:13:17 PM

232  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

 }

 }
}

	5.	 You can now build and deploy the new Web part by clicking Build ➪ Deploy Solution.

	6.	 After the Web part project successfully deploys, open your SharePoint site and navigate to the Web
part page you created earlier in the chapter. Click “Add a web part,” and then navigate to the
Custom category. Then select the SP Site Lists Web part and click Add.

	7.	 The resulting Web part will look similar to the one in Figure 6-12.
Click the Get Lists button, and this will invoke the myButton_Click
event, which will populate the listbox with all of the lists from the
SharePoint site.

How It Works

To start with, the controls used in this custom Web part were declared at the class level. Also, you used
the onPreRender method to set the Text property of the button. This is because you don’t typically
want to perform your UI processing in the CreateChildControls method. There was only one prop-
erty to set in this method, but you could imagine that, as you use more controls in your Web parts, you
perform more processing within the OnPreRender method.

 protected override void OnPreRender(EventArgs e)
 {
 getLists.Text = “Click”;
 }

As you’ve seen before, the controls were then added to the Controls collection in the
CreateChildControls method, and the getLists_Click event was added here as well.

 protected override void CreateChildControls()
 {

 this.Controls.Add(getLists);
 this.Controls.Add(mySPLists);
 getLists.Click += new EventHandler(getLists_Click);

 }

In Chapter 4, you saw a number of common developer tasks — one of which was leveraging the server-
side object model. In this example, the getLists_Click event uses the server-side object model to
provide an enumeration of all the lists in the site. The server-side object model is an efficient way to
program Web parts because you are processing server-side code, as opposed to calling Web services (for
example, using the Lists Web service).

By creating a button and a listbox, it’s possible to tie these two controls together through the
getLists_Click event. Given that this is the key event in the example, the code (using the server-side
object model) sets the site context with the first using statement (which gets the site reference from the

Figure 6-12  Site list

584637c06.indd 232 5/2/10 7:13:17 PM

Visual Web Parts  ❘  233

string variable mySiteURL). You can see that the string listInfo then gets the title of each list, which is
then added to the listbox (mySPLists).

 void getLists_Click(object sender, EventArgs e)
 {
 using (SPSite mySiteCollection = new SPSite(mySiteURL))
 {
 using (SPWeb mySPSite = mySiteCollection.RootWeb)
 {
 foreach (SPList myList in mySPSite.Lists)
 {
 listInfo = myList.Title.ToString();
 mySPLists.Items.Add(listInfo);
 }
 }
 }
 }

Visual Web Parts

Building custom Web parts using the standard project template is effective, but you may want to
quickly design a UI for your Web part without having to build it out manually. This is where you
can use Visual Web parts. Visual Web parts are different from standard Web parts in that they
include an additional user control, which represents the UI for your Web part.

When you build and deploy your custom Web part using the Visual Web part template, the user
control is deployed to the SharePoint root — specifically to the CONTROLTEMPLATES folder (that is,
c:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\TEMPLATE\

CONTROLTEMPLATES). A new folder will be created as a subdirectory in the CONTROLTEMPLATES for
your custom user control UI (.ascx file).

There are some differences when you create a new Visual Studio project using the Visual Web part
project template as opposed to the Web part item template.

When you look at the core Web part class, you’ll see some additional code that is added by default,
which is displayed as bolded code in the following snippet:

…

namespace WroxVisualWPProject.CustomerData
{
 [ToolboxItemAttribute(false)]
 public class CustomerData : WebPart
 {
 private const string _ascxPath =
 @”~/_CONTROLTEMPLATES/WroxVisualWPProject/
 CustomerData/CustomerDataUserControl.ascx”;

 public CustomerData()

584637c06.indd 233 5/2/10 7:13:17 PM

234  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

 {
 }

 protected override void CreateChildControls()
 {
 Control control = this.Page.LoadControl(_ascxPath);
 Controls.Add(control);
 base.CreateChildControls();
 }

 protected override void RenderContents(HtmlTextWriter writer)
 {
 base.RenderContents(writer);
 }
 }
}

This code manages the user control that you build and design using the Visual Web Part Designer.
For example, you can see that there is a string variable called _ascxPath, which points to the .ascx
(that is, the user control) where the UI portion of the Web part will be stored. Then, using the path
to the UI as a parameter, the code creates an instance of a Control and then adds this one control to
the Controls collection.

NOTE  ​The Visual Web part described here has the inherent limitation of not being
able to be deployed at the sandboxed level, because of the file system reference
to retrieve the .ascx control. However, as of this writing, there is a community proj-
ect on Codeplex that provides a Visual Web part that enables farm-level trust. For
more information, go to http://sharepointdevtools.codeplex.com/.

When using a standard Web part, you were building and adding your own individual controls and
adding each instance of the control to the Controls collection. In this case, you’re using only the
Control object, which loads your entire UI at once.

The Designer experience can save you some time when developing the UI for your Web part applica-
tions. Let’s put this into practice.

To complete the next walkthrough, you’ll create a new list that looks like Figure 6-13. Name the
list Stats, which will represent a list of players with some associated game stats (all fields of type
“Single line of text”). Change the Title column to be Name, and then add four more columns that
will replicate a simple stats list (Goals, Assists, PIM, and Games Played).

Figure 6-13  Stats list

584637c06.indd 234 5/2/10 7:13:17 PM

Visual Web Parts  ❘  235

The list shown in Figure 6-13 contains a number of players with their goals, assists, penalties in
minutes (PIM), and the number of games played. You’ll create a Visual Web part that pulls this data
into a control, then provides an aggregated stat for each player, and also enables you to edit the sta-
tistics from within the Visual Web part.

Also, one of the controls you’ll use in this exercise is the UpdatePanel control. The UpdatePanel is
an Ajax server control that reduces full-page postbacks by enabling partial-page rendering. This pro-
vides a better experience for the user by mitigating the need for the entire page to refresh and update
when you’re executing an event within one Web part on the page.

With the list created, let’s walk through the exercise.

Creating a Visual Web PartTry It Out	

Code file [AjaxVWP.zip] available for download at Wrox.com.

Visual Web parts are very powerful Web parts that provide a built-in Designer to create your UI. To
create a Visual Web part, follow these steps:

	1.	 Click File ➪ New Project ➪ Empty SharePoint Project. Provide a name for your project (for exam-
ple, AjaxVWP), and click OK. When prompted, select “Deploy as farm solution,” and click Finish.

	2.	 When the project has been created, right-click the project and click Add ➪ New Item. From the
SharePoint 2010 template folder, select the “Visual Web item” template. Provide a name for the
new Web part (AjaxVisualWebPart), and click OK.

	3.	 You’re going to add a custom object to the project, so right-click the project and click Add ➪ Class.
Provide a name for the class (for example, PlayerStat), and click OK. The class will have six prop-
erties, which you can set as string variables, as shown in the following (bolded) code snippet:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace AjaxVWP
{
 class PlayerStat
 {
 public string playerName { get; set; }
 public string gamesPlayed { get; set; }
 public string numOfGoals { get; set; }
 public string numOfAssists { get; set; }
 public string numOfPIM { get; set; }
 public string playerAVG { get; set; }
 }
}

	4.	 At this point, your project should contain a number of
files that look similar to the project structure shown in
Figure 6-14. Figure 6-14  Project structure

584637c06.indd 235 5/2/10 7:13:17 PM

236  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

	5.	 With the project created, since you already have your data source
(the SharePoint list), you’ll now want to create the UI for the Visual
Web part. To do this, right-click the .ascx node (for example,
AjaxVisualWebPartUserControl.ascx node) and then click View
Designer. Click View ➪ Toolbox to see the controls that you can drag
and drop onto the Designer.

	6.	 Drag and drop an UpdatePanel control onto the Designer and pro-
vide a new ID (for example, viewDataUpdatePanel). Switch to source
view, and then add a ContentTemplate element to the UpdatePanel
object as shown in the following code snippet:

…
<asp:UpdatePanel ID=”viewDataUpdatePanel” runat=”server”>
 <ContentTemplate>
 </ContentTemplate>
</asp:UpdatePanel>
…

	7.	 Now, add eight labels, one datagrid, three buttons, and four textboxes
to the Designer’s surface — the datagrid and one button should be
added to the UpdatePanel. When you’re finished, the controls will
likely be arranged similarly to those shown in Figure 6-15.

Table 6-1 provides a summary of the control type and names that you’ll add to the Visual Web part.

Table 6-1  Control Type and Names

Type Name

UpdatePanel viewDataUpdatePanel

Label lblTitle, lblRead, lblWrite, lblPlayer, lblGames, lblGoals,
lblAssists, lblPIM

Datagrid statDataGrid

Button btnDataGridLoad, btnAdd, btnClear

Textbox txtbxGames, txtbxGoals, txtbxPIM

	8.	 Click the Source tab in the Visual Studio IDE, and you’ll see the source that makes up the user con-
trol that you’ll load as a part of this Web part. The code should look similar to the following code
snippet when you’re done adding the controls to the Designer. Note that, in the following code,
the part of the application that reads data will be rendered within the Ajax control, and the part of
the application that writes data will render outside of the Ajax UpdatePanel control. Also note a
table has been used to amend the Visual Web part UI to be more structured. This is not the Table
server-side control in the Toolbox, but rather a regular HTML table.

<%@ Assembly Name=”$SharePoint.Project.AssemblyFullName$” %>
<%@ Assembly Name=”Microsoft.Web.CommandUI, Version=14.0.0.0, Culture=neutral,

Figure 6-15  Visual Web
part UI layout

584637c06.indd 236 5/2/10 7:13:18 PM

Visual Web Parts  ❘  237

 PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”SharePoint” Namespace=”Microsoft.SharePoint.WebControls”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”Utilities” Namespace=”Microsoft.SharePoint.Utilities”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”asp” Namespace=”System.Web.UI” Assembly=
 “System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” %>
<%@ Import Namespace=”Microsoft.SharePoint” %>
<%@ Register Tagprefix=”WebPartPages” Namespace=”Microsoft.SharePoint.WebPartPages”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Control Language=”C#” AutoEventWireup=”true”
 CodeBehind=”AjaxVisualWebPartUserControl.ascx.cs”
 Inherits=”AjaxVWP.AjaxVisualWebPart.AjaxVisualWebPartUserControl” %>
<asp:Label ID=”lblTitle” runat=”server” Text=”Player Stats” Font-Size=”Large”
 Font-Bold=”True”></asp:Label>

<asp:UpdatePanel ID=”viewDataUpdatePanel” runat=”server”>
 <ContentTemplate>
 <asp:Label ID=”lblRead” runat=”server” Text=”View Existing Player Stats”
 Font-Italic=”True”></asp:Label>

 <asp:GridView ID=”statDataGrid” runat=”server”
 Height=”69px”>
 </asp:GridView>

 <asp:Button ID=”btnDataGridLoad” runat=”server”
 Text=”Load” />

 <hr />

 <asp:Label ID=”lblWrite” runat=”server” Text=”Add Player Stat”
 Font-Italic=”True”></asp:Label>

 </ContentTemplate>
</asp:UpdatePanel>
<table border=”0” width=”25%”><tr>
<td><asp:Label ID=”lblPlayer” runat=”server” Text=”Player:”></asp:Label></td>
<td><asp:TextBox ID=”txtbxName” runat=”server” Width=”157px”></asp:TextBox>
</td></tr><tr>
<td><asp:Label ID=”lblGames” runat=”server” Text=”Games:”></asp:Label></td>
<td><asp:TextBox ID=”txtbxGames” runat=”server” Width=”157px”></asp:TextBox>
</td></tr><tr>
<td><asp:Label ID=”lblGoals” runat=”server” Text=”Goals:”></asp:Label></td>
<td><asp:TextBox ID=”txtbxGoals” runat=”server” Width=”157px”></asp:TextBox></td>
</tr><tr>
<td><asp:Label ID=”lblAssists” runat=”server” Text=”Assists:”></asp:Label></td>
<td><asp:TextBox ID=”txtbxAssists” runat=”server” Width=”157px”></asp:TextBox></td>
</tr><tr>
<td><asp:Label ID=”lblPIM” runat=”server” Text=”PIM:”></asp:Label></td>
<td><asp:TextBox ID=”txtbxPIM” runat=”server” Width=”157px”></asp:TextBox></td>

584637c06.indd 237 5/2/10 7:13:18 PM

238  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

</tr><tr><td></td>
<td><asp:Button ID=”btnAdd” runat=”server” Text=”Add”/>
 <asp:Button ID=”btnClear” runat=”server” Text=”Clear”
 />
 </td></tr></table>

	9.	 With the UI now complete, you’ll add some events to the application. Double-click each of the but-
tons to generate the placeholder events in your code behind.

	10.	 After you do this, if you right-click the .ascx file and select View Code, you should see something
similar to the following code snippet.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using SPClientOM = Microsoft.SharePoint.Client;
using Microsoft.SharePoint.Client;
using System.Collections.Generic;
using System.Linq;
using System.Data;

namespace AjaxVWP.AjaxVisualWebPart
{
 public partial class AjaxVisualWebPartUserControl : UserControl
 {

 protected void Page_Load(object sender, EventArgs e)
 {

 }

 protected void btnDataGridLoad_Click(object sender, EventArgs e)
 {

 }

 protected void btnEdit_Click(object sender, EventArgs e)
 {

 }

 protected void btnAdd_Click(object sender, EventArgs e)
 {

 }
 }
}

	11.	 Switch to the code view of the Visual Web part, and then add the following bolded code to your
code behind. Note that you will want to set the mySiteURL string variable to your own SharePoint
server URL.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;

584637c06.indd 238 5/2/10 7:13:18 PM

Visual Web Parts  ❘  239

using System.Web.UI.WebControls.WebParts;
using System.Collections.Generic;
using Microsoft.SharePoint;

namespace AjaxVWP.AjaxVisualWebPart
{
 public partial class AjaxVisualWebPartUserControl : UserControl
 {

 List<PlayerStat> listOfPlayerStats = new List<PlayerStat>();
 //Set this string to your own SharePoint site URL.
 string mySiteURL = “http://intranet.contoso.com”;

 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void btnDataGridLoad_Click(object sender, EventArgs e)
 {
 statDataGrid.Width = Unit.Percentage(100);
 statDataGrid.CellPadding = 1;
 statDataGrid.HeaderStyle.Font.Bold = true;
 statDataGrid.HeaderStyle.CssClass = “ms-vh1”;
 statDataGrid.GridLines = GridLines.Horizontal;
 statDataGrid.BorderWidth = Unit.Pixel(3);
 statDataGrid.HeaderStyle.HorizontalAlign = HorizontalAlign.Left;

 using (SPSite mySiteCollection = new SPSite(mySiteURL))
 {
 using (SPWeb web = mySiteCollection.OpenWeb())
 {
 SPList myList = web.Lists[“Stats”];

 foreach (SPListItem tempListItem in myList.Items)
 {
 PlayerStat tempStat = new PlayerStat();
 tempStat.playerName = tempListItem[“Title”].ToString();
 tempStat.numOfGoals = tempListItem[“Goals”].ToString();
 tempStat.numOfAssists = tempListItem[“Assists”].ToString();
 tempStat.numOfPIM = tempListItem[“PIM”].ToString();
 tempStat.gamesPlayed = tempListItem[“Games”].ToString();
 tempStat.playerAVG = calcPlayerAverage(tempStat.gamesPlayed,
 tempStat.numOfGoals, tempStat.numOfAssists);
 listOfPlayerStats.Add(tempStat);
 }
 }
 }

 statDataGrid.DataSource = listOfPlayerStats;
 statDataGrid.DataBind();

 }

 protected void btnAdd_Click(object sender, EventArgs e)
 {
 using (SPSite mySiteCollection = new SPSite(mySiteURL))

584637c06.indd 239 5/2/10 7:13:18 PM

240  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

 {
 using (SPWeb web = mySiteCollection.OpenWeb())
 {
 web.AllowUnsafeUpdates = true;

 SPList list = web.Lists[“Stats”];
 SPListItem newStat = list.Items.Add();

 newStat[“Title”] = txtbxName.Text;
 newStat[“Goals”] = txtbxGoals.Text;
 newStat[“Assists”] = txtbxAssists.Text;
 newStat[“PIM”] = txtbxPIM.Text;
 newStat[“Games”] = txtbxGoals.Text;
 newStat.Update();

 web.AllowUnsafeUpdates = false;
 }
 }
 }

 protected void btnEdit_Click(object sender, EventArgs e)
 {
 txtbxName.Text = ““;
 txtbxGames.Text = ““;
 txtbxGoals.Text = ““;
 txtbxAssists.Text = ““;
 txtbxPIM.Text = ““;
 }

 private string calcPlayerAverage(string games, string goals,
 string assists)
 {
 int numGames = Int32.Parse(games);
 int numGoals = Int32.Parse(goals);
 int numAssists = Int32.Parse(assists);
 double avgStat = 0.00;

 avgStat = (numGoals * 2) + (numAssists * 1) / numGames;

 return avgStat.ToString();
 }
 }
}

	12.	 Click Build ➪ Deploy Solution, which will build and deploy the visual Web part to your SharePoint
server. (You can alternatively press F5 to debug your Web part.)

	13.	 Once it is successfully deployed, navigate to your SharePoint site and to the Web part page you cre-
ated earlier in the chapter.

	14.	 Click Site Actions ➪ Edit Page ➪ “Add a web part.”

	15.	 Select the Custom Web Part category, and then click the newly deployed Visual Web part. Click
Add. Click the Load button to load the current data from the SharePoint Stats list. Note that,
when you load the data from the SharePoint list, a new column is added, and a calculated value is

584637c06.indd 240 5/2/10 7:13:18 PM

Visual Web Parts  ❘  241

added to the column based on data from the other columns in the list. The results should look simi-
lar to Figure 6-16.

Figure 6-16  Visual Web part (read portion)

	16.	 To add a player and some stats for that player, enter some data in the fields and click Add. Then
click Load again to reload and view the newly added data. The new record should then be dis-
played with “Ken Staahl,” as shown in Figure 6-17.

Figure 6-17  Visual Web part (read and write)

How It Works

The Visual Web part is the result of your creating and designing a user control via the designer experi-
ence, then integrating the user controls with the Web part code behind, and then deploying the UI and
the corresponding code behind as an integrated whole to SharePoint. In this example, you built your UI
around a read operation and a write operation.

The read operation was wrapped with an Ajax UpdatePanel object, which eliminated the postback on
the page when you used that part of the Web part. You did not, however, wrap the write operation with

584637c06.indd 241 5/2/10 7:13:18 PM

242  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

the UpdatePanel object. So, when you add the new player to the list, you’ll see the page reload when
the update to the SharePoint list is in process.

Note that, in the UI source, you require an event handler to map the controls you add to the designer to
your code-behind file. For example, the following two buttons have onClick events that are defined in
the UI source code as shown in the bolded code:

…
<tr>
<td></td>
<td><asp:Button ID=”btnAdd” runat=”server” Text=”Add” onclick=”btnAdd_Click”/>
 <asp:Button ID=”btnClear” runat=”server” Text=”Clear”
 onclick=”btnEdit_Click” />
 </td>
</tr>
…

With regard to the code behind, you’ll note that you are again using the server-side object model. You
could use other ways of interacting with the list within this custom Web part, such as the Lists Web
service. But, again, the server-side object model is the best option for server-side applications, and is the
most performant compared to the other options.

Within the code, you used a list collection object (listOfPlayerStats) to hold the data you get from
the Stats list. This is also the object you bind to the datagrid (statDataGrid).

List<PlayerStat> listOfPlayerStats = new List<PlayerStat>();

Even though you used the designer experience to drag and drop a datagrid onto the surface of your
Web part UI, you programmatically format the datagrid in this example. You could equally do this by
editing the properties in the designer view.

The key server-side object model code managed the read and write operations against the Stats list.
For example, the btnDataGridLoad_Click event leverages the using statements to set context for the
SharePoint site, get the Stats list, and then enumerate through each of the list items — mapping each
list item to a property in the PlayerStat object. You iterate through each of the list items until you’ve
populated the PlayerStat object with all of the data from the list. Note that you dynamically call the
calcPlayerAverage helper function, which dynamically calculates the average based on the informa-
tion from the list, and adds that average as the last column in the PlayerStat object.

…
 using (SPSite mySiteCollection = new SPSite(mySiteURL))
 {
 using (SPWeb web = mySiteCollection.OpenWeb())
 {
 SPList myList = web.Lists[“Stats”];

 foreach (SPListItem tempListItem in myList.Items)
 {
 PlayerStat tempStat = new PlayerStat();
 tempStat.playerName = tempListItem[“Title”].ToString();
 tempStat.numOfGoals = tempListItem[“Goals”].ToString();
 tempStat.numOfAssists = tempListItem[“Assists”].ToString();
 tempStat.numOfPIM = tempListItem[“PIM”].ToString();

584637c06.indd 242 5/2/10 7:13:18 PM

Visual Web Parts  ❘  243

 tempStat.gamesPlayed = tempListItem[“Games”].ToString();
 tempStat.playerAVG = calcPlayerAverage(tempStat.gamesPlayed,
 tempStat.numOfGoals, tempStat.numOfAssists);
 listOfPlayerStats.Add(tempStat);
 }
 }
 }
…

The write function is the btnAdd_Click event, which again leverages the using statements to set con-
text. In this using block, though, you create a new list item (newItem), set the properties of the list
item, and then call the Update method to add the new record to the list.

…
 using (SPSite mySiteCollection = new SPSite(mySiteURL))
 {
 using (SPWeb web = mySiteCollection.OpenWeb())
 {
 web.AllowUnsafeUpdates = true;

 SPList list = web.Lists[“Stats”];
 SPListItem newStat = list.Items.Add();

 newStat[“Title”] = txtbxName.Text;
 newStat[“Goals”] = txtbxGoals.Text;
 newStat[“Assists”] = txtbxAssists.Text;
 newStat[“PIM”] = txtbxPIM.Text;
 newStat[“Games”] = txtbxGoals.Text;
 newStat.Update();

 web.AllowUnsafeUpdates = false;
 }
 }
…

The Visual Web part provides a great way to quickly design a UI for your Web part using the
designer experience. You can, however, create equally compelling custom Web parts regardless of
what type of Web part template you use. As you saw in this exercise, adding Ajax controls to your
Web part can enhance the design of your Web part. For example, in this section, you saw how you
could use the UpdatePanel to mitigate postback page flickers.

NOTE  ​The UpdatePanel can be a very effective way to manage the postback
page behavior. However, if the processing on the server is protracted, you may
also want to design around this, or provide the application consumer with some
progress indicator. Otherwise, your user could be left wondering when the pro-
cess you are developing will finish.

584637c06.indd 243 5/2/10 7:13:18 PM

244  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

Custom Web Part Properties

After you’ve created your custom Web part, you can also add custom properties to the Web part
class. Custom properties allow you to add custom settings for your Web part that provide additional
functionality to consumers of your Web part.

You create Web part properties much like you create other properties in .NET. However, the syntax
of a Web part class includes some attributes specific to a Web part. For example, the following code
snippet shows an example of custom attributes that are associated with the custom Web part. These
attributes define the level of personalization for the Web part, designate the property to be displayed
in the property pane (specifically displaying it within a PropertyGridEditorPart object), and pro-
vides a name and description for the custom property.

 [Personalizable(PersonalizationScope.User),
 WebBrowsable,
 WebDisplayName(“Name”),
 WebDescription(“Description”)]

You can create any number of custom properties for a Web part. To show you how you can create a
custom property, let’s walk through a simple example. This example will add a list (an enum object)
as a custom property.

Creating a Simple Custom Web Part PropertyTry It Out	

Code file [CustomWebPartProperties.zip] available for download at Wrox.com.

Custom properties are great for extending your Web parts with additional options and settings that are
specific to a Web part. To create a custom Web part property, follow these steps:

	1.	 Open Visual Studio 2010, and click File ➪ New ➪ Project. Select the SharePoint node and then select
Empty SharePoint Project. Provide a name for the project (for example, CustomWPProperties) and
click OK. When prompted, select “Deploy as farm solution” and click Finish.

	2.	 Right-click the project, select Add ➪ New Item, and select Web Part in the SharePoint node.
Provide a name for the Web part (for example, WPPropertyExample) and click Add.

	3.	 Right-click the main Web part class file (for example, WPPropertyExample.cs) and click View Code.

	4.	 In the main Web part class file, add the following bolded code:

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using System.Xml.Serialization;

namespace CustomWPProperties.WPPropertyExample
{
 public class WPPropertyExample : WebPart

584637c06.indd 244 5/2/10 7:13:18 PM

Custom Web Part Properties  ❘  245

 {
 Label lblTitle = new Label();
 public enum SharePointLists
 {
 Stats,
 Players,
 Customers,
 Sales,
 Budget
 };

 protected SharePointLists listOfList;

 [Personalizable(PersonalizationScope.User),
 WebBrowsable,
 WebDisplayName(“Available Lists”),
 WebDescription(“Available Lists in SharePoint Site.”)]

 public SharePointLists MySticks
 {
 get { return listOfList; }
 set { listOfList = value; }
 }

 protected override void CreateChildControls()
 {
 lblTitle.Text = “Web Part with Property”;
 this.Controls.Add(lblTitle);
 }
 }
}

	5.	 When you have finished, select Build ➪ Deploy Solution to deploy
the Web part class to SharePoint.

	6.	 When the Web part deploys successfully, navigate to the top-level
site and click Site Actions ➪ Edit Page. Click on the wiki page.
Click the Insert tab and then select Web Part.

	7.	 Add the custom Web part.

	8.	 After you’ve added the Web part, click the down arrow to expose
the Web part menu. Select Edit Web Part.

	9.	 Navigate to the Miscellaneous section in the Property Editor, and
you’ll see the custom property you added earlier. Figure 6-18 shows
what the simple custom property looks like.

How It Works

This exercise walked you through how to create a custom property for a Web part. The Web part base
class exposes properties that you can programmatically set to display custom settings to users. In this

Figure 6-18  Custom Web
part properties

584637c06.indd 245 5/2/10 7:13:18 PM

246  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

example, you defined an enum (SharePointLists) that contained five mock SharePoint lists, and then
created an instance of the enum.

 public enum SharePointLists
 {
 Stats,
 Players,
 Customers,
 Sales,
 Budget
 };

 protected SharePointLists listOfList;

The property is exposed when you decorate the property declaration with the property attributes. For
example, in this walkthrough, you set the personalization scope to User (as opposed to Shared), displayed
the properties in the property pane, and then set the name and description of the custom property.

 [Personalizable(PersonalizationScope.User),
 WebBrowsable,
 WebDisplayName(“Available Lists”),
 WebDescription(“Available Lists in SharePoint Site.”)]

 public SharePointLists MySticks
 {
 get { return listOfList; }
 set { listOfList = value; }
 }

By default, the custom property targets the property pane to expose the additional functionality to the
user. If the custom property is not rich enough, you can create a custom tool part to manage your cus-
tom properties.

NOTE  ​For more information on how to create a custom tool part to man-
age custom properties, see http://msdn.microsoft.com/en-us/library/
dd584178(v=office.11).aspx.

Summary

Web parts are very versatile artifacts and act as core building blocks for your SharePoint site. You got a
taste of what you can do in this chapter. However, you have really only touched the tip of the iceberg.

As you’ll see later in the book, you can also integrate Silverlight into your Web parts to add another
dimension to your user experience. Thus, your Web parts can be simple designs incorporating a
small set of user controls, or they can be elaborate applications that contain multiple, integrated
pieces, or even connect with other Web parts on the Web part page.

584637c06.indd 246 5/2/10 7:13:18 PM

Summary  ❘  247

Through the last couple of chapters, you have learned how to interact with lists and Web parts. In
Chapter 7, you will apply that knowledge and build a small sales dashboard solution.

Exercises	

	 1.	 What is the architectural foundation for Web parts in SharePoint?

	 2.	 What are some out-of-the-box SharePoint Web parts?

	 3.	 What are the levels of scope for configuring Web parts?

	 4.	 What are the two types of Web part templates that are available in Visual Studio 2010? How
are they different? What would you do with one versus the other (in terms of the types of
applications you build)?

	 5.	 Create a custom property using a custom tool part.

584637c06.indd 247 5/2/10 7:13:18 PM

248  ❘  Chapter 6   Building and Deploying SharePoint Web Parts

What You Learned in This Chapter⊲⊲

Item Description

Web Parts Web parts in SharePoint come in different flavors. There are also native
and custom Web parts available for your use.

Web Part Architecture Web parts are contained within a Web part zone, which is further man-
aged by a Web Part Manager.

Standard Web Part The standard Web part is a specific type of Web part that is created using
the Visual Studio 2010 tools. You must manually create the UI, but you
can create some compelling Web parts with this template.

Visual Web Part The Visual Web part shares the baseline Web part programmability capa-
bilities, but provides a more advanced UI designer experience than the
standard Web part.

Recommended Reading

Additional community developer tools at ➤➤ http://sharepointdevtools.codeplex.com/

SharePoint Development Center on MSDN at ➤➤ http://msdn.microsoft.com/sharepoint/

Channel 9 SharePoint Developer Learning Center at ➤➤ http://channel9.msdn.com/learn/

courses/SharePoint2010Developer/

584637c06.indd 248 5/2/10 7:13:19 PM

Creating Your First SharePoint
2010 Application

What You’ll Learn In This Chapter:

Creating a solution that reads and writes data to and from a list using ➤➤

the server-side object model and Visual Web parts

Building and deploying the solution using Visual Studio 2010➤➤

Using the Chart Web part to render list data➤➤

Integrating the different Visual Web parts in the solution on a Web ➤➤

part page

In this chapter, you’ll work through the software design lifecycle with the end goal of building
a SharePoint application. You’ve already built a number of smaller applications over the past
few chapters, so you should think of this chapter as bringing some of this learning together
into one application. However, in this chapter, what you will do is use a subset of the things
you’ve learned over the past few chapters and apply them to the software design process. That
is, you’ll start out with a relatively simple set of requirements and, from there, design and
deploy an application that will satisfy those requirements. For the most part, you’ll be sticking
to things you’ve learned thus far.

You’ll first get a sense for the set of requirements for what will eventually be a simple sales
reporting solution. Next, you’ll create an architecture that will satisfy the design of the appli-
cation. You’ll use lists as the data source, and Web parts as the point of entry for the user. And
finally, you’ll traverse the major design components of your application. There will be three
parts to the solution in total, including custom lists, custom Web parts, and leveraging the
Chart Web part.

So, let’s get started!

7

584637c07.indd 249 5/2/10 7:13:29 PM

250  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

Requirements
The software design process involves an iterative approach to building and deploying software. The
process involves a number of core steps, which, at a high level, include the following:

Defining the problem➤➤

Defining a set of requirements that address the problem➤➤

Designing a software solution around the requirements➤➤

Developing the software solution➤➤

Testing the software solution➤➤

Deploying the software into a production environment➤➤

Revving the software➤➤

Depending on the solution you’re building, this process can be very complex, and involve many
people ranging from project and product managers to developers and testers. It is, though, an excit-
ing and creative process that involves negotiation (for example, on the priorities of the requirements)
and rigor (for example, ensuring that you’re making the right design choices for the software).

This process is called a cycle because after you complete one successful release of a product, you then
start back at the top and “rev” the software to include new requirements or design elements that require
incremental deployments of the software into the production environment. While the process is some-
what simplified, this is essentially the process you would go through when developing software.

The environment within which you build, test, and deploy software is varied, and for SharePoint,
you should ideally have a development environment, as well as both a staging and production envi-
ronment, where you can build and test your solutions. Further, depending on the size of your orga-
nization, you’ll find that the process and environment just described may be spread across multiple
staging environments and managed by multiple people. Or, it may be very agile, where only one to
two developers manage the development and testing process, and the development, staging, and pro-
duction environments are more collapsed.

To get started in any software design, you must address a problem. In this chapter, the problem can
be stated as follows:

I’m a Litware account manager, and right now, I don’t have visibility into the
sales for my accounts.

The solution you’ll build in this chapter will be a sales dashboard and will provide a view into the
quarter-by-quarter sales of a set of select companies.

The requirements to satisfy this problem are as follows:

The solution will use lists as the source for the company data. ➤➤

There must be multiple views into the data. ➤➤

There must be a quick way to enter customer records close to the data view and have it ➤➤

reflected in the list.

The list view should be displayed in a datagrid for easy viewing. ➤➤

584637c07.indd 250 5/2/10 7:13:29 PM

Solution Design  ❘  251

The solution must have a way to aggregate sales into a FY10 quarterly total.➤➤

A simple chart must show a fiscal comparison. ➤➤

The solution only requires current (that is, FY10) fiscal data to be displayed — but the chart ➤➤

must provide a comparison of FY10 versus past fiscal data.

All of the core constituents of the solution must be visible on one SharePoint site or page. ➤➤

You’re probably grinning to yourself now, because, for those who have had experience with require-
ments, the list is typically long and egregious — and often involves countless hours of discussions
and bargaining for priorities across multiple stakeholders. For illustrative purposes, it will be kept
simple here.

So, now you have the requirements. The questions now are how will you architect the solution and
what are the design choices you’ll make when creating your sales dashboard?

Solution Design

With any architectural decisions, there will again be some back and forth discussion. Often, dur-
ing this stage, you’ll create a specification and review this document (which will outline a design,
architecture, user experience, and sometimes APIs) with the key stakeholders in the project. In some
organizations, these documents are broken out into different documents — one for the user experi-
ence, another for design or APIs, another for test, and so on.

To address the theoretical problem and create the sales solution, you propose a solution where you
have the following:

Two lists that will store information about each customer and their FY10 quarterly sales data, as ➤➤

well as a separate list that will contain information about the aggregate sales per fiscal year

Three Visual Web parts that enable you to surface sales data in a datagrid, and also leverage ➤➤

the designer to build a simple data-entry form

A Chart Web part that will reflect the most recent sales tallies, and provide a graphical FY09-➤➤

to-FY10 comparison

With these decisions in hand, you can now create a high-level design architecture of how these
pieces work together. Figure 7-1 provides an overview of how you might sketch out this design.

Add
Customer

View

Customer
Sales View

Customer Sales

Total Sales
View

Chart
View

Total Sales

Figure 7-1  Sample solution architecture

584637c07.indd 251 5/2/10 7:13:29 PM

252  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

In Figure 7-1, you can see that there are two main data sources: the Customer Sales list and the
Total Sales list. For this application, you’ll use the native SharePoint lists as the data source.
However, as you increase your SharePoint knowledge, pay some attention to the integrations with
Web services, SQL, and through the Business Connectivity Services (BCS). These represent other
valid ways to integrate with external data sources.

NOTE  ​BCS is discussed in more detail in Chapter 8, and Web services are dis-
cussed in Chapter 10.

The two data lists have four associated views that together will satisfy the requirements. The Add
Customer View will enable the user to add records to the Customer Sales list. The Customer Sales
View will provide a view of the quarterly totals for each of the customers in the Customer Sales
list. The Total Sales View will provide an aggregate view of all sales across all quarters and custom-
ers for FY10, which will be stored in the Total Sales list. And the Chart View will render the data
in the Total Sales list.

As you work through this architecture, the question you may be asking yourself is, "How do you
implement this design?" And, while the answers in this chapter may be based on the past couple of
chapters (for example, using custom Web parts), your answers later in the book may be different (for
example, using InfoPath or Silverlight). You may make design, security, or performance trade-offs,
depending on your eventual solution (and the intended audience for that solution). However, this
process is expected, and you should expect to decide across different options when trying to figure
out a design. That is, you should have options that could take you toward resolving the same issue.

At this point, depending on how much branding and design you want to exert across the site, you
may make some mock-ups of the site. For larger applications, you would certainly do this; for an
application of this size, you may simply create a prototype as a starting point.

Customer Sales and Total Sales Lists

With the architecture complete, you’ll now want to get down to creating the prerequisite lists — that
is the Customer Sales and Total Sales lists. Within the design, you have two lists. The first list
will store information about the company and the quarterly sales for FY10. For example, Figure 7-2
provides an overview of what your first list might look like. It has a Company column (of type
"Single line of text") and four columns (one for each quarter) entitled Q1, Q2, Q3, and Q4 (also
of type "Single line of text"). You’ll want to create a list that looks like this one.

Figure 7-2  Quarterly fiscal data in list (Customer Sales)

584637c07.indd 252 5/2/10 7:13:29 PM

Customer Sales and Total Sales Lists  ❘  253

The second list (shown in Figure 7-3) is a simple list
comprising two columns — one called Year (for
the fiscal year) and another called Sales for total
aggregate sales. You could leave this blank with
data, or, to have a more meaningful chart, you could
add some information so that it looks like the data
in Figure 7-3. The Year column should be of type
"Single line of text," and the Sales field should be of type Number.

NOTE  ​In this exercise, you create the lists manually. However, you can deploy
a list definition and list instance with your solution so that you can package and
deploy your solution as a self-contained WSP without worry for a user having to
create the lists. This is possible by creating a SharePoint project, and then add-
ing a list definition and instance of that list. Figure 7-4 shows the Visual Studio
2010 project template that is available for this purpose.

Figure 7-4  List Definition template

Now that you’ve built the Customer Sales and Total Sales lists, you can now move on to the sec-
ond phase of the solution: building the Web part interfaces for your dashboard.

Figure 7-3  Aggregate sales list (Total Sales)

584637c07.indd 253 5/2/10 7:13:29 PM

254  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

Building the Application
There are four phases to the development of the application. For this solution, it makes sense to
develop the capability to add a record to the Customer Sales list first, and then build the other
components around that. The other components will read and present data that has been entered
into the SharePoint lists.

To get started, create a new solution that will be the main solution for all of your SharePoint projects.

Creating Your SolutionTry It Out	

Creating a blank solution will enable you to add shell projects to the solution, and to provide a starting
point for your solution development. To create a blank solution, follow these steps:

	1.	 Open Visual Studio 2010.

	2.	 Click File ➪ New ➪ Project.

	3.	 Navigate to Other Project Types and select Visual Studio Solutions.

	4.	 Click Blank Solution, and provide a name for your top-level solution (for example,
MyFirstSPSolution).

How It Works

Visual Studio 2010 solutions provide the top-level entry point for your project files. A solution file is sim-
ply a reference file that, when invoked, loads all of the projects you add to that top-level solution file.

Adding a Record to the Sales List
The main interface for this part of the solution is a Visual Web part, and you’ve seen something
similar to this in Chapter 6. Essentially, you’ll create a Visual Web part that accepts data from the
user and then adds this data to the SharePoint list.

You’ll remember from Chapter 5 that there are a number of ways you can develop against a list. For
example, you could use the native Web services, server object model, client object model, custom
WCF service, or even RESTful services. In this example, you’ll use the server-side object model.
However, you can try other ways if you want as well, since you’ve worked through a number of
examples in Chapter 5 that could be used here as well.

In the following walkthrough, you’ll create the Visual Web part that will add sales records to the
Sales list.

Creating the Sales Record Visual Web PartTry It Out	

Code file [MyFirstSPSolution.zip] available for download at Wrox.com.

A Visual Web part is a convenient way to create ASP.NET interfaces that integrate with SharePoint
2010. To create the Sales Record Visual Web part, follow these steps:

	1.	 Open the solution you created earlier in the chapter and right-click the solution. Select Add ➪
New Project.

584637c07.indd 254 5/2/10 7:13:30 PM

Building the Application  ❘  255

	2.	 Navigate to the SharePoint 2010 node and select Empty SharePoint Project. Provide a name for the
project (for example, CustomerSalesWebPart) and click OK. When prompted, select "Deploy as a
farm solution" and click Finish. Visual Studio adds a number of project files to the solution.

	3.	 Add a Visual Web part to the empty SharePoint project by right-clicking the project and selecting
Add ➪ New Item. In the SharePoint item template node, select Visual Web part. Provide a name (for
example, CustSalesVWP) and click Add.

	4.	 Right-click the .ascx file (for example CustSalesVWP.ascx) and
select "View in Designer.” This view may be open by default, and
to change to Design view, click the Design tab (or Split tab to show
both the Design and Code view together).

	5.	 Build a user interface that looks like Figure 7-5, which contains six
labels, five textboxes, and two link buttons. To do this, drag and
drop controls from the Toolbox onto the designer surface.

Table 7-1 provides an overview of the control types and the correspond-
ing names.

Table 7-1  Control Types and Names

Control Type Control Name

Label lblSalesTitle, lblCompany, lblQ1, lblQ2, lblQ3, lblQ4

Textbox txtbxCompanyName, txtbxQ1, txtbxQ2, txtbxQ3, txtbxQ4

Link button lnkbtnAdd, lnkbtnClear

	6.	 To provide some structure for the controls, you can also use an HTML Table object. Double-click
the two link-buttons to add event handlers in the code behind.

If you switch to Source view in the Designer, your code will look something like the follow-
ing. (Note that the directives that Visual Studio adds by default at the top of the page have been
removed in this code sample.)

…
<asp:Label ID=”lblSalesTitle” runat=”server” Text=”Add Sales Data”
 Font-Bold=”True” Font-Size=”Small” ForeColor=”#000066”></asp:Label>
<table border=”0” width=”25%”><tr><td>
<asp:Label ID=”lblCompany” runat=”server” Text=”Company:”
 ForeColor=”#000066”></asp:Label>
</td><td>
<asp:TextBox ID=”txtbxCompanyName” runat=”server” Width=”157px”></asp:TextBox>
</td></tr><tr><td>
<asp:Label ID=”lblQ1” runat=”server” Text=”Q1:” ForeColor=”#000066”></asp:Label>
</td><td>
<asp:TextBox ID=”txtbxQ1” runat=”server” Width=”157px”></asp:TextBox>
</td></tr><tr><td>
<asp:Label ID=”lblQ2” runat=”server” Text=”Q2:” ForeColor=”#000066”></asp:Label>
</td><td>
<asp:TextBox ID=”txtbxQ2” runat=”server” Width=”157px”></asp:TextBox>
</td></tr><tr><td>

Figure 7-5  Web part for
adding sales records

584637c07.indd 255 5/2/10 7:13:30 PM

256  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

<asp:Label ID=”lblQ3” runat=”server” Text=”Q3:” ForeColor=”#000066”></asp:Label>
</td><td>
<asp:TextBox ID=”txtbxQ3” runat=”server” Width=”157px”></asp:TextBox>
</td></tr><tr><td>
<asp:Label ID=”lblQ4” runat=”server” Text=”Q4:” ForeColor=”#000066”></asp:Label>
</td><td>
<asp:TextBox ID=”txtbxQ4” runat=”server” Width=”157px”></asp:TextBox>
</td></tr><tr><td></td><td>
<asp:LinkButton ID=”lnkbtnAdd” runat=”server”
 onclick=”lnkbtnAdd_Click”>Add</asp:LinkButton>
<asp:LinkButton ID=”lnkbtnClear” runat=”server”
 onclick=”lnkbtnClear_Click”>Clear</asp:LinkButton>
</td></tr></table>

	7.	 Switch to the code behind by right-clicking the .ascx (for example CustSalesVWP.ascx) file and
selecting View Code.

	8.	 Add the following using statement at the top of the project file:

using Microsoft.SharePoint;

	9.	 Next, add the following boldfaced code into the .ascx code behind (for example, CustSalesVWP.
ascx). Note that, in the code, you’ll want to change the current SharePoint site reference (http://
fabrikamhockey) to your SharePoint site URL.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;

namespace AddDataToSales.SalesDataEntry
{
 public partial class SalesDataEntryUserControl : UserControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void lnkbtnAdd_Click(object sender, EventArgs e)
 {
 //Be sure to update the SharePoint site to your server name.
 using (SPSite site = new SPSite(“http://fabrikamhockey”))
 {
 using (SPWeb web = site.OpenWeb())
 {
 web.AllowUnsafeUpdates = true;

 SPList list = web.Lists[“Customer Sales”];
 SPListItem newItem = list.Items.Add();
 newItem[“Title”] = txtbxCompanyName.Text;
 newItem[“_x0051_1”] = txtbxQ1.Text;

584637c07.indd 256 5/2/10 7:13:30 PM

Building the Application  ❘  257

 newItem[“_x0051_2”] = txtbxQ2.Text;
 newItem[“_x0051_3”] = txtbxQ3.Text;
 newItem[“_x0051_4”] = txtbxQ4.Text;
 newItem.Update();

 web.AllowUnsafeUpdates = false;
 }
 }
 }

 protected void lnkbtnClear_Click(object sender, EventArgs e)
 {
 txtbxCompanyName.Text = ““;
 txtbxQ1.Text = ““;
 txtbxQ2.Text = ““;
 txtbxQ3.Text = ““;
 txtbxQ4.Text = ““;
 }
 }
}

	10.	 When you’ve finished adding the code, right-click the project and select Build. When the project
successfully builds, right-click the project again and select Deploy. (Note that you can also edit the
.webpart file (for example CustSalesVWP.webpart) to provide an intuitive description and title
for your Web part.)

	11.	 Navigate to your SharePoint site, and create a new Web part page using the Silverlight-enabled
Create gallery. Click View All Site Content ➪ Create ➪ Page ➪ “Web Part page.” Click Create and
provide a name for the page (for example, Sales Dashboard).

	12.	 When the new page is loaded, click “Add a web part.” Select the
new Web part in the Custom category, and click Add. Your Web
part should look somewhat similar to Figure 7-6. (Note that the
name of the Web part listed in the gallery will reflect the Title
property you amended in the .webpart file.)

Test the Visual Web part to make sure it works. Add some data in the
fields and then click Add to add the record into the Customer Sales list
you created. You can validate that the data has been added by navigat-
ing to the Customer Sales list in your SharePoint site.

How It Works

You worked with this type of Visual Web part earlier in the book, and this application implements a
similar pattern against the list. Specifically, you’re using the SharePoint server-side object model to add
a new item to the list. The code sets the context, creates a new item to be added to the Customer Sales
list, loads them, and then calls the Update method to process the commands against SharePoint. Note
that you’ll want to ensure that you update the SharePoint site reference in this code (http://fabrikam-
hockey) with the name of your SharePoint site.

Figure 7-6  Web part for
adding sales records deployed

584637c07.indd 257 5/2/10 7:13:30 PM

258  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

As discussed earlier in the book, you could also access the list programmatically through the Lists Web
service, client object model (the Visual Web part is deployed to the server, so the client object model is
not well-suited for this scenario, but it does work), or a custom WCF service.

The creation of the newStat object enables you to update the fields in the list. But notice that, in this
sample, you’re accessing them by using the hexadecimal value of Q. This is because SharePoint can
sometimes interpret some string variants as Excel formulas, so, for these field references, you can either
use the specific string, or you can use the field GUID (in which case, you would not have to worry
about the field-level hexadecimal reference).

 SPList list = web.Lists[“Customer Sales”];
 SPListItem newStat = list.Items.Add();

newStat[“Title”] = txtbxCompanyName.Text;
newStat[“_x0051_1”] = txtbxQ1.Text;
newStat[“_x0051_2”] = txtbxQ2.Text;
newStat[“_x0051_3”] = txtbxQ3.Text;
newStat[“_x0051_4”] = txtbxQ4.Text;
newStat.Update();

mySPSiteContext.ExecuteQuery();

As you learn SharePoint, you’ll find that there are other ways to integrate data-entry forms to add data
to lists. For example, you might use InfoPath or Silverlight as different data-entry forms. Each of these
options has pros and cons, and both will be covered later in this book.

Viewing the Customer Sales
The Customer Sales Web part is a read-only Web part that is designed to simply load and display the
data in the Customer Sales list. For this part of the solution, you’ll use a Visual Web part with a
datagrid as the main data display control. Let’s get started building this control.

Creating the Customer Sales Web PartCode file Try It Out	

Code file [MyFirstSPSolution.zip] available for download at Wrox.com.

The datagrid is an effective way to bind and display data in any ASP.NET application. In this Web
part, you’ll create the capability to load and refresh data using the DataGrid control. To create the
Visual Web part, follow these steps:

	1.	 Select File ➪ New ➪ Project.

	2.	 Navigate to the SharePoint 2010 node and select Empty SharePoint Project. Provide a name for
the new project (for example, CustomerSalesList). In the Solution drop-down list, click "Add
to Solution."

	3.	 When prompted, click “Deploy as farm solution,” and click Finish.

	4.	 After the shell project has been created, right-click the project and select Add ➪ New Item.

584637c07.indd 258 5/2/10 7:13:30 PM

Building the Application  ❘  259

	5.	 Select the Visual Web part, provide a name (for example SalesVWP),
and click Add.

	6.	 Right-click the .ascx file (for example, SalesVWP.ascx) and select
View Designer. Click View ➪ Toolbox.

	7.	 Drag and drop two labels, one datagrid, one link button, and one
Update Panel onto the designer surface. Your UI should look simi-
lar to Figure 7-7. Note that you can provide some coloring for the
datagrid through the properties in the Properties window. Table 7-2
shows the control types and names.

Table 7-2  Control Types and Names

Control Type Control Name

Label lblTitle, lblRefreshTime

Update panel dataUpdatePanel

Datagrid custDataGrid

Link button lnkbtnLoadData

If you click the Source tab in the Designer view, the .ascx code behind should look similar to the
following code snippet. Note that the directives have been removed for brevity. Also note that, in
the following code snippet, the boldfaced code indicates the code that must be added to enable the
Ajax UpdatePanel control. This prevents the postback page flicker.

…
<p>
 <asp:Label ID=”lblTitle” Font-Size=”Small” Font-Bold=”True” runat=”server”
 Text=”Customer Sales Information (FY 10)” ForeColor=
 “#000066”></asp:Label>
</p>
<asp:UpdatePanel ID=”dataUpdatePanel” runat=”server”>
<ContentTemplate>
<table><tr><td>
<asp:GridView ID=”custDataGrid” runat=”server” BackColor=”#CCCCCC” CellPadding=”2”
 GridLines=”Horizontal” ToolTip=”Customer Sales Information (FY 10)”
 Width=”100%” ForeColor=”#000066”>
 <AlternatingRowStyle BackColor=”#FFFFCC” />
 <HeaderStyle BackColor=”#99CCFF” Width=”100%” />
 </asp:GridView>
</td></tr></table>
<table><tr><td>
<asp:LinkButton ID=”lnkbtnLoadData” runat=”server”
 onclick=”lnkbtnLoadData_Click”>Load</asp:LinkButton>
</td><td>
<asp:Label ID=”lblRefreshTime” runat=”server” Text=”Last Refreshed:”></asp:Label>
</td></tr></table>
</ContentTemplate>
</asp:UpdatePanel>

As discussed earlier in the book, you could also access the list programmatically through the Lists Web
service, client object model (the Visual Web part is deployed to the server, so the client object model is
not well-suited for this scenario, but it does work), or a custom WCF service.

The creation of the newStat object enables you to update the fields in the list. But notice that, in this
sample, you’re accessing them by using the hexadecimal value of Q. This is because SharePoint can
sometimes interpret some string variants as Excel formulas, so, for these field references, you can either
use the specific string, or you can use the field GUID (in which case, you would not have to worry
about the field-level hexadecimal reference).

 SPList list = web.Lists[“Customer Sales”];
 SPListItem newStat = list.Items.Add();

newStat[“Title”] = txtbxCompanyName.Text;
newStat[“_x0051_1”] = txtbxQ1.Text;
newStat[“_x0051_2”] = txtbxQ2.Text;
newStat[“_x0051_3”] = txtbxQ3.Text;
newStat[“_x0051_4”] = txtbxQ4.Text;
newStat.Update();

mySPSiteContext.ExecuteQuery();

As you learn SharePoint, you’ll find that there are other ways to integrate data-entry forms to add data
to lists. For example, you might use InfoPath or Silverlight as different data-entry forms. Each of these
options has pros and cons, and both will be covered later in this book.

Viewing the Customer Sales
The Customer Sales Web part is a read-only Web part that is designed to simply load and display the
data in the Customer Sales list. For this part of the solution, you’ll use a Visual Web part with a
datagrid as the main data display control. Let’s get started building this control.

Creating the Customer Sales Web PartCode file Try It Out	

Code file [MyFirstSPSolution.zip] available for download at Wrox.com.

The datagrid is an effective way to bind and display data in any ASP.NET application. In this Web
part, you’ll create the capability to load and refresh data using the DataGrid control. To create the
Visual Web part, follow these steps:

	1.	 Select File ➪ New ➪ Project.

	2.	 Navigate to the SharePoint 2010 node and select Empty SharePoint Project. Provide a name for
the new project (for example, CustomerSalesList). In the Solution drop-down list, click "Add
to Solution."

	3.	 When prompted, click “Deploy as farm solution,” and click Finish.

	4.	 After the shell project has been created, right-click the project and select Add ➪ New Item.

Figure 7-7  Visual Web part
design for Customer Sales

584637c07.indd 259 5/2/10 7:13:30 PM

260  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

	8.	 Right-click the project and select Add ➪ Class. Name the class CustomerSales and then add the
following boldfaced code to the default code.

namespace CustomerSalesList
{
 class CustomerSales
 {
 public string Company { get; set; }
 public string Q1 { get; set; }
 public string Q2 { get; set; }
 public string Q3 { get; set; }
 public string Q4 { get; set; }
 }
}

	9.	 After you’ve added the references, right-click the .ascx file (for example, SalesVWP.ascx) and
select View Code. This opens the code-behind view for the Web part.

	10.	 At the top of the project file, add the following using statements:

using System.Collections.Generic;
using Microsoft.SharePoint;

	11.	 In the code behind, add the following boldfaced code. Note that you’ll need to replace the current
SharePoint site reference (http://fabrikamhockey) with your SharePoint site URL.

using System;
using System.Linq;
using System.Text;
using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

using System.Collections.Generic;
using Microsoft.SharePoint;

namespace CustomerSalesList.CustomerSalesView
{
 public partial class CustomerSalesViewUserControl : UserControl
 {
 List<CustomerSales> listOfCustomerSales = new List<CustomerSales>();

 protected void Page_Load(object sender, EventArgs e)
 {

 }

 private void updateRefreshTime()
 {
 DateTime currentTime = DateTime.Now;
 string refreshMessage = “Last Refreshed: “;
 lblRefreshTime.Text = refreshMessage + currentTime.ToLongTimeString();
 }

 protected void lnkbtnLoadData_Click(object sender, EventArgs e)

584637c07.indd 260 5/2/10 7:13:30 PM

Building the Application  ❘  261

 {
//Be sure to replace the SharePoint site reference here.
 using (SPSite site = new SPSite(“http://fabrikamhockey”))
 {
 using (SPWeb web = site.OpenWeb())
 {
 SPList custSalesDataList = web.Lists[“Customer Sales”];
 SPQuery myCAMLQuery = new SPQuery();
 myCAMLQuery.Query = “<View/>”;
 SPListItemCollection mySalesListItems =
 custSalesDataList.GetItems(myCAMLQuery);

 foreach (SPListItem tempListItem in mySalesListItems)
 {
 CustomerSales custSaleInfo = new CustomerSales();
 custSaleInfo.Company = tempListItem[“Title”].ToString();
 custSaleInfo.Q1 = “$ “ + tempListItem[“_x0051_1”].
 ToString() + “.00”;
 custSaleInfo.Q2 = “$ “ + tempListItem[“_x0051_2”].
 ToString() + “.00”;
 custSaleInfo.Q3 = “$ “ + tempListItem[“_x0051_3”].
 ToString() + “.00”;
 custSaleInfo.Q4 = “$ “ + tempListItem[“_x0051_4”].
 ToString() + “.00”;
 listOfCustomerSales.Add(custSaleInfo);
 }
 }
 }
 custDataGrid.DataSource = listOfCustomerSales;
 custDataGrid.DataBind();
 updateRefreshTime();
 lnkbtnLoadData.Text = “Refresh”;
 }
 }
}

	12.	 After you’ve added the boldfaced code, right-click the project and select Build, and then select
Deploy Solution from the Build menu after the project successfully builds.

	13.	 Navigate to the same SharePoint page where you deployed the Add Sales Web part, and then click
Site Actions ➪ Edit ➪ “Add a web part.”

	14.	 Click Insert and then select Custom. Find the Web part you just built and deployed.

	15.	 When the Web part loads, it will contain no data.
Click the Load link button to load the data from the
Customer Sales list. After you’ve done this, use the
Add Sales Web part to add a customer programmati-
cally to the list, and then click Refresh. Note that
the Last Refreshed time is updated each time you
click the Refresh link button. The results should look
similar to Figure 7-8.

Figure 7-8  Customer Sales Information
Web part

584637c07.indd 261 5/2/10 7:13:30 PM

262  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

How It Works

Again, you have worked with this pattern before. That is, you’re using a list collection object and then
using the return data from the SharePoint list. You are iterating through the results, populating the list
collection, and then binding the collection to the datagrid. However, there are a couple of new code
excerpts in this Web part that you have not seen before.

The first is a helper function that provides the capability to refresh the data load time. For example, in
the following code snippet, you create a DateTime object, which is set to the current time, and then set
the Text property of the lblRefreshTime to be the current time you just set.

private void updateRefreshTime()
 {
 DateTime currentTime = DateTime.Now;
 string refreshMessage = “Last Refreshed: “;
 lblRefreshTime.Text = refreshMessage + currentTime.ToLongTimeString();
 }

While you’ve seen how to iterate through a set of return data and populate the data, note that, in this
case, you’re providing some additional formatting for the data by adding a currency symbol and deci-
mal places. You can do this in other ways programmatically in .NET, but this is a straightforward way
to hard-code some formatting into the returned data. For example, one way that you can do this is
by using the String.Format method, which supports passing in a string parameter and the amended
string format. Following is sample code:

String.Format(tempListItem[“_x0051_1”].ToString(), “.00”);
 foreach (SPListItem tempListItem in mySalesListItems)
 {
 …
 custSaleInfo.Q1 = “$ “ + tempListItem[“_x0051_1”].ToString() + “.00”;
 …
 }

NOTE  ​For more information on the String.Format method, go to: http://
msdn.microsoft.com/en-us/library/system.string.format.aspx.

Up to this point, you’ve created two Web parts. Now let’s create the last one to round out your pro-
gramming tasks.

Viewing the Total Sales
You now have a view of all of the customers and a way to add new customers into the Customer
Sales list. However, the way in which you want to satisfy the requirement of having an FY10 aggre-
gated view of the sales is to create another Web part that automatically tallies the quarterly values and
then exposes those in another datagrid. You’ll again leverage a pattern that you’ve learned about ear-
lier in this book. This time, though, you’ll also add some helper code to calculate the total sales.

584637c07.indd 262 5/2/10 7:13:30 PM

Building the Application  ❘  263

Creating the Aggregate Sales Web PartTry It Out	

Code file [MyFirstSPSolution.zip] available for download at Wrox.com.

This Web part will contain only one row of data within the datagrid. However, you want to use the
same type of color scheme and design, so you’ll create a Web part with two labels, a link button, and a
datagrid. Follow these steps:

	1.	 Right-click the solution and select Add ➪ New Project.

	2.	 Navigate to SharePoint 2010 and then select Empty SharePoint Project. Provide a name for the
project (for example, TotalSalesVisualWebPart) and then click OK. Select Deploy as farm solu-
tion and click Finish.

	3.	 After the project has been created, right-click the project and select
Add ➪ New Item. Navigate to the SharePoint 2010 node and
select Visual Web Part. Provide a name for the item (for example,
TotalSalesVWP) and click Add. When the item has been added,
right-click the .ascx file (for example, TotalSalesVWP.ascx) and
click View Designer.

	4.	 Click View ➪ Toolbox.

	5.	 Drag and drop two labels, one datagrid, and one link button, onto
the designer surface. Figure 7-9 provides an overview of what the
design of the Web part should look like. Table 7-3 shows the con-
trol types and names.

Table 7-3  Control Types and Names

Control Type Control Name

Label lblTitleTotalSales, lblRefreshMessage

Datagrid totalSalesDataView

Link button linkbtnLoad

If you click the Source tab in the Designer view, the .ascx code behind should look similar to the
following. Note that the directives have been removed for brevity.

…
<asp:Label ID=”lblTitleTotalSales” runat=”server”
 Text=”Total Aggregate Sales (FY 10)” Font-Bold=”True” Font-Size=”Small”
 ForeColor=”#000066”></asp:Label>
<p>
<asp:GridView ID=”totalSalesDataView” runat=”server” BackColor=”#FFFFCC”
 CellPadding=”2” ForeColor=”#000066” GridLines=”Horizontal”
 ToolTip=”Total Aggregate Sales (FY 10)” Width=”38%”>
 <HeaderStyle BackColor=”#99CCFF” Font-Bold=”True” HorizontalAlign=
 “Center” Width=”100%” /></asp:GridView>
</p>
<asp:LinkButton ID=”linkbtnLoad” runat=”server”
 onclick=”linkbtnLoad_Click”>Load</asp:LinkButton>
 <asp:Label ID=”lblRefreshMessage” runat=”server” Text=”Last Refreshed: “>
</asp:Label>

Figure 7-9  Total Aggregate
Sales Web part

584637c07.indd 263 5/2/10 7:13:30 PM

264  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

	6.	 Right-click the project and select Add ➪ Class. Call the class SalesTotals, and then add the fol-
lowing boldfaced code to the default code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace TotalSalesVisualWebPart
{
 class SalesTotals
 {
 public string compName { get; set; }
 public string Q1 { get; set; }
 public string Q2 { get; set; }
 public string Q3 { get; set; }
 public string Q4 { get; set; }
 }
}

	7.	 Right-click the project and select View Code. This opens the code behind view for the Web part.

	8.	 In the code behind, add the following boldfaced code. Note that you will need to replace the
SharePoint site reference in the code (http://fabrikamhockey) with your own SharePoint site URL.

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Collections.Generic;
using System.Data;
using Microsoft.SharePoint;

namespace TotalSalesVisualWebPart.TotalSalesWebPart
{
 public partial class TotalSalesWebPartUserControl : UserControl
 {
 int numOfCompanies = 0;
 int totalQ1 = 0;
 int totalQ2 = 0;
 int totalQ3 = 0;
 int totalQ4 = 0;
 int aggSales = 0;
 string[] totalSales = new string[4];
 DataTable salesTable = new DataTable();

 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void linkbtnLoad_Click(object sender, EventArgs e)
 {

//Be sure to replace the SharePoint site reference here.
 using (SPSite site = new SPSite(“http://fabrikamhockey”))
 {

584637c07.indd 264 5/2/10 7:13:30 PM

Building the Application  ❘  265

 using (SPWeb web = site.OpenWeb())
 {
 SPList custSalesDataList = web.Lists[“Customer Sales”];
 SPQuery myCAMLQuery = new SPQuery();
 myCAMLQuery.Query = “<View/>”;
 SPListItemCollection mySalesListItems =
 custSalesDataList.GetItems(myCAMLQuery);

 foreach (SPListItem tempListItem in mySalesListItems)
 {
 SalesTotals tempSalesObject = new SalesTotals();
 numOfCompanies += 1;
 tempSalesObject.compName = tempListItem[“Title”].ToString();
 tempSalesObject.Q1 = tempListItem[“_x0051_1”].ToString();
 totalQ1 = totalQ1 + Int32.Parse(tempSalesObject.Q1);
 tempSalesObject.Q2 = tempListItem[“_x0051_2”].ToString();
 totalQ2 = totalQ2 + Int32.Parse(tempSalesObject.Q2);
 tempSalesObject.Q3 = tempListItem[“_x0051_3”].ToString();
 totalQ3 = totalQ3 + Int32.Parse(tempSalesObject.Q3);
 tempSalesObject.Q4 = tempListItem[“_x0051_4”].ToString();
 totalQ4 = totalQ4 + Int32.Parse(tempSalesObject.Q4);
 }
 }
 }

 totalSales[0] = totalQ1.ToString();
 totalSales[1] = totalQ2.ToString();
 totalSales[2] = totalQ3.ToString();
 totalSales[3] = totalQ4.ToString();

 DataColumn salesColumnQ1 = new DataColumn(“Q1”);
 salesTable.Columns.Add(salesColumnQ1);
 DataColumn salesColumnQ2 = new DataColumn(“Q2”);
 salesTable.Columns.Add(salesColumnQ2);
 DataColumn salesColumnQ3 = new DataColumn(“Q3”);
 salesTable.Columns.Add(salesColumnQ3);
 DataColumn salesColumnQ4 = new DataColumn(“Q4”);
 salesTable.Columns.Add(salesColumnQ4);

 DataRow salesTotalRow = salesTable.NewRow();

 salesTotalRow[0] = “$ “ + totalSales[0] + “.00”;
 salesTotalRow[1] = “$ “ + totalSales[1] + “.00”;
 salesTotalRow[2] = “$ “ + totalSales[2] + “.00”;
 salesTotalRow[3] = “$ “ + totalSales[3] + “.00”;

 salesTable.Rows.Add(salesTotalRow);

 totalSalesDataView.DataSource = salesTable;
 totalSalesDataView.DataBind();

 mySPSiteContext.Dispose();
 updateRefreshTime();
 linkbtnLoad.Text = “Refresh”;

 aggSales = totalQ1 + totalQ2 + totalQ3 + totalQ4;

584637c07.indd 265 5/2/10 7:13:31 PM

266  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

 updateAggSales(aggSales);

 }

 private void updateAggSales(int aggSales)
 {
string fiscalYear = “FY 10”;

 using (SPSite site = new SPSite(“http://fabrikamhockey”))
 {
 using (SPWeb web = site.OpenWeb())
 {
 web.AllowUnsafeUpdates = true;

 SPList totalSales = web.Lists[“Total Sales”];
 SPListItem newStat = totalSales.Items.Add();
 newStat[“Title”] = fiscalYear;
 newStat[“Sales”] = aggSales;
 newStat.Update();

 web.AllowUnsafeUpdates = false;
 }
 }

 }

 private void updateRefreshTime()
 {
 DateTime currentTime = DateTime.Now;
 string refreshMessage = “Last Refreshed: “;
 lblRefreshMessage.Text = refreshMessage + currentTime.
 ToLongTimeString();
 }
 }
}

	9.	 After you’ve added the boldfaced code, right-click the project and select Build, and then right-click
the project again and select Deploy after the project successfully builds.

	10.	 Navigate to the same SharePoint page where you deployed the other Web parts, and then click Site
Actions ➪ Edit ➪ “Add a web part.”

	11.	 Click Insert and then select Custom. Find the Web part you just built and deployed.

	12.	 When the Web part loads, it will contain no data. Click the Load link-button to load the data from
the Customer Sales list. After you’ve done this, use the Add Sales Web Part to add a customer
programmatically to the list, and then click Refresh.
Note that the Last Refreshed time will update each
time you click the Refresh link button, as shown in
Figure 7-10. Now you can click the Load button,
and the totals will be calculated and displayed. A
row will be added into the Sales table. Figure 7-10  Total Aggregate Sales Web part

584637c07.indd 266 5/2/10 7:13:31 PM

Building the Application  ❘  267

	13.	 After you’ve done this, navigate to the Sales table and delete the FY10 list item that was just gen-
erated. While you could extend the application to check for a FY10 record, you will not build this
capability into the application in the scope of this chapter.

How It Works

You’ve seen the pattern in the Aggregate Sales application before (that is, the way in which you use
the server-side object model to interact with SharePoint data). However, there are a couple of new items
that are included in this code sample that you may not have seen before. To begin, you set some class-
level variables as follows:

int totalQ1 = 0;
int totalQ2 = 0;
int totalQ3 = 0;
int totalQ4 = 0;
int aggSales = 0;

string[] totalSales = new string[4];
DataTable salesTable = new DataTable();

These variables enable you to add all of the quarterly sales, and provide an aggregate total for each
quarter. For example, totalQ1 is the total sales of all of the Q1 sales across all of the companies listed
in the Customer Sales list. Also, totalSales represents the array within which you’ll store this infor-
mation. And, lastly, the DataTable is another data construct that is used here to show you how to
dynamically create an in-memory data object that can also be bound to a DataGrid control.

You assigned values to the totalSales array through the following statements:

totalSales[0] = totalQ1.ToString();
totalSales[1] = totalQ2.ToString();
totalSales[2] = totalQ3.ToString();
totalSales[3] = totalQ4.ToString();

Note that, here again, you might use the String.Format method to provide additional formatting to
your string variables.

You then created a column for each of the quarters, created a row for the salesTable object, and
assigned the array values to the column values, as shown in the following code:

DataColumn salesColumnQ1 = new DataColumn(“Q1”);
salesTable.Columns.Add(salesColumnQ1);
DataColumn salesColumnQ2 = new DataColumn(“Q2”);
salesTable.Columns.Add(salesColumnQ2);
DataColumn salesColumnQ3 = new DataColumn(“Q3”);
salesTable.Columns.Add(salesColumnQ3);
DataColumn salesColumnQ4 = new DataColumn(“Q4”);
salesTable.Columns.Add(salesColumnQ4);

DataRow salesTotalRow = salesTable.NewRow();

salesTotalRow[0] = “$ “ + totalSales[0] + “.00”;
salesTotalRow[1] = “$ “ + totalSales[1] + “.00”;

584637c07.indd 267 5/2/10 7:13:31 PM

268  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

salesTotalRow[2] = “$ “ + totalSales[2] + “.00”;
salesTotalRow[3] = “$ “ + totalSales[3] + “.00”;

salesTable.Rows.Add(salesTotalRow);

One of the benefits of using the DataTable object is that you can provide some structure and format-
ting for the table, and then have access to other methods and properties for that object. Further, you
may have noticed with the examples in earlier chapters that, when you bound the list collection object
to a datagrid, it inherited the object names. By creating explicit columns, you can control the column
headings for a more descriptive table.

The binding of the DataTable was the same as when you assigned the list collection to be the data
source for the datagrid. For example, the following code sample shows binding the DataTable object
to the datagrid. You can see that the syntax is very similar, and only the object being bound is different.

totalSalesDataView.DataSource = salesTable;
totalSalesDataView.DataBind();

The two helper functions you created in the example, updateRefreshTime and updateAggregate-
Sales, simply updated the data-refresh time in the label property to be the current time, and added the
new aggregate sales as a row in the Total Sales table. However, as discussed earlier, there is no check
in the updateAggregateSales method to see if the FY10 row already exists. This may be something
you’d want to add to the code so that you don’t end up with multiple FY10 list items.

Adding a Chart Web Part
The last item to add in this application is the out-of-the-box Chart Web part, which will provide a
comparative chart view of the data that you have in the Total Sales list. For example, if you added
entries for FY08 and FY09, when you deploy and run all of the previous applications, you’ll have a
comparative bar-chart view across three fiscal years. The key takeaway here for you, though, should
be that you don’t always need to rely on custom components when creating your SharePoint applica-
tions. You can integrate out-of-the-box features within your application (and with your custom code).

Adding the Chart Web PartTry It Out	

The Chart Web part can provide some interesting pivots on data. You’ll use it here to show a compara-
tive view across your sales quarters. Follow these steps:

	1.	 Open SharePoint and navigate to where you’ve added the other three Web parts.

	2.	 Click Site Actions ➪ Edit Page.

	3.	 Click “Add a web part” and navigate to the Business Data category. Select Chart Web Part and
click Add.

	4.	 Click the drop-down arrow in the Web part, and select Customize your Chart. Use this wizard to
select a particular type of bar chart.

584637c07.indd 268 5/2/10 7:13:31 PM

Building the Application  ❘  269

	5.	 In Step 1 of the wizard, select the Column chart, as shown in Figure 7-11. Accept the default
options for Step 2 of the wizard and click Next.

Figure 7-11  Standard Chart Types Categories dialog

	6.	 For Step 3 of the wizard, check the Show Chart Title checkbox and provide a title for your chart
(for example, FY 10 Sales, as shown in Figure 7-12) and click Auto Preview to see a rendering of
the chart. Click Finish to complete the custom chart configuration.

Figure 7-12  Adding a chart title and viewing a preview

584637c07.indd 269 5/2/10 7:13:31 PM

270  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

	7.	 Right-click the drop-down arrow again and select Connect To Data, as shown in Figure 7-13.

	8.	 Select “Connect to a List” and click Next, as shown in Figure 7-14.

	9.	 Select the list to which you want to bind your Chart map and click Next, as shown in Figure 7-15.

	10.	 If your mapping was successful, you will see a tabular rendering of the data as shown in
Figure 7-16. Click Next to move to the next step in the wizard.

	11.	 You can provide some customizations to change how the chart will look in this step. Accept the
default options and click Finish to complete the wizard, as shown in Figure 7-17.

Figure 7-15  Binding the chart to a list

Figure 7-16  Retrieving and filtering data

Figure 7-13  Connecting
Chart Web part to data

Figure 7-14  Connecting to a list

584637c07.indd 270 5/2/10 7:13:31 PM

Building the Application  ❘  271

Figure 7-17  Binding the chart to data

At this point, SharePoint will render the Chart Web part and
expose a columnar chart view of the data in the Total Sales
list. Figure 7-18 provides an example of this. One thing worth
mentioning is that, when you update the list, the Chart Web
part is updated automatically, so you don’t need to worry
about your user having to explicitly click a Refresh button
anywhere. Once the data is updated from the Aggregate Sales
Web part, the changes will be graphically reflected in the
Chart Web part.

Final Dashboard
Using the site themes, you can very easily provide some brand-
ing for the site where you’re going to insert all of the Web
parts. Alternatively, you could add a simple graphic (such as a
company or group logo) to light up the out-of-the-box themes
as well. Or, you could go so far as to create a custom master page for your site.

You’ll note that, in Figure 7-19, there is a custom logo that is used (the fictional Litware company
logo). This was added by using the Image Viewer Web part (Site Actions ➪ Edit Page ➪ “Add a
web part” ➪ Insert ➪ “Media and Content,” and select the Image Viewer Web part), which simply
exposes (using a URL reference) a graphic file you’ve added to a SharePoint library. However, the
effects of including even a simple graphic can be transformative for your site. So, be sure to think
about these small enhancements when building your SharePoint sites.

Figure 7-18  Displaying data in the
Chart Web part

584637c07.indd 271 5/2/10 7:13:31 PM

272  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

Figure 7-19 shows the final sales dashboard. You can see here that a number of companies have been
added to the Customer Sales Information Web part, the sales have been tallied, and the data has
been rendered across three fiscal years in the Chart Web part.

Figure 7-19  Rendering the Final Sales dashboard

Congratulations! Now that you’ve created all of the Web parts that made up the Sales dashboard,
you’ve created your first end-to-end solution. You did apply many of the things you’ve already seen
in the book — with a few new items thrown in — so this should have been pulling practice together.
As you become more familiar with the SharePoint object model and APIs, you’ll think of other ways
that you can creatively integrate data and .NET applications with SharePoint.

Summary

The great thing about SharePoint is that you can create simple or more complex solutions — depend-
ing on what you’re trying to achieve. For example, you’ll learn later in this book that you can use
InfoPath as a data-entry form, or the list itself can be exposed as a Web part and, thus, be an arti-
fact of your dashboard. Further, key performance indicators (KPIs) or Excel Services could also
be used. And all of this is okay, because, in the real world, you would make choices against all of
these features within SharePoint. In this chapter, things have been kept simple, and your design was
aligned with what was learned in previous chapters.

You’ll want to explore the different ways in which you can build and integrate applications with and
into SharePoint 2010. In this chapter (and very much in the past few chapters), you’ve learned that lists
and Web parts are the core building blocks of a SharePoint site, and there are many different ways to
code against them and leverage them. As you move into the next few chapters of the book, you’ll go
beyond the list and Web part to explore other, more advanced programmatic aspects of SharePoint.

584637c07.indd 272 5/2/10 7:13:31 PM

Summary  ❘  273

Chapter 8 starts that exploration with an examination of the integration of line-of-business (LOB)
data using Business Connectivity Services (BCS).

Exercises	

	 1.	 Review other features of SharePoint and write down different ways that you might design the
solution, assuming that the requirements do not change. For example, instead of using the
server-side object model, use the Lists Web service.

	 2.	 Add the capability to check to see if the FY10 list item exists before adding a new record. If it
does, then replace the old data with newly updated aggregates calculated using an extended
helper function.

	 3.	 Create a new list definition and list instance programmatically. Deploy the code into
SharePoint and manually add some data to the list to test the functionality.

584637c07.indd 273 5/2/10 7:13:31 PM

274  ❘  Chapter 7   Creating Your First SharePoint 2010 Application

What You Learned in This Chapter⊲⊲

Items Description

Design Designing SharePoint solutions can encompass multiple features or
SharePoint artifacts (for example, list, Web part, and so on).

Server-Side
Object Model

This chapter put the server-side object model into practice as one of the
central list APIs in SharePoint 2010.

Visual Web Parts Visual Web parts enable many different types of customization. In this chap-
ter, you learned how to use these types of Web parts with datagrids and
read/write list programmability.

Lists as a data source You learned that you can use lists as data sources, which can be manually
created or deployed as list definitions/instances with your solution files.

Recommended Reading

Microsoft SharePoint 2010 SDK at ➤➤ http://msdn.microsoft.com/en-us/library/

ee557253(office.14).aspx

SharePoint 2010 Web Services SDK at ➤➤ http://msdn.microsoft.com/en-us/library/

ee705814(office.14).aspx

MSDN content on ➤➤ String.Format method at http://msdn.microsoft.com/en-us/
library/system.string.format.aspx

584637c07.indd 274 5/2/10 7:13:31 PM

Part III
Advanced Topics for
SharePoint 2010 Development

Chapter 8:⊲⊲ �Integrating Line-of-Business Data Using Business
Connectivity Services

Chapter 9:⊲⊲ �Creating Enhanced User Experiences for SharePoint
with Silverlight

Chapter 10:⊲⊲ �Developing Service-Oriented Applications for
SharePoint 2010

Chapter 11:⊲⊲ Integrating SharePoint with Microsoft Office

Chapter 12:⊲⊲ Securing Your SharePoint 2010 Applications

584637c08.indd 275 5/2/10 7:13:43 PM

584637c08.indd 276 5/2/10 7:13:43 PM

Integrating Line-of-Business
Data Using Business
Connectivity Services

What You'll Learn in This Chapter:

Getting to Know Office business applications (OBAs)➤➤

Understanding the Business Connectivity Services (BCS) and how ➤➤

you can build OBAs using them

Working with SharePoint and Office integration techniques using BCS➤➤

One of the key innovations in SharePoint 2007 was the Business Data Catalog (BDC),
which was a set of services and Web parts that enabled read-access to ADO.NET and Web
service-based connections to line-of-business (LOB) systems. However, there were limitations
with the BDC (for example, it was read-only), so, SharePoint 2010 introduced the Business
Connectivity Services (BCS) as an evolution to the BDC.

BCS evolved the BDC to be read/write, more programmable, and to look and feel like other
lists in SharePoint. BCS is important because many companies want to integrate LOB data
with SharePoint, and they want read/write access to that data from SharePoint and Microsoft
Office. Because these applications integrate LOB systems with SharePoint and Microsoft
Office, they are called Office Business Applications (OBAs).

This chapter introduces you to the concept of OBAs and discusses SharePoint’s new BCS func-
tionality that provides great integration with LOB systems. This chapter also walks you through
some practical examples of how you can integrate ADO.NET-based and Web service-based con-
nections with SharePoint and Microsoft Office to create an OBA.

8

584637c08.indd 277 5/2/10 7:13:43 PM

278  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

Understanding Office Business Applications (OBAs)

One of the key issues faced by many organizations is unlocking critical business data that resides in
large, enterprise systems. This might be seen as a data issue — that is, getting the right data out of
a back-end system and into the hands of information workers to help them in their day-to-day jobs.
However, many business and IT managers will also tell you that there is a significant monetary and
productivity gain in extracting this data, and in creating the connection to those who need it the most.

Take the example of sales forecasting, which typically needs to happen at the summary level on a
quarterly basis. Often, you’ll find that companies track this information on a daily or weekly basis
to ensure that pressure is constantly applied toward tracking and achieving the revenue goals of the
company. If the sales data resides in a system that is not easily accessible, then unlocking this infor-
mation becomes critical to the enterprise.

Let’s imagine that a fictional company called Acme has an SAP system in which they store all customer
and sales information. Today, accessing data in SAP is difficult, because you may need to interact with
an IT professional who has SAP-specific knowledge and access to get you that information.

The sales team wants this information in the tools that they use everyday: Microsoft Excel and
SharePoint. This enables them to view and manage the data in the way in which they’re most
comfortable.

To achieve this, the SAP IT professional copies the data into a spreadsheet, perhaps formats it, and
then sends it on to the team via email. The team then uses that spreadsheet in the course of their
forecasting exercises.

Now, this may seem acceptable for a quarterly process. However, when you begin to think about
this process from the monthly, weekly, daily, or even on-demand perspective, creating a dependency
like this on the SAP specialist gets a bit hairy. Furthermore, once you have a snapshot of the data,
you may want to leverage it across other applications (for example, pull it into PowerPoint to auto-
matically create sales presentations). Thus, the question becomes why not customize the Office or
SharePoint interface, and have a direct link to the LOB data so that information workers don’t have
to focus on the process of getting the data? The information workers could instead focus on work-
ing with the data. Enter Office business applications (OBAs).

Simply defined, an OBA is a solution that integrates SharePoint and/or Microsoft Office and LOB
data. It was created as a result of companies using Office and SharePoint as a targeted interface into
specific LOB data (also called external system or external data source). OBAs can be very powerful
when fully realized.

The power of OBAs derives from the capability to leverage many of the different features of the
SharePoint and Office platforms — as well as wider Microsoft and non-Microsoft technologies. For
example, OBAs can integrate customizations that you build into the Office client (such as custom
Word templates), integrate LOB data into the documents, and then tie the document to an organi-
zational process using SharePoint workflow. You can also create a simple SharePoint list that pro-
vides a read/write view into a back-end LOB system. You might also leverage Silverlight to create a
more dynamic experience with the LOB data (something you’ll learn in Chapter 9), and deploy the
Silverlight-enabled application in SharePoint. And the possibilities go on.

The point is that OBAs represent an expansive and versatile way to leverage many different parts of
the Office and SharePoint platform to get LOB data into the hands of information workers. And, at

584637c08.indd 278 5/2/10 7:13:43 PM

Understanding Office Business Applications (OBAs)  ❘  279

the heart of the OBA is the use of SharePoint and Microsoft Office to manage a business process.
For example, if you take the sales forecast with SAP, Table 8-1 shows a part of the sales forecast
process that an OBA would enable.

Table 8-1  OBA Process

Person Process Technology

Stan (Account Manager) Navigates to a SharePoint list that is
populated with sales data from SAP.
He updates his quarterly numbers for
his key accounts.

SharePoint external list (BCS)•	

SAP (LOB system)•	

Stan (Account Manager) Navigates to a SharePoint document
library and clicks New to create a new
document. SharePoint automatically
opens a new Excel template that has
a custom ribbon in it. He uses the
custom ribbon to access and filter
data from the external list, and then to
input sales data into the spreadsheet.
He pivots and creates forecasting
table/charts. When he completes the
sales forecast, he saves the docu-
ment to SharePoint, and an approval
workflow is kicked off.

SharePoint document library•	

Custom Excel document•	

Custom content type•	

SharePoint client object •	
model leveraging external list

Native Excel functionality•	

Approval workflow•	

Amy (Stan’s Manager) Opens mail that is generated from
SharePoint workflow and clicks a link
to Stan’s forecast. She approves the
document, and an approval email is
sent to Stan.

Approval workflow•	

SharePoint/Outlook integration•	

The process outlined in Table 8-1 is a simplified version of what happens in reality. For example,
there could be many more turns in the business process, or the process could involve more levels of
management and more people. However, the key take-away is that various parts of the SharePoint
and Microsoft Office platforms can come together to create an OBA.

NOTE  ​One of Microsoft’s flagship OBAs is a partnership product of SAP and
Microsoft called Duet Enterprise. In practice it demonstrates many of the ben-
efits just described. For more information, go to http://office.microsoft.
com/en-us/duet/FX101686211033.aspx?ofcresset=1.

The high-level architecture of an OBA is fairly straightforward: you have a client that consumes a
connection, which enables communication with the external LOB system.

584637c08.indd 279 5/2/10 7:13:43 PM

280  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

For example, Figure 8-1 shows the presentation layer across SharePoint and Office — where
you have multiple options for building out your presentation layer, ranging, for example, from
Silverlight, custom Web parts, and external lists on the SharePoint side to custom documents/add-
ins and Open XML on the Office side. Furthermore, the types of services that you will typically use
within an OBA are ASP.NET (.asmx), WCF, SQL (generally, ADO.NET), and BCS. These service-
oriented designs facilitate the connection to the external system.

Add-In Doc Solution

Office

...

Open XMLSilverlight Web Part

SharePoint

...

External List

ASMX WCF BCS SQL

Figure 8-1  High-level OBA architecture

The 2010 releases of SharePoint and Microsoft Office include a number of developer entry points
for building OBAs. For example, on the client, you can extend the Office user interface (UI) to build
custom task panes, extend the Office ribbon, add a SharePoint workflow to a document, or leverage
Open XML in your design to manage LOB data passed into and out of your documents. You can
further tie these extensions to a service-oriented architecture, such as Windows Communication
Foundation (WCF) or REST, and begin to bridge the back end to your presentation layer. This back
end could be SharePoint data or it could be LOB data.

On the SharePoint side, you can build Silverlight-enabled applications that bring LOB data into the
Silverlight application (and further integrate with the SharePoint object model, such as pushing data
to a SharePoint list). You could also create custom Web parts that also integrate with these back-end
systems. And you can also leverage BCS to drive that integration to the back-end LOB system.

OBAs and BCS

OBA and BCS intersect where there is the need for information workers to get at data that lives in
external systems, which includes structured data that may live in — for example, SQL Server, enter-
prise resource planning (ERP) systems, and customer resource management (CRM) systems — and
unstructured data that live in, for example, Office documents, SharePoint, and Internet blogs and
wikis. This was illustrated in Figure 8-1.

584637c08.indd 280 5/2/10 7:13:44 PM

OBAs and BCS  ❘  281

In its simplest form, BCS represents a way to integrate external data systems with both SharePoint
and Office. In the process, BCS provides a way for developers to do the following:

Surface external data in both SharePoint and Office➤➤

Map external data to Office ➤➤ types (such as Contacts or Tasks in Outlook)

Surface LOB data in Microsoft Access, SharePoint Workspace, and Microsoft Outlook➤➤

Reuse data connectors across the server and client➤➤

Bridge the world of structured/unstructured data with the information worker through BCS ➤➤

solutions

Although characterizing the BCS as a “connector” may seem simple, there are a few key things that
exist within the BCS infrastructure that you’ll want to be aware of. For example, the BCS architec-
ture shown in Figure 8-2 drills into the OBA architecture shown in Figure 8-1 and provides a snap-
shot of some of the key pieces in BCS.

Office Add-In Custom Code

BCS
(Client Runtime)

BCS Runtime

Office Client

Other

BCS

BCS
Sync

VSTO
Package

SQL

Cache

Search, Workflow, Web Parts

External List

BCS
(Server Runtime)

External
Content Type

SharePoint Site

SSS

Figure 8-2  BCS architecture

You can think of BCS as starting from the bottom of the diagram and moving up, with the “connec-
tors” to the external data. These can be custom connectors that you build using a pure .NET code
approach, ADO.NET connections, or service connections. The great thing about supporting services
is that you can literally plug into any service endpoint, and then define the data structures that you
want to deploy into SharePoint.

On the right-hand side of Figure 8-2, SharePoint 2010 contains a BCS runtime that supports the BCS
APIs and the execution of any code you write against BCS. It also contains the external content type,
which is the main way that SharePoint understands how to communicate with the external data system.

584637c08.indd 281 5/2/10 7:13:44 PM

282  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

BCS requires a security infrastructure to mediate the connections between specific users and the data
from those external data sources — you do not want sensitive data getting into the wrong hands. There
are a number of ways in which developers can mediate this connection — for example, pass-through,
leveraging the application pool account security, or creating a custom username and password data-
base. You can manage this security from the Secure Store Service (SSS) from the SharePoint Central
Administration site.

Above the security layer, you’ll also note that there exists a layer for search, workflow, and Web parts.
BCS is a primary way of extending search into your LOB system. So, when SharePoint executes a
search, it indexes data and information from the external data source with your other search results.
Furthermore, you can tie the workflow to Office documents, and manage this workflow through the
out-of-the-box workflow or custom workflow you build and deploy to SharePoint. Finally, the Web
parts represent the BDC Web parts that ship with SharePoint 2010.

The top layer contains the external list, which represents a new addition to SharePoint Foundation 2010
that enables the reading and writing of data to and from an external data source. The external list looks
and feels much like a normal list. However, the data does not live in the SharePoint list, because it is ref-
erenced and loaded into the list via an external content type. The major differences from the SharePoint
2007 BDC Web parts that were used in MOSS 2007 to connect to external systems is that the external
data is accessed using the external content type and it now supports read/write integration with your
external data sources.

Figure 8-3 shows an external list that is connected to an AdventureWorks SQL Server database (which,
in this case, is the external data source). Notice how it looks and acts like a “standard” SharePoint
list. It includes customer information, and you can see that, when you select one item in the list, you
have the capability to view, edit, or delete the item (or the record) from the SQL Server instance of
the Customer database. Thus, when BCS enables a view of the data within this external list within
SharePoint, it can facilitate these operations. (When creating the connection to the external data sys-
tem, you configure these operations.)

Figure 8-4 shows another example of leveraging BCS. This figure illustrates SAP data that is being con-
sumed within a Silverlight application that is hosted within SharePoint. In this application, Silverlight
controls enable you to filter SAP data in the Silverlight UI. The Silverlight application uses the client
object model to communicate with an external list and then displays the data with a more dynamic UI.

Figure 8-3  External list

584637c08.indd 282 5/2/10 7:13:44 PM

OBAs and BCS  ❘  283

Figure 8-4  SAP, Silverlight, and BCS

You’ll also note that Figure 8-2 includes a Visual Studio Tools for Office (VSTO) package, which is
the way in which you build smart-client applications (for example, Office custom task panes con-
nected to LOB data) within Visual Studio. The VSTO acronym is a throwback to the days when
VSTO shipped as a separate product in the Visual Studio family.

However, in Visual Studio 2008 and Visual Studio 2010, the separate tools are subsumed within the
Professional (and above) Visual Studio SKU. Specifically, this package represents the way in which
Microsoft takes a “snapshot” of the external data and installs it on the client, where it can be used
by SharePoint Workspace, Access, and Outlook to surface the external data within those applica-
tions. Furthermore, you can also use the metadata cache on the client (which is a database on the
client that is a copy of the external data on the client) in combination with a client-side object model
to program against the data, and surface that data within the Office client.

When the client-side metadata cache and VSTO package are installed on a client machine, you can
use the BCS client object model to program applications that leverage this data. For example, you
can build Office applications (application-level add-ins, or document-level solutions) to leverage
that offline cache of the external data source. The client-side BCS runtime is installed with Office
Professional 2010. Note that while you do have the capability to code directly against the BCS client
API, you can also use the SharePoint client object model to create Office add-ins that communicate
with an external list.

584637c08.indd 283 5/2/10 7:13:44 PM

284  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

Furthermore, there is a BCS listener service (called the BCS Sync) on the client that runs in the
background and listens for any updates to the offline cache of the external data. What this means is
that if you take an external list offline that replicates a copy of the data on the client, you can build
an Office application to read and write against that client-side data cache. When it’s updated, BCS
Sync persists the changes to the external system via the external content type that is deployed to
SharePoint. BCS Sync understands how to do this because the “instructions” on how to communi-
cate with the external system are stored within the external content type.

Anatomy of an External Content Type

A core part of BCS is the external content type, which is essentially reusable metadata that defines
the relationship between your SharePoint object (or client) application and the external data source.
The metadata contains information such as connectivity information, data definitions, and behav-
iors (or operations) you want to apply to the external data. External content types enable you to
manage and reuse the metadata and the operations of a business entity from a central location, and
also enable users to interact with that data in a meaningful way.

For example, say that you have an external data source that represents your main set of Customers.
This external data source is stored in an ERP system such as SAP, and you want to surface (that is,
issue a read operation) this inside of SharePoint and within Outlook. The external content type is
the metadata that sits between the SharePoint and client application, and the external data source.
You create the external content type and configure it to have a read operation from the external data
source (for example, SAP or PeopleSoft), and then map the entities within the external data source
to the Outlook data types. With this configuration, you can surface the data as an external list, and
you can take it offline and expose it inside of Outlook.

External content types offer some great benefits to developers:

You can reuse external content types across the client and server, and across server instances. ➤➤

You can program against the BCS APIs and create some very compelling applications (for ➤➤

example, using Silverlight and BCS integrations for SharePoint, as you saw earlier).

You can ensure secure access and appropriate discrete permissions against the BCS ➤➤

operations.

You can facilitate searching against your LOB systems and indexing that data within your ➤➤

SharePoint search results.

You can simplify the management of the external data sources through external content ➤➤

types.

For those who are familiar with the BDC Web parts in SharePoint 2007, the external content type
is an evolution of the application definition file (ADF), or the XML file that defined the relation-
ship between the external data system and SharePoint. The evolution from ADF to the external
content type represents an extension of the ADF to include more operations that can be defined
against the external data system, and the fact that it’s now used with the external list and with
client applications.

584637c08.indd 284 5/2/10 7:13:44 PM

Anatomy of an External Content Type  ❘  285

Figure 8-5 shows a horizontal overview of the key elements for metadata modeling of the external
content type. The specific elements within the model are defined as follows:

LobSystem➤➤  — This represents an external data source, service, or software system.

LobSystemInstance➤➤  — This is a specific implementation of the LobSystem.

Entity➤➤  — This describes the structure of the business entity or object. It contains one or
more Methods, fields (or TypeDescriptors) and a unique Identifier, and is made up of
specific data types.

Method➤➤  — This describes the back-end APIs, with a MethodInstance being the spe-
cific implementation of a Method. Methods can also contain filters (defined through the
FilterDescriptor).

Parameter➤➤  — This is defined through a TypeDescriptor and DefaultValue.

AssociationGroup➤➤  — This defines relationships across back-end systems.

LobSystemInstance

Entity

MethodInstance

AssociationGroup

Action ActionParameter

Identifier FileDescriptor

Method Parameter TypeDescriptor DefaultValue

Model LobSystem

Figure 8-5  External content type model

NOTE  ​You can find more information on the Business Connectivity Services
(BCS) metadata and SDK at http://msdn.microsoft.com/en-us/library/
ee556826(office.14).aspx.

The following code sample shows what the external content type metadata looks like:

<?xml version=”1.0” encoding=”utf-8”?>
<Model xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns=”http://schemas.microsoft.com/windows/2007/BusinessDataCatalog”
 Name=”BusinessDataCatalog1”>
<LobSystems>
 <LobSystem Name=”BusinessDataCatalog1LobSystem1” Type=”DotNetAssembly”>
<LobSystemInstances>
 <LobSystemInstance Name=”BusinessDataCatalog1LobSystem1Instance1” />
</LobSystemInstances>
<Entities>
 <Entity Name=”Product” Namespace=”ProductModel.BusinessDataCatalog1”

584637c08.indd 285 5/2/10 7:13:45 PM

286  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

 EstimatedInstanceCount=”1000” Version=”1.0.0.13”>
 <Properties>
 <Property Name=”Class” Type=”System.String”>
 ProductModel.BusinessDataCatalog1.ProductService,
 BusinessDataCatalog1LobSystem1</Property>
 </Properties>
 <Identifiers>
 <Identifier Name=”ID” TypeName=”System.String” />
 </Identifiers>
 <Methods>
 <Method Name=”FindAllEntities”>
<Parameters>
 <Parameter Direction=”Return” Name=”returnParameter”>
 <TypeDescriptor TypeName=”System.Collections.Generic.IEnumerable1[[ProductModel.
 BusinessDataCatalog1.Entity1, BusinessDataCatalog1LobSystem1]]”
 IsCollection=”true” Name=”Entity1List”>
 <TypeDescriptors>
 <TypeDescriptor TypeName=”ProductModel.BusinessDataCatalog1.Entity1,
 BusinessDataCatalog1LobSystem1” Name=”Entity1”>
 <TypeDescriptors>
 <TypeDescriptor TypeName=”System.String” IdentifierName=”ID” Name=”ID” />
 <TypeDescriptor TypeName=”System.String” Name=”Manufacturer” />
 <TypeDescriptor Name=”Name” TypeName=”System.String” />
 </TypeDescriptors>
 </Parameter>
</Parameters>
<MethodInstances>
 <MethodInstance Type=”Finder” ReturnParameterName=”returnParameter”
 Default=”true”
 Name=”FindAllEntities” DefaultDisplayName=”Entity1 List” />
</MethodInstances>
</Method>
</Methods>
</Entity>
</Entities>
</LobSystem>
</LobSystems>
</Model>

Note that, in this external content type, there is one LOB system (the external data source) defined,
which is called BusinessDataCatalog1LobSystem1. This external content type was created using
Visual Studio 2010, hence the type being DotNetAssembly. You’ll also notice that there is one entity
defined as well, called Product — this is a custom object in the Visual Studio 2010 project.

NOTE  ​The discussion in this chapter predominantly uses SharePoint Designer
for creating the external content types. However, in Chapter 10, you will walk
through an example where you use Visual Studio 2010 to create an external list
that is integrated with a custom Web service.

Another important element you’ll see defined here is one method instance called FindAllEntities,
which you could think of as equivalent to a SELECT * statement in SQL used to get all of the entities

584637c08.indd 286 5/2/10 7:13:45 PM

Connectivity Options with BCS  ❘  287

in the data source. Thus, if you were to create an external list from this external content type, the
result would be all of the records being returned from the external data source.

One last thing to mention here is that the specific records within the external data source are also
defined here as TypeDescriptors. (The TypeDescriptor is an object that defines the parameter
data type.) If you look within this section of the external content type, you’ll see that there is a very
simple data source that comprises three types:

An ➤➤ ID record that is of type string

A ➤➤ Manufacturer record that is of type string

A ➤➤ Name record that is also of type string

When you start working with external content types, you should be familiar enough with the model
metadata to understand the major elements. You may have to troubleshoot or review the XML to
ensure that the metadata in your external content type matches that of your external data source, or
at least need to inspect it for errors.

As you’ll see later in this chapter, a good starting point is using SharePoint Designer 2010 when cre-
ating your external content types. Using this tool will abstract a lot of the XML metadata for you,
and get you accustomed to working with the external content types and understanding the different
operations that are supported and how they are represented in the metadata.

Connectivity Options with BCS

BCS supports a number of different connectivity options, including the following:

ADO.NET connection to a database (for example a SQL Server database)➤➤

Web service connection (includes support for either a WCF or ASP.NET Web endpoint)➤➤

.NET assembly (which is one that you build using the Visual Studio BDC Metadata project ➤➤

template)

Custom connector (which is a much more code-intensive process, where you build the con-➤➤

nector and external content type metadata from scratch)

Each of these connectors is supported within the same external content type metadata shown ear-
lier. However, there will be slight differences that you may notice as you begin to build them. For
example, an ADO.NET database would have the following LobSystem Type property:

<LobSystem Name=”DBConnection” Type=”Database”>

Compare this to a Web service connection, whose Type property would be set as follows:

<LobSystem Name=”WSConnection” Type=”Webservice”>

Another example of the difference between models based on the connection type is the different
ways in which methods are defined through the common external content type schema. For exam-
ple, the following represents a Web service external content type with a method that maps to a Web

584637c08.indd 287 5/2/10 7:13:45 PM

288  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

method within the Web service, called GetCustomers. (Note that the TypeDescriptors here map to
parameters within the Web service.)

<Methods>
 <Method Name=”GetCustomers”>
 <Parameters>
 <Parameter Name=”CustomerId” Direction=”In”>
 <TypeDescriptor Name=”Id” TypeName=”System.Int32” IdentifierName=
 “CustomerIdentifier” />
 </Parameter>
 <Parameter Name=”Customers” Direction=”Return”>
 <TypeDescriptor Name=”CustomerArray” TypeName=
 “ExampleCrmNamespace.Customer[], ExampleCRM” IsCollection=”true”>
 <TypeDescriptors>
 <TypeDescriptor Name=”Customer” TypeName=”ExampleCrmNamespace.Customer,
 ExampleCRM”>
 <TypeDescriptors>
 <TypeDescriptor Name=”Id” TypeName=”System.Int32” IdentifierName=
 “CustomerIdentifier” />
 <TypeDescriptor Name=”FirstName” TypeName=”System.String” />
 <TypeDescriptor Name=”LastName” TypeName=”System.String” />
 </TypeDescriptors>
 </TypeDescriptor>
</TypeDescriptors>
</TypeDescriptor>
</Parameter>
</Parameters>
<MethodInstances>
<MethodInstance Name=”GetCustomer” Type=”SpecificFinder” ReturnParameterName=
 “Customers” ReturnTypeDescriptorName=”Customer” />
</MethodInstances>
</Method>

Compare the Web service external content type to that of a database method definition (which lever-
ages a stored procedure in this case). The methods in this case look a little different, but they still
follow the same metadata taxonomy as the Web service.

<Methods>
 <Method Name=”GetCustomers”>
 <Properties>
 <Property Name=”RdbCommandText” Type=”System.String”>sp_GetCustomers</Property>
 <Property Name=”RdbCommandType” Type=”System.Data.CommandType, System.Data,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089”>StoredProcedure</Property>
 </Properties>
 <Parameters>
 <Parameter Name=”@CustomerId” Direction=”In”>
 <TypeDescriptor Name=”Id” TypeName=”System.Int32” IdentifierName=
 “CustomerIdentifier” />
 </Parameter>
 <Parameter Name=”Customers” Direction=”Return”>
 <TypeDescriptor Name=”CustomerDataReader”
 TypeName=”System.Data.SqlClient.SqlDataReader, System.Data,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089” IsCollection=”true”>

584637c08.indd 288 5/2/10 7:13:45 PM

Developing Your First Application Using BCS  ❘  289

 <TypeDescriptors>
 <TypeDescriptor Name=”Customer” TypeName=”System.Data.IDataRecord,
 System.Data, Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089”>
 <TypeDescriptors>
 <TypeDescriptor Name=”Id” TypeName=”System.Int32” IdentifierName=
 “CustomerIdentifier” />
 <TypeDescriptor Name=”FirstName” TypeName=”System.String” />
 <TypeDescriptor Name=”LastName” TypeName=”System.String” />
 </TypeDescriptors>
 </TypeDescriptor>
</TypeDescriptors>
</TypeDescriptor>
</Parameter>
</Parameters>
<MethodInstances>
 <MethodInstance Name=”GetCustomer” Type=”SpecificFinder”
 ReturnParameterName=”Customers” ReturnTypeDescriptorName
 viswar =”Customer” />
 </MethodInstances>
</Method>
</Methods>

Thus, the underlying schema for the external content type metadata remains similar. It’s just that
the attributes would be different.

Developing Your First Application Using BCS

Now that you have some background on OBAs, BCS, and the external content type metadata struc-
ture, let’s walk through the process that you use to create an OBA with BCS. Figure 8-6 shows a
high-level process by which you would create an OBA using BCS. It includes five categorized steps
that take you from the creation of the data source, all the way to deploying the add-in on the cli-
ent. The assumption is that you’d be creating an OBA that could cut across the server and the client.
Note that if you wanted to create an OBA that lived only on the server, you would stop at the third
step in this figure.

Figure 8-6  Creating an OBA

584637c08.indd 289 5/2/10 7:13:45 PM

290  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

Also, these steps can vary in complexity, depending on what you’re trying to do. For example, a sim-
ple example could be creating a Web service connection to a LOB system, and then using SharePoint
Designer to create an external content type and external list. A more complex process would be
creating the business object in SAP, creating a Web service wrapper, building the BCS solution using
Visual Studio, and then replicating the external content type on the client for a client-side Word
add-in. Either of these examples would fit the definition of an OBA.

In some cases, some of the steps in Figure 8-6 may already be complete (for example, a Web service
may already exist, or the back-end data source may have already been created by another developer
or database administrator). If you were to build an OBA from scratch, however, this would be the
high-level process that you would follow to deploy it on the server and on the client.

The remainder of this chapter will walk through how you create your OBA using the BCS with these
five steps in mind.

Creating the External Data Source
The first step represents the creation of the data source — in this case, an external data source. In
some cases, the external data source already exists (such as leveraging the sales forecast numbers
from the earlier SAP example), or you may need to create one. Either way, this step is where you cre-
ate or discover an external data source.

If the external data source is a system such as SAP, Oracle e-Business Suite, or Microsoft Dynamics
CRM, then you’ll need some way of interacting with that data. You typically cannot just interact
across a system without some sort of intermediary service. Thus, one of the key work items in this
first step is to create a Web service against that external data source. To do this, you might have
to create a service within the native toolset (for example, the Web Service Wizard within the SAP
tools), or you could leverage existing adaptors (such as BizTalk LOB Adaptors — which are essen-
tially WCF service connections to external systems).

For the purposes of this chapter, let’s start with the AdventureWorksLT2008 SQL Server database
as the external data source. This example will be based on using SQL Server 2008 in the develop-
ment environment, but you could equally use other versions of SQL Server if you choose. As shown
in Figure 8-7, in the AdventureWorksLT2008 database is a table called SalesLT.Customer, which is
the specific table you’ll use in creating your OBA.

Figure 8-7  SQL Server (AdventureWorksLT2008)

584637c08.indd 290 5/2/10 7:13:45 PM

Developing Your First Application Using BCS  ❘  291

The AdventureWorksLT2008 data required for this walkthrough is available for down-
load at this book’s companion download site (www.wrox.com). The filename is SQL2008.
AdventureWorksLT2008_Only_Database.zip. You can download the AdventureWorksLT2008
database from http://msftdbprodsamples.codeplex.com/releases/view/37109.

After you’ve downloaded the AdventureWorksLT2008_Only_Database.zip file, unzip the two
files (AdventureWorksLT2008_Data.mdf and AdventureWorksLT2008_Log.ldf) into the following
folder: c:\Program Files (x86)\Microsoft SQL Server\MSSQL.1\MSSQL\Data. To attach the
AdventureWorks database, open SQL Server Management Studio, right-click the Databases node,
and click Attach. In the Attach Databases dialog, click Add and browse to the previously described
directory. Then select the AdventureWorksLT2008_Data file.

After you’ve attached the AdventureWorksLT2008 database, you can browse to the Customer table
to see the data that exists in the database. You can now create an external content type that inte-
grates directly with SQL Server to expose the customer data in an external list. As you’ve seen, the
external content type is the XML file that defines the relationship with your external data source
that will map to the Customer table in the AdventureWorksLT2008 database.

Creating the External Content Type
You can create this external content type in three different ways:

You can hand-code the XML in Notepad (which is not recommended).➤➤

You can use SharePoint Designer 2010 to create it (which, if you’re just starting out with ➤➤

BCS, is recommended).

You can use Visual Studio 2010 (which is geared more toward a heavier coding experience).➤➤

If you use SharePoint Designer to create an external content type, it automatically saves the XML
metadata in the Business Data Connectivity (BDC) Metadata Store and exposes it within Central
Administration — which is where you should start if you’re new to BCS. Visual Studio 2010 creates
a standard WSP for the BDC Metadata project, so the XML metadata file is deployed into the cor-
rect place as a part of the wider project. If you create the XML metadata file outside of SharePoint
Designer or Visual Studio, you must import the external content type into Central Administration.
To import an external content type, you open the Central Administration site, click Application
Management ➪ Managed Service Applications ➪ Business Connectivity Services, and then click the
Import button in the SharePoint ribbon. You then browse to the location of the external content type
XML file and click Import.

Creating an ADO.NET-Based External Content TypeTry It Out	

An external content type is necessary to create the relationship between the external data source
and the consuming application. To create an external content type that is integrated with the
AdventureWorksLT2008 Customer table, follow these steps:

	1.	 Open SharePoint Designer 2010.

	2.	 Click File ➪ Open Site and then type the URL of your SharePoint site (for example, http://
fabrikamhockey).

584637c08.indd 291 5/2/10 7:13:45 PM

292  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

	3.	 When SharePoint Designer loads the SharePoint site, it will display the current settings for the site.
In the left-hand navigation pane, click External Content Types. SharePoint Designer opens a page
that displays all of the current external content types listed in the site. Figure 8-8 shows the differ-
ent external content types registered with this site.

Figure 8-8  External content type report in SharePoint Designer

	4.	 To create a new external content type, click the External Content Type button on the ribbon.
SharePoint Designer opens the New External Content Type properties window that you can use to
create the external content type.

	5.	 Click the New External Content Type link beside Name and Display Name to provide a Name
(for example, MyCustomers) and Display Name (for example, Customers) for your external
content type.

	6.	 In the Office Item Type drop-down list, select Contact, as shown in Figure 8-9.

	7.	 Ensure that Offline Sync for External List is set to Enabled.

	8.	 To add a data source, select “Click here to discover external data source.”

	9.	 Click Add Connection to add the AdventureWorksLT2008 database as an external data source. Then,
in the Add Connection dialog, select SQL Server and provide the necessary information to load the
AdventureWorksLT2008 database (that is, your “Server name,” “AdventureWorksLT2008” as the
Database Name, and an optional “Name for the Data Source”). Select the “Connect with User’s
Identity” radio box to connect to the SQL Server database with your credentials.

584637c08.indd 292 5/2/10 7:13:45 PM

Developing Your First Application Using BCS  ❘  293

Figure 8-9  External content type information

	10.	 After the AdventureWorksLT2008 database has
loaded, browse to the Customers table. Right-
click and select Create All Operations, as shown in
Figure 8-10.

	11.	 This invokes a wizard that enables you to map your
columns in your external data source to Office Item
types, create filters for your data, and so on.

	12.	 Click Next on the first All Operations page. On the
next page of the wizard, you can map some data
source elements to Office properties by first select-
ing the data source elements on the left-hand side
of the wizard and then selecting the Office prop-
erty that most closely aligns to the element (see
Figure 8-11). For example, if you click the LastName
data source element and then select LastName from
the Office Property drop-down list, you have now Figure 8-10  Available operations

584637c08.indd 293 5/2/10 7:13:46 PM

294  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

mapped this data source element to Office property. Select the Title, FirstName, CompanyName,
EmailAddress, and Phone elements and, for each one, select a corresponding Office property that
you feel fits best. (Note that not all of the elements can be mapped. You can set these as Custom
Properties in the Office Property list.)

Figure 8-11  Parameter configuration

	13.	 Click Next. On the next page of the wizard, you can optionally add a data filter. For this exercise,
you will not need a filter, so click Finish to complete the creation of the external content type.

	14.	 Click the Save button (in the upper-left hand region of the screen) to save the external content type.
SharePoint Designer will save the external content type to the BDC Metadata Store.

	15.	 The last step is to create an external list from
this external content type, which you can also
do using SharePoint Designer. To do this, click
Create Lists & Form on the ribbon. Provide a
name for your list in the List Name field such as
My Customers. Leave the other default options
as is and leave the Create InfoPath Form check-
box unchecked, as shown in Figure 8-12.

	16.	 SharePoint Designer will now create an external
list for you using the external content type you
just created. To see the new list, navigate to the
home page of the SharePoint site where you created the external list and click on the new list that
you created. Note that, with this list, you now have a number of operations against the specific list
items (for example, View, Edit, and Delete), as shown in Figure 8-13.

Figure 8-12  Create list from external content type

584637c08.indd 294 5/2/10 7:13:46 PM

Developing Your First Application Using BCS  ❘  295

Figure 8-13  Complete SharePoint external list with operations

	17.	 You may find that your new list displays an “Accessed denied” message. This is because you’ve
not added any permissions against the external content type. To remedy this, close the SharePoint
site and open SharePoint Central Administration. Click Application Management ➪ “Manage
service applications” ➪ Business Data Connectivity Service. Then, click the new external content
type (for example, My Customers) and select Set Object Permissions on the ribbon. In the “Add
an account” field, type All Authenticated Users and then click Add. When added, check each
of the permission checkboxes (that is, Edit, Execute, “Selectable in Clients,” and Set Permissions).
Click OK to save the changes.

	18.	 Test out these operations by editing one of the list items and then switching back to your SQL
Server Management Studio view. Check that the data was updated by refreshing the table view for
Customers.

How It Works

In this walkthrough, you used SharePoint Designer 2010 to create an ADO.NET-based external con-
tent type. This allowed you to use the native SharePoint Designer tools to build an XML file (similar to
the ones discussed earlier in this chapter) that provided information about the relationship SharePoint
should expect to have with that back-end system.

Because you assigned all of the operations to the external content type, when you created the list, it
exposed these operations as Edit, View, Delete, and, of course, Create (with the capability to create a
new list item). If you were to make any of these changes in the external list, the changes would be prop-
agated back to the external data source (in this case, the SQL Server database).

The external content type that you just created was an ADO.NET connection. However, what if
you want to create a connection that is integrated using a service connection? For example, in many

584637c08.indd 295 5/2/10 7:13:46 PM

296  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

cases, you’ll need to use SharePoint Designer to create an external content type that leverages a
WCF or ASP.NET Web service you create that surfaces specific methods within a service definition.
The heavy lifting for you as the developer in this scenario occurs if you must create the service,
which can be different, depending on what system you’re designing the service for.

For example, the toolset to generate a Web service for SAP is different from that within PeopleSoft,
which is different from creating a Web service for Oracle e-Business Suite. However, the underlying
premise is similar, and the messaging (SOAP) is also a common standard that most services share.
Fortunately, SharePoint Designer understands the SOAP messaging structure, can resolve Web ser-
vice endpoints, and can expose the methods that make up those service definitions.

To keep things straightforward, what follows is a simple ASP.NET Web Service that has a self-
contained business object (which represents customer information) that will represent the schema
of the external data source. The schema includes a definition for the following customer data
called Customers:

Customer ID➤➤

Title➤➤

First Name➤➤

Middle Name➤➤

Last Name➤➤

Email Address➤➤

Phone➤➤

The following walkthrough uses a Web service that has one method called GetCustomers and another
called GetACustomer. The GetCustomers method creates a list collection of Customers and then passes
the converted list collection as an array back to the calling application. The GetACustomer method
uses a string parameter to retrieve the specific customer. Let’s walk through the creation of the service
and then, more importantly, how the Web service is configured using SharePoint Designer.

Creating a Read-Only Web Service-Based External Content TypeTry It Out	

Code file [CustWebService.zip] available for download at Wrox.com.

In many cases, you’ll want to integrate Web services hosted in Internet Information Services (IIS) with
your external lists, which you build using SharePoint Designer. To create the ASP.NET Web service,
deploy to IIS, and then create an external content type in SharePoint Designer, follow these steps:

	1.	 Open Visual Studio 2010. Click File ➪ New ➪ Web Site. Select .NET Framework 3.5 in the drop-
down list and then select ASP.NET Web Service.

	2.	 Keep the default location as File System and provide a location for the Web service and click OK.
After Visual Studio creates the service, leave the default name (that is Service.asmx).

	3.	 When the default project is created, navigate to the App_Code folder and right-click the Service.cs
file. Select View Code.

584637c08.indd 296 5/2/10 7:13:46 PM

Developing Your First Application Using BCS  ❘  297

	4.	 Replace the default Hello World service with the following boldfaced code in the Service class. This
code will create a list collection of Customers, and then add three records to the collection. When an
application calls the GetCustomers method, the return will then be an external data source with three
fictional records in it. When the application calls the GetACustomer method, based on the input string
parameter, it will return one of the three records that is generated dynamically.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Services;

[WebService(Namespace = “http://tempuri.org/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]

public class Service : System.Web.Services.WebService
{
 public Service () {

 }

 public class Customers
 {
 public string customerID { get; set; }
 public string Title { get; set; }
 public string FirstName { get; set; }
 public string MiddleName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }
 public string Phone { get; set; }
 }

 [WebMethod]
 public Customers[] GetCustomers()
 {
 List<Customers> myCustomers = new List<Customers>();

 Customers customerOne = new Customers();
 customerOne.customerID = “1”;
 customerOne.Title = “Dr.”;
 customerOne.FirstName = “John”;
 customerOne.MiddleName = “Daley”;
 customerOne.LastName = “Doe”;
 customerOne.EmailAddress = “john.doe@acme.com”;
 customerOne.Phone = “(202) 555-1234”;

 myCustomers.Add(customerOne);

 Customers customerTwo = new Customers();
 customerTwo.customerID = “2”;
 customerTwo.Title = “Ms.”;
 customerTwo.FirstName = “Jane”;
 customerTwo.MiddleName = “Karen”;
 customerTwo.LastName = “Doe”;

584637c08.indd 297 5/2/10 7:13:46 PM

298  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

 customerTwo.EmailAddress = “jane.doe@acme.com”;
 customerTwo.Phone = “(202) 555-1233”;

 myCustomers.Add(customerTwo);

 Customers customerThree = new Customers();
 customerThree.customerID = “3”;
 customerThree.Title = “Mr.”;
 customerThree.FirstName = “Kenneth”;
 customerThree.MiddleName = “James”;
 customerThree.LastName = “Staple”;
 customerThree.EmailAddress = “ken@acme.com”;
 customerThree.Phone = “(202) 555-1884”;

 myCustomers.Add(customerThree);

 return myCustomers.ToArray();

 }

 [WebMethod]
 public Customers GetACustomer(string customerID)
 {
 Customers returnCust = new Customers();

 if (customerID == “1”)
 {

 returnCust.customerID = “1”;
 returnCust.Title = “Dr.”;
 returnCust.FirstName = “John”;
 returnCust.MiddleName = “Daley”;
 returnCust.LastName = “Doe”;
 returnCust.EmailAddress = “john.doe@acme.com”;
 returnCust.Phone = “(202) 555-1234”;
 }

 else if (customerID == “2”)
 {
 returnCust.customerID = “2”;
 returnCust.Title = “Ms.”;
 returnCust.FirstName = “Jane”;
 returnCust.MiddleName = “Karen”;
 returnCust.LastName = “Doe”;
 returnCust.EmailAddress = “jane.doe@acme.com”;
 returnCust.Phone = “(202) 555-1233”;
 }
 else if (customerID == “3”)
 {
 returnCust.customerID = “3”;
 returnCust.Title = “Mr.”;
 returnCust.FirstName = “Kenneth”;
 returnCust.MiddleName = “James”;
 returnCust.LastName = “Staple”;
 returnCust.EmailAddress = “ken@acme.com”;
 returnCust.Phone = “(202) 555-1884”;

584637c08.indd 298 5/2/10 7:13:46 PM

Developing Your First Application Using BCS  ❘  299

 }
 return returnCust;
 }

}

	5.	 After you’ve completed this, press F5 to build and test the Web service. (When prompted to enable
debugging, accept the default selection, “Modify the Web.config file to enable debugging,” and
click OK.) Visual Studio will invoke the Web service in debug mode, and you can click either of the
Web methods (GetCustomers or GetACustomer) that are listed on the page to invoke a response
from the Web method. If you clicked GetCustomers, the response should be similar to Figure 8-14.

Figure 8-14  Web method results

	6.	 If this is successful, stop debugging. Right-click the project and select Publish Web Site. Select the
File System option and browse to a folder where you want to deploy the Web service (for example,
c:\Wrox\GetCustomers). Accept the other default selections and click OK.

	7.	 You’ll now want to map the published project (which is published to what will be your virtual
path) to IIS. To do this, click Start ➪ Administrative Tools, and open IIS. Right-click the Sites node
and add a new Web site called GetCustomerWS. Ensure that the virtual path points to the location
where you published the service (for example, c:\Wrox\GetCustomers). You must also provide
a port that is not listed as 80 (for example, 1141), and (optionally) you can also provide a host
header for the service (for example, fabrikamcustomers). Click Connect As. Select Specific User
and Set to add your credentials as the user that the service will use. Click OK when finished. Click
Test Settings to test your credentials with the service call.

584637c08.indd 299 5/2/10 7:13:46 PM

300  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

	8.	 Ensure that Windows authentication is enabled by clicking the Features View tab, double-clicking
Authentication ➪ Windows Authentication, and then clicking Enable.

	9.	 To test the service from within IIS, click the Content View tab, right-click the Service.asmx file
and select Browse. This opens the Web service and should produce the same results you saw when
you pressed F5 from the Visual Studio project. This is just to check that the Web service and meth-
ods in that service can be called from within IIS, and that your authentication works properly.

	10.	 Open SharePoint Designer and open your SharePoint site. Click External Content Types in the
left-hand navigation menu. When the External Content Types report loads, click External Content
Type in the SharePoint Designer ribbon.

	11.	 Walk through the steps to create an external content type as you did with the earlier one you cre-
ated — that is, click New External Content Type to provide a Name and Display Name (for exam-
ple, Customer WS), select Contact as the Office Item Type, and then click Add Connection to add a
data connection. This time, though, select WCF Service.

	12.	 SharePoint Designer will then invoke the Service
Connection dialog, where you can add specific infor-
mation about your service. Add the service endpoint
URL (for example, http://fabrikamhockey:1190/
Service.asmx?wsdl) to the Source Metadata URL field
and the service endpoint URL without the ?wsdl to the
Service Endpoint URL field (for example, http://fab-
rikamhockey:1190/Service.asmx), and leave the other
options, as shown in Figure 8-15.

	13.	 Click OK to generate the external content type.

	14.	 When the Web service connection is added, you can
navigate to the GetACustomer method. Right-click the
method and select New Read Item Operation. The Read
Item wizard opens and will display some information
about your Web method operation (for example, Name,
Display Name, and Type). Click Next.

	15.	 In the Input Parameters screen, click the customerID data
source element, and then check the “Map to Identifier”
checkbox. Click Next to configure the Return Parameter
Configuration data source elements. To do this, click the
customerID and then check the “Map to Identifier” checkbox. Click LastName and in the Office
Property drop-down list select LastName. You can map the other data source elements to the Office
Item types that make the most sense for you. When you are done, click Finish.

	16.	 You must also configure a New Read List operation. To do this, right-click the GetCustomers
method, and select the New Read List Operation. This opens the configuration wizard. Click Next
twice to get to the Return Parameter Configuration page. Click the customerID and then check the
“Map to Identifier” checkbox. Click Finish to complete the Read List operation.

Figure 8-15  Web service configuration

584637c08.indd 300 5/2/10 7:13:46 PM

Developing Your First Application Using BCS  ❘  301

	17.	 Click Save to save the external content type in the BDC Metadata Store.

At this point, you can create a new external list as you did in the earlier walkthrough, or you can navi-
gate to your SharePoint site, click All Site Content ➪ Create ➪ External List, provide a list name, and
browse for the new service-based external content type to create your external list that way. Whatever
road you choose will result in an external list that will look similar to Figure 8-13.

You may have to configure the permissions to the external list. You do this the same way you did in
the earlier exercise — go to SharePoint Central Administration, and click Application Management ➪
Manage Service Applications ➪ Business Data Connectivity Service, and select your external content
type. Click Set Object Permissions to add users to the list.

How It Works

In much the same way the external content type was created for the ADO.NET connection, you created
a similar external content type for the Web service. There are some differences in the way the metadata
is described, but in essence, the principle of using the external content type to interact with the external
data system is similar. In this case, however, you only created a read-only relationship using the Web
service. Thus, your external content type becomes a read-only view of the data.

There must be a read item operation and a read list operation, and you created these in the code. For
example, you created a class called Customers that was your custom object. You used a list collection
to return a blanket call for all customers, and then you passed a string parameter to return a (dynami-
cally generated) specific customer. These two Web methods worked together to support the two opera-
tions necessary to create an external list.

If you wanted to create both a read and a write relationship with an external system using Web
services, this would certainly be possible. To do this, you would follow the same process as you did
with the previous walkthrough. Let’s give this a try.

Creating a Read/Write Web Service-Based External Content TypeTry It Out	

Code file [MyNewServiceApplication.zip] available for download at Wrox.com.

You created a read-only BCS application in the last walkthrough. However, you’re more than likely
going to want to create a read/write external list as well. To do this, follow these steps:

	1.	 Open Visual Studio and click File ➪ New Project ➪ Web, and select ASP.NET Web Service
Application. Provide a name for your project (for example, MyNewServiceApplication), a loca-
tion for the project, and click OK.

	2.	 Click Data ➪ Add New Data Source. In the Data Source Configuration wizard, click
Database ➪ Next ➪ Entity Data Model and click Next. Click “Generate from Database”
and then, in the Entity Data Model wizard, click “New Connection.” Enter your server
name and select the AdventureWorksLT2008 database and click OK. Click Next and under
Tables select the Customers table and enter a name for the Model Namespace (for example,
AdventureWorksLT2008Entities). Click Finish.

584637c08.indd 301 5/2/10 7:13:46 PM

302  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

	3.	 After you’ve added the data source, right-click the project and select Add ➪ Class. Provide a name
for the class (for example, Customers), and then add the following bolded properties to the class:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace MyNewServiceApplication
{
 public class Customers
 {
 public string customerID { get; set; }
 public string firstName { get; set; }
 public string lastName { get; set; }
 public string phoneNum { get; set; }
 public string emailAddress { get; set; }
 }
}

	4.	 After you’ve added the class, right-click the Service1.cs file and select View Code.

	5.	 Add the following boldfaced code to the Service1.cs file:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Services;

namespace MyNewServiceApplication
{
 [WebService(Namespace = “http://tempuri.org/”)]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]

 public class Service1 : System.Web.Services.WebService
 {
 AdventureWorksLT2008Entities myCustomerData =
 new AdventureWorksLT2008Entities();
 List<Customers> myCustomerList = new List<Customers>();

 [WebMethod]
 public List<Customers> getCustomers()
 {
 int filter = 100;
 var returnData = (from customer in myCustomerData.Customers
 select customer).Take(filter).ToArray();

 foreach (var cust in returnData)
 {
 Customers tempCustomer = new Customers();
 tempCustomer.customerID = cust.CustomerID.ToString();
 tempCustomer.firstName = cust.FirstName.ToString();
 tempCustomer.lastName = cust.LastName.ToString();

584637c08.indd 302 5/2/10 7:13:46 PM

Developing Your First Application Using BCS  ❘  303

 tempCustomer.phoneNum = cust.Phone.ToString();
 tempCustomer.emailAddress = cust.EmailAddress.ToString();
 myCustomerList.Add(tempCustomer);
 }

 return myCustomerList;
 }

 [WebMethod]
 public Customers getACustomer(string custID)
 {
 Customers retCustomer = new Customers();
 int TempCustomerID = Int32.Parse(custID);

 var returnCustData =
 from c in myCustomerData.Customers
 where c.CustomerID == TempCustomerID
 select c;

 foreach (var i in returnCustData)
 {
 retCustomer.customerID = i.CustomerID.ToString();
 retCustomer.firstName = i.FirstName.ToString();
 retCustomer.lastName = i.LastName.ToString();
 retCustomer.phoneNum = i.Phone.ToString();
 retCustomer.emailAddress = i.EmailAddress.ToString();
 }

 return retCustomer;
 }

 [WebMethod]
 public string updateCustomerData(string customerID,
 string firstName, string lastName, string phoneNum,
 string emailAddress)
 {
 string recordUpdate = “record(s) successfully updated.”;
 int TempCustomerID = Int32.Parse(customerID);

 Customer myContact = myCustomerData.Customers.First(e =>
 e.CustomerID == TempCustomerID);

 myContact.FirstName = firstName;
 myContact.LastName = lastName;
 myContact.Phone = phoneNum;
 myContact.EmailAddress = emailAddress;

 int numRecordUpdated = myCustomerData.SaveChanges();
 return numRecordUpdated.ToString() + “ “ + recordUpdate;
 }
 }
}

584637c08.indd 303 5/2/10 7:13:46 PM

304  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

	6.	 To publish your service, you’ll first want to create a directory on your local system (for example,
c:\Wrox\NewCustomerWS). After you’ve done this, right-click the project and select Publish and
then select to File System — using the directory you just created as your publish endpoint. You can
now map the published service to IIS.

	7.	 Open IIS. Right-click Sites and select Add Web Site. Provide a Site Name (for example,
NewGetCustomerWS). Map the physical path to the publish location of your service (for example,
c:\Wrox\NewCustomerWS). Click Connect As and select Specific User and enter your credentials.
Click Test Settings to test the connection to your service using your credentials. Change the Port
from 80 to another port number (for example, 8888) and click OK. Click the Content tab, then
right-click the Service1.asmx file, and select Browse. You should now have a Web page with the
three Web methods available for you to test, as shown in Figure 8-16.

Figure 8-16  Testing Service

	8.	 Test out all of the services to ensure that they work. You may get a SQL error when you try
to run the Web methods. This is a permissions issue because you are trying to access SQL
Server resources. To fix this, click the new Web site you added to IIS, and then click Advanced
Settings. You will see an application pool listed in the Advanced Settings dialog (for example,
NewGetCustomersWS). Click the Application Pools node in IIS, and then find your application pool.
Click it, and then select Advanced Settings. In the Advanced Settings dialog, you can change your

584637c08.indd 304 5/2/10 7:13:47 PM

Developing Your First Application Using BCS  ❘  305

Identity to be your machine/domain credentials. To do this, click the ellipsis in the Identity field,
and then click Custom accounts. Enter your login information. Click OK to exit the Advanced
Settings dialog.

	9.	 Once you’ve tested the services, open SharePoint Designer 2010 and walk through the exact same
process of creating a new external content type. To do this, click External Content Types in the
navigation pane, External Content Type in the ribbon, and enter a Name and Display Name
(for example, NewCustService). Select Contact as the Office Item Type, and then click Add
Connection to add a data connection.

	10.	 SharePoint Designer will then invoke the Service Connection dialog, where you can add specific
information about your service. Add the service endpoint URL (for example, http://fabrikam-
hockey:8888/Service.asmx?wsdl) to the Source Metadata URL field, and the service endpoint
URL without the ?wsdl to the Service Endpoint URL field (for example, http://fabrikam-
hockey:8888/Service.asmx).

	11.	 When the service is added, you can then add the operations for the Web methods. This time,
though, you will add three operations. The first will be the New Read Item operation, which you’ll
add against the getACustomer method. The second will be a New Read List operation, which
you’ll add against the getCustomers method. And the third will be a New Update operation,
which you’ll add against the updateCustomerData method.

	12.	 As you walk through the wizard for each Web method, map the data source elements as you did in
the earlier walkthrough. For example, ensure that the custID is always mapped to the Identifier,
and ensure that the LastName data source element is always mapped to the LastName Office Item
type. When you’ve added the three operations to the three different Web methods, save the exter-
nal content type and click “Create Lists & Form” to create a new external list. Provide a name for
the list (for example, Updated Customers) and click OK. When you load the external list and click
Edit, the result should look similar to Figure 8-17.

Figure 8-17  Read/write external list

584637c08.indd 305 5/2/10 7:13:47 PM

306  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

	13	 You may again find that your new list displays an Accessed denied message. To fix this, close the
SharePoint site and open SharePoint Central Administration. Click Application Management ➪
Manage service applications ➪ Business Data Connectivity Service. Then click the new external
content type and select Set Object Permissions on the ribbon. In the “Add an account” field, type
All Authenticated Users and then click Add. Check all of the permissions for the added user.

How It Works

From the external content type perspective, you again followed a similar process to create and save it to the
metadata store. However, in this example, you used the ADO.NET entity data modeling capabilities built
into Visual Studio and .NET that allow you to treat the Customers table as a strongly typed object.

Within the code, you enabled three operations: read item, read list, and update list. Each one of these
corresponded to the Web method you created in your service (getACustomer, getCustomers, and
updateCustomerData, respectively). The read methods used Language Integrated Query (LINQ) to
query the entity model for all records, or a specific record based on the string parameter that was
passed with the Web method. In the case of the getCustomers method, it also had a filter of 100 that it
asserted against the data it returned from the Web method.

When the updateCustomerData method was called, it leveraged the myCustomerData object (which
was an instance of AdventureWorksEntities).

…
AdventureWorksEntities myCustomerData =
 new AdventureWorksEntities();
…
Customer myContact = myCustomerData.Contacts.First(e =>
 e.ContactID == TempCustomerID);
…

This provided you with the option to update the records through a variable comparison with those
strings that were passed to the Web method, and those that were in the entity model.

…
 myContact.FirstName = firstName;
 myContact.LastName = lastName;
 myContact.Phone = phoneNum;
 myContact.EmailAddress = emailAddress;

 int numRecordUpdated = myCustomerData.SaveChanges();
 return numRecordUpdated.ToString() + “ “ +
 recordUpdate;
…

The key method that updated the records was the SaveChanges method, which returned an integer
value indicating how many records were updated.

Setting Permissions for External Content Types
From the examples in the last section, you have now seen a couple of different ways you can interact
with SharePoint Designer to create external content types that integrate with Web services. You also

584637c08.indd 306 5/2/10 7:13:47 PM

Developing Your First Application Using BCS  ❘  307

saw that you must have some level of permissions associated with the external content type to sup-
port viewing, editing, updating, and deleting list items. Specifically, you saw that after you create an
external content type, you can assign specific permissions to it. The administrator of the SharePoint
site can restrict or provide these permissions for the external content type that you create. If you
are the administrator of your site, then this makes configuring security for the external content
type quite easy. However, if you’re not the administrator, then you’ll need to work with your local
administrator to configure the security settings.

As you may have seen if you configured the security for your external lists, the permissions for the
external content types are located in the Application Management tab of the SharePoint Central
Administration site. You can configure varying levels of permissions against the external content
type. These permissions provide discrete permissions against specific external content types for spe-
cific users. So, for example, when users are trying to update something when maybe they shouldn’t
be, it is this permission list that controls access to the external data store.

The way the permissions work is that SharePoint stores users as Active Directory (AD) records. For
each identity that has been given permission to a specific site, users can further be allotted discrete
privileges against the external content type and the external system. When the user is logged in, the
AD identity is passed to SharePoint, and a comparison is done at run-time. The user is then only
permitted to act on that data as per the permissions defined for that user.

Note that if you require security to manage a separate set of credentials that are not based on AD,
or require a separate username and password not recognized natively by Windows, you may need
to use the Secure Store Service (SSS). SSS provides a way to map BCS applications to the username
and password that map to an external data source (such as SAP, PeopleSoft, or another LOB system)
where permissions are not the same as, for example, your Windows credentials. Thus, SSS repre-
sents an authorization service that runs on an application server and supports the shared services
infrastructure. SSS provides a database where you can create and store credentials that consist of a
user’s identity and password, and the application ID that maps to those credentials.

NOTE  ​Chapter 12 provides more information on SSS.

Taking the External List Offline
After you’ve created and secured your external list, SharePoint supports taking the list offline so
that you can program against the cached data on the client from your external data source. BCS
also offers a client-side object model to allow you to program against the cached data once you’ve
taken it offline. If you’d like to keep the surfacing of this data low-maintenance, there are also no-
code ways to surface this data in the client.

For example, you can use the external content type you created earlier in the chapter to surface the
customer data in SharePoint Workspace, Access, and Outlook (with a no-code option). In this next
exercise, you’ll take the first external list you created in this chapter offline and expose the list in
SharePoint Workspace. This external list was the AdventureWorksLT2008 Customers table, which
you created using SharePoint Designer.

584637c08.indd 307 5/2/10 7:13:47 PM

308  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

Taking an External List OfflineTry It Out	

Taking a list offline enables you to surface LOB data on the client. To take an external list offline, fol-
low these steps:

	1.	 Open the My Customers list you created earlier in the chapter.

	2.	 Click the List tab on the SharePoint ribbon. Note that in the “Connect & Export” group, you have
different options available to you (for example, to sync with Outlook or SharePoint Workspace) to
take the external list offline, as shown in Figure 8-18.

Figure 8-18  External list settings

	3.	 Click the “Sync to SharePoint Workspace” button, and you’ll be prompted to accept the
Installation of a file to your local machine. Click Install to initiate the VSTO Package installation
on your machine.

	4.	 After the client-side package is installed, you will be prompted with a dialog that indicates the
Office Customization was successfully installed. You can then open SharePoint Workspace to view
the external list offline in SharePoint Workspace.

How It Works

When you take an external list offline, the VSTO package installs a number of files to the client, includ-
ing the external content type, a data cache so the external LOB data can be used on the client, and
configuration and assembly files that support Office client integration. With the external data source
now cached on the client, you can also build applications that use the external data source on the client.
For example, having this client-side cache means that you can now quickly build no-code solutions that
integrate with Outlook and Access to surface your external data source in the client.

In this next walkthrough, you’ll leverage the external list you just took offline in the previous exer-
cise and surface external data in an Access 2010 database.

584637c08.indd 308 5/2/10 7:13:47 PM

Developing Your First Application Using BCS  ❘  309

Surfacing External Data in AccessTry It Out	

Access 2010 is a great way to integrate LOB data without requiring any code. To surface the client-side
cache of the My Customers external list in Access, follow these steps:

	1.	 Open Access 2010.

	2.	 Click Blank Database.

	3.	 Select the External Data tab.

	4.	 Click More ➪ Data Services, as shown in Figure 8-19.

Figure 8-19  Integration with Access

	5.	 In the Create Link to Data Services dialog, click Install New Connection.

	6.	 Browse to the BCS client-side install location (for example, the parent install location for the BCS
files is typically in the folder C:\Users\<user>\AppData\Local\Microsoft\BCS). The separate
installs are represented by GUIDs. Select the folder associated with the external content type you
just took offline. (Use the folder timestamp if necessary.)

	7.	 Select the metadata.xml file and click OK. Then expand and select the external data source listed
in the “Create Link to Data Service” dialog (for example, Customers).

	8.	 Select “Create Linked Table.”

Access creates a linked table for you with a read-only version of the data from your external data
source, as shown in Figure 8-20.

How It Works

Access understands the metadata that is generated when SharePoint Designer (and Visual Studio) cre-
ates an external content type. Access does not, however, have the capability to read and write into the
external data system. It can only load and present the data that is based off of the connection metadata
in the external content type.

584637c08.indd 309 5/2/10 7:13:47 PM

310  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

Figure 8-20  Access-linked table using an external content type

While no-code solutions are interesting, you may find yourself wanting a deeper level of control over
custom BCS applications on the client. When you take external lists offline, you can leverage the client-
side BCS API to build BCS applications for Microsoft Office 2010. To do this, you create an Office
smart-client application and add the appropriate references that provide access to the BCS API. This is
a straightforward process.

To do it, you use the Visual Studio 2010 Office templates. (You saw this project earlier in the book in
Chapter 5, and you’ll see it again in Chapter 11.) Essentially, you create an Office add-in (for example, a
Word 2010 add-in), and you can use the Office object model and programmability features such as the
custom ribbon and custom task pane to integrate controls with data that you retrieve from LOB sys-
tems. For example, let’s say you have a listbox control that you want to add to a custom task pane and
bind to the external data source you’ve taken offline (say from the My Customers external list). To get
the external data from the offline data cache using the BCS API, you would create an event handler like
the following code snippet.

…
using Microsoft.BusinessData;
using Microsoft.BusinessData.Runtime;

584637c08.indd 310 5/2/10 7:13:47 PM

Developing Your First Application Using BCS  ❘  311

using Microsoft.BusinessData.MetadataModel;
using Microsoft.BusinessData.MetadataModel.Collections;
using Microsoft.Office.BusinessData.MetadataModel;
using Microsoft.Office.BusinessData.Runtime;
…
private void getLOBData(object sender, EventArgs e)
{
RemoteSharePointFileBackedMetadataCatalog catalog = new
 RemoteSharePointFileBackedMetadataCatalog();
INamespaceEntityDictionaryDictionary entDictAll =
 catalog.GetEntities(“*”);
foreach (INamedEntityDictionary entDict in entDictAll.Values)
 {
 foreach(IEntity entity om entDict.Values)
 {
 myListBox.Items.Add(entity.Name);
 }
 }
}
…

In the code sample, the getLOBData method uses the RemoteSharePointFileBackedMetadataCatalog
object (which provides an entry point to all of the external content types you take offline) and the
InamespaceEntityDictionaryDictionary object (which is a dictionary of the external content types
taken offline) to iterate through all of the external data sources (that is, external content types) you’ve
taken offline and cached to your client machine. The code snippet finds all of the external content
types that have been taken offline, and then adds them to a listbox object. Note that when you call the
GetEntities method, the * parameter returns all of the external content types (or entities) you took
offline. However, you could equally add a specific name of an entity if you wanted to retrieve a specific
external content type.

Accessing the external content types is the first step in your interaction with the external content type
on the client. For example, you may also want to iterate through the records in the external content
types (specifically one that the user selects from the previous listbox), and then bind those records to a
data grid object. To do this, the following code sample shows you (again) a way to get the data within
the external content type bound to a DataGrid control. This code sample takes the entity that the user
selects in the listbox (that was populated in the earlier code sample), and then walks through the data
and populates the DataGrid control.

…
Private void myListBox_SelectedIndexChanged(object sender,
 EventArgs e)
{
 IEntity entity = entityDictionary[(String)
 this.myListBox.SelectedItem];
 IEntityInstanceEnumerator instanceEnumerator =
 entity.FindFiltered(
 entity.GetDefaultFinderFilters(),
 entity.GetMethodInstances(MethodInstanceType.Finder)[0].

584637c08.indd 311 5/2/10 7:13:47 PM

312  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

 Value.Name,
 entity.GetLobSystem().GetLobSysteminstances()[0].Value,
 OperationMode.CacheWithoutRefresh);
 EntityDataTableAdapter adapter = new
 EntityDataTableAdapter(instanceEnumerator);
 entitiesTable = adapter.EntitiesAsDataTable;
 myDataGrid.DataSource = entitiesTable;
}
…

Once you have the data from the loaded entity into your application (for example, into a datagrid), then
you can either read that data into the application as a report (for example, add the data to content con-
trols inside a document or to cells into a spreadsheet), or have update capabilities built into your appli-
cation. The following code sample provides an example of how you might deserialize (and materialize)
the data from the entity using an entity reference object, iterating through the fields within the selected
row in a datagrid, and then calling the Update method to update the client-side cache of the external
data system:

…
EntityInstanceReference eir = EntityInstanceReference.Deserialize
 (reference, this.catalog);
IEntityInstance instance = eir.Materialize();

 foreach (IField field in instance.
 ViewDefinition.Fields)
 {
 String fieldName = field.Name;
 bool isReadonly = field.TypeDescriptor.
 ContainsReadOnly;
 if (this.dt.Columns.Contains(field.Name))
 {
 if (!field.TypeDescriptor.ContainsReadOnly)
 {
 instance[field] =
 this.dataGridCustomers.Rows[index].
 Cells[this.dt.Columns.
 IndexOf(field.Name)].Value;
 }
 }
 }
instance.Update();
…

Figure 8-21 shows an example of how this code can be applied. In the custom task pane, a listbox and
datagrid are used to load in all of the entities (that is, external content types) that have been taken
offline. Depending on what the user selects, different data populates the datagrid from the entity. You
can further see Load and Update buttons that integrate the data from the external data system (via the
DataGrid) into the document, using Word content controls as the point of entry into the document.
Any changes that are entered into the content controls are subsequently updated to the client-side data
cache when the user clicks the Update button.

584637c08.indd 312 5/2/10 7:13:47 PM

Summary  ❘  313

Figure 8-21  Custom Office application

After you update the client-side cache, then the BCS Sync service transports your changes to the
server. Thus, you can have a symmetrical relationship with applications interacting with your offline
data on the client, as well as SharePoint solutions updating that data on the server — in short, an
offline story where one (at least not a good one) did not exist before.

Summary

At the heart of BCS is the external content type, which supports connectivity across a variety of
external data sources (such as Web services, SQL Server databases, and custom business objects).
Furthermore, the capability to create external content types in either SharePoint Designer or Visual
Studio provides the developer with some flexibility when first learning how to create them, versus
more advanced ways to have more control over the creation and deployment process.

584637c08.indd 313 5/2/10 7:13:47 PM

314  ❘  Chapter 8   Integrating Line-of-Business Data Using Business Connectivity Services

The capability to consume external content types on both the server and the client is a great way
to symmetrically integrate how that data is consumed across the two. It increases the capability to
repurpose the data, and also provides a rich object model for both server and client programming.

In Chapter 9, you’ll move away from OBA and BCS to explore the different ways in which Silverlight
integrates with SharePoint.

ExercisesExercises	

	 1.	 Describe what an OBA is and what types of SharePoint (and Office) features you could use
when building one.

	 2.	 How is the external content type in SharePoint 2010 different from the ADF in SharePoint
2007?

	 3.	 How would you secure an external content type against, for example, an SAP system?

	 4.	 Take the My Customers list offline and build a simple Office add-in leveraging the BCS
client-side API.

584637c08.indd 314 5/2/10 7:13:47 PM

Recommended Reading  ❘  315

What You Learned in This Chapter⊲⊲

Item Description

Office Business
Application (OBA)

An OBA is an application that integrates LOB data with SharePoint
and/or Office. LOB data could include data from systems such as SAP,
PeopleSoft, and Microsoft Dynamics CRM.

Business Connectivity
Services (BCS)

BCS is the evolution of the BDC Web parts from SharePoint 2007, and
provides CRUD capabilities between a SharePoint or client application
and an external data system. BCS supports ADO.NET or Web service
connections.

External Content Type An external content type is the metadata file that integrates the LOB sys-
tem (or external data system) with SharePoint or Office. It is the evolution
of the application definition file (ADF) from SharePoint 2007.

SharePoint Designer
and BCS

SharePoint Designer 2010 provides a way to simply create an external
content type using a wizard experience.

Client-side Options
with BCS

Using Visual Studio 2010, you can leverage the client-side BCS API to
build and deploy Office add-ins.

Recommended Reading

BCS team blog at ➤➤ http://blogs.msdn.com/bcs/

Channel 9 SharePoint Developer Learning Center: ➤➤ http://channel9.msdn.com/learn/

courses/SharePoint2010Developer/

Channel 9 BCS Module at ➤➤ http://channel9.msdn.com/learn/courses/

SharePoint2010Developer/AccessingExternalData/

BCS on MSDN at ➤➤ http://msdn.microsoft.com/en-us/library/

ee556826(office.14).aspx

584637c08.indd 315 5/2/10 7:13:47 PM

584637c08.indd 316 5/2/10 7:13:47 PM

Creating Enhanced User
Experiences for SharePoint
with Silverlight

What You’ll Learn In This Chapter:

Getting to know Silverlight➤➤

Understanding why you should integrate Silverlight with SharePoint➤➤

Understanding how you can integrate SharePoint and Silverlight➤➤

Thus far, you’ve seen some discussion on Silverlight, but this book really hasn’t delved deeply
enough into the topic to give you a feeling for its true power. For example, in Chapter 3
you learned how it is possible to embed Silverlight within your master page to improve the
look and feel of your site with some advanced branding techniques. You learned how to use
Expression Blend as a way to create a more complex Silverlight-based application and user
interface (UI) that work in concert with Visual Studio to really evolve your SharePoint 2010
applications. However, you have barely scratched the surface with these topics. There is so
much more that is possible with the integration of Silverlight and SharePoint.

This chapter provides an introduction to Silverlight, so you’ll begin to see why integrating the
two technologies is so compelling. You’ll also see that there are three main ways (or classifica-
tions) of integrating Silverlight with SharePoint — and it is these three “levels” of integration
that will guide how you create the pattern for bringing these two technologies together.

Understanding Silverlight

As of this writing, Silverlight has just been released in version 4. Silverlight 4 has some incred-
ibly rich features that range from Webcam capabilities, rich media, multicasting, evolved
controls, and improved developer tooling. However, while Microsoft has recently shipped

9

584637c09.indd 317 5/2/10 7:13:57 PM

318  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

Silverlight 4, this chapter tries to avoid an enumeration of version-specific features. Instead, it
focuses on some core patterns that you, as a beginning SharePoint developer, can focus on, and then
apply with what is a fast-revving product at Microsoft.

Silverlight is a relatively new technology from Microsoft that enables developers to build Rich
Internet Applications (RIAs). These RIAs manifest as in- and out-of-browser applications that pro-
vide rich, interactive, and dynamic user experiences. Also, because it is Web-based, Silverlight is
cross-platform and cross-browser, and, as such, is supported in different browsers such as Internet
Explorer, Safari, and FireFox.

To create these applications, Silverlight combines a language called Extensible Application Markup
Language (XAML) — pronounced “zammel” — with code behind that is primarily C# or VB.NET,
although it can also include dynamic scripting languages (such as JavaScript).

As an extension to what you saw in Chapter 3, the following is a simple example that illustrates
a “Hello World” application with a grid block that encapsulates a label, textbox, and a button.
Each of the controls has properties associated with it, and you can see that the button has a
btnGreeting_Click event handler that calls an event that lives in the code behind.

<UserControl x:Class=”ASimpleSilverlightApplication.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”171” d:DesignWidth=”400” xmlns:dataInput=
 “clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data.Input”>
<Grid x:Name=”LayoutRoot” Background=”White” Height=”167”>
<TextBox Height=”23” HorizontalAlignment=”Left”
Margin=”73,57,0,0” Name=”txtbxName” VerticalAlignment=”Top” Width=”144” />
<dataInput:Label Height=”22” Content=”Name:” HorizontalAlignment=”Left”
Margin=”12,58,0,0” Name=”lblName” VerticalAlignment=”Top” Width=”55” />
<Button Content=”Click” Height=”23” HorizontalAlignment=”Left”
Margin=”38,105,0,0” Name=”btnGreeting” Click=”btnGreeting_Click”
VerticalAlignment=”Top” Width=”75” />
</Grid>
</UserControl>

NOTE  ​To create a Silverlight application and use this code, you use the
Silverlight Application project type in Visual Studio 2010. You do not need to
create a Silverlight application that is hosted in a new Web site (which is a
choice you have when creating the new project). Drag and drop the controls to
the XAML designer to ensure that all of the appropriate references are added
to your project (for example, System.Windows.Controls.Data.Input).

While the XAML is shown here, the Designer experience in Visual Studio and Expression Blend is
such that you don’t need to code Silverlight applications by directly authoring the XAML. You can
use the designers to create your UI through a drag-and-drop experience in either Visual Studio or
Expression Blend. However, it is good to understand and be familiar with the underlying UI syntax.

584637c09.indd 318 5/2/10 7:13:57 PM

Understanding Silverlight  ❘  319

The code behind for the previous application calls the btnGreeting_Click event handler, as you
can see by the following bolded code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace ASimpleSilverlightApplication
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void btnGreeting_Click(object sender, RoutedEventArgs e)
 {
 string yourName = txtbxName.Text;
 MessageBox.Show(“Hello “ + yourName);
 }
 }
}

When you press F5, you can test the Silverlight application
from within Visual Studio. Running this sample application
in debug mode will result in something similar to Figure 9-1.

Even though Silverlight is a Web-based experience, it is
also .NET-based. What this means is that you will use
Visual Studio or Expression Blend to build your applica-
tions and then deploy them to a Web property where
a “light” .NET runtime will enable you to execute the
Silverlight applications you build. Specifically, the appli-
cations execute within an ActiveX browser plug-in that
runs inside of your browser. This results in dynamic managed-code applications that leverage the
strength of the .NET framework. The “light” means that not every class library you have in the
standard .NET Framework ships with the .NET Framework that Silverlight leverages.

NOTE  ​To understand the classes that Silverlight 4 leverages within the
.NET Framework, see http://msdn.microsoft.com/en-us/library/
cc838194(VS.96).aspx.

Figure 9-1  Simple Silverlight application

584637c09.indd 319 5/2/10 7:13:57 PM

320  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

When it comes to developer skills, this also means that those who have programmed using .NET
before have the capability to quickly translate those skills into real development. This means lever-
aging C# or VB.NET, LINQ, WCF, and so on. However, Silverlight is not limited to just .NET. You
can also integrate dynamic languages, such as JavaScript, Ajax, Ruby, and Python with Silverlight,
along with Web 2.0 technologies, services (for example, ASP.NET Web services, WCF, and REST),
and much more. The types of applications you can build with Silverlight vary quite dramati-
cally — from the simple Web banner application to the fully featured business application.

There are countless examples of Silverlight being used on the Web today, and the number of
applications is growing daily. For example, Figure 9-2 shows a Netflix movie player that is a
Silverlight-enabled way to watch movies over the Web. For those who don’t have Netflix, it deliv-
ers a Web-based experience for viewing movies, and the Silverlight viewer enables you to load
and navigate across a movie you want to watch.

Figure 9-2  Netflix Silverlight movie viewer

However, media management is but one example of Silverlight’s applications. As it has evolved as
a technology, it has become much richer; and with Silverlight 4, the possibility of building busi-
ness applications that are hosted on the Web is now a reality. Some of the major enhancements to
Silverlight 4 include richer media management, a wider set of controls, better business application
features, and much, much more.

584637c09.indd 320 5/2/10 7:13:58 PM

Understanding Silverlight  ❘  321

NOTE  ​To learn more about Silverlight, see http://silverlight.net.

Let’s create a simple Silverlight application.

Creating a Simple Silverlight ApplicationTry It Out	

Code file [SilverlightApplication1.zip] available for download at Wrox.com.

Silverlight is a great new way to build dynamic and compelling RIAs. To create a simple Silverlight
application, follow these steps:

	1.	 Click File ➪ New ➪ Project. In the Silverlight templates, select the Silverlight application template
(which provides you with the capability to create a Silverlight application with or without a Web
site associated with it).

	2.	 Provide a name for the application and click OK.

	3.	 You’ll be prompted with a checkbox to host the Silverlight application in a new Web site, as shown
in Figure 9-3. You don’t need to do this unless you want to have a separate Web site for your
application, where, for example, you might deploy Web services that you want to leverage within
your Silverlight application. So, uncheck the box next to “Host the Silverlight application in a new
Web site” and then click OK.

Figure 9-3  New Silverlight Application dialog

	4.	 After you create a new Silverlight application, the project structure that Visual Studio creates
includes a number of project files in your Solution Explorer, as shown in Figure 9-4.

584637c09.indd 321 5/2/10 7:13:58 PM

322  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

Figure 9-4  Simple Silverlight UI

	5.	 Drag and drop four controls from the Toolbox (two labels, a textbox, and a button), and arrange
the UI as shown in Figure 9-4. Note that right beneath the Designer is the XAML view; as you add
controls to the Designer, the XAML is updated within the XAML view.

Table 9-1 provides an overview of the control types and the corresponding names you’ll use in the
Silverlight application.

Table 9-1  Control Types and Names

Control Type Control Name

Label lblName, lblTitle

Textbox txtbxName

Button btnName

	6.	 You’ve worked with XAML before in Chapter 3, but as a refresher, there are some important
properties that you’ll want to be sure you pay attention to when building out your Silverlight
applications. One of the properties is the x:Name property, which represents the name (or ID) of

584637c09.indd 322 5/2/10 7:13:58 PM

Understanding Silverlight  ❘  323

a Silverlight control. If you want to code against an object within Silverlight, having the name is
essential. You can see these properties in the following boldfaced code. Other properties within
the XAML are the layout properties, which are updated as you move the controls about on the
Designer. Also note that if you have dependent assemblies that you require (for example, leverag-
ing the Silverlight toolkit would require you to have dependent assemblies associated with your
Silverlight application), you may need to ensure that there is a namespace reference to these listed
within the opening UserControl element within the XAML code. Ensure that the XAML in your
new application reflects the following bolded code:

<UserControl x:Class=”SilverlightApplication1.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/
 presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/
 markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”204” d:DesignWidth=”400” xmlns:dataInput=
 “clr-namespace:System.Windows.Controls;assembly=
 System.Windows.Controls.Data.Input”>

<Grid x:Name=”LayoutRoot” Background=”White” Height=”186”>
<dataInput:Label Content=”My First Silverlight App” Height=”21”
HorizontalAlignment=”Left” Margin=”42,32,0,0” Name=”lblTitle”
VerticalAlignment=”Top” Width=”225” FontWeight=”Bold” />
<Button Click=”btnName_Click” Content=”Greeting”
Height=”23” HorizontalAlignment=”Left”
Margin=”42,115,0,0” Name=”btnName” VerticalAlignment=”Top”
Width=”75” />
<TextBox Height=”23” HorizontalAlignment=”Left”
Margin=”104,72,0,0” Name=”txtbxName” VerticalAlignment=”Top”
Width=”163” />
<dataInput:Label Content=”Name:” Height=”21”
HorizontalAlignment=”Left” Margin=”42,72,0,0” Name=”lblName”
VerticalAlignment=”Top” Width=”56” />
</Grid>
</UserControl>

	7.	 Right-click the MainPage.xaml file, and select View Code.

	8.	 Add the following bolded code to your Silverlight application:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace SilverlightApplication1

584637c09.indd 323 5/2/10 7:13:58 PM

324  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void btnName_Click(object sender,
 RoutedEventArgs e)
 {
 string myNamePrefix = “Length of Name: “;
 string myName = txtbxName.Text;
 int myNameLength = 0;
 myNameLength = myName.Length;
 MessageBox.Show(myNamePrefix +
 myNameLength.ToString());
 btnName.Content = “Goodbye”;
 }
 }
}

	9.	 After you’ve added the code, press F5 to test out the application.
Visual Studio will invoke an instance of your default browser
and then launch the Silverlight application, which should look
similar to Figure 9-5. The Silverlight application leverages the
built-in test harness (there is an HTML page that launches and
hosts the Silverlight application) to run the application.

How It Works

You’re now likely somewhat familiar with the XAML code, as
you’ve seen a couple of examples. The important takeaway from
the XAML discussion is that you create objects with properties
you can code against.

For example, when you add code behind in Silverlight, it’s much like other .NET experiences. You are
building code against the objects that you’ve created and added to your project. As shown in this exam-
ple, the objects are UI controls (such as labels and buttons), and examples of the properties of those
controls are content, text, height, and width.

So, the code in this example maps to the XAML, calculates the length of the string that is entered
into the textbox, and then changes the Content property of the btnName button after you click OK,
to say “Goodbye.”

…

 private void btnName_Click(object sender,
 RoutedEventArgs e)
 {
 string myNamePrefix = “Length of Name: “;
 string myName = txtbxName.Text;
 int myNameLength = 0;

Figure 9-5  Debugging the simple
Silverlight application

584637c09.indd 324 5/2/10 7:13:58 PM

Why Integrate Silverlight and SharePoint?  ❘  325

 myNameLength = myName.Length;
 MessageBox.Show(myNamePrefix +
 myNameLength.ToString());
 btnName.Content = “Goodbye”;
 }
…

As you move throughout this chapter, you’ll see how you can integrate Silverlight with SharePoint.
But, for now let’s talk briefly about why you should integrate the two technologies.

Why Integrate Silverlight and SharePoint?

If you look at the momentum across SharePoint and Silverlight, it is pretty incredible to see the
growing center of gravity around each of them. For example, at the 2009 SharePoint Conference
in Las Vegas, Steve Ballmer, CEO of Microsoft, announced that the developer community for
SharePoint would soon be at “1 million developers.” Also, he noted that the business around
SharePoint was stable and growing, with more than $1 billion in revenue, 100 million enterprise
licenses, a network of more than 4,000 partners, and a strong opportunity for post-deployment cus-
tomizations. What this means for you (and, more generally, for software development firms) is that
there is a great opportunity to build and leverage SharePoint development skills.

With Silverlight, there is similar growth. As mentioned, the product is now in its fourth release, with
quicker go-to-market cycles than other products at Microsoft. As of this writing, Silverlight had
more than 500 million downloads, 500,000 developers worldwide, many partners using the technol-
ogy, and thousands of applications being built worldwide.

Also, where developers have used Adobe Flash, they can now use Silverlight within the .NET and
Microsoft stack. This translates into vastly improved integration across the different technologies.
For example, the tools support and .NET class library support provide great integration across the
applications you’re trying to build. This support also makes building these applications a much
easier proposition. This is evidenced by, for example, the integration between Visual Studio and
Expression Blend to more closely tie together the developer and designer experiences.

So, taken separately, these two technologies are doing very well. However, there are some great
opportunities when you bring these two technologies together.

For example, they are both Web-based technologies. They are both based on .NET and can support
some level of scripting and dynamic language integration. Furthermore, SharePoint is a platform, so
naturally it plays host to interoperable technologies such as Silverlight, and, within this light, supports
Silverlight out of the box in SharePoint 2010. And, lastly, the developer story is solid. Not only do you
have SharePoint project templates out of the box with Visual Studio 2010 (along with the Silverlight
templates), but as mentioned earlier you also have a seamless integration with Expression Blend.

All this translates into great things for these two technologies coming together, not only for the end
consumer of Silverlight applications in SharePoint, but also for the developers and designers working
together to create and deploy them.

584637c09.indd 325 5/2/10 7:13:58 PM

326  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

The opportunities for applications within the convergence of these two technologies are equally
compelling. For example, you can build the following:

Simple self-contained applications, where the code resides within the Silverlight application ➤➤

but doesn’t integrate with the SharePoint object model — SharePoint simply plays host to the
Silverlight application

Complex business applications, where the Silverlight application pulls in external data ➤➤

sources and integrates them with SharePoint to, for example, update a SharePoint list, or cus-
tomize the navigation system

Branding applications that leverage the animation and storyboard features of Silverlight, and ➤➤

build counting logic that enable video swapping along timelines and keeping count of click-
throughs on advertisements

Multi-touch applications that leverage the Silverlight UI with multi-touch capabilities to ➤➤

browse and view thumbnail representations of the underlying documents in SharePoint
document libraries

And the list goes on. Literally, if you look at the opportunity space here, it’s as far as it is wide. And,
again, the developer and designer story is so complementary and compelling that companies will
naturally gravitate toward using these tools.

With that in mind, let’s now dig a bit deeper into how SharePoint and Silverlight integrate.

Integrating Silverlight with SharePoint

If you were to think at a very high architectural level about how SharePoint integrates with
Silverlight, you might envisage something like what is shown in Figure 9-6. This figure shows that,
while SharePoint is built upon a foundation of a server or a client (depending on your OS installa-
tion), at the top end of the experience, SharePoint is rendering pages as aspx and HTML pages (and,
of course, embedded scripts). SharePoint also supports the integration of Silverlight (in or out of
browser) as an enhanced user experience, or a deeper-level integration with the underlying artifacts
within SharePoint. Note that, while Silverlight applications are ultimately hosted within the aspx
pages within SharePoint, you can also integrate Silverlight applications that are hosted outside of
SharePoint — as you will see in one of the exercises later in this chapter.

Silverlight Web 2.0

Azure

Services

. . .

ASPX/HTML

Windows 7Windows Server

SharePoint

Figure 9-6  High-level architectural integration

584637c09.indd 326 5/2/10 7:13:58 PM

Integrating Silverlight with SharePoint  ❘  327

Furthermore, what Figure 9-6 also represents is the fact that you can integrate other technologies
within Silverlight (or directly with SharePoint), such as Web 2.0 technologies, Azure service end-
points, third-party services, and so on. Thus, there is a wide berth for the integration that can drive
at a superficial level (for example, simply hosting an application) or drive much deeper (for example,
a Silverlight application integrating with the underlying SharePoint object model). And, in both of
these cases, you could also integrate other Microsoft or non-Microsoft technologies, services, or
data sources to further complement the integrated solutions.

You can sensibly classify the integrations with SharePoint in three primary ways, as is illustrated in
Figure 9-7. These classifications are not necessarily hard and fast, but they have helped developers in
the past quickly distinguish the different types and levels of integration.

No Touch

<html/>

Low Touch

Consistent Tools and Application Model

High Touch

SharePoint
Artifact

SharePoint
Artifact

OM, Web 2.0,
Service, . . .

Microsoft®
Visual Studio

Microsoft®
ASP.NET.NET

Microsoft® Windows
Presentation
Foundation.NET

Microsoft®
Expression Studio

Figure 9-7  Different types of integration

The first is essentially a no-touch option. What this means is that you have a Silverlight application
hosted outside of your SharePoint domain (for example, on the Web), and SharePoint provides a
way to host that application. A practical example might be a stock widget that you can simply point
to by creating a Content Editor Web part, and then adding an <iframe> object to reference the
Silverlight application to load on page load.

The second classification, the low-touch integration, is where you have code that is executing, but
it may either be self-contained or have a light touch with SharePoint. This might be where you’ve
deployed a Web part that is hosting a Silverlight application to SharePoint, or you’re leveraging the
out-of-the-box Silverlight Web part to host your Silverlight application.

The high-touch classification is where you would see integration with the SharePoint object model.
This is, for example, where you might leverage the Lists Web service to provide a Silverlight render-
ing of a list, or where you might leverage the SharePoint client object model to read and update por-
tions of a list. Either way, you are explicitly leveraging the SharePoint object model in some capacity.

584637c09.indd 327 5/2/10 7:13:59 PM

328  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

For the remainder of this chapter, you’ll walk through examples of each of the three types of inte-
gration to better understand how to accomplish this integration.

No-Touch Integration
The no-touch integration should simply be the easiest way to integrate Silverlight into your
SharePoint site. What’s great is that you can integrate anything from community Silverlight widgets
to third-party consumer widgets to applications that you leverage within the enterprise, using this
type of classification. In fact, with only a few steps, you should be able to set up and render this type
of application.

Let’s try a couple of examples.

The first example is a community example from Dave LaVigne’s blog at http://franksworld.com/
blog/archive/2009/10/07/11739.aspx. He created a simple Silverlight application that you can
reference using some straightforward <iframe> code (which he provides for you).

Leveraging Community Hosted Silverlight Applications in SharePointTry It Out	

	1.	 Navigate to LaVigne’s blog and, first, copy the code that he provides in his blog entry:

<iframe
 src=”http://www.franksworld.com/silverlight/meeting/”
 frameborder=”0” style=”width: 512px; height: 299px;
 border:0px” ></iframe>

	2.	 Next, go to your SharePoint site and select Site Actions ➪ Edit Page.

	3.	 Click “Add a web part,” and click the “Media and Content” category.

	4.	 Select the Content Editor Web part and click Add.

	5.	 After the Content Editor Web part has been added (Figure 9-8), click the “Click here to add new
content” link.

Figure 9-8  Using the Content Editor Web part as a host

	6.	 Click the HTML drop-down menu and select Edit HTML Source.

584637c09.indd 328 5/2/10 7:13:59 PM

Integrating Silverlight with SharePoint  ❘  329

	7.	 In the HTML source window, add the <iframe> code you copied from the blog and click OK.
Then, click Apply in the Tools pane. The community Silverlight application should now render in
your SharePoint site, as shown in Figure 9-9.

Figure 9-9  Community Silverlight application

How It Works

The way this integration works is that LaVigne provides the hosting mechanism for the Silverlight
application, and all you’re doing is borrowing a link to that hosted application to effectively render it
within an out-of-the-box Web part. The Web part, which enables you to infuse HTML source into the
page rendering, loads the <iframe> code on page load and then displays the Silverlight application.

With this approach, you leveraged mostly a hosted community example to integrate a no-touch inte-
gration with SharePoint. However, this is just one way of achieving a no-touch example. Another way
might be for you to leverage a hosting service that can host a Silverlight application.

One such service is a new Azure offering that hosts Silverlight applications and videos. Using this type
of hosted service, you can host Web-based Silverlight applications inside your SharePoint Web parts
(using the same <iframe> method that you used here). Figure 9-10 shows a weather widget hosted in
the “cloud.” (You can find out more informa-
tion about the new Windows Azure offering
for Silverlight at http://silverlight.live
.com/quickstart.htm.)

Similar to the first example, this example
also relies on a separate domain to host the
Silverlight application. However, what’s
interesting here is that you can not only host
third-party Silverlight applications on host-
ing services like Azure, but you can also host
your own. This bodes well for when you
want to reuse the Silverlight application in

Figure 9-10  Third-Party Silverlight application

584637c09.indd 329 5/2/10 7:13:59 PM

330  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

multiple places within your SharePoint site. For example, think about a scenario where you’re surfac-
ing company data within a Silverlight application, and you want to leverage the application across the
SharePoint farm. You add the Silverlight application at a farm-level document library and then you can
consume this application across multiple site collections.

NOTE  ​If for some reason you cannot load Dave LaVigne’s blog and you are
unable to complete the previous exercise, you can also use the <iframe> code
approach with other types of hosted Silverlight applications that you build (for
example, replace the reference to LaVigne's blog with a reference to test the
HTML page you build and deploy to your local machine), or use the <object>
tag to reference a Silverlight application that you host in a document library in
SharePoint. While the code is slightly different, the concept of referencing an
external Silverlight application using the Content Editor Web part is consistent
across these approaches. You’ll see an exercise that uses the <object> tag
reference later in this chapter.

Note that, as an example of adding your own Silverlight application for local hosting, you could
take the Silverlight application you created in the earlier walkthrough and add that to SharePoint.
You could then add code within <object> tags to the Content Editor Web part. The difference is
the fact that you're now using code within an <object> tag and the domain that hosts the Silverlight
application is your SharePoint domain, as opposed to an external, Web-facing domain.

Let’s take a look at an example of this.

Hosting the Silverlight Application LocallyTry It Out	

Hosting your Silverlight application locally is also a lightweight option. To host the application locally,
follow these steps:

	1.	 Navigate to your SharePoint site, and click All Site Content ➪ Create.

	2.	 In the Create options, select Document Library. Provide a name for your document library (for
example, XAPS), and click Create.

	3.	 Navigate to the new document library, and then click “Add new document.” Upload the .xap file
you created in the earlier walkthrough to the document library, as shown in Figure 9-11.

Figure 9-11  Adding the XAP to a document library

	4.	 Right-click the .xap file and select Copy Shortcut.

	5.	 Now navigate to a site collection or Web part page and click Site Actions ➪ Edit Page, and then
click “Add a web part” in one of the Web part zones.

584637c09.indd 330 5/2/10 7:13:59 PM

Integrating Silverlight with SharePoint  ❘  331

	6.	 Select the Media and Content category, and click Content Editor Web Part.

	7.	 Select “Click here to add new content.” Select the HTML drop-down menu, and click Edit
HTML Source.

	8.	 Add the following snippet of JavaScript code to the HTML Source window. Add the shortcut you
copied to the value property, and click OK.

<div id=”mySLApp” />
<script type=”text/javascript”>
var slDivObj = document.getElementById(‘mySLApp’);
slDivObj.appendChild(slDivObj);
slDivObj.innerHTML = ‘<object data=”data:application/x-silverlight,”
 type=”application/x-silverlight” width=”400” height=”400”>
 <param name=”source” value=” http://fabrikamhockey/sl/
 XAPS/SilverlightApplication1.xap “/></object>’;
</script>

(When you add this code, ensure that you have no line breaks with the line of code that begins
with slDivObj.innerHTML. You may find that this will cause your Silverlight application to not
load properly.)

	9.	 Click Stop Editing to exit Edit mode. Your Hello
World Silverlight application will be rendered
dynamically as a part of the HTML source in the
SharePoint site, as shown in Figure 9-12.

Thus far, you have learned a couple of different
ways to host Silverlight applications in SharePoint
within a no-touch classification. One of the ways
leveraged remote hosting, and the other lever-
aged SharePoint (that is, hosting the Silverlight
application in a SharePoint document library) and
JavaScript — but both used the Content Editor
Web part as the way in which the application was
dynamically loaded on page load.

There are also other ways to host a Silverlight appli-
cation in SharePoint. Let’s now take a look at the
low-touch integration classification as you begin to leverage the out-of-the-box SharePoint Web part.

Low-Touch Integration
Having worked with the no-touch integration, you’ll see that the low-touch integration is a little
more involved. In some cases, you won’t need to write code. (Think back to Chapter 3, where you
created a wiki site collection and then integrated a WMV video with the Silverlight Media Web
part.) However, there are other cases where you will write some code — as you will in the walk-
through in this section. The writing code part, though, will mainly execute code within the context
of the Silverlight application and not reach into the SharePoint infrastructure to, for example, get or
put data into a SharePoint artifact such as a list.

Figure 9-12  Silverlight application hosted locally

584637c09.indd 331 5/2/10 7:13:59 PM

332  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

In this section, you’ll walk through an example that will leverage an in-memory data source, and
then use Language Integrated Query (LINQ) to manage that data across a set of Silverlight controls.
The scenario is loading a person’s employee review scores from an external data structure. When the
data is loaded, you can then see what the person’s employee review scores are, as well as what the
ultimate reward and promotion potential is going to be. Based on the level of rewards, the Silverlight
application will then change the thermometer graphic to indicate the level of reward.

Creating a Low-Touch IntegrationTry It Out	

Code file [LowIntegrationSLApp.zip] available for download at Wrox.com.

You can create self-contained, low-touch integrations with SharePoint. To do this, follow these steps:

	1.	 Open Visual Studio 2010. Click File ➪ New ➪ Project. Select the Silverlight Application template
and provide a name for your project (for example, LowIntegrationSLApp) and click OK.

	2.	 When prompted, uncheck the “Host the Silverlight application in a new Web site” checkbox.

	3.	 After Visual Studio creates the new solution, right-click the project and click Add ➪ New Item.

	4.	 Select Data ➪ XML File.

	5.	 Provide a name for the XML file (for example, Employee.xml), as shown at the bottom of
Figure 9-13.

Figure 9-13  XML data object

584637c09.indd 332 5/2/10 7:13:59 PM

Integrating Silverlight with SharePoint  ❘  333

	6.	 After the new XML file has been added to the project, add the following XML code to the new file.
This code represents the data records that you’ll load into the Silverlight application.

<?xml version=”1.0” encoding=”utf-8” ?>
<Employees>
 <Employee>
 <Name>John Doe</Name>
 <EmpID>837901</EmpID>
 <FY08>3.2</FY08>
 <FY09>3.4</FY09>
 <FY10>3.8</FY10>
 </Employee>
 <Employee>
 <Name>Kelly Jackson</Name>
 <EmpID>983011</EmpID>
 <FY08>2.8</FY08>
 <FY09>2.9</FY09>
 <FY10>3.0</FY10>
 </Employee>
 <Employee>
 <Name>Sam Sheppard</Name>
 <EmpID>10290</EmpID>
 <FY08>4.2</FY08>
 <FY09>4.3</FY09>
 <FY10>4.5</FY10>
 </Employee>
 <Employee>
 <Name>Lamont Smyth</Name>
 <EmpID>129775</EmpID>
 <FY08>3.8</FY08>
 <FY09>3.6</FY09>
 <FY10>3.2</FY10>
 </Employee>
 <Employee>
 <Name>Beth Canyon</Name>
 <EmpID>38921</EmpID>
 <FY08>2.1</FY08>
 <FY09>2.2</FY09>
 <FY10>2.0</FY10>
 </Employee>
 <Employee>
 <Name>Barry McCathry</Name>
 <EmpID>201982</EmpID>
 <FY08>3.3</FY08>
 <FY09>2.9</FY09>
 <FY10>3.7</FY10>
 </Employee>
 <Employee>
 <Name>Steve Denn</Name>
 <EmpID>290122</EmpID>
 <FY08>4.5</FY08>
 <FY09>4.6</FY09>
 <FY10>4.5</FY10>

584637c09.indd 333 5/2/10 7:13:59 PM

334  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

 </Employee>
 <Employee>
 <Name>Ahmed Habul</Name>
 <EmpID>0992812</EmpID>
 <FY08>3.9</FY08>
 <FY09>3.8</FY09>
 <FY10>3.9</FY10>
 </Employee>
</Employees>

	7.	 With the XML file complete, you’ll now want to add a custom class to the project. To do
this, right-click the project and select Add ➪ Class. Provide a name for the class (for example,
Employees.cs), and click OK, as shown at the bottom of Figure 9-14.

Figure 9-14  Adding a class to Silverlight

	8.	 Add the following bolded code to the new class, which you’ll use to load the XML data and then
use LINQ to populate the properties in this object:

using System;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;

584637c09.indd 334 5/2/10 7:14:00 PM

Integrating Silverlight with SharePoint  ❘  335

using System.Windows.Shapes;

namespace LowIntegrationSLApp
{
 public class Employees
 {
 public string empName { get; set; }
 public string empID { get; set; }
 public string empFY08 { get; set; }
 public string empFY09 { get; set; }
 public string empFy10 { get; set; }
 }
}

	9.	 At this point, the data portions of your application are complete. You will now work on the UI for
the application. To do this, right-click the MainPage.xaml file and select View Designer.

	10.	 Add ten labels, two buttons, one listbox, one image, three rectangles, and seven textboxes to the
Designer surface and arrange them, as shown in Figure 9-15.

Figure 9-15  Employee Scorecard application in Visual Studio

Table 9-2 provides an overview of the control types and the corresponding names you’ll use in the
Silverlight application.

584637c09.indd 335 5/2/10 7:14:00 PM

336  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

Table 9-2  Control Types and Names

Control Type Control Name

Label lblTitle, lblName, lblEmplID, lblFY08, lblFY09, lblFY10,

lblSummary, lblFastTrack, lblPromotion, lblMessage

Listbox lstbxEmployeeNames

Button btnCalc, btnRefresh

Textbox txtbxEmplID, txtbxFY08, txtbxFY09, txtbxFY10, txtbxAVGScore,

txtbxPromo, txtbxFastTrack,

	11.	 You can either choose to build out the UI yourself, or you can leverage the following bolded
XAML code:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:dataInput=”clr-namespace:
 System.Windows.Controls;assembly=
 System.Windows.Controls.Data.Input”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/
 markup-compatibility/2006”
 x:Class=”LowIntegrationSLApp.MainPage”
 Width=”400” Height=”350” mc:Ignorable=”d”>
 <Grid x:Name=”LayoutRoot”>
 <Grid.Background>
 <LinearGradientBrush>
 <GradientStop Color=”PowderBlue” Offset=”0”/>
 <GradientStop Color=”White” Offset=”1”/>
 </LinearGradientBrush>
</Grid.Background>
<dataInput:Label x:Name=”lblName” Height=”13”
HorizontalAlignment=”Left” Margin=”32,57,0,0”
VerticalAlignment=”Top” Width=”78” Content=”Name:”/>
<dataInput:Label x:Name=”lblEmplID” Height=”13”
HorizontalAlignment=”Left” Margin=”32,92,0,0”
VerticalAlignment=”Top” Width=”78” Content=”Emp. ID:”/>
<dataInput:Label x:Name=”lblFY08” Height=”13”
HorizontalAlignment=”Left” Margin=”32,122,0,0”
VerticalAlignment=”Top” Width=”78” Content=”FY 08:”/>
<dataInput:Label x:Name=”lblFY09” HorizontalAlignment=”Left”
Margin=”32,150,0,0” Width=”78” Content=”FY 09:” Height=”22”
VerticalAlignment=”Top”/>
<dataInput:Label x:Name=”lblFY10” HorizontalAlignment=”Left”
Margin=”32,0,0,156” Width=”78” Content=”FY 10:”
Height=”13” VerticalAlignment=”Bottom”/>
<dataInput:Label x:Name=”lblSummary” Height=”13”

584637c09.indd 336 5/2/10 7:14:00 PM

Integrating Silverlight with SharePoint  ❘  337

HorizontalAlignment=”Left” Margin=”32,0,0,122”
VerticalAlignment=”Bottom” Width=”78” Content=”AVG Score:”/>
<dataInput:Label x:Name=”lblPromotion” Height=”13”
HorizontalAlignment=”Left” Margin=”32,0,0,91” VerticalAlignment=”Bottom”
Width=”78” Content=”Promotion:”/>
<dataInput:Label x:Name=”lblFastTrack” Height=”13”
HorizontalAlignment=”Left” Margin=”32,0,0,59” VerticalAlignment=”Bottom”
Width=”78” Content=”Fast Track:”/>
<TextBox x:Name=”txtbxEmplID” IsEnabled=”False” Height=”22”
Margin=”110,87,122,0” VerticalAlignment=”Top” TextWrapping=”Wrap”/>
<TextBox x:Name=”txtbxFY08” IsEnabled=”False” Height=”22”
Margin=”110,118,122,0” VerticalAlignment=”Top” TextWrapping=”Wrap”/>
<TextBox x:Name=”txtbxFY09” IsEnabled=”False” Margin=”110,147,122,0”
TextWrapping=”Wrap” Height=”22” VerticalAlignment=”Top”/>
<TextBox x:Name=”txtbxFY10” IsEnabled=”False” Margin=”110,0,122,151”
TextWrapping=”Wrap” Height=”22” VerticalAlignment=”Bottom”/>
<TextBox x:Name=”txtbxAVGScore” IsEnabled=”False”
Height=”22” Margin=”110,0,122,118” VerticalAlignment=”Bottom” TextWrapping=”Wrap”/>
<TextBox x:Name=”txtbxPromo” IsEnabled=”False” Height=”22” Margin=”110,0,122,86”
VerticalAlignment=”Bottom” TextWrapping=”Wrap”/>
<TextBox x:Name=”txtbxFastTrack” IsEnabled=”False” Height=”22”
Margin=”110,0,122,55” VerticalAlignment=”Bottom” TextWrapping=”Wrap”/>
<ListBox
Margin=”0,46,122,0” Height=”32” VerticalAlignment=”Top”
x:Name=”lstbxEmployeeNames” HorizontalAlignment=”Right”
Width=”168” SelectionChanged=”lstbxEmployeeNames_SelectionChanged” />
<Button x:Name=”btnRefresh” Height=”25” HorizontalAlignment=”Left”
Margin=”110,0,0,12” VerticalAlignment=”Bottom” Width=”79”
Content=”Load” Background=”#FF0689FA” Click=”btnRefresh_Click”/>
<dataInput:Label x:Name=”lblTitle” Margin=”29,13,130,0”
VerticalAlignment=”Top” Content=”Employee Scorecard” FontWeight=”Bold”
FontSize=”18” FontFamily=”Verdana”/>
<Button Background=”#FF0689FA” Content=”Calc.” Height=”25”
HorizontalAlignment=”Left” Margin=”199,0,0,12” Name=”btnCalc”
VerticalAlignment=”Bottom” Width=”79” Click=”btnCalc_Click” />
<Image x:Name=”imgThermo” Source=”Images/Thermometer.png”
Margin=”300,42,25,58” Height=”250” Width=”75”/>
<Rectangle Height=”0” HorizontalAlignment=”Left”
Margin=”310,112,0,0” Name=”shapeRectanglePromo” Stroke=”Green”
StrokeThickness=”2” VerticalAlignment=”Top” Width=”53” />
<Rectangle Height=”0” HorizontalAlignment=”Left”
Margin=”310,177,0,0” Name=”shapeRectangleNoPromo” Stroke=”Orange”
StrokeThickness=”2” VerticalAlignment=”Top” Width=”53” />
<Rectangle Height=”0” HorizontalAlignment=”Left”
Margin=”310,235,0,0” Name=”shapeRectangleLowScore” Stroke=”Red”
StrokeThickness=”2” VerticalAlignment=”Top” Width=”53” />
<dataInput:Label Height=”22” HorizontalAlignment=”Left”
Margin=”300,271,0,0” Name=”lblMessage” VerticalAlignment=”Top” Width=”75” />
</Grid>
</UserControl>

If you copy and paste the code (or type in the boldfaced code), you’ll need to manually add a
reference to the System.Windows.Controls.Data.Input DLL. This is because Visual Studio

584637c09.indd 337 5/2/10 7:14:00 PM

338  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

automatically adds this reference when you drag and drop the label control, but it does not add
this reference if you simply copy and paste, or type in, the code.

	12.	 With the UI complete, you can now add the code behind. The events that you want to manage
within this application map to the user changing a selection in the listbox, and clicking one of the
two available buttons. To add the code behind, right-click the MainPage.xaml file and then select
View Code. Add the following bolded code into the code behind:

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using System.Xml;
using System.Linq;
using System.Collections.Generic;
using System.Xml.Linq;
using System.Windows.Media.Imaging;

namespace LowIntegrationSLApp
{
 public partial class MainPage : UserControl
 {
 string promotion = ““;
 string fastTrack = ““;
 double avgScore = 0.0;

 List<Employees> myEmployeeList = new List<Employees>();

 public MainPage()
 {
 // Required to initialize variables
 InitializeComponent();
 }

 private void btnRefresh_Click(object sender, RoutedEventArgs e)
 {
 XElement employee = XElement.Load(@”Employee.xml”);
 resetThermometer();
 string tempEmpName = ““;
 string tempEmpID = ““;
 string tempFY08 = ““;
 string tempFY09 = ““;
 string tempFY10 = ““;

 var employees =

584637c09.indd 338 5/2/10 7:14:00 PM

Integrating Silverlight with SharePoint  ❘  339

 from emp in employee.Elements(“Employee”)
 select new
 {
 tempEmpName = (string)emp.Element(“Name”),
 tempEmpID = (string)emp.Element(“EmpID”),
 tempFY08 = (string)emp.Element(“FY08”),
 tempFY09 = (string)emp.Element(“FY09”),
 tempFY10 = (string)emp.Element(“FY10”)
 };

 foreach (var item in employees)
 {
 Employees tempEmployee = new Employees();
 tempEmployee.empName = item.tempEmpName.ToString();
 lstbxEmployeeNames.Items.Add(tempEmployee.empName);
 tempEmployee.empID = item.tempEmpID.ToString();
 tempEmployee.empFY08 = item.tempFY08.ToString();
 tempEmployee.empFY09 = item.tempFY09.ToString();
 tempEmployee.empFy10 = item.tempFY10.ToString();
 myEmployeeList.Add(tempEmployee);
 }
 }

 private void lstbxEmployeeNames_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 resetThermometer();

 string tempEmpID = ““;
 string tempFY08 = ““;
 string tempFY09 = ““;
 string tempFY10 = ““;

 string empFilter = lstbxEmployeeNames.SelectedItem.ToString();

 var expr =
 from emp in myEmployeeList
 select new
 {
 emp.empName,
 emp.empID,
 emp.empFY08,
 emp.empFY09,
 emp.empFy10
 };
 foreach (var item in expr)
 {
 if (item.empName == empFilter)
 {
 txtbxEmplID.Text = item.empID;
 txtbxFY08.Text = item.empFY08;

584637c09.indd 339 5/2/10 7:14:00 PM

340  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

 txtbxFY09.Text = item.empFY09;
 txtbxFY10.Text = item.empFy10;
 }
 }
 }

 private void btnCalc_Click(object sender, RoutedEventArgs e)
 {
 resetThermometer();
 double rvwFY08 = Double.Parse(txtbxFY08.Text);
 double rvwFY09 = Double.Parse(txtbxFY09.Text);
 double rvwFY10 = Double.Parse(txtbxFY10.Text);

 avgScore = Math.Round(((rvwFY08 + rvwFY09 + rvwFY10) /
 3), 2) * 100 / 100;

 if (avgScore >= 4.5)
 {
 promotion = “Yes”;
 fastTrack = “Yes”;
 shapeRectanglePromo.Height = 3;
 lblMessage.Content = “High Reward”;
 }
 else if (avgScore >= 4.0)
 {
 promotion = “Yes”;
 fastTrack = “No”;
 shapeRectangleNoPromo.Height = 3;
 lblMessage.Content = “Med. Reward”;
 }
 else
 {
 promotion = “No”;
 fastTrack = “No”;
 shapeRectangleLowScore.Height = 3;
 lblMessage.Content = “Low Reward”;
 }

 txtbxPromo.Text = promotion;
 txtbxFastTrack.Text = fastTrack;
 txtbxAVGScore.Text = avgScore.ToString();
 }

 private void resetThermometer()
 {
 shapeRectanglePromo.Height = 0;
 shapeRectangleNoPromo.Height = 0;
 shapeRectangleLowScore.Height = 0;

 txtbxAVGScore.Text = ““;
 txtbxFastTrack.Text = ““;

584637c09.indd 340 5/2/10 7:14:00 PM

Integrating Silverlight with SharePoint  ❘  341

 txtbxPromo.Text = ““;

 lblMessage.Content = ““;
 }
 }
}

	13.	 With the Silverlight application complete, build the project to ensure that it builds successfully.

	14.	 After it builds, click the Show All Files button at the top of the Solution Explorer and navigate to
the Bin directory. You’ll notice that there is an .xap file in that folder, which is the built Silverlight
application. (To see what’s inside of this file, you can copy the .xap file to a separate location and
then replace the .xap file extension with .zip and open it to see what’s contained inside.)

	15.	 Right-click the Bin directory and select “Open Folder
in Windows Explorer,” as shown in Figure 9-16.
Copy the file path to your Clipboard.

	16.	 Open your SharePoint site and click All Site Content.

	17.	 Click Create ➪ Sites to create a new test site for the
Silverlight application.

	18.	 Select Blank Site, provide a name and URL, and click
Create.

	19.	 With your new site created, select Site Actions ➪ Edit
Page.

	20.	 In your site, create a new document library called
XAPS. Then, click “Add new document” and click
Browse.

	21.	 Paste the file path to the .xap file into the Browse dia-
log, and then click OK. This will add your Silverlight
application to your document library.

	22.	 Right-click the .xap file and select Copy Shortcut.

	23.	 Navigate to an existing (or create a new) Web part page. Click Site Actions ➪ Edit Page, and then
click the “Add a web part” in the top Web part zone.

	24.	 Navigate to the “Media and Content” Web part category, and select Silverlight Web Part.

	25.	 Click Add, and you will be prompted for the link to the .xap file. Paste the shortcut to the .xap
file you added to the XAPS document library, and click OK.

	26.	 The Silverlight application is now rendered in the SharePoint page, as shown in Figure 9-17. This
figure also shows another example of a Silverlight application that illustrates some charting capa-
bilities (another example of a low-touch integration with SharePoint).

Figure 9-16  Opening a folder in
Solution Explorer

584637c09.indd 341 5/2/10 7:14:00 PM

342  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

Figure 9-17  Employee Scorecard Silverlight application in SharePoint

How It Works

The low-touch walkthrough is a more complex application because it has some processing built into the
Scorecard application. For example, three primary events drive the application: two button clicks and a
selection changed event on the list. When the user clicks the Load button, it loads the XML data from
the Employee.xml file and then feeds that into the in-memory list collection.

Again, LINQ is an important aspect of how you query the data. For example, LINQ queries show up
in two out of the three events, as is shown in the following bolded code. Interestingly, the queries are
issued against two different types of objects — one is an XML object, and the other is a list collection.

…
 private void btnRefresh_Click(object sender, RoutedEventArgs e)
 {
 XElement employee = XElement.Load(@”Employee.xml”);

 var employees =
 from emp in employee.Elements(“Employee”)
 select new
 {
 tempEmpName = (string)emp.Element(“Name”),
 tempEmpID = (string)emp.Element(“EmpID”),
 tempFY08 = (string)emp.Element(“FY08”),
 tempFY09 = (string)emp.Element(“FY09”),
 tempFY10 = (string)emp.Element(“FY10”)
 };

 …

584637c09.indd 342 5/2/10 7:14:00 PM

Integrating Silverlight with SharePoint  ❘  343

 }
 private void lstbxEmployeeNames_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 …

 string empFilter = lstbxEmployeeNames.SelectedItem.ToString();

 var expr =
 from emp in myEmployeeList
 select new
 {
 emp.empName,
 emp.empID,
 emp.empFY08,
 emp.empFY09,
 emp.empFy10
 };
 …
 }
…

There is also a straightforward helper function that resets the data fields (the resetThermometer
method) and, depending on what employee is selected, varied and calculated data will be displayed.

What’s interesting about the low-touch scenario is that you can have very powerful applications that
may not necessarily reach inside the SharePoint object model but still accomplish quite a lot (espe-
cially if SharePoint is your collaboration portal). Think about the opportunity here for employee
self-service applications in this context (for example, updating vacation or personal information).

Now that you’ve seen the no-touch and the low-touch alternatives, let’s examine the high-touch
classification.

High-Touch Integration
The high-touch integration is more involved than the other two classifications, but it is more power-
ful and has a deeper relationship with the SharePoint object model. You could think of the high-
touch integration as having two major pivots:

How you ➤➤ integrate with the SharePoint object model

How you ➤➤ deploy to SharePoint

With regard to how you integrate, there are a number of ways to achieve this integration, including
the following:

Leveraging the ASP.NET or REST services that ship with SharePoint➤➤

Creating a custom Windows Communications Foundation (WCF) service➤➤

Using the new SharePoint client object model ➤➤

584637c09.indd 343 5/2/10 7:14:00 PM

344  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

Some of the ways in which you can interact with SharePoint are out of the box, and there will be
other occasions when you must create some custom code to facilitate that connectivity. One such
example is when you want to re-create the navigation system in SharePoint to completely rebrand
and redesign the SharePoint UI with Silverlight, as opposed to the native .aspx rendering. You
would need to do a lot of custom coding here through custom services, but it is definitely possible,
and the opportunity is there for you to exploit.

In terms of deployment, you can integrate with SharePoint on a number of levels. You could, for
example, build a Silverlight application that is deployed using the native Silverlight Web part — and
for many of your more simple applications, this may be fine. However, there may be other instances
where you want to install the Silverlight application as a native object (that is, deploy it as a WSP).
This may be because you have other components you want to integrate with the Silverlight applica-
tion (such as complex Web services or other SharePoint controls), and, in this case, using the out-of-
the-box Silverlight Web part may not suffice.

A specific scenario might be when you want to build an integrated Silverlight application that
binds SAP data to a Silverlight UI, and then further has some controls integrating the data with a
SharePoint list. Testing this in the context of the out-of-the-box Silverlight Web part would be chal-
lenging. The out-of-the-box Silverlight Web part has some limitations (for example, programmati-
cally setting properties such as the height and width of the Web part), and you’d likely want to have
more control over your integrated code and add more features (for example, event receivers) that
would not be possible with the out-of-the-box Silverlight Web part.

Also, if you wanted to leverage the Visual Studio BDC Metadata template, you would be building an
external list first, and then coding against that list. So, you would want to keep your Visual Studio
2010 solution intact with all of the proper project files (for example, Web part project, Silverlight
project, and BDC Metadata project).

Integrating Using the Native Silverlight Web Part

To get you started, let’s walk through a straightforward integration. In this walkthrough, let’s use
the native Web services that ship with SharePoint and the out-of-the-box Silverlight Web part.

Creating a High-Touch IntegrationTry It Out	

Code file [SPSilverlightApplication.zip] available for download at Wrox.com.

The high-touch integration can result in some very dynamic integrations with SharePoint, ranging from
business applications that integrate with lists to replacing the navigation system within SharePoint. To
create a high-touch integration, follow these steps:

	1.	 Open SharePoint and click All Site Content.

	2.	 Click Create, and, in the Create gallery, click the Custom List.

	3.	 Provide a name for your custom list (for example, Product_List), and click Create.

584637c09.indd 344 5/2/10 7:14:00 PM

Integrating Silverlight with SharePoint  ❘  345

	4.	 Rename the Title field to Product_Name and then add three additional columns to the list (for
example, Product_SKU, Price, and Inventory). All of the columns should be of type “Single line
of text.”

	5.	 Populate the four columns with some data, as shown in Figure 9-18.

Figure 9-18  Creating the products List

	6.	 Open Visual Studio 2010. Click File ➪ New ➪ Project. Select the Silverlight template and click
Silverlight Application.

	7.	 Provide a name for your project (for example, SPSilverlightApplication), and click OK.

	8.	 When prompted, uncheck the “Host the Silverlight application in a new Web site” checkbox.

	9.	 You’ll require an in-memory object for this exercise. So, right-click the project and click Add ➪
Class. Provide a name for the class (for example, SPListRow), and click OK.

	10.	 The four properties of your custom object should look like the following boldfaced code, which
maps to the data in your SharePoint list:

…

namespace SPSilverlightApplication
{
 public class SPListRow
 {
 public string productName { get; set; }
 public string productSKU { get; set; }
 public string productPrice { get; set; }
 public string productInventory { get; set; }
 }
}
…

	11.	 You’ll now want to add a service reference to one of the out-of-the-box ASP.NET Web services.
Right-click the References node and select Add Service Reference.

	12.	 In the Add Service Reference dialog, add http://localhost/_vti_bin/Lists.asmx to the
Address field and click Go. (Note that you can replace localhost with your local server name, as
shown in Figure 9-19.)

584637c09.indd 345 5/2/10 7:14:00 PM

346  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

Figure 9-19  Adding lists to Web service reference

	13.	 Provide a name for your service reference (for example,
ListService), and click OK.

	14.	 You’ll now want to add five images to your project. To do this,
right-click the project and select Add ➪ New Folder. Name the
new folder Images. Then, right-click the Images folder and select
Add Existing Item. You can add five of your own images or use the
ones that are included with this book’s companion source code.
When you’re finished, your project should look like Figure 9-20.

	15.	 The next thing you want to do is build out your UI. So, right-click
the MainPage.xaml file and select View Designer. This will open
the Silverlight application in Designer mode.

	16.	 Add the following boldfaced code to your XAML-based UI. This
will create a UI that has some gradient styling, as well as a listbox
and button control that will leverage the ASP.NET Web service to
integrate with SharePoint. Note that there is an event that maps to
the button and listbox control.

<UserControl x:Class=”SPSilverlightApplication.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”800” xmlns:dataInput=

Figure 9-20  Solution Explorer
for Silverlight integration

584637c09.indd 346 5/2/10 7:14:00 PM

Integrating Silverlight with SharePoint  ❘  347

 “clr-namespace:System.Windows.Controls;assembly=
 System.Windows.Controls.Data.Input”>

 <Grid x:Name=”LayoutRoot”>
 <Rectangle>
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint=”0.9, 0.5” EndPoint=”0.9, 0.9”>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color=”#FFd3ddab” Offset=”0”/>
 <GradientStop Color=”#FF819d35” Offset=”0.49”/>
 <GradientStop Color=”#FF739221” Offset=”0.49”/>
 <GradientStop Color=”#FF678822” Offset=”0.79”/>
 <GradientStop Color=”#FFBBC749” Offset=”0.92”/>
 <GradientStop Color=”#FFdbde58” Offset=”1”/>
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Canvas>
 <dataInput:Label
 Canvas.Left=”20”
 Canvas.Top=”20”
 Height=”34”
 FontFamily=”Arial Black”
 FontWeight=”Bold”
 FontSize=”20”
 Content=”High Definition Media Products”
 HorizontalAlignment=”Left”
 Name=”lblListData”
 VerticalAlignment=”Top”
 Width=”376”/>
 <ListBox
 x:Name=”lstbxSharePointListData”
 Height=”100”
 Width=”350”
 HorizontalAlignment=”Left”
 Canvas.Left=”20”
 Canvas.Top=”70”
 SelectionChanged=”lstbxSharePointListData_SelectionChanged”>
 <ListBox.Effect>
 <DropShadowEffect ShadowDepth=”0” BlurRadius=”20” Opacity=”1”
 Color=”Black” Direction=”315”/>
 </ListBox.Effect>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Vertical”>
 <TextBlock FontFamily=”Arial”
 Padding=”1”
 FontSize=”10”
 FontWeight=”Bold”
 Foreground=”Black”
 Text=”{Binding productName}”/>

584637c09.indd 347 5/2/10 7:14:01 PM

348  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

 <TextBlock FontFamily=”Arial”
 Padding=”1”
 FontSize=”8”
 Foreground=”Gray”
 Text=”{Binding productSKU}”/>
 <TextBlock FontFamily=”Arial”
 Padding=”1”
 FontSize=”8”
 Foreground=”Gray”
 Text=”{Binding productPrice}”/>
 <TextBlock FontFamily=”Arial”
 Padding=”1”
 FontSize=”8”
 Foreground=”Gray”
 Text=”{Binding productInventory}”/>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 <Button
 Name=”btnLoadListData”
 Height=”35”
 Width=”100”
 Content=”Load”
 Canvas.Left=”55”
 Canvas.Top=”200”
 Click=”btnLoadListData_Click”>
 <Button.Effect>
 <DropShadowEffect ShadowDepth=”0” BlurRadius=”20” Opacity=”1”
 Color=”Black” Direction=”315”/>
 </Button.Effect>
 </Button>
 <Rectangle
 Canvas.Left=”430”
 Canvas.Top=”30”
 Height=”191”
 HorizontalAlignment=”Left”
 Name=”rctnglProduct”
 Stroke=”Black”
 StrokeThickness=”2”
 VerticalAlignment=”Top”
 Width=”344” >
 <Rectangle.Effect>
 <DropShadowEffect ShadowDepth=”0” BlurRadius=”20” Opacity=”1”
 Color=”Black” Direction=”315”/>
 </Rectangle.Effect>
 </Rectangle>

 <Image
 x:Name=”imgProduct”
 Height=”180”
 Width=”300”
 Source=”Images/TV.png”

584637c09.indd 348 5/2/10 7:14:01 PM

Integrating Silverlight with SharePoint  ❘  349

 Canvas.Left=”453”
 Canvas.Top=”35”/>
 <dataInput:Label
 Height=”23”
 HorizontalAlignment=”Left”
 Name=”lblModel”
 VerticalAlignment=”Top”
 Width=”137”
 Content=”Model Information”
 Canvas.Left=”546”
 Canvas.Top=”230”
 FontWeight=”Bold” />
 </Canvas>
 </Grid>
</UserControl>

If you copy and paste the code (or type in the boldfaced code), you’ll need to manually add a ref-
erence to the System.Windows.Controls.Data.Input DLL. This is because Visual Studio auto-
matically adds this reference when you drag and drop the label control, but it does not add this
reference if you simply copy and paste, or type in, the code.

	17.	 At this point, your UI should look similar to Figure 9-21.

Figure 9-21  Silverlight application in Visual Studio

584637c09.indd 349 5/2/10 7:14:01 PM

350  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

	18.	 With your UI complete, you now want to add some event handlers to the code behind. To do this,
right-click the MainPage.xaml and select View Code.

	19.	 You’re going to add the event code that maps to the button and listbox controls, and also manages
the asynchronous calls that are characteristic of Silverlight applications. You’ll first want to add the
btnLoadListData event, which creates an instance of the Web service, creates a query that maps
to the structure of the list, and then calls the service to retrieve the returned XML from SharePoint.
This code will allow you to do the following: once you’ve retrieved the data via the XML payload,
you can then use LINQ to query the data and map it to the internal object you created earlier.

…
private void btnLoadListData_Click(object sender, RoutedEventArgs e)
 {
 ListService.ListsSoapClient SPListService =
 new ListService.ListsSoapClient();
 SPListService.GetListItemsCompleted += new
 EventHandler<ListService.GetListItemsCompletedEventArgs>
 (SPListService_GetListItemsCompleted);

 string listFromSharePoint = “Product_List”;
 string listViewName = null;
 XElement query = XElement.Parse(@”<Query />”);
 XElement viewFields = XElement.Parse(@”<ViewFields>
 <FieldRef Name=’Title’ />
 <FieldRef Name=’Product_SKU’ />
 <FieldRef Name=’Price’ />
 <FieldRef Name=’Inventory’ />
 </ViewFields>”);
 string rowLimit = null;
 XElement queryOptions = XElement.Parse(@”<QueryOptions/>”);
 string webID = null;

 SPListService.GetListItemsAsync(listFromSharePoint, listViewName,
 query, viewFields, rowLimit, queryOptions, webID);
 }
…

	20.	 You’ll next want to handle the SPListService_GetListItemsCompleted event, which is the
event that is triggered when Silverlight completes the asynchronous call to SharePoint. In this
example, you create an XML document that will represent the data coming back from SharePoint
and then use the LINQ query to map each row and item in the returned XML (at least the specific
elements of interest) to a property in the SPListRow object. The last thing the following code does
is to bind the items (that is, the rows) to the listbox in the Silverlight application.

…
 void SPListService_GetListItemsCompleted(object sender,
 ListService.GetListItemsCompletedEventArgs e)
 {
 XDocument listResults = XDocument.Parse(e.Result.ToString());

 var rows = from item in listResults.Descendants(XName.Get(“row”,

584637c09.indd 350 5/2/10 7:14:01 PM

Integrating Silverlight with SharePoint  ❘  351

 “#RowsetSchema”))
 select new SPListRow
 {
 productName = (string)item.Attribute(“ows_Title”).Value,
 productSKU =
 (string)item.Attribute(“ows_Product_SKU”).Value,
 productPrice = (string)item.Attribute(“ows_Price”).Value,
 productInventory =
 (string)item.Attribute(“ows_Inventory”).Value,
 };

 lstbxSharePointListData.ItemsSource = rows;
 }

…

	21.	 The last event to handle is the lstbxSharePointListData_SelectionChanged event. This is trig-
gered when the user changes a selection in the listbox. You can see that, in this case, the goal is to
swap the image that is loaded into the Silverlight application and also to decorate the new image
with an updated product name. The following code uses a hard-coded comparison to the product
names from the SharePoint list against the selected item product name, and then loads an image
based on that selection:

…
 private void lstbxSharePointListData_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 SPListRow tempProdInfo = new SPListRow();
 BitmapImage tempImage = new BitmapImage();
 string selectedProdInfo = ““;

 tempProdInfo = (SPListRow)lstbxSharePointListData.SelectedItems[0];
 selectedProdInfo = tempProdInfo.productName;
 lblModel.Content = selectedProdInfo;

 if (selectedProdInfo == “Dell W327”)
 {
 Uri tempURI = new Uri(“Images/Dell_TV.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;
 }
 else if (selectedProdInfo == “HP Media Smart”)
 {
 Uri tempURI = new Uri(“Images/HP_MediaSmart.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;
 }
 else if (selectedProdInfo == “MS Media Center”)
 {
 Uri tempURI = new Uri(“Images/MSMedia.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;

584637c09.indd 351 5/2/10 7:14:01 PM

352  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

 }
 else if (selectedProdInfo == “Gen. Flat Panel”)
 {
 Uri tempURI = new Uri(“Images/GenFlatPanel.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;
 }
 else
 {
 Uri tempURI = new Uri(“Images/TV.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;
 }
 }
…

The full code behind for this application is as follows:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using System.Xml;
using System.Xml.Linq;

namespace SPSilverlightApplication
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void btnLoadListData_Click(object sender, RoutedEventArgs e)
 {
 ListService.ListsSoapClient SPListService = new
 ListService.ListsSoapClient();
 SPListService.GetListItemsCompleted += new
 EventHandler<ListService.GetListItemsCompletedEventArgs>
 (SPListService_GetListItemsCompleted);

 string listFromSharePoint = “Product_List”;
 string listViewName = null;
 XElement query = XElement.Parse(@”<Query />”);

584637c09.indd 352 5/2/10 7:14:01 PM

Integrating Silverlight with SharePoint  ❘  353

 XElement viewFields = XElement.Parse(@”<ViewFields>
 <FieldRef Name=’Title’ />
 <FieldRef Name=’Product_SKU’ />
 <FieldRef Name=’Price’ />
 <FieldRef Name=’Inventory’ />
 </ViewFields>”);
 string rowLimit = null;
 XElement queryOptions = XElement.Parse(@”<QueryOptions/>”);
 string webID = null;

 SPListService.GetListItemsAsync(listFromSharePoint,
 listViewName, query, viewFields, rowLimit,
 queryOptions, webID);
 }

 void SPListService_GetListItemsCompleted(object sender,
 ListService.GetListItemsCompletedEventArgs e)
 {
 XDocument listResults = XDocument.Parse(e.Result.ToString());

 var rows = from item in listResults.Descendants(XName.Get(“row”,
 “#RowsetSchema”))
 select new SPListRow
 {
 productName = (string)item.Attribute(“ows_Title”).Value,
 productSKU =
 (string)item.Attribute(“ows_Product_SKU”).Value,
 productPrice = (string)item.Attribute(“ows_Price”).Value,
 productInventory =
 (string)item.Attribute(“ows_Inventory”).Value,
 };

 lstbxSharePointListData.ItemsSource = rows;
 }

 private void lstbxSharePointListData_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 SPListRow tempProdInfo = new SPListRow();
 BitmapImage tempImage = new BitmapImage();
 string selectedProdInfo = ““;

 tempProdInfo = (SPListRow)lstbxSharePointListData.SelectedItems[0];
 selectedProdInfo = tempProdInfo.productName;
 lblModel.Content = selectedProdInfo;

 if (selectedProdInfo == “Dell W327”)
 {
 Uri tempURI = new Uri(“Images/Dell_TV.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;
 }

584637c09.indd 353 5/2/10 7:14:01 PM

354  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

 else if (selectedProdInfo == “HP Media Smart”)
 {
 Uri tempURI = new Uri(“Images/HP_MediaSmart.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;
 }
 else if (selectedProdInfo == “MS Media Center”)
 {
 Uri tempURI = new Uri(“Images/MSMedia.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;
 }
 else if (selectedProdInfo == “Gen. Flat Panel”)
 {
 Uri tempURI = new Uri(“Images/GenFlatPanel.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;
 }
 else
 {
 Uri tempURI = new Uri(“Images/TV.png”, UriKind.Relative);
 tempImage.UriSource = tempURI;
 imgProduct.Source = tempImage;
 }
 }
 }
}

	22.	 After you’ve added all of the code to the code behind, you can press F5 to test the Silverlight appli-
cation. When you press F5 to debug, you may receive a warning about a Web service call. You can
click Yes to move past this error.

	23.	 However, you may find that the Web service may throw a communication exception error. This is
because Silverlight is making a cross-domain call to a SharePoint Web service, but the Silverlight
application has not yet been deployed into SharePoint (so it is not a trusted application). To get
around this, you can either wait to test the Silverlight application until after you’ve created the
Web part, or you can add a client access policy file in the root of your SharePoint site (for example,
c:\inetpub\wwwroot\wss\VirtualDirectories\80). The client access policy file then enables
cross-domain calls to the SharePoint domain from Silverlight. To create a client access policy file,
copy the following code below into a Notepad text file, and then save this into your SharePoint site
root directory with the name clientaccesspolicy.xml.

<?xml version=”1.0” encoding=”utf-8”?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers=”*”>
 <domain uri=”*”/>
 </allow-from>
 <grant-to>
 <resource path=”/” include-subpaths=”true”/>

584637c09.indd 354 5/2/10 7:14:01 PM

Integrating Silverlight with SharePoint  ❘  355

 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

	24.	 When the Silverlight application loads in your default browser, click the Load button to load the
data from SharePoint. Once the data is loaded, you can then click one of the items in the listbox
to update the image in the rectangle, and update the product name, which appears as a caption
beneath it, as shown in Figure 9-22.

Figure 9-22  Testing the Silverlight application

	25.	 At this stage, you are ready to deploy the application to SharePoint. To keep things simple, in this
walkthrough, you deploy the code to SharePoint using the out-of-the-box Silverlight Web part. To
do this, follow the same steps that you used earlier. That is, upload the .xap file into a SharePoint
document library, and right-click the link to the file once it’s uploaded. Select Copy Shortcut. Then,
click Site Actions ➪ Edit Page, and click “Add a web part.” Click the “Content and Media” Web
part category, select Silverlight Web part, and click Add. When prompted, paste the shortcut into
the URL field and click OK.

	26.	 Your Silverlight application should now look similar to Figure 9-23.

584637c09.indd 355 5/2/10 7:14:01 PM

356  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

Figure 9-23  Silverlight application in SharePoint

How It Works

At this point, you should be seeing a trend. When you work with SharePoint, you may have to program
using some key techniques, one of which is manipulating XML data from SharePoint into your applica-
tion. In this application, you are again leveraging the Lists Web service to manage this, but, in this case,
you use the service asynchronously.

The key calls in the application were the GetListItemsAsync method and the SPListService_
GetListItemsCompleted method. The Async event handles the calling of the service once the service
instance has been created. The Completed event processes what needs to be done after the Async has
successfully called. How this breaks down across the two calls is that the Async retrieves data, and the
Completed event processes and binds that data to the listbox.

These calls make this Silverlight integration a high-touch classification because the application is tied to
the object model in some way. What is not as deeply tied to SharePoint is the way in which the applica-
tion is deployed — that is, you could deploy the Silverlight application as a Web part project, and then
it becomes a much more deeply integrated part of the SharePoint infrastructure.

Note that you don’t always have to manage XML when integrating Silverlight and SharePoint. One of
the new features in SharePoint 2010 is the client object model, which you can use to interact with data
from a SharePoint list, and then data-bind the resulting list data to a Silverlight control. You saw this in

584637c09.indd 356 5/2/10 7:14:01 PM

Integrating Silverlight with SharePoint  ❘  357

Chapter 5, where you created a .NET application that used the client-side object model. If you do use
Silverlight, your code may be cleaner.

For example, the following bolded code shows the syntax of a call from a Silverlight application that,
similarly to the Lists service, would query a specific list and return that data for use in the Silverlight
client application. Note the use of the ClientContext object here, which loads a specific site and list
and then gets the items within the list by calling the GetByTitle method.

…

using Microsoft.SharePoint.Client;
using ClientOM = Microsoft.SharePoint.Client;

namespace OMSilverlightApplication
{
 public partial class Page : UserControl
 {
 ClientOM.List mySPList;

 public Page()
 {
 InitializeComponent();

 ClientContext context =
new ClientContext(“http://fabrikamhockey/”);
 context.Load(context.Web);
context.Load(context.Web.Lists);
mySPList = context.Web.Lists.GetByTitle(“Product_List”);
 context.ExecuteQueryAsync(succeededCallback, failedCallback);
 }

 void succeededCallback(object sender, ClientRequestSucceededEventArgs args)
 {
 //Bind data in list to Silverlight control

 }

 void failedCallback(object sender, ClientRequestFailedEventArgs args)
 {
 //Throw error.

 }
 }
}

…

This code creates a new connection (or context) with SharePoint, which allows you to set properties
and call methods on that context. You then call the ExecuteQueryAsync method in Silverlight applica-
tions (and ExecuteQuery for synchronous applications), which then runs one of two different streams
of code, depending on whether the callback was successful or the callback failed. In this specific exam-
ple, the query will get the specific list called Product_List, which you can then, for example, bind to a
listbox or other Silverlight control.

584637c09.indd 357 5/2/10 7:14:01 PM

358  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

Deploying Silverlight Applications to SharePoint as Integrated Web Parts

As mentioned earlier, there may be cases where you want to deploy the Silverlight application as
an object that is deployed as a component of a WSP to SharePoint. This way, you can more easily
debug and test your integrations, or you can build more complex Silverlight applications. There are
a couple of ways that this can be done.

If you remember back to Chapter 3, you were introduced to a small snippet of code that leveraged
JavaScript as a way to inject a Silverlight application into a master page. As a refresher, here is the code:

<div id=”slApp” />
<script language=”JavaScript” type=”text/javascript”>
var slDIV = document.getElementById(‘slApp’);
slSPDIV.appendChild(slSPDIV);
slSPDIV.innerHTML = ‘<object data=”data:application/x-silverlight,
 “ type=”application/x-silverlight” width=”800” height=”400”>
 <param name=”source”
 value=”http://fabrikamhockey/sl/XAPS/SPSilverlightApplication.xap”/>
 </object>’;
</script>

In this code, you can see that you create an HTML <div> element that is then used in combination
with JavaScript to set the properties and create an HTML <object> that hosts the Silverlight appli-
cation when the page loads. You can use this code by embedding the script in a Visual Studio 2010
Web part (as a LiteralControl object), which then is deployed to SharePoint as a feature.

Let’s take a look at an example of deploying a Silverlight application as a Web part.

Deploying a Silverlight Application as a Web Part Try It Out	

Code file [MySLForSPApp.zip] available for download at Wrox.com.

A great way to have more control and flexibility (especially if you want to build more complex Web
parts using Silverlight and other integrated SharePoint objects) is to deploy the Silverlight application as
a Web part. To do this, follow these steps:

	1.	 Open the Visual Studio solution from the previous exercise (for example,
SPSilverlightApplication). Right-click on the solution and select Add ➪ New ➪
Project. Select the Empty SharePoint Project under the SharePoint 2010 node.

	2.	 When prompted by the wizard, select "Deploy as farm solution" and ensure that your project is
being built against the correct SharePoint site. Click Finish.

	3.	 Provide a name for the project (for example, SLWebPartProject), and click OK. When managing
your projects through one solution, you can create a dependency across the projects, so, when the
Web part project builds and deploys, it does so with the latest Silverlight changes. To do this, right-
click the new project and select Project Dependencies. Check the Silverlight project name to create
a dependency between the Web part project and the Silverlight project.

	4.	 After the project is created, right-click the project and select Add New Item.

	5.	 Navigate to the SharePoint 2010 node and select Web Part.

584637c09.indd 358 5/2/10 7:14:01 PM

Integrating Silverlight with SharePoint  ❘  359

	6.	 Provide a name for the Web part (for example, SLWebPart), and click OK.

	7.	 In the SLWebPart.cs file, add the following bolded code in the CreateChildControls method.
Note that you need to ensure that the value property of the object points to a valid URL for your
Silverlight application. (This code writes the script required to add the Silverlight application to the
Web page through the use of the LiteralControl object.)

using System;
using System.ComponentModel;
using System.Runtime.InteropServices;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace SLWebPartProject.SLWebPart
{
 [ToolboxItemAttribute(false)]
 public class SLWebPart : WebPart
 {
 public SLWebPart()
 {
 }

 protected override void CreateChildControls()
 {
 string slStreamCode = “<div id=\”slApp\”/>” +
 “<script language=\”JavaScript\” type=\”text/javascript\”>” +
 “var slSPDIV = document.getElementById(‘slApp’);” +
 “slSPDIV.appendChild(slSPDIV);” +
 “slSPDIV.innerHTML =” +
 “‘<object data=\”data:application/x-silverlight,\”
 type=\”application/x-silverlight\” width=\”800\”
 height=\”400\”><param name=\”source\
 “ value=\”http://fabrikamhockey/sl/XAPS/
 SPSilverlightApplication.xap\”/></object>’;” +
 “</script>”;

 this.Controls.Add(new LiteralControl(slStreamCode));

 base.CreateChildControls();
 }

 }
}

Note that you can also use an HtmlTextWriter object and the Render method to write this script to
the Web page. Following is what this code would look like:

 protected override void Render(HtmlTextWriter slAppOutput)
 {
 slAppOutput.Write("<div id=\"slApp\"/>");

584637c09.indd 359 5/2/10 7:14:01 PM

360  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

 slAppOutput.Write("<script language=\"JavaScript\" type=\"text/
javascript\">");
 slAppOutput.Write("var slSPDIV = document.getElementById('slApp');");
 slAppOutput.Write("slSPDIV.appendChild(slSPDIV);");
 slAppOutput.Write("slSPDIV.innerHTML =");
 slAppOutput.Write("'<object data=\"data:application/x-silverlight,\"
type=\"application/x-silverlight\" width=\"800\" height=\"400\"><param name=\"source\"
value=\"http://intranet.contoso.com/XAPS/LowIntegrationSLApp.xap\"/></object>';");
 slAppOutput.Write("</script>");
 }

	8.	 Click Build ➪ Deploy Solution. The SharePoint Web part project will build and then be deployed
to your SharePoint site.

	9.	 Now you can open SharePoint and navigate to your test site.

	10.	 Click Site Actions ➪ Edit Page, and then click “Add a web part.”

	11.	 Select the Custom category, and then select the Web part you deployed (for example, SLWebPart),
and click Add.

Your Silverlight application will look similar to the way it looked when you used the out-of-the-box
Silverlight Web part. However, in this case, the Web part is deployed as an artifact (that is, a feature) of
SharePoint.

How It Works

The Silverlight application code didn’t change in this walkthrough. What did change was how the
Silverlight application was deployed. Because you created a Web part project and deployed that with
the code to write the script within the LiteralControl, when the Web part renders in SharePoint, it
displays the Silverlight application.

Admittedly, the coding for this is not as elegant as, say, creating an instance of the Silverlight control
method that was possible in Silverlight 2. And, if you do prefer this method, you can still use it. You
just need to deploy the Silverlight 2 SDK alongside your most recent version of Silverlight so that you
have the proper DLL in your global assembly cache (GAC). (The earlier version of Silverlight deploys
the System.Web.Silverlight.dll to your GAC, which can be used to create a control in your Web
part project, as opposed to writing script through a LiteralControl.)

The difference in the code just described, as opposed to that created by using the Silverlight control
method, is shown in boldfaced code in the following example:

…
protected override void OnLoad(EventArgs e)
{
base.OnLoad(e);
ScriptManager sm = ScriptManager.GetCurrent(this.Page);
if (sm == null)
{
sm = new ScriptManager();
Controls.AddAt(0, sm);
}
}

584637c09.indd 360 5/2/10 7:14:01 PM

Summary  ❘  361

protected override void CreateChildControls()
{
base.CreateChildControls();
System.Web.UI.SilverlightControls.Silverlight ctrl = new
 System.Web.UI.SilverlightControls.Silverlight();
ctrl.ID = “InsertSPListItem”;
ctrl.Source = “http://fabrikamhockey/sl/XAPS/SPSilverlightApplication.xap”;
ctrl.Width = new Unit(800);
ctrl.Height = new Unit(400);
Controls.Add(ctrl);
}
…

Summary

This chapter provided an overview of how you can integrate Silverlight and SharePoint. It started
out with a high-level discussion of Silverlight, explored the merits of integrating the two technolo-
gies, and then walked through three different classifications of how you could integrate Silverlight
and SharePoint.

This is an area where you, as a developer, should pay special attention. If you look at the SharePoint
2010 release, the support for Silverlight out of the box opens up the opportunity to get started quickly
with this integration. Furthermore, if you look at the set of features built into SharePoint that are
Silverlight-enabled, you might speculate about the growing interest (from a product perspective) in hav-
ing Silverlight more deeply baked within SharePoint. Beyond this speculation, though, there are a ton of
great opportunities — ranging from the small widget to the more complex business application — that
will pave the way for these two technologies to continue to converge and mature together.

Silverlight and SharePoint get very powerful when you begin to introduce Web services. Chapter 10
examines Web services in greater detail, and, specifically, you’ll see coverage of ASP.NET Web ser-
vices, WCF services, and REST.

Exercises	

	 1.	 Describe the types of applications that you could build with Silverlight.

	 2.	 Describe why integrating Silverlight and SharePoint could be good. Are there cases where it
may not make sense?

	 3.	 What are the different ways in which you can integrate Silverlight and SharePoint?

	 4.	 When would it make sense to deploy a Silverlight application using the Visual Studio 2010
templates?

584637c09.indd 361 5/2/10 7:14:01 PM

362  ❘  Chapter 9   Creating Enhanced User Experiences for SharePoint with Silverlight

What You Learned in This Chapter⊲⊲

Item Description

Silverlight Microsoft’s technology that enables you to build Rich Internet
Applications (RIAs) that can now run in or out of a browser.

No-Touch Integration Classification of Silverlight and SharePoint integration where the
Silverlight application is integrated through <iframe> code (or a simi-
lar type of mark-up integration).

Low-Touch Integration Classification of Silverlight and SharePoint integration where the
Silverlight application is hosted in SharePoint but has self-contained
functionality.

High-Touch Integration Classification of Silverlight and SharePoint integration where the
Silverlight application is interacting with the SharePoint object model.

Recommended Reading

Silverlight home page at ➤➤ http://Silverlight.net.

Silverlight on Azure Quick Start Guide at ➤➤ http://silverlight.live.com/quickstart.htm

Professional SharePoint 2007 Developing Using Silverlight 2➤➤ (Indianapolis: Wiley, 2009)

Silverlight team blog at ➤➤ http://team.silverlight.net/

Tim Heuer’s blog at ➤➤ http://timheuer.com/blog/

Paul Stubbs’ blog at ➤➤ http://blogs.msdn.com/pstubbs

584637c09.indd 362 5/2/10 7:14:02 PM

Developing Service-Oriented
Applications for SharePoint 2010

What You’ll Learn In This Chapter:

Using Web services that are native to SharePoint➤➤

Building custom Web services, including ASP.NET, WCF, REST, and ➤➤

Azure services

Implementing custom Web services using different client solutions in ➤➤

SharePoint 2010

One of the key innovations in the software industry over the past few years has been the grow-
ing use of Web services to integrate systems. One of the key undercurrents of this book is that
SharePoint 2010 is a platform, and, since it is a platform, it is imperative that you be able to
interoperate with Web services.

This chapter is not the first time you’re seeing the use of services. For example, in Chapter 5,
you saw how to use Web services to interact with a SharePoint list, and, in Chapter 8, you saw
BCS solutions that leveraged Web services. However, this chapter is a concerted look at both
native and custom Web services, and how you can develop custom solutions that integrate
with SharePoint.

Web services enable you to develop applications that can expose or reach out to systems or
application programming interfaces (APIs) mediated either by a network or by the Internet.
One of the primary benefits of Web services is that they can bridge heterogeneous sys-
tems — those systems that, without these services, might exist in isolation. The Web services
can be restricted to an enterprise network (for example, multiple applications accessing an
Expenses Web service to submit expenses to a common remote SAP system), or you can lever-
age Web services that can bridge systems across the Internet (for example, accessing stock Web
services or weather services).

10

584637c10.indd 363 5/2/10 7:14:12 PM

364  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

In Web service parlance, you typically have a client and a server when consuming a service. The
server is where the Web service is built and deployed to (for example, Windows Server 2008 R2).
The client is the application that consumes the exposed Web service. (A typical client applica-
tion within SharePoint could be a Silverlight application or Web part.) It is also very common for
Windows, Windows Presentation Foundation (WPF), or even Microsoft Office applications to lever-
age Web services to interact with SharePoint.

Within this architecture, you will also require something that hosts the Web service, such as Internet
Information Services (IIS). In Figure 10-1, note that the client can leverage a number of different service
proxies/connections in SharePoint 2010 and subsequently integrate with different types of systems or
applications (such as enterprise services, Web 2.0 social services, and even custom Azure services).

ASMX/WCF/REST/BCS

Azure Enterprise
Service Web 2.0 SaaS Data

Client

Figure 10-1  Service architecture

Web services communicate across the client and the server in a couple of different ways. Using
the Hypertext Transfer Protocol (HTTP), you can build services using the Simple Object Access
Protocol (SOAP) and Web Services Description Language (WSDL) standards — you’ll find that these
are the standards that the native SharePoint Web services use. Characteristic of SOAP standards is
the passing of XML messages from client to server — for example, a Web service will send back a
data packet that is well-formed XML as a return data object.

Beyond Web services that use SOAP, you can also build Representational State Transfer (REST)
Web services. RESTful Web services are “lightweight” services (or, more accurately, protocols) that
enable you to GET, PUT, POST, or DELETE using HTTP methods. RESTful services do not require the
WSDL service-level definitions and often integrate much better into the Web browser experience.

In SharePoint 2007, there were a number of constraints when it came to building Web services.
Many of these constraints go away in SharePoint 2010. For example, Windows Communication
Foundation (WCF) — a newer type of Web service that was introduced in .NET 3.0 — is supported
natively, as is REST. Furthermore, you also get the capability to build and deploy custom ASP.NET
services to SharePoint, or leverage the native ASP.NET Web services that ship with SharePoint. You
can very easily integrate custom services into SharePoint as well. What this means for developers is
that you have an abundance of options when developing service-based applications.

584637c10.indd 364 5/2/10 7:14:13 PM

ASP.NET Web Services  ❘  365

While this chapter does not provide a comprehensive backdrop regarding the history and evolution
of Web services, it does arm you with a fundamental treatment of Web services as they are sup-
ported in SharePoint 2010. With this in mind, this chapter covers four major areas:

ASP.NET Web services➤➤  — Ironically, many developers consider these services legacy. But
you’ll find a wealthof native ASP.NET services in SharePoint 2010, and building ASP.NET
Web services is a straightforward proposition.

RESTful services➤➤  — You saw these in Chapter 5, but you’ll see them in a different light in
this chapter (programming against Excel on the server).

Windows Communication Foundation (WCF)➤➤  — Lately, this has been a more common way
to build and deploy Web services, given the tighter control that developers have over many
elements of the service development and deployment process (for example, security and
binding).

Cloud computing➤➤  — SharePoint 2010 is aligned with the cloud computing evolution (given
SharePoint Online and its capability to host custom code through sandboxed solutions); thus,
you’ll see a new cloud platform, called Azure, discussed in the context of SharePoint 2010.

ASP.NET Web Services

ASP.NET Web services are native to SharePoint 2010. A number of useful services ship out of
the box (native), and you can very easily build and deploy ASP.NET Web services either into the
SharePoint root, or to IIS. In this section, you’ll see coverage of both the native Web services and
custom Web services — and how you can leverage both to build your solutions for SharePoint 2010.

As discussed earlier, one of the core characteristics of ASP.NET Web services is the use of the SOAP
and WSDL standards. For SharePoint, this means that when you call an ASP.NET Web service, the
data package (or payload) will be passed across the service using these standards. The XML struc-
ture is accessible through a couple of ways.

The first is through the use of Collaborative Application Markup Language (CAML), with which you
can issue queries against a service call to, for example, a SharePoint list. You saw this in Chapter 5.

Another way to interact with the data occurs when extracting the data from the XML payload.
You use XLinq structures (for example, the XDocument object) to get the data into a format you can
query. Because data programmability is now both strongly and loosely typed in SharePoint, you can
manage queries against the data using the XDocument object, or you can use Language Integrated
Query (LINQ) queries to query and manage the data.

Beyond XML payloads, the WCF Data Services enable you to treat SharePoint data as strongly
typed objects. You also saw this in Chapter 5 where REST was used to view and update list data.

NOTE  ​Another pattern you’ve seen in this book is the use of custom objects
(for example, classes) and the use of List collections, which are IEnumerable
objects that allow you to query and easily bind your resulting queries to controls
such as datagrids and listboxes.

584637c10.indd 365 5/2/10 7:14:13 PM

366  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

There are many different types of Web services that are native to SharePoint 2010. These services
cut across supporting List interaction, authentication, Excel Services, meetings management, and
so on. To review the full set of services that ship with SharePoint, navigate to c:\Program Files\
Common Files\Microsoft Shared\Web Server Extensions\14\ISAPI. All of the ASP.NET Web
services end with the .asmx file extension. You can also open each of these services in the browser
by typing http://<server name>/_vti_bin/<Web Service Name>.asmx and then browse the dif-
ferent Web methods that each service offers.

NOTE  ​To get more information on SharePoint 2010 class libraries and
Web services, go to http://msdn.microsoft.com/en-us/library/
ee556847(office.14).aspx.

Let’s first take a look at a native Web service example and then move on to discussing custom
ASP.NET Web services.

Native Web Service
As mentioned earlier, there are many different ASP.NET Web services available for you to use when
building your SharePoint solutions. There are also a number of amendments to the Web services in
SharePoint 2010. Those who are returning to SharePoint 2010 development from SharePoint 2007
may need to test some of the code they built with the SharePoint 2007 Web services to ensure there
is no broken code. For the most part, though, you should find a relatively seamless upgrade path
from 2007 to 2010.

There are two types of services in SharePoint. The first enables you to access administrative capa-
bilities. A set of non-administrative services is also available. To access the SharePoint Web services,
you use the following URL syntax: http://<site>/_vti_bin/<Web Service Name>.asmx (for
example, http://intranet.contoso.com/_vti_bin/socialdataservice.asmx). Note that if
you’re accessing administrative services, you will need to add the port number, because you would
not be accessing the default port 80 (for example, http://intranet.contoso.com:8080/_vti_
bin/diagnostics.asmx).

There are many new service capabilities that are built into SharePoint 2010. These capabilities range
from new administrative services such as Diagnostics (a service for managing client reports) to
more social-centric services such as SocialDataService (a service to manage social features).

Although there are many more services that you can leverage within SharePoint 2010, let’s walk
through one example to show you how you can use a service to build a service-oriented solution
for SharePoint using the SocialDataService Web service (that is, http://<server>/_vti_bin/
socialdataservice.asmx). As a part of the growing support for more social-centric applications,
this Web service enables you to work with social metadata such as tags and terms, and insert com-
ments, among other activities centrical to building social applications.

584637c10.indd 366 5/2/10 7:14:13 PM

ASP.NET Web Services  ❘  367

NOTE  ​For more information on the Web services available in SharePoint 2010,
see the MSDN technical guidance at http://msdn.microsoft.com/en-us/
library/ee556847(office.14).aspx.

Before you walk through the following example, create three different wiki sites in your SharePoint
site collection, and then rate each of the sites using the wiki Rating feature. You’ll need the URLs of
these three wiki sites for this walkthrough.

Leveraging the Social Data Web ServiceTry It Out	

Code file [SocialRatingWebPart.zip] available for download at Wrox.com.

The Social Data Web Service provides rich access to a number of key social APIs in SharePoint. To use
the service in an application, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New ➪ Project.

	2.	 Select Empty SharePoint Project. Provide a name for your application (for example,
SocialRatingWebPart), and then click OK. When prompted, select “Deploy as farm solution”
and click Finish.

	3.	 When Visual Studio creates the project, right-click the project and select Add ➪ New Item. In the
SharePoint 2010 project node, select Visual Web Part. Provide a name for the Web part (for exam-
ple, SocialRatingData) and click Add.

	4.	 Right-click the .ascx file and select View Designer. Click the Source tab, and then add the follow-
ing bolded code below to the ascx code behind:

<%@ Assembly Name=”$SharePoint.Project.AssemblyFullName$” %>
<%@ Assembly Name=”Microsoft.Web.CommandUI, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”SharePoint” Namespace=”Microsoft.SharePoint.WebControls”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”Utilities” Namespace=”Microsoft.SharePoint.Utilities”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Register Tagprefix=”asp” Namespace=”System.Web.UI” Assembly=
 “System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” %>
<%@ Import Namespace=”Microsoft.SharePoint” %>
<%@ Register Tagprefix=”WebPartPages” Namespace=”Microsoft.SharePoint.WebPartPages”
 Assembly=”Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
 PublicKeyToken=71e9bce111e9429c” %>
<%@ Control Language=”C#” AutoEventWireup=”true”
 CodeBehind=”SocialRatingDataUserControl.ascx.cs” Inherits=

584637c10.indd 367 5/2/10 7:14:13 PM

368  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

 “SocialRatingWebPart.SocialRatingData.SocialRatingDataUserControl” %>

<asp:UpdatePanel ID=”RatingUpdatePanel” runat=”server”>
<ContentTemplate>
<asp:Label ID=”lblSocialRatingTitle” runat=”server” Font-Bold=”True”
 ForeColor=”#000066” Text=”Wiki Rating Data”></asp:Label>
<table>
<tr>
<td><asp:Label ID=”lblRatingDataList” runat=”server” ForeColor=”#000066”
 Text=”Rating Data”></asp:Label></td>
<td><asp:ListBox ID=”lstbxRatingData” runat=”server” Width=”172px”></asp:ListBox>
</td></tr><tr><td>
 <asp:Label ID=”lblRating” ForeColor=”#000066” runat=”server”
 Text=”Avg. Rating:”></asp:Label>
</td><td>
 <asp:Label ID=”lblData” ForeColor=”#000066” runat=”server”
 Text=”Data”></asp:Label>
</td></tr></table><table><tr>
<td><asp:Button ID=”btnRefresh” runat=”server” Text=”Refresh”
 ToolTip=”Click to refresh.” onclick=”btnRefresh_Click” /></td>
<td></td></tr></table>
</ContentTemplate>
</asp:UpdatePanel>

	5.	 Right-click the References node and select Add Service Reference.

	6.	 Click the Advanced button, and then click the Add Web Reference button. Enter the following
URL into the URL field (making sure you replace the server name with your SharePoint server,
such as http://fabrikamhockey/_vti_bin/socialdataservice.asmx):

http://<server name>/_vti_bin/socialdataservice.asmx.

	7.	 Click the Design tab to switch into the Designer view and then double-click the btnRefresh button.

	8.	 When the code behind opens, add the following bolded code to the code behind:

using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using SocialRatingWebPart.SocialWS;

namespace SocialRatingWebPart.SocialRatingData
{
 public partial class SocialRatingDataUserControl : UserControl
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 }

 protected void btnRefresh_Click(object sender, EventArgs e)
 {
 // Add the URLs for your three wiki sites here.
 string ratingonConfURL = “http://intranet.contoso.com/conf/
 Pages/Home.aspx”;

584637c10.indd 368 5/2/10 7:14:13 PM

ASP.NET Web Services  ❘  369

 string ratingonProjURL = “http://intranet.contoso.com/projects/
 Pages/Home.aspx”;
 string ratingonPlansURL = “http://intranet.contoso.com/plans/
 Pages/Home.aspx”;

 SocialDataService mySocialDataService = new SocialDataService();
 mySocialDataService.Credentials =
 System.Net.CredentialCache.DefaultCredentials;
 mySocialDataService.Url = “http://intranet.contoso.com/
 _vti_bin/socialdataservice.asmx”;

 SocialRatingDetail confWikiRating =
 mySocialDataService.GetRatingOnUrl(ratingonConfURL);
 SocialRatingDetail projWikiRating =
 mySocialDataService.GetRatingOnUrl(ratingonProjURL);
 SocialRatingDetail plansWikiRating =
 mySocialDataService.GetRatingOnUrl(ratingonPlansURL);

 addRatingsToWebPart(confWikiRating.Rating,
 projWikiRating.Rating, plansWikiRating.Rating);

 mySocialDataService.Dispose();

 }

 private void addRatingsToWebPart(int confRate, int projRate, int plansRate)
 {
 int avgRating = 0;
 string confWiki = “Conference Wiki: “ + confRate.ToString();
 string projWiki = “Project Wiki: “ + projRate.ToString();
 string plansWiki = “Plans Wiki: “ + plansRate.ToString();

 avgRating = (confRate + projRate + plansRate) / 3;

 string avgRatingForWikis = “Average Rating: “ + avgRating.ToString();

 lstbxRatingData.Items.Add(confWiki);
 lstbxRatingData.Items.Add(projWiki);
 lstbxRatingData.Items.Add(plansWiki);
 lstbxRatingData.Items.Add(avgRatingForWikis);

 lblData.Text = avgRating.ToString();
 }
 }
}

	9.	 Amend the .webpart file to have a more intuitive title and description, such as shown here:

…
 <properties>
 <property name=”Title” type=”string”>Wiki Rating Web Part</property>
 <property name=”Description” type=”string”>Web Part that displays
 wiki rating data.</property>
 </properties>
…

584637c10.indd 369 5/2/10 7:14:13 PM

370  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

	10.	 Press F6 to build the project. When the project successfully builds, click Build ➪ Deploy Solution
to deploy the new Visual Web part to SharePoint.

	11.	 Navigate to your SharePoint site. Create a new Web part page and
then click “Add a new web part.”

	12.	 In the Custom category, select your newly created Web part and
click Add. When the Web part is added to the page, click the
Refresh button. You should see the social data service load infor-
mation into the Web part, as shown in Figure 10-2.

How It Works

The Social Data Web service provides a set of Web methods to interact with SharePoint social data.
Note that your first step in using the Web service was creating a proxy, and then you set the credentials
and endpoint for the service proxy. In this example, you used the GetRatingOnURL method to extract
the ratings you’d given your three wiki sites by passing the string URL in with the method call.

SocialRatingDetail confWikiRating = mySocialDataService.
 GetRatingOnUrl(ratingonConfURL);
 SocialRatingDetail projWikiRating = mySocialDataService.
 GetRatingOnUrl(ratingonProjURL);
 SocialRatingDetail plansWikiRating = mySocialDataService.
 GetRatingOnUrl(ratingonPlansURL);

You also created a helper function to calculate the average ratings for the three different wikis, and passed
it the Rating property, which is the property that is returned from the call to the GetratingOnURL method.
Note that you recast the Rating properties into integer values before you calculated the average. After you
calculated the average rating using the three, you added the information to a listbox (lstbxRatingData)
and set the Text property of a label (lblData) so that it would contain the rating.

Custom ASP.NET Services
As a general practice, just as you should generally use the server-side object model for server-side
applications, you should equally leverage the services that ship with SharePoint 2010 when designing
service-based applications for SharePoint. This is because you don’t want to re-create the wheel, so to
speak, and it’s much easier for you to use the services that SharePoint natively understands. However,
there may be times when you want to create your own custom ASP.NET service. For example, you may
want to integrate Enterprise Resource Planning (ERP) data from disparate systems, or you may need to
create a connection to a legacy data in SQL. The end goal, therefore, would be to surface this data in
SharePoint. This is also very possible. Let’s take a look at an example.

The example you’ll build is a custom Web service that will retrieve data from a SQL database. It
will be a straightforward Web service that will illustrate how you can build a custom ASP.NET
Web service and then deploy it to IIS. However, what you’ll do in this example is also leverage the
Business Connectivity Services (BCS), one of the core new capabilities built into SharePoint 2010.
You learned about this in Chapter 8. However, in this example, you’ll use the BDC Metadata project
template in Visual Studio 2010 to call the service.

Figure 10-2  Wiki Rating
Web part

584637c10.indd 370 5/2/10 7:14:13 PM

ASP.NET Web Services  ❘  371

Integrating a Custom ASP.NET Service with BCSTry It Out	

Code file [SalesBDCModel.zip] available for download at Wrox.com.

The BDC Metadata model is a great way to model external data and create an external list using the
new BCS in SharePoint 2010. The process of creating a model is equally compelling when you use a
Web service to integrate external data from SharePoint into the external list. To create an external list
using a custom Web service, follow these steps:

	1.	 Create a new SQL Server database called Sales. To do this, open SQL Server 2008 (or 2005), and
right-click the Database node. Select New Database. In design view, create five columns, as shown
in Figure 10-3.

	2.	 After you’ve finished creating the database, save it with the name Sales, and then add some sample
data to the table, as shown in Figure 10-4.

	3.	 With the database complete, open Visual Studio 2010 and select File ➪ New. Select the Web cate-
gory. Within the Web category, select ASP.NET Web Service. Provide a name for your service, and
then click OK.

	4.	 Click Data ➪ New Data Source. In the Data options, select Data Model and click OK.

	5.	 In the Data Connection Wizard, select New Connection.

	6.	 When prompted in the Data Connection Wizard, provide your server name information, and then
click the Sales database you just created. Select the table you created in the wizard, and then click
Finish.

	7.	 Visual Studio adds the new entity data model from your database to the solution, which you can
then use in your service.

	8.	 Before you start working with the service code, you’ll need a custom object. To add this, right-click
the project and select Add ➪ Class. Call the new class SalesObject, and then add the following
bolded code to the newly added class. Note that, because you allowed nulls in your database, you
need to add a ? when declaring each of the class variables.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace MySalesService
{
 public class SalesObject

Figure 10-3  Creating data in
SQL Server

Figure 10-4  Sales data

584637c10.indd 371 5/2/10 7:14:13 PM

372  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

 {
 public int companyID { get; set; }
 public string companyName { get; set; }
 public int? fy08Sales { get; set; }
 public int? fy09Sales { get; set; }
 public int? fy10Sales { get; set; }
 }
}

	9.	 Right-click the Service.cs file and select View Code. Replace the existing Hello World service
code with the following bolded code in the Service.cs file. This will be the core code that will
execute when your service is called.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Services;

namespace MySalesService
{
 [WebService(Namespace = “http://tempuri.org/”)]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]

 public class Service1 : System.Web.Services.WebService
 {
 SalesEntities mySalesData = new SalesEntities();
 List<SalesObject> mySalesList = new List<SalesObject>();

 [WebMethod]
 public List<SalesObject> getAllSalesData()
 {
 var returnSalesData = (from sales in mySalesData.Sales_Data
 select sales).ToArray();

 foreach (var s in returnSalesData)
 {
 SalesObject tempSales = new SalesObject();
 tempSales.companyID = s.CompanyID;
 tempSales.companyName = s.CompanyName.ToString();
 tempSales.fy08Sales = s.FY08Sales;
 tempSales.fy09Sales = s.FY09Sales;
 tempSales.fy10Sales = s.FY10Sales;
 mySalesList.Add(tempSales);
 };

 return mySalesList;
 }

 [WebMethod]
 public string[] getSpecificSale(int companyID)
 {

584637c10.indd 372 5/2/10 7:14:13 PM

ASP.NET Web Services  ❘  373

 string[] mySalesInfo = new string[5];

 var returnSpecificSalesItem = (from sales in mySalesData.Sales_Data
 .Where(x => x.CompanyID == companyID)
 select sales);

 foreach (var s in returnSpecificSalesItem)
 {
 mySalesInfo[0] = s.CompanyID.ToString();
 mySalesInfo[1] = s.CompanyName.ToString();
 mySalesInfo[2] = s.FY08Sales.ToString();
 mySalesInfo[3] = s.FY09Sales.ToString();
 mySalesInfo[4] = s.FY10Sales.ToString();
 }

 return mySalesInfo;
 }
 }
}

	10.	 At this point, you can press F5 to test the service code.

	11.	 You should now be able to click each of the Web methods in your new service to execute the code,
as shown in Figure 10-5. The code will retrieve all of the items (getAllSalesItems), or get one
item if you enter an ID (getSpecificSale). Test both of the methods to ensure that they work.

Figure 10-5  Web service page

584637c10.indd 373 5/2/10 7:14:14 PM

374  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

	12.	 You’ll now want to deploy the service. To do this, create a new folder on your local drive using a
name you’ll remember (for example, SalesService). Then, right-click the Web service project and
select Publish. Select the Local File System option, navigate to the newly created folder, and then
click Publish. You are now ready to create a new Web site in IIS, which will use the published Web
service to this folder.

	13.	 Open IIS and navigate to the Sites folder. Right-click the Sites node and select New Web Site.
Provide a name for the site (for example, SPWebService). Navigate to the new folder you created
in Step 12 to map a virtual directory to the new Web site.

	14.	 To test the service, use a local account. To do this, click Connections ➪ Use Custom Account.
Provide a local system account that has system-wide access to the machine and SQL Server (for
example, administrator). Click Test Connection to ensure that you are successfully authenticated
when calling the service. (Note that when you deploy the service, you would use another type of
account set up by your administrator that enables applications or users to call this service within a
specific security protocol.)

	15.	 When you’ve configured the security, click the Content tab. Then right-click the Service1.asmx file
and select Browse. You should see the same service definition page as you did when you tested your
service from within Visual Studio. However, the URL may be different. This is the URL you will use
when implementing the service. Test the service Web methods to ensure that they work properly.

	16.	 Now that you’ve created, tested, and deployed your Web service to IIS, you are ready to consume the
custom ASP.NET Web service in a SharePoint application. To do this, open Visual Studio, click File
➪ New Project, and select the SharePoint 2010 node. In the SharePoint 2010 node, select the BDC
Metadata Model project template. Provide a name (for example, SalesBDCModel), and click OK.

	17.	 Visual Studio will create a new project for you with a number of default objects in the solution.
The goal for using this project will be to model an external list (which uses BCS) using the custom
Web service and then deploy the service to SharePoint as an external list.

	18.	 Right-click the Entity1.cs file, and select View Code. Using the following bolded code, amend the
Entity1 class to map to the data structure from your database:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SalesBDCModel.BdcModel1
{

 public partial class Entity1
 {
 public int Identifier1 { get; set; }
 public string bdcCompanyName { get; set; }
 public int bdcFY08Sales { get; set; }
 public int bdcFY09Sales { get; set; }
 public int bdcFY10Sales { get; set; }
 }
}

584637c10.indd 374 5/2/10 7:14:14 PM

ASP.NET Web Services  ❘  375

	19.	 When you are finished, you’ll need to amend the code Entity1Service code, which executes
the methods for your external list. For example, the ReadItem method uses the id parameter to
load a specific list item, and the ReadList method loads all of the list items. The goal, though,
is for you to load a specific item or list of items using the custom ASP.NET service. Amend the
Entity1Service.cs file using the following bolded code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using SalesBDCModel.SPSalesWebService;

namespace SalesBDCModel.BdcModel1
{
 public class Entity1Service
 {
 public static Entity1 ReadItem(int id)
 {
 SPSalesWebService.Service1 myWSProxy = new Service1();
 string[] returnedData = new string[5];
 returnedData = myWSProxy.getSpecificSale(id).ToArray();

 Entity1 entity1 = new Entity1();

 entity1.Identifier1 = id;
 entity1.bdcCompanyName = returnedData[1];
 entity1.bdcFY08Sales = Int32.Parse(returnedData[2]);
 entity1.bdcFY09Sales = Int32.Parse(returnedData[3]);
 entity1.bdcFY10Sales = Int32.Parse(returnedData[4]);

 myWSProxy.Dispose();

 return entity1;

 }

 public static List<Entity1> ReadList()
 {
 List<Entity1> mySalesInfoList = new List<Entity1>();
 SPSalesWebService.Service1 myWSProxy = new Service1();
 var salesData = myWSProxy.getAllSalesData();

 foreach (var item in salesData)
 {
 Entity1 tempEntity = new Entity1();
 tempEntity.Identifier1 = item.companyID;
 tempEntity.bdcCompanyName = item.companyName.ToString();
 tempEntity.bdcFY08Sales = item.fy08Sales;
 tempEntity.bdcFY09Sales = item.fy09Sales;
 tempEntity.bdcFY10Sales = item.fy10Sales;
 mySalesInfoList.Add(tempEntity);
 }

 myWSProxy.Dispose();

 return mySalesInfoList;

584637c10.indd 375 5/2/10 7:14:14 PM

376  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

 }
 }
}

	20.	 The final step in this custom solution is to ensure that the BDC model (the .bdml file) maps to the
data that will be returned from the Web service call — essentially the properties in the Entity1
object. To do this, double-click the BDC Explorer in the Solution Explorer and then amend the
TyepDescriptors (think of these as the individual data elements within your model — for exam-
ple, Identifier1, bdcCompanyName, and so on) within the BDC model under the Entity1 node.

Specifically, ensure that, under the ReadItem node, the id includes a TypeDescriptor called
Identifier1 (System.Int32), and the Entity1 node under the returnParameter node includes
bdcCompanyName (System.String), bdcFY08Sales (System.Int32), bdcFY09Sales (System.
Int32), bdcFY10Sales (System.Int32), and Identifer1 (System.Int32). Table 10-1 summa-
rizes the TypeDescriptors and type names for the ReadItem method.

Table 10-1  TypeDescriptor and Type Name

TypeDescriptor Type Name

Identifer1 (id) System.Int32

bdcCompanyName (Entity1) System.String

FY08Sales (Entity1) System.Int32

FY09Sales (Entity1) System.Int32

FY10Sales (Entity1) System.Int32

Identifier1 (Entity1) System.Int32

Then, under the ReadList node, ensure that the Entity1 node (under the EntityList and
returnParameter nodes) includes the same TypeDescriptors as you had under the returnPa-
rameter in the ReadItem method. In fact, you can copy and paste the Entity1 node from the
ReadItem method to the ReadList method. Table 10-2 summarizes the TypeDescriptors and
type names for the ReadList method.

Table 10-2  TypeDescriptor and Type Name

TypeDescriptor Type Name

bdcCompanyName (Entity1) System.String

FY08Sales (Entity1) System.Int32

FY09Sales (Entity1) System.Int32

FY10Sales (Entity1) System.Int32

Identifier1 (Entity1) System.Int32

584637c10.indd 376 5/2/10 7:14:14 PM

ASP.NET Web Services  ❘  377

When you’ve finished amending the structure of the BDC model, it should look like Figure 10-6.
It is important that you model these correctly or else the external list will not be created properly
because the data and data types will be incorrectly mapped.

Figure 10-6  Amending the BDC Explorer

	21.	 You can now save and build your project. When the project successfully builds, click Build ➪
Deploy to deploy the new external list to SharePoint.

	22.	 When deployed, open SharePoint and click Site Actions ➪ View All Site Content.

	23.	 Click Create ➪ Lists ➪ External List. Click Create and then provide a name and description.
Because Visual Studio deployed the BDC Metadata model to SharePoint, you can click the Browse
button and then select the model you just deployed to SharePoint. When finished, click OK.

	24.	 By default, SharePoint opens the external list after you click OK, as shown in Figure 10-7.

Figure 10-7  External list using the Web service

584637c10.indd 377 5/2/10 7:14:14 PM

378  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

How It Works

In this walkthrough, you did a number of things. First, you created your data object (that is, the Sales
database in SQL Server). Second, you created a service to interact with that data in two ways: to get all
of the data and to get a specific item within the table. To accomplish this, you created a method called
getAllSalesData and another method called getSpecificSale.

The first method returned a List collection (mySalesList) of a custom object you created
(SalesObject). The second method used an integer input parameter (companyID) as a filter to find the
specific record within the database and then converted that to an array (mySalesInfo) to return to any
client application.

After you finished creating the service, you deployed the service to IIS by creating a Web site in IIS
and pointing the virtual directory of the Web site to the published Web service. Lastly, you created a
SharePoint application that then called the Web service to populate an external list and display one of
the records.

When the external list loads, it is calling the ReadList method, which, in turn, calls your Web service
and loads the data from the external data system (in this case, it was SQL Server). If you click a par-
ticular item, this calls the ReadItem method and retrieves the specific list item using the id (which is
the Identifier1 column).

The walkthrough was an advanced example of how you can integrate Web services with BCS.
However, this is a very powerful integration, because, once you get the external data into your external
list, you can then use the SharePoint client object model to further interact with that data. This means
creating dynamic Silverlight applications, for example, against the external list that leverages the cus-
tom Web service.

WCF Web Services

WCF is another type of Web service that is supported in SharePoint 2010. Used more frequently
these days, WCF was designed to a set of standards that enables developers to build service-oriented
applications to support distributed computing.

WCF follows architectural principles similar to those of ASP.NET Web services — that is,
there is a client and server, and the service is hosted. Client applications can consume one
or more WCF services, and services will typically have a WSDL interface. WCF also imple-
ments a number of more advanced service standards, such as WS-Addressing, WS-Security, and
WS-ReliableMessaging — which makes it a more robust, flexible and secure option than its ASP.
NET counterpart.

A WCF service has three main parts:

A ➤➤ service class, which is the core code that executes the service

The ➤➤ hosting mechanism

The ➤➤ endpoint to the service to which the client application will connect

584637c10.indd 378 5/2/10 7:14:14 PM

WCF Web Services  ❘  379

The endpoints specify a contract that defines the methods of the service class. They also define a
binding that specifies how a client will communicate with the service, and the address where the
endpoint is hosted. Thus, while a service in WCF may (from an execution perspective) perform the
exact same function as its ASP.NET counterpart, there are a number of syntactical and structural
differences between them that make them slightly more complex to write, but, overall, more robust,
flexible, and secure.

One of the key innovations in SharePoint 2010 is that it offers native support for WCF. This means
that you can either deploy a custom WCF service to IIS, or you can deploy it into the SharePoint root.
You should note that you can also self-host WCF services using the ServiceHost class. When a client
application connects to the hosted WCF service, it does so using the endpoint that is defined within the
service — essentially a URL specifying where the methods of the service can be accessed.

NOTE  ​For more general information on WCF, go to http://msdn.microsoft
.com/en-us/library/ms735119.aspx.

SharePoint 2010 offers a number of new WCF services. For example, one WCF service that was
discussed earlier in the book was the Listdata.svc service — a WCF service that provides
WCF Data Services–based interaction with list data. There have also been some other addi-
tions to SharePoint, including administrative services (BdcAdminService.svc), BDC services
(BdcRemoteExecutionService.svc and BDCResolverPickerService.svc), and other stor-
age, client accessibility, and security services (for example, CellStorage.svc, Client.svc,
and spclaimproviderwebservice.svc). (See the "SharePoint 2010 Class Libraries and Web
Services" MSDN site mentioned earlier to get more information.)

Of specific interest in this section is the use of custom WCF services for SharePoint 2010. To illus-
trate how you can create and implement a WCF service, you will leverage the database you created
earlier in the chapter and build a WCF service that reads and writes data to the SQL database using
a custom WCF service.

Integrating a Custom WCF Service with SharePointTry It Out	

Code files [GetSPSalesRecord.zip and AddSalesRecordWebPart.zip] available for download at Wrox.com.

WCF services can be used in many different ways. To create a custom WCF service and leverage that
service in SharePoint, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New. Under WCF, click WCF Service Application.
Provide a name for the project (for example, GetSPSalesData) and click OK.

	2.	 Click Data ➪ Add a New Data Source. Use the same process that you did earlier in the chapter to
add the Sales database as an entity data model to the Visual Studio solution.

	3.	 After you finish adding the Sales database, right-click the project and select Add ➪ Class. Call the
class SalesObject, and then add the following bolded code to the new class:

using System;
using System.Collections.Generic;

584637c10.indd 379 5/2/10 7:14:14 PM

380  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

using System.Linq;
using System.Text;

namespace AddSalesRecordWebPart
{
 class SalesObject
 {
 public int companyID { get; set; }
 public string companyName { get; set; }
 public int? fy08Sales { get; set; }
 public int? fy09Sales { get; set; }
 public int? fy10Sales { get; set; }
 }
}

	4.	 Open the Service1.svc file and amend the file, using the following bolded code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;
using System.Text;

namespace GetSPSalesData
{
 public class Service1 : IService1
 {
 SalesEntities mySalesData = new SalesEntities();
 List<SalesObject> mySalesList = new List<SalesObject>();

 public List<SalesObject> getAllSalesData()
 {
 var returnSalesData = (from sales in mySalesData.Sales_Data
 select sales).ToArray();

 foreach (var s in returnSalesData)
 {
 SalesObject tempSales = new SalesObject();
 tempSales.companyID = s.CompanyID;
 tempSales.companyName = s.CompanyName.ToString();
 tempSales.fy08Sales = s.FY08Sales;
 tempSales.fy09Sales = s.FY09Sales;
 tempSales.fy10Sales = s.FY10Sales;
 mySalesList.Add(tempSales);
 };

 return mySalesList;
 }

 public void addSalesRecord(int paramCompanyID, string paramCompanyName,
 int paramFY08Sales, int paramFY09Sales, int paramFY10Sales)
 {
 SalesObject newRecord = new SalesObject()
 {

584637c10.indd 380 5/2/10 7:14:14 PM

WCF Web Services  ❘  381

 companyID = paramCompanyID,
 companyName = paramCompanyName,
 fy08Sales = paramFY08Sales,
 fy09Sales = paramFY09Sales,
 fy10Sales = paramFY10Sales,
 };

 Sales_Data myNewSalesRecord = new Sales_Data();

 using (SalesEntities dataContext = new SalesEntities())
 {
 myNewSalesRecord.CompanyID = newRecord.companyID;
 myNewSalesRecord.CompanyName = newRecord.companyName;
 myNewSalesRecord.FY08Sales = newRecord.fy08Sales;
 myNewSalesRecord.FY09Sales = newRecord.fy09Sales;
 myNewSalesRecord.FY10Sales = newRecord.fy10Sales;

 dataContext.AddToSales_Data(myNewSalesRecord);
 dataContext.SaveChanges();
 }

 }
 }
}

	5.	 Open the IService1.cs file and ensure that the following bolded code replaces the default code.
(This is your service contract that must map to the two methods you have in your service code.)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Web;
using System.Text;

namespace GetSPSalesData
{
 [ServiceContract]
 public interface IService1
 {
 [OperationContract]
 List<SalesObject> getAllSalesData();

 [OperationContract]
 void addSalesRecord(
 int paramCompanyID,
 string paramCompanyName,
 int paramFY08Sales,
 int paramFY09Sales,
 int paramFY10Sales);
 }
}

	6.	 You have now completed the custom WCF service. Press F5 to build and test the service.

584637c10.indd 381 5/2/10 7:14:14 PM

382  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

	7.	 After the test page invokes, you can now deploy the service to IIS the same way you published and
deployed the ASP.NET service to IIS. To do this, create a new folder on your local server drive (for
example, c:\Wrox\MyWCFService), publish the solution to that folder, create a new Web site in
IIS, and then point the virtual directory to that newly published folder and code.

	8.	 Before you can use the WCF service in SharePoint, however, there is another configuration step
that is required. If you open the WCF service project, you’ll see a web.config file, which con-
tains all of your WCF service configurations. WCF provides more granular and flexible control
over your Web service settings, and you can use the web.config file to configure many service
settings. To enable the service in SharePoint, you must copy and paste the Service Model settings
in your web.config file into your SharePoint site’s web.config file. This way, when SharePoint
uses the endpoint URL, it understands the bindings and other properties defined in the config
file it needs to use to properly handle the WCF service.

To find the specific elements you need to copy, double-click the web.config file in the Visual
Studio project, and then copy all of the code between the system.serviceModel tags from the
web.config file in the Visual Studio project and add it to the appropriate places in the SharePoint
web.config file. You can typically find the SharePoint web.config file in the following directory:
c:\inetpub\wwwroot\wss\VirtualDirectories\<SharePoint_Server>\. The following code
snippet shows the copied system.serviceModel elements within the SharePoint web.config file.

…
<system.serviceModel>
 <serviceHostingEnvironment aspNetCompatibilityEnabled=”true” />
 <bindings>
 <basicHttpBinding>
 <binding name=”projectBasicHttpConf” closeTimeout=”00:01:00”
 openTimeout=”00:01:00” receiveTimeout=”00:10:00”
 sendTimeout=”00:01:00” allowCookies=”true”
 maxBufferSize=”4194304” maxReceivedMessageSize=”500000000”
 messageEncoding=”Text” transferMode=”StreamedResponse”>
 <security mode=”TransportCredentialOnly”>
 <transport clientCredentialType=”Windows”
 proxyCredentialType=”Windows” realm=”“ />
 </security>
 </binding>
 </basicHttpBinding>

 <wsHttpBinding>
 <binding name=”WSHttpBinding_IService1” closeTimeout=”00:01:00”
 openTimeout=”00:01:00” receiveTimeout=”00:10:00”
 sendTimeout=”00:01:00”
 bypassProxyOnLocal=”false” transactionFlow=”false”
 hostNameComparisonMode=”StrongWildcard”
 maxBufferPoolSize=”524288” maxReceivedMessageSize=”65536”
 messageEncoding=”Text” textEncoding=”utf-8”
 useDefaultWebProxy=”true”
 allowCookies=”false”>
 <readerQuotas maxDepth=”32” maxStringContentLength=”8192”
 maxArrayLength=”16384”
 maxBytesPerRead=”4096” maxNameTableCharCount=”16384” />
 <reliableSession ordered=”true” inactivityTimeout=”00:10:00”
 enabled=”false” />
 <security mode=”Message”>

584637c10.indd 382 5/2/10 7:14:14 PM

WCF Web Services  ❘  383

 <transport clientCredentialType=”Windows”
 proxyCredentialType=”None”
 realm=”“ />
 <message clientCredentialType=”Windows”
 negotiateServiceCredential=”true”
 algorithmSuite=”Default” />
 </security>
 </binding>
 </wsHttpBinding>
 </bindings>

 <client>
 <endpoint address=”http://demo2010a.contoso.com:1122/Service1.svc”
 binding=”wsHttpBinding” bindingConfiguration=
 “WSHttpBinding_IService1”
 contract=”SalesWCFService.IService1” name=”WSHttpBinding_IService1”>
 <identity>
 <dns value=”localhost” />
 </identity>
 </endpoint>
 </client>
 </system.serviceModel>
…

	9.	 With the service deployed and SharePoint’s web.config file now configured, you are ready to
use the service in a SharePoint application. To test the service from IIS, right-click the service in
Content view, and then select Browse. When the service page loads, navigate to Service1.svc and
copy the URL from the Internet browser.

	10.	 Open Visual Studio, create a new Empty SharePoint project, provide a name for it (for example,
AddSalesDataRecordWebPart) and click OK. Right-click the project when created, then click
Add ➪ New Item, and add a Web Part project to it. Provide a name for the Web part (for example,
SalesRecordWebPart) and click Add.

	11.	 Add a reference to the URL by right-clicking the References node and clicking Add Service
Reference. Copy the IIS URL into the URL field, and click Go. When the endpoint is loaded into
the Service Reference dialog, provide a name for the service and click Add.

	12.	 Right-click the main Web part class file and click View Code. Add the following bolded code to the
main Web part class file:

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using System.Text;

namespace AddSalesRecordWebPart.SalesRecordWebPart
{
 [ToolboxItemAttribute(false)]
 public class SalesRecordWebPart : WebPart

584637c10.indd 383 5/2/10 7:14:14 PM

384  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

 {

 DataGrid datagrdSalesView = new DataGrid();
 TextBox txtbxCompanyID = new TextBox();
 TextBox txtbxCompanyName = new TextBox();
 TextBox txtbxFY08Sales = new TextBox();
 TextBox txtbxFY09Sales = new TextBox();
 TextBox txtbxFY10Sales = new TextBox();
 Button btnLoad = new Button();
 Button btnGet = new Button();

 protected override void Render(HtmlTextWriter writer)
 {
 txtbxCompanyID.Enabled = true;
 txtbxCompanyName.Enabled = true;
 txtbxFY08Sales.Enabled = true;
 txtbxFY09Sales.Enabled = true;
 txtbxFY10Sales.Enabled = true;
 btnLoad.Text = “Add”;
 btnGet.Text = “Get”;

 writer.Write(“<table><tr>”);
 writer.Write(“<td>Sales Information</td><td></td></tr>”);
 writer.Write(“<tr><td>Sales Data:</td><td>”);
 datagrdSalesView.RenderControl(writer);
 writer.Write(“</td></tr><tr><td>Company ID:</td><td>”);
 txtbxCompanyID.RenderControl(writer);
 writer.Write(“</td></tr><tr><td>Company Name:</td><td>”);
 txtbxCompanyName.RenderControl(writer);
 writer.Write(“</td></tr><tr><td>FY 08 Sales:</td><td>”);
 txtbxFY08Sales.RenderControl(writer);
 writer.Write(“</td></tr><tr><td>FY 09 Sales:</td><td>”);
 txtbxFY09Sales.RenderControl(writer);
 writer.Write(“</td></tr><tr><td>FY 10 Sales:</td><td>”);
 txtbxFY10Sales.RenderControl(writer);
 writer.Write(“</td></tr><tr><td>”);
 btnGet.RenderControl(writer);
 writer.Write(“</td><td>”);
 btnLoad.RenderControl(writer);
 writer.Write(“</td></tr></table>”);

 btnLoad.Click += new EventHandler(btnLoad_Click);
 btnGet.Click += new EventHandler(btnGet_Click);

 }

 void btnGet_Click(object sender, EventArgs e)
 {
 SalesWCFService.Service1Client proxy =
 new SalesWCFService.Service1Client();
 var salesData = proxy.getAllSalesData();

 List<SalesObject> mySalesInfoList = new List<SalesObject>();

 foreach (var item in salesData)

584637c10.indd 384 5/2/10 7:14:14 PM

WCF Web Services  ❘  385

 {
 SalesObject tempEntity = new SalesObject();
 tempEntity.companyID = item.companyID;
 tempEntity.companyName = item.companyName.ToString();
 tempEntity.fy08Sales = item.fy08Sales;
 tempEntity.fy09Sales = item.fy09Sales;
 tempEntity.fy10Sales = item.fy10Sales;
 mySalesInfoList.Add(tempEntity);
 }

 datagrdSalesView.DataSource = mySalesInfoList;
 datagrdSalesView.DataBind();
 }

 void btnLoad_Click(object sender, EventArgs e)
 {
 int companyID = Int32.Parse(txtbxCompanyID.Text);
 string companyName = txtbxCompanyName.Text;
 int fy08Sales = Int32.Parse(txtbxFY08Sales.Text);
 int fy09Sales = Int32.Parse(txtbxFY09Sales.Text);
 int fy10Sales = Int32.Parse(txtbxFY10Sales.Text);

 SalesWCFService.Service1Client proxy =
 new SalesWCFService.Service1Client();
 proxy.addSalesRecord(companyID, companyName, fy08Sales,
 fy09Sales, fy10Sales);
 }
 }
}

	13.	 When finished, click Build ➪ Deploy to deploy the Web part to
SharePoint.

	14.	 After the Web part successfully builds, navigate to SharePoint
and either use an existing page or create a new Web part page,
and click “Add a new Web part.”

	15.	 Select the Custom category, and add the new Web part you just
created. Click Get to invoke the one Web method within your
custom WCF service. Then, add some data and click Add to add
some data to the SQL database via your WCF service. The result
should look similar to Figure 10-8.

How It Works

In much the same way that you created an ASP.NET Web service and then consumed it in an applica-
tion, you walked through a similar process here using a custom WCF service. However, there were
some differences this time, even though you used the same database in your service code.

First, your service code included the capability to add a record this time, as opposed to just retrieving data
(addSalesRecord). In this method, you passed a number of parameters that you would eventually insert

Figure 10-8  Sales Web part

584637c10.indd 385 5/2/10 7:14:14 PM

386  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

as a record. To do this, you created a new object, and then, using the database data context, you added an
instance of the object to the database and saved the changes by calling the SaveChanges method.

 public void addSalesRecord(int paramCompanyID, string paramCompanyName,
 int paramFY08Sales, int paramFY09Sales, int paramFY10Sales)
 {
 SalesObject newRecord = new SalesObject()
 {
 companyID = paramCompanyID,
 companyName = paramCompanyName,
 fy08Sales = paramFY08Sales,
 fy09Sales = paramFY09Sales,
 fy10Sales = paramFY10Sales,
 };

 Sales_Data myNewSalesRecord = new Sales_Data();

 using (SalesEntities dataContext = new SalesEntities())
 {
 myNewSalesRecord.CompanyID = newRecord.companyID;
 myNewSalesRecord.CompanyName = newRecord.companyName;
 myNewSalesRecord.FY08Sales = newRecord.fy08Sales;
 myNewSalesRecord.FY09Sales = newRecord.fy09Sales;
 myNewSalesRecord.FY10Sales = newRecord.fy10Sales;

 dataContext.AddToSales_Data(myNewSalesRecord);
 dataContext.SaveChanges();
 }

 }

Second, you added some configuration information to the SharePoint web.config file after deploying
the WCF service. While this does make for an extra step in the development and deployment process, it
does provide more granular control over the security and bindings for your services — and is very much
typical of a WCF service. However, remember that what you need is typically created in your web.con-
fig file (unless you want to further customize the configuration settings).

Lastly, instead of using BCS (and the BDC Metadata model), you used the Visual Web part as your cli-
ent application. In this case, implementing the service was fairly straightforward and only required that
you call the addSalesRecord method and pass in a number of variables — which the user entered into
the textboxes.

 void btnLoad_Click(object sender, EventArgs e)
 {
 int companyID = Int32.Parse(txtbxCompanyID.Text);
 string companyName = txtbxCompanyName.Text;
 int fy08Sales = Int32.Parse(txtbxFY08Sales.Text);
 int fy09Sales = Int32.Parse(txtbxFY09Sales.Text);
 int fy10Sales = Int32.Parse(txtbxFY10Sales.Text);

 SalesWCFService.Service1Client proxy =
 new SalesWCFService.Service1Client();
 proxy.addSalesRecord(companyID, companyName, fy08Sales,
 fy09Sales, fy10Sales);
 }

584637c10.indd 386 5/2/10 7:14:15 PM

RESTful Web Services  ❘  387

The example in this exercise deployed the WCF service to IIS, so when you created your client appli-
cation, it was calling the service from IIS. However, in SharePoint 2010, you can equally deploy a
WCF service to the SharePoint root (that is, the ISAPI folder). The way in which you would deploy
to the SharePoint root would be as follows:

	 1.	 Create an Empty SharePoint Project and set it to “Deploy as farm solution.”

	 2.	 Add a WCF Service Library to the solution.

	 3.	 Copy the IService.cs and Service.cs files to the SharePoint project.

	 4.	 Add your service operations and contracts to the two service files.

	 5.	 Create a mapped SharePoint folder to the ISAPI folder.

	 6.	 Add a .svc file to the ISAPI mapped folder, and add the service registration information.

	 7.	 Deploy the SharePoint project to your SharePoint site.

Once you deploy the WCF service to SharePoint, you can consume the service either server-side or
client-side through Windows Form, WPF, or even Silverlight applications.

NOTE  ​While there is no walkthrough presented in this discussion for a WCF
solution deployed to the SharePoint root, there is a code accompaniment
(WCFServiceApp.zip) that is available for you to download for you at this
book’s companion download site (www.wrox.com). You can review the project
to see how it is structured, as well as the way in which a client application
calls the WCF service.

You can build many more interesting and complex applications using WCF, so you should explore it
more as you sharpen your SharePoint development skills.

RESTful Web Services

You can also use the Representational State Transfer (REST) services in SharePoint 2010. While
REST is less of a service and more of a communications protocol, SharePoint 2010 supports REST
to give you better data access and programmability.

In some cases, the REST capabilities are surfaced using WCF services. For example, in
Chapter 5, you leveraged the WCF Data services and REST capabilities by using the
Listdata service (listdata.svc).

What this functionality provides to the developer is a way to interact with SharePoint data in a
strongly typed way. However, the strongly typed interaction with SharePoint data is not the only
benefit provided by the REST APIs. They also provide a way to interact with other types of data
within SharePoint, such as Excel data. You accomplish this through the REST protocols, which are
Atom, AtomPub, and RSS.

584637c10.indd 387 5/2/10 7:14:15 PM

388  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

In this section, you’ll see more of the REST protocols at work (as opposed to the WCF Data ser-
vices, which you already saw in Chapter 5) to interact with Excel data in SharePoint.

The REST protocols enable you to access data in Excel documents in various read/write ways. For
the following example, create an Excel 2010 spreadsheet, add some data to a workbook (as shown
in Figure 10-9), and create a named range called Sales. Next, create a chart from the named range
by selecting all of the data in the table, clicking Insert ➪ Chart, and then selecting the Bar Chart to
add the chart into the workbook. Note that the chart is called Chart 1 by default.

Figure 10-9  Creating a Sales spreadsheet

After you’ve created the workbook, save and upload the spreadsheet into SharePoint — for example,
into the Shared Documents document library with the name RestExample.xlsx. With the Excel
document in SharePoint, you can now use REST to retrieve or insert data.

Let’s walk through an example where you retrieve the data using the REST protocols.

Using REST to Interact with Data in ExcelTry It Out	

Code file [RestExample.xlsx] available for download at Wrox.com.

REST is a lightweight set of protocols to interact with data in various ways, one of which is retrieving
data from Excel. To retrieve data from an Excel spreadsheet using REST, follow these steps:

	1.	 Open your Internet browser and navigate to your SharePoint instance to ensure that you have con-
nectivity to your server.

	2.	 Type the following URI into your Internet browser:

http://<server name>/_vti_bin/ExcelRest.aspx/Shared%20Documents/
 RestExample.xlsx/Model

	3.	 In your Internet browser, you should now see something similar to Figure 10-10. What you’re seeing is
an ATOM feed of the types of items in your workbook that are accessible using the REST protocols.

584637c10.indd 388 5/2/10 7:14:15 PM

RESTful Web Services  ❘  389

Figure 10-10  Atom feed of available item types

	4.	 Because you created a named range in the spreadsheet, you can access the named range using the
Atom feed. To do so, type the following URI into the Internet browser:

http://intranet.contoso.com/_vti_bin/ExcelRest.aspx/Shared%20Documents/
 RestExample.xlsx/Model/Ranges(‘Sales’)?$format=html

	5.	 You should now see something similar to Figure 10-11, which shows the result of the Atom
feed — the table that you made the named range in your Excel spreadsheet.

Figure 10-11  Surfacing a named range in the browser

	6.	 Lastly, type the following URI into your Internet browser to expose the chart you also created in
the spreadsheet:

http://intranet.contoso.com/_vti_bin/ExcelRest.aspx/Shared%20Documents/
 RestExample.xlsx/Model/Charts(‘Chart%201’)

584637c10.indd 389 5/2/10 7:14:15 PM

390  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

How It Works

REST is a lightweight way to interact with SharePoint 2010. By using the URIs, you can interact with
data in an Excel spreadsheet within your SharePoint site. You must leverage the URIs, though, with an
Excel document that is stored in the SharePoint site, because you are either using the ExcelRest.aspx
redirect or Listdata.svc (for strongly typed data programmability) to interact with that data.

There are also a number of supported REST return formats. For example, supported return formats
include HTML, Atom, image, or workbook. To enable this return data, you append the REST URI
with ?$format=html to return, for example, the named range as HTML. This is what you did with the
Sales named range in the walkthrough. Note that you could also return the data as an Atom feed as is
indicated by the ?$format=atom that is appended to the end of the following URI:

http://intranet.contoso.com/_vti_bin/ExcelRest.aspx/Shared%20Documents/
 RestExample.xlsx/Model/Ranges(‘Sales’)?$format=atom

You saw one way to leverage the Listdata service in Chapter 5 (where you developed a client applica-
tion to talk to SharePoint lists), and here you should be thinking how you can develop applications that
leverage the lightweight REST protocol to get and put data into SharePoint lists, or access data in Excel
spreadsheets programmatically.

Azure and SharePoint

A growing trend in software development is cloud computing. Cloud computing is where code and
data live in the cloud so that organizations can both consume and deploy services in an Internet-
based data center for hosting. The business mechanics of cloud computing can make a lot of sense
when thinking about things like hardware, upgrading, administration, and software maintenance.
Cloud computing offsets these costs by moving the management and maintenance of applications to
companies like Microsoft.

One of the key Microsoft cloud offerings is the Windows Azure platform, which is a set of cloud
capabilities that provides specific services to both those trying to host services in the cloud and those
trying to develop and deploy services in the cloud. Interestingly, the Azure platform is not limited
to being consumed by cloud-only applications. You can integrate Azure services with on-premises
applications as well. In fact, the easy way to think about an Azure service is that it is very similar to
any other service endpoint — except that it is deployed and hosted in the cloud.

The demand for cloud computing is big, and, in the near term, you’ll see many companies trying to
integrate more with the Windows Azure platform. The question, then, is how does SharePoint inte-
grate with the cloud?

At present, SharePoint can integrate with Windows Azure services; again, it is just another end-
point. Thus, you build and deploy a service in the cloud and, as long as you have connectivity to the
service, you can integrate and run it with SharePoint. While this book mainly focuses on SharePoint
on-premises (that is, SharePoint Server 2010), there is no reason why you cannot integrate Azure-
based services with SharePoint does make for an extra step in the development and deployment pro-
cess, Online (for example, using sandboxed solutions as your point of integration) when it is released
later in 2010.

584637c10.indd 390 5/2/10 7:14:15 PM

Azure and SharePoint  ❘  391

Integrating SharePoint with Azure services or data primarily means two things at present. The first
is that you can integrate with services that are already hosted on Azure. Or, you can build your own
Azure services (or applications), deploy these services in the cloud, and then integrate these services
with SharePoint. The Windows Azure platform provides a set of developer tools and a replicated
developer environment where you can test any services you will deploy to the cloud.

NOTE  ​For more information on how to get started using Windows Azure, go to
http://www.microsoft.com/windowsazure/.

An interesting data service that is built on Azure is a technology codenamed “Dallas,” where com-
panies are hosting large quantities of public data on Azure, and then, through a subscription model,
you can build applications that leverage that data in some capacity. While the technology is cur-
rently limited, in the future it is sure to grow in use and popularity, because the data will grow to
include census, crime, and news data — and other types of data that can prove interesting when
mined and analyzed in different ways.

In this section, you’ll see how you can integrate Dallas data hosted on Azure integrated with
SharePoint. To complete the exercise that follows, you’ll need to have a Live ID and a developer key
to access the Dallas data and services.

To get a developer key, navigate to https://www.sqlazureservices.com and then sign in with
your Live ID. Click Home and follow the instructions to get your developer key sent to you via
email. It’s a very simple process and will only take you a couple of minutes. After you have your
developer key, click Catalog, and then subscribe to one or more of the data catalogs. When you sub-
scribe to a catalog, it is then added to your Subscriptions. For this walkthrough, use the infogroup
data catalog that is hosted on Azure.

Creating a Web Part Integrated with AzureTry It Out	

Code file [AzureProject.zip] available for download at Wrox.com.

Azure is a very powerful cloud-based platform that hosts services and data. To integrate Azure with
SharePoint, follow these steps:

	1.	 Navigate to your Dallas Azure Catalog page and then click the link that reads, “Click here to
explore the dataset,” as shown in Figure 10-12.

Figure 10-12  infogroup data catalog

584637c10.indd 391 5/2/10 7:14:15 PM

392  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

	2.	 Explore the catalog using the Web-based filters to get a better sense for what public data is
returned from your filtering.

	3.	 Copy the Account Key, Unique User ID, and link feed to the catalog (for example, https://api.
sqlazureservices.com/InfoUsaService.svc/businessAnalytics/canada?$format=atom10)
to a text document and save them to your desktop.

	4.	 Open Visual Studio 2010 and create an Empty SharePoint project and provide a name for the project
(for example, AzureProject). Add the Web part item-level template to the Empty SharePoint project.

	5.	 Right-click the project and click Add ➪ Class. Call the class Customer and add the following
bolded code to the class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace AzureProject
{
 class Customer
 {
 public string contactName { get; set; }
 public string companyName { get; set; }
 public string companyAddress { get; set; }
 public string companyCity { get; set; }
 public string companyProvince { get; set; }
 public string companyPostalCode { get; set; }
 public string companyPhone { get; set; }
 }
}

	6.	 Amend the .webpart file so that it has a more intuitive title and description.

…
 <properties>
 <property name=”Title” type=”string”>Azure Dallas Web Part</property>
 <property name=”Description” type=”string”>Web Part that displays
 Dallas data from Azure.</property>
 </properties>
…

	7.	 In the main Web part class, add the following bolded code. Where noted in the code, add your
account key, unique user ID, and the link to the data catalog.

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using Microsoft.Dallas.Services;
using System.Net;
using System.IO;

584637c10.indd 392 5/2/10 7:14:15 PM

Azure and SharePoint  ❘  393

using System.Xml.Linq;
using System.Collections.Generic;
using System.Linq;

namespace AzureProject.AzureWebPart
{
 [ToolboxItemAttribute(false)]
 public class AzureWebPart : WebPart
 {
 Button btnGetAzureData = new Button();
 DataGrid datagrdAzureData = new DataGrid();
 Label lblData = new Label();

 string myAccountKey = “<your account key>”
 string myUniqueUserId = “<your user ID>”;
 string myDallasURL = “<your Dallas URL>”;

 protected override void CreateChildControls()
 {
 btnGetAzureData.Text = “Load Azure Data”;
 lblData.Text = “Azure Data: “;

 this.Controls.Add(new LiteralControl(“<table><tr><td>”));
 this.Controls.Add(lblData);
 this.Controls.Add(new LiteralControl(“</td><td>”));
 this.Controls.Add(datagrdAzureData);
 this.Controls.Add(new LiteralControl(“</td><tr><td></td<td>”));
 this.Controls.Add(btnGetAzureData);
 this.Controls.Add(new LiteralControl(“</td></tr></table>”));

 btnGetAzureData.Click += new EventHandler(btnGetAzureData_Click);
 }

 void btnGetAzureData_Click(object sender, EventArgs e)
 {
 List<Customer> customerSalesLeads = new List<Customer>();
 WebRequest azureWebRequest = WebRequest.Create(myDallasURL);
 azureWebRequest.Headers.Add(“$accountKey”, myAccountKey);
 azureWebRequest.Headers.Add(“$uniqueUserID”, myUniqueUserId);
 HttpWebResponse azureWebResponse = (HttpWebResponse)azureWebRequest.
 GetResponse();
 Stream AzureDataStream = azureWebResponse.GetResponseStream();
 StreamReader reader = new StreamReader(AzureDataStream);
 string responseFromAzure = reader.ReadToEnd();
 XDocument xmlAzureResultData = XDocument.Parse(responseFromAzure);

 XNamespace nsContent = “http://www.w3.org/2005/Atom”;
 XNamespace nsProperties = “http://schemas.microsoft.com/ado/2007/
 08/dataservices/metadata”;
 XNamespace nsValue = “http://schemas.microsoft.com/ado/2007/
 08/dataservices”;

 var result = (from q in xmlAzureResultData.Descendants(nsContent +
 “entry”)
 where q.Element(nsContent + “content”).
 Element(nsProperties + “properties”).

584637c10.indd 393 5/2/10 7:14:15 PM

394  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

 Element(nsValue + “City”).Value == “SOOKE”
 select new Customer
 {
 contactName = q.Element(nsContent +
 “content”).Element(nsProperties +
 “properties”).Element(nsValue +
 “ContactName”).Value.ToString(),
 companyCity = q.Element(nsContent +
 “content”).Element(nsProperties +
 “properties”).Element(nsValue +
 “CompanyName”).Value.ToString(),
 companyAddress = q.Element(nsContent +
 “content”).Element(nsProperties +
 “properties”).Element(nsValue +
 “Address”).Value.ToString(),
 companyName = q.Element(nsContent +
 “content”).Element(nsProperties +
 “properties”).Element(nsValue +
 “City”).Value.ToString(),
 companyProvince = q.Element(nsContent +
 “content”).Element(nsProperties +
 “properties”).Element(nsValue +
 “Province”).Value.ToString(),
 companyPostalCode = q.Element(nsContent +
 “content”).Element(nsProperties +
 “properties”).Element(nsValue +
 “PostalCode”).Value.ToString(),
 companyPhone = q.Element(nsContent +
 “content”).Element(nsProperties +
 “properties”).Element(nsValue +
 “Phone”).Value.ToString()
 });
 foreach (var c in result)
 {
 Customer tempCustomer = new Customer();
 tempCustomer.contactName = c.contactName;
 tempCustomer.companyCity = c.companyCity;
 tempCustomer.companyAddress = c.companyAddress;
 tempCustomer.companyName = c.companyName;
 tempCustomer.companyProvince = c.companyProvince;
 tempCustomer.companyPostalCode = c.companyPostalCode;
 tempCustomer.companyPhone = c.companyPhone;
 customerSalesLeads.Add(tempCustomer);
 }

 datagrdAzureData.DataSource = customerSalesLeads;
 datagrdAzureData.DataBind();

 reader.Close();
 AzureDataStream.Close();
 azureWebResponse.Close();
 }
 }
}

584637c10.indd 394 5/2/10 7:14:15 PM

Azure and SharePoint  ❘  395

	8.	 When you’ve added the code, click Build to build the project. After the project has successfully
built, click Build ➪ Deploy Solution to deploy the Web part to SharePoint.

	9.	 Once the Web part has deployed, navigate to your SharePoint site and either create a new Web
part page or use an existing one. Click “Add a web part,” and then navigate to the Custom cat-
egory. Add your newly created Azure Web part.

	10.	 Click the Load Azure Data to invoke the Web request to the Azure service and load the Dallas
data. The results should look similar to Figure 10-13.

Figure 10-13  Rendered Azure data in Web part

How It Works

This example opens up the opportunity for you to begin to code against Azure-based services that live
in the cloud. However, you shouldn’t think of these services as any different from other types of ser-
vices. These are simply a different endpoint.

In this walkthrough, rather than using the service proxies as you did in the ASP.NET and WCF exam-
ples, you used the WebRequest object to interact with the Azure data. The WebRequest object is a .NET
class that represents a request/response model for working with data that lives in the cloud. Using this
class, the request was sent from the client application using a specific URI (in this case, the Dallas data
URL), and the response was handled by reading the response stream into an XDocument object.

(For more information on the WebRequest class, go to http://msdn.microsoft.com/en-us/library/
system.net.webrequest.aspx.)

In the walkthrough, the bulk of the code was invoked when you clicked the button in the Web part
(btnGetAzureData). This invoked the Click event, which then created a new WebRequest object, made
the request to the specific Dallas URL (myDallasURL), and then added your account key and unique
user ID as values within the request.

…
WebRequest azureWebRequest = WebRequest.Create(myDallasURL);
azureWebRequest.Headers.Add(“$accountKey”, myAccountKey);
azureWebRequest.Headers.Add(“$uniqueUserID”, myUniqueUserId);
HttpWebResponse azureWebResponse = (HttpWebResponse)azureWebRequest.GetResponse();
Stream AzureDataStream = azureWebResponse.GetResponseStream();
StreamReader reader = new StreamReader(AzureDataStream);
string responseFromAzure = reader.ReadToEnd();
XDocument xmlAzureResultData = XDocument.Parse(responseFromAzure);

XNamespace nsContent = “http://www.w3.org/2005/Atom”;

584637c10.indd 395 5/2/10 7:14:15 PM

396  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

XNamespace nsProperties = “http://schemas.microsoft.com/ado/2007/
 08/dataservices/metadata”;
XNamespace nsValue = “http://schemas.microsoft.com/ado/2007/08/dataservices”;
…
datagrdAzureData.DataSource = customerSalesLeads;
datagrdAzureData.DataBind();
reader.Close();
AzureDataStream.Close();
azureWebResponse.Close();

After making the request, a good portion of the code within the Click event constructed a query that
could be used to get the specific information you wanted. (You can certainly optimize this code with
LINQ to get a more concise query against the returned data set, and you would likely want to emit the
HTML formatting using the HtmlTextWriter class, as you've seen throughout the book.) In this case,
you created a query that parsed all records from the response stream that were located in the city of
Sooke, British Columbia. After you bound the returned data to the datagrid (datagrdAzureData), you
then disposed all of the objects associated with the WebRequest.

Summary

Service-based applications open up a vast amount of potential for building interesting applications that
span heterogeneous systems. In this chapter, you saw the increased support for services of all kinds in
SharePoint 2010. Specifically, you learned about native and custom ASP.NET Web services, custom
WCF services, the REST protocols, and Azure services. All of these provide you with different capa-
bilities and levels of functionality that can extend out into the enterprise, or out into the wider cloud.

As a beginning developer, your first option should always be to see if the service exists already
before creating a custom service. SharePoint 2010 has a rich set of native Web services, and you’ll
find that these will often fit the bill. However, if the functionality does not exist in the native
SharePoint Web services, then custom services may be the option. WCF services are being used more
these days, as they offer more flexibility and power over security. However, that’s not to say that
you could not use custom ASP.NET services as well. Many organizations still leverage ASP.NET for
their custom services.

With either ASP.NET or WCF, you also have the option to deploy to IIS, or to deploy to the
SharePoint root. Deploying to IIS provides you with a higher level of scalability, but leveraging the
SharePoint root deploys your services as a “trusted” context with SharePoint. The flip side is that any
services deployed to the ISAPI folder can get deleted through routine maintenance and upgrades.

If you’re looking for more lightweight services, then REST would be the option to use to interact
with SharePoint data. As you’ve seen, combined with WCF Data services, you can do some strongly
typed programming against SharePoint lists. And, in this chapter, you have seen how you can very
easily use the REST protocols when interacting with Excel documents.

When it comes to the cloud, Microsoft’s newest offering is Azure. It will be exciting to see where Azure
moves in the future. Cloud computing is a reality, and many companies are moving in this direction.

In Chapter 11, you’ll see how you can integrate in different ways with Office 2010.

584637c10.indd 396 5/2/10 7:14:15 PM

Summary  ❘  397

Exercises	

	 1.	 Explore the native ASP.NET Web services in SharePoint 2010 and build some applications
using other native Web services.

	 2.	 Create either an ASP.NET or WCF Web service, and then deploy it in the SharePoint 2010
root, as opposed to deploying it to IIS.

	 3.	 Use the REST URI that points to your Sales named range and surface this within a Word
document.

	 4.	 Create a custom Azure service and then build a SharePoint Web part that implements that
service.

584637c10.indd 397 5/2/10 7:14:16 PM

398  ❘  Chapter 10   Developing Service-Oriented Applications for SharePoint 2010

What You Learned in This Chapter⊲⊲

Item Description

ASP.NET Services ASP.NET 2.0 services provide SOAP and WSDL-based services to interact with
SharePoint. SharePoint 2010 provides an array of native ASP.NET services that
you can leverage, as well as the capability to support custom services.

WCF Services First supported in .NET 3.0, WCF provides more advanced and flexible man-
agement over Web service implementation. This follows similar standards
to ASP.NET but expands to support broader settings such as security and
bindings.

REST REST is a set of protocols that are not only supported through WCF services
in SharePoint (for example, Listdata.svc) but also through lightweight
URIs. REST enables you to leverage the power of WCF Data services or
issue URI commands to the browser to retrieve Excel data.

Azure Windows Azure is the platform in the cloud that provides you with the capa-
bility to build, deploy, and host services and data on the Internet using a
scalable infrastructure.

Recommended Reading

SharePoint 2010 SDK on MSDN at ➤➤ http://msdn.microsoft.com/en-us/library/

ee557253(office.14).aspx

Azure Getting Started home page at ➤➤ http://www.microsoft.com/windowsazure

Channel 9 Azure Learning Center at ➤➤ http://channel9.msdn.com/learn/courses/Azure/

Channel 9 Services Module at ➤➤ http://channel9.msdn.com/learn/courses/

SharePoint2010Developer/ServicesArchitecture/

584637c10.indd 398 5/2/10 7:14:16 PM

Integrating SharePoint
with Microsoft Office

What You’ll Learn in This Chapter:

Creating integrated Office 2010 solutions using both no-code and ➤➤

code options

Using content types as documents you can map to your document ➤➤

libraries

Using InfoPath for forms processing and management➤➤

Using a workflow to manage your business processes➤➤

Using Office 2010 server-side services to augment your ➤➤

SharePoint solutions

It’s almost impossible to talk about SharePoint without discussing Office, because they are so
tightly integrated in a number of ways. For the end user, many of the Office 2010 features provide
improved features for integrating with SharePoint — such as the Office Web Application view and
editing capabilities, publish to SharePoint, and many document management capabilities. For the
developer, the bar has been raised even more in 2010. For example, you have a wide array of pos-
sibilities to integrate your Office 2010 solutions with SharePoint. The great thing is that you also
have a choice that takes you from many no-code options for integrating with Office to more code-
heavy solutions so that you can customize your solutions.

In this chapter, you’ll see both no-code and code solutions that will cut across technologies such
as content types, InfoPath, SharePoint workflow, server-side services (that is, Visio Services, Excel
Services, Access Services, and Word Services), and Visual Studio Tools for Office (VSTO) custom-
izations that integrate with SharePoint lists. Each of these options illustrates the strong integration
possibilities with SharePoint 2010, so be sure (as you would when thinking about out-of-the-box
features versus custom features) that you evaluate the different options when thinking about inte-
grating Office with SharePoint — and, more generally, how you can augment your SharePoint
2010 solutions using Office.

11

584637c11.indd 399 5/2/10 7:14:25 PM

400  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

Content Type as a Document Template

Content types are interesting and useful artifacts in SharePoint. They are reusable objects, settings,
and metadata that can be applied to specific types of content in SharePoint. They enable you to cre-
ate predictable and manageable behaviors for a document or item within SharePoint. For example,
say that you want to create a specific content type called Legal Contract that can be repurposed
across your SharePoint farm. You can assign the Legal Contract content type a set of columns (for
example, Customer Name, Contract ID, and Active Date) and metadata, and then register it as
such within SharePoint. It can then be reused across your site.

Content types, however, are not just about columns. You can create a specific document template
and have that template be your content type. You apply the Legal frame to a custom Legal Word
template, which has boilerplate legalese in it. You don’t want people in an organization constantly
re-creating the same document, so you can create the legal template in Word and create a content
type to be reused across the SharePoint site (or within a specific document library).

Thus, one way to integrate Office with SharePoint is by using content types. They could be used in
two ways. First, you can simply expose an Office document to be used as the default document in
a document library. Thus, when the user clicks New in the document library, the specific document
you want to act as the content type for that document library will appear.

Second, you can do the same thing, but with a custom document. This is a little more involved,
because it means that you will have created a document-level customization (for example, a cus-
tom task pane that integrates line-of-business data), which involves managed code customization.
Chapter 5 and Chapter 8 showed you how to perform Office customizations. Mapping a customized
document to a content type means that when the user clicks New, the custom document appears as
the default document selection. If you apply the Legal Contract, the custom document may apply
a specific set of ribbon customizations to apply boilerplate legalese, depending on what type of
contract you’re trying to create. Thus, by using a content type in this manner, you can cut down on
retyping by associating the custom legal template with a document library.

You create content types in the “Site content types” Gallery, which you can find by clicking Site
Actions ➪ Site Settings, as shown in Figure 11-1.

Figure 11-1  “Site content types” in Site Settings

584637c11.indd 400 5/2/10 7:14:25 PM

Content Type as a Document Template  ❘  401

Let’s create a content type. To complete this exercise, open Microsoft PowerPoint and create a
simple deck that has some boilerplate text in a slide. What’s in the PowerPoint deck is less important
than the fact that you’ll use a content type to map it to a document library so that, if it were a real
document, everyone in an organization could use it.

Creating a Content TypeTry It Out	

Content types are very versatile, and creating a content type is fairly straightforward. To create one,
follow these steps:

	1.	 Click Site Actions ➪ Site Settings.

	2.	 Click “Site content types” and then click Create.

	3.	 Provide a Name (for example, Beginning_SharePoint_PPT) and Description (for example,
“Template for PPT decks”) for the content type, and then select the parent content type (Document
Content Types and Document). You can also choose to create a new category for your content
type, as shown in Figure 11-2. Click OK to create the new content type.

Figure 11-2  Creating a content type

	4.	 When the content type is created, click Advanced Settings on the Site Content Type Information
page. Here you can upload a specific template for the content type, or you can provide a link
to the document if you’ve uploaded into SharePoint already (Figure 11-3). The document you
will upload (or point to) is the document you created earlier in this chapter. Note that you can
upload the document into a document library, and then add that URL into the appropriate field.
When finished, click OK.

584637c11.indd 401 5/2/10 7:14:25 PM

402  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

Figure 11-3  Uploading a custom document for your content type

	5.	 At this point, either create a new document library or navigate to an existing one with which you
want to associate the custom template.

	6.	 After you navigate to the document library, on the ribbon click the Library tab and then Library
Settings.

	7.	 Click Advanced Settings, and then click Yes for the “Allow management of content types?”
checkbox.

	8.	 Click OK to return to the document library settings page.

	9.	 On the Advanced Settings page, click the “Add from existing site content types” link to add your
new content type to the document library. In the Available Site Content Types list, find the cus-
tom content type you created, and then click the Add button to move that content type into the
“Content types to add” list, as shown in Figure 11-4. Click OK to finish.

Figure 11-4  Adding new content type to document library

584637c11.indd 402 5/2/10 7:14:25 PM

Content Type as a Document Template  ❘  403

	10.	 You can also choose to not display other content types, so only your content type will show up. To do
this, click Change New Button Order and Default Content Type and unclick the Visible checkbox for
the Document content type, and ensure that your content type is checked, as shown in Figure 11-5.

Figure 11-5  Making your content type visible

	11.	 Now you can navigate to your document library and click New
Document. Your custom Microsoft PowerPoint deck will be the one
to appear to the end user, as shown in Figure 11-6.

How It Works

The content type in this example is fairly straightforward. You simply used
the Document content type category and then mapped a specific document
(in this case, a Microsoft PowerPoint deck) to that Document content type.

In the case of this example, though, you uploaded the document where SharePoint stores the document in a
special location. When the user clicks the New Document button, SharePoint loads the document from that
location. Then, the user can add specific content and then save the document back to SharePoint.

You can leverage content types all across SharePoint and integrate them with Office documents as
well. For example, the document information panel is one way that you can integrate content types
within the document itself. Furthermore, you’re not relegated to just PowerPoint documents when
creating and mapping content types to document libraries. You can also map, for example, Word
templates or Excel templates as a content type.

You can also map custom documents that have code built into them. In Chapter 5, you built a VSTO
document-level solution that read and wrote data in an Excel spreadsheet. If you wanted, this could be
the template that you could use to deploy and map as the content type to your document library.

The point is that you have a variety of options when creating content types. So, leverage their reus-
able nature to build structure around your SharePoint site.

NOTE  ​There is a useful MSDN article that walks you through how you can cre-
ate a custom VSTO document-level solution and then map that to a content
type in SharePoint. It applies to SharePoint 2007, but it can still be used as a
reference. You can find the article at http://msdn.microsoft.com/en-us/
magazine/cc507632.aspx. You can also find a new extensibility project
template for deploying Office Business Applications to SharePoint at
http://code.msdn.microsoft.com/vsixforsp.

Figure 11-6  Custom content
type in document library

584637c11.indd 403 5/2/10 7:14:26 PM

404  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

Using InfoPath in Your SharePoint Solutions

Another way to integrate Office into your SharePoint solutions is by using InfoPath forms. InfoPath
forms are templates that overlay XML but are very versatile in the way you can use them. For exam-
ple, you can easily tie InfoPath forms to data and then integrate them with a SharePoint workflow to
manage a business process when users require some level of form completion. In short, InfoPath is
essentially about building electronic forms.

Within Microsoft Office, you have the capability to build and publish forms quickly and easily into
SharePoint using the built-in InfoPath Services. What’s good about InfoPath forms is that they are
accessible across a wide audience, and they fit into a good number of scenarios — that is, wherever
you want to enter data or have a form within a workflow, you can use an InfoPath form.

With this in mind, you can customize SharePoint list forms, as well as add custom layouts and rules
to manage and validate data. InfoPath is great in that it also works well against ADO.NET or Web
services, so you have built-in flexibility to interact with different types of data.

To create InfoPath forms, you use the InfoPath client application to create the forms, and then leverage
the publish functionality built into InfoPath to push the forms into SharePoint. InfoPath provides some
out-of-the-box templates that enable you to create forms that map directly to objects within SharePoint.

For example, Figure 11-7 shows the SharePoint List and SharePoint Form Library templates, which
are two templates that enable you to create a direct connection to SharePoint. Many other templates
exist for you to use against SharePoint, and, in many cases, these are easy to configure or build a UI
for (for example, creating a form to load data from a Web service).

Figure 11-7  InfoPath form templates

584637c11.indd 404 5/2/10 7:14:26 PM

Using InfoPath in Your SharePoint Solutions  ❘  405

Let’s walk through a simple InfoPath example.

Creating an InfoPath Form for SharePointTry It Out	

InfoPath forms are easy to create and deploy to SharePoint. To create an InfoPath form, follow these steps:

	1.	 Create a Custom list called Customers in your SharePoint site. Create three columns entitled
Contact Name, Email, and Phone Number. Make all of the fields of type "Single line of text."

	2.	 Open InfoPath 2010 and click File.

	3.	 Double-click the SharePoint List template.

	4.	 In the Data Connection Wizard, enter the URL for the SharePoint site and click Next.

	5.	 Click the Customize an Existing SharePoint List radio button, and then select the Customers list.

	6.	 Accept the default name for the connection on the next step of the wizard, and click Finish.

	7.	 When complete, InfoPath will generate a form that maps to the fields you created in your
Customers list, as shown in Figure 11-8.

Figure 11-8  Contacts form

	8.	 You can click Preview to preview the form, or you can click the Quick Publish button (to the right
of the Save icon) to publish the form to SharePoint. When it is published, InfoPath will prompt you
with a successful publish message.

	9.	 To use the form in SharePoint, navigate to your SharePoint site and click Site Actions ➪ Edit Page.

	10.	 Click “Add a web part.” Click the Office Client Applications category, and select InfoPath Form
Web Part. Click Add.

	11.	 SharePoint exposes the default InfoPath capabilities, but you need to map it to a particular form.
To do this, select “Click here to open the tool pane.”

	12.	 In the “Lists or Library” drop-down, select the Customers list and leave all of the other default
options. Click OK. SharePoint renders the InfoPath form you created in the SharePoint Web part,
as shown in Figure 11-9.

584637c11.indd 405 5/2/10 7:14:26 PM

406  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

Figure 11-9  Rendered InfoPath form for Customers list

	13.	 To use the InfoPath form, click the Forms Edit tab. Add some data to the form and click Save. The
data you enter into the form will be saved in the Contacts list.

How It Works

InfoPath is a forms-based technology that uses XML to structure a form and then ADO.NET or Web
services to connect to data. In this walkthrough, you created a simple form and then published the
form to SharePoint. When publishing the form to SharePoint, you were essentially pushing the XML
template into a store on the SharePoint server that could then be displayed and rendered using a set of
services that are native to SharePoint Server 2010.

While InfoPath may not be amenable for every project, it’s a great way to quickly build and deploy
forms-based applications for SharePoint. You can also tie InfoPath forms (as well as other types of
documents) to a SharePoint workflow, which is examined next.

Managing Office Documents through a
SharePoint Workflow

Workflow is all about managing business processes. For example, let’s say you’re the content track
owner for a major conference. You have 10 speakers who are reporting into your track, and each
speaker must move documents through a review process. You can use the document libraries in
SharePoint, along with either an in-box workflow or a custom workflow to manage the review and
submission process.

584637c11.indd 406 5/2/10 7:14:26 PM

Managing Office Documents through a SharePoint Workflow   ❘  407

The process might be as follows:

	 1.	 Anu, a speaker, submits the PowerPoint deck to the document library.

	 2.	 This kicks off the workflow that emails Jane, who is the reviewer of all decks.

	 3.	 She opens the mail and clicks a link in the mail that takes her to Anu’s deck.

	 4.	 She reviews the deck, and either makes comments and rejects the submission, or approves it.
If she approves the deck, the workflow terminates. If she rejects the deck, Anu must make the
changes and then resubmit it.

This process continues until the workflow is complete — in essence until Jane approves the deck.

When you break down this workflow, each turn in the workflow marshals an activity through
the business process, and you can build different types of activities. The in-box workflows for
SharePoint are simple and generic enough that you can use them for many different scenarios — for
example, feedback collection, approval, and so on. The in-box workflows are also sequential work-
flows. They continue to run through a set of activities in a sequential manner.

NOTE  ​You’ll note that you can also build a more complex workflow called a
state workflow, which moves forward based on the state of an activity. You
build these workflows using the Visual Studio workflow templates that leverage
the Windows Workflow Foundation (WF) capabilities built into .NET. These are
beyond the scope of this book.

Let’s take a look at the in-box functionality for SharePoint workflow.

Leveraging the In-Box Workflow CapabilitiesTry It Out	

In this scenario, let’s assume that you’ve created a contract and you want to route the contract through
the native SharePoint approval workflow. To do this, follow these steps:

	1.	 Create a mock-up document that you can use for the workflow. Figure 11-10 provides an overview
of a sample mock document.

	2.	 Create a new document library called Contracts, but don’t add the Contracts document just yet.

	3.	 Click the Library tab, and then, on the far-right of the ribbon, click the Workflow settings drop-
down menu. Select Add a Workflow, as shown in Figure 11-11.

	4.	 Select the Approval – SharePoint 2010 workflow. Provide a name for the workflow, and then click
the “Start this workflow when a new item is created” and “Start this workflow when an item is
changed” options, as shown in Figure 11-12.

584637c11.indd 407 5/2/10 7:14:26 PM

408  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

Figure 11-10  Contract document

Figure 11-11  Add a Workflow option

Figure 11-12  Configuring the workflow

584637c11.indd 408 5/2/10 7:14:26 PM

Managing Office Documents through a SharePoint Workflow   ❘  409

	5.	 Click Next.

	6.	 Add the person you want to assign the workflow to (for example, the approver), write a simple
notification message (which will be included in the default email message that is routed to the
approver), provide a due date for the task and a task duration. Click Finish.

	7.	 Return to the document library, and click “Add new document” to add the document to the docu-
ment library.

	8.	 After the document has been added to the document library, you’ll see a new column appear
in your document library. This is the workflow, and you can see that, because you marked the
workflow to start when a new item is created, it is now in progress. If you click on the In Progress
link, you’ll note that the workflow is rendered as a flowchart using Visio Services, as shown in
Figure 11-13.

Figure 11-13  Workflow rendering using Visio Services

	9.	 You can click the Tasks list in your SharePoint site, and you will see a new task that has been cre-
ated by the workflow. If you click the drop-down menu, you can View or Edit the item.

	10.	 Select Edit in the task and, when the workflow task opens, click Approve to complete the
workflow.

	11.	 Return to the document library. Your workflow should now be marked as Approved, as shown in
Figure 11-14.

Figure 11-14  Approved workflow

584637c11.indd 409 5/2/10 7:14:26 PM

410  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

How It Works

The in-box workflow in SharePoint provides a number of different workflow options. In SharePoint
2010, the workflow available to you in the document library settings includes the following:

Disposition➤➤  — This supports records management and manages the document expiration and
retention process by enabling participants to decide whether to retain or delete expired documents.

Three-state➤➤  — This is designed to track the status of a list item through three states (phases).

Approval➤➤  — This routes a document or item that is saved to a list or library to a group of people
for approval.

Collect Signatures➤➤  — This enables you to collect signatures from an individual or group of
individuals.

Collect Feedback➤➤  — This enables you to collect feedback from an individual or group of
individuals.

These in-box workflow options enable application logic in your SharePoint site to execute against a list
or a library. So, when you create a new document and add the document to a document library, the
workflow will begin to execute.

The great thing about the in-box workflow is that it cuts across the most common scenarios (for example,
feedback and approval), and the activities that are built into the in-box workflow are predefined and lever-
age existing lists (for example, the Tasks list) and communication channels (for example, email).

You can build a lower-level workflow for SharePoint, and, to do this, you would use the Sequential
and State Machine workflow templates in Visual Studio 2010. Information workers also have the
capability to define workflow in Visio, the capability to export workflow to SharePoint Designer
2010, or the capability to further export the SharePoint Designer workflow to Visual Studio 2010.

NOTE  ​For more information on how to create and deploy custom workflow
using the Windows Workflow Foundation for SharePoint, see http://chan-
nel9.msdn.com/learn/courses/SharePoint2010Developer/Workflow/.

Integrating Office Documents with
SharePoint List Data

So far, you’ve seen many no-code solutions to integrating Office with SharePoint. However, there
are many custom solutions you can build that leverage managed code solutions to integrate the two.

For example, in Chapter 5, you saw an example where you created an Excel add-in that integrated
list data with spreadsheet cells. In this section, you’ll create a document-level solution using Visual

584637c11.indd 410 5/2/10 7:14:26 PM

Integrating Office Documents with SharePoint List Data   ❘  411

Studio to integrate SharePoint list data with a Microsoft Word 2010 document — specifically, to
integrate data from the list to appear in content controls.

The capability built into Visual Studio 2010 is a throwback to the VSTO functionality that was, at
one point, a separate product. In Visual Studio 2008, though, VSTO became a native part of the
Visual Studio developer experience. This capability enables you to build managed code solutions
(that is, C# or VB.NET) against Office documents.

Not all Office documents are supported within the tools, but the most common ones are, such as
Excel, Word, Outlook, and PowerPoint. In fact, when you look at the developer ecosystem around
Office development, developers are coding against Excel the most, then Outlook, and then Word.
Other Office applications such as PowerPoint and InfoPath are also on the list.

The way the Office development tools work is that they provide a .NET wrapper to access the
Component Object Model (COM) interfaces that are native to Office. There is a very rich set of
interfaces that you can code against when building Office add-ins and document-level solutions
(add-ins execute at the application level, and document-level solutions execute at the document or
template level). Once they are built, you publish the custom assemblies to a CD/DVD, Web share, or
file share. End users can then install the assembly on their client desktops from these shares.

So, let’s get started with building a custom document-level solution.

Creating a Document-Level Solution for WordTry It Out	

Code file [OfficeSPIntegration.zip] available for download at Wrox.com.

You can build and deploy document-level solutions for Microsoft Office applications, which appear in the
custom document when you open that document. To create a document-level solution, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New Project.

	2.	 Navigate to Office 2010 and then select Word 2010 Document as the project template in Visual
Studio 2010.

	3.	 Provide a name (for example, ContractsTemplate) and location for the project, as shown in
Figure 11-15, and click OK.

	4.	 In the project wizard, you can either choose a new document or you can leverage an existing docu-
ment or template in your project. For this walkthrough, use the document you created in the ear-
lier workflow walkthrough (that is, the Contracts document). To do this, select Copy an Existing
Document, then browse to the location of the document, and click OK.

	5.	 After this step, you may be prompted with a VBA security prompt. Accept the dialog and move on.

	6.	 Visual Studio will then create the project infrastructure for you.

	7.	 You’ll notice that the Word document itself is part of a Designer experience within Visual Studio
(Figure 11-16). You’ll also notice that there is a core class that marshals the startup and shutdown
events for the document customization. If you click View ➪ Toolbox, you’ll see Word controls that
can be dragged and dropped onto the document surface.

584637c11.indd 411 5/2/10 7:14:26 PM

412  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

Figure 11-15  Word 2010 template

Figure 11-16  Word document in Visual Studio

584637c11.indd 412 5/2/10 7:14:27 PM

Integrating Office Documents with SharePoint List Data   ❘  413

	8.	 Now that you have created a project, jump over to your SharePoint site and create a new Custom
list called Contracts. Add four columns to the list called Customer, Contact_Name, Phone_
Number, and Email_Address (all of type Text to keep things simple). After you complete the list,
add some data. Your list should look similar to Figure 11-17.

Figure 11-17  Custom list

	9.	 Where you have the Customer Information table in your document, drag four
RichTextContentControls onto the document surface. Each Content control will be placed
beside the four elements in the table — that is, one for Customer, Contact Name, Phone Number,
and Email Address.

	10.	 You can click the Content control to expose the properties of the control. In the Properties win-
dow, name the controls as follows: (1) wccCustomer, (2) wccContactName, (3) wccPhoneNum, and
(4) wccEmailAddress.

	11.	 Now right-click the project and select Add ➪ Class. Name the class Customers and click OK.

	12.	 Add the following bolded code to the default class code that is created for you. These are four
properties of the class that map to the list you created in SharePoint.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ContractsTemplate
{
 class Customers
 {
 public string custName { get; set; }
 public string contactName { get; set; }
 public string contactNum { get; set; }
 public string contactEmail { get; set; }
 }
}

	13.	 After you’ve added the Customers class, right-click the project and select Add References. Select
the Recent tab (or browse) and add the Microsoft.SharePoint.Client.dll and Microsoft.
SharePoint.Client.Runtime.dll to the References folder. Using these references, you will lever-
age the client object model to interact with the data in the SharePoint list.

	14.	 After you add the references, right-click the project and click Add ➪ New Item. Select Ribbon
(Designer). Provide a name for the ribbon (for example, CustomerRibon) and click OK.

584637c11.indd 413 5/2/10 7:14:27 PM

414  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

	15.	 In the Visual Ribbon Designer, drag a combo box control into the first group, and then add a but-
ton alongside in the first group. You can rename the group control by clicking the outside edge of
the control and changing the Name property in the Properties window. You can also change the
Label text. You can do the same thing for the combo box control (for example, cmbobxCustom-
ers) and the button control (for example, btnLoad).

	16.	 Click the combo box and then, in the Properties window, click the Collection ellipsis to add four
items that map to the names of the companies you added in your SharePoint list (for example,
Fabrikam, Contoso, Acme, and Wingtip).

	17.	 Double-click the button to get to the code behind.

	18.	 In the code behind, add the following bolded code to the existing default code. Note that you will
need to update the server URL referenced in the mySPSite string to reflect your SharePoint server.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Office.Tools.Ribbon;

using Microsoft.SharePoint.Client;
using ClientOM = Microsoft.SharePoint.Client;

namespace ContractsTemplate
{
 public partial class CustomerRibbon
 {
 IEnumerable<ClientOM.ListItem> myListItems;
 List<Customers> myCustomers = new List<Customers>();
 //Be sure to update this URL to reflect your SharePoint server.
 string mySPSite = “http://fabrikamhockey”;
 string custFilter = ““;

 private void CustomerRibbon_Load(object sender, RibbonUIEventArgs e)
 {

 private void btnLoad_Click(object sender, RibbonControlEventArgs e)
 {
 custFilter = cmbobxCustomers.Text;

 ClientOM.ClientContext SPContext = new ClientOM.ClientContext(mySPSite);
 ClientOM.Web mySPWeb = SPContext.Web;
 ClientOM.ListCollection myListCollection = mySPWeb.Lists;
 var productsList = SPContext.Web.Lists.GetByTitle(“Contracts”);
 ClientOM.CamlQuery myCamlQuery = new CamlQuery();
 IQueryable<ClientOM.ListItem> myList = productsList.
 GetItems(myCamlQuery);
 myListItems = SPContext.LoadQuery(myList);
 SPContext.ExecuteQuery();

 var returnCustomerData = from cust in myListItems
 select cust;

 foreach (ClientOM.ListItem tempListItem in returnCustomerData)

584637c11.indd 414 5/2/10 7:14:27 PM

Integrating Office Documents with SharePoint List Data   ❘  415

 {
 Customers tempCustomer = new Customers();
 tempCustomer.custName =
 tempListItem.FieldValues.Values.ElementAt(1).ToString();
 tempCustomer.contactName =
 tempListItem.FieldValues.Values.ElementAt(4).ToString();
 tempCustomer.contactNum =
 tempListItem.FieldValues.Values.ElementAt(5).ToString();
 tempCustomer.contactEmail =
 tempListItem.FieldValues.Values.ElementAt(6).ToString();
 myCustomers.Add(tempCustomer);
 }

 if (custFilter == “Fabrikam”)
 {
 Globals.ThisDocument.wccCustomer.Text =
 myCustomers[0].custName.ToString();
 Globals.ThisDocument.wccContactName.Text =
 myCustomers[0].contactName.ToString();
 Globals.ThisDocument.wccPhoneNum.Text =
 myCustomers[0].contactNum.ToString();
 Globals.ThisDocument.wccEmailAddress.Text =
 myCustomers[0].contactEmail.ToString();
 }
 else if (custFilter == “Contoso”)
 {
 Globals.ThisDocument.wccCustomer.Text =
 myCustomers[1].custName.ToString();
 Globals.ThisDocument.wccContactName.Text =
 myCustomers[1].contactName.ToString();
 Globals.ThisDocument.wccPhoneNum.Text =
 myCustomers[1].contactNum.ToString();
 Globals.ThisDocument.wccEmailAddress.Text =
 myCustomers[1].contactEmail.ToString();
 }
 else if (custFilter == “Acme”)
 {
 Globals.ThisDocument.wccCustomer.Text =
 myCustomers[2].custName.ToString();
 Globals.ThisDocument.wccContactName.Text =
 myCustomers[2].contactName.ToString();
 Globals.ThisDocument.wccPhoneNum.Text =
 myCustomers[2].contactNum.ToString();
 Globals.ThisDocument.wccEmailAddress.Text =
 myCustomers[2].contactEmail.ToString();
 }
 else if (custFilter == “Wingtip”)
 {
 Globals.ThisDocument.wccCustomer.Text =
 myCustomers[3].custName.ToString();
 Globals.ThisDocument.wccContactName.Text =
 myCustomers[3].contactName.ToString();
 Globals.ThisDocument.wccPhoneNum.Text =
 myCustomers[3].contactNum.ToString();
 Globals.ThisDocument.wccEmailAddress.Text =

584637c11.indd 415 5/2/10 7:14:27 PM

416  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

 myCustomers[3].contactEmail.ToString();
 }
 }
 }
}

	19.	 After you’ve added all of this code, press F5 to run the application.

	20.	 Microsoft Word will invoke the custom assembly, and you’ll see a new tab added to the Word rib-
bon. In the combo box, select one of the four companies that is listed in the combo box.

	21.	 Click the Load button.

Your custom Word assembly will call the client object model code and then load the specific informa-
tion that maps to the selection in the combo box you selected. Change selections to test out other com-
panies loading into the content controls in the document. The final integration should look similar to
Figure 11-18.

Figure 11-18  Content controls loaded in Word document

How It Works

As mentioned earlier, the Office development tools provide a set of APIs that enable you to code against
the Office object model — which is fairly extensive. In this example, the core object you used in the
Office object model was the content control, which is a way to programmatically surface data within
a Word document. The content control is an object that can be explicitly data-bound, or, as you did
in the walkthrough, you can dynamically set properties (in this case the Text property) of the content
control at run-time.

Thus, while you’ve seen some of the code before (that is, where you leverage the client object model to
get list data from SharePoint), the one thing that was new was leveraging the Globals API to get at the
specific content control (for example, wccCustomer) to assign the Text property with a specific index
value from the list collection you created.

584637c11.indd 416 5/2/10 7:14:27 PM

Integrating Office Documents with SharePoint List Data   ❘  417

Following is a code snippet where you were assigning the specific field values (custName, contactName,
contactNum, and contactEmail) from the fourth index position in the list collection (marked as 3 in
the index because the starting index point is 0).

Globals.ThisDocument.wccCustomer.Text = myCustomers[3].custName.ToString();
Globals.ThisDocument.wccContactName.Text = myCustomers[3].contactName.ToString();
Globals.ThisDocument.wccPhoneNum.Text = myCustomers[3].contactNum.ToString();
Globals.ThisDocument.wccEmailAddress.Text = myCustomers[3].contactEmail.ToString();

While you didn’t deploy the application, you can do this by right-clicking your project and then select-
ing Properties. Select the Publish tab in your Properties, and you’ll see a number of items that you can
specify. In Figure 11-19, you can see that a specific publishing folder and installation folder (which
don’t have to be the same) have been specified. You can configure other options, but if you simply want
to deploy the custom Word document to a specific folder, just set those options and click Publish Now.

After you publish the application, you can navigate to the folder, and you’ll find a folder with all of the
published application files, the document you customized, a deployment manifest (which tracks the ver-
sion and other assembly information), and then, finally, the setup file, as shown in Figure 11-20. If you
double-click the setup.exe file, this will install the custom application onto your client machine. If you
published your application to a file share or Web site, then other people could also install the applica-
tion. Note that if they were to install the application, they would require access to the SharePoint site
you built the application against in order to run the application.

Figure 11-19  Publish tab in project Properties

Figure 11-20  Final publishing of files

584637c11.indd 417 5/2/10 7:14:27 PM

418  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

With regard to Office development, there are many more types of applications that you can build.
The Office object model is vast, and given that so many people use Office on a daily basis, there is a
great opportunity for developers to engage and deploy their SharePoint integrations in this space.

Server-Side Services

The Office server-side services are another Office integration that is new to SharePoint 2010. While
some of these services existed in SharePoint 2007 (for example, Excel Services), they have been aug-
mented in some fashion or are new to the services stack. Of interest to this chapter are four main
server-side services:

Visio Services➤➤

Excel Services➤➤

Word Services➤➤

Access Services➤➤

The remainder of this chapter briefly examines each one of these services.

Visio Services
You saw Visio Services in action earlier when you drilled into the out-of-the-box SharePoint work-
flow and saw a flowchart visualization of the workflow in SharePoint. This was Visio Services ren-
dering the workflow as a server-side Visio chart in SharePoint.

You may have noticed that you have the capability to open the workflow visualization in Visio from
the server as well. Visio Services are not just about in-box workflow visualization. You can do much
more using these services.

For example, you can data-bind to the shapes within a Visio diagram — and SharePoint list data is
supported within this binding capability. You can also create a custom SharePoint workflow within
Visio and then save this in a format that SharePoint Designer 2010 understands, after which you can
flesh out that workflow and deploy it into SharePoint (or import it into Visual Studio 2010 for fur-
ther customization).

Another innovation that Visio Services introduces in SharePoint 2010 is the capability to surface
a Visio diagram from within a SharePoint Web part. This is useful when you have a dynamically
changing and data-bound diagram (for example, data bound to a SharePoint list) that can then be
rendered within a Web part on the server.

Let’s walk through a simple example to show how this can be done.

584637c11.indd 418 5/2/10 7:14:27 PM

Server-Side Services  ❘  419

Creating a Simple Visio Web Part DiagramTry It Out	

Visio has some great “mash-up” capabilities, which enable it to easily be integrated into SharePoint
2010. To create a simple Visio Web part diagram, follow these steps:

	1.	 Open Visio 2010. Click File ➪ New and then select the ITIL Diagram.

	2.	 Create a diagram that looks similar to Figure 11-21.

Customer

Incident ServerIncident Incidents Clearing
House

Incident Area Manager

Product
Engineer

Customer Response
Server

Customer Response
(24 Hr. SLA)

Figure 11-21  Incident process definition

	3.	 When you finish building the diagram, click the Backstage tab (the tab on the upper-left part of the
Visio document) and then click Share. At the bottom of the Backstage view, select Web Diagram. Note
that, after you’ve finished, when you click Save As, there is an Options button that you can click to see
what pages (if you have multiple pages in your Visio diagram) will be published to Visio Services.

	4.	 Next, upload the Visio diagram to a document library.

	5.	 Click the drop-down menu beside the uploaded document and select View Properties.

	6.	 Select Copy Shortcut.

	7.	 Navigate to the location where you want to add the diagram on your SharePoint site, and then
click Site Actions ➪ Edit Page.

584637c11.indd 419 5/2/10 7:14:28 PM

420  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

	8.	 Click “Add a web part” (or, if you’re on a wiki page, click the Insert tab and select Web Part).

	9.	 Navigate to the Office Client Applications, and select Visio Web Access Web part.

	10.	 Once it is added, you can edit the Web part using the tool pane. Specifically, you want to copy the
shortcut to the Visio diagram into the Web Drawing URL file and then click Apply. The Visio Web
drawing will now be rendered in your SharePoint site, as shown in Figure 11-22.

Figure 11-22  Visio Web drawing in SharePoint

When you interact with the drawing in SharePoint, you can adjust the size of the Web part, or you can
move the diagram around within the Web part. As mentioned earlier, you could bind lists (or other data
sources) to the shapes within the diagram to add another dimension to your Web diagrams. This is a
trivial task, which involves your clicking on a particular shape when you have the diagram open, click-
ing the Data tab, and then walking through a wizard to link that shape to a specific data source.

Excel Services
Excel Services are yet another set of shared services that you can use on the server side in a number
of ways. For example, with Excel Services, three pieces work together:

Excel Web Access (for exposing Excel data and objects in Web parts)➤➤

Excel Calculation Services (which you can leverage on the server)➤➤

Excel Web Services (which provide an API to programmatically interact with your Excel ➤➤

documents)

584637c11.indd 420 5/2/10 7:14:28 PM

Server-Side Services  ❘  421

You can use Excel Services to expose data from an Excel spreadsheet and surface this data in a Web
part. You can leverage the REST APIs (similarly to what you did in Chapter 5 with a SharePoint
list). Or, you can leverage the Open XML SDK and access the underlying XML structure and data
within an Excel document. Interestingly, the Open XML SDK does not relegate you to just coding
against an Excel document. You can also move data from within Word documents to Excel docu-
ments, or to other documents (for example, PowerPoint documents), where you can programmati-
cally access the underlying data within the document. Lastly, Excel Services also exposes a native
ASP.NET API through the Excel Services Web service. This API has a number of members that
enable you to also programmatically interact with documents on the server.

Let’s keep things relatively straightforward in this section and show you how you can integrate data
from an Excel spreadsheet with an Excel Web Access Web part.

Integrating Excel Data with an Excel Web Access Web PartTry It Out	

Excel Web Access Web parts expose data in an Excel spreadsheet in SharePoint. To create an Excel
Web Access Web part, follow these steps:

	1.	 Open Microsoft Excel 2010. Click File ➪ New ➪ Blank Workbook.

	2.	 Add some data in the spreadsheet, and then create a simple chart using the native chart capabili-
ties. To do this, select the data from which you want to create a chart, and then select Insert. Then
select a particular chart type. Figure 11-23 shows the Bar chart graphically representing the data.

	3.	 At this point, save the Excel document to a document library on your SharePoint site.

Figure 11-23  Excel workbook data

	4.	 When saved, right-click the document and select “Edit in Microsoft Excel.”

	5.	 In the Backstage view, click Share ➪ Publish to Excel Services.

	6.	 When the Save As dialog prompts you, click the Options button, and then select the parts of the
workbook you want to publish to Excel Services. In this example, you’ll only expose the chart.

	7.	 Save the Excel document. Navigate to a separate SharePoint site or Web page, and click Site
Actions ➪ Edit Page.

584637c11.indd 421 5/2/10 7:14:28 PM

422  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

	8.	 Click “Add a web part” (or Insert ➪ web part), and then navigate to the Office Client Applications
category.

	9.	 Select Excel Web Access and click Add.

	10.	 SharePoint adds the Web part, but you still must configure it. Open the tools pane and enter the
URL to the spreadsheet in the Workbook field (or navigate to the spreadsheet). Enter the object
you want to expose in the Excel Web Access Web part (Chart 1).

	11.	 Click OK. Figure 11-24 shows what the example data would look like rendered in the Web part.

Figure 11-24  Excel Web Access rendering Excel data

How It Works

This walkthrough was fairly straightforward. It leveraged many of the native features that ship in-box
with SharePoint. Essentially, the Excel Services provide built-in capabilities to render specific parts of
an Excel workbook, and, in this example, you simply tapped into that functionality.

You exposed the chart (which is named Chart 1 by default) as the object to be rendered within the
Excel Web Access Web part. Note that the Excel Web Access Web part does not refresh on page load.
Rather, it provides you with the capability to refresh changes from your workbook through an explicit
call you can make by clicking Data ➪ Refresh All Connections.

Another way to leverage native APIs that ship with SharePoint is the Excel Services Web services.
To browse the methods that are available to you, open your Internet browser and type in the fol-
lowing URL:

http://<your_server_name>/_vti_bin/ExcelService.asmx

584637c11.indd 422 5/2/10 7:14:28 PM

Server-Side Services  ❘  423

You’ll see that there are a variety of methods that you can use. For example, what if you wanted to cre-
ate a simple Windows Form application that retrieves the Customer and Contract Totals from the
spreadsheet from the earlier walkthrough? You could use the Excel Services Web service to do that.

Specifically, you have four options (GetCell, GetCellA1, GetRange, GetRangeA1), but one option
is to use the GetRangeA1 method. By using the GetRangeA1 method, you can pass in a number
of parameters (such as session ID, the name of the spreadsheet, the range of the cells you’d like
to retrieve, formatting information, and alert information), and the values from the range will be
returned to you.

Let’s walk through an example.

Leveraging the Excel Services Web ServiceTry It Out	

Code file [ExcelServices.zip] available for download at Wrox.com.

The Excel Services Web service provides a number of methods to interact with data on the server from
a spreadsheet. To retrieve data from a spreadsheet programmatically using the Excel services API, fol-
low these steps:

	1.	 Open the Contracts Excel spreadsheet you added to SharePoint in Edit mode, and select all of the
Customer and Contract Totals. Create a named range by typing ContractTotals in the Name
box (in the upper left-hand corner of the spreadsheet) and then pressing Enter.

	2.	 Save and close the spreadsheet.

	3.	 Open Visual Studio 2010. Click File ➪ New ➪ Windows ➪ Windows Form Application.

	4.	 Add a data grid and two buttons to your Windows Form application. Name the data grid datagr-
dExcelData, one button btnLoad, and the other button btnExit. The Text property for btnLoad
should be Load, and the Text property for btnExit should be Exit.

	5.	 Right-click References, and click Add Service Reference. Then, in the Service Reference Settings
dialog, click Advanced ➪ Add Web Reference. Type in the URL to the Excel Services Web service:

http://<server_name>/_vti_bin/ExcelService.asmx.

	6.	 Provide a name for the Web service reference (for example, XLWebService) and click Add Reference.

	7.	 Double-click the Exit button and add the following bolded code:

private void btnExit_Click(object sender, EventArgs e)
{
 Application.Exit();
}

	8.	 Double-click the Load button and add the following bolded code:

 private void btnLoad_Click(object sender, EventArgs e)
 {
 XLWebService.ExcelService proxy = new XLWebService.ExcelService();
 proxy.Credentials = new System.Net.NetworkCredentials
 (“Administrator”, “pass@word1”);

584637c11.indd 423 5/2/10 7:14:28 PM

424  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

 XLWebService.Status[] wsStatus;

 string sheetName = “Sheet1”;
 string namedRange = “ContractTotals”;

 DataTable contractData = new DataTable(“Contract Totals”);
 DataColumn compName = contracData.Columns.Add(“Customer”,
 Type.GetType(“System.String”));
 DataColumn contractTotal = contractData.Columns.Add(“Contract Totals”,
 Type.GetType(“System.String”));
 DataRow newRow;

 string sessionID = proxy.OpenWorkbook
 (“http://fabrikamhockey/Contracts/Contract_Totals.xlsx”, “en-US”,
 “en-US”, out wsStatus);

 object[] returnData = proxy.GetRangeA1(sessionID, sheetName, namedRange, false,
 out wsStatus);

 for (int I = 1l I < returnData.Length; i++)
 {
 newRow = contractData.NewRow();
 newRow[“Customer”] = ((object[])(returnData[i]))[0].ToString();
 newRow[“Contract Totals”] = “$ “ + ((object[])(returnData[i]))[1].
 ToString() + “.00”;
 contractData.Rows.Add(newRow);
 }
 datagrdExcelData.DataSource = contractData;
}
}

	9.	 When finished adding the code, press F6 to build the project,
and then press F5 to run it.

	10.	 When the application launches, click Load to run the Excel
Web Service and load the data from the spreadsheet. The result
should look similar to Figure 11-25.

How It Works

In the walkthrough, you’re using the built-in capabilities of the
Excel Web Services — specifically, using the GetRangeA1 method
to retrieve data from your Contracts spreadsheet. However, you
are specifically using a named range to target a group of cells that
you can then retrieve using this method. You assigned this named
range to a string variable and then passed this in as one of the key
parameters.

String namedRange = “ContractTotals”;

Figure 11-25  Retrieved data from
Excel spreadsheet

584637c11.indd 424 5/2/10 7:14:28 PM

Server-Side Services  ❘  425

In the code, you first needed to create a service proxy (proxy), which you then used to call the
OpenWorkbook method and GetRangeA1 method.

…
XLWebService.ExcelService proxy = new XLWebService.ExcelService();
proxy.Credentials = new System.Net.NetworkCredentials(“Administrator”,
 “pass@word1”);
…
string sessionID = proxy.OpenWorkbook
 (“http://fabrikamhockey/Contracts/Contract_Totals.xlsx”, “en-US”,
 “en-US”, out wsStatus);
object[] returnData = proxy.GetRangeA1(sessionID, sheetName, namedRange, false,
 out wsStatus);
…

You’ll also note that you used a DataTable object. This was to get the data into a more structured data
object that would directly data-bind to the datagrid. The following code shows an instantiation of the
DataTable, along with two columns and the creation of a new row, that you used inside the for loop
to populate the table:

…
DataTable contractData = new DataTable(“Contract Totals”);
DataColumn compName = contracData.Columns.Add(“Customer”,
 Type.GetType(“System.String”));
DataColumn contractTotal = contractData.Columns.Add(“Contract Totals”,
 Type.GetType(“System.String”));
DataRow newRow;
…

You used a tricky expression to retrieve the values from the returnData object. In the for loop, you
used ((object[])(returnData[i]))[0].ToString() as the expression to get at the specific field data
in the returnData object. You’ll note that you needed an object[] cast, and then used the i variable
to get data from a specific index. Because, within the array, the first position had data from the first col-
umn, and the second data from the second column, you had to use [0] and [1], respectively, to retrieve
the data from those elements in the array.

…
for (int i = 1l I < returnData.Length; i++)
 {
 newRow = contractData.NewRow();
newRow[“Customer”] = ((object[])(returnData[i]))[0].ToString();
newRow[“Contract Totals”] = “$ “ + ((object[])(returnData[i]))[1].
 ToString() + “.00”;
contractData.Rows.Add(newRow);
 }
…

Once you did this, you could then data-bind the results to the datagrid.

datagrdExcelData.DataSource = contractData;

584637c11.indd 425 5/2/10 7:14:28 PM

426  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

Beyond the native Web services, there are many ways to leverage Excel Services — especially when
you begin to integrate them with other client applications and technologies. Beyond leveraging the
native Excel Services capabilities, or exposing them in WinForm, WPF, or Silverlight applications,
Open XML is a very powerful standard, and, given that some of the more common Office docu-
ments (such as Word, Excel, and PowerPoint) leverage this underlying standard, you can create some
very powerful applications.

NOTE  ​To download the Open XML SDK, go to http://www.microsoft
.com/downloads/details.aspx?FamilyID=c6e744e5-36e9-45f5-8d8c-

331df206e0d0&DisplayLang=en

Word Services
The server-side Word Services provide some enhanced capabilities. Where Excel Services provide
you with a set of ASP.NET services that are native to SharePoint, Word Services represent an API
that you can leverage to accomplish a number of tasks. Primarily, you can use the automation ser-
vices to automate the conversion of .docx files into other file types such as PDF or XPS. While this
may not sound exciting, it’s actually very compelling, given the speed with which you can execute
this automation against documents living on the server.

Think of the scenario (for example, invoices, itineraries, expense claims, sales proposals, and so
on) where you operate on those items on a daily basis in Microsoft Office. This scenario requires a
batch process to translate those documents into PDF format, then save them to the server and dis-
tribute them to a customer for review/approval.

One of the core reference assemblies you’ll use to automate Word tasks is the Microsoft.Office.
Word.Server.dll. This is where you’ll find many of the APIs you need to do the conversions men-
tioned previously.

For instance, the following code snippet provides an example of an event receiver that has been built
and deployed against a specific list so that any .docx document added to the list will be automatically
converted into PDF. Note that, in this code, the ItemAdded event is an auto-generated event when you
use the Visual Studio EventReceiver class. The bolded code is the code that you would write to man-
age the conversion, of which the bulk lies within the if statement. The if condition checks to see if
the document ends with the .docx extension. If it does, by using the SPWeb context as it runs through
the process of setting the OutputFormat (that is, the .pdf extension), you establish a path to the docu-
ment library where the file is stored, and then create a ConversionJob object to set specific properties
for the conversion. You then start the conversion by calling the Start method.

…
public class MyEventReceiver : SPItemEventReceiver
{
public override void ItemAdded(SPItemEventProperties properties)
{

584637c11.indd 426 5/2/10 7:14:28 PM

Server-Side Services  ❘  427

 string fileToConvert = properties.AfterURL;

 if(fileToConvert.EndsWith(“.docx”);
 {
 using (SPWeb web = properties.OpenWeb())
 {
 ConversionjobSettings myJobSettings = new ConversionJobSettings();
 {
 OutputFormat = SaveFormat.PDF;
 }
 string filePath = http://fabrikamhockey/myDocs/ + fileToConvert;
 ConversionJob myJob = new ConversionJob(“DOCX Automation”,
 myJobSettings)
 myJob.UserToken = web.CurrentUser.UserToken;
 myJob.AddFile(filePath, filePath.Replace(“.docx”, “.pdf”));
 myJob.Start();
 }
 }
Base.ItemAdded(properties);
}
}
…

Word Services are a native component of SharePoint Server 2010 and allow you to perform the pre-
viously described batch operations on the server, which historically required you to automate the
desktop implementation of Word. And you’re not just limited to converting docx files to PDF ones;
you can also automate the conversion of docx files to doc (for example, Word 97) or update fields
or even use in combination with the Open XML SDK to integrate the power of working with the
underlying data structures within documents to then move that data across documents and convert
those documents.

For example, you can use the combination of the Word Services and the Open XML SDK to handle
tasks that don’t necessarily require custom application logic — such as inserting data from other
documents, or deleting or amending content in documents, and then batch processing the conver-
sion of these changes into a customer-ready format on the server. The end result is that you can use
these two technologies together on the server without having to automate client-side tasks (that is,
build VSTO add-ins to do the same work), which can save you time and effort in the area of deploy-
ment and configuration of individual client desktops with an Office add-in that does something
similar. Instead, you deploy your code to the server and run the code on the back end.

Access Services
The last server-side service to discuss in this chapter is Access Services. Access 2010 is an interest-
ing shift away from the integration that was introduced in SharePoint 2007. With Access 2010,
SharePoint 2010 becomes a more powerful endpoint for Access databases.

What this means is that you can create Access databases using the client installation of Access and
then publish the databases to SharePoint 2010. The publishing process creates a dashboard that

584637c11.indd 427 5/2/10 7:14:28 PM

428  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

renders all of the tables, macros, and links you create in Access within a SharePoint site. During
the publishing process, the structure of the Access database (as it exists within Access) is translated
into a list structure and queries that SharePoint understands. However, the experience is bidirec-
tional — meaning that you don’t just end up with a read-only view of the data, but you get a read/
write view of the data from within a dashboard in SharePoint with forms that let you customize the
way in which your data is presented.

Let’s walk through an example.

Creating an Access Database for SharePointTry It Out	

Access 2010 has tighter integration with SharePoint 2010 than it did with SharePoint 2007 (where you
created views with Access databases). To create and publish an Access database to SharePoint, follow
these steps:

	1.	 Open Access. Click File ➪ New ➪ Blank Web Database.

	2.	 Access will create a table, by default called Table_1. Right-click the table and rename it something
else (for example, Inventory).

	3.	 Right-click the newly named table (or select the Views drop-down menu), and then select
Design View.

	4.	 Add some columns and then switch back to Datasheet view. Add some data into the fields, as
shown in Figure 11-26.

Figure 11-26  Simple Access database

	5.	 When you’ve finished adding values into the fields, save the database.

	6.	 Because you’re building an Access database for SharePoint, you’ll want to provide a form for your
database. You can create simple forms using the native theming that Access provides in-box. To
create a form, select the Create tab and then click Form. You can add controls, graphics, or other
types of branding. In this walkthrough, simply click Themes and select one of the native themes.
When you are finished, click Views and then Form View to see what the final form will look like.

	7.	 When you have finished, click the Save button.

	8.	 Now that you’ve created the database and form, you are ready to publish the Access database to
SharePoint. To do this, click the Backstage tab and select Share. In the Share options, click the
Publish to Access Services option.

584637c11.indd 428 5/2/10 7:14:28 PM

Summary  ❘  429

	9.	 You’ll first want to run the compatibility checker to ensure that your database is compatible with
the Web. If it is, Access will provide a message that reads, “Access database is compatible with the
Web” in the Backstage view.

	10.	 Add the Server URL for your site (for example, http://fabrikamhockey) and then the Site Name
(for example, Inventory).

	11.	 After you’ve done this, click Publish to Access Services, and Access will publish your database to
your SharePoint site.

	12.	 When the site has been published successfully, you’ll be prompted with a success dialog that con-
tains the URL that points to the new Access database that has been published to SharePoint.

	13.	 Click the Inventory_DB form. Your Access database form will be rendered, as shown in
Figure 11-27, enabling you to walk through the data and change it as necessary.

Figure 11-27  Newly published Access database

Summary

There is tremendous potential for developers that stretches across the relationship between Office
and SharePoint. They have been designed to work hand in glove. This chapter only scratched the
surface of what’s possible for you to do — with both no-code and code solutions. Specifically, you
saw some simple integrations using content types, InfoPath, in-box workflows, and server-side
services. You also saw some more code-centric solutions using the Office development templates in
Visual Studio 2010, the Excel Web services on the server, and the Word services API.

You can leverage many of the areas discussed in this chapter to very easily augment your SharePoint
solutions with preexisting functionality and technologies that are very widely understood in the
market.

You’ve come a long way from the start of the book, and now there’s only one more chapter to go. In
Chapter 12, you’ll see a high-level discussion on some of the different security aspects of SharePoint.

584637c11.indd 429 5/2/10 7:14:28 PM

430  ❘  Chapter 11   Integrating SharePoint with Microsoft Office

Exercises	

	 1.	 Create a custom document-level solution. Then deploy this as a content type into SharePoint
so that whenever a user clicks the New Document button in a document library, it will load
your custom document.

	 2.	 Create an InfoPath form that loads data from an external Web service (for example, to popu-
late a listbox), and then use the InfoPath form to push the data into a SharePoint list.

	 3.	 Use Excel to create a document-level solution and tie a custom ribbon to cells in a spread-
sheet instead of tying a custom ribbon to content controls for Word.

	 4.	 Create an event receiver for a document library so that when a document (that is, a .docx
file) is added, it is converted to an older Word 97 document (doc).

584637c11.indd 430 5/2/10 7:14:28 PM

Recommended Reading  ❘  431

What You Learned in This Chapter⊲⊲

Item Description

Content Type A reusable object (such as a set of columns or a document) that can be used
across a SharePoint site.

InfoPath Forms InfoPath is a forms-based technology that provides a great way to build
robust, data-driven (ADO.NET or service-driven) forms that can be easily
published to SharePoint.

Workflow SharePoint provides some in-box workflows but also provides the capability
for you to build more a complex, custom workflow. You can use Visual Studio
2010 to build out this workflow for SharePoint.

Custom Add-Ins/
Doc-Level Solutions

You can build code-centric, smart-client Office applications that are rendered
whenever a specific document is opened (document-level solution) or when-
ever a specific Office application is opened (application-level add-in).

Office Server-Side
Services

A set of services that provides you with ASP.NET services and APIs to pro-
grammatically interact with documents on the server.

Recommended Reading

Visio team blog at ➤➤ http://blogs.msdn.com/visio

Channel 9 Office Developer Learning Center at ➤➤ http://channel9.msdn.com/learn/

courses/Office2010/

Channel 9 SharePoint Developer Learning Center at ➤➤ http://channel9.msdn.com/learn/

courses/SharePoint2010Developer/

MSDN Office Developer Center at ➤➤ http://msdn.microsoft.com/en-us/office/

default.aspx

InfoPath team blog at ➤➤ http://blogs.msdn.com/infopath

Office Developer Training Kit download at ➤➤ http://www.microsoft.com/downloads/

details.aspx?displaylang=en&FamilyID=f1599288-a99f-410f-a219-f4375dbe310c

584637c11.indd 431 5/2/10 7:14:29 PM

584637c11.indd 432 5/2/10 7:14:29 PM

Securing Your SharePoint 2010
Applications

What You’ll Learn In This Chapter:

Authenticating users in SharePoint➤➤

Understanding the difference between farm-level solutions and sand-➤➤

boxed solutions

Understanding federated authentication using forms-based authenti-➤➤

cation and claims-based authentication

SharePoint security is a vast topic that can’t be covered fully in a single chapter. You could
likely dedicate an entire book to SharePoint security. This is because when you talk about
security and SharePoint, you’re not just referring to SharePoint. SharePoint is built on ASP.
NET, which has its own security architecture and framework. It is deployed to Internet
Information Services (IIS), which also has its own framework and configuration. And
SharePoint itself has its own security infrastructure that leverages Active Directory (AD),
among other security technologies. The goal of this chapter, therefore, is to provide a high-
level introduction to a set of SharePoint security topics.

SharePoint 2010 has a flexible security infrastructure that supports a number of different
technologies (such as AD, claims-based authentication, forms-based authentication, Kerberos,
and many more). The different types of security in SharePoint support different scenarios. For
example, if you’re trying to grant access for an individual or group to content on a site within
your organization, then you would leverage AD, and assign permissions to specific site content
to individuals or groups. If you were trying to federate that access to an external system (for
example, integrating SAP data within a SharePoint site), then you might use the Secure Store
Service (SSS) or claims-based authentication to provision access.

When you’re developing for SharePoint, you develop and deploy applications at different secu-
rity levels. For example, you can build either a farm-level solution or a sandboxed solution

12

584637c12.indd 433 5/3/10 10:45:19 AM

434  ❘  Chapter 12   Securing Your SharePoint 2010 Applications

for SharePoint 2010. You also need to think about those users who have access to specific service-
based applications, such as applications based on Business Connectivity Services (BCS). Exposing
augmented permissions to all users could result in unwanted deletions, corruptions, or, worse, data
mismanagement or public exposure.

The key take-away here is that you have many different ways in SharePoint to negotiate and config-
ure security.

In this chapter, you’ll start by becoming familiar with the authorization fundamentals using AD.
You’ll then see how you can develop farm-level and sandboxed solutions to get a sense for how
they’re different. You’ll also see how you can use SSS to provision access to external systems for BCS
applications. And, finally, you’ll learn about federated authentication for SharePoint through forms-
based and claims-based authentication.

Authorization

In Chapter 1, you saw a high-level architecture of a SharePoint farm and walked through an example
where you assigned permissions to a specific user in a SharePoint site. Within this architecture, you had
one or more servers (constituting the “farm”). You had IIS running on the servers, and then you had
Web applications within IIS that hosted the SharePoint site collection and the Central Administration
site collection. Within this architecture, there are a couple of fundamental security items to call out.

The first is that, because SharePoint is built on ASP.NET, and IIS supports ASP.NET, IIS is agnostic
to the Web application being a SharePoint site. It treats it just as it would any other Web applica-
tion. Of particular significance is the fact that each Web application runs inside an application pool,
which is an isolated environment where your Web application runs its worker processes. This is a
protective measure to isolate site processes to not bring down all Web applications on IIS by all sites
using the same application pool — although you could theoretically connect all of the Web applica-
tions to the same application pool, which would increase your failover risk significantly.

The second is that, by default, SharePoint leverages AD to help manage permissions. AD is a
Windows-based technology that provides a number of key network and security services, such as
directory services, Domain Name System (DNS–)-based naming and network information, network
authority management, central identity storage, and so on. The goal with AD is to have one stan-
dard approach for the Windows environment that helps manage policies and authorization for a
team or organization. Using AD, you can manage authentication that scales across tens of thousands
of users, and manage different domains and servers that cut across a global server farm.

One of the fundamental aspects of SharePoint is the management of different permission levels using
AD records. A record is an individual entry within AD. For example, Figure 12-1 shows a set of
Users within Active Directory.

What this means is that site collection administrators can provision access to individuals who have
a record in AD. You can also give a user different levels of permissions (such as view, contribu-
tor, or full control), or you can add the user to a higher-level security group that you can then use
to manage security within your site. (For many administrators, the group is the preferred way to
manage security because it provides a more controlled and manageable approach.) For example, in
Figure 12-2, you can see that Arlene Huff (one of the records listed in AD from Figure 12-1) is now
being added with full control to a SharePoint site.

584637c12.indd 434 5/3/10 10:45:20 AM

Authorization  ❘  435

Figure 12-1  Active Directory Users group

Figure 12-2  Adding a user to a SharePoint site

584637c12.indd 435 5/3/10 10:45:20 AM

436  ❘  Chapter 12   Securing Your SharePoint 2010 Applications

Because many of you who will develop against a site collection may also be the administrator for
that site, it’s important to understand how you provision access to not only the content on the
site, but also the applications you are developing for your site. (You will likely also want to under-
stand — and test — what the user experience is against your solution at the various permissions lev-
els.) Provisioning access within your organization using AD is the first step in this regard, and you
can do this by clicking Site Actions ➪ Site Permissions from your SharePoint site.

Within SharePoint’s Central Administration site, you also have a granular set of security management
features, as shown in Figure 12-3. To access these features, click Security in Central Administration.
You’ll then see security features for user management, general security, and policy management.

Figure 12-3  Security in Central Administration

If you are the person who administers security and permissions for your site, you’ll want to man-
age them carefully. As you might imagine, you can assess permissions on a very discrete level in
SharePoint (for example, at the site, lists, and document libraries levels). What this could result in is
splintered or disjointed authentication, where security inheritance is broken (that is, a site does not
inherit the permissions set by the parent site collection, and overall security is difficult to manage).
The implications of mismanaging role-based security are quite far-reaching. For example, if you do
“break the inheritance model,” then you may run into issues with security governance in your orga-
nization, and management of security can become very difficult.

This is where the role of the site collection administrator is an important one. Not only does this
person need to ensure a pragmatic and consistent approach to security in SharePoint, but this person
also must ensure that it is implemented with governance and the appropriate restrictions in place.

This is where security groups (and defined security policies) can come into play to help you manage
authentication for your SharePoint site. For example, leveraging groups in SharePoint can help avoid
the management of discrete, individual-level permissions that may be assigned to sites. Users will, of
course, want to restrict access to specific document libraries and lists when information should not
be widely shared. However, at the site collection and site level, you can leverage security groups to
your advantage.

To create a security group, click Site Actions ➪ Site Settings, and then click Create Group from the
ribbon. Before clicking Create to complete the creation process, you can complete fields such as
name, description, group administrator, level of permissions for the group, and so on.

584637c12.indd 436 5/3/10 10:45:20 AM

Solution Trust  ❘  437

AD also provides a way to federate security through the use of claims providers. This functional-
ity was introduced with Active Directory Federation Services (ADFS) 2.0. A claims provider issues
claims, and then packages those claims into security tokens that are used to authenticate a user.
Using a claims-based approach to security can augment credentials from outside systems, and make
it possible for you to add these credentials to AD, thus providing access to SharePoint assets and
lighting up these users in features such as the People Picker. For more information on claims provid-
ers, see http://msdn.microsoft.com/en-us/library/ee536164(v=office.14).aspx.

Solution Trust

Another type of security issue you should be aware of in SharePoint is the use of farm-level solutions
versus sandboxed solutions — that is, setting the specific trust level for your SharePoint solution. This
is less about the user accessing SharePoint as a collaborative resource (that is authorization) and more
about you deploying the solution into SharePoint with specific levels of access to SharePoint resources.

Farm-level solutions are scoped at the SharePoint farm level, so they have full-trust access to all
the resources and functionality in SharePoint. Sandboxed solutions are solutions that run in the
context of a site collection. Sandboxed solutions are restricted — for example, they cannot con-
nect to resources that are not on the local server, access a database, call unmanaged code, write
to the system disk, or access resources in a different site collection. Sandboxed solutions, though,
do have the capability to monitor and shut down applications, should they have any performance
issues. The metrics by which you can control and monitor sandboxed solutions are also configu-
rable. (Of note is the fact that sandboxed solutions are one of the key ways in which you build
and deploy SharePoint 2010 solutions to SharePoint Online.)

For most of the solutions in this book, you’ve built and deployed your applications as farm-level
solutions. However, there are many interesting types of solutions that can be built using sandboxed
solutions. For example, you could have Silverlight-based applications that integrate with Web 2.0,
Azure Web services, or other types of Web-based services, and host them in SharePoint. You could
build event receivers and workflow against lists, or use lists as data sources, and then code against
them (for example, contacts or a vacation list). You can also leverage a growing set of community
tools that will push the boundaries of what Visual Studio 2010 ships with (for example, the commu-
nity Visual Web part created by Wouter van Vugt).

NOTE  ​You can download Wouter van Vugt’s Community Visual Web part men-
tioned from http://sharepointdevtools.codeplex.com.

Before you start the following exercise, you must
create a simple list called Customers. Change the
Title field to be Customer, and then add a new
column called Total Sales (of type Currency).
Add some data to the list so that it looks like
Figure 12-4. Figure 12-4  Customer list

584637c12.indd 437 5/3/10 10:45:20 AM

438  ❘  Chapter 12   Securing Your SharePoint 2010 Applications

Creating a Sandboxed SolutionTry It Out	

Code file [SandboxedSolution.zip] available for download at Wrox.com.

Sandboxed solutions are excellent ways to create and deploy solutions that can run within a site collec-
tion. To create a sandboxed solution, follow these steps:

	1.	 Open Visual Studio 2010 and click File ➪ New ➪ Project. Navigate to the SharePoint 2010
node and select Empty SharePoint Project. Provide a name for the project (for example,
SandboxedSolution), and click OK. In the SharePoint Customization Wizard, select “Deploy as
Sandboxed Solution” and click Finish.

	2.	 Right-click the Visual Studio project from the Solution Explorer and select Add ➪ New Item. In the
Add New Item dialog, navigate to the SharePoint 2010 node and select Web Part. Provide a name
for the Web part (for example, SSWebPart), and click Add.

	3.	 In the main Web part class file (for example, SSWebPart.cs), add the following bolded code to the
project:

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;
using System.Text;

namespace SandboxedSolution.SSWebPart
{
 [ToolboxItemAttribute(false)]
 public class SSWebPart : WebPart
 {
 Label lblTitle = new Label();
 DataGrid dtgrdLists = new DataGrid();
 ListBox lstbxCustData = new ListBox();
 Button btnGetData = new Button();

 protected override void CreateChildControls()
 {
 this.Controls.Add(new LiteralControl(“</br>”));
 lblTitle.Text = “List Data”;
 lblTitle.Font.Bold = true;
 this.Controls.Add(lblTitle);

 this.Controls.Add(new LiteralControl(“</br>”));
 this.Controls.Add(lstbxCustData);

 this.Controls.Add(new LiteralControl(“</br>”));
 btnGetData.Text = “Get Data”;
 this.Controls.Add(btnGetData);

 btnGetData.Click += new EventHandler(btnGetData_Click);

584637c12.indd 438 5/3/10 10:45:20 AM

Solution Trust  ❘  439

 }

 void btnGetData_Click(object sender, EventArgs e)
 {
 lstbxCustData.Items.Clear();

 SPSite mySiteCollection = SPContext.Current.Site;
 SPWeb mySPSite = SPContext.Current.Web;
 SPList custList = mySPSite.Lists[“Customers”];
 foreach (SPListItem item in custList.Items)
 {
 lstbxCustData.Items.Add(item[“Title”].ToString());
 lstbxCustData.Items.Add(item[“Total Sales”].ToString());
 }
 }

 }
}

	4.	 In the .webpart file (for example, SSWebPart.webpart), amend the Title and Description
properties to be more intuitive for the user, as per the following code snippet.

…
 <properties>
 <property name=”Title” type=”string”>SS Web Part</property>
 <property name=”Description” type=”string”>
 Sandboxed Solution Web Part.</property>
 </properties>
…

	5.	 When you’ve finished, click Build ➪ Deploy Solution. This builds and deploys your sandboxed
Web part to SharePoint.

	6.	 After Visual Studio deploys successfully to SharePoint, click Site Actions ➪ Site Settings at your
top-level SharePoint site. Then, under the Galleries section, click Solutions. You will now see the
sandboxed solution added to the Solutions Gallery — which is where SharePoint stores all of the
sandboxed solutions for your SharePoint site. Note that when the solution is added to the Solutions
Gallery, as shown in Figure 12-5, SharePoint activates it for you.

Figure 12-5  Solutions Gallery

	7.	 Now, browse to your top-level SharePoint site and click Site Actions ➪ Edit
Page. Click anywhere on the page. Then, click the Insert tab and select Web
Part. Navigate to the Custom Web Part group and then select your sandboxed
solution. It should look similar to Figure 12-6 when you click the Get Data
link button.

Figure 12-6 
Sandboxed
Solution Web part

584637c12.indd 439 5/3/10 10:45:20 AM

440  ❘  Chapter 12   Securing Your SharePoint 2010 Applications

How It Works

On the SharePoint server, sandboxed solutions run in a separate worker process called
SPUCWorkerProcess.exe that isolates them. Farm-level solutions are hosted in the IIS worker process
(W3WP.exe) and have access to all farm resources. Running code within the SPUCWorkerProcess.exe runs
code that can only affect the site collection where you’ve deployed the solution.

In this exercise, you created a simple Web part that accessed data in a SharePoint list called Customers.
And, while the presentation of the Web part wasn’t what you’d call advanced design, one of the key
pieces was that you were interacting with a list within the site collection. This was done when you
called the btnGetData_Click event, set the current SharePoint context to Current.Site, retrieved the
Customers list, and then added information from the Customers list to the lstbxCusData listbox.

void lnkbtnGetData_Click(object sender, EventArgs e)
 {
 SPSite mySiteCollection = SPContext.Current.Site;
 SPWeb mySPSite = SPContext.Current.Web;
 SPList custList = mySPSite.Lists[“Customers”];
 foreach (SPListItem item in custList.Items)
 {
 lstbxCustData.Items.Add(item[“Title”].ToString());
 lstbxCustData.Items.Add(item[“Total Sales”].ToString());
 }

 }

If you had been trying to access resources outside of the scope of the site collection, this application
would not have worked.

Secure Store Service

In Chapter 8, you learned about Business Connectivity Services (BCS) and how you could build
SharePoint solutions that integrate with external data systems. One of the primary ways to integrate
security with the external data systems to BCS is the SSS. These external data systems can use SSS
when they do not share a username and password with the AD-based users of SharePoint.

SSS is a shared service that provides the storage and mapping of user credentials from an external
system to SharePoint. SSS stores account usernames and passwords, and maps these credentials to
solutions (for example, external content types) by way of an application identity (Application ID) or
group of identities.

A real-world example of this security integration is if John Doe has an account that lives in AD, and
he has another account that lives in a separate system such as PeopleSoft, SSS can be used to link his
external system (that is, the PeopleSoft system) credentials to his Windows credentials. Thus, when
he tries to load an external list with data in it, the external content type can rationalize the two sets
of credentials, and load the data for John to see. It does this by way of your configuring the external
content type to map the Application ID of the SSS to the external data system with the credentials
that are stored in it.

584637c12.indd 440 5/3/10 10:45:20 AM

Secure Store Service  ❘  441

Let’s say that you’ve created a new BCS solution (for example, an exter-
nal list that surfaces CRM data in your SharePoint site) that requires
you to map the separate set of user credentials with SharePoint. How
do you go about configuring SSS to map the external content type that
surfaces that data?

To configure SSS, you must first create a new instance of SSS by clicking
Central Administration ➪ Application Management ➪ Manage Service
Applications. On the ribbon, when you click the New drop-down
arrow, you’ll see an option where you can create a new SSS, as shown in
Figure 12-7.

This prompts the Create New Secure Store Service Application dialog
shown in Figure 12-8, where you can enter in information about the SSS
(for example, Service Application Name, type of credentials to use with
the database that stores the external system credentials, application pool
to use, and so on).

Because you will be storing sensitive data in the SSS application database, after you’ve created the
new SSS application, you must encrypt it by clicking Generate New Key on the ribbon. You will
be prompted for a strong passphrase, after which you can walk through a wizard to create the
Application ID — this includes adding the external data system credentials. In Figure 12-9, you can
see that the Application ID MyCRMSettings now exists, and you can use it to map John’s external
credentials to the BCS application.

Figure 12-8  Creating a new SSS application

Figure 12-7  Creating a
new instance of a Secure
Store Service

584637c12.indd 441 5/3/10 10:45:20 AM

442  ❘  Chapter 12   Securing Your SharePoint 2010 Applications

Figure 12-9  Target Application ID

With the Application ID created, you can now begin
to use it when you are creating new external content
types. For example, Figure 12-10 shows a dialog for
creating a new connection (when creating an external
content type in SharePoint Designer 2010). Note that
the SSS Application ID that is being used is the one
described earlier. Thus, all user credentials stored in the
MyCRMSettings Application ID will now have access to
the external list that is surfaced in SharePoint.

NOTE  ​For more information on how to create and configure SSS, see http://
technet.microsoft.com/en-us/library/ee806866(office.14).aspx.

Federated Authentication

While you may build solutions to a SharePoint site that members of your organization use (thus
authorized through AD), you may also want to expose content and solutions to those who are not in
your domain. To provision connectivity that is not for anonymous access, you must have a “single
sign-on” process, which can be implemented in different ways. This section examines the concepts
of forms-based authentication and claims-based authentication.

Forms-Based Authentication
Forms-based authentication (FBA) is based on ASP.NET, and provides users access to a system using
a prompt (or login page) that will collect a username and password from the user trying to access
the system. You’ll see this quite a bit when you want to provide access to registered users (to add
content to a site, for example), but the users do not exist as a record within AD.

FBA is a cookie-based authentication system that either prompts or redirects users to a login page,
where the user provides the appropriate credentials to access a SharePoint site. When the user enters
his or her credentials into the login page, there is a comparison with a credential store. If there is a
match, then the user is allowed to access the site. If there is not a match, then the user is denied access.

The custom identity store (or membership provider) can manifest in a number of ways, such as an
XML file, SQL Server database, Access database, and so on — although, SQL Server is the easiest

Figure 12-10  Using the target
Application ID

584637c12.indd 442 5/3/10 10:45:20 AM

Federated Authentication  ❘  443

of the these options to set up and use. You store what is referred to as membership information
in the custom identity store, which includes information about roles, profile, and personalization
information.

There are a number of steps when setting up FBA for SharePoint that you’ll need to walk through.
At a high-level, these steps are as follows:

	 1.	 Create an identity store/membership provider.

	 2.	 Provision access to the membership provider.

	 3.	 Configure IIS to support the new membership provider.

	 4.	 Create a new Web application that enables FBA in the Default zone.

Figure 12-11 shows where you enable FBA when you create a new Web application in SharePoint
Central Administration. You get here by opening Central Administration and clicking Manage Web
Applications and New on the ribbon to create a new Web application. This creates a new Web applica-
tion in IIS that supports FBA. You click the “Enable Forms Based Authentication (FBA)” checkbox, and
then provide a membership provider name and a role manager name.

Figure 12-11  Enabling FBA

When using FBA, note that you must amend SharePoint’s web.config file to include information to
support. For example, you may need to include the connection string to your membership provider
and PeoplePicker wildcards in the web.config file.

584637c12.indd 443 5/3/10 10:45:20 AM

444  ❘  Chapter 12   Securing Your SharePoint 2010 Applications

NOTE  ​For more detailed information on SharePoint and FBA, see the MSDN
article at http://msdn.microsoft.com/en-us/library/bb975136.aspx. Also,
see the ”Recommended Reading” section later in this chapter for more links to
blogs and MSDN articles on this topic.

Claims-Based Authentication
SharePoint Server 2010 incorporates a powerful and flexible approach to authenticating users.
It works with any organizational identity system, including AD, Lightweight Directory Access
Protocol (LDAP), system-specific databases, and more Web-centric models such as LiveID. This
approach is known as claims-based authentication.

Claims-based authentication was created around the concept of an identity, and is based on
accepted industry standards such as WS-* and protocols such as the Security Assertion Markup
Language (SAML).

SAML is an XML-based standard for exchanging authentication data between an identity provider
and a service provider that live on different domains. At the heart of this data exchange is a SAML
token, which essentially provides information about the users trying to authenticate themselves
against a particular system. The SAML token is essentially the “claims” part. It provides informa-
tion that makes a claim as to who users are, and what they have access to. You might think of a
token as metadata about the users that stays with them throughout their sessions.

While AD provides limited claims (or information) about a user, you can create an identity through
information such as a name, email address, phone number, title, and so on. This is one of the rea-
sons why claims-based authentication is a more flexible model than AD. You can provide as much
information as you want within a claim, and then use standards to communicate that claim across
systems and domains.

The identity delivers important aspects of an application, such as identifying the user who is trying
to access the system, the permissions that should be granted to the user, and how the application
interacts with the user. Through the exchange of the SAML token, it is possible, then, to federate
your identity across systems — systems that cross the boundaries of server farms, domains, plat-
forms, and, of course, networks.

When it comes to SharePoint, claims-based authentication can involve custom code. This is because
you must understand how you can validate the SAML tokens that are exchanged across the
domains. For example, you can use the Windows Identity Foundation (WIF) with your WCF or
ASP.NET applications to manage SAML tokens.

As mentioned earlier in the chapter, leveraging claims-based authentication will also involve having
an issuer in place, such as Active Directory Federated Services (ADFS) 2.0. The issuer is the service
that issues the tokens. With the issuer and the SAML token, you must also ensure that the applica-
tion is using the token trusts and is aware of the issuer.

584637c12.indd 444 5/3/10 10:45:20 AM

Summary  ❘  445

NOTE  ​Microsoft provides a very good exploration of claims-based identity and
access control in the form of a downloadable PDF book. To get the book, see
http://msdn.microsoft.com/en-us/library/ff423674.aspx.

Summary

There are many different types of security within SharePoint. This chapter provided a high-level
view of some of the different types of security that you will come across when developing (and
administering) SharePoint.

For example, this chapter discussed authorization and Active Directory (AD), developing solutions
that run at different levels of system trust, connecting external data systems to SharePoint using
Secure Store Service (SSS), and, finally, federated authentication through forms-based and claims-
based authentication. You will definitely want to further explore these and other security topics for
SharePoint as you move forward in your SharePoint development activities.

Exercises	

	 1.	 Create a security group in your SharePoint site using members from AD. Provision access to
the site as full control to that security group.

	 2.	 Create a more complex sandboxed solution that reads and writes data within a site
collection.

	 3.	 Create a new Application ID in the SSS. Add your credentials as the only set of credentials to
the new Application ID, and then use it in a BCS-based application.

	 4.	 Set up a SharePoint site to use FBA.

584637c12.indd 445 5/3/10 10:45:20 AM

446  ❘  Chapter 12   Securing Your SharePoint 2010 Applications

What You Learned in This Chapter⊲⊲

Items Description

Active Directory (AD) AD is a Windows-based technology that provides key
network and security services, such as directory services,
Domain Name System (DNS) based naming and network
information, network authority management, central identity
storage, and so on.

Farm-Level Solution A solution that runs with full trust and access to farm-level
resources in SharePoint.

Sandboxed Solution A solution that runs in an isolated worker process
(SPUCWorkerProcess.exe), and provides access to a
restricted set of APIs and objects within SharePoint.

Secure Store Service (SSS) A service that provisions secure connections between exter-
nal data systems and BCS applications.

Forms-Based Authentication (FBA) An ASP.NET method of authentication that prompts the user
(through a form) for a username and password.

Claims-Based Authentication A form of authentication that uses claims (that is, SAML
tokens) that contain information about the user.

Recommended Reading

Channel 9 module on sandboxed solutions at ➤➤ http://channel9.msdn.com/learn/

courses/SharePoint2010Developer/SandboxedSolutions/

Channel 9 module on claims-based security at ➤➤ http://channel9.msdn.com/learn/

courses/SharePoint2010Developer/SharePoint2010Security/

FBA and SharePoint at the following sites: ➤➤

http://msdn.microsoft.com/en-us/library/bb975135.aspx➤➤

http://msdn.microsoft.com/en-us/library/bb977430.aspx➤➤

http://blog.summitcloud.com/2009/11/forms-based-authentication-➤➤

sharepoint-2010-fb/

TechNet article on SharePoint and authentication at ➤➤ http://technet.microsoft.com/

en-us/library/cc262350%28office.14%29.aspx

584637c12.indd 446 5/3/10 10:45:20 AM

Part IV
Appendix

Appendix:⊲⊲ Where to Go from Here

584637bapp01.indd 447 5/2/10 7:14:50 PM

584637bapp01.indd 448 5/2/10 7:14:51 PM

Where to Go from Here
With what you’ve learned in this book, you have a good starting point for developing for
SharePoint. However, there are a number of things that couldn’t be covered in this book that
you may want to learn more about. Following are some topics that you may want to learn
about as you continue with your SharePoint development:

New innovations in social networking (for example, wikis and blogs)➤➤

Customizing the search experience➤➤

Enterprise content management (ECM) and records management➤➤

PerformancePoint Services and business intelligence (BI) solutions➤➤

SharePoint Online➤➤

Workflows➤➤

You can find information on these topics in a variety of locations. For example, a great start-
ing place would be the MSDN SharePoint Developer Center. Many of the chapters included a
reference to this site, but here it is again:

http://msdn.microsoft.com/en-us/sharepoint/default.aspx

You may also want to check out the MSDN Office Developer Center:

http://msdn.microsoft.com/en-us/office/default.aspx

Also, Channel 9 offers a number of training kits that you can download and walk through, for
both SharePoint and other Microsoft technologies. The Channel 9 Learning Center is located
here:

http://channel9.msdn.com/learn/

With just these three sites, you’ll find a ton of developer resources.

Appendix

584637bapp01.indd 449 5/2/10 7:14:51 PM

450  ❘  Appendix   Where to Go from Here

In terms of books, I would recommend Professional SharePoint 2010 Development (Indianapolis:
Wiley, 2010) and Inside SharePoint 2010 (Redmond, WA: Microsoft Press, publication date to be
announced) as two good professional-grade books. The authors are long-time industry professionals
in SharePoint and offer a lot with these books.

Lastly, following are a few blogs worth checking out. You’ll certainly find more, but these have
proven to be useful and informative over the years.

SharePoint Team at ➤➤ http://blogs.msdn.com/sharepoint

Andrew Connell at ➤➤ www.andrewconnell.com/blog

Arpan Shah at ➤➤ http://blogs.msdn.com/arpans

Paul Stubb at ➤➤ http://blogs.msdn.com/pstubbs

Paul Andrew at ➤➤ http://blogs.msdn.com/pandrew

Scot Hillier at ➤➤ www.shillier.com/default.aspx

Sahil Malik at ➤➤ http://blah.winsmarts.com

Wouter van Vugt at ➤➤ http://blogs.code-counsel.net/Wouter/default.aspx

Todd Baginski at ➤➤ www.toddbaginski.com/blog

Tim Heuer at ➤➤ http://timheuer.com/blog

Steve Fox at➤➤ http://blogs.msdn.com/steve_fox

Remember that you are embarking on an exciting journey with SharePoint development, and, with
the knowledge gained from reading this book, you can now continue to grow, in passion and in
skill, alongside the rest of an expanding SharePoint developer community.

584637bapp01.indd 450 5/2/10 7:14:51 PM

Index

584637bindex.indd 451 5/2/10 7:15:00 PM

584637bindex.indd 452 5/2/10 7:15:00 PM

453

A

Access
Access Services, 399, 427–429
databases

creating, 428–429
SharePoint Designer, 85

metadata, 309
surfacing external data, 309–313

Access Data Services, 19
Access denied message, 306
AD (Active Directory), 64

central identity storage, 434
directory services, 434
DNS-based naming information, 434
DNS-based network information, 434
network authority management, 434
permissions and, 434
records, 307, 434

Add method, 131
ADF (application definition file), 284
ADFS (Active Directory Federated Services),

444
administrative capabilities, 3
ADO.NET, creating external content types,

291–295
AdventureWorksLT2008

data download, 291
database, 290

Aggregate Sales Web part, 263–268
ALM (application lifecycle management), 30

source code, 71
Announcements list, 160
APIs (application programming interfaces),

4
client APIs, 18
server APIs, 18

application identity, 440
Application Management, 20–21
application pool, 434
applications, 5

building, solutions, 254
bundles, 9

architecture, 12
Web parts, 220–223

ascx user control code, 132
ASP.NET, 34
ContentPlaceHolder object, 91
controls

JavaScript and, 89
types, 255, 263
Web parts, 110

as foundational technology, 35
master pages, 10
Web services, 141, 365–366

custom, 370–378
integrating with BCS, 371–378
native, 366–370

Index

584637bindex.indd 453 5/2/10 7:15:00 PM

454

aspx pages – client APIs client object model – Designer experience

ient object model, 141
programmatically writing list data, 191–196
programming against lists, 186–191
ients, Web services and, 364
oud computing, 365, 390–396
deploying to cloud, 12
ode, managed code, 10
ollaboration, 4, 5
olumns, site columns, 135
Visual Studio 2010, 138–140
OM (Component Object Model), 411

onfiguration engine, 4
onfiguration Wizard, 22

onnectivity, BCS, 287–289
ontent Editor Web part, 7
HTML source, 75–76
ontent Type template, 27

ontent types, 135
creating, 401–403
as document templates, 400–403
leveraging, 403

 controls, 151
 object

(ASP.NET), 91
ontracts, 197
reate gallery, 47

 method, 131, 232
RM (customer resource management)

systems, 280–281
RUD (create, read, update, and

delete), 52
SS (Cascading Style Sheets), 10, 35

ustom documents, 400
mapping, 403
ustom list, 160

payload, 365
programming against lists, 171–186

aspx pages, 34, 150–153
Web part pages, 151

Async event, 356
authentication

Claims-Based Authentication, 4
FBA (Forms-Based Authentication), 64
federated

claims-based, 443–444
forms-based, 442–443

Test Connection, 374
Authoring Web part, 7
authorization, 434–436
Azure, 390

Dallas, 391
SharePoint integration, 391–396

B

Backup and Restore features, 22
BCS (Business Connectivity Services), 12, 31,

141, 277
application development, external data

sources, 290–291
connectivity options, 287–289
integrating ASP.NET Web services, 371–378
security infrastructure, 282
solution design and, 252

BCS Sync, 284
BDC (Business Data Catalog), 277

Metadata template, 344
Web parts, 284
XML metadata, 291

BDC Metadata model, 371

BI (business intelligence), 4
blogs, 4
browsers, 5

Silverlight and, 318
Build menu (Visual Studio 2010), 100
bundles of applications, 9
Business Data Catalog Model

template, 26
business intelligence (BI), 4
business producitivity platform, 8–9

C

Calendar list, 160
CAML (Collaborative Application Markup

Language), 55, 99
queries, 161, 365
syntax, 137

Central Administration, 3, 19–20
Application Management, 20–21
Backup and Restore, 22
Configuration Wizard, 22
features, 20
General Application Settings, 21
monitoring, 21
security, 21

management features, 436
site collections, creating, 46–47
System Settings, 21
Upgrade and Migration, 22

central identity storage, 434
Chart Web parts, 221–223, 269–272
chrome, 16
claims-based authentication, 4, 443–444
client APIs, 18

584637bindex.indd 454 5/2/10 7:15:00 PM

aspx pages – client APIs

455

client object model – Designer experience

client object model, 141
programmatically writing list data, 191–196
programming against lists, 186–191

clients, Web services and, 364
cloud computing, 365, 390–396

deploying to cloud, 12
code, managed code, 10
collaboration, 4, 5
columns, site columns, 135

Visual Studio 2010, 138–140
COM (Component Object Model), 411
configuration engine, 4
Configuration Wizard, 22
connectivity, BCS, 287–289
Content Editor Web part, 7

HTML source, 75–76
Content Type template, 27
content types, 135

creating, 401–403
as document templates, 400–403
leveraging, 403

ContentPlaceHolder controls, 151
ContentPlaceHolder object

(ASP.NET), 91
contracts, 197
Create gallery, 47
CreateChildControls method, 131, 232
CRM (customer resource management)

systems, 280–281
CRUD (create, read, update, and

delete), 52
CSS (Cascading Style Sheets), 10, 35
custom documents, 400

mapping, 403
Custom list, 160

Custom Web Part Gallery, 111
Customer Sales Web part, 258–262
customization, 7

D

Dallas, 391
dashboards, 4, 272–273

developer dashboard, 29
data, 19

connectors, reusing, 281
modeling, 19
payloads, 185–186
sources, external, 290–291
working with, 141–147

Data Connection Wizard, 371
Data View Web parts, 133–135

XML, 133
Database Connection button, 85
databases

Access, creating, 428–429
lists and, 161

Deep Zoom, 116
deploying

applications, to SharePoint as Web parts,
358–361

to cloud, 12
flexibility, 32–34
on-premises, 32
to SharePoint, 343
SharePoint Online, 32–33
WCF services, 379

Designer experience (Visual Studio), Web part
UIs, 131

BI (business intelligence), 4
blogs, 4
browsers, 5

Silverlight and, 318
Build menu (Visual Studio 2010), 100
bundles of applications, 9
Business Data Catalog Model

template, 26
business intelligence (BI), 4
business producitivity platform, 8–9

C

Calendar list, 160
CAML (Collaborative Application Markup

Language), 55, 99
queries, 161, 365
syntax, 137

Central Administration, 3, 19–20
Application Management, 20–21
Backup and Restore, 22
Configuration Wizard, 22
features, 20
General Application Settings, 21
monitoring, 21
security, 21

management features, 436
site collections, creating, 46–47
System Settings, 21
Upgrade and Migration, 22

central identity storage, 434
Chart Web parts, 221–223, 269–272
chrome, 16
claims-based authentication, 4, 443–444
client APIs, 18

584637bindex.indd 455 5/2/10 7:15:00 PM

456

developer dashboard – Expression Blend Expression Web – HTML

UIs, 125
Web parts, 218
WPF applications, 125
xpression Web, 11
xternal content types, 284–287
ADF and, 284
creating, 291–306
metadata modeling, 285–286
permissions, 306–307
reusing, 284
xternal data
mapping, to Office types, 281
SSS, 440
surfacing, in Access, 309–313
xternal data source, 278
creating, 290–291
Web services, 290
xternal Lists, 12, 28, 160
offline, 307–313
xternal system source, 278

F

rm-level solutions, 436
BA (Forms-Based Authentication), 64
eature Gallery, 72

 file, 100
ederated authentication
claims-based, 443–444
forms-based, 442–443
errari Internet Web site, 8
elds, list items, 160

 method, 286
exible deployment, 32–34

 file, 224

developer dashboard, 29
developer segments, development across,

70–71
developers

deployment, flexibility, 32–34
environments, 36–37, 69

software, 37
virtual, 37
Web-based, 71–78

identifying, 10
needs, 8–12
productivity, 26–30
rich platform services, 30–32

development
across developer segments, 70–71
Web-based, 71–78

directory services, 434
DLL references, 18
DNS (Domain Name System)

naming information, 434
network information, 434

document-level solutions for Word,
411–418

document libraries, 160
workflow, 410

document templates, content types as,
400–403

documents, custom, 400
mapping, 403

DocumentSource, uploading, 81
Duet Enterprise, 279

E

ECM (enterprise content management), 4
Edit mode, 7
editing master pages, 155–156
elements.xml file, 224
Empty Project template, 26
end user, productivity, 5
endpoint, Web interface, 72
enterprise, 5
enterprise content management (ECM), 4
EntityService code, 375
ERP (enterprise resource planning) systems,

280–281
integrating data, 370

event handlers, Standard Web parts, 230–233
Event Receiver template, 26
event receivers

creating, 147–150
lists, creating, 210–215

events, lists, 160
evolution of SharePoint, 3
Excel data

integrating with Excel Web Access Web
Part, 421–423

REST and, 388–390
Excel Services, 31, 399, 420–421

Excel Calculation, 420
Excel Web Access, 420

integrating Excel data, 421–423
Excel Web Services, 420

leveraging, 423–426
ExecuteQuery method, 141, 357
ExecuteQueryAsync method, 357
Expression Blend, 11, 116

Silverlight application, 118–125

584637bindex.indd 456 5/2/10 7:15:00 PM

developer dashboard – Expression Blend

457

Expression Web – HTML

UIs, 125
Web parts, 218
WPF applications, 125

Expression Web, 11
external content types, 284–287

ADF and, 284
creating, 291–306
metadata modeling, 285–286
permissions, 306–307
reusing, 284

external data
mapping, to Office types, 281
SSS, 440
surfacing, in Access, 309–313

external data source, 278
creating, 290–291
Web services, 290

External Lists, 12, 28, 160
offline, 307–313

external system source, 278

F

farm-level solutions, 436
FBA (Forms-Based Authentication), 64
Feature Gallery, 72
feature.xml file, 100
federated authentication

claims-based, 443–444
forms-based, 442–443

Ferrari Internet Web site, 8
fields, list items, 160
FindAllEntities method, 286
flexible deployment, 32–34
foo.cs file, 224

foo.webpart file, 224
forms, InfoPath, 404

creating, 405–406
forms-based authentication, 442–443
Forrester Research, 9

G

GAC (global assembly cache), 86
galleries

Create, 47
Custom Web Part, 111
Feature Gallery, 72
Site content types, 400–401
Solutions Gallery, 439
Web Part, 58, 218

General Application Settings, 21
GetACustomer method, 296
getBookInfo method, 89–90
GetByTitle method, 357
GetCustomers method, 296
getCustomers method, 306
GetListAndView Web method, 57
GetListItems method, 185
GetListItemsAsync method, 356
Globals API, 416

H

Hard Rock Cafe site, 117
health status, 21
Hello World!, 6
high-touch integration, 327, 343–361
HTML (HyperText Markup Language),

10, 34

E

ECM (enterprise content management), 4
Edit mode, 7
editing master pages, 155–156
elements.xml file, 224
Empty Project template, 26
end user, productivity, 5
endpoint, Web interface, 72
enterprise, 5
enterprise content management (ECM), 4
EntityService code, 375
ERP (enterprise resource planning) systems,

280–281
integrating data, 370

event handlers, Standard Web parts, 230–23
Event Receiver template, 26
event receivers

creating, 147–150
lists, creating, 210–215

events, lists, 160
evolution of SharePoint, 3
Excel data

integrating with Excel Web Access Web
Part, 421–423

REST and, 388–390
Excel Services, 31, 399, 420–421

Excel Calculation, 420
Excel Web Access, 420

integrating Excel data, 421–423
Excel Web Services, 420

leveraging, 423–426
ExecuteQuery method, 141, 357
ExecuteQueryAsync method, 357
Expression Blend, 11, 116

Silverlight application, 118–125

584637bindex.indd 457 5/2/10 7:15:00 PM

458

HTTP – lists Lists Web service – Microsoft.SharePoint namespace

APIs, uses, 162–163
Calendar list, 160
creating, 50–51, 136–137
Custom list, 160
databases and, 161
document libraries, 160
event receivers, 210–215
events, 160
external, offline, 307–313
External list, 160
Internet browser, 160
items, 160
overview, 159–162
programmatically accessing with, 162–163
programming against, 52–58

ASP.NET Web services, 171–186
client object model, 186–191
custom WCF Service, 197–202
server-side object model, 163–170

REST-based services and, 202–210
services, uses, 162–163
software design, 252–253
Tasks list, 160
as Web Part, 59–60
workflow, 160
ists Web service, 52, 142
members, 171–172
programming against a list, 52–58, 171–186

, 360
 object, 110

OB (line-of-business)
data, 4
systems, 277

 property, 287
ow-touch integration, 327, 331–343

inline editing, 74–76
source code, Content Editor Web part,

75–76
HTTP (Hypertext Transfer Protocol),

building services, 364
Hyper-V, 37–41

I

identities, 444
application identity, 440
storage, 434

IIS (Internet Information Services)
WCF and, 18
as Web server, 16
Web services, 364

integrating with external lists, 296
Import Reusable Workflow template, 27
in-box workflow, 407–410
independent software vendors (ISVs), 9
InfoPath, 399

forms, 404
creating, 405–406

infrastructure, 5
inline editing

HTML, 74–76
rich text, 74–76

installation, Windows version, 13
integrating SharePoint and Silverlight,

326–328
high-touch, 327, 343–361
low-touch, 327, 331–343
no-touch, 327, 328–331
reasons, 325–326

interoperability, 4

issuers, claims-based authentication, 444
ISVs (independent software vendors), 9
ItemAdding event, 211–212

J

JavaScript, 18
ASP.NET controls and, 89
SharePoint Designer, 86–90
site pages, 87–90

K

key functionality, 16

L

LaVigne, Dave, 328–329
LDAP (Lightweight Directory Access

Protocol), 443
libraries, document libraries, 160
lifecycle of software, 250
LINQ (Language Integrated Query), 12, 31,

144–147
queries, 143–144, 365
read methods, 306
Silverlight controls, 332

list data, programmatically writing, client
object model, 191–196

List Definition template, 27
lists, 135

adding data, 50–51, 254–258
Announcements list, 160

584637bindex.indd 458 5/2/10 7:15:00 PM

HTTP – lists

459

Lists Web service – Microsoft.SharePoint namespace

APIs, uses, 162–163
Calendar list, 160
creating, 50–51, 136–137
Custom list, 160
databases and, 161
document libraries, 160
event receivers, 210–215
events, 160
external, offline, 307–313
External list, 160
Internet browser, 160
items, 160
overview, 159–162
programmatically accessing with, 162–163
programming against, 52–58

ASP.NET Web services, 171–186
client object model, 186–191
custom WCF Service, 197–202
server-side object model, 163–170

REST-based services and, 202–210
services, uses, 162–163
software design, 252–253
Tasks list, 160
as Web Part, 59–60
workflow, 160

Lists Web service, 52, 142
members, 171–172
programming against a list, 52–58, 171–186

LiteralControl, 360
literalcontrol object, 110
LOB (line-of-business)

data, 4
systems, 277

LobSystemType property, 287
low-touch integration, 327, 331–343

M

managed code, 10
master pages, 91–92

creating, 153–156
customizing, 92–98
editing, 155–156

MCMS (Microsoft Content Management
System), 76

membership information, 442
membership providers, 442
metadata

Access, 309
external content types, 284, 285–286

methods
Add, 131
CreateChildControls, 131, 232
ExecuteQuery, 141, 357
ExecuteQueryAsync, 357
FindAllEntities, 286
GetACustomer, 296
getBookInfo, 89–90
GetByTitle, 357
GetCustomers, 296
getCustomers, 306
GetListAndView, 57
GetListItems, 185
GetListItemsAsync, 356
OnPreRender, 230
SaveChanges, 306, 386
updateCustomerData, 306
UpdateListItems, 58
Web methods, 305

Microsoft description of SharePoint, 4
Microsoft Office. See Office
Microsoft.SharePoint namespace, 162

issuers, claims-based authentication, 444
ISVs (independent software vendors), 9
ItemAdding event, 211–212

J

JavaScript, 18
ASP.NET controls and, 89
SharePoint Designer, 86–90
site pages, 87–90

K

key functionality, 16

L

LaVigne, Dave, 328–329
LDAP (Lightweight Directory Access

Protocol), 443
libraries, document libraries, 160
lifecycle of software, 250
LINQ (Language Integrated Query), 12, 31,

144–147
queries, 143–144, 365
read methods, 306
Silverlight controls, 332

list data, programmatically writing, client
object model, 191–196

List Definition template, 27
lists, 135

adding data, 50–51, 254–258
Announcements list, 160

584637bindex.indd 459 5/2/10 7:15:01 PM

460

Microsoft.SharePoint.dll – programming against a list Project Creation Wizard – servers

roject Creation Wizard, 138
roperties
custom Web parts, 244–246
LobSystemType, 287

Q

ueries
CAML, 161, 365
LINQ, 143–144, 365
uick Launch navigation pane, 7
uota Template, 46

R

ead Item wizard, 300
ead methods, LINQ, 306
ead-only Web-service, external content

types, 296–301
ead/write Web service-based external content

types, 301–306
ecords (AD), 434
eporting, 21
EST-based services, list development and,

202–210
EST (Representational State Transfer), 115,

387–390
interacting with Excel data, 388–390
protocols, 388
Web services, 364
ESTful services, 18, 141, 364, 365, 387–390
IAs (Rich Internet Applications), 97
Silverlight and, 318
ibbon, 16, 17
Web parts and, 218

Microsoft.SharePoint.dll, 141
Module template, 26
Monitoring site, 21
MOSS (Microsoft Office SharePoint

Server), 5

N

namespaces
Microsoft.SharePoint, 162
Web parts, 218

native capabilities, 4
native Web services, 366–370
navigation pane (SharePoint Designer), 79
.NET Framework

development, 35
Silverlight and, 319

Netflix, 320
network authority management, 434
network switch installation, 39–41
no-touch integration, 327, 328–331

O

OBAs (Office Business Applications), 4, 277
BCS and, 280–284
creating, 289
overview, 278–280
process, 279
sales forecasting and, 278

Office, 399
documents

list data integration, 410–418
support, 411
workflow, 406–410

SharePoint integration, content
types, 400

Web Application view, 399
Word, document-level solution, 411–418

on-premises deployment, 32
OnPreRender method, 230
operating system requirements, 29
out-of-the-box templates, 45

P

page structure, 17
payload, 365
permissions, 218

AD and, 434
external content types, 306–307
sites, editing, 63–64

platform, 3, 4, 12–14
business productivity platform, 8–9
services, 30–32

power users, tasks, 72
PPSSiteMaster, 99
productivity

developers, 26–30
of end user, 5

programmability, 19
programmatically accessing with lists,

162–163
programmatically writing list data, client

object model, 191–196
programming against a list, 52–58

ASP.NET Web services, 171–186
client object model, 186–191
custom WCF Service, 197–202
server-side object model, 163–170

584637bindex.indd 460 5/2/10 7:15:01 PM

Microsoft.SharePoint.dll – programming against a list

461

Project Creation Wizard – servers

Project Creation Wizard, 138
properties

custom Web parts, 244–246
LobSystemType, 287

Q

queries
CAML, 161, 365
LINQ, 143–144, 365

Quick Launch navigation pane, 7
Quota Template, 46

R

Read Item wizard, 300
read methods, LINQ, 306
read-only Web-service, external content

types, 296–301
read/write Web service-based external content

types, 301–306
records (AD), 434
reporting, 21
REST-based services, list development and,

202–210
REST (Representational State Transfer), 115,

387–390
interacting with Excel data, 388–390
protocols, 388
Web services, 364

RESTful services, 18, 141, 364, 365, 387–390
RIAs (Rich Internet Applications), 97

Silverlight and, 318
ribbon, 16, 17

Web parts and, 218

rich text, editing inline, 74–76
root site collection, 45

S

SAML (Security Assertion Markup
Language), 443–444

sandboxed solutions, 33, 436
creating, 437–440

SAP system, 278
SaveChanges method, 306, 386
scenarios of security, 433
security, 21

authorization, 434–436
BCSs, 282
groups, 436
infrastructure, 433
introduction, 433
management features, 436
scenarios, 433
solution trust, 436–437

Sequential Workflow template, 27, 410
server APIs, 18
Server Explorer, 98–99
server object model, 141
server-side object model, programming

against lists, 163–170
server-side services, 399

Access Services, 427–429
Excel Services, 420–421

Excel Web Access, 421–423
Excel Web Services, 423–426

Visio Services, 418–420
Word Services, 426–427

servers
server farms, 16
Web services and, 364

SharePoint integration, content
types, 400

Web Application view, 399
Word, document-level solution, 411–418

on-premises deployment, 32
OnPreRender method, 230
operating system requirements, 29
out-of-the-box templates, 45

P

page structure, 17
payload, 365
permissions, 218

AD and, 434
external content types, 306–307
sites, editing, 63–64

platform, 3, 4, 12–14
business productivity platform, 8–9
services, 30–32

power users, tasks, 72
PPSSiteMaster, 99
productivity

developers, 26–30
of end user, 5

programmability, 19
programmatically accessing with lists,

162–163
programmatically writing list data, client

object model, 191–196
programming against a list, 52–58

ASP.NET Web services, 171–186
client object model, 186–191
custom WCF Service, 197–202
server-side object model, 163–170

584637bindex.indd 461 5/2/10 7:15:01 PM

462

service codes – site pages Site Settings page – templates

ite Settings page, 72–73
ites, 16–17
columns, 135

creating, 136–137
Visual Studio 2010, 138–140

creating, 47–49
programmatically, 49–50

hierarchy, 16, 17
permissions, editing, 63–64
subsites, 16, 47–49
templates, 45
wikis, 76–78
OAP (Simple Object Access Protocol)
building services, 364
SharePoint Designer, 296
ocial computing, 4
ocial Data Web Service, leveraging, 367–370
ocialDataService Web service, 366
oftware
design process, 250

lists, 252–253
solution building, 254
solution design, 251–252

developer environment, 37
lifecycle, 250
olution design, 251–252
building solution, 254
olution trust, 436–437
olutions Gallery, 439
ource code
ALM, 71
HTML, Content Editor Web part, 75–76
PD (SharePoint Designer). See SharePoint

Designer (SPD)
 command tool, 144, 146

 object, 161

service codes, 197
Service Connection dialog, 300
services, server-side, 399
SharePoint

community-hosted Silverlight applications,
328–330

deploying to, 343
editions, 5
evolution of, 3
integration with Silverlight, 326–328

high-touch, 327, 343–361
low-touch, 327, 331–343
no-touch, 327, 328–331
reasons, 325–326

Microsoft description, 4
themes in discussion, 4
WCF services integration, 379–387

SharePoint 2010, architecture, 12
SharePoint Capabilities. See workloads
SharePoint Client Object Model, 12
SharePoint Designer (SPD), 10, 34–35, 78

Access databases, 85
external content types, 291
interface, 28
JavaScript, 86–90
master pages, 91–92

customizing, 92–98
navigation pane, 79
site pages, customizing, 80–85
SOAP, 296
SQL Server databases, 85
Web services, 85
XML files, 295

SharePoint Form List Library
template, 404

SharePoint Foundation 2010, 12, 13
SharePoint List template, 404

SharePoint Online
deployment, 32–33
sandboxed solution, 33

SharePoint Server 2010, 12, 13
installation, 42–45

SharePoint Solution Package, importing, 26
Silverlight, 18

application support, 32
applications, creating, 321–325
browsers, 318
control types, 322
deploying applications to SharePoint as Web

parts, 358–361
Expression Blend and, 118–125
hosting applications locally, 330–331
integration with SharePoint, 326–328

high-touch, 327, 343–361
low-touch, 327, 331–343
no-touch, 327, 328–331
reasons, 325–326

leveraging community hosted applications in
SharePoint, 328–330

.NET, 319
Netflix, 320
overview, 317–321
RIAs, 318
XAML and, 318

SimpleWebPart node, 102
SimpleWebPart.cs file, 103
site collections, 16–17

creating, Central Administration, 46–47
sites, creating, 47–49

Site content types Gallery, 400–401
Site Definition template, 27
site pages

customizing, 80–85
JavaScript, 87–90

584637bindex.indd 462 5/2/10 7:15:01 PM

service codes – site pages

463

Site Settings page – templates

Site Settings page, 72–73
sites, 16–17

columns, 135
creating, 136–137
Visual Studio 2010, 138–140

creating, 47–49
programmatically, 49–50

hierarchy, 16, 17
permissions, editing, 63–64
subsites, 16, 47–49
templates, 45
wikis, 76–78

SOAP (Simple Object Access Protocol)
building services, 364
SharePoint Designer, 296

social computing, 4
Social Data Web Service, leveraging, 367–370
SocialDataService Web service, 366
software

design process, 250
lists, 252–253
solution building, 254
solution design, 251–252

developer environment, 37
lifecycle, 250

solution design, 251–252
building solution, 254

solution trust, 436–437
Solutions Gallery, 439
source code

ALM, 71
HTML, Content Editor Web part, 75–76

SPD (SharePoint Designer). See SharePoint
Designer (SPD)

SPMetal command tool, 144, 146
SPSite object, 161

SQL Server databases, SharePoint
Designer, 85

SSS (Secure Store Service), 282
BCS applications, mapping, 307
configuration, 440
external data systems, 440

standalone SharePoint 2010, 42–45
Standard Web parts, 130–131

creating, 225–230
event handlers, 230–233
item-level templates, 131

State Machine Workflow template,
26, 410

subsites, 16, 47–49
surfacing data, 281

external, Access, 309–313
System Settings, 21

T

tasks, power users, 72
Tasks list, 160
Team site, 45
Team Site template, 6
templates, 45

Business Data Catalog Model, 26
Content Type, 27
document templates, content types as,

400–403
Empty Project, 26
Event Receiver, 26
Import Reusable Workflow, 27
Import SharePoint Solution Package, 26
List Definition, 27
Module, 26

SharePoint Online
deployment, 32–33
sandboxed solution, 33

SharePoint Server 2010, 12, 13
installation, 42–45

SharePoint Solution Package, importing, 26
Silverlight, 18

application support, 32
applications, creating, 321–325
browsers, 318
control types, 322
deploying applications to SharePoint as We

parts, 358–361
Expression Blend and, 118–125
hosting applications locally, 330–331
integration with SharePoint, 326–328

high-touch, 327, 343–361
low-touch, 327, 331–343
no-touch, 327, 328–331
reasons, 325–326

leveraging community hosted applications i
SharePoint, 328–330

.NET, 319
Netflix, 320
overview, 317–321
RIAs, 318
XAML and, 318

SimpleWebPart node, 102
SimpleWebPart.cs file, 103
site collections, 16–17

creating, Central Administration, 46–47
sites, creating, 47–49

Site content types Gallery, 400–401
Site Definition template, 27
site pages

customizing, 80–85
JavaScript, 87–90

584637bindex.indd 463 5/2/10 7:15:01 PM

464

themes in discussions of SharePoint – WCF WCM – WIF

integrating with SharePoint,
379–387

programming against lists,
197–202

service class, 378
service codes, 197

support, 364
CM (Web content management), 4, 76
eb-based development, 71–78
eb interface, endpoint, 72
eb methods, 305
eb Part Gallery, 58, 218
eb part pages, 151

creating, 152–153, 221–223
eb parts, 58

Aggregate Sales, 263–268
architecture, 220–223
ASP.NET server control, 110
Chart Web parts, 221–223, 269–272
custom, 60–63, 223–233

properties, 244–246
Customer Sales, 258–262
Data View, 133–135
elements.xml file, 224
Expression Blend, 218
foo.cs file, 224
foo.webpart file, 224
lists as, 59–60
namespaces, 218
out-of-the-box, 220
overview, 217–219
project creation

metadata, 103
Visual Studio 2010, 101–111

ribbon and, 218

out-of-the-box, 45
Quota Template, 46
Sequential Workflow, 27, 410
SharePoint Form List Library, 404
SharePoint List, 404
Site Definition, 27
State Machine Workflow, 26, 410
Team Site, 6
Visual Web part, 27

themes in discussions of SharePoint, 4
timer jobs, 21
toolset, 5
TransformSource, uploading, 81
trust, solutions, 436–437
Tweety Bird Web part, 114
Twitter Web parts, 111–115
TypeDescriptor, 287, 376–377

U

UI-level features, 16
updateAggregateSales functions, 268
updateCustomerData method, 306
UpdateListItems method, 58
UpdatePanel control, 235
updateRefreshTime function, 268
Upgrade and Migration, 22
user credentials, SSS, 440

V

virtual environments, 37
Visio, mash-up capabilities, 419
Visio Services, 399, 418–420
Visio Web part diagrams, 419–420
Visual Studio 2010, 98–101

BDC Metadata template, 344
Build menu, 100
Designer experience, Web part UIs, 131
item-level templates, standard

Web parts, 131
project structure, 99
SimpleWebPart node, 102
site columns, 138–140
Web parts, project creation, 101–111

Visual Web part template, 27
Visual Web parts, 131–133, 233–243
VSTO (Visual Studio Tools for

Office), 283

W

WCF Data Services, 379
WCF (Windows Communication

Foundation), 12, 365
custom service, 343
IIS and, 18
services, 378–379

configuration, 382
contracts, 197
deploying, 379
endpoint, 378
hosting mechanism, 378

584637bindex.indd 464 5/2/10 7:15:01 PM

themes in discussions of SharePoint – WCF

465

WCM – WIF

integrating with SharePoint,
379–387

programming against lists,
197–202

service class, 378
service codes, 197

support, 364
WCM (Web content management), 4, 76
Web-based development, 71–78
Web interface, endpoint, 72
Web methods, 305
Web Part Gallery, 58, 218
Web part pages, 151

creating, 152–153, 221–223
Web parts, 58

Aggregate Sales, 263–268
architecture, 220–223
ASP.NET server control, 110
Chart Web parts, 221–223, 269–272
custom, 60–63, 223–233

properties, 244–246
Customer Sales, 258–262
Data View, 133–135
elements.xml file, 224
Expression Blend, 218
foo.cs file, 224
foo.webpart file, 224
lists as, 59–60
namespaces, 218
out-of-the-box, 220
overview, 217–219
project creation

metadata, 103
Visual Studio 2010, 101–111

ribbon and, 218

Standard, 130–131
creating, 225–230
event handlers, 230–233

Tweety Bird, 114
Twitter, 111–115
Visual, 131–133, 233–243
zones, 218, 220

Web services
accessing, 366
amendments to, 366
ASP.NET, 365–366

custom, 370–378
integrating with BCS, 371–378
native, 366–370
payload, 365

clients, 364
external content types, read/write, 301–306
external data sources and, 290
heterogeneous systems and, 363
IIS, 364

integrating with external lists, 296
Lists Web service, 142
read-only, external content types,

296–301
RESTful, 387–390
servers, 364
SharePoint Designer, 85
SocialDataService, 366
Visual Studio project, 142
WCF, 378–379

integrating with SharePoint,
379–387

WebPartManager object, 220
WebZone class, 220
WIF (Windows Identity Foundation), 444

V

virtual environments, 37
Visio, mash-up capabilities, 419
Visio Services, 399, 418–420
Visio Web part diagrams, 419–420
Visual Studio 2010, 98–101

BDC Metadata template, 344
Build menu, 100
Designer experience, Web part UIs, 131
item-level templates, standard

Web parts, 131
project structure, 99
SimpleWebPart node, 102
site columns, 138–140
Web parts, project creation, 101–111

Visual Web part template, 27
Visual Web parts, 131–133, 233–243
VSTO (Visual Studio Tools for

Office), 283

W

WCF Data Services, 379
WCF (Windows Communication

Foundation), 12, 365
custom service, 343
IIS and, 18
services, 378–379

configuration, 382
contracts, 197
deploying, 379
endpoint, 378
hosting mechanism, 378

584637bindex.indd 465 5/2/10 7:15:01 PM

466

wikis – XSL Transformations

wikis, 4
sites, creating/editing, 76–78

Windows Azure, 390
Dallas, 391
SharePoint integration, 391–396

Windows Communication Foundation
(WCF), 12

Windows Server Hyper-V, installation, 37–41
Windows SharePoint Services, 13
Windows version for SharePoint

installation, 13
wizards

Configuration Wizard, 22
Data Connection Wizard, 371
Project Creation, 138
Read Item, 300

Word document-level solutions, 411–418
Word Services, 31, 399, 426–427
workflow

document library settings, 410
in-box, 407–410
lists, 160
low-level, 410
Office documents, 406–410

workloads, 14–15
WPF (Windows Presentation

Foundation), 18
applications

control types, 164, 208
list interaction, 164–170

Expression Blend and, 125
user control, control types, 174

WSDL (Web Services Description Language),
364

WSP (Windows SharePoint Services Solution
Package), 99

importing, 11

X–Y–Z

XAML (Extended Application Markup
Language), 52

code, 324–325
Silverlight and, 318

XAP file, 96
XAPS document library, 96
XLinq structures, 365
XML (Extensible Markup Language),

16, 35
Data View Web parts, 133
payloads, 142
uploading files, 81

XSL (Extensible Stylesheet Language), 35
XSL Transformations (XSLT), 35

uploading files, 81

584637bindex.indd 466 5/2/10 7:15:01 PM

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Related Wrox Books
Beginning SharePoint 2010 Administration: Windows SharePoint Services 4
and Microsoft SharePoint Server 2010
978-0-470-59712-5
Packed with step-by-step instructions, tips and tricks, and real-world examples, this book dives into the basics of how to install,
manage, and administrate SharePoint 2010 in an effective and secure manner.

Beginning SharePoint 2010: Building Team Solutions with SharePoint
978-0-470-61789-2
Beginning SharePoint 2010: Building Team Solutions with SharePoint provides you with extensive knowledge and expert advice,
empowering you to become a SharePoint champion within your organization.

Beginning Microsoft SharePoint Designer 2010
978-0-470-64316-7
Covering both the design and business applications of SharePoint Designer, this complete Wrox guide brings you thoroughly
up to speed on how to use SharePoint Designer in an enterprise.

Professional SharePoint 2010 Administration
978-0-470-53333-8
Written by a team of SharePoint experts, this book covers installation, upgrading, configuration, architecture and capacity
planning, monitoring, backups, and disaster recovery.

Professional SharePoint 2010 Branding and User Interface Design
978-0-470-58464-4
SharePoint allows influence over key branding issues like site design, how the user interface affects site visitors’ experience,
ease of use, and other branding topics. This book, from a team of SharePoint branding experts, covers it all.

Professional SharePoint 2010 Development
978-0-470-52942-3
This comprehensive book shows readers how to build field-tested solutions and create custom content management applications.

Professional Microsoft FAST Search: Customizing, Designing, and Deploying Search
for SharePoint 2010 and Internet Servers
978-0-470-58466-8
FAST is Microsoft’s intelligent search-based technology that boasts an ability to integrate business intelligence with Search.
This guide provides you with advanced coverage on FAST search and shows you how to use it to plan, customize, and deploy
your search solution, with an emphasis on SharePoint 2010 and Internet-based search solutions.

Real World SharePoint 2010: Indispensable Experiences from 20 SharePoint MVPs
978-0-470-59713-2
Containing contributions from nearly a score of SharePoint MVPs, this book is an anthology of best practices for all areas
of SharePoint 2010.

Prepared for COLIN SMITH/ email0 csmith399@gmail.com Order number0 62403291 This PDF is for the purchaser’s personal use in accordance with the Wrox Terms of
Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your own copy.

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Beginning
SharePoint® 2010
Development

Steve Fox

Fox

 $39.99 USA
 $47.99 CAN Programming (.NET/C) / Microsoft Office 2010

Put the power of
SharePoint 2010 into practice

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

As a first-class platform that has evolved significantly since its
previous release, SharePoint 2010 now provides several advancements
for the developer (native Visual Studio tools support, services and
extensibility enhancements, and APIs), and many new capabilities
(improved data programmability, line-of-business interoperability,
and sandboxed solutions). With this authoritative guide, industry
veteran Steve Fox provides expert guidance on developing applications
as he walks you through the fundamentals of programming, explores
the developer toolset, and provides practical code examples to teach
you how to use many of SharePoint’s new developer features. You’ll
quickly discover how SharePoint’s rich platform supports great
collaboration, extensibility, and interoperability.

Beginning SharePoint 2010 Development:

• Guides you through the creation of your first SharePoint 2010 application

• Addresses working with SharePoint 2010 sites, lists, and Web parts

• Describes developing SharePoint applications using SharePoint
Designer 2010

• Reviews standard and Visual Web parts, as well as data view Web parts

• Details integrating SharePoint with Microsoft® Office

• Explains how to secure your SharePoint 2010 applications

Steve Fox is a Technical Evangelist in the Developer Platform Evangelism group
at Microsoft. He presents at many conferences and has written numerous articles.

Wrox Beginning guides are crafted to make learning programming languages
and technologies easier than you think, providing a structured, tutorial format
that will guide you through all the techniques involved.

SharePoint
® 2010 D

evelopm
ent

Beginning

	WroxBooks
	Beginning SharePoint 2010 Development
	About the Author
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: Welcome to SharePoint 2010
	Chapter 1: Introduction to SharePoint 2010
	Getting to Know SharePoint
	Addressing the Needs of the Developer
	SharePoint 2010: The Platform
	SharePoint Central Administration
	Summary
	Recommended Reading

	Chapter 2: Getting Started with SharePoint 2010 Development
	Core Developer Features for SharePoint 2010
	Key Skills for the SharePoint Developer
	Your Development Environment
	Getting Familiar with SharePoint 2010
	Working with SharePoint Lists
	Working with SharePoint Web Parts
	Summary
	Recommended Reading

	Part II: Getting Started with SharePoint 2010 Development
	Chapter 3: SharePoint 2010 Developer Tools
	SharePoint Development Across Developer Segments
	Web-Based Development in SharePoint
	Developing SharePoint App lications Using SharePoint Designer 2010
	Developing SharePoint Applications Using Visual Studio 2010
	Development Using the Expression Blend Suite
	Summary
	Recommended Reading

	Chapter 4: Common Developer Tasks in SharePoint 2010
	Creating Web Parts
	Creating Lists, Site Columns, and Content Types
	Working with SharePoint Data
	Creating Event Receivers
	Creating aspx Pages
	Creating Master Pages
	Summary
	Recommended Reading

	Chapter 5: Programming Against SharePoint 2010 Lists
	Overview of SharePoint Lists
	Programmatically Accessing Lists
	Creating Event Receivers for a SharePoint List
	Summary
	Recommended Reading

	Chapter 6: Building and Deploying SharePoint Web Parts
	Understanding Web Parts
	Web Part Architecture
	Custom Web Parts
	Visual Web Parts
	Custom Web Part Properties
	Summary
	Recommended Reading

	Chapter 7: Creating Your First SharePoint 2010 Application
	Requirements
	Solution Design
	Customer Sales and Total Sales Lists
	Building the Application
	Summary
	Recommended Reading

	Part III: Advanced Topics for SharePoint 2010 Development
	Chapter 8: Integrating Line-of-Business Data Using Business Connectivity Services
	Understanding Office Business Applicat ions (OBAs)
	OBAs and BCS
	Anatomy of an External Content Type
	Connectivity Options with BCS
	Developing Your First Application Using BCS
	Summary
	Recommended Reading

	Chapter 9: Creating Enhanced User Experiences for SharePoint with Silverlight
	Understanding Silverlight
	Why Integrate Silverlight and SharePoint?
	Integrating Silverlight with SharePoint
	Summary
	Recommended Reading

	Chapter 10: Developing Service-Oriented Applications for SharePoint 2010
	ASP.NET Web Services
	WCF Web Services
	RESTful Web Services
	Azure and SharePoint
	Summary
	Recommended Readi ng

	Chapter 11: Integrating SharePoint with Microsoft Office
	Content Type as a Document Template
	Using InfoPath in Your SharePoint Solutions
	Managing Office Documents through a SharePoint Workflow
	Integrating Office Documents with SharePoint List Data
	Server-Side Services
	Summary
	Recommended Reading

	Chapter 12: Securing Your SharePoint 2010 Applications
	Authorization
	Solution Trust
	Secure Store Service
	Federated Authentication
	Summary
	Recommended Reading

	Part IV: Appendix
	Appendix: Where to Go from Here

	Index

