

Beginning Silverlight 2
From Novice to Professional

■ ■ ■

Robert Lair

Beginning Silverlight 2: From Novice to Professional

Copyright © 2009 by Robert Lair

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-952-5

ISBN-10 (pbk): 1-59059-952-7

ISBN-13 (electronic): 978-1-4302-0570-8

ISBN-10 (electronic): 1-4302-0570-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Stefan Turalski
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Tracy Brown Collins
Copy Editor: Marilyn Smith
Associate Production Director: Kari Brooks-Copony
Production Editor: Elizabeth Berry
Compositor: Octal Publishing, Inc.
Proofreader: Linda Seifert
Indexer: Broccoli Information Management
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

This book is dedicated to my mother, Linda, who passed after a long fight with
cancer on January 6, 2008. Your courageous battle was and will always be an

encouragement to me and all who knew you. I love you and miss you. I also would
like to dedicate this book to my dad, Ken, who lost the gift most precious to him.

Your strength has been an inspiration to me. I love you, Dad.

v

Contents at a Glance

About the Author . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Welcome to Silverlight 2 . 1

■CHAPTER 2 Introduction to Visual Studio 2008 . 13

■CHAPTER 3 Layout Management in Silverlight . 35

■CHAPTER 4 Silverlight Form Controls . 57

■CHAPTER 5 Data Binding and Silverlight List Controls . 85

■CHAPTER 6 Data Access and Networking . 117

■CHAPTER 7 Local Storage in Silverlight . 135

■CHAPTER 8 Introduction to Expression Blend. 167

■CHAPTER 9 Styling in Silverlight . 189

■CHAPTER 10 Transformations and Animation. 221

■CHAPTER 11 Custom Controls . 245

■INDEX . 269

vii

Contents

About the Author . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Welcome to Silverlight 2 . 1

The Evolution of the User Interface . 1

Rich Internet Application Solutions . 3

What Is Silverlight? . 3

Benefits of Silverlight. 5
Cross-Platform/Cross-Browser Support. 6
Cross-Platform Version of the .NET Framework 6

XAML, a Text-Based Markup Language. 7

Use of Familiar Technologies . 7

Small Runtime and Simple Deployment. 8
The Silverlight Development Environment . 9

Summary . 11

■CHAPTER 2 Introduction to Visual Studio 2008 . 13

Just What Is Visual Studio?. 13

What’s New in Visual Studio 2008? . 14

JavaScript IntelliSense and Debugging . 14

Multi-Targeting Support . 26

Transparent IntelliSense Mode . 28

Building Your First Silverlight Application in Visual Studio 29

Try It Out: Hello World in Silverlight 2. 29

Hosting Your Silverlight Application: Web Site or
Web Application? . 33

Summary . 34

viii ■C O N T E N T S

■CHAPTER 3 Layout Management in Silverlight . 35

Layout Management . 35

The Canvas Panel . 36

Try It Out: Using the Canvas Panel . 37

Filling the Entire Browser Window with Your Application. 41

The StackPanel Control . 42

Try It Out: Using the StackPanel Control . 42

Try It Out: Nesting StackPanel Controls . 45

The Grid Control . 47

Try It Out: Using the Grid Control . 48

Try It Out: Nesting a Grid and Spanning a Column 52

Summary . 55

■CHAPTER 4 Silverlight Form Controls . 57

Setting Control Properties . 57

Attribute Syntax. 57

Element Syntax . 58

Type-Converter–Enabled Attributes . 58

Attached Properties . 59

Nesting Controls Within Controls . 59

Handling Events in Silverlight . 61

Try It Out: Declaring an Event in XAML . 61

Try It Out: Declaring an Event Handler in Managed Code 65

The Border Control. 69

User Input Controls . 73

Try It Out: Working with the TextBox Control. 73

Try It Out: Working with the RadioButton and
CheckBox Controls . 77

Extended Controls . 81

Adding an Extended Control . 81

Try It Out: Using the GridSplitter . 82

Summary . 84

■CHAPTER 5 Data Binding and Silverlight List Controls 85

Data Binding . 85

The Binding Class . 86

Try It Out: Simple Data Binding in Silverlight. 86

■C O N T E N T S ix

The DataGrid Control . 95

Try It Out: Building a Simple DataGrid . 96

The Columns Collection . 101

Try It Out: Building a DataGrid with Custom Columns 104

The ListBox Control . 110

Default and Custom ListBox Items . 111

Try It Out: Building a ListBox with Custom Content 112

Summary . 116

■CHAPTER 6 Data Access and Networking . 117

Data Access in Silverlight Applications . 117

Accessing Data Through Web Services . 118

Try It Out: Accessing Data Through a WCF Service 118

Using a Standard WCF Service with Silverlight 130

Accessing Services from Other Domains . 130

Accessing Data Through Sockets . 131

Summary . 133

■CHAPTER 7 Local Storage in Silverlight . 135

Working with Isolated Storage . 135

Using the Isolated Storage API . 136

Try It Out: Creating a File Explorer for Isolated Storage 139

Managing Isolated Storage . 162

Viewing and Clearing Isolated Storage . 162

Try It Out: Increasing the Isolated Storage Quota 163

Summary . 166

■CHAPTER 8 Introduction to Expression Blend . 167

Key Features in Expression Blend 2. 168

Visual XAML Editor . 168

Visual Studio 2008 Integration . 168

Split-View Mode . 169

Visual State Manager and Template Editing Support 170

World-Class Timeline . 170

Try It Out: Working with Projects in Expression Blend 2 171

x ■C O N T E N T S

Exploring the Workspace . 175

Toolbox . 175

Project Panel . 178

Properties Panel . 178

Objects and Timeline Panel . 180

Laying Out an Application with Expression Blend 180

Working with the Grid Control in Expression Blend 180

Try It Out: Editing a Layout Grid with Expression Blend 180

Summary . 188

■CHAPTER 9 Styling in Silverlight . 189

Inline Properties . 189

Try It Out: Setting Inline Properties with Visual Studio 190

Try It Out: Setting Inline Properties with Expression Blend 197

Silverlight Styles. 206

Try It Out: Using Styles As Static Resources 208

Defining Styles at the Application Level . 215

Silverlight Style Hierarchy . 217

Summary . 219

■CHAPTER 10 Transformations and Animation . 221

Introduction to Silverlight 2 Animation . 221

Silverlight Storyboards . 222

Types of Animation in Silverlight. 223

Programmatically Controlling Animations . 225

Using Expression Blend to Create Animations . 228

Viewing a Storyboard in the Expression Blend Timeline 228

Try It Out: Creating an Animation with Expression Blend. 229

Creating Transformations in Silverlight . 236

Transformation Types . 236

Try It Out: Using Expression Blend to Transform Silverlight
Objects . 239

Summary . 243

■C O N T E N T S xi

■CHAPTER 11 Custom Controls . 245

When to Write Custom Controls . 245

Silverlight Control Toolkit . 246

Silverlight Control Model . 248

Parts and States Model . 248

Dependency Properties . 249

Creating Custom Controls in Silverlight 2 . 250

Implementing Custom Functionality . 251

Try It Out: Building a Custom Control . 251

Summary . 268

■INDEX . 269

xiii

About the Author

■ROBERT LAIR has been working with .NET technologies since before its
alpha release, and built the original IBuySpy Store and Portal applications
that were used by Microsoft to introduce ASP.NET to the development
community. He is the author of Pure ASP.NET (Sams, 2002), a reference
for web development in the .NET Framework, and portions of ASP.NET
for Developers, as well as numerous magazine articles on the topic of .NET.
Robert has also been a speaker at a number of .NET technical conferences.
Technologies in which Robert specializes include Silverlight, CRM–Live

service integration, mainframe modernization to .NET, ASP.NET custom application develop-
ment, and SharePoint development and integration.

Currently, Robert works as an independent consultant, offering development and architect
services to companies worldwide. Follow Robert on Twitter at http://www.twitter.com/robertlair
and on the Web at http://www.robertlair.com.

xv

Acknowledgments

There are a number of people to whom I would like to express my appreciation—people who
have helped me in many ways. This book proved to be a much greater challenge than I had
anticipated, as throughout the course of writing, a number of life events crept in, including the
death of my mom. Without these people, this book would never have been possible.

First and foremost, I would like to thank my loving and inspiring wife, Debi. While I spent
hours in my office writing, she picked up the slack around the house, and through it all provided
me with love, support, and a lighthouse that I could always turn to and refocus on. I cannot
thank her enough for the sacrifices she has endured, and for always being there. I would also
like to thank my son, Max, who gave up a great deal of time with his dad. I hope this book is
proof that you can accomplish anything if you put your mind to it and have the perseverance to
see it through. I look forward to once again giving you the time you both deserve and to being a
family again.

I would like to thank the many people at Apress who made this book happen. I would especially
like to thank Tracy Brown Collins, Ewan Buckingham, Marilyn Smith, Elizabeth Berry, Dominic
Shakeshaft, and Stefan Turalski. Without all of your hard work, this book would never have
happened. Thank you all.

Through life’s many challenges, everyone needs someone to whom they can turn. I would
like to thank a great friend of mine, Paul Strozier, for all of his support and encouragement, and
especially for his friendship. True friends are priceless. Thank you, Paul, for everything.

And finally, I would like to shout out from Gooblicious to Warclock, Essy, and the members
of Slighted and Distant Beliefs, who provided me with friendship and an escape when I
needed one.

xvii

Introduction

Welcome to Beginning Silverlight 2: From Novice to Professional. This book will provide you
with an introduction to Silverlight: what it is, what it means to you as a developer, and how to
begin developing Silverlight-enabled applications. You’ll not only read about the features of the
Silverlight development environment, but also work through many hands-on examples that
demonstrate exactly how to use those features to create rich Internet applications (RIAs).

Who Should Read This Book
This book is written for application developers who want to get started with Silverlight 2. It
assumes that you have some experience developing applications using technologies related to
Microsoft’s ASP.NET, and have worked with Microsoft Visual Studio. You should be familiar
with the JavaScript, C#, and XML languages.

How This Book Is Organized
Each chapter focuses on a particular area of Silverlight and contains one or more “Try It Out”
exercises that allow you to apply what you have learned. Here is a summary of what each
chapter includes:

• Chapter 1, “Welcome to Silverlight 2,” gives you an introduction to RIAs and Silverlight.
You will also learn about the tools used in developing Silverlight-enabled applications.

• Chapter 2, “Introduction to Visual Studio 2008,” introduces Visual Studio 2008 and the
important new features offered in this version. In this chapter, you will build your first
Silverlight application.

• Chapter 3, “Layout Management in Silverlight,” discusses Silverlight’s flexible layout
management system, which lets you specify how controls will appear in your applications.
It describes Silverlight 2’s layout management controls in depth.

• Chapter 4, “Silverlight Form Controls,” introduces the common form controls that are
provided with Silverlight 2. You will continue to work with these controls throughout the
book.

• Chapter 5, “Data Binding and Silverlight List Controls,” looks at the Silverlight 2 controls
that display lists of data and how to bind data to these controls. You’ll see that these
controls are flexible and can show data in unique ways.

xviii ■I N T R O D U C T I O N

• Chapter 6, “Data Access and Networking,” describes how data access in Silverlight appli-
cations works compared with data access in traditional applications. It then explores
mechanisms for accessing data in Silverlight applications, focusing on the use of web
services.

• Chapter 7, “Local Storage in Silverlight,” covers localized storage in Silverlight 2, which is
handled by its isolated storage feature. You’ll learn how to store user-specific data for
your application and have that data persist over browser instances.

• Chapter 8, “Introduction to Expression Blend,” gets you started with Microsoft Expression
Blend, which lets you edit XAML documents visually.

• Chapter 9, “Styling in Silverlight,” describes how you can control the styles of your
Silverlight application’s user interface elements. You’ll learn about defining style prop-
erties inline using both Visual Studio and Expression Blend, as well as how to use
Silverlight styles.

• Chapter 10, “Transformations and Animation,” covers creating animations in Silverlight 2.
You’ll see how Expression Blend 2 helps you create complex animations and transformations.

• Chapter 11, “Custom Controls,” explains the basics of creating custom controls in
Silverlight 2. First, it covers when it might be appropriate to write custom controls
in Silverlight 2, and then it describes how to build a custom control that has several
different states.

By the time you finish this book, you will have a firm foundation in Silverlight 2, and will be
able to create your own Silverlight-enabled applications.

1

■ ■ ■

C H A P T E R 1

Welcome to Silverlight 2

This chapter introduces Silverlight, a Microsoft cross-browser, cross-platform plug-in
that allows you to create rich interactive (or Internet) applications (RIAs) for the Web. It
begins with a brief look at the evolution of user interfaces, and then provides an overview
of Silverlight. You’ll learn how Silverlight fits into RIA solutions, the benefits it brings to
developers, and the tools involved in developing Silverlight-enabled applications.

The Evolution of the User Interface
Software user interfaces are constantly evolving and improving. I remember back when I
was still working with an early version of Windows and looking at Mac OS with envy. Then
I remember seeing Linux systems with radical new desktop interfaces. More recently, I
found myself looking again at the Mac OS X Dock (see Figure 1-1) and wanting that for my
Windows XP machine—to the point where I purchased a product that mimicked it. I was
dedicated to Windows through it all, but I was envious of some of the user experiences the
different environments offered.

Figure 1-1. The Mac OS Dock feature

The evolution of the user interface continues in the Windows Vista operating system.
One example is the interface for switching between applications. In past versions of
Windows, when you pressed Alt+Tab to switch from one program to another, you would
see a rather ugly interface offering nothing but icons. Today, when you press Alt+Tab in
Vista, you get a much more user-friendly interface, presenting a clipping of the content of
each window as you tab through your choices, as shown in Figure 1-2.

2 C H A P T E R 1 ■ W E L CO M E T O S I L V E R L I G H T 2

Figure 1-2. Windows Vista Alt+Tab user interface

In addition, Vista offers an even cooler way to switch between applications using the
Desktop Window Manager. When you press the Windows key along with Tab, Vista
displays all open windows in a cascading shuffle effect, which allows you to see a large-
scale version of each window (see Figure 1-3). And if there is animated content in any of
the windows, it actually shows up in the view! So, if you have a video or a game playing in
one of the windows, you will see that in action as you shuffle through the windows.

Figure 1-3. Windows Vista Windows+Tab cascading windows shuffle effect

These features reflect how developers have built standard desktop applications, which
are meant to be installed and executed on individual client machines. Desktop applica-
tions allow for very rich and responsive user interfaces and additional features, such as
offline support. Performance of the application depends on the machine on which it is
installed. A challenge for desktop applications is deployment. The application needs to
have a code base for each target platform, and every machine needs to have the applica-
tion installed and maintained.

C H A P T E R 1 ■ W E L C O M E T O S I L V E R L I G H T 2 3

In contrast, we have web applications, which are HTML-focused programs designed to
run within a browser and across platforms. For the Microsoft-based developer, this has
recently meant developing with ASP.NET and building web services to offer services over
the Internet. The focus of most of the logic and code has been placed on the server for the
benefit of application performance. The price has been a poor user interface.

With recent technologies, the line between the desktop and web approaches for devel-
oping applications has started to blur. As a result, a third approach has surfaced. This new
approach is termed RIA, which is defined as a web application that has the features and
functionality found in traditional desktop applications.

Rich Internet Application Solutions
The concept of RIA has been around for quite some time, but the term rich Internet appli-
cation was first used in 2002 in a Macromedia white paper. Before then, the terms remote

scripting and X Internet were used to describe the concept.
Today, many different solutions fit the description of RIAs, but there is one consistent

characteristic: all RIA solutions involve a runtime that runs on the client machine and
architecturally sits between the user and the server.

In recent years, the technology that is most commonly used in RIAs is Flash. When
Flash was introduced, it brought to the Web rich user experiences never seen before.
However, due to the lack of tools allowing Microsoft .NET developers to integrate Flash
into their applications, to those developers, Flash just seemed like a tool for adding some
pretty effects to a web page, but nothing functional.

Then a wonderful thing happened when Adobe purchased Macromedia. All of the
sudden, Flash was married to some of the development tools offered by Adobe. Microsoft
retaliated by announcing Silverlight, formerly known as Windows Presentation Foundation
Everywhere (WPF/E). Silverlight is the technology that many .NET developers have been
waiting for.

But what exactly is Silverlight? And what impact does Silverlight actually have on us as
.NET developers? Well, I’m glad you asked.

What Is Silverlight?
As I stated in the previous section, all RIAs have one characteristic in common: a client
runtime that sits between the user and the server. In the case of Microsoft’s RIA solution,
Silverlight is this client runtime. Specifically, Silverlight is a cross-platform, cross-browser
plug-in that renders user interfaces and graphical assets on a canvas that can be inserted
into an HTML page.

4 C H A P T E R 1 ■ W E L CO M E T O S I L V E R L I G H T 2

The markup used to define a Silverlight canvas is called Extensible Application Markup
Language (XAML, pronounced “zammel”). XAML is an XML-based language that is similar
to HTML in some ways. Like HTML, XAML defines which elements appear, as well as the
layout of those elements. However, unlike HTML, XAML goes far beyond simple element
definition and layout. Using XAML, you can also specify timelines, transformations,
animations, and events.

The following is an example of a Silverlight canvas defined in XAML:

<Canvas

 xmlns="http://schemas.microsoft.com/client/2007"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="640" Height="480"

 Background="White"

 x:Name="Page">

 <Rectangle

 RenderTransformOrigin="0.5,0.5"

 x:Name="rectangle"

 Width="292"

 Height="86"

 Fill="#FFFF0000"

 Stroke="#FF000000"

 StrokeThickness="3"

 Canvas.Left="115"

 Canvas.Top="70">

 </Rectangle>

</Canvas>

Figure 1-4 shows this canvas in Microsoft Expression Blend, the design tool used to edit
and create XAML for Silverlight applications. You can see that this XAML simply defines a
rectangle on a canvas, as well as the properties associated with that rectangle, including
its name, location, size, color, and border.

This simple example is just intended to give you an idea of what XAML looks like. You’ll
learn more about XAML in upcoming chapters. For now, let’s continue by looking at the
benefits of Silverlight.

C H A P T E R 1 ■ W E L C O M E T O S I L V E R L I G H T 2 5

Figure 1-4. A basic XAML canvas in Microsoft Expression Blend

Benefits of Silverlight
Naturally, Silverlight offers all of the same benefits of RIAs, but there are a few features
that set it apart from other RIA solutions, including the following:

• It offers cross-platform/cross-browser support.

• It provides a cross-platform version of the .NET Framework.

• XAML is a text-based markup language.

• Silverlight uses familiar technologies.

• It’s easy to deploy the Silverlight runtime to clients.

Let’s take a closer look at each of these benefits.

6 C H A P T E R 1 ■ W E L CO M E T O S I L V E R L I G H T 2

Cross-Platform/Cross-Browser Support

When ASP.NET was released a number of years ago, one of the benefits touted was cross-
browser support. Developers would need to have only one code base, and that code base
would work in all modern browsers. For the most part, this is true. No matter which browser
you are using, the application will function. However, in order to receive all of the bells
and whistles offered by the ASP.NET controls, you must use the latest version of Internet
Explorer. If you are using any other browser, you actually get a downgraded version of the
web site, which contains fewer features.

Validation controls are a prime example. If you are using a browser that ASP.NET
recognizes as an “upscale” browser, you can take advantage of client-side validation. If
you are using any other browser, the validation controls still function, but require a post-
back to the server to do the validation. So, although ASP.NET is cross-browser, users can
get different experiences, depending on which browser they are using.

With Silverlight, this changes. Microsoft is once again pulling out the term cross-browser,
and also adding cross-platform, and this time they mean it. As a developer, you can create
a Silverlight application and rest assured that it will run exactly the same on all supported
platforms and browsers.

Currently, two platforms are supported. Naturally, the first is Windows-based platforms,
and the second is Mac OS platforms. As for browser support, Internet Explorer and Firefox
are currently covered. Microsoft has committed support for Safari as well, so it may be on
the list by the time you’re reading this book.

This leaves one large platform unsupported: Linux. Although Microsoft does not have
plans to support Linux, others do. The Mono project, which is sponsored by Novell, is an
open source initiative to develop and run .NET client and server applications on Linux,
Solaris, Mac OS X, Windows, and Unix. The Mono team has indicated that it will soon
have a Silverlight implementation, currently called the Moonlight runtime. With this
addition, developers will be able to develop Silverlight applications for Windows, Macin-
tosh, and Linux systems with one code base. Furthermore, the user experience will be
identical, no matter which platform you are using.

Cross-Platform Version of the .NET Framework

Silverlight 1.0 was released by Microsoft in the summer of 2007, but this version supported
only Ecma languages that are interpreted in the client. And although Silverlight 1.0 works
well for developers who are already familiar with client-side scripting, many developers
have their eyes on the second release of Silverlight, version 2. Silverlight 1.0 is more or less
in direct competition with Flash—some have called it Microsoft’s “Flash killer.” However,
things really get exciting with Silverlight 2.

C H A P T E R 1 ■ W E L C O M E T O S I L V E R L I G H T 2 7

Silverlight 2 contains its own cross-platform version of the .NET Framework, which
means it has its own version of the common language runtime (CLR), the full type system,
and a .NET Framework programming library that you can use in Visual Studio 2008 to
build rich user experiences in the browser.

XAML, a Text-Based Markup Language

Another advantage to Silverlight is that its foundation is based on a text-based markup
language. For other RIA solutions such as Flash, the base is a compiled file. This is not
nearly as friendly to developers as a text-based format, for obvious reasons.

XAML is very easy to write and modify. As an example, let’s say you want to change the
opacity of an object. If you were using Flash to do this, you would need to open the Flash
project file, find the right layer and object, and then make the adjustment there. You then
would need to recompile and republish the file. In contrast, with Silverlight, you simply
open the XAML file, change the opacity property of the object, and save the file.

Another advantage of XAML is that it can be created dynamically at runtime. If you
think about it, the implications of this are huge. Consider the similarities between HTML
and XAML. Both are text-based markup languages that have a decent similarity to XML.
HTML is the base foundation of files published on the Internet. Since HTML was intro-
duced, a number of technologies have been built on top of it. In the Microsoft camp, for
example, Active Server Pages (ASP) was first introduced to allow developers to dynami-
cally modify HTML at runtime. Today, we have ASP.NET. XAML has the same potential,
since it is a text-based markup language on which developers can expand.

Use of Familiar Technologies

Microsoft is very good at creating tools that make application development easy. The
Visual Studio integrated development environment (IDE) has been around for quite some
time, and although new features are continually added to the tool, the environment itself
has remained remarkably consistent.

Silverlight development is no different. At the core of developing Silverlight 2 applica-
tions is Visual Studio 2008, the latest version in Visual Studio’s long history. This gives
Silverlight a distinct advantage, as developers do not need to learn how to use a new
development environment.

In addition to Visual Studio, Microsoft has released a suite of tools called Expression
Studio. Included in this suite is Microsoft Expression Blend, which is used to edit and
create XAML for Silverlight applications. While Expression Blend looks completely
different, it still has many of the same elements as Visual Studio. In addition, Expression
Blend 2 works off of the same project as Visual Studio. This means that as you make
changes in each of the editors—opening a project in Visual Studio, and then opening the
same project in Expression Blend to edit the XAML—the edited files will request to be
refreshed when opened again in the other tool.

8 C H A P T E R 1 ■ W E L CO M E T O S I L V E R L I G H T 2

Small Runtime and Simple Deployment

Since Silverlight requires that a client runtime be installed on the client machine, it is vital
that this runtime has a small footprint and downloads quickly. Microsoft worked very
hard to get the installation size as small as possible. The developers clearly succeeded
with Silverlight 1.0, as the download size is a tiny 1MB. For Silverlight 2, however, they had
a harder chore ahead of them, since Silverlight 2 contains its own .NET Framework and
object library. Microsoft went to each .NET Framework team and allocated it a size to fit
its portion. The end result is astonishing—Silverlight 2 is approximately 4MB in size.

As for pushing the Silverlight runtime out to clients, Microsoft has provided a very easy
detection mechanism. If the client does not have the proper Silverlight runtime installed,
it will display a logo, as shown in Figure 1-5.

Figure 1-5. Silverlight runtime required logo

When users click the icon in the logo, they are taken to a web page that walks them
through the process of installing the Silverlight runtime. Once the runtime is finished
installing, the Silverlight application is immediately available to the user, as shown in the
example in Figure 1-6.

C H A P T E R 1 ■ W E L C O M E T O S I L V E R L I G H T 2 9

Figure 1-6. Silverlight application after installation of runtime

The Silverlight Development Environment
In the past, setting up an environment to work with Microsoft’s latest and greatest has
been relatively straightforward, typically involving only the setup of the latest version of
Visual Studio and the appropriate software development kit. However, with Silverlight,
the situation is quite a bit different due to the introduction of many new tools. Let’s take a
look at these new tools:

Silverlight 2 Runtime: This is the Silverlight client runtime, which is required on every
computer that wishes to view a Silverlight-enabled web application.

Silverlight 2 Software Development Kit (SDK): This SDK is a collection of samples,
Silverlight QuickStarts, documentation, and controls that are used to develop Silver-
light applications. This SDK is not required, but it is recommended that all Silverlight
developers download it.

Visual Studio 2008: As noted, this is the latest version of Microsoft’s IDE, the successor
to Visual Studio 2005 (see Figure 1-7). Installing Visual Studio 2008 also automatically
installs Microsoft .NET Framework 3.5. There are many new features in Visual
Studio 2008 that make it a highly recommended upgrade in general; for serious Silver-
light developers, Visual Studio 2008 is a must. Chapter 2 covers Visual Studio 2008 in
more depth.

10 C H A P T E R 1 ■ W E L CO M E T O S I L V E R L I G H T 2

Figure 1-7. Microsoft Visual Studio 2008

Silverlight Tools for Visual Studio 2008: This is an add-on for Visual Studio that provides
a Silverlight project system for developing Silverlight applications using C# or Visual
Basic. This add-on is required if you wish to take advantage of Visual Studio to build
Silverlight applications. The project system includes the following components:

• Visual Basic and C# project templates

• IntelliSense and code generators for XAML

• Debugging of Silverlight applications

• Web reference support

• Integration with Expression Blend

Microsoft Expression Blend 2: This is a “what you see is what you get” (WYSIWYG)
editor for XAML (see Figure 1-8). Expression Blend is similar to Adobe’s Flash MX
product. It allows you to lay out the XAML canvas, add timelines, and create transfor-
mations—all in a very user-friendly and visual way. Expression Blend 2 is covered in
Chapter 8.

C H A P T E R 1 ■ W E L C O M E T O S I L V E R L I G H T 2 11

Figure 1-8. Microsoft Expression Blend 2

Summary
In this chapter, we looked at the evolution of user interfaces in applications, as well as the
history of RIAs. I then introduced Silverlight, and talked about the benefits it brings to
developers today and how it fits into RIA solutions. Finally, you learned about the tools
involved in developing Silverlight-enabled applications.

Now it is time to get your hands dirty and start building some Silverlight applications!
In the next chapter, I will provide an introduction to Microsoft Visual Studio 2008, one of
the primary tools used to build Silverlight applications.

13

■ ■ ■

C H A P T E R 2

Introduction to
Visual Studio 2008

The previous chapter mentioned the tools required to develop RIAs that utilize the
Silverlight technology. At the core of all of these tools is Microsoft’s flagship development
product, Visual Studio. This chapter provides an introduction to the latest version, Visual
Studio 2008. You will learn about some of the new features that are particularly helpful for
developers building RIAs with Silverlight, and then work through an exercise to try out
Visual Studio 2008’s enhanced JavaScript IntelliSense and debugging support. Finally,
you will have an opportunity to create your first Silverlight application using Visual Studio
2008. Let’s get started with a brief introduction to the Visual Studio IDE.

Just What Is Visual Studio?
Any developer who has developed applications using technologies related to Microsoft’s
Visual Basic, ASP, or .NET has used some version of Visual Studio on a regular basis. This
is because Visual Studio is Microsoft’s primary development product. Whether you are
developing desktop applications, web applications, mobile applications, web services, or
just about any other .NET solution, Visual Studio is the environment you will be using.

Visual Studio is an IDE that allows .NET developers to implement a variety of .NET
solutions within the confines of one editor. An IDE is a software application that contains
comprehensive facilities to aid developers in building applications. Visual Studio fits this
description for a number of reasons. First, Visual Studio offers a very rich code-editing
solution. It includes features such as source code color-coding and code completion.
Second, it offers an integrated debugger, which allows you to place breakpoints in your
source code to stop execution at any given point, as well as step through the source line by
line, analyzing the state of objects and fields at any given point in the execution. Add to
these features rich support for application deployment, installation, and integration with
database services, and you can understand how Visual Studio is an extremely valuable
tool for developers.

14 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

■Note This book assumes a basic understanding of Visual Studio. If you’re new to Visual Studio, I recom-
mend that you get started with a book devoted to the subject, such as Beginning C# 2008, Second Edition by
Christian Gross (Apress, 2008).

THE HISTORY OF VISUAL STUDIO

Visual Studio has quite a history. The first version was called Visual Studio 97, which was most commonly
known for Visual Basic 5.0. In 1998, Microsoft released Visual Studio 6.0. That version included Visual
Basic 6.0, as well as Microsoft’s first web-based development tool, Visual InterDev 1.0, which was used
to develop ASP applications.

Next came the introduction of Microsoft .NET and ASP.NET 1.0, prompting Visual Studio.NET. As
Microsoft was enhancing and releasing new versions of Microsoft .NET and ASP.NET, it also continued
enhancing Visual Studio by releasing Visual Studio 2003 and then Visual Studio 2005. In addition, Micro-
soft has introduced a line of free development tools known as the Visual Studio Express tools, as well as
the Visual Studio Team System, which can be used by large programming teams to build enterprise-level
systems.

This brings us to the latest version of Visual Studio, which Microsoft developed under the code
name Orcas and has now dubbed Visual Studio 2008.

What’s New in Visual Studio 2008?
Microsoft has introduced a variety of new features in Visual Studio 2008, many of which
are geared toward helping developers build RIAs with Silverlight and related Microsoft
technologies, such as the Windows Communication Foundation (WCF), ADO.NET Data
Services, and Ajax. Here we will look at some of the new features in Visual Studio 2008 that
are particularly helpful to Silverlight application developers.

JavaScript IntelliSense and Debugging

Client-side scripting is a major component of developing RIAs. With the adoption of
technologies like Ajax and Silverlight, developers can integrate client-side scripting into
applications to enhance the user experience.

In response to the growing necessity for integrating client-side scripting into ASP.NET
applications, Microsoft has implemented an extensive upgrade to Visual Studio’s JavaScript
IntelliSense and debugging support. Here, we’ll look at the IntelliSense and debugging
improvements, and then try a test run to see them in action.

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 15

IntelliSense Improvements

The first major improvement of JavaScript IntelliSense in Visual Studio 2008 is type inference.
Since JavaScript is a dynamic language, a variable can be one of many different types,
depending on its current state. For example, in the following code snippet, the variable x
represents a different type each time it is assigned.

function TypeInference()

{

 var x;

 x = document.getElementById("fieldName");

 // x is now an HTML element

 alert(x.tagName);

 x = 10;

 // x is now an integer

 alert(x.toFixed());

 x = new Date();

 // x is now a date

 alert(x.getDay());

}

In this example, the variable x represents three different types during the execution of
the function:

• First, it represents an HTML element. When the user types x followed by a period,
the code-completion choices will be specific to an HTML element, as shown in
Figure 2-1.

Figure 2-1. Code completion with type inference for an HTML element

16 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

• In the next line, x is assigned to the value 10. At this point, x has become an integer,
and the code-completion choices that appear are specific to an integer, as shown in
Figure 2-2.

Figure 2-2. Code completion with type inference for an integer

• Finally, x is assigned to a date type. At this point, x represents a date type, and the
code-completion choices include date-specific properties and methods.

The second notable enhancement to JavaScript IntelliSense in Visual Studio 2008 is
the support for IntelliSense in external script files. In fact, there are many levels to this
enhancement. First, developers will have IntelliSense while they are editing the external
script files. Second, by adding a reference to other external script files, developers can get
IntelliSense for functions and fields from other script files. Finally, developers will receive
IntelliSense in the actual pages that reference the external script files.

Another new feature of JavaScript IntelliSense is the ability to add XML comments to
your code, which will provide additional information in the IntelliSense display. These are
similar to standard C# XML comments, which have been available in C# since it was initially
released. The following example shows some XML comments added to a JavaScript function.

function HelloWorld(FirstName, LastName)

{

 /// <summary>Returns a hello message to the given name</summary>

 /// <param name="FirstName">Person's First Name</param>

 /// <param name="LastName">Person's Last Name</param>

 /// <returns>string</return>

 return ("Hello " + FirstName + " " + LastName);

}

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 17

This is a function called HelloWorld, which simply accepts a first and last name and
returns a hello message customized for that person. This function is located in a file called
JScripts.js. Notice the four XML comments added to the start of the function. These provide
a summary of the function, give a description of the function’s parameters, and indicate
the value returned by the function. With these extra lines in place, when you add the func-
tion in your code, IntelliSense will now display this additional information. First, when
you start typing HelloWorld, Visual Studio’s JavaScript IntelliSense will help you complete
the method call. After you have typed HelloWorld and the opening parenthesis, it will
display the two parameters and their descriptions, as shown in Figure 2-3.

Figure 2-3. IntelliSense for a JavaScript function with parameter tags

Now that we have reviewed the JavaScript IntelliSense features added to Visual Studio
2008, let’s take a look at the new JavaScript debugging features, which are equally as
useful and long-awaited.

New Debugging Features

In previous versions of Visual Studio, ASP.NET developers were severely limited in the
debugging they could do in client-side scripting. Some of the more industrious developers
would find a third-party JavaScript debugging tool to assist them. However, the majority
of developers would simply use hacks, such as adding alerts throughout their client-side
scripting. When an alert was not hit, they could identify where the error had occurred and
at least determine the basic location where attention was required.

In Visual Studio 2008, JavaScript debugging is now integrated directly into the IDE, and
believe it or not, it actually works!

18 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

Figure 2-4 shows an example where a breakpoint was placed on a line of code in a local
script section of an ASP.NET page. At this point, you are in Visual Studio’s JavaScript
debugger, and you can step through the code one line at a time. If a line of code references
a function in an external script file (as is in the example), that script file will be opened,
and you will be able to debug that script file as well. In addition, you can hover the mouse
over code and see the current value of the objects while you are debugging your application.

Figure 2-4. JavaScript debugging in Visual Studio 2008

And as if that were not enough, Visual Studio’s JavaScript debugging also allows you to
use the Immediate window to enter JavaScript code directly while you are debugging. This
is extremely powerful, as it allows you to evaluate a line of code at any point in the process;
your entries will be processed immediately.

To get started debugging JavaScript in Visual Studio, there is only one setting that you
need to confirm within your browser to make certain that client-side debugging is enabled.
In Internet Explorer, choose View ➤ Internet Options. This will display the Internet Options
dialog box. Select the Advanced tab and find the two entries “Disable script debugging
(Internet Explorer)” and “Disable script debugging (Other).” Make certain both of these
options are unchecked, as shown in Figure 2-5, and click the OK button to close the
dialog box.

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 19

Figure 2-5. Uncheck the “Disable script debugging” boxes in the
Internet Explorer Internet Options dialog box.

Try It Out: JavaScript IntelliSense and Debugging

Now that we have looked at some of the new JavaScript IntelliSense and debugging
features in Visual Studio 2008, let’s take them for a test drive.

1. Start Visual Studio 2008 and select File ➤ New ➤ Project from the main menu, as
shown in Figure 2-6.

Figure 2-6. Selecting to create a new project

20 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

2. In the New Project dialog box, select Visual C# as the project type and ASP.NET Web
Application as the template. Name the project Ch2_JavaScriptOverview, as shown in
Figure 2-7.

Figure 2-7. Selecting to create an ASP.NET Web Application project

3. A new Web Application project will now be created for you, with the Default.aspx
file open. Select Project ➤ Add New Item from the main menu.

4. In the Add New Item dialog box, make sure that the Visual C# category is selected
on the left and select JScript File in the Templates pane. Name the file HelloWorld.js,
as shown in Figure 2-8. Then click the Add button.

Figure 2-8. Adding a JavaScript file to a project

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 21

5. The JavaScript file will be added to the project and opened by default. In this file,
add a new function called HelloWorld(), as follows:

function HelloWorld(FirstName, LastName)

{

 return ("Hello " + FirstName + " " + LastName);

}

As you typed the function, you got some IntelliSense assistance. Also notice the
color-coding of the JavaScript.

6. Now insert some XML comments to display some additional IntelliSense infor-
mation when the function is used. Add the following comments (shown in bold):

function HelloWorld(FirstName, LastName)

{

 /// <summary>Returns a hello message to the given name</summary>

 /// <param name="FirstName">Person's First Name</param>

 /// <param name="LastName">Person's Last Name</param>

 /// <returns>string</return>

 return ("Hello " + FirstName + " " + LastName);

}

7. Once again, select Project ➤ Add New Item. This time, select Web Form as the tem-
plate and name the file JSIntellisense.aspx.

8. In this new file, add a script reference to your HelloWorld.js script file. You can
either drag the script file to the page header or simply edit the HTML of the form
manually so that it appears as follows:

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title></title>

 <script src="HelloWorld.js" type="text/javascript"></script>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 </div>

 </form>

</body>

</html>

22 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

9. Next, add a local function that will run when the page loads. To do this, add a new
<SCRIPT> section and call the function in the page body’s onload event so that the
method is called when the page is loaded, as follows:

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

 <script src="HelloWorld.js" type="text/javascript"></script>

 <script type="text/javascript" language="javascript">

 function load()

 {

 }

 </script>

</head>

<body onload="load()">

 <form id="form1" runat="server">

 <div>

 </div>

 </form>

</body>

</html>

10. Now call the HelloWorld() method. Go ahead and start typing the boldfaced line of
code in the load function:

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Untitled Page</title>

 <script src="HelloWorld.js" type="text/javascript"></script>

 <script type="text/javascript" language="javascript">

 function load()

 {

 var message = HelloWorld("Bob", "Lair");

 alert(message);

 }

 </script>

</head>

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 23

<body onload="load()">

 <form id="form1" runat="server">

 <div>

 </div>

 </form>

</body>

</html>

You will see that Visual Studio’s IntelliSense tries to help you, as shown in Figure 2-9.
With HelloWorld selected in the IntelliSense box, you can simply press the Tab key,
and Visual Studio will automatically finish the function name. As you continue
typing, you will also notice that the XML comments you added for the function
appear (see Figure 2-3 earlier in the chapter).

Figure 2-9. HelloWorld appears in the JavaScript IntelliSense box.

11. When you are finished, press F5 to start the project. If you are prompted with a
Debugging Not Enabled dialog box, choose “Modify the Web.config file to enable
debugging,” as shown in Figure 2-10, and then click OK to continue.

24 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

Figure 2-10. VisualStudio will display this dialog box if debugging is not enabled.

12. When the page is loaded, you will see an alert box appear with your message, as
shown in Figure 2-11. Click OK to close the alert box.

Figure 2-11. Customized hello message

13. Next, let’s give JavaScript debugging a try. Stop the project and return to your Visual
Studio project.

14. In the JSIntellisense.aspx file, add a breakpoint by clicking in the gray area to the
left of the line calling the HelloWorld() function. In design mode, the breakpoint
will show up as a red dot with a white diamond, as shown in Figure 2-12.

15. Press F5 to restart the project. Visual Studio will appear in debug mode, with exe-
cution stopped on your line with the breakpoint. The breakpoint will show up as a
red dot with a yellow arrow, indicating the application process has been halted at
the breakpoint, as shown in Figure 2-13.

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 25

Figure 2-12. Adding a breakpoint

Figure 2-13. Debugging stopped at the inserted breakpoint.

16. Press F10 to step to the next line. If you hover your mouse over the variable
message, you will see its value is currently set to "Hello Bob Lair". You can also
see the value of message in the Locals window.

26 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

17. Let’s change the value of message. In the Immediate window, type in the following
line of code and press Enter to execute it.

message = HelloWorld("Robert", "Lair")

The Immediate window will change the value of message to the output of the new
call to the HelloWorld method, as shown in Figure 2-14.

Figure 2-14. Using the Immediate window to change a value

This example gave you an idea of the new JavaScript IntelliSense and debugging
features in Visual Studio 2008, which are far more advanced than anything ASP.NET
developers have had with previous versions. These should prove to be very valuable tools
in your client-side scripting tool belt.

Now, let’s continue looking at other new features in the latest version of Visual Studio.

Multi-Targeting Support

My company builds ASP.NET solutions for clients, and each time a new version of the
.NET Framework is released, we face a maintenance problem. Naturally, we would like to
take advantage of the new features of Visual Studio and the latest .NET Framework in our
new projects, but we must also be able to support the existing client base.

In the past versions of Visual Studio, projects were tied to a specific version of the .NET
Framework. For example, applications written in ASP.NET 1.0 needed to be upgraded to
ASP.NET 1.1 in order to take advantage of Visual Studio 2005.

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 27

An associated problem is how to handle existing systems that you only want to main-
tain, and have no intention of upgrading to a newer .NET Framework. For developers to
support such systems, while still taking advantage of newer Visual Studio features for
other projects, they would need to run different versions of Visual Studio side by side.
From a personal perspective, my worst situation was when I had Visual Studio 6.0, Visual
Studio .NET (2002), Visual Studio 2003, and Visual Studio 2005 installed on my laptop at
the same time. What a pain!

Microsoft has helped alleviate this problem by adding multi-targeting support to Visual
Studio 2008. This allows you to use Visual Studio 2008 for a specific targeted version of the
.NET Framework. So, your Visual Studio 2005 projects that are using .NET 2.0 or .NET 3.0
can be edited with Visual Studio 2008, without being forced to upgrade to .NET 3.5. In
addition, you can create new projects for a targeted platform. When you create a new
project in Visual Studio, you will notice a new drop-down menu at the top-right corner of
the New Project dialog box. As shown in Figure 2-15, this lists the different .NET Frame-
works. If you change the selection here, the new project will be targeted to that version of

the .NET Framework.

Figure 2-15. Muti-targeting support in Visual Studio 2008

If you open a Visual Studio 2005 project in Visual Studio 2008, you will be prompted to
upgrade the project by default. If you choose not to upgrade the project, the project will
be opened as a Visual Studio 2005 project within Visual Studio 2008.

28 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

■Note If you open a project using a version of the .NET Framework prior to 2.0, you will be forced to
upgrade. There is no support for these earlier versions in Visual Studio’s 2008’s multi-targeting feature. That
said, Microsoft is committed to keeping this feature working for future versions of Visual Studio. So, it seems
safe to say that developers will need only the latest version of Visual Studio installed from this point forward.

Transparent IntelliSense Mode

One of the problems with IntelliSense in past versions of Visual Studio was that the pop-up
window hid the source code. You would need to close the pop-up window to see the source
code beneath it, and then start typing again.

A new feature in Visual Studio 2008 is the semitransparent IntelliSense pop-up window.
When the IntelliSense window appears, you can press the Ctrl key to make the pop-up
window semitransparent, allowing you to see the source code under the window.
Figures 2-16 and 2-17 illustrate this feature.

Figure 2-16. Default IntelliSense pop-up window

This feature works in all languages across Visual Studio, including the JavaScript
IntelliSense covered earlier in this chapter.

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 29

Figure 2-17. Press the Ctrl key to make the IntelliSense pop-up window transparent.

Building Your First Silverlight Application in
Visual Studio
The best way to explore the Visual Studio IDE is to get your hands dirty and play around
with it. So, it’s time to build a Silverlight application.

Try It Out: Hello World in Silverlight 2

In this exercise, you’ll build the Hello World Silverlight 2 application. I personally hate the
Hello World sample, but it is used often because it is so simple and provides a good intro-
duction. And who am I to break with tradition? Let’s get started.

1. Start Visual Studio 2008 and Select File ➤ New ➤ Project from the main menu.

2. In the New Project dialog box, select Visual C# as the project type, and in the list
under that type, choose Silverlight. Select Silverlight Application as the template
and name the project Ch2_HelloWorld, as shown in Figure 2-18. Then click OK.

30 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

Figure 2-18. Creating a new Silverlight project

3. Visual Studio will display the Add Silverlight Application dialog box, informing you
that your Silverlight application needs to be hosted in an HTML web page. It offers
the choices of hosting the Silverlight application in a web site or within a project.
For this exercise, select Web Site and stick with the default name of Ch2_HelloWorldWeb,
as shown in Figure 2-19. Then click OK. See the next section for more information
about choosing whether to use a Web Site or Web Application project for your own
Silverlight applications.

Figure 2-19. The Add Silverlight Application dialog box

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 31

Visual Studio will now create the base project for you. Notice that there are two
projects created within your solution: one called Ch2_HelloWorldWeb and one called
Ch2_HelloWorld, as shown in Figured 2-20.

Figure 2-20. The default Silverlight project created in Visual Studio 2008

4. Visual Studio has already opened the Page.xaml file, which is where you will start
working. Let’s begin by adding a TextBlock control, which will display our “Hello
World!” message. Add the TextBlock within your Canvas object, as follows:

<UserControl x:Class="Ch2_HelloWorld.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <TextBlock x:Name="HelloMessage" Text="Hello World!" FontSize="30" />

 </Grid>

</UserControl>

5. Save the project and run it by pressing F5. If you see the Debugging Not Enabled
dialog box (as shown in Figure 2-10, earlier in this chapter), select “Modify the
Web.config to enable debugging” and click OK. The result should be as shown in
Figure 2-21.

32 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

Figure 2-21. Your first Silverlight application in Visual Studio 2008

6. I know this isn’t very interesting, so let’s change things up a bit by setting the
display message in the Page.xaml.cs code behind. In the code behind, you will
notice a constructor for your Page class, which contains one method called
InitializeComponent(). Under that method, change the Text property of your
TextBlock as follows (the line shown in bold):

namespace Ch2_HelloWorld

{

 public partial class Page : UserControl

 {

 public Page()

 {

 InitializeComponent();

 this.HelloMessage.Text = "Hello Universe!";

 }

 }

}

7. Rebuild the application and run it again. Your result should look like Figure 2-22.

Figure 2-22. The final result from our first Silverlight Application in Visual Studio 2008

8. Close the application.

C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8 33

And there you go! You have built your first Silverlight application. Of course, this applica-
tion is extremely simple, but you did get an idea of how things work in Visual Studio 2008.

Hosting Your Silverlight Application: Web Site or Web
Application?

In Visual Studio 2008, should you use a Web Site project or a Web Application project
to host your Silverlight application? The main difference between a Web Site and a Web
Application project is how the files are compiled and deployed. Each has its advantages
and disadvantages. In the end, the choice pretty much comes down to user preference.
Let’s take a quick look at each approach.

Using a Visual Studio Web Site

A Visual Studio Web Site is nothing more than a group of files and folders in a folder. There
is no project file; instead, the site simply contains all the files under the specific folder,
including all text files, images, and other file types.

A Visual Studio Web Site is compiled dynamically at runtime. An assembly will not be
created, and you won’t have a bin directory.

Here are some advantages of using a Visual Studio Web Site:

• You don’t need a project file or virtual directory for the site.

• The site can easily be deployed or shared by simply copying the folder containing
the site.

And here are some disadvantages of this approach:

• There is no project file that you can double-click to open the site in Visual Studio.
Rather, you must browse to the folder after opening Visual Studio.

• By default, all files within the site’s directory are included in the Web Site project. If
there are files within the site’s directory that you do not wish to be a part of the web
site, you must rename the file, adding the extension .exclude.

Using a Visual Studio Web Application Project

A Visual Studio Web Application project is the more traditional type of web project used
prior to Visual Studio 2005. When Microsoft developers introduced the “Web Site” concept,
they did not take into account the many developers who were comfortable with the project-
based solution approach. To accommodate those developers, Microsoft announced the
Visual Studio 2005 Web Application project as an add-on to Visual Studio 2005. In Visual
Studio 2008, this project type is once again a part of Visual Studio.

34 C H A P T E R 2 ■ I N T R O D U C T I O N T O V I S U A L S T U D I O 2 0 0 8

The following are some of the advantages of using a Web Application project:

• All of the code files are compiled into a single assembly, placed in the bin directory.

• You can easily exclude files from a project, since all files within the project are
defined within the project file.

• It’s easier to migrate from older versions of Visual Studio.

A disadvantage is that it can be more difficult to share your solution with others, if that
is your intent.

In the end, both approaches have their pros and cons. You need to determine which
one is more suitable for your application, depending on your specific purpose and goals.
For more information about these project types, refer to the MSDN documentation.

Summary
This chapter introduced Visual Studio 2008 and some of the new features offered in this
version, including the new JavaScript IntelliSense features, additional JavaScript debug-
ging support, and multi-targeting support. In addition, you built your very first Silverlight
application.

In the next chapter, we are going to start to dive into some of the Silverlight controls,
beginning with the layout management controls. These controls enable you to lay out
your Silverlight applications.

35

■ ■ ■

C H A P T E R 3

Layout Management in
Silverlight

The previous chapter provided an overview of Visual Studio 2008, one of the primary
tools used in developing Silverlight applications. In this chapter, we are going to start to
dive into some Silverlight 2 development by looking at the layout management controls.

As you have learned, Silverlight applications consist of a number of Silverlight objects
that are defined by XAML. Layout management involves describing the way that these
objects are arranged in your application. Silverlight 2 includes three layout management
controls: Canvas, StackPanel, and Grid. We will take a look at each of these in depth. By the
end of this chapter, you should have a good understanding of when to use which layout
control.

Layout Management
Silverlight provides a very flexible layout management system that lets you specify how
controls will appear in your Silverlight application. You can use a static layout as well as a
liquid layout that allows your layout to automatically adjust as your Silverlight application
is resized in the browser.

Each of the three layout controls provided in Silverlight 2 has its advantages and disad-
vantages, as summarized in Table 3-1.

 Let’s begin by looking at the most basic layout control: the Canvas panel.

36 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

The Canvas Panel
The Canvas panel is a basic layout control that allows you to position Silverlight objects
using explicit coordinates relative to the canvas location. You can position an object within
the Canvas panel by using two XAML attached properties: Canvas.Left and Canvas.Top.
Figure 3-1 shows how the object’s position is affected by these properties.

Figure 3-1. The XML attached properties Canvas.Top and Canvas.Left
allow you to position the Canvas.

Table 3-1. Layout Control Pros and Cons

Control Description Pros Cons

Canvas Based on absolute position
of controls

Very simple layout. Requires that every con-
trol have a Canvas.Top
and Canvas.Left property
attached to define its posi-
tion on the canvas.

StackPanel Based on horizontal or ver-
tical “stacks” of controls

Allows for a quick dynamic
layout. Nesting StackPanel
controls can provide some
interesting layouts.

The layout is limited to
stacks of items. Spacing
is limited to adding mar-
gins to the individual
controls and to adjusting
the alignment (with the
VerticalAlignment and
HorizontalAlignment
properties).

Grid Mimics using table elements
in HTML to lay out controls

The most flexible and
powerful layout control.
You can define just about
any type of layout using
the Grid control.

Grid definitions can get
somewhat complex at
times. Nesting Grid
components can be
confusing.

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 37

The objects within a Canvas panel have no layout policies placed on them by the layout
control and will not resize automatically when your application is resized within the
browser.

Try It Out: Using the Canvas Panel

Let’s try out a quick example of using the Canvas panel.

1. Open Visual Studio 2008 and create a new Silverlight application called
Ch3_CanvasPanel. Allow Visual Studio to create a Web Site project to host the
application.

2. When the project is created, you should be looking at the Page.xaml file. If you do
not see the XAML source, switch to that view so you can edit the XAML. Within the
main Grid element, add a Canvas element. Assign it a Width property of 300 and a
Height property of 300. In order to see the Canvas panel in the application, also set
the background color to green. The following XAML adds this Canvas:

<UserControl x:Class="Ch3_CanvasPanel.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <Canvas Background="Green" Width="300" Height="200">

 </Canvas>

 </Grid>

</UserControl>

At this point, your Silverlight application doesn’t look that exciting. It contains only
a single green rectangle positioned at the very center of your application, as shown
in Figure 3-2.

38 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

Figure 3-2. Default Canvas with a green background

3. Let’s add a button to this Canvas panel. Add the following code to place the button,
which has the label Button1, with a Width property of 100 and a Height property of 30.
(The Button control is covered in detail in Chapter 4.)

<UserControl x:Class="Ch3_CanvasPanel.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <Canvas Background="Green" Width="300" Height="200">

 <Button Width="100" Height="30" Content="Button 1" />

 </Canvas>

 </Grid>

</UserControl>

Figure 3-3 shows the button within the canvas.

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 39

Figure 3-3. Single button within the canvas

4. Let’s add another button to the Canvas, but this time, position it below and a bit to
the right of the first button by setting its Canvas.Top and Canvas.Left attached prop-
erties. Give this button the label Button 2, as follows:

<Grid x:Name="LayoutRoot" Background="White">

 <Canvas Background="Green" Width="300" Height="200">

 <Button Width="100" Height="30" Content="Button 1" />

 <Button Width="100" Height="30" Content="Button 2"

 Canvas.Left="10" Canvas.Top="40" />

 </Canvas>

</Grid>

At this point, you now have two buttons within the canvas, but at different loca-
tions, as shown in Figure 3-4. This is still not very exciting, but this is about as cool
as it gets with the Canvas.

40 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

Figure 3-4. Two buttons positioned relative to the canvas

5. Go ahead and run the solution to see the end result as it will appear in the browser.
The output is shown in Figure 3-5.

Figure 3-5. The canvas and two buttons as seen in a browser

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 41

Filling the Entire Browser Window with Your Application

By default, in a new Silverlight project, the root UserControl object is set to a width of 400
and a height of 300. In some cases, you may wish to set the width and height of your Silver-
light application within the browser. At other times, however, you will want your Silverlight
application to take up the entire window of your browser, and to resize as the browser is
resized. This is done very easily within Silverlight. When you wish for the width and height
to be set to 100%, simply omit the element’s Height and Width attributes.

As an example, the following source has been adjusted for the Canvas panel and the
Silverlight application to take up the entire browser:

<UserControl x:Class="Ch3_CanvasPanel.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Grid x:Name="LayoutRoot" Background="White">

 <Canvas Background="Green">

 </Canvas>

 </Grid>

</UserControl>

With the omission of the Height and Width declarations for UserControl and Canvas, when
you run the Silverlight application, you will see that the canvas takes up 100% of the
browser window, as shown in Figure 3-6. It will resize as the browser resizes.

Figure 3-6. Silverlight application taking up the entire browser

42 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

As you’ve seen, the Canvas panel is a simple layout control. It can be used very effec-
tively in a fixed layout. However, in most cases, you will want to use a static layout for your
applications. The StackPanel control provides a more fluid layout control.

The StackPanel Control
The StackPanel panel is a new layout control that was not present in Silverlight 1.0. It
provides developers with a quick layout option for positioning objects. The StackPanel
control allows you to position Silverlight objects in more of a flow layout, stacking objects
either horizontally or vertically. Figure 3-7 shows the basic concept of this layout control.

Figure 3-7. The StackPanel control orientations

Try It Out: Using the StackPanel Control

To better understand the StackPanel control, let’s run through an exercise.

1. In Visual Studio 2008, create a new Silverlight application named Ch3_StackPanel
and allow Visual Studio to create a Web Site project to host the application.

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 43

2. When the project is created you should be looking at the Page.xaml file. If you do
not see the XAML source, switch so that you can edit the XAML. Within the main
Grid element, add a StackPanel control and also three buttons with the labels Button 1,
Button 2, and Button 3. Give all three buttons a width of 100 and a height of 30. The
following XAML adds the StackPanel control and buttons (the new code is high-
lighted in bold in all the exercises):

<UserControl x:Class="Ch3_StackPanel.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <StackPanel>

 <Button Width="100" Height="30" Content="Button 1"></Button>

 <Button Width="100" Height="30" Content="Button 2"></Button>

 <Button Width="100" Height="30" Content="Button 3"></Button>

 </StackPanel>

 </Grid>

</UserControl>

At this point, your application should appear as shown in Figure 3-8. Notice that
the buttons are stacked vertically. This is because the default stacking orientation
for the StackPanel control is vertical.

Figure 3-8. The StackPanel control with its default orientation

44 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

3. Change the orientation of the StackPanel control to be horizontal by setting the
Orientation property to Horizontal, as follows:

<Grid x:Name="LayoutRoot" Background="White">

 <StackPanel Orientation="Horizontal" >

 <Button Width="100" Height="30" Content="Button 1"></Button>

 <Button Width="100" Height="30" Content="Button 2"></Button>

 <Button Width="100" Height="30" Content="Button 3"></Button>

 </StackPanel>

</Grid>

With this simple change, the buttons are now stacked horizontally, as shown in
Figure 3-9.

Figure 3-9. The StackPanel control with horizontal orientation

4. Notice that all the buttons are touching each other, which is unattractive. You can
easily space them out by using their Margin property. In addition, you can center
the buttons by setting the StackPanel control’s HorizontalAlignment property to
Center. Other options for HorizontalAlignment include Left, Right, and Stretch
(which stretches the content to the left and right). Make the following changes to
adjust the buttons:

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 45

<Grid x:Name="LayoutRoot" Background="White">

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

 <Button Width="100" Height="30" Content="Button 1" Margin="5"></Button>

 <Button Width="100" Height="30" Content="Button 2" Margin="5"></Button>

 <Button Width="100" Height="30" Content="Button 3" Margin="5"></Button>

 </StackPanel>

</Grid>

After you have made these changes, your buttons are spaced out nicely in the
center of the application, as shown in Figure 3-10.

Figure 3-10. The StackPanel control with buttons spaced apart and centered

Try It Out: Nesting StackPanel Controls

Microsoft designed the control framework so that any object can be contained within
another object. One way you can enhance your layout is by nesting a layout control within
another layout control. In this example, you will nest a StackPanel control within another
StackPanel control, but realize that you can nest any layout control within any other layout
control to get the exact layout functionality you are seeking.

46 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

1. In Visual Studio 2008, create a new Silverlight application named Ch3_NestedStackPanel
and allow Visual Studio to create a Web Site project to host the application.

2. In the Page.xaml file, add the following items:

• A StackPanel control to the root Grid with its Orientation property set to Horizontal
and the HorizontalAlignment property set to Center.

• Within that StackPanel, add two buttons with the labels Button Left and Button
Right.

• In between the two buttons, add another StackPanel with Orientation set to
Vertical and VerticalAlignment set to Center.

• Within that nested StackPanel, include three buttons with the labels Button Middle 1,
Button Middle 2, and Button Middle 3.

• All buttons should have a Margin property set to 5, and should have Height set to 30
and Width set to 100.

Here is what the updated source looks like:

<Grid x:Name="LayoutRoot" Background="White">

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

 <Button Width="100" Height="30" Content="Button Left" Margin="5" />

 <StackPanel VerticalAlignment="Center">

 <Button Width="100" Height="30" Content="Button Middle 1"

 Margin="5"></Button>

 <Button Width="100" Height="30" Content="Button Middle 2"

 Margin="5"></Button>

 <Button Width="100" Height="30" Content="Button Middle 3"

 Margin="5"></Button>

 </StackPanel>

 <Button Width="100" Height="30" Content="Button Right"

Margin="5"></Button>

 </StackPanel>

</Grid>

The cool result of this code is shown in Figure 3-11.

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 47

Figure 3-11. Nested StackPanel controls

3. Run the application to see the results.

As you can see from these two exercises, the StackPanel control is a very useful layout
option, and you will probably use it often in your Silverlight applications. By nesting
Silverlight controls, you have a lot of flexibility when designing your applications.
However, in the event that you want more control of the positioning of items in your
application, without needing to resort to the absolute positioning used by the Canvas
control, the Grid control may be just the layout option you need.

The Grid Control
The Grid control provides more fine-tuned layout in Silverlight applications. As a compar-
ison, you can think of using the Grid layout control as similar to using table elements to
position items in HTML, only more flexible. With the Grid control, you can define rows
and columns, thus creating grid cells, and then add objects to individual cells in the grid
or to multiple cells, by using spanning.

To specify in which cell to place an object, you use the Grid.Column and Grid.Row attached
properties. Note that these properties are base zero, so the top-left cell it is row 0 and
column 0. Figure 3-12 illustrates the row and column locations for the grid.

48 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

Figure 3-12. Row and column grid cell locations in the Grid control layout

For most developers, the Grid control will most likely be the layout option of choice,
due to its flexibility. At the same time, the Grid control is significantly more complex than
the others, as you’ll see in the following exercises.

Try It Out: Using the Grid Control

Let’s try out a simple Grid panel with four buttons.

1. In Visual Studio 2008, create a new Silverlight application named Ch3_GridPanel
and allow Visual Studio to create a Web Site project to host the application.

2. For this example, you are going to need a bit more space in which to work. In the
Page.xaml file, start out by changing the UserControl’s Width to 600 and Height to 400,
as follows:

<UserControl x:Class="Ch3_GridPanel.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="600" Height="400">

 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>

</UserControl>

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 49

3. Add a new Grid control to the Silverlight application. In order to better see what is
going on, turn on the display of grid lines by setting the ShowGridLines property to
true. The following code shows these additions. Keep in mind that since you have
not designated a size for the grid, it will automatically take up the entire size of the
parent, and in this case, the entire Silverlight application.

<UserControl x:Class="Ch3_GridPanel.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="600" Height="400">

 <Grid x:Name="LayoutRoot" Background="White">

 <Grid ShowGridLines="True">

 </Grid>

 </Grid>

</UserControl>

4. Next, define the rows and columns in the Grid control. You do this using the XAML
property elements Grid.RowDefinitions and Grid.ColumnDefinitions. Add the fol-
lowing XAML to your new grid:

<Grid x:Name="LayoutRoot" Background="White">

 <Grid ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="70" />

 <RowDefinition Height="*" />

 <RowDefinition Height="70" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="150" />

 </Grid.ColumnDefinitions>

 </Grid>

</Grid>

50 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

Notice that for the center row and column, you are setting the Height and Width
properties to "*". The asterisk tells the row and column to take up all available
space. As the Grid control is resized with the browser window, those columns will
be resized to take up all the space not consumed by the fixed-sized columns. After
you have added these row and column definitions, your canvas should appear as
shown in Figure 3-13.

Figure 3-13. Grid with columns and rows

5. You can now add objects to the different grid cells. Place a button in each of the
four corner cells, giving the buttons the corresponding labels Top Left, Top Right,
Bottom Left, and Bottom Right. To place the buttons, add the following code:

<Grid x:Name="LayoutRoot" Background="White">

 <Grid ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="70" />

 <RowDefinition Height="*" />

 <RowDefinition Height="70" />

 </Grid.RowDefinitions>

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 51

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="150" />

 </Grid.ColumnDefinitions>

 <Button Width="100" Height="30" Content="Top Left"

 Margin="5" Grid.Row="0" Grid.Column="0"></Button>

 <Button Width="100" Height="30" Content="Top Right"

 Margin="5" Grid.Row="0" Grid.Column="2"></Button>

 <Button Width="100" Height="30" Content="Bottom Left"

 Margin="5" Grid.Row="2" Grid.Column="0"></Button>

 <Button Width="100" Height="30" Content="Bottom Right"

 Margin="5" Grid.Row="2" Grid.Column="2"></Button>

 </Grid>

</Grid>

After the buttons are added, your application should look like Figure 3-14.

Figure 3-14. The grid with buttons in the four corners

52 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

Try It Out: Nesting a Grid and Spanning a Column

Next, you will nest another Grid control in the center cell of the Grid control you just
added. This will make the application layout somewhat complex, but it will also serve to
show how Grid panels are defined using XAML.

1. In the Ch3_GridPanel file, add the following items:

• A Grid control positioned at Grid.Column=1 and Grid.Row=1

• Three RowDefinition and two ColumnDefinition elements

• Buttons in the four corners of the new Grid control, as you just did in the outer
Grid panel

The source code should look like the following:

<Grid x:Name="LayoutRoot" Background="White">

 <Grid ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="70" />

 <RowDefinition Height="*" />

 <RowDefinition Height="70" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="150" />

 </Grid.ColumnDefinitions>

 <Button Width="100" Height="30" Content="Top Left"

 Margin="5" Grid.Row="0" Grid.Column="0"></Button>

 <Button Width="100" Height="30" Content="Top Right"

 Margin="5" Grid.Row="0" Grid.Column="2"></Button>

 <Button Width="100" Height="30" Content="Bottom Left"

 Margin="5" Grid.Row="2" Grid.Column="0"></Button>

 <Button Width="100" Height="30" Content="Bottom Right"

 Margin="5" Grid.Row="2" Grid.Column="2"></Button>

 <Grid Grid.Column="1" Grid.Row="1" ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 53

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Button Width="100" Height="30" Content="Nested Top Left"

 Margin="5" Grid.Row="0" Grid.Column="0"></Button>

 <Button Width="100" Height="30" Content="Nested Top Right"

 Margin="5" Grid.Row="0" Grid.Column="2"></Button>

 <Button Width="100" Height="30" Content="Nested B. Left"

 Margin="5" Grid.Row="2" Grid.Column="0"></Button>

 <Button Width="100" Height="30" Content="Nested B. Right"

 Margin="5" Grid.Row="2" Grid.Column="2"></Button>

 </Grid>

 </Grid>

</Grid>

At this point, your application should look like Figure 3-15. Now, this is a pretty
cool layout.

Figure 3-15. Nested grid with buttons

54 C H A P T E R 3 ■ LA Y O U T M A N A G E M E N T I N S I L V E R L I G H T

2. Notice that you have not placed anything in the two columns in the middle row of
the new grid. Here, you’re going to add a button that spans these two columns so
the button will appear in the center of the row. In order to do this, add the new
button to the Grid control with the Grid.ColumnSpan attached property set to 2. The
source changes to the innermost Grid control are as follows.

<Grid Grid.Column="1" Grid.Row="1" ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Button Width="100" Height="30" Content="Nested Top Left"

 Margin="5" Grid.Row="0" Grid.Column="0"></Button>

 <Button Width="100" Height="30" Content="Nested Top Right"

 Margin="5" Grid.Row="0" Grid.Column="2"></Button>

 <Button Width="100" Height="30" Content="Nested B. Left"

 Margin="5" Grid.Row="2" Grid.Column="0"></Button>

 <Button Width="100" Height="30" Content="Nested B. Right"

 Margin="5" Grid.Row="2" Grid.Column="2"></Button>

 <Button Width="100" Height="30" Content="Nested Center"

 Margin="5" Grid.Row="1" Grid.Column="0"

 Grid.ColumnSpan="2"></Button>

</Grid>

Now that you have added the button to the center column, your application should
look as shown in Figure 3-16. Notice how the button spans the two columns and
appears in the center. For experienced HTML developers who are used to laying
out their forms with tables, this approach should be very comfortable, as it closely
mimics using the colspan attribute for a <TD> tag.

C H A P T E R 3 ■ L A Y OU T M AN AG EM E N T I N S I L V E R L I G H T 55

Figure 3-16. Final application with a nested grid and buttons

In this example, you saw how to create a relatively complex layout using the Grid
control. As you can see, this is a very powerful and flexible layout tool for your Silverlight
applications.

Summary
In this chapter, we explored the three layout controls that are available out of the box in
Silverlight 2. We looked at the Canvas, StackPanel, and Grid controls. In the next chapter,
we will take an in-depth look at the form controls that come bundled with Silverlight 2.

57

■ ■ ■

C H A P T E R 4

Silverlight Form Controls

For those who have worked with Silverlight 1.0, one of the first observations you most
likely made was the lack of common controls such as the Button, TextBox, and ListBox. In
fact, Silverlight 1.0 provided only two basic controls: Rectangle and TextBlock. From these,
the developers were expected to implement all of the rich controls they needed. As you
can imagine, it was quite a bit of work to create all of the form controls using just these two
base controls.

Since then, Microsoft’s vision of Silverlight has gone beyond basic animations to spark
up your applications and into the realm of feature-rich user interfaces (UIs). To this end,
Silverlight 2 includes a strong base of controls that you can use within your Silverlight
applications.

In this chapter, we will first look at the Silverlight controls in general by examining
control properties and events. We will then take a brief tour of some of the more common
form controls included in Silverlight 2. This chapter is meant to provide a high-level intro-
duction to these common Silverlight controls. We will continue to work with the controls
throughout the remainder of the book, so you will see more specific usage scenarios.

Setting Control Properties
The most straightforward and simple way to set a property is by using attribute syntax.
However, in some cases, you will use element syntax.

Attribute Syntax

Most properties that can be represented as a simple string can be set using attribute
syntax. Setting an attribute in XAML is just like setting an attribute in XML. An XML
element contains a node and attributes. Silverlight controls are defined in the same way,
where the control name is the node, and the properties are defined as attributes.

58 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

As an example, you can easily use attribute syntax to set the Width, Height, and Content
properties of a Button control, as follows:

<Button Width="100" Height="30" Content="Click Me!"></Button>

Element Syntax

Element syntax is most commonly used when a property cannot be set using attribute
syntax because the property value cannot be represented as a simple string. Again, this is
very similar to using elements in XML. The following is an example of setting the back-
ground color of a button:

<Button Width="100" Height="30" Content="Click Me!">

 <Button.Background>

 <SolidColorBrush Color="Blue"/>

 </Button.Background>

 <Button.Foreground>

 <SolidColorBrush Color="Red"/>

 </Button.Foreground>

</Button>

Type-Converter–Enabled Attributes

Sometimes when defining a property via an attribute, the value cannot be represented as
a simple string; rather, it is converted to a more complex type. A common usage of a type-
converter–enabled attribute is Margin. The Margin property can be set as a simple string,
such as in this example:

<Button Width="100" Content="Click Me!" Margin="15"></Button>

When you set the Margin property in this fashion, the left, right, top, and bottom margins
are all set to 15 pixels. But what if you want to set the top margin to 15 pixels, but you want
the other three margins to be 0? In order to do that, you would set the Margin property as
follows:

<Button Width="100" Content="Click Me!" Margin="0,15,0,0"></Button>

In this case, Silverlight takes the string "0,15,0,0" and converts it into a more complex
type. The string is converted to four values: left margin = 0, top margin = 15, right margin = 0,
and bottom margin = 0.

This type-conversion concept is not new to Silverlight. For those of you familiar with
Cascading Style Sheets (CSS), the same sort of structure exists. As an example, when you
are defining a border style, within the simple string value for a border, you are actually

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 59

setting the thickness, color, and line style. The following border assignment in CSS will set
the border thickness to 1 pixel, the line style to be solid, and the color to #333333 (dark gray):

border: 1px solid #333333;

Attached Properties

In the previous chapter, you learned how to set a control’s position within a Canvas panel
by using attached properties. An attached property is a property that is attached to parent
control. In the example in the previous chapter, you specified the Button control’s position
within the Canvas object by setting two attached properties: Canvas.Top and Canvas.Left.
These two properties reference the Button control’s parent, which is the Canvas.

<Canvas>

 <Button Width="100" Content="Click Me!"

 Canvas.Top="10" Canvas.Left="13" />

</Canvas>

Nesting Controls Within Controls
When you first look at the controls included in Silverlight 2, you will probably feel pretty
comfortable, as they seem to be what you would expect. However, when you dig a bit
deeper into the control features, you will find that the controls are much more flexible and
powerful than they first appear.

One of the key features of controls in Silverlight 2 is the ability to put just about anything
within a control. A Button control can contain a StackPanel, which can contain an Ellipse
control and a TextBlock control. There really are few limitations as to what the contents of
a control can be. Figure 4-1 shows an example of a standard Silverlight 2 Button control
containing a StackPanel, a nested StackPanel, an Ellipse, a TextBlock, and a ListBox.

Figure 4-1. A Button control with nested controls

60 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

The following code was used to produce the control in Figure 4-1:

<Button Height="180" Width="200">

 <StackPanel Orientation="Vertical">

 <StackPanel Margin="5"

 VerticalAlignment="Center"

 Orientation="Horizontal">

 <Ellipse Fill="Yellow" Width="25" />

 <TextBlock VerticalAlignment="Center"

 Margin="5" Text="Check Forecast" />

 </StackPanel>

 <ListBox FontSize="11" Opacity="0.5"

 Margin="2" x:Name="lstForecastGlance">

 <ListBoxItem>

 <TextBlock VerticalAlignment="Center"

 Text="Mon: Sunny (85)" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock VerticalAlignment="Center"

 Text="Tue: Partly Cloudy (89)" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock VerticalAlignment="Center"

 Text="Wed: Thunderstorms (78)" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock VerticalAlignment="Center"

 Text="Thu: Thunderstorms (76)" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock VerticalAlignment="Center"

 Text="Fri: Partly Cloudy (71)" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock VerticalAlignment="Center"

 Text="Sat: Mostly Sunny (74)" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock VerticalAlignment="Center"

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 61

 Text="Sun: Sunny (80)" />

 </ListBoxItem>

 </ListBox>

 </StackPanel>

</Button>

As the code shows, the example simply nests additional content within the Button
control. As you can imagine, this can be a very powerful feature.

Handling Events in Silverlight
As with other Microsoft programming frameworks, Silverlight provides an event mecha-
nism to track actions that take place within Silverlight 2 applications. Two types of actions
are tracked within Silverlight:

• Actions that are triggered based on some input from the user. Input actions are
handled and “bubbled” up from the browser to the Silverlight object model.

• Actions that are triggered based on a change of state of a particular object, including
the object’s state in the application. These actions are handled directly from the
Silverlight object model.

Event handlers are methods that are executed when a given event is triggered. You can
define event handlers either in the XAML markup itself or in managed code. The following
exercises will demonstrate how to define event handlers in both ways.

Try It Out: Declaring an Event in XAML

Let’s get started by defining event handlers within the XAML markup.

1. Open Visual Studio 2008 and create a new Silverlight project called Ch4_EventHandlers.
Allow Visual Studio to create a Web Site project to host the application.

2. When the project is created, you should be looking at the Page.xaml file. If you do
not see the XAML source, switch to that view so that you can edit the XAML. Within
the root Grid of the Silverlight page, add grid row and column definitions (as
explained in Chapter 3) to define four rows and two columns, as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="70" />

 <RowDefinition Height="70" />

62 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

 <RowDefinition Height="70" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

</Grid>

3. Next, add a Button control to the upper-left grid cell and a TextBlock control in the
upper-right cell.

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="70" />

 <RowDefinition Height="70" />

 <RowDefinition Height="70" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Button Width="125" Height="35" Content="XAML Event"></Button>

 <TextBlock Text="Click the XAML Event!" Grid.Column="1"

 VerticalAlignment="Center" HorizontalAlignment="Center" />

</Grid>

4. Add the Click property to the button. When you type Click=, Visual Studio 2008 will
prompt you with the option of automatically creating a new event handler, as shown
in Figure 4-2. When the <New Event Handler> option is displayed, simply press
Enter, and Visual Studio will complete the Click property, as follows:

<Button Width="125" Height="35"

 Content="XAML Event" Click="Button_Click" />

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 63

Figure 4-2. Visual Studio’s automatic creation of an event handler

In addition, Visual Studio automatically adds an event handler called Button_Click
to the code-behind class for the Silverlight application, as follows:

public partial class Page : UserControl

{

 public Page()

 {

 InitializeComponent();

 }

 private void Button_Click(object sender, RoutedEventArgs e)

 {

 }

}

5. For this example, you will change the Text property within the TextBlock. In order
to do this, you first need to give the TextBlock a name so you can access it from the
code behind. Add the following code.

64 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

<TextBlock Text="Click the XAML Event!" Grid.Column="1"

 VerticalAlignment="Center" HorizontalAlignment="Center"

 x:Name="txtXAMLEventText" />

6. Now change the Text property of the TextBlock within the Button_Click event, as
follows:

private void Button_Click(object sender, RoutedEventArgs e)

{

 txtXAMLEventText.Text = "Thank you for clicking!";

}

7. Run the application and click the XAML Event button. The text to the right of the
button will change to “Thank you for clicking.” Figures 4-3 and 4-4 show the appli-
cation before and after clicking the XAML Event button.

Figure 4-3. The TextBlock before the button is clicked

Now that you have seen how to define an event handler in the XAML markup, in the
next exercise, you will continue by adding another event handler using managed code.

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 65

Figure 4-4. The TextBlock after the button is clicked

Try It Out: Declaring an Event Handler in Managed Code

Let’s continue with the project named Ch4_EventHandlers from the previous exercise.
You’ll add another button and wire up its event handler using managed code.

1. Add another button and TextBlock in the second row of the Grid, as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="70" />

 <RowDefinition Height="70" />

 <RowDefinition Height="70" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

66 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

 <Button Width="125" Height="35" Content="XAML Event"

 Click="Button_Click"></Button>

 <TextBlock Text="Click the XAML Event!" Grid.Column="1"

 VerticalAlignment="Center" HorizontalAlignment="Center"

 x:Name="txtXAMLEventText" />

 <Button Width="125" Height="35" Content="Managed Event"

 Grid.Row="1" ></Button>

 <TextBlock Text="Click the Managed Event!" Grid.Column="1"

 VerticalAlignment="Center" HorizontalAlignment="Center"

 Grid.Row="1" />

</Grid>

2. In order to reference the new Button control in managed code, you must give it and

the TextBlock control a name, as shown in the following snippet:

 <Button Width="125" Height="35" Content="Managed Event"

 Grid.Row="1" x:Name="btnManaged" ></Button>

 <TextBlock Text="Click the Managed Event!" Grid.Column="1"

 VerticalAlignment="Center" HorizontalAlignment="Center"

 Grid.Row="1" x:Name="txtManagedEventText" />

Your page should now appear as shown in Figure 4-5.

Figure 4-5. The updated Silverlight page

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 67

3. Next, you need to add the event handler. Right-click the Silverlight page and select
View Code. This will switch to the code behind of the page.

From here, you will use the standard CLR language-specific syntax for adding
event handlers. Since you are using C#, the syntax is to use the += operator and
assign it to a new EventHandler. Visual Studio 2008 will help you with this.

4. After the InitializeComponent() method call in the Page constructor, start typing
"this.btnManaged.Click +=". At this point, Visual Studio will display the message
“new RoutedEventHandler(bntManaged_Click); (Press TAB to insert),” as shown in
Figure 4-6. Press Tab to complete the event handler definition.

Figure 4-6. Visual Studio assisting with wiring up an event handler in managed code

5. Visual Studio will once again prompt you for the name of the event handler. Go
ahead and press Tab again to accept the default name. At this point, your source
should look like this:

namespace Ch4_EventHandlers

{

 public partial class Page : UserControl

 {

 public Page()

 {

 InitializeComponent();

68 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

 this.btnManaged.Click += new RoutedEventHandler(btnManaged_Click);

 }

 void btnManaged_Click(object sender, RoutedEventArgs e)

 {

 throw new NotImplementedException();

 }

 private void Button_Click(object sender, RoutedEventArgs e)

 {

 txtXAMLEventText.Text = "Thank you for clicking!";

 }

 }

}

6. Now the only thing left to do is add the code to the event handler. You will
notice that, by default, Visual Studio added code to automatically throw a
NotImplementedException. Remove that line and replace it with the following
line to change the TextBlock control’s text.

void btnManaged_Click(object sender, RoutedEventArgs e)

{

 txtManagedEventText.Text = "Thank you for clicking";

}

7. Run the application and click the Managed Event button. You will see the text for the
second TextBlock is updated to say “Thank you for clicking,” as shown in Figure 4-7.

Figure 4-7. The result of the managed code event handler

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 69

This exercise demonstrated how to wire up an event handler using C# and managed
code.

In the remainder of the chapter, we will take a tour of the more commonly used form
controls in Silverlight 2. Let’s start off by looking at the Border control.

The Border Control
The Border control provides a way to add a border and background to any one control in
Silverlight. Even though a border is applied to only one control, you can always place a
border around a StackPanel or Grid, and as a result include many controls within a border.

The syntax to add a Border control to your Silverlight project is very simple, as you can
see from the following example:

<UserControl x:Class="Ch4_BorderControl.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <Border BorderThickness="2" BorderBrush="Black" Margin="10">

 <StackPanel Margin="10">

 <Button Content="Sample Button" Margin="5" />

 <TextBlock Text="Sample TextBlock" Margin="5" />

 <ListBox Margin="5">

 <ListBoxItem>

 <TextBlock Text="ListItem 1" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock Text="ListItem 2" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock Text="ListItem 3" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock Text="ListItem 4" />

 </ListBoxItem>

 </ListBox>

 </StackPanel>

 </Border>

 </Grid>

</UserControl>

70 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

Figure 4-8 shows the results.

Figure 4-8. Using the Border control

Another feature of the Border control is the ability to round the corners of the border
using the CornerRadius property. Here is how the preceding example could be modified to
provide a Border control with a CornerRadius property of 10.

<Border BorderThickness="2" BorderBrush="Black" Margin="10" CornerRadius="10">

 . . .

</Border>

The border with rounded corners is shown in Figure 4-9.
You can declare a background color for your border using the Background property. Like

the BorderBrush property, the Background property can be set to either a color or a brush
type. Here is an example of setting a border with a background color of silver:

<Border BorderThickness="2" BorderBrush="Black" Margin="10" CornerRadius="10"

 Background="Silver">

 . . .

</Border>

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 71

Figure 4-9. Border control with a CornerRadius property of 10

Figure 4-10 shows the result of adding the background color.

Figure 4-10. Border control with its background set to silver

72 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

The following is an example of a more complex Border control that contains a gradient
for the border and background, by using a Brush object.

<Border BorderThickness="2" Margin="10" CornerRadius="10">
 <Border.Background>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 <GradientStop Color="Green" Offset="0" />

 <GradientStop Color="White" Offset="1" />

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Border.Background>

 <Border.BorderBrush>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 <GradientStop Color="Black" Offset="0" />

 <GradientStop Color="White" Offset="1" />

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Border.BorderBrush>

 <StackPanel Margin="10">

 <Button Content="Sample Button" Margin="5" />

 <TextBlock Text="Sample TextBlock" Margin="5" />

 <ListBox Margin="5">

 <ListBoxItem>

 <TextBlock Text="ListItem 1" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock Text="ListItem 2" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock Text="ListItem 3" />

 </ListBoxItem>

 <ListBoxItem>

 <TextBlock Text="ListItem 4" />

 </ListBoxItem>

 </ListBox>

 </StackPanel>

</Border>

Figure 4-11 shows the border with the gradient applied.

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 73

Figure 4-11. Border control with gradient brushes for the border and background

User Input Controls
One of the most common controls in applications is a text box, which is the standard
control for collecting basic string input from the user. Also ubiquitous are check boxes
and radio buttons, which allow users to select from a list of choices—more than one choice
in the case of check boxes, and a single choice in the case of radio buttons. Silverlight 2
provides the TextBox, CheckBox, and RadioButton for these standard controls. The following
exercises will also give you a chance to work with the Ellipse and Rectangle controls.

Try It Out: Working with the TextBox Control

This exercise demonstrates the use of the TextBox control in Silverlight 2 by creating a
simple application that will request the red, green, and blue values to fill an ellipse with
a given color. The resulting application will appear as shown in Figure 4-12.

74 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

Figure 4-12. Sample application using TextBox controls

1. In Visual Studio 2008, create a new Silverlight application named Ch4_TextBox.
Allow Visual Studio to create a Web Site project to host your application.

2. In the Page.xaml file, within the root Grid element, add three RowDefinition items,
as follows:

<UserControl x:Class="Ch4_TextBox.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>

 <RowDefinition Height="50" />

 <RowDefinition Height="50" />

 <RowDefinition />

 </Grid.RowDefinitions>

 </Grid>

</UserControl>

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 75

3. Add three TextBox and TextArea controls contained in a horizontal-oriented StackPanel
to the first row, a Button control to the second row, and an Ellipse control to the
third row. In addition, place a TextBlock in the third row to stack on top of the Ellipse
control for error-reporting purposes. Name each of the TextBox controls, as well as
the Button control and the TextBlock. These additions are shown in the following
code:

<UserControl x:Class="Ch4_TextBox.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>

 <RowDefinition Height="50" />

 <RowDefinition Height="50" />

 <RowDefinition />

 </Grid.RowDefinitions>

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

 <TextBlock VerticalAlignment="Center" Text="Red:" />

 <TextBox x:Name="txtRed"

 Height="24" Width="50" Margin="5" />

 <TextBlock VerticalAlignment="Center" Text="Green:" />

 <TextBox x:Name="txtGreen"

 Height="24" Width="50" Margin="5" />

 <TextBlock VerticalAlignment="Center" Text="Blue:" />

 <TextBox x:Name="txtBlue"

 Height="24" Width="50" Margin="5" />

 </StackPanel>

 <Button x:Name="btnTry" Content="Try Color"

 Grid.Row="1" Width="100" Height="24" />

 <Ellipse x:Name="ellipse" Grid.Row="2"

 Stroke="Black" StrokeThickness="5" Margin="20" />

 <TextBlock x:Name="lblColor" Grid.Row="2"

 HorizontalAlignment="Center" VerticalAlignment="Center"

 FontSize="20" FontFamily="Arial" FontWeight="Bold" />

 </Grid>

</UserControl>

76 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

4. Now add the Click event to the Button control. Do this in the code behind, as
explained earlier in this chapter.

namespace Ch4_TextBox

{

 public partial class Page : UserControl

 {

 public Page()

 {

 InitializeComponent();

 this.btnTry.Click += new RoutedEventHandler(btnTry_Click);

 }

 void btnTry_Click(object sender, RoutedEventArgs e)

 {

 }

 }

}

5. When the button is clicked, the application will change the Fill property of the
Ellipse control, which expects a SolidColorBrush. You can create the SolidColorBrush
using the Colors.FromArgb() method, which accepts four arguments: one for opacity,
and one byte each for the red, green, and blue values. You will get the red, green,
and blue values from the TextBox controls using the Text property.

void btnTry_Click(object sender, RoutedEventArgs e)

{

 this.ellipse.Fill = new SolidColorBrush(

 Color.FromArgb(

 255,

 byte.Parse(this.txtRed.Text),

 byte.Parse(this.txtGreen.Text),

 byte.Parse(this.txtBlue.Text)

)

);

}

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 77

6. Since the values for red, green, and blue must be an integer from 0 to 255, you can
either check them or take the easy way out and just wrap your code in a try/catch
block, and then report the error using the TextBlock. You’ll go with the latter approach
here. And to keep things clean, you will make sure the error message is cleared if all
works correctly. Here is the updated code:

void btnTry_Click(object sender, RoutedEventArgs e)

{

 try

 {

 this.ellipse.Fill = new SolidColorBrush(

 Color.FromArgb(

 255,

 byte.Parse(this.txtRed.Text),

 byte.Parse(this.txtGreen.Text),

 byte.Parse(this.txtBlue.Text)

)

);

 this.lblColor.Text = "";

 }

 catch

 {

 this.lblColor.Text = "Error with R,G,B Values";

 }

}

7. Build and run the application to see what you get. Type 255, 0, and 0 in the Red,
Green, and Blue text boxes, respectively, and then click the Try Color button. You
should see the ellipse turn red. If, just for the fun of it, you leave one of the values
blank or enter a value other than 0 through 255, you will see the error message.

Now that we have taken a quick look at the TextBox control, let’s turn our attention to
two other common controls: CheckBox and RadioButton.

Try It Out: Working with the RadioButton and
CheckBox Controls

The following exercise will give you a first look at the RadioButton and CheckBox controls.
You will build a simple survey, as shown in Figure 4-13.

78 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

Figure 4-13. Sample application using the RadioButton and CheckBox controls

1. Create a new Silverlight application in Visual Studio 2008 and call it
Ch4_CheckBoxRadioButton. Allow Visual Studio to create a Web Site project
to host the application.

2. In the Page.xaml file, divide the root Grid into two rows. In each row, place a
StackPanel with vertical orientation and a Margin property set to 10.

<UserControl x:Class="Ch4_CheckBoxRadioButton.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>

 <RowDefinition />

 <RowDefinition />

 </Grid.RowDefinitions>

 <StackPanel Orientation="Vertical" Grid.Row="0" Margin="10">

 </StackPanel>

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 79

 <StackPanel Orientation="Vertical" Grid.Row="1" Margin="10">

 </StackPanel>

 </Grid>

</UserControl>

The top row will be used to demonstrate the use of the RadioButton control, and the
bottom row will feature the CheckBox control. Let’s begin with the RadioButton.

The RadioButton control allows users to select only one selection out of a number of
RadioButton controls that share the same group name. This is set using the RadioButton’s
Grouping property.

Although you could simply type in each of the color choices for the radio buttons
as text using the Content property, I thought it would be less boring to use colored

rectangles instead. As we discussed earlier, one of the benefits of Silverlight 2 controls
is that you can nest just about anything within the different controls. This is just
another example of that flexibility.

3. Place five RadioButton controls in the first StackPanel, each with a Rectangle control
of a different color. For the group name, use FavoriteColor. To make the content of
the RadioButton controls display as left-justified, set the HorizontalAlignment property
to Left for each one. Here is the code:

<StackPanel Orientation="Vertical" Grid.Row="0" Margin="10">

 <TextBlock Text="What is your favorite color?" />

 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">

 <Rectangle Width="100" Height="10" Fill="Red" />

 </RadioButton>

 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">

 <Rectangle Width="100" Height="10" Fill="Blue" />

 </RadioButton>

 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">

 <Rectangle Width="100" Height="10" Fill="Green" />

 </RadioButton>

 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">

 <Rectangle Width="100" Height="10" Fill="Yellow" />

 </RadioButton>

 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">

 <Rectangle Width="100" Height="10" Fill="Purple" />

 </RadioButton>

</StackPanel>

80 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

4. Next, do the same for the CheckBox controls in the bottom row, except here, just go
the boring route and supply the choices as text. In addition, CheckBox controls are
left-justified by default, and they do not need to be grouped. Here is the code for
the CheckBox portion:

<StackPanel Orientation="Vertical" Grid.Row="1" Margin="10">

 <TextBlock Text="What Technologies are you familiar with?" />

 <CheckBox Content="Silverlight" />

 <CheckBox Content="ASP.NET" />

 <CheckBox Content="Visual Studio 2008" />

 <CheckBox Content="Expression Blend 2" />

</StackPanel>

5. Go ahead and run the solution to see the end result as it will appear in the browser.
The output is shown in Figure 4-14. Notice that, as you would expect, you are able
to select only one radio button at a time, but you can click as many check boxes as
you wish.

Figure 4-14. Creating the RadioButton and CheckBox application

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 81

Extended Controls
When a Silverlight application is deployed, it goes into an .xap file. This file will need to be
downloaded by every client that accesses the Silverlight application.

A big benefit of Silverlight 2 is that the size of this .xap file is kept very small. One
reason this file can be small is that the most commonly used controls are included in
the Silverlight 2 Runtime, which is already present on every machine with Silverlight 2
installed.

However, Silverlight 2 provides a number of controls beyond this commonly used set
of controls. These controls are included in two separate assemblies: System.Windows.
Controls.dll and System.Windows.Controls.Data.dll. These dynamic link libraries (DLLs)
will be included in the application .xap file only if the developer used a control from one
of these extended control sets in that application.

Adding an Extended Control

When a developer uses a control from one of the other control libraries, an additional
xmlns declaration will be added in the UserControl definition. This xmlns will have a prefix
associated with it that will then be used to reference the individual controls.

For example, if you add a DataGrid to your Silverlight application in Visual Studio, your
source will appear as follows:

<UserControl

 xmlns:data=

 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"

 x:Class="SilverlightApplication1.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <data:DataGrid></data:DataGrid>

 </Grid>

</UserControl>

Notice the additional xmlns declaration pointing to the System.Windows.Controls
namespace within the System.Windows.Controls.Data assembly.

82 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

■Tip To view which controls belong to which assemblies, first create a new Silverlight application and add
a DataGrid and GridSplitter to the root Grid. Then select View ➤ Object Browser from the Visual Studio 2008
main menu. From the Object Browser’s Browse drop-down list (in the top-left corner), select My Solution
and browse the listing for three assemblies: System.Windows, System.Windows.Controls.Data, and
System.Windows.Controls. Within each of those assemblies, drill down to the System.Windows.Controls
namespace in order to see all of the controls that reside in that assembly.

Now we will work through an exercise using one of the controls in the System.Windows.
Controls assembly.

Try It Out: Using the GridSplitter

One of the controls that resides in the System.Windows.Controls assembly is the GridSplitter.
This control provides the ability for a user to change the width of a column or row in an
application. If used properly, the GridSplitter can greatly improve the appearance of your
application, as well as the user experience. In the following exercise, you will implement a
simple GridSplitter.

1. Create a new Silverlight application in Visual Studio 2008 called Ch4_GridSplitter.
Allow Visual Studio to create a Web Site project to host the application.

2. In the Page.xaml file, divide the root Grid into two columns. The first column should
be 150 pixels in width, and the second should take up the remainder of the appli-
cation. To be able to see what is going on in the grid, set ShowGridLines to True. Also
add two TextBlock controls to the application: one in the first column and one in
the second column. Your source should appear as follows:

<UserControl x:Class="Ch4_GridSplitter.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <TextBlock Text="Apress, Inc." />

 <TextBlock Grid.Column="1"

 Text="Beginning Silverlight 2 by Robert Lair" />

 </Grid>

</UserControl>

C H AP T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S 83

At this point, your Silverlight application should look like Figure 4-15.

Figure 4-15. The setup for the GridSplitter example

Notice that you cannot see all of the text in the second column. Let’s add a GridSplitter
control to the application so users can resize the two columns to be able to view all
the text in both columns.

3. Within the XAML, place the cursor just below the TextBlock definitions you added.
Then, in the Visual Studio Toolbox, double-click the GridSplitter control. This
will add the xmlns to the System.Windows.Controls assembly, and it will also add
the GridSplitter to the application. Then set the Background property of the
GridSplitter to LightGray. The source appears as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <TextBlock Text="Apress, Inc." />

 <TextBlock Grid.Column="1"

 Text="Beginning Silverlight 2 by Robert Lair" />

 <basics:GridSplitter Background="LightGray"></basics:GridSplitter>

</Grid>

84 C H A P T E R 4 ■ S I L V E R L I G H T F O R M C O N T R O L S

4. You no longer need to see the grid lines, so remove the ShowGridLines property.

5. Run the application. It should look similar to Figure 4-16. Notice that you can now
click and drag the GridSplitter to resize the two Grid columns.

Figure 4-16. The completed GridSplitter application

As you can see, it’s quite easy to gain the rich functionality of a grid splitter in your
application with the Silverlight 2 GridSplitter control.

Summary
In this chapter, we took a brief look at some of the common form controls that are
provided with Silverlight 2. The chapter was meant only as an introduction to the
controls. We will be looking at these controls in more advanced capacities in the
upcoming chapters.

In the next chapter, we will look at the Silverlight 2 list controls: ListBox and DataGrid.

85

■ ■ ■

C H A P T E R 5

Data Binding and Silverlight
List Controls

The previous chapter focused on the form controls contained in Silverlight 2. In this
chapter, we will look at two controls that are made to display lists of data: the ListBox and
DataGrid. These controls are typically bound to data through a technique known as data
binding, which we’ll explore first.

Data Binding
Through data binding, UI elements (called targets) are “bound” to data from a data source
(called the source), as illustrated in Figure 5-1. When the data sources change, the UI
elements bound to those data sources update automatically to reflect the changes. The
data can come from different types of sources, and the target can be just about any UI
element, including standard Silverlight 2 controls.

Figure 5-1. Data binding in Silverlight

86 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

Data binding simplifies application development. Since changes are reflected auto-
matically, you do not need to manually update the UI elements. Also, by using data binding,
you are able to separate the UI from the data in your application, which allows for a
cleaner UI and easier maintenance.

The Binding Class

Data binding in Silverlight 2 is accomplished by using the Binding class. The Binding class
has two components—the source and target—and a property that defines the way the two
are bound, called the binding mode. The source is the data that is to be bound, the target
is a property of the control that the data is to be bound to, and the mode defines how the
data is passed between the source and the target (one-way, one-time, or two-way). You’ll
see how this works in the upcoming exercise.

To define the binding of a control’s property, you use XAML markup extensions, such
as {Binding <path>}. For example, to bind the Text property of a TextBox to a data source’s
FirstName element, you would use the following XAML:

<TextBox Text="{Binding FirstName }" />

Try It Out: Simple Data Binding in Silverlight

To help explain data binding in Silverlight, let’s build a very simple application. The applica-
tion will include a Book object that contains two properties: Title and ISBN. These properties
will be bound to two TextBox controls. Figure 5-2 shows the end result of the example.

Figure 5-2. Simple data binding example

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 87

1. Create a new Silverlight application in Visual Studio 2008. Name the project
BasicDataBinding, and allow Visual Studio to create a Web Site project to host
your application.

2. Edit the Page.xaml file to define two columns and six grid rows. Place a TextBlock
in each row in column 1 and a TextBox in each row in column 2. Also add some
margins and some alignment assignments to improve the layout. The code for
the page follows:

<UserControl x:Class="BasicDataBinding.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 </Grid.RowDefinitions>

 <TextBlock Text="Book Title"

 VerticalAlignment="Center"

 Margin="5" />

 <TextBlock Text="ISBN-13"

 VerticalAlignment="Center"

 Margin="5"

 Grid.Row="1" />

 <TextBox Text="{Binding Title}"

 Height="24"

 Margin="5"

 Grid.Column="1" />

88 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

 <TextBox Text="{Binding ISBN}"

 Height="24"

 Margin="5"

 Grid.Column="1" Grid.Row="1" />

 <TextBlock Text="Book Title"

 VerticalAlignment="Center"

 Margin="5"

 Grid.Row="2" />

 <TextBlock Text="ISBN-13"

 VerticalAlignment="Center"

 Margin="5"

 Grid.Row="3" />

 <TextBox Text="{Binding Title}"

 Height="24"

 Margin="5"

 Grid.Column="1" Grid.Row="2" />

 <TextBox Text="{Binding ISBN}"

 Height="24"

 Margin="5"

 Grid.Column="1" Grid.Row="3" />

 </Grid>

</UserControl>

3. Next, edit the code behind, page.xaml.cs. Add a Loaded event handler for the
application, which will fire when the application is loaded by the client. This is
accomplished with the following source code:

public partial class Page : UserControl

{

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 }

}

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 89

4. Now you need to add a class to define a Book object. Below the Page class, add the
following class definition:

namespace BasicDataBinding

{

 public partial class Page : UserControl

 {

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 }

 }

 public class Book

 {

 public string Title { get; set; }

 public string ISBN { get; set; }

 }

}

5. Now that you have Book defined, you need to create an instance of Book and set it to
the LayoutRoot’s DataContext, as follows:

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 Book b = new Book() {

 Title = "Beginning Silverlight 2: From Novice to Professional",

 ISBN = "978-1590599525" };

 this.LayoutRoot.DataContext = b;

 }

90 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

When you set up binding definitions for different controls, the controls do not
know where they are going to get their data. The DataContext property sets the data
context for a control that is participating in data binding. The DataContext property
can be set directly on the control. If a given control does not have a DataContext
property specified, it will look to its parent for its data context. The nice thing about
this model is that if you look above in the XAML for the page, you will see little indi-
cation of where the controls are getting their data. This provides an extreme level of
code separation, allowing designers to design XAML UIs and developers to work
alongside the designers, defining the specifics of how the controls are bound to
their data sources.

6. At this point, you can go ahead and start debugging the application. If all goes well,
you will see the four text boxes populated with the data from the Book’s instance
(see Figure 5-2).

7. With the application running, change the book title in the first text box to just
“Beginning Silverlight 2,” by removing the “From Novice to Professional.”

You might expect that, since the third text box is bound to the same data, it will
automatically update to reflect this change. However, a couple of things need to be
done to get this type of two-way binding to work.

One problem is that, currently, the Book class does not support notifying bound
clients of changes to its properties. In other words, when a property changes in
Book, the class will not notify the TextBox instances that are bound to the class of the
change. You could take care of this by creating a change event for each property.
This is far from ideal; fortunately, there is an interface that a class can implement
that handles this for you. This interface is known as INotifyPropertyChanged. Let’s
use it.

8. Modify the Book class definition to inherit from INotifyPropertyChanged. Notice that
when you inherit from INotifyPropertyChanged, you need to add using System.
ComponentModel. Luckily, Visual Studio will help you with this, as shown in Figure 5-3.

Figure 5-3. Visual Studio assists when you need to add the System.ComponentModel
namespace.

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 91

9. Next, you can let Visual Studio do some more work for you. After adding the using
System.ComponentModel statement, right-click INotifyPropertyChanged and choose
the Explicitly implement interface INotifyPropertyChanged option, as shown in
Figure 5-4.

Figure 5-4. Visual Studio also assists in implementing the INotifiyPropertyChanged
interface.

Now Visual Studio has added a new public event to your class:

public class Book : INotifyPropertyChanged

{

 public string Title { get; set; }

 public string ISBN { get; set; }

 #region INotifyPropertyChanged Members

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion

}

10. Next, you need to create a convenience method that will fire the PropertyChanged
event. Call it FirePropertyChanged, as shown in the following code.

public class Book : INotifyPropertyChanged

{

 public string Title { get; set; }

 public string ISBN { get; set; }

 #region INotifyPropertyChanged Members

 void FirePropertyChanged(string property)

 {

 if (PropertyChanged != null)

92 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

 {

 PropertyChanged(this,

 new PropertyChangedEventArgs(property));

 }

 }

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion

}

11. Now you need to extend the simplified properties by adding private members and
full get/set definitions to define the get and set operations, as shown in the fol-
lowing code. The get is just like a normal get operation, where you simply return
the internal member value. For the set, you first set the internal member value, and

then call the FirePropertyChanged method, passing it the name of the property.

public class Book : INotifyPropertyChanged

{

 private string _title;

 private string _isbn;

 public string Title

 {

 get

 {

 return _title;

 }

 set

 {

 _title = value;

 FirePropertyChanged("Title");

 }

 }

 public string ISBN

 {

 get

 {

 return _isbn;

 }

 set

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 93

 {

 _isbn = value;

 FirePropertyChanged("ISBN");

 }

 }

 #region INotifyPropertyChanged Members

 void FirePropertyChanged(string property)

 {

 if (PropertyChanged != null)

 {

 PropertyChanged(this,

 new PropertyChangedEventArgs(property));

 }

 }

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion

}

With this completed, your class is set up to notify bound clients of changes to
the Title and ISBN properties. But you still need to take one more step. By default,
when you bind a source to a target, the BindingMode is set to OneWay binding, which
means that the source will send the data to the target, but the target will not send
data changes back to the source. In order to get the target to update the source, you
need to implement two-way (TwoWay) binding.

■Note Earlier, I mentioned that there are three options for BindingMode. The third option is
OneTime binding. In this mode, the values are sent to the target control property when the object
is set to the DataContext. However, the values of the target property are not updated when the
source value changes.

12. To change to two-way binding, add the Mode=TwoWay parameter when defining the
{Binding} on a control, as follows:

<TextBlock Text="Book Title"

 VerticalAlignment="Center"

 Margin="5" />

94 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

<TextBlock Text="ISBN-13"

 VerticalAlignment="Center"

 Margin="5"

 Grid.Row="1" />

<TextBox Text="{Binding Title, Mode=TwoWay}"

 Height="24"

 Margin="5"

 Grid.Column="1" />

<TextBox Text="{Binding ISBN, Mode=TwoWay }"

 Height="24"

 Margin="5"

 Grid.Column="1" Grid.Row="1" />

<TextBlock Text="Book Title"

 VerticalAlignment="Center"

 Margin="5"

 Grid.Row="2" />

<TextBlock Text="ISBN-13"

 VerticalAlignment="Center"

 Margin="5"

 Grid.Row="3" />

<TextBox Text="{Binding Title, Mode=TwoWay }"

 Height="24"

 Margin="5"

 Grid.Column="1" Grid.Row="2" />

<TextBox Text="{Binding ISBN, Mode=TwoWay }"

 Height="24"

 Margin="5"

 Grid.Column="1" Grid.Row="3" />

13. Rebuild and run your application. Update any of the fields, and leave the focus on
the control. You’ll see that the two-way binding is triggered, and the corresponding
field is also updated, as shown in Figure 5-5.

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 95

Figure 5-5. Two-way binding in action

Congratulations! You have just created a Silverlight application that allows for two-way
data binding. We will now move on to look at data binding lists of data to the two list
controls provided in Silverlight 2: DataGrid and ListBox.

The DataGrid Control
The data grid type of control has been around for ages and has been the primary choice
for developers who need to display large amounts of data. The DataGrid control provided
by Silverlight is not just a standard data grid, however. It contains a great deal of rich user
functionality that, in the past, has been present only in third-party data grid components.
For example, the Silverlight DataGrid handles resizing and reordering of grid columns.

Figure 5-6 shows an example of a very simple DataGrid, where the columns were auto-
matically generated. Notice how the column titled Male is a check box. The DataGrid control
has built-in intelligence to automatically show Boolean data types as check box cells.

96 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

Figure 5-6. A simple DataGrid example

Try It Out: Building a Simple DataGrid

Let’s run through a simple DataGrid example.

1. Create a new Silverlight application in Visual Studio 2008. Name the project
SimpleDataGrid, and have Visual Studio create a hosting web site application
for you.

2. Add the DataGrid to your application. To do this, simply add the DataGrid to the
root Grid in your XAML, and set the Margin property to 10 to get some spacing
around the grid. In addition, give the DataGrid the name grid. Note that, by default,
the Grid’s AutoGenerateColumns property is set to true. If you were going to define the
columns manually, you would want to set this property to false. However, since
you want the grid to create the columns automatically, you can simply omit the
property. The DataGrid definition follows:

<Grid x:Name="LayoutRoot" Background="White">

 <data:DataGrid x:Name="grid" Margin="10" />

</Grid>

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 97

■Note So, why use <data:DataGrid>? As discussed in Chapter 4, the DataGrid is contained in an
assembly called System.Windows.Controls.Data, which is not added to Silverlight applications by default.
This way, if your application does not need any of the extended controls, the file size of your Silverlight appli-
cation can be smaller. However, in order to add a DataGrid to your application, you need to reference the
new assembly and add an xmlns reference to the assembly in the UserControl definition. As you might
expect by now, Visual Studio can do all the work for you. To use this functionality in Visual Studio, drag the
DataGrid control from the Toolbox to add it to your application. Visual Studio will add a new xmlns reference
in the UserControl at the top of the .xaml page called data, which references the System.Windows.
Controls.Data assembly. For the DataGrid, you will see the xml namespace referenced in the DataGrid
definition <data:DataGrid>.

3. Next, build the class that will be bound to the DataGrid. Call the class GridData for
simplicity, and give it three properties: Name (string), Age (int), and Male (Boolean).
Also for simplicity, create a static method that will return an ObservableCollection
containing some sample data that will be bound to the grid. In addition, define the
class directly in the page.xaml.cs file. This is not really a good idea in the real world,
but for the sake of an example, it will work just fine. Ideally, you will want to define
your classes in separate files or even in completely separate projects and assem-
blies. The code for the GridData class follows:

namespace SimpleDataGrid

{

 public partial class Page : UserControl

 {

 public Page()

 {

 InitializeComponent();

 }

 }

 public class GridData

 {

 public string Name { get; set; }

 public int Age { get; set; }

 public bool Male { get; set; }

 public static ObservableCollection<GridData> GetData()

 {

 ObservableCollection<GridData> data =

 new ObservableCollection<GridData>();

98 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

 data.Add(new GridData() {

 Name = "John Doe",

 Age = 30,

 Male = true });

 data.Add(new GridData() {

 Name = "Jane Doe",

 Age = 32,

 Male = false});

 data.Add(new GridData() {

 Name = "Jason Smith",

 Age = 54,

 Male = true });

 data.Add(new GridData() {

 Name = "Kayli Jayne",

 Age = 25,

 Male = false });

 return data;

 }

 }

}

■Note When you are binding a collection of data to a DataGrid or ListBox, you may be tempted to use
the List generic class. The problem with using the List class is that it does not have built-in change notifi-
cations for the collection. In order to bind a DataGrid and ListBox to dynamic data that will be updated, you
should use the ObservableCollection generic class. The ObservableCollection class represents a
collection of dynamic data that provides built-in notification when items in the collection are added, removed,
or refreshed.

4. Now that you have the XAML and the class defined, you can wire them up. To do
this, first create an event handler for the Loaded event of the page, as follows:

public partial class Page : UserControl

{

 public Page()

 {

 InitializeComponent();

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 99

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 }

}

5. When the page is loaded, you want to call GetData() from the GridData class and
bind that to the DataGrid’s ItemsSource property, as follows:

public partial class Page : UserControl

{

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 this.grid.ItemsSource = GridData.GetData();

 }

}

6. Build and run the application. If all is well, you should see the DataGrid displayed
(see Figure 5-6).

Let’s take a few moments and play around with this DataGrid to explore some of its
features. First of all, if you click any of the column headers, you will notice that sorting is
automatically available, as shown in Figure 5-7.

Next, if you place your cursor at the edge of one of the columns, you can use the mouse
to click and drag the column’s edge to resize the column, as shown in Figure 5-8. Again,
this functionality is provided for free with the DataGrid’s rich client-side functionality.

And finally, if you click and hold the mouse on one of the column headers, then drag it
left or right to another column header’s edge, you will see a little red triangle appear above
the columns. For instance, click and drag the Name column so the little red triangle appears
to the far right, as shown in Figure 5-9. When the red triangle is where you want it, release
the mouse, and you will see that the Name column now appears as the last column in the
DataGrid.

100 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

Figure 5-7. Sorting in the DataGrid

Figure 5-8. Resizing columns in a DataGrid

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 101

Figure 5-9. Column reordering in action

You’ll agree that this is pretty nice out-of-the-box functionality for simply defining a
DataGrid with this code:

<data:DataGrid x:Name="grid" Margin="10" />

Now that you have implemented a simple DataGrid example, let’s explore some of the
additional options available.

The Columns Collection

In the previous example, you allowed the DataGrid to automatically generate columns
based on the data to which it was bound. This is not a new concept—it has been around
in data grid components since the initial release of ASP.NET. But what if you want to have
some additional control over the columns that are created in your DataGrid? What if you
want to add a column that contains some more complex information, such as an image?
You can do this by first setting the AutoGenerateColumns property on the grid to false. Then
you need to generate the columns manually.

Columns are defined in a DataGrid using the Columns collection. The following is an
example of setting the Columns collection in XAML. Notice that it sets the AutogenerateColumns
property to False. If you neglect to do this, you will get all of the autogenerated columns in
addition to the columns you define within the Columns collection.

102 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

<my:DataGrid x:Name="grid" Margin="10" AutoGenerateColumns="False">

 <my:DataGrid.Columns>

 </my:DataGrid.Columns>

</my:DataGrid>

You can place three types of columns within a Columns collection: a text column
(DataGridTextColumn), a check box column (DataGridCheckBoxColumn), and a template column
(DataGridTemplateColumn). All of the column types inherit from type DataGridColumn. A
number of notable properties apply to all three column types, as shown in Table 5-1.

DataGridTextColumn

The DataGridTextColumn defines a column in your grid for plain text. This is the equivalent
to BoundColumn in the ASP.NET DataGrid. The primary properties that can be set for a
DataGridTextColumn are the Header, which defines the text that will be displayed in the
columns header, and the DisplayMemberBinding property, which defines the property in
the data source bound to the column.

The following example defines a text column with the header Name and is bound to the
data source’s Name property.

<my:DataGrid x:Name="grid" Margin="10" AutoGenerateColumns="False">

 <my:DataGrid.Columns>

 <my:DataGridTextColumn

 Header="Name"

 DisplayMemberBinding="{Binding Name}" />

 </my:DataGrid.Columns>

</my:DataGrid>

Table 5-1. DataGridColumn Properties

Property Description

CanUserReorder Turns on and off the ability for the user to drag columns to reorder them

CanUserResize Turns on or off the ability for the user to resize the column’s width with the
mouse

DisplayIndex Determines the order in which the column appears in the DataGrid

Header Defines the content of the column’s header

IsReadOnly Determines if the column can be edited by the user

MaxWidth Sets the maximum column width in pixels

MinWidth Sets the minimum column width in pixels

Visibility Determines whether or not the column will be visible to the user

Width Sets the width of the column, or can be set to automatic sizing mode

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 103

DataGridCheckBoxColumn

As you would expect, the DataGridCheckBoxColumn contains a check box. If you have data
that you want to display as a check box in your grid, this is the control to use. Here is an
example of the DataGridCheckBoxColumn that contains the header Male? and is bound to the
data source’s Male property:

<my:DataGrid x:Name="grid" Margin="10" AutoGenerateColumns="False">

 <my:DataGrid.Columns>

 <my:DataGridCheckBoxColumn

 Header="Male?"

 DisplayMemberBinding="{Binding Male}" />

 </my:DataGrid.Columns>

</my:DataGrid>

DataGridTemplateColumn

If you want data in your grid column that is not plain text and is not a check box, the
DataGridTemplateColumn provides a way for you to define the content for your column.
The DataGridTemplateColumn contains a CellTemplate and CellEditingTemplate, which
determine what content is displayed, depending on whether the grid is in normal view
mode or in editing mode.

Note that while you get features such as automatic sorting in the other types of DataGrid
columns, that is not true of the DataGridTemplateColumn. These columns will need to have
additional logic in place to allow for sorting.

Let’s consider an example that has two fields: FirstName and LastName. Suppose that when
you are in normal view mode, you want the data to be displayed side by side in TextBlock
controls. However, when the user is editing the column, you want to display two TextBox
controls that allow the user to edit the FirstName and LastName columns independently.

<my:DataGridTemplateColumn Header="Name">
 <my:DataGridTemplateColumn.CellTemplate>

 <DataTemplate>

 <StackPanel Orientation="Horizontal">

 <TextBlock Padding="5,0,5,0"

 Text="{Binding FirstName}"/>

 <TextBlock Text="{Binding LastName}"/>

 </StackPanel>

 </DataTemplate>

 </my:DataGridTemplateColumn.CellTemplate>

 <my:DataGridTemplateColumn.CellEditingTemplate>

 <DataTemplate>

 <StackPanel Orientation="Horizontal">

 <TextBox Padding="5,0,5,0"

 Text="{Binding FirstName}"/>

104 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

 <TextBox Text="{Binding LastName}"/>

 </StackPanel>

 </DataTemplate>

 </my:DataGridTemplateColumn.CellEditingTemplate>

</my:DataGridTemplateColumn>

Now that we have covered the basics of manually defining the grids in a DataGrid, let’s
try it out.

Try It Out: Building a DataGrid with Custom Columns

I thought it would be fun to build a DataGrid that contains a list of starting hands in poker.
If you have ever watched poker on TV, you most likely heard the players refer to things like
“pocket rockets” and “cowboys.” These are simply nicknames they have given to starting
hands. The DataGrid you are going to build in this example will look like Figure 5-10.

Figure 5-10. DataGrid with custom columns

1. Create a new Silverlight application called Ch5_DataGridCustomColumns. Allow Visual
Studio to create a Web Site project to host the application.

2. After the project is loaded, right-click the Ch5_DataGridCustomColumns project and
select Add New Item. In the Add New Item dialog box, select Class for the template,
and name the class StartingHands.cs, as shown in Figure 5-11. Click the Add button
to add the class to the project.

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 105

Figure 5-11. Adding a new class to the Silverlight project

3. Now define the StartingHands class. The class will contain four properties: Nickname
(string), Notes (string), Card1 (string), and Card2 (string). Also create a static
method in the class called GetHands(), which returns an ObservableCollection of
StartingHands instances. The code follows:

using System;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Ink;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;

using System.Windows.Shapes;

using System.Collections.ObjectModel;

namespace Ch5_DataGridCustomColumns

{

 public class StartingHands

 {

 public string Nickname { get; set; }

 public string Notes { get; set; }

 public string Card1 { get; set; }

 public string Card2 { get; set; }

106 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

 public static ObservableCollection<StartingHands> GetHands()

 {

 ObservableCollection<StartingHands> hands =

 new ObservableCollection<StartingHands>();

 hands.Add(

 new StartingHands()

 {

 Nickname = "Big Slick",

 Notes = "Also referred to as Anna Kournikova.",

 Card1 = "As",

 Card2 = "Ks"

 });

 hands.Add(

 new StartingHands()

 {

 Nickname = "Pocket Rockets",

 Notes = "Also referred to as Bullets.",

 Card1 = "As",

 Card2 = "Ad"

 });

 hands.Add(

 new StartingHands()

 {

 Nickname = "Blackjack",

 Notes = "The casino game blackjack.",

 Card1 = "As",

 Card2 = "Js"

 });

 hands.Add(

 new StartingHands()

 {

 Nickname = "Cowboys",

 Notes = "Also referred to as King Kong",

 Card1 = "Ks",

 Card2 = "Kd"

 });

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 107

 hands.Add(

 new StartingHands()

 {

 Nickname = "Doyle Brunson",

 Notes = "Named after poker great Doyle Brunson",

 Card1 = "Ts",

 Card2 = "2s"

 });

 return hands;

 }

 }

}

4. Now that the class is built, in the Page.xaml file, change the width of the UserControl
to be 500 and add a DataGrid named grdData to the root Grid by double-clicking the
DataGrid control in the Toolbox. Add a 15-pixel margin around the DataGrid for
some spacing, and set the AutoGenerateColumns property to False. The code follows:

<UserControl

 xmlns:data="clr-namespace:System.Windows.Controls; ➥

assembly=System.Windows.Controls.Data"

 x:Class="Ch5_DataGridCustomColumns.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="500" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <data:DataGrid Margin="15" AutoGenerateColumns="False"></data:DataGrid>

 </Grid>

</UserControl>

5. Next, define the columns in the DataGrid. To do this, add the DataGrid.Columns col-
lection, as follows:

<data:DataGrid x:Name="grdData" Margin="15" AutoGenerateColumns="False">

 <data:DataGrid.Columns>

 </data:DataGrid.Columns>

</data:DataGrid>

108 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

6. Referring back to Figure 5-10, the first column in the Grid contains the two
cards in the hand. To build this, you use a DataGridTemplateColumn. Within the
DataGridTemplateColumn, add a CellTemplate containing a Grid with two columns,
each containing a Border, Rectangle, and TextBlock, which will overlap each other.
Bind the two TextBlock controls to the Card1 and Card2 properties from the data
source. Enter the following code:

<data:DataGrid x:Name="grdData" Margin="15" AutoGenerateColumns="False">

 <data:DataGrid.Columns>

 <data:DataGridTemplateColumn Header="Hand">

 <data:DataGridTemplateColumn.CellTemplate>

 <DataTemplate>

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Border

 Margin="2" CornerRadius="4"

 BorderBrush="Black" BorderThickness="1" />

 <Rectangle

 Margin="4" Fill="White" Grid.Column="0" />

 <Border

 Margin="2" CornerRadius="4" BorderBrush="Black"

 BorderThickness="1" Grid.Column="1" />

 <Rectangle

 Margin="4" Fill="White" Grid.Column="1" />

 <TextBlock

 Text="{Binding Card1}" HorizontalAlignment="Center"

 VerticalAlignment="Center" Grid.Column="0" />

 <TextBlock

 Text="{Binding Card2}" HorizontalAlignment="Center"

 VerticalAlignment="Center" Grid.Column="1" />

 </Grid>

 </DataTemplate>

 </data:DataGridTemplateColumn.CellTemplate>

 </data:DataGridTemplateColumn>

 </data:DataGrid.Columns>

</data:DataGrid>

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 109

7. Again, referring back to Figure 5-10, the next two columns contain the nickname of
the starting hand and notes about the starting hand. To implement this, use two
DataGridTextColumn columns. Set the Headers of the columns to Nickname and Notes
accordingly.

<data:DataGrid x:Name="grdData" Margin="15" AutoGenerateColumns="False">

 <data:DataGrid.Columns>

 <data:DataGridTemplateColumn Header="Hand">

 <data:DataGridTemplateColumn.CellTemplate>

 <DataTemplate>

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Border

 Margin="2" CornerRadius="4"

 BorderBrush="Black" BorderThickness="1" />

 <Rectangle

 Margin="4" Fill="White" Grid.Column="0" />

 <Border

 Margin="2" CornerRadius="4" BorderBrush="Black"

 BorderThickness="1" Grid.Column="1" />

 <Rectangle

 Margin="4" Fill="White" Grid.Column="1" />

 <TextBlock

 Text="{Binding Card1}" HorizontalAlignment="Center"

 VerticalAlignment="Center" Grid.Column="0" />

 <TextBlock

 Text="{Binding Card2}" HorizontalAlignment="Center"

 VerticalAlignment="Center" Grid.Column="1" />

 </Grid>

 </DataTemplate>

 </data:DataGridTemplateColumn.CellTemplate>

 </data:DataGridTemplateColumn>

 <data:DataGridTextColumn

 Header="Nickname"

 Binding="{Binding Nickname}" />

110 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

 <data:DataGridTextColumn

 Header="Notes"

 Binding="{Binding Notes}" />

 </data:DataGrid.Columns>

</data:DataGrid>

8. Finally, wire up the controls to the data source. To do this, navigate to the
page.xaml.cs file and add an event handler to the Page Loaded event. Within
that Loaded event, simply set the DataGrid’s ItemsSource property equal to the
return value of the StartingHands.GetHands() static method. Here’s the code:

public partial class Page : UserControl

{

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 this.grdData.ItemsSource = StartingHands.GetHands();

 }

}

9. Compile and run your application. If all goes well, your application should appear
as shown earlier in Figure 5-10.

This completes our DataGrid with custom columns example. Naturally, in a real-world
application, you would be getting the data for these hands from an external data source,
such as a web service or an XML file. We will be looking at that in Chapter 6. Now, let’s take
a look at the ListBox control.

The ListBox Control
In the past, the list box type of control has been considered one of the common controls
in programming—no more special than a drop-down list. However, in Silverlight 2, this
has all changed. The ListBox is perhaps one of the most flexible controls used to display
lists of data. In fact, referring back to ASP.NET controls, the Silverlight 2 ListBox is more a
cousin to the DataList control than the ASP.NET ListBox control. Let’s take a peek at this
powerful control.

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 111

Default and Custom ListBox Items

If we wire up the ListBox to our Person data from our earlier DataGrid example, you will see
that, by default, the ListBox really is just a standard ListBox.

<ListBox Margin="10" x:Name="list" DisplayMemberPath="Name" />

One additional property you may have noticed in this ListBox definition is
DisplayMemberPath. If you are defining a simple text-based ListBox, the ListBox needs
to know which data member to display. Since the Person class contains three properties
(Name, Age, and Male), we need to tell it that we want the Name to be displayed. Figure 5-12
shows the results.

Figure 5-12. A simple default ListBox

However, the ListBox control can contain much more than plain text. In fact, if you
define a custom ItemTemplate for the ListBox, you can present the items in a more inter-
esting way. Here’s an example using the same Person data:

<ListBox Margin="10" x:Name="list" DisplayMemberPath="Name">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="5" Orientation="Vertical">

 <TextBlock

 FontSize="17"

 FontWeight="Bold"

 Text="{Binding Name}" />

112 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

 <StackPanel Margin="5,0,0,0" Orientation="Horizontal">

 <TextBlock Text="Age: " />

 <TextBlock Text="{Binding Age}" />

 <TextBlock Text=", Male: " />

 <TextBlock Text="{Binding Male}" />

 </StackPanel>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

Figure 5-13 shows how this custom ListBox appears in a browser.

Figure 5-13. A customized ListBox example

Try It Out: Building a ListBox with Custom Content

Let’s take the same data that displayed poker starting hands from the previous exercise
and see what type of cool ListBox you can build with it. Figure 5-14 shows the custom
ListBox you’ll create in this exercise.

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 113

Figure 5-14. The customized ListBox application

1. Start out by creating a new Silverlight application called Ch5_ListBoxCustom and
allow Visual Studio to create a hosting web site.

2. You will use the same class that you built in the earlier DataGrid exercise. Right-click
the Silverlight project, choose Add Existing Item, and browse to StartingHands.cs
to add that class to the project.

3. When you add the existing StartingHands.cs class, it is in a different namespace
than your current project. You can reference that namespace by adding a using
statement at the top of your Silverlight application, or you can just change the
namespace, as follows:

namespace Ch5_ListBoxCustom
{

 public class StartingHands

 {

 public string Nickname { get; set; }

 public string Notes { get; set; }

114 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

 public string Card1 { get; set; }

 public string Card2 { get; set; }

 ...

 }

}

4. Next, you need to define the ListBox’s ItemTemplate. The ItemTemplate will contain a
horizontal-oriented StackPanel including the grid to display the two cards. It will
also include a nested vertical-oriented StackPanel that will contain two TextBlock
controls to display the Nickname and Notes data. Here is the code:

<Grid x:Name="LayoutRoot" Background="White">

 <ListBox Margin="10" x:Name="list">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="5" Orientation="Horizontal">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Border

 Margin="2" CornerRadius="4"

 BorderBrush="Black" BorderThickness="1" />

 <Rectangle Margin="4" Fill="White"

 Grid.Column="0" Width="20" />

 <Border

 Margin="2" CornerRadius="4" BorderBrush="Black"

 BorderThickness="1" Grid.Column="1" />

 <Rectangle Margin="4" Fill="White"

 Grid.Column="1" Width="20" />

 <TextBlock

 Text="{Binding Card1}" HorizontalAlignment="Center"

 VerticalAlignment="Center" Grid.Column="0" />

 <TextBlock

 Text="{Binding Card2}" HorizontalAlignment="Center"

 VerticalAlignment="Center" Grid.Column="1" />

 </Grid>

C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S 115

 <StackPanel Orientation="Vertical">

 <TextBlock

 Text="{Binding Nickname}"

 FontSize="16"

 FontWeight="Bold" />

 <TextBlock

 Text="{Binding Notes}" />

 </StackPanel>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

</Grid>

5. The only thing left to do is to wire up the ListBox to the data source. To do this, nav-
igate to the page.xaml.cs code behind, and add an event handler for the Page Loaded
event. Then, within that Loaded event handler, add the following code to set the
ListBox’s ItemsSource to the return value from the StartingHands.GetHands()
method, as you did earlier in the DataGrid example.

namespace Ch5_ListBoxCustom

{

 public partial class Page : UserControl

 {

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 list.ItemsSource = StartingHands.GetHands();

 }

 }

}

6. Run the application. If all goes well, you will see the ListBox shown in Figure 5-14.

As you can see, the ListBox control’s flexibility lets developers display lists of data in
some very cool ways.

116 C H A P T E R 5 ■ D A T A B I N D I N G A N D S I L V E R L I G H T L I S T C O N T R O L S

Summary
In this chapter, we looked at how to bind lists of data to Silverlight controls. Then we
focused on two controls typically bound to data: the DataGrid control and the ListBox
control. You saw how these controls are flexible and can show data in unique ways.
However, in all of these examples, the classes contained static data. In real-world examples,
the data that you will normally list in a DataGrid or ListBox will be coming from some
external data source, such as an XML file or a web service. In the next chapter, we will look
at how to get data from these external data sources and how to use that data to bind to
your Silverlight applications.

117

■ ■ ■

C H A P T E R 6

Data Access and Networking

Data access in Silverlight applications works differently than it does in traditional appli-
cations. You’ll need to be aware of how it works and the limitations. In this chapter, we
will look at what makes data access different, and then explore mechanisms for accessing
data in a Silverlight application.

Data Access in Silverlight Applications
As discussed in Chapter 1, RIAs bridge the gap between Windows-based smart clients
and web-based applications. When moving to this type of environment, data access and
networking can be confusing.

In a Windows-based smart client, the application has access to the database at all
times. It can create a connection to the database, maintain state with the database, and
remain connected.

On the other hand, a web application is what is known as a pseudo-conversational envi-
ronment, which is, for the most part, a completely stateless and disconnected environment.
When a client makes a request to the web server, the web server processes the request and
returns a response to the client. After that response has been sent, the connection between
the client and the server is disconnected, and the server moves on to the next client
request. No connection or state is maintained between the two.

In Silverlight applications, we have one additional layer of complexity. The application
runs from the client’s machine; however, it is still a disconnected environment, because it
is hosted within a web browser. There is no concept of posting back for each request or
creating a round-trip to the server for data processing. Therefore, data access is limited to
a small number of options.

In addition, a Silverlight application has a number of security restrictions placed on it
to protect the users from the application gaining too much control over their machine.
For instance, the Silverlight application has access to only an isolated storage space to
store its disconnected data. It has no access whatsoever to the client’s hard disk outside its
“sandbox.” Silverlight’s isolated storage is discussed in more detail in Chapter 7.

118 C H A P T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G

So what are your options for accessing data in a Silverlight application? The following
main mechanisms are available:

• The most common mechanism to access data from a Silverlight application is
through web services, typically a WCF service.

• Silverlight applications can access data using ADO.NET Data Services, which
provides access to data through a URI syntax.

• Silverlight 2 also has built-in socket support, which allows applications to connect
directly to a server through TCP sockets.

• Silverlight 2 has out-of-the-box support for JavaScript Object Notation (JSON), as
well as RSS 2.0 and Atom 1.0 syndication feed formats.

Of these mechanisms, we’ll explore accessing WCF services from Silverlight 2 in depth,
and then have a high-level look at using sockets. For examples and more information on
accessing other data services, refer to Pro Silverlight 2 in C# 2008 by Matthew MacDonald
(Apress, 2008).

Accessing Data Through Web Services
One of the ways that a Silverlight application can access data is through web services.
These can be ASP.NET Web Services (ASMX), Windows Communication Foundation (WCF)
services, or representational state transfer (REST) services. Here, we will concentrate on
using a WCF service, which is the preferred way of accessing data in a Silverlight applica-
tion through web services.

Try It Out: Accessing Data Through a WCF Service

To demonstrate accessing data from a WCF service, we will build the same application
that we built in Chapter 5 to try out the DataGrid. (For more information about any part of
this exercise regarding the DataGrid, refer back to Chapter 5.) The difference will be that
the application will get the data through a web service.

As you’ll recall, this application displays common starting hands in poker and the nick-
names that have been given to those starting hands. The UI will have three columns: the
first column will display two images of the cards in the hand, the second column will display
the nickname, and the third column will contain notes about the hand. The completed
application is shown in Figure 6-1.

C H AP T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G 119

Figure 6-1. The poker starting hands application

1. Create a new Silverlight application in Visual Studio 2008. Call the application
Ch6_WCFService, and allow Visual Studio to create a Web Application project named
Ch6_WCFService.Web to host your application, as shown in Figure 6-2.

Figure 6-2. Adding the Silverlight application hosting project

120 C H A P T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G

2. Right-click the Ch6_WCFService.Web project and select Add ➤ Class. Name the new
class StartingHands.cs, as shown in Figure 6-3.

Figure 6-3. Adding the StartingHands.cs class to the project

3. Now you need to implement the StartingHands.cs class. It is very similar to the
class used in Chapter 5’s DataGrid example. To save yourself some typing, you can
copy the code from that project. As shown in bold in the following code, the only
differences are the namespace and the return type of the GetHands() method. Instead
of using an ObservableCollection, it will return a simple List<StartingHands>.

■Note In a real-world example, the StartingHands.cs class would be doing something like
retrieving data from a SQL Server database and executing some business logic rules on the data. For
simplicity, this example just returns a static collection.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

namespace Ch6_WCFService.Web

{

 public class StartingHands

 {

 public string Nickname { get; set; }

 public string Notes { get; set; }

C H AP T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G 121

 public string Card1 { get; set; }

 public string Card2 { get; set; }

 public static List<StartingHands> GetHands()

 {

 List<StartingHands> hands = new List<StartingHands>();

 hands.Add(

 new StartingHands()

 {

 Nickname = "Big Slick",

 Notes = "Also referred to as Anna Kournikova.",

 Card1 = "As",

 Card2 = "Ks"

 });

 hands.Add(

 new StartingHands()

 {

 Nickname = "Pocket Rockets",

 Notes = "Also referred to as Bullets.",

 Card1 = "As",

 Card2 = "Ad"

 });

 hands.Add(

 new StartingHands()

 {

 Nickname = "Blackjack",

 Notes = "The casino game blackjack.",

 Card1 = "As",

 Card2 = "Js"

 });

 hands.Add(

 new StartingHands()

 {

 Nickname = "Cowboys",

 Notes = "Also referred to as King Kong",

 Card1 = "Ks",

 Card2 = "Kd"

 });

122 C H A P T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G

 hands.Add(

 new StartingHands()

 {

 Nickname = "Doyle Brunson",

 Notes = "Named after poker great Doyle Brunson",

 Card1 = "Ts",

 Card2 = "2s"

 });

 return hands;

 }

 }

}

4. Next, you need to add the WCF service that will call the StartingHands.GetHands()
method. Right-click the Ch6_WCFService.Web project and select Add ➤ New Item. In
the Add New Item dialog box, select the template named “Silverlight-enabled WCF
Service” and name it StartingHandService.svc, as shown in Figure 6-4. Then click
the Add button.

Figure 6-4. Adding the Silverlight-enabled WCF service

5. This will add a service named StartingHandService.svc to the project with an
attached code-behind file named StartingHandService.svc.cs. View that code
behind. You will see that Visual Studio has already created the base WCF service,
including a sample method called DoWork(), as follows:

C H AP T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G 123

namespace Ch6_WCFService.Web

{

 [ServiceContract(Namespace = "")]

 [AspNetCompatibilityRequirements(RequirementsMode =

 AspNetCompatibilityRequirementsMode.Allowed)]

 public class StartingHandService

 {

 [OperationContract]

 public void DoWork()

 {

 // Add your operation implementation here

 return;

 }

 // Add more operations here and mark them

 // with [OperationContract]

 }

}

6. Replace the DoWork() method with a GetHands() method that returns a
List<StartingHands> collection, as follows:

namespace Ch6_WCFService.Web

{

 [ServiceContract(Namespace = "")]

 [AspNetCompatibilityRequirements(RequirementsMode =

 AspNetCompatibilityRequirementsMode.Allowed)]

 public class StartingHandService

 {

 [OperationContract]

 public List<StartingHands> GetHands();

 // Add more operations here and mark them

 // with [OperationContract]

 }

}

This method simply returns the results from calling the StartingHands.GetHands()
method.

124 C H A P T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G

7. Now that you have a Silverlight-enabled WCF service, you need to add a reference
in your Silverlight project so that your Silverlight application can access the service.
To do this, right-click References within the Ch6_WCFService in Solution Explorer
and select Add Service Reference, as shown in Figure 6-5. This brings up the Add
Service Reference dialog box.

Figure 6-5. Choosing to add a service reference

8. In the Add Service Reference dialog box, click the down arrow next to the Discover
button and select Services in Solution, as shown in Figure 6-6.

9. Visual Studio will find the StartingHandService.svc and will populate the Services
list in the Add Service Reference dialog box. Expand the StartingHandService.svc
node to show the StartingHandService. Click StartingHandService to see the
GetHands() web method in the Operations listing, as shown in Figure 6-7. Enter
StartingHandServiceReference as the Namespace field, and then click OK to continue.

C H AP T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G 125

Figure 6-6. Finding the services in the solution

Figure 6-7. Adding a service reference for StartingHandService

126 C H A P T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G

10. Open the Visual Studio Object Browser by selecting View ➤ Object Browser from
the main menu. Navigate to the Ch6_WCFService entry and expand the tree. You will
find Ch6_WCFService.StartingHandService under your project. Within that, you will see
an object named StartingHandServiceClient. Select this object to examine it, as
shown in Figure 6-8.

Figure 6-8. Object Browser for StartingHandService

11. Look at the members listed on the right side of the Object Browser. There are a
number of items that are added, but take specific note of the method named
GetHandsAsync() and the event named GetHandsCompleted. You will need to use
both of these in order to call your web service from Silverlight.

12. Now it’s time to create the Silverlight application’s UI. Open the Page.xaml file in
Visual Studio. Place the cursor within the root Grid and double-click the DataGrid
control in the Toolbox. This adds the following XAML:

<UserControl

 xmlns:data="clr-namespace:System.Windows.Controls; ➥

assembly=System.Windows.Controls.Data"

 x:Class="Ch6_WCFService.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

C H AP T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G 127

 <Grid x:Name="LayoutRoot" Background="White">

 <data:DataGrid></data:DataGrid>

 </Grid>

</UserControl>

13. Highlight the DataGrid definition in the solution and replace it with the following
DataGrid definition, which is from the previous DataGrid exercise in Chapter 5. The
DataGrid contains three columns: one template column containing the two cards
in the hand, and two text columns containing the nickname and notes about the
hand.

<data:DataGrid x:Name="grdData" Margin="15" AutoGenerateColumns="False">

 <data:DataGrid.Columns>

 <data:DataGridTemplateColumn Header="Hand">

 <data:DataGridTemplateColumn.CellTemplate>

 <DataTemplate>

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Border

 Margin="2" CornerRadius="4"

 BorderBrush="Black" BorderThickness="1" />

 <Rectangle

 Margin="4" Fill="White" Grid.Column="0" />

 <Border

 Margin="2" CornerRadius="4" BorderBrush="Black"

 BorderThickness="1" Grid.Column="1" />

 <Rectangle

 Margin="4" Fill="White" Grid.Column="1" />

 <TextBlock

 Text="{Binding Card1}" HorizontalAlignment="Center"

 VerticalAlignment="Center" Grid.Column="0" />

 <TextBlock

 Text="{Binding Card2}" HorizontalAlignment="Center"

 VerticalAlignment="Center" Grid.Column="1" />

 </Grid>

 </DataTemplate>

128 C H A P T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G

 </data:DataGridTemplateColumn.CellTemplate>

 </data:DataGridTemplateColumn>

 <data:DataGridTextColumn

 Header="Nickname"

 Binding="{Binding Nickname}" />

 <data:DataGridTextColumn

 Header="Notes"

 Binding="{Binding Notes}" />

 </data:DataGrid.Columns>

</data:DataGrid>

14. Save the Page.xaml file and navigate to the code behind for the application, located
in the page.xaml.cs file. Wire up the Loaded event handler for the page, as follows:

namespace Ch6_WCFService

{

 public partial class Page : UserControl

 {

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 throw new NotImplementedException();

 }

 }

}

Next, you need to call the WCF service. In Silverlight 2, web services can be called
only asynchronously, so the browser’s execution is not blocked by the transaction.
In order to do this, you need to get an instance of the service reference (commonly
referred to as the web service proxy class) named StartingHandService, which you
added earlier. You will then wire up an event handler for the service’s GetHandsCompleted
event, which you examined in the Object Browser (in step 11). This is the event
handler that will be called when the service has completed execution. Finally, you
will execute the GetHandsAsync() method.

C H AP T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G 129

■Tip In a real-world scenario, you will want to present the user with a progress bar or animation
while the service is being called, since the duration of a web service call can be lengthy.

15. Within the Page_Loaded event handler, first obtain an instance of StartingHandService.
Then, in the GetHandsCompleted event handler, bind the ItemsSource of the DataGrid
to the result returned from the service call, as shown in the following code. Note
that normally you will want to check the result to make certain that the web service
call was successful, and alert the user accordingly in case of failure.

using Ch6_WCFService.StartingHandService;

namespace Ch6_WCFService

{

 public partial class Page : UserControl

 {

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 StartingHandServiceClient service = new StartingHandServiceClient();

 service.GetHandsCompleted += new

 EventHandler<GetHandsCompletedEventArgs>(service_GetHandsCompleted);

 service.GetHandsAsync();

 }

 void service_GetHandsCompleted(object sender, GetHandsCompletedEventArgs e)

 {

 this.grdData.ItemsSource = e.Result;

 }

 }

}

16. Test your application. If all goes well, you should see the populated DataGrid, as
shown earlier in Figure 6-1.

130 C H A P T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G

This example demonstrated how to use the Silverlight-enabled WCF service provided
in Visual Studio to allow your Silverlight application to access data remotely. As noted
earlier, this is one of the most common approaches to data access with Silverlight.

Using a Standard WCF Service with Silverlight

It is very possible to use a standard WCF service with Silverlight, instead of the provided
Silverlight-enabled WCF service. Selecting the WCF Service project type in Visual Studio 2008
will add an interface and web service to the solution that you need to implement. This is
perfectly valid for Silverlight 2 applications, but you must be careful with the binding.

WCF uses wsHttpBinding as its default binding. In the web.config file, you will notice
that the service endpoint element has an attribute binding="wsHttpBinding". Silverlight 2,
on the other hand, supports only basic binding. Therefore, in order for your WCF
service to work in your application, you will need to modify the binding attribute to
be binding="basicHttpBinding".

Accessing Services from Other Domains
In the previous example, the web service was on the same domain as your Silverlight
application. What if you want to call a service that is on a different domain?

In fact, as a best practice, it is preferred to have your web services stored on a domain
separate from your web application. So even for applications where you control both the
web service and the Silverlight application, you may be dealing with different domains.

If you attempt to access a service from a different domain in Silverlight, you will notice
that it fails. This is because, by default, a Silverlight application cannot call services that
are on a different domain, unless it is permitted to do so by the service host. In order for
Silverlight to determine if it has permission to access a service on a certain domain, it will
look for one of two files in the root of the target domain: clientaccesspolicy.xml or
crossdomain.xml.

First, Silverlight will look for a file named clientaccesspolicy.xml in the domain’s root.
This is Silverlight’s client-access policy file. If you are publishing your own services that
you want to be accessible by Silverlight applications, this is the file that you want to use,
as it provides the most options for Silverlight application policy permissions. The
following is a sample clientaccesspolicy.xml file:

<?xml version="1.0" encoding="utf-8"?>

<access-policy>

 <cross-domain-access>

 <policy>

 <allow-from http-request-headers="*">

 <domain uri="*"/>

C H AP T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G 131

 </allow-from>

 <grant-to>

 <resource path="/" include-subpaths="true"/>

 </grant-to>

 </policy>

 </cross-domain-access>

</access-policy>

The important elements are <allow-from> and <grant-to>. The <allow-from> element
defines which domains are permitted to access the resources specified in the <grant-to>
element.

If Silverlight cannot find a clientaccesspolicy.xml file at the root of the domain from which
you are attempting to access a service, it will then look for a file named crossdomain.xml in the
root. This is the XML policy file that has been used to provide access for Flash applications
to access cross-domain services, and Silverlight supports this file as well. The following is
an example of a crossdomain.xml file:

<?xml version="1.0"?>

<!DOCTYPE cross-domain-policy

 SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

 <allow-http-request-headers-from domain="*" headers="*"/>

</cross-domain-policy>

Again, even though Silverlight supports crossdomain.xml, using clientaccesspolicy.xml
for Silverlight applications is the preferred and best practice.

Accessing Data Through Sockets
In the majority of cases, your Silverlight applications will access data through web services.
However, Silverlight provides another mechanism that, though rarely used, can be quite
powerful. This mechanism is socket communications. In this section, we will look at a
greatly simplified example of communicating with a server via sockets and TCP. The main
purpose here is to give you a taste of using sockets in Silverlight so you have a basic under-
standing of the process and can consider whether you would like to take this approach. If
so, you can refer to a more advanced resource, such as Pro Silverlight 2 in C# 2008 by
Matthew MacDonald (Apress 2008).

For our example, let’s assume that we have a socket server running at the IP address
192.168.1.100 on port 4500. The socket server simply accepts text inputs and does some-
thing with them. In Silverlight, we want to connect to that socket server and send it text
from a TextBox control.

132 C H A P T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G

First, we make a connection to the socket server. To do this, we create an instance of a
System.Net.Sockets.Socket object for IP version 4 (AddressFamily.InterNetwork). The type
will be Stream, meaning it will accept a stream of bytes, and the protocol will be TCP.

Socket socket;

socket = new Socket(

 AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp);

We need to execute the socket’s ConnectAsync() method, but first we must create an
instance of SocketAsyncEventArgs to pass to the method, using a statement similar to the
following:

SocketAsyncEventArgs socketArgs = new SocketAsyncEventArgs()

{

 RemoteEndPoint = new IPEndPoint(

 IPAddress.Parse("192.168.1.100"),

 4500)

};

This statement sets the target for the socket connection as 192.168.1.100 on port 4500.
In addition, since this is an asynchronous connection, we need to have notification when

the connection has been established. To get this notification, we wire up an event handler
to be triggered on the SocketAsyncEventArgs.Completed event. Once we have that wired up,
we simply call the ConnectAsync() method, passing it our SocketAsyncEventArgs instance.

socketArgs.Completed += new

 EventHandler<SocketAsyncEventArgs>(socketArgs_Completed);

socket.ConnectAsync(socketArgs);

The method for this event handler will first remove the event handler, and then it will
examine the response from the socket server. If it is successful, it will send a stream of
bytes from our TextBox control to the socket server through our established connection.

void socketArgs_Completed(object sender, SocketAsyncEventArgs e)

{

 e.Completed -= socketArgs_Completed;

 if (e.SocketError == SocketError.Success)

 {

 SocketAsyncEventArgs args = new SocketAsyncEventArgs();

 args.SetBuffer(bytes, 0, bytes.Length);

 args.Completed += new EventHandler<SocketAsyncEventArgs>(OnSendCompleted);

 socket.SendAsync(args);

 }

}

C H AP T E R 6 ■ D A T A A C C E S S A N D N E T W O R K I N G 133

Once again, since the calls to the socket are asynchronous, we wire up another event
handler called OnSendCompleted, which will fire when our SendAsync() method is completed.
This event handler will do nothing more than close the socket.

void OnSendCompleted(object sender, SocketAsyncEventArgs e)

{

 socket.Close();

}

Although this seems pretty simple, it is complicated by client-access policy permissions.
In the same way that a Silverlight application can call a web service on a separate domain
only if it has the proper client-access policy permissions, a Silverlight application can call
a socket server only if that server contains the proper client-access policy permissions.
The following is an example of a client-access policy for a socket server:

<?xml version="1.0" encoding ="utf-8"?>

<access-policy>

 <cross-domain-access>

 <policy>

 <allow-from>

 <domain uri="*" />

 </allow-from>

 <grant-to>

 <socket-resource port="4500-4550" protocol="tcp" />

 </grant-to>

 </policy>

 </cross-domain-access>

</access-policy>

Recall that when you’re using a web service, the client-access policy is contained in
a file named clientaccesspolicy.xml, which is placed in the domain’s root. In a socket
access situation, things are a bit more complex.

Before Silverlight will make a socket request to a server on whatever port is requested
by the application, it will first make a socket request of its own to the server on port 943,
requesting a policy file. Therefore, your server must have a socket service set up to listen
to requests on port 943 and serve up the contents of the client-access policy in order for
Silverlight applications to be able to make a socket connection.

Summary
In this chapter, we focused on accessing data from your Silverlight applications through
WCF services. We also discussed accessing data from different domains and cross-domain
policy files. In addition, we looked at using sockets in Silverlight 2 from a high level.

In the next chapter we will look at local storage within Silverlight.

135

■ ■ ■

C H A P T E R 7

Local Storage in Silverlight

Localized storage in Silverlight 2 is handled by its isolated storage feature, which is a
virtual file system that can be used to store application data on the client’s machine. As
just a few examples, you might use local storage in your application to store user settings,
undo information, shopping cart contents, or a local cache for your commonly used
objects. Implementations of this feature are really limited only by your imagination.

In this chapter, we will explore Silverlight’s isolated storage. We walk through building
a virtual storage explorer to view the directories and files contained within isolated storage
for an application. In addition, we will look at the isolated storage quota and how to
increase the quota size for your Silverlight 2 applications.

Working with Isolated Storage
Storing application information has always been a challenge for developers of traditional
web applications. Often, implementing such storage means storing information in cookies
or on the server, which requires using a postback to retrieve the data. In the case of desktop
applications, implementing storage for application information is significantly easier, as
developers have more access to the user’s hard drive. Once again, Silverlight 2 bridges the
gap between desktop applications and web applications by offering isolated storage.

Using the Silverlight classes for working with isolated storage, you can not only store
settings locally, but also create files and directories, as well as read and write files within
isolated storage.

136 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

Using the Isolated Storage API

The classes for accessing isolated storage are contained within the System.IO.IsolatedStorage
namespace. This namespace contains the following three classes:

• IsolatedStorageFile

• IsolatedStorageFileStream

• IsolatedStorageSettings

We’ll look at each class to see what it represents.

IsolatedStorageFile

The IsolatedStorageFile class represents the isolated storage area, and the files and direc-

tories contained within it. This class provides the majority of the properties and methods
used when working with isolated storage in Silverlight 2. As an example, in order to get
an instance of the user’s isolated storage for a given application, use the static method
GetUserStoreForApplication(), as follows:

using (var store = IsolatedStorageFile.GetUserStoreForApplication())

{

 //...

}

Once the storage instance has been retrieved, a number of operations are available,
including CreateDirectory(), CreateFile(), GetDirectoryNames(), and GetFileNames(). Also,
the class has properties such as Quota and AvailableFreeSpace. The following example
creates a directory in isolated storage called Directory1, and then it retrieves the total and
available free space in isolated storage:

using (var store = IsolatedStorageFile.GetUserStoreForApplication())

{

 store.CreateDirectory("Directory1");

 long quota = store.Quota;

 long availableSpace = store.AvailableFreeSpace;

}

IsolatedStorageFileStream

The IsolatedStorageFileStream class represents a given file. It is used to read, write, and
create files within isolated storage. The class extends the FileStream class, and in most
cases, developers will use a StreamReader and StreamWriter to work with the stream. As an

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 137

example, the following code creates a new file named TextFile.txt and writes a string to
the file:

using (var store = IsolatedStorageFile.GetUserStoreForApplication())

{

 IsolatedStorageFileStream stream = store.CreateFile("TextFile.txt");

 StreamWriter sw = new StreamWriter(stream);

 sw.Write("Contents of the File);

 sw.Close();

}

IsolatedStorageSettings

The IsolatedStorageSettings class allows developers to store key/value pairs in isolated
storage. The key/value pairs are user-specific and provide a very convenient way to
store settings locally. The following example demonstrates storing the user’s name in
IsolatedStorageSettings.

public partial class Page : UserControl

{

 private IsolatedStorageSettings isSettings =

 IsolatedStorageSettings.ApplicationSettings;

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 this.cmdSave.Click += new RoutedEventHandler(cmdSave_Click);

 }

 void cmdSave_Click(object sender, RoutedEventArgs e)

 {

 isSettings["name"] = this.txtName.Text;

 SetWelcomeMessage();

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 SetWelcomeMessage();

 }

138 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

 private void SetWelcomeMessage()

 {

 if (isSettings.Contains("name"))

 {

 string name = (string)isSettings["name"];

 this.txtWelcome.Text = "Welcome " + name;

 }

 else

 {

 txtWelcome.Text =

 "Welcome! Enter Your Name and Press Save.";

 }

 }

}

The first time users access the application, they will see the message “Welcome! Enter
Your Name and Press Save.” They can then enter their name and click the Save Name
button. The name will be saved in local storage under the key/value pair called name. The
next time the user accesses the application, his name will still be stored in local storage,
and he will see the friendly welcome message, as shown in Figure 7-1.

Figure 7-1. Saving a user’s name with IsolatedStorageSettings

Now that we have briefly looked at some of the key classes associated with Silverlight 2’s
isolated storage, let’s try building an application that uses this storage.

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 139

Try It Out: Creating a File Explorer for Isolated Storage

In this example, you will create a file explorer that will allow a user to navigate through an
application’s virtual storage within Silverlight’s isolated storage. The file explorer will allow
users to view, modify, and create new files within the given directories. Keep in mind that
a Silverlight application has its own isolated storage, so the file explorer will be unique to
the application. The end result will appear as shown in Figure 7-2.

Figure 7-2. The isolated storage file explorer demo

Creating the Application Layout

Let’s get started by setting up the application layout.

1. Create a new Silverlight application in Visual Studio 2008. Name it Ch7_ISExplorer
and allow Visual Studio to create an ASP.NET web site called Ch7_ISExplorer.Web to
host your application.

2. When the project is created, you should be looking at the Page.xaml file. If you do not
see the XAML source, switch to that view so that you can edit the XAML. The appli-
cation should take up the entire browser window, so begin by removing the Width
and Height properties from your base UserControl.

140 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

<UserControl x:Class="Ch7_ISExplorer.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>

</UserControl>

3. Next, define a Grid for the form layout. Add two columns and three rows to the Grid.
Set the Width property of the first column to 250. Set the Height property of the top
row to 75 and the bottom row to 30. Also, in order to better see your Grid layout, set
the ShowGridLines property to True.

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="250" />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="75" />

 <RowDefinition />

 <RowDefinition Height="30" />

 </Grid.RowDefinitions>

</Grid>

4. Run your application. It should look like Figure 7-3.

Figure 7-3. The grid layout of the file explorer application

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 141

5. Next, add a GridSplitter to allow the user to resize the left and right columns. Set
the Grid.RowSpan to 3 and HorizontalAlignment to Right.

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="250" />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="75" />

 <RowDefinition />

 <RowDefinition Height="30" />

 </Grid.RowDefinitions>

 <basics:GridSplitter

 Grid.RowSpan="3"

 HorizontalAlignment="Right" />

</Grid>

Now you will start filling the Grid cells with controls. You will add quite a few con-
trols, using nested StackPanel components to assist in getting the desired layout.
These controls have been discussed in detail in Chapters 4 and 5, and you can refer
back to those chapters for more information about any of the controls used here.

6. In Grid.Row and Grid.Column (0,0), place a StackPanel that contains a couple cos-
metic TextBlock controls that will serve as your application title, as follows (with
some of the existing code omitted for brevity):

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...

 <basics:GridSplitter …

 <StackPanel

 VerticalAlignment="Bottom"

 Orientation="Vertical"

 Margin="5">

 <TextBlock

 FontSize="18"

 FontWeight="Bold"

 Text="Silverlight 2">

 </TextBlock>

 <TextBlock

142 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

 FontSize="18"

 FontWeight="Bold"

 Text="Isolated Storage Demo">

 </TextBlock>

 </StackPanel>

</Grid>

Referring to Figure 7-2, you will notice that the content is divided into two sections:
one for directories (top) and one for files (bottom). Let’s first take care of the
section for directories.

7. In Grid.Row and Grid.Column (1,0), place another StackPanel, which spans two
rows, with a couple TextBlock controls, three Button controls, and two ListBox
controls. The XAML should appear as follows (again, with some of the source code
omitted, but the changes are shown):

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...

 <basics:GridSplitter ...

 <StackPanel

 VerticalAlignment="Bottom"

 Orientation="Vertical"

 Margin="5">

 <TextBlock

 FontSize="18"

 FontWeight="Bold"

 Text="Silverlight 2">

 </TextBlock>

 <TextBlock

 FontSize="18"

 FontWeight="Bold"

 Text="Isolated Storage Demo">

 </TextBlock>

 </StackPanel>

 <StackPanel

 Grid.Row="1"

 Grid.RowSpan="2"

 Orientation="Vertical">

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 143

 <TextBlock

 FontSize="15"

 Text="Directories"

 Margin="5">

 </TextBlock>

 <TextBlock

 x:Name="lblCurrentDirectory"

 FontSize="13"

 Text="Selected Directory"

 Margin="5">

 </TextBlock>

 <StackPanel Orientation="Horizontal">

 <Button

 x:Name="btnUpDir"

 Margin="5"

 Click="btnUpDir_Click"

 Content="Up Directory"

 Width="100"

 Height="20" />

 <Button

 x:Name="btnOpenDir"

 Margin="5"

 Click="btnOpenDir_Click"

 Content="Open Directory"

 Width="100"

 Height="20" />

 </StackPanel>

 <ListBox Height="150"

 x:Name="lstDirectoryListing"

 Margin="5,5,13,5">

 </ListBox>

 </StackPanel>

</Grid>

First is a simple cosmetic TextBlock for the section title. This is followed by the
TextBlock named lblCurrentDirectory, which will be filled with the current
directory. As the users navigate through the directories, it will be important to
inform them which directory they are in.

144 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

Next are two Button controls (btnUpDir and btnOpenDir), which will be used for nav-
igating through the directories. This is simplified into two basic tasks: moving up a
directory and opening the currently selected directory. To get the buttons to appear
visually as desired, they are contained in a StackPanel with horizontal orientation.

The final ListBox will be populated with directories named lstDirectoryListing.
As the users navigate through the directories using the btnUpDir and btnOpenDir
buttons, this ListBox will be repopulated automatically with the directories con-
tained in the user’s current location.

8. Next, still within Grid.Row and Grid.Column (1,0), add the files section, as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...

 <ListBox Height="100"

 x:Name="lstDirectoryListing"

 Margin="5,5,13,5">

 </ListBox>

 <TextBlock

 FontSize="15"

 Text="Files"

 Margin="5">

 </TextBlock>

 <StackPanel Orientation="Horizontal">

 <Button

 x:Name="btnOpenFile"

 Margin="5"

 Click="btnOpenFile_Click"

 Content="Show File"

 Width="100"

 Height="20" />

 </StackPanel>

 <ListBox Height="150"

 x:Name="lstFileListing"

 Margin="5,5,13,5">

 </ListBox>

 </StackPanel>

</Grid>

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 145

As with the previous section, the first TextBlock holds the section title. Next is a
Button control called btnOpenFile. Notice that even though there is only one button,
it is still placed within a StackPanel for consistency. In the future, if you want to
extend this application—for example, to add file deletion functionality—you may
want to add buttons to this StackPanel. This is purely user preference; the StackPanel
really was not required in this instance.

Finally, you have the ListBox that will be filled with the files in the current directory,
in the same way that the directories ListBox will be filled in the top section.

9. To see what you have so far, press F5 (or choose Debug ➤ Start Debugging from the
menu bar) to start your Silverlight application.

Notice that Visual Studio will compile successfully and will open the browser
instance. However, just when you think everything is going great and you are
excited to see your beautiful form coming to life, you get an XamlParseException
with a cryptic message:

AG_E_PARSER_BAD_PROPERTY_VALUE [Line: 66 Position: 34].

This is caused by the fact that, within the code behind, you have not declared the
delegates that are referred to in your XAML.

■Note The line and position noted in the error message you see may be slightly different from
those shown here, depending on the spacing you included when adding the controls to the code.

10. Stop debugging by clicking the Stop button. Press F7 or select View ➤ View Code.
Sure enough, there are no event handlers.

At this point, you could go through and manually add the handlers in the code. But
I think you’ve done enough typing already, so let’s have Visual Studio do it for you.

11. Return to your XAML by clicking the Page.xaml file in the Files tab. Look at the con-
trols you have added. You will notice that the code refers to three event handlers,
one for each of the buttons: btnUpDir_Click, btnOpenDir_Click, and btnOpenFile_Click.

12. Find the first reference, btnUpDir_Click. Right-click it and select the Navigate to
Event Handler option, as shown in Figure 7-4. Visual Studio will automatically
create the event handler in the code behind, as follows:

public partial class Page : UserControl

{

 public Page()

146 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

 {

 InitializeComponent();

 }

 private void btnUpDir_Click(object sender, RoutedEventArgs e)

 {

 }

}

Figure 7-4. Choosing the Navigate to Event Handler option in Visual Studio

13. Repeat step 12 for the other two event handlers. At this point, your code behind
should look as follows:

public partial class Page : UserControl

{

 public Page()

 {

 InitializeComponent();

 }

 private void btnUpDir_Click(object sender, RoutedEventArgs e)

 {

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 147

 }

 private void btnOpenDir_Click(object sender, RoutedEventArgs e)

 {

 }

 private void btnOpenFile_Click(object sender, RoutedEventArgs e)

 {

 }

}

14. Run the application. Once again, press F5 to start debugging. Barring any typos,

the Silverlight application should appear as shown in Figure 7-5.

Figure 7-5. Application with left portion layout

It’s looking good so far! You are almost finished with the application layout. Now,
let’s move on to the right column and add the final controls.

148 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

15. At the bottom of your Grid definition within Grid.Row and Grid.Column (0,1), place
another StackPanel. Within it, add a TextBox named txtFileName that will contain
the name of the file being edited, along with a Button control named btnSave, which
will save the file referred to in txtFileName. Your XAML should look as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...

 </StackPanel>

 <StackPanel

 VerticalAlignment="Bottom"

 Orientation="Horizontal"

 Grid.Row="0"

 Grid.Column="1">

 <TextBox

 x:Name="txtFileName"

 Text="File1.txt"

 Margin="5"

 Width="300"

 Height="30"

 FontSize="15">

 </TextBox>

 <Button

 x:Name="btnSave"

 Margin="5"

 Content="Save"

 Width="100"

 Height="30"

 Click="btnSave_Click">

 </Button>

 </StackPanel>

</Grid>

16. While you are at it, go ahead and have Visual Studio create the event handler for
btnSave_Click. Right-click it and choose the Navigate to Event Handler option to
add the following handler:

public partial class Page : UserControl

{

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 149

 ...

 private void btnSave_Click(object sender, RoutedEventArgs e)

 {

 }

}

17. Navigate back to the XAML. Within Grid.Row and Grid.Column (1,1), add a TextBox
named txtContents, which will display the contents of the opened file, as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...

 </StackPanel>

 <TextBox

 x:Name="txtContents"

 VerticalScrollBarVisibility="Visible"

 HorizontalScrollBarVisibility="Auto"

 AcceptsReturn="True"

 BorderBrush="Black" BorderThickness="2"

 Margin="5" Grid.Column="1" Grid.Row="1"

 FontSize="15" FontFamily="Courier">

 </TextBox>

</Grid>

Since this should be a multiline TextBox, you set the AcceptsReturn property to True.
You also set the VerticalScrollBarVisibility property to Visible, which makes it
always appear, and the HorizontalScrollBarVisibility property to Auto, which
makes it appear only when there is enough text to require left and right scrolling.

18. Within Grid.Row and Grid.Column (1,2), place a StackPanel that contains five
TextBlock controls, some that are simply cosmetic, and some that will be popu-
lated in the application’s code, as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...

 </StackPanel>

150 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

 <TextBox

 x:Name="txtContents"

 VerticalScrollBarVisibility="Visible"

 HorizontalScrollBarVisibility="Auto"

 AcceptsReturn="True"

 BorderBrush="Black" BorderThickness="2"

 Margin="5" Grid.Column="1" Grid.Row="1"

 FontSize="15" FontFamily="Courier">

 </TextBox>

 <StackPanel

 VerticalAlignment="Bottom" Orientation="Horizontal"

 Margin="5" Grid.Column="1" Grid.Row="2">

 <TextBlock FontSize="13"

 Text="Available Space in Isolated Storage: " />

 <TextBlock x:Name="txtAvalSpace" FontSize="13" Text="123" />

 <TextBlock FontSize="13" Text="kb / " />

 <TextBlock x:Name="txtQuota" FontSize="13" Text="123" />

 <TextBlock FontSize="13" Text="kb" />

 </StackPanel>

</Grid>

With this, you are finished creating the application layout! We can now turn our atten-
tion to the code behind.

Coding the File Explorer

Now let’s add the functionality that demonstrates accessing Silverlight’s isolated storage.

1. When the file explorer is started, it will do two things. First, it will load some sample
directories and files in isolated storage. Second, it will populate the directories and
files ListBox controls, as well as update the informative TextBlock controls. You will
encapulate these tasks into two methods: LoadFilesAndDirs() and GetStorageData().
Create a Loaded event handler and add these two method calls to the event.

public partial class Page : UserControl

{

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 151

 }

 void Page_Loaded(object sender, RoutedEventArgs e)

 {

 LoadFilesAndDirs();

 GetStorageData();

 }

 private void LoadFilesAndDirs()

 {

 }

 private void GetStorageData()

 {

 }

 private void btnUpDir_Click(object sender, RoutedEventArgs e)

 {

 }

 private void btnOpenDir_Click(object sender, RoutedEventArgs e)

 {

 }

 private void btnOpenFile_Click(object sender, RoutedEventArgs e)

 {

 }

 private void btnSave_Click(object sender, RoutedEventArgs e)

 {

 }

}

2. Next, add references to two namespaces for your application. Also create a global
string variable called currentDir, which will store the current directory.

152 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

using ...

using System.IO;

using System.IO.IsolatedStorage;

namespace Ch7_ISExplorer

{

 public partial class Page : UserControl

 {

 private string currentDir = "";

 public Page()

 {

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

 }

 ...

 }

}

3. Let’s implement the LoadFilesAndDirs() method. The first step is to get an instance
of the user’s isolated storage for the application using the IsolatedStorageFile
class’s GetUserStoreForApplication() method. You will do this within a C# using
statement so the instance is disposed of automatically.

private void LoadFilesAndDirs()

{

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 }

}

4. Now that you have an instance of the isolated storage, create three root-level direc-
tories and three subdirectories, one in each of the root-level directories. Use the
CreateDirectory() method to create the directories, as follows:

private void LoadFilesAndDirs()

{

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 // Create three directories in the root.

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 153

 store.CreateDirectory("Dir1");

 store.CreateDirectory("Dir2");

 store.CreateDirectory("Dir3");

 // Create three subdirectories under Dir1.

 string subdir1 = System.IO.Path.Combine("Dir1", "SubDir1");

 string subdir2 = System.IO.Path.Combine("Dir2", "SubDir2");

 string subdir3 = System.IO.Path.Combine("Dir3", "SubDir3");

 store.CreateDirectory(subdir1);

 store.CreateDirectory(subdir2);

 store.CreateDirectory(subdir3);

 }

}

5. Next, create two files: one in the root and one in a subdirectory. To do this, use the
CreateFile() method, which returns an IsolatedStorageFileStream object. For now,
you will leave the files empty, so after creating the files, simply close the stream.

private void LoadFilesAndDirs()

{

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 // Create three directories in the root.

 store.CreateDirectory("Dir1");

 store.CreateDirectory("Dir2");

 store.CreateDirectory("Dir3");

 // Create three subdirectories under Dir1.

 string subdir1 = System.IO.Path.Combine("Dir1", "SubDir1");

 string subdir2 = System.IO.Path.Combine("Dir2", "SubDir2");

 string subdir3 = System.IO.Path.Combine("Dir3", "SubDir3");

 store.CreateDirectory(subdir1);

 store.CreateDirectory(subdir2);

 store.CreateDirectory(subdir3);

 // Create a file in the root.

 IsolatedStorageFileStream rootFile =

 store.CreateFile("InTheRoot.txt");

 rootFile.Close();

 // Create a file in a subdirectory.

 IsolatedStorageFileStream subDirFile =

154 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

 store.CreateFile(

 System.IO.Path.Combine(subdir1, "SubDir1.txt"));

 subDirFile.Close();

 }

}

■Caution Notice the Path.Combine() method call here is fully qualified (specified with the
namespace). This is because there is another Path class in System.Windows.Shapes. If you don’t
fully qualify Path, the ambigous name will cause an error.

That completes the LoadFilesAndDirs() method. Next, you will implement
the GetStorageData() method, which will display the storage information in the
application.

6. Since you will be populating the directories and files ListBox controls, you need to
make sure you clear them each time the GetStorageData() method is called. You will
do this by calling the Items.Clear() method on the two ListBox controls. Then you
will get an instance of the user’s isolated storage, in the same way as you did in the
LoadFilesAndDirs() method.

private void GetStorageData()

{

 this.lstDirectoryListing.Items.Clear();

 this.lstFileListing.Items.Clear();

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 }

}

7. Next, you want to list all of the directories that are contained in the directory
passed to the method. In order to do this, you will construct a search string using
the System.IO.Path.Combine() method. You will then call the GetDirectoryNames()
method along with the search string. This will return a string array, which you can
then step through to manually populate the directories ListBox.

private void GetStorageData()

{

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 155

 this.lstDirectoryListing.Items.Clear();

 this.lstFileListing.Items.Clear();

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 string searchString =

 System.IO.Path.Combine(currentDir, "*.*");

 string[] directories =

 store.GetDirectoryNames(searchString);

 foreach (string sDir in directories)

 {

 this.lstDirectoryListing.Items.Add(sDir);

 }

 }

}

8. Now populate the files ListBox. You do this in the same way that you populated the
directories ListBox, except this time, use the GetFileNames() method, which simil-
iarly returns a string array.

private void GetStorageData()

{

 this.lstDirectoryListing.Items.Clear();

 this.lstFileListing.Items.Clear();

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 string searchString =

 System.IO.Path.Combine(currentDir, "*.*");

 string[] directories =

 store.GetDirectoryNames(searchString);

 foreach (string sDir in directories)

 {

 this.lstDirectoryListing.Items.Add(sDir);

 }

156 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

 string[] files = store.GetFileNames(searchString);

 foreach (string sFile in files)

 {

 this.lstFileListing.Items.Add(sFile);

 }

 }

}

9. Now that the two ListBox controls are populated, you want to populate three
additional TextBlock controls. One will show the current directory. The other
two will display the amount of free space remaining in isolated storage and the
available quota for the application. You get this information by using the Quota
and AvailableFreeSpace properties, which return the total and free space in bytes,
respectively.

private void GetStorageData()

{

 this.lstDirectoryListing.Items.Clear();

 this.lstFileListing.Items.Clear();

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 string searchString =

 System.IO.Path.Combine(currentDir, "*.*");

 string[] directories =

 store.GetDirectoryNames(searchString);

 foreach (string sDir in directories)

 {

 this.lstDirectoryListing.Items.Add(sDir);

 }

 string[] files = store.GetFileNames(searchString);

 foreach (string sFile in files)

 {

 this.lstFileListing.Items.Add(sFile);

 }

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 157

 long space = store.AvailableFreeSpace;

 txtAvalSpace.Text = (space / 1000).ToString();

 long quota = store.Quota;

 txtQuota.Text = (quota / 1000).ToString();

 this.lblCurrentDirectory.Text =

 String.Concat("\\", currentDir);

 }

}

■Note For simplicity, we are dividing by 1000 instead of 1024. Therefore, the calculation will not
be exact, but close enough for the purposes of our example.

10. Run the application. You will see that the current directory is set to \, and that
the three directories and the file you created at the root level are displayed in the
ListBox controls, as shown in Figure 7-6.

Figure 7-6. The file explorer application showing the root

158 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

Now you can implement the Button events, starting with the Up Directory and
Open Directory buttons.

11. When the user clicks the Up Directory button, the system will find the current
directory’s parent directory using System.IO.Path.GetDirectoryName(), set the
current directory to be that parent directory, and reexecute the GetStorageData()
method.

private void btnUpDir_Click(object sender, RoutedEventArgs e)

{

 if (currentDir != "")

 {

 currentDir =

 System.IO.Path.GetDirectoryName(currentDir);

 }

 GetStorageData();

}

12. When the user clicks the Open Directory button, you will combine the current
directory with the selected directory from the directory ListBox using the
System.IO.Path.Combine() method, set the current directory to that new directory,
and once again reexecute the GetStorageData() method.

private void btnOpenDir_Click(object sender, RoutedEventArgs e)

{

 if (this.lstDirectoryListing.SelectedItem != null)

 {

 currentDir =

 System.IO.Path.Combine(

 currentDir,

 this.lstDirectoryListing.SelectedItem.ToString());

 }

 GetStorageData();

}

13. Next, implement the Show File button’s Click event, as follows:

private void btnOpenFile_Click(object sender, RoutedEventArgs e)

{

 if (this.lstFileListing.SelectedItem != null)

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 159

 {

 this.txtFileName.Text =

 this.lstFileListing.SelectedItem.ToString();

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 string filePath =

 System.IO.Path.Combine(

 currentDir,

 this.lstFileListing.SelectedItem.ToString());

 IsolatedStorageFileStream stream =

 store.OpenFile(filePath, FileMode.Open);

 StreamReader sr = new StreamReader(stream);

 this.txtContents.Text = sr.ReadToEnd();

 sr.Close();

 }

 }

}

When a user clicks the Show File button, the file from isolated storage opens, and
its contents are displayed in txtContents. You achieve this by first getting an instance
of the user’s isolated storage, and then generating the path to the file by combining
the current directory with the file name provided in txtFileName. After you have
constructed the full file path, you open the file using OpenFile(), which returns a
Stream containing the file contents. You attach a StreamReader to the Stream to assist
in working with the stream, and then display the contents of the Stream using the
StreamReader’s ReadToEnd() method.

14. Finally, wire up the Save button, which will save the contents of txtContents to the
file name specified in txtFileName. You want to make it so that if the user enters a
file name that doesn’t exist, the application will create a new file. If the user enters
one that does exist, the application will override the contents of that file. Although
this is not perfect for use in the real world, it serves as a fine demo for using isolated
storage.

private void btnSave_Click(object sender, RoutedEventArgs e)

{

 string fileContents = this.txtContents.Text;

160 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 IsolatedStorageFileStream stream =

 store.OpenFile(

 System.IO.Path.Combine(

 currentDir,

 this.txtFileName.Text),

 FileMode.OpenOrCreate);

 StreamWriter sw = new StreamWriter(stream);

 sw.Write(fileContents);

 sw.Close();

 stream.Close();

 }

 GetStorageData();

}

This method is similar to the ShowFile() method. Basically, you get the isolated
storage instance, and open the file using the OpenFile() method, passing it the full
file path. However, this time, you pass the OpenFile() method FileMode.OpenOrCreate.
This way, if the file doesn’t exist, the application will create it. You then attach the
returned stream to a StreamWriter, and write the contents to the Stream using
the StreamWriter’s Write() method.

After writing the file, you clean up the objects and call the GetStorageData() method,
which will cause the newly created file to appear in the files ListBox (in the event a
new file was created).

At this point, you’re ready to test your completed application.

Testing the File Explorer

Now let’s try out your new file explorer.

1. Fire up the application by pressing F5. If all goes well, you should see the application.

2. Highlight Dir1 in the Directories list box and click the Open Directory button. The
application will navigate to that directory and refresh the list boxes to show the
directories and files contained within that file.

3. Enter the file name SampleTextFile.txt in the txtFileName text box. For the contents,
enter some arbitrary data. If you have Microsoft Word, you can generate a ton of
random text using =Rand(10,20) and paste the content into the text box.

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 161

4. After you enter the contents, click the Save button. You will see the file appear in
the Files list box, as shown in Figure 7-7.

Figure 7-7. Testing the completed file explorer

5. Click the Up Directory button to navigate back to the root. You will notice that the
current directory changes, as do the contents of the list boxes. For kicks, click Save
again. This time, the application will save the same file in the root directory.

6. Highlight the InTheRoot.txt file and click the Show File button. Since you left the
file empty, nothing will appear in the txtContents box. You can enter some text in
the text box and click Save.

7. Highlight SampleTextFile.txt and click Show File. The contents of your file are still
there. It really works!

8. Try adding some files (preferrably with a large amount of text). Take a look at the
display of the current free space and quota of the isolated storage at the bottom of
the application. You should see the amount of free space decrease.

9. Stop debugging. Now restart debugging. Notice anything? Your files are still there!
That is because isolated storage is persistent data, and it will remain until the user
clears the isolated storage, as explained in the next section.

162 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

This exercise demonstrated how Silverlight’s isolated storage works and how you can
access it. In the following section, you will learn how to manage isolated storage, including
changing its quota.

Managing Isolated Storage
By default, the amount of isolated storage space available for a Silverlight application is
1MB. You can view the available storage, clear it, and increase its size.

Viewing and Clearing Isolated Storage

In order to view the isolated storage saved on your machine, simply right-click any
Silverlight application and select Silverlight Configuration from the pop-up menu. This
will display the Microsoft Silverlight Configuration window. Navigate to the Application
Storage tab, as shown in Figure 7-8. There, you can see your test application in the listing,
and depending on what other Silverlight applications you have accessed, you may see
other web sites listed.

Figure 7-8. Viewing application storage information in the Microsoft Silverlight
Configuration window

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 163

If users want to clear the storage space, they simply need to highlight the site they want
to clear data for and click Delete. This will display a confirmation dialog box, as shown in
Figure 7-9.

Figure 7-9. Deleting an application’s isolated storage

So what if you want more storage space for your application? Developers can request
additional storage space by using the TryIncreaseQuotaTo() method. A restriction placed
on this task is that it can be executed only in a user-triggered event, such as a Button
control’s Click event. This restriction is in place to prevent the application from increasing
the quota without the user’s knowledge.

Try It Out: Increasing the Isolated Storage Quota

To demonstrate how to increase the isolated storage quota, let’s add a button to the file
explorer demo to increase the quota to 4MB.

1. Open the IsolatedStorageExplorer project that you created in the previous
exercise.

2. In the Page.xaml file, locate the definition of the Save button and add a new Button
control called btnIncreaseQuota, with the caption Increase Quota, as follows:

<StackPanel

 VerticalAlignment="Bottom"

 Orientation="Horizontal"

 Grid.Row="0"

 Grid.Column="1">

164 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

 <TextBox

 x:Name="txtFileName"

 Text="File1.txt"

 Margin="5"

 Width="300"

 Height="30"

 FontSize="15">

 </TextBox>

 <Button

 x:Name="btnSave"

 Margin="5"

 Content="Save"

 Width="100"

 Height="30"

 Click="btnSave_Click">

 </Button>

 <Button

 x:Name="btnIncreaseQuota"

 Margin="5"

 Content="Increase Quota"

 Width="150"

 Height="30"

 Click="btnIncreaseQuota_Click">

 </Button>

</StackPanel>

3. You have wired up the Click event to a new event handler created by Visual Studio.
Navigate to the code behind’s definition of that event handler.

private void btnIncreaseQuota_Click(object sender, RoutedEventArgs e)

{

}

4. Next, you want to get an instance of the user’s isolated storage, just as you did
numerous times in creating the file explorer. Then call the IncreaseQuotaTo()
method, passing it 4000000, which is roughly 4MB. Add the following to event
handler:

private void btnIncreaseQuota_Click(object sender, RoutedEventArgs e)

{

 using (var store =

 IsolatedStorageFile.GetUserStoreForApplication())

C H A P T E R 7 ■ L O C A L S T O R A G E I N S I L V E R L I G H T 165

 {

 if (store.IncreaseQuotaTo(4000000))

 {

 GetStorageData();

 }

 else

 {

 // The user rejected the request to increase the quota size

 }

 }

}

■Note As I mentioned earlier, these numbers are not exact, which is fine for the demonstration
here. You can increase the quota to 4MB exactly by multiplying 1024 by 4.

Notice that the IncreaseQuotaTo() method returns a Boolean value. Depending on
whether the user accepted the application’s request to increase the quota size, true
or false will be returned. If the user accepted the request, you will want to redisplay
the information displayed for the quota. The easiest way to do this is to simply call
the GetStorageData() method, as you did in the event handler here.

5. Try out your new addition by running your application and clicking the new
Increase Quota button. You will see the dialog box shown in Figure 7-10.

Figure 7-10. Dialog box to request to increase available storage

166 C H A P T E R 7 ■ LO C A L S T O R AG E I N S I L V E R L I G H T

6. Click Yes, You will notice that the available quota is now increased in your appli-
cation, as shown in Figure 7-11.

Figure 7-11. File explorer showing additional storage space

This completes the file explorer. Now you can apply these concepts to your own
persistent storage implementations in your Silverlight 2 applications.

Summary
In this chapter, we looked at Silverlight’s isolated storage feature. As you saw, it is very
straightforward to store user-specific data for your application and have that data persist
over browser instances. This provides a very convenient way for developers to add offline
content or save user settings.

In the next chapter, we will look at Microsoft Expression Blend 2, an application created
for the sole purpose of visually editing XAML.

167

■ ■ ■

C H A P T E R 8

Introduction to
Expression Blend

So far in this book, the primary focus has been on using Visual Studio 2008 to create
Silverlight applications. Visual Studio provides developers with a strong IDE for developing
RIAs. However, you may want your Silverlight applications to contain some complicated
design elements, and in these cases, it’s not much fun to edit the XAML manually. To
address this problem, Microsoft has created Expression Blend, a product built to edit
XAML documents visually.

Whereas Visual Studio has been designed to cater to the developer, Expression Blend
has been built for the designer. As you’ve seen, Silverlight does a fantastic job of separating
the appearance and logic of an application, so developers and designers can work side by
side. ASP.NET took a few strides to achieve this separation, but still fell short in many ways.
I think you will find that Silverlight has reached a new layer in this separation, making it
much more practical for designers and developers to truly work in parallel in designing
applications.

The first reaction most ASP.NET software developers will have when opening Expression
Blend is shock. “Wow, this looks like no Microsoft development product I have ever seen!”
And it is true that Expression Blend is quite different from the standard Visual Studio IDE
type of product. The Microsoft developers have finally provided a product for the graphic
designer audience, and they have attempted to make it very similar to the tools designers
are accustomed to using. As software developers, we may need to play around a bit in
Expression Blend to get the feel of it. Personally, I have found it quite cool to learn and use,
and I think you will, too.

This chapter will get you started with Expression Blend. You’ll learn about its key features
and its workspace. Finally, we’ll walk through creating a grid layout with Expression Blend.

168 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

Key Features in Expression Blend 2
In this section, we will look at some of the notable features in Expression Blend 2,
including the following:

• Visual XAML editor

• Visual Studio 2008 integration

• Split-view mode

• Visual State Manager and template editing support

• Timeline

■Note One of the things that Microsoft has done better and better over the past few years is documentation.
Expression Blend’s documentation is quite comprehensive. For additional information about any of the items
discussed in this chapter, refer to the User Guide provided with Expression Blend.

Visual XAML Editor

Clearly, the biggest feature of Expression Blend is that it provides a WYSIWYG editor for
XAML. XAML is a very clean language, but it can also get quite complex quickly when you
are working with your applications. This is especially true when you start to add animations
and transformations, which are covered in Chapter 10.

Although it is possible to edit your XAML files completely in Visual Studio using
IntelliSense, there is no substitute for a visual editor. In addition, the XAML that Expression
Blend creates is very clean and developer-friendly. This should make developers happy,
considering the terrible memories of earlier versions of FrontPage, where every change
you made would result in your code being mangled beyond recognition.

In addition, when you start working with styles (covered in Chapter 9), IntelliSense
support in Visual Studio becomes limited, so the XML is very difficult to edit manually.
Expression Blend provides an extremely quick and easy way to edit and create styles,
which is another reason it is an invaluable tool for editing your Silverlight applications.

Visual Studio 2008 Integration

Due to the strong push for developers and designers to work in parallel, and given the fact
that XAML files are included directly within Visual Studio 2008 projects, a valid concern

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 169

would be how well Expression Blend and Visual Studio work together. If there were conflicts
between the two IDEs, there could be conflicts between the developers and designers,
resulting in resistance to working in parallel.

The good news is that Expression Blend integrates with Visual Studio. Visual Studio 2008
projects can be opened directly in Expression Blend and vice versa. In addition, while
Expression Blend creates Visual Studio 2008 projects by default, it is also capable of
opening Visual Studio 2005 projects.

Split-View Mode

As is shown in Figure 8-1, Expression Blend allows you to work in design and source (XAML)
mode simultaneously. For example, you can draw an object at the top in design mode,
and the XAML in the source window will be updated automatically. In addition, you can
just as easily edit the XAML, and the change will be reflected automatically in the design
window.

Figure 8-1. Expression Blend 2’s split-view mode

170 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

Visual State Manager and Template Editing Support

One of the cool features of Silverlight 2 is the fact that all controls released with it support
the new Parts and State model, which requires strict separation between a control’s logic
and appearance. Microsoft recommends that all custom controls also support this model.

By separating the logic from the appearance of a control, a developer or designer can
completely change the appearance of a control without affecting its behavior. This process
is known as creating a template, or skinning, and is regulated by Visual State Manager (VSM).
Expression Blend provides a very clean way to create and edit these parts and states,
which makes skinning your applications a relatively simple task. You’ll learn more about
VSM and skinning in Pro Silverlight 2 in C# 2008 by Matthew MacDonald (Apress, 2008).

World-Class Timeline

In Silverlight 2, animations are based on keyframes within a storyboard. These keyframes
are set on a timeline, and they define the start and end points of a smooth visual transition.
Figure 8-2 shows the Expression Blend timeline, which is located in the Objects and Time-
line panel.

Figure 8-2. The Expression Blend timeline

The timeline provides you with structure for all of the animation sequences in your
Silverlight application. Instead of the timeline being based on abstract frames, it is based
on time, which makes it very straightforward and easy to understand. Also, as you develop
your animations, you can quickly navigate to any given time on the timeline to check the
appearance of your application at that point.

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 171

Try It Out: Working with Projects in Expression Blend 2

As you’ve learned, one of the key features of Expression Blend 2 is that it integrates directly
with Visual Studio 2008 projects. This exercise demonstrates how you can use the two
products side by side while creating and editing projects.

1. Open Expression Blend 2. By default, when you open Expression Blend, you will
see the splash screen shown in Figure 8-3. If you do not want this screen to appear
when you start Expression Blend, you can simply uncheck the Run at startup check
box at the bottom left. For now, if this screen appears, click Close to continue with
the example.

Figure 8-3. Startup screen for Expression Blend 2

2. You should now have an empty Expression Blend workspace. From the main
menu, click File ➤ New Project. This will display the New Project dialog box.

3. In the New Project dialog box, select Silverlight 2 Application for the project type,
and then enter Ch8_BlendProjects for the project name, as shown in Figure 8-4.
Click OK to create the new project.

172 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

Figure 8-4. Creating a new project in Expression Blend

4. By default, Expression Blend will open the Page.xaml file for editing. In the upper-
right portion of the artboard (which contains the XML) are options to switch
between design, XAML, and split-mode view. Click Split to see both the XAML and
the design view at the same time, as shown in Figure 8-5.

Figure 8-5. Split-view mode in Expression Blend

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 173

5. Now edit this project in Visual Studio. In the Project panel, right-click the
Ch8_BlendProjects project and select Edit in Visual Studio, as shown in Figure 8-6.
This will automatically start Visual Studio 2008 and open your project.

■Note Step 5 assumes that you have already installed Visual Studio 2008. If not, you will need to
install that to continue.

Figure 8-6. Editing a Expression Blend project in Visual Studio

6. In Visual Studio 2008, double-click Page.xaml in Solution Explorer. Let’s make a
simple change to the application in Visual Studio.

7. Modify the root Grid to add the following code shown in bold, to define a StackPanel
with a TextBlock, TextBox, and Button.

<UserControl

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Class="ProjectsInBlend.Page"

 Width="640" Height="480">

174 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

 <Grid x:Name="LayoutRoot" Background="White">

 <StackPanel Margin="20" Orientation="Vertical">

 <TextBlock Margin="5" Text="Enter Your Name:" />

 <TextBox Margin="5" x:Name="txtName" />

 <Button Margin="5" Content="Click Me!" />

 </StackPanel>

 </Grid>

</UserControl>

With this change, your application should now look as shown in Figure 8-7.

Figure 8-7. The modified Expression Blend project in Visual Studio

8. From the main menu, click File ➤ Save All, just to make sure everything is saved.

9. Switch back to Expression Blend. It will prompt you with the File Modified dialog
box, as shown in Figure 8-8. Click Yes. You will see Expression Blend refresh the
project so that it reflects the changes you made in Visual Studio 2008.

Figure 8-8. File modification notification in Expression Blend 2

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 175

Pretty nifty, right? The same file modification is offered when you do the reverse: make
a change in Expression Blend and then go back into Visual Studio. Feel free to try this out
yourself.

As this exercise demonstrated, Expression Blend and Visual Studio work together
seamlessly. You can switch back and forth between the two products without fear of data
loss or conflicts.

■Note Although usually Expression Blend will be used together with Visual Studio, Expression Blend will
actually pick up on changes to open files caused by edits in any editor.

Exploring the Workspace
Now that we have briefly discussed some of the key features of Expression Blend 2, we will
take a look at the different elements of its workspace. Despite its radically new appearance,
developers will find many similarities between Visual Studio and Expression Blend.

Let’s start out by looking at Expression Blend in Animation workspace mode. You enter
this mode by selecting Window ➤ Active Workspace ➤ Animation Workspace from the
main menu. Starting at the left, you will see the Toolbox and the artboard, which contains
the application and the XAML source. On the right is the Properties panel. Docked with
the Properties panel are the Project and Resources panels. At the bottom of the workspace,
you will see the VSM panel and Objects and Timeline panel. Let’s take a closer look at
some of these workspace elements.

Toolbox

The Expression Blend Toolbox provides the tools for adding and manipulating objects
within your application. As shown in Figure 8-9, it is divided into five primary sections:
selection tools, view tools, brush tools, object tools, and asset tools. The object tool group
includes six submenus, which contain path tools, shape tools, layout tools, text controls,
and common controls.

176 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

Figure 8-9. The Expression Blend Toolbox

Clicking the Asset Tools icon at the very bottom of the Toolbox opens the Asset Library
window, which lists the Silverlight system controls, as shown in Figure 8-10.

You may notice that a number of controls that you might expect to see in the system
controls listing are not shown. As mentioned in Chapter 4, two control libraries are not
included by default in Silverlight 2 projects: System.Windows.Controls.dll and System.Windows.
Controls.Data.dll. These two libraries contain controls such as GridSplitter and DataGrid.
To get these other controls to show up in the Asset Library window, from the Project panel,
right-click the References folder in your project and choose Add Reference, as shown in
Figure 8-11.

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 177

Figure 8-10. The Asset Library window

Figure 8-11. Adding a new reference to a project in Expression Blend 2

178 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

This will bring up the Open dialog box. Browse to the C:\Program Files\Microsoft SDKs\
Silverlight\v2.0\Libraries\Client folder and select the System.Windows.Controls.dll file.
Then repeat the process for System.Windows.Controls.Data.dll, which is in the same direc-
tory. After you have added references to both of these libraries in your project, when you
view the Asset Library window, it should appear as shown in Figure 8-12.

Figure 8-12. The Asset Library window listing controls in the Extended and Data libraries

Project Panel

The Project panel is very similar to Solution Explorer in Visual Studio. It lists all the files
associated with the project.

The Project panel also displays project references and properties. See Figure 8-11 for
an example of the Project panel.

Properties Panel

The Properties panel allows you to view and modify the properties of objects on the
artboard. Figure 8-13 shows an example of the Properties panel when an Ellipse control
is selected.

The Properties panel is divided into a number of sections to help you easily find specific
properties. The sections displayed depend on the object you have selected. In addition,
the Search box at the top of the Properties panel allows you to filter the listing by typing in
the property name. Figure 8-14 shows an example of the Properties panel after searching
for the Margin property.

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 179

Figure 8-13. The Properties panel

Figure 8-14. Filtering the Properties panel

180 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

Objects and Timeline Panel

All objects that are added to your Silverlight application are represented in the Objects
and Timeline panel. Since items can be nested within other objects, a type of layering
takes place. For objects that contain additional objects, an arrow will appear to the left
of the item. Click this arrow to expand and collapse the display of the nested objects.

When animation is added to your Silverlight application, storyboards are created.
Storyboards are represented in the timeline, as shown earlier in Figure 8-2. You’ll learn
more about the timeline in Chapter 10.

Laying Out an Application with Expression Blend
As discussed in Chapter 3, you have a number of options when it comes to laying out your
Silverlight application. Although these layout controls can be added manually, Expression
Blend 2 offers a visual option. In this section we will look at how Expression Blend can be
used to easily work with the Grid layout control.

Working with the Grid Control in Expression Blend

In Expression Blend, you place dividers to create columns and rows in the grid. When a
Grid control is defined, Expression Blend will show blue rulers above and to the left of the
grid. When you move your cursor over the blue rulers, a row divider will appear. Clicking
the blue ruler will place the divider, and dragging a placed divider will move it. You will
have a chance to try this out in a moment.

In the top-left corner of the window is an icon that determines the grid’s edit mode.
There are two layout editing modes for a grid within Expression Blend:

Canvas layout mode: In canvas layout mode, when column and row dividers are
moved, elements inside those rows and columns stay in place.

Grid layout mode: In grid layout mode, the elements move with the column and row
dividers.

Try It Out: Editing a Layout Grid with Expression Blend

Let’s give layout in Expression Blend a try. In this exercise, you will create a simple grid
layout with three rows and two columns. Then you will nest a secondary grid within the
right-center cell, and place two more rows within that grid. The end product will look like
Figure 8-15.

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 181

Figure 8-15. The completed grid layout

1. In Expression Blend, create a new Silverlight 2 Application project named
Ch8_BlendLayout. The Page.xaml file will be opened automatically, and as usual,
a root Grid named LayoutRoot will be present.

2. First, create the column definitions. To do this, at about 25% from the left of the top
blue grid ruler, click the ruler to place a grid divider, as shown in Figure 8-16. If you
examine the XAML, you will notice that the <Grid.ColumnDefinitions> element has
been added, along with two <ColumnDefinition> elements, as follows (note that
your percentages do not need to be exact):

<UserControl

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

182 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

 x:Class="GridsInBlend.Page"

 Width="640" Height="480">

 <Grid x:Name="LayoutRoot" Background="White" >

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="0.25*"/>

 <ColumnDefinition Width="0.75*"/>

 </Grid.ColumnDefinitions>

 </Grid>

</UserControl>

Figure 8-16. Adding column defintions

3. Next, create the rows. In the blue grid ruler on the left, click at about 10% from the
top and 10% from the bottom to place two dividers. Your grid should now look like
the one shown in Figure 8-17.

The source for the Page.xaml file should be very similar to the following (the actual
heights and widths do not need to be exact):

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 183

Figure 8-17. Adding row definitions

<UserControl

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Class="GridsInBlend.Page"

 Width="640" Height="480">

 <Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>

 <RowDefinition Height="0.1*"/>

 <RowDefinition Height="0.8*"/>

 <RowDefinition Height="0.1*"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="0.25*"/>

 <ColumnDefinition Width="0.75*"/>

 </Grid.ColumnDefinitions>

 </Grid>

</UserControl>

184 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

4. At this point, you have created a number of cells. Now, let’s create a nested grid
within the right-center cell. To do this, make certain that the LayoutRoot is selected
in the Objects and Timeline panel, and then double-click the Grid control in the
Toolbox. This will add a Grid of the default size to your application, as shown in
Figure 8-18.

Figure 8-18. Adding a nested grid

5. With this new grid selected, edit its properties. In the Properties panel, set the
properties as shown in Figure 8-19.

6. The nested grid should now take up the entire right-center cell. In the Objects and
Timeline panel, double-click the innerGrid object you just added. The top and left
grid rulers will now appear for the inner grid, as shown in Figure 8-20.

At this point, you could easily add rows and columns using the rulers, as you did
with the LayoutRoot, but let’s try a different method.

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 185

Figure 8-19. Setting the nested grid properties

Figure 8-20. Nested grid with row and column rulers

186 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

7. With innerGrid selected, in the Properties panel’s Search box, type Definitions.
This will display the RowDefinitions and ColumnDefinitions properties, as shown in
Figure 8-21.

Figure 8-21. RowDefinition and ColumnDefinition property collections

8. Click the button to the right of RowDefinitions (Collection) to bring up the
RowDefinition Collection Editor dialog box.

9. Click the “Add another item” button near the bottom of the RowDefinition
Collection Editor dialog box and add two RowDefinition items. Set the Height
property for the first RowDefinition to be .25 and the Height property for the second
RowDefinition to .75, as shown in Figure 8-22. Then click OK to close the editor.

Figure 8-22. Adding RowDefinition items in the RowDefinition Collection Editor

C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D 187

10. In the Properties panel, set the ShowGridLines property for both Grids to True.

The final XAML should look like the following (again, the heights and widths only
need to be close):

 <UserControl

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 x:Class="GridsInBlend.Page"

 Width="640" Height="480">

 <Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True" >

 <Grid.RowDefinitions>

 <RowDefinition Height="0.1*"/>

 <RowDefinition Height="0.8*"/>

 <RowDefinition Height="0.1*"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="0.25*"/>

 <ColumnDefinition Width="0.75*"/>

 </Grid.ColumnDefinitions>

 <Grid Height="Auto"

 Margin="0,0,0,0"

 VerticalAlignment="Stretch"

 Grid.Row="1"

 x:Name="innerGrid"

 Grid.Column="1"

 ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="0.25*"/>

 <RowDefinition Height="0.75*"/>

 </Grid.RowDefinitions>

 </Grid>

 </Grid>

</UserControl>

11. Press F5 to test your application. The result should appear as shown earlier in
Figure 8-15.

As you can see, once you get used to working with Expression Blend, it can save you
quite a bit of typing. This will make laying out your applications a much faster and easier
task.

188 C H A P T E R 8 ■ I N T R O D U C T I O N T O E X P R E S S I O N B L E N D

Summary
In this chapter, we took a first look at Expression Blend 2 and how it can be used alongside
Visual Studio 2008 to help you design your Silverlight applications. We also looked at
working with the Grid layout control to create complex layouts for your applications.

The upcoming chapters explain how to use Expression Blend to style your Silverlight
applications, as well as add transformations and animations to your applications.

189

■ ■ ■

C H A P T E R 9

Styling in Silverlight

Of course you will want to create a rich appearance for your Silverlight application. You’ll
make choices about your design. What font size and family will you use? How much space
will you place between your objects? What size of text boxes and buttons will you use?

As you’ll learn in this chapter, you can control the styles of your Silverlight application’s
UI elements in several ways. The first approach we will explore is the straightforward use
of inline properties. Then we will look at how to define and apply Silverlight styles.

Inline Properties
You can simply define style properties directly in the object definitions. As an example,
the following code snippet sets the FontFamily, FontSize, FontWeight, and Margin properties
within the TextBlock itself.

<TextBlock

 Grid.Row="0"

 Grid.Column="0"

 Text="First Name"

 FontFamily="Verdana"

 FontSize="16"

 FontWeight="Bold"

 Margin="5" />

You can set inline properties using either Visual Studio or Expression Blend. Let’s try
out both.

190 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

Try It Out: Setting Inline Properties with Visual Studio

The following exercise demonstrates how to use Visual Studio 2008 to define the appear-
ance of your Silverlight applications with inline properties. In this exercise, you will create
the UI for a simple data-input application. You will not add any logic to the application,
since the focus is on the appearance of the controls.

1. Open Visual Studio 2008 and create a new Silverlight application named
Ch9_VSInlineStyling. Allow Visual Studio to create a Web Site project to host
the application.

2. When the project is created, you should be looking at the Page.xaml file. If you
do not see the XAML source, switch to that view. Start by adjusting the size of
the UserControl to get some additional space in which to work. Set Height to 400
and Width to 600, as follows:

<UserControl x:Class="Ch9_VSInlineStyling.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="600" Height="400">

 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>

</UserControl>

3. Add four rows and two columns to the root Grid. Set the width of the left column to
150, leaving the rest of the row and column definitions unspecified, as follows:

<Grid x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

</Grid>

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 191

4. Next, add TextBlock controls in the three top-left columns and TextBox controls in
the top-right columns, with the text First Name, Last Name, and Age. Then add three
Button controls within a horizontal StackPanel in the bottom-right column. Give
these buttons the labels Save, Next, and Delete. (Again, you won’t be adding any
logic to these controls; you will simply be modifying their appearance.) The code
for this layout follows:

<Grid x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 <RowDefinition />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <TextBlock Grid.Row="0" Grid.Column="0" Text="First Name" />

 <TextBlock Grid.Row="1" Grid.Column="0" Text="Last Name" />

 <TextBlock Grid.Row="2" Grid.Column="0" Text="Age" />

 <TextBox Grid.Row="0" Grid.Column="1" />

 <TextBox Grid.Row="1" Grid.Column="1" />

 <TextBox Grid.Row="2" Grid.Column="1" />

 <StackPanel Grid.Row="3" Grid.Column="2" Orientation="Horizontal">

 <Button Content="Save" />

 <Button Content="Next" />

 <Button Content="Delete" />

 </StackPanel>

</Grid>

5. Press F5 to start the application. You will see that the UI you have created is far
from attractive, as shown in Figure 9-1. So let’s make this ugly UI look a bit nicer by
adding some styling.

192 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

Figure 9-1. Default input form without styling

6. Start with the three TextBlock controls. Within Visual Studio, set the FontFamily,
FontSize, FontWeight, and Margin properties directly within each TextBlock definition,
as shown in the following code snippet. As you type the property names, you will
notice that IntelliSense makes this task a bit less tedious. Once you have set the four
properties on the First Name TextBlock, copy and paste the properties to the other
two TextBlock controls.

<TextBlock Grid.Row="0" Grid.Column="0" Text="First Name"

 FontFamily="Verdana"

 FontSize="16"

 FontWeight="Bold"

 Margin="5" />

<TextBlock Grid.Row="1" Grid.Column="0" Text="Last Name"

 FontFamily="Verdana"

 FontSize="16"

 FontWeight="Bold"

 Margin="5" />

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 193

<TextBlock Grid.Row="2" Grid.Column="0" Text="Age"

 FontFamily="Verdana"

 FontSize="16"

 FontWeight="Bold"

 Margin="5" />

7. Run the application again. You can see the changes that have been made to the
TextBlock labels, as shown in Figure 9-2.

Figure 9-2. Input form with styled TextBlock labels

8. Now let’s focus on the TextBox controls. Add the following style attributes to these
controls.

<TextBox Grid.Row="0" Grid.Column="1"

 VerticalAlignment="Top"

 Height="24"

 Margin="5"

 FontSize="14"

 FontFamily="Verdana"

 Foreground="Blue"

 Background="Wheat" />

194 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

<TextBox Grid.Row="1" Grid.Column="1"

 VerticalAlignment="Top"

 Height="24"

 Margin="5"

 FontSize="14"

 FontFamily="Verdana"

 Foreground="Blue"

 Background="Wheat" />

<TextBox Grid.Row="2" Grid.Column="1"

 VerticalAlignment="Top"

 Height="24"

 Margin="5"

 FontSize="14"

 FontFamily="Verdana"

 Foreground="Blue"

 Background="Wheat" />

9. Run the application to see the effect. It should look like Figure 9-3.

Figure 9-3. Input form with styled TextBox controls

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 195

10. Notice that the spacing between the rows is too large. Ideally, the spaces should
only be large enough to allow the margins of the controls to provide the separation.
To adjust this spacing, on each RowDefinition, change the Height property to Auto,
as follows:

<Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="150" />

 <ColumnDefinition />

</Grid.ColumnDefinitions>

11. Once more, run the application to see how it looks at this point. Figure 9-4 shows
the results of the automatic height settings.

Figure 9-4. Input form with styled RowDefinitions

12. The next elements to tackle are the Button controls. Add the following style attributes
to these three controls:

<Button Content="Save"

 FontFamily="Verdana"

 FontSize="11"

 Width="75"

 Margin="5" />

196 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

<Button Content="Next"

 FontFamily="Verdana"

 FontSize="11"

 Width="75"

 Margin="5" />

<Button Content="Delete"

 FontFamily="Verdana"

 FontSize="11"

 Width="75"

 Margin="5" />

13. Run the application to see the effect. It should look like Figure 9-5.

Figure 9-5. Input form with styled buttons

14. Finally, it would be nice to add a margin around the entire application. To do this,
simply add a Margin property definition to the root Grid, as follows:

<Grid x:Name="LayoutRoot" Background="White" Margin="25">

15. Press F5. The final product is a UI that looks pretty nice, as shown in Figure 9-6.

As you saw in this exercise, the process of setting inline properties in Visual Studio is
simple and straightforward. However, the sample application contained only nine
controls. We will look at some better options later in this chapter, in the “Silverlight
Styles” section. Next, let’s see how to set inline properties within Expression Blend.

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 197

Figure 9-6. Final input form styled with inline properties

Try It Out: Setting Inline Properties with Expression Blend

The previous example used Visual Studio to set the inline properties of an application’s
controls. For those of you who are not a big fan of a lot of typing, you may find that Expression
Blend is a better place to set these properties. In this next exercise, you will perform the
same styling as in previous exercise, but using Expression Blend 2 to set the properties,
rather than Visual Studio 2008. Let’s give it a try!

1. Open Expression Blend 2 and create a new Silverlight 2 application named
Ch9_BlendStyling.

2. The UserControl is 640 by 480 by default when created in Expression Blend, so you
can leave that size. The first thing to do is add the column and row definitions. You
can copy and paste the grid definitions from the previous exercise, or you can add the
columns and rows using Expression Blend’s grid editor, as described in Chapter 8.
The end result should look like Figure 9-7.

3. Next, add the controls to the form. In the Toolbox, double-click the TextBlock
control three times to add three TextBlock controls to the grid. Then double-click
the TextBox control three times, which will add three TextBox controls below the
TextBlock controls.

4. Double-click the StackPanel layout control. Once the StackPanel is added, double-
click it in the Objects and Timeline panel so that it has a yellow border, as shown in
Figure 9-8.

198 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

Figure 9-7. Completed grid layout

Figure 9-8. Selecting the StackPanel in the Objects and Timeline panel

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 199

5. With the StackPanel selected, double-click the Button control three times. The three
Button controls will appear within the StackPanel, as shown in Figure 9-9.

Figure 9-9. The Button controls added to the StackPanel

By default, Expression Blend adds a number of properties that we don’t want. In
the next steps, you’ll remove the properties shown in bold in the following XAML:

<Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150"/>

 <ColumnDefinition/>

 </Grid.ColumnDefinitions>

 <TextBlock HorizontalAlignment="Left"

 VerticalAlignment="Top" Text="TextBlock" TextWrapping="Wrap"/>

 <TextBlock HorizontalAlignment="Left"

 VerticalAlignment="Top" Text="TextBlock" TextWrapping="Wrap"/>

200 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

 <TextBlock HorizontalAlignment="Left"

 VerticalAlignment="Top" Text="TextBlock" TextWrapping="Wrap"/>

 <TextBox HorizontalAlignment="Left"

 VerticalAlignment="Top" Text="TextBox" TextWrapping="Wrap"/>

 <TextBox HorizontalAlignment="Left"

 VerticalAlignment="Top" Text="TextBox" TextWrapping="Wrap"/>

 <TextBox HorizontalAlignment="Left"

 VerticalAlignment="Top" Text="TextBox" TextWrapping="Wrap"/>

 <StackPanel Margin="0,0,50,20">

 <Button Content="Button"/>

 <Button Content="Button"/>

 <Button Content="Button"/>

 </StackPanel>

</Grid>

6. In the Objects and Timeline panel, highlight all of the TextBlock and TextBox controls,
as shown in Figure 9-10. You can highlight multiple items in the Objects and Timeline
panel by holding down the Shift or Ctrl key as you click.

Figure 9-10. Selecting multiple objects in the Objects and Timeline panel

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 201

7. With these six controls selected, look in the Properties panel. Notice that any
property that is set in the XAML has a white dot to its right. (Properties you cannot
edit have a gray dot.) You can easily remove these properties from the XAML and
“reset” the code by clicking the white dot and selecting Reset. Start out by resetting
the HorizontalAlignment property located in the Layout section of the Properties
panel, as shown in Figure 9-11. Then reset the VerticalAlignment property. This
will remove the HorizontalAlignment and VerticalAlignment property definitions
in the XAML.

Figure 9-11. Resetting the HorizontalAlignment property

8. The TextWrapping property is located in the Text Section of the Properties panel, but
you must extend the section to see it. I figured that this would be a good opportunity
to show you another feature of the Properties panel. At the top of the Properties
panel, type TextWrapping into the Search box. That will filter the Properties panel
to show only the TextWrapping property. Click and reset that property as well.

9. Next, highlight the StackPanel and reset its Margin property in the same way. When
you have finished all of these steps, the XAML should contain the following source
code:

<Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>

 <RowDefinition/>

202 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150"/>

 <ColumnDefinition/>

 </Grid.ColumnDefinitions>

 <TextBlock Text="TextBlock"/>

 <TextBlock Text="TextBlock"/>

 <TextBlock Text="TextBlock"/>

 <TextBox Text="TextBox"/>

 <TextBox Text="TextBox"/>

 <TextBox Text="TextBox"/>

 <StackPanel>

 <Button Content="Button"/>

 <Button Content="Button"/>

 <Button Content="Button"/>

 </StackPanel>

</Grid>

10. Now you need to place these controls in the proper cells in your grid. Click to high-
light the control in the Objects and Timeline panel. In the Layout section of the
Properties panel, you will see Row and Column properties. Set their values so that you
have the following result:

<Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150"/>

 <ColumnDefinition/>

 </Grid.ColumnDefinitions>

 <TextBlock Text="TextBlock"/>

 <TextBlock Text="TextBlock" Grid.Row="1"/>

 <TextBlock Text="TextBlock" Grid.Row="2"/>

 <TextBox Text="TextBox" Grid.Column="1"/>

 <TextBox Text="TextBox" Grid.Column="1" Grid.Row="1"/>

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 203

 <TextBox Text="TextBox" Grid.Row="2" Grid.Column="1"/>

 <StackPanel Grid.Column="1" Grid.Row="3">

 <Button Content="Button"/>

 <Button Content="Button"/>

 <Button Content="Button"/>

 </StackPanel>

</Grid>

11. Go through each of the TextBlock controls to set the Text properties to First Name,
Last Name, and Age. Next, set the Text property of the TextBox controls to blank (or
just reset the property). Then set the Orientation property for the StackPanel to
Horizontal. Finally, set the Content property for the Button controls to Save, Next,
and Delete. The final result should be the following:

<Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 <RowDefinition/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150"/>

 <ColumnDefinition/>

 </Grid.ColumnDefinitions>

 <TextBlock Text="First Name"/>

 <TextBlock Text="Last Name" Grid.Row="1"/>

 <TextBlock Text="Age" Grid.Row="2"/>

 <TextBox Grid.Column="1"/>

 <TextBox Grid.Column="1" Grid.Row="1"/>

 <TextBox Grid.Row="2" Grid.Column="1"/>

 <StackPanel Grid.Column="1" Grid.Row="3" Orientation="Horizontal">

 <Button Content="Save"/>

 <Button Content="Next"/>

 <Button Content="Delete"/>

 </StackPanel>

</Grid>

12. Run the solution, and you will see the initial layout, which should look the same as
what you started with in the previous exercise (Figure 9-1). The next thing to do is
set the style properties for your controls.

204 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

13. Highlight all three TextBlock controls. In the Properties panel, set the following
properties:

• FontFamily: Verdana

• FontSize: 16

• FontWeight: Bold

• Margin: 5,5,5,5

14. Select the three TextBox controls and set the following properties:

• FontFamily: Verdana

• FontSize: 14

• FontWeight: Bold

• Foreground: #FF0008FF

• Background: #FFF9F57D

• VerticalAlignment: Top

• Margin: 5,5,5,5

15. Highlight the three Button controls and set the following properties:

• FontFamily: Verdana

• FontSize: 11

• Width: 75

• Margin: 5,5,5,5

16. Switch to split-view mode. Within the XAML, place your cursor within one of the
RowDefinition items. Then, in the Properties panel, set the Height property to Auto.
Repeat this for all of the RowDefinition items in the Grid. When you are finished
setting the Height properties on the RowDefinition items, the XAML for the appli-
cation should be as follows:

<Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 205

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="150"/>

 <ColumnDefinition/>

 </Grid.ColumnDefinitions>

 <TextBlock Text="First Name" FontFamily="Verdana"

 FontSize="16" FontWeight="Bold" Margin="5,5,5,5"/>

 <TextBlock Text="Last Name" Grid.Row="1" FontFamily="Verdana"

 FontSize="16" FontWeight="Bold" Margin="5,5,5,5"/>

 <TextBlock Text="Age" Grid.Row="2" FontFamily="Verdana"

 FontSize="16" FontWeight="Bold" Margin="5,5,5,5"/>

 <TextBox Text="" Grid.Row="0" Grid.Column="1"

 FontFamily="Verdana" FontSize="14" FontWeight="Bold"

 Foreground="#FF0008FF" Background="#FFF9F57D"

 VerticalAlignment="Top" Margin="5,5,5,5"/>

 <TextBox Text="" Grid.Row="1" Grid.Column="1"

 FontFamily="Verdana" FontSize="14" FontWeight="Bold"

 Foreground="#FF0008FF" Background="#FFF9F57D"

 VerticalAlignment="Top" Margin="5,5,5,5"/>

 <TextBox Text="" Grid.Row="2" Grid.Column="1"

 FontFamily="Verdana" FontSize="14" FontWeight="Bold"

 Foreground="#FF0008FF" Background="#FFF9F57D"

 VerticalAlignment="Top" Margin="5,5,5,5"/>

 <StackPanel Grid.Row="3" Grid.Column="1" Orientation="Horizontal">

 <Button Content="Save" Margin="5,5,5,5"

 Width="75" FontFamily="Verdana"/>

 <Button Content="Next" Margin="5,5,5,5"

 Width="75" FontFamily="Verdana"/>

 <Button Content="Delete" Margin="5,5,5,5"

 Width="75" FontFamily="Verdana"/>

 </StackPanel>

</Grid>

17. Your application will appear something like what is shown in Figure 9-12. When
you run the application, it should look very similar to the application at the end of
the previous exercise (Figure 9-6).

206 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

Figure 9-12. Final project in Expression Blend

Getting the code perfect is not the point of this exercise. It’s OK if your application
doesn’t look exactly like my screenshot. The main objective was to get you familiar with
setting and resetting inline properties in Expression Blend.

In these two exercises, you saw how to change the appearance of your Silverlight appli-
cations using inline properties in Visual Studio 2008 and Expression Blend. Although this
method is very straightforward, in a normal application with a lot of controls, setting all of
the properties can become tedious. And if you need to change the appearance of some
elements throughout the application, it will not be an easy task. This is where Silverlight
styles come in.

Silverlight Styles
In the previous section, you saw how you can change the appearance of a Silverlight appli-
cation by setting inline properties. This works perfectly fine, but it presents maintenance
problems. From a maintenance perspective, it’s better to separate the style properties
from the control definitions. For example, consider the following TextBlock definition:

<TextBlock

 Grid.Row="0"

 Grid.Column="0"

 Text="First Name"

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 207

 FontFamily="Verdana"

 FontSize="16"

 FontWeight="Bold"

 Margin="5" />

Suppose you defined all your TextBlock controls this way, throughout your application.
Then, if you wanted to update the look of your application’s text boxes, you would need to
modify the TextBox definitions one by one. To save time and avoid errors, it’s preferable
to be able to make updates to properties related to the control’s appearance in one central
location, rather than in each instance of the control.

This problem is certainly not new to Silverlight. Developers and designers have faced
this challenge for years with HTML-based pages. HTML solves the problem with a technology
known as Cascading Style Sheets (CSS). Instead of specifying the different attributes of
HTML controls directly, developers can simply specify a style for the control that corresponds
to a style in a style sheet. The style sheet, not the HTML, defines all of the different appear-

ance attributes for all controls. This way, if developers want to adjust an attribute of a control
in an application, they can change it in the style sheet one time, and that change will be
automatically reflected in every control in the application that references that style.

Silverlight offers a similar solution. Silverlight allows you to create style resources, in
much the same way you would define styles in a CSS style sheet. In Silverlight, style resources
are hierarchical, and can be defined at either the page level or the application level. If
defined at the page level, the styles will be available only to controls on that page. Styles
defined at the application level can be utilized by controls on all pages across the entire
application. The “Silverlight Style Hierarchy” section later in this chapter provides more
information about the style hierarchy.

A Silverlight style is defined using the <Style> element, which requires two attributes:
the Key attribute represents the name of the style, and the TargetType attribute tells Silver-
light which type of control gets the style. Within the <Style> element, the style is made up
of one or more <Setter> elements, which define a Property attribute and a Value attribute.
As an example, the preceding TextBlock control’s appearance properties could be defined
in the following Silverlight style definition:

<Style x:Key="FormLabel" TargetType="TextBlock">

 <Setter Property="FontFamily" Value="Verdana"/>

 <Setter Property="FontSize" Value="16"/>

 <Setter Property="FontWeight" Value="Bold"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

</Style>

In HTML, to reference a style from a control, you simply set the style attribute. In
Silverlight, this syntax looks a little different. Silverlight styles are referenced in a control
using an XAML markup extension. You saw markup extensions in use in Chapter 5—when

208 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

working with data binding in Silverlight, you set a control’s property using the form
{Binding, <path>. To reference the sample FormLabel style from your TextBlock, the syntax
would look as follows:

<TextBlock Text="Age" Grid.Row="2" Style="{StaticResource FormLabel}"/>

Let’s give styles a try, starting with defining styles at the page level.

Try It Out: Using Styles As Static Resources

In this exercise, you will define the styles as a static resource at the page level, using
Expression Blend. The application will have a very simple UI, so we can focus on styles.

1. In Expression Blend 2, create a new Silverlight 2 application named Ch9_Styles.

2. Double-click the StackPanel control in the Toolbox to add a StackPanel. With the
StackPanel selected, reset the Width and Height property so the StackPanel will
automatically resize. Next, double-click the StackPanel in the Objects and Timeline
panel so it is selected (you should see the yellow border around the StackPanel).
With the StackPanel selected, add two TextBox and two Button controls to the
StackPanel. The Objects and Timeline panel should appear as shown in Figure 9-13.

Figure 9-13. The controls for the application in the Objects and Timeline panel

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 209

The XAML at this point should appear as follows:

<Grid x:Name="LayoutRoot" Background="White" >

 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">

 <TextBox Text="TextBox" TextWrapping="Wrap"/>

 <TextBox Text="TextBox" TextWrapping="Wrap"/>

 <Button Content="Button"/>

 <Button Content="Button"/>

 </StackPanel>

</Grid>

3. Run the application. As shown in Figure 9-14, at this point, it really is nothing
special. Now you’ll use Silverlight styles to spice up its appearance.

Figure 9-14. Initial Silverlight application without styles

4. First, you need to build your Silverlight styles. Select the first TextBox in the Objects
and Timeline panel and select Object ➤ Edit Style ➤ Create Empty from the main
menu. This will bring up the Create Style Resource dialog box. Enter TextBoxStyle
in the Name text box, and stick with the default “Define in” option, which is to define
the style in the current document. Your dialog box should look like Figure 9-15.
Click OK.

210 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

Figure 9-15. The Create Style Resource dialog box

At this point, you may notice a few changes:

• The Objects and Timeline panel now contains the style object, but all of the form
objects are no longer visible. At the top of the Objects and Timeline panel, you will
see an up arrow with the text TextBoxStyle (TextBox Style) to its right. If you hover
the mouse over the arrow, you will see a message that reads “Return scope to
[UserControl],” as shown in Figure 9-16. Clicking this arrow will return you to the
Objects and Timeline panel that you have grown used to, with the different form
objects showing.

Figure 9-16. Click the arrow next to the style name to see the controls in the
UserControl’s scope listed in the Objects and Timeline panel.

• A new breadcrumb appears at the top of the artboard, as shown in Figure 9-17.
The breadcrumb provides another way for you to navigate back to normal design
mode.

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 211

Figure 9-17. A new breadcrumb allows you to navigate back to normal design mode.

• The XAML has changed. A new <UserControl.Resources> section has been added,
and the first TextBox has an added Style="{StaticResource TextBoxStyle}" attribute,
as follows:

<UserControl.Resources>

 <Style x:Key="TextBoxStyle" TargetType="TextBox"/>

</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >

 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">

 <TextBox Text="TextBox" TextWrapping="Wrap"

 Style="{StaticResource TextBoxStyle}"/>

 <TextBox Text="TextBox" TextWrapping="Wrap"/>

 <Button Content="Button"/>

 <Button Content="Button"/>

 </StackPanel>

</Grid>

5. Next, you will set the different style attributes for your TextBoxStyle. Make certain
that the TextBoxStyle is still in the Objects and Timeline panel, and from the
Properties panel, set the following properties:

• FontSize: 22

• FontFamily: Trebuchet MS

• Foreground: #FFFF0000

• Margin: 5,5,5,5

If you now examine the XAML, you will see that Expression Blend has added a
number of Setter elements to the TextBoxStyle, as follows:

<UserControl.Resources>

 <Style x:Key="TextBoxStyle" TargetType="TextBox">

 <Setter Property="FontSize" Value="22"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

212 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

 <Setter Property="Foreground" Value="#FFFF0000"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 </Style>

</UserControl.Resources>

6. Click the up arrow in the Objects and Timeline panel to return to the UserControl,
and highlight the first Button control you added. With it selected, choose Object ➤
Edit Style ➤ Create Empty from the main menu. Name the style ButtonStyle and
leave it as defined in this document.

7. This will create the new style ButtonStyle of TargetType Button and will add the Style
attribute to the first button on your form. With the ButtonStyle selected, set the fol-
lowing properties:

• FontSize: 20

• FontFamily: Trebuchet MS

• FontWeight: Bold

• Width: 200

• Margin: 5,5,5,5

• Foreground: #FF0000FF

With these properties set, your XAML will be updated to add the new Setter elements
to the ButtonStyle style, as follows:

<UserControl.Resources>

 <Style x:Key="TextBoxStyle" TargetType="TextBox">

 <Setter Property="FontSize" Value="22"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="Foreground" Value="#FFFF0000"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 </Style>

 <Style x:Key="ButtonStyle" TargetType="Button">

 <Setter Property="FontSize" Value="20"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="FontWeight" Value="Bold"/>

 <Setter Property="Width" Value="200"/>

 <Setter Property="Foreground" Value="#FF0000FF"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 </Style>

</UserControl.Resources>

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 213

Now you have two styles defined, and two of your controls are set to these styles.
Next, you need to set the style for your other controls.

8. Return to the UserControl in the Objects and Timeline panel and select the second
TextBox control. Select Object ➤ Edit Style ➤ Apply a Resource ➤ TextBoxStyle from
the main menu. This will add the Style="{StaticResource TextBoxStyle}" attribute
to the second TextBox.

9. Select the second Button control and select Object ➤ Edit Style ➤ Apply a Resource
➤ ButtonStyle.

Your XAML should now look as follows:

<UserControl.Resources>

 <Style x:Key="TextBoxStyle" TargetType="TextBox">

 <Setter Property="FontSize" Value="22"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="Foreground" Value="#FFFF0000"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 </Style>

 <Style x:Key="ButtonStyle" TargetType="Button">

 <Setter Property="FontSize" Value="20"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="FontWeight" Value="Bold"/>

 <Setter Property="Width" Value="200"/>

 <Setter Property="Foreground" Value="#FF0000FF"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 </Style>

</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >

 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">

 <TextBox Text="TextBox" TextWrapping="Wrap"

 Style="{StaticResource TextBoxStyle}"/>

 <TextBox Text="TextBox" TextWrapping="Wrap"

 Style="{StaticResource TextBoxStyle}"/>

 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>

 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>

 </StackPanel>

</Grid>

10. Run the application. The form now appears as shown in Figure 9-18.

214 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

Figure 9-18. Silverlight application with styles Applied

Now, let’s say that you want to change the width of the text boxes in your appli-
cation. Currently, their width is automatically set, but you would like to change
them to a fixed width of 400 pixels. If you were using inline properties, as in the first
two exercises in this chapter, you would need to set the property for each TextBox
control in your application. However, since you are using Silverlight styles, you can
simply change the TextBoxStyle, and all TextBox controls assigned to that style will
be updated automatically. Let’s see how this works.

11. To modify the TextBoxStyle property from Expression Blend, click the Resources
panel. When you expand the UserControl item, you will see your two styles listed.
To the right of TextBoxStyle, you will see an Edit Resource button, as shown in
Figure 9-19. Click this button, and you will see that you have returned to the
TextBoxStyle’s design scope.

Figure 9-19. Resources panel showing the TextBoxStyle

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 215

12. In the Properties panel, set the Width property of the TextBoxStyle to 400. Then click
the up arrow in the Objects and Timeline panel to return to the UserControls scope.

Your XAML should now look as follows:

<Style x:Key="TextBoxStyle" TargetType="TextBox">

 <Setter Property="FontSize" Value="22"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="Foreground" Value="#FFFF0000"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 <Setter Property="Width" Value="400"/>

</Style>

13. Run the application to confirm that the width of both text boxes has been updated,
as shown in Figure 9-20.

Figure 9-20. The application with the updated TextBoxStyle

This exercise showed how Silverlight styles can be used as an alternative to defining
styles inline. As you can see, this approach provides for much cleaner XAML and also
greatly improves the ease of maintaining your application.

Defining Styles at the Application Level

In the previous example, you defined the styles locally, within your UserControl. If you
have multiple UserControl components that you would like to share styles, you can define
the styles at the application level. As far as the controls are concerned, there is absolutely
no difference. You still indicate the style for the control using the Style="{StaticResource

StyleName}" extended attribute. What does change is where the styles are defined.

216 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

In the preceding example, your styles were defined within the <UserControl.Resources>
element on the UserControl itself, as follows:

<UserControl.Resources>

 <Style x:Key="TextBoxStyle" TargetType="TextBox">

 <Setter Property="FontSize" Value="22"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="Foreground" Value="#FFFF0000"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 <Setter Property="Width" Value="400"/>

 </Style>

 <Style x:Key="ButtonStyle" TargetType="Button">

 <Setter Property="FontSize" Value="20"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="FontWeight" Value="Bold"/>

 <Setter Property="Width" Value="200"/>

 <Setter Property="Foreground" Value="#FF0000FF"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 </Style>

</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >

 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">

 <TextBox Text="TextBox" TextWrapping="Wrap"

 Style="{StaticResource TextBoxStyle}"/>

 <TextBox Text="TextBox" TextWrapping="Wrap"

 Style="{StaticResource TextBoxStyle}"/>

 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>

 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>

 </StackPanel>

</Grid>

In order to define the styles at the application level, instead of defining the styles in
the <UserControl.Resources>, you move them to the App.xaml file within the element
<Application.Resources>, as follows:

 <Application.Resources>

 <Style x:Key="TextBoxStyle" TargetType="TextBox">

 <Setter Property="FontSize" Value="22"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="Foreground" Value="#FFFF0000"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 <Setter Property="Width" Value="400"/>

 </Style>

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 217

 <Style x:Key="ButtonStyle" TargetType="Button">

 <Setter Property="FontSize" Value="20"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="FontWeight" Value="Bold"/>

 <Setter Property="Width" Value="200"/>

 <Setter Property="Foreground" Value="#FF0000FF"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 </Style>

</Application.Resources>

That is all there is to it. Again, there are no changes at all to the controls themselves.
For example, to use these styles on your UserControl, the XAML would still look like the
following:

<Grid x:Name="LayoutRoot" Background="White" >

 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">

 <TextBox Text="TextBox" TextWrapping="Wrap"

 Style="{StaticResource TextBoxStyle}"/>

 <TextBox Text="TextBox" TextWrapping="Wrap"

 Style="{StaticResource TextBoxStyle}"/>

 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>

 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>

 </StackPanel>

</Grid>

Silverlight Style Hierarchy

As I mentioned earlier in the chapter, Silverlight styles are hierarchical. When a control
has a style set, Silverlight will first look for the style at the local level, within the docu-
ment’s <UserControl.Resources>. If the style is found, Silverlight will look no further. If the
style is not found locally, it will look at the application level. If the style is not found there,
an XamlParseException will be thrown.

In addition to locally defined styles overriding application-level styles, any properties
that are defined inline in the control element itself will override properties within the
style. For example, consider the following XAML:

<UserControl.Resources>

 <Style x:Key="TextBoxStyle" TargetType="TextBox">

 <Setter Property="FontSize" Value="22"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="Foreground" Value="#FFFF0000"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 <Setter Property="Width" Value="400"/>

218 C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T

 </Style>

 <Style x:Key="ButtonStyle" TargetType="Button">

 <Setter Property="FontSize" Value="20"/>

 <Setter Property="FontFamily" Value="Trebuchet MS"/>

 <Setter Property="FontWeight" Value="Bold"/>

 <Setter Property="Width" Value="200"/>

 <Setter Property="Foreground" Value="#FF0000FF"/>

 <Setter Property="Margin" Value="5,5,5,5"/>

 </Style>

</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >

 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">

 <TextBox Text="TextBox" TextWrapping="Wrap"

 Style="{StaticResource TextBoxStyle}" FontSize="10"/>

 <TextBox Text="TextBox" TextWrapping="Wrap"

 Style="{StaticResource TextBoxStyle}"/>

 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>

 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>

 </StackPanel>

</Grid>

Both TextBox controls are set to the TextBoxStyle style; however, the first TextBox has an
inline property defined for FontSize. Therefore, when you run the XAML, it will appear as
shown in Figure 9-21.

Figure 9-21. An example of inline properties overriding style properties

C H A P T E R 9 ■ S T Y L I N G I N S I L V E R L I G H T 219

Notice that even though FontSize was defined inline, the control still picked up the
remaining properties from TextBoxStyle. However, a locally defined style will prevent any
properties from being applied from an application-level style.

Summary
In this chapter, we looked at options for styling your Silverlight applications. You saw how
to define style properties inline using both Visual Studio and Expression Blend. Then we
explored defining styles with Silverlight styles, both at the document level and the appli-
cation level. In the next chapter, we will look at using Expression Blend to define Silverlight
transformations and animations.

221

■ ■ ■

C H A P T E R 1 0

Transformations and
Animation

Incorporating animation of objects in a web application can really enhance the UI. In
the past, to implement this type of animation in a web site, you would most likely turn to
Adobe Flash. The cool thing for Microsoft .NET developers is that now we can do it all
within the technologies that we know, and better yet, we can code it using .NET. Personally,
I consider this the most exciting aspect of Silverlight 2. For years, I have been struggling
with the desire to put animations into my applications, but not doing so because I did not
want to jump over to Flash. But that’s no longer necessary. We can now do it all within
.NET, my friends! This chapter will show you just how that’s done.

Introduction to Silverlight 2 Animation
The term animation usually brings to mind cartoons or animated features like those that
Disney has brought to life on the big screen. Artists create a number of images with slight
variations that, when shown in rapid sequence, appear as fluid movement. Fundamental
to any type of animation is the changing of some attribute of an object over time.

For Silverlight, the implementation of an animation is very straightforward. You change
a property of an object gradually over time, such that you have the appearance of that
object moving smoothly from one point to the next.

As an example, Figure 10-1 shows an icon bar that I created for one of my Silverlight 2
applications. As your mouse rolls over an icon in the bar, the icon grows; as the mouse
leaves the icon, it shrinks back to its initial size. When you click one of the icons, the icon
bounces, just as it does on the Mac OS X Dock.

222 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

Figure 10-1. An animated application bar created with Silverlight

In the example in Figure 10-1, for one of the icons, the animation that was created
when the mouse was placed over the icon had two basic positions: at timestamp 0.00, the
icon’s Width and Height properties were set to 50 pixels; at timestamp 0.25, the Width and
Height properties were set to 75 pixels. To make the transition smooth from timestamp
0.00 to 0.25, Silverlight creates a spline, which will generate all of the “frames” along the
way to make the movement appear fluid to the human eye.

Silverlight Storyboards

In movies or cartoon animations, a storyboard is a sequence of sketches that depict changes
of action over the duration of the film or cartoon. So, essentially, a storyboard is a timeline.
In the same way, storyboards in Silverlight 2 are timelines. As an example, Figure 10-2
shows a storyboard for an application that animates the transformation of a circle and
two rectangles.

Figure 10-2. Example of a storyboard

In the storyboard in Figure 10-2, three objects are represented: a circle, a small rectangle,
and a large rectangle. At the start of the storyboard’s timeline, all three objects are on the
left side of the document. After 2 seconds, the circle and smaller rectangle start to move
toward the right side of the document. The larger rectangle starts to change its background

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 223

from white to black. At 4 seconds into the timeline, the circle and the smaller rectangle
will have reached the right side of the document. At that time, the smaller rectangle will
begin to turn into a square. At 8 seconds, the smaller rectangle will have turned into a
square, and the larger rectangle will have turned fully black.

If you translate this storyboard into Silverlight animations, you will have four animations:

• Two animations that will cause the circle and the smaller square to move from
the left to the right side of the document

• An animation that will change the background of the larger rectangle from white
to black

• An animation to change the smaller rectangle into a square

Next, we will look at the different types of animations in Silverlight 2.

Types of Animation in Silverlight

There are two basic types of animations in Silverlight 2:

Linear interpolation animation: This type of animation smoothly and continuously
varies property values over time.

Keyframe animation: With this type of animation, values change based on keyframes
that have been added to a given point in the timeline.

Most commonly, keyframe animations are used in conjunction with a form of inter-
polation to smooth animations.

All types of animation in Silverlight 2 are derived from the Timeline class found in
the System.Windows.Media.Animation namespace. The following types of animation are
available:

• ColorAnimation

• ColorAnimationUsingKeyFrames

• DoubleAnimation

• DoubleAnimationUsingKeyFrames

• ObjectAnimationUsingKeyFrames

• PointAnimation

• PointAnimationUsingKeyFrames

224 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

Each of these animates a different type of object. For example, ColorAnimation animates
the value of a Color property between two target values. Similarly, DoubleAnimation
animates the value of a Double property, PointAnimation animates the value of a Point prop-
erty, and ObjectAnimation animates the value of an Object property. Developers determine
which animation type to use based on what they want to animate.

As an example, let’s look at a very simple animation where we will increase the size of a
rectangle over time, as shown in Figure 10-3. This example will allow us to dissect some of
the properties involved with the animation.

Figure 10-3. Animation of growing a rectangle

To perform this animation, we need to use a DoubleAnimationUsingKeyFrames animation,
since we are modifying the Width and Height properties of the rectangle, both of which are
properties of type Double. Let’s look at the XAML used to perform this animation.

<UserControl.Resources>
 <Storyboard x:Name="Storyboard1">

 <DoubleAnimationUsingKeyFrames

 BeginTime="00:00:00"

 Storyboard.TargetName="rectangle"

 Storyboard.TargetProperty="Width">

 <SplineDoubleKeyFrame KeyTime="00:00:02" Value="400"/>

 </DoubleAnimationUsingKeyFrames>

 <DoubleAnimationUsingKeyFrames

 BeginTime="00:00:00"

 Storyboard.TargetName="rectangle"

 Storyboard.TargetProperty="Height">

 <SplineDoubleKeyFrame KeyTime="00:00:02" Value="240"/>

 </DoubleAnimationUsingKeyFrames>

 </Storyboard>

</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >

 <Rectangle

 Height="120"

 Width="200"

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 225

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 Stroke="#FF000000"

 x:Name="rectangle"/>

</Grid>

A number of elements are required. First, the rectangle itself has a name defined. This
is required, as the animation needs to be able to refer to the rectangle by its name.

Next, in the storyboard, we have two animations: one to animate the width and one to
animate the height.

The BeginTime property tells Silverlight at what time during the storyboard the anima-
tion should begin. In both cases, we are starting the animations as soon as the storyboard
is initiated (BeginTime="00:00:00").

The TargetName property tells the animation which control is being animated. In this
case, both animations are targeting the rectangle.

The final property set is TargetProperty. This is an attached property that refers to the
property that is being animated. In the case of the first animation, TargetProperty is set to
the rectangle’s Width property. As the animation’s value is changed, the value will be set to the
Width property of the rectangle.

Finally, since this is a keyframe animation, keyframes are defined within the animation.
In our case, only one keyframe is defined, 2 seconds (KeyTime="00:00:02") into the story-
board. In the first animation, 2 seconds into the storyboard’s timeline, the value of the
Width property will be changed to 400:

<SplineDoubleKeyFrame KeyTime="00:00:02" Value="400"/>

Programmatically Controlling Animations
Once your animations have been created, Silverlight needs to know when to trigger a
given animation or storyboard. Silverlight 2 provides a number of functions that allow you
to programmatically control your storyboard animations. Table 10-1 lists some common
storyboard methods.

Table 10-1. Common Storyboard Animation Methods

Method Description

Begin() Initiates the storyboard

Pause() Pauses the storyboard

Resume() Resumes a paused storyboard

Stop() Stops the storyboard

Seek() Skips to a specific part of the storyboard animation

226 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

As an example, consider a simple animation where a rectangle grows and shrinks,
repeating forever. We want to allow the user to control the animation through a simple UI.
Clicking the Start button starts the animation, and clicking the Stop button stops it. In
addition, if the user clicks the rectangle, it will pause and resume the animation. Here’s
the XAML to set up the application:

<UserControl.Resources>
 <Storyboard x:Name="MoveRect" RepeatBehavior="Forever">

 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"

 Storyboard.TargetName="rectangle" Storyboard.TargetProperty="Width">

 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="200"/>

 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="600"/>

 <SplineDoubleK

eyFrame KeyTime="00:00:06" Value="200"/>

 </DoubleAnimationUsingKeyFrames>

 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"

 Storyboard.TargetName="rectangle" Storyboard.TargetProperty="Height">

 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="100"/>

 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="300"/>

 <SplineDoubleKeyFrame KeyTime="00:00:06" Value="100"/>

 </DoubleAnimationUsingKeyFrames>

 </Storyboard>

</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >

 <Rectangle Height="100" Width="200" Fill="#FF000AFF"

 Stroke="#FF000000" StrokeThickness="3" x:Name="rectangle" />

 <Button Height="24" Margin="200,416,340,40"

 Content="Start" Width="100" x:Name="btnStart" />

 <Button Height="24" Margin="340,416,200,40"

 Content="Stop" Width="100" x:Name="btnStop" />

</Grid>

The UI is shown in Figure 10-4.
To implement the desired behavior, we will wire up three event handlers in the Page

constructor.

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 227

Figure 10-4. The setup for the example of programmatically controlling animation

To start the animation when the user clicks the Start button, we use the storyboard’s
Begin() method. To stop the animation, we use the storyboard’s Stop() method. The
pause/resume behavior is a bit trickier, but still not complicated. We include a private
Boolean property called Paused, which we use to tell the code behind whether or not the
animation is paused. To pause and resume the animation, we use the Pause() and Resume()
methods. The code looks like this:

private bool Paused;
public Page()

{

 // Required to initialize variables

 InitializeComponent();

 this.btnStart.Click += new RoutedEventHandler(btnStart_Click);

 this.btnStop.Click += new RoutedEventHandler(btnStop_Click);

 this.rectangle.MouseLeftButtonUp +=

 new MouseButtonEventHandler(rectangle_MouseLeftButtonUp);

}

void rectangle_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)

{

 if (Paused)

 {

 this.MoveRect.Resume();

 Paused = false;

 }

228 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

 else

 {

 this.MoveRect.Pause();

 Paused = true;

 }

}

void btnStop_Click(object sender, RoutedEventArgs e)

{

 this.MoveRect.Stop();

}

void btnStart_Click(object sender, RoutedEventArgs e)

{

 this.MoveRect.Begin();

}

That’s all there is to it!
So far in this chapter, we have looked at some very simple animations. Of course, in

reality, animations can get much more complex. One of the key advantages you have as a
developer is that there are tools to assist you with these animations. Expression Blend is
the tool to use when designing your Silverlight 2 animations.

Using Expression Blend to Create Animations
Although you can use Visual Studio 2008 to create your animations in Silverlight, Visual
Studio does not include designer tools to assist you. If you are going to build animations
programmatically, Visual Studio is the way to go. But if you are creating your animations
in design mode, Expression Blend 2 has the tools that allow you to do this easily.

Viewing a Storyboard in the Expression Blend Timeline

The primary asset within Expression Blend for animations is the Objects and Timeline
panel. Up to this point, we have focused on the object side of the Objects and Timeline panel.
With animations, it is all about the timeline. With a storyboard selected, the timeline appears
as shown in Figure 10-5.

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 229

Figure 10-5. Expression Blend’s timeline for a storyboard

The timeline in Figure 10-5 is actually the implemented timeline for the storyboard
shown earlier in Figure 10-2. The three objects in the storyboard are listed in the Objects
and Timeline panel. To the right of each of these objects, you see the timeline with just
over 10 seconds showing horizontally. At time 0, there are three keyframes added, indi-
cating that some animation action is taking place at that time. Then, at 4 seconds into the
timeline, you see two keyframes providing the end point of the circle and smaller rectangle’s
movement from left to right. At 8 seconds through the timeline, there are two final keyframes:
one providing an end point for the smaller rectangle turning into a square and one changing
the larger rectangle to black.

To better understand how Expression Blend can help you build your animations, let’s
run through an exercise.

Try It Out: Creating an Animation with Expression Blend

In this exercise, you’ll create the classic bouncing ball animation using Expression Blend.
You’ll create an animation that will make a red ball drop and bounce on a black rectangle
until it comes to rest. You’ll start off with a very simple animation, and then add to it to
make it progressively more realistic.

1. Create a new Silverlight application in Expression Blend 2 named
Ch10_BlendAnimations.

2. Add an Ellipse control with red fill and a black border near the top center of the
grid. Next, add a Rectangle control to the very bottom of the grid, and have it stretch
all the way from left to right. Set the fill color and border color to black. Your appli-
cation should appear similar to Figure 10-6.

230 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

Figure 10-6. Initial application layout

3. The first step in creating an animation is to create a new storyboard. On the Objects
and Timeline panel, click the button with the plus sign, to the right of the text “(No
Storyboard open),” as shown in Figure 10-7. This opens the Create Storyboard
Resource dialog box.

Figure 10-7. Click the plus button to create a new storyboard.

4. In the Create Storyboard Resource dialog box, enter BounceBall in the Name (Key)
text box, as shown in Figure 10-8. This will be the name of your storyboard.

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 231

Figure 10-8. Name your storyboard in the Create Storyboard Resource dialog box.

5. When the storyboard is created, the timeline will be visible on the right side of the
Objects and Timeline panel. To better see this, switch to the Animation workspace
in Expression Blend by selecting Window ➤ Active Workspace ➤ Animation Work-
space. Your workspace should now look similar to Figure 10-9.

Figure 10-9. The Animation workspace in Expression Blend

Your animation will have many keyframes, as the ball will be moving up and down
as it “bounces” on the rectangle. To simplify things, every change of direction will
cause the need for a new keyframe. For your first keyframe, you will simply take the
ball and drop it onto the top of the rectangle. To do this, you need to add a new key-
frame and move the ball to its new position on the grid.

232 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

6. Make sure the artboard is surrounded in a red border with “Timeline recording is
on” in the upper-right corner. If this is not the case, make certain that BounceBall
is selected for the storyboard in the Object and Timeline panel, and you can click
the red circle in the top-left corner to toggle between recording and not recording.

7. Move the playhead (the yellow vertical line on the timeline with the down arrow at
the top), to position 3 (3 seconds), as shown in Figure 10-10.

Figure 10-10. Moving the playhead on the timeline

8. With the playhead at 3 seconds, select the ellipse and move it down so that it is
positioned directly below its starting point, but touching the black rectangle, as
shown in Figure 10-11.

Figure 10-11. Repositioned ball on our grid

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 233

If you look carefully at the timeline, you’ll notice that a red circle has shown up to
the left of the Ellipse control in the Objects and Timeline panel, with a white arrow
indicating that the object contains an animation. In addition, in the timeline, at
position 3 seconds, a white ellipse has appeared to the right of the Ellipse control.
This is how Expression Blend visually represents a keyframe.

At the top of the timeline, you will see buttons for navigating forward and backward
between the frames in the animation. In addition, there is a play button that lets
you view the animation.

9. Click the play button to view the animation. If you followed the steps properly, you
will see the ball start at the top of the grid and slowly move to the top of the rectangle.

You just created your first animation! However, it isn’t very realistic. In a real envi-
ronment, the ball would accelerate as it fell toward the rectangle. So its movement
would start out slow and speed up. You can mimic this behavior by modifying your
keyframe and adding a spline.

10. Select the newly added keyframe in the timeline. (When the keyframe is selected, it
will turn gray instead of white).

Once the keyframe is selected, in the Properties panel, you will see a section titled
Easing. This section allows you to adjust the KeySpline property. By default, the
interpolation between the two keyframes is linear. However, for this example, you
want to speed up the ball as it gets closer to the second keyframe.

11. Click and drag the dot in the upper-right corner of the KeySpline grid (the end point
of the right side of the line), and drag it down so it appears as shown in Figure 10-12.

12. Click the play button at the top of the timeline. This time, you will see that the circle
starts to drop slowly and then speeds up the closer it gets to the rectangle. This
makes for a much more realistic animation.

13. Next, the circle is going to bounce back up after impacting the rectangle. With
recording still on, move the playhead to 6 seconds on the timeline, and then move
the circle directly up from its current position to about three-fourths its initial
starting point.

14. Select the new keyframe that is created, and navigate to the Easing section of the
Properties panel. This time, you want the movement to start out fast and slow
down as the circle reaches its apex. To get this effect, move the bottom-left dot up
so the KeySpline curve appears as shown in Figure 10-13.

234 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

Figure 10-12. Adjusting the KeySpline property for the ball dropping

Figure 10-13. Adjusting the KeySpline property for the ball rising

15. Click the play button above the timeline to see the animation you have so far. The
circle will fall with increasing speed, and then bounce back up with decreasing
speed. So far so good, but what goes up, must come down.

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 235

16. Move the playhead to 8 seconds, and move the circle up about one-fourth its initial
position and adjust the KeySpline property to match Figure 10-12. Sticking with the
pattern, move the playhead to 10 seconds, and move the circle down to the top of
the rectangle. The KeySpline curve should match Figure 10-13. Repeat this pattern
at 11 seconds, and then 11.5 seconds.

17. Click the play button. You should see the circle bounce on the rectangle as you
would expect. The final timeline will appear as shown in Figure 10-14.

Figure 10-14. Final timeline for bouncing ball

Next, you need to tell Silverlight when the animation should take place. We will
keep it simple and have the animation start when the page is loaded.

18. Navigate to the code behind for the Page.xaml file. In the Page() constructor, add
the event handler for the Loaded event, as follows:

public Page()
{

 // Required to initialize variables

 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Page_Loaded);

}

void Page_Loaded(object sender, RoutedEventArgs e)

{

 this.BounceBall.Begin();

}

19. Run the application. At this point, you should see the ball bounce on the rectangle.
You might see something like what is shown in Figure 10-15.

236 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

Figure 10-15. Finished bouncing ball animation application

In this section, we discussed animations in Silverlight 2. You should be comfortable
creating new animations for your application in Expression Blend, and modifying and
programming against those animations in Visual Studio 2008. The next section addresses
transformations in Silverlight 2.

Creating Transformations in Silverlight
Silverlight 2 includes a number of 2D transforms, which are used to change the appear-
ance of objects. Transforms in Silverlight are defined using a transformation matrix, which
is a mathematical construct for mapping points from one coordinate space to another. If
this sounds a bit confusing, do not fear, Silverlight 2 abstracts this matrix.

Silverlight 2 supports four transformation types: rotation, scaling, skewing, and
translation.

■Note You can also define your own transformation matrix, if you need to modify or combine the four trans-
formation types. See Pro Silverlight 2 by Matthew MacDonald (Apress, 2008) for details on how to do this.

Transformation Types

Figure 10-16 shows a Silverlight 2 application that has been divided into four grid cells.
Each cell contains two rectangles that have their width and height set to 100 pixels. One

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 237

of the rectangles in each cell has a border with its width set to 1 pixel, and the other has a
border with its width set to 5 pixels. The rectangle with the thicker border was then trans-
formed, so you can see the result of the transformation.

Figure 10-16. Examples of the four transformation types

ScaleTransform

The ScaleTransform type allows you to transform the size of a Silverlight object. The ScaleX
property is used to scale the object on the horizontal axis, and the ScaleY property is used
to scale the object on the vertical axis. The values of these properties are multiples of the
object’s original size. For example, setting the ScaleX property to 2 will double the size of the
object on the horizontal axis. The following XAML was used to create the ScaleTransform
in Figure 10-16.

<Rectangle Height="100" Width="100" Stroke="#FF000000" Grid.Row="1" Grid.Column="0"
 StrokeThickness="5" RenderTransformOrigin="0.5,0.5">

 <Rectangle.RenderTransform>

 <TransformGroup>

 <ScaleTransform ScaleX="1.25" ScaleY="1.25"/>

 </TransformGroup>

 </Rectangle.RenderTransform>

</Rectangle>

238 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

SkewTransform

The SkewTransform type allows you to skew a Silverlight object horizontally and vertically.
The SkewTransform is used most commonly to create a 3D effect for an object. The AngleX
property is used to skew the object horizontally, and AngleY is used to skew the object
vertically. The following XAML was used to create the SkewTransform in Figure 10-16:

<Rectangle Height="100" Width="100" Stroke="#FF000000" Grid.Row="1" Grid.Column="1"
 StrokeThickness="5" RenderTransformOrigin="0.5,0.5">

 <Rectangle.RenderTransform>

 <TransformGroup>

 <SkewTransform AngleX="20" AngleY="15"/>

 </TransformGroup>

 </Rectangle.RenderTransform>

</Rectangle>

RotateTransform

The RotateTransform type allows you to rotate a Silverlight object by a specified angle around
a specified center point. The angle is specified by the Angle property, and the center point
is specified by the RenderTransformOrigin property. When you create a RotateTransform for
a rectangle in Expression Blend, by default, it will set RenderTransformOrigin to 0.5, 0.5,
which is the center of the object. You can also specify the center point using the CenterX
and CenterY properties on the RotateTransform element. The following is the XAML to
produce the RotateTransform in Figure 10-16:

<Rectangle Height="100" Width="100" Stroke="#FF000000" Grid.Row="0" Grid.Column="1"
 StrokeThickness="5" RenderTransformOrigin="0.5,0.5">

 <Rectangle.RenderTransform>

 <TransformGroup>

 <RotateTransform Angle="45"/>

 </TransformGroup>

 </Rectangle.RenderTransform>

</Rectangle>

TranslateTransform

The TranslateTransform type allows you to change the position of a Silverlight object, both
horizontally and vertically. The X property controls the position change on the horizontal
axis, and the Y property controls the change to the vertical axis. The following XAML was
used to create the TranslateTransform in Figure 10-16:

<Rectangle Height="100" Width="100" Stroke="#FF000000" Grid.Row="0" Grid.Column="0"
 StrokeThickness="5" RenderTransformOrigin="0.5,0.5">

 <Rectangle.RenderTransform>

 <TransformGroup>

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 239

 <TranslateTransform X="10" Y="10"/>

 </TransformGroup>

 </Rectangle.RenderTransform>

</Rectangle>

Now that we have covered the basics of transforms in Silverlight 2, let’s run through a
quick exercise that will give you a chance to try them out for yourself.

Try It Out: Using Expression Blend to Transform Silverlight
Objects

In this exercise, you’ll use Expression Blend to add and animate transformations.

1. Create a new Silverlight application in Expression Blend called Ch10_BlendTransforms.
Add two ColumnDefinition elements and two RowDefinition elements so the root
Grid is equally divided into four cells, as follows:

<Grid x:Name="LayoutRoot" Background="White" >
 <Grid.RowDefinitions>

 <RowDefinition/>

 <RowDefinition/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition/>

 <ColumnDefinition/>

 </Grid.ColumnDefinitions>

</Grid>

2. Next, add two rectangles to each of the cells that you just created. Create two sets of
rectangles: one set with StrokeThickness="1" and another with StrokeThickness="5".
Also, name the second set of rectangles recTrans. Add the following code:

<Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>

 <RowDefinition/>

 <RowDefinition/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition/>

 <ColumnDefinition/>

 </Grid.ColumnDefinitions>

240 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

 <Rectangle Grid.Row="0" Grid.Column="0" Height="100"

 Width="100" Stroke="#FF000000" StrokeThickness="1" />

 <Rectangle Grid.Row="0" Grid.Column="1" Height="100"

 Width="100" Stroke="#FF000000" StrokeThickness="1" />

 <Rectangle Grid.Row="1" Grid.Column="0" Height="100"

 Width="100" Stroke="#FF000000" StrokeThickness="1" />

 <Rectangle Grid.Row="1" Grid.Column="1" Height="100"

 Width="100" Stroke="#FF000000" StrokeThickness="1" />

 <Rectangle Grid.Row="0" Grid.Column="0" Height="100"

 Width="100" Stroke="#FF000000" StrokeThickness="5" x:Name="recTrans" />

 <Rectangle Grid.Row="0" Grid.Column="1" Height="100"

 Width="100" Stroke="#FF000000" StrokeThickness="5" x:Name="recRotate" />

 <Rectangle Grid.Row="1" Grid.Column="0" Height="100"

 Width="100" Stroke="#FF000000" StrokeThickness="5" x:Name="rectScale" />

 <Rectangle Grid.Row="1" Grid.Column="1" Height="100"

 Width="100" Stroke="#FF000000" StrokeThickness="5" x:Name="rectSkew" />

</Grid>

At this point, your application should have four squares equally spaced in the four
cells of your application. The next step will be to introduce your transforms, but
instead of just adding the transforms, you are going to animate the transformation
taking place.

3. Using the techniques discussed earlier in this chapter, create a new storyboard
called TransformElements.

4. You will perform the transformations over 2 seconds, so move the playhead on the
timeline to 2 seconds. Select the rectangle named recTrans. In the Properties panel,
find the Transform section. Select the Translate tab. Set X and Y to 25. This will cause
the top-left square to move down and to the right, as shown in Figure 10-17.

5. Highlight the rectangle named recRotate. In the Transform section of the Properties
panel, select the Rotate tab. Set the Angle property to 45. The top-right square will
rotate 45 degrees, as shown in Figure 10-18.

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 241

Figure 10-17. Adding the TranslateTransform

Figure 10-18. Adding the RotateTransform

6. Select the rectangle named rectScale. In the Transform section of the Properties
panel, select the Scale tab. Set the values of the X and Y properties to 1.5, which will
scale the bottom-left square 1.5x, or 150%, as shown in Figure 10-19.

242 C H A P T E R 1 0 ■ T R A N S F O R M A T I O N S A N D A N I M A T I O N

Figure 10-19. Adding the ScaleTransform

7. Select the rectangle named rectSkew. In the Transform section of the Properties
panel, select the Skew tab. Set the values of the X and Y properties to 20. This will
cause the square to skew into a diamond shape, as shown in Figure 10-20.

Figure 10-20. Adding the SkewTransform

C H A P T E R 1 0 ■ T R AN SF O R M AT I O N S A N D A N I M A T I O N 243

8. Click the play button at the top of the timeline, and watch the objects transform
from their original shapes and locations.

As you’ve seen in this exercise, applying transformations is pretty straightforward.

Summary
This chapter covered creating animations in Silverlight 2. We looked at animations from a
high level, discussed the different elements that make up an animation in Silverlight 2,
and explored how to programmatically control animations in the code behind. We also
looked at how Expression Blend 2 helps you create complex animations. Then we shifted
our focus to transformations in Silverlight 2. We looked at each of the four transform
types, and then created a simple Silverlight application utilizing transforms.

In the following chapter, we will look at the more advanced topic of creating your own

Silverlight 2 custom controls. Custom controls allow you to create Silverlight functionality
that can be easily reused in different Silverlight applications.

245

■ ■ ■

C H A P T E R 1 1

Custom Controls

So far in this book, you have learned about the many elements of Silverlight 2 and how
they can be used to build RIAs. But what if Silverlight doesn’t offer the specific function-
ality you need for an application? In that case, you may want to create a custom control to
provide that additional functionality.

The actual procedure for creating custom controls is not that terribly difficult, but
understanding the process can be. Under the hood, Silverlight performs some complex
work, but most Silverlight developers do not need to know these details. However, in order
to understand custom controls and the process used to build them, we must dive in and
see how Silverlight ticks.

In this chapter, we will examine when it is appropriate to write custom controls in
Silverlight 2. Then we will look at the Silverlight Control Toolkit and the controls it offers
for developers to use in their applications. Next, we will explore the different aspects of
the Silverlight 2 control model. Finally, we will build a custom control for Silverlight 2.

When to Write Custom Controls
When you find that none of the existing Silverlight controls do exactly what you want, creating
a custom control is not always the solution. In fact, in most cases, you should be able to
get by without writing custom controls. Due to the flexibility built into the Silverlight 2
controls, you can usually modify an existing one to suit your needs.

As a general rule, if your goal is to modify the appearance of a control, there is no need
to write a custom control. Silverlight controls that are built properly, following Microsoft’s
best practices, will adopt the Parts and States model, which calls for complete separation
of the logical and visual aspects of your control. Due to this separation, developers can
change the appearance of controls, and even change transitions of the controls between
different states, without needing to write custom controls.

246 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

So, just when is creating a custom control the right way to go? Here are the primary
reasons for writing custom controls:

Abstraction of functionality: When developing your applications, you may need to
implement some functionality that can be achieved using Silverlight 2’s out-of-the-
box support. However, if this functionality needs to be reused often in your application,
you may choose to create a custom control that abstracts the functionality, in order to
simplify the application. An example of this would be if you wanted to have two text
boxes next to each other for first and last names. Instead of always including two TextBox
controls in your XAML, you could write a custom control that would automatically
include both text boxes and would abstract the behavior surrounding the text boxes.

Modification of functionality: If you would like to change the way a Silverlight 2 control
behaves, you can write a custom control that implements that behavior, perhaps
inheriting from an existing control. An example of this would be if you wanted to
create a button that pops up a menu instead of simply triggering a click method.

Creation of new functionality: The most obvious reason for writing a custom control
in Silverlight 2 is to add functionality that does not currently exist in Silverlight. As an
example, you could write a control that acts as a floating window that can be dragged
and resized.

Although these are valid reasons for creating custom controls, there is one more resource
you should check before you do so: the Silverlight Control Toolkit.

Silverlight Control Toolkit
Upon the release of Silverlight 2, Microsoft announced the Silverlight Control Toolkit, an
open source project located on CodePlex at http://www.codeplex.com/SilverlightToolkit.
This toolkit provides additional components and controls that you can download for use
in your Silverlight applications. For example, it includes the fully functional charting
controls shown in Figure 11-1.

Microsoft’s target is to eventually have more than 100 controls available through this
open source toolkit. For developers, this means that as Silverlight 2 matures, more and
more controls will be available for use in your applications.

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 247

Figure 11-1. Charting control in the Silverlight Control Toolkit

The Silverlight Control Toolkit contains four “quality bands” that describe the specific
control’s maturity level: experimental, preview, stable, and mature. With the initial
announcement of the Silverlight Control Toolkit, the following twelve controls (six within
the preview band and six in the stable band) are available for download (including the full
source code):

• AutoCompleteBox

• NumericUpDown

• Viewbox

• Expander

• ImplicitStyleManager

• Charting

• TreeView

• DockPanel

• WrapPanel

248 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

• Label

• HeaderedContentControl

• HeaderedItemsControl

This toolkit is an excellent resource for Silverlight 2 developers. You can use these controls
as is in your applications, or you can use the source code to modify your own controls. They
are also a great way to learn how to build custom controls, because you can examine their
source code. In order to understand that source code, you will need to know about the
Silverlight control model.

Silverlight Control Model
Before you start to build custom controls for Silverlight 2, you should understand the key
concepts of the Silverlight 2 control model. In this section, we will look at two of these
concepts:

• The Parts and States model

• Dependency properties

Parts and States Model

Following Microsoft’s best practices, Silverlight 2 controls are built with a strict separation
between the visual aspects of the control and the logic behind the control. This allows
developers to create templates for existing controls that will dramatically change the
visual appearance and the visual behaviors of a control, without needing to write any
code. This separation is called for by the Parts and States model. The visual aspects of
controls are managed by Silverlight’s Visual State Manager (VSM).

■Note You are not required to adhere to the Parts and State model when developing custom controls.
However, developers are urged to do so in order to follow the best practices outlined by Microsoft.

The Parts and States model uses the following terminology:

Parts: Named elements contained in a control template that are manipulated by code
in some way are called parts. For example, a simple Button control could consist of a
rectangle that is the body of the button and a text block that represents the text on the
control.

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 249

States: A control will always be in a state. For a Button control, different states include
when the mouse is hovered over the button, when the mouse is pressed down on the
button, and when neither is the case (its default or normal state). The visual look of
control is defined by its particular state.

Transitions: When a control changes from one state to another—for example, when
a Button control goes from its normal state to having the mouse hovered over it—its
visual appearance may change. In some cases, this change may be animated to provide
a smooth visual transition from the states. These animations are defined in the Parts
and States model by transitions.

State group: According to the Parts and States model, control states can be grouped
into mutually exclusive groups. A control cannot be in more than one state within the
same state group at the same time.

Dependency Properties

Properties are a common part of object-oriented programming and familiar to .NET devel-
opers. Here is a typical property definition:

private string _name;

public string Name

{

 get { return _name; }

 set { _name = value; }

}

In Silverlight 2 and WPF, Microsoft has added some functionality to the property system.
This new system is referred to as the Silverlight 2 property system. Properties created
based on this new property system are called dependency properties.

In a nutshell, dependency properties allow Silverlight 2 to determine the value of a
property dynamically from a number of different inputs, such as data binding or template
binding. As a general rule, if you want to be able to style a property or to have it participate
in data binding or template binding, it must be defined as a dependency property.

You define a property as a dependency property using the DependencyProperty object, as
shown in the following code snippet:

public static readonly DependencyProperty NameProperty =

 DependencyProperty.Register(

 "Name",

 typeof(string),

 typeof(MyControl),

 null

);

250 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

public int Name

{

 get

 {

 return (string)GetValue(NameProperty);

 }

 set

 {

 SetValue(NameProperty, value);

 }

}

This example defines the Name property as a dependency property. It declares a new object
of type DependencyProperty called NameProperty, following the naming convention detailed by
Microsoft. NameProperty is set equal to the return value of the DependencyProperty.Register()

method, which registers a dependency property within the Silverlight 2 property system.
The DependencyProperty.Register() method is passed a number of arguments:

• The name of the property that you are registering as a dependency property—Name
in this example.

• The data type of the property you are registering—string in this example.

• The data type of the object that is registering the property—MyControl in this
example.

• Metadata that should be registered with the dependency property. Most of the time,
this will be used to hook up a callback method that will be called whenever the
property’s value is changed. This example simply passes null. In the next section,
you will see how this last argument is used.

Now that we have discussed custom controls in Silverlight 2 from a high level, it’s time
to see how to build your own.

Creating Custom Controls in Silverlight 2
As I mentioned at the beginning of the chapter, creating a custom control does not need
to be difficult. Of course, the work involved depends on how complex your control needs to
be. As you’ll see, the custom control you’ll create in this chapter is relatively simple. Before
we get to that exercise, let’s take a quick look at the two options for creating custom
controls.

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 251

Implementing Custom Functionality

You have two main options for creating custom functionality in Silverlight 2:

With a UserControl: The simplest way to create a piece of custom functionality is to
implement it with a UserControl. Once the UserControl is created, you can then reuse
it across your application.

As a custom control: The content that is rendered is built from scratch by the developer.
This is by far the most complex option for creating a custom control. You would need
to do this when you want to implement functionality that is unavailable with the
existing controls in Silverlight 2.

In this chapter’s exercise, we will take the custom control approach.

Try It Out: Building a Custom Control

In this exercise, you will build your own “cooldown” button. This button will be disabled
for a set number of seconds—its cooldown duration—after it is clicked. If you set the
cooldown to be 3 seconds, then after you click the button, you will not be able to click it
again for 3 seconds.

For demonstration purposes, you will not use the standard Silverlight 2 Button control
as the base control. Instead, you will create a custom control that implements Control.
This way, I can show you how to create a control with a number of states.

The cooldown button will have five states, implemented in two state groups. The
NormalStates state group will have these states:

• Pressed: The button is being pressed. When it is in this state, the thickness of the
button’s border will be reduced.

• MouseOver: The mouse is hovering over the button. When it is in this state, the thick-
ness of the button’s border will be increased.

• Normal: The button is in its normal state.

It will also have a state group named CoolDownStates, which will contain two states:

• Available: The button is active and available to be clicked.

• CoolDown: The button is in its cooldown state, and therefore is not active. You will
place a rectangle over top of the button that is of 75% opacity. In addition, you
will disable all other events while the button is in this state.

252 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

Keep in mind that this is only an example, and it has many areas that could use
improvement. The goal of the exercise is not to produce a control that you will use in
your applications, but rather to demonstrate the basic steps for creating a custom control
in Silverlight 2.

Setting Up the Control Project

Let’s get started by creating a new project for the custom control.

1. In Visual Studio 2008, create a new Silverlight application named Ch11_CoolDownButton
and allow Visual Studio to create a Web Site project to host your application.

2. From Solution Explorer, right-click the solution and select Add ➤ New Project.

3. In the Add New Project dialog box, select the Silverlight Class Library template and
name the library CoolDownButton, as shown in Figure 11-2.

Figure 11-2. Adding the Silverlight Class Library to the project

4. By default, Visual Studio will create a class named Class1.cs. Delete this file from
the project.

5. Right-click the CoolDownButton project and select Add ➤ New Item.

6. In the Add New Item dialog box, select the Class template and name the class
CoolDownButtonControl, as shown in Figure 11-3.

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 253

Figure 11-3. Adding the new class to the project

Defining Properties and States

Now you’re ready to create the control. Let’s begin by coding the properties and states.

1. Set the control class to inherit from Control, in order to gain the base Silverlight 2
control functionality, as follows:

namespace CoolDownButton

{

 public class CoolDownButtonControl : Control

 {

 }

}

2. Now add the control’s public properties, as follows:

public static readonly DependencyProperty CoolDownSecondsProperty =

 DependencyProperty.Register(

 "CoolDownSeconds",

 typeof(int),

 typeof(CoolDownButtonControl),

 new PropertyMetadata(

 new PropertyChangedCallback(

 CoolDownButtonControl.OnCoolDownSecondsPropertyChanged

)

254 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

)

);

public int CoolDownSeconds

{

 get

 {

 return (int)GetValue(CoolDownSecondsProperty);

 }

 set

 {

 SetValue(CoolDownSecondsProperty, value);

 }

}

private static void OnCoolDownSecondsPropertyChanged(

 DependencyObject d, DependencyPropertyChangedEventArgs e)

{

 CoolDownButtonControl cdButton = d as CoolDownButtonControl;

 cdButton.OnCoolDownButtonChange(null);

}

public static readonly DependencyProperty ButtonTextProperty =

 DependencyProperty.Register(

 "ButtonText",

 typeof(string),

 typeof(CoolDownButtonControl),

 new PropertyMetadata(

 new PropertyChangedCallback(

 CoolDownButtonControl.OnButtonTextPropertyChanged

)

)

);

public string ButtonText

{

 get

 {

 return (string)GetValue(ButtonTextProperty);

 }

 set

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 255

 {

 SetValue(ButtonTextProperty, value);

 }

}

private static void OnButtonTextPropertyChanged(

 DependencyObject d, DependencyPropertyChangedEventArgs e)

{

 CoolDownButtonControl cdButton = d as CoolDownButtonControl;

 cdButton.OnCoolDownButtonChange(null);

}

protected virtual void OnCoolDownButtonChange(RoutedEventArgs e)

{

}

As explained earlier in the chapter, in order for your properties to allow data binding,
template binding, styling, and so on, they must be dependency properties. In addition
to the dependency properties, you added two callback methods that will be called
when the properties are updated. By naming convention, the CoolDownSeconds
property has a DependencyProperty object named CoolDownSecondsProperty and a
callback method of onCoolDownSecondsPropertyChanged(). So you need to watch out,
or your names will end up very long, as they have here.

3. Add some private members to contain state information, as follows:

namespace CoolDownButton

{

 public class CoolDownButtonControl : Control

 {

 ...

 private FrameworkElement corePart;

 private bool isPressed, isMouseOver, isCoolDown;

 private DateTime pressedTime;

 }

}

256 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

The corePart members are of type FrameworkElement and will hold the instance of
the main part, which will respond to mouse events. The isPressed, isMouseOver, and
isCoolDown Boolean members will be used to help keep track of the current button
state. And the pressedTime member will record the time that the button was clicked
in order to determine when the cooldown should be removed.

4. Add a helper method called GoToState(), which will assist in switching between the
states of the control.

private void GoToState(bool useTransitions)

{

 // Go to states in NormalStates state group

 if (isPressed)

 {

 VisualStateManager.GoToState(this, "Pressed", useTransitions);

 }

 else if (isMouseOver)

 {

 VisualStateManager.GoToState(this, "MouseOver", useTransitions);

 }

 else

 {

 VisualStateManager.GoToState(this, "Normal", useTransitions);

 }

 // Go to states in CoolDownStates state group

 if (isCoolDown)

 {

 VisualStateManager.GoToState(this, "CoolDown", useTransitions);

 }

 else

 {

 VisualStateManager.GoToState(this, "Available", useTransitions);

 }

}

This method will check the private members you added in the previous step to
determine in which state the control should be. When the proper state is deter-
mined, the VisualStateManager.GoToState() method is called, passing it the control,
the name of the state, and whether or not the control should use transitions when
switching from the current state to this new state (whether or not an animation
should be shown).

Now let’s turn our attention to the visual aspect of the control.

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 257

Defining the Control’s Appearance

The default control template is placed in a file named generic.xaml, which is located in a
folder named themes. These names are required. The generic.xaml is a resource dictionary
that defines the built-in style for the control. You need to add the folder and file, make
some adjustments to the file, and then add the XAML to set the control’s appearance.

1. To add the required folder, right-click the CoolDownButton project and select Add ➤
New Folder. Name the folder themes.

2. Right-click the newly added themes folder and select Add ➤ New Item.

3. In the Add New Item dialog box, select the Silverlight User Control template and
name the file generic.xaml, as shown in Figure 11-4. Click Add and confirm that the
generic.xaml file was added within the themes folder.

Figure 11-4. Adding the generic.xaml resource dictionary

4. In Solution Explorer, expand the generic.xaml file to see the generic.xaml.cs file.
Right-click it and delete this code-behind file.

5. Right-click the generic.xaml file and select Properties. Change the Build Action
to Resource and remove the resource for the Custom Tool property, as shown in
Figure 11-5.

258 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

Figure 11-5. The Properties panel for generic.xaml

6. Open the generic.xaml file. You will see that, by default, the file has the following
contents:

<UserControl x:Class="CoolDownButton.themes.generic"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>

</UserControl>

7. You need to change the generic.xaml file to be a resource dictionary. To do this,
replace the UserControl tag with a ResourceDictionary tag. Then remove the Width
and Height definitions and add a new xmlns for the CoolDownButton. Finally, remove
the Grid definition. Your code should look like this:

<ResourceDictionary

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:begSL2="clr-namespace:CoolDownButton">

</ResourceDictionary>

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 259

8. Now you can add the actual XAML that will make up the control. First, add a Style
tag, with the TargetType set to CoolDownButtonControl. Then add a Setter for the
control template, and within that, add the ControlTemplate definition, again with
TargetType set to CoolDownButtonControl. The control will consist of two Rectangle
components: one for the button itself, named coreButton, one for the 75% opacity
overlay that will displayed when the button is in its CoolDown state. It will also have
a TextBlock component to contain the text of the button. This defines the control in
the default state. Therefore, the opacity of the overlay rectangle is set to 0% to start,
because the overlay should not be visible by default. The additions are as follows:

<ResourceDictionary

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:begSL2="clr-namespace:CoolDownButton">

<Style TargetType="begSL2:CoolDownButtonControl">

 <Setter Property="Template">

 <Setter.Value>

 <ControlTemplate TargetType="begSL2:CoolDownButtonControl">

 <Grid x:Name="LayoutRoot">

 <Rectangle

 StrokeThickness="4"

 Stroke="Navy"

 Fill="AliceBlue"

 RadiusX="4"

 RadiusY="4"

 x:Name="innerButton" />

 <TextBlock

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Text="Test"

 TextWrapping="Wrap"/>

 <Rectangle

 Opacity="0"

 Fill="#FF000000"

 Stroke="#FF000000"

 RenderTransformOrigin="0.5,0.5"

 RadiusY="4" RadiusX="4"

 x:Name="corePart">

 <Rectangle.RenderTransform>

 <TransformGroup>

 <ScaleTransform

260 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

 ScaleX="1"

 ScaleY="1"/>

 </TransformGroup>

 </Rectangle.RenderTransform>

 </Rectangle>

 </Grid>

 </ControlTemplate>

 </Setter.Value>

 </Setter>

</Style>

</ResourceDictionary>

9. Now that you have defined the default appearance of the control, you need to add
the VisualStateGroups, along with the different states for the control. To do this, add
the following code directly below the Grid definition and above the first Rectangle.

Notice that for each state, a Storyboard is used to define the state’s visual appearance.

<VisualStateManager.VisualStateGroups>

 <VisualStateGroup x:Name="NormalStates">

 <VisualState x:Name="Normal"/>

 <VisualState x:Name="MouseOver" >

 <Storyboard >

 <DoubleAnimation

 Storyboard.TargetName="innerButton"

 Storyboard.TargetProperty="(UIElement.StrokeThickness)"

 Duration="0" To="6"/>

 </Storyboard>

 </VisualState>

 <VisualState x:Name="Pressed">

 <Storyboard>

 <DoubleAnimation

 Storyboard.TargetName="innerButton"

 Storyboard.TargetProperty="(UIElement.StrokeThickness)"

 Duration="0" To="2"/>

 </Storyboard>

 </VisualState>

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 261

 </VisualStateGroup>

 <VisualStateGroup x:Name="CoolDownStates">

 <VisualState x:Name="Available"/>

 <VisualState x:Name="CoolDown">

 <Storyboard>

 <DoubleAnimation

 Storyboard.TargetName="corePart"

 Storyboard.TargetProperty="(UIElement.Opacity)"

 Duration="0" To=".75"/>

 </Storyboard>

 </VisualState>

 </VisualStateGroup>

</VisualStateManager.VisualStateGroups>

Now we need to turn our attention back to the CoolDownButtonControl.cs file to finish
up the logic behind the control.

Handling Control Events

To complete the control, you need to handle its events and define its control contract.

1. First, you must get an instance of the core part. Referring back to step 8 in the
“Defining the Control’s Appearance” section, you’ll see that this is the overlay
rectangle named corePart. This is the control on top of the other controls, so it is
the one that will accept the mouse events. To get the instance of corePart, use the
GetChildElement() method. Call this method in the OnApplyTemplate() method that
is called whenever a template is applied to the control, as follows:

public override void OnApplyTemplate()

{

 base.OnApplyTemplate();

 CorePart = (FrameworkElement)GetTemplateChild("corePart");

 GoToState(false);

}

262 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

private FrameworkElement CorePart

{

 get

 {

 return corePart;

 }

 set

 {

 corePart = value;

 }

}

Notice that this method calls the base OnApplyTemplate() method, and then calls
the GoToState() method, passing it false. This is the first time that the GoToState()
method will be called, and you are passing it false so that it does not use any tran-
sitions while changing the state. The initial view of the control should not have any
animations to get it to the initial state.

2. At this point, you need to wire up event handlers to handle the mouse events. First,
create the event handlers themselves, as follows:

void corePart_MouseEnter(object sender, MouseEventArgs e)

{

 isMouseOver = true;

 GoToState(true);

}

void corePart_MouseLeave(object sender, MouseEventArgs e)

{

 isMouseOver = false;

 GoToState(true);

}

void corePart_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 isPressed = true;

 GoToState(true);

}

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 263

void corePart_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)

{

 isPressed = false;

 isCoolDown = true;

 pressedTime = DateTime.Now;

 GoToState(true);

}

3. Next, wire up the handlers to the events. You can do this in the CorePart property’s
setter, as follows. Note that in the case where more than one template is applied,
before wiring up the event handlers, you need to make sure to remove any existing
event handlers.

private FrameworkElement CorePart

{

 get

 {

 return corePart;

 }

 set

 {

 FrameworkElement oldCorePart = corePart;

 if (oldCorePart != null)

 {

 oldCorePart.MouseEnter -=

 new MouseEventHandler(corePart_MouseEnter);

 oldCorePart.MouseLeave -=

 new MouseEventHandler(corePart_MouseLeave);

 oldCorePart.MouseLeftButtonDown -=

 new MouseButtonEventHandler(

 corePart_MouseLeftButtonDown);

 oldCorePart.MouseLeftButtonUp -=

 new MouseButtonEventHandler(

 corePart_MouseLeftButtonUp);

 }

 corePart = value;

264 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

 if (corePart != null)

 {

 corePart.MouseEnter +=

 new MouseEventHandler(corePart_MouseEnter);

 corePart.MouseLeave +=

 new MouseEventHandler(corePart_MouseLeave);

 corePart.MouseLeftButtonDown +=

 new MouseButtonEventHandler(

 corePart_MouseLeftButtonDown);

 corePart.MouseLeftButtonUp +=

 new MouseButtonEventHandler(

 corePart_MouseLeftButtonUp);

 }

 }

}

4. Recall that when the button is clicked, you need to make sure the button is dis-
abled for however many seconds are set as the cooldown period. To do this, first
create a method that checks to see if the cooldown time has expired, as follows:

private bool CheckCoolDown()

{

 if (!isCoolDown)

 {

 return false;

 }

 else

 {

 if (DateTime.Now > pressedTime.AddSeconds(CoolDownSeconds))

 {

 isCoolDown = false;

 return false;

 }

 else

 {

 return true;

 }

 }

}

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 265

The logic behind this method is pretty simple. If the isCoolDown flag is true, then
you are simply checking to see if the current time is greater than the pressedTime
added to the cooldown. If so, you reset the isCoolDown flag and return false;
otherwise, you return true.

5. Now you need to surround the code in each of the event handlers with a call to the
CheckCoolDown() method, as follows. If the cooldown has not yet expired, none of
the event handlers should perform any action.

void corePart_MouseEnter(object sender, MouseEventArgs e)

{

 if (!CheckCoolDown())

 {

 isMouseOver = true;

 GoToState(true);

 }

}

void corePart_MouseLeave(object sender, MouseEventArgs e)

{

 if (!CheckCoolDown())

 {

 isMouseOver = false;

 GoToState(true);

 }

}

void corePart_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 if (!CheckCoolDown())

 {

 isPressed = true;

 GoToState(true);

 }

}

void corePart_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)

{

 if (!CheckCoolDown())

 {

 isPressed = false;

266 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

 isCoolDown = true;

 pressedTime = DateTime.Now;

 GoToState(true);

 }

}

6. Recall that in step 2 of the “Defining Properties and States” section, you created a
method called OnCoolDownButtonChange(). At that time, you did not place anything
in this method. This is the method that is called whenever there is a notification
change to a dependency property. When a change occurs, you need to call
GoToState() so the control can reflect the changes, as follows:

protected virtual void OnCoolDownButtonChange(RoutedEventArgs e)

{

 GoToState(true);

}

7. Next, create a constructor for your control and apply the default style key. In many
cases, this will simply be the type of your control itself.

public CoolDownButtonControl()

{

 DefaultStyleKey = typeof(CoolDownButtonControl);

}

8. The final step in creating the control is to define a control contract that describes
your control. This is required in order for your control to be modified by tools such
as Expression Blend 2. This contract consists of a number of attributes that are
placed directly in the control class, as follows. These attributes are used only by
tools; they are not used by the runtime.

namespace CoolDownButton

{

 [TemplatePart(Name = "Core", Type = typeof(FrameworkElement))]

 [TemplateVisualState(Name = "Normal", GroupName = "NormalStates")]

 [TemplateVisualState(Name = "MouseOver", GroupName = " NormalStates")]

 [TemplateVisualState(Name = "Pressed", GroupName = " NormalStates")]

 [TemplateVisualState(Name = "CoolDown", GroupName="CoolDownStates")]

 [TemplateVisualState(Name = "Available", GroupName="CoolDownStates")]

 public class CoolDownButtonControl : Control

 {

 }

}

This completes the creation of the custom control.

C H A P T E R 1 1 ■ C U S T O M C O N T R O L S 267

Compiling and Testing the Control

Now you’re ready to try out your new control.

1. Compile your control.

2. If everything compiles correctly, you need create an instance of your control in
your Ch11_CoolDownButton project. To do this, right-click the Ch11_CoolDownButton
project in Solution Explorer and select Add Reference. In the Add Reference dialog
box, select the Projects tab and choose CoolDownButton, as shown in Figure 11-6.
Then click OK.

Figure 11-6. Adding a reference to your control

3. Navigate to your Page.xaml file within the Ch11_CoolDownButton project. First add a
new xmlns to the UserControl definition, and then add an instance of your control,
as follows:

<UserControl x:Class="Ch11_CoolDownButton.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:begSL2="clr-namespace:CoolDownButton;assembly=CoolDownButton"

 Width="400" Height="300">

268 C H A P T E R 1 1 ■ C U S T O M C O N T R O L S

 <Grid x:Name="LayoutRoot" Background="White">

 <begSL2:CoolDownButtonControl

 CoolDownSeconds="3"

 Width="150" Height="60" />

 </Grid>

</UserControl>

4. Run the project. You should see your button.

5. Test the states of your button. When you move the mouse over the button, the
border thickness will increase. Click the mouse on the button, and the border
will decrease. When you release the mouse button on the button, the border will
go back to normal, and the overlay will appear. You can continue to move the
mouse over the button, and you will notice that it will not respond to your events
until 3 seconds have passed. Figure 11-7 shows the various control states.

Figure 11-7. Button states

Clearly, this cooldown button has a lot of room for improvement. However, the goal
was to show you the basic steps involved in creating a custom control. As you most
certainly could tell, the process is pretty involved, but the rewards of following the best
practices are worth it. When the control is built properly like this, you can apply custom
templates to it to dramatically change its appearance, without needing to rewrite any of
the code logic.

Summary
Without a doubt, this was the most complex content that we have covered in this book.
The goal was to give you a basic understanding of what is involved in creating custom
controls the right way in Silverlight 2.

In this chapter, we looked at when you might want to create a custom control. Then
you learned about some of the key concepts within the Silverlight 2 control model, including
the Parts and States model and dependency properties. Finally, you built your own
custom control.

269

Index

■Special Characters
+= operator, 67

■A
AcceptsReturn property, 149
Active Server Pages (ASP), 7
Add Reference dialog box, 267
<allow-from> element, 131
Angle property, 238
AngleX property, 238
AngleY property, 238
animation, 221–243

Expression Blend, 228–236
creating animation with, 229–236
overview, 228
viewing storyboard in, 228–229

overview, 221–222
programmatically controlling, 225–228
storyboards, 222–223
transformations, 236–243

Expression Blend, 239–243
overview, 236
types of, 236–239

Animation workspace, 231
application level, defining styles at, 215–217
<Application.Resources> element, 216
applications

data access in, 117–118
Windows Communication Foundation

(WCF) service with, 130
App.xaml file, 216
ASMX (ASP.NET Web Services), 118
ASP (Active Server Pages), 7
ASP.NET controls, 6
ASP.NET Web Services (ASMX), 118
Asset Library Window, 176
attached properties, 59
attribute syntax, 57–58
AutoGenerateColumns property, 96, 101, 107

Available state, 251
AvailableFreeSpace property, 156

■B
Background property, 70
Begin() method, 225, 227
BeginTime property, 225
bin directory, 33
Binding class, 86
binding mode, 86
Book class, 86, 90
Border control, 69–72
BorderBrush property, 70
breadcrumbs, 210
browser window, filling with application,

41–42
Brush object, 72
btnOpenFile control, 145
Button control, 57–59, 144, 248, 251
Button_Click event handler, 63
ButtonStyle style, 212

■C
CanUserReorder property, 102
CanUserResize property, 102
Canvas control, 36, 47
canvas layout mode, 180
Canvas panel, 35, 36–42, 59

filling entire browser window with
application, 41–42

overview, 36–37
using, 37–40

Canvas.Left property, 36, 59
Canvas.Top property, 36, 59
Cascading Style Sheets (CSS), 58, 207
CellEditingTemplate, 103
CellTemplate, 103, 108
Center property, 46
CenterX property, 238

270 ■I N D E X

CenterY property, 238
CheckBox control, 73, 77–80
CheckCoolDown() method, 265
clientaccesspolicy.xml file, 130, 133
CLR (common language runtime), 7
CodePlex, 246
Color property, 224
ColorAnimation type, 224
colspan attribute, 54
ColumnDefinition element, 52
ColumnDefinitions property, 186
Columns collection, 101–104

DataGridCheckBoxColumn, 103
DataGridTemplateColumn, 103–104
DataGridTextColumn, 102
overview, 101–102

common language runtime (CLR), 7
compiling custom controls, 267–268
ConnectAsync() method, 132
Content property, 58, 79
Control control, 251, 253
control properties, setting, 57–59

attached properties, 59
attribute syntax, 57–58
element syntax, 58
overview, 57
type-converter–enabled attributes, 58–59

Control Toolkit, 246–248
ControlTemplate definition, 259
CoolDown state, 251, 259
CoolDownButton library, 252
CoolDownButton project, 257
CoolDownButtonControl class, 252
CoolDownButtonControl control, 259
CoolDownButtonControl.cs file, 261
CoolDownSeconds property, 255
CoolDownSecondsProperty object, 255
CoolDownStates state group, 251
coreButton button, 259
corePart members, 256
CorePart property, 263
CornerRadius property, 70
Create Storyboard Resource dialog box, 231
CreateDirectory() method, 136, 152
CreateFile() method, 136, 153
cross-browser, 6
cross-platform, 6
cross-platform/cross-browser support, 6
CSS (Cascading Style Sheets), 58, 207

currentDir global string variable, 151
custom controls, 245–268

concepts, 248–250
dependency properties, 249–250
overview, 248
Parts and States model, 248–249

creating, 250–268
compiling, 267–268
defining appearance, 257–261
defining properties and states, 253–256
event handling, 261–266
implementing custom functionality,

251
overview, 250
setting up project, 252
testing, 267–268

overview, 245
Silverlight Control Toolkit, 246–248
when to write, 245–246

■D
data access, 117–133

from other domains, 130–131
overview, 117
in Silverlight applications, 117–118
through sockets, 131–133
through web services, 118–130

overview, 118
standard WCF service with Silverlight,

130
Windows Communication Foundation

(WCF) service, 118–130
data binding, 85–95

Binding class, 86
overview, 85–86
simple, 86–95

DataContext property, 90
DataGrid control, 81–82, 95, 110, 176

building simple, 96–101
building with custom columns, 104–110
Columns collection, 101–104

DataGridCheckBoxColumn, 103
DataGridTemplateColumn, 103–104
DataGridTextColumn, 102
overview, 101–102

overview, 95
DataGridCheckBoxColumn, 102, 103
DataGridTemplateColumn, 102, 103–104,

108

271■I N D E X

DataGridTextColumn, 102, 109
debugging, 14–26
dependency properties, 249–250
DependencyProperty object, 249, 255
DependencyProperty.Register() method,

250
desktop applications, 2
DisplayIndex property, 102
DisplayMemberBinding property, 102
DisplayMemberPath property, 111
DLLs (dynamic link libraries), 81
Double property, 224
DoubleAnimation type, 224
DoubleAnimationUsingKeyFrames type, 224
DoWork() method, 122
dynamic link libraries (DLLs), 81

■E
element syntax, 58
Ellipse control, 59, 73
event handling, 61–69

custom controls, 261–266
declaring event handlers in managed

code, 65–69
declaring event in XAML, 61–64
overview, 61

.exclude extension, 33
Expression Blend, 167, 188, 206, 228–236

creating animation with, 229–236
key features of, 168–175

overview, 168
split-view mode, 169
template editing support, 170
timeline, 170
Visual State Manager (VSM), 170
Visual Studio 2008 integration, 168–169
visual XAML editor, 168
working with projects in, 171–175

laying out applications with, 180–187
Grid control, 180
grid layout mode, 180–187
overview, 180

overview, 167, 228
setting inline properties with, 197–206
using to transform Silverlight objects,

239–243
viewing storyboards in, 228–229
workspace, 175–180

Objects and Timeline panel, 180
overview, 175

Project panel, 178
Properties panel, 178
Toolbox, 175–178

Expression Studio, 7
extended controls, 81–84

adding, 81–82
GridSplitter, 82–84
overview, 81

Extensible Application Markup Language
(XAML), 4, 7, 61–64, 86, 90, 168

■F
file explorer, 139–162

application layout, 139–150
coding, 150–160
overview, 139
testing, 160–162

File Modified dialog box, 174
FirePropertyChanged method, 91–92
Flash, 3
FontFamily property, 189
FontSize control, 218
FontSize property, 189
FontWeight property, 189
form controls, 57–84

Border control, 69–72
extended controls, 81–84

adding, 81–82
GridSplitter, 82–84
overview, 81

handling events in Silverlight, 61–69
declaring event handler in managed

code, 65–69
declaring event in XAML, 61–64
overview, 61

nesting controls within controls, 59–61
overview, 57
setting control properties, 57–59

attached properties, 59
attribute syntax, 57–58
element syntax, 58
overview, 57
type-converter–enabled attributes, 58–59

user input controls, 73–80
overview, 73
RadioButton and CheckBox controls,

77–80
TextBox control, 73–77

FormLabel style, 208
FrameworkElement object, 256

272 ■I N D E X

■G
generic.xaml file, 257
generic.xaml.cs file, 257
get operation, 92
GetChildElement() method, 261
GetDirectoryNames() method, 136, 154
GetFileNames() method, 136, 155
GetHands() method, 120, 123
GetHandsAsync() method, 126, 128
GetStorageData() method, 150, 154, 165
GetUserStoreForApplication() method, 136, 152
GoToState() method, 256, 262, 266
<grant-to> element, 131
Grid control, 36, 47–55

Expression Blend, 180
nesting, 52–55
overview, 47–48
using, 48–51

Grid definition, 258
grid layout mode, Expression Blend, 180–187
Grid.Column property, 47, 142
Grid.Row property, 47, 142
GridSplitter control, 82–84, 176
Grouping property, 79

■H
Header property, 102
Height attribute, 41
Height definition, 258
Height property, 50, 58, 222, 224
Hello World application, in Visual Studio 2008,

29–33
HelloWorld method, 17, 23
Horizontal property, 46
HorizontalAlignment property, 46
HorizontalScrollBarVisibility property, 149
hosting Silverlight applications in Visual

Studio 2008, 33–34
overview, 33
using Visual Studio Web Application

project, 33–34
using Visual Studio Web Site, 33

■I
IDE (integrated development environment), 7
IncreaseQuotaTo() method, 165
inline properties, 189–206

overview, 189
setting with Expression Blend, 197–206
setting with Visual Studio, 190–196

innerGrid object, 184
INotifyPropertyChanged interface, 90–91
integrated debugger, 13
integrated development environment (IDE), 7
ISBN property, 86, 93
isCoolDown flag, 265
isolated storage, 135–166

clearing, 162–163
file explorer, 139–162

application layout, 139–150
coding, 150–160
overview, 139
testing, 160–162

increasing quota, 163–166
IsolatedStorageFile class, 136
IsolatedStorageFileStream class,

136–137
IsolatedStorageSettings class, 137–138
overview, 135–136
viewing, 162–163

isolated storage feature, 135
IsolatedStorageFile class, 136
IsolatedStorageFileStream class, 136–137
IsolatedStorageSettings class, 137–138
IsReadOnly property, 102
Items.Clear() method, 154

■J
JavaScript IntelliSense, 14–26
JavaScript Object Notation (JSON), 118
JScripts.js file, 17
JSON (JavaScript Object Notation), 118

■K
Key attribute, 207
keyframe animation, 223
KeySpline property, 233, 235

■L
layout management, 35–55

Canvas panel, 36–42
filling entire browser window with

application, 41–42
overview, 36–37
using, 37–40

Grid control, 47–55
nesting, 52–55
overview, 47–48
using, 48–51

overview, 35

273■I N D E X

StackPanel control, 42–47
nesting, 45–47
overview, 42
using, 42–45

lblCurrentDirectory TextBlock, 143
linear interpolation animation, 223
list controls, 116

DataGrid control, 95–110
building simple, 96–101
building with custom columns, 104–110
Columns collection, 101–104
overview, 95

ListBox control, 110–115
building with custom content, 112–115
custom, 111–112
default, 111–112
overview, 110

overview, 85
ListBox control, 57, 110–115, 144–145

building with custom content, 112–115
custom, 111–112
default, 111–112
overview, 110

Loaded event handler, 88, 128
LoadFilesAndDirs() method, 150, 152
localized storage. See isolated storage
lstDirectoryListing, 144

■M
managed code, declaring event handler in,

65–69
Margin property, 46, 58, 96, 189
MaxWidth property, 102
Microsoft Expression Blend, 4, 10
MinWidth property, 102
Mono project, 6
MouseOver state, 251
multi-targeting support, 26–27
MyControl property, 250

■N
Name property, 250
NameProperty object, 250
Navigate to Event Handler option, 148
Navigate to the Application Storage tab, 162
nested grid properties, 185
nesting

controls within controls, 59–61
Grid controls, 52–55
StackPanel controls, 45–47

.NET Framework, cross-platform version of,
6–7

Normal state, 251
NormalStates state group, 251

■O
object library, 8
Object property, 224
ObjectAnimation type, 224
Objects and Timeline panel, 180, 228–229
Objects panel, 210
ObservableCollection class, 97, 98
OnApplyTemplate() method, 261
OnCoolDownButtonChange() method, 266
onCoolDownSecondsPropertyChanged()

method, 255
OneTime binding setting, 93
OneWay binding setting, 93
OnSendCompleted event handler, 133
OpenFile() method, 160
Orientation control, 46
Orientation property, 46

■P
Page Loaded event, 110, 115
Page_Loaded event handler, 129
Page.xaml file, 128, 145, 172, 267
Parts and States model, 245, 248–249
Path.Combine() method, 154
Pause() method, 225, 227
Paused property, 227
Point property, 224
PointAnimation type, 224
Pressed state, 251
pressedTime member, 256
Project panel, Expression Blend, 178
properties, custom control, 253–256
Properties panel, Expression Blend, 178
Property attribute, 207
PropertyChanged event, 91
pseudo-conversational environment, 117

■Q
Quota property, 156

■R
RadioButton control, 73, 77–80
ReadToEnd() method, StreamReader, 159
Rectangle control, 57, 73
remote scripting, 3
RenderTransformOrigin property, 238

274 ■I N D E X

representational state transfer (REST)
services, 118

ResourceDictionary tag, 258
REST (representational state transfer)

services, 118
Resume() method, 225, 227
rich Internet applications (RIAs), 3
RotateTransform type, 238
RowDefinition element, 52
RowDefinitions property, 186
Run at startup check box, Expression Blend,

171

■S
ScaleTransform type, 237
ScaleX property, 237
ScaleY property, 237
SDK (Silverlight 2 Software Development

Kit), 9
security restrictions, 117
Seek() method, 225
SendAsync() method, 133
set operation, 92
<Setter> elements, 207, 211
ShowFile() method, 160
Silverlight, 1–11

benefits of, 5
cross-platform/cross-browser support, 6
familiar technologies, use of, 7
.NET Framework, cross-platform

version of, 6–7
overview, 5
small runtime and simple deployment, 8
XAML, 7

building applications in Visual Studio
2008, 29–34

Hello World application, 29–33
hosting, 33–34
overview, 29

defined, 3–4
new tools, 9–10
overview, 1
rich Internet applications (RIAs), 3
user interfaces, 1–3

Silverlight 2 Software Development Kit (SDK), 9
Silverlight Class Library template, 252
Silverlight Control Toolkit, 246–248

Silverlight Tools for Visual Studio 2008, 10
SkewTransform type, 238
skinning, 170
sockets, 118, 131–133
Software Development Kit (SDK), 9
source, 85–86
splines, 222
split-view mode, 169
StackPanel control, 36, 42–47, 59, 69, 114

Button controls, 145
components, 141
nesting, 45–47
overview, 42
using, 42–45

StartingHands, GetHands() method, 123
StartingHands.cs class, 120
StartingHandService.svc.cs, 122
state group, 249
states, 249, 253–256
static resources, using styles as, 208–215
Stop() method, 225, 227
storyboards, 180

overview, 222–223
viewing in Expression Blend, 228–229

StreamWriter, 160
Style tag, 259
<Style> element, 207
styles, 206–219

defining at application level, 215–217
hierarchy of, 217–219
overview, 206–208
using as static resources, 208–215

styling, 189–219
with inline properties, 189–206

overview, 189
setting with Expression Blend, 197–206
setting with Visual Studio, 190–196

overview, 189
with styles, 206–219

defining at application level, 215–217
hierarchy of, 217–219
overview, 206–208
using as static resources, 208–215

System.IO.IsolatedStorage namespace, 136
System.IO.Path.Combine() method, 154, 158
System.Windows assembly, 82

275■I N D E X

System.Windows.Controls assembly, 82
System.Windows.Controls namespace, 81
System.Windows.Controls.Data assembly,

81–82
System.Windows.Controls.Data.dll

assembly, 81
System.Windows.Controls.Data.dll library,

176
System.Windows.Controls.dll assembly, 81
System.Windows.Controls.dll library, 176
System.Windows.Media.Animation

namespace, 223

■T
TargetName property, 225
TargetProperty property, 225
targets, 85–86
TargetType attribute, 207
TargetType object, 259
<TD> tag, 54
template editing support, Expression Blend,

170
testing custom controls, 267–268
TextBlock component, 259
TextBlock control, 57, 59, 207
TextBox control, 57, 73–77, 86, 90, 214, 218,

246
TextBoxStyle control, 210, 214, 218
themes folder, 257
Timeline class, 223
Timeline panel, 210
timelines, 170, 222
Title property, 86, 93
Toolbox, Expression Blend, 175–178
Tools for Visual Studio 2008, 10
transformations, 236–243

Expression Blend, 239–243
overview, 236
types of, 236–239

overview, 236–237
RotateTransform, 238
ScaleTransform, 237
SkewTransform, 238
TranslateTransform, 238–239

transforms, 236, 239–240, 243
transitions, 249
TranslateTransform type, 238–239

transparent IntelliSense mode, 28
TryIncreaseQuotaTo() method, 163
TwoWay binding setting, 93
type-converter-enabled attributes, 58–59

■U
UIs (user interfaces), 1–3, 57, 85–86
user input controls, 73–80

overview, 73
RadioButton and CheckBox controls,

77–80
TextBox control, 73–77

user interfaces (UIs), 1–3, 57, 85–86
UserControl control, 41, 81, 215, 251, 267
UserControl tag, 258
<UserControl.Resources> element, 211,

216–217

■V
Validation controls, 6
Value attribute, 207
Vertical property, 46
VerticalAlignment control, 46
VerticalScrollBarVisibility property, 149
Visibility property, 102
Visual State Manager (VSM), 170, 248
Visual Studio 2008, 9, 13–34

building Silverlight applications in, 29–34
Hello World application, 29–33
hosting, 33–34
overview, 29

defined, 13–14
new features in, 14–28

debugging, 14–26
JavaScript IntelliSense, 14–26
multi-targeting support, 26–27
overview, 14
transparent IntelliSense mode, 28

overview, 13
setting inline properties with, 190–196
Web Application projects, 33–34
Web Sites, 33

Visual Studio 97, 14
visual XAML editor, 168
VisualStateManager.GoToState() method,

256
VSM (Visual State Manager), 170, 248

276 ■I N D E X

■W
WCF (Windows Communication

Foundation) service, 118–130
web service proxy class, 128
web services, data access through, 118–130

overview, 118
standard WCF service with Silverlight, 130
Windows Communication Foundation

(WCF) service, 118–130
Width attribute, 41
Width definition, 258
Width property, 50, 58, 102, 222, 224–225
Windows Communication Foundation

(WCF) service, 118–130
Windows Presentation Foundation

Everywhere (WPF/E), 3
workspace, Expression Blend, 175–180

Objects and Timeline panel, 180
overview, 175
Project panel, 178
Properties panel, 178
Toolbox, 175–178

WPF/E (Windows Presentation Foundation
Everywhere), 3

Write() method, StreamWriter, 160
wsHttpBinding, 130
WYSIWYG editor, 168

■X
X Internet, 3
X property, 238
x variable, 15
XAML (Extensible Application Markup

Language), 4, 7, 61–64, 86, 90, 168
XamlParseException, 145
XamlParseException control, 217
.xap file, 81
xmlns declaration, 81

■Y
Y property, 238

	Contents
	About the Author
	Acknowledgments
	Introduction
	CHAPTER 1: Welcome to Silverlight 2
	The Evolution of the User Interface
	Rich Internet Application Solutions
	What Is Silverlight?
	Benefits of Silverlight
	Cross-Platform/Cross-Browser Support
	Cross-Platform Version of the .NET Framework
	XAML, a Text-Based Markup Language
	Use of Familiar Technologies
	Small Runtime and Simple Deployment

	The Silverlight Development Environment
	Summary

	CHAPTER 2: Introduction to Visual Studio 2008
	Just What Is Visual Studio?
	What's New in Visual Studio 2008?
	JavaScript IntelliSense and Debugging
	Multi-Targeting Support
	Transparent IntelliSense Mode

	Building Your First Silverlight Application in Visual Studio
	Try It Out: Hello World in Silverlight 2
	Hosting Your Silverlight Application: Web Site or Web Application?

	Summary

	CHAPTER 3: Layout Management in Silverlight
	Layout Management
	The Canvas Panel
	Try It Out: Using the Canvas Panel
	Filling the Entire Browser Window with Your Application

	The StackPanel Control
	Try It Out: Using the StackPanel Control
	Try It Out: Nesting StackPanel Controls

	The Grid Control
	Try It Out: Using the Grid Control
	Try It Out: Nesting a Grid and Spanning a Column

	Summary

	CHAPTER 4: Silverlight Form Controls
	Setting Control Properties
	Attribute Syntax
	Element Syntax
	Type-Converter–Enabled Attributes
	Attached Properties

	Nesting Controls Within Controls
	Handling Events in Silverlight
	Try It Out: Declaring an Event in XAML
	Try It Out: Declaring an Event Handler in Managed Code

	The Border Control
	User Input Controls
	Try It Out: Working with the TextBox Control
	Try It Out: Working with the RadioButton and CheckBox Controls

	Extended Controls
	Adding an Extended Control
	Try It Out: Using the GridSplitter

	Summary

	CHAPTER 5: Data Binding and Silverlight List Controls
	Data Binding
	The Binding Class
	Try It Out: Simple Data Binding in Silverlight

	The DataGrid Control
	Try It Out: Building a Simple DataGrid
	The Columns Collection
	Try It Out: Building a DataGrid with Custom Columns

	The ListBox Control
	Default and Custom ListBox Items
	Try It Out: Building a ListBox with Custom Content

	Summary

	CHAPTER 6: Data Access and Networking
	Data Access in Silverlight Applications
	Accessing Data Through Web Services
	Try It Out: Accessing Data Through a WCF Service
	Using a Standard WCF Service with Silverlight

	Accessing Services from Other Domains
	Accessing Data Through Sockets
	Summary

	CHAPTER 7: Local Storage in Silverlight
	Working with Isolated Storage
	Using the Isolated Storage API
	Try It Out: Creating a File Explorer for Isolated Storage

	Managing Isolated Storage
	Viewing and Clearing Isolated Storage
	Try It Out: Increasing the Isolated Storage Quota

	Summary

	CHAPTER 8: Introduction to Expression Blend
	Key Features in Expression Blend 2
	Visual XAML Editor
	Visual Studio 2008 Integration
	Split-View Mode
	Visual State Manager and Template Editing Support
	World-Class Timeline
	Try It Out: Working with Projects in Expression Blend 2

	Exploring the Workspace
	Toolbox
	Project Panel
	Properties Panel
	Objects and Timeline Panel

	Laying Out an Application with Expression Blend
	Working with the Grid Control in Expression Blend
	Try It Out: Editing a Layout Grid with Expression Blend

	Summary

	CHAPTER 9: Styling in Silverlight
	Inline Properties
	Try It Out: Setting Inline Properties with Visual Studio
	Try It Out: Setting Inline Properties with Expression Blend

	Silverlight Styles
	Try It Out: Using Styles As Static Resources
	Defining Styles at the Application Level
	Silverlight Style Hierarchy

	Summary

	CHAPTER 10: Transformations and Animation
	Introduction to Silverlight 2 Animation
	Silverlight Storyboards
	Types of Animation in Silverlight

	Programmatically Controlling Animations
	Using Expression Blend to Create Animations
	Viewing a Storyboard in the Expression Blend Timeline
	Try It Out: Creating an Animation with Expression Blend

	Creating Transformations in Silverlight
	Transformation Types
	Try It Out: Using Expression Blend to Transform Silverlight Objects

	Summary

	CHAPTER 11: Custom Controls
	When to Write Custom Controls
	Silverlight Control Toolkit
	Silverlight Control Model
	Parts and States Model
	Dependency Properties

	Creating Custom Controls in Silverlight 2
	Implementing Custom Functionality
	Try It Out: Building a Custom Control

	Summary

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

