Beginning

SharePoint 2010
Development

Programmer to Programmer”

Get more out of
Wrox.com

Interact

Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library

Hundreds of our books are available online
through Books24x7.com

Wrox Blox

Download short informational pieces and code
to keep you up to date and out of trouble!

Contact Us.

Join the Community

Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse

Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

http://www.wrox.com

BEGINNING
SHAREPOINT 2010 DEVELOPMENT

INTRODUGCTION. ..t i i i it tittieaeteneeneaenennsnsnsnsnsnnnns xxiii
» PART I WELCOME TO SHAREPOINT 2010
CHAPTER 1 Introduction to SharePoint 2010 il 3
CHAPTER 2 Getting Started with SharePoint 2010 Development 25
» PARTII GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT
CHAPTER 3 SharePoint 2010 Developer TooIs ... 69
CHAPTER4 Common Developer Tasks in SharePoint2010 129
CHAPTER5 Programming Against SharePoint 2010 Lists 159
CHAPTER 6 Building and Deploying SharePoint Web Parts 217
CHAPTER7 Creating Your First SharePoint 2010 Application..................... 249
» PART Il ADVANCED TOPICS FOR SHAREPOINT 2010 DEVELOPMENT
CHAPTER 8 Integrating Line-of-Business Data Using

Business Connectivity Services 277
CHAPTER 9 Creating Enhanced User Experiences for SharePoint

with Silverlight 317
CHAPTER 10 Developing Service-Oriented Applications for SharePoint 2010 363
CHAPTER 11 Integrating SharePoint with Microsoft Office 399
CHAPTER 12 Securing Your SharePoint 2010 Applications........................ 433
» PART IV APPENDIX
APPENDIX Whereto GofromHere. 449
L 10 = 451

BEGINNING

SharePoint® 2010 Development

BEGINNING
SharePoint® 2010 Development

Steve Fox

WILEY
Wiley Publishing, Inc.

Beginning SharePoint’ 2010 Development

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-58463-7

ISBN: 978-0-470-88182-8 (ebk)
ISBN: 978-0-470-88183-5 (ebk)
ISBN: 978-0-470-90477-0 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010926824

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. SharePoint is a registered trademark of Microsoft Corporation

in the United States and/or other countries. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

For my wife

ABOUT THE AUTHOR

STEVE FOX of Redmond, WA, is a Senior Technical Evangelist in the Developer Platform Evangelism
group at Microsoft. He’s worked in the IT industry for more than 15 years, and has worked in the
areas of natural language, search, developer tools, and, more recently, Office Business Application and
SharePoint development. Fox also presents at both domestic and international conferences (such as
TechEd, PDC, DevConnections, and SAP TechEd, among others), and has written a number of books
such as Professional SharePoint 2007 Development using Silverlight 2 (Indianapolis: Wiley, 2009)
and Microsoft .NET and SAP (Redmond, WA: Microsoft Press, 2009), as well as articles for MSDN
Magazine and other technical magazines.

ABOUT THE TECHNICAL EDITORS

DARRIN BISHOP is a speaker, author, and developer focusing on Microsoft SharePoint Technologies.
He is the president and lead developer for Darrin Bishop Group, Inc., a Midwest-based Microsoft
Partner focusing on SharePoint Technologies, portals, and collaboration. He is the author of The
Rational Guide to Building SharePoint Web Parts (Greenland, N.H: Rational Press, 2008), as well
as several articles in various magazines. Bishop is an international speaker and speaks at many
SharePoint conferences, SharePoint Saturdays, MOSS Camps, and User Groups. He has been work-
ing with SharePoint Technologies since the release of SharePoint Portal Server 2001.

ELI ROBILLARD designs and guides the delivery of global SharePoint solutions as a Principal
Architect at Infusion Development Corporation. He is a SharePoint Server MVP, a co-author of
Professional SharePoint 2007 Development (Indianapolis: Wiley, 2007), founder of the Toronto
SharePoint Users Group, co-chair of the Toronto SharePoint Camp, and past chair of a group of
high-profile industry influencers and early-adopters known as the ASPInsiders. Robillard lives in
Toronto, Ontario, Canada where he also plays music and goes on adventures with Dawn, Irina, and
their dog, Dakota.

KENNETH SCHAEFER is an independent developer and designer focusing on SharePoint and Web-
based solutions.

BRENDON SCHWARTZ has worked in the Atlanta area User Group scene, and is known around
town as one of the Atlanta .NET Regular Guys (www.devcow.com). He is currently on the INETA
Board of Directors as the Vice President of Technology, and is a Microsoft MVP for ASP.NET.
Today, Brendon works to solve real-world business problems with Microsoft technologies, such as
SharePoint, Office, BizTalk, VSTS, and .NET technologies. In addition to presenting at local User
Groups, he helped create the “Free Training 1,2,3!” series (www.freetraining123.com) to help
developers learn Microsoft technologies. He presented material at the first SharePoint 1,2,3! event
(www . sharepoint123.com), along with other members of the Atlanta Microsoft Professionals.
Schwartz has helped on the leadership teams of five different User Groups. At the first Atlanta Code
Camp in 20035, he presented material on ASP.NET mobile controls.

CREDITS

ACQUISITIONS EDITOR
Paul Reese

PROJECT EDITOR
Kevin Shafer

TECHNICAL EDITORS
Darrin Bishop

Eli Robillard

Ken Schaefer
Brendon Schwartz

PRODUCTION EDITOR
Eric Charbonneau

COPY EDITOR
Foxxe Editorial

EDITORIAL DIRECTOR
Robyn B. Siesky

EDITORIAL MANAGER
Mary Beth Wakefield

ASSOCIATE DIRECTOR OF MARKETING
David Mayhew

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE
GROUP PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Barry Pruett

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Lynsey Stanford

COMPOSITOR
Jeff Lytle, Happenstance Type-O-Rama

PROOFREADER
Beth Prouty, Word One

INDEXER
Johnna VanHoose Dinse

COVER DESIGNER
Michael E. Trent

COVER IMAGE
© Slobo Mitic/istockphoto

ACKNOWLEDGMENTS

WHEN IT COMES TO WRITING A BOOK, no man is an island. It takes countless hours and resources to
compile a book of this nature. That said, I'd like to thank Jim Minatel and Paul Reese for taking on
the project, and to Kevin Shafer for marshaling the book through the editorial and review process.

A number of technical editors helped review chapters, so a big thanks to Darrin, Eli, Ken, and
Brendan. The comments were great and helped create a better end product. They also taught me a
few things along the way.

I’d also like to say a blanket thanks to all of the content and production editors. All of you made
the book possible and, at the end of the day, a much better product for the beginning SharePoint
developer.

On a personal note, I'd like to thank my wife who put up with me locking myself away for hours at
a time. Nicole, you are ever-tolerant and I’'m deeply indebted to you.

CONTENTS

INTRODUCTION

XXiii

CHAPTER 1: INTRODUCTION TO SHAREPOINT 2010 3
Getting to Know SharePoint 4
Addressing the Needs of the Developer 8

Extension and Enrichment for Developers 9
Breaking It Down for Developers 10
SharePoint 2010: The Platform 12
SharePoint 2010 Capabilities 14
Site Collection and Sites 15
Server APIs and Client APIs 17
Data Modeling and Programmability 18
SharePoint Central Administration 19
Application Management 20
Monitoring 21
Security 21
General Application Settings 21
System Settings 21
Backup and Restore 21
Upgrade and Migration 22
Configuration Wizards 22
Summary 22
Recommended Reading 24

CHAPTER 2: GETTING STARTED WITH

SHAREPOINT 2010 DEVELOPMENT 25
Core Developer Features for SharePoint 2010 26

Developer Productivity 26
Rich Platform Services 30
Flexible Deployment 32
Key Skills for the SharePoint Developer 34
Your Development Environment 36
Installing and Configuring Windows Server Hyper-V 37
Installing SharePoint Server 2010 42
Getting Familiar with SharePoint 2010 45
Working with SharePoint Sites 46

CONTENTS

xviii

Programming Against Lists Using ASP.NET Web Services

Working with SharePoint Lists 50
Working with SharePoint Web Parts 58
Setting Permissions for a SharePoint Site 63
Summary 64
Recommended Reading 66
CHAPTER 3: SHAREPOINT 2010 DEVELOPER TOOLS 69
SharePoint Development Across Developer Segments 70
Web-Based Development in SharePoint 71
Site Settings 72
Inline Rich Text and HTML Editing 74
Adding Multimedia to a Site 76
Developing SharePoint Applications Using SharePoint Designer 2010 78
Customizing a Site Page 80
Managing Other Data Sources in SharePoint Designer 85
Using JavaScript in SharePoint Designer 86
Master Pages 91
Developing SharePoint Applications Using Visual Studio 2010 o8
Development Using the Expression Blend Suite 16
Summary 126
Recommended Reading 127
CHAPTER 4: COMMON DEVELOPER TASKS IN SHAREPOINT 2010 129
Creating Web Parts 130
Standard and Visual Web Parts 130
Data View Web Parts 133
Creating Lists, Site Columns, and Content Types 135
Working with SharePoint Data 141
Creating Event Receivers 147
Creating aspx Pages 150
Creating Master Pages 153
Summary 157
Recommended Reading 158
CHAPTER 5: PROGRAMMING AGAINST SHAREPOINT 2010 LISTS 159
Overview of SharePoint Lists 159
Programmatically Accessing Lists 162
Programming Against Lists Using the Server-Side Object Model 163

17

CONTENTS

Programming Against Lists Using the Client Object Model 186
Programming Against Lists Using a Custom WCF Service 197
REST-Based Services and List Development 202
Creating Event Receivers for a SharePoint List 210
Summary 215
Recommended Reading 216
CHAPTER 6: BUILDING AND DEPLOYING SHAREPOINT
WEB PARTS 217
Understanding Web Parts 217
Web Part Architecture 220
Custom Web Parts 223
Visual Web Parts 233
Custom Web Part Properties 244
Summary 246
Recommended Reading 248
CHAPTER 7: CREATING YOUR FIRST SHAREPOINT 2010
APPLICATION 249
Requirements 250
Solution Design 251
Customer Sales and Total Sales Lists 252
Building the Application 254
Adding a Record to the Sales List 254
Viewing the Customer Sales 258
Viewing the Total Sales 262
Adding a Chart Web Part 268
Final Dashboard 271
Summary 272
Recommended Reading 274

CHAPTER 8: INTEGRATING LINE-OF-BUSINESS DATA

USING BUSINESS CONNECTIVITY SERVICES 277
Understanding Office Business Applications (OBAs) 278
OBAs and BCS 280
Anatomy of an External Content Type 284
Connectivity Options with BCS 287
Developing Your First Application Using BCS 289

Creating the External Data Source 290

Xix

CONTENTS

Creating the External Content Type 291
Setting Permissions for External Content Types 306
Taking the External List Offline 307
Summary 313
Recommended Reading 315
CHAPTER 9: CREATING ENHANCED USER EXPERIENCES
FOR SHAREPOINT WITH SILVERLIGHT 317
Understanding Silverlight 317
Why Integrate Silverlight and SharePoint? 325
Integrating Silverlight with SharePoint 326
No-Touch Integration 328
Low-Touch Integration 331
High-Touch Integration 343
Summary 361
Recommended Reading 362
CHAPTER 10: DEVELOPING SERVICE-ORIENTED
APPLICATIONS FOR SHAREPOINT 2010 363
ASP.NET Web Services 365
Native Web Service 366
Custom ASP.NET Services 370
WCF Web Services 378
RESTful Web Services 387
Azure and SharePoint 390
Summary 396
Recommended Reading 398
CHAPTER 11: INTEGRATING SHAREPOINT
WITH MICROSOFT OFFICE 399
Content Type as a Document Template 400
Using InfoPath in Your SharePoint Solutions 404
Managing Office Documents through a SharePoint Workflow 406
Integrating Office Documents with SharePoint List Data 410
Server-Side Services 418
Visio Services 418
Excel Services 420
Word Services 426
Access Services 427
Summary 429
Recommended Reading 431

XX

CONTENTS

CHAPTER 12: SECURING YOUR

SHAREPOINT 2010 APPLICATIONS 433
Authorization 434
Solution Trust 436
Secure Store Service 440
Federated Authentication 442

Forms-Based Authentication 442
Claims-Based Authentication 443
Summary 444
Recommended Reading 446

PART IV: APPENDIX

APPENDIX : WHERE TO GO FROM HERE

449

INDEX

451

INTRODUCTION

MY FIRST EXPERIENCE WITH SHAREPOINT was the task of integrating multiple SharePoint 2003
sites into one all-up organizational portal — a fairly straightforward project that integrated four
sites into one. This one project got me curious, and, in the process, not only exposed me to the
inner workings of SharePoint, but also got me hooked on the technology.

As I'learned more about SharePoint, I realized the path was longer than I had originally thought. Since
that time, I’ve seen the platform mature quite a bit, and interest from developers like yourself swell to
what is now a very high rate of growth and adoption. And the market for SharePoint is also growing at
a very rapid pace — one that is currently outpacing the growth of the SharePoint developer community.

What you’ll learn in this book is that SharePoint 2010 has a lot to offer the developer. You can move
from the small-scale development project where you’re building custom Web parts, to the larger,
enterprise-grade solution that leverages Web services and integrates with other Microsoft and non-
Microsoft technologies. This is the incredible part about SharePoint — it is a platform with huge
potential in multiple directions. And, as a beginning SharePoint developer, you should strap yourself
in, because you’re in for a great ride.

WHO THIS BOOK IS FOR

Simply put, this book is aimed at the developer who is new to SharePoint. The book assumes that
you have some programming experience and a passion to learn how to develop for SharePoint. But
this book does not assume that you’ve programmed against SharePoint before. If this somewhat fits
with you, then this book is absolutely for you.

With regard to your general development background, the two assumptions in this book are that
you have some familiarity with Web development, and you have an understanding of .NET pro-
gramming. With regard to Web development, this book assumes that you understand HTML,
and may have an understanding of Cascading Style Sheets (CSS), Extensible Markup Language/
Extensible Stylesheet Language (XML/XSL), and dynamic languages such as JavaScript. You may
have a light understanding of ASP.NET and are looking to apply this knowledge to the SharePoint
space. In any case, you have some understanding of the fundamentals of Web and .NET develop-
ment, and are looking to apply those to the SharePoint space.

WHAT THIS BOOK COVERS

SharePoint 2010 is a significant leap forward from the 2007 release, and you will find that there are
a ton of features built into the platform for you to leverage in your solution development. Because
SharePoint is a broad platform that covers a lot, this book also covers quite a bit of ground surface.
As a Wrox Beginning book, the goal of the book is to get you started with many of the fundamen-
tals so that you can continue on to advanced programming beyond this book.

INTRODUCTION

In this book, you can expect to see coverage of the following:

> Getting started with development for SharePoint 2010
Becoming familiar with tools that you will use to develop for SharePoint
Becoming familiar with common SharePoint development tasks
Programming against lists and developing custom Web parts
Integrating line-of-business (LOB) data with SharePoint and Microsoft Office
Integrating Silverlight and SharePoint
Creating service-oriented solutions for SharePoint

Integrating SharePoint and Microsoft Office

Y Y Y VY Y VY VY Y

Security fundamentals in SharePoint

This book will not cover SharePoint 2007, but will cover areas that span SharePoint Foundation 2010
and SharePoint Server 2010. You can also expect to find references to other resources as you work
through the book — resources such as blogs, Microsoft Developer Network (MSDN) articles, C9 train-
ing modules, and source code — all of the things that you need to get started developing for SharePoint.

HOW THIS BOOK IS STRUCTURED

This book is structured in four parts:

> Part I: Welcome to SharePoint 2010 — This includes the following:
> Chapter 1, “Introduction to SharePoint”
> Chapter 2, “Getting Started with SharePoint Development”

> Part II: Getting Started with SharePoint 2010 Development — This includes the following:
> Chapter 3, “SharePoint 2010 Developer Tools”
> Chapter 4, “Common Developer Tasks in SharePoint 20107
> Chapter 5, “Programming Against SharePoint 2010 Lists”
> Chapter 6, “Building and Deploying SharePoint Web Parts”
> Chapter 7, “Creating Your First SharePoint 2010 Application”

> Part III: Advanced Topics for SharePoint 2010 Development — This includes the following:
> Chapter 8, “Integrating Line-of-Business Data Using Business Connectivity Services”
> Chapter 9, “Creating Enhanced User Experiences for SharePoint with Silverlight”

> Chapter 10, “Developing Service-Oriented Applications for SharePoint 2010

XXiv

INTRODUCTION

> Chapter 11, “Integrating SharePoint with Microsoft Office”

> Chapter 12, “Securing Your SharePoint 2010 Applications”
> Part IV: Appendix — This includes the following:

> Appendix, “Where to Go from Here”

The goal is to quickly take you from the basics of SharePoint, to installing and configuring a
development environment, and then into how you can develop for SharePoint. The book is heavy
on coding exercises, but tries to stick to a common set of .NET patterns to ensure you walk away
understanding the different ways in which you can code for SharePoint. Moving from beginning to
advanced means that you can expect the walkthroughs and chapters to become increasingly more
complex within each chapter and throughout the book. The walkthroughs have been created to be
concise and to guide you through all of the steps you must accomplish to complete a coding task.

The structure of the book mimics the development ramp-up cycle for SharePoint. That is, you must
first understand the breadth of the SharePoint platform. You then install it and the development
environment; and then you begin to code — simple at first, but tasks that grow increasingly more
complex. You will find that when coding against SharePoint, you may do certain things more (such
as programming against lists and creating custom Web parts). As such, these topics are covered in
Part II of the book. Also, you may find that, as you advance in your SharePoint development, you
will need to incorporate either Silverlight or Web services in your SharePoint solutions. Because you
would likely combine these types of tasks inside of a custom Web part, list-based application, or
event receiver, these were placed in Part III of the book.

To help you along, this book has source code samples you can download at the Wrox Web site
(http: //www.wrox.com). You'll also find some video screencasts here to accompany some of the more
challenging developer tasks to provide you with more insight on how to walk through the exercises.

WHAT YOU NEED TO USE THIS BOOK

To use this book, the following hardware is recommended:
> 64-bit compliant hardware
> 8 GBRAM
> 150 GB hard drive space
>

Dual processor (or reasonably close)

And the following software is recommended:
> Windows operating system, specifically the following:
> Windows Server 2008 or 2008 R2 (for installation or Hyper-V)
> Windows 7 (for installation)

» SharePoint Server 2010

XXV

INTRODUCTION

SQL Server 2008 (Express or above)
Visual Studio 2010 (Professional)
Silverlight Tools and SDK
SharePoint Designer 2010

Office 2010 (Professional Plus)

Y Y Y Y Y Y

Expression Blend (Optional)

NOTE You can download a virtual machine that has all of the necessary
software on it. It runs in Hyper-V and can be downloaded from http: / /www
.microsoft.com/downloads/details.aspx?FamilyID=0c51819b-3d40-435c-
al03-a5481felald2&displaylang=en. Chapter 2 discusses this in more depth.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Examples that you can download and try out for yourself generally appear in a box like this:

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.
1. They usually consist of a set of steps.
2. Each step has a number.

3. Follow the steps through with your copy of the database.

How It Works
After each Try It Out, the code you’ve typed will be explained in detail.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

XXVi

INTRODUCTION

NOTE Tips, hints, tricks, and asides to the current discussion are offset and
placed in italics like this.

As for styles in the text:
> We highlight new terms and important words when we introduce them.
> We show keyboard strokes like this: Ctrl+A.
» We show filenames, URLs, and code within the text like so: persistence.properties.

> We present code in two different ways:

In code examples, we highlight new and important code with a boldface font.
The boldfacing is not used for code that's less important in the present context,
or has been shown before.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code files that accompany the book. All of the source code used in this
book is available for download at http: //www.wrox.com. Once at the site, simply locate the book’s
title (either by using the Search box, or by using one of the title lists) and click the Download Code
link on the book’s detail page to obtain all the source code for the book.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN. This book’s ISBN is 978-0-470-58463-7.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

@ NOTE This book provides a lot of code samples — you’ll see many of the code
samples focus on the core processing code for a specific API or feature. When
you leverage what you learn from this code in your production coding, you will,
of course, want to apply proper coding practices, such as error trapping and
exception handling. For more information on coding best practices, visit the
MSDN Patterns and Practices site at http: //msdn.microsoft.com/en-us/
practices/default.aspx

XXVii

INTRODUCTION

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books (such as a spelling mistake
or faulty piece of code), we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and, at the same time, you will be helping us provide even
higher-quality information.

To find the errata page for this book, go to http: //www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link.

On this page you can view all errata that has been submitted for this book and posted by Wrox edi-
tors. A complete book list including links to each book’s errata is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent edi-
tions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies, and to interact
with other readers and technology users. The forums offer a subscription feature to email you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an email with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but, in order
to post your own messages, you must join.

Xxviii

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml

INTRODUCTION

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
emailed to you, click the “Subscribe to this Forum” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXiX

PART |
Welcome to SharePoint 2010

» CHAPTER 1: Introduction to SharePoint 2010

» CHAPTER 2: Getting Started with SharePoint 2010 Development

Introduction to SharePoint 2010

WHAT YOU'LL LEARN IN THIS CHAPTER:

> Getting familiar with the core functionality and features of SharePoint
> Understanding the basics of SharePoint architecture

> What's available to developers in SharePoint 2010

SharePoint is an exciting Web-based technology. In its fourth version, SharePoint has undergone
quite an evolution since the 2003 release, and the types of things you can do with SharePoint run
far and wide. Those who have had the chance to see the product grow up will be surprised and
happy with many of the changes that are now built into the platform. In fact, existing SharePoint
developers will witness what arguably is a significant change in the features and functionality that
SharePoint provides, as well as an evolution in the tools supported and the developer community
that rallies around the technology. Aspiring SharePoint developers will realize there is quite a bit
of power in the platform that you should be able to put into practice by the end of this book.

SharePoint has matured into a first-class platform that will enable you to build and deploy

a wide array of solutions, as well as take advantage of the build-and-publish model that
SharePoint users and developers have come to enjoy. In fact, SharePoint 2010 offers such a
wide array of features that it is challenging for any one person to claim to be an expert across
all of the SharePoint workloads. You will need to dedicate some time to becoming an expert,
but the journey will be worth it.

With that in mind, this chapter introduces you to what SharePoint is and examines some of
the high-level features for the developer. This chapter will also describe the capabilities that
make SharePoint a platform that is interesting and compelling for you, the developer, to learn.
Specific topics include the types of platform services to expect, data programmability, and the
ways in which you can build and deploy a SharePoint solution. Toward the end of this chapter,
you’ll be introduced to Central Administration, where you’ll find an array of administrative
capabilities for SharePoint.

4 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

GETTING TO KNOW SHAREPOINT

Microsoft describes SharePoint 2010 as the business productivity platform for the enterprise and
the Internet. To provide you with an idea of the types of things that you can do with SharePoint,
Figure 1-1 breaks down SharePoint into three separate areas:

>

Collaborate — As you move throughout this book, you’ll see the notion of collaboration
is a very strong theme for SharePoint. This is because SharePoint is about bringing people
together through different types of collaboration, such as enterprise content management
(ECM), Web content management (WCM), social computing through the use of wikis or
blogs, creating dashboards to fulfill your business intelligence (BI) needs, and so on.

Interoperability — SharePoint is also about bringing this collaboration together through
interoperability. This means Office client and Web-based document integration, and the
capability to build and deploy Office business applications (OBAs) — custom solutions that
integrate line-of-business (LOB) data with SharePoint and Office, integrating with Web 2.0
technologies, or deploying applications to the cloud. It also means enhanced security through
an evolved security model called Claims-Based Authentication that helps facilitate integration
with other line-of-business (LOB) systems.

Platform — As you’ll see, SharePoint is a platform that supports not only interoperability
and collaboration but also extensibility, through a rich object model, a solid set of developer

tools, and a growing developer community.
e,

@W @g

« ECM & WCM « Client Integration « 1st Class Developer
« Social Computing - OBA Platform

« Search + Web 2.0 « Visual studio

« Portals/Sites « S+S « SharePoint Designer
« Business Intelligence « Intranet/Internet « Rich Community

« MS Product Integration

Collaborate Interoperability Platform
FIGURE 1-1 SharePoint as a platform

These are three key themes that you will find crop up throughout most discussions of SharePoint
and implicitly through many of the capabilities you’ll get to explore throughout this book.

At its essence, SharePoint is a Web-based platform that provides the following:

>

>

>

A set of native capabilities to support productivity and collaboration
An extensible set of APIs and services

A configuration engine that provides rich administrative abilities

Getting to Know SharePoint | 5

However, depending on the role of the person who is using SharePoint (for example, the end user ver-
sus the developer versus the IT professional), the stated definition may take on a slightly different hue.

For example, for the end user, SharePoint enhances productivity by providing a core set of con-
nected applications that essentially act as the Web-based application platform. The applications
enable people to connect using wiki sites, workspaces, lists, document libraries, and integration with
Microsoft Office applications, such as Outlook, Excel, and Word 2010.

From an organizational point of view, the unified infrastructure enables the organization to rally
around a central point of collaboration — be it through an organizational portal, a team site, or

a personal My Site. It also enables organizations to integrate LOB systems, such as SAP, Siebel,
PeopleSoft, and Microsoft Dynamics, into the information worker experience through SharePoint.

The response to business needs arrives through the capability to use SharePoint as a toolset in the
everyday work lives of an organization’s employees — for example routing documents through man-
aged processes, providing BI dashboards, or supplying audit tracking for documents in the Record
Center. In essence, SharePoint 2010 represents a platform that offers the organization a lot of func-
tionality to do many different things, with collaboration lying at the heart of them.

By stating that SharePoint is the platform for the enterprise and the Internet, Microsoft is implying
that SharePoint has predominantly excelled in two spaces.

The first (and historically predominant) is the enterprise, which means that many large companies
are attracted by what SharePoint offers, and are attracted to its lower cost compared to competitive
products or technologies. This is because, for example, the platform is tightly integrated with Office,
other Microsoft technologies (such as SQL Server and Silverlight), and external technologies and
LOB systems.

While the enterprise has been an historical stronghold for SharePoint, there have been some inter-
esting movements into the small and medium-sized business (SMB) space for SharePoint as well.
This is evidenced by the fact that SharePoint comes in a variety of flavors and editions, as shown in
Figure 1-2, and some of these can be leveraged by SMB developers to deliver some great experiences
for SharePoint consumers. (Note that these were the editions as of this writing, and may be subject
to change. For the latest editions, see http://sharepoint2010.microsoft.com.)

For example, among the different SharePoint editions shown in Figure 1-2 is SharePoint Foundation
2010. SharePoint Foundation (roughly equivalent to Windows SharePoint Services 3.0 in the 2007
release) is a free version of SharePoint and offers a baseline set of capabilities such as a set of site
templates, security and administration, and web collaboration capabilities. Further, SharePoint
Server 2010 (which is roughly equivalent to Microsoft Office SharePoint Server (MOSS) in 2007)

is an edition that provides richer capabilities built into the platform such as a wider array of server-
side services and collaboration options. You need to pay for SharePoint Server 2010, but the key is
that these different editions offer you some choice as to where you want to start and the types of
solutions you can build. Thus, companies have great flexibility when deciding upon what flavor of
SharePoint to implement.

Because SharePoint is essentially a Web-based technology, you interact with SharePoint from your
Internet browser. The Web-based experience is managed through an intranet, an extranet, or the
Internet. For example, Figure 1-3 shows the SharePoint 2010 interface invoked from the Internet
Explorer browser. (SharePoint is cross-browser, so you can use other Internet browsers such as

6 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

Safari or Firefox with SharePoint.) This view is the default Team Site template (one of the site tem-
plates that ships with SharePoint) that is typical of a SharePoint intranet site.

Microsoft®
SharePoint 2010
INTRANET e INTERNET
Microsoft® Microsoft®
<. SharePoint Foundation 2010 <. SharePoint Server 2010
for Internet Sites, Standard Edition
Microsoft® Microsoft®
<. SharePoint Server 2010 <. SharePoint Server 2010
for Internet Sites, Enterprise Edition
Microsoft® I Microsoft®
. FAST Search Server 2010 ON PREMISE . FAST Search Server 2010
for SharePoint for Internet Sites
Microsoft®
Microsoft® . .
. SharePoint Online &, SharernF Online
for Internet Sites

FIGURE 1-2 SharePoint 2010 Editions

Urdnwze

7)
M wrox + Home)
U P Ilike® Thgi &
Mot
Home Saarch this site 2 @
Libranas
Bl Pt Hello World!!!

Ehared Diosuments

Lists
Calervlar Shared Documents
=t Typs Name Modhed Mnidfing By
ial Emplayes WEEI010 B B Systam Account
Do s —, v
L i &] Lales_Numhers WEL010 &40 PH System Account
o
0 mecyele ban i) Tales_Froposal fI2/T000 ;38 PH Syikem Aecound
& vele &

ol All Site Content
& Add document

B share this e

IS change site theme

o Sen & sits eon

FIGURE 1-3 SharePoint, Hello World!

As you can see in Figure 1-3, the main portion of the page consists of three different components:
> Some text (“Hello World!!!”),
> A link to Microsoft Office documents

> A default image

Getting to Know SharePoint | 7

Also note that, down the left-hand side of the page, you have the Quick Launch navigation pane, which
enables you to link to other functionality and sites within the SharePoint site. A ribbon at the top (very
similar to the Office 2007 and 2010 Office client ribbon) provides centralized groups of elements that
also load different functionality into the main content window. There is also a search option that con-
nects you to other core SharePoint sites, functionality, and content within the site located in the top
right of the page. And, lastly, you also have a set of other links, such as one to your My Site on this
Web site, located in the upper right-hand corner of the page. As you’ll find out throughout this book,
SharePoint is very user-friendly. The view you see in Figure 1-3 can be edited and customized by the
user, it can be integrated with Office documents, and it can be branded with a specific theme.

Thus, the Web-based experience that SharePoint provides intrinsically facilitates an out-of-the-box
experience and integrates core (as well as external) applications and functionality that end users can
employ during their daily work lives.

In Figure 1-4, you’ll note that the default view has changed. This is because the site is now in Edit
mode, which enables you to customize the SharePoint site. In this view, you can see that the user has
clicked a part of the SharePoint page, and is now trying to insert an instance of the Content Editor
Web part (which provides HTML and source-code editing capabilities) from the Authoring Web
part category. The fact that you can quickly put a site into Edit mode, make some changes, and then
save those changes back to the server is one of the great advantages of SharePoint.

Page Toal

Elvn Fandhack

Trvvest

 E & B m

Text Image Video and Web Exivling
| At Part List
| Text e Web pars
|
|
|| {2 Lty mnd Libraries =1l Comest Edtor Content Editor
i il rrge Vewer [
Il 2l e vieo Par :
KWL Bathiars B2 e st St

o Pag

=] Sireers Pam

* -

mmnn o
Add Web '—.\"'.olll:'l Fage 'I
Add I ool
% | Cootoso Team Sie Home Thus Site: Conteso Team Sto %]]

Shared Documends

Approvved Hire Letters

Lists

Calendar

FIGURE 1-4 Editing a SharePoint site

While the experiences in Figure 1-3 and Figure 1-4 are the out-of-the-box default intranet site expe-
riences (for viewing and editing), SharePoint also offers a full publishing-to-the-Web experience.
This manifests in a special publishing template to meet your WCM needs, and provides you with
templates, theming, a default site experience, workflow, and so on, so that you can create and pub-
lish content to your Internet Web sites.

8 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

You may be surprised to learn that innumerable companies are using SharePoint for their Internet-
facing Web sites. For example, Figure 1-5 shows the Ferrari Internet Web site that is built using
SharePoint. You’ll also note that the site is rendered in Firefox.

Be Edt Yew Hgtory Bockmats Tods e

“ = C 7% B e ferrani comEngisn Pages Home.asox - [
B MostVisted | | GattngStarted o LatestHeadines

[#] Ferrari - The Italian automotive com...| -

now to the Ferrari World

@ [

e

FIGURE 1-5 Ferrari Web site built using SharePoint

For organizations, this can provide a one-stop shop for leveraging the SharePoint infrastructure both
for internal sites, to manage your day-to-day project needs, and as an external publishing workflow
and infrastructure to manage your publicly facing sites as well. The key point is that SharePoint pro-
vides the infrastructure for both intranet and Internet publishing and development, as well as many
different options provided through a set of product editions to map to a host of scenarios and budgets.

As you’ll see throughout this book, the native SharePoint experience is, in many ways, customiz-
able. For example, Figure 1-4 shows the default site that SharePoint creates for you. However, you
can apply your own master page to this default view to customize and brand the user’s experience.
This could be as simple as changing the colors, or it could be as deeply branded as the Ferrari site.
You could even reconstruct the navigation through the use of Silverlight to simply leverage the
SharePoint infrastructure and re-create your own customized user experience through the user inter-
face (UI). And this is just the tip of the iceberg.

ADDRESSING THE NEEDS OF THE DEVELOPER

If you define SharePoint as a business productivity platform, you may be wondering exactly where
the developer fits into this description. Although it seems like a convenient and common-sense way
of viewing SharePoint from an end-user perspective, what about the needs of the developer? To

Addressing the Needs of the Developer | 9

understand how SharePoint applies to the developer, you must get past the surface definition and
drive toward the platform capabilities. Here, you’ll begin to see some interesting and compelling piv-
ots for the developer.

Let’s look at a practical example. As you have seen, a business productivity platform implies hav-
ing a platform for end users to make them more productive in their day-to-day work lives — and
SharePoint can certainly do that. In short order, it can be used as an application for end users. For
example, a Human Resources (HR) department might use SharePoint to manage employee reviews,
or a sales team might use it to manage a monthly sales-forecasting dashboard for BI.

In both of these scenarios, SharePoint represents an end-user application (or bundle of applications),
but developers are not necessarily called out at this level. However, because SharePoint represents a
platform, you know that you can build on this platform, or extend its capabilities.

So, when your HR manager comes to you and asks you to design a SharePoint site collection that
integrates data from SQL Server or SAP, you get excited. When that same HR manager asks you to
map a custom document template to a SharePoint 2010 content type (that also pulls data in from
PeopleSoft), you become equally excited. And when the sales manager asks you to get data from an
Excel 2010 worksheet and then render that data inside of a Silverlight application in SharePoint, you
really start to jump up and down.

Extension and Enrichment for Developers

While SharePoint 2010 represents a set of connected applications (such as dashboards, document
libraries, and the like), it still has a vast array of opportunities for developers to extend and enrich
that end-user experience at multiple levels. This experience is obviously important when you think
about SharePoint in the context of the enterprise developer. However, when the independent soft-
ware vendors (ISVs) begin to think about that custom experience they want to deploy to their cus-
tomers, it becomes vital that they have a reliable platform beneath their feet that they can deploy

to and use to customize their SharePoint solutions. Their business depends on this stability and
predictability. Thus, SharePoint 2010 has done a very good job of providing a scalable platform that
supports multiple types of developers with different end goals and design ambitions.

So, SharePoint provides both an end-user paradigm (where the applications that make up SharePoint
serve the needs of the end user) and a development paradigm (where developers can develop on top
of SharePoint).

In a paper available through Forester Research (www. forrester.com/rb/Research/now_is_time_
to_determine_sharepoints_place/q/id/45560/t/2) entitled “Now Is the Time to Determine
SharePoint’s Place in Your Application Development Strategy,” John R. Rymer and Rob Koplowitz
reinforce this model. The two authors propose that SharePoint has an application level, where end users
integrate with the out-of-the-box collaboration and productivity applications. They then add a customi-
zation layer, where either power users or developers can begin to customize the SharePoint experience
for the end user. And lastly, they have a third layer, which is the application development layer.

It is at this application development layer where things get very interesting for developers. Here is where
you’ll find the solution developer who builds and deploys (or integrates through existing SharePoint
artifacts) applications or business solutions — such as creating a SharePoint list that is capable of read-
ing and writing data into an external LOB system, such as SAP or Siebel, or a Silverlight-enabled busi-
ness application that is deployed as a Web part into your SharePoint infrastructure.

10 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

Breaking It Down for Developers

What you may have gathered so far in this chapter is that SharePoint development can, indeed,
mean a number of things. For example, if you want to simply customize SharePoint, you may only
have to interact with page layouts or master pages (that is, the way in which you structure content
in SharePoint). This type of work would entail a baseline understanding of HTML editing, CSS,
and some understanding of how ASP.NET master pages work. However, if you want to do deeper-
level solution development, you may be interacting with the SharePoint object model, and leverag-
ing .NET and Web services to do this. This type of development would entail using managed-code
(that is, C# and Visual Basic, or VB.NET) solutions that are built and deployed into SharePoint — a
potentially more complex type of coding experience for the developer.

You could argue that the people performing both tasks are equally identified as developers on the
SharePoint platform, but what this brings to bear is the fact that actual development can range from
HTML/XHTML, AJAX, and XSLT to .NET and service-based development — and a few things

in between. So, what you might find are both developers and power users of SharePoint operating
at this level. However, this is not only symptomatic of SharePoint being a broad platform but also a
symptom of the different standards, applications, and interoperability that SharePoint must support
as a good citizen of the Web.

Thus, if you break down the use s N

. L Developer
of SharePoint across the three Application Development
levels shown in Figure 1-6, you’ll N J
find the largest population of e N

. . L Developer/Power User
SharePoint consumers interact- Customization >
ing with the Applications level. N J
These are the end users, and they e N End U
. n ser

represent your core audience when Applications >
building and deploying your cus- N J

tom applications to SharePoint.
Next, you may also operate at the
Customization level, where power users possess a high degree of SharePoint knowledge. In some
cases, you may work with these people, and in others you will work independently of one another.

FIGURE 1-6 Three levels of SharePoint

Lastly, there is you: the developer. You are, in many cases, the person who is developing those cus-
tom applications for SharePoint. You are the one who is developing that next killer app in the ISV
ecosystem. And you are the one for whom this book has been written.

Therefore, while the original definition of SharePoint highlights Microsoft’s core messaging for the
SharePoint 2010 platform, it may not necessarily strike a deep chord with the developer. To capture
this, let’s expand the original definition and re-frame the context for you, the developer:

SharePoint 2010 is about developer productivity, the availability of rich platform services,
and the capability to manage and deploy your applications with maximum flexibility.

With regard to developer productivity, this means that you can use either Visual Studio 2010 or
SharePoint Designer (SPD) 2010 as your core set of developer tools. As a professional developer,
you’ll likely use Visual Studio 2010 as your core toolset — especially if you’re a .NET program-
mer looking to get into the SharePoint space. As for SPD, you’re more than likely going to use it to
edit master pages and page layouts, as well as to build declarative or rules-based workflows using a

Addressing the Needs of the Developer | 11

visual rules approach (for example, using Visio 2010 and SPD 2010). And as a complement to these
tools, you may also use Expression Blend — either as a way to build more advanced and interactive
UlIs (through Expression Blend) or through Expression Web for baseline Web sites.

NOTE Chapter 3 explores developer tools in more detail.

In terms of rich platform services, SharePoint 2010 offers the developer much more in the way of
getting, managing, and updating objects and data within a SharePoint site. In this book, you’ll learn
about new application programming interfaces (APIs) and services that will allow you to do this,
and you’ll also learn about how to enable LOB system integration to bring external data into your
SharePoint applications. You’ll see many of the new and still-supported APIs and services through-
out the entire book.

You obviously have a number of deployment options at your fingertips. For example, you can import
a standard Windows SharePoint Services Solution Package (WSP) into your SharePoint farm. You
can build and deploy a solution to a SharePoint instance within the corporate firewall, and you can
also build and deploy solutions to a SharePoint site hosted on the wider Internet. What the latter
looks like is very similar to the on-premises version of SharePoint; what is different is the fact that
you don’t need to worry about management of that SharePoint server.

Figure 1-7 shows these as the three core pillars that map to the SharePoint developer experience.

« Visual Studio 2010

Developer Productivity ——> *SharePoint Designer
- Developer Dashboard
« Expression Suite

« SharePoint Object Model

Rich Platform Services ——> *Services
« LINQ for SharePoint
« LOB Integration

« ALM

Flexible Deployment —» + WSP Standardization
« On-Premises Deployment
« SharePoint Online

.

FIGURE 1-7 Developer tenets in SharePoint 2010

You should keep in mind a number of key points with regard to these three core pillars of the devel-
oper experience within SharePoint:

> SharePoint 2010 has a rich object model, as well as a set of services and APIs that can be lev-
eraged when developing custom solutions.

> Visual Studio 2010 now has an out-of-the-box experience for building and deploying
SharePoint solutions.

12 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

> You have a number of ways available to interact with the SharePoint object model using Web
services, Windows Communication Foundation (WCF), REST, and the SharePoint Client
Object Model.

> Data programmability using Language Integrated Query (LINQ) for SharePoint, Business
Connectivity Services (BCS) and External Lists makes SharePoint 2010 a first-class platform
to extend LOB applications.

» There are multiple integration points across other Microsoft and third-party applications (such
as Office 2010, SAP, PeopleSoft, Microsoft Dynamics, Microsoft Silverlight, and so on).

> A standard deployment methodology now exists for SharePoint 2010 that is defined using the
WSP standard deployment method.

> You can deploy SharePoint 2010 solutions on premises or to the cloud (that is, SharePoint
Online).

These points represent just a sampling of what you can do with SharePoint, and the goal of this
book is to show you how you can get started with all of these and more. Keep in mind that, when
SharePoint references business productivity, it not only means the applications that you’ll be build-
ing and customizing for your end users, but it also means for the developers themselves through all
of the enhancements in SharePoint 2010.

Now, let’s take a closer look at SharePoint at the platform level.

SHAREPOINT 2010: THE PLATFORM

SharePoint 2010 is a rich platform on which you can build and e 2
deploy your applications. And it is also an environment that can Custom Solutions

be customized for your audience or end user. This much you N J
know. What hasn’t been discussed yet, though, is what exactly e D
this platform looks like. For example, what is the architecture of Customization
SharePoint? What are the specific capabilities of SharePoint? What J
are the objects and APIs that you, as a developer, have access to? e D

. . . . Mi ft SharePoint S
The first thing to understand is the architecture of SharePoint 2010. icrosott Shareroint server

Figure 1-8 provides a high-level overview of the technology stack
for SharePoint 2010. From the bottom up, note first that SharePoint
2010 runs on the Windows operating system (OS), namely

AN J/
4 R

Microsoft SharePoint Foundation

Windows Server 2008 or 2008 R2. h .
When you install SharePoint, there is also a dependence on SQL SQL Server] [ASP.NET
Server and ASP.NET. SharePoint is built on the ASP.NET founda- N J
tion. Thus, if you’re familiar with ASP.NET, many of the founda- e ™
tional programming concepts will be familiar to you, such as Web Windows Server

parts or master pages, both in the architecture and programmatically. _ J

FIGURE 1-8 Baseline SharePoint

In SharePoint 2010, you have two main pieces that make up architecture

SharePoint: SharePoint Foundation 2010 and SharePoint Server 2010.
While these essentially represent two different editions of SharePoint, SharePoint Server 2010 is built on
top of SharePoint Foundation 2010.

SharePoint 2010: The Platform | 13

NOTE You can also install SharePoint on Windows 7 (64 bit), Windows Vista SP1
(64 bit), or Windows Vista SP2 (64 bit).

NOTE When this book refers to SharePoint 2010 (or just SharePoint), both
SharePoint Foundation 2010 and SharePoint Server 2010 are included in this
reference.

SharePoint Foundation ships as a free, downloadable install on the Windows OS, and represents a core
part of SharePoint. It includes a number of features such as security and administration, user and team
site collaboration, and document libraries and lists. In essence, it provides a baseline set of features
that will enable you to get started with both using SharePoint and developing for SharePoint.

While the functionality that ships in SharePoint Foundation is less broad than that which ships in
SharePoint 2010, it costs you nothing to download and install SharePoint Foundation. You can get
up and running very quickly with this version and begin your development work using it.

However, SharePoint Server 2010 offers a wealth of features that make the leap to buy worth it. For
example, you get additional features such as additional Web parts, Office server-side services such as
Word and Excel Services, enhanced search versions, enhanced BI, and much, much more. You can also
choose to purchase the Internet-specific edition (SharePoint 2010 For Internet Sites), which will provide
you with the rich publishing templates and workflow that you can use to create and deploy SharePoint
sites to the wider Web (for example, building a scalable SharePoint site for public, anonymous access).

As a developer, you have the capability to customize any of the SharePoint editions — you just have
more to customize and leverage with the SharePoint Server 2010 edition. For example, you could
create a custom master page and apply it to a team site using SharePoint Foundation, or you can do
the same thing in SharePoint Server 2010 and apply it to, for example, a publishing site (a specific
type of site that you can use to build and deploy externally facing Web sites).

Beyond thematic or branding customizations, you can also develop and deploy custom solutions.
These are, for example, .NET applications that you build using C# or Visual Basic, and then deploy
into SharePoint as solutions comprising one or more features. Further, with the full version of
SharePoint, you’ll have a wider array of services, APIs, and objects that you can either code against,
or leverage. This will ultimately make the development experience much richer for you.

If you drill into the SharePoint part of the architecture (that is, the Microsoft SharePoint Server and
SharePoint Foundation boxes), you’ll find additional functionality within the SharePoint platform
that you can leverage. Figure 1-9 shows a high-level overview of the components of the platform.

In this diagram, SharePoint is broken out across a number of areas, including a core set of capabili-
ties, site collection and sites, server APIs and client APIs, and data modeling and programmability.

The “SharePoint Capabilities” provide a convenient way for Microsoft to break out the core compe-
tencies of SharePoint. You can consider these the topmost way of breaking out the feature areas of
SharePoint. Because SharePoint exists as a Web-based solution, you’ll note that the next level down
is called “Site Collection and Sites,” which is how SharePoint organizes itself as a set of related sites

14 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

within a site hierarchy. The “Server APIs” and “Client APIs” essentially represent the different ways in
which you can interact with the SharePoint objects, such as data in a list or document libraries. And,
finally, “Data Modeling & Programmability” represents the ways in which developers can program
against the different data objects within SharePoint (for example, list data).

Let’s look at each of these in greater detail.

SharePoint 2010 Capabilities

At the top of Figure 1-9, you see the “SharePoint ()

Capabilities.” These are the core ways in which SharePoint ST CTelEn s (L on leer s

partitions itself into its respective and related parts. You N d
4 R\

may also hear Microsoft refer to these capabilities as work-
loads. These workloads (which are shown in Figure 1-10) Site Collection and Sites
provide a way to talk about the different capabilities of
SharePoint coming together, and you should see these

workloads as not only representing a core set of related

N
J

Server APIs] [Client-Side APIs

applications but also as opportunities for your application N -

development. ()
Data Modeling and Programmability

Within each of the capabilities, you’ll find many different L)

development opportunities. For example, the Table 1-1 shows FIgURE 1-9 SharePoint platform

the capabilities in the left-hand column, describes the out-of- capabilities

the-box features in the next column, and then lists out some
examples of extensibility for SharePoint in the third column.

@ A

Composites

D=0

W L

FIGURE 1-10 SharePoint 2010 workloads

SharePoint 2010: The Platform

TABLE 1-1 Key SharePoint Capabilities

CAPABILITY

Sites

Communities

Content

Search

Insights

Composites

NATIVE FEATURES

Sites is where you’ll predominantly find the collabora-
tive aspects of SharePoint. Sites contain an abundance
of features, including the capability to create, store,
and retrieve list data and document content. You also
have connectivity into the Microsoft Office 2010 client
applications through the list and document library.

Provides social APIs and networking capabilities, along
with the capability to search against profiles and locate
and interact with people through their profile meta-
data, relationships, tagging, and rating of content.

The capability to collaboratively manage content
using Web pages, document libraries, workflow, or
content types.

The power to search content inside and outside of
SharePoint, including information in structured data-
base systems and external LOB systems such as SAP,
Siebel, and Microsoft Dynamics.

Predominantly about Bl that supports, for example,
the capability to integrate Microsoft Access into
SharePoint, leverage Excel and SQL Server to access
and display data on a Web page, dashboards, and key
performance indicators (KPIs) to transform raw data
into actionable information.

The capability for business users to create their own
Bl solutions through connection, InfoPath, and Access
Data Services integration, customization, and business
process management.

Site Collection and Sites

EXAMPLE EXTENSIBILITY

Web parts, workflow,
master pages, site
pages, Office Web
parts

Search customization,
rating and tagging
capabilities, blogs, wikis

Field controls, content
types, workflows, Word
or Excel Services

Search customization,
Business Connectivity
Services (BCS), FAST

for SharePoint

Excel Services,
Access Services,
dashboards, BCS,
PerformancePoint
Services

Web parts, external
lists, workflows , BCS

Site collection and sites represent the site hierarchy when you create a new site or extend an existing
one. As shown in Figure 1-11, a SharePoint server farm (which can comprise one or more physical
servers), can be broken out into three major parts:

> The Web application that lives in Internet Information Services (IIS)

> The site collection, which represents the root SharePoint site

» The individual sites that live under the site collection

| 15

16 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

' ' ' ' SharePoint Server Farm

@ Web Applications (IIS)
L II SharePoint Site Collection (Root Site)

L D SharePoint Sites (Child Sites)

FIGURE 1-11 SharePoint site hierarchy

SharePoint uses IIS as its Web server. So, when you install it and open IIS, you’ll see an entry for
SharePoint that uses the standard port 80 in IIS. If you open IIS, you should also see a separate
Web application entry in IIS for the SharePoint Central Administration site collection. This will be
located on a separate port.

If you set up a standalone instance of SharePoint (which you’ll do in Chapter 2), you should note
that the default site created for you is a site collection. The site collection is the uppermost, root site
that you’ll work from within SharePoint. The site collection is also a site that you can customize and
interact with. You grow your SharePoint site collection by adding additional Web sites to it. Any
site you create underneath the site collection is called a site (and is sometimes referred to as a Web).
Furthermore, any site you create within that site is a subsite. This may seem confusing, but just
think of the site collection being the parent and the sites within that collection being children sites.

Within the site, you will predominantly create subsites and interact with lists and list items, document
libraries, and a host of other, more discrete features of SharePoint. However, you can also develop
against many of the Ul-level features that are new to SharePoint 2010. For example, key functionality
includes features such as site pages that can be customized and stored in a pages library, the capability
to edit text inline (with HTML source or rich text) and more easily add images to a Web part, to utilize
Silverlight applications to improve the look, feel, and experience of a user, to transform your pages from
XML to HTML using XSLT, and much more. Each of these activities can be accomplished at the site
level through the page interface (and, of course, through the developer tools). You should think of each
of these as part of a cadre of opportunities for your SharePoint development.

One of the core parts of the SharePoint 2010 UI that is customizable is the 7ibbon, which integrates
JavaScript with XML to provide developers with a way to deploy customized elements. You can

see in Figure 1-12 that there are tabs with controls on them. The tabs are contextually driven and
change depending on what you’re doing within SharePoint.

The ribbon is a significant change from earlier versions of SharePoint. The reason that Microsoft
changed the ribbon was to make the functions available to the user more central, and to create

SharePoint 2010: The Platform | 17

an experience similar to that of the Office 2010 Ul client ribbon. As a developer, you’re probably
already asking yourself how you can build a custom ribbon. You can do this using XML (that repre-
sents the structure of the ribbon), and then mapping JavaScript to that XML document.

As you can see in Figure 1-13, outside of the ribbon, the page structure of a SharePoint Web page is
similar to one in SharePoint 2007. There is an area where you add content to the page and an area
for your navigation links. The content essentially means anything that you create for the SharePoint
site (for example, wiki text, photos, and Web parts). The area that surrounds the content within

SharePoint is called the chrome.

= R ¥ L -
| &t Verdana = Bt < 12 ®] e
L — e ™ L seea.
Paat g - = A 5 Mok
1: e Unde . B S U ahax AL Ay @. E U.‘" 5?‘4‘!1“? % ML
Chpboad Ford Putagagh Syles larkup
Cocumants
XAPS ek e
Links Add & Web Farl
Drscussons
Content Editor - ¥
1] Meeyels Bin |

FIGURE 1-12 SharePoint ribbon

Ribbon F

Hello World!!! —— Content ——

T Triee Heme Hodified
N B Erslerer
Taam Dicutitn @ "
3 Myt Bin) Sysbem Ak
ol Al Sits Conkann
& héd dooumen
Navigation

FIGURE 1-13 SharePoint 2010 ribbon and page structure

Server APIs and Client APIs
At some point, you will integrate your solution at some level with the SharePoint object model. For
example, you may want to get data out of, or put it into, a SharePoint list, and this will require you
to have a “mediation” point to integrate with SharePoint.

18 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

In previous versions of SharePoint, you could interact with the SharePoint object model in a
couple of different ways (such as through ASP.NET Web services, or by using a server-side refer-
ence, and coding directly against the object model). SharePoint 2007 supported ASP.NET Web
services out of the box, so you could create and deploy Web services with some degree of ease to
either the SharePoint “hive” (that is, the _vti_bin folder within the SharePoint folder hierarchy),
or you could create and deploy a Web service to IIS. WCF services were also supported by way of
IIS deployment, but were not supported out-of-the-box when deploying to the SharePoint file sys-
tem — you needed to create a spe-
cial virtualPathProvider object

to handle the .svc extension on the f@%

WCEF service. k\{iq}

SharePoint 2010, however, has SharePoint

made a significant advancement OM

in supporting services. SharePoint

2010 supports interacting with ¢ (njz?

SharePoint through multiple ser- &'“‘{iq}

vice endpoints. Specifically, it sup- SharePoint

ports the ASP.NET (.asmx) Web COM g
service standard, WCF services, % _— - > g
and RESTful services. It also sup- ‘/\i Ey
ports the server-side object model, Developers o :
which enables you to access key ASMX SharePoint 2010
SharePoint artifacts from server- =

deployed assemblies. This gives }\%

you a wide array of choices as you WCF

embark on your solution devel-

opment, which, in some way, V\i

involves a service-based approach. 4

Figure 1-14 provides an overview of REST

these options. FIGURE 1-14 Server APl and client API options

NOTE You’ll see more Web service coverage in Chapter 10.

Furthermore, SharePoint 2010 also provides you with a client object model, which means that you
can program against SharePoint from Silverlight, JavaScript, or Windows Presentation Foundation
(WPF) clients (or, more generally, NET applications) simply by adding a DLL reference to your
application and leveraging a new set of APIs. This eliminates the need to use a Web service reference
whenever you want to interact with, for example, a SharePoint list, and allows you to have an API
that you can use to directly interact with the list and its properties without a service connection.

Data Modeling and Programmability

Within each SharePoint site that you create, you’re going to find many different opportunities to
program against data. In fact, you’ll very often start off with your data and design around it.

SharePoint Central Administration | 19

In the world of SharePoint, data can mean many different things. For example, it might mean con-
necting a Microsoft Access 2010 database to SharePoint by way of Access Data Services by creat-
ing a database in Access and then publishing it to SharePoint. It might also mean interacting with
SQL Server data, or interacting with service endpoints through BCS to integrate with LOB and
non-Microsoft systems. Further, it might also mean leveraging SQL Server Reporting Services or
PerformancePoint Server to bring enhanced BI into your solutions. And, lastly, the data might actu-
ally come from a SharePoint list (where users manually enter the list data, and you programmati-
cally code against it).

Each of these examples will require different ways of interacting with data within SharePoint.
However, each of them will have different implications for you. For example, you’ll find it very easy
to create read/write SharePoint lists that connect to SQL Server using a connection string. However,
you’ll need to think more deeply about authentication to an outside LOB system when connecting
using the BCS. Also, you could leverage the SharePoint client object model or an out-of-the-box Web
service to interact with SharePoint list data, so you’ll need to understand how you design your appli-
cation to work with that data.

You should be interested not only in how you connect to your data sources but also in how you
interact with them. For example, in many cases, you will want to query data when you have created
a connection to it from within your SharePoint site. This may mean creating SQL queries or, more
optimally, it may mean leveraging LINQ in your applications. Because SharePoint 2010 has the
capability to abstract objects such as list data into strongly typed data objects, you can use LINQ to
query that data within your applications, making interacting and managing your data a much more
efficient process.

In a nutshell, those who are new to SharePoint will find a myriad of opportunities to select when
interacting with data. And those who were familiar with SharePoint 2007 will be extremely happy
to discover many advancements in SharePoint 2010.

SHAREPOINT CENTRAL ADMINISTRATION

While this is not a book on administration, this section provides a high-level introduction to the
topic. As a developer, there may be cases where you want to leverage the capabilities built into
SharePoint Central Administration.

After you install SharePoint 2010, a separate site collection is created for your use in performing the
different administrative functions that you might do on a daily basis. This site collection is called
the Central Administration site. This site collection is run as its own Web application in IIS and

is separate from the site collections you create. But it is still the central point of administration for
your SharePoint site. All farm server administrators can access this site, and, much like your regular
SharePoint sites, you can edit and customize the Central Administration site.

Many of you who will develop for SharePoint 2010 will also be the person who administers certain
aspects of your SharePoint site. For example, this might mean that you would have to install and
configure SharePoint, understand how to upgrade some of your solutions from SharePoint 2007 to
2010, or even create new Web applications or sites using the Central Administration functions. And,
while this book is not necessarily meant to be a comprehensive overview of SharePoint 2010 Central
Administration, it does provide an introduction.

20 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

With this in mind, Figure 1-15 shows the SharePoint 2010 Central Administration site that lists the
core administration features. Within the Central Administration site, you can manage a number of
activities, which are broken out into the following eight areas:

> Application management
Monitoring

Security

General application settings
System settings

Backup and restore

Upgrade and migration

Y Y Y VY Y VY

Configuration wizards

#Hi Home - Central Administration ﬁ - | @ ~ Page - Safety ~ Tools ~ @

%# Site Actions « Browse Share & Track Edit

%Central Administration

&

H
e Application Management

Manage web applications
Create site collections

System Settings Resources '
Manage servers in this farm
Manage services on server
Manage service applications Manage farm features

Application Management

.,

Systen Settings

Monitoring Manage content databases Configure alternate access
Backup and Restore RABMNGS
it » || Monitoring
S H] A ; w i
ecurity |@ Review problems and solutions -siaj Backup and Restore = Add new link
Upgrade and Migration Check job status | 4 @ perform a backup
B View web analytics reports =8 Restore from a backup
General Application o I B
Settings Perform a site collection backup
Security
Configuration Wizards | E . 2 2
< 4y Manage the farm administrators Upgrade and Migration
group é Convert farm license type
Configure service accounts Check product and patch
installation status
e General Application Settings Checkiuparads statis
L@ Configure Send To Connections . i
Configure content deployment <>+ Configuration Wizards
paths and jobs 4¢

Manage form templates

FIGURE 1-15 SharePoint 2010 Central Administration

Application Management

Application Management is the place where you can, for example, create new Web applications and
site collections, and, more generally, manage the services that are installed on your SharePoint site
(for example, Excel Services or BCS) and manage your content database. (The content database stores
SharePoint data, and is the reason why SharePoint takes a dependency on SQL Server upon instal-
lation.) Using the application management options, you can accomplish tasks such as modifying the
properties of the content database, activating features, creating new site collections, and so on.

SharePoint Central Administration | 21

Monitoring

Monitoring is the central place within Central Administration to manage reporting, monitoring,
and the status of your SharePoint site. The Monitoring site is broken down into three areas:

> Health status — Health status provides a place for you to manage the status of different ser-
vices on your SharePoint server (such as Visio services or farm-level services). You can see
which services are failing, for example, through reports that are surfaced here. Health status
also enables you to define rules (such as the scheduling of application pool recycles).

> Timer jobs — Timer jobs enable you to define specific jobs to run, and when to run them
(such as search crawl log cleanup or audit log trimming jobs).

> Reporting — Reporting provides you with a set of tools that enables you to create and man-
age reports, run diagnostic logging, and view reports on various server-side activities.

Security

Security covers a number of areas, including the management of administrator accounts, the config-
uration and management of service accounts, the management of password change settings and poli-
cies, and the specification of authentication providers, trusted identity providers, antivirus settings,
blocked file types, Web part security, self-service security, and secure token services. The security
settings here supplement the security in the main browser UI, where users and site administrators
can assess specific permissions that relate to users for their sites.

General Application Settings

The General Application Settings site is where you configure a number of general options for your
SharePoint site collections and sites. For example, you’ll often find that you’ll want to have the capa-
bility for your SharePoint site to send mail to users. You configure these options from within this
part of the site.

Also, in the context of WCM, you may want to manage a number of deployment and approval
options (such as content deployment location and approvers of that content). You also manage that
type of activity from within the General Application Settings.

In general, think of this site as the generic settings for your SharePoint sites.

System Settings

Conversely to using the SharePoint site settings, you may also want to configure more server-centric
settings such as farm-level or access features, or even manage the services (for example, Excel
Services) that are available to users of the site collection. You manage these types of settings from
within the System Settings site.

Backup and Restore

At some point, you may find that you must back up and restore your SharePoint site. The “Backup
and Restore” features within Central Administration enable you to create and schedule regular

22 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

backups for your SharePoint, perform ad hoc backups, restore from a previously backed-up
SharePoint site, and so on. Essentially, this is your point of entry if you want to ensure that you have
a failover plan for backing up a site.

While you think you may never need this, there is sometimes the convergence of heightened per-
missions settings with user error, which can result in new users deleting parts of a site by acci-
dent — which may include something you’ve created as a developer.

Upgrade and Migration

At some point, you may find yourself wanting to upgrade from one version of SharePoint to
another — for example, moving from SharePoint Standard to SharePoint Enterprise. This requires a
license and a server-driven process to upgrade one version of SharePoint to another.

You can do this type of action from within the “Upgrade and Migration” part of the Central
Administration site. Note that you can also install service patches and check on installation and
upgrade progress from within this part of the administration toolset.

Configuration Wizards

The Configuration Wizard is simply a step-by-step wizard that configures your SharePoint server for
you. You should have seen this wizard when you first installed SharePoint. However, if you want to
run it again after installation to change some of the configurations on your SharePoint server, you
can do so.

SUMMARY

This chapter provided a first look at SharePoint — both for those who have never seen it and for
those who are returning SharePoint developers — and answered the question of what it is and what
the high-level architectural pieces and capabilities of SharePoint are.

In this chapter, SharePoint was broadly defined as a business productivity platform for the enterprise
and the Internet. More specifically, for the developer (and in the context of this book), this definition
was recast as a platform that supports developer productivity, has extensive platform services, and
can support multiple deployment options.

One of the key takeaways from this chapter should be that SharePoint is a rich developer platform.
There are an abundance of APIs, an object model, and a powerful set of services that can be lever-

aged to create some very compelling applications. There is also a great set of tools that will support
your efforts at evolving or improving your SharePoint development skills.

In Chapter 2, you will begin to work through a number of exercises that cover installation, configu-
ration, and development.

Summary | 23

EXERCISES

P WN

Define what SharePoint is for both the end user and the developer.
What are the three ways in which you can look at SharePoint from a developer’s perspective?
What are some of the key developer features in SharePoint 2010?

What are some of the key administrative features in SharePoint 2010?

24 | CHAPTER1 INTRODUCTION TO SHAREPOINT 2010

» WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION
SharePoint Business productivity platform for the enterprise and the Internet.
SharePoint for the Developer SharePoint 2010 is about developer productivity, the availabil-

ity of rich platform services, and the capability to manage and
deploy your applications with maximum flexibility.

SharePoint Foundation Core edition for SharePoint 2010. It ships as a free down-
load. (This was called Windows SharePoint Services 3.0 in
SharePoint 2007.)

SharePoint Server 2010 Enterprise edition that is covered in this book, and will be
referred to as SharePoint throughout the book. (This was called
Microsoft Office SharePoint Server (MOSS) in the 2007 release.)

SharePoint Architecture SharePoint is built on ASP.NET and installs on a number of
64-bit Windows operating systems.

SharePoint Online Hosted version of SharePoint that is managed by Microsoft for
you in the cloud.

SharePoint Central Administration The site collection that you use to administer your SharePoint site.

RECOMMENDED READING

There is a vast array of resources out there to get you started on developing for SharePoint 2010.
Following are some key resources:

> MSDN SharePoint Developer Center at http://msdn.microsoft.com/en-us/sharepoint/
default.aspx

» Channel 9 SharePoint Developer Learning Center at http://channel9.msdn.com/learn/
courses/SharePoint2010Developer/

» SharePoint 2010 SDK at http://msdn.microsoft.com/en-us/library/
ee557253%280ffice.14%29 . .aspx

Getting Started with SharePoint
2010 Development

WHAT YOU'LL LEARN IN THIS CHAPTER:

» Getting to know the core developer pillars in SharePoint 2010
(including tools, platform services, and deployment options)

» Becoming familiar with the primary tools to develop and deploy
SharePoint solutions

> Performing a number of installation, configuration, and simple devel-
opment tasks

> Understanding site-level security settings within SharePoint

In Chapter 1, you learned about some of the basics of SharePoint 2010, including what it is
and some of the high-level features for developers. You also became familiar with some of the
basic architectural concepts, as well as the overall look and feel of a SharePoint site — both the
SharePoint site you would interact with on a daily basis and the Central Administration site.

This chapter dives deeper into the developer features of SharePoint 2010, building on the
discussion from Chapter 1. This chapter also walks you through some how-to examples that
show you some basic Web-based actions, and then progresses into some more in-depth devel-
opment samples. This chapter addresses some of the technical skills that you can expect to
learn and hone as you get more involved with SharePoint development.

Thus, the goals of this chapter are twofold:

> To get you more familiar and comfortable with some of the core developer features of
SharePoint

> To begin to show how you can programmatically interact with SharePoint

26 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

So, let’s jump in and get started by talking about some of the core developer features for SharePoint.

CORE DEVELOPER FEATURES FOR SHAREPOINT 2010

As mentioned in Chapter 1, the major features for the SharePoint developer can be broken down
into three main categories:

>

>

>

Developer productivity
Rich platform services

Flexible deployment

These three areas, in turn, can be broken down into greater detail. By doing so, you’ll see that there
exist a number of developer-centric features you can take advantage of.

Developer Productivity

For developer productivity, a significant advance for SharePoint 2010 is the tooling support that
ships with Visual Studio 2010. Included with Visual Studio are a number of project-level templates
and item-level templates that you can use to create and deploy a wide array of features and solutions
to SharePoint. For example, Figure 2-1 shows the different templates available to you, which are
described in the following list:

>

Import SharePoint Solution Package — This option imports a SharePoint Solution Package
(a file with a .wsP extension), the standard way of building and deploying SharePoint solu-
tions into your current project that can be redeployed into another SharePoint instance of
your choice.

State Machine Workflow — This represents a workflow that is based on the system or appli-
cation state and can be deployed to SharePoint. It leverages Windows Workflow and is a spe-
cial template that enables automated deployment to SharePoint.

Event Receiver — This allows you to create server-side code that can be called and executed
by a feature or solution. Event receivers are often created to respond to a user action (for
example, when a user adds an item to a list, an event is triggered to update a log entry).

Empty Project — An empty SharePoint project can be used as a blank starting point for proj-
ect development. You can add lists, Web parts, event receivers, and so on, to an empty proj-
ect, and then deploy it to SharePoint.

Module — This provides a way to deploy a specific file to a SharePoint site. It allows for the
bundling and provisioning of files for a feature. So, when the feature is activated, the files are
deployed to the specified file location.

Business Data Catalog Model — This is used to create connections to line-of-business (LOB)
systems. This is similar to what is created by SharePoint Designer 2010 (see Chapter 8), but

Visual Studio uses a more code-centric approach for more advanced and complex connectiv-
ity scenarios.

Core Developer Features for SharePoint 2010 | 27

Content Type — A custom content type (for example, a template, document, list column, and
so on) can be repurposed across SharePoint.

Sequential Workflow — This represents a workflow that works in a sequential manner
through a set of activities and can be deployed to SharePoint. It also leverages Windows
Workflow and is a specific template that enables automated deployment to SharePoint.

List Definition — This is used to define and deploy a list to a SharePoint site. For example,
you can define fields or columns when you create the list definition.

Import Reusable Workflow — This is used to import a declarative workflow (only the XML
part of the declarative workflow) that has been created by SharePoint Designer 2010, and
converts it into a code workflow that a developer can then further customize.

Site Definition — This is used to define and deploy a site into a site collection. Your site can
also contain elements such as lists or Web parts — items that are available from the Project
Item templates.

Visual Web part — This is an ASP.NET-based Web part that you can use to build and deploy
Web parts using drag-and-drop controls. You can then write ASP.NET event handlers for
those controls.

New Project 21 x|
I.NE[Framework 4.0 j Sort by: IDe{auIt [Search Installed Templates... = m
—_— ; -
Recent Temp\ates ‘ @ Import SharePoint Solution Package wisual C# Business Data Catalog Model |
Type: Visual C#
Installed Templates e.‘ug State Machine Workflow Visual C# A project for creating a SharePoint Business |
= Data Catalog Model !
Databasz L, |
Coud Service Event Receiver Visuzl C#
Reporting |
Sitverlight ﬁ Empty Project Visual C# |
Test |
WCF E Module Wisugl C#
Workflow
= Visual C# 5 Business Data Catalog Model Visual C#
~E |
Windows |
Web | 88 | content Type Visual C# |
Office
B SharePaint SLS Sequential Workflow Visual C# |
2007 —
ﬁ List Definition Visual C#
Database =
Hloud Service @ Import Reusable Workflow Visual C# |
Reporting |
Silverlight = @ Site Definition Visugl C# i
Online Templates | G
| I_} Visual Web Part Visual C# |
| |
MName: | BusinessDataCatalogl
Location: IC:\,Sam ples\MSDNY _'I Browse... |
Solution: Icreate new solution j
Solution Name: |BusinﬁsDataCaialag1 [V Create diractory for solution
[~ Add to Source Control
OK I Cancel

FIGURE 2-1 Visual Studio 2010 project templates

28 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

NOTE You can also add item-level templates after you create a Visual Studio
project, but that will be examined in greater detail in Chapter 4. Of note is the
fact that you can also extend Visual Studio 2010 SharePoint templates to create
more custom project-level or item-level templates. For example, one interesting
community example is the creation of a Visual Web part project template that
can be deployed to SharePoint Online via a sandboxed solution.

For your SharePoint development, you may find yourself using not only Visual Studio 2010 but also
SharePoint Designer 2010, which is particularly useful for a number of key developer tasks (for
example, building rules-based or declarative workflows, creating and editing master pages and page

layouts, and creating connections to LOB systems via an ADO.NET or Web service connection).

Figure 2-2 illustrates the new SharePoint Designer 2010 interface, and, in this particular instance,

shows the creation of an external content type that maps data sources to a SharePoint list (which is
called an external list).

<3 | 3 d %] lii" http://moss.contoso.com/sites/BCS - Microsoft SharePoint Designer (Technical Preview]) (Unlicensed Product) = B 33
w Business Data Modeling Gl
s M b B (B X(E M s X BRI
E3 Copy T g5 bt
Summary Operations Switch Connected Edit Connection Edit Remove Set as New Edit Remove Create Lists Goto Create
Cﬂpasl: View Design View System Properties Operation Operation Title Association Association Association & Forms List Profile Page
Clipboard =& Views Connection Properties Operation Field Association Lists & Forms Profile Page
SharePoint Site < [BusinessContact)i BusinessContact \(9 \ X
o ~ ||« ~ (&} BCS » Entities » BusinessContact B
& BCS : it =l
= Use this page to manage and edit this external content type.
[Site Pages ‘E
[3 Master Pages
Lists and Libraries - el
- External Content Type Information ~ Permissions L
(& Workilows
@ Content Types Use this part to edit general settings. Use this part to view permissions for this external content type.
F
[Data Sources Display Name Name | Permissions
IJ Entities NT AUTHORITY\Authenticated Users Edit, Execute, SetPermissions
Gl Subsites Programmatic Name BusinessContact 4 LI
L3 AllFiles Namespace AdventureWorks
Entities = Version 1000 External Lists 4
AdventureWorks =
Identifiers ContactiD(Int32) Use this part to view and navigate to external lists bound to this exter...
| BusinessContact 3
Office Item Type -
B order e Contact = T [
Offline Sync for External List Enabled j "T ontacts /sites/BCS/Lists/ i Ci ‘Contac
4 »
Connected System AdventureWerks _I
Associations P

External Content Type Operations
Use this part to manage the operations of this external content type.

This external content type has read, write, and search
capabilities. You may associate it with other external content
types to extend its capabilities even further.

Name |T!Qe |
ContactCreate item Creator
ContactRead Item SpecificFinder

Use this part to manage the associations between this and other exte...

Click here to create an association

Fields
Use this part to view fields on this external content type.

Fiald Al |7 1

FIGURE 2-2 SharePoint Designer interface

Core Developer Features for SharePoint 2010 | 29

Interestingly, professional developers historically shied away from SharePoint Designer because

it was mainly used for page layout and design. However, because the 2010 version offers more
ease of use for building workflow (that builds out in a format that is interchangeable with Visual
Studio 2010) and LOB connectivity features, developers most likely will be returning to this tool.
SharePoint Designer has made tremendous strides in the 2010 release, and it’s also free — two rea-
sons why this should be a part of your developer toolkit.

Another key productivity advance for SharePoint 2010 is the operating system support for develop-
ers. With SharePoint 2007, developers were required to use a Windows Server operating system
(OS), such as Windows Server 2003 or 2008, to host and develop for SharePoint. However, with
SharePoint 2010, you can now develop on a client OS like Windows 7. The flip side to this, though,
is that SharePoint 2010 requires a 64-bit machine on which to run.

Another developer-centric feature in SharePoint 2010 is the developer dashboard, which provides
statistics and reports about code that is executed against your SharePoint site. Those who have
coded against SharePoint in the past may have used tools like Fiddler to understand how custom
code was executing against SharePoint. The developer dashboard now tracks how your custom
code interacts with SharePoint to show where performance bottlenecks or exceptions may occur.
Figure 2-3 shows a SharePoint command that turns on the developer dashboard in the SharePoint
site in ondemand view — meaning you can toggle the view on and off as you wish.

£ Windows PowerShel

Windows PowerShell
Copyright ¢G> 2802 Microsoft Corporation. All rights reserved.

PS C:“Uzerzhctefox> stsadm —o setproperty —pn developer—dacshboard —pu ondemand

FIGURE 2-3 PowerShell command

You get a variety of performance and query details for the objects on a given SharePoint page with
the developer dashboard, so you can troubleshoot potential problem areas in your custom code. For
example, you can expect information such as request/response times for your operations, Web part
load times, and database response times.

The developer dashboard is accessible through PowerShell commands, an object model, or through
stsadm commands. Figure 2-3 showed you the command using the ondemand parameter, but you
could also replace the same command with on or off to either have the developer dashboard turned
on (and have it on all the time), or turned off. Figure 2-4 shows the developer dashboard.

30 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

\S\I Developer Dashboard

+ Request (GET:http://fabrikamhockey:80/books/default.aspx) (5074.02 ms) Web Server
= BeginRequestHandler (0.18 ms)

= PostAuthenticateRequestHandler (0,09 ms) S s
= PostResolveRequestCacheHandler (5000.59 ms) Current User REDMONDY\stefox
m GetWebPartPageContent (4995.32 ms) Page Chedkout Level Published
= GetfileAndMetalnfo (4995.86 ms) Current SharePoint Operations 2
= PortalSiteMapDataSource: Determining Starting Mode (0,03 ms) Log Correlation Id ce3a3682-438f-4784-ab3e-93b42fa5F34a

: PortalSiteMapDataSource: Determining Starting Node#1 (0.02 ms)
= Add WebParts (0.95 ms) Asserts and Critical Events
= Wrox Book Delivery (0.22 ms)

= Tweety Bird (0. 16 ms) Database Queries

= ToolBarMenuButton, CreateChildControls for SiteActions (0. 58 ms) proc_FetchDocForHttpGet 4994.68 ms
= ToolBarMenuButton. CreateChildControls for PersonalActions (0.20 ms) PR
= SearchBoxEx.OnlLoad {0.22 ms) Eloais =

= Activate web part connections (0.09 ms) SPRequest Allocations
= Render Ribbon. {6.65 ms)

= Render WebPart Zone Left (1.13ms) SPWeb: http:/ffabrikamhockey/books/default.aspx
i (1 y

= Rander Webpart Virox Book Deivry (3,20) A R
SPWebPartManager OnLoad +0.00 ms

Wrox Book Delivery OnLoad +0.06 ms

Tweety Bird OnLoad +0.07ms

SPWebPartManager OnPreRender +0.00 ms

Wrox Book Delivery OnPreRender +0.30 ms

Tweety Bird OnPreRender +0.52ms

FIGURE 2-4 Developer dashboard

There are other features that you’ll see throughout this book within the area of developer productiv-
ity. But, from a high level, you can expect to see great opportunities to build your SharePoint appli-
cations using Visual Studio 2010 or SharePoint Designer 2010. Many of the examples throughout
this book will leverage these two tools.

Through template-specific discussions and coverage of Visual Studio 2010, you’ll also learn about
some of the application lifecycle management (ALM) capabilities. Examples of ALM include having
the capability to import existing .wsP packages and using the Team Foundation Server features of
Visual Studio for your SharePoint 2010 development.

NOTE While Visual Studio 2010 and SharePoint Designer 2010 should be
treated as your primary ways of developing for SharePoint, the Expression
Blend Suite also offers some value for the developer when building advanced
user interfaces (Ul) for SharePoint, such as a Silverlight-based UL.

Rich Platform Services

In terms of rich platform services, SharePoint has evolved quite a bit from SharePoint 2007. For
example, you have a rich set of UI objects that you can develop against (such as the SharePoint rib-
bon), and you have a core set of SharePoint artifacts that can be used to build out your SharePoint
site (such as Web parts and lists), which you’ll get a chance to test out later in this chapter.

Beyond these core SharePoint artifacts, you also have a set of services you can leverage in your
SharePoint development and client-side application programming interfaces (APIs) that can be used
in your application development. As discussed in Chapter 1, these services range from ASP.NET (for
example, Lists.asmx) to native and custom Windows Communication Foundation (WCF) support
(for example, myCustomService.svc) to RESTful services (for example, ListData.svc). SharePoint
2010 also supports the capability to build and deploy custom services into the SharePoint 2010

Core Developer Features for SharePoint 2010 | 31

folder hierarchy (now referred to as the SharePoint root), or you can deploy ASP.NET and WCF ser-
vices to Internet Information Server (IIS) — you’ll see this in detail in Chapter 10.

NOTE In SharePoint 2007, the server file system was often called the
“SharePoint hive.” In SharePoint 2010, it is now referred to as the “SharePoint
root.” However, you may hear developers refer to either of these terms, which
mean the same thing: the SharePoint file system (<drive>:\Program Files\
Common Files\Microsoft Shared\Web Server Extensions\14).

Beyond the core support for services, SharePoint 2010 also ships with a number of services out of
the box that are extensible and can be used in a variety of ways. For example, one of the services
that really accelerates SharePoint 2010 development for the beginning professional is the use of the
Business Connectivity Services (BCS), which is discussed more in Chapter 8. In essence, BCS enables
you to quickly integrate LOB system data with SharePoint and Office 2010.

Another set of server-side services that extend the capabilities of the Office client technologies to
SharePoint is Excel services and Word services, which are server-side ways of interacting with your
Microsoft Office documents. For example, you can use Word Services to batch process the transla-
tion of .docx files (the standard format of documents created with newer versions of Word) into PDF
or xps files on the server — which provides a huge cost savings when manipulating data into docu-
ments and then processing those documents for mass distribution to your customers. You’ll also see
coverage of other server-side services in this book, including Visio services (which provide diagram-
ming and workflow capabilities for SharePoint) and Access services (which enable publishing of
Access data to SharePoint).

Data programmability capabilities represent another significant advancement in SharePoint 2010.
Key to any application design is knowing what data source or service you’re programming against.
SharePoint development is no different. If you understand the data source or the Web methods that
connect into that data source, you can design your middle-tier and UI experience from there.

In SharePoint development, your data could be represented as a SharePoint list or derive from exter-
nal data sources that are either ADO.NET-based or integrated using a service-based architecture.
This data programmability will become especially apparent in the way in which you connect lists

to back-end data sources, and the ways in which you can query and filter that data once you’ve suc-
cessfully created a connection to it through, for example, Language Integrated Query (LINQ) for
SharePoint (which applies the principles of LINQ to data that resides in SharePoint).

The following code snippet shows the capability to retrieve data from a SharePoint list and then
treat that list as a strongly typed object by using LINQ (shown in boldface). The query enables

you to filter the data and then bind it to the data-display object, which, in this case, is a datagrid
called myGrid. This represents a great way to query and filter with data that is being retrieved from
SharePoint.

protected void Page_Load(object sender, EventArgs e)
{
ProjectsDataContext dataContext = new ProjectsDataContext
("http://stefoxdemosvr/customers) ;
EntityList<MyCustomers> Customers = dataContext.GetList<MyCustomers>

32 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

("Customers") ;

var custQuery = from customer in Customers
where cust.Sales >= 3000000
orderby cust.Name
select new { cust.Name, cust.Sales };

myGrid.DataSource = custQuery;
myGrid.DataBind() ;

Another major investment in SharePoint 2010 is the capability to support Silverlight applications
out of the box. You will see that just this one feature alone will open up quite a few opportunities

for you to really begin to explore and build exciting and dynamic experiences for your users using
Silverlight support.

This support comes in two primary ways:

> You can use the Silverlight Web part as

Page Tools

a container for your Silverlight applica- % Site Actions Insert

tion, as shown in Figure 2-5. @ E‘pﬂ M
. . . Text I Web Existi

> Silverlight development on SharePoint = 0 st
2010 comes already configured and sup- It | ek e

ported — so, for example, you have no

.. . . [& Lists and Libraries ﬂ &l content Editor
additional server-side configuration you T b
must do to prepare your environment. [Business Data [Pags viewer

. E3 Content Rolup :]Sirverlignt Web Part
(In SharePoint 2007, there were a num- =
ocuments - B

ber of configuration steps you needed to =—
undertake to get Silverlight to work.) FIGURE 2-5 Silverlight Web part

There are many, many more platform services (such as list lookups and relationships, workflow
enhancements, site theming with live preview, XLST-supported customization, and so on), some

of which are explored throughout this book and others that you’ll discover as you get more deeply
entrenched in SharePoint development. In fact, there are too many to fully articulate in one chapter.
However, your key takeaway should be that there are a ton of great platform services you can lever-
age to get started developing for SharePoint 2010.

Flexible Deployment

With SharePoint 2010, you have two primary deployment options:

> On-premises — The on-premises version of SharePoint is where you or your company own

the assets on which the instance of SharePoint runs. For example, you deploy it on your cor-
porate network behind the firewall, you manage the hardware and updates to that hardware,

and you manage the administration of the site. Subsequently, you absorb the costs of running
SharePoint for your organization.

SharePoint Online — SharePoint Online is a hosted version of SharePoint that Microsoft
runs for you out of its data centers. In SharePoint Online, you build and deploy your

Core Developer Features for SharePoint 2010 | 33

SharePoint solutions to a sandboxed environment — a ring-fenced environment that runs in
the cloud within the purview of a site collection. For example, you can build a solution that
reads and writes to a contact list within a site collection. This works on-premises, and can
equally work in SharePoint Online.

The functionality of the two is very similar. However, following are a couple of major differences:

> When you navigate to SharePoint Online, you are accessing an instance of SharePoint in the
cloud (so you are accessing it from the Web, as opposed to behind a corporate firewall or
private network).

> Asa developer, you have some restrictions because you are primarily deploying custom solu-
tions into a managed environment within the site collection. This environment is managed by
Microsoft’s IT staff.

However, the latter notwithstanding, if you combine a new feature in SharePoint 2010 called
sandboxed solutions with SharePoint Online, you can maintain a very comfortable price point for
SharePoint and still reach many development goals. For enterprise-level deployments of SharePoint,
you will more than likely deploy to the on-premises version of SharePoint, and sandboxed solu-
tions can also be used here. However, small and medium-sized businesses may find that SharePoint
Online is the way to go. Either way, you should know that there is a good developer story, and if you
want to have symmetry across both on-premises and SharePoint Online, then sandboxed solutions
are one of the ways in which you can achieve that.

Sandboxed solutions also enable developers to have more control over their site collections. This
frees up the farm-level administrators from the developers/site collection administrators, and enables
both to have a tighter level of management over their environments, as well as the code running in
that environment. The challenge was creating and deploying solutions you could trust not to do bad
things to the SharePoint farm. With sandboxed solutions, site collection administrators have the
authority to manage the applications (or delegate that authority to others) in their site collection.
And developers have more flexibility, at the cost of using a limited subset of SharePoint, to create
solutions they know will be deployed in a safe and rapid manner.

In essence, what you’re deploying to SharePoint is a partially trusted application that runs in a spe-
cial “sandbox.” This sandbox runs at the site-collection or site level, as opposed to the farm level,
and gives you more flexibility for building custom solutions for a surface area in which you have a
vested interest and potential site ownership. What runs within a sandboxed solution is a subset of
the SharePoint object model. For example, using sandboxed solutions, you can build and deploy list
definitions and instances, content types, customize navigation, create and deploy modules or custom
files, a limited set of event receivers, Web parts, custom actions, and workflows.

For example, let’s say you want to build a custom ASP.NET application and deploy it as a Web part
to a site within a site collection. You create the Web part as a partial trust application, so, when

it comes time to deploy that application, Visual Studio knows where to deploy it — that is, in the
Sandboxed Solutions Gallery, where you can activate or de-activate it. With this model, this type of
solution development will broaden the pipeline and really open up SharePoint development opportu-
nities. Figure 2-6 shows the Solutions Gallery, where you upload and activate your custom solution.

34

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

LiDrary 10015

Give Feedback redmondstefox]

Site Actions ~ Browse Solutions Custom Commands Library

LA X% % %

Upload Browse Delete Activate Deactivate Upgrade
Solution Office.com

New Commands

Documents Your resource quota is 300 server resources. Solutions can consume resources and may be temporarily disabled if your resource usage exceeds
your quota.
Site Pages

Current Usage (Today) [|
Average Usage (Last 14 days) [1

Shared Documents

XAPS

[mame Edit Modified Status Resource Usage
Lists o "
MyTwitterFeedWebPart & rew E 12/16/2009 12:38 PM
Calendar

FIGURE 2-6 Sandboxed Solutions Gallery

KEY SKILLS FOR THE SHAREPOINT DEVELOPER

There are a number of skills that are important to learn before you can become proficient at devel-
oping SharePoint 2010 applications. Admittedly, there are many different types of development that
you can accomplish with SharePoint 2010 and still call yourself a SharePoint developer. However,
there is a set of core skills you’ll want to have in your back pocket.

The first is a baseline understanding of how Web pages are structured and rendered using Hypertext
Markup Language (HTML) standards. SharePoint 2010 is a Web-based technology and is built

on ASP.NET. Thus, it is rendered as pages with an .aspx extension (for example, foo.aspx). This
means that if you have a baseline understanding of how .aspx pages are structured and where
HTML meets ASP.NET, then you can get up and running very quickly in terms of creating and cus-
tomizing SharePoint site pages.

One example of how you might edit the content on a SharePoint Web page is using the inline HTML
editing capabilities, where you can edit HTML within an editor and then save the HTML code

to render on the SharePoint page. For example, Figure 2-7 illustrates the new wiki experience in
SharePoint, and shows how you can edit the HTML source when the page is in Edit mode through
the HTML Source editor (select Site Actions = Edit, click on the top region of the actual wiki page
(in the content area of the page), and then choose “Markup and Edit HTML Source”). When you
save, SharePoint saves your HTML changes to the wiki page, and renders the content. Note that this
method of HTML source injection into the page also supports other mark-up standards and syntax
(for example, JavaScript or CSS).

Another example of how you might edit your SharePoint site pages is with your page design and
layouts from within SharePoint Designer 2010. SharePoint Designer is a much richer development
environment than the inline HTML editors that you use in the browser. It enables you to drag and
drop controls onto a page, view design-time changes that you’re making to the page, create data
views, explore the files and folders that live on your SharePoint site through a site hierarchy, and so
on. If you contrast this with the HTML Source editor (which only provides page content saving and
rendering), SharePoint Designer is a more feature-rich experience, enabling you to create, edit, and
manage content across the entire SharePoint site.

Key Skills for the SharePoint Developer | 35

= e o
e tavertes | s 4 sumpeaand e = Web ke Galery ~
B -) - OO i - e saety- Tosa- -

[ep class ntSize-6 v T-3IZE: 32pa~
¥ ~3ize: 3Ip) pan at 2

32px3<apan otyle==FONT-SIZE: 32px® style="fomt-size: 32pu">Helccme to your

s1tet </apan></opans</p><pdLNl60I€/paap>AGd o nev image, change This velcose

cext or add new lists to this page by clicking the edit button above. You can
c11¢k on Shazed Documents %o add files OF 05 the calendsr to create Sev Seam
events. Use the links in the getcing started acction to share your aite and

its lesk. </pa<p B clase="n ma-rte-
[MEbox= contenteditables=ralsem><A1V ClasssRs-ETesTate-BOTiTY Ms-Itegenerate-
notity ma-x = id="div_621b3a15-

= ClassaTms-rtestate-resd=

Ld="vid_§21b5a15-c923-4c56-803c-£3830eS641a" aTyle="CISPLAY: acne”
atyle="display: none®></divac/divy

P —— - T hOreitcatiem _Jas[Reow - 4
- B TR EG g

FIGURE 2-7 HTML editing on a SharePoint page

If you’re using SharePoint Designer, you may want to use Cascading Style Sheets (CSS), which is
a way of providing custom formatting and structure to your Web pages. (You can apply the CSS
transformations at design-time with SharePoint Designer to see the changes.) And you may also
want to include JavaScript functions, which you can also use in SharePoint Designer.

Thus far, you’ve seen three technologies about which you may want to have some level of under-
standing — HTML, CSS, and JavaScript. One that has not been mentioned but that you’ll come
across in your SharePoint development is Extensible Markup Language (XML). SharePoint makes
good use of XML throughout its architecture and programming model, and you’ll see references to
it throughout this book. Further, to translate XML into styled or structured HTML pages, you may
need to leverage Extensible Stylesheet Language (XSL) and XSL Transformations (XSLT).

These are the baseline languages you want to be sure that you have some familiarity with, and
there’s no reason why you couldn’t exist solely in this space and become a proficient SharePoint
developer. Several people who focus their time on this type of SharePoint customization make a
good living doing so.

However, if you want to move into the solution-development aspect of SharePoint (which is what
this book drives you toward), you must jump into the world of .NET development. SharePoint 2010
is built on ASP.NET as a foundational technology, so, by virtue of this architecture, you can build
and deploy ASP.NET applications to SharePoint with relative ease.

36 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

An example of this is building and deploying a Web part that uses ASP.NET controls and events.
Further, when you enter into the world of .NET (if you’re not there already), you’ll begin to real-

ize that there are a lot of things that you can do with SharePoint within the wider scope of .NET.
This is because you can deploy custom assemblies (that is, compiled applications using C# or Visual
Basic) that you create using the .NET Framework and install those as solutions on top of SharePoint.
These solutions can run the gamut; they could be simple .NET applications that leverage a small set
of ASP.NET controls, or they could be more complex Silverlight applications that are still based on
.NET but are more centric to an advanced UI design and experience.

So, as a recommendation for the skills you’ll want to develop as you embark on your SharePoint devel-
opment career, the following is a list you might think about working down as you learn SharePoint:

> The first item is an understanding of HTML, XML/XSL, and CSS as a structural baseline to
understand page rendering in SharePoint. Having some dynamic Web language experience
would also be good (such as JavaScript).

> The second item is an understanding of ASP.NET. If you don’t have skills in these first two
items out of the gate, you’ll certainly gain them as you develop more with SharePoint. For
those who are ASP.NET developers today, the transition to SharePoint development will be
much easier.

» The third item is a baseline understanding of one of the managed code languages — that is,
C# or Visual Basic (VB.NET). These are object-oriented languages that fully leverage the
.NET Framework, and both are supported within Visual Studio 2010 for SharePoint 2010
development.

> The last is a wider understanding of the .NET Framework such as Windows Workflow
Foundation or WCF. Again, this is something that will come with experience, but be open to
learning .NET because you’ll begin to understand elements you can apply to your SharePoint
development efforts.

This book presupposes that you have a baseline understanding of building Web sites and some base-
line knowledge of how .NET works.

You may discover along the way that there are other languages that you want to learn — for
example, you may be interested in integrating dynamic languages such as Ruby, Python, or PhP into
SharePoint — and this is possible but out of scope of this book. This book is about the basics of pro-
fessional development, which targets the technologies described previously.

With all this talk of development, it’s time to put this theory to practice. In the next section, you’ll
get a standalone version of SharePoint 2010 up and running and set up your development environ-
ment so that you can get started with a couple of end-user and developer-oriented walkthroughs.

YOUR DEVELOPMENT ENVIRONMENT

Now that you understand some of the core developer features of SharePoint, as well as some of the key
developer skills you’ll need, you're probably eager to get started developing. Before you can start devel-
oping, though, you must set up your development environment. Let’s first tackle the baseline software
requirements and then examine the different options you have in setting up your environment.

Your Development Environment | 37

Following is the baseline software you need to set up your development environment:

> A Windows 64-bit-compliant operating system (for example, Windows Server 2008 R2 or
Windows 7)

SharePoint Foundation 2010 and SharePoint Server 2010

SharePoint Designer 2010

Microsoft Office (Professional Plus) 2010

Visual Studio 2010

NET Framework 4.0

Microsoft Expression Blend (optional, but recommended for Silverlight programming)

SQL Server (Express) 2008

Y Y Y VY Y Y Y

Not only will having this software enable you to follow along with the coding examples used
throughout this book, but you will also find that these are the baseline requirements to get yourself
up and running for SharePoint 2010 development in your organization.

However, you do have a choice as to whether you should build this out “on the metal” (that is,
install all of the software on the hard drive of your development machine) or create a virtual image
and install all of the software on that image. Many developers prefer to build out a virtual envi-
ronment to host all of the bits that they need to code against and then use that as the development
environment.

For example, for SharePoint 2007, many developers used Virtual PC or Virtual Server (virtualiza-
tion technologies) to create a virtual hard disk so that they could then rebuild that environment on

a regular basis without having to disrupt their primary working environment. Further, they could
keep the environment isolated and then, when finished with the development within the virtual envi-
ronment, move the code into a production environment. Virtualized environments are also useful if
you require a more portable environment, such as demo or prototype environments.

NOTE You can download a preconfigured virtual machine from Microsoft’s
Download Center at www.microsoft.com/downloads/details.aspx?
FamilyID=0c51819b-3d40-435c-al03-a5481felald2&displaylang=en.

You will also find instructions on the Download Center page to add the virtual
machine to an instance of Hyper-V.

Installing and Configuring Windows Server Hyper-V

In Windows 2008 R2 (64 bit), you can use the Hyper-V Manager to manage and run your virtual
machines. The environment is a role you set up when configuring your Windows operating system.
For example, after you install Windows Server 2008 R2, you can add the Hyper-V role through the
Server Manager.

38 |

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

Figure 2-8 shows an example of the Add Roles Wizard at the Server Roles step in the wizard. You
can see that, when you invoke the wizard, you have a place where you can click the checkbox beside
the Hyper-V role, and then Windows installs it for you. Note that in this figure, the Hyper-V role
has been added to the machine.

U =13}

L oC Al ol 7]

ENETST ey £ d4d Roles Wizard i ﬂ;
a Roles

|»

Description:

EEESA

— is used to create certification
L Active Directory Domain Services ﬁ%ﬁaﬁ and related roleservices
[} Active Directory Federation Services that allow you to issue and manage —
[] Active Directory Lightweight Directory Services certificates used in a variety of
L] Active Directory Rights Management Services applications.
[/] Application Server (Installed)
[oHEP Server
[} oS server
[] Fax Server
[File Services
[¥] Hyper-v (instalied)
[] Metwork Policy and Access Services
[] Print and Document Services
|| Remote Desktop Services (Installed)
[¥] web Server (IIS) (Installed) Fr
[v] Windows Deployment Services (Installed)
[windows Server Update Services

< Previous I Next > Install I Cancel]

&, TeP Port Sharing Installed H

L PP NS PPN S S————

21| [¥]| % Refresh disabled whie wizard in use
|

FIGURE 2-8 Hyper-V role

Assuming that you already have your Windows operating system in place, let’s walk through the
process of installing the Hyper-V role.

Installing Hyper-V

Installing Hyper-V is an alternative to setting up an “on-the-metal” development environment. To
install Hyper-V, follow these steps:

1. Click Start &> Administrative Tools = Server Manager.

2. In the Server Manager, scroll to the Roles Summary, and then click Add Roles. Select Hyper-V
from the list.

3. Server Manager takes you through a number of steps. Accept the default options, and click Next

until the Install button is enabled.

Your Development Environment | 39

Click Install to complete the Hyper-V installation. Note that Windows will prompt you for a sys-
tem restart. Restart your computer to complete the Hyper-V installation.

After you have Hyper-V installed, you can then add a Hyper-V compliant .vhd file if your team
has already prepared one (see the download location noted previously), or you can go about creat-
ing one from scratch.

To add an existing image, open the Hyper-V snap-in by clicking Start & Administrative Tools =
Hyper-V Manager.

Under Actions, click New = Virtual Machine. Specify a Name and Location for the image, and
click Next.

You’ll then need to assign a level of RAM to the image. Specify 6,500 MB or more.
Accept the default option for Configure Networking and click Next.

Click the radio button beside “Use an Existing Hard Disk,” and then browse to that disk and
click Finish.

@ NOTE |If you want to create an image from scratch, you can select the first
option (“Create a Virtual Hard Disk”) and then select one of the options for how
you want to install the operating system on the new image. An easy way to
install the image is to have the Windows DVD in your machine’s CD/DVD drive
and select the second option. Associate a specific drive with the installation
process (the drive that contains the Windows Installation DVD). When the wiz-
ard completes, it will automatically begin installing the OS from that drive, after
which you can install all of the software needed for your development.

Once you’ve completed the process of installing Hyper-V and adding a (or creating a new) virtual
hard disk, the last (and optional) step is to set up a network switch with your Hyper-V instance.
This will make it easy for you to both remotely access your Hyper-V development environment and
create a network share on your virtual hard disk where you can move software to be installed on
your virtual hard disk.

A4 el Creating a Network Switch

The network switch enables you to remote into your virtual machine. To configure the network switch
with Hyper-V, follow these steps:

1.
2.

In your Hyper-V Manager, click Virtual Network Manage from the Actions pane.

Select New virtual network and Internal, then click Add. Provide a name for the network, select
Internal Only, and click OK, as shown in Figure 2-9.

40 |

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

E 2 virtual Network Manager 3 N [l 4
Iﬁ Virtual Networks !2’ Virtual Network Pri fies

New virtual network

Name: [BCS_Switch

Microsoft Virtual Switch
,r’., Local Area Connection - Virtual N erosart firtust s ;I

Intel{R) 82565MM Gigabit Network. . Notes:
% Global Network Settings =l

@ MAC Address Range —Connection type
00-15-50-64-24-00 to 00-15-5D-6... What do you want to i
£ External:
Jintel(R) 62566MM Gigabit Network Connection =l

[¥ | Allow management operating system to share this network sdapter
& Internal only
" Private virtual machine network

[~ Enable virtual LAN identification for management operating system
VLAN 1D

The VLAN identifier spedifies the virtual LAN that the management operating
system will use for all network communications through this network adapter, This
setting does not affect virtual machine networking.

—

Remove |

More about wirtual networks

OK I Cancel Apply

FIGURE 2-9 Adding a network adapter

On the host machine, click Start & Control Panel = Network and Internet = Network and Sharing
Center.

Click Change Adapter Settings, and right-click the network adapter you just added. Select
Properties.

Select Internet Protocol Version 4 (TCP/IPv4), and click Properties.

Click “Use the following IP Address,” add a unique IP address in the IP address field (for example,
192.168.1.1), and click the Subnet mask field to have one automatically generated for you, as
shown in Figure 2-10.

The last step is to configure the network adapter on the virtual hard disk. To do this, start the
image by clicking Start = Connect in the Hyper-V Manager.

Log in to your virtual image, and then click Start = Control Panel = Network and Internet =
Network and Sharing Center.

Click Change Adapter Settings.

Your Development Environment | 41

10. Configure the network adapter properties as you did earlier by right-clicking the network adapter
that is present by default on the image. Select Properties = Internet Protocol Version 4 (TCP/IPv4),
and then change the IP address to be something unique (for example, 192.168.1.50). Lastly, tab to
the Subnet mask to have one automatically generated for you.

11. Click OK to complete the process.

12. To test the remote desktop, click Start = All Programs > Accessories = Remote Desktop
Connection. Type the IP address you configured within the virtual hard disk, and then click
Connect. Windows will connect you to your development environment via Remote Desktop.

T Network Connections

aov}@ - Control Panel - Network and Internet - Netwerk Connections - - [@]r
Qemomima = Meoohle thic nabanrle dovire Narnans o mnnassnn - Domgme this connection. View status of this comnection Change settings of this connd
F
3 = nection 3
Networking |Mialx:dmn | Sharing I R
c . nection - Virtual Netw...
I ¥ BCS Switch Internet Protocol Version 4 (TCP/TPv4) Properties A 21l
Configure... General I
This connection uses the following items:
ceh You can get IF settings assigned automatically if your network supparts
0% Client for Microsoft Networks this capability. Oiha'\mse,ywneed to ask your network administrator
3005 Packet Scheduler for the appropriate [P settings.
gﬁle and Printer Sharing for Microseft Networks
[J - Microsoft Virtual Network Switch Protocol € Obtain an IP address automatically
& |temet Protocol Version 6 {TCP/IPvE) % Use the following IP address:
[-+ Intemet Protocol Version 4 (TCP/IPv4) e |—192.168. TG
& Link-Layer Topology Discovery Mapper 1/0 Driver
& Link-Layer Topology Discovery Responder Subnet mask: 255,255,255 . 0
[rrstell.. Wrirstall | Froperties I Default gateway: . . .
L
e ission Contral Protocal/int Protocol. The decmi) btain DM server address automatically
wide area network protocol that provides communication —{% Use the following DNS server addr
across diverse interconnected networks.
Preferred DNS server: = 2 2
Alternate DNS server: = s 5
oK | Cancel | I™ validate settings upon exit ARt |

[ox | coea |

FIGURE 2-10 |IP properties

How It Works

Using these instructions, you now have an environment that leverages the Hyper-V role within
Windows Server 2008 R2. What this means is that you can have a virtualized instance of SharePoint
on a virtual image (that is, a .vhd file) that you can start, save, and stop using the features of Hyper-V.
It works by virtue of the Hyper-V role hosting the images and running them in what effectively
becomes a separate environment. The separate (or virtualized) environment can be integrated with the
host or parent environment through the network switch that you set up to open up the resources avail-
able to the virtual image.

42 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

Installing SharePoint Server 2010

At this point, you should have successfully created and mounted a virtual machine, and you should
have configured the network switch so that you can remote into your development environment. You
can continue to work with this virtual machine and install all of the software, or if you want to install
all of the software on your machine, you can do that as well. While this chapter won’t cover all of the
software prerequisites, it will briefly walk you through the SharePoint 2010 installation procedures.

There are a number of different ways of installing SharePoint within an environment. A SharePoint
server farm may consist of one or more servers providing various services to the farm. You can also
configure SQL Server when installing SharePoint. (SharePoint uses SQL Server to store all of its
content.) All of the services can be balanced between one or more servers in the farm. A multi-server
farm is typically a higher-end administrative function and one that, at this point, should remain a
goal for your future learning.

For now, install the standalone SharePoint 2010 instance to get started. This will provision a single-
server instance for you without too much configuration hassle, but, more importantly, it will be
simple to set up and configure. This installation method will also give you a baseline development
environment to test out the examples in this book.

WARNING This would not be the option you choose when deploying a SharePoint
2010 server to production. There are a number or restrictions that come along

with the standalone installation — for example, content database size restrictions.
When you do get ready for production-ready SharePoint development, build a rep-
licated production environment that sits in a development (and staging) environ-
ment before you drop your code into a production environment.

Installing a Standalone Instance of SharePoint 2010

There are various ways to install and configure SharePoint 2010, one of which is a standalone server
installation. To install a standalone instance of SharePoint, follow these steps:

1. Click the setup.exe file on your SharePoint 2010 installation DVD (or from your installation
location).

2. You’ll be prompted to “Agree to the License Terms.” Click the “I accept the terms of this agree-
ment” checkbox and click Continue, as shown in Figure 2-11.

3. At the next step, you have the opportunity to select different installation options. Click the
Standalone button to invoke the standalone installation.

4. SharePoint will then work through the installation process.

5. When it has completed the installation process, you will be prompted with a dialog where you
can choose to run the Configuration Wizard, which configures things like the services, content
database, and so on, for first-time use, as shown in Figure 2-12. Click the “Run the SharePoint
Products and Technologies Configuration Wizard now” checkbox and click Close. The
Configuration Wizard is automatically invoked upon closing this dialog.

Your Development Environment | 43

Read the Microsoft Software License Terms

To continue you must accept the terms of this agreement. If you do not want to accept the
Microsoft Software License Terms, dose this window to cancel the installation.

MICROSOFT VERSION 2010 SERVER SOFTWARE

These license terms are an agreement between Microsoft Corporation (or based on where
you live, one of its affiliates) and you. Please read them. They apply to the pre-release
software named above, which indudes the media on which you received it, if any. The
terms also apply to any Microsoft

MICROSOFT PRE-RELEASE SOFTWARE LICENSE TERMS ﬂ

. updates,

. supplements,

. Internet-based services, and
. support services

for this software, unless other terms accompany those items. If so, those terms apply.

BY USING THE SOFTWARE, YOU ACCEPT THESE TERMS. IF YOU DO NOT ACCEPT THEM,
DO MOT USE THE SOFTWARE.

(AS DESCRIBED BELOW, USING SOME FEATURES ALSO OPERATES AS YOUR CONSENT TO
THE TRANSMISSION OF CERTAIM STANDARD COMPUTER INFORMATION FOR. INTERMET-
[BASED SERVICES.

If you comply with these license terms, you have the rights below.

L INSTALLATION AND USE RIGHTS.

. You may install and test any number of copies of the software on your premises.

. You may not test the software in a live operating environment unless Microsoft
permits you to do so under another agreement. LI

¥ I accept the terms of this agresment

FIGURE 2-11 SharePoint 2010 license terms

B = » Micrasofts e
aa.0Office

[¥ Run the SharePoint Products and Technologies Configuration Wizard now.

To complete configuration of your server, you must run the SharePoint Products and
Technologies Configuration Wizard.

FIGURE 2-12 Configuration Wizard

SharePoint works through a series of 10 configuration steps to complete the installation process.

When complete, it will prompt you with a Configuration Successful dialog. Click Finish to com-
plete the process.

a4 |

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

SharePoint should automatically prompt you with the standalone SharePoint instance you created.
Upon first opening, it will ask you to select a type of site. Explore the different site templates that
are available to you, but choose Team Site and click OK. Leave the default security options and
click OK. Your site will then be created and will open at the default landing page, as shown in
Figure 2-13.

7| x

/> Home - Home - Windows Internet Explorer 3 A
@ L) IQ hittp: //stefordaptop/SitePages/Home . aspx j @E| Ib Bing |T° :'

iy Favorites | < & suggested Sites = £ Web Sice Gallery ~

fa) -) v (Y 6= - Page- Safety~ Took- @

Give Feedback

Steve Fox (DPE) ~

Browse

@ Home » Home

Home Search this site... I |

Documents .
Welcome to your sitel

Shared Documents
Add a new image, change this welcome text or add new lists to

this page by clicking the edit button above. You can click on
. Shared Documents to add files or on the calendar to create new
Lists team events. Use the links in the getting started section to share
your site and customize its look.

Calendar
jlaske Shared Documents
Discussions Typs Name Modified By
Team Discussion There are no items to show in this view of the “Shared Documents™
document Bbrary. To add a new itsm, dick "Add new document”.
Recycle Bin 4 Add new document

"
B Al site Content

Getting Started

iﬁ] Share this site

H Change site theme

[set a site icon

_ﬁ'-‘ Customize the Quick Launch

=l

Pone = [T [(@ intemet | protected Mode: Off [#a - [Rw00% ~
ol B @ 5 8 e OB g

FIGURE 2-13 Default site

How It Works

The installation process installs all of the SharePoint server files on your local development machine.
Since you opted to do a standalone installation, SharePoint uses the name of your server as the default
name for your base SharePoint site collection that is created during the installation process. When it
is installed, you can navigate to the SharePoint root to explore the files and folders that were installed
as a part of the SharePoint installation (../Program Files/Common Files/Microsoft Shared/Web

Server Extensions/14).

Getting Familiar with SharePoint 2010 | 45

At this point, you now either have a site collection up and running through a virtual hard disk, or you
have a site that is running “on the metal” on your development machine. If you’ve opted to install on
the metal, remember that you would now install the other products listed as prerequisites for the devel-
opment environment (for example, Visual Studio 2010, .NET, Microsoft Office, SharePoint Designer
2010, and, optionally, Expression Blend). You may also want to upgrade the default SQL Server
Express edition to the SQL Server Standard edition. From here on out, this chapter will not provide
guidance on what specific environment you should use. Rather, it will walk you through the examples
assuming that you are comfortable in whatever environment you have created for yourself.

Now, let’s move on to getting you more familiar with the SharePoint UI, from the perspectives of
both an end user and a future SharePoint developer.

GETTING FAMILIAR WITH SHAREPOINT 2010

As discussed in Chapter 1, the architecture of SharePoint extends from an entry in IIS as a Web
application through to site collections, sites (and subsites), and, of course, all of the elements that
make up a site (such as lists, document libraries, content types, and so on). During the installation
process, SharePoint created a default site collection, and, as you configured the site for first use, the
walkthrough instructed you to create a Team Site, which is a specific site template.

SharePoint has a number of different site templates that you can use when creating new sites such

as Team site, Blank site, Meeting Space, Wiki, Blog, and so on. You likely explored these as you
completed the installation process. You could think of the site template as simply providing you with
a predefined structure for your SharePoint site, that includes items such as an Announcements or
Calendar list, or specific Web parts that may be pertinent to the type of site you’re trying to create
(for example, business intelligence Web parts for a Reports Center site).

You can use the out-of-the-box templates that ship with SharePoint to begin crafting your site, and then
use that as your foundation for customization, or you can completely build a site template from scratch
and build on that. Get familiar with each of the site templates first, to understand their functionality
and their points of extensibility, before moving on to the custom site templates (which take a little more
effort and understanding to build). SharePoint provides you with a lot of infrastructure for sites out of
the box, so you won’t be short on functionality for a site within your development efforts.

The URL of my root site collection is http: //fabrikamhockey, which was essentially created by
using the name of my server. The Team site (which is the default site template for a new SharePoint
site) is a straightforward template and includes a number of default options.

For example, in Figure 2-13, on the Quick Launch Toolbar, you can see that the Team site was cre-
ated with Site Pages and Shared Documents libraries, which represent special lists where you can
store Web pages and documents, respectively. You’ll also notice that there is a Calendar list and a
Tasks list, along with a Team Discussion. Within the content portion of the site collection, you have
a welcome message with some text and a couple of Web parts that display a default image and sur-
face the Shared Documents on the landing page of the site collection.

To get you more familiar with SharePoint 2010, let’s walk through a few exercises.

46 |

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

Working with SharePoint Sites

While this book is about development, you will want to learn some of the fundamental aspects of
SharePoint administration. Having some knowledge in this space will help you quite a bit in your
development efforts.

For administration, there are a few things that you’ll need to do as a developer. For example, you
may need to create a site collection within which you can create and add SharePoint sites. You may
also need to configure email to be sent from that site, or ensure that specific SharePoint services
(such as Excel Services or BCS) are configured with the appropriate security configurations.

One common activity you (or your farm administrator) will use SharePoint Central Administration
for is the provisioning of a new SharePoint site collection (which SharePoint did for you already
through the installation process you walked through earlier in this chapter). Let’s tackle that now.

14 Fellhl Creating a Site Collection in Central Administration

Site collections are the main point of entry for you when you are interacting with SharePoint. To create
a site collection using the Central Administration features, follow these steps:

1.

2.

Click Start & All Programs & Microsoft SharePoint 2010 Products. Select SharePoint 4.0
Central Administration. This will open your browser and load the SharePoint Central
Administration home page.

After Central Administration has loaded, click Create Site Collections.

On the Create Site Collection page shown in Figure 2-14, add a Title, Description, and URL. Select
the type of template you want to use for the site (for this example, choose Team Site). Add the pri-
mary and secondary site administrators, and leave the Quota Template set to its default (No Quota).

Cantral Tr——
Admnéstration | o [arnsl
Applistan Harageent

Web Application
Bystem Settings wint appacation: Wit Habrikambockey] -
Ve hidtan Sabact 4 wab applenton
Raciup and Gastors Toaeatn 8 rwm e acploaton o5 5 M ek depkianen pege.
Sty
Upgrade and Hgrebon | Titleand Drscrigtn =7 o
kil Apakaatian Ttk & e et fov youf s it Tha mtie wil be darksyed o Vo Tita Colodion
Saltnns ok page n T sl

Deserenan:

Canluransgn ¥aats Test

et Site Addrens =

Soeafy the URL e and USL nath b creste & new e, or dhoose hing flabrhambockey furest [l wran

Teate & e at & R e, <t =

To a0 3 e USL. Pa 08 19 e Dafres Maraoed Prths nage

Templaee Selectisa

el o lemplate:

A b EEevane AteTenes whathats ind Reatres ol b S/nlahls

st e, el S tevrlaie biane i D Orecpners of mach Coinbarmtier, L NASSOpe L ECARON L ieSShg & Cumton

terplate ared bym o e B e the e wie. My st of 8 sl

£an be cuinemzed aftar reation, Howeer, B it ineplate Easnet be Blank Site

chargmd orce e i o domated Document Warkagace

Group werk Site
Wik Protick POy P
|Dane Wi Local intranet | Protected Mades O v Rs v

FIGURE 2-14 Central Administration Create Site Collection page

Getting Familiar with SharePoint 2010 | 47

4. After you click OK, SharePoint will provision a new SharePoint site collection based on the infor-
mation you provided. You will also be taken to the Top-Level Site Successfully Created page,
shown in Figure 2-15, where you can then click the link to your new site collection to load it.

Site Actions «
<) -
™ A s : 5) v
&, gﬁ';rePomtzom Central Administration » Top-Level Site Successfully Created ' o
Ilikelt Tags&
Notes
Central L IF ? : A i
dministration The new top-level site was created successfully with the specified URL. If you have permission to view the Web site, you can do so in a new
Administratio browser window by clicking the URL. To return to SharePoint Central Administration, click OK .

Application|Manage el http://fabrikamhockey/sites/wrox
System Settings

Monitoring

I —
Bacl, o D act,
FIGURE 2-15 Top-Level Site Successfully Created page

How It Works

Central Administration is the place where you create new site collections. In this walkthrough,
SharePoint used your selection (that is, the Team Site template) to structure a site for you. The Central
Administration process amended the IIS Web application to include any newly generated files, which
were also added to your SharePoint file system. Any new sites or subsites you add to the site collection
will further amend the file system hierarchy.

With your top-level site collection created, you can now create and add a site. In the next exercise,
you create a new site within your site collection.

NOTE If you're using the virtual machine from the Microsoft Download Center,
then the appropriate trust and application settings should already be set for you
in your Internet browser. However, if you've set up your environment on the metal,
then you may need to set your intranet site as trusted, enable script, and so on.

For Internet Explorer, this can be done from the Security tab (click Tools = Internet
Options).

Creating a Site within a Site Collection

Site collections can include multiple sites and/or subsites. To create a site within the site collection, fol-
low these steps:

1. Navigate to the home page of your SharePoint site by opening Internet Explorer and entering in the
SharePoint URL (for example, http: //fabrikamhockey.com).

2. Click Site Actions = View All Site Content.

3. Click Create. This launches a Silverlight-enabled Create gallery.

48 |

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

6.

Click Site = Team Site.

Enter some text for the Title, Description (optional), and the URL name (for example, sprocks)
for your Web site address, as shown in Figure 2-16.

Create

Browse From: Select Language: | English Z Search Installed Items L
Installed Items P Type)
Office.com = Team Site
= z ; Type: Site
Filter By: . ﬁ Categories: Collaboration
All Types A site for teams to quickly organize,
Libi Issues Web Microsoft Project Multipage Meeting auther, and share information. It
{2mry Database Site Workspace provides a document library, and lists
i for managing announcements, calendar
List x g
items, tasks, and discussions.
Page
Site >] 1 -
=) I~ |Test site |
5«; B
All Categories > B http://intranet.cont.../ <URL name=
Blank & Custom Personalization Site Projects Web Publishing Site
Database |5pm":ks I
Collaboration
Communication ore Dptions
Content = i d
Data —
: % 7t
Meetings
f Publishing Site with Records Center Social Meeting
Searc Workflow Workspace
Tracking
Web Databases
Team Site Visio Process
Repository 4
E

FIGURE 2-16 Creating your first team site

Click Create to complete the process of creating the new team site.

SharePoint creates a new site, with all of the basic plumbing, that maps to the specific SharePoint tem-
plate you selected (the Team site). The result of this quick walkthrough should be a number of default
navigation options down the left-hand side, a standard ribbon structure, and some default content in
the main content portion of the page.

If you disable Silverlight in your browser, this will disable the Silverlight-enabled Create view that you
used in the previous walkthrough. To disable (or enable) Silverlight in your browser, click Tools =
Internet Options =& Programs = Manage add-ons. You then find Silverlight in the list and either click
Enable or Disable. If you disable, an HTML view of the Create page will be displayed instead of the
Silverlight-enabled view.

Let’s now perform a couple of editing functions against this page. Follow these steps:

1.
2.

Click Site Actions = Edit Page. This opens the page in Edit mode.

Write some text in the wiki content by clicking in the top part of the content window and typing
some text. Note that there are formatting options available to you, so you can resize and format
text for a specific size and look.

To exit the site, click Save and Close.

Getting Familiar with SharePoint 2010 | 49

4. After your team site exits Edit mode, under the “Getting Started links on the Home Page for a
Team Site,” click “Change site theme” and change the theme. Click Apply.

If you don’t want to commit to the theme you selected, then you can click Preview and SharePoint will
display your SharePoint site in Preview mode. You may need to allow pop-ups from your site to view
the preview.

How It Works

With the site collection acting as the parent Web site, the site creation process again leverages the Team
Site template to build a new team site and deploy it to the site hierarchy. Here again, the SharePoint file
system and IIS settings are amended to handle the new site that was added.

Although using Central Administration is one way to create a site, another way is to programmati-
cally create a site using the SharePoint project templates within Visual Studio 2010. This is useful
when you want to create site templates that can be used within your team or across the organization
with specific customizations in place.

Create a Simple SharePoint Site Programmatically

You have the option to create a site through the Web-based features in SharePoint or to use Visual
Studio 2010. To create a simple site programmatically using Visual Studio 2010, follow these steps:

1. Open Visual Studio 2010 and click File &> New = Project. Select the Site Definition project tem-
plate under the SharePoint 2010 templates folder.

2. Provide a name and location for your project, and click OK.

3. Specify the site and click Validate to test the connection to the site. By default, sites can only be
deployed as full-trust solutions (that is, farm solutions), so you do not have the option to deploy
the site as a sandboxed solution. Select "Deploy as a farm solution" and then click Finish to create
the project, as shown in Figure 2-17.

Sharefoink Cur i
? Spevily the st and womity eved for delnegging

What kocal shte do you want to use for debugging?
e abutaruho ey T

What b Ther brarsi bewed lor il ShancPoind solalion?

Deploy 4 & sandboned soluthon

Cliciing this opbon causes the solution to be deployed a5 o Sandbowed sodutien. Sandboced solutions can be
deployed by the 3e colection cwner and are e 8 secwe, mentoed piocess thal has lenibed Fricuice scoe

& Dhegilay s a farm sohition
Clicking this option means that users must have ShanePoint sdmintrator prvileges to na o deploy the salution.

Lesrn mgne sbout sandiboued sohubions

[

FIGURE 2-17 Site and security level dialog

50 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

4. 1f you didn’t change anything within the project, you could right-click the project and select
Deploy. SharePoint would then deploy the new site template within the specified site collection.
However, the site would essentially be a blank site template with no other objects (such as lists,
document templates, or features) associated with it. Thus, you’d likely want to add some sort of
customization to the site. You can do this, for example, by editing the onet .xm1 file (which Visual
Studio opens by default) and the default.aspx files that are created as a part of the solution.

5. When your site has successfully deployed, it is now available as a site template — similar to the
Team Site template or Blank template.

6. To use your template, navigate to your site collection landing page and click All Site Content. Click
Create and select “Sites and Workspaces.”

7. Provide a name, description, and URL for your site, and, in the SharePoint Customization tab,
select the site template you deployed to SharePoint. Click Create.

How It Works

Similar to using the SharePoint administrative and site-creation functionality to create a new site,

Visual Studio can programmatically create and deploy the site template and site to SharePoint. Whereas
SharePoint provides you with some limited metadata (such as template, name and URL), the programmatic
way of building out a site provides you access to an underlying XML layer where you can customize the site
with more options. Further, you can use Visual Studio to add other artifacts to your site (for example, Web
parts, list definitions and instances, content types, and so on). So, when users provision a site using your
custom template, all of these options will be available to them after the site is created.

WORKING WITH SHAREPOINT LISTS

Now that you have a site collection up and running, let’s jump in and look at some of the things that
you can do with the site. The first exercise you’ll walk through is creating a list in SharePoint and
manually adding some data to that list. While you can programmatically add data to and remove it
from a list, this exercise will help you understand what the end user would go through when inter-
acting with the list. For this exercise, disable the Silverlight add-on so you can also see the HTML
view that SharePoint provides.

Creating a List and Adding Data to the List

Lists are one of the major entry points for developers in SharePoint. To create a list and add some data
to that list using the Web-based interface, follow these steps:

1. Navigate to the home page of your newly created SharePoint site collection (for example, the home
site collection page that was created during the installation process).

2. Click All Site Content.

3. Click Create. This invokes the Create page, where you can select a specific item to create and pro-
vide a name for that item.

4. Select the Custom List option. Enter customers into the Name field, and a description in the
Description field. Leave the Quick Launch navigation setting on Yes, and Click Create.

Working with SharePoint Lists | 51

This will create a new custom list for you; however, there will only be one column in the list. Let’s add
three columns, called Region, Size, and Sales.

1. To add the Region column, click the Create Column button on the SharePoint ribbon. This will
invoke the Create Column form. Enter Region in the Name field, and select Choice as the type of
field. Then, add four choices in the choices settings: East, West, North, and South. Leave all other
default selections and click OK.

2. To add the Size column, click the Create Column button. Add size to the Name field, and select
Choice as the type of field. Then, add three choices: small, Medium, and Enterprise. Click OK.

3. To add the sales column, click the Create Column button. Add sales to the Name field, and
select the “Single line of text” field. Click OK.

4. Lastly, change the name of the default Title field (the one field that is created by default when you
create a custom list). To do this, click the List Settings button on the SharePoint ribbon. Click the
Title link, and then change the name of the column from “Title” to “Name.” Click OK.

5. Even though you changed the display name of the default column name from “Title” to “Name,”
programmatically, in some cases, you’ll still need to develop using the Title string. To test
this out, click the List Settings button and then mouse over the Name field. Take note of the
Field=Title in the URL, as shown in see Figure 2-18.

[EH
http://fabrikarhockey/_layouts/FldEdit.aspx?List="%7B1BT851 DA%2 DEBGF%:2D4638 %2 DA921 %2 D6253E01 FB451 %7 DE&Field=Title

FIGURE 2-18 Field=Title

6. To add some items to the list, click the Customers link to the list in the Quick Launch, and then
click the Add New Item link. Enter data into the New Item form, and then repeat to add a few
records into the list. When complete, your list entries should look something like Figure 2-19.

Customers

T @ Name Region Size Sales
Trey Research orew East small $1,300,000.00
Contoso & HEw West Medium $2,900,049.00
Fabrikam & rew Morth Enterprise $1,309,200,099.00
AdventureWorks iHEw Morth Small $900,878.00
Wingtip Toys £new South Medium $3,8580,283.00

Blue Yonder &inew East Enterprise $2,090,899,000.00
Acme Industries 52Hew South Small $3,000,510

FIGURE 2-19 Completed Customer list

How It Works

When you create a list, you create a structure that has columns and rows, and represents an object
within SharePoint that can not only be populated by end users but can also be programmed against by
you. This process simply generated a default list, which has some hidden properties and some properties
that can be edited by the user.

52 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

If you are new to SharePoint, you’ve created your first SharePoint list — and this is something that
you (and all of your end users) will do on a regular basis. Lists are one of the most commonly used
objects in SharePoint. As you’ll see in Chapter 5, you can program against lists in many different
ways. However, in this chapter, you’ll complete a simple programming exercise to kick-start your
application development. So, now that you’ve created a simple list in SharePoint, let’s write a little
code that does something with that Customers list.

The next example walks you through how to programmatically establish a connection to a
SharePoint list and update the data in that list using the Lists ASP.NET Web service that ships with
SharePoint 2010. For those that are new to SharePoint, you won’t have seen the Lists Web service. It
is one of the native ways in which you can interact with SharePoint. For those who have developed
against SharePoint, you’ll recognize this service as an API that has persisted forward.

There are a number of ways to interact with a list; this example uses the native Lists Web service
that enables you to interact with SharePoint lists. However, to showcase that you can leverage
SharePoint data from applications that don’t necessarily live inside SharePoint, you’ll create a WPF-
based application that adds data to a SharePoint list from a WPF application. The application is
simple, but it is illustrative of the following:

> The connectivity to SharePoint
> Interacting with the list

> Accomplishing this from an application outside of the SharePoint domain

Programming Against a List Using the Lists Web Service

Code file [WPFSPListApp.zip] available for download at Wrox.com.

You can also program against lists in SharePoint 2010, which enables you to manage, create, read,
update, and delete (CRUD) operations against the list. To program against a list, follow these steps:

1. Open Visual Studio 2010 and click File & New = Project. In the New Project dialog, navigate to
the Windows templates under the Installed Templates gallery and select “WPF application.”

2. Provide a name for your application (for
example, WPFSPListApp) and a location,
and then click OK. Visual Studio 2010 SlLims s s
will create a new solution for you that
includes a number of files. Right-click the

M MainWindow i ;lg.lﬁl

Company Name: |Au'ne Industries

Mainwindow.xaml file, and select View Region: 2
Designer (if the view is not already open). size [Smal
3. Add five labels, four textboxes, and three e [3e0
buttons to your Designer from the Toolbox
so that the UI looks similar to Figure 2-20. Updste | _ ger | e |

Table 2-1 provides a summary of the con-
trol types and names that you will add to FIGURE 2-20 SharePoint List app Ul
the WPF application.

Working with SharePoint Lists | 53

TABLE 2-1 Control Types and Names

CONTROL TYPE CONTROL NAME

Label 1blTitle, 1blCompanyName, lblRegion, 1blSize, 1lblSales
Textbox txtbxCompanyName, txtbxSize, txtbxSales

Button btnUpdate, btnClear, btnExit

The Ul uses a type of XML syntax called Extended Application Markup Language (XAML), which
is specific to Windows WPF and Silverlight applications. The XML must be well formed, and,
when you drag and drop controls from the Toolbox onto the designer surface, the XAML will
automatically be generated for you. You’ll need to add a couple of event handlers to the button
controls to manage the loading of the SharePoint list data into the application. So, after you add
the button controls to the Designer, go to the XAML code view, click your mouse within the but-
ton element, and press the spacebar. This will trigger IntelliSense, allowing you to select the c1ick
event. Accept the default event handler name, and Visual Studio will add a method for your but-
tons in the code behind. The XAML for your application should look something like the following:

<Window x:Class="WPFListApp.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="MainWindow" Height="300" Width="500">

<Grid Height="270">

<Label Content="SharePoint List Data"
Height="28"
HorizontalAlignment="Left"
Margin="21,14,0,0"
Name="1blTitle"
VerticalAlignment="Top"
Width="162"
FontWeight="Bold"
FontSize="13" />

<Label Content="Company Name:"
Height="28"
HorizontalAlignment="Left"
Margin="21,56,0,0"
Name="1blCompanyName"
VerticalAlignment="Top"
Width="120" />

<Label Content="Region:"
Height="28"
HorizontalAlignment="Left"
Margin="21,90,0,0"
Name="1blRegion"
VerticalAlignment="Top"
wWidth="120" />

<Label Content="Size:"
Height="28"
HorizontalAlignment="Left"
Margin="21,124,0,0"
Name="1blSize"
VerticalAlignment="Top"

54 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

Width="120" />
<Label Content="Sales:"
Height="28"
HorizontalAlignment="Left"
Margin="21,158,0,0"
Name="1blSales"
VerticalAlignment="Top"
width="120" />
<TextBox Height="23"
HorizontalAlignment="Left"
Margin="119,56,0,0"
Name="txtbxCompanyName"
VerticalAlignment="Top"
Width="245" />
<TextBox Height="23"
HorizontalAlignment="Left"
Margin="119,90,0,0"
Name="txtbxRegion"
VerticalAlignment="Top"
Width="245" />
<TextBox Height="23"
HorizontalAlignment="Left"
Margin="119,124,0,0"
Name="txtbxSize"
VerticalAlignment="Top"
Width="245" />
<TextBox Height="23"
HorizontalAlignment="Left"
Margin="119,158,0,0"
Name="txtbxSales"
VerticalAlignment="Top"
Width="245" />
<Button Content="Update"
Height="23"
HorizontalAlignment="Left"
Margin="29,218,0,0"
Name="btnUpdate"
VerticalAlignment="Top"
Width="75"
Click="btnUpdate_Click" />
<Button Content="Clear"
Height="23"
HorizontalAlignment="Left"
Margin="119,218,0,0"
Name="btnClear"
VerticalAlignment="Top"
Width="75"
Click="btnClear_Click" />
<Button Content="Exit"
Height="23"
HorizontalAlignment="Left"
Margin="210,218,0,0"
Name="btnExit"
VerticalAlignment="Top"
Width="75"
Click="btnExit_Click" />

Working with SharePoint Lists | 55

</Grid>
</Window>

Right-click the Mainwindow.xaml file, and then click View Code. This will open up the code view.

Right-click the References project node, and select Add Service Reference. On the Add Service
Reference dialog, click the Advanced button and then click Add Web Reference on the Service
Reference Settings dialog.

In the Add Web Reference dialog, click the Web services on the local machine link. This will search
for and display all of the Web services that are located on your developer machine, which will
include the SharePoint Web services, as shown in Figure 2-21.

Add Web Reference [—)
Mavigate to a web service URL and click Add Reference to add all the available services.
OO dE@ ot
URL: ~ ey
_— - e | Web services found at this URL:
bdcfieldsresolver http:/flocalhost/ vt_bin/bdcfieldsresolver.asmx
businessdatacatalog http:/localhost/ vt_bin/businessdatacatalog.asmx 2
contentAreaToolboxService http:/flocalhost/ vt_binjcontentAreaToolboxService.
Copy http:/flocalhost/_vti_bin/Copy.asmx =
diagnostics http:/flocalhost/_vti_bin/diagnostics.asmx
DspSts http:/flocalhost/_vti_bin/DspSts. asmx
Dws http:/flocalhost/_vti_bin/DWS.asmx "
ExcelService http:/flocalhost/_vti_bin/ExcelService.asmx
Forms http:/flocalhost/_vti_bin/Forms.asmx Web reference name;
FormsServiceProxy http:/localhost/_vti_bin/FarmsServiceProxy.asmx |
FormsServices http:/flocalhost_vt_bin/FormsServices.asmx i
Imaging http:/flocalhost/_vti_bin/Tmaging.asmx ‘ Add Reference |
Lists http:/flocalhost/_vt_bin/Lists.asmx
Meetings http:/localhost/_vt_bin/Meetings.asmx
officialfile http:/localhost/_vt_binfofficialfile. asmx
officialfile http:/flocalhost/_vti_binfofficalfile. wsdl
People http:/flocalhost/ vt_bin/People.asmx
Permissions http:/flocalhost/ vt_bin/Permissions.asmx i
= i
_------------- N NNCNIIN S o

FIGURE 2-21 SharePoint Web service

One of the Web services is the Lists service (with the endpoint listed as http: //<server name>/_
vti_bin/Lists.asmx). Select this service. Note that you may need to change the Web service
URL to reflect your local server, for example http: //fabrikamhockey/_vti_bin/Lists.asmx.
Provide a name for the service (for example, MysPiebservice) and click Add Reference. (You can
also explore the Web methods that are a part of that service before you click Add Reference.)

At this point, you can add an event handler for each of the buttons in your WPF UI (which should
already be stubbed out for you). The Update button is the one button that will leverage the

Web service connection to SharePoint. You’ll also require a set of class-level variables to get the
user input and pass that into the Lists Web service. When you call the Lists Web service, you’ll
also need to create an XML construct that passes the data from your WPF application to your
SharePoint list. This XML is called the Collaborative Application Markup Language (CAML).

56 |

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

10.

The following code snippet illustrates the three event handlers, one for each of the buttons. The
bolded code is what you will need to add to the default code that is created for you by Visual
Studio. If you use the accompanying source code, you’ll need to ensure that you update the Web
service reference (by re-adding the service to the Visual Studio project), and update any URL refer-
ences in the code. For example, you would need to update the following line of code:
myListService.Url =
"http://<your server name>/_vti_bin/Lists.asmx";
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.Xml;
using System.Xml.Ling;

namespace WPFSPListApp
{

public partial class MainWindow : Window
{

string strCompanyName = "";
string strRegion = "";
string strSize = "";

string strSales = "";

string strListID
string strViewID = ""

N we

public MainWindow ()
{

InitializeComponent () ;

private void btnUpdate_Click(object sender, RoutedEventArgs e)
{

strCompanyName = txtbxCompanyName.Text;
strRegion = txtbxRegion.Text;

strSize = txtbxSize.Text;

strSales = "$" + txtbxSales.Text;

WPFSPListApp.MySPWebService.Lists myListService =
new MySPWebService.Lists();
myListService.Credentials =
System.Net.CredentialCache.DefaultCredentials;
myListService.Url =
"http://fabrikamhockey/_ _vti_bin/Lists.asmx";

XmlNode myListView = myListService.GetListAndView("Customers", "");

Working with SharePoint Lists | 57

strListID = myListView.ChildNodes[0].Attributes["Name"].Value;
strViewID = myListView.ChildNodes[1].Attributes["Name"].Value;

XmlDocument myListDoc = new XmlDocument();
XmlElement batchXML = myListDoc.CreateElement ("Batch");

batchXML.InnerXml = "<Method ID = 'l' Cmd='New'><Field Name='Title'>" +
strCompanyName + "</Field><Field Name='Region'>" + strRegion +
"</Field><Field Name='Size'>" + strSize +
"</Field><Field Name='Sales'>" + strSales +
"</Field>" + "</Method>";

XmlNode myListReturn = myListService.
UpdateListItems (strListID, batchXML);
MessageBox.Show("SharePoint List was updated!");

}
private void btnClear Click(object sender, RoutedEventArgs e)
{
txtbxCompanyName.Text = "";
txtbxRegion.Text = "";
txtbxSales.Text = "";
txtbxSize.Text = "";
}
private void btnExit_Click(object sender, RoutedEventArgs e)
{
Application.Current.Shutdown() ;
}

11. Assuming that your code reflects what is shown here, you should now be able to press FS and run
the application in Debug mode, add some string entries to the WPF application, and click Update
to add the record to your SharePoint list, as shown in Figure 2-22.

Customers

C @ Name Region Size Sales
Trey Research oivew East small $1,300,000.00
Contoso ZiHew West Medium $2,900,049.00
Fabrikam & rew Morth Enterprise $1,309,200,099.00
AdventureWorks Zinew Morth Small $900,878.00
Wingtip Toys Zinew South Medium $3,690,283.00
Blue Yonder &inew East Enterprise $2,090,899,000.00

FIGURE 2-22 Updated list

How It Works

The SharePoint Web services offer quite a range of functionality for the developer and should be one
of your first stops when developing for SharePoint (to leverage what already ships with SharePoint).
Many of these are services that were available in SharePoint 2007 and have evolved to be supported
in SharePoint 2010. For those who used them in production code in 2007, this is good news, because
upgrading your 2007 code should not prove too difficult.

58 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

For this example, you used the Lists Web service, which provides a number of different ways to interact
with a list — for example, you can add or delete a list, add an attachment to a list, get the list, and so
on. In this example, you used the GetListandview Web method, which returns a schema for a list that
you pass in as a parameter to the GetListAndview method call. Note that, in this call, you passed the
name of the list, Customers, and mapped the return value to an xMLNode object.

XmlNode myListView = myListService.GetListAndView("Customers", "");

The example also used CAML to insert data back into the SharePoint list. Admittedly, CAML is a little
verbose, as you can see from the following line of code. (You’ll see different ways to interact with a list
in Chapter 5, ones that are less syntactically verbose and more lightweight to code.)
batchXML.InnerXml = "<Method ID = 'l' Cmd='New'><Field Name='Title'>" +
strCompanyName + "</Field><Field Name='Region'>" + strRegion +

"</Field><Field Name='Size'>" + strSize + "</Field><Field Name='Sales'>"
+ strSales + "</Field>" + "</Method>";

The last key piece in this example was the UpdateListItems method, which passed the list ID (that is,
the name of the list) and the list schema that was mapped to the CAML construct (which was further
tied to the data in the WPF client).

XmlNode myListReturn = myListService.UpdateListItems (strListID, batchXML) ;

While this method leverages native Web services, there are both pros and cons to using them. Pros
include ease of use and service plumbing that exists, as opposed to your having to create a custom Web

service. Cons include potential performance hits with service integration and syntax verbosity with the
CAML construct.

If you followed along with this example and successfully updated your SharePoint list, then con-
gratulations! You just wrote your first application against SharePoint 2010 that interacts with a
SharePoint list.

Now, let’s take a look at Web parts.

WORKING WITH SHAREPOINT WEB PARTS

Web parts are also very common artifacts in SharePoint. In fact, you’ll find that the Web part is one
of the most commonly customized objects for SharePoint developers because it represents a core
building block for SharePoint and can be customized to do many different things.

You add a Web part from the Web Part Gallery, which provides you with categories that help clas-
sify Web parts. To add a Web part to a SharePoint wiki page, you click Site Actions = Edit Page =&
Insert and select Web Part from the ribbon menu. If you create a Web part page (which is a site page
with a predefined structure), you can also add a Web part, but the steps to do it are a little differ-
ent. You click Site Actions = Edit Page = “Insert a web part.” Then select the type of Web part you
want to add from the Web Part Gallery and click Add. The Web Part Gallery exposes the Web parts
that are available as either part of the SharePoint installation, or those custom Web parts that have
been deployed to your SharePoint server.

Working with SharePoint Web Parts | 59

Web parts can act as containers for your custom functionality (for example, a custom ASP.NET
application), and they can also act as a container for a list or document library. For example, let’s
add the customers list you created in the last section of the chapter to the home page of your new
site collection as a Web part.

Add the Customers List as a Web Part

Web parts are very important building blocks, and you will use them often. To add a list as a Web part
to a page, follow these steps:

1. Click Site Actions = Edit Page = Insert = Web Part.

2. Click Web Part to load the Web Part Gallery options.

3. Click “Lists and Libraries” and select the customers list.
4.

Click Add. SharePoint loads the list within a Web part at the top of the page.

NOTE You could continue to run your WPF application against the list, and the
changes would be reflected in this list. This is because this list is a view of the
actual data that is rendered within a Web part.

Figure 2-23 shows the customers list rendered within the Web part. Test out the WPF application
again, and add some data to the list to test the rendering of that data within the Web part.

Zrere Welcome to your site!

) 4]
o [T T T o [Treated mtes [Protecied Modes oA e -
e s EYE S PORG e

FIGURE 2-23 Customer list as a Web part

60 |

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

Web parts are very customizable. In fact, you’ll see a number of ways in which you can interact with
Web parts programmatically within this book, ranging from visual Web parts to Silverlight applica-
tions embedded within Web parts.

In this next exercise, you’ll create your first Web part. It won’t be pretty, but it’ll be simple and illus-
trative of how you can apply your ASP.NET coding skills to a custom SharePoint object.

Create a Custom Web Part Programmatically

Code file [MyFirstWebPart.zip] available for download at Wrox.com.

You can programmatically customize Web parts using Visual Studio 2010. To customize and deploy a
Web part, follow these steps:

1.

Open Visual Studio 2010 and click File &> New > Project. Navigate to the SharePoint 2010
template folder, and select Empty SharePoint Project. Give your project a name (for example,
MyFirstWebPart) and location. Click OK.

In the Project Wizard, ensure that the site URL is pointing to your local SharePoint site. Click
Validate to test the connection to the site. You can select either deployment method (that is, as
Sandboxed Solution or Farm Solution).

After Visual Studio creates the project for you, right-click the project and select Add &> New Item.
In the SharePoint 2010 folder, select Web Part.

Navigate to the Web part code file (for example, MyFirstwebPart.cs) and add the bolded code in
the following code listing to this project file.

NOTE If you use the accompanying source code, be sure to open the code and
then change the Site URL property to point to your local SharePoint site. Click
the project and then, in the Properties window, change the Site URL property.
You can also use the Import SharePoint Solution Package (the .wsp file that ships
with the accompanying source code) project template.

using System;

using System.ComponentModel;

using System.Runtime.InteropServices;
using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;

using Microsoft.SharePoint.WebControls;

namespace MyFirstWebPart.MyFirstWebPart
{
[ToolboxItemAttribute (false)]
public class MyFirstWebPart : WebPart
{
Label 1blUserEntry = new Label();

Working with SharePoint Web Parts | 61

TextBox txtbxUserEntry = new TextBox():;
Label 1lblFinalCost = new Label();
TextBox txtbxFinalCost = new TextBox();
Button btnCalcTax = new Button();
double totalTax = 0.00;

double prodTax = 0.11;

public MyFirstWebPart ()
{
}

protected override void CreateChildControls/()

{
1blUserEntry.Text = "Cost of Widget:";
1blFinalCost.Text = "Final Cost: ".
btnCalcTax.Text = "Calc.";
txtbxUserEntry.Text = "59.30";
this.Controls.Add(1lblUserEntry);
this.Controls.Add (txtbxUserEntry);
this.Controls.Add (new LiteralControl("<p>"));
this.Controls.Add(1lblFinalCost);
this.Controls.Add (txtbxFinalCost) ;
this.Controls.Add (new LiteralControl("<p>"));
this.Controls.Add(btnCalcTax) ;
btnCalcTax.Click +=

new EventHandler (btnCalcTax_Click);

base.CreateChildControls () ;
}

void btnCalcTax Click(object sender, EventArgs e)
{
double prodCost = Convert.ToDouble
(txtbxUserEntry.Text) ;
totalTax = Math.Round(prodCost -
(prodCost * prodTax),2) *100/100;
txtbxFinalCost.Text = totalTax.ToString();

protected override void RenderContents
(HtmlTextWriter writer)

{
base.RenderContents (writer) ;

Press F6 to test to see if the project builds successfully.

After it builds successfully, press F5 to test the Web part deployment in Debug mode. (You can
optionally set a breakpoint at the btnCalcTax_Click event.)

On your SharePoint site, select Site Actions = Edit Page. Then, click to activate the content portion
of the SharePoint site — that is, the area beneath one of the other SharePoint Web parts.

62 |

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

8. Select Insert on the SharePoint ribbon and select Web Part. In the Custom category, you’ll find
the Web part that you just built and deployed, as shown in Figure 2-24. Select the Web part and
click Add.

QHoma-MyFirstWebPage ‘ | ﬁ - | @ + Page~ ﬁafetyV‘

Give Feedback r4

Site Actions ~

B Do QR ¥ ©

Y & &

3 Permissions
Stop Editing Edit E-maila Alert Approve Reject Workflows Edit Mobile Make Title Bar
5 Properties - % Delete Page Link Me- Page~ Homepage Properties
Edit Manage Share & Track Approval Workflow Page Actions

Categories Web Parts About the web Part
[J Business Data] | MyFirstWebPart MyFirstWebPart

3 content Rollup My WebPart

3 custom

L3 Documents

3 Fitters.

E3 Media and Content
E3 My Information

3 Mavigation

=

Upload a Web Part + e
e Add Web Part to:[Left =]

FIGURE 2-24 Custom Web part

9. This adds the Web part to your SharePoint site, as shown in .

Figure 2-25. You can test the Web part by adding a decimal currency
value in the Cost of Widget field and clicking the Calc. button. This
executes the btnCalcTax_Click event, and then adds the final cost
of the Widget to the Final Cost field.

And there you go! You just built your first custom Web part. It was sim-

Cost of Widget: 59.30
Final Cost: 52.78

Calc.

FIGURE 2-25 Deployed

ple, and, yes, used absolutely no design skills at all. But it did illustrate the ~WePpart

use of pure ASP.NET code for a Web part.

How It Works

SharePoint is built on top of ASP.NET. So, when you create Web parts for SharePoint, you are leverag-
ing the members and classes of the ASP.NET namespaces. This was evident in the MyFirstWebPart
class declaration, which derives from the System.wWeb.UT.WebControls namespace.

public class MyFirstWebPart : WebPart

When you derive from webPart, this provides a set of controls that you can use to build out your UL
For example, in this exercise, you used Label, Button, and Textbox controls. In this case, these con-
trols were hand-coded, but if you’re not familiar with all of the available controls, an easy way to learn
about them is to first create the Visual Web part project and then use the Designer to drag and drop the
available controls.

Label 1blUserEntry = new Label();
TextBox txtbxUserEntry = new TextBox() ;

Working with SharePoint Web Parts | 63

Label 1blFinalCost = new Label();
TextBox txtbxFinalCost = new TextBox();
Button btnCalcTax = new Button();

Each of the controls that you instantiate must be added to the controls collection, which is the way in
which the Web part displays the controls. This was done by calling the controls.add method and then
passing in the name of the control to add to the Web part.

Lastly, the event for the button was created simply by typing btncalcTax.Click+= and then pressing
the Tab key twice, which auto-generates a stubbed method for you to use. In this example, the code
converted the user entry into a value it could handle, calculated the final cost of the widget, and dis-
played that cost in the txtbxFinalCost textbox control.

void btnCalcTax_Click(object sender, EventArgs e)
{
double prodCost = Convert.ToDouble (txtbxUserEntry.Text) ;
totalTax = prodCost - (prodCost * prodTax) ;
txtbxFinalCost.Text = totalTax.ToString();

If you're already familiar with ASP.NET, this is great; you’ll be able to apply a wealth of your
knowledge within the SharePoint space. If you’re not, have no fear, because you’ll surely pick some
up along the way as you move through the book. You’ll also learn about some more advanced Ul
experiences using Silverlight. You’ll get a sense for how this is done in Chapter 9.

Setting Permissions for a SharePoint Site

One key aspect of SharePoint is the different security permissions you’ll need to provision for a
given site. This is important more from an end-user perspective, but for those of you who are new
to SharePoint, what’s key here is that you, as the owner of a SharePoint site (or other object within
SharePoint), can assess certain levels of security.

A ellh Edit Permissions for a SharePoint Site

Security is very important in SharePoint. You must understand how you can control the different levels
of permission that are available to you in SharePoint 2010. To edit permissions for a SharePoint site,
follow these steps:

1. Navigate to the home page of the site you created in the last exercise (for example, http: //
fabrikamhockey/sprocksl

2. Click Site Actions = Site Permissions. This opens the Permissions page, which displays the different
options available to you, as shown in Figure 2-26.

3. To provide a particular person with specific permissions, click on one of the permission types (for
example, Team Site Members) and then click New > Add Users. Add the user (or the group) to the
Users/Groups field. You can also optionally send a welcome email to the individual (or group) by
checking the “Send welcome email to the new users” checkbox and adding a title and some wel-
come text for the mail.

64

CHAPTER 2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

||;| Permissions: Home | | ﬁ e > =3
Site Actions - B Browse
a % [@ Permission Levels
-— = E Site Collection Administrators
Grant Create Edit User Remove User Check
Permissions Group Permissions Permissions Permissions
Grant Maodify Check Manage
= Mame Type Permission Levels
= FABRIKAMHOCKEY \administrator User Limited Access
] Home Members SharePoint Contribute
Group
= Home Owners SharePoint Full Control
Group
&= Home Visitors SharePoint Read
Group
] redmond\stefox (REDMONDstefox) User Limited Access
= System Account (SHAREPOINT \system) User Limited Access
] Viewers SharePoint View Only
Group

FIGURE 2-26 Permissions

How It Works

SharePoint uses Active Directory, so when users are added (or sites are provisioned by an administrator),
an Active Directory identity is associated with the users. Further, those users who are added to the site can
be given specific levels of permission (such as Viewer, Member, Administrator, and so on). You can also
create security groups for SharePoint to create custom security groups for specific sites or objects within
sites. The groups are simply aggregations of individual entries in Active Directory. This walkthrough sim-
ply enabled you to provision access for a specific Active Directory entry that existed in the context of your
SharePoint server. Chapter 12 provides more information about security in SharePoint.

SUMMARY

This chapter discussed the types of skills that you (as an aspiring SharePoint developer) should know
or learn as you embark on your journey. Key to these skills, though, is the understanding that differ-
ent meanings are associated with SharePoint development. For example, if you simply want to play
in the content and page customization space, then perhaps ASP.NET, HTML, and CSS are all you
will need (and perhaps JavaScript). However, if you want to get deeper into building managed code
solutions for SharePoint 2010, then you’ll want to learn more about C# and VB.NET, and, more
generally, the .NET Framework.

This chapter also provided an introduction to the Visual Studio 2010 templates, and introduced you
to SharePoint Designer 2010. Both of these applications should definitely be an important part of
your development toolkit, which is explored in greater detail in Chapter 3. This chapter also dis-
cussed the skills you’d need to get started as a SharePoint developer, specifically calling out HTML,
XML, XSL, JavaScript, CSS, and one of C# or VB.NET as your managed code languages.

Summary | 65

This chapter also walked you through a number of examples that enabled you to get a hands-on
understanding not only of the SharePoint interface but also of some of the more basic ways to pro-
gram against SharePoint. The rest of the book will continue to build these basic examples into more
advanced examples of programming against SharePoint.

EXERCISES

What are the different ways of setting up and configuring SharePoint for development?
How is using Hyper-V better or worse than installing SharePoint “on the metal”?

What are some of the common project templates you’ll find in Visual Studio 2010?

BWN o

. What are the different levels of security that can be assessed against an individual in
SharePoint 2010?

66 | CHAPTER2 GETTING STARTED WITH SHAREPOINT 2010 DEVELOPMENT

» WHAT YOU LEARNED IN THIS CHAPTER
ITEM DESCRIPTION

Developer Tools High-level feature descriptions of Visual Studio 2010 and SharePoint
Designer 2010, and how they can be used.

SharePoint 2010 Platform The different services and APIs that make up the SharePoint 2010 plat-

Services form, such as enhanced Web services (for example, support for WCF
and ASP.NET); improved data programmability; REST and ADO.NET
Data Services, and LINQ support; and LOB integration using BCS.

SharePoint 2010 The capability to deploy SharePoint solutions on-premises or to a
Deployment Options hosted SharePoint instance online (called SharePoint Online) using
sandboxed solutions.

RECOMMENDED READING
» SharePoint virtual machine download at http://www.microsoft.com/downloads/
details.aspx?FamilyID=0c51819b-3d40-435c-al03-a5481felald2&displaylang=en

> SharePoint Development Center on MSDN at http: //msdn.microsoft.com/en-us/
sharepoint/default.aspx

> Channel 9 SharePoint Developer Learning Center at http: //channel9.msdn.com/learn/
courses/SharePoint2010Developer/

PART Il

Getting Started with
SharePoint 2010 Development

» CHAPTER 3: SharePoint 2010 Developer Tools

» CHAPTER 4: Common Developer Tasks in SharePoint 2010
» CHAPTER 5: Programming Against SharePoint 2010 Lists
» CHAPTER 6: Building and Deploying SharePoint Web Parts

» CHAPTER 7: Creating Your First SharePoint 2010 Application

SharePoint 2010 Developer Tools

WHAT YOU’LL LEARN IN THIS CHAPTER:

> Understanding the different ways of developing for SharePoint

> Getting to know the primary developer tools and environments for
SharePoint 2010

> Using Visual Studio 2010, SharePoint Designer 2010 and Expression
Blend when developing for SharePoint

At this stage in the book, you’ve been introduced to what SharePoint is. You’ve learned how
to set up a development environment (either virtualized or on the metal), and you’ve read
about some of the developer features in SharePoint 2010. From here on out, you will become

more practical in your interaction with this book, and you will begin to write applications for
SharePoint 2010.

In this chapter, you learn about the different tools that you will want to have in your developer
toolkit. You may have more or less than what is described in this chapter, but ultimately this
chapter is about the core developer tools you should either use or be aware of when embarking
on your SharePoint development projects.

This chapter examines the following four main developer tools/environments:
> Browser-based development
> SharePoint Designer 2010
> Visual Studio 2010
>

Expression Blend

70 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

Depending on your skills and design goals, you may use these environments or tools in different
ways. So, this chapter introduces you to these different possibilities and walks you through some
practical examples.

SHAREPOINT DEVELOPMENT ACROSS
DEVELOPER SEGMENTS

In Chapter 1, you saw the different types of users that interact with SharePoint, as well as the dif-
ferent ways in which they use SharePoint. If you remember that discussion, there are end users who
use SharePoint as an application platform, and then there are power users, designers, and develop-
ers who, in some way, engage in administration, configuration, or development against SharePoint.
Thinking about a development lifecycle for each of these types of users, you can imagine that there
are ways in which these people might work together, or they may act independently with something
that was created specifically for them.

For example, the end user is the ultimate consumer of the product, while the power user config-
ures it. Thus, they are downstream from the development process. Further upstream, you have the
developer and the designer, who may work together to deliver both the code and the user experience
(branded or otherwise) to the power user and, ultimately, to the end user. The point is that there is
a range of people interacting with SharePoint — from the developer all the way downstream to the
end user. Figure 3-1 illustrates the range of these types of users.

Developer |:> Designer |:> Power User |:> End User

FIGURE 3-1 Who interacts with SharePoint 2010

With this in mind, users require different ways to develop for SharePoint — and, in this case, users
would primarily include developers, designers, and power users. That is what this chapter is all
about — talking about the different tools that these various types of users can use to develop for
SharePoint.

Figure 3-2 shows an interesting way to divide up what have traditionally been associated with
SharePoint development — namely, Visual Studio and SharePoint Designer. This chapter proposes
the Web interface as an end-user and power-user “tool,” SharePoint Designer as a Web developer
tool, and Expression Blend as more of a designer tool for the development experience. Visual Studio,
then, would be for a more managed-code development experience.

On the designer/power-user side, you will invariably use the Web-based interface as a user with
augmented permissions — for example, full control — so you could perform the duties of a site
administrator. What this means is that you may be creating artifacts like custom lists, inserting Web
parts, editing content, creating master pages, and the like. You may get into coding here, and more
than likely that will involve HTML, XML, CSS, ASP.NET, JavaScript, and other dynamic lan-
guages. You may also get into some integration with Silverlight, as you will see in an example where
a Silverlight banner ad is integrated with an ASP.NET master page.

Web-Based Development in SharePoint | 71

Web, SharePoint Designer é Microsoft Visual Studio N
and Expression Blend
45‘“ Microsoft® “’?
O Visual Studio
Create lists and doc libs ‘ | Custome Atrtifacts (Web Parts, Lists, etc.)
\ Form Design Site Definitions

v

\ Design/Code views Content Types

WPF/Silverlight Design D Workflow

SN

FIGURE 3-2 Range of tools for users

On the managed side of the house, you will find development that is more centric to C# or VB.NET
(managed-code languages), and you may also find scripted languages here. Using Visual Studio, you
will also find that development efforts may be managed as a part of an application lifecycle, which is
more broadly called application lifecycle management (ALM). During ALM, source code is checked
into team folders (in Team Foundation Server, for example). You can add SharePoint development
projects to those folders and centrally manage them. You’ll also find custom solutions that lever-

age other parts of the .NET Framework, such as solutions based on Windows Workflow (WF), or
service-based applications built and deployed as Web parts or event receivers.

Ultimately for you, the benefits of these two development paradigms are choices offered along the
spectrum of SharePoint development. Depending on what you’re trying to develop for SharePoint,
each of these tools (or interfaces) will have pros and cons for the task at hand.

Let’s walk through each of these development experiences so that you can get a better sense for how
you might leverage each of them in different ways.

WEB-BASED DEVELOPMENT IN SHAREPOINT

As mentioned, SharePoint development can be defined in a number of ways. A light developer (or
power user) may leverage more of the native SharePoint features to do development through the
Web-based environment. This type of user will require escalated permissions on a SharePoint site,
and, thus, will be able to accomplish tasks such as the following:

> Configure a new theme to the site

> Add a new Web part to the site

72

| CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

Create and deploy multimedia for sitewide consumption
Manage sandboxed solutions

Activate and deactivate features

Write and format text inline

Add HTML or JavaScript to a page

Configure and customize search capabilities

Y Y Y VY Y VY Y

Map master pages to sites

While some might argue these are merely tasks that a power user or IT professional might perform,
one thing about SharePoint is that the line is sometimes blurred where one role starts and another
ends. For example, with many of the Web-based functions that you can perform when develop-

ing for SharePoint, there is a direct relationship to a development task. Thus, you might see the
SharePoint Web interface as an endpoint to the development experience.

For example, if you create a custom Web part, you must load that Web part into a SharePoint site
using the Web Part Gallery. Or, if you’re working with a designer to create a new master page, you
must associate that new master page with a specific site through the Site Settings of that SharePoint
site. The types of Web-based tasks that you can perform go on and on.

The key take-away from this is that, as a SharePoint solution developer, you will be interacting
with the Web-based features in SharePoint, as well as potentially leveraging other tools that will be
examined in this chapter.

Site Settings

An important part of SharePoint to be familiar with is the Site Settings page. You’ll find most con-
figuration options for your site here, so it’s a good place to start when trying to understand where
you can, for example, change the theme of your site, activate features, upload sandboxed solutions,
and so on.

Figure 3-3 shows the Site Settings page. Note that the core features of the Site Settings page are split
up into major categories. For example, most of your security settings are available to you in the
“Users and Permissions” category.

The features that you develop and deploy to SharePoint will appear in the Feature Gallery. To see
the Feature Gallery, locate the Site Actions area and click “Manage site features.” Note that the
Feature Gallery also indicates which features are active or deactivated. When you develop and
deploy a feature to SharePoint, this is where you will activate and deactivate it.

Farm or site administrators can use the Feature Gallery as a place where they can activate and deac-
tivate the features in a SharePoint site collection. In Figure 3-4, notice that at the top of the Feature
Gallery is a feature called the AnnouncementListEvent Featurel. This is an example of a custom
feature built and deployed to SharePoint, and it can be activated or deactivated at any time by the
person with the appropriate permissions.

Web-Based Development in SharePoint | 73

Home » Site Settings

Home Wrox

&

Ilike It

Users and Permissions
2 People and groups

Site permissions

Site collection administrators

Documents
Site Pages

Shared Documents

KAPS All people
] Galleries
Lists Site columns
Calendar Site content types
Web parts
Tasks List templates
Customers Master pages
Themes
Hockey Products Solutions
Products
5 Site Administration
og 5 &
Regional settings
Site libraries and lists
Discussions tiar alors
RSS

Team Discussion Search and offline availability
Sites and workspaces
Workflows

Workflow settings

Related Links scope settings
Term store management

18] Recycle Bin

All Site Content

Look and Feel

Title, description, and icon
Quick launch

Top link bar

Tree view

Site theme

Site Actions

Manage site features

Save site as template

Reset to site definition
Delete this site

Site Web Analvytics reports
Site Collection Web Analytics
reports

Site Collection
Administration

Search settings

Search scopes

Search keywords

FAST Search keywords
FAST Search site promotion and
demotion

FAST Search user context
Recycle bin

Site collection features
Site hierarchy

Site Information

Site URL:

http:/ffabrikamhockey/

Mobile Site URL:
http:/{fabrikamhackey/?Mobile=1

FIGURE 3-3 Site Settings page

Name

@ AnnouncementlListEvent Featurel

My Ewent Receiver Feature

Content Organizer

or folder.

E-mail Integration with Content Organizer

Group Work Lists

Held and eDiscovery

E Sl B RE

require you to suspend the disposition of documents.

Metadata Navigation and Filtering

items.

Offline Synchronization for External Lists

ul

FIGURE 3-4 Feature Gallery

Take some time to explore the different parts of the Site Settings page to become familiar with all it

offers for configuring SharePoint sites.

Create metadata based rules that move content submitted to this site to the correct library

Enable a site's content organizer to accept and organize email messages. This feature
should be used ony in a highly managed store, like a Records Center.

Provides Calendars with added functionality for team and resource scheduling.

This feature is used to track external actions like litigations, investigations, or audits that

Provides each list in the site with a settings pages for configuring that list to use metadata
tree view hierarchies and filter controls to improve navigation and filtering of the contained

Enables offline synchronization for external lists with Outlook and SharePoint Workspace.

Activate

Activate

Status

74 |

CHAPTER 3 SHAREPOINT 2010 DEVELOPER TOOLS

Inline Rich Text and HTML Editing

When you return to the home site of your SharePoint site, click Site Actions &> Edit. The functions
available to you at this point range from inserting native and custom Web parts, to editing and gen-
erating custom lists. If you click inside the top-level Web part to expose the in-context ribbon, you
will see that you can now edit the page using the ribbon controls. Thus, while the Site Settings pro-
vide you with configurable settings for the applications that you deploy to SharePoint (or for chang-
ing the configuration of the site that hosts your applications, such as themes or master pages), the

Edit mode enables those who have elevated permissions to contribute to the development of content
on the site, as shown in Figure 3-5.

Site Actions -

H (&

Save Check Qut

Edit

|
Paste

C

Format Text

% cut =

Verdana | 3Zpx -

BIHabex,x’aP.’-A-tb

Font

iz = €
i= &

=3 Copy

¥} Undo .

board Paragraph

Select »
Styles Text Markup
- Layout ~ Styles »

Styles Layout

> HIML.

Markup

Documents

Site Pages

Shared Documents
XAPS

Lists

Calendar

Tasks
Customers
Hockey Products
Products

Log

Welcome to your site!

Add a new image, change this welcome text or add new lists to this
page by clicking the edit button above. You can click on Shared
Documents to add files or on the calendar to create new team
events. Use the links in the getting started section to share your site
and customize its look.

Shared Documents

E Type

There are no items to show in this view of the "Shared Documents™ document:
library. To add a new item, dick "New™ or "Upload™.

Mame Madified Maodified By

FIGURE 3-5 Inline HTML and text editing

The editing experience ranges from text, HTML, and JavaScript formatting to the inclusion of
images or multimedia. For example, let’s say that you’ve created a training video, and you now want
to embed that video in a Web part on a page. You can use the Site Actions => Edit menu to open the
Insert Web part, where you can then insert a Web part that supports multimedia. While this may
not constitute hard-core, managed-code development, you are still advancing the content of your
site, so, in a sense, you are technically “developing” your site.

Let’s try this out by walking through an example.

A hEellhs Testing Out the Inline Editing Experience

The new SharePoint ribbon experience enables you to quickly customize and edit SharePoint pages. To
edit a SharePoint page inline, follow these steps:

1.

Open your SharePoint site.

2. Navigate to the home page of your site, and click All Site Content.

3.

Click Create.

Web-Based Development in SharePoint | 75

4. On the Create Gallery page, click Page ©> Web Part Page, and click Create.

5. Provide a name for the new Web part page (for example, wroxwpp), as shown in Figure 3-6. Leave
the default options and click Create.

Home Wrox (7]
Documents Mame Name:
Site Pages E&i;ﬁ@ﬁtn;r:i;iftg your Web Part Page. The file name appears in headings and links :me\Nppi i
ShapsdiDociimens L Owverwrite If file already exists?
XAPS
ok Layout Choose a Layout Template:
o Select a layout template to arrange Web Parts in zones on the page. Multiple Web Parts can
Calendar be added to each zone. Spedific zones allow Web Parts to be stacdked in a horizontal or Full Page, Vertical
wertical direction, which is ilustrated by differently colored Web Parts. If you do not add & Header, Left Column, Body
Tasks ‘Web Part to a zone, the zone collapses (unless it has a fixed width) and the other zones Header, Right Column, Body
CHSErS, expand to fill unused space when you browse the Web Part Page. Header, Footer, 2 Columns, 4 Rows
Header, Footer, 4 Columns, Top Row
Hockey Products Left Column, Header, Footer, Top Row, 3 Columns
EI Right Column, Header, Footer, Top Row, 3 Columns

Products
1oy =g

—

==
Team Discussion
8] Recycle Bin Favell nration Document Library
@ All Site Content Select the document library where you want the Web Part Page to be saved. E’FWT)@EI
FIGURE 3-6 Creating a new Web part page

6. By default, SharePoint should open the page in Edit mode. If it doesn’t, click Site Actions = Edit
Page, which will open the page in Edit mode.

7. Click the top Web part Zone, and click “Add a web part.”

8. Select the “Media and Content” category, and then select Content Editor. SharePoint adds a
Content Editor Web part for you in the top zone, and you can now add and edit text and images
using the contextual ribbon.

9. Add some text and format it. When you have finished, click the Page tab on the ribbon and click
Stop Editing to save your changes to the Web part.

How It Works

This initial example was a simple illustration of using the Site Actions menu to open up Edit options.
Essentially, when you have a SharePoint page in Edit mode, it exposes a set of features to you, depend-
ing on your permissions level for the site.

For example, if you had only read permissions, then you would not have the same functionality avail-
able to you as you would if you had full control rights to the SharePoint site. What it did do, though,
was expose the functionality of the new SharePoint ribbon. The ribbon is a major leap forward in
SharePoint 2010 and provides you with a number of different contextually driven capabilities across
SharePoint.

The Content Editor Web part represents a way for you to add rich text or HTML source to the page
(beyond the default behavior of a wiki page). When the site is loaded, text or source in this Web part

76 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

is treated as part of the page and is rendered. So, for example if you were to click View Source on your
browser, you’d see that the simple content you just added to your Content Editor Web part in this exer-
cise would be rendered as HTML as a part of the page.

As you saw in this example, you’re not limited to only rich text when using the Content Editor Web
part. You can add source code (such as HTML or JavaScript) that will also run when the page loads.
This makes the Content Editor Web part a versatile way to inject rich text or source code into the

p y J
page to run scripts or set formatting at page load.

Adding Multimedia to a Site

Let’s move on to something a little different and add the video mentioned earlier in the chapter.
However, let’s do so inside of a new wiki site, which, in SharePoint 2010, is a type of Web content
management (WCM) site that enables authors to contribute rich text and multimedia to a shared
Web experience.

WCM sites in SharePoint can be traced back historically to the Microsoft Content Management
System (MCMS) days when Microsoft acquired CMS and integrated it with SharePoint 2003. What
this provided for SharePoint was a way to have a managed workflow around content that could be
published to the Web. Originally, the publishing framework targeted more Internet-facing sites, so
developers and designers could build and deploy a controlled and managed publishing environment
to get Web content out to these Internet-facing sites. In SharePoint 2007, you found the WCM tem-
plates under the Publishing tab when creating a new site collection.

In SharePoint 2010, you have a Publishing template called the Enterprise Wiki, which allows you
to build a rich wiki experience — quite a leap from the simpler, one-dimensional wiki site that was
available in SharePoint 2007. The template is here because, in SharePoint 2010, the wiki is part of
the WCM offerings for SharePoint, and, thus, it represents an enterprise-wide publishing portal.
Also, wiki sites now support a wider array of features, including tagging, author attribution, and
multimedia content. To create one, you will need to start out in Central Administration.

Let’s first create an enterprise wiki, and then use the Web-based features in SharePoint to develop
some content for the wiki site. Note that, for this exercise, you will need a sample video file (that is,
a .wmv file). It could be any file you have handy, but you will upload the video file as a part of this
walkthrough.

Creating and Editing a Wiki Site

Wiki sites provide a way to enable informal social networking across a community. To create and edit a
wiki site, follow these steps:

1.

2.

Click Start = All Programs = Microsoft SharePoint 2010 Products = SharePoint Central
Administration.

Under Application Management, click Create Site Collections.

Provide a name for the new site (for example, MyWroxwiki), a description, and a URL (for exam-
ple, wroxwiki). Then, using the template selector, click the Publishing tab and select Enterprise
Wiki, as shown in Figure 3-7.

Web-Based Development in SharePoint | 77

10.

1.

Provide an administrator for the site. Leave the other default options, and then click OK.

After SharePoint finishes creating the new site collection, it will provide a link that you can click to
navigate to the new site collection you have created. Click that link to navigate to your new wiki site.

After you’ve landed on the home page of the wiki site, click Site Actions &> Edit Page.

Give Feedback

Site Actions - i

Select a web application.
Monitoring PP

Backup and Restore To create a new web application go to New Web Application page.

Security
Title and Description

Upgrade and Migration Title:
General Application Type a title and description for your new site. The title will be displayed on My Wroxwiki
Settings each page in the site.
.)) Description:
Configuration Wizards Test Blog -
Web Site Address
URL:
Spedify the URL name and URL path to create a new site, or choose to http:/ /fabrikamhockey] /sites/ : wroxblog

create a site at a spedfic path,

To add a new URL Path go to the Define Managed Paths page.

Template Selection

Select a template:
A site template determines what lists and features will be available on 2 . = ’— —
your new site, Select a site template based on the descriptions of each CD”.Ebl.){atIDI"I Meetings | Enterprise | Publishing || Custom
template and how you intend to use the new site, Many aspects of a site Publishing Portal
can be customized after creation. However, the site template cannot be p
changed once the site is ceated.

FIGURE 3-7 New wiki site

Click the Insert page, and then select “Video and Audio.” This automatically adds a special
Silverlight control into the wiki page. Click that control to expose more options on the contextual
ribbon menu.

In the Options tab, click the Change Media button and select From Computer.

Upload to SharePoint a sample .wmv file that you have, to test the video. Complete the fields during
the uploading process to complete uploading the video to SharePoint.

After you’ve uploaded the .wmv file, click the small Save icon beside the Site Actions menu to save
the page and exit Edit mode.

You should now see the video embedded into the Wiki page, as shown in Figure 3-8, and you
should now be able to click the Play button to play the video.

How It Works

SharePoint 2010 natively supports Silverlight, which, as you will see in this chapter and in later chapters
in the book, makes integrating Silverlight with SharePoint a lot easier. There are two out-of-the-box
Web parts intended to support Silverlight.

78 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

The first is the generic Silverlight Web part, which represents a “host container” for Silverlight applica-
tions. The second is the Multimedia Web part, which is, in essence, a Silverlight Web part that supports
and serves the multimedia that is associated with the Web part.

siteactions + it B T

MyWroxWiki » home

'8

MyWroxWiki

Home Last modified at 11/26/2009 5:24 PM by FABRIKAMHOCKEY \administrator [Edit this page]
About this wiki Here is 3 great training video.

Media Web Part

FIGURE 3-8 Completed media Web part

So, in the previous example, you “mapped” a video with the Multimedia Web part, which further
enabled you to view the video when you clicked the Play button. The generic Multimedia control is nice
in that it provides a set of controls to play, pause, and stop the video, as well as increase the volume,

or toggle between thumbnail and full-screen views. The mapping of the video essentially represents a
source property that is being set behind the scenes, so that the MediaElement object (a native part of
the Silverlight video-playing capabilities) understands where to find and play the video.

The previous examples reinforce the fact that development for SharePoint can go beyond perhaps
what many feel is typical development, and reinforce the whole spectrum of development from Web
to design to managed code.

So, let’s move on to the second environment in which you may find yourselves doing SharePoint
development: SharePoint Designer 2010.

DEVELOPING SHAREPOINT APPLICATIONS USING
SHAREPOINT DESIGNER 2010

SharePoint Designer 2010 is a great tool to have in your development toolkit because you will
discover some new features in SharePoint Designer 2010 that will make some of what you do
as a developer much easier. You’ll also find that SharePoint Designer integrates really well with
SharePoint 2010.

Developing SharePoint Applications Using SharePoint Designer 2010 | 79

Chapter 2 provided you with a glimpse of the new SharePoint Designer 2010 UI, so you saw that it
leverages the ribbon and has a new navigation pane with the common site objects you will interact with
as a SharePoint developer. Also, similar to the other Office 2010 applications, you have the Backstage
feature, which provides more generic features and shortcuts (such as Open Site, New, and so on).

One of the core features that you will use quite frequently within Vet <
SharePoint Designer is the navigation pane, which is shown in Figure 3-9. Site Objects ~
fay Home

The navigation pane provides a way for you to navigate across the major func- [T tists and Libraries

tional areas of SharePoint Designer to quickly get to the things that you need C_"l; :::’P”a'::
to do. The navigation pane provides links to the following functionality: [Site Assets
[@ Content Types
> Lists and Libraries — Allows you to create, edit, and manage lists [st Columns
and libraries' |%| External Content Types
[Data Sources
> Workflows — Facilitates the creation of rules-based, declarative 'ﬁ :::::::j:s
workflow (that can be imported into Visual Studio and extended). T Subsites
[AllFiles

> Site Pages — Provides the capability to create, customize, and edit

site-level Web pages, or edit existing SharePoint site pages. FIGURE 3-9 SharePoint

Designer Navigation
> Site Assets — Provides a listing for different types of resources (for options

example, JavaScript files that you want to globally reference across
a SharePoint site).

> Content Types — Provides the capability to create, edit, and manage content types. (Content
types are reusable objects and metadata, such as columns, custom documents, and site
columns.)

> Site Columns — Supports the creation, editing, and management of site columns. (Site col-
umns are reusable columns that can be repurposed across a SharePoint site collection.)

> External Content Types — Enables you to create ADO.NET or Web service-based exter-
nal content types for deployment using the new Business Connectivity Services (BCS)
functionality.

Data Sources — Enables you to create and manage data source connections to a SharePoint site.

Master Pages — Enables you to create, edit, and manage the master pages mapped to a spe-
cific SharePoint site. (Master pages provide a way to structure and brand your site.)

Site Groups — Displays the groups of sites within your SharePoint site.

Subsites — Shows the subsites within the site collection.

All Files — Displays all files in the SharePoint site.
Depending on your level of permission to a given site, some of these features may be hidden to you
from within the SharePoint Designer IDE. For example, without administrator privileges, you will

not see the Master Pages link in the navigation pane, so you will not be able to build and deploy
master pages to that SharePoint site.

80 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

Customizing a Site Page

There are some very useful features in SharePoint Designer, and to cover them all would take a separate
book. However, let's at least take a look at a few to get you started and get you familiar with SharePoint
Designer. In this chapter, you will use SharePoint Designer to create site pages and master pages. In later
chapters, you will also use SharePoint Designer to create external content types and workflow.

To get you started, let’s walk through some of the functionality associated with creating and cus-

tomizing a site page.

Customizing a Site Page

Code file [XMLEmployee.zip] available for download at Wrox.com.

As a SharePoint developer, you will be asked to customize many sites, which is a strength of SharePoint

Designer. To customize a site, follow these steps:

1. Open SharePoint Designer 2010.

2. On the left-hand navigation list, click Site Pages. This opens the default Site Pages page in the IDE
(see Figure 3-10), which enables you to manage permissions for specific sites, preview the page in a

browser, check in and check out the site page for editing, and so on.

FIGURE 3-10 Properties view for site page

A I e N
cHXD B o RERR
Edlit Edit File Dwlele Aenasme el Lo Sile el an Prowicw @i Chedk Check e
Fite = Wah+ Page Dl n Home Fage | Drgwier= Ir Out Check Dt
Eont tamage
Mangslmn A £ Iﬂ’ﬂq!.lml_‘]“'t
Ste Obpects a [# o= fhiiome b Se Fages b WroFage aipa b ;.'t'-'
Home
% Liits Ak Lbralet :ﬁuﬂj Use this pege Lo view and manege sellngs ot Bus Bile,
@" Waorkllows
Ly e Pagei " : -
- ep nheriling
= File Information b PE TS SH0NS & Stop Il -
S Assets
g Cantent Troes Key infoimation aboud Ehe file, This lile nbevits peimissions from iy parent,
H e Columns lile Heme: WrnzPage.aipn Hame ¥ Permsgions
e Memibers Cunlrite
LJ T LAY Crmaled By Pl ruel el el e g o Fd ol
0J Data Saurces e e
J’ Last Moddied Uy redmordisted o Q-m'-‘s’m Risd
L'.m Masier Fages File Versicn: 14 s e o Atcest
@ e Groups Check-insout Stabi: Checked in P kbt Ry
Subilles Cuslomization Shatu: Thid File is baced an o file liom the dile' d ﬂtl View indy
" A virwers
[Al Files
CaePager . Customizaion -
23 Home o Linikcs 1 Tile runtamizatinm tonk
- = - a |, »
jfbw'l’uuuﬂawhurlr.... & Edi file
2| WroaPage, sson i :
8 Manage all file properiies n the bravweer Versian Histary 9
A kil Of prémoud veriions of this file.
Wo. v modfedDste v modfieddy -

3. On the ribbon, click Web Part Page to create a new Web part page. Rename the new page that is

created for you to Employee.aspx.

4. Right-click Employees.aspx, and select Check Out. This marks the file as locked exclusively by

you for editing.

Developing SharePoint Applications Using SharePoint Designer 2010 | 81

No o

o 0

10.
1.
12.

13.

After you check out the file, click the link to open the Properties pane.
Under Customization, click Edit File.

Click Code to change the view to code view.

Add a set of <div> tags within which you will add an ASP.NET control.

In the Toolbox, under the Standard ASP.NET controls, drag and drop the XML control to the Site
Page Designer between the <div> tags you just added and rename the default ID to xmlEmployee.
The code should now look similar to the boldfaced code that follows:

<WebPartPages:WikiContentWebpart frametype="none" runat="server" partorder="1"
__WebPartId="{B33365D3-49F7-43F6-B833-B06139DB7AD4}"
id="g_b33365d3_49f7_43f6_b833_b06139db7ad4">
<content>
<div>
<asp:Xml runat="server" id="xmlEmployee"></asp:Xml>
</div>
</content>
</WebPartPages:WikiContentWebpart>

Click Design to change the view to design view.
Click the new XML control you added to the page, and then click the Tag Properties tab.

Under Behavior, you can upload a DocumentSource (an XML file that contains the data) and a
TransformSource (XSLT that formats the XML data), as shown in Figure 3-11.

|iZ] Employee.aspx ‘\@ Emp\oyea.aspx)[@ Employees.aspx® '\ |5 x
< ~ {gfHome p Site Pages b Employees.aspx b Editor l:';le
T o T T
BPs : <
Site Pages aspXmiExmlEmployes (2] =[] 7aq Properties
i x
e Tag Properties |Tcolbmc |
s : -
Lists <asp:XmlExmEmployeex
Calendar El Behavior
Tasks DocumentSource C:\Users\Administrator,...
TransformSource C:\Users\Administrator)...
Customers Enabl True
Hockey Products Visible True
Products E Data
Expressions
Log & Misc
Discussions 1] xmiEmployes
Team Discussion o

FIGURE 3-11 XML control

Upload your own XML file and a corresponding XLST file. If you don’t have anything handy,
some sample XML code follows that you can use for this walkthrough.

The first file (Employee.xm1) represents the data file. This well-formed XML document is com-
posed of multiple employees, as is denoted by the Employee element that is the child element

82 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

of the Employees element. Each employee record comprises a Name element and an EmpID (or
employee ID) element.

<?xml version="1.0" encoding="IS0-8859-1"?>

<Employees>
<Employee>
<Name>John Doe</Name>
<EmpID>77804</EmpID>
</Employee>
<Employee>
<Name>Jane Doe</Name>
<EmpID>09029</EmpID>
</Employee>
<Employee>
<Name>Ken Smith</Name>
<EmpID>10290</EmpID>
</Employee>
<Employee>
<Name>Kendra LaMont</Name>
<EmpID>76802</EmpID>
</Employee>
<Employee>
<Name>Ahmed Banerjee</Name>
<EmpID>89300</EmpID>
</Employee>
<Employee>
<Name>Pierre LaCroix</Name>
<EmpID>00918</EmpID>
</Employee>
</Employees>

The second file (Employee.x1s) represents the XSLT style sheet that formats the data. Note that,
in the style sheet, Cascading Style Sheets (CSS) styles build out a table to format and display the
data from the Employee.xml file. Also note that for-each and select statements iterate through
the Employee.xml file and load the data into the page.

<?xml version="1.0" encoding="IS0-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<head>
<title>Employee</title>
<style type="text/css">
.style2 {
border-collapse: collapse;
font-size: 6.0pt;
font-family: Calibri, sans-serif;
color: #376092;
border-left-style: none;
border-left-color: inherit;
border-left-width: medium;
border-right-style: none;

Developing SharePoint Applications Using SharePoint Designer 2010

border-right-color: inherit;
border-right-width: medium;
border-top: 1.0pt solid #4F81BD;
border-bottom: 1.0pt solid #4F81BD;

}

</style>

</head>

<body bgcolor="#8FACC7" text="#ffffff" 1ink="#808040">

<hl>

<left>Employee Information</left>

</hl>

<table border="0" cellpadding="0" cellspacing="0" class="style2"
style="mso-border-top-alt: solid #4F81BD 1.0pt;
mso-border-top-themecolor: accentl; mso-border-bottom-alt:

solid #4F81BD 1.0pt;

mso-border-bottom-themecolor: accentl; mso-yfti-tbllook: 1184;
mso-padding-alt: 0in 5.4pt O0in 5.4pt">

<thead>
<tr style="mso-yfti-irow:-1;mso-yfti-firstrow:yes">

<th align="left">
Emp. Name
</th>
<th align="left">
Emp. ID
</th>
</tr>
</thead>
<tbody>
<xsl:for-each select="Employees/Employee">
<tr style="mso-yfti-irow:0">
<td style="width:159.6pt;border-top:solid #4F81BD 1.0pt;
mso-border-top-themecolor:accentl;border-left:
none;border-bottom:solid #4F81BD 1.0pt;
mso-border-bottom-themecolor:accentl;border-right:none;
padding:0in 5.4pt O0in 5.4pt" valign="top" width="213">
<p class="MsoNormal">
<xsl:value-of select="Name" />
<gpan style="color:#376092;mso-themecolor:accentl;
mso-themeshade:191"></p>
</td>
<td style="width:159.6pt;border-top:solid #4F81BD 1.0pt;
mso-border-top-themecolor:accentl;border-left:none;
border-bottom:solid #4F81BD 1.0pt;
mso-border-bottom-themecolor:accentl;border-right:none;
padding:0in 5.4pt 0in 5.4pt" valign="top" width="213">
<p class="MsoNormal">
<xsl:value-of select="EmpID" />
<span style="color:#376092;mso-themecolor:accentl;
mso-themeshade:191"></p>
</td>
</tr>
</xsl:for-each>

84 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

</tbody>

</table>

</body>

</html>
</xsl:template>
</xsl:stylesheet>

14. After you’ve uploaded the two files, click the Preview in Browser button to test out the look and
feel of the XML file and style sheet formatting. If you used the XML and XLST that has been pro-
vided here, the data that is displayed in your browser should look similar to Figure 3-12.

Documents .
B Employee Information
Shared Documents Emp. Name Emp. ID
AL John Doe 77304
Lists Jane Doe 09029
Calendar

Ken Smith 10290
Tasks
Lustamens Kendra LaMont 75802
Hockey Products
Products Ahmed Banerjee 89300
Log : 5

Pierre LaCroix 00918
Discussions
Team Discussion

FIGURE 3-12 Transformed and rendered XML object

How It Works

When you create a style sheet, you leverage a set of commands that enable you to load specific parts of the
XML data, and then decorate that data with HTML. Using this method, you can create relatively simple
articulations of the XML data by using HTML only, or you can get complex by leveraging CSS. In this
example’s style sheet, you can see that there is a simple CSS style at work that is defined as .style2.

<style type="text/css">

.style2 {
border-collapse: collapse;
font-size: 6.0pt;
font-family: Calibri, sans-serif;
color: #376092;
border-left-style: none;
border-left-color: inherit;
border-left-width: medium;
border-right-style: none;
border-right-color: inherit;
border-right-width: medium;
border-top: 1.0pt solid #4F81BD;

Developing SharePoint Applications Using SharePoint Designer 2010 | 85

border-bottom: 1.0pt solid #4F81BD;

}
</style>

style2 is then used in the styling of the table, as you can see in the following bolded code.

<table border="0" cellpadding="0" cellspacing="0" class="style2"
style="mso-border-top-alt: solid #4F81BD 1.0pt;
mso-border-top-themecolor:
accentl; mso-border-bottom-alt: solid #4F81BD 1.0pt;
mso-border-bottom-themecolor:
accentl; mso-yfti-tbllook: 1184; mso-padding-alt: 0in 5.4pt 0in 5.4pt">

With the CSS styling, and some inline styling as well, SharePoint Designer loads the two files and then
maps them, so when the XML Web part loads into the page, it merges the XML data file with the
XSLT style sheet.

Managing Other Data Sources in SharePoint Designer

XML is not the only data source you tap into to create data-based custom site pages with SharePoint
Designer. You can also leverage other data connections such as Access or SQL Server databases, or even
Web services. For example, you can create simple data connections in SharePoint Designer that can be
subsequently used when building out custom site pages or Web parts from within SharePoint Designer.

To add a data source, you click the Data Sources link in the navigation pane. You then click the
appropriate button on the ribbon to select which data source you want to connect. To create a
database connection, click the Database Connection button, and then work through the wizard to
configure the database. Or, you can create the database connection when creating the actual custom
Web part page.

For example, click Site Pages in the navigation pane and then
click Web Part Page = Edit File. You can now add data sources to | AutoFormat...

the page by clicking Data Sources on the ribbon and then select- o E P B E
ing from existing SharePoint data sources (for example, lists). If Cmigee

you insert controls into the Web part zones on the custom page, :';Ej:mcjumn

such as an ASP.NET cridview, you can associate database con- P e

nections with that Gridview, as shown in Figure 3-13. [Enable Sorting

[¥ Enable Selection

You can create new connections using this entry point as well.
For example, after you add the Gridview, in the Common
GridView Tasks menu, select New Data Source in Choose Data
Source. Click Database, provide a name for your connection,
and then connect to a database you have on your machine by configuring a new connection to that

HEnable selection of a row on the Gridview]

FIGURE 3-13 Adding SQL data
sources to site page

86

CHAPTER 3 SHAREPOINT 2010 DEVELOPER TOOLS

database. As shown in Figure 3-14, you can select which columns you want to expose from your
database, and you can test the connection from within SharePoint Designer by clicking Test Query.

After you’ve created the connection, you have a connection between the database and your data grid
in the SharePoint Designer IDE, as shown in Figure 3-15.

| ! Test Query

To preview the data returned by this data source, dick Test Query. To complete this wizard, dick Finish.

R)

CustomerID CustomerMame CustomerEmail CustomerRegion CustomerFYD&Sales Cust +
h Bob McEwitt bob@terri.com North 2718900 3728
34281 Karen Schol karen. scholl@wingtip.com |North 2891800 2981 =
82719 Sean Vandenberg | sean@trek.com West 893099 8765)
88109 John Adams j.adams@fabrikam.com |East 1980888 2098(
q‘n'lma Milee Fitzmziirice | milsa Fﬁ!ﬁrm;rmm Sruith 2naraal | 132}11 e
SELECT statement:

SELECT [CustomerID], [CustomerName], [CustomerEmail], [CustomerRegion], [CustomerFY0&Sales] -

[CustomerFY095ales] FROM [CustomerSales]

[< Previous]l Next = [Finish] [Cancel l J

FIGURE 3-14 Configuring Data Source page of the wizard

asp:aridview# Gridviewd

CustomerID CustomerName CustomerEmail CustomerRegion CustomerFY08Sales Custnme
0 abc abc abc 0 0

1 abc abc abc 1 1

2 abc abc abc 2 2

3 abc abc abc 3 3

4 abc abc abc 4 4

FIGURE 3-15 Data view in SharePoint Designer

Using JavaScript in SharePoint Designer

Beyond XML and database connectivity, there are many other useful developer features within
SharePoint Designer. One key feature that you will likely use is the capability to create JavaScript-
enabled pages so that you can insert dynamic scripting when loading specific pages.

When adding script to SharePoint pages, many developers opt to insert smaller sets of code into their
Web pages. Where larger, more complex code is required, developers often build out managed-code
assemblies that then get deployed to the global assembly cache (GAC). Site pages are one such example
of where you can deploy JavaScript to add dynamic capabilities to your SharePoint Web page.

Let’s try this out now.

Developing SharePoint Applications Using SharePoint Designer 2010 | 87

Integrating JavaScript with a Custom Site Page

Dynamic script languages like JavaScript can provide some powerful augmentations to your page. To
add JavaScript to a custom site page, follow these steps:

1.
2.

Open SharePoint Designer 2010. Open a specific SharePoint site and click Site Pages.

Click Web Part Page on the ribbon to create a new page. Right-click the default site that is created
for you and click Rename. Provide a name for the Site page (for example, WwroxPage.aspx), and
then click the link to open the Properties page for the new page. To edit the new Web part page,
click Edit File.

You can toggle between different views, which include a code view, design view, and a split view.
Open the Toolbox to see the different controls that are available for use.

Open the page in code view. You’ll notice that there are some shaded and unshaded portions of
the page. The unshaded portions of the page are where you can edit. Use the following sample
code to build out your custom Web part, adding the bolded code between the content tags
within your Web part.

<WebPartPages:WikiContentWebpart runat="server" AllowEdit="True"
AllowConnect="True" ConnectionID="00000000-0000-0000-0000-000000000000"
Title="" IsIncluded="True" Dir="Default"
IsVisible="True" AllowMinimize="True"
ExportControlledProperties="True" ID="g_086fe54d_7b3b_464b_aab6l_f2cbe8842764"
PartImageSmall="" FrameType="None" FrameState="Normal" ExportMode="All"
AllowHide="True" SuppressWebPartChrome="False" DetailLink="" ChromeType="None"
HelpLink="" MissingAssembly="Cannot import this Web part." AllowRemove="True"
HelpMode="Modeless" Directive="<%@ Register
TagPrefix=" SharePoint"
Namespace=&guot ;Microsoft.Sharepoint.WebControls"
Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" %>"
AllowZoneChange="True" PartOrder="1"
Description="" PartImagelLarge="" IsIncludedFilter=""
__ MarkupType="vsattributemarkup" _ WebPartId="{086FE54D-7B3B-464B-AA61-
F2CBE884276D}" WebPart="true" Height="" Width="">

<Content>

<div>

<asp:Label runat="server" Text="Developer Book Info" id="Labell"
Font-Bold="True" Font-Size="Medium"></asp:Label>

</div><div>

<asp:Image runat="server" id="Imagel" Width="413px" Height="55px"
ImageUrl="http://fabrikamhockey/Shared%20Documents/WroxLogo.jpg" />

</div><div>

<asp:Table runat="server" id="customTable">

<asp:TableHeaderRow></asp:TableHeaderRow>

<asp:TableRow>
<asp:TableCell>
<asp:Label runat="server" Text="Books:" Font-Bold="True"
id="1blBooks2"></asp:Label>

CHAPTER 3 SHAREPOINT 2010 DEVELOPER TOOLS

</asp:TableCell>
<asp:TableCell>
<select id='dropdiv' onchange="getBookInfo(this)">
<option value='1l'>Professional SharePoint 2007
Development</option>
<option value='2'>Beginning ASP.NET 3.5</option>
<option value='3'>Professional SharePoint Development using
Silverlight</option>

</select>

<script language="javascript" type="text/javascript">
function getBookInfo(object)

{

var selected = object.options[object.selectedIndex].value;
var ISBN;

var Price;

var Message;

if (selected == '1')
{
ISBN = "091283900129";
Price = "$39.99";
Message = "Book Info: " + ISBN + " " + Price;
alert (Message);

}

else if (selected == '2')

{
ISBN = "298734689102";
Price = "$42.99";
Message = "Book Info: " + ISBN + " " + Price;
alert (Message) ;

}

else if (selected == '3')

{
ISBN = "948302381002";
Price = "$36.99";
Message = "Book Info: " + ISBN + " " + Price;
alert (Message) ;

}

}

</script>
</asp:TableCell>
</asp:TableRow>
</asp:Table>
</div>
</Content>

</WebPartPages:WikiContentWebpart>

Developer Book Info

Once you’ve added the code to the Web part
page, your custom Web part should look
similar to Figure 3-16.

i Pregrammer to Programmer™

Books: | Professional SharePoint 2007 Development

FIGURE 3-16 Custom Web part page in SharePoint
Designer

Developing SharePoint Applications Using SharePoint Designer 2010 | 89

6. Click Preview in Browser to ensure that the custom Web part loads as you’ve designed it.

7. Now that you’ve completed the design, click the drop-down box and change the selection. You
should see an alert message pop-up with some additional information about that book, as shown in

Figure 3-17.
Home | Wrox MyWroxBlog Search this site...
Documents Developer Book Info
Site Pages
Shared Documents
M Programmer to Programmer™
XAPS
Books: I Beginning ASP.NET 3.5 ;I

Lists

Message from webpage |
Calendar
Tasks 2
Customers ,l} Book Info: 298734689102 | $42.99
Hockey Products
lram

Log

Discussions

FIGURE 3-17 Web part page running JavaScript

How It Works

This is a straightforward example, but it illustrates the marriage of ASP.NET controls with dynamic
scripting languages such as JavaScript.

JavaScript is a dynamic language that runs on the client. What that means is when the client loads the
browser and subsequently the page, it runs the script that you’ve embedded within the page. However,
one of the key things you must be aware of when using JavaScript for developing for SharePoint is that
it doesn’t maintain state natively, so you have to incorporate this into the design of your applications.

You’ll note that there are a number of things happening in the code shown in this exercise. For exam-
ple, you have an ASP nabel control and an ASP Tmage control — which are controls that run on the
server when the page loads. You also have a select HTML object that provides you with a type of
HTML listbox with three options — different books that have been added as selections. You also have
a JavaScript function called getBookInfo () that is called every time you change your selection in the
drop-down box. What is more important in this example code, however, is that you’re adding the code
inline to the ASPX page. Alternatively, you could add the JavaScript code to the Content Editor Web
part or to the master page of the SharePoint site.

As you can see from the following code, JavaScript events are encapsulated within the script tag. In
this example, the events live on the page within which they are called. This is not the only way to call
JavaScript code, however. You can also store the code in a separate file (for example, foo.7s) that can
be stored within SharePoint as a site asset. If you were to store the JavaScript separately, you would not
encapsulate the script in script tags. You would merely add the methods and any helper functions to
that .Js file so that it is executed when called from the page.

<script language="javascript" type="text/javascript">
function foo()

90 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

}

</script>

With the previous example using in-line JavaScript, the getBookInfo method call is triggered when the
user changes his or her selection within the ListBox. You can see that the event that is triggered is the
onChange event.

<select id='dropdiv' onchange="getBookInfo(this) ">
<option value='1'>

Professional SharePoint 2007 Development

</option>

<option value='2'>
Beginning ASP.NET 3.5

</option>

<option value='3'>

Professional SharePoint Development using Silverlight
</option>
</select>

Depending on what the user selects, you can see that the object (that is, the selected item) is passed with
the call to getBookInfo. The variable called selected then gets the value of the selected item, which
further enables the code to run a conditional check against the selected item. So, if the selected item is
the first item, other variables are set and then subsequently concatenated and pushed out in an alert
event to the user.

NOTE One item worth mentioning is that, when you're integrating script within
a SharePoint page, you can use the ClientScriptManager object to add and
manage scripts within a Web application. For example, the following code snip-
pet shows a simple method that ensures only one instance of each script is
added to a page:

public static void RegisterScript
(ref ClientScriptManager csm,
string key, string url)

if (!csm.IsClientScriptBlockRegistered (key))
csm.RegisterClientScriptInclude (key, url);

For more information on the clientScriptManager, S€e http: //msdn.microsoft
.com/en-us/library/system.web.ui.clientscriptmanager.aspx.

Developing SharePoint Applications Using SharePoint Designer 2010 | 91

Master Pages

The example you just saw was a SharePoint site page, which could exist on any site. Interestingly,
when the site page loads, however, it does not just appear without some help. Behind the scenes, it
leverages what is called a master page, which provides some structure and styling for the SharePoint
page. Master pages can be a little tricky, so before you jump into editing them, you will want to
understand a little bit about their structure and purpose.

SharePoint is built on ASP.NET, so many of the artifacts that are core to SharePoint extend
from ASP.NET. Master pages are an ASP.NET concept leveraged in SharePoint. However,

the master pages in SharePoint are a little different, because they involve having multiple core
ContentPlaceHolder controls that must exist within a master page for those site pages within a
SharePoint site to be displayed correctly.

For example, earlier in this chapter, you saw that one of the new features of SharePoint is the rib-
bon, and the master page provides a content placeholder object on the page to handle the rendering
of the ribbon. Likewise, there are other objects that require the ASP contentPlaceHolder object as
well, such as the navigation bars.

The following code snippet shows a set of ASP ContentPlaceHolder objects within a div tag that
support navigation functionality:

<div style="display:none; ">

<asp:ContentPlaceHolder id="PlaceHolderLeftNavBar" runat="server" />
<asp:ContentPlaceHolder id="PlaceHolderNavSpacer" runat="server" />
<asp:ContentPlaceHolder id="PlaceHolderBodyLeftBorder" runat="server" />
<asp:ContentPlaceHolder id="PlaceHolderPageImage" runat="server" />
<asp:ContentPlaceHolder id="PlaceHolderTitleLeftBorder" runat="server" />
<asp:ContentPlaceHolder id="PlaceHolderSearchArea" runat="server" />
<asp:ContentPlaceHolder id="PlaceHolderTitleAreaClass" runat="server" />
<asp:ContentPlaceHolder id="PlaceHolderTitleAreaSeparator" runat="server" />
</div>

While SharePoint requires a specific set of these content placeholders to be present (being without
them would break the page), you can also create very powerful branding experiences through the
master page. This can be done by using any number of techniques.

For example, in the last exercise, you customized a site page using JavaScript. You could equally add
JavaScript into a master page to render a specific script at page load time. Or, you could have a spe-
cific object (such as an image or even a compiled Silverlight application) that equally appears each
time you leverage the master page.

What this means, though, is that for each page that uses the master page, the object or code that you
add to that master page (or the way in which you style that master page using HTML or CSS) will
also equally apply to that site page. This is an important point to remember, but, at the same time, it
can strengthen the case for using master pages to provide branding and structure for your sites.

Let’s look at an example.

92 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

NOTE For this exercise, you will use a community-created minimal

master page. You can download the master page from Codeplex at http://
startermasterpages.codeplex.com/. For this exercise, some small adjust-
ments were made to the minimal master page. The amended master page
(Wrox_Master_Page.master) iS available as part of the code that accompa-
nies this book, which you may find at www.wrox . com.

AR ellhy Customizing a Master Page

Code files [Wrox_Master_Page.master and MyBannerAd.zip| available for download at Wrox.com.

Master pages are files that provide structure and branding across a SharePoint site. To customize a
master page, follow these steps:

1. Open SharePoint Designer and open your SharePoint site.
2. In the navigation pane, click Master Pages.

3. Click Blank Master Page, and provide a name for your master page (for example,
SharePoint_2010_Master .master).

4. Open the Foundation Starter master page in Notepad. Copy and replace the code from the down-
loaded master page to your new master page while in code view.

5. Toggle to design view to see the master page as it would look in the browser (see Figure 3-18).

6. To set this master page as the default master page for your SharePoint site, click Master Pages in
the navigation pane. Right-click the master page and select Set as Default Master Page.

7. Browse to your SharePoint site to test the look and feel of your new master page.

MNavigation < @ SP2010_Minimal.master Q Wrox_Master_Page.master .‘-.‘@ SP2010_Minimal.master ._

Site Objects ~ - fa} Wrox_Test p Master Pages b SP2010_Minimal.master b Advanced Editor
fa} Wrox Test

[T} Lists and Libraries 5 Browse
@ Workflows
i3 site Pages
[& site Assets
Content Types

Site Columns

External Content Types

Programmer to Programmer™

Data Sources

=6 Master Pages
Site Groups
@ Subsites
£3 Al Files
Master Pages A
[~ default.master
[minimal. master
| 2%5P2010_Minimal. master
LﬁTest.masber
E v4.master
@Wrofoasherjage‘m‘ »

FIGURE 3-18 Minimal master page in SharePoint Designer

Developing SharePoint Applications Using SharePoint Designer 2010 | 93

At this point, the master page renders the site in a fairly vanilla way — with only the minimal number
of controls showing on the page. In the SharePoint site shown in Figure 3-19, a number of controls (for
example, sidebar navigation) have been commented out to remove many of the active placeholder con-
trols beneath the ribbon. This is because, as a part of this exercise, you will add a Silverlight application
in the master page to show that you can brand a SharePoint site with a master page in combination
with other .NET technologies.

redmond),
Site Actions ~ il TR

Programmer to Programmer™

FIGURE 3-19 Minimal master page rendered in browser

First, though, let’s change the brand of the site to be a little different from the brand shown in
Figure 3-19. To do this, follow these steps:

1. Upload a new image and add it to a custom directory you will need to create in the _layouts/
images directory within the SharePoint 14 root (for example, _layouts/images/WroxImages).
The direct path to this directory is: . ..\Program Files\Common Files\Microsoft Shared\Web
Server Extensions\14\TEMPLATE\IMAGES.

2. Change the following code to include this new image:

<SharePoint:SiteLogoImage id="onetidHeadbnnr0"
LogoImageUrl="/_layouts/images/WroxImages/FictionalCompanyLogo.jpg"
runat="server"/></td>

3. Save the new master page and then switch to your browser and refresh the page. Your new
SharePoint site should now look similar to Figure 3-20 (at least in terms of your image showing up
in the master page).

Browse

FIGURE 3-20 Minimal master page customized using an image

94 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

Using images is an easy way to quickly customize and brand a SharePoint site by using a minimal mas-
ter page with minimal changes. However, you’re probably already wondering how you can do some-
thing more advanced.

So, what if you want to add an additional branding element, such as a banner ad, to your master page
that you want available to all of the sites that leverage this master page? You could create a simple ban-
ner ad using Photoshop, or, as many companies are doing nowadays, you could build a more dynamic
banner ad using Silverlight.

Let’s build a simple Silverlight application and then incorporate that into the new branded master page.
This will do a couple of things. First, it will introduce you to Silverlight if you haven’t previously used
this technology. It will also show you one way to incorporate Silverlight into SharePoint. And, lastly,

it will show you how to integrate a managed-code application such as Silverlight with a master page to
change the look and feel of all site pages that leverage that master page.

Follow these steps:

1. Open Visual Studio and select File &> New = Project = Silverlight.

2. Provide a name for your project (for example, MyBannerad), and click OK.
3. Uncheck the “Host the Silverlight app in a new Web site” checkbox.
4,

When the new solution is created, right-click the project and select Add New Folder. Name the
folder Tmages. Right-click the new Images folder, and then select Add Existing. Add two images:
one called gear.png, and the other called branded.png. The two images are provided for you in
a zipped file called Images. zip in the companion download site. Note that these images are to be
used only for learning purposes, and are not licensed for reuse in any production or public code.

5. Right-click the MainPage.xaml file and select View in Designer. Replace the default code that
exists between the Usercontrol elements with the following code:

<UserControl x:Class="MyBannerAd.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxml formats.org/markup-compatibility/2006"
mc:Ignorable="d"
d:DesignHeight="700" d:DesignWidth="400">
<Grid x:Name="LayoutRoot" Height="700" Width="400">
<Rectangle
Margin="66,42,152,20"
Stroke="#FF000000"
RadiusX="0"
RadiusyY="0">
<Rectangle.Fill>
<LinearGradientBrush
x :Name="MRGB"
EndPoint="0.5,1"
StartPoint="0.5,0">
<GradientStop Color="#FF000000" Offset="0"/>
<GradientStop Color="#FF5E0805" Offset="0.478"/>

Developing SharePoint Applications Using SharePoint Designer 2010 | 95

</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
<Image Margin="48,49,128,20"
x:Name="brandedImage"
Source="Images/brand.png"/>
<TextBlock x:Name="titleTextBlock"
Margin="75,59,161,0"
FontFamily="Arial"
FontSize="24"
FontWeight="Bold"
TextWrapping="Wrap"
Foreground="#FFFIF4F4"
TextAlignment="Center"
Height="56"
VerticalAlignment="Top"
Text="Life Without Borders">
</TextBlock>
<TextBlock x:Name="footerTextBlock"
Margin="75,564,161,0"
FontFamily="Arial"
FontSize="16"
FontWeight="Bold"
TextWrapping="Wrap"
Foreground="#FFFIF4F4"
TextAlignment="Center"
Height="56"
VerticalAlignment="Top"
Text="Fabrikam, Inc.">
</TextBlock>
<Image Margin="121,559,216,14"
x:Name="gearImage"
Source="Images/gear.png"/>
</Grid>
</UserControl>

6. When finished, your Silverlight application in Visual Studio should look like Figure 3-21.

7. When it is complete, press FS to build and test the application to make sure it works. This will
invoke an instance of your default browser and instantiate the banner ad.

8. Next, go to your SharePoint site and create a new Document library called xaps. When it’s com-
plete, navigate to the bin\debug directory of the solution you just created in Visual Studio (for
example, ..\Source\CSharp\MyBannerAd\MyBannerAd\Bin\Debug) and upload the .xap file (for
example, MyBannerad.xap) to the xaps document library.

Now, this banner ad is fairly simple, but you could get creative and add animations and additional
graphics, swap out videos to play every few seconds, and so on using Silverlight (which is discussed
in more detail later in this book). In this sense, Silverlight is a very powerful option for you to use to
brand your sites.

96 |

CHAPTER 3 SHAREPOINT 2010 DEVELOPER TOOLS

F;a MyBannerAﬂ- i

|| G e e Bl N

+ Solution Explorer - ax

« Common siveright ..~ .. =FalE
R Pointer g] ~d Solution 'MyBannerad' (1 project)
O Border 4 (& MyBannerAd
Button Life Without i & Properties
CheckBox A Borders b (22 References
#8 ComboBox « & 1':‘“35 2
G DataGrid lll‘Eeand pg

; i gearpng

o Gid = ¢ (= Appxaml
Ed Image i 4 =} MainPagexam|
A Label) MainPagexaml.cs
[FE ListBox
& RadioButten i U '
[0 Rectangle
StackPanel
™ TabContral
(Al TexBlock
[sbl TextBox

4 All Silverlight Centrols
N Pointer Fabrikam, Inc.
[0 Border f?)

Button
& rd
& Calendar
d b

Ed Canvas
(oL |13 Design 10 @ xamL — uf=]o]
Bl ComboBox T<UserControl x:Class="MyBannerAd.MainPage" %
= Lomeniontrol xmlns="http://schemas. m:.cr-osoft com/w:.nfx;‘Z@%fxaml
A DataGrid B T I N R e e
T DatePicker 100% |+ I m 4
O Hlipse . @ | UserControl UserControl ¥ B W% Teo.. B2 Clo. B3 Res..

FIGURE 3-21 Silverlight application in Visual Studio 2010 IDE

With the xap file in the xaPs document library, you can now reference and load that Silverlight applica-
tion within SharePoint in different ways. For this example, let’s embed some code within the master
page so that when the page renders, it displays the Silverlight application by default. Follow these steps:

1.

Go back to SharePoint Designer and open your master page. Click Master Pages in the Navigation
list and select the new master page (for example, SharePoint_2010_Master.master). Click Edit
File to open the master page in Edit mode.

Add the following JavaScript script into your master page near the bottom of the file. If you used
the master page from the code download, you will see a commented out ContentPlaceHolder
object called PlaceHolderUtilityContent. Uncomment this code and add the following bolded
code to your master page. Save the file when complete, and then return to the browser and refresh
the browser. (Note that you will need to update the server reference in the value variable to point
to your SharePoint server and . xap file URL.)

<asp:ContentPlaceHolder id="PlaceHolderUtilityContent" runat="server">
<div id="silverlightBannerad" />
<script language="JavaScript" type="text/javascript">

var slDIV = document.getElementById('silverlightBannerAd');
s1lDIV.appendChild(slDIV);

Developing SharePoint Applications Using SharePoint Designer 2010 | 97

slDIV.innerHTML = '<object data="data:application/x-silverlight,"
type="application/x-silverlight" width="400" height="800">
<param name="source" value="http://fabrikamhockey/XAPS/MyBannerAd.xap"
/></object>';

</script>

</asp:ContentPlaceHolder>

3. You will now see a SharePoint site that uses a custom, minimal master page using an image and a
Silverlight application — see Figure 3-22. You may want to add additional CSS styling or position
the banner (and most definitely improve the look and feel of the banner). But, at the end of the day,
any time you build out a site using this as the default master page, this would be the baseline tem-
plate you would start from.

Site Actions » it NN page

Life without Boundaries

Life Without
Borders

FIGURE 3-22 Master page rendered in browser with image and Silverlight application

How It Works

As a SharePoint developer, you should take an interest in Silverlight. This is one of the key directions
that Microsoft is taking when it comes to building out Rich Internet Applications (RIAs). And, for
SharePoint, Silverlight offers some amazing potential not only for building out some simple branding
customizations as shown here, but also because of its great potential to build out hard-core business
applications that have dynamic user experiences. (Some of these will be explored later in the book.)

98 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

With SharePoint 2010 arrives the native support for Silverlight capabilities. This is contrary to
SharePoint 2007, where there were a number of required configurations within the web.config file, for
example, just to get up and running. So, this one version represents a huge leap for SharePoint.

It is the out-of-the-box support for Silverlight in SharePoint 2010 that provides a lot of the behind-the-
scenes support for this “Try It Out” example. By using JavaScript within the master page, you can create a
reference to the Silverlight application through the s1D1V var object, and then set the inner HTML of the
var to further set the properties of an HTML object to render the Silverlight application.

As you can see from the discussion thus far on SharePoint Designer, quite a bit is possible. In some
cases, absolutely no code was required to get started with your development process (which is why
you will see SharePoint Designer being picked up and used by those with a variety of skills and back-
grounds). In other cases, you saw the combination of JavaScript with HTML, and then the integration
of Silverlight (using Visual Studio 2010 to build the .xap files) with master pages through JavaScript.

Your key takeaway from this discussion so far, then, should be threefold:
> SharePoint Designer is a versatile tool and should absolutely be a part of your developer toolkit.
> There are many things you can do with SharePoint Designer, ranging from no-code to code.

> In some cases, SharePoint Designer has a great hand-in-glove relationship with Visual
Studio 2010.

However, many developers live and breathe Visual Studio, so let’s move on to examine SharePoint
development using Visual Studio 2010.

DEVELOPING SHAREPOINT APPLICATIONS USING
VISUAL STUDIO 2010

Visual Studio 2010 now ships with a standard set of project-level and item-level templates that make
SharePoint development much, much easier (and more accessible) than in previous versions. It’s not
that development wasn’t possible before; it’s just that there were many ways to skin the cat, so to
speak. And this lack of consistency across the development tools caused disconnects in the developer
community over the best way to productively and consistently develop for SharePoint.

Microsoft settled on shipping standard project templates out of the box with an additional set of
project item templates. For example, if you create an Empty SharePoint Project, you have the option
of building out that empty SharePoint project using a number of different item-level templates.
These templates were described to you in Chapter 2, and you will see most (if not all) of them in use
throughout this book in some capacity. In this chapter, you will walk through a couple of examples
to get used to developing in Visual Studio so that you can be prepared to tackle the many other
examples you will come across throughout the book.

Beyond the wealth of templates available to you, there are also some other great features that Visual
Studio supports. For example, the Server Explorer lets you see the components of your SharePoint
site. Figure 3-23 shows an abbreviated view of the different objects found in a demo SharePoint site

Developing SharePoint Applications Using Visual Studio 2010

(http://fabrikamhockey). The great thing about this
view is that it shows both custom and native objects, so
if you create a custom workflow and deploy it to your
SharePoint site, it will appear in the Server Explorer.

Another great feature of Visual Studio 2010 is the way in
which it structures a new SharePoint project. For example,
a SharePoint Visual Studio solution contains SharePoint
Features, each containing one or more SharePoint ele-
ments (for example, Web parts or List Templates). These
Features are then packaged for release as a SharePoint
Solution Package (WSP). The WSP is the standard way

of building a SharePoint solution — one that SharePoint
natively understands. A SharePoint feature contains items
(which are represented through XML files that live on the
server file system) that are deployed into your SharePoint
site for activation and use.

Each feature is deployed into a specific folder in the
SharePoint root (. . . \Program Files\Common Files\
Microsoft Shared\Web Server Extensions\14\

Server BExplorer
b [¥ 4
4[] Data Connections|
[fabrikamhockey.AdventureWorksL T2008.dbo
- 4 Servers
4 4 SharePoint Connections
4 = hitp://fabrikamhockey/
4 [L] Home
1> [] ContentTypes
I Features
b E’ﬂ List Templates
>[5 Lists and Libraries
4 [T Sites
»] MyWroxBlog
b] TestMaster
b] Wrox
4] Wrox_Test
3 @ Features
b 5 List Templates
4 Lists and Libraries
3 Document Libraries
> [=p Lists
] Sites
b |&] Workflow Associations
I @WorkﬂowTEmp\atEs
I+ [&] Workflow Associations
3 Work‘flowTempIates

FIGURE 3-23 Server Explorer

Template\Features). Within the Features directory, you will note that each feature is created and
deployed within its own folder. The folder for a feature contains XML configuration files that lever-
age the Collaborative Application Markup Language (CAML), a standard XML syntax you will see
throughout this book that SharePoint natively understands. A manifest file lives in each folder, which
provides feature-specific information such as GUIDs, version info, and any dependencies that are

required by the feature.

For example, following is an example of a feature.xml file for the PPSSiteMaster feature (a
PerformancePoint Server feature). You can see that this feature has multiple dependencies listed.

<Feature Id="0B07A7F4-8BB8-4ec0-A31B-115732B9584D"

Title="$Resources:ppsma, SiteMaster_ ContentType_ Title"
Description="$Resources:ppsma, SiteMaster_ContentType_Description"

Version="14.0.0.0"
Scope="Web"

SolutionId="7ED6CD55-B479-4EB7-A529-E99A24C10BD3"

Hidden="FALSE"
DefaultResourceFile="core"

xmlns="http://schemas.microsoft.com/sharepoint/">

<ElementManifests/>
<ActivationDependencies>
<!-- PPS Site Collection Feature -->

<ActivationDependency FeatureId="A1CB5B7F-E5E9-421B-915F-BF519B0760EF" />

<!-- PPS content List -->

<ActivationDependency FeatureId="481333E1-A246-4D89-AFAB-D18C6FE344CE" />
<!-- Bi Center DataConnections library template -->
<ActivationDependency FeatureId="26676156-91A0-49F7-87AA-37B1D5F0C4D0" />

<!-- Bi Center Dashboards library template -->

<ActivationDependency FeatureId="F979E4DC-1852-4F26-AB92-D1B2A190AFC9" />

| 99

100 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

<!-- Status Lists template -->

<ActivationDependency FeatureId="065C78BE-5231-477e-A972-14177CC5B3C7" />
<!-- DocumentLibrary Feature -->

<ActivationDependency FeatureId="00BFEA71-E717-4E80-AA17-D0OC71B360101"/>
<!-- CustomList Feature -->

<ActivationDependency FeatureId="00BFEA71-DE22-43B2-A848-C05709900100"/>
</ActivationDependencies>
</Feature>

While the packaging and deployment of features in SharePoint 2010 is mostly automated, it is still
useful to understand how it works for the times you need more than what automation provides.

For example, in previous versions of SharePoint, you may have had to hand-code the aforementioned
feature.xml file, or edit it using Visual Studio. However, with Visual Studio 2010, this file is some-
what obfuscated from your view, leaving you to focus on the fun part of development — building the
code for the custom solutions. You still could edit the file, but Visual Studio abstracts the XML configu-
ration away from your view so that you can focus on core development tasks. As you work through the
example in this section of the chapter, you will eventually see where the feature file is built and deployed
in SharePoint, but you don’t necessarily need to interact with it during the development process.

Beyond the feature.xml file (which you could think of as the core file that defines the feature), you
will also have other XML configuration files (for example, an elements.xml file), code-behind files,
and any dependencies files or assemblies. All applications and solutions are built using a standard
packaging and deployment method with the feature framework lying at the heart of this package.

While this is often taken for granted by .NET developers, the SharePoint tools also facilitate a great
F5 experience (for example, connection to worker processes, landing on key SharePoint pages to
kick off the debug process, and so on), as well as some additional capabilities for tasks that were
previously difficult to do, such as deployment and retraction. For example, retraction often meant
either issuing commands through a command-line tool or, in some cases, going into the SharePoint
file system and deleting folders.

In Visual Studio 2010, you can build and deploy applications through the Build menu, and then right-
click your project to retract it from the server. You can also select Retract from the Build menu. Visual
Studio does all the cleanup for you — exactly what you’d expect when cleaning your solutions from
your local development machines.

Figure 3-24 shows the options that are now available to you Build | Debug Tesm Dats Tooks Architecture Test

from within your SharePoint Build menu. You can see your i:!j::‘;:;?m e

Build and Rebuild solutions, but then you also see the Deploy e

(which deploys the solution to SharePoint) and Clean Solution Clean Solution

functionality, as well as many other features. [Build WroxSPProject ShiftsF
Rebuild WroxSPProject

Another work item that was difficult to accomplish with pre- Deploy WroxSPProject

Clean Selection

vious versions of SharePoint was source-code control. There

. Run Code Analysis on WroxSPProject
existed no native project templates in Visual Studio, which

Package
made it difficult (or near impossible) to team-track source- Reha:
code projects. However, with the ALM features built into Batch Build...
Team Foundation Server, you can now manage your source Sonu e
code in a streamlined way. For example, when you create FIGURE 3-24 Build Menu in Visual

Studio 2010 SharePoint project

Developing SharePoint Applications Using Visual Studio 2010 | 101

a new project, as
Figure 3-25 shows,
you can click “Add to
source control” to add
your project to a Team
Foundation Server
instance.

Name: WroxSPProject]

Location: C\Authoring\Beginning_SP_Dev\Chapd_Pro_SP_Dev_Tools\Source\CSF » Browse...

Solution: Create new solution - l

Solution name: WroxSPProject Create directory for solution

] Add to source control

FIGURE 3-25 ALM in Visual Studio 2010

Let’s walk through a couple of examples to explore some of the Visual Studio 2010 features. In the first
walkthrough, you will create an empty SharePoint project and then add a new Web part to that project.

Creating a New Web Part Project

Code file [WroxSPProject.zip] available for download at Wrox.com.

A Web part is one of the most common objects you will create for SharePoint. It is a core building block
of the platform. To create a new Web part project, follow these steps:

1.

Open Visual Studio and click File & New = Project = Empty SharePoint Project in the SharePoint
2010 templates directory. Provide a name for the project (for example, WwroxsPProject), and click
OK. When prompted, select "Deploy as farm solution" and click Finish.

After Visual Studio sets up your project, right-click the project and select Add = New Item. In the
SharePoint 2010 templates directory, choose Web Part, as shown in Figure 3-26. Provide a name
(for example, simplewebPart), and click Add.

Installed Templates

4 Visual C#
Code
Data
General
Web
Windows Forms
WPF
Reporting
4 SharePoint
2010
Worlflow

Online Templates

Per user extensions are currently not allowed to load. Enable loading of per user extensions

Sort by: = Search Installed Templates o |

= Type: Visual C#

Visual Web Part Visual C#
LH Aweb part item.
-‘i“é Web Part Visual C#
E':f'ﬁ Sequential Workflow Visual C#
f‘ﬁ: State Machine Workflow Visual C# 3
75| Workflow Assacistion Form Visual C#
QEE Workflow Initiation Form Visual C#
ﬁ[‘ Business Data Connectivity Model Visual C#
25| Application Page Visual C#
E“? Event Receiver Visual C#
Ji==>
@g Module Visual C#
&

Name:

SimpleWebPart

FIGURE 3-26 Web Part item template

102

| CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

3.

Before you go any further, click Build = Deploy Solution. Don’t switch to SharePoint in your

browser yet to inspect the deployed Web part. You’ll see what you built a little later in the

walkthrough.

At this point, you will see that Visual Studio adds a number of items to your solution. For example,
as shown in Figure 3-27, it adds a new feature (called Featurel. feature). A new node called
SimpleWebPart is added that contains a number of files within it as well. Although you can’t see it,
some of the configuration XML behind the scenes is also updated.

[0 Wrexspproject - Mic

EileidnmﬁlojectﬁuidﬂebugTe!mDmIWEAECMNTﬁﬁBW!{MWH*

IO e IE| =
Server Explorer - x

BIRS &
4 [j) Data Connections.
b [fabrikamhockey Advent]
» M4 Servers
4§l SharePoint Connections
4 =) http://fabrikamhockey/|
4] Home
»] ContentTypes
b EﬂFeatures
b (5 List Templates
b
>
3

[Lists and Librarie}
] Sites
[&] Workflow Assoc
(2l Workflow Temp|

4 1L 3

20038 aEG@85A-

SimpleWebPart.cs X

“gWroxSPProject SimpleWebPart.SimpleW ~ I ©SimpleWebPart()

':iﬂﬁ';b":] < n]

Susing

using
using
using
using
using
using
using

System;

System. ComponentModel;
System.Runtime.InteropServices;
System.Web.UI;
System.Web.UI.WebControls;
System.Web.UI.WebControls.WebParts;
Microsoft.SharePoint;
Microsoft.SharePoint.WebControls;

| Jeib|

m

“namespace WroxSPProject.SimpleWebPart
{
[ToolboxItemAttribute(false)]
public class SimpleWebPart : WebPart
{ L
public SimpleWebPart()
{
}

protected override void CreateChildContro
{

base.CreateChildControls();
}

protected override void RenderContents(Ht[~]

Ready

FIGURE 3-27 SharePoint project

PGl S % B9 - - L b [Debug Any CPU - JIS e GEe Bl

Ll Solution Explorer

| @ Ela

g Selution "WrexSPProject’ (1 project)

4 [WroxSPProject]
4 [Properties
‘Q Assemblylnfo.cs
[+ [23 References
a | Features
4 @Feaiurd
3 EFaaturﬂ‘feature
4 ¥ Package
a [3 Package package

) Package Templatexmi

SimpleWebPart
&) Elementsaml
4] SimpleWebPart.cs
- || SimpleWebPart.webpart
1‘;3 key.snk

W Tea...

BT Clas...

2 Res...

If you double-click the Featurel. feature node, this will open another new part of the SharePoint fea-
ture set in Visual Studio, called the Feature Designer. This designer provides you with a graphical view
of the features that make up the current WSP package within your solution. It also provides you with
the capability to set the deployment level for the feature (for example, site or farm). You can add and
remove features from the package from this view. You can configure your deployment options, and you
can even edit the XML for the files here as well.

Developing SharePoint Applications Using Visual Studio 2010 | 103

Given that you only have one feature (that is, the Web part) added to this project, you only have one
feature shown in Figure 3-28.

Title: WroxSPProject Featurel
Description:
i Site =
Items in the Solution: Items in the Feature:
SimpleWebPart (WroxSPProj
ple! roject)
WebPart
4 Files

[2] Elementsxml
] SimpleWebPart.cs
| SimpleWebPart.webpart

FIGURE 3-28 Visual Studio 2010 SharePoint Feature Designer

You can also see the core files that are associated with the feature:
> Elements.xml
> SimpleWebPart.cs

> SimpleWebPart .webpart

Each one of these files has a specific function in the context of the feature. For example, the Elements.

xml file provides some basic configuration options for the feature. The SimpleWebPart.cs file contains

the core code behind, and the simpleWebrart .webpart file is an XML file that represents the metadata
for the Web part project.

If you open up each of the three core files that make up the simplewebrart feature, you will find a
number of things going on. For example, the following code snippet shows the Elements.xml file,
which defines the elements that make up the feature. Here you can see that, because you only have a
Web part currently in your feature, this is the only module that is listed in the Elements.xm1 file.

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/" >
<Module Name="SimpleWebPart" List="113" Url="_catalogs/wp">
<File Path="SimpleWebPart\SimpleWebPart.webpart" Url="SimpleWebPart.webpart"
Type="GhostableInLibrary">
<Property Name="Group" Value="Custom" />
</File>
</Module>
</Elements>

If you open the simplewebPart .cs file, you will see that Visual Studio has generated some default code
for you that you can extend to, in this case, build out a custom Web part. Here, the code has created

104 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

an instance of the simplewebPart object and contains two override methods that will be used when
building out the Web part functionality later on in this walkthrough.

using
using
using
using
using
using
using
using

System;

System.ComponentModel ;
System.Runtime.InteropServices;
System.Web.UTI;
System.Web.UI.WebControls;
System.Web.UI.WebControls.WebParts;
Microsoft.SharePoint;
Microsoft.SharePoint.WebControls;

namespace WroxSPProject.SimpleWebPart

{

[ToolboxItemAttribute (false)]
public class SimpleWebPart : WebPart

{

public SimpleWebPart ()
{
}

protected override void CreateChildControls()
{
base.CreateChildControls () ;

protected override void RenderContents (HtmlTextWriter writer)
{

base.RenderContents (writer) ;

The last major file of concern here is the SimplewebPart .webpart file, which contains metadata about
the simple Web part you’re about to build out. You have, for example, editable properties such as Title
and Description that can actually make it more intuitive for a user to interact with your custom Web
part within SharePoint.

<?xml version="1.0" encoding="utf-8"?>
<webParts>
<webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
<metaData>

<type name="WroxSPProject.SimpleWebPart.SimpleWebPart,

$SharePoint.Project.AssemblyFullNames$" />

<importErrorMessage>SResources:core, ImportErrorMessage; </importErrorMessage>

</metaData>
<data>

<properties>

<property name="Title" type="string">SimpleWebPart</property>
<property name="Description" type="string">My WebPart</property>

</properties>

</data>
</webPart>
</webParts>

Developing SharePoint Applications Using Visual Studio 2010 | 105

Now, follow these steps:

1.

Navigate to the simplewebPart .webpart file and double-click it to open it in the code view.
Within the properties element, amend the Title and Description to be more descriptive, similar
to the following;:

<properties>
<property name="Title" type="string">Wrox Book Delivery</property>
<property name="Description" type="string">Web part that
calculates cost for delivery on Wrox developer books. </property>
</properties>

Open the simpleWebPart .cs file and amend the code, adding the following bolded code:

using
using
using
using
using
using
using
using
using

System;

System.ComponentModel ;
System.Runtime.InteropServices;
System.Web.UT;
System.Web.UI.WebControls;
System.Web.UI.WebControls.WebParts;
Microsoft.SharePoint;
Microsoft.SharePoint.WebControls;
System.Text;

namespace WroxSPProject.SimpleWebPart

{

[ToolboxItemAttribute (false)]
public class SimpleWebPart : WebPart

{

Label 1lblBook = new Label();

ListBox lstbxBooks = new ListBox();

Label lblDelMethods = new Label();

ListBox lstbxDeliveryMethods = new ListBox();
Label lblDelDate = new Label():;

TextBox txtbxDelDate = new TextBox():;

Label 1blFinalPrice = new Label():;

TextBox txtbxFinalPrice = new TextBox();
Button btnCalc = new Button();

public SimpleWebPart ()
{
}

protected override void CreateChildControls()
{
1blBook.Text = "Book Name:";
1blFinalPrice.Text = "Final Cost:";
lblDelDate.Text = "Del Date:";
lblDelMethods.Text = "Del Methods:";
btnCalc.Text = "Calc.";

lstbxBooks.Items.Add("Professional SharePoint 2007 Development");

106 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

lstbxBooks.Items.Add ("Beginning ASP.NET Development");
lstbxBooks.Items.Add ("WPF Programming");

lstbxDeliveryMethods.Items.Add("Ground") ;
lstbxDeliveryMethods.Items.Add ("Express");
lstbxDeliveryMethods.Items.Add("Overnight");

txtbxDelDate.Enabled = false;
txtbxFinalPrice.Enabled = false;

StringBuilder sbl = new StringBuilder();
sbl.AppendLine("<table border='0'><tr><td>");
StringBuilder sb2 = new StringBuilder();
sb2.AppendLine ("</td><td>");

StringBuilder sb3 = new StringBuilder();
sb3.AppendLine ("</td></tr><tr><td>");
StringBuilder sb4 = new StringBuilder();

sb4 .AppendLine ("</td><td></td></tr></table>");

this.Controls.Add(new LiteralControl (sbl.ToString())):
this.Controls.Add(1blBook);

this.Controls.Add(new LiteralControl (sb2.ToString())):
this.Controls.Add(1lstbxBooks) ;

this.Controls.Add(new LiteralControl (sb3.ToString())):;
this.Controls.Add(1lblDelMethods) ;
this.Controls.Add(new LiteralControl (sb2.ToString())):
this.Controls.Add(lstbxDeliveryMethods) ;
this.Controls.Add(new LiteralControl (sb3.ToString())):
this.Controls.Add(1lblDelDate);

this.Controls.Add(new LiteralControl (sb2.ToString())):;
this.Controls.Add (txtbxDelDate) ;

this.Controls.Add(new LiteralControl (sb3.ToString())):;
this.Controls.Add(1lblFinalPrice);
this.Controls.Add(new LiteralControl (sb2.ToString())):
this.Controls.Add (txtbxFinalPrice);
this.Controls.Add(new LiteralControl (sb3.ToString())):
this.Controls.Add(btnCalc) ;

this.Controls.Add(new LiteralControl (sb4.ToString())):

btnCalc.Click += new EventHandler (btnCalc_Click);
base.CreateChildControls () ;

}

void btnCalc_Click(object sender, EventArgs e)
{
double finalCost = 0.00;
double costOfDel 0.00;
double costOfBook = 0.00;
double salesTax = .08;
double numOfDays = 0;
DateTime today = DateTime.Now;
DateTime delDate;
string strBook = lstbxBooks.SelectedItem.ToString();

Developing SharePoint Applications Using Visual Studio 2010

| 107

string delMethod = lstbxDeliveryMethods.SelectedItem.ToString();

if (strBook == "Professional SharePoint 2007 Development")

{
costOfBook =

}
else if (strBook

{
costOfBook =

}
else if (strBook
{

costOfBook =

}

if (delMethod
{

costOfDel
numOfDays

}

else if (delMethod ==

{
costOfDel
numOfDays

}

else if (delMethod ==

{
costOfDel
numOfDays

}

finalCost =

finalCost = Math

39.99;

"Beginning ASP.NET Development")
.99;

"WPF Programming")

28.99;

"Ground")

3.99;

= 5;

"Express")

7.99;
3;

"Overnight")

11.99;
1;

costOfDel + costOfBook;

.Round(finalCost + (finalCost * salesTax),

txtbxFinalPrice.Text = "$" + finalCost.ToString();

delDate =

today.AddDays (numOfDays) ;

txtbxDelDate.Text = delDate.ToShortDateString();

}

2)/100*100;

When you’ve completed the addition of this code to your Web part (and amended the

SimpleWebPart .webpart), click Build & Deploy Solution. This builds the solution and runs
through a number of steps to deploy it to your SharePoint site — the site that was validated and
associated with the project when you first created your project.

4.

As your project builds, click View = Output. In the Output window, you will see the processing of

the default build and deploy steps that Visual Studio runs through as it builds out your project.

If you followed along with the instructions and built the project once already, you will see something simi-
lar to the following. Note that Visual Studio has discovered the fact that you already deployed this solu-
tion once and is now retracting it and removing all conflicts, as shown in the following bolded output:

Build started: Project: WroxSPProject, Configuration: Debug Any CPU

WroxSPProject -> C:\Authoring\Beginning_ SP_Dev\Chap4_Pro_SP_Dev_Tools\

108 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

Source\CSharp\WroxSPProject\WroxSPProject\bin\Debug\WroxSPProject.dll
Successfully created package at:
C:\Authoring\Beginning SP_Dev\Chap4_Pro_SP_Dev_Tools\Source\
CSharp\WroxSPProject\WroxSPProject\bin\Debug\WroxSPProject .wsp
—————— Deploy started: Project: WroxSPProject, Configuration: Debug Any CPU ------
Active Deployment Configuration: Default
Run Pre-Deployment Command:
Skipping deployment step because a pre-deployment command is not specified.
Recycle IIS Application Pool:
Recycling IIS application pool 'SharePoint - 80'...
Retract Solution:
Deactivating feature 'WroxSPProject_Featurel' ...
Retracting solution 'wroxspproject.wsp'...
Deleting solution 'wroxspproject.wsp'...
Add Solution:
Found 1 deployment conflict(s). Resolving conflicts
Deleted file 'http://fabrikamhockey/_catalogs/wp/
SimpleWebPart.webpart' from server.
Adding solution 'WroxSPProject.wsp'...
Deploying solution 'WroxSPProject.wsp'...
Activate Features:
Activating feature 'Featurel'
Run Post-Deployment Command:
Skipping deployment step because a post-deployment command is not specified.
= Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========
1 succeeded, 0 failed, 0 skipped ==========

After you’ve deployed the SharePoint project, a new folder is created in I WroxSPProject Featurel
the Features directory. For example, if you browse to the Features L
directory, this project has created the subdirectory structure shown in .la :::I,E:v T
Figure 3-29. L
=] Elements
If you open the Feature.xml file, you will see that it refers to an I5] SmmplciWebPartwebpert

ElementManifest object that corresponds to the folder struc-
ture within the wroxspProject_Featurel folder (that is, the
SimpleWebPartfokhr,wﬁﬁchconnﬂnstheElements.xmlfﬂeandtheSimpleWebPart.webpartfﬂe)
Thus, you can see how your project is packaged and deployed. The appropriate assemblies are built and
deployed to the GAC (because you built this as a farm-level solution), and the XML configuration files
live in the Features directory.

FIGURE 3-29 Feature directory

<?xml version="1.0" encoding="utf-8"?>
<Feature xmlns="http://schemas.microsoft.com/sharepoint/"
Id="e9577309-e63d-482a-8815-6b17916f2bfd" Scope="Site"
Title="WroxSPProject Featurel">
<ElementManifests>
<ElementManifest Location="SimpleWebPart\Elements.xml" />
<ElementFile Location="SimpleWebPart\SimpleWebPart.webpart" />
</ElementManifests>
</Feature>

Now that you have an understanding of where the glue and the bits are deployed to, follow these steps:

Developing SharePoint Applications Using Visual Studio 2010

| 109

1. Open your SharePoint site. (Note that you will walk through some long-hand steps in this walk-
through that will be shortened in the next walkthrough by using the F5 debug function.)

2. Click All Site Content and click Create.

3. Click Sites in the left-hand pane and select Blank Site Template. Provide a name and URL, and

click Create.

4. When the new site is created, click Site Actions &> Edit Page.
5. While in Edit mode, click “Add a web part.” This displays the Web Part Gallery.

6. Navigate to the Custom category, and you will find the Web part that you just deployed to
SharePoint. Note that the title and the description that you provided in the .webpart file are dis-
played in the appropriate places, as shown in Figure 3-30.

Categories Web Parts

£ ainess Dala | e Book, Debvery
@ Content Rnigy
i Cunlom
L Decumesnty
o Faers
O Wedia and Conlenl
Wy Rlormation
3 Wavigatnn
|-

e

R
Upinad n Wb fan v

FIGURE 3-30 Adding a Web part to a page

7. Click Add. This will add the Web part you just
created in your SharePoint project to the Web
part page, as shown in Figure 3-31. You can test
out the functionality of the Web part by selecting
entries in the listbox and clicking the Calc. button.
The appropriate delivery date and final cost are
calculated for you and displayed in the (disabled)
textboxes.

How It Works

This was a more elaborate example than the others

that you’ve walked through in this chapter, so let’s talk through some of the key parts of the custom

solution.

About the Web Part

Wrox Book Delivery

Web parl that cakssales cos! for delvery un Wioa developes buuks

add Web Fart to- Left =]

Wrox Book Delivery

Professional SharePoint 2007 Development
Beginning ASP.NET Development
WPF Programming

Book Name:

Del Methods: %gﬁ
Del Date: 12/2/2009 6:05:31 PM

Final Cost: |$51.81

FIGURE 3-31 Custom Web part rendering
in browser

First, you used the core SharePoint project file, and then added a Web part to that empty project. The

nice thing about using the SharePoint project file is that you can add multiple SharePoint elements to
the solution, and Visual Studio understands how to handle these — it builds, packages, and deploys

them in the right place in the SharePoint Root.

110 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

Second, the Web part is a standard ASP.NET server control and can, therefore, contain other nested
ASP.NET controls. Because of this, you can leverage all of the different controls and framework power
that derives from this inheritance. In this example, you used a number of controls (for example, Label,
Textbox, and Button) to create the main user interface. In the Web part, you created these controls
and then used the aad method to add each control (after you set the properties of the control) to the
controls collection — which enables you to build out and format the UI with specific ASP.NET
controls. Within the createchildcontrols event, many of the controls that are added as class-level
objects are assigned values. For example, items are added to each of the listboxes as mock data, and
text properties are set for the different UI objects. Also, in the Createchildcontrols method, each of
the controls is added to the controls collection (after the properties are set), which enables the controls
to be displayed in the Web part.

You’ll also note that the 1iteralcontrol object directly writes the object into the HTML stream
(built out using the stringBuilder object) to create a table that provides some formatting for the UL
Otherwise, the Ul controls will display in an unorganized way.

The l1iteralcontrol is not the only object to emit HTML to SharePoint in this manner. You could
also use StringWriter and HTMLTextWriter objects to write HTML to the Web part as well. For
example, the following code creates a simple StringBuilder object, then writes that through using the
StringWriter and HtmlTextWriter objects:

StringBuilder sb = new StringBuilder();

sb.AppendLine ("<table border='0'><tr><td>");

StringWriter spStrWriter = new StringWriter (sb);

HtmlTextWriter htmlTxtWriter = new HtmlTextWriter (spStrWriter);
Page.RenderControl (htmlTxtWriter) ;

Admittedly, the use of multiple 1iteralcontrol objects is not the most elegant of ways to emit HTML
when rendering Web parts. ASP.NET provides a rich framework for writing HTML out to the page,
which includes the HtmlTextwriter class.

Third, you tied a specific event to the controls that enabled you to interact with the controls on the page
and then acted on that interaction — this was the btncalc_click event. This event will take informa-
tion from the data selected in the two listboxes and calculate the final cost of the book given a specific
book selection and the type of delivery the user wants. Note that the btncalc_click event also rounds
the final cost of the book, and then converts it to a string. It sets the Text property of the txtbxFinal-
cost object — which is set to be disabled, as is txtbxDelDate.

Based on what the user has selected, the btncalc_click method runs a number of conditional if state-
ments to assign specific book costs and delivery costs to help calculate the final cost of the book. This
method also takes the number of days associated with the delivery method specified by the user, and adds
that number of days to the current date, to provide the user with an estimated delivery date for the book.

Lastly, Visual Studio deployed the Web part to the appropriate places in SharePoint, and the appro-
priate files were created so that the Web part would be displayed in the Custom Web Part Gallery.
This capability to build and deploy custom solutions for SharePoint is an immense improvement over
SharePoint 2007, where you would have had to use one of a handful of methods to build and deploy a
Web part to a SharePoint site.

Developing SharePoint Applications Using Visual Studio 2010 | 111

One thing about the Web part you just built is that it was self-contained. It didn’t rely on any
other part of SharePoint or an external system. While you can build some very powerful Web
parts using this design, you will often want to integrate the SharePoint element you’re building
with some other part of either SharePoint or an external system (such as a database, Web service,
or even a Web 2.0 technology).

You'll see a number of service-based and database integration examples throughout the book that
discuss how to integrate with external systems. Next, you will walk through a Web 2.0 example that
shows how you can leverage some community code to integrate a custom Visual Web part with Twitter.

Creating a Custom Twitter Visual Web Part

Code files [MyTwitterFeedWebPart.zip and Twitterizer.Framework-1.0.1.129.zip] available for download at Wrox.com.

You can integrate many Web 2.0 applications with SharePoint, one of which is Twitter. To create a cus-
tom Twitter Web part, follow these steps:

1.

Open Visual Studio and click File &> New = Project. Navigate to SharePoint 2010, and

select the Visual Web Part project template. Provide a name for your project (for example,
MyTwitterFeedWebPart), and click OK. Visual Studio creates a SharePoint project for you and
then adds a Visual Web part to the solution.

If you want to rename the Visual Web part to something more intuitive (as opposed to the

default visualwebPartl), then right-click the visual Web part and rename it (for example,
TwitterWebPart). Note that you may need to click Edit,
click Find and Replace, and then select Quick Replace to

. . . TwitterWebPar:UsElComml.ascx)(I
replace all instances of VisualwebPartl with your new
Web part name. My 'Tweetin Web Part
Right-click the user control file (for example, Username: |
TwitterWebPartUserControl.ascx), and select View in Password: |
Designer. My Tweety: |

Tweet I Clear I

Create a user interface that includes three textboxes and
two buttons all structured within a table, as shown in FIGURE 3-32 Twitter Web part in
Figure 3-32. Visual Web Part Designer

Table 3-1 provides a summary of the names and control types for the application

TABLE 3-1 Control Types and Names
CONTROL TYPES CONTROL NAMES
Textbox txtbxUsername, txtbxPassword, txtbxTweet

Button btnTweet, btnClear

112

| CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

The code for this UI looks like the following. Note that to auto-generate the two events associated
with the buttons, you double-click on each of the buttons, and the method stubs in the code behind
will be generated for you.

<%@ Assembly Name="S$SharePoint.Project.AssemblyFullName$" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=14.0.0.0,
Culture=neutral, PublicKeyToken=71e9bcellle9429c" %>
<%@ Register Tagprefix="SharePoint" Namespace=
"Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=14.0.0.0,
Culture=neutral, PublicKeyToken=71e9bcellle9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.
SharePoint.Utilities" Assembly=
"Microsoft.SharePoint, Version=14.0.0.0,
Culture=neutral, PublicKeyToken=71e9bcellle9429c" %>
<%@ Register Tagprefix="asp" Namespace="System.Web.UI"
Assembly="System.Web.Extensions,
Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Register Tagprefix="WebPartPages" Namespace=
"Microsoft.SharePoint.WebPartPages"
Assembly="Microsoft.SharePoint, Version=14.0.0.0,
Culture=neutral, PublicKeyToken=71e9bcellle9429c" %>
<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="TwitterWebPartUserControl.ascx.cs"
Inherits="MyTwitterFeedWebPart.TwitterWebPart.
TwitterWebPartUserControl" %>
<p>My 'Tweetin Web part</p>
<table border="0">
<tr><td>Username:</td><td>
<asp:TextBox ID="txtbxUsername" runat="server"></asp:TextBox>
</td></tr><tr>
<td>Password:</td><td>
<asp:TextBox ID="txtbxPassword" runat="server"></asp:TextBox>
</td></tr><tr><td>My Tweety:</td><td>
<asp:TextBox ID="txtbxTweet" Height="25" runat="server">
</asp:TextBox>
</td></tr><tr><td>
<asp:Button ID="btnTweet" runat="server" Text="Tweet"
onclick="btnTweet_Click" /></td><td>
<asp:Button ID="btnClear" runat="server" Text="Clear"
onclick="btnClear Click" />
</td></tr></table>

When you’ve created the new Ul you’re now ready to create the code for the capability to submit

a “tweet” from your SharePoint Web part. To do this, you’re going to leverage a community .NET
wrapper for the Twitter API, called the Twitterizer. To get the API, go to the following link and down-
load the Zipped DLL to your local development machine: http: //twitterizer.googlecode.com/
files/Twitterizer.Framework-1.0.1.130.zip. Unzip the zipped file in a readily accessible folder.

Developing SharePoint Applications Using Visual Studio 2010 | 113

You now want to add the Twitterizer.Framework DLL to your Web part project, which will
enable you to very easily call the Twitter API using .NET code. To do this, right-click References
and select Add Reference. Choose Browse, and then navigate to where you unzipped the
Twitterizer.Framework DLL file.

PJOWQg01x)y0urcod&behﬁxiﬁk(forexanqﬂe,TwitterWebPartUserPartControl.ascx.cs)and
add the following boldfaced code to this file. You can see that you need two using statements to ref-
erence the added DLL, and that you’re going to set three class-level string variables (the text that the
user enters). You can also see an instance of the Twitter object, which “tweets” the message that the
user enters into the “My Tweety” textbox. The Clear button resets all of the textboxes to nu11.

using
using
using
using

using
using

System;

System.Web.UTI;
System.Web.UI.WebControls;
System.Web.UI.WebControls.WebParts;

Twitterizer;
Twitterizer.Framework;

namespace MyTwitterFeedWebPart.TwitterWebPart

{

public partial class TwitterWebPartUserControl : UserControl

{

string strTweet = "";
string myTweetUsername = "";
string myTweetPassword = "";

protected void Page_Load(object sender, EventArgs e)

{

protected void btnTweet_Click(object sender, EventArgs e)
{
myTweetUsername = txtbxUsername.Text;
myTweetPassword = txtbxPassword.Text;
strTweet = txtbxTweet.Text;

Twitter myTweet = new Twitter (myTweetUsername,
myTweetPassword) ;
myTweet .Status.Update(strTweet) ;

protected void btnClear Click(object sender, EventArgs e)
{

txtbxTweet.Text = "";
txtbxPassword.Text = "";
txtbxUsername.Text = "";

14 |

CHAPTER 3 SHAREPOINT 2010 DEVELOPER TOOLS

10.

1".

12.

When you’re finished adding the code, press F5 to build and debug the application. This builds,
deploys, and attaches the Visual Studio debug process to the relevant worker processes.

After you press FS, Visual Studio invokes Internet Explorer and opens SharePoint at the Create
Web Part page. Here you can provide a name for the Web part page and click Create. Then, click
“Add a web part” to add the new Tweet Visual Web part, as shown in Figure 3-33.

SharePoint now exposes the Web Part Gallery, so navigate to the Custom category, as shown in
Figure 3-34, and you will see the new Tweety Bird Web part. Click Add to add it to the new Web

part page.

After you’ve added the Tweety Bird Web part, enter your username and password and add a tweet.
Click Tweet to update your Twitter account with your new message, as shown in Figure 3-335.
(Note that you need Internet connectivity and a Twitter account for this example to work.)

Hame

Type a file name for your Web Part Page. The file name appears in headings and links
throughout the site.

Layout

Select a layout template to arrange Web Parts in zones on the page. Multiple Web Parts can
be added to each zone. Specdific zones allow Web Parts to be stacked in a horizontal or
vertical direction, which is ilustrated by differently colored Web Parts. If you do not add 3
Web Part to a zone, the zone collapses (unless it has a fixed width) and the other zones
expand to fill unused space when you browse the Web Part Page.

—_—

EE=E

—_

Save Location

Select the document library where you want the Web Part Page to be saved.

MName:

Choose a Layout Template:

TwitterTestPagel .aspx

] Overwrite if file already existz?

Full Page, Vertical

Header, Left Column, Body

Header, Right Column, Body

Header, Footer, 2 Columns, 4 Rows

Header, Footer, 4 Columns, Top Row

Left Column, Header, Footer, Top Row, 3 Columns
Right Column, Header, Footer, Top Row, 3 Columns

Document Library

Site Assets :

FIGURE 3-33 Creating a new Web part page for the Twitter Web part

Categories Web Parts

(53 Busineas Dnin | = & Tweety Bird

(3 Conten! Rolup | Sl Wrom Buck Debvery
(24 Cusiom

[Doeumenis

3 Flters

[Ca nema ana Comtent -

(53 Wy infsemasan

CH Hav

SOOI PPRRPIP A4
Upload & Web Parl =

FIGURE 3-34 Adding the Web part to the page

About the Web Part

ety Bird

Ve Fart ot enabies Twest

Add Web Part torLefr [<]

[]|

Lancei

Developing SharePoint Applications Using Visual Studio 2010 | 115

13. When you are done, navigate to your Twitter

. | Home » WroxWPP
page to test if your tweet was pOSted, as shown Ul

mn Flgure 3"36- Home Wrox MyWroxBlog Wrox_Test TestMaster Wrox Books

Documents Tweety Bird

How It Works

Site P; .
S o My ‘Tweetin Web Part

Shared Documents

The Visual Web part is a new type of Web part for s e eamondaockeye |
SharePoint 2010 that provides the developer with the Password: [
capability to create ASP.NET user controls using a Lists by Twesty: Test fom SP Web Part
WYSIWYG design surface. This user control is then f:::a’

wrapped by Visual Studio in a class that implements :

the user control as a Web part. In this example, you FIGURE 3-35 Visual Web part rendered on the page
used the Twitter .NET wrapper that provides a lot

of the core functionality to interact with
Twitter from remote .NET client applica- Home
tions — such as the one you created here.
The nice thing about the .NET wrapper for
Twitter is that you don’t have to manage
the REST calls to Twitter; they are handled
through the .NET APIs.

redmondhockey Test from SP Web Part

than a minute ago from Twitterizer

FIGURE 3-36 Successful Twitter call

REST (Representation State Transfer) is a lightweight way to interact with Web-based data using an
HTTP protocol. You will learn more about REST in Chapter 5 and Chapter 10.

In this simple example, you built the ASP.NET UI to accept some limited user input — that is, the user-
name, password, and the tweet. The key lines of code that enabled the communication with Twitter were
the two lines of code within the btnTweet_click event, which are bolded in the following code snippet.

protected void btnTweet_Click(object sender, EventArgs e)

{

Twitter myTweet = new Twitter (myTweetUsername,
myTweetPassword) ;
myTweet .Status.Update (strTweet) ;

Here, an instance of the Twitter object (myTweet) is created using the user-entered password and username
as parameters. myTweet then uses the Update method on that object, passing it the tweet message. This is a
super-simple way to message tweets to Twitter from your UI (albeit with very little error-checking code).

In general, Visual Studio 2010 has evolved tremendously in the support for SharePoint 2010 devel-
opment. If you’re new to SharePoint development, your thinking may be that this is just the way it
should be. However, if you’re a returning SharePoint developer, you should be having a “hallelujah”
moment right now, given the disparate ways in which development was done in the past using Visual
Studio. With this in mind, as you move through the book, know that you will continue to walk
through exercises where Visual Studio is at the core of the development experience.

Now that you’ve learned a little bit about Visual Studio 2010, let’s move on to Expression Blend.

116 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

DEVELOPMENT USING THE EXPRESSION BLEND SUITE

Visual Studio 2010 and SharePoint Designer 2010 are your two core developer tools for SharePoint
2010, so you won’t see as much coverage here for Expression Blend as you did for the aforemen-
tioned tools. However, it’s still important to at least get an introduction to Expression Blend. The
reason is that Expression Blend provides a great suite of applications that support dynamic and
more complex UT design.

NOTE You can download and try Expression Blend for 30 days. For more informa-
tion, go to www.microsoft.com/expression/products/Blend Overview.aspx.

One of the main reasons for introducing it here is that Expression Blend offers a great way to design
WPF, Silverlight, and Deep Zoom applications. Silverlight, as you will see later in the book, is a
great way to create very dynamic applications — and this dynamic user experience begins with the
use of Expression Blend. Further, Deep Zoom can also provide some interesting media experiences
with images. For example, the Hard Rock Memorabilia site (http: //memorabilia.hardrock.com)
leverages the Deep Zoom capabilities within a Silverlight application embedded within an HTML
page, as shown in Figure 3-37.

< Favorites | o5 (@ Suggested Sites * 2] Get More Add-ons ~

w# Hard Rock Memorabilia [&~ v [@ v Pagew Safety~ Tools~ @+

MEMORARBRTITA

Explore the collection

T WAL

e ST o e 1

W ORI (e Y
SN TR |2 » Al
Na. TLLTER S

& Intemet | Protected Mode: On v H/10% -

FIGURE 3-37 Hard Rock Cafe Memorabilia site

Development Using the Expression Blend Suite 117

The type of experience on the site is one that enables you to zoom in to the different images on the
page — with remarkable clarity of the images because the application refocuses each time it zooms
in to an image. For example, when you zoom in to the center of the Silverlight application on the
Hard Rock Cafe site, as shown in Figure 3-38, one of the many images is displayed, along with
some metadata about that particular image — in this case a Keith Moon robe.

€ Hard Rock Memorabilia - Windows Internet Explorer

m:ﬂ“? http://memorabilia.hardrock.com/ -~ | B

¢ Favorites | 5i5 (@ Suggested Sites v 2| Get More Add-ons ~

“# Hard Rock Memorabilia v B ~ = m v Pagev Safetyr Tools~ @~ =2

MEMORABILIA

Explore the collection

th Moon — The Who
Velvet Turnbull & Asser robe

& Intemet | Protected Mode: On a v H®io% -

FIGURE 3-38 Zooming in on memorabilia

While you can create Deep Zoom applications like the one shown here, you can also create more every-
day business applications using Silverlight. For example, much as youd create a WinForm application
using Visual Studio 2010, you could equally create a Silverlight application using Expression Blend. The
added value is that you get more functionality built into Expression Blend, which provides support for
animation, behaviors, action triggers, gradient design, and so on — so it truly provides much more of a
design experience than the “Cider” Ul designer that ships with Visual Studio 2010.

NOTE Note that Expression Blend 3 and Visual Studio 2010 are conversant. So,
when you build a Silverlight application in Expression Blend, it actually builds

it as a Visual Studio—compatible solution. You can try this by right-clicking the
MainPage.xaml in Visual Studio and selecting Open in Expression Blend.

118 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

Let’s create a simple application using Expression Blend.

Creating a Silverlight Application Using Expression Blend

Code file [MyFirstSilverlightApp.zip] available for download at Wrox.com.

Expression Blend can be used to create Ul elements for SharePoint. To create an application using
Expression, follow these steps:

1. Open Expression Blend and click File &> New = Project. Provide a name for your application (for
example, MyFirstSilverlightapp), and click OK.

2. After Expression Blend creates your project, you will see that the main view is of the
MainPage.xaml file. This is the main UI of your application. To keep things simple, click the chevron
toward the bottom of the left-hand controls. This opens a fly-out menu that lists eight options, one of
which is Controls. Click the Controls link to see the different controls available to you, as shown in
Figure 3-39. Drag two labels, a button, a textbox, and a calendar control onto the design surface.

File Edit View Object Project Tools Window Help

Objects and Timeline m x MainPagexaml|
S

M Isarnntenil

el S5 AutoCompleteBox ||| Border & gutton
* Controls
o, o
Styles | Calendar ¥ CheckBox =] ComboBox

Behaviors

ContentPresenter % DataGrid AR DataPager

Effects

42 B DatePidker Ellipse H Frame

Categories
Locations + GridSplitter «m Label Ei ListBox
PasswordBox u= Popup @= ProgressBar
Q) radioBution Rectangle 8 scroligar
En " <l =
i ScrollViewer - Slider TabControl

TextBlock TextBox Hg_: TreeView

XS validatinnSummaru

FIGURE 3-39 Expression Blend visual IDE

Table 3-2 provides a summary of the names and control types for the application.

Development Using the Expression Blend Suite | 119

TABLE 3-2 Control Types and Names

CONTROL TYPES CONTROL NAMES
Label 1blTitle, 1blDate
Textbox txtbxDate

Button btnDate

Calendar clndrControl

Arrange the controls so that they look like Figure 3-40. Note that you can add some gradient to the
control by clicking the control and then clicking different areas of the color palette in the Properties
window.

File Edit View Object Project Tools Window Heip

Objects and Timeline 2 x MainPagexami® x Propertics %

+ -
Name binDate

¢

[UserControl] Type Button

i [UserControl]

v Simple Silverlight Application Color resources

©

e i [Calendar] 0} =t

@ [piTitie S December IS Y

b B tbxDate & Mo Tu We Th Fr Sa
@ |piDate g |

25
17

P = B =

100%

= #FFFB1911

T Appearance
Date: TextBox Opacity

Visibility

| Get Date | BorderThickness

Width 75
Height Auto (22)
Row O RowSpan 1
Column 0 ColumnSp... 1
Zindex 0
HorizontalAlignment I]] — | =]l=

VerticalAtignment T |1 1]

FIGURE 3-40 Designing controls in Expression Blend

You could add more sophisticated behaviors, but, for now, save the application and close
Expression Blend. You’ll add some event handlers for the application — but you’re going to do this
using Visual Studio.

Open Visual Studio 2010 and then open the Silverlight project. Note that when you open it, the
project structure will look like Figure 3-41. However, the look and feel of the UI that you designed
in Expression remains intact.

120 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

File Edt mm Project Build Debug Team Data Format Took Aschitecture Test Analyze Window Help
PGSR d] f B9 - -S| b [pebug Any CPU «| | (3 | TaxonomyPicker |Qﬁ[§;@~k-l

MainPagexaml X

| bR El
1h [Solution "MyFirstSilverlightApp' (2 projects)
H 4 [P C\-\MyFirstSilverlightAppSite\
Simple Silverlight Application 5] App_Code
p [ChentBin
'#] Defaulthtml
|8l favicon.ico
3] Silverlight js
|13 Web.config
4 {3 MyFirstSilverlightApp
b [Properties
b [z References
b

J »

[= -
-" 4 December, 2009 »
L= Su Mo Tu We Th Fr Sa

230 1 2 2 « &0

{= App.xaml

{#| MainPagexaml

pate; | TextBox
Get Date |
‘ ‘ n 2
QDesign 11 “mxami | — n[=]5)|
S <UserControl +

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/prese ;—
xmlns :x="http://schemas.microsoft.com/winfx/2006/xaml" (=)
xmlns:controls="clr-namespace:System.Windows.Controls;ass
x:Class="MyFirstSilverlightApp.MainPage"

L] Width="640" Height="480" mc:Ignorable="d"> s
100% -« i ’

J & UserControl UserControl b

Prop &5 Solutio...

FIGURE 3-41 Silverlight application in Visual Studio

Inspect the XAML that makes up the UI (see the following code snippet). Note the gradient ele-
ments that provide the richer brush strokes for the calendar and button controls. This was a result
of your clicking within the color palette.

<UserControl
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:controls="clr-namespace:
System.Windows.Controls;assembly=
System.Windows.Controls"
xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/
markup-compatibility/2006"
xmlns:dataInput="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data.Input"
x:Class="MyFirstSilverlightApp.MainPage"
Width="640" Height="480" mc:Ignorable="d">

<Grid x:Name="LayoutRoot" Background="White">

Development Using the Expression Blend Suite | 121

<Button
x:Name="btnDate"
HorizontalAlignment="Left"
Margin="51,0,0,160"
VerticalAlignment="Bottom"
Width="75"
Content="Get Date"
Background="#FFF81911" />
<controls:Calendar
x:Name="clndrControl"
HorizontalAlignment="Left"
Margin="51,61,0,0"
VerticalAlignment="Top">
<controls:Calendar.Background>
<LinearGradientBrush
EndPoint="0.5,1"
StartPoint="0.5,0">
<GradientStop Color="#FFD3DEE8" Offset="0"/>
<GradientStop Color="#FFD3DEE8" Offset="0.16"/>
<GradientStop Color="#FFFCFCFD" Offset="0.16"/>
<GradientStop Color="#FFE0O1AI1A" Offset="1"/>
</LinearGradientBrush>
</controls:Calendar.Background>
</controls:Calendar>
<dataInput:Label
x:Name="1blTitle"
HorizontalAlignment="Left"
Margin="51,29,0,0"
VerticalAlignment="Top"
Width="200"
Content="Simple Silverlight Application" FontWeight="Bold"/>
<TextBox
x:Name="txtbxDate"
Margin="106,0,0,212"
TextWrapping="Wrap"
HorizontalAlignment="Left"
VerticalAlignment="Bottom"
Height="25"
Width="124"/>
<dataInput:Label
x:Name="1blDate"
HorizontalAlignment="Left"
Margin="51,0,0,212"
VerticalAlignment="Bottom"
Width="51"
Content="Date:"/>
</Grid>
</UserControl>

You currently have no events tied to the Ul that you created in Expression Blend. So, navigate to
the button element and place your cursor right before the end of the element. Press the space bar.

122

| CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

This will invoke the IntelliSense. Find the Click event and then click and accept the default event
handler name to add a Click event to the application, as shown in Figure 3-42.

S!lﬂnlumlhl-rsa‘

2 . 5 BorderBrush -

% BorderThickness
ﬁ CacheMode H

{} Canwvas

;

A ClickMode

clip)
esign 11 "B XAML | |#* Content

lend/2008" xmlns:m= ContentTemplate mats.
{} controls:

f Cursor

{} a

% DataCont

I S

ound="#FFF81911" />
FIGURE 3-42 Adding Click event to Button control

The resulting XAML will be amended as shown in the following bolded addition:

<Button

x:Name="btnDate"
HorizontalAlignment="Left"
Margin="51,0,0,160"
VerticalAlignment="Bottom"
Width="75"

Content="Get Date"
Background="#FFF81911"
Click="btnDate_Click"/>

Right-click MainPage.xaml and select View Code. This opens the code-behind view — much the
same experience you went through earlier in this chapter when creating the banner ad for use
within SharePoint Designer. Add the following bolded code in the code behind:

using System;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Ink;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace MyFirstSilverlightApp
{
public partial class MainPage : UserControl
{
string strSelectedDate = "";
DateTime userSelectedDate = new DateTime();

public MainPage ()

Development Using the Expression Blend Suite | 123

10.

1.

12.

13.
14.

15.

16.

// Required to initialize variables
InitializeComponent () ;
txtbxDate.IsEnabled = false;

}

private void btnDate_Click(object sender, RoutedEventArgs e)

{

userSelectedDate =

(DateTime)clndrControl.SelectedDate;

strSelectedDate = userSelectedDate.ToString();

if (strSelectedDate.Contains("12/25/2009"))

strSelectedDate;

{
MessageBox.Show("Voice of Reason:
You shouldn't be working!");

}

else

{
txtbxDate.Text

}

After you’ve added the code, press
F5 to debug the application in your
default browser. The result should
look similar to Figure 3-43.

After you’ve successfully tested the
application, click Build = Build
Solution to build the application
one last time.

In the Solution Explorer, click the
Show All Files button to show all

of the solution files in the Solution
Explorer.

Navigate to the Bin/Debug folder
and right-click. Select Open Folder
in Windows Explorer.

Simple Silverlight Application

4 December, 2009 §

Su Mo Tu We Th Fr Sa

23 30 1 2 a3 4 [ER

Date: |12/11/2009

Voice of Reason: You shouldn't be working!

FIGURE 3-43 Testing the Silverlight application

Copy the file path, and then open SharePoint.

Navigate to the xaps document library you created earlier in the chapter. (If you didn’t create a
document library called xaps, you can do that now.) Click Add Document and then click Browse.

Paste the folder path to your Silverlight application, and then select the .xap file that is in that
folder (for example, MyFirstSilverlightApp.xap) and click OK. When the file has been added
to the folder, right-click and select Copy Shortcut.

Click All Site Content and then click Create. Select the Pages option along the left-hand side, and

then select Web Part Page.

124 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

17. Provide a name for the page (for example, BlendTest), and click Create.
18. Click Site Actions = Edit Page, and in one of the Web part zones, click "Add a web part."

19. Select the Media Content Web part, and then select Silverlight Web Part and click Add. SharePoint
will prompt you for a URL to the .xap file, so paste the shortcut to the .xap file you added to the
xaPs directory.

20. Click Stop Editing to test your new Silverlight application in SharePoint. The result should look
similar to Figure 3-44.

Site Actions ~

d & f—
5 8= SR R & | s B
& A Permissions 4 | /| E |

Edit Page Edit E-maila Alert Approve Reject Workflows Edit Mobile Make Title Bar
- Properties » % Delete Page Link Me~ Page~ Homepage Properties
Edit Manage Share & Track Approval Workflow Page Actions
Documents
Site Pages Simple Silverlight Application

Shared Documents
XAPS 4 December, 2009
Su Mo Tu We Th Fr
Voice of Reason: You shouldn't be working!
Lists 2oa0 Ly e g
Calendar
Customers

Hockey Products

Products

Log Date: 12/17/2009

Discussions
| etoae |

Team Discussion

FIGURE 3-44 Adding a Silverlight application to SharePoint

How It Works

Congratulations! You have built another Silverlight application, but you added a little design to it

by starting out in Expression Blend and providing some enhancements to the Ul. You next opened

that same Silverlight application in Visual Studio and added some code behind. You then added the
Silverlight application, using SharePoint’s built-in Silverlight Web part — a native Web part that acts as
a container for Silverlight applications.

Expression Blend 3 is compatible with Visual Studio 2010, which is one of the nice integrations for
designers and developers working together on Silverlight projects. However, with the new project tem-
plates in Visual Studio 2010, the integration across these two developer tools is even more important.

The integration in this exercise was illustrated through the creation of a Silverlight application using the
more feature-rich design environment of Expression Blend, and then opening that application in Visual
Studio (you can right-click the .xam1 file and select Open in Expression Blend from Visual Studio or, alter-
natively, as you did in this walkthrough, open the project in Visual Studio 2010). You created the XAML-
based UI using Expression Blend, and then added the code behind for the XAML in Visual Studio.

The btnbate button is associated with an event handler called btnpate_click. The event handler is
triggered, or “fires,” when the button is clicked.

Development Using the Expression Blend Suite | 125

In the code behind, you set two class-level variables called strselectedpate and userselectedbate.
These variables were used to store a string representation of the date that the user selected on the cal-
endar control and a DateTime object that would also be used to store the date the user selected (casting
the return variable from the selection to a DateTime object). Finally, the code behind asserts a condi-
tional statement (the if statement) to see if you’re working on Christmas day. Note that the contains
method is used because the complete string that is returned from selecting the date in the calendar con-
trol includes a time element as well (so a direct string comparison would not work in this case).

namespace MyFirstSilverlightApp
{
public partial class MainPage : UserControl
{
string strSelectedDate = "";
DateTime selectedDate = new DateTime() ;

public MainPage ()
{
InitializeComponent () ;
txtbxDate.IsEnabled = false;
}

private void btnDate_Click(object sender,
RoutedEventArgs e)
{
userSelectedDate = (DateTime)clndrControl.SelectedDate;
strSelectedDate = userSelectedDate.ToString();

if (strSelectedDate.Contains("12/25/2009"))
{
MessageBox.Show ("Voice of Reason:
You shouldn't be working!");
}
else
{
txtbxDate.Text = strSelectedDate;

And, if you did select December 25, 2009, then a message would be issued to you via the
MessageBox.Show event.

Expression Blend enables you to tap into your design and creative juices to begin to build out a com-
pelling and rich UI for SharePoint. It can be applied to WPF applications that run on the client, or

it can be used (as was shown here) in the context of Silverlight applications. In Chapter 9, you will
have an opportunity to explore Expression Blend a little more. You should spend some time with
this tool, because it can dramatically enhance the design of your UL

126 | CHAPTER3 SHAREPOINT 2010 DEVELOPER TOOLS

SUMMARY

This chapter provided an overview of the major development environments that you will work in

as a SharePoint developer. You saw Web-based development (or what some might call “developer
configuration” or “power-user tasks”), development within SharePoint Designer 2010, development
using Visual Studio 2010, and then development integrating Expression Blend with Visual Studio
2010. You’ll see more of each of these as you make your way through the book, but at this point,
you should have a baseline understanding of the #ypes of things that you can do within each of the
environments.

Also, hopefully you’re beginning to see how much power there is with the new tooling with
SharePoint 2010 — much more than ever before. And, given the evolution in the design tools as
well, there are great opportunities here, not only for the designers and developers to work together
but also for generating some dynamic and rich Silverlight experiences for SharePoint.

In this chapter, you were introduced to the different ways of developing for SharePoint. You also had
a chance to get some coding practice in with these different tools. In Chapter 4, you will learn about
some common developer tasks to further put these tools into practice.

EXERCISES

1. What are the types of developer tasks you might manage through the browser?

2. What are the major differences in the way you would use SharePoint Designer over Visual
Studio? Can you think of places where they might be complementary?

3. In what ways can you see Expression Blend contributing to your overall solution design
experience?

Recommended Reading | 127

» WHAT YOU LEARNED IN THIS CHAPTER

ITEM

Ways to develop
for SharePoint

SharePoint
Designer 2010

Visual Studio 2010

Expression Blend

DESCRIPTION

You will typically use tools such as SharePoint Designer and Visual Studio to
develop for SharePoint. However, there are also some higher-level develop-
ment tools built into the Web-based experience (for example, inline text, HTML
and script editing, and developer dashboard).

SharePoint Designer is a free tool that enables developers to edit site pages,
create master pages, workflows, and all sorts of SharePoint objects such as
lists or content types.

Visual Studio is a professional-grade developer tool that provides a number of
in-box project and item templates with a full F5 experience.

Expression Blend is a suite of tools that can be used to design and custom-
ize the user experience. For SharePoint, you can build advanced and custom
Silverlight Uls.

RECOMMENDED READING

» SharePoint Development Center on MSDN at http: //msdn.microsoft.com/en-us/
sharepoint/default.aspx

» Channel 9 SharePoint Developer Learning Center at http: //channel9.msdn.com/learn/
courses/SharePoint2010Developer/

> SharePoint Designer Home Page at http://sharepoint2010.microsoft.com/product/

related-technologies/Pages/SharePoint-Designer-2010.aspx

> Visual Studio 2010 Home Page at http: //www.microsoft.com/visualstudio/en-us/
products/2010/default.mspx

> Expression Blend Home Page at http://www.microsoft.com/expression/products/
Blend_Overview.aspx

Common Developer Tasks in
SharePoint 2010

WHAT YOU’LL LEARN IN THIS CHAPTER:

> Creating different types of Web parts, including standard, Visual, and
Data View Web parts

» Understanding site columns and content types, and how you can use
them when creating lists

» Understanding how to interact with SharePoint and data in
SharePoint using the native APIs

> Creating and editing site pages and master pages using SharePoint
Designer

So far, you’ve become familiar with SharePoint and learned how to get started with instal-
lation and setting up your development environment. Now that you have a sense of what
SharePoint is all about, you’re no doubt hungrily awaiting some coding exercises.

This chapter discusses a set of common development tasks for beginning SharePoint develop-
ers. Although this examination will not be comprehensive, it will get you started and intro-
duce you to a set of key tasks that you will likely do over and over again in your SharePoint
development career.

The discussions in this chapter have been included as the result of first thinking about com-
mon developer tasks and then culling information from community conversations with
SharePoint M VP friends. This has resulted in the following set of developer tasks that will be
addressed in this chapter:

> Creating Web parts
> Creating site columns, content types, and lists

> Accessing and managing data

130

CHAPTER 4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

> Creating Event receivers
> Creating aspx pages

» Creating master pages

This chapter explores each of these developer tasks through a high-level description, or simple,
straightforward walkthroughs. In many cases, you will see a lot of these tasks showing up in greater
detail in other walkthroughs throughout the book. The goal of this chapter, then, is to introduce
you to a common set of developer tasks for SharePoint and to get you started down the path of
beginning SharePoint development.

CREATING WEB PARTS

One of the most common developer tasks you’ll likely engage in is the creation and deployment of
a Web part. You’ve seen this already and have, hopefully, worked through the walkthroughs to get
a sense for how to do this. Web parts will be covered in detail in Chapter 6, so you should think of
this section as an early introduction to what will be covered in detail later in the book.

Standard and Visual Web Parts

SharePoint 2010 includes primarily two different Web parts you will be working with: Standard
and Visual. The standard Web part provides the core infrastructure that enables you to create and
deploy a Web part into SharePoint. Because SharePoint is built on ASP.NET, you can apply many of
the same coding techniques that you may have learned through ASP.NET to the creation of a stan-
dard Web part.

For example, you can create and apply many of the same objects and events when building out a
standard Web part that you may have used when building out an ASP.NET Web part. The following
is a short code snippet that includes a Textbox, Label, and Button control that are being instanti-
ated and properties set, as well as a c1ick event that corresponds to the Button control:

namespace MyFirstDevTask.TaskOneWebPart
{
[ToolboxItemAttribute (false)]
public class TaskOneWebPart : WebPart
{
Label myLabel = new Label () ;
TextBox myTextbox = new TextBox () ;
Label myResponse = new Label();
Button myButton = new Button();

protected override void CreateChildControls()
{
myLabel.Text = "Enter Text:";
myResponse.Text = "";
myTextbox.Enabled = true;

Creating Web Parts | 131

myTextbox.Text = "";

myButton.Text = "Click Me";

this.Controls.Add (myLabel) ;

this.Controls.Add (myTextbox) ;
this.Controls.Add(new LiteralControl ("
"));
this.Controls.Add (myResponse) ;
this.Controls.Add(new LiteralControl ("
"));
this.Controls.Add (myButton) ;

myButton.Click += new EventHandler (myButton_Click);
}

void myButton_Click(object sender, EventArgs e)
{
string userResponse = myTextbox.Text;
myResponse.Text = userResponse;

In this code snippet, you can see that the four controls are declared R P— (YT
at the class level. Then, in the createchildcControls method, the Hello SherePaint Devs!
properties for those objects are set. The Add method is called to add

the controls to the controls collection (to display them in the Web FIGURE 4-1 Deployed Web part
part), and the myButton_Click event is called to render the user’s

entry as text in one of the labels. Figure 4-1 shows this code in action.

If you have not coded Web parts before, this is pretty standard — that is, creating the controls, set-
ting the properties for those controls, adding the controls to the controls collection, and also add-
ing any event handlers for those controls.

The standard Web part is an item-level template in Visual Studio 2010, so you can only add this to
a parent project such as an Empty SharePoint project template. It is, though, a standard template
available in Visual Studio, so creating and deploying your Web parts is very easy.

The Visual Web part is different from the standard Web part in that you have a designer experience
you can use to create the user interface (UI) for the Web part (as opposed to what you did in the pre-
vious example where you were manually creating the controls that make up your UI). Furthermore,
the Visual Web part has both project-level and item-level templates in Visual Studio 2010, so you
can have both a parent and a child project that are Visual Web parts.

Using the Designer experience in Visual Studio 2010 to create the Web part Ul, you can drag and
drop a wide array of library controls from the Toolbox onto the Designer surface. Unlike with the
standard Web part where you would manually code and use IntelliSense to create controls or events,
with the Visual Web part, you would double-click the control in the Designer, and then jump to the
code behind to add your events.

For example, in the Visual Web part, if you were to implement the same code as shown in the dis-
cussion of the standard Web part, then you would have an ASP.NET user control (ascx file) that

132 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

represents the Ul with a code-behind file. (ascx is the file extension for the ASP.NET user control
file.) The ascx user control code would look like the following;:

<asp:Label ID="myLabel" runat="server" Text="Enter Text:"></asp:Label>
 <asp:TextBox ID="myTextbox" runat="server"></asp:TextBox>
<p>
<asp:Label ID="myResponse" runat="server" Text="Label"></asp:Label>
</p>
<asp:Button ID="myButton" runat="server" onclick="myButton_Click"
Text="Click Me" />

The code behind for the ascx user control would look like the following:

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

namespace MyFirstDevTask.TaskTwoWebPart
{
public partial class TaskTwoWebPartUserControl : UserControl
{
protected void Page_Load(object sender, EventArgs e)
{
}

protected void myButton_Click(object sender, EventArgs e)
{
string userResponse = myTextbox.Text;
myResponse.Text = userResponse;

Note that the control declarations do not appear in this specific ascx code behind. However, there is
a reference to the ascx control in the core Web part class that loads the user control you build with
the Designer experience at runtime. The following shows the code that represents this reference
inside of the core Web part class. Note that the _ascxPath object simply represents a file-system
path to the location of the ascx file you created using the Designer.

public class TaskTwoWebPart : WebPart
{
private const string _ascxPath =
@"~/_CONTROLTEMPLATES/MyFirstDevTask/TaskTwoWebPart/
TaskTwoWebPartUserControl.ascx";

protected override void CreateChildControls()

{

Creating Web Parts | 133

Control control = Page.LoadControl (_ascxPath) ;
Controls.Add(control) ;

Code file [MyFirstDevIask.zip] available for download at Wrox.com.

Although you have the same functionality built into the Web part, you have now seen two slightly
different ways of building out the Web part.

Data View Web Parts

While the Data View Web part is not discussed in great detail in this book, it is worth mention-

ing in this chapter. This is because the Data View Web part is not only accessible to developers but
also can be useful for power users or even information workers. Part of the problem, however, is
that many times, nondevelopers feel that data-centric work should be left to the developer. With the
advance in tools for SharePoint, this trend is starting to wane. Information workers are working
more and more with data.

The Data View Web part is interesting in that it is capable of retrieving data from various data
sources in the form of Extensible Markup Language (XML). However, the format of the data
does not necessarily have to exist as XML, because this Web part understands the data set and
transforms it using Extensible Stylesheet Language Transformations (XSLT). XSLT is a sup-
ported standard in SharePoint 2010 and enables you to transform well-formed XML into an
HTML-rendered format.

The Data View Web part is also versatile. It can consume data, share it, define the formatting of the
data in SharePoint, and enable editing against the data. For example, create a new SharePoint list
called sales and add three columns to the list — customer (of type "Single line of text"), Total
Sales (of type Number), and Ranking (of type Number). Add some data to the list, so the list looks
similar to Figure 4-2.

[@ <Customer Total Sales Ranking
Winghip £ vew $5,700,490,109.00 1
Acrng £ Hew $903,209.00 3
Blue Yonder new $290,029,129.00 2
Fabrikarn &new $2,080,129,699.00 1

dh Add new item

FIGURE 4-2 Sample sales list

The list will serve as a way for you to rank the top accounts based on the amount of total sales. The
Data View Web part will come into play when you use SharePoint Designer to create a Web part
that is essentially a view into the list. The major difference, though, is when you create some auto-
matic formatting based on the values in the list.

Using the list you just created, let’s walk through how you create the Data View Web part.

134 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

Creating a Data View Web Part

A Data View Web part can be a great way for both developers and end users to provide some automatic
and dynamic formatting for a list. To create a Data View Web part, follow these steps:

1.
2.
3.

10.

Open your SharePoint site and click Site Actions = Edit in SharePoint Designer.

After SharePoint Designer 2010 opens, click Site Pages.

You now want to create a new Web part page. To do this, click the Web part page down-arrow
on the ribbon and then select one of the predefined templates. Replace the default filename (for
example Untitled_1.aspx) with your own filename (for example, WroxWebPartPage . aspx). Press

Enter when done.

To edit the file, first click the file and then click Edit File in the main Web part page properties

window.

Click one of the Web part zones, and then click the Insert tab on the
ribbon and select Data View. Then, as shown in Figure 4-3, select the
sales list (which is the list you created earlier in this chapter).

After SharePoint Designer updates the view with the most recent data in
the list, you can add some automatic formatting.

To keep things simple, you’ll change the background color of the
Ranking column, according to the value of the ranking. To do this,
select the first <div> in the Ranking column. (Be sure that you select the

full cell.)

Under Conditional Formatting, select Format Column and under the
Field Name, select Ranking. Make the Comparison value Equals. Then,
add the value of 1 in the Value field. Click the Set Style button to change
the background of the cell to be green. Do this for all of the Ranking
fields using different colors for different Ranking numbers (for example,
green for 1, yellow for 2, and red for 3). When you are finished, you
should have something similar to Figure 4-4.

‘WebPartPages: ¥slkListWiew. .. |

Sales div.ms-vh-div
B - Customer Total Sales| Ranking

Wingtip e $5,290,490,109.00
Acrne i HEW $903,209.00

Blue Tonder &new $290,029,129,00
Fabrikarn & Hew $2,090,129,699.00

R

it N

FIGURE 4-4 Data View of list in SharePoint Designer

Save the Web part page.

=5 B B

Related MewsItem EditItem
Item Wiew = Form~ Form >~ I

Al [H=pEd
Lists =
E Announcements

Calendar

Content and Structure Reports
Links

Reusable Content

Sales

Status

Tasks

Team Discussion

Workflow Tasks -

G HEEBHEBEHEBEHEA

Empty Data Wiew

More Data Sources..,

FIGURE 4-3 Selecting
the Sales list

Open SharePoint, and navigate to the Web part page. The list should look similar to Figure 4-5.

Creating Lists, Site Columns, and Content Types | 135

Sales

[@ cCustomner Total Sales Ranking
Wingtip & Hew 45,290,430,109.00
Acrne EINEW $903,209.00
Blue Yonder &new 4$290,029,129.00

BooMow e

Fabrikarn & uew $2,090,129,892,00

df Add new item

FIGURE 4-5 Completed Data View Web part

11. To test the conditional formatting, open the Sales list and change the ranking to another number.
Navigate back to the Data View Web part. For example, change the Fabrikam ranking from 1 to 2.
The background should now change to yellow.

How It Works

A list is the most common structure for data in SharePoint, which the Data View Web part uses as the
primary way it reformats the list. For example, in this walkthrough, SharePoint Designer provided a
way for you to reformat the background setting of the cell based on the value of the number in that cell.
To accomplish this, the Data View Web part uses HTML and ASP.NET formatting capabilities.

The reformatting of the background was also a simple illustration of what could be accomplished. You
can also build more complex, calculated formatted views through SharePoint Designer.

This example was fairly straightforward, and there are many more interesting conditions that you
could set against a Data View Web part with more complex calculations that render different types
of conditional formatting. While you saw some Web part coding already in this book, you’ll see
more in-depth coding for standard and Visual Web parts in Chapter 6.

CREATING LISTS, SITE COLUMNS, AND CONTENT TYPES

You’ll often find yourself creating different objects in SharePoint, such as lists, site columns, and
content types. As you’ll see in Chapter 5, lists are a core part of SharePoint, and they have a rich
object model that you can use to code against them.

As a potential part of lists, site columns are reusable column definitions that can be created and
then repurposed across the SharePoint site. For example, if you need a very specific site column
called Tax Rate that has a calculation embedded within it, you can use that site column to enforce
some level of consistency across your lists and sites.

Content types are also reusable objects that can be repurposed across your SharePoint site. Content
types can come in different shapes and sizes. For example, you might define a content type as a set of
columns, or you might define it as a custom document template. One common use of content types is
to create custom documents (for example, a legal contract with boilerplate text), and then create the
content type and bind that content type to a document library. You’ll see how to do this in Chapter 9.

136 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

You can create site columns, content types, and lists in a variety of ways. For example, you can cre-
ate each one of these objects through the SharePoint Web interface. You can also leverage SharePoint
Designer 2010 to create all of these objects, or even use Visual Studio 2010 to create content types
and list definitions. Using Visual Studio 2010 makes it possible to begin integrating list definitions
into other applications, or redeploying a custom list definition across multiple SharePoint sites.

Let’s take a look at how you can use SharePoint Designer and Visual Studio to build custom site col-
umns for lists.

Creating a Site Column and List

Site columns are reusable columns that you can customize and leverage to build lists. To create a cus-
tom site column and use it in a list, follow these steps:

1. Open SharePoint and then click Site Actions = Edit in SharePoint Designer.
Click Site Columns in the navigation pane.

Click New Column.

2.
3.
4.

Select Choice as the type of column, and then provide a name
(for example, state) and description. Click New Group and
provide a name for the new group (for example, Customer_
By_state) and click OK, as shown in Figure 4-6.

Add the choices to the Column Editor dialog (for example,
WA, IL, and CA) and select Radio Button in the “Display

as format” drop-down list. Update the Default value field to
map to one of the choices you entered, and leave the rest of
the options at their defaults and click OK. Click the Save but-
ton to save the new site column to SharePoint.

You should now have an entry as a custom category that
looks similar to Figure 4-7.

L

Create a Site Column

Mame:
state |
Description:

List of states where customers are present,

Put this site column inta:

() Existing group:

|Custum Columns ;-wl

@ Mew group:

|Custnmers_By_State| |

FIGURE 4-6 Creating a site column

Custemners By State

|| State Choice {menu ko choose from) Customers By _State

FIGURE 4-7 Entry in Site Columns Gallery

7. Navigate in SharePoint to the list you created earlier (that is, sales).

8. Click the List tab and then List Settings.

9. Click “Add from existing site columns.”

10. 1In the Groups drop-down, select the custom group (for example, Customers_By_State). Then,

select the site column you created (for example, state) and click Add (to add to the “Columns to
add” view) and then click OK. This adds the site column to your list.

Creating Lists, Site Columns, and Content Types | 137

11. Return to the list view and edit each of the records to include a different state for each of the cus-
tomers, as shown in Figure 4-8.

[@ cCustomer Total Sales Ranking State
Wingtip 45,290,490,109.00 1 WA
Acrme $903,209.00 3 MY
Elue vonder 4200,029,129.00 z Pa
Fabrikam 42,090,129,599.00 2 A
g8 add new item

FIGURE 4-8 List with newly added site column

How It Works

A site column is the constituent part of a list and is composed of one or more columns. Site columns are
created and stored at the site level and, thus, can be reused across your SharePoint site. In this example,
you created a site column and added that site column to the sales list. You could also leverage this
type of column in other lists across your site — thus, this is a primary factor distinguishing the normal
columns from site columns.

While you can create lists in SharePoint Designer 2010, you may have the need to create a site col-
umn, list definition, or content type using Visual Studio (for example, if you want to package and
distribute a content type with a larger solution). Using the new built-in project templates, this is
much easier to create than in past versions of SharePoint.

When you do create objects such as site columns, list definitions, or content types using Visual
Studio, though, you will need to be familiar with the Collaborative Application Markup Language
(CAML) syntax and structure for the objects you’re trying to create. (CAML is an XML syntax that
is specific to SharePoint.)

For example, the following XML defines a site column that can be deployed to a SharePoint site and
then reused across the site. The site column defines a reusable list of customer types for a program
a company is running. Note that there are a number of properties that are set. These are the same
properties that SharePoint created for you when you used SharePoint Designer earlier in the section.

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<Field ID="{5644d23d-325f-4882-8fd2-09d455f4910e}"
Type= "Choice" AllowDeletion="FALSE" Description="Type of program."
FillInChoice="TRUE"
Name="CustomerType"
DisplayName="Customer Type"
Group="Customers">
<CHOICES>
<CHOICE>Premier</CHOICE>
<CHOICE>Gold</CHOICE>
<CHOICE>Silver</CHOICE>

138 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

<CHOICE>Bronze</CHOICE>

<CHOICE>Non-Affiliated</CHOICE>
</CHOICES>
<Default>Bronze</Default>
</Field>
</Elements>

Let’s use Visual Studio 2010 to create this site column and deploy it to SharePoint.

Creating a Site Column using Visual Studio 2010

Code file [MyFirstListDefinition.zip] available for download at Wrox.com.

The project templates in Visual Studio 2010 make it convenient for you to create site columns, content
types, and lists. To create a custom site column using Visual Studio, follow these steps:

1. Open Visual Studio 2010 and click File &> New > Project.

2. Select the Empty SharePoint Project in the SharePoint 2010 project node. Provide a name (for
example, MyFirstListDefinition) for the project and click OK.

3. In the Project Creation Wizard, ensure that your SharePoint site is typed in correctly and then
select the Farm-Level solution for the level of trust. Click Finish.

4. Visual Studio creates an empty SharePoint project for you. When it’s completed, right-click the top-
level project node and select Add = New Item.

5.

Select the Empty Element template, as shown in Figure 4-9. Provide a name (for example,
CcustomerType) for the file and click Add.

Add Mew Irem - SampleContentType @
Installed Templates Sart byt Search Installed Templates P ‘
4 Visual C# = .

Type: “isual C#¥
Code Business Data Connectivity Model Yisual Ci# L e
Ain ernphy SharePoint element,
Data i
General gigg Application Page Visual C#
Wieb
Windows Farms cl_." Event Receiver Wisual C#
WRE
Reporting 2o Madule Yisual C#
4 SharePaint o
A 2Eg Content Type Wisual C#¥
Workfl o
Online Templates List Definition From Content Type Visual C#
List Definition Wisual C# L
List Instance Wisual C#
Ermpty Elerment Wisual C#
H=| UserControl Wisual C#
MNarne: CustomerType

FIGURE 4-9 Empty Element project template

Creating Lists, Site Columns, and Content Types | 139

6.

Add the following bolded code to the Elements.xml file that is created in the default project:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
<Field ID="{5644d23d-325f-4882-8fd2-09d455£4910e}"
Type= "Choice" AllowDeletion="FALSE" Description="Type of program."
FillInChoice="TRUE"
Name="CustomerType"
DisplayName="Customer Type"
Group="Customers">
<CHOICES>
<CHOICE>Premier</CHOICE>
<CHOICE>Gold</CHOICE>
<CHOICE>Silver</CHOICE>
<CHOICE>Bronze</CHOICE>
<CHOICE>Non-Affiliated</CHOICE>
</CHOICES>
<Default>Bronze</Default>
</Field>
</Elements>

After you’ve completed this, press F6 to build the project. When the project successfully builds,
click Build &> Deploy Solution to deploy the site column to SharePoint.

Navigate to your SharePoint site and click Site Actions = Site Settings. Under Galleries, click Site
Columns. You should now see a Customers group with a Customer Type site column, as shown in
Figure 4-10.

Custom Celumns

wiki Categories Managed Metadata Team Site
Customers

Customer Type Chaice Team Site

Customers_By_State

State Chuaice Tearn Site

9.

10.
1.
12.
13.
14.

FIGURE 4-10 Customers group in Site Columns Gallery

Navigate to the sales list you created earlier.

Click the List tab and then select List Settings.

Click the “Add from existing site columns” link.

In the Groups drop-down menu, select Customers and then select customer Type. Click Add.
Click OK to add the new site column you created to the list.

Edit each of the list items and add a new customer type to each one of the customer entries, as
shown in Figure 4-11.

140 CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

- ==
HB8 8., X0 ¥

Save Cancel Paste Delete &ttach 3pelling
Ttem File -
Zommit Clipboard Actions Spelling
Customer * Wingtip
Total Sales 5‘290_‘;19&109'
Ranking 1 i
State @ Wh
(GRS
@ PA
@ NY
& CA

Custormer Type

Silver
T¥PlBronze
Non-Affiliated

Created at 3(6/2010 10153 AM by System Account [=] [Cancel
Last modified at 3/6/2010 11:17 AM by System Account

[Customer Type: Choice Drep Down]

FIGURE 4-11 Leveraging the custom site column in Sales list

15. Your newly amended list should now look similar to Figure 4-12.

F @ customer Total Sales Ranking State Customer Type
Wingtip &t $5,290,490,109,00 1 W Prermisr
Acme Eimw $903,20%.00 3 Ny Bronze
Blue Tonder minew 2 PA Silver
Fabrikam e $2,090,129,899.00 2 ca Bronze

% Add new rtem

FIGURE 4-12 Final list with new Customer Type site column

How It Works

In much the same way that you created a site column with SharePoint Designer, you created a site col-
umn using Visual Studio. However, the way in which you did it was quite a bit different — even though
the end result was very similar.

Whereas SharePoint Designer abstracts the XML configuration files and deploys the site column to
the appropriate place within SharePoint. Visual Studio treats the site column like any other SharePoint
project. It creates a feature and then deploys the XML elements file (which represents the definition of
the site column) to the appropriate place within SharePoint.

Working with SharePoint Data | 141

WORKING WITH SHAREPOINT DATA

One of the most common tasks when working with SharePoint is interacting with the various data
sources such as lists or document libraries. The great thing about SharePoint 2010 is that you have a
number of different options to do that. For example, you have the server object model (which carries
forward a lot of the 2007 APIs), the client object model (which is a new API to interact with lists),
the RESTful service (which leverages WCF Data services to treat lists as entities), ASP.NET Web
services (which ship in-box and cover a wide array of scenarios), and Business Connectivity Services
(which provide a rich set of APIs for working with external data systems such as SAP, Microsoft
Dynamics CRM, and PeopleSoft).

You will see each of these methods of working with data discussed throughout the book. However,
this section provides some select examples of tasks that you’ll likely do on a daily basis across some
of these services and APIs.

Before you can do anything with SharePoint programmatically, however, you must establish a con-
nection and context with your SharePoint site. For the most part, this means adding a reference to
your project (for example, a reference to Microsoft.SharePoint.dll, Microsoft.SharePoint.
Client.dll, or a Web service reference such as http://<server>/_vti_bin/Lists.asmx). With
the appropriate references added to your project, you can begin to set the context (or implement the
service), and then code within that site context.

For example, you can set the context for a SharePoint site using the server object model by adding
the Microsoft.SharePoint.dll to your project reference and then use the following using state-
ments to wrap your code. In this code snippet, you set the site collection context and can call the

openwWeb method on that site context or use the RootWeb property to set the context of the spsite
object (that is, mySiteCollection). You would then add your code where the comment indicates.

using (SPSite mySiteCollection = new SPSite(mySiteUrl))
{
using (SPWeb mySPSite = mySiteCollection.RootWeb)
{
//Code here.

One of the innovations in SharePoint 2010 is the SharePoint client object model, which is a

more performance-oriented way to read and write data from SharePoint lists. After adding the
Microsoft.SharePoint.Client.Runtime.dll and Microsoft.SharePoint.Client.dll refer-
ences, you can use the following code to set the context with your SharePoint site. Then, when
you’ve created your application code, you call the ExecuteQuery method to batch-process that code.
The final statement (that is, the Close method) disposes of the context from memory.

String mySiteUrl = "http://fabrikamhockey/acme";

| CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

ClientContext mySPSiteContext = new ClientContext (mySiteUrl);
//Code here.

mySPSiteContext.ExecuteQuery () ;
mySPSiteContext.Close() ;

You will find yourself using both the server object model and client object model in different scenar-
ios. For server-side only applications, you can use the server object model. For remote client applica-
tions, you can use the SharePoint client object model.

Another way to program against SharePoint is by using the native Web services. This is a great way
to interact with SharePoint because the services already have context, and they are deployed to
SharePoint. To use the Web services, you add a Web reference to your Visual Studio project and then
implement the service in your code.

One of the most commonly used Web services is the Lists Web service. Following is a code snippet
that shows the instantiation of the Lists Web service proxy (called wsProxy) and the setting of the
credentials. (SharePoint must trust the call from the code through an authenticated user.) You must
also set the URL of the Web service.

MySPListWSRefernce.Lists wsProxy = new MySPListWSRefernce.Lists();
wsProxy.Credentials = System.Net.CredentialCache.DefaultCredentials;
wsProxy.Url = "http://fabrikamhockey/_vti_bin/Lists.asmx";

//Code here
wsProxy.Dispose () ;

One of the things you’ll need to understand is the way in which SharePoint passes data using the
ASP.NET Web services — through XML payloads. To query SharePoint using these services often
requires CAML constructs, which can get a bit hairy. You’ll see coverage of Web services through-
out the book, and you most certainly will learn about some of the basics of CAML. Specifically,
Chapter 10 provides more information on Web services.

After you’ve obtained context with the SharePoint object model, you can then interact with data
that resides on SharePoint. For example, you can iterate over every list in SharePoint and get the title
of the list. You can retrieve views of specific lists, or you can update properties or list items in lists
programmatically.

In the following code snippet, you can see that the server object model is used to get the SharePoint
site context. Now, however, it iterates through the lists (see bolded code) on the SharePoint site and
adds each list title to a listbox.

string mySiteUrl = "http://intranet.contoso.com/acme/";
string myListItemInfo = "";

using (SPSite mySiteCollection = new SPSite(mySiteUrl))
{
using (SPWeb mySPSite = mySiteCollection.RootWeb)

Working with SharePoint Data | 143

foreach (SPList mySPList in mySPSite.Lists)
{
myListItemInfo = mySPList.Title.ToString();
lstbxListTitles.Items.Add (myListItemInfo);

Again, you can do similar types of list interaction by using the SharePoint client object model.
In the following code snippet, you can see that the site context is set, but the bolded code shows
that a list called Tnventory is retrieved from SharePoint, and then loaded with a query to filter
on the salmon field.

String spURL = "http://fabrikamhockey/acme";

ClientContext spSiteContext = new ClientContext (spURL) ;

List myProducts = spSiteContext.Web.Lists.GetByTitle("Inventory");

spSiteContext.Load(spSiteContext.Web);

spSiteContext.Load (myProducts, list => list.Fields.Where(field =>
field.Title == "Salmon"));

spSiteContext.ExecuteQuery () ;

spSiteContext.Close() ;

When updating list data, you can again use one of the different options discussed in this section
(that is, server object model, client object model, or native ASP.NET Web services). One example is
to use the server object model and then call the update method to update items on a SharePoint list.

The following code takes the same site context code shown earlier and then, instead of iterating
through the list, it creates an instance of a specific list and then adds a record, comprising two fields,
to the list: Product_Name and Product_sKu. In this case, you can see that the final call is to the
Update method to add the new item (newListItem) to the SharePoint site.

using (SPSite mySPSite = new SPSite("http://fabrikamhockey/acme"))
{
using (SPWeb mySPWeb = mySPSite.OpenWeb())

{
SPList productsList = mySPWeb.Lists["Products"];
SPListItem newListItem = productsList.Items.Add();
newListItem["Product_Name"] = "Salmon";
newListItem["Product_SKU"] = "SLM-30989";
newListItem.Update();

}

}

Another task you might find yourself doing quite a bit is querying SharePoint data. This book outlines
a few ways to do this, such as CAML queries, conditionals, and Language Integrated Query (LINQ)
statements. LINQ is a very effective way to query data, which is supported in SharePoint 2010.

144 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

The following LINQ statement is a simple statement that retrieves the list item (from a list repre-
sented through the myCustomerList object) where the customer name (represented as c) is Acme:

var customers =
from ¢ in myCustomerList
where ¢ == "Acme"
select c;

One LINQ technique that you’ll use in SharePoint is to create a list collection and class, and then popu-
late that object with data (you’ll see this used throughout this book). The class is a custom class you

create, and the list collection is a collection of those custom class instances. In the preceding code snip-
pet, myCustomerList is the list collection. Another technique, though, is to use a tool called SPMetal to
transform your lists into an entity model that can be queried directly using LINQ statements.

Let’s check out an example of using LINQ.

Using LINQ in SharePoint

Code file [MyFirstSPLinqProject.zip] available for download at Wrox.com.

LINQ is a very effective and efficient way to query data. You can prepare your SharePoint lists for LINQ
by using SPMetal. To prepare your list and create an application that uses LINQ, follow these steps:

1.
2.

Open a command prompt (running as administrator).

Navigate to the folder c¢:\Program Files\Common Files\Microsoft Shared\web server
extensions\14\bin and enter the following command (ensure that you replace the <servername>
with your SharePoint URL, for example http: //fabrikamhockey):

spmetal.exe /web:http://<servername> /code:SPEntityModel.cs /language:csharp

The SPMetal command tool will create a C# file called sPEntityModel.cs that you can then use
in an application to issue LINQ queries against a modeling of the SharePoint lists (SPMetal essen-
tially translates all of the lists in your SharePoint site into an entity model that is strongly typed).

To leverage this entity model in a SharePoint project, open Visual Studio 2010.

Click File &> New > Project. Select Empty SharePoint Project. Provide a name (for example,
MyFirstSpPLingProject) and click OK. Set the trust for the solution to be farm level and click Finish.

Right-click the project and select Add = Existing Item. Then, navigate to the previously described
folder (where you created sPEntityModel.cs) and add the file that SPMetal created (that is
SPEntityModel.cs) to the project.

Right-click the project and select Add = New Item. Select the Web Part item template, provide a
name (for example, MySPLingWebPart), and click Add.

Right-click the References and select Add Reference. Click Browse and navigate to the folder c:\
Program Files\Common Files\Microsoft Shared\web server extensions\14\ISAPI. Select
Microsoft.SharePoint.Ling.dll and click OK.

Right-click the core Web part class file (for example, MySPLingWebpart . cs), and select View Code.

Working with SharePoint Data | 145

10.

Add the following bolded code to the core Web part class file:

using
using
using
using
using
using
using
using
using
using

System
System

System.

System
System
System

.Comp
Web;

onentModel;

.Web.UI;

.Web.UI.WebControls;
.Web.UI.WebControls.WebParts;
Microsoft.SharePoint;
Microsoft.SharePoint.WebControls;
Microsoft.SharePoint.Ling;
System.Ling;

namespace MyFirstSPLingProject.MySPLingWebPart

{

[ToolboxItemAttribute (false)]
public class MySPLingWebPart : WebPart

{

Label myLabel = new Label();
ListBox listTitles = new ListBox();
Button myButton = new Button();

protected override void CreateChildControls()

{

myLabel.Text = "Lists:";
myButton.Text = "Get Lists";
this.Controls.Add (myLabel);

this.
this.
this.

Controls.Add(listTitles);
Controls.Add (new LiteralControl("
"));
Controls.Add (myButton) ;

myButton.Click += new EventHandler (myButton_Click);

void myButton_ Click(object sender, EventArgs e)

{

//Be

sure to update the server reference

//below to point to your server.
using (SPEntityModelDataContext dataContext =

new SPEntityModelDataContext
("http://intranet.contoso.com"))

var salesInfo = from data in dataContext.Sales

select data;

foreach (var salesItem in salesInfo)

{

listTitles.Items.Add(salesItem.Title.ToString() + "
salesItem.CustomerType.ToString());

146 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

11. Edit the .webpart file to include the following bolded code:

<?xml version="1.0" encoding="utf-8"?>
<webParts>
<webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
<metaData>
<type name="MyFirstSPLingProject.MySPLingWebPart .MySPLingWebPart,
$SharePoint.Project.AssemblyFullName$S" />
<importErrorMessage>S$Resources:core, ImportErrorMessage; </importErrorMessage>
</metaData>
<data>
<properties>
<property name="Title" type="string">Customer Types</property>
<property name="Description" type="string">Web Part that lists customers
and customer types (using SP LINQ).</property>
</properties>
</data>
</webPart>
</webParts>

12. When finished, click Build = Deploy Solution.

13. After the Web part successfully builds and deploys, navigate to the home site on your team site and
click Site Actions = Edit Page. Click on the wiki portion of the page, and

click Insert &> Web Part. Custamer Types
[wingtip | Premier |
14. Click the Custom category. Select the Customer Types Web part and il
CliCk Add Lisése:thiZthkam Bronze
15. When the Web part is added to the page and you click Get Lists, it FIGURE 4-13 Finished
should look similar to Figure 4-13. Web part

How It Works

You used the standard Web part in this walkthrough, which, as discussed earlier in the chapter, is the
most common, baseline Web part you can create and deploy to SharePoint. However, one of the key ele-
ments in this exercise was the fact that you ran SPMetal against your SharePoint site. Doing this creates
an entity model of all of the lists in your site — which essentially means that you now have strongly
typed objects that you can query using LINQ. One optimization you gain by running SPMetal against
your site is the capability to query a strongly types object with LINQ, as opposed to populating a list
collection of custom items first, and running LINQ against that list collection.

The key lines of code in the sample application are those within the using statement, which set the
context for the application code to use the datacontext object (which SPMetal generated for you). The
bolded code within the following using statement issued the LINQ query (the equivalent of a SELECT *
SQL statement) against the sales list, and then iterated through each record in the returned data (sales-
Info) and added the Title and CustomerType to the list.

using (SPEntityModelDataContext dataContext =
new SPEntityModelDataContext
("http://intranet.contoso.com"))

{

Creating Event Receivers | 147

var salesInfo = from data in dataContext.Sales
select data;

foreach (var salesItem in salesInfo)

{
listTitles.Items.Add(salesItem.Title.ToString() + " "o
salesItem.CustomerType.ToString());

The nice thing about using SPMetal is that you can generate an entity model for your SharePoint lists
and, even if the data changes within your list, the entity model can still apply. If you do add lists to
SharePoint, though, you’ll want to regenerate the entity model using SPMetal.

CREATING EVENT RECEIVERS

SharePoint supports a wide array of event receivers. Event receivers are events that are triggered
through a system or user action, such as updating a list or adding a new document to a document
library. You can create event receivers for a wide variety of objects, such as lists, list items, sites,
and so on.

For example, say that you want to load external data as additional company metadata (for example,
company or national holidays) when a user creates a new calendar item. You can use an event
receiver to load additional metadata into the calendar when the user creates a new calendar list item.
You might also want to log a transaction when certain lists are updated, which is another effective
way to use event receivers.

You can also build event receivers against feature activations or deactivations if you want. This can
be particularly handy when you need to clean up dependent features or assemblies when a feature
is activated or deactivated. The event receiver can help remove any ancillary files or dependent Web
parts from the Web Part Gallery or the file system.

Event receivers are very easy to build and deploy to SharePoint. You create event receivers using a
Visual Studio 2010 Event Receiver project or item template.

Let’s create a simple event receiver to get you familiar with the process.

Creating a Simple Event Receiver

Code file [SimpleEventReceiver.zip] available for download at Wrox.com.

Event receivers are effective ways to add triggers into your SharePoint solutions. To create a simple
event receiver, follow these steps:

1. Open your SharePoint site and create a new list called TestList. Leave the new list with only the
default Title column.

148 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

2. Open Visual Studio 2010 and click File => New Project. Select Event Receiver in the SharePoint
2010 project template folder.

3. Provide a name for your project (for example, SimpleEventReceiver), and click OK. Set the proj-
ect security level to farm level by selecting “Deploy as farm solution” and then click Next.

4. When prompted in the wizard, select the List Item Events option under the type of event receiver
you want to associate your event with. Select the Announcements list under the event source and
“An Item is being added” as the specific event.

5. Click Finish.

6. Inthe simpleEventReceiver.cs file, add the following bolded code. This will apply some of the
code discussed thus far and add a new list item in another list.

using System;

using System.Security.Permissions;
using Microsoft.SharePoint;

using Microsoft.SharePoint.Security;
using Microsoft.SharePoint.Utilities;
using Microsoft.SharePoint.Workflow;

namespace SimpleEventReceiver.EventReceiverl
{
public class EventReceiverl : SPItemEventReceiver
{
public override void ItemAdding (SPItemEventProperties properties)
{
string eventName = "Event List: ";
base.ItemAdding (properties);
logAnAnnouncement (properties, eventName) ;

private void logAnAnnouncement (SPItemEventProperties properties,
string eventName)

{
string listTitle = properties.List.Title;
//Be sure to replace the URL reference below with your
//SharePoint server URL.
string mySiteURL = "http://intranet.contoso.com";
DateTime currentDate = DateTime.Now;
using (SPSite mySiteCollection = new SPSite(mySiteURL))
{
using (SPWeb mySPSite = mySiteCollection.RootWeb)
{
SPList mySPList = mySPSite.Lists["TestList"];
SPListItem newListItem = mySPList.Items.Add();
newListItem["Title"] = eventName + listTitle + " @ " +
currentDate.ToLongTimeString();
newListItem.Update();
}
}
}

Creating Event Receivers | 149

8.

9.

How It Works

Click Build = Deploy Solution to build and deploy the event receiver project to your SharePoint

Navigate to the Announcements list, and click Add Item to add a new announcement. When you
are finished, click Save.

Navigate to the TestList list, and you will see a new list item.

An event receiver is, in essence, a custom DLL that is deployed to the global assembly cache (GAC) on
your SharePoint server. Using the project template, Visual Studio creates a feature that then references
the custom assembly in the GAC when the action that triggers the event occurs.

In this example, you added an event that is triggered whenever someone adds an event to the
Announcenents list. Specifically, the Ttemadding event was a default event handler that was cre-
ated. It is here that you can add your code. For example, in the following snippet, the bolded method
(LogAnAnnouncementEvent) is a method you added that will contain your event handler code. You’ll
note that you’re passing the properties of the event, which you can use when building out your event
handler code, and the string eventName.

public override void ItemAdding (SPItemEventProperties properties)

string eventName = "Event List: ";
base.ItemAdding (properties) ;
logAnAnnouncement (properties, eventName);

Within the 1ogAnaAnnouncementEvent page, you can see that the one property used is the Title of the
List, which is then stored in the 1istTitle object. You’re also adding a date-stamp, and then convert-
ing that to a long string when adding the list item to the TestList list.

private void logAnAnnouncement (SPItemEventProperties properties,

string eventName)

string listTitle = properties.List.Title;

//Be sure to replace the URL reference below with your
//SharePoint server URL.

string mySiteURL = "http://intranet.contoso.com";
DateTime currentDate = DateTime.Now;

using (SPSite mySiteCollection = new SPSite(mySiteURL))
{
using (SPWeb mySPSite = mySiteCollection.RootWeb)
{
SPList mySPList = mySPSite.Lists["TestList"];
SPListItem newListItem = mySPList.Items.Add();
newListItem["Title"] = eventName + listTitle + " @ " +
currentDate.ToLongTimeString();

150 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

newListItem.Update();

Most of the other code should now be familiar to you, since you’ve already seen how you add an item
to a list. As you explore event receivers, be sure to try out some other types of events that are more
complex and involve other parts of the SharePoint site — or external data that can be leveraged within
your SharePoint site.

CREATING ASPX PAGES

For those who are familiar with ASP.NET, you’ll recognize the .aspx file extension. This is an
ASP.NET Web page. Because SharePoint is built on ASP.NET, you’ll find the individual pages
within SharePoint are this specific type.

What sets SharePoint aspx pages apart from other ASP.NET sites is that you get more capabilities
built into a SharePoint page when you create it. For example, SharePoint ships with a number of
capabilities such as edit functionality and Web part capabilities. When you create a new aspx page,
it inherits features, and loads and registers dependent assemblies that are required to render the page
(and controls on that page) correctly.

For example, if you examine the code in the following default Web part aspx page, you’ll see that
there exists a number of directives that register specific assemblies to the page. SharePoint requires
that these directives exist. Now, don’t worry. You won’t have to memorize what all of these are.
SharePoint Designer creates a lot of these for you by default, so that you can focus on page creation
and customization.

<%-- _1cid="1033" _version="14.0.4736" _dal="1" --%>

<%-- _LocalBinding --%>

<%@ Page language="C#" MasterPageFile="~masterurl/default.master"
Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage,
Microsoft.SharePoint,Version=14.0.0.0,Culture=neutral, PublicKeyToken
=71e9bcellled9429c" meta:webpartpageexpansion="full"
meta:progid="SharePoint.WebPartPage.Document" %>

<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" %>

<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" %>

<%@ Import Namespace="Microsoft.SharePoint" %>

<%@ Assembly Name="Microsoft.Web.CommandUI, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" %>

<%@ Register Tagprefix="WebPartPages" Namespace=
"Microsoft.SharePoint.WebPartPages"
Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" %>

Creating aspx Pages | 151

You can create a simple aspx page for SharePoint without any of the frills that the Web part

pages deliver. The code for this type of page looks more readable, as the following snippet shows.
However, note that it does not contain any of the standard SharePoint controls and does not inherit
the structure and style that is laid out by the master page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<%@ Page Language="C#" %>

<html dir="ltr" xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

<meta name="WebPartPageExpansion" content="full" />

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<title>Untitled 1</title>

</head>

<body>

<form id="forml" runat="server">

</form>

</body>

</html>

While there are a couple of different paths to creating aspx pages for SharePoint, using SharePoint
Designer 2010 is a straightforward way to create and edit them. This is because not only is code like
this created for you, but there are also templates that you can use to create Web part pages — a spe-
cial type of aspx page that have Web parts located in specific ways on the page (using different Web
part zone layouts). You could alternatively use Visual Studio 2010 to create aspx pages, but you'd
have to ensure that you added the previously indicated namespace registration directives manually,
and then manually add the pages to the appropriate page on the site. By default, SharePoint Designer
can save the aspx pages you create in a number of places (for example, the Site Assets library).

Beyond the assemblies that are registered through the directives, you also have HTML markup
interlaced with contentPlaceHolder controls and ASP.NET controls. Again, if you’re familiar with
ASP.NET, these concepts won’t be new to you. If you’re not, using ContentPlaceHolder controls
and ASP.NET controls is how you render functional controls or applications on the aspx page.

For example, one of the default contentpPlaceHolder controls is the search control, which is
expressed in the following code:

<asp:Content ContentPlaceHolderId="PlaceHolderSearchArea" runat="server">
<SharePoint:DelegateControl runat="server" ControlId="SmallSearchInputBox"/>
</asp:Content>

Depending on the level of complexity of your aspx page, you might have more or fewer of these con-
trols — some that work independently of one another and others that work hand in glove with one
another.

SharePoint Designer 2010 provides quite a bit of control over your aspx pages. For example,

Figure 4-14 shows the default view of the aspx page (also called a site page) in SharePoint Designer.
You can see here that you can edit the permissions of the page. (SharePoint automatically inherits
the permissions from the parent site when you create the page.) You can see the version history of

152

CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

the page, you can view and manage the properties of the page, and you can edit the page. Editing
the aspx page provides you with a Design, Source, and Split view (which shows both the source
code and design view), and you also have a Toolbox experience, where you can drag and drop con-
trols onto the Designer as you create your aspx page.

_J-. 2] WroxTestPage. aspx) 5] WromTestPage.aspx |5

A7 ﬂ}TEam Gite » Site Pages b WroxTestPage aspx b

@

sl

Use this page to view and manage settings for this file,

0

File Information -

Key infarmation about this file,

File Mame: WiroxTestPage.aspx
Created By System Account
Last Modified By System Account
File Wersion: 2.0

Check-infout Status:
Customization Status:

Checkedin
This file is based on a file from the site's d

Customization -

Links to file custamization tools.

o Editfile
0 Manage all file properties in the browser

Fermissions

This file inherits permissions from its parent,

-
hame -

@Appruvers
Designers
@Hierarchy Managers
&Restricted Readers
Style Resource Readers
@System Account
@Taam Site Members
&Taam Site Owiners
&Taam Site Visitors
LT

aa- Stop Inheriting -~

Permissions

Approve

Design

IManage Hierarchy
Restricted Read
Limited Access

m

Limited Access
Contribute
Full Contral
Read

<[m

Wersion History

A list of previous wersions of this file,

¥ | Madified Date
3/7/2010 12:34 PM

o,

1.0

* Madified By -
SHAREPOINTsystem

FIGURE 4-14 Creating a site page in SharePoint Designer

To get you started, let’s create a simple aspx Web part page using SharePoint Designer 2010.

Creating a Simple Web Part Page

Web part pages are a great way to create a predefined aspx page template that you can then customize.
To create one, follow these steps:

1.
2.

Open your SharePoint site and click Site Actions = Edit with SharePoint Designer.

SharePoint Designer opens your SharePoint site and loads all of the options into the navigation

pane.

Click the Site Pages link in the navigation pane.

Right-click the default file and select Rename. Provide a name for the page (for example,

WroxTestPage.aspx).

Click Edit the File in the main window, and then change the view to Split view.

Click the View tab. Click Task Panes and select Toolbox. This opens the Toolbox, where you
have some default controls to use. Inspect the different controls in the Toolbox. Note that the Page
Fields and Content Fields are only accessible if you’re creating a SharePoint site that is of type

Publishing (that is, a WCM site).

Creating Master Pages | 153

7. Under the ASP.NET Standard controls, drag a drop-down —
list to one of the Web part zones. Click Edit Items, then add
some sample items (for example, Ttem_oOne, Ttem_Two, and L) Team Site » My First ASPX Page
Item_Three) to the drop-down list. —
8. When you are finished, click the Save icon in the upper- T
left hand corner, and then click Preview in Browser on the
SharePoint Designer ribbon. Your simple aspx page should ltem Three
now look similar to Figure 4-15. FIGURE 4-15 Simple Web part page
with control
How It Works

ASP.NET implicitly understands how to handle and render aspx pages. You can also create and render
a wide array of controls on an aspx page. In this example, you used a simple drop-down list control
and added some hard-coded controls to the drop-down list. You then added that control to the aspx
page. You could similarly add other types of controls to the aspx page.

CREATING MASTER PAGES

Master pages are an ASP.NET creation that SharePoint inherits from being built on ASP.NET.
SharePoint uses master pages to provide a consistent structure and layout for each of the pages in a
SharePoint site. Similar to a single CSS file providing structure for many Web pages, a single mas-
ter page can serve multiple sites, and define the look, feel, and behavior that you want for all of the
pages of that site. Using the master page as the structural foundation of your site, you can then add
other content, custom applications, or Web parts to your SharePoint site.

When you install SharePoint, it installs a small set of master pages to your SharePoint site by
default. You can then create a copy of the default.master master page and customize it to your
liking, or add a new, custom master page that provides the branding and behavior you want for your
SharePoint site. SharePoint Designer 2010 provides some great capabilities for managing, creating,
and editing master pages. For example, you can edit and view your changes from within SharePoint
Designer and then check the page in for approval to your SharePoint site.

When a user navigates to a SharePoint site, the site or content page references a master page, which
is then merged with the site page. This produces an output that combines the layout of the master
page with the content from the site page. If you remember the discussion earlier in the chapter on
site pages, the master page was included as a part of the page directives. The following bolded code
shows a token reference (the token being ~masterurl/default.master) to the master page that was
used for that site:

<%@ Page language="C#" MasterPageFile="~masterurl/default.master"
Inherits="Microsoft.SharePoint.WebPartPages.WebPartPage,
Microsoft.SharePoint,Version=14.0.0.0,Culture=neutral,
PublicKeyToken=71e9bcellle9429c" meta:webpartpageexpansion="full"
meta:progid="SharePoint.WebPartPage.Document" %>

154 |

CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

A master page is characterized by the .master file extension. The master page itself can contain an
array of objects. For example, the master page can contain HTML, JavaScript, CSS, and ASP.NET
server controls.

When you examine the syntax of the master page, you’ll see text and controls that will render a look
and feel that is specific to SharePoint. This is especially true when you look at the default .master
master page, which includes all of the breadcrumbs and default menu and navigation options that
are specific to SharePoint. However, you’ll also see a series of ContentPlaceHolder objects (which
were discussed earlier) within a master page, which define regions where content or controls can
appear.

When you’re customizing SharePoint master pages, there is a set of ContentPlaceHolder controls
that you need to have on the page (for example, global breadcrumb, top-level navigation, search,
and title). You can add more contentPlaceHolder controls than are required by default. However,
you cannot remove the ones that are required, or else your content or site pages may fail to render.

NOTE For the complete list of required controls, go to the MSDN article at
http://msdn.microsoft.com/en-us/library/ms467402.aspx.

The following code snippet shows some of the different items that you can embed within a
SharePoint master page. Note that these are taken from the default.master, which ships with all
versions of SharePoint 2010. You can explore the full set of code and controls that ship with this
master page by reviewing the file from within SharePoint Designer.

<%@ Master Language="C#" %>

<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" %> <%@ Register Tagprefix="Utilities"
Namespace="Microsoft.SharePoint.Utilities" Assembly="Microsoft.SharePoint,
Version=14.0.0.0, Culture=neutral, PublicKeyToken=71e9bcellle9429c" %>

<title id="onetidTitle"><asp:ContentPlaceHolder id="PlaceHolderPageTitle"
runat="server"/>

</title>

<SharePoint:CssLink runat="server" Alternate="true"/>

<SharePoint:Theme runat="server"/>

<SharePoint:CssRegistration Name="minimalv4.css" runat="server"/>

<SharePoint:CssRegistration Name="layouts.css" runat="server"/>

<SharePoint:ULSClientConfig runat="server"/>

<a href="javascript:;" onclick="javascript:this.href='"#mainContent';" class="ms-
SkiptoMainContent" accesskey="<%$Resources:wss,
maincontent_accesskey%>" runat="server">

<SharePoint:EncodedLiteral runat="server" text="<%$Resources:wss,
mainContentLink%>" EncodeMethod="HtmlEncode"/>

Creating Master Pages | 155

<asp:ContentPlaceHolder id="PlaceHolderWelcomeMenu" runat="server">
<div class="1b ms-mini-trcMenu">

<wssuc:Welcome id="IdWelcome" runat="server" EnableViewState="false">
</wssuc :Welcome>

<wssuc:MUISelector runat="server"/>

</div>

</asp:ContentPlaceHolder>

<div>
<asp:ContentPlaceHolder id="PlaceHolderTitleBreadcrumb" runat="server" />
</div>

<div id="DeveloperDashboard" class="ms-developerdashboard">
<SharePoint:DeveloperDashboard runat="server"/>
</div>

</body>
</html>

When managing your master pages, you’ll want to be very mindful of any changes you make to the
existing master pages. In fact, at all costs, avoid editing any of the default master pages that ship
with SharePoint. Always copy and edit renamed copies so that you never lose a snapshot to which
you can safely return. Also, if you will be doing a lot of master page customization in the future,
start with a minimal master page (which contains the bare minimum set of controls necessary for a
SharePoint site), and add onto that as practice to get familiar with how they work.

Let’s check out how to edit a master page.

A4 hPellie Editing a Custom Master Page

Master pages provide a great way to structure and brand your SharePoint site. To edit a custom master
page, follow these steps:

1.
2.
3.

Open your SharePoint site.
Click Site Settings & “Edit in SharePoint Designer.”

After SharePoint Designer opens, click the Master Pages link to view all of the master pages that
are saved to SharePoint.

Click the v4 .master master page, and then select Edit File. Do not check out the file.

Select all of the text in v4 .master, and then copy it to your clipboard. Close the file without
saving it.

Click the Blank Master Page button on the main ribbon. Select all of the default code and delete it.
Copy the v4.master code from your clipboard to the new master page file.

Save the file and provide a name you’ll remember (for example, MyNewMasterPage .master).

156 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

10.

Somewhere after the body element, add some arbitrary text. For example, add a short message in

between the <H1> tags, as shown in the following bolded code snippet:

<SharePoint:DelegateControl runat="server" ControlId="GlobalNavigation"/>

<hl>Hello there!</hl>

<div id="s4-ribbonrow" class="s4-pr sd4-ribbonrowhidetitle">

Save your new master page, then right-click the master page in
the navigation pane and select Check In.

Select “Publish a major version,” as shown in Figure 4-16. When
prompted to approve the master page, click Yes. This automati-
cally invokes a SharePoint master page approval page, where you
will find your new master page listed at the top of the page.

CheckTn

Files:

(-2 [sal

MyMewMasterPage .master

What type of version do you want to check in?
() Check In a minor version
@) Publish a major version
() Owerwirite the current minor version

Comments on wersion:

11. Click the drop-down menu beside the master page. Select
Approve and select the Approved radio button. Click OK. Your

master page is now saved and approved in SharePoint.

| |Keep files checked out

FIGURE 4-16 Publishing a master
page

12.

Navigate to your top-level site collection, and click Site Actions
o> Site Settings.

Under Look and Feel, select the Master Pages link. For both the
Site and System Master Page settings, select your new master
page from the drop-down menu.

Click OK.

13.

Hello there!
14.

15.

Bronwse

When you navigate back to the master page, you will see
whatever text you entered on the page rendered, as shown in Wi
Figure 4-17. Any site that you create using this master page
will have this text on it.

Team Site » Home

FIGURE 4-17 New master page
rendered in SharePoint

How It Works

The master page can be a tricky part of SharePoint. Understanding what ContentPlaceHolder con-
trols are required, the structure and layout, and how to add code takes a little practice. Furthermore,
you may find yourself needing to brush up on some design elements as you build CSS into your master
page. However, the resulting master page can be very compelling and useful as you apply structure and
branding across your site.

In this example, you created a simple amendment to an existing master page and then applied that mas-
ter page using the options within SharePoint. Thus, when SharePoint rendered the page, it changed the
master page token to point to your newly amended master page.

The text amendment (that is, “Hello There!”) used as an example here is vaguely interesting; a more
interesting amendment would be the addition of an image or even some JavaScript to enhance the page.
You’ll be amazed at what you can do to alter the branding of a page by using some of the native themes
that ship with SharePoint and some artistic images such as logos or photos.

Summary | 157

SUMMARY

This chapter presented a few of the more common developer tasks that you’ll find yourself doing in
SharePoint 2010. The chapter covered standard and visual Web parts (you’ll see detailed coverage
of these two types of Web parts in Chapter 6), as well as Data View Web parts, to provide some dis-
cussion of customizing your Web parts. This chapter also covered customizing lists by using site col-
umns and content types, and discussed how you can leverage the SharePoint object model and Web
services to interact with SharePoint data. The chapter also provided some coverage of event receivers
and showed you how you can create a custom aspx page and master page.

As you move throughout this book, you’ll see many of the topics covered in this chapter resurface as
you write more code and explore more of the programmatic capabilities that SharePoint has to offer.
For example, in Chapter 3, you’ll see more coverage on how you interact with lists, and you’ll learn
about the client object model, ASP.NET Web services, server object model, and custom Web services
in greater detail.

EXERCISES

1. Using Visual Studio 2010, create a simple standard Web part and Visual Web part using the
code snippets in this chapter.

2. Create a calculated site column for the Sales list that leverages the Total sales column to
calculate tax based on a 7 percent state tax for all states.

3. Create a custom aspx page that leverages two or more controls from the ASP.NET Toolbox,
and publish it to SharePoint.

4. Create a simple master page that has a logo and some header text. Use the minimal master
page that ships with SharePoint.

158 | CHAPTER4 COMMON DEVELOPER TASKS IN SHAREPOINT 2010

» WHAT YOU LEARNED IN THIS CHAPTER

ITEM

Web Part

Site Column

Content Type

List
Event Receiver

aspx Page

Master Page

DESCRIPTION

SharePoint is built on the ASP.NET framework and provides different types of
Web parts to use when building solutions. This chapter introduced the standard
Web part (baseline Web part available in SharePoint), Visual Web part (adds a
Designer experience for the Ul to standard Web parts), and Data View Web parts
(expose list data in a custom-formatted way).

Custom column that can be reused across a SharePoint site.

Custom object with metadata that can range from predefined columns to custom
documents that can be reused across a SharePoint site.

Standard way of representing data in SharePoint.
An event that is triggered when the system or user performs an action.

The standard page in SharePoint. Built on ASP.NET, SharePoint supports simple
aspx pages (no controls) or more complex pages that come predefined with con-
trols and layouts (for example, a Web part page).

A master page provides a single point of branding and structure that can be lev-
eraged across a SharePoint site.

RECOMMENDED READING

» Channel 9 Learning Course on Lists and Events at http: //channel9.msdn.com/learn/

courses/SharePoint2010Developer/ListsAndSchemas/

> ASP.NET master pages overview at http://msdn.microsoft.com/en-us/library/
wtxbf3hh.aspx

> SharePoint master page article at http://msdn.microsoft.com/en-us/library/

ms467402.aspx

Programming Against
SharePoint 2010 Lists

WHAT YOU'LL LEARN IN THIS CHAPTER:

» Understanding the structure and function of a SharePoint 2010 list

> Programming against SharePoint lists through client- and server-side
object models, ASP.NET Web services, WCF, and RESTful services

» Understanding when to use one method over the other

> Developing against SharePoint 2010 lists

In Chapter 2, you were introduced to the SharePoint list from both the end-user perspective
and the developer perspective. You were also introduced to a simple application that interacted
with a list programmatically.

This chapter dives into more detail about the list and will provide you with some additional
information about the different ways in which you can programmatically interact with a list
(specifically, reading and writing items). You will learn about different application program-
ming interfaces (APIs) and ways to develop against a list. This chapter also provides you with
an introduction to list events and teaches you how to create and exploit them.

OVERVIEW OF SHAREPOINT LISTS

In addition to the Web part, the list will be one of the more common objects you code against
in SharePoint (and one of the most commonly used artifacts by end users). A list is essentially
a type of data structure in SharePoint. A list represents a collection of items comprising objects
of similar types. Similar in structure and behavior to a database, a SharePoint list contains
rows, columns, and fields. It can react to events you customize and deploy into SharePoint.

160

CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

The data in a list is referred to as a list item. A list item com- Calumn name:

prises a field, and fields contain specific data. Fach field within a MyNowColumn

list item has a specific field type, such as “Single line of text” or The typs of information in this column is:
Choice. For example, Figure 5-1 shows the default options that =

are available to you when you create a list and then add columns
to that list from the SharePoint Web interface.

1ultiple lines of text
hoice (menu to choose from)
umber (1, 1.0, 100)
urrency (%, ¥, €)
. . @ Date and Ti

You can create a list through the Internet browser interface, pro- Y e g
grammatically through an array of APIs, through a Web service, or
through defining the list by an XML schema, and then deploying e

- . . . " yperlink or Picture
to your SharePoint site. (The out-of-the-box lists are essentially list ® Calculated fcaloiistion basedion otier colimne}

templates that have a predefined schema.) © External Dats
© Managed Metadata

@ Lookup (information already on this site)
es/No (check box)
erson or Group

There are many types of lists in SharePoint. For example, there
is a Calendar list that supports calendar functionality (and
synchronizes with Outlook), an Announcements list that stores announcements you’d like to dis-
play on your site, and a Tasks list that enables you to create tasks and delegate to people in your
organization. Lists also include document libraries, which is where you store files and metadata.
Furthermore, you can map workflow and event receivers to lists or even list items (as you’ll see later
in this chapter) that react to actions such as creating, deleting, or updating items. You can also cus-
tomize filters for lists and create views that are specific to your liking.

FIGURE 5-1 Column field types

While many of the out-of-the-box lists ship as a predefined structures, you can also customize a list.
You did this in Chapter 4 when you created a content type, site column, and custom column, which
you then used to create the list. This list, known as the Custom list, is a versatile list because you
define it however you want.

A Custom list can be as simple or as complex as you want. For example, Table 5-1 shows the struc-
ture of a simple Custom list structure called customers that contains a set of list items. The list
items are made up of Customer Name and Customer Email.Each of the fields within the list items
are of the “Single line of text” data type, and each field within the list item contains data (for exam-
ple, John Doe and John.doe@acme.com). Table 5-1 illustrates what the Customers list might look
like with three mock records.

TABLE 5-1 Sample List — Customers

CUSTOMER NAME CUSTOMER EMAIL
John Doe John.doe@acme.com
Jane Doe Jane.doe@acme.com
Jim Doe Jim.doe@acme.com

Another (more advanced) type of Custom list is the External list. The External list dynamically loads
data from external data sources into a SharePoint list. It can connect to different service connections
such as Windows Communication Foundation (WCF) or ASP.NET, and can also be programmed
against using a standard set of APIs. External lists are covered in greater detail in Chapter 8.

Overview of SharePoint Lists | 161

Regardless of whether a list is a custom or standard list,
you can program against a list. And, as mentioned earlier,
SharePoint offers multiple points of entry for the developer
to program against a list. When programming against lists,
you can think of the data as living within a specific object
within the list. For example, Figure 5-2 shows you a simple
taxonomy of how you might conceptually get at the specific
data within a list.

List Collection

While the structure of lists may look like databases, they
are quite a bit different. For example, you would expect to
find much more transactional and referential integrity in a
SQL Server database than in a list, as well as tools-specific
support for database administrators and a richer query
model. However, lists can be very useful when displaying
data in SharePoint, and, as you’ll see, have a straightfor-
ward method for extensibility.

Columns

FIGURE 5-2 List structure

While Figure 5-2 illustrates the conceptual structure of a

list, the way in which you programmatically interact with the list is a little different. For example,
while the list collection comprises one or more lists, the column is one of the constituent components
of the list, and the rows are just instances of the different columns that make up that list. Further,
the data lives in the field within the column. For example, let's say you want to traverse a list. Using
a specific set of objects within the SharePoint object model, you can access methods and properties
to iterate through a SharePoint Web site to get all of the lists in that site, or iterate through a list to
get all of the rows (or SPListItems) in that list, among many other programmatic activities.

Figure 5-3 shows an example of the SharePoint object model
hierarchy starting with the spsite object as your point of entry.

To put the object model hierarchy shown in Figure 5-3 to prac-
tice, the following code snippet sets the sPsite object to the cur-
rent SharePoint site collection, sets the list to a specific list, and
then creates a CAML query to query against that list to get all
results in the list that are greater than 10. (CAML, which stands
for Collaborative Application Markup Language, is the XML
query structure that you use when querying SharePoint data.) As

illustrated in the following code snippet, you build CAML con-

structs, and then use the SharePoint API to interact with the list. FIGURE 5-3 List object model

SPSite mySPSiteCollection = SPContext.Current.Site;
SPList mySPList = mySPSiteCollection.AllWebs["Sales"].Lists["Products"];

SPQuery myCAMLQuery = new SPQuery () ;
myCAMLQuery.Query = "<Where><Gt><FieldRef Name='Price'/>" +
"<Value Type='Number'>10</Value></Gt></Where>";
SPListItemCollection mySPListCollection = mySPList.GetItems (myCAMLQuery) ;

162 | CHAPTERS5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

This example is simple, but illustrative, of one way in which you can interact with SharePoint list
data. As you’ll see throughout this chapter, lists are versatile data structures in SharePoint, and there
are many different ways to program against them as well. So, let’s get started!

PROGRAMMATICALLY ACCESSING LISTS

In SharePoint 2010 you programmatically access and code against lists in a number of different

ways:

>

You use the Microsoft.SharePoint namespace (that is, the server-side object model) to
access lists on the server. What this means, though, is that any application you build must
reside (or be consumed) on the server that it is accessing.

Second, you can use the Lists Web service — an ASP.NET Web service that ships with
SharePoint.

Third, you can build a custom ASP.NET Web service that you deploy to Internet Information
Services (IIS), or deploy into the SharePoint file system (for example, into the 1saPT folder).

Fourth, you can build a custom WCEF service that you deploy to IIS or to the SharePoint root.

Fifth, you can also use the SharePoint client object model, which supports remote program-
matic access to lists from Silverlight, NET, and JavaScript applications.

Lastly, you can use REST APIs that provide lightweight access to SharePoint list data.

NOTE SharePoint is flexible in that you can deploy a custom ASP.NET or WCF
Web service directly into the SharePoint root to interact with your list. While
this is a convenient way to take advantage of being a “trusted” service within
SharePoint, the drawback is that if you ever upgrade your SharePoint server,
you run the risk of having your custom Web services deleted from the vti_bin
or layouts folder.

Table 5-2 provides a summary of each of the options available to you and indicates when you might
use one over the other.

TABLE 5-2 SharePoint List APIs/Services

TYPE OF SERVICE/API WHEN TO USE

Server-side object model Core SharePoint DLL that is used for building applications that are

deployed to or reside (or consumed) on the server.

Client object model Client-based DLL used for coding against SharePoint on remote clients.

It is supported in .NET, Silverlight, and JavaScript applications.

Programmatically Accessing Lists | 163

TYPE OF SERVICE/API WHEN TO USE

WCF Data Services REST-based service that provides lightweight GET and POST functional-
ity against a SharePoint list. You use this service to interact with Excel
spreadsheets. (Note that the WCF Data Services were formerly called
ADO.NET Data Services.)

Lists Web service ASP.NET Web service that provides legacy service functionality for inter-
acting with lists. Good for rapid development and deployment, as well as
service-based applications.

Custom WCF service Option where you design a custom WCF service application and
deploy into the SharePoint hive or IIS. This is useful when you
require a custom service because the functionality does not exist
within SharePoint.

Custom ASP.NET service Option where you design a custom ASP.NET service application and
deploy it in the SharePoint hive or IIS. This is useful when you require
a custom service because the functionality does not exist within
SharePoint.

After you programmatically access a SharePoint list using any one of the methods shown in
Table 5-2, you can then begin to write solutions that leverage the list in different ways. For
example, you can use the different methods to issue, create, read, update, and delete capabili-
ties, or you can add more complex events that interact with other parts of the SharePoint object
model, or even initiate a workflow that manages business processes through system or user inter-
action with the list.

Let’s examine each of the methods introduced in Table 5-2 and discuss how you can use each
method to program against SharePoint lists.

Programming Against Lists Using the Server-Side Object Model

One way to develop applications against a SharePoint list is to leverage the Microsoft
.SharePoint namespace (the server-side object model). Using the Microsoft.SharePoint
namespace is relatively easy. However, it is predominantly used for applications that reside on
the server.

Before you start the walkthrough, you’ll need to create a simple list in your SharePoint site called
Products. You can create this manually by navigating to your SharePoint site and clicking Site
Actions & View All Site Content. Then click Create @ Lists @ Custom List. Enter Products as
the name of the list and click Create. After the site is created, you’ll want to add two more col-
umns beyond the Title column. To add two columns, click the List tab, and then List Settings =
Create Column. Add a column named pProduct_sku and another column named Price. You can

164 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

leave both columns with the default “Single line of text” type. After you create the list, you are
now ready to begin the walkthrough.

NOTE |n this first walkthrough, you’ll create a very simple WPF application that
interacts with a SharePoint list. The goal of the walkthrough is less about the
application and more about you learning how to use the SharePoint server-side
object model. You saw the server object model being used in Chapter 4, so
think of this as another way to leverage the object model.

Programming Against Lists Using the Server-Side Object Model

Code file [SPListApp.zip] available for download at Wrox.com.

The list is a core artifact in SharePoint. The server-side object model is one way of interacting with a
list. You can build different types of applications that live on the server and interact with the server
object model, such as WinForm or WPF utility tools, Web parts, or event receivers. To build a WPF
application that interacts with a list using the server-side object model, follow these steps:

1. Open Visual Studio and click File &> New = Project & WPF Application. Ensure that you select
NET Framework 3.5 in the drop-down menu at the top of the New Project dialog, or else you will
have compilation issues when building your application.

2. Give your project a name (for example, WPFSPTestapp), and click OK.

3. When your solution is set up, right-click the project and select Add Reference. Select the Browse
tab and then browse to c: \Program Files\Common Files\Microsoft Shared\Web Server
Extensions\14\ISAPI. Select the Microsoft.SharePoint.dll and click OK.

4. Right-click the MainwWindow.xaml and select View Designer. Add five labels, five textboxes, and
three buttons. Arrange the controls on the designer as shown in Figure 5-4.

Table 5-3 shows the control type and the name of the controls that you should add to the WPF
designer.

TABLE 5-3 Control Types for WPF Application

CONTROL TYPE CONTROL NAME

Label 1blSPUrl, 1lblListName, 1lblProductSKU, lblProdName,
1blProductPrice

Textbox txtbxSPURL, txtbxListName, txtbxProductSku, txtbxProductPrice

Button btnLoad, btnClear, btnExit

Programmatically Accessing Lists | 165

mm'm'm Dsbug Tem Outa Took Achtectwe Tet Ansbie Window u_@

i b e [B IR Y, I B 4|p|===j|ﬁ
Toolbox = 0 B ManWindowsarmd X = Solution Bxplores
@ Comrman WEF Contioli. = § o kJ}II j El | *El
il —
bR | 1 A Salution "WRFSPTestApp (1 project)
k Pninter i a [WEESFTestApp
El Border ' v L Properies
] Button it 4 |x References
o Canvas i P 3 Microsaft SharcP oint
= r i
CheckBox o = | Fre:(ﬂm!onCcr:
o L= 3 PresentationFramework
S armbioon
: “2 Sylem
B3 CortentContral |2 @ SystemCore
DackPane| <2 Sychmm[al,
T) Sale URL: Syctenn Oata)
2 DocumentViewer +3 System Data DataSetFvtrnsions
) Ellipse | Wit M 3 SystemXmi
@ Expander = System milLling
= WindowsBace
LI Frame Product Mame: .
1 Ged L spp.canfig
S || Product SKU: b Appiam)
B2 GridSplieter a [MamWindow.saml
"1 GroupBox — Praduct Price: ‘%] MainWindesw zaml.cs
Ed Image
i label load | . Clear | [Est
"% ListBox
B Ltew
E MediaFlement .
& Menu - T
it PasswordBox
W ProgressBa
@ FadmButian
1 Feclangle
8% PRichTestBox I& I — m el
B Serolifar L G0 (B O Window Window b g -EE™ 1

FIGURE 5-4 WPF Client Ul for server-side object model list call

The XAML that corresponds to this Ul is as follows:

<Window x:Class="WPFSPTestApp.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="350" Width="525">

<Grid wWidth="387" Height="258">

<Label
Content="Site URL:" Height="28" HorizontalAlignment="Left" Margin="36,30,0,0"
Name="1blSPURL" VerticalAlignment="Top" Width="94" />

<TextBox

Height="23" HorizontalAlignment="Left" Margin="136,30,0,0"
Name="txtbxSPURL" VerticalAlignment="Top" Width="212" />

<Label
Content="List Name:"Height="28" HorizontalAlignment="Left" Margin="36,66,0,0"
Name="1blListName" VerticalAlignment="Top" Width="94" />

<TextBox
Height="23" HorizontalAlignment="Left" Margin="136,66,0,0"
Name="txtbxListName" VerticalAlignment="Top" Width="212" />

<Label
Content="Product Name:"Height="28" HorizontalAlignment="Left" Margin="590,230,0,0"
Name="1blProductSKU" VerticalAlignment="Top" Width="94" />

<TextBox

166 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

Height="23" Margin="0,101,39,0" Name="txtbxProdName"
VerticalAlignment="Top" HorizontalAlignment="Right" Width="212" />
<Button
Content="Load" Height="23" HorizontalAlignment="Left" Margin="67,214,0,0"
Name="btnLoad" VerticalAlignment="Top" Width="75" Click="btnLoad_ Click" />
<Button
Content="Clear" Height="23" HorizontalAlignment="Left" Margin="158,214,0,0"
Name="btnClear" VerticalAlignment="Top" Width="75" Click="btnClear_Click" />
<Button
Content="Exit" Height="23" HorizontalAlignment="Left" Margin="247,214,0,0"
Name="btnExit" VerticalAlignment="Top" Width="75" Click="btnExit_Click" />
<Label
Content="Product Name:"Height="28" HorizontalAlignment="Left" Margin="36,101,0,0"
Name="1blProdName" VerticalAlignment="Top" Width="120" />
<Label
Content="Product SKU:" Height="28" HorizontalAlignment="Left" Margin="36,135,0,0"
Name="1blProductSku" VerticalAlignment="Top" Width="120" />
<TextBox
Height="23" HorizontalAlignment="Left" Margin="136,135,0,0"
Name="txtbxProductSku"VerticalAlignment="Top" Width="212" />
<Label
Content="Product Price:" Height="28" HorizontalAlignment="Left" Margin="36,169,0,0"
Name="1blProductPrice" VerticalAlignment="Top" Width="120" />
<TextBox
Height="23" HorizontalAlignment="Left" Margin="136,169,0,0"
Name="txtbxProductPrice" VerticalAlignment="Top" Width="212" />
</Grid>
</Window>

5. Double-click the Exit button and add the following code to exit the application:

private void btnExit_Click(object sender, RoutedEventArgs e)

{
Application.Current.Shutdown () ;

6. Double-click the Clear button and add the following code to clear the fields:

private void btnClear_Click(object sender, RoutedEventArgs e)
{
txtbxListName.Text = "";
txtbxSPURL.Text = "";
txtbxProdName.Text = "";
txtbxProductSku.Text = "";
txtbxProductPrice.Text = "";

7. While still in the Windows.xaml.cs code behind, add the following using statement at the top of
the application:

using Microsoft.SharePoint;

Programmatically Accessing Lists | 167

8.

9.

10.

Add the following five class-level variables (boldfaced in the following code), which represent the

user input, and then navigate back to the Designer view:

public partial class MainWindow : Window

{

string strSPSiteURL = "";
string strSPListName = "";
string strProductName = "";
string strProductSKU = "";
string strProductPrice = "";

Double-click the Load button and add the following code to add a new record to a SharePoint list:

private void btnLoad_Click(object sender, RoutedEventArgs e)

{
strSPSiteURL = txtbxSPURL.Text;
strSPListName = txtbxListName.Text;
strProductName = txtbxProdName.Text;

strProductSKU = txtbxProductSku.Text;
strProductPrice = txtbxProductPrice.Text;

using (SPSite site = new SPSite(strSPSiteURL))

{

using (SPWeb web = site.OpenWeb())

{

web.AllowUnsafeUpdates = true;

SPList list = web.Lists[strSPListName];
SPListItem Item = list.Items.Add();

Item["Title"] = strProductName;
Item["Product_SKU"] = strProductSKU;
Item["Price"] = strProductPrice;

Item.Update() ;

web.AllowUnsafeUpdates = false;

The full application code listing (with the code you added listed in bold) for the code behind is

as follows:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

168 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

using System.Windows.Controls;
using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using Microsoft.SharePoint;

namespace WPFSPTestApp
{

public partial class MainWindow : Window
{

string strSPSiteURL = "";
string strSPListName = "";
string strProductName = "";
string strProductSKU = "";
string strProductPrice = "";

public MainWindow ()
{

InitializeComponent () ;

private void btnExit_Click(object sender, RoutedEventArgs e)

{
Application.Current.Shutdown();
}
private void btnClear_Click(object sender, RoutedEventArgs e)
{
txtbxListName.Text = "";
txtbxSPURL.Text = "";
txtbxProdName.Text = "";
txtbxProductSku.Text = "";
txtbxProductPrice.Text = "";
}

private void btnLoad_Click(object sender, RoutedEventArgs e)
{

strSPSiteURL = txtbxSPURL.Text;

strSPListName = txtbxListName.Text;

strProductName = txtbxProdName.Text;

strProductSKU = txtbxProductSku.Text;

strProductPrice = txtbxProductPrice.Text;

using (SPSite site = new SPSite(strSPSiteURL))
{

using (SPWeb web = site.OpenWeb())

{

Programmatically Accessing Lists

| 169

1.

12.

web.AllowUnsafeUpdates = true;

SPList list = web.Lists[strSPListName];
SPListItem Item = list.Items.Add();
Item["Title"] = strProductName;
Item["Product_SKU"] = strProductSKU;
Item["Price"] = strProductPrice;
Item.Update();

web.AllowUnsafeUpdates = false;

When you’re finished adding the code, press F5 to debug the application. When prompted by the
U, enter some product

information into the dialog, as shown in Figure 5-5.

Site URL: http/#fabrikamhockey

List Name: Products

Praduct Name: Ba

uer XXVI

Product SKU: BR-XXVI-080

Praduct Price: 27

0.99

Load]

[Clear | [it

FIGURE 5-5 Compiled W
object model

PF application using server-side

Now, open your SharePoint site and navigate to the list you updated (for example, Products list).
You will find that the application has updated the SharePoint list, as shown in Figure 5-6.

F @ Tite
Bauer X000
CCM Tacks
Nike Air

Bauer YOOI new

Product_SKU Price

BR-XXXX-901 389.99
CM-TCKS-021 305.00
NK-AIR-788 389.99
BR-XXVI-090 279.99

FIGURE 5-6 Updated list

170 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

How It Works

When you’re developing applications that are running on the server, you can leverage the server-side
object model that is exposed using the Microsoft SharepPoint.dll. For example, in this walkthrough,
you built a simple WPF-based application that was running on the server (assuming that you were
building and deploying it on your server machine). Very simply, the application took a number of

string inputs from the WPF Ul and used the server-side object model to add this input to a list on your
SharePoint site. The five string variables were declared as follows:

string strSPSiteURL = "";
string strSPListName = "";
string strProductName = "";
string strProductSKU = "";
string strProductPrice = "";

You’ll note that, per the earlier example, the code leverages the using statements to set the context for
the SharePoint site and then sets the Web to allow updates, creates an sPList object and SPListItem

object, and then proceeds to set the specific column fields with the data that was entered by the users.

Finally, the update method is called to add the data to the list.

using (SPSite site = new SPSite(strSPSiteURL))
{
using (SPWeb web = site.OpenWeb())
{
web.AllowUnsafeUpdates = true;

SPList list = web.Lists[strSPListName];
SPListItem Item = list.Items.Add();

Item["Title"] = strProductName;
Item["Product_SKU"] = strProductSKU;
Item["Price"] = strProductPrice;

Ttem.Update() ;

web.AllowUnsafeUpdates = false;

@ NOTE The preceding walkthrough showed you how to use the server-side
object model using a Windows client application. You can also use the server-
side object model on the server. To help you see what the project structure of
a Web part application looks like, this chapter also provides an additional code
sample where a Web part issues the same update action that the WPF applica-
tion does. This Web part code sample (ServerSideObjectModel . zip) iS avail-
able for download for you at the companion download site (www.Wrox . com).

Programmatically Accessing Lists | 171

Programming Against Lists Using ASP.NET Web Services

The second way to interact with lists programmatically is to use the Lists ASP.NET Web service that
ships with SharePoint 2010. You might think of this as being not only a convenient service-based
way of coding against SharePoint, but also as support for legacy code that may be based on the set
of Web methods within the Lists service.

To develop using the ASP.NET service, you create a new application, set a reference to the ASP.NET
Web service, and then program against the Web reference (or more accurately, the service proxy you
add to the application code). For example, following is a code snippet that creates an instance of the
Lists Web service, sets the credentials of the service call as the default credentials, and then sets the
absolute URL to the service:

MySharePointData.SPListGetData.Lists proxy = new
MySharePointData.SPListGetData.Lists();

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials.

proxy.URL = "http://fabrikamhockey/_vti_bin/lists.asmx";

Within the Lists Web service, there are a number of Web methods that you can use when program-
ming against SharePoint lists, content types, list items, and files. To access the Web service, you set
your Web reference to http://<server name>/_vti_bin/Lists.asmx and then use the reference
to the service in your code to manage data sent to and from SharePoint.

Table 5-4 provides a sampling of the list of the Web methods that are available in the Lists Web ser-
vice, along with a description of what the Web method does.

TABLE 5-4 Sample Lists Web Service Members

METHOD NAME DESCRIPTION
AddAttachment Adds an attachment to a specific list item in a list
AddList Creates a list in a SharePoint site based on specific name, descrip-

tion, and list template ID

CheckInFile Allows documents to be checked in to a SharePoint document
library remotely

CheckOutFile Allows documents in a SharePoint document library to be checked
out remotely

DeleteAttachment Removes the attachment from the specified list item
DeletelList Deletes a specified list

GetList Returns the schema for a specified list
GetListAndView Returns list and view schemas for the specified list

continues

172 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

TABLE 5-4 (continued)

METHOD NAME DESCRIPTION

GetListCollection Returns the names and globally unique identifiers (GUIDs) for all lists
in the site

GetListContentType Returns the content type definition schema for the specified list con-
tent type

GetListItemChanges Returns any changes made to a list since a specified date and time

GetListItems Returns information about items in a list based on a specified query

UndoCheckOut Undoes the check-out of a given document in a SharePoint docu-
ment library

UpdateList Updates a list based on a specified field definition and list properties

UpdateListItems Adds, deletes, or updates specified items in a list on a SharePoint site

NOTE You can find more information about the Lists Web service members at
http://msdn.microsoft.com/en-us/library/lists.lists_members.aspx.

You’ve walked through an exercise how to program against lists using the server-side object
model, so let’s try out another example using the Lists Web service. In this example, you’ll create
an Office add-in that will read and write data from the document to the SharePoint list, and vice
versa. (Note that if you completed the first walkthrough, you can use the same products list in
this example as well.)

Programming Against Lists Using the Lists Web Service

Code file [ProductsList.zip] available for download at Wrox.com.

The ASP.NET Web services are a great way to leverage the out-of-the-box capabilities when programming
against lists. To programmatically interact with a list using the Lists Web service, follow these steps:

1. Create a new Custom list and call it products. Leave the default Title field and add two more
fields called Product_sku and Price. All fields should be of type “Single line of text.” Add some
data to the list, as shown in Figure 5-7.

Fl @ Tile Product_SKU Price
Bauer XXXX BR-XXX-901 389.99
CCM Tacks CM-TCKS-021 309.00
Nike Air NK-AIR-788 389.99

FIGURE 5-7 Sample data in list

Programmatically Accessing Lists | 173

After you’ve created the list, open Visual Studio 2010 (as Administrator).

Select File &> New = Project. Be sure to select the NET Framework 3.5 in the drop-down list in the

New Project dialog.

Select Office in the Installed Templates, and then select the Excel 2010 Add-In project template.

Provide a name (for example, ProductsList) and a location for your project, as shown in

Figure 5-8. Click OK.

New Project -

21|

Recent Templates I.NEF Framework 4

| sortby: | Defauit

d Search Installed Templates @

Installed Templates
T Visual C#
[(CH| Excel 2007 Addbin Visual C# e
: X A project for creating a managed code add-in
Windows F for Excel 2010,
Excel 2010 Add-in Visual C#
Web
= Office _ﬁ
2010 Ci i Excel 2007 Template Visual C#
2007 i
Cloud Service Cﬁ"‘ Excel 2010 Template Wisual C#
Reporting =
SharePoint Cﬂrx Excel 2007 Workbook Visual C#
Silverlight £
Test Cﬁ“‘ Excel 2010 Workbook Visual C#
WCF
- mw"'kﬂ""“ S| infopath 2007 Add-in visual C#
Other Languages =
Other Project T
. ;; gLkt Scfl| InfoPath 2010 Add-in Visual C:#
a3 ase =
Modeling Projects
Test Projects I'L‘:‘C“ Outlook 2007 Add-n Visual C#
Online Templates ioc] - outiock 2010 addn Visual C# =l
X/ =
Per user extensions are currently not allowed to load. Enable loading of per user extensions
Mame: |PrcductsL|st
Location: IC:\Auﬂ'lur\ng\Begiﬂr|ir|g_SP_Dev\Chap6_Prugramming_Against_L\sis\,SuurcE\ ;I
Solution name: |PrcduclsL|st [V Create directory for solution
™ Add to source contral

FIGURE 5-8 Office Excel project template

Visual Studio 2010 creates a solution structure for you, which includes a number of default files.
Right-click the main project file and select Add = New Item. Navigate to the WPF node and select

WPF User Control.

Provide a name for your user control (for example, ProductsUserControl .xaml), and click OK.
Visual Studio adds a WPF-based control to your project.

Right-click the new control in the Solution Explorer and select View in Designer.

Use the Toolbox to drag four labels — a listbox, two textboxes, and two buttons — onto the
designer surface. When done, arrange the user interface controls as shown in Figure 5-9.

Table 5-5 shows the control type and the name of the controls that you should add to the WPF

user control.

174 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

ProdsctsList - Mi t visusl Studio [Administrator)

Prodh sl Clrlaam™ 3 QUEEEIRNEY Enbation Fxplorer

= Comnon WPF Con,.. =l L:;l.a}“aiuj
R Foter [Sohstion Proucislis? (1 projecl)
B sorder O 14 Productst st
(o8] utwn # S Properbes
Referenees
Chedgian - i ﬁl_:ﬂd
- Products Data a8
Wl ConbeBor T ThestaeTn.ca
T Damted Pmdml.;l @ = ProductsisenCir]. oaml
1 e
KR Imsge Sk I
Label
A N —
u Lsifon
@ RadkBulion
O fecange Lot Uipdate: |
[stadsaned
T TeeCondl -
Al texties o b
o Texlfow - = I
[Al WRF Coniroks Ireropertes | of Lyents =izl
kot 2 RO | searc |
& earch Fa)
B Bode 15 Desirs_FE " Fam | o]
Bultn <UgerControl x:Class="ProductsList.Productsuseritrl” &+ Layout ﬂ
o wnlns="http: //schemss. microsoft . comfwinfx/ 2006,/ xenl/ presentatic= Brushes
B Calendar wumlnsiu="http:/fschemns .microsoft . confwinfu/ 2006/ xanl " 4 Text
H Comns mnlns ime="hhtp: //schemas . openmnliormats . org/markup-compat ikl 1LY
] chedao: snlng id="hitp://schemas . microsef b confexpress ion/blend /2868~ [Taboma
% F me:lgnorable="d")
I:‘; = dibesignteight="243" diDesigniidth="223"2 ﬂL‘ _flLJ
§ ' Contanita... = eGrld widehs”220" Helghts"23973 S
) o =
A Dot <Button Content="Update™ Height="23" HorizontalAlignmeni="Left" .‘Lul-lj =
B Dok Wi - — EENE - e . . Visilsilily
100% -4 | | Tramorm
[oederanel W] UserControl UserCanticl b B ocher .

FIGURE 5-9 WPF custom task pane Ul

TABLE 5-5 Control Types for WPF User Control

CONTROL TYPE CONTROL NAME

Label 1blProduct, 1lblSku, LblPrice, lblTitle
Textbox txtBxSku, txtbxPrice

Listbox lstBxProducts

Button btnUpdate, btnLoadData

Adding controls to the designer surface auto-generates XAML code (the XML mark-up that
defines the Ul for the application). If you explore the XAML code for the Ul, it will look very
close to the following code sample. Note that you can edit the properties of the Ul either directly
from the XAML or by using the Properties window in Visual Studio.

<UserControl x:Class="ProductsList.ProductsUserCtrl"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

Programmatically Accessing Lists | 175

10.

1.

12.

13.

14.

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:mc="http://schemas.openxml formats.org/markup-compatibility/2006"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
mc:Ignorable="d"
d:DesignHeight="243" d:DesignWidth="223">
<Grid Width="220" Height="239">
<Button
Content="Update" Height="23" HorizontalAlignment="Left" Margin="118,173,0,0"
Name="btnUpdate" VerticalAlignment="Top" Width="75" />
<Button
Content="Load" Height="23" HorizontalAlignment="Left" Margin="22,173,0,0"
Name="btnLoadData" VerticalAlignment="Top" Width="75" />
<Label
Content="Product:" Height="28" HorizontalAlignment="Left" Margin="22,48,0,0"
Name="1blProduct" VerticalAlignment="Top" Width="55" />
<Label
Content="SKU:" Height="28" HorizontalAlignment="Left" Margin="22,82,0,0"
Name="1blSku" VerticalAlignment="Top" Width="55" />
<Label
Content="Price:" Height="28" HorizontalAlignment="Left" Margin="22,116,0,0"
Name="1blPrice" VerticalAlignment="Top" Width="55" />
<Label
Content="Products Data" Height="28" HorizontalAlignment="Left" Margin="22,12,0,0"
Name="1blTitle" VerticalAlignment="Top" Width="120" FontWeight="Bold" />
<TextBox
Height="23" HorizontalAlignment="Left" Margin="73,82,0,0"
Name="txtBxSku" VerticalAlignment="Top" Width="120" />
<TextBox
Height="23" HorizontalAlignment="Left" Margin="73,116,0,0"
Name="txtBxPrice" VerticalAlignment="Top" Width="120" />
<ListBox
Height="28" HorizontalAlignment="Left" Margin="73,45,0,0"
Name="1lstBxProducts" VerticalAlignment="Top" Width="120" />
</Grid>
</UserControl>

Double-click each of the buttons to add event handlers for each of them in the code behind. (Note
that this will update the XAML, so be sure to inspect the XAML to see these changes.)

Next, add a reference to the Lists Web service. To do this, right-click the project and select Add
Service Reference. Click the Advanced button in the Add Service Reference dialog, and then click
Add Web Reference in the Service Reference Settings dialog.

If you’re developing on the same machine as your SharePoint site, you can click “Web services on
local machine” to discover the services on your development machine. (Otherwise, you’ll need to
add the service URL into the URL field.)

Visual Studio loads all of the available services on the local machine, one of which should be the
SharePoint Lists service, as shown in Figure 5-10.

When you click the Lists service, you will see a list showing all of the available Web methods.

176 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

15.

16.
17.

Mavigate to a web service URL and dick Add Reference to add &ll the available services.

COldan
DspSts http:/flocalhost/_vti_bin/DspSts.asmx ;' \Web services found at this URL:
DWS http: fflocalhost/_vti_bin/DWS. asmx ;I
ExcelService http: /flocalhost/_vii_bin/ExcelService.a
Forms http:/flocalhost/_vii_bin/Forms.asmx
FormsServiceProxy http: /flocalhost/_vii_bin/FormsServiceP:
FormsServices http:{flocalhost/_vti_bin/FormsServices
Imaging http:/flocalhost/_vti_bin/Imaging.asmx LI
Lists http:flocalhost/_vti_bin/Lists.asmx \Web reference mame:
Meetings http:/flocalhost/_wti_bin/Meetings.asmx
officialfile http:{flocalhost/_vti_bin/offidalfie.asm:
T hittp:/localhast/_vti_binfofficialfie.wsdl Add Reference
People http:/flocalhost/_wti_bin/People.asmx
Permissions http: fflocalhost/_vti_bin/Permissions.as
PPSAuthoringService http: flocalhost/_vti_bin/PPS/PPSAuthor
PPSDecompRenderingService http: /flocalhost/_vti_bin/PPS/PPSDecom
profileimportexportservice http: /flocalhost/_vii_bin/profileimportex =

4| | _pl_l Cancel

FIGURE 5-10 Add Web Reference dialog

Provide a name for the service reference (for example, sPListws) in the Web reference name field,
and then click Add Reference. You can now begin leveraging the Lists Web service in your applica-
tion. After you finish adding the Web service reference, add the following using statements at the
top of the class:

using Excel = Microsoft.Office.Interop.Excel;
using System.Web.Services.Protocols;

Right-click the WPF-based user control, and select View Code.

In the code behind, you’re going to add some code to handle reading data from the SharePoint list
into the active Excel document and then some to handle writing back to the SharePoint list from
the Excel worksheet. The first set of code you’ll need is the code that defines your in-memory data
object. To add a class to the project and provide a name (for example, Product), right-click the
project and select Add = Class. The Product class contains three public string properties, which
are shown in boldface in the following code sample:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

namespace ProductsList

{
class Product
{
public string productTitle { get; set; }
public string productSKU { get; set; }
public string productPrice { get; set; }
}

Programmatically Accessing Lists | 177

18.

19.

Data is managed in the application through the use of a list collection called myProducts
(which appears in bold in the following code snippet). Using an in-memory object that is of type
TEnumerable or a List collection makes it easier to query and bind data to controls in your
applications.

namespace ProductsList
{

public partial class ProductsUserCtrl : UserControl
{
List<Product> myProducts = new List<Product>();

public ProductsUserCtrl ()
{
InitializeComponent () ;

After you’ve added the code for your class, you must handle the two button events and the changed
event for the listbox. The following code snippet represents the event that is triggered when the
user clicks the Load button (that is, the btnLoadpata_cClick event). Within the btnLoadbata_
Click event, the application implements the Lists Web service and then, through the use of the
GetListItems method, within the Lists Web service. Much of the code within the try block essen-
tially builds out an XML document using the returned data from the Web service call. It next looks
for specific XML elements (that is, ows_Title, ows_Product_SKU, and ows_Price). It then iter-
ates through each record in the XML document and populates the Product list collection (as well
as adds the names of the products that are being returned to the listbox in the UI).

private void btnLoadData_Click(object sender, RoutedEventArgs e)
{
SPListWS.Lists myListReadProxy = new SPListWS.Lists();
myListReadProxy.Credentials =
System.Net.CredentialCache.DefaultCredentials;
myListReadProxy.Url = "http://fabrikamhockey/_vti_bin/Lists.asmx";

try
{
XmlNode myListItems = myListReadProxy.GetListItems
("Products", null, null, null, null, null, null);
XElement newRootElement = new XElement ("ProductData") ;

foreach (XmlNode outerNode in myListItems.ChildNodes)
{ if (outerNode.NodeType.Equals (System.Xml.XmlNodeType.Element))
{ foreach (XmlNode node in outerNode.ChildNodes)
{ if (node.NodeType.Equals (System.Xml.
XmlNodeType.Element))

XmlNode listFieldTitle = node.Attributes.

178 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

GetNamedItem("ows_Title");

XmlNode listFieldProductSKU = node.Attributes.
GetNamedItem ("ows_Product_SKU") ;

XmlNode listFieldPrice = node.Attributes.
GetNamedItem("ows_Price");

Product tempProduct = new Product();
tempProduct.productTitle = listFieldTitle.InnerText;
tempProduct.productSKU =

listFieldProductSKU. InnerText;
tempProduct.productPrice = listFieldPrice.InnerText;

myProducts.Add (tempProduct) ;
1stBxProducts.Items.Add (tempProduct.productTitle) ;

}
catch (SoapException ex)
{

MessageBox.Show (ex.Message) ;

20. The following code provides the methods that handle the btnupdate_click event. In this code,
you create an instance of the Excel worksheet so that you can inject the data coming from the
SharePoint list into a specific set of cells. The code does not format the cells, but you could assert
some formatting for the worksheet programmatically if you chose. Then, depending on the product
name in the cell, the code sets an integer variable called index, which is the specific row of data
that you will update if you make any changes to the data in the spreadsheet. Then, similar to the
btnLoadData_Click event, you create an instance of the Lists Web service. However, this time,
you call the updateListItems method. You’ll notice the CAML construct that is created and
passed with the UpdatelistTtems method. This construct defines the command (Update) and then
provides the specific index to be updated through the aforementioned index variable.

private void btnUpdate_Click(object sender, RoutedEventArgs e)
{

Excel .Worksheet myProductWorksheet = Globals.ThisAddIn.
Application.ActiveSheet as Excel.Worksheet;

int index = 0;

string strProductUpdate = myProductWorksheet.
Cells[2, 1].Value2.ToString();

string strProductSkuUpdate = myProductWorksheet.
Cells[2, 2].Value2.ToString();

string strProductPriceUpdate = myProductWorksheet.
Cells[2, 3].Value2.ToString();

if (strProductUpdate == "Bauer XXXX")
{
index = 1;
}
else if (strProductUpdate == "CCM Tacks")
{

Programmatically Accessing Lists | 179

index = 2;
}
else if (strProductUpdate == "Nike Air")
{

index = 3;

SPListWS.Lists myListUpdateProxy = new SPListWS.Lists();

myListUpdateProxy.Credentials =
System.Net.CredentialCache.DefaultCredentials;

myListUpdateProxy.Url = "http://fabrikamhockey/_vti_bin/Lists.asmx";

System.Xml.XmlNode xmlListView =

myListUpdateProxy.GetListAndView ("Products", "");
string strListID = xmlListView.ChildNodes[0].Attributes["Name"].Value;
string strViewID = xmlListView.ChildNodes[1l].Attributes["Name"].Value;

XmlDocument xmlDoc = new XmlDocument () ;

XmlElement xmlBatchElement = xmlDoc.CreateElement ("Batch");
xmlBatchElement.SetAttribute ("OnError", "Continue");
xmlBatchElement.SetAttribute("ListVersion", "1");
xmlBatchElement.SetAttribute ("ViewName", strViewID);

xmlBatchElement.InnerXml = "<Method ID='1l' Cmd='Update'>"+
"<Field Name='ID'>" + index + "</Field>"+"<Field Name='Title'>"
+ strProductUpdate + "</Field><Field Name='Product_SKU'>" +
strProductSkuUpdate + "</Field><Field Name='Price'>" +
strProductPriceUpdate + "</Field>" + "</Method>";
try
{
XmlNode xmlReturn = myListUpdateProxy.UpdateListItems
("Products", xmlBatchElement) ;
System.Windows.MessageBox.Show ("Product Information Added!");
}
catch (SoapException ex)
{
MessageBox. Show (ex.Message) ;

21. The last event that is handled is the 1stBxProducts_SelectionChanged event, which updates the
worksheet. To create the 1stBxProducts_SelectionChanged event double-click the listbox. In
the following code, the in-memory list collection, myProducts, is being queried using a LiNQ state-
ment. The results can then be mapped to the textboxes and then added to the spreadsheet.

private void lstBxProducts_SelectionChanged
(object sender, SelectionChangedEventArgs e)
{
string strSelectedProd = lstBxProducts.SelectedItem.ToString();

var products = from p in myProducts
.Where(p => p.productTitle == strSelectedProd)

180 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

select new {p.productSKU, p.productPrice};

foreach (var d in products)

{
txtBxSku.Text = d.productSKU;
txtBxPrice.Text = d.productPrice;

Excel .Worksheet myProductWorksheet =
Globals.ThisAddIn.Application.ActiveSheet as Excel.Worksheet;
myProductWorksheet.Cells[1, 1].Value2 = "Product";

myProductWorksheet.Cells[1l, 2].Value2 = "SKU";
myProductWorksheet.Cells[l, 3].vValue2 = "Price";
myProductWorksheet.Cells[2, 1].Value2 = strSelectedProd;
myProductWorksheet.Cells[2, 2].Value2 = txtBxSku.Text;
myProductWorksheet.Cells[2, 3].Value2 = txtBxPrice.Text;

22. While the three methods were split out for your reference, the following listing includes the full
code for the solution described earlier. You’ll note that, as you work through other examples in the
chapter, many of the generic .NET features can equally apply to different ways of retrieving data
from SharePoint. For example, you can equally use LINQ and in-memory objects to query and fil-
ter data while using the client object model, which is discussed later in this chapter.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using System.Xaml;

using System.Xml;

using System.Xml.Ling;

using Excel = Microsoft.Office.Interop.Excel;
using System.Web.Services.Protocols;

namespace ProductsList

{
public partial class ProductsUserCtrl : UserControl
{

List<Product> myProducts = new List<Product>();

public ProductsUserCtrl ()

Programmatically Accessing Lists | 181

InitializeComponent () ;

}

private void btnLoadData_Click (object sender, RoutedEventArgs e)

{
SPListWS.Lists myListReadProxy = new SPListWS.Lists();
myListReadProxy.Credentials =

System.Net.CredentialCache.DefaultCredentials;

//Be sure to replace the URL below with your SharePoint server name.
myListReadProxy.Url = "http://fabrikamhockey/_vti_bin/Lists.asmx";

try
{
XmlNode myListItems = myListReadProxy.GetListItems ("Products",
null,
null, null, null, null, null);
XElement newRootElement = new XElement ("ProductData") ;

foreach (XmlNode outerNode in myListItems.ChildNodes)
(if (outerNode.NodeType.Equals (System.Xml.XmlNodeType.Element))
{ foreach (XmlNode node in outerNode.ChildNodes)
{ if (node.NodeType.Equals
(System.Xml.XmlNodeType.Element))

XmlNode listFieldTitle = node.Attributes.
GetNamedItem("ows_Title");

XmlNode listFieldProductSKU = node.Attributes.
GetNamedItem ("ows_Product_SKU") ;

XmlNode listFieldPrice = node.Attributes.
GetNamedItem("ows_Price");

Product tempProduct = new Product();
tempProduct.productTitle = listFieldTitle.InnerText;
tempProduct.productSKU =

listFieldProductSKU. InnerText;
tempProduct.productPrice = listFieldPrice.InnerText;

myProducts.Add (tempProduct) ;
1stBxProducts.Items.Add (tempProduct.productTitle) ;

}
catch (SoapException ex)
{

MessageBox.Show (ex.Message) ;

private void btnUpdate_Click(object sender, RoutedEventArgs e)
{
Excel .Worksheet myProductWorksheet = Globals.ThisAddIn.

182 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

Application.ActiveSheet as Excel.Worksheet;

int index = 0;

string strProductUpdate = myProductWorksheet.Cells[2, 1].
Value2.ToString() ;

string strProductSkuUpdate = myProductWorksheet.Cells[2, 2].
Value2.ToString() ;

string strProductPriceUpdate = myProductWorksheet.Cells[2, 3].
Value2.ToString () ;

if (strProductUpdate == "Bauer XXXX")
{
index = 1;
}
else if (strProductUpdate == "CCM Tacks")
{
index = 2;
}
else if (strProductUpdate == "Nike Air")
{
index = 3;
}

SPListWS.Lists myListUpdateProxy = new SPListWS.Lists();

myListUpdateProxy.Credentials =
System.Net.CredentialCache.DefaultCredentials;

myListUpdateProxy.Url = "http://fabrikamhockey/_vti_bin/Lists.asmx";

System.Xml.XmlNode xmlListView =

myListUpdateProxy.GetListAndView ("Products", "");
string strListID = xmlListView.ChildNodes[0].Attributes["Name"].Value;
string strViewID = xmlListView.ChildNodes[1l].Attributes["Name"].Value;

XmlDocument xmlDoc = new XmlDocument () ;

XmlElement xmlBatchElement = xmlDoc.CreateElement ("Batch");
xmlBatchElement.SetAttribute ("OnError", "Continue");
xmlBatchElement.SetAttribute ("ListVersion", "1");
xmlBatchElement.SetAttribute ("ViewName", strViewID) ;

xmlBatchElement.InnerXml = "<Method ID='1l' Cmd='Update'>"+
"<Field Name='ID'>" + index + "</Field>"+"<Field Name='Title'>"
+ strProductUpdate + "</Field><Field Name='Product_SKU'>" +
strProductSkuUpdate + "</Field><Field Name='Price'>" +
strProductPriceUpdate + "</Field>" + "</Method>";
try
{
XmlNode xmlReturn = myListUpdateProxy.UpdateListItems
("Products", xmlBatchElement) ;
System.Windows.MessageBox.Show ("Product Information Added!");

}
catch (SoapException ex)
{
MessageBox.Show (ex.Message) ;
}

private void lstBxProducts_SelectionChanged (object sender,

Programmatically Accessing Lists | 183

SelectionChangedEventArgs e)
string strSelectedProd = lstBxProducts.SelectedItem.ToString();

var products = from p in myProducts
.Where(p => p.productTitle == strSelectedProd)
select new {p.productSKU, p.productPrice};

foreach (var d in products)

{
txtBxSku.Text = d.productSKU;
txtBxPrice.Text = d.productPrice;

Excel .Worksheet myProductWorksheet = Globals.ThisAddIn.
Application.ActiveSheet as Excel.Worksheet;
myProductWorksheet.Cells[1l, 1].Value2 = "Product";
myProductWorksheet.Cells[1, 2].Value2 = "SKU";
myProductWorksheet.Cells([1l, 3].Value2 = "Price";
myProductWorksheet.Cells]|].Value2 = strSelectedProd;
myProductWorksheet.Cells|[].Value2 = txtBxSku.Text;
myProductWorksheet.Cells]|].Value2 = txtBxPrice.Text;

’

1, 3
2, 1
2, 2
2, 3

r

23. Although you have your UI working now, you should not press FS to debug the application just
yet. You’ve only set up what will be the UI for your custom task pane. To ensure that, when Excel
starts, your custom task pane is displayed, you must add a user control to your application and
then add some code in the ThisAddIn_startUp method. To do this, right-click your project and
click Add. Then select User Control (WPF). Give the user control a name (for example, XAMLHost)
and make the height 800 and the width 350. Press F6 to build the project.

24. When you build the project, your WPF control will display in the Toolbox. Open the user control
you just created. Drag and drop the WPF control onto the user control. You can resize the WPF
control until all of the controls are visible.

25. Now, right-click on the Thisaddrn class and amend the code in that class with the following bold-
faced code. This code creates an instance of the winForm user control you just created (which is
now hosting the XAML control), creates an instance of the custom task pane object, and creates a
title variable that you’ll need for the custom task pane. The code leverages the Add method to add
the user control and title to the customTaskPanes collection, which is then set to be visible and
docked to the right of the document.

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using System.Xml.Ling;

using Excel = Microsoft.Office.Interop.Excel;
using Office = Microsoft.Office.Tools;

using Microsoft.Office.Tools.Excel;

184 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

using System.Windows.Forms;

namespace ProductsList

{
public partial class ThisAddIn
{
XAMLHost ctrl = new XAMLHost();
string ctrlTitle = "Product Data";
Office.CustomTaskPane ctp;
private void ThisAddIn_Startup (object sender, System.EventArgs e)
{
ctp = this.CustomTaskPanes.Add(ctrl, ctrlTitle);
ctp.Visible = true;
ctp.DockPosition = Microsoft.Office.Core.MsoCTPDockPosition.
msoCTPDockPositionRight;
}
private void ThisAddIn_Shutdown (object sender, System.EventArgs e)
{
}
private void InternalStartup()
{
this.Startup += new System.EventHandler (ThisAddIn_Startup) ;
this.Shutdown += new System.EventHandler (ThisAddIn_Shutdown) ;
}
}
}

26. At this point, you can press F5 to build and debug the application. You should see something simi-
lar to Figure 5-11. Click Load to load the data from SharePoint. Select an item within the Product
listbox to populate the sku and price fields, and then add data into the Excel worksheet. You can
then make some changes in one of the cells and click Update. That will update your SharePoint list.

1’7 Home i Insert Page Layout Formulas Data Review View Team (=] o o §
L] = - -
B2 am 5 ac ==@o & o I I N e
‘%2' = ?“De\ete' m'
Paste B I U-|Ei-|S-A- = H- $ - % » | %@ % Conditional Format Cell | .. Sort & Find &
- S — . =% Eormatting + as Table + Styles + |) Format + 2+ Fifter~ Select~
Clipboard 7 | Font il Alignment | Number | Styles | Cells | Editing |
AL3 - £| |
el o e D L E H | Product Data =]
1 Product SKU Price T
2 |Nike Air NK-AIR-788 379.99
2 Procc: (TR
4 SKU: NK-AIR-788
|2 Pros: 37599
6
7
=

FIGURE 5-11 Excel application leveraging Lists Web service

Programmatically Accessing Lists | 185

How It Works

You can call the Lists Web service from a variety of client applications, and the code will more often
than not look very similar to the way it was used here. What could be different would be how the data
is consumed after the client application retrieves it. For example, in this exercise, you added the data
from SharePoint to the spreadsheet by using the Office object model. Per the following code, you cre-
ated an instance of the worksheet and then mapped the data to hard-coded cells:

Excel .Worksheet myProductWorksheet = Globals.ThisAddIn.
Application.ActiveSheet as Excel.Worksheet;
myProductWorksheet.Cells[1, 1].Value2 = "Product";
myProductWorksheet.Cells[1l, 2].Value2 = "SKU";
myProductWorksheet.Cells[1l, 3].Value2 = "Price";
myProductWorksheet.Cells[2, 1].Value2 = strSelectedProd;
myProductWorksheet.Cells[2, 2].Value2 = txtBxSku.Text;
myProductWorksheet.Cells([2, 3].Value2 = txtBxPrice.Text;

r

’

The Lists Web service works by relaying XML documents (or data payloads) back from the server to
the calling application. Depending on the payload, the XML can be quite lengthy to parse. For exam-
ple, in this exercise, you called the GetListTItems method and then walked through an XML document
and built out your in-memory object, as reflected in the following code snippet:

XmlNode myListItems = myListReadProxy.GetListItems ("Products", null, null,
null, null, null, null);
XElement newRootElement = new XElement ("ProductData") ;

foreach (XmlNode outerNode in myListItems.ChildNodes)
{ if (outerNode.NodeType.Equals (System.Xml.XmlNodeType.Element))
{ foreach (XmlNode node in outerNode.ChildNodes)
{ if (node.NodeType.Equals (System.Xml.
XmlNodeType.Element))

XmlNode listFieldTitle = node.Attributes.
GetNamedItem("ows_Title");

XmlNode listFieldProductSKU = node.Attributes.
GetNamedItem ("ows_Product_SKU") ;

XmlNode listFieldPrice = node.Attributes.
GetNamedItem("ows_Price");

Product tempProduct = new Product() ;
tempProduct.productTitle = listFieldTitle.InnerText;
tempProduct.productSKU =

listFieldProductSKU. InnerText;
tempProduct.productPrice = listFieldPrice.InnerText;

myProducts.Add (tempProduct) ;

186 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

1stBxProducts.Items.Add (tempProduct.productTitle) ;

This might be perceived as a lot of programmatic moving parts and, depending on your payload, could
affect performance. It is, though, a proven and accepted way of interacting with SharePoint data.

With that said, you can optimize the previous code in any number of ways. For example, you could
move the Excel header row to be added on startup, or assert LINQ directly against your XML docu-
ments to increase performance and sanitize your code.

As you refine your applications, you’ll certainly craft your applications with better designs in mind.
However, one way to optimize the calling code into SharePoint is to leverage the SharePoint client-
side object model, instead of using the native Lists Web service.

Programming Against Lists Using the Client Object Model

The client object model is a new feature in SharePoint 2010, and enables developers to program
against SharePoint lists using remote clients. For example, you can create a WinForm or WPF appli-
cation, a Silverlight application, or a JavaScript application that all can use the client object model to
manage data sent in and out of SharePoint through that remote client.

Depending on what you’re trying to do with SharePoint, you’ll find the syntax of your code is some-
what cleaner than the earlier Web service example. For example, if you want to issue a SELECT *
type query against a SharePoint list, the client object model, in some cases, auto-generates CAML
for you. Also, it’s easier to manage data in in-memory data objects, with which you can then use
LINQ, enumerables, collections, and so on, to quickly and efficiently query and filter that data into
your applications.

Let’s try an example where you read data from a SharePoint list, and display it within a Windows
Form application. In this example, you'll again leverage the Products list you created earlier.

Using the Client-Side Object Model to Programmatically Read List Data

The client object model provides a powerful way to program against lists from a remote client applica-
tion. To use the client object model when programming against lists, follow these steps:

1. Open Visual Studio 2010 and click File &> New Project = Windows Forms application. Provide a
name for your project (for example, ReadSPListData). Be sure to select the .NET Framework 3.5
in the drop-down list in the New Project dialog.

2. Add a label, textbox, datagrid view, and two buttons to the Windows form in the Designer view,
as shown in Figure 5-12.

Table 5-6 shows the control type and the name of the controls that you should add to the
Windows Form designer.

Programmatically Accessing Lists | 187

(i

Lot

UG & DD D] b Dy

'

8 FEee s EENE:

&

4 Comrman Centrals

L

Eullon
CheckBox
Checkedl istBer
Combelox
DageTimePicker
Label

LinkLabe!
LisfBox
ListWima
MaskedTetRay
MorhCalendar
Motifylcon
MumenUplowm
Fiitluretion
Progrezshas
RadiaButtan
RichTetBo:
Tetlox
TealTip
Treeiew
WetiRicnaner

4 Lonlainers

Pomter

¥ FlowlayoulPanel

e 3 Feu|RU B =nne|sasa|mb ails

ShaneTont UAL:

[tom | [e]

Eives Lt

FIGURE 5-12 WinForm Ul

TABLE 5-6 Control Types for Windows Form Application

CONTROL TYPE

Label

Textbox

Datagrid View

Button

CONTROL NAME
1b1SPURL
txtbxSPURL
dtgrdSPListData

btnlLoadData, btnExit

wlsdlgma
T3 Solution ‘ReadiPListDiata” {1 project
4 1 ResdSPListData
Hdl Properties
b ol Releence
a3 Fommd.cs
] Foeenl Delgrer s
‘%] Foemnl.rem
Y Program.cs

You must add a class to the project, so right-click the project name and select Add = Class.
Provide a name (for example, ProductInfo). Add three properties to the class that map to the
same Products class you created earlier in the chapter. The code for this will look like the bold-
faced code in the following code snippet:

using System;

using System.Collections.Generic;
using System.Ling;

188 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

using System.Text;

namespace ReadSPListData
{

class ProductInfo

{
public string productName { get; set; }
public string productSKU { get; set; }
public string productPrice { get; set; }

Next, you want to double-click the two buttons to add events in the code behind for the Load but-
ton and the Exit button. The Exit code for WinForm applications is easy, so add that first:

private void btnExit_Click(object sender, EventArgs e)
{
Application.Exit () ;

The btnLoadbata_Click event is a little more complex, but add that next. Before you begin cod-
ing using the new client object model, you must add the appropriate references. To add these refer-
ences, right-click the project and select Add Reference. Select the Browse tab, and then browse to
c:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\ISAPI
and add the Microsoft.SharePoint.Client.dll and the Microsoft.SharePoint.Client
.Runtime.dll to your project. After you’ve added these references, add the following using
statements at the top of your main application:

using ClientOM = Microsoft.SharePoint.Client;
using Microsoft.SharePoint.Client;

When using the client object model, you may run into namespace conflicts (for example, with the
Form class in Windows Forms applications). To get around this, you can add the following line of
code to your application:

using ClientOM = Microsoft.SharePoint.Client;

This gives you a “custom” namespace reference that enables you to avoid namespace conflicts.

You’ll next add some code to handle the loading of the data from the SharePoint list using this
feature. You’ll note that the syntax for retrieving the data from SharePoint in this case is slightly
different from that of the Lists Web service. You are still achieving pretty much the same function,
but doing it in a more syntactically clean way.

In the following code sample, note that the application uses the string variable entered into the text-
box as the SharePoint site context (that is, the URL). It then uses a number of in-memory objects to
manage the data coming from SharePoint (for example, myListTtems and myProducts). However,
the key differentiating code is where you begin to set the context by using the cl1ientcontext object.
This is one of the key features of the client object model — the process of setting context and then
calling ExecuteQuery (a batch query method) when interacting with the SharePoint list. You will
again use LINQ to populate an object and iterate through the contents of that object to get the data

Programmatically Accessing Lists | 189

into a bindable object that can be mapped directly to the datagrid. One key item within the foreach
loop is that you’ll see values are assigned using the ElementAt property. This is the specific element
index where the data lives within the SharePoint list. If you were to set a breakpoint right after the
LINQ statement and inspect the values within the returnedristbata object, you could see all of the
different values that are returned and the correlating index value.

private void btnLoad_Click(object sender, EventArgs e)

{

string SPUrl = txtbxSPURL.Text;

I

Enumerable<ClientOM.ListItem> myListItems;

List<ProductInfo> myProducts = new List<ProductInfo>();

ClientOM.ClientContext SPContext = new ClientOM.ClientContext (SPUrl) ;
ClientOM.Web mySPSite = SPContext.Web;

ClientOM.ListCollection myListCollection = mySPSite.Lists;

var productsList = SPContext.Web.Lists.GetByTitle("Products");
ClientOM.CamlQuery myCamlQuery = new CamlQuery () ;
IQueryable<ClientOM.ListItem> myList = productsList.

GetItems (myCamlQuery) ;

myListItems = SPContext.LoadQuery (myList);
SPContext.ExecuteQuery () ;

var returnedListData = from prod in myListItems

select prod;

foreach (ClientOM.ListItem tempListItem in returnedListData)

{

ProductInfo tempProd = new ProductInfo();
tempProd.productName = tempListItem.FieldvValues.
Values.ElementAt (1) .ToString() ;
tempProd.productSKU = tempListItem.FieldValues.
Values.ElementAt (4) .ToString() ;
tempProd.productPrice = tempListItem.FieldValues.
Values.ElementAt (5).ToString() ;
myProducts.Add (tempProd) ;

dtgrdSPListData.DataSource = myProducts;

Taken together, the full code sample for the WinForm code behind is as follows:

using
using
using
using
using
using
using
using

System;
System.
System.
System.
System
System.
System.
System.

Collections.Generic;
ComponentModel ;
Data;

.Drawing;

Ling;
Text;
Windows.Forms;

190 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

//Be sure to add this along with your other using statements.
using ClientOM = Microsoft.SharePoint.Client;
using Microsoft.SharePoint.Client;

namespace ReadSPListData
{
public partial class Forml : System.Windows.Forms.Form
{
public Forml ()

{
InitializeComponent () ;

private void btnExit_Click(object sender, EventArgs e)

{
Application.Exit();

private void btnLoad_Click(object sender, EventArgs e)

{
string SPUrl = txtbxSPURL.Text;

IEnumerable<ClientOM.ListItem> myListItems;
List<ProductInfo> myProducts = new List<ProductInfo>();

ClientOM.ClientContext SPContext = new ClientOM.ClientContext (SPUrl) ;
ClientOM.Web mySPSite = SPContext.Web;
ClientOM.ListCollection myListCollection = mySPSite.Lists;
var productsList = SPContext.Web.Lists.GetByTitle("Products");
ClientOM.CamlQuery myCamlQuery = new CamlQuery();
IQueryable<ClientOM.ListItem> myList = productsList.

GetItems (myCamlQuery) ;
myListItems = SPContext.LoadQuery (myList);
SPContext.ExecuteQuery () ;

var returnedListData = from prod in myListItems
select prod;

foreach (ClientOM.ListItem tempListItem in returnedListData)
{
ProductInfo tempProd = new ProductInfo();
tempProd.productName = tempListItem.FieldValues.
Values.ElementAt (1) .ToString () ;
tempProd.productSKU = tempListItem.FieldValues.
Values.ElementAt (4) .ToString () ;
tempProd.productPrice = tempListItem.Fieldvalues.
Values.ElementAt (5) .ToString () ;
myProducts.Add (tempProd) ;

dtgrdSPListData.DataSource = myProducts;

Programmatically Accessing Lists | 191

When you run the application and provide the URL to the
SharePoint site (for example, http: //fabrikamhockey),
the application displays the data within the datagrid after

you click the Load button, as shown in Figure 5-13. productName productSKU _productPri 4
3 BRIGOOLE01 389.99 L
CCM Tacks CM-TCKS-021 309.00 |
Nike: Air NK-AIR-788 38999 -
<[1 | 3
[| [Bz]

a2 SharePoint List Data

SharePoint URL: hitp://fabrikamhockey

FIGURE 5-13 WinForm application running
against a list

The SharePoint client object model is not only useful for reading data from a SharePoint list, but it’s
also very useful for writing to that list. And again, you have the opportunity to clean up the syntax
of your code by not having to use CAML as a part of your call to push data back into SharePoint.

To put this into practice, the next example continues to leverage the Products list but, this time,
uses a WPF client application that leverages the client object model to submit data back to the
SharePoint list.

Using the Client Object Model to Programmatically Write List Data

Code file [SPWriteListApp.zip] available for download at Wrox.com.

The client object model is an effective way to write back to a SharePoint list programmatically. To cre-
ate a simple application that writes to a list using the client object model, follow these steps:

1.

Open Visual Studio. Click File = New > Project = WPF Application (under the Windows cat-
egory). Be sure to select the NET Framework 3.5 in the drop-down list in the New Project dialog.
Also, provide a name for your project (for example, sPwriteListapp) and click OK.

Add four labels and textboxes to your WPF Designer surface, and then add three buttons. When
finished, the layout of your Ul should look similar to Figure 5-14.

Table 5-7 shows the control type and the name of the controls that you should add to the WPF
application.

TABLE 5-7 Control Types for WPF Application

CONTROL TYPE CONTROL NAME
Label 1blSPUrl, 1blProdName, lblProdSku, lblProdPrice
Textbox txtbxURL, txtbxProdName, txtbxProdPrice, txtbxProdSKU

Button btnAdd, btnClear, btnExit

192 | CHAPTERS5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

file fdt Yoew Projc Buld Dabwg Team Dpta Took A et Anslae Window i

e - L e T -Hial e e R
Solution Explorer - 0K
HEEIEE

o Sobulron “SPlntelisbhpp’ (1 proyecl)
4 [sPWritelistApp
= 4 [Zr References

u | «i ¥ Miicrosoft. ShareP cint Client
=T -3 Miicrosoft. ShaneP cint Client. Runt
K3 «3 PresentationCore

EharePoirt Site: 3 Presendabon Framewurk
-3 Jynlern
- Sydern Caee
+(20 SysternDiata
+2 SysternData.DataSetFxbensions
Product SKU: -3 Systerniml

= Systemimiling

- Windowslase

(= Appami

a = ManWindowaxaml

S Main'Wndnw.caml.cs

Product Mame:

Product Price:

5 Design 5 xann : 6] = (5]
TeHindow x:Class="SPWritelistApp.MainWindow" [

100% < m | . 2 = .
[Window Window \— d

FIGURE 5-14 WPF Ul for writing data to list

The XAML code that maps to this UI will look like the following code snippet:

<Window x:Class="SPWriteListApp.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="SharePoint List Data" Height="350" Width="525">
<Grid>
<Button
Content="Add" Height="23" HorizontalAlignment="Left" Margin=
"70,240,0,0"
Name="btnAdd" VerticalAlignment="Top" Width="75" Click="btnAdd_Click" />
<Button
Content="Clear" Height="23" HorizontalAlignment="Right" Margin=
"0,240,258,0"
Name="btnClear" VerticalAlignment="Top" Width="75" Click="btnClear_Click" />

<Label
Content="SharePoint Site:" Height="28" HorizontalAlignment="Left" Margin=
"70,43,0,0"
Name="1blSPUrl" VerticalAlignment="Top" Width="120" />
<Label

Content="Product Name:" Height="28" HorizontalAlignment="Left" Margin=

Programmatically Accessing Lists | 193

"70,85,0,0"
Name="1blProdName" VerticalAlignment="Top" Width="120" />
<Label
Content="Product SKU:" Height="28" HorizontalAlignment="Left" Margin=
"70,129,0,0"
Name="1blProdSku" VerticalAlignment="Top" Width="120" />
<Label
Content="Product Price:" Height="28" HorizontalAlignment="Left" Margin=
"70,173,0,0"
Name="1blProdPrice" VerticalAlignment="Top" Width="120" />
<TextBox

Height="23" HorizontalAlignment="Left" Margin="206,43,0,0"
Name="txtbxURL" VerticalAlignment="Top" Width="248" />

<TextBox
Height="23" HorizontalAlignment="Left" Margin="206,90,0,0"
Name="txtbxProdName" VerticalAlignment="Top" Width="248" />

<TextBox
Height="23" HorizontalAlignment="Left" Margin="206,134,0,0"
Name="txtbxProdSKU" VerticalAlignment="Top" Width="248" />

<TextBox
Height="23" HorizontalAlignment="Left" Margin="206,173,0,0"
Name="txtbxProdPrice" VerticalAlignment="Top" Width="248" />

<Button
Content="Exit" Height="23" HorizontalAlignment="Left" Margin="268,240,0,0"
Name="btnExit" VerticalAlignment="Top" Width="75" Click="btnExit_Click" />

</Grid>

</Window>

Before you begin coding using the new client object model, you must add the appropriate refer-
ences. To add these references, right-click the project and select Add Reference. Select the Browse
tab, and then browse to c: \Program Files\Common Files\Microsoft Shared\Web Server
Extensions\14\ISAPT and add the Microsoft.SharePoint.Client.dll and the Microsoft.
SharePoint.Client.Runtime.d11l to your project. After you’ve added these references, add the
following using statements to your application:

using ClientOM = Microsoft.SharePoint.Client;
using Microsoft.SharePoint.Client;

After you’ve created the Ul, you’ll want to add the event handlers to each of the buttons you’ve
added to the Designer surface. For the Clear and Exit buttons, this code is similar to earlier exam-
ples in this chapter. But the new code that you may not have seen before is the client object model
code that adds a new record to a list. This corresponds to the Add button in the WPF Ul and is
shown here. You’ll first note that this code snippet is a slight improvement over the use of CAML
constructs to push data back into SharePoint. Note that it’s not because CAML goes aways it’s
because in this example SharePoint abstracts it away — it is now created dynamically.

In the following code snippet, the updating of the list leverages class-level variables that are set via the
data that users enter via the textboxes. Then, you use the clientcontext object to set the context

of the SharePoint site (again leveraging the user entry from the txtbxURL textbox). The code then
gets the list by name (that is, Products) and loads the list in memory. After the list is in memory, you

194 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

can then create a new ListTtem object and set the values of this new item through the data that was
entered into the textboxes. To update the list, you must call the Executeguery method again.

private void btnAdd_Click(object sender, RoutedEventArgs e)
{
strSPURL = txtbxURL.Text;
strProdName = txtbxProdName.Text;
strProdSKU = txtbxProdSKU.Text;
strProdPrice = txtbxProdPrice.Text;

ClientOM.ClientContext mySPContext = new ClientContext (strSPURL) ;

ClientOM.List productsList = mySPContext.Web.Lists.GetByTitle
("Products") ;

mySPContext.Load (mySPContext.Web) ;

mySPContext.Load (productsList) ;

mySPContext.ExecuteQuery () ;

ListItemCreationInformation newProdRecord =
new ListItemCreationInformation();
ClientOM.ListItem newProdItem = productsList.AddItem(newProdRecord) ;

newProdItem["Title"] = strProdName;
newProdItem["Product_SKU"] = strProdSKU;
newProdItem["Price"] = strProdPrice;
newProdItem.Update() ;

mySPContext .ExecuteQuery () ;

The full code listing for the UI code behind is as follows.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Data;

using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

using Microsoft.SharePoint.Client;
using ClientOM = Microsoft.SharePoint.Client;

namespace SPWriteListApp
{

public partial class MainWindow : Window

{

Programmatically Accessing Lists | 195

string strSPURL = "";
string strProdName = "";
string strProdSKU = "";
string strProdPrice = "";

public MainWindow ()
{
InitializeComponent () ;

private void btnExit_Click(object sender,
{
Application.Current.Shutdown () ;

private void btnClear_Click(object sender,
{
txXtbxURL.Text = "";
txtbxProdName.Text = "";
txtbxProdSKU.Text = "";
txtbxProdPrice.Text = "";

RoutedEventArgs e)

RoutedEventArgs e)

private void btnAdd_Click(object sender, RoutedEventArgs e)

{
strSPURL = txtbxURL.Text;
strProdName = txtbxProdName.Text;
strProdSKU = txtbxProdSKU.Text;
strProdPrice = txtbxProdPrice.Text;

ClientOM.ClientContext mySPContext = new ClientContext (strSPURL) ;
ClientOM.List productsList = mySPContext.Web.Lists.GetByTitle

("Products") ;
mySPContext .Load (mySPContext .Web) ;
mySPContext.Load (productsList) ;
mySPContext .ExecuteQuery () ;

ListItemCreationInformation newProdRecord =

new ListItemCreationInformation();

ClientOM.ListItem newProdItem = productsList.AddItem(newProdRecord) ;

newProdItem["Title"] = strProdName;
newProdItem["Product_SKU"] = strProdSKU;
newProdItem["Price"] = strProdPrice;

newProdItem.Update () ;

mySPContext .ExecuteQuery () ;

196 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

5. When you run the application, it will invoke the WPF interface and you can enter information, as
shown in Figure 5-15.

e ... o

SharePoint Site: http://fabrikamhockey
Product Name: Scotty Bowman Specials
Product SKU: SBS-788-911
Product Price: 189.99

add | [cear] [it

FIGURE 5-15 Running the WPF application

6. When you enter the data and click Add, this will execute the client object model code, and add a
new record to the SharePoint list, as shown in Figure 5-16.

E o Tite Product_SKU Price
Bauer XXX BR-XXXX-901 389.99
CCM Tacks CM-TCKS-021 309.00
Nike Air MK-AIR-788 3859.99
Bauer XXVI & hew BR-XXVI-090 279.99
Scotty Bowman Specials £ new 5B3-788-511 189.99

FIGURE 5-16 Updated list data

How It Works

For both of the previous exercises, you used the client-side object model to read data from a SharePoint
list and write data back to that same list. In many ways, the underlying calls for SharePoint don’t neces-
sarily change. For example, the client object model leverages the services that are native to SharePoint
beneath the covers to make the call into SharePoint. However, this is abstracted away from you.

What this means is that the client object model essentially represents a layer that translates object-
model calls (through object instantiation, property setting, and batch method execution) into LINQ
queries that dynamically create CAML queries. (Note that where you require more complex queries,
you would still need to use CAML to interact with SharePoint using the client object model.) Thus, the
XML is handled for you within the inner workings of the client object model. For the developer, this
can result in cleaner syntax.

Another option beyond leveraging the client-side object model is the creation of custom WCF ser-
vices. These are ideal when you want to host your own service or Web application in IIS, or make
the code reusable across multiple clients. (Custom WCF services can be leveraged from a broad array
of client applications, including all of the ones you’ve seen in this chapter.)

Programmatically Accessing Lists | 197

Programming Against Lists Using a Custom WCF Service

While Chapter 10 provides more coverage on service-oriented application development in
SharePoint, it should be mentioned here because it’s also a viable option when developing applica-
tions that interact with lists.

Earlier in this chapter, you saw an ASP.NET example of the Lists Web service being leveraged to code
against a SharePoint list. However, ASP.NET Web services are not the only type of service-based
application you can develop for SharePoint. In SharePoint 2010, you can also build WCF-based appli-
cations. While WCF applications can range in size, shape, and functionality, you can leverage them for
developing and deploying applications that interact with SharePoint lists.

There are two primary types of WCF applications that you can build that will interact with
SharePoint lists:

> The first is a standard WCF service application that is deployed to either IIS or to the
SharePoint 2010 root.

> The second is the new REST-based service that is accessible natively through the 1sapPT folder.

When you choose the standard WCF option, you can leverage, say, the native SharePoint object
model, and deploy a service to the SharePoint server. For example, if you take the earlier server-side
list update code that you ran against the Products list and create a WCF service from it, you can
test how you can develop against SharePoint using WCF.

To leverage WCEF, you follow these primary steps:
1. Create the service code.
2. DPublish and deploy the service code.

3. Consume the service code in a client application.

Let’s discuss each of these in the context of updating the Products list using the same code you used
in the WPF application you created earlier.

First, to create the service code, you use the standard Visual Studio 2010 project templates (for
example, the WCF Service Application). Similar to the earlier exercises in this chapter, you must target
NET Framework 3.5 if you’re going to be using the SharePoint object model. If you want to lever-

age the SharePoint object model within a service, you create a new service and add the Microsoft.
SharePoint.dll to the project. You can then access the SharePoint object model within the service.

If you were to create a simple service, you would need to create a contract as well as service code
that handles the interaction with SharePoint — these are standard structural elements of a WCF ser-
vice. The contract that you might build for the service could look like the following (the boldfaced
code represents code you would add to the service):

using System;

using System.Collections.Generic;
using System.Ling;

using System.Runtime.Serialization;
using System.ServiceModel;

using System.ServiceModel.Web;

198 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

using System.Text;

namespace UpdateSPList
{
[ServiceContract]
public interface IServicel
{
[OperationContract]
void updateProduct (string SPSite, string prodName,
string prodSKU, string prodPrice);

Note that, in this service, there is only one method that you expose to calling applications that will
handle four parameters: the URL of the site (for example, http: //fabrikamhockey), product name,
product SKU, and product price (three fields within the Products list). Following is the service code
(with the boldfaced code that you would add to the solution) that corresponds to this service contract:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Runtime.Serialization;
using System.ServiceModel;

using System.ServiceModel.Web;
using System.Text;

using Microsoft.SharePoint;

namespace UpdateSPList
{
public class Servicel : IServicel
{
public void updateProduct(string SPSite, string prodName,
string prodSKU, string prodPrice)

{
string strDashListRoot = SPSite;
using (SPSite site = new SPSite(strDashListRoot))
{
using (SPWeb web = site.OpenWeb())
{
web.AllowUnsafeUpdates = true;
SPList list = web.Lists["Products"];
SPListItem Item = list.Items.Add();
Item["Title"] = prodName;
Item["Product_SKU"] = prodSKU;
Item["Price"] = prodPrice;
Item.Update();
web.AllowUnsafeUpdates = false;
}
}
}

Programmatically Accessing Lists | 199

After you’ve created a WCF service application, you can deploy the service code to IIS. Deploying to
IIS requires that you first create a folder on your server file system, publish your code to your folder,
and then map that folder (as a virtual directory) to your IIS Web site. You may also need to add
information from your web.config file (an XML file that contains configuration information spe-
cific to your service) to the SharePoint web.config file (which is also an XML-based configuration
file, but this file lives in c¢:\ Inetpub\wwwroot\wss\VirtualDirectories\<Site Name>)to ensure
that your WCF service will run properly on the SharePoint server. Figure 5-17 illustrates where you
select the virtual directory from within IIS.

f -
l-aﬂ FABRIAMHOCKDY (REDMOND stefo Sde name pphorion peol L— P Start
i Application Pools W FUpdaieSPLnvt WCFLUpalat 5P —— =
a [Site

o A Delaull Web Site
@ GeACustomen
& SharePaint - RO
o 4 SharePoint Central Administra)
& Al SharePoink Web Services

Server Package

Server or Site Packege

nge NET Framewsak
v

Caline Help

Canced J
e
Directory Error Pages Faded FastCGl Hendler HTTP =
LB Damiase Tra Cassirns Rmnminne Dlarrant

O = o | [T Featimes Niew | 13 Content View |

FIGURE 5-17 Publishing the WCF service to IS

After you create your Web site in IIS, you can test out the service by right-clicking Browse in

IIS. Figure 5-18 illustrates what the result of this test looks like. You should note that the URL in
Figure 5-18 is the service reference that you would then use when creating a client application and
mapping the service to the client.

After you’ve tested the service, you can then create a client (or server-based) application that will
consume your WCF service. Doing this is similar to what you did when adding a reference to

the ASP.NET Web service — you right-click Reference in Visual Studio 2010, click Add Service
Reference, and then add the URL that was exposed by the earlier test. Figure 5-19 shows the Add
Reference dialog where you add the WCF service endpoint.

200 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

Yew hawe created o seroce.

Te test this genvce, you will need ko create o client and use # to ool the service. You can g0 this using the Fwoutil.exe tool from the command ke with the following
EyTItaN:

BUSUELL. X8 NEED: [/ Pabrikashocksy feGmond. cofp. mioroRolE comi1I17/ Servicel svciusdl

Thes will gerbrale & conhgusabon e and & code e that conland the chent class. Add tha bao Fes Lo your chenld apphoalion and wig the generabad dhert class bo call the |
Service. for example:

(=)
Class Tent ..'
t
Atatic waid Main()
i
SarvicalClissnt SLIMAT = BEV Sarvicelflisnt ()
/f Gae the ‘cliens! wariable to call operaticns on the ascvice.
fFf Rluays closs the cliess.
clienc.Close() s
¥
1
A
Wisual Basic
Clans Teat

Shared Sub Main ()
Dis clisne As Se:
‘ Uae the ‘clienc

ent = Hew Servicelfliest ()
variable =o call cparaticns on the service.

KR L ol intrand | Piobedted Mode: CIF i v Rk -
L]

I To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
l services, click Discover.

Address:

| Discover |~

Services: Operations:
4 (@) Servicel =% updateProduct
|5° IServicel |

1 service(s) found at address 'http://localhost:1213/Servicel sve'.

Namespace:
WCFWSUpdateProduct

e | ——

FIGURE 5-19 Adding service reference

Programmatically Accessing Lists | 201

After you add the service, you can now 8 SharePoint List Data
code against the service reference. For '
example, you can create the same WPF |

: : : . . SharePoint Site: http://fabrikamhockey
application interface you used earlier in
the chapter, and then hook up the ser- Product Name: WCF Composice Stick
vice code to the Add button, as shown in
Figure 5-20. Product SKU: WCF-COMP-897
The following boldfaced code displays Product Prics: Lene
how you can implement the service you
created and deployed to IIS. This is the aid | [Lger] [t
code that is mapped to the Add button
(btnadd).

FIGURE 5-20 Testing the WCF service

private void btnAdd_Click(object sender, RoutedEventArgs e)
{
strSPURL = txtbxURL.Text;
strProdName = txtbxProdName.Text;
strProdSKU = txtbxProdSKU.Text;
strProdPrice = txtbxProdPrice.Text;

SPWriteListApp.WCFWSUpdateProduct.ServicelClient myWCFProxy =
new WCFWSUpdateProduct.ServicelClient();

myWCFProxy .updateProduct (strSPURL, strProdName, strProdSKU,
strProdPrice);

myWCFProxy.Close();

Once you’ve implemented the service in your client code, the result of the WCF service call would be
similar to the other applications you built in this chapter — they can read or write to a SharePoint
list. In this case, the code updates a SharePoint list with new information. Figure 5-21 shows how
this code successfully updated the list.

0 Title Product_SKU Price
Bauer X300 BR-X0{-901 389.99
CCM Tacks CM-TCKS-021 309.00
Nike Air NK-AIR-788 389.99
Bauer XXV & Hew BR-XXVI-090 279.99
Scotty Bowman Specials £inew SBS5-788-911 189.99
WCF Composite Stick &new WCF-COMP-897 129.99

FIGURE 5-21 Successfully updating the list

The WCEF service code shown earlier leverages the server-side object model. However, one of the
key differentiating factors between the WCF framework and the client object model is that you’re

202 | CHAPTERS5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

creating a service that can be consumed remotely and is deployed for use across multiple clients. For
example, you could create many different client applications that consume the same list service code
discussed earlier. You’re also deploying your service to IIS. Both of these sit on top of the server-side
object model and, if needed, not only provide a more scalable and portable solution, but also pro-
vide remote clients with a way to call into SharePoint.

NOTE There are a number of discrete (and sometimes tricky) steps that are
required when you build and deploy WCF services. It is recommended that at
each of the three steps mentioned earlier, you test your code to ensure that it
works. Chapter 10 includes a complete exercise on how to create and deploy
custom WCF services for SharePoint. Specifically, you will deploy a WCF ser-
vice, and then consume that service within a Visual Web part.

The last method of interacting with lists you’ll see in this chapter is the RESTful service, which is a
WCEF Data service.

REST-Based Services and List Development

Beyond building a custom WCF service, you can also leverage the new REST (Representational
State Transfer)-based WCF Data services as well. For example, in SharePoint 2010, there is a new
service called ListData.svc that resides in the 1SaPT folder. This is a special REST-based service
that returns Atom feeds and enables you to interact with your SharePoint site.

This service leverages WCF Data services to enable applications to expose data as a data service,
which can then be consumed by client applications, such as Web clients, .NET clients, and so on.
The REST Web service not only works with SharePoint list data, but it also works with other data
sources (for example, it also works with Excel data and Windows Azure cloud data).

The WCF Data service is reachable via a regular HTTP request, and uses standard HTTP verbs
such as GET, PoST, PUT, and DELETE to perform CRUD (Create, Read, Update, and Delete) opera-
tions against the services and sources of data. To leverage the REST APIs in SharePoint 2010, you
must have the latest WCF Data services installed in your environment.

@ NOTE To use REST in SharePoint 2010, you must install the WCF Data Services
separately after you have SharePoint installed and configured. It is a simple
installation process that requires you to first install the services and then do
a system reboot. You can get more information and download the WCF Data
Services bits from http: //msdn.microsoft.com/en-us/data/bb931106.aspx.

After you install WCF Data services (and reboot your machine), the quickest way to test the REST-
based list service is to reference the service in your browser’s URL; for example:

http://<your_server>/_vti_bin/ListData.svc/

Programmatically Accessing Lists | 203

This uses the WCF Data services and REST-based protocols (for example, Atom, AtomPub, and
RSS) to return an XML-based Atom feed of the lists in your SharePoint site. The return feed will
look similar to the following XML sample, which has been trimmed to include a couple of lists and
the Products list that has run through the examples in this chapter:

NOTE You can return data in two different views in your Internet browser:
one has feed reading turned on (formatted view of return XML data) and the
other has feed reading turned off (raw XML view). To turn off the RSS Feed to
get the raw XML view of output from the REST call for Internet Explorer, you
click Tools = Internet Options. Click the Content tab, and click Settings under
“Feeds and Web Slices.” Uncheck “Turn on feed reading view.”

<?xml version="1.0" encoding="utf8" standalone="yes" ?>
<service xml:base="http://fabrikamhockey/_vti_bin/ListData.svc/"
xmlns:atom="http://www.w3.0rg/2005/Atom" xmlns:app=
"http://www.w3.0rg/2007/app" xmlns="http://www.w3.0rg/2007/app">
<workspace>
<atom:title>Default</atom:title>
<collection href="Announcements">
<atom:title>Announcements</atom:title>
</collection>

<collection href="Products">
<atom:title>Products</atom:title>
</collection>

<collection href="XAPS">
<atom:title>XAPS</atom:title>
</collection>
</workspace>
</service>

To query and filter on specific lists or list items, you can append additional commands to the REST
URL. Following is the generic syntax for these commands:

../_vti_bin/ListData.svc/{Entity} [({identifier})]/[{Property}].
If you apply the REST command syntax to the Products list you've been using throughout the

chapter, you can see the Products list through an Atom feed by typing the following in the URL
address bar:

http://<your_ server>/_vti_bin/ListData.svc/Products
Within the REST URL syntax, there exist a number of parameters that can be used to query and

filter the returned data. These parameters are known as QueryString parameters. Following are the
more commonly used QueryString parameters for REST:

> Sfilter

> Sexpand

204 | CHAPTERS5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

Sorderby
Sskip

$top

Y Y VY Y

$metadata (which will bring back all the XML metadata about the object)

If you apply the $filter QueryString filter to the data that the REST returns from the call to the
list of Products by the price of a product, you can use the following command:

http://fabrikamhockey/_vti_bin/ListData.svc/Products?$filter=(Price eq '389.99').

The results returned from this query are displayed as shown in Figure 5-22 (which now has feed
reading view turned on).

Products

You are viewing a feed that ins fi ly updated When you subscribe to a feed, it is added to the
Commeon Feed List. Updated information from the feed is automatically downloaded to your computer and can be
viewed in Internet Explorer and other programs. Learn mare about feeds.

4 Subscribe to this feed

Nike Air

Saturday, November 21, 2009, 7:47:16 PM

Bauer XXXX

Saturday, November 21, 2009, 7:42:53 PM

FIGURE 5-22 Returned data from RESTful service call

Another example for the Products list would be querying a specific list item in the list. For example,
the following REST command returns the third list item:

http://fabrikamhockey/_vti_bin/ListData.svc/Products(3) .

The return data for this query (where the reader feed has now been turned off) is as follows:

<?xml version="1.0" encoding="utf8" standalone="yes" ?>
<entry xml:base="http://fabrikamhockey/_vti_bin/ListData.svc/"
xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
m:etag="W/"3"" xmlns="http://www.w3.o0rg/2005/Atom">
<id>http://fabrikamhockey/_vti_bin/ListData.svc/Products(3)</id>
<title type="text">Nike Air</title>
<updated>20091121T19:47:1608:00</updated>
<author>
<name />
</author>
<link rel="edit" title="ProductsItem" href="Products(3)" />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/

Programmatically Accessing Lists | 205

Attachments" type="application/atom+xml;type=feed" title=
"Attachments" href="Products(3)/Attachments" />
<category term="Microsoft.SharePoint.DataService.ProductsItem"
scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />
<content type="application/xml">
<m:properties>
<d:ContentTypeID>0x0100E03B378FDA26EF44AA88B2A3D4CD3E8F</d: ContentTypeID>
<d:Title>Nike Air</d:Title>
<d:Product_SKU>NKAIR788</d:Product_SKU>
<d:Price>389.99</d:Price>
<d:ID m:type="Edm.Int32">3</d:ID>
<d:ContentType>Item</d:ContentType>
<d:Modified m:type="Edm.DateTime">20091121T19:47:16</d:Modified>
<d:Created m:type="Edm.DateTime">20091121T11:06:40</d:Created>
<d:CreatedByID m:type="Edm.Int32">1</d:CreatedByID>
<d:ModifiedByID m:type="Edm.Int32">1</d:ModifiedByID>
<d:0Owshiddenversion m:type="Edm.Int32">3</d:0wshiddenversion>
<d:Version>1.0</d:Version>
<d:Path>/Lists/Products</d:Path>
</m:properties>
</content>
</entry>

REST-based development is not just about submitting commands via a URL. You can also create
applications using the WCF Data services. For example, what if you want to leverage the SharePoint
list data and surface that data inside of a .NET client application using the REST service? You can
do this simply by creating a new client application that leverages the REST service. When you add
the service, it creates the data context for you (similar to creating other WCF Data services in Visual
Studio), and then you can develop against SharePoint using this context.

Using RESTful Services to Program Against Lists

Code file [RESTSPListExample.zip] available for download at Wrox.com.

Using the built-in REST support is an efficient and lightweight approach to programming against lists.
To leverage REST when programmatically interacting with lists, follow these steps:

1. Open Visual Studio. Click File & New = Project = Windows Form Application. Provide a name
for the project (for example, RESTSPListExample) and click OK.

2. After Visual Studio creates the project for you, right-click the References node and select Add
Service Reference. Type your SharePoint site URL into the Address field and click Go, as shown in
Figure 5-23. Visual Studio will discover the Listbata. svc service for you, and it will also expose
the lists that belong to your site.

3. Provide a namespace for the service reference (for example, SPSiteRestService), and then click OK.

4. Visual Studio adds a number of objects to the solution, including a service reference and entities
that are pulled from the SharePoint site through the REST service context. To view the entities
within your site in Visual Studio, click Data &> Show Data Sources. This will open the Data Sources
pane in Visual Studio.

206 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

To see a list of available services on a specific server, enter a service URL and click Go. Te browse for available

I services, click Discover.

Address:

u http://fabrikamhockey/_vti_bin/ListData.svc] - ‘ Discover |'
Services: Operations:
4 @ﬂ HomeDataContext | -

50 Announcements

5° Attachments

5° Calendar

5° CalendarCategory £

50 ContentTypePublishingError

59 ConvertedForms

5° CustomizedReports

57 FormTemplates ADO.NET Data Service: No operations found.

5 Links

‘Q'o ListTemplateGallery

5° MasterPageGallery

5° MasterPageGalleryCompatib

5° Products

‘Q'o ReportingMetadata

5° ReportingTemplates =
1 T s

1 service(s) found at address 'http://fabrikamhockey/_vti_bin/ListData.svc'.

Namespace:

ServiceReferencel

‘ Advanced...

FIGURE 5-23 Add Service Reference dialog

Select the Products list that you’ve been using throughout the chapter in the Data Sources pane,
and drag it onto the Designer surface.

You can now edit the look and feel of the datagrid in the designer (for example, lock it to the
Designer surface and select which columns you want to display in the application). Right-click the
datagrid and select Edit Columns to add and remove columns as you desire.

To load the data using the REST service, you must add some code to the form. Double-click the
top portion of the form to generate a Forml_Load event, where you’ll add your code.

You’ll need to add a couple of using statements, a service proxy, and some binding code to load
the data — all of which appears in boldface in the following code snippet. For example, in the fol-
lowing code snippet you’ll add two using statements, one for the WCF Data services and the other
for the REST service, that were added to the project. Also note that you will create a service proxy
called myRestsve and pass an explicit reference to the Listbata.svc endpoint URL. This is done
at the class level. After this, there are three lines of code you can add in the Form1_Load event to
manage the credentials to call into SharePoint by using the DefaultNetworkCredentials, create
a LINQ query (which essentially selects all items from the list), and bind the return data from the
LINQ query to the Products list binding source (productsBindingSource), which will automati-
cally display the data from the SharePoint list.

using System;

using System.Collections.Generic;

using System.ComponentModel;
using System.Data;

Programmatically Accessing Lists | 207

10.

System.Drawing;

System.Ling;

System.Text;

System.Windows.Forms;
System.Data.Services.Client;
RESTSPListExample.SPSiteRestService;
System.Net;

using
using
using
using
using
using
using

namespace RESTSPListExample
{
public partial class Forml Form

{

//Be sure to replace the URL in the code below

with your SharePoint site URL.
new TeamSiteDataContext (

TeamSiteDataContext mySPContext =

new Uri("http://fabrikamhockey/ vti_bin/listdata.svc/"));

public Forml ()
{

InitializeComponent () ;

private void Forml_Load(object sender, EventArgs e)

{
mySPContext.Credentials =
System.Net.CredentialCache.DefaultNetworkCredentials;
var ¢ = from p in myRestSvc.Products
select p;
this.productsBindingSource.DataSource = q;
}

After you’ve completed the code additions, press
F5. The data from the SharePoint list will be
automatically populated within the datagrid, as
shown in Figure 5-24.

You can adjust the LINQ query to filter on
specific data from your SharePoint list. For
example, if you add the following (boldfaced)
where clause to your LINQ statement, this will
return only those results where the price is listed
as 389.99, as shown in Figure 5-25.

var g = from p in myRestSvc.Products

P M X E

Title Product_SKU Price D
i » KX BR-XOGO-501 38999 1
CCM Tacks CM-TCKS-021 309.00 2
Nike Air NK-AIR-788 38999 3
Bauer XXV BR-00VI-090 27999 7
Scotty Bowman ... | SB5-788911 189.99 3
WCF Composite ... |WCF-COMP-837 | 129.99 10

FIGURE 5-24 Querying data in WinForm application

.Where(p => (p.Price == "389.99"))

select p;

208 | CHAPTER5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

11. The REST APIs also enable updates to your

SharePoint list. To test this, add three labels, g2lr 0 X B
Product_SKU Price

thre.e textboxes, and two buttons to your P o1 we%

Designer surface beneath the datagrid, as shown NKAR7EE |39

in Figure 5-26. Double-click the Refresh but- :

ton and add the same code you have in the FIGURE 5-25 Result of Where clause

Forml_Load event (or create a helper method, and reference that method from both the btnre-
fresh Click event and the Forml_Load event).

- EI|||F||l|'||-*.
bmRefresh System Windows Forms -
Cammean Conbrols — ‘
K Foiter : d 2w B
& ulton iW 40 o) b H sk X H » (ApplicationSe
CheckBoy Tl Provhscd_SKU Prica) & (Dataindings)
B9 CheckedlistBex I [| 1 i’:‘;jmul binRefroeh
B Combobir Arcesibleblan
W CaoeTianiicker Aecessibiefole Defauitt
A Label ANowlircp False
A LinkLstel Anchor Top Lekt
B LatRox Autuklhpas Falis
1 Lisiew AutoSize False
e MaskedTeetBox PutwSeeMude GrawDnky
B MonthCalendse SKL: ::::cm“ |[3] ::ﬂ"":'
4 Lkgr Cundem| nume,
? :::?:r-::l‘pum i Backgroundlm Tile
E Ficturetion ?:l.llrﬂ\'ﬂ'ld:: :::r}
0T ProgressBar E Cursor Defauitt
& FadioButton DislogResult Mane
B4 RichTetbox Duck Huare
i Tealox Erahled True
By Toolfip o Flathppaarsns
L TreeView FlatSnde Srandard
B Webkmowser o Font Microgoft Sans 5 _
Canlainers 9 = e e s (Mame)

Kk FPomter ¥ prosuctsBindingSource % producrBindingHmigator Razses an event when the user cicks it
¥ FlowleyoutPanel
-

FIGURE 5-26 Extending the WinForm Ul

Table 5-8 shows the control type and the name of the controls that you should add to the WPF
application.

TABLE 5-8 Control Types for WPF Application

CONTROL TYPE CONTROL NAME
Label 1blName, 1blSKU, 1lblPrice
Textbox txtbxName, txtbxSku, txtbxPrice

Button btnRefresh, btnadd

Programmatically Accessing Lists | 209

12. Next, double-click the Add button to add some code behind, and add the following code to the
btnaAdd_click event. This code will take the user entries, create a new ProductsItem (which has
been set up for you via the REST Data service), and assign the user entries to the three fields (that
is, Title, Product, and Price). It then calls the AddToProducts method and the savechanges
method to add the data as a new record to the SharePoint list.

private void btnAdd_Click(object sender, EventArgs e)

{
string prodName =
string prodSKU =
string prodPrice =

txtbxName.Text;
txtbxSku.Text;
txtbxPrice.Text;

ProductsItem newItem = new ProductsItem();

newlItem.Title = prodName;
newItem.Product_SKU =
newltem.Price = prodPrice;

prodSKU;

mySPContext .AddToProducts (newltem) ;

mySPContext.SaveChanges () ;

13.

To test the new additions, press F5, add

some data, click the Add button, and then I <1 of7 | > M |% X H
click the Refresh button. You should see Thle Product SKU _Prics D
the new data appear in the datagrid, which Ca iy sighin TRERT !
. . . . Scotty Bowman ... |SBS-788-911 189.99 9 ’—
is issuing the query to the SharePoint list, TR e e = =
as shown in Figure 5-27. | Graf 5. Pro GRFSRP7872 23999 1 | E
4 m 13
How It Works R e 5 P
The RESTful services work in a slightly dif- s TEE
ferent way than the other ways you’ve seen b 9%
in this chapter. Specifically, they leverage the
Listdata.svc service and Data services to treat
SharePoint lists as data constructs. The querying

against the list works similarly to other ways in
which you query entities. You use LINQ as the
standard way to query and filter the data, and
then manipulate that data into your application.

FIGURE 5-27 Successful data query

At this point, you’ve seen a number of different ways to programmatically interact with SharePoint
lists. According to your needs, you may find yourself choosing one method over another. For exam-
ple, if you’re looking for a clean syntax and you want to code using Silverlight, then perhaps using
the client object model would be your choice. On the server, you might find yourself building util-
ity tools or Web parts, so you will want to use the server-side object model as opposed to the client

210

| CHAPTERS5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

object model. Alternatively, if you wanted to have a more portable solution that multiple applica-
tions could call simultaneously, then perhaps the service-oriented architecture is more along your
design. Either way, you have options as a SharePoint developer — in fact, more options than you’ve
ever had before.

Let’s now discuss event receivers for SharePoint lists.

CREATING EVENT RECEIVERS FOR A SHAREPOINT LIST

A powerful feature that has evolved across SharePoint versions is the event receiver. The event
receiver is in essence a managed-code assembly that is deployed to SharePoint and reacts to an event,
such as adding an item to a list, creating a new list item, provisioning a new SharePoint site, and so
on. The fact that you can create custom managed code to execute against events provides quite a bit
of power over your lists and any events attached to the lists. The managed-code assembly is strongly
typed and signed, and, using Visual Studio 2010, is deployed as a feature into the global assembly
cache (GAC), where it’s instantiated when the corresponding event is fired.

In earlier versions of SharePoint, you could create an event receiver to document libraries. Then,
SharePoint 2007 added a host of event receivers that were supported across the different lists in
SharePoint. Further, there were a number of out-of-the-box event receivers that developers could use
when developing against lists. These event receivers ranged from list events and list items to feature
and Web events.

In SharePoint 2010, the following dozen new event receivers have been added:
> List events:
> List is being added.
> List is being deleted.
> List was added.
> List was deleted.
> List Item events:
> List received a context event.

> Workflow:

> Workflow is starting.

> Workflow has started.

> Workflow has completed.

> Workflow was postponed.
> List Email:

> List received an email message.
> Web:

> Site is being provisioned.

> Site was provisioned.

Creating Event Receivers for a SharePoint List | 211

Not only does SharePoint 2010 support a wide variety of event receivers, but the tooling also sup-
ports quickly creating and deploying event receivers against SharePoint objects. This means that, if
you were, for example, manually building classes to implement the SPListEventReceiver class to
build and deploy event receivers, you can now use the native project templates within Visual Studio
2010 to build your event receivers.

Creating an Event Receiver for a List

Code file [SPListEventReceiver.zip] available for download at Wrox.com.

List event receivers come in many different shapes and sizes. To create a simple event receiver that
writes a log entry to your local file system, follow these steps:

1. Open Visual Studio. Click File = New > Project = Event Receivers (in the SharePoint 2010 tem-
plate category). Provide a name for your new project (for example, AnnouncementListEvent), and

click OK.

2. Select Deploy as Farm Solution, and click Next. In the next step, select List Item Events for the
type of event receiver and Announcements for the item to be the event receiver. Click the checkbox
beside “An item is being added,” as shown in Figure 5-28. Click Finish. This will create a project
that will enable you to create some custom code that is tied to the Announcements list that will fire
every time an item is added to the list.

SharePoint Customization Wizard E 21xl

9 Choose Event Receiver Settings

‘What type of event receiver do you want?

[List 1tem Events =l
What item should be the event source?

IAnncuﬂoemems j
Handle the following events:

An item is being added

[] Anitem is being updated

[] Anitem is being deleted

[[] Anitem iz being chedked in

[] &nitem is being checked out

[] Anitem is being unchecked out

[] An attachment is being added to the item

[] An attachment is being removed from the item

[] A file is being moved

[] Anitem was added LI

< Previous Mext = | Einish I Cancel |

FIGURE 5-28 List event receivers

3. Inthe EventReceiverl.cs class, you’ll see the main event handler for the Announcements list.
This is the ITtemadding event.

namespace AnnouncementListEvent.EventReceiverl
{

public class EventReceiverl : SPItemEventReceiver

212 | CHAPTERS5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

public override void ItemAdding (SPItemEventProperties properties)
{
base.ItemAdding (properties) ;

4. Add the following two using statements at the top of the application code:

using System.IO;
using System.Text;

5. In the Itemadding event, add some code (that is, the bolded code in the snippet that follows) that
will call a method to log some data to a log file. For example, in the following code sample, the
writeDataToLogFile passes the SPTtemEventProperties and a string that represents the item
event. So, when a user adds a new announcement, the event receiver will add an entry to a log file
(that is, mySPLog . txt). Note that the method also sets the permissions to access the file system
(although this may not be necessary if you’re accessing the system as an administrator).

namespace AnnouncementListEvent.EventReceiverl

{

public class EventReceiverl : SPItemEventReceiver
{

public override void ItemAdding (SPItemEventProperties properties)
{

base.ItemAdding (properties) ;

writeDataToLogFile (properties, "An Event");

private void writeDataToLogFile(SPItemEventProperties properties,
string eventName)

FileIOPermission myPermissions = new
FileIOPermission(PermissionState.Unrestricted);

myPermissions.AddPathList (FileIOPermissionAccess.AllAccess,
"c:\\Authoring");

StreamWriter sw = File.AppendText (@"C:\Authoring\mySPLog.txt");
StringBuilder sb = new StringBuilder();
sb.AppendFormat ("Date, Event and List:\n {0} {1} {2} ",
DateTime.Now.ToString(), eventName, properties.
ListTitle);
sw.WriteLine(sb.ToString());
sw.Close();

Creating Event Receivers for a SharePoint List |

213

When you’ve finished adding the code, select the Build menu and select Deploy Solution.

Open the Announcements list in your SharePoint site, and add a new Announcement, as shown in
Figure 5-29.

Announcements - New Item

BB B DY

Save Cancel Paste Attach Spelling
File -
Commit Clipboard Actions Spelling
Title * |My Mew Announcement
Body This is my new announcement.
Expires I11]27!2009 E

FIGURE 5-29 Triggering the event

Once you’ve added a new item to the Announcement list, navigate back to the place where your
log file exists (for example, c: \Authoring), as shown in Figure 5-30.

Il
Fle Edit Format View Help

pate, Event and List: 11/25/2009 8:34:44 PM ItemAdding Event Announcements ;l
| | By

FIGURE 5-30 Log file created

You can also add events that interact with other parts of the SharePoint site. For example, let’s

add another event that writes an entry into a separate list called Log. To do this, add the following
boldfaced code to your event receiver application:

namespace AnnouncementListEvent.EventReceiverl

{

public class EventReceiverl : SPItemEventReceiver

214 | CHAPTERS5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

public override void ItemAdding (SPItemEventProperties properties)
{
base.ItemAdding (properties) ;
writeDataToLogFile (properties, "ItemAdding Event");
writeListItemToCustomList (properties, "ItemAdding Event");

private void writeListItemToCustomList (SPItemEventProperties properties,
string eventName)

{
string spLog = "";
DateTime currentTime = DateTime.Now;
spLog = eventName + " " + currentTime.ToString();
using (SPSite site = new SPSite("http://fabrikamhockey"))
{
using (SPWeb web = site.OpenWeb())
{
web.AllowUnsafeUpdates = true;
SPList list = web.Lists["Log"];
SPListItem Item = list.Items.Add();
Item["Title"] = properties.ListTitle.ToString();
Item["Log Entry"] = splLog;
Item.Update();
}
}
}

10. Redeploy the application by clicking Build = Deploy Solution. Visual Studio retracts your old solu-
tion and replaces it with your new one.

11. Create a Log list with a Title and Log Entry column. Then add an item to your Announcements
list. The event receiver code will create another entry to your file system log, and also create an
entry in your SharePoint list, as shown in Figure 5-31.

O @ Tite Log Entry

Announcements £ Hew ItemAdding Event 11/25/2009 8:45:12 PM

g Add new item

FIGURE 5-31 Log entry in list

Summary | 215

How It Works

When you’re creating event receivers, you're essentially writing code that fires when a particular

event occurs in your SharePoint site. For example, in this example, whenever someone created a new
Announcement, it would fire an event that would add a log entry in a file on the system and on the list.
While you repurposed some of the server-side list and updated a file on the system, you can literally tie
any number of events to, for example, list updates such as workflow, custom timer jobs, and so on.

SUMMARY

This chapter provided an overview of the different ways in which you can develop against
SharePoint lists. The chapter started with a glimpse into the use of the server-side object model (that
is, using Microsoft.SharePoint.dl11), which provided a brief look into the types of things that you
could do by leveraging the Microsoft.SharePoint namespace. However, when you move beyond
server-side applications, you often need service-based applications, and SharePoint 2010 provides
you with a number of native ASP.NET Web services that you can leverage.

One key Web service is the Lists service, which has a number of members that are very useful. The
Lists Web service is good in that it provides interactivity with SharePoint lists, but it does require
some heavy syntax and XML serialization — which is often achieved through CAML constructs.

As you saw, leveraging the new client object model and the RESTful service can move you “some-
what” beyond the need for CAML queries, and provide a very powerful platform for interacting
with lists. This statement is qualified with “somewhat” because CAML never entirely disappears.
In some cases, it just gets abstracted away from your view. For example, a general query (</View>)
auto-generates CAML queries that are then issued against the SharePoint list. So, while you don’t
see CAML, it is still there behind the scenes.

At the end of the day, one of the most commonly coded objects in SharePoint is the list. And, in
SharePoint 2010, you have quite a few more choices that really begin to open up (and provide
choice) to the way you develop against lists.

As you move on to Chapter 6, you’ll see more ways to code against one of the other, more com-
monly coded against objects in SharePoint — the Web part. So, hang tight. The journey to becoming
a SharePoint developer continues!

EXERCISES

1. What are the different ways in which you can program against lists?
2. Can you generally classify when to use one over the other?

3. How is using RESTful services and the new SharePoint client object model different from the
other ways? What do they abstract away from the development process?

4. What are the different event receivers for lists? What user or system action might you map
these events to?

216 | CHAPTERS5 PROGRAMMING AGAINST SHAREPOINT 2010 LISTS

» WHAT YOU LEARNED IN THIS CHAPTER

ITEM DESCRIPTION
List structure and function A list is one of the fundamental artifacts in SharePoint.
List Object Model You programmatically interact with a list using a specific object

model. This object model can be accessed using different APIs.

Ways to program against a list There are a number of ways to program against a list, including
the Lists Web service, client object model, server-side object
model, REST, and custom WCF services.

RECOMMENDED READING

> SharePoint 2010 SDK: http://msdn.microsoft.com/en-us/library/
ee557253 (office.14) .aspx

> Lists Web Service Members: http://msdn.microsoft.com/en-us/library/lists.lists_

members.aspx.

» Channel 9 Lists and Schema Module: http://channel9.msdn.com/learn/courses/
SharePoint2010Developer/ListsAndSchemas/WCF Data Services on MSDN: http://

msdn.microsoft.com/en-us/data/bb931106.aspx

Building and Deploying
SharePoint Web Parts

WHAT YOU'LL LEARN IN THIS CHAPTER:

» Understanding Web parts and how you can create one
> Understanding the difference between a standard and Visual Web part

» Using Visual Studio to build and deploy Web parts to SharePoint

In Chapter 5, you learned about the different ways you can program against one of the pri-
mary SharePoint artifacts — lists. In this chapter, you’ll learn about another core building
block in SharePoint — the Web part. The Web part is not unique to SharePoint. It is a set of
integrated ASP.NET server controls. Because SharePoint is built on ASP.NET, it inherits the
capabilities that are native to ASP.NET Web parts.

Developers can use Web parts to create Web sites, and, once rendered on a SharePoint site,
users can then modify the content, behavior, or appearance of the Web part page using their
Internet browser to personalize their experiences with the Web site.

SharePoint 2010 offers a wide array of out-of-the-box Web parts and, especially relevant to
this chapter, an easier way to build and deploy Web parts into a SharePoint site. With that

in mind, this chapter provides a high-level overview of Web parts, discusses the differences
between standard and Visual Web parts, and walks through some ways to create custom Web
parts for a SharePoint site.

UNDERSTANDING WEB PARTS

Similar to lists, Web parts are some of the most commonly customized objects in SharePoint.
Web parts also provide a great opportunity for developers to leverage some very powerful
capabilities that are native to ASP.NET.

218 | CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

Developers work with Web parts in a couple of different ways. For example, you might create a
Web part as an individual server control that you deploy to your SharePoint site. You can also create
SharePoint Web part pages that leverage existing Web parts (whether those Web parts are custom or
native to SharePoint), or integrated through a Web part connection (that is, connected Web parts).

As you build out server controls or pages to host your Web parts, you can use tools such as Visual
Studio 2010 or SharePoint Designer 2010. If you have a more dynamic UI for your Web parts (for
example, a Silverlight-based Ul), then you may opt for Expression Blend as well. In Visual Studio 2010,
you’ll find an enhanced designer experience with the Visual Web part project template that makes it
much easier to drag and drop controls onto the designer surface to create custom Web parts. You can
also use Visual Studio to leverage the ASP.NET Web part framework — using all of the ASP.NET con-
trols (for example, calendar, textbox, datagrid, and so on) to create your custom Web part.

While, in this chapter, you’ll be only leveraging the ASP.NET Web part namespace (System.web
.UT.WebControls.WebParts), it is worth mentioning that there is also a Web part namespace for
SharePoint as well (Microsoft.SharePoint.WebPartPages.WebPart). However, it is generally
recommended that, when you create Web parts for SharePoint, you stick to using the ASP.NET Web
part namespace. The ASP.NET Web part namespace provides a more popular and comprehensive
set of controls and classes for developers. Web parts also require a framework to work on the ASP.
NET page. Because SharePoint is built on top of ASP.NET, it leverages the Web part framework.

After you’ve built and deployed Web parts to a SharePoint site, end users can then modify a
SharePoint site depending on the following;:

> The level of permissions they have in SharePoint

> The different out-of-the-box Web parts that are available to them (which would depend on
the version of SharePoint they’re using)

> The type of custom Web parts you have deployed to that SharePoint site

The more permissions users have for a site, the more they can customize and design the site for the
users of that site.

Once a Web part is on a page, users can configure the Web part(s) on that page. For example, users
can minimize, remove, or hide the Web part. They can also drag the Web part to a different part of
the Web part page (into a different Web part zone), alter the properties of the Web part (to change
the look, feel, or appearance), or even export/import the Web part for use in other pages or sites.

When you deploy a Web Part to SharePoint, it shows up in the Web Part Gallery. The Web Part
Gallery is a management application that provides a way to manage Web parts for a site collection.
With the Web Part Gallery, you can do things like view, edit, upload, delete, and manage permis-
sions against Web parts. You access the Web Part Gallery within a site collection by clicking Site
Actions = Site Settings, and, under Galleries, select Web Parts.

What helps users integrate Web parts into a SharePoint site is the in-context ribbon experience that
surfaces the different Web parts that live in the Web Part Gallery and makes them available for users
to add to a Web part page. For example, if you click Site Actions = Edit Page, this exposes the Insert
tab. If you click the Web part ribbon control, this exposes all of the available Web parts for the
SharePoint site — which includes custom Web parts you have built and deployed to your site.

Understanding Web Parts | 219

NOTE |If you use Visual Studio 2010 to create a custom Web part, it is automati-
cally deployed to the Web Part Gallery. You can use a “manual” command to
deploy a Web part assembly, in which you case, you would need to manually

add it to the Web Part Gallery.

The in-context ribbon experience is a great productivity improvement over the 2007 experience
(which was a gallery you invoked as a separate window, and scrolled to find your Web part) and

makes it easier to interact with Web parts.

When you navigate to the Web Part Gallery, you are presented with two views:

> One view enables you to see all of the Web parts in the site collection.

> The other view provides you with a more detailed view of the Web part (and its metadata).

The top-level view of the Web Part Gallery is shown in Figure 6-1, and in it you can see an enumera-
tion of the available Web parts in SharePoint, along with properties for those Web parts.

~| 41| x il Bing

i Favorites |{é @ Suggested Sites | Get More Add-ons ~

| (] Web Pt Gallery

Library

Documents

prey Home » Web Part Gallery : All Web Parts ~
| Use this Web Part Gallery to store and retrieve Web Parts. The Web Parts in this gallery are available to this site and all sites under it. To

Give Feedback

f - B - = @ - Page~ Sofety~ Tooks~ @~

G

Ilikelt Tags &

preview a Web Part, click its title. Motes
Home | Wrox MyWroxBlog Wrox_Test TestMaster Wrox Books Silverlight Search this site... r @
Documents] Type Web Part Edit Modified MedifiedBy Group Recommendation Se
Site Pages = AdvancedSearchBox.dwp @ 11/11/2009 3:12 PM Search Search
redmend\stefox
Shared Documents
[AuthoredListFilter.webpart @ 11/11/2009 3:12 PM Filters Filters; My Site: Midc
XAPS redmend\stefox Right; My Site: Midd
Left; My Site: Bottor
Lists = BusinessDataActionsWebPart.dwp @ 11/11/2009 3:12PM Business My Site: Middle Righ
redmond\stefox Data Site: Middle Left; My
Calendar Site: Bottom
Tasks 8] BusinessDataAssociationWebPart.webpart @ 11/11/2009 3:12 PM Business My Site: Middle Righ
e redmond\stefox Data Site: Middle Left; My
ustomers Site: Bottom
Products =5 BusinessDataDetailsWebPart.webpart @ 11/11/2008 3:12 PM Business My Site: Middle Righ
Log redmond\stefox Data Site: Middle Left; My
Site: Bottom
frococ List]) BusinessDataFilter.dwp @ 11/11/2009 3:12 PM Business Filters; My Site: Midc
Test list redmond\stefox Data Right; My Site: Midd
el i i Left; My Site: Bottor
es_Info_Lis!
=] BusinessDataltemBuilder.dwp [@ 11/11/2009 3:12 PM Business My Site: Middle Righ
wrox-Test radmond\stafox Data Site: Middle Left; My
MyTestList Site: Bottom
] BusinessDatalistWebFart.webpart @ 11/11/2009 3:12 PM Business Dashboard; My Site:
redmond\stefox Data Middle Right; My Site
Discussions Middle Left; My Site:
2 Bottom
Team Discussion
] CategorvResultsWebPart.webpart @ 11/11/2009 3:12 PM Navigation _ Site Directory

<]

m

| r

Done

i'ﬂ Local intranet | Protected Mode: Off

G v B10% v

FIGURE 6-1 Web Part Gallery

NOTE |If you click on the Web part link (for example, AdvancedSearchBox . dwp),
SharePoint launches and renders the Web part in a separate Web part page.

220 | CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

WEB PART ARCHITECTURE

The architecture of an .aspx Web page integrates a number of different zones, configurations, and
objects that are associated with those zones. Core to the Web part architecture is the webPartManager
object, which manages all of the Web parts on a page. The webPartManager control is the central
command center for the Web parts on a page. There is only one webPartManager control instance on
a SharePoint Web part page, and it works only with authenticated site users.

The webPartManager also holds a reference to the collection of Web part zones (that is, the webzone
class), which are containers for Web parts. Depending on the site or Web page template, Web part
zones can be positioned differently on the page. Any page using one or more Web parts must have
an instance of the WebPartManager and a Web part zone to put the part in. The webPartManager

is also declared in the SharePoint master page, so the out-of-the-box master pages will already have
the webPartManager declaration included.

Within each Web part zone, you have the Web parts. These are the server controls/applications you
will build and deploy to SharePoint in this chapter.

It is important to think not just about the single SharePoint Web part page, but also think about

the structure that the page inherits from the master page (and the page layout that is defined within
that master page). Master pages and page layouts define the overall look, feel, and structure for the
SharePoint site. Master pages contain server controls that are shared across multiple sites (for example,
ribbon navigation and search controls). It is within the page layouts and pages that you will see the Web
parts.

As mentioned previously, to support the Web part
on a page, you must have a WebPartManager and a
WebPartZzone for each webPart object. Figure 6-2
illustrates the high-level architecture starting from
the master page and extending into the Web part
on an ASPX page.

Master Page

Page Layout

ASPX Web

SharePoint 2010 provides a number of Web parts WebPartManager

out-of-the-box. (The number and type of Web parts ——

available will depend on the SharePoint version.)
For example, you have the Chart Web part, Excel WebPartZone ‘ WebPartZone
Web Access Web part, Business Data Catalog Web [[
part, and so on, that you can leverage when build-

WebPart ’ ‘ Web Part

ing custom solutions. SharePoint also offers you the
capability to create custom Web parts.

FIGURE 6-2 Web part architecture
As a developer, you’ll want to understand the out-

of-the-box Web parts so that you don’t replicate this functionality in your custom solutions — evaluat-
ing the out-of-the-box Web parts should always be your first thought. You’ll also want to understand
this native functionality so that you can complement your custom Web parts with those that ship with
SharePoint.

Adding an out-of-the-box or custom Web part is straightforward. You click Edit Page = “Add a web
part” (or, if you’re on a wiki page, you click the Insert tab and then click Web Part), and then select
the Web part you want to add to your site. However, you must have a site or Web part page that will
play host to the native or custom Web parts.

Web Part Architecture | 221

In the following exercise, you’ll create a Web part page that you’ll use throughout this chapter for
both native and custom Web parts. The first exercise will require you to create a new list in your
SharePoint site. Name the list Sales, then rename the Title column to Customer and add a sales
column (of type Number). Add some data resembling what is shown in Figure 6-3.

[l @ customer Sales
Fabrikam & new 1,203,900.00
Acme HEncw 2,019,200.00
Contoso & Hew 2,039,010.00
Wingtip & new 3,029,109.00

FIGURE 6-3 Customer list

After you’ve created the list, you are ready for the first exercise in this chapter.

Creating a Web Part Page and Chart Web Part

A Web part page is a type of .aspx page in SharePoint that provides you with some predefined struc-
ture. After you create a Web part page, you can insert either native or custom Web parts to that page.
To create a Web part page, follow these steps:

1. Navigate to your SharePoint site, and click All Site Content.

2. Click Create.

3. In the Create dialog, navigate to the Page option and click Web Part Page, as shown in Figure 6-4.
Click the Create button on the right side of the screen.

Create

R AN Search Installed Items
Installed Items > | .
Office.com Web Part Page
5 — Type: Page
Filter By: | ﬁ Categories: Blank & Custom
All Types - A page which can display an
b L % aggregation of information from other
Library . sources. Web part pages can display
List Content Page Web Part Page many types of data, including lists,
other web pages, search results or data
Page 5 = | retrieved from other servers.
Site
All Categories b3 [ﬁ T =
Create ore Options

FIGURE 6-4 Web Part Page option

4. This invokes a separate page where you can provide a name for the page and select the structure
of the page from a set of predefined layout templates. Provide a name for the page (for example,
Wrox_Web_Page.aspx), and select one of the layout templates (for example, “Header, Footer, 3
Columns”).

5. You can also choose to save the Web part page in a specific location — such as the Shared
Documents or Site Assets document library. Leave the default option set to Site Assets, as shown in
Figure 6-5, and click OK.

222

| CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

The result of this is a new Web part page that is structured using the “Header, Footer, 3 Columns”
layout template, as shown in Figure 6-6. The page is also rendered in Edit mode by default.

“;: o (] http://fabrikamhockey/ _lzyouts/spcf.aspx =| 4+ | x & 8ing

¢ Favorites | 5 @ Suggested Sites ~ 2 Get More Add-ons ~

J\ [] New Web Part Page

Give Feedback

7w Home » New Web Part Page &) Tl =
| A Web Part Page is a collection of Web Farts that combines list data, timely information, or useful graphics into a dynamic Web page. The Ilikelt Tags &
layout and content of a Web Part Page can be set for all users and optionally personalized by each user. Notes
Heme Wrox MyWroxBlog Wrox_Test TestMaster Wrox Books Silverlight e
Documents . Name:
- T Web Part P; Thi i hare o wet Beedd: |
Site Pages #'ipea:tn;;ﬁ’gyour leb Part Page. The file name appears in headings and links Wirox_Web_Page] s
Shared Documents B Overwrite if file already exists?
XAPS
Layout
Lists ¥ Choose a Layout Template:
Select a Layout template to arrange Web Parts in zones on the page. Multiple Web Parts can
Calendar be added to each zone. Spedific zones allow Web Parts to be stacked in a horizontal or Full Page, Vertical -
vertical direction, which is ilustrated by differently colored Web Parts. If you do not add a Header, Left Column, Body
Tasks Web Part to a zone, the zone collapses (unless it has a fixed width) and the other zones Header, Right Column, Bedy
Customers expand to fil unused space when you browse the Web Part Page. Header, Foater, 2 Calumns, 4 Rows

Header, Footer, 4 Columns, Top Row
Left Column, Header, Feoter, Top Row, 3 Columns
Right Column, Header, Footer, Top Row, 3 Columns

Froducts

Log _—
Product_List =
Test list |

wrox-Test

MyTestList

Save Location L4
Document Library

Discussions Select the document lbrary where you want the Web Part Page to be saved, Site Assets =l
Team Discussion

Done s Local intranet | Protected Mode: Off 3 v H®100% ~

FIGURE 6-5 Naming the Web part page

$reviie | v @ ¥ o @&

Stop Editng Lait E-mails Alert Approve Wejet Wordlows Lt Mobile Make Tine Bar
= Piopertici e 9% Delete Fage Lok Mem Page= Homepage Propedics

Friit Manage Share & Trask Appraval Wekfimw Page Artians

Documents Hedes
Sar Pages

Fhared Ducumenly Add a Web Part
MAPS

Lisrs
Calendar Laft 3 fught G
Tashy
Customers
Add & Web Parl Addd & Wels Part Add & Web Parl
Products
Log
Product_List
Test bt
Sales_lnfo_List
wrax-Test

Add & Web Part
My Tastbst ’

Ih=cussmns

FIGURE 6-6 Adding a Web part

Custom Web Parts | 223

7. Click “Add a web part” and then navigate to the Miscellaneous lE
category. Select Chart Web Part. Click Add to add the out-of-the- Minimize ‘
[Chart Web Part Menu
box Web part to the new Web part page. 5 C'CI'“
Delete
8. After the Web part is added to the Web part zone, click the # Edit web Part 5

Connections L4

Chart Web Part Menu and click Connect to Data, as shown in
F. 6 7 Data & Appearance
gure 6-/. 45 Customize Your Chart

‘L Connect To Data

ﬂ Advanced Properties

9. TFollow the wizard to connect the Chart Web part to your newly
created Sales list. Accept the default options as you work
through the wizard, and then click Finish to complete the connect- FIGURE 67 Connect Web
ing of the data to the Chart Web part. When you’re finished, your ~ Partto data
new Chart Web part will look like Figure 6-8.

Chart Web Part

HOW It Works Data & Appearance Adwvanced Properties

The Chart Web part is a new addition to SharePoint 2010
and provides you with a number of options to display data
in SharePoint from different sources. You saw in this walk-
through how the native functionality of the Chart Web part
used the SharePoint list you created as a data source and
then displayed that data graphically as a bar chart.

As you saw in the walkthrough, this is a great way to expose
list data in Web parts to create a relationship across different

parts of your SharePoint site. Note that you can create differ- T heme Wingt
ent types of charts when linking the Chart Web part to data o IR o
sources, and you can customize the chart in different ways. FIGURE 6-8 Chart Web part

It’s important to understand the out-of-the-box Web part functionality. However, this book is
geared toward developers, the remainder of this chapter discusses how you can create custom
Web parts.

CUSTOM WEB PARTS

In SharePoint, you can build sites using the out-of-the-box Web parts without the need to do any
coding. Or, you can develop custom Web parts.

Custom Web parts leverage the ASP.NET server controls and can be deployed as individual Web
parts (that is, no interaction or connectivity with other Web parts), or you can create connected Web
parts (that is, Web parts that can have a summary and detail view of data). Your custom Web parts
can also be very simple (for example, leveraging one to two controls), or they can be complex (mul-
tiple controls and connected).

One of the key aspects of custom Web parts to remember is that, while you leverage the ASP.NET
controls to create the Web parts, the Web part namespace provides the personalization capabilities
discussed earlier — that is, the capability for users to configure the Web part the way they want to.

224 | CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

NOTE You can find a good article on MSDN at http://msdn.microsoft.com/
en-us/library/ms469765.aspx that walks you through how to create a con-
nected Web part.

There are great tools available for you to create custom Web parts for SharePoint in Visual Studio
2010. Specifically, there are two types of templates that you can use to build the custom Web parts:
the standard Web part and the Visual Web part. At the end of the day, the Web part capabilities for
each of the templates are the same — they both derive from the same namespace. The difference,
though, is in the ways of creating the custom Web parts using the templates.

For the standard Web part template, you must manually create the UL. With the Visual Web part,
there is a designer experience that enables you to drag and drop controls onto a designer surface to
create your Web part UL. However, the functionality that you can build into the Web parts (that is,
your code behind) is the same.

When you create and deploy a custom Web part to SharePoint using Visual Studio 2010, a folder

that contains a set of project files is created in your project. In Chapter 3, you saw that Visual Studio
deploys Web parts as a feature. To be able to create a feature, Visual Studio creates a project structure
with a number of project files — which include feature files, solution package, class files, and so on.

As you get started with Web part development in Visual Studio using the standard Web part tem-
plate, you will find yourself interacting with the following three primary files:

» elements.xml — This provides configuration information that is used by the feature defini-
tion file.

> foo.webpart — This configuration file provides information that SharePoint needs to dis-
play the Web part (such as title and description).

> foo.cs — This core Web part class file that contains all of the custom code you create as the
core functionality of your Web part application.

The following code snippet provides a snapshot of the default code that is generated when you create
a standard Web part in Visual Studio 2010:

namespace WroxWebPartProject.CustomerInformation
{

[ToolboxItemAttribute (false)]

public class CustomerInformation : WebPart

{

public CustomerInformation ()
{
}

protected override void CreateChildControls()
{
base.CreateChildControls() ;

Custom Web Parts | 225

}

protected override void RenderContents (HtmlTextWriter writer)

{

base.RenderContents (writer) ;

}

Next, you will create a standard Web part using the Web part item template available within Visual
Studio 2010. This means that you must have a parent SharePoint project (that implements a feature)
to which you would add this item-level template.

Let’s create a standard Web part using Visual Studio 2010.

Creating a Simple Standard Web Part

Code file [WroxWebPartProject.zip] available for download at Wrox.com.

Standard Web parts can be very powerful and perform any number of functions. To create a standard
Web part, follow these steps:

1.
2.

Open Visual Studio 2010 and click File &> New = Project.

Navigate to the SharePoint folder and select the Empty SharePoint Project template. Provide a
name for your project (for example, WwroxWebPartProject) and click OK. When prompted, select
“Deploy as farm solution.” Click Finish. This creates the skeletal structure of a SharePoint project.

Right-click the project and click Add &> New Item.
From the SharePoint 2010 Item templates, select Web Part.

Provide a name for the Web part (for example, CustomerInformation), and click Add. Visual
Studio adds the core elements of the Web part files to the empty SharePoint project.

You’ll now want to add a class to the Web part project, so right-click the new Web part project
and select Add = Class. Provide a name for the class (for example, Customerbata), and click OK.

In the new class, add the following bolded code:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace WroxWebPartProject
{
class CustomerData
{
public string companyName {get; set;}
public string contactName {get; set;}
public string contactEmail {get; set;}
public string companyFY08Sales {get; set;}

226 | CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

public string companyFY09Sales {get; set;}

8. Right-click the core Web part code file (for example, CustomerInformation.cs), and select
View Code.

9. Add the following bolded code into that core Web part class:

using System;

using System.ComponentModel;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;

using Microsoft.SharePoint.WebControls;
using System.Collections.Generic;

namespace WroxWebPartProject.CustomerInformation
{

[ToolboxItemAttribute (false)]

public class CustomerInformation : WebPart

{

DataGrid myCustomers = new DataGrid();
List<CustomerData> myCustomerDatalList = new List<CustomerData>();

protected override void OnPreRender (EventArgs e)
{

new CustomerData();
new CustomerData();
new CustomerData();
new CustomerData();

CustomerData custl
CustomerData cust2
CustomerData cust3
CustomerData cust4

custl.companyName = "Fabrikam";
custl.contactName = "Harvey Kitell";
custl.contactEmail = "mrpink@fabrikam.com";

custl.companyFY08Sales = "$530,002.00";
custl.companyFY09Sales = "$650,102.00";
myCustomerDataList.Add(custl);

cust2.companyName = "Contoso";
cust2.contactName = "Ahmed Kroll";
cust2.contactEmail = "ahemd@contoso.com";

cust2.companyFY08Sales = "$1,577,044.00";
cust2.companyFY09Sales = "$1,653,112.00";
myCustomerDataList.Add (cust2);

cust3.companyName = "Acme";
cust3.contactName = "Jansen Terrace";
cust3.contactEmail = "jansen@acme.com";

cust3.companyFY08Sales = "$3,270,000.00";
cust3.companyFY09Sales = "$2,953,100.00";
myCustomerDataList.Add(cust3);

cust4d.companyName = "Wingtip";

Custom Web Parts | 227

10.

1.

12.

13.

cust4.contactName = "Hally Cantrall";
cust4.contactEmail = "hally@wingtip.com";
cust4.companyFY08Sales = "$578,982.00";
cust4.companyFY09Sales = "$620,100.00";
myCustomerDataList.Add (cust4);

myCustomers.DataSource = myCustomerDatalList;
myCustomers.DataBind();

protected override void CreateChildControls()

{
this.Controls.Add (myCustomers);

Next, double-click the .webpart file (for example, CustomerInformation.webpart), and amend
the title and description of the Web part, as shown in the following bolded code:

<?xml version="1.0" encoding="utf-8"7?>
<webParts>
<webPart xmlns="http://schemas.microsoft.com/WebPart/v3">
<metaData>
<type name="WroxWebPartProject.CustomerInformation.CustomerInformation,
S$SharePoint.Project.AssemblyFullName$" />
<importErrorMessage>S$Resources:core, ImportErrorMessage; </importErrorMessage>
</metaData>
<data>
<properties>
<property name="Title" type="string">Customer Info Web Part</property>
<property name="Description" type="string">A Web Part that displays
customer information.</property>
</properties>Web Part
</data>
</webPart>
</webParts>

You can now build the standard Web part and deploy it to your SharePoint site. To do this, click
Build = Deploy Solution.

After you’ve deployed the Web part to your SharePoint site, navigate to your SharePoint site and to
the new Web part page you created earlier. Click Site Actions = Edit Page &> “Add a web part” to
add the newly created standard Web part to the page.

Navigate to the Custom category. You should see the customerInformation Web part you
just deployed (assuming that

you named your Web part Customer Data Web Part
Customerlnformation). Chck Add companyName contactName contactEmail companyFY08Sales companyFY09Sales|
. . Fabrikam Harvey Kitell mrpink@fabrikam.com $530,002.00 $650,102.00
to add it to your SharePoint Web Contoso Ahmed Kroll ahmed@contoso.com $1,577,044.00 $1,653,112.00
Y h ld h Acme Jansen Terrace jansen@acme.com $3,270,000.00 $2,953,100.00
part page. You shou ave some- Wingtip Hally Cantrall _hal@wingtip.com $578,982.00 $6520,100.00
thing similar to Figure 6-9 added to

your SharePoint site. FIGURE 6-9 Rendered datagrid

228 | CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

How It Works

This walkthrough was fairly straightforward. You first created a standard Web part using the Visual
Studio 2010 template, which added the core class and configuration files to the empty SharePoint proj-
ect. You then created a simple class, which defined five properties of a customer object. You then used
an in-memory object to generate some data that was then data-bound to a datagrid control. The appli-
cation created the in-memory object using a list collection of the custom CustomerData object (myCus-
tomerDataList), which was instantiated in the following line of code:

List<CustomerData> myCustomerDatalList = new List<CustomerData>();

The application then created four customerbata objects (cust1, cust2, cust3, and cust4) and added
them to the list collection, which was then bound as a data source to the datagrid control.

You’ll notice that there was no special formatting that you created for the datagrid, and the header row
took the individual property names as the field data. However, you could add some formatting to the
datagrid to improve the look and feel of it. For example, if you added the following bolded code to the
onPreRender method, you could alter the look and feel of your datagrid:

myCustomers.Width = Unit.Percentage(100);
myCustomers.CellPadding = 1;

myCustomers.HeaderStyle.Font.Bold = true;
myCustomers.HeaderStyle.HorizontalAlign = HorizontalAlign.Left;
myCustomers.HeaderStyle.CssClass = "ms-vhl";
myCustomers.GridLines = GridLines.Horizontal;
myCustomers.BorderWidth = Unit.Pixel(3);
myCustomers.DataSource = myCustomerDatalList;
myCustomers.DataBind();

Using this styling, the table that you deploy into SharePoint takes on a slightly different look and feel,
as shown in Figure 6-10.

Customer Data Web Part id
companyName contactName contactEmail companyFY! I companyFY095ales
Fabrikam Harvey Kitell mrpink@fabrikam.com $530,002.00 $650,102.00
Contoso Ahmed Kroll ahmed@contoso.com $1,577,044.00 $1,653,112.00
Acme Jansen Terrace jansen@acme.com $3,270,000.00 $2,953,100.00
Wingtip Hally Cantrall hal@wingtip.com $578,982.00 $620,100.00

FIGURE 6-10 Formatted datagrid

When you build and deploy the standard Web part to SharePoint, you create a feature using the three
core Web part files (discussed earlier in the chapter). The Web part DLL, which is the core functionality
for the Web part, is deployed into the global assembly cache (GAC).

While, in this case, you created a simple Web part that leveraged an in-memory object, you can also
load data from an external data source (and, more often than not, you will want to do this). This data
could be in the form of a Web service, a SharePoint list, an XML packet or file, or other Web 2.0 ser-
vice that draws data from other non-SharePoint Web assets.

For example, say that you created an XML file that looks like the following XML code snippet and
saved it to your local drive (for example, in a folder called c: /xML_Data). You could very easily map

Custom Web Parts | 229

that XML file to a dataset, and then bind the dataset to the datagrid — and repurpose some of the code
you’ve already written.

<?xml version="1.0" encoding="utf-8" ?>
<Customers>
<Customer>
<CompanyName>Fabrikam</CompanyName>
<Contact>John Kelly</Contact>
<ContactEmail>jkelly@fabrikam.com</ContactEmail>
<FY08Sales>$3,500,398.00</FY08Sales>
<FY09Sales>$3,750,302.00</FY09Sales>
</Customer>
<Customer>
<CompanyName>Contoso</CompanyName>
<Contact>Ahmed Zain</Contact>
<ContactEmail>ahmed@contoso.com</ContactEmail>
<FY08Sales>$50,980,990.00</FY08Sales>
<FY09Sales>$52,880,980.00</FY09Sales>
</Customer>
<Customer>
<CompanyName>Acme</CompanyName>
<Contact>Jane Doe</Contact>
<ContactEmail>jane.doe@acme.com</ContactEmail>
<FY08Sales>$7,099,289.00</FY08Sales>
<FY09Sales>$7,029,001.00</FY09Sales>
</Customer>
<Customer>
<CompanyName>Wingtip</CompanyName>
<Contact>Janice Wang</Contact>
<ContactEmail>janice@wingtip.com</ContactEmail>
<FY08Sales>$980,298.00</FY08Sales>
<FY09Sales>$1,209,109.00</FY09Sales>
</Customer>
<Customer>
<CompanyName>Metro</CompanyName>
<Contact>Steve James</Contact>
<ContactEmail>stevej@metro.com</ContactEmail>
<FY08Sales>s$1,090,989.00</FY08Sales>
<FY09Sales>$1,300,092.00</FY09Sales>
</Customer>
<Customer>
<CompanyName>Standard</CompanyName>
<Contact>John McLean</Contact>
<ContactEmail>johnm@standard.com</ContactEmail>
<FY08Sales>$45,092,981.00</FY08Sales>
<FY09Sales>$47,200,189.00</FY09Sales>
</Customer>
</Customers>

If you used the same project that you created in the last walkthrough, instead of using the list collec-
tion, you would simply create a new class-level instance of a Dataset object and path to the XML file.

DataSet myCustomerDataset = new DataSet();
string xmlCustomerFilePath = "c:/XML_Data/Customers.xml";

230 | CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

You’d then substitute all of the code within the onPrerender method with the following code snippet
to bind the data.
myCustomerDataset.ReadXml (xmlCustomerFilePath, XmlReadMode.InferSchema) ;

myCustomers.DataSource = dataset;
myCustomers.DataBind () ;

You can then add the myCustomers list collection to the controls collection in the
CreateChildControls method, as in the following line of code:

this.Controls.Add (myCustomers) ;

The net effect is very similar to the way in which the previous data looked in the datagrid using the list
collection. However, in this case, you are now using an external data source to populate the datagrid in
your custom Web part. The result of this code is shown in Figure 6-11.

Customer Data Web Part

CompanyName Contact ContactEmail FYO8sales FY09Sales
Fabrikam John Kelly jkelly@fabrikam.com $3,500,398.00 $3,750,302.00
Contoso Ahmed Zain ahmed@contoso.com $50,980,990.00 $52,880,980.00
Acme Jane Doe jane.doe@acme.com $7,099,289.00 $7,029,001.00
wingtip Janice Wang janice@wingtip.com $980,298.00 $1,209,109.00

Metro Steve lJames stevej@metro.com $1,090,989.00 $1,300,092.00
Standard John McLean johnm@standard.com $45,092,981.00 $47,200,189.00

FIGURE 6-11 Datagrid using external data

As you build more complex Web parts, you’ll want to add event handlers that map to the controls
(for example, buttons or listboxes) — that is, events that are tied to users interacting with controls
within your Web parts. For example, let’s assume that you want to build out a UI that loads some
data from a SharePoint list, and then displays that data in a listbox. Let’s walk through an example.

Creating Event Handlers in Standard Web Parts

Code file [SPWebPartEvent.zip| available for download at Wrox.com.

Creating events for a Web part is a core part of building Web parts. To create an event handler using
the standard Web part project template, follow these steps:

1. Open Visual Studio 2010 and create a new Empty SharePoint project. Provide a name for the proj-
ect (for example, sPiebPartEvent) and click OK. When prompted, select “Deploy as farm solu-
tion” and click Finish.

2. Right-click the project and add a new Web part to the project by clicking Add = New Item,
and then selecting the Web part item template. Provide a name for the Web part (for example,
SampleEventWebPart) and click OK.

3. Open the .webpart file (for example, SPcOMWebpart .webpart) and amend the Title and
Description properties as shown in the following bolded code snippet.

<properties>
<property name="Title" type="string">SP Site Lists Web Part</property>

Custom Web Parts

231

Open the core Web part class file (for example, spcoMwebPart . cs) and amend the code as shown

<property name="Description" type="string">List of lists from
SharePoint site.</property>
</properties>

in the following bolded code. Replace the string mySiteURL (http://intranet.contoso.com)
with the name of your SharePoint server.

using
using
using
using
using
using
using
using

System;

System.ComponentModel ;

System.Web;

System.Web.UTI;
System.Web.UI.WebControls;
System.Web.UI.WebControls.WebParts;
Microsoft.SharePoint;
Microsoft.SharePoint.WebControls;

namespace SPWebPartEvent.SampleEventWebPart

{

[ToolboxItemAttribute (false)]
public class SampleEventWebPart : WebPart

{

//Be sure to replace mySiteURL with your server URL.
string mySiteURL = "http://intranet.contoso.com";
Button getLists = new Button();

ListBox mySPLists = new ListBox();

string listInfo = "";

protected override void OnPreRender (EventArgs e)

{
getLists.Text = "Click";
}
protected override void CreateChildControls/()
{
this.Controls.Add(getLists);
this.Controls.Add (mySPLists);
getLists.Click += new EventHandler(getLists_Click);
}
void getLists_Click(object sender, EventArgs e)
{
using (SPSite mySiteCollection = new SPSite(mySiteURL))
{
using (SPWeb mySPSite = mySiteCollection.RootWeb)
{
foreach (SPList myList in mySPSite.Lists)
{
listInfo = myList.Title.ToString();
mySPLists.Items.Add(listInfo);
}
}

232 | CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

5. You can now build and deploy the new Web part by clicking Build = Deploy Solution.

6. After the Web part project successfully deploys, open your SharePoint site and navigate to the Web
part page you created earlier in the chapter. Click “Add a web part,” and then navigate to the
Custom category. Then select the SP Site Lists Web part and click Add.

7. Th_e resulting Web part will look s.imil.ar.to the one in Figure 6-12. e
Click the Get Lists button, and this will invoke the myButton_click Sales B
. Sales_Info_List =
event, which will populate the listbox with all of the lists from the EE;}E: Dtgszu:'nents =
SharePoint site.

To start with, the controls used in this custom Web part were declared at the class level. Also, you used
the onPreRender method to set the Text property of the button. This is because you don’t typically
want to perform your Ul processing in the createchildcontrols method. There was only one prop-
erty to set in this method, but you could imagine that, as you use more controls in your Web parts, you
perform more processing within the onPrerRender method.

protected override void OnPreRender (EventArgs e)
{
getLists.Text = "Click";

As you’ve seen before, the controls were then added to the controls collection in the
CreateChildControls method, and the getLists_click event was added here as well.

protected override void CreateChildControls()

{

this.Controls.Add(getLists);
this.Controls.Add (mySPLists);
getLists.Click += new EventHandler (getLists_Click);

In Chapter 4, you saw a number of common developer tasks — one of which was leveraging the server-
side object model. In this example, the getLists_click event uses the server-side object model to
provide an enumeration of all the lists in the site. The server-side object model is an efficient way to
program Web parts because you are processing server-side code, as opposed to calling Web services (for
example, using the Lists Web service).

By creating a button and a listbox, it’s possible to tie these two controls together through the
getLists_Click event. Given that this is the key event in the example, the code (using the server-side
object model) sets the site context with the first using statement (which gets the site reference from the

Visual Web Parts | 233

string variable mySiteURL). You can see that the string 1istInfo then gets the title of each list, which is
then added to the listbox (myspLists).

void getLists_Click(object sender, EventArgs e)
{ using (SPSite mySiteCollection = new SPSite(mySiteURL))
{ using (SPWeb mySPSite = mySiteCollection.RootWeb)
{ foreach (SPList myList in mySPSite.Lists)
{ listInfo = myList.Title.ToString();
mySPLists.Items.Add(listInfo);

VISUAL WEB PARTS

Building custom Web parts using the standard project template is effective, but you may want to
quickly design a UI for your Web part without having to build it out manually. This is where you
can use Visual Web parts. Visual Web parts are different from standard Web parts in that they
include an additional user control, which represents the Ul for your Web part.

When you build and deploy your custom Web part using the Visual Web part template, the user
control is deployed to the SharePoint root — specifically to the cONTROLTEMPLATES folder (that is,
c:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\TEMPLATE\
CONTROLTEMPLATES). A new folder will be created as a subdirectory in the CONTROLTEMPLATES for
your custom user control Ul (.ascx file).

There are some differences when you create a new Visual Studio project using the Visual Web part
project template as opposed to the Web part item template.

When you look at the core Web part class, you’ll see some additional code that is added by default,
which is displayed as bolded code in the following snippet:

namespace WroxVisualWPProject.CustomerData
{
[ToolboxItemAttribute (false)]
public class CustomerData : WebPart
{
private const string _ascxPath =
@"~/_CONTROLTEMPLATES/WroxVisualWPProject/
CustomerData/CustomerDataUserControl.ascx";

public CustomerData ()

| CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

{
}

protected override void CreateChildControls()

{
Control control = this.Page.LoadControl(_ascxPath);
Controls.Add(control) ;
base.CreateChildControls () ;

}

protected override void RenderContents (HtmlTextWriter writer)
{

base.RenderContents (writer) ;

This code manages the user control that you build and design using the Visual Web Part Designer.
For example, you can see that there is a string variable called _ascxpPath, which points to the .ascx
(that is, the user control) where the Ul portion of the Web part will be stored. Then, using the path
to the Ul as a parameter, the code creates an instance of a Control and then adds this one control to
the controls collection.

NOTE The Visual Web part described here has the inherent limitation of not being
able to be deployed at the sandboxed level, because of the file system reference
to retrieve the .ascx control. However, as of this writing, there is a community proj-
ect on Codeplex that provides a Visual Web part that enables farm-level trust. For
more information, go to http: //sharepointdevtools.codeplex.com/.

When using a standard Web part, you were building and adding your own individual controls and
adding each instance of the control to the controls collection. In this case, you’re using only the
control object, which loads your entire Ul at once.

The Designer experience can save you some time when developing the Ul for your Web part applica-
tions. Let’s put this into practice.

To complete the next walkthrough, you’ll create a new list that looks like Figure 6-13. Name the
list stats, which will represent a list of players with some associated game stats (all fields of type
“Single line of text”). Change the Title column to be Name, and then add four more columns that
will replicate a simple stats list (Goals, Assists, PIM, and Games Played).

[Fl @ nwame Goals Assists PIM Games Played
John Doe & Hew
Kenneth Krane inew
Steve Tries Efuew

Jason Goody & Hew

Nom o e M

Alyme Zarin £ rew

B N O O @

Jamie Speedster & Hew

= A
[T - T - T - T - T O

Boris Goon &inew 1] 20

FIGURE 6-13 Stats list

Visual Web Parts | 235

The list shown in Figure 6-13 contains a number of players with their goals, assists, penalties in
minutes (PIM), and the number of games played. You’ll create a Visual Web part that pulls this data
into a control, then provides an aggregated stat for each player, and also enables you to edit the sta-
tistics from within the Visual Web part.

Also, one of the controls you’ll use in this exercise is the UpdatePanel control. The UpdatePanel is
an Ajax server control that reduces full-page postbacks by enabling partial-page rendering. This pro-
vides a better experience for the user by mitigating the need for the entire page to refresh and update
when you’re executing an event within one Web part on the page.

With the list created, let’s walk through the exercise.

Creating a Visual Web Part

Code file [AjaxVWP.zip] available for download at Wrox.com.

Visual Web parts are very powerful Web parts that provide a built-in Designer to create your Ul To
create a Visual Web part, follow these steps:

1. Click File = New Project ©» Empty SharePoint Project. Provide a name for your project (for exam-
ple, ajaxvwp), and click OK. When prompted, select “Deploy as farm solution,” and click Finish.

2. When the project has been created, right-click the project and click Add > New Item. From the
SharePoint 2010 template folder, select the “Visual Web item” template. Provide a name for the
new Web part (AjaxvisualwebPart), and click OK.

3. You're going to add a custom object to the project, so right-click the project and click Add => Class.
Provide a name for the class (for example, Playerstat), and click OK. The class will have six prop-
erties, which you can set as string variables, as shown in the following (bolded) code snippet:
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;

Solution Explorer > 1
namespace AjaxVWP e
e Solution "WroxVisualWPProject’ (1 project)
{ ld ject' (L proj
4 5 WroxVisualWPProject
class PlayerStat b [Ed Properties
{ > [z References
public string playerName { get; set; } “ Lﬁl%\
. s . . 4 |l5gg PlayerStatsFeature
publll'c Str:!'ng gamesplayed { get; set; } 4 LrE'm PlayerStatsFeature feature
public string numOfGoals { get; set; } % PlayerStatsFeature. Templatexml
public string numOfAssists { get; set; } 4 | Package
public string numOfPIM { get; set; } P 'ﬁyt;‘t‘:tgse'paCkage
. . T
public string playerAVG { get; set; } 2] Elementsaxm
} &) PlayerStats.cs
} || PlayerStats.webpart
4 PlayerStatslserControl ascx
4 B PlayerStatsUserControl.ascx.cs
. . . . ‘@ PlayerStatsUserControl ascx.designer.cs
4. At this point, your project should contain a number of 5} key.snk

files that look similar to the project structure shown in
Figure 6-14. FIGURE 6-14 Project structure

236

CHAPTER 6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

With the project created, since you already have your data source

(the SharePoint list), you’ll now want to create the Ul for the Visual Player Stats
Web part. To do this, right-click the .ascx node (for example, . T
AjaxVisualWebPartUserControl.ascx node) and then click View Column0 Column1/Column2

Designer. Click View &> Toolbox to see the controls that you can drag
and drop onto the Designer.

FERRE
FEREE

Drag and drop an UpdatePanel control onto the Designer and pro-

vide a new ID (for example, viewbDataUpdatePanel). Switch to source
view, and then add a contentTemplate element to the UpdatePanel Load
object as shown in the following code snippet:

L FEREE

Add Player Star
<asp:UpdatePanel ID="viewDataUpdatePanel" runat="server">
<ContentTemplate> Player. I—
</ContentTemplate> Games: I—
</asp:UpdatePanel> Goals: | .
Assisls:l—
PIM: |—
Now, add eight labels, one datagrid, three buttons, and four textboxes M M
to the Designer’s surface — the datagrid and one button should be
added to the updatepranel. When you’re finished, the controls will FIGURE 6-15 Visual Web
likely be arranged similarly to those shown in Figure 6-15. part Ul layout

Table 6-1 provides a summary of the control type and names that you’ll add to the Visual Web part.

TABLE 6-1 Control Type and Names

TYPE NAME
UpdatePanel viewDataUpdatePanel
Label 1blTitle, 1blRead, 1blWrite, 1blPlayer, lblGames, 1blGoals,

1blAssists, 1b1PIM

Datagrid statDataGrid
Button btnDataGridLoad, btnAdd, btnClear
Textbox txtbxGames, txtbxGoals, txtbxPIM

Click the Source tab in the Visual Studio IDE, and you’ll see the source that makes up the user con-
trol that you’ll load as a part of this Web part. The code should look similar to the following code
snippet when you’re done adding the controls to the Designer. Note that, in the following code,
the part of the application that reads data will be rendered within the Ajax control, and the part of
the application that writes data will render outside of the Ajax UpdatePanel control. Also note a
table has been used to amend the Visual Web part UI to be more structured. This is not the Table
server-side control in the Toolbox, but rather a regular HTML table.

<%@ Assembly Name="S$SharePoint.Project.AssemblyFullNameS$" %>
<%@ Assembly Name="Microsoft.Web.CommandUI, Version=14.0.0.0, Culture=neutral,

Visual Web Parts |

237

PublicKeyToken=71e9bcell1e9429c" %>
<%@ Register Tagprefix="SharePoint" Namespace="Microsoft.SharePoint.WebControls"
Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" %>
<%@ Register Tagprefix="Utilities" Namespace="Microsoft.SharePoint.Utilities"
Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcelll1e9429c" %>
<%@ Register Tagprefix="asp" Namespace="System.Web.UI" Assembly=
"System.Web.Extensions, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" %>
<%@ Import Namespace="Microsoft.SharePoint" %>
<%@ Register Tagprefix="WebPartPages" Namespace="Microsoft.SharePoint.WebPartPages"
Assembly="Microsoft.SharePoint, Version=14.0.0.0, Culture=neutral,
PublicKeyToken=71e9bcellle9429c" %>
<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="AjaxVisualWebPartUserControl.ascx.cs"
Inherits="AjaxVWP.AjaxVisualWebPart.AjaxVisualWebPartUserControl" %>
<asp:Label ID="1blTitle" runat="server" Text="Player Stats" Font-Size="Large"
Font-Bold="True"></asp:Label>

<asp:UpdatePanel ID="viewDataUpdatePanel" runat="server">
<ContentTemplate>
<asp:Label ID="1lblRead" runat="server" Text="View Existing Player Stats"
Font-Italic="True"></asp:Label>

<asp:Gridview ID="statDataGrid" runat="server"
Height="69px">
</asp:Gridview>

<asp:Button ID="btnDataGridLoad" runat="server"
Text="Load" />

<hr />

<asp:Label ID="1lblWrite" runat="server" Text="Add Player Stat"
Font-Italic="True"></asp:Label>

</ContentTemplate>
</asp:UpdatePanel>
<table border="0" width="25%"><tr>
<td><asp:Label ID="lblPlayer" runat="server" Text="Player:"></asp:Label></td>
<td><asp:TextBox ID="txtbxName" runat="server" Width="157px"></asp:TextBox>
</td></tr><tr>
<td><asp:Label ID="1lblGames" runat="server" Text="Games:"></asp:Label></td>
<td><asp:TextBox ID="txtbxGames" runat="server" Width="157px"></asp:TextBox>
</td></tr><tr>
<td><asp:Label ID="1blGoals" runat="server" Text="Goals:"></asp:Label></td>
<td><asp:TextBox ID="txtbxGoals" runat="server" Width="157px"></asp:TextBox></td>
</tr><tr>
<td><asp:Label ID="1lblAssists" runat="server" Text="Assists:"></asp:Label></td>
<td><asp:TextBox ID="txtbxAssists" runat="server" Width="157px"></asp:TextBox></td>
</tr><tr>
<td><asp:Label ID="1blPIM" runat="server" Text="PIM:"></asp:Label></td>
<td><asp:TextBox ID="txtbxPIM" runat="server" Width="157px"></asp:TextBox></td>

238 | CHAPTER6 BUILDING AND DEPLOYING SHAREPOINT WEB PARTS

</tr><tr><td></td>

<td><asp:Button ID="btnAdd" runat="server" Text="Add"/>

 <asp:Button ID="btnClear" runat="server" Text="Clear"
/>

 </td></tr></table>

9. With the UI now complete, you’ll add some events to the application. Double-click each of the but-
tons to generate the placeholder events in your code behind.

10. After you do this, if you right-click the .ascx file and select View Code, you should see something
similar to the following code snippet.

using System;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;
using SPClientOM = Microsoft.SharePoint.Client;
using Microsoft.SharePoint.Client;

using System.Collections.Generic;

using System.Ling;

using System.Data;

namespace AjaxVWP.AjaxVisualWebPart
{

public partial class AjaxVisualWebPartUserControl : UserControl

{

protected void Page_Load(object sender, EventArgs e)
{

protected void btnDataGridLoad Click(object sender, EventArgs e)
{

protected void btnEdit_Click(object sender, EventArgs e)
{

protected void btnAdd_Click(object sender, EventArgs e)
{

11. Switch to the code view of the Visual Web part, and then add the following bolded code to your
code behind. Note that you will want to set the mySiteURL string variable to your own SharePoint
server URL.
using System;

using System.Web.UI;
using System.Web.UI.WebControls;

Visual Web Parts | 239

using System.Web.UI.WebControls.WebParts;
using System.Collections.Generic;
using Microsoft.SharePoint;

namespace AjaxVWP.AjaxVisualWebPart
{
public partial class AjaxVisualWebPartUserControl : UserControl

{

List<PlayerStat> listOfPlayerStats = new List<PlayerStat>();
//Set this string to your own SharePoint site URL.
string mySiteURL = "http://intranet.contoso.com";

protected void Page_Load(object sender, EventArgs e)
{
}

protected void btnDataGridLoad_Click(object sender, EventArgs e)

{
statDataGrid.Width = Unit.Percentage(100);
statDataGrid.CellPadding = 1;
statDataGrid.HeaderStyle.Font.Bold = true;
statDataGrid.HeaderStyle.CssClass = "ms-vhl";
statDataGrid.GridLines = GridLines.Horizontal;
statDataGrid.BorderWidth = Unit.Pixel(3);
statDataGrid.HeaderStyle.HorizontalAlign = HorizontalAlign.Left;

using (SPSite mySiteCollection = new SPSite(mySiteURL))
{
using (SPWeb web = mySiteCollection.OpenWeb())
{
SPList myList = web.Lists["Stats"];

foreach (SPListItem tempListItem in myList.Items)

{
PlayerStat tempStat = new PlayerStat():;
tempStat.playerName = tempListItem["Title"].ToString();
tempStat.numOfGoals = tempListItem["Goals"].ToString();
tempStat.numOfAssists = tempListItem["Assists"].ToString();
tempStat . .numOfPIM = tempListItem["PIM"].ToString():
tempStat.gamesPlayed = tempListItem["Games"].ToString();
tem