
Beginning
WSO2 ESB

A comprehensive beginner to expert
guide for learning WSO2 ESB 5.0
—
First Edition
—
Kasun Indrasiri

www.allitebooks.com

http://www.allitebooks.org

Beginning WSO2
ESB

First Edition

Kasun Indrasiri

www.allitebooks.com

http://www.allitebooks.org

Beginning WSO2 ESB

Kasun Indrasiri				
San Jose, California, USA			

ISBN-13 (pbk): 978-1-4842-2342-0		 ISBN-13 (electronic): 978-1-4842-2343-7
DOI 10.1007/978-1-4842-2343-7

Library of Congress Control Number: 2016961319

Copyright © 2016 by Kasun Indrasiri

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Pramila Balan
Technical Reviewer: Isuru Udana
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Prachi Mehta
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

■■Chapter 1: Introduction to WSO2 ESB�� 1

■■Chapter 2: Getting Started with WSO2 ESB����������������������������������� 17

■■Chapter 3: Fundamentals of WSO2 ESB��� 29

■■Chapter 4: Processing Messages with WSO2 ESB������������������������� 59

■■Chapter 5: Integrating SOAP and RESTful Web Services������������� 105

■■�Chapter 6: Enterprise Messaging with JMS, AMQP,
MQTT, and Kafka�� 133

■■Chapter 7: File-Based Integration�� 161

■■�Chapter 8: Integrating Applications, Cloud Services,
and Data�� 179

■■Chapter 9: Security in WSO2 ESB�� 221

■■Chapter 10: Development and Deployment Methodology������������ 239

■■Chapter 11: Administrating and Extending WSO2 ESB���������������� 267

Index��� 281

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author��� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

■■Chapter 1: Introduction to WSO2 ESB�� 1

What is an ESB? �� 1

Core Functionalities of an ESB�� 4

Why WSO2 ESB?��� 4

Interoperability and EIP Support: Connecting Anything to Anything�������������������������� 5

Performance and Stability: The Fastest Open Source ESB�� 5

The Platform Advantage: Part of the WSO2 Middleware Platform����������������������������� 6

How does WSO2 ESB Work?��� 7

Functional Components��� 8

Summary�� 15

■■Chapter 2: Getting Started with WSO2 ESB����������������������������������� 17

Designing a Simple Integration Scenario with WSO2 ESB��������������������� 17

Building the Integration Scenario��� 18

Creating a HTTP Service/API in WSO2 ESB�� 19

Creating the Request Sent to the Backend Service��� 20

Sending the Request to the Backend Service �� 22

Transforming and Sending the Response Back to the Client����������������������������������� 23

Try it Out�� 26

Summary�� 27

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

■■Chapter 3: Fundamentals of WSO2 ESB��� 29

Message Entry Points��� 30

Using Proxy Services��� 31

Using APIs/HTTP Services�� 35

Using Inbound Endpoints��� 38

Message Processing Unit: Sequence and Mediators��� 43

Message Exit Points: Outbound Endpoints��� 47

Endpoint Types��� 48

Understanding Endpoint States and Endpoint Attributes��� 51

Scheduled Tasks��� 55

Summary ��� 57

■■Chapter 4: Processing Messages with WSO2 ESB������������������������� 59

Pass-Through Messaging �� 61

Message Filtering and Switching �� 64

Message Filtering�� 67

Message Switching��� 67

Message Transformations ��� 70

Using PayloadFactory Mediator��� 72

Using PayloadFactory and For-Each Mediator �� 74

Data Mapper Mediator��� 78

Using XSLT Mediator�� 78

Using the Header Mediator�� 81

Message Enriching��� 82

Message Validation�� 84

Service Orchestration��� 87

Service Chaining�� 87

Split and Aggregate Pattern�� 91

Clone and Aggregate Pattern��� 94

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Changing the Message Protocol and Format��� 96

Protocol Conversions��� 96

Message Format Conversions��� 98

Using Properties in the Message Flow��� 100

Set/Retrieve Variables in the Message Flow��� 100

Use Predefined Properties to Control Message Flow�� 102

Summary�� 102

■■Chapter 5: Integrating SOAP and RESTful Web Services������������� 105

Understanding SOAP and RESTful Web Services��������������������������������� 105

Integrating SOAP Web Services�� 109

Exposing a SOAP Web Service Interface from WSO2 ESB������������������������������������� 109

Integrating RESTful Web Services�� 118

Exposing RESTful Services/APIs with WSO2 ESB�� 118

Invoking RESTful Services from WSO2 ESB��� 126

Summary�� 131

■■�Chapter 6: Enterprise Messaging with JMS, AMQP,
MQTT, and Kafka�� 133

Integration with JMS-Based MoM�� 135

ESB as a JMS Consumer��� 135

ESB as a JMS Producer��� 140

Two-Way JMS�� 142

Using JMS Transactions�� 145

Store and Forward with Message Stores and Message Processors��������������������� 147

Integrating with AMQP, MQTT and Kafka�� 151

Using AMQP with RabbitMQ��� 151

Integrating with MQTT��� 155

Integrating with Kafka��� 157

Summary�� 159

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

■■Chapter 7: File-Based Integration�� 161

Reading Files�� 161

Reading a File from the Local File System ��� 161

Reading Files from an FTP or FTP/s�� 163

Reading Files from an SFTP�� 165

FTP or SFTP Through a Proxy Server �� 165

Writing Files �� 165

Writing Files with VFS Transport ��� 166

Transferring Files �� 168

Message Transformation with File Integration ������������������������������������ 170

File Connector�� 172

Protocol Transformation from File to JMS ��� 175

Summary�� 177

■■�Chapter 8: Integrating Applications, Cloud Services,
and Data�� 179

Integrating Proprietary Systems�� 179

SAP Integration ��� 180

HL7 Integration�� 189

WebSockets Support �� 198

In-JVM Calls with Local Transport �� 209

Integrating Cloud Services �� 210

What is an ESB Connector?��� 210

Structure of an ESB Connector ��� 211

Using an ESB Connector�� 211

Integrating Salesforce and SAP �� 216

Data Integration �� 218

Summary�� 220

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

■■Chapter 9: Security in WSO2 ESB�� 221

Transport Level Security �� 221
One-Way SSL (Server Authentication) �� 222

Two-Way SSL (Mutual/Client Authentication) ��� 222

Using TLS/SSL with WSO2 ESB�� 223

Application Level Security ��� 230
Securing REST APIs �� 230

Securing Proxy Services�� 231

Invoking Secured Service�� 233

Summary�� 237

■■Chapter 10: Development and Deployment Methodology������������ 239

Development Methodology �� 239
Using the WSO2 ESB Development Tool ��� 239

Data Mapper�� 249

Mediation Debugger�� 253

Deploying Artifacts Across Multiple Environments�� 259

Deployment Methodology �� 261

Summary�� 266

■■Chapter 11: Administrating and Extending WSO2 ESB���������������� 267

WSO2 ESB Analytics �� 267

Monitoring ��� 274

Extending WSO2 ESB ��� 276
Class Mediator �� 276

Script Mediator ��� 277

Custom Connector �� 277

Other Extensions �� 278

Error Handling ��� 278

Summary�� 279

Index��� 281

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Kasun Indrasiri is the Director of Integration
Technologies at WSO2, a company that produces open
source middleware solutions in enterprise integration,
API management, security, and IoT domains. He
currently provides the Architectural Leadership for the
WSO2 integration platform.

Kasun has worked as a Software Architect and a
Product Lead of WSO2 ESB with over seven years of
experience with WSO2 ESB. He is an elected member
of the Apache Software Foundation and a Project
Management Committee member and a committer for
the Apache Synapse open source ESB project. Kasun
has provided Architectural and Technology Consulting

for numerous customers in the United States, Europe, and Australia.
He researched high-performance message processing systems and contributed

to an ACM publication called “Improved Server Architecture for Highly Efficient
Message Mediation.” Kasun holds an M.Sc. degree in Software Architecture and a
B.Sc. Engineering degree in Computer Science and Engineering from the University of
Moratuwa, Sri Lanka.

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Technical
Reviewer

Isuru Udana is a Technical Lead at WSO2 who mainly
focuses on enterprise integration. He has more than
five years of experience with the WSO2 enterprise
service bus product as a Core Developer. Isuru is one of
the Product Leads of the WSO2 ESB, and he provides
Technical Leadership to the project. He is a committer
and a PMC member for the Apache Synapse open source
ESB project. Isuru graduated from the Department
of Computer Science and Engineering, University of
Moratuwa, Sri Lanka. As his final year project, he worked
on Siddhi, a high performance complex event processing
engine, which now ships with WSO2 CEP server. Isuru is
an open source enthusiastic who has participated in the
“Google Summer of Code” program as a student as well
as a mentor in the last five years.

xv

Acknowledgments

I would like to thank Apress for giving me the opportunity to write this book and,
in particular, I must thank Pramila Balan, Acquisitions Editor and Prachi Mehta,
Coordinating Editor, who have been constantly guiding and helping me from the very
beginning of the writing process. Also I would like to thank Isuru Udana, the Technical
Reviewer of this book. His expertise, knowledge, and feedback were quite useful to
improve the technical content of this book.

I must thank Dr. Sanjiva Weerawarana who is the Founder, CEO, and Chief Architect
of WSO2, for all the guidance he provided throughout all these years at WSO2. Also, I’m
grateful to Prabath Siriwardana, who gave me the initial idea for writing a book, and for
encouraging me with all his experiences on writing a book.

I’m grateful to my beloved wife Imesha, my parents, and my sister, who are the main
driving forces behind all my success.

Last but not least, thank you to everyone who supported me in many different ways.

1© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_1

CHAPTER 1

Introduction to WSO2 ESB

Nowadays successful enterprises rely heavily on the underlying software applications
they use. To fulfill diverse business needs, the enterprises have to pick and choose
different software application and services, which are built with disparate technologies,
use varying standards, and are built by different vendors. When building IT solutions for
business scenarios, the enterprises have to make these disparate software applications
and services work together to produce unified business functionality.

The task of plumbing different software applications, services, and systems, and
forming new software solutions out of that is known as enterprise integration. The
software application that is designed to enable that task is known as the Enterprise
Service Bus (ESB). An ESB enables diverse applications, services, and systems to talk
to each other, interact, and transact. It acts as the main messaging backbone in any
Service Oriented Architecture (SOA); it’s lightweight, built on top of open standards
such as web services standards, and supports commonly used patterns in enterprise
integration known as Enterprise Integration Patterns (EIP—for more information, see
www.eaipatterns.com).

What is an ESB?
Let’s suppose an organization is running a financial business and has web services, which
expose underlying business functionalities such as providing to its customers information
on stock quotes (the price of a stock as quoted on a stock exchange) for a given company.
They want to expand the business by enabling mobile users to use the online store by
making these business functions accessible on mobile devices.

But the mobile devices are inherently based on message formats such as JSON
while the backend web service only supports the SOAP message format. The financial
organization has to integrate these two systems, which are using disparate message
formats, to work together to achieve its business objectives.

To solve this enterprise integration problem, someone could possibly modify either
the mobile device application or the backend service to convert one message format to
the message format that’s understood by the other party. But this approach has several
drawbacks. By modifying either the backend web service or the mobile application per
the requirements of the other party, the two systems are tightly coupled to the same
message format. If the backend service or the mobile application changes its message
format, the company is forced to change the code of the other system. Also, if we have to

http://www.eaipatterns.com/

Chapter 1 ■ Introduction to WSO2 ESB

2

further extend the business use case to include another backend service, then we need to
wire all three systems with point-to-point links so that each system is connected to every
other system. A change in one of these systems could break the entire business use case.

Therefore, you need a better way to integrate these systems with no modifications
at the backend or the client, as well as use a configuration-based approach to integrate
these systems without writing any code.

The ESB can be used as the intermediary integration layer between two or more
disparate systems and services. Therefore, as illustrated in Figure 1-1, the ESB can
be placed between the JSON-based mobile application and the SOAP-based web
service. Without writing any code, you can configure the ESB to do the message format
conversion. If the business use case needs to be extended further to include another
service, you can integrate that service to the ESB, and rather than having point-to-point
links, all three systems can be connected through the unified ESB integration layer.

Figure 1-1.  An ESB can be configured to convert messages between the formats recognized
by the mobile app (JSON) and the web service (SOAP) it wants to talk to. This is a simple
example of enterprise integration.

Now you have a clear understanding of a concrete enterprise integration use case.
Let’s explore the enterprise integration space further and see how the ESB is used as the
integration backbone.

Modern enterprises need to integrate all the heterogeneous systems (systems using
disparate protocols, message formats, and so on) to form various business solutions.
The integration between on-premise systems such as web services, file repositories
(FTP), proprietary systems such as Enterprise Resource Planning systems (for example,
SAP), legacy systems, and data residing in databases and cloud-based solutions such as
Software as a Service (SaaS), is the key responsibility of an ESB.

The absence of an integration platform leads the enterprise to require links from a
given system to all other systems in the enterprise IT solution. This is known as
point-to-point integration or spaghetti integration.

As depicted in Figure 1-2, the point-to-point integration approach has inherent
complexity because the number of systems that participate in the integration scenario
increases. If you have to modify or remove one of the systems then that affects the
interaction between most of the other systems in your enterprise integration scenario.
Therefore, the point-to-point integration approach is extremely difficult to maintain,
troubleshoot, and scale.

Chapter 1 ■ Introduction to WSO2 ESB

3

As depicted in Figure 1-3, ESB can be used as the bus that all the other systems
can connect to. An ESB-based approach connects disparate systems using the ESB
messaging backbone, and it connects on-premise as well as cloud services. As illustrated
in Figure 1-3, ESB eliminates point-to-point integration and integrates all the disparate
systems using the bus architecture.

Figure 1-2.  When an enterprise does not use ESB, each system must know how to talk
directly to every other system it needs to interact with. This is known as point-to-point
integration.

Figure 1-3.  When an enterprise uses ESB, only the ESB needs to know how to talk to each
application. The applications themselves do not need to be modified. This is far more
efficient than point-to-point integration.

Chapter 1 ■ Introduction to WSO2 ESB

4

Based on the previously described integration use case, you can come up with a
generic description for ESB. ESB is an architecture pattern that enables the disparate
systems and services to interact through a common communication bus, using lightweight
and standard messaging protocols.

In the next section, you’ll discover the core functionalities that are common to any ESB.

Core Functionalities of an ESB
In general, ESB has to offer a wide range of integration capabilities from simple message
routing to integrated proprietary systems using complicated integration adaptors. These
are the generic functionalities that are common to most ESB products:

•	 Message mediation: Manipulate the message content, direction,
destination, and protocols with message flow configurations.

•	 Service virtualization: Wrap existing systems or services with new
service interfaces.

•	 Protocol conversion: Bridge different protocols. For example, JMS
to HTTP.

•	 Support for Enterprise Integration Patterns (EIP): EIP is the
de facto standard for Enterprise Integration (http://www.
eaipatterns.com/).

•	 Quality of service: Apply security, throttling, and caching.

•	 Connecting to legacy and proprietary systems: Business adapters,
including SAP, FIX, and HL7.

•	 Connectors to cloud services and APIs: Salesforce, Twitter, PayPal,
and many more.

•	 Configuration driven: Most functionalities are driven by
configuration but not code.

•	 Extensibility: There are extension points that can be used to
integrate with any custom protocol or proprietary system.

For the most part in the ESB architecture, the ESB is considered a lightweight, stateless
integration bus. The architecture itself is mostly based on SOA, but that doesn’t mean that
you can’t integrate non-SOA systems, such as proprietary systems, by using ESB.

The ESB landscape is vast, where there are numerous ESB solutions ranging from
open source to proprietary integration solutions. In the following section, you’ll discover
the key differentiators of WSO2 ESB.

Why WSO2 ESB?
In the ESB vendor space, most of the vendors have rebranded the monolithic and
heavyweight enterprise integration solutions as an ESB. But WSO2 ESB is designed and
developed from the ground up as the highest performance, lowest footprint, and most
interoperable integration middleware. While WSO2 ESB has to improve its graphical

http://www.eaipatterns.com/
http://www.eaipatterns.com/

Chapter 1 ■ Introduction to WSO2 ESB

5

tooling support for designing message flows and graphical data mapping, it offers a broad
range of integration capabilities and high-performance message routing support by using
an enhanced and optimized message mediation engine, which was inspired by Apache
Synapse. In this section, you’ll discover key differentiators between WSO2 ESB and other
ESB vendors.

Interoperability and EIP Support: Connecting Anything
to Anything
WSO2 ESB offers a broad range of integration capabilities from simple message routing to
smooth integration of complex proprietary systems. The de facto enterprise integration
standards for Enterprise Integration Patterns (EIP) are fully supported in WSO2 ESB.
It not only comes with 100% coverage of EIPs, but also with use cases and samples for
implementing each and every EIP.

While supporting all the key ESB integration features discussed in the last section,
WSO2 ESB offers various integration adapters to proprietary and legacy systems such as
SAP. Also, it empowers the on-premise and cloud-based integration scenarios (hybrid
integration) with numerous connectors that allow you to smoothly integrate to popular
cloud services such as Salesforce, PayPal, and Twitter (see the Connector Store at
https://store.wso2.com/store/).

WSO2 ESB offers all these integration capabilities that you can use by configuring
the ESB without a single line of code, and in case of any custom requirement, such as
supporting proprietary message formats, you can use the numerous extension points to
plug in your custom code.

Performance and Stability: The Fastest Open Source ESB
The performance and latency of any ESB solution is a vital factor when it comes to
handling large volumes of messages. Based on the regular performance comparisons
done by WSO2 on the message routing performance of popular open source ESBs, WSO2
outperforms all the ESB vendors. (The latest ESB performance comparison is available at
http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/

The ESB performance comparison given in Figure 1-4 is based on the most recent
performance test comparison against WSO2 ESB and other popular ESB vendors. For
almost all the integration scenarios, WSO2 ESB outperforms all other ESB competitors.

https://store.wso2.com/store/
http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/

Chapter 1 ■ Introduction to WSO2 ESB

6

Stability is also another aspect that goes hand-in-hand with performance.
Thousands of production deployments of WSO2 ESB show its stability and its maturity
as an ESB solution. eBay uses WSO2 ESB for handling more than several billions of
transactions per day in its live traffic (an eBay case study is available at http://wso2.
com/casestudies/ebay-uses-100-open-source-wso2-esb-to-process-more-than-1-
billion-transactions-per-day/).

The Platform Advantage: Part of the WSO2 Middleware
Platform
WSO2 ESB is part of the comprehensive WSO2 middleware platform. When you’re
building real-world enterprise integration solutions, you require the integration
capabilities offered by WSO2 ESB, as well as other middleware capabilities such as API
management, identity management, data services, analytics, complex even processing,
and so on, which are beyond the scope of an ESB. Few ESB vendors who aren’t based on
a platform concept have tried to have all these features in a monolithic ESB product, but
have failed because such solutions cannot address the modern enterprise IT requirements.

A WSO2 middleware platform is built from the ground up with the holistic vision of
facilitating all enterprise middleware requirements. The high-level objective of a WSO2
middleware platform is to enable a connected business.

•	 All the WSO2 products are built from the ground up and on top of
a common foundation: WSO2 Carbon, a modular, reconfigurable,
elastic, OSGi-based architecture, whereas most of the other
middleware platforms are primarily built with acquisitions of
heterogeneous middleware solutions.

•	 Lean and optimized for maximum performance: Every product in the
WSO2 platform is lightweight and designed for achieving the highest
performance. For instance, WSO2 ESB is the fastest open source ESB.

Figure 1-4.  ESB performances comparison between open source ESB vendors for
commonly used message routing scenarios

http://wso2.com/casestudies/ebay-uses-100-open-source-wso2-esb-to-process-more-than-1-billion-transactions-per-day/
http://wso2.com/casestudies/ebay-uses-100-open-source-wso2-esb-to-process-more-than-1-billion-transactions-per-day/
http://wso2.com/casestudies/ebay-uses-100-open-source-wso2-esb-to-process-more-than-1-billion-transactions-per-day/

Chapter 1 ■ Introduction to WSO2 ESB

7

•	 Largest middleware platform built on a single code base: All the
WSO2 products share the same code base built around a single
kernel—WSO2 Carbon. Unlike middleware platforms built with
the combination of heterogeneous middleware solutions, WSO2
offers frictionless cross-product integration.

•	 100% free and open source under Apache License 2.0 with
comprehensive commercial support: WSO2 has no notion
of commercial versus community editions. What you freely
download from the http://wso2.com web site is the same version
used for all the production deployments. The same architects
and developers who contributed to the WSO2 platform drive the
commercial support for the WSO2 products.

•	 Cloud native: Every WSO2 product inherently supports on-
premise, cloud, or hybrid deployments.

At this point you’ve learned about the key differentiators of WSO2 ESB. In the next
section, you’ll learn the fundamental concept that’s required to start integrating with
WSO2 ESB.

How does WSO2 ESB Work?
In this section, you’ll learn about the core functional components of WSO2 ESB and
the complete end-to-end message flow. Let's design the same financial organization’s
integration scenario with WSO2 ESB and use that to understand the message flow of
WSO2 ESB.

As illustrated in Figure 1-5, the main integration challenges that you have here are to
integrate a backend service, which is a SOAP-based web service, with a mobile application
that uses JSON. Therefore, the ESB primarily takes care of message format conversion
(Message Translator EIP) and exposes a new JSON interface on behalf of the backend web
service. The JSON request from the mobile app to the ESB is shown in Listing 1-1.

Figure 1-5.  Using WSO2 ESB to integrate a SOAP-based web service and a JSON-based
mobile client

http://wso2.com/

Chapter 1 ■ Introduction to WSO2 ESB

8

Listing 1-1.  JSON Request from Mobile App to ESB

{
 "getFinancialQuote": { "company": "WSO2" }
}

The backend web service accepts a SOAP message that’s shown in Listing 1-2.
Therefore, the message processing logic of the ESB needs to convert the request to the
SOAP format and convert the SOAP response to back to JSON.

Listing 1-2.  Request that Needs to be Sent to the Backend Web Service

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ser="http://services.samples">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:getSimpleQuote>
 <ser:symbol>WSO2</ser:symbol>
 </ser:getSimpleQuote>
 </soapenv:Body>
</soapenv:Envelope>

The key steps related to the implementation of this integration scenario can be listed
as follows:

•	 Build a virtual HTTP interface/service that can accept the JSON
request from the mobile client and respond with the JSON response.

•	 In the request-handling path of the virtual HTTP interface/service,
it should convert the incoming JSON message to a SOAP message
and then send it to the SOAP-based web service backend.

•	 In the response path, the virtual HTTP interface/service needs
to convert the incoming SOAP response to a JSON message and
send it back to the client.

Now you’ll discover how these steps can be implemented with WSO2 ESB by using
its core functional components.

Functional Components
The high-level message flow of WSO2 ESB comprises three main logical components:

•	 Message entry points: Receive client requests.

•	 Message processing units: Contain the mediation logics to process
client requests, request that ESB sends to the server, the server
response processing logic, and the response that ESB sends back
to the client.

•	 Message exit points: Integration points to backend services.

Chapter 1 ■ Introduction to WSO2 ESB

9

As depicted in Figure 1-6, the mobile clients send a request to the WSO2 ESB via
one of its message entry points, then the ESB processes the request messages in the
request message processing units, and the message is sent to the backend web service
via message exit points. Once the response is received from the backend service, the
message goes again through the response message processing units and finally sends the
processed response to the client.

Figure 1-6.  High-level message flow of the integration between mobile app and backend
web service

The task of processing requests or responses in an ESB is known as message
mediation. As shown in Figure 1-6, the message processing units are doing the required
request and response message mediation work.

Chapter 1 ■ Introduction to WSO2 ESB

10

Message Entry Points: Proxy Service, APIs, and Inbound
Endpoints
WSO2 ESB has three main message entry points:

•	 Proxy service: This is a web service interface exposed from the
ESB.

•	 REST APIs/HTTP: An HTTP interface anchored at a specific URL
context.

•	 Inbound endpoints: A message source with listening or polling
capability.

The message entry points are the main components responsible for handling the
message transferring from external systems to the ESB. The messages that come through
any of these entry points are routed to the message-processing unit, which is responsible
for the processing of the message context and message attributes. In the previous
example, the messages sent from the mobile app via the HTTP protocol hit the message
entry point API and route the message to the respective processing unit (sequence).

Message Processing Unit: Sequences and Mediators
The processing of the message takes place in components known as sequences. A given
sequence can contain a sequence of components that can process a given message. These
components are known as mediators. In our example, the logic to translate the message
from JSON to SOAP and send out the message takes place in the message-processing unit.

Message Exit Points: Outbound Endpoints
The outbound endpoint (or endpoint) is the message exit point in the WSO2 ESB, which
logically represents an external backend service endpoint. In our example, the service
address of the backend web service is configured as an outbound endpoint and the
message is routed to the outbound endpoint via a call or send mediator.

Figure 1-7 shows how the message flow is configured to implement the financial
organization’s integration scenario. The key points related to understanding the message
flow in Figure 1-7 are as follows:

•	 Expose an HTTP interface to the mobile client: You should
implement an HTTP interface that has to be exposed to the
mobile client. That’s where we need to configure the message
entry points in the WSO2 ESB. Because we have to integrate a
mobile client, we can go for the API/HTTP Service message entry
point and configure that in the ESB.

•	 Anchor an API/HTTP service: An API/HTTP service is anchored
at a URL context, which is designed by the ESB developer and is
capable of receiving any request coming on HTTP protocol for
that particular context.

Chapter 1 ■ Introduction to WSO2 ESB

11

•	 Configure a mediation sequence: When you create the API, you
need to configure the sequence that will be used to process the
request. The sequence contains a set of mediators to process the
request.

•	 The first mediator is a payload factory mediator, which is used to
convert the incoming JSON message format to the arbitrary SOAP
message format and extract whatever values are needed from the
original JSON request.

•	 You need to set a SOAP action as a header prior to sending the
message out from the ESB, because it’s required to send an action
along with a SOAP 1.1 message. Therefore, a header mediator is
used to set the SOAP action.

•	 Then you need a “call” mediator that can send the message out
from the ESB.

•	 Configure an outbound endpoint: When you send out the
message, you can configure the destination address of the
message or the URL of the backend service using endpoint or
outbound endpoint. In addition to specifying the address, you can
add various conversion formats when configuring an endpoint,
such as SOAP 1.1 and POX (Plain Old XML). Since you want to
convert the message to SOAP format, you can use soap11 as the
“format” attribute of the endpoint.

•	 Configure the response mediation sequence: Because you need to
send a JSON response back to the client, the Property mediator is
used as a flag to change the response message format to the JSON
message format.

•	 Set up a fault mediation sequence: Any failure scenario can be
handled using the fault sequence.

Chapter 1 ■ Introduction to WSO2 ESB

12

This completes the end-to-end message flow of our integration scenario. Also, you
have an alternative approach to implement the same scenario with a two-sequence
model.

As depicted in Figure 1-8, the API/HTTP service can use its built-in, in-sequence,
and out-sequence to implement the same integration scenario that was illustrated in
Figure 1-8. The only difference here is that the request message always goes to the in-
sequence. Hence, the request message processing takes place there. Unlike in earlier
approaches, a send mediator is used instead of call mediator. The main difference is that
once you use the send mediator at a given sequence to send out the request, the message
flow stops at that point. When you get the response from the backend service, the
response flow starts from the out-sequence. Therefore, the out-sequence is the place that
you can do the response processing.

Figure 1-7.  WSO2 ESB message flow for integrating a SOAP-based backend service with a
JSON based mobile client

Chapter 1 ■ Introduction to WSO2 ESB

13

You can use both of the previously described approaches, but in cases when you’re
implementing complex service orchestration/chaining scenarios, the call mediator-based
approach is less complicated.

WSO2 ESB Configuration Language
The entire message flow that you learned during the financial organization’s use case is
implemented using the XML-based configuration language of WSO2 ESB. Because the
WSO2 ESB integration scenario development procedure is completely configuration
driven, all the message entry points, message processing units, and message exit points
are configured using an XML-based configuration language.

Graphical message-flow editors are available for WSO2 ESB. They’re built on top of
its configuration language, but throughout this book you’ll find all the samples and use
cases implemented in raw configuration language.

The following sample configuration represents the implementation of the financial
organization’s integration scenario that we discussed previously. Here I used an API/
HTTP service as the message entry point to the WSO2 ESB and used the single sequence
approach with call and respond mediators. With the following configuration, you can
create a new API named ShoppingInfo that can be accessed through the HTTP protocol.
The complete steps for implementing, deploying, and testing the integration scenarios
are covered in detail in Chapter 2.

Figure 1-8.  WSO2 ESB message flow for integrating a SOAP-based backend service with a
JSON based mobile client using “In” and “Out” sequences

http://dx.doi.org/10.1007/978-1-4842-2343-7_2

Chapter 1 ■ Introduction to WSO2 ESB

14

Listing 1-3.  JSON Request from Mobile App to ESB

<api xmlns="http://ws.apache.org/ns/synapse"
name="ShoppingInfo" <!-- [1] -->
 context="/ShoppingInfo">
 <resource methods="POST">
 <inSequence> <!-- [2] -->
 <payloadFactory media-type="xml">
 <format>
 �<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/

soap/envelope/" xmlns:ser="http://services.samples">
 <soapenv:Header></soapenv:Header>
 <soapenv:Body>
 <ser:getSimpleQuote>
 <ser:symbol>$1</ser:symbol>
 </ser:getSimpleQuote>
 </soapenv:Body>
 </soapenv:Envelope>
 </format>
 <args>
 �<arg evaluator="json" expression="$.getFinancialQuote.

company"></arg>
 </args>
 </payloadFactory>
 <header name="Action" value="urn:getSimpleQuote"></header>
 <call>
 <endpoint> <!-- [3] -->
 �<address uri="http://localhost:9000/services/

SimpleStockQuoteService" format="soap11">
</address>
 </endpoint>
 </call>
 �<property name="messageType" value="application/json"

<!-- [4] -->scope="axis2" type="STRING">
 </property>
 <respond/> <!-- [5] -->

 </inSequence>
 </resource>
</api>

	 1.	 Anchoring an HTTP service/API on the context /
ShoppingInfo as a message entry point.

	 2.	 Request message processing (JSON to SOAP conversion and
sending messages out).

	 3.	 Configuring backend web service as the message exit point.

Chapter 1 ■ Introduction to WSO2 ESB

15

	 4.	 Response message processing; change the response format to
JSON.

	 5.	 Sending the response back to the client.

As shown in Listing 1-3, a top-level configuration element known as api is the
message entry point configuration, followed by the inSequence, which is the message
processing component. The inSequence has the mediators, which are the message
processing units. To send out the message, you have a call mediator with an endpoint.
The response processing happens in the mediators that are placed after the call mediator
(property and respond).

You’ve discovered about all the building blocks required to design a real-world
enterprise integration scenario with WSO2 ESB. You’ll learn more about how you can
implement and try out the same scenario in WSO2 ESB in Chapter 2.

How to Try the Use Cases in this Book
You can try most of the sample use cases that are discussed throughout this book.

•	 All the source code related to these use cases can be found at
https://github.com/kasun04/maestro/.

•	 The configurations for all the use cases of a given chapter are
located at: https://github.com/kasun04/maestro/tree/
master/src/main/resources.

•	 All the instructions to run each example are specified under
the README file of each chapter. For example if you want to
run samples from Chapter 2, the instructions can be found at
https://github.com/kasun04/maestro/blob/master/src/main/
resources/ch_02/uc_01/README.txt

Also, note that the latest configuration is always kept and updated at the GitHub. So,
in rare cases, there can be slight mismatches between the code snippet that you find in
the book and the sample configuration you’ll find in the GitHub repository.

Summary
In this chapter, you learned the fundamentals that are required to build integration
solutions with WSO2 ESB. Let’s summarize them as follows:

•	 An Enterprise Service Bus (ESB) enables diverse applications,
services, and systems to talk to each other through a common
communication bus, using lightweight and standard messaging
protocols such as SOAP and JSON. It acts as the main messaging
backbone in any Service Oriented Architecture (SOA).

http://dx.doi.org/10.1007/978-1-4842-2343-7_2
https://github.com/kasun04/maestro/
https://github.com/kasun04/maestro/tree/master/src/main/resources
https://github.com/kasun04/maestro/tree/master/src/main/resources
http://dx.doi.org/10.1007/978-1-4842-2343-7_2
https://github.com/kasun04/maestro/blob/master/src/main/resources/ch_02/uc_01/README.txt
https://github.com/kasun04/maestro/blob/master/src/main/resources/ch_02/uc_01/README.txt

Chapter 1 ■ Introduction to WSO2 ESB

16

•	 WSO2 ESB was built on top of a common foundation, called
WSO2 Carbon. It’s a modular, reconfigurable, elastic, OSGi-based
architecture on which all WSO2 products are based. It’s the fastest
ESB implementation currently available, 100% free, open source
under the Apache License 2.0, and supports on-premise, cloud,
and hybrid deployments.

•	 An ESB has three main logical components. Message entry points
receive client requests, message processing units contain the logic
to process client requests and server responses, and message exit
points provide a way to send client requests onto the server and
receive their response.

•	 To configure a message flow through WSO2 ESB between a client
and a server, you should configure a message entry point for the
client to talk to the ESB, configure a mediation sequence that can
process the client request into a message the server understands
and sends it out to the server, configure the outbound endpoint
for the message to the server, configure another mediation
sequence to process and send on the server’s response for the
client, and set up a fault sequence to deal with failures.

17© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_2

CHAPTER 2

Getting Started with
WSO2 ESB

In this chapter, you’ll get started with building integration scenarios with WSO2 ESB. The
first example provides the foundation for the rest of the chapters, by ensuring your ESB
server is set up correctly. We’ll also start with the most basic example of system integration
by implementing the message transformation use case discussed in Chapter 1.

Designing a Simple Integration Scenario with
WSO2 ESB
The best way to get started with WSO2 ESB is to build a simple but real-world integration
scenario. The main objective of this use case is to transform messages between two
common data formats: JSON and XML.

For our use case, assume that a financial company with the domain example.
com exists, that hosts SOAP-based web services to expose its business functionalities
as services. The StockQuoteService financial service is one of the key business
functionalities offered from example.com, which gives you the stock quote details for
a given organization. But the example.com financial organization wants to enable this
business functionality to its mobile users (who use a JSON as the message format)
without modifying the existing backend service and the mobile client.

Suppose that the JSON request format is as follows and the response accepted by
the mobile client is the one-to-one transformation of the SOAP response from a backend
service to JSON.

{
 "getFinancialQuote": { "company": "WSO2" }
}

http://dx.doi.org/10.1007/978-1-4842-2343-7_1

Chapter 2 ■ Getting Started with WSO2 ESB

18

The key design steps of the integration scenario illustrated in Figure 2-1 can be
identified as follows:

•	 Creating an HTTP interface at the ESB layer on behalf of the
existing StockQuote web service.

•	 Transforming the incoming JSON request to the appropriate
SOAP request that needs to be sent to the SimpleStockQuote
service of the example.org financial service and then invoking the
service.

•	 Handling the SOAP response message from the
SimpleStockQuote service and transforming it back to JSON
before sending back the request.

Figure 2-1.  Integrating SOAP-based SimpleStockQuote financial service and a mobile
client with WSO2 ESB

Now let’s proceed to the realization of the previous design steps using WSO2 ESB.

Building the Integration Scenario
Since now you’re familiar with the sample integration scenario that we are planning to
build with WSO2 ESB, in this section I’ll walk you through all the steps that are required to
build that integration scenario using WSO2 ESB. For our example to be minimally viable,
however, we need to do preliminary work to set up the StockQuote service.

As illustrated in Figure 2-2, the implementation of this integration scenario requires
you to configure a message entry point in WSO2 ESB, configure message-processing
components, and finally configure a response-sending logic. The key design steps
discussed in the previous section can be mapped into the main implementation steps
that you can follow in WSO2 ESB.

	 1.	 Creating an HTTP service/API in WSO2 ESB.

	 2.	 Creating the request that needs to be sent to the backend
service.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Getting Started with WSO2 ESB

19

	 3.	 Sending the request to the backend service.

	 4.	 Transforming and sending the response back to the client.

	 5.	 Testing and verifying the integration scenario.

Figure 2-2.  Integrating a SOAP-based StockQuote financial service and a mobile client
with WSO2 ESB

Now let’s see how each of the previous steps can be implemented using WSO2 ESB.
(In this use case, you’ll use the single sequence message flow configuration approach
with call mediator and respond mediator.)

Creating a HTTP Service/API in WSO2 ESB
The first step of integrating the financial service and the mobile client is to expose an
HTTP interface from the ESB layer, which will be the message entry point to WSO2 ESB.
As the message entry point to ESB, you can select HTTP service/API and configure that in
WSO2 ESB.

Chapter 2 ■ Getting Started with WSO2 ESB

20

As you know, the development of the integration scenarios in WSO2 ESB is
completely configuration driven (using an XML-based configuration language).
Therefore, you can start configuring the HTTP service/API in WSO2 ESB by creating a
StockQuoteInfoProvider.xml file in an arbitrary location in the file system, and later
you can copy that file to the WSO2 ESB configuration file location. You can use the
configuration provided in Listing 2-1 to configure an HTTP service/API in WSO2 ESB.

Listing 2-1.  Configuring the StockQuoteInfoProvider HTTP Service/API as the Message
Entry Point

<api xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteInfoProvider"
 context="/StockQuoteInfo">
 <resource methods="POST">
 <inSequence>
 </inSequence>
 </resource>
</api>

The StockQuoteInfoProvider API exposes an HTTP interface at the ESB layer that’s
pinned on the context /StockQuoteInfo. You can invoke this HTTP interface from your
mobile client by sending an HTTP request to http://localhost:8280/StockQuoteInfo.
As you can see, the API is configured to respond only to the HTTP POST request
coming into this interface. As you learned in Chapter 1, the requests that satisfy the
aforementioned criteria are routed to the inSequence.

At this point, you have a skeleton of an HTTP interface and deployed in your
WSO2 ESB. All the JSON requests that are sent from the mobile client will end up in the
inSequence.

Creating the Request Sent to the Backend Service
The request message that comes into the HTTP service/API that we created in the
previous section can be configured within the inSequence. What you get inside the
inSequence is the JSON request that the mobile client sent. Your objective here is to
extract the required values from that JSON message and create a new request that needs
to be sent to the backend web service. The key steps are listed here:

	 1.	 Creating the SOAP message payload. Inside the inSequence
of the StockQuoteInfoProvider API, you can add the payload
factory mediator configuration shown in Listing 1-6. In the
payload factory mediator, you can add any arbitrary payload
that will replace the current payload of the in-flight message.
It allows you to extract any part of the incoming in-flight
message and use that when you create the new payload of
the incoming message. In our use case, you can use the SOAP
payload that’s required to invoke the backend web service
as the payload of the payload factory mediator. (To find the
required message format of a given backend service, you have

http://localhost:8280/StockQuoteInfo
http://dx.doi.org/10.1007/978-1-4842-2343-7_1

Chapter 2 ■ Getting Started with WSO2 ESB

21

to use the WSDL of the backend service and a tool such as
SOAP UI to generate the request message format.) Transform
the incoming JSON request to the appropriate SOAP request
that needs to be sent to the SimpleStockQuote service of the
example.org financial service and then invoke the service.

	 2.	 Extracting values from the JSON request. To extract the
required values from the original JSON request, the
arguments used are <arg evaluator="json" expression="
$.getFinancialQuote.company"/> with an expression format
that allows you to query through a JSON message known as
JSONPath. This expression extracts the company name from
the original request and preserver as the argument-1 of the
payload factory. Later, when you specify the message format
for the payload factory, we use that argument as a variable in
<ser:symbol>$1</ser:symbol>.

	 3.	 Configuring the SOAP action. As we send a SOAP request to
the backend service, it’s required to set the SOAP action as
a header in the outgoing HTTP request. The configuration
<header name="Action" value="urn:getSimpleQuote"/> is
there for setting the required SOAP action prior to sending the
request to the backend service.

Listing 2-2.  Configuring the inSequence to Formulate the SOAP Request to the Backend
Web Service

<api xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteInfoProvider"
 context="/StockQuoteInfo">
 <resource methods="POST">
 <inSequence>
 <payloadFactory media-type="xml">
 <format>
 �<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.

org/soap/envelope/"
 xmlns:ser="http://services.samples">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:getSimpleQuote>
 <ser:symbol>$1</ser:symbol>
 </ser:getSimpleQuote>
 </soapenv:Body>
 </soapenv:Envelope>
 </format>
 <args>
 <arg evaluator="json"

Chapter 2 ■ Getting Started with WSO2 ESB

22

expression=" $.getFinancialQuote.company"/>
 </args>
 </payloadFactory>
 <header name="Action" value="urn:getSimpleQuote"/>
 </inSequence>
 </resource>
</api>

At this point you’ve successfully transformed the incoming JSON message to the
SOAP message format that’s required to invoke the backend web service.

Sending the Request to the Backend Service
Now you have to send the request that you created in the inSequence to the backend web
service. Here are the main steps for sending a request message to the backend service.
The related WSO2 ESB configuration is in Listing 1-7.

•	 To send the request message, you can use the call mediator, and
to represent the backend web service while sending the request,
you can use an endpoint.

•	 The backend service URI can be configured inside the endpoint
configuration. As you invoke the web service backend, you can
use the address endpoint and configure the uri attribute.

•	 Inside the call mediator you need to specify the endpoint, which
represents the SOAP-based backend service. You can specify the
endpoint address as the endpoint uri.

•	 The request message that came through the message entry point
(HTTP service/API) isn’t a SOAP message (rather it’s a RESTful
message) and therefore you need to indicate to the mediation
engine that you want to do a SOAP 1.1 call to the backend service.
This can be configured using the format="soap11" attribute of
the endpoint configuration.

At the point you use the call mediator, the request is sent to the backend service and
the current request message flow stops until we get the response.

Once the response is received, it resumes right after the call mediator with the new
in-flight message, which is the response from the backend service, as shown in Listing 2-3.

Listing 2-3.  Sending the Request to the Backend Web Service

<api xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteInfoProvider"
 context="/StockQuoteInfo">
 <resource methods="POST">
 <inSequence>
 <payloadFactory media-type="xml">
 <format>

Chapter 2 ■ Getting Started with WSO2 ESB

23

 �<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.
org/soap/envelope/"

 xmlns:ser="http://services.samples">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:getSimpleQuote>
 <ser:symbol>$1</ser:symbol>
 </ser:getSimpleQuote>
 </soapenv:Body>
 </soapenv:Envelope>
 </format>
 <args>
 <arg evaluator="json"
expression="$.getFinancialQuote.company"/>
 </args>
 </payloadFactory>
 <header name="Action" value="urn:getSimpleQuote"/>
 <call>
 <endpoint>
 �<address uri="http://localhost:9000/services/

SimpleStockQuoteService"
 format="soap11"/>
 </endpoint>
 </call>
 </inSequence>
 </resource>
</api>

Now you’ve configured the message flow to transform the incoming JSON to the
required SOAP message format and sent it to the backend service.

Transforming and Sending the Response Back
to the Client
When the backend service response message arrives at the WSO2 ESB, the response
message flow starts from the point that we use the call mediator. Therefore, the response
message flow configuration goes right after the call mediator. You can follow these steps
to configure the response message flow:

•	 In our integration scenario, it’s required to send a JSON response
back to the mobile client. Now at the point where it resumes the
message flow, you have a SOAP response from the StockQuote
service as the in-flight message and you need to convert it back to
JSON.

Chapter 2 ■ Getting Started with WSO2 ESB

24

•	 For simplicity, we assumed that the required JSON message
format is the one-to-one conversion of the SOAP message
format that we get as the response. Therefore you can convert
the message from SOAP to JSON by specifying a flag using the
property mediator (the actual conversion happens when you send
the message out from the ESB).

•	 Now you can send the response back to the mobile client. For
that, you can use a respond mediator in the message flow. The
respond mediator is capable of sending a given message back to
the original client, who sends the request to the ESB.

This completes the entire end-to-end message flow configuration of the integration
scenario; the complete configuration is shown in Listing 2-4.

Listing 2-4.  Transforming and Sending Responses Back to the Client

<api xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteInfoProvider"
 context="/StockQuoteInfo">
 <resource methods="POST">
 <inSequence>
 <payloadFactory media-type="xml">
 <format>
 �<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.

org/soap/envelope/"
 xmlns:ser="http://services.samples">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:getSimpleQuote>
 <ser:symbol>$1</ser:symbol>
 </ser:getSimpleQuote>
 </soapenv:Body>
 </soapenv:Envelope>
 </format>
 <args>
 <arg evaluator="json"
expression="$.getFinancialQuote.company"/>
 </args>
 </payloadFactory>
 <header name="Action" value="urn:getQuote"/>
 <call>
 <endpoint>
 �<address uri=" http://localhost:6060/services/

StockQuoteService"
 format="soap11"/>
 </endpoint>
 </call>

Chapter 2 ■ Getting Started with WSO2 ESB

25

 <property name="messageType"
 value="application/json"
 scope="axis2"
 type="STRING"/>
 <respond/>
 </inSequence>
 </resource>
</api>

The complete message flow diagram is illustrated in Figure 2-3. You can try to map
the relevant components of that with the configuration element that we followed so far.

Figure 2-3.  Integrating the SOAP-based StockQuote financial service and a mobile client
with WSO2 ESB

Chapter 2 ■ Getting Started with WSO2 ESB

26

Once you’ve configured the StockQuoteInfoProvider.xml, as shown in Listing 1-8,
you can deploy that HTTP service/API in the WSO2 ESB.

Try it Out
Now it’s the time to implement, deploy, and run this use case in your WSO2 ESB. For that,
you need to follow these steps:

•	 All the instruction and sample configuration of WSO2 ESB use
cases can be found at https://github.com/kasun04/maestro.

•	 Install and start WSO2 ESB with the instructions provided in
https://github.com/kasun04/maestro/blob/master/src/main/
resources/SETUP.txt.

•	 Start backend services as per the instructions provided in the
README.txt of Chapter 2 (see https://github.com/kasun04/
maestro/blob/master/src/main/resources/ch_02/README.txt).

•	 Copy and deploy the ESB configuration by running deploy.
sh deploy.bat. (This copies the StockQuoteInfoProvider.xml
file to the ESB_HOME/repository/deployment/server/synapse-
configs/default/api directory and then ESB automatically
deploys the new configuration.)

•	 The successful deployment of your HTTP service/API will be
shown as an INFO log in the console output as follows:

INFO - APIDeployer API named 'StockQuoteInfoProvider' has been deployed from
file :<file location>

You just deployed your first integration scenario in WSO2 ESB. Now you’re all set to
test and verify the scenario.

So, you need to invoke the HTTP service that we created inside the WSO2 ESB
through a client. The JSON message format that the client would send to ESB is shown in
Listing 2-5.

Listing 2-5.  The Message Format of the Request from the Mobile Client to ESB:
getQuoteMobileClientRequest.json

{
 "getFinancialQuote": { "company": "WSO2" }
}

Now you need to send this JSON message to the HTTP interface of WSO2 ESB that
we developed. You need to send a request with the previous JSON format and use the URI
of the HTTP interface/API of WSO2 ESB as http://localhost:8280/StockQuoteInfo.
The Content-Type should be application/json. You can use any tool such as “Advanced
REST client” in Chrome, SOAP UI, POSTMAN-REST Client, and so on and so forth, to

https://github.com/kasun04/maestro
https://github.com/kasun04/maestro/blob/master/src/main/resources/SETUP.txt
https://github.com/kasun04/maestro/blob/master/src/main/resources/SETUP.txt
http://dx.doi.org/10.1007/978-1-4842-2343-7_2
https://github.com/kasun04/maestro/blob/master/src/main/resources/ch_02/README.txt
https://github.com/kasun04/maestro/blob/master/src/main/resources/ch_02/README.txt
http://localhost:8280/StockQuoteInfo

Chapter 2 ■ Getting Started with WSO2 ESB

27

send this request to ESB. Or you can use the curl command in the same directory that
contains getQuoteMobileClientRequest.json.

curl -X POST -H 'Content-Type: application/json' -d @
getQuoteMobileClientRequest.json http://localhost:8280/StockQuoteInfo

This gives a JSON response that’s similar to the following format.

{
 "getSimpleQuoteResponse": {
 "return": {
 "@type": "ax21:GetQuoteResponse",
 "change": -2.361885589227761,
 "earnings": 13.698995171522952,
 "high": 152.16537214923102,
 "last": 145.7558347576971,
 "lastTradeTimestamp": "Thu Mar 05 12:18:33 IST 2015",
 "low": 152.63811443571913,
 "marketCap": 56473296.64839228,
 "name": "WSO2 Company",
 "open": -144.60242264890434,
 "peRatio": 25.94446951878229,
 "percentageChange": 1.722243455583964,
 "prevClose": -137.14005308424368,
 "symbol": "WSO2",
 "volume": 7821
 }
 }
}

Also, you can verify that the scenario works successfully by observing the console
output of the backend service; the following output can be seen in the console.

...SimpleStockQuoteService :: Generating quote for : WSO2

Congratulations! You’ve successfully implemented and tested your very first
integration scenario with WSO2 ESB.

Summary
In this chapter, you learned how to install and run WSO2 ESB in your development
environment. Also, you discovered how a real-world integration scenario could be
designed, implemented, and tested with WSO2 ESB. In the course of this chapter, you
learned how to apply the fundamentals that you learned in Chapter 1. All the concepts that
you learned in this chapter will be discussed in detail in upcoming chapters of the book.

In the next chapter, we will dive deep into the fundamentals of WSO2 ESB, which can
be used when implementing various integration scenarios.

http://dx.doi.org/10.1007/978-1-4842-2343-7_1

29© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_3

CHAPTER 3

Fundamentals of WSO2 ESB

Thus far, you've seen what an ESB is, why using an ESB is a great idea for bringing
together disparate systems, and an overview of how WSO2 ESB in particular works. In
the general request and response messaging, you saw that the fundamental message flow
inside the ESB comprises three basic building blocks, as shown in Figure 3-1.

Figure 3-1.  WSO2 ESB has three basic building blocks: message entry points, a message
processing unit, and message exit points

Chapter 3 ■ Fundamentals of WSO2 ESB

30

In this chapter, you’ll discover basic message flow constructs in WSO2 ESB, when
and how to use those constructs to build integration solutions. The goal of this chapter is
to lay the foundation for the rest of the book. That said, let’s start with a request/response
messaging scenario where a message is sent to the ESB from an external client/message
source, ESB routes the message to a backend service and sends the response back to the
client.

Message Entry Points
A message entry point in WSO2 ESB is responsible for listening for inbound messages or
polling a message source for the inbound messages, and then injecting such messages
into the ESB’s message processing units. Recall in Chapter 1 that the main message entry
points of WSO2 ESB, illustrated in Figure 3-2, are proxy services, API/HTTP services, and
inbound endpoints.

Figure 3-2.  Message entry points of WSO2 ESB

http://dx.doi.org/10.1007/978-1-4842-2343-7_1

Chapter 3 ■ Fundamentals of WSO2 ESB

31

When it comes to the development of integration scenarios, based on your
requirements, you need to choose different message entry points and configure them
in WSO2 ESB. You can select any of the following message entry points that match your
integration criteria.

•	 Proxy service: When you want to expose a web service interface
for an existing backend system (primarily SOAP over HTTP/S).

•	 API/HTTP service: Expose an HTTP interface that’s fully
compliant with REST (Representational State Transfer).

•	 Inbound endpoint: Fully dynamic inbound messaging source with
polling or listening capability.

In this section you’ll learn when and how to use these message entry points in
WSO2 ESB.

Using Proxy Services
Let’s suppose that a banking software solution has a legacy financial system that uses
XML (or Plain Old XML – PoX) as the message format over HTTP. The banking software
solution needs to expose this system as a web service, so that it supports web services
standards such as SOAP, WS-Addressing, WSDL, and so on. You can use WSO2 ESB’s
Proxy Services message entry point to implement this integration scenario, as shown in
Figure 3-3.

Figure 3-3.  Proxy service exposes a web service interface (with WSDL) by wrapping the
legacy system. The SOAP to XML (or Plain Old XML) message conversion takes place in the
message processing units (sequences and mediators).

For the existing legacy system, you can create a proxy service in ESB that exposes a
web services interface to its web services client. The message protocol translation takes
place inside the message processing logic. In this scenario, the service exposed from the
ESB is hosted at http://[hostname]:8280/services/OrderProcessingWS. You can also
create your own web service definition (WSDL) if required and expose it along with the
service (http://[hostname]:8280/services/OrderProcessingWS?wsdl).

http://[hostname]:8280/services/OrderProcessingWS
http://[hostname]:8280/services/OrderProcessingWS?wsdl

Chapter 3 ■ Fundamentals of WSO2 ESB

32

Therefore, a given proxy service doesn’t contain a real service implementation but
exposes a virtual web service interface (with the support for SOAP, WS-Addressing,
AND WSDL) on top of an existing non-web service-based system or service. Figure 3-4
illustrates the structure and the message flow of a proxy service invocation.

Figure 3-4.  Proxy service exposes a web service interface by wrapping the legacy system
and using the HTTP transport layer. The SOAP to XML (or Plain Old XML) message
conversion takes place in the message processing units (inSequence/mediators). In the case
of an error, the specified fault sequence will get invoked and you can do the fault handling
there.

Chapter 3 ■ Fundamentals of WSO2 ESB

33

The message flow of the banking integration scenario can be summarized as follows:

•	 The proxy service is deployed and hosted on

•	 http://[hostname]:8280/services/OrderProcessingWS.

•	 Web service client sends a SOAP request to WSO2 ESB via HTTP.

•	 The proxy service can specify the protocol it uses to receive
messages and in this case it’s HTTP. For the HTTP protocol, WSO2
ESB has a global transport receiver (receives messages on that
protocol) that’s configured in $ESB_HOME/repository/conf/
axis2/axis2.xml.

•	 Therefore, the request message comes through the transport layer
and then dispatches to the respective proxy service.

•	 At the proxy level various web service specific validations take
place, such as WSDL and WS-Addressing validations. Once these
are successful, the message is dispatched to the in-sequence of
that proxy service.

•	 You can configure the message processing logic inside the in-
sequence of the proxy service, and as discussed in Chapter 1, you
can either follow the single sequence approach or use the in-and-
out sequence approach.

This completes the end-to-end message flow of a proxy service invocation scenario.
Let’s take a closer look at the implementation of such scenarios in WSO2 ESB and the
respective configuration language.

Proxy service can be exposed in multiple protocols such as HTTP, JMS, VFS (file),
and so on. But with the introduction of inbound endpoints, the proxy services are
primarily used for exposing web service interfaces on top of the HTTP protocol. (Initially,
proxy services are designed to be used to receive message from other protocols than
HTTP, but with the introduction of inbound endpoints, proxy services are more or
less used for HTTP. However for some protocols that are not still available as inbound
endpoints, you may use proxy services with a specific transfer protocol.) For other types
of inbound messaging scenarios, inbound endpoints are more suitable. The configuration
of a given proxy service resides in $ESB_HOME/repository/deployment/server/synapse-
configs/default/proxy-services/{ProxyServiceName}.xml.

In WSO2 ESB, to deploy a given proxy service, the proxy service configuration should
be placed in

$ESB_HOME/repository/deployment/server/synapse-configs/default/proxy-
services/OrderProcessingWS.xml.

Then ESB deploys a virtual web service on ESB that’s anchored at http://
[hostname]:8280/services/OrderProcessingWS. Once you copy your proxy service
configuration, it’s deployed in a running ESB instance (no restarting required). The
configuration for the banking integration scenario is shown in Listing 3-1.

http://dx.doi.org/10.1007/978-1-4842-2343-7_1

Chapter 3 ■ Fundamentals of WSO2 ESB

34

Listing 3-1.  Proxy Service to Wrap a Legacy System from a Web Service Interface

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="OrderProcessingWS" <!-- [1] -->
 transports="http"
 startOnLoad="true"
 trace="disable">
 <description/>
 <publishWSDL key="gov:/OrderProcessingWS.wsdl" /> <!-- [2] -->
 <target>
 <inSequence> <!-- [3] -->
 <log level="full"/> <!-- [4] -->
 <call>
 <endpoint
 <address
uri="http://localhost:9000/services/SimpleStockQuoteService"
 format="pox"/>
 </endpoint>
 </call>
 < log level="full"/> <!-- [5] -->
 <respond/>
 </inSequence>
 </target>
</proxy>
[1] Proxy service name exposed as a part of the URL of the proxy service.
Proxy service is exposed on HTTP transport so request can be sent only via
HTTP transport.
[2] You can specify the service contract (WSDL) that should be exposed to
the external client.
[3] Using in-sequence as the message-processing unit.
[4] Request message-processing logic.
[5] Response message-processing logic.

As shown in Listing 3-1, the proxy service is configured on http://localhost:8280/
services/OrderProcessingWS and exposed on an HTTP protocol. The message from the
web service client goes through the transport layer (which is responsible for handling
messages that comes with different messaging protocols such as HTTP) and injects the
message into the respective proxy service. The HTTP transport receiver (configured
in $ESB_HOME/repository/conf/axis2/axis2.xml) accepts the messages and then
dispatches it to the relevant proxy service based on the URL context (/services/
OrderProcessingWS). The transport layer, comprised of a transport receiver and
transport sender, receives and sends messages out of a proxy service. The HTTP transport
configuration will be shared among all the proxy services and the transport receiver/
sender configuration cannot be updated dynamically.

As discussed previously, the main use case for a proxy service is to expose a virtual
web service interface over HTTP protocol; therefore, for enabling web service-related
capabilities such as WS-Security and WS-Addressing, you can use built-in parameters
such as enableSecurity, enableAddressing, and so on. You’ll learn more about these
capabilities in Chapter 5, which discusses web service-based integration.

http://localhost:8280/services/OrderProcessingWS
http://localhost:8280/services/OrderProcessingWS
http://dx.doi.org/10.1007/978-1-4842-2343-7_5

Chapter 3 ■ Fundamentals of WSO2 ESB

35

Using APIs/HTTP Services
API or HTTP services allow you to create HTTP interfaces in WSO2 ESB and process
messages based on REST (Representational State Transfer) style. Let’s examine a sample
use case to understand the concept of an API/HTTP service.

Pizzashop is a pizza outlet that allows the users to order pizza online. Initially they
used a web service that allows the customers to browse and buy pizzas, but now the
organization wants to expand its business functionalities for its mobile users. Therefore,
they need to expose this functionality as REST interfaces over HTTP and use JSON as
the message format. The key business requirements they have are listing the available
pizza menu and allowing the customers to buy a pizza with a given pizza ID, as shown in
Figure 3-5.

Figure 3-5.  Pizzashop exposes an API/HTTP service on top of the existing SOAP web
service. The API/HTTP service is anchored at http://{hostname}:8280/pizza and
two resources are defined for buying and listing business functionalities. The message
translation takes place in the message-processing unit.

As per the business requirements, we can list the main steps involved in designing
integration scenario shown in Figure 3-5.

•	 The first step is to decide the URL context of the pizzashop API/
HTTP service that you’ll expose. For example, you can use the
URL http://hostname:8280/pizza, where all the client requests
are sent to the URL starting with URL context pizza. Therefore the
API/HTTP service you create is anchored at a user-defined URL
context.

•	 Then you can create two resources (/list and /buy) for the
different functionalities of the pizzashop API. For that, you can
use resources in an API definition and define an URL mapping or
URI template for each resource.

http://hostname:8280/pizza

Chapter 3 ■ Fundamentals of WSO2 ESB

36

•	 In the pizzashop example, two resources are defined with URL
mapping—/list and /buy/{pizzaId}. This is to restrict the type
of HTTP requests processed by a particular resource. This means
the resource with the URL mapping /list can only process the
HTTP request with http://hostname:8280/pizza/list and the
other resource can only process the HTTP request with http://
hostname:8280/pizza/buy/<pizzaId>.

•	 Also, you can restrict the type of HTTP request that a given
resource can process by specifying the HTTP method/verb. For
example, in the pizzashop API, the resource with /list can only
process HTTP GET requests.

•	 Then each resource of pizza RESTAPI has an in-sequence and
an out-sequence. This is exactly the same message processing
logic that you learned in proxy services. The request message
processing of a given resource can use the single sequence model
with call-and-respond mediator, or you can use the in- and out-
sequence approaches.

The message flow of the invocation of the API in the pizzashop integration scenario
is depicted in Figure 3-6 and is similar to that of a proxy service. But the main difference
is that APIs there can be multiple resources with their own message processing units. The
message dispatching to the matching resource is done using the URL mapping parameter.

http://hostname:8280/pizza/list
http://hostname:8280/pizza/buy/<pizzaId
http://hostname:8280/pizza/buy/<pizzaId

Chapter 3 ■ Fundamentals of WSO2 ESB

37

The related configuration of the pizzashop scenario is shown in Listing 3-2.

Listing 3-2.  Exposing a HTTP Service/API for the Pizzashop Scenario

<api name="PizzaRESTAPI" context="/pizza">
 <resource url-mapping="/list" methods="GET" inSequence="seq3" outSequence=
"seq4"/>

Figure 3-6.  Pizzashop exposes an API/HTTP service on top of the existing SOAP web
service. The API/HTTP service is anchored at http://{hostname}:8280/pizza and
two resources are defined for buying and listing business functionalities. The message
translation takes place in the message-processing unit.

Chapter 3 ■ Fundamentals of WSO2 ESB

38

<resource uri-template="/buy/{pizzaId}" methods="PUT POST" inSequence="seq5"
outSequence="seq6"/>
</api>

The primary use of an API/HTTP service is to expose a REST interface from the
WSO2 ESB. You can use an API/HTTP service to wrap an existing web service backend
with a simple REST interface. As with proxy services, messages are dispatched to APIs via
the transport layer, which is common to all proxy services and APIs.

API/HTTP services can be exposed in HTTP/S protocol only. The configuration
of a given API resides in $ESB_HOME/repository/deployment/server/synapse-
configs/default/api/{ApiName}.xml.

The main difference between the proxy service and API is that APIs are purely for
HTTP and REST interfaces have various message formats such as JSON and XML. The
proxy services are primarily for web service interfaces over HTTP with SOAP message
formats and other web service related capabilities, such as WS-Addressing, WS-Security,
and so on. You’ll learn about API/HTTP services in detail in Chapter 5.

Using Inbound Endpoints
The message entry points (proxy services and APIs) that we discussed so far use
underlying transport receivers as the inbound messaging channels. The transport layer
configuration is static and globally applied for all the proxy services and APIs that are
exposed from a given protocol. For instance, the HTTP port for a given proxy or API is
8280 and you can’t configure the port dynamically for a specific proxy service or an API
(static configuration is required in axis2.xml and only actives after an ESB restart).

But integration use cases exist where you need to configure inbound message
channels dynamically. For instance, you may want to get a message from a JMS (Java
Message Service) message queue and inject it into the ESB message flow by dynamically
configuring the queue name and JMS connection parameters. Or you can configure an
API to listen to an HTTP port that you can configure dynamically. Moreover, you may
want to have integration scenarios deployed in completely isolated runtimes (this is
known as multitenancy support in WSO2 ESB).

With the integration requirements listed previously, you have a need for a dedicated
ESB construct to configure inbound channels dynamically. The inbound endpoints are
designed to serve that purpose. Before moving into the details of inbound endpoints, let’s
consider a simple integration scenario where you need to configure WSO2 ESB to read
messages from a JMS queue and later send them to a backend web service.

Let’s suppose that you need to implement an order processing system in a retail
store. The orders are placed in a JMS queue of a message broker by an external system/
client. You need to get those orders periodically, perform message transformations, and
send them to a web service or any other backend service. All the logic related to getting
messages from the JMS queue must configured dynamically. The respective use case is
illustrated in Figure 3-7.

http://dx.doi.org/10.1007/978-1-4842-2343-7_5

Chapter 3 ■ Fundamentals of WSO2 ESB

39

You can implement the previously described integration scenario with ESB with the
use of JMS inbound endpoint.

•	 The first step is to configure an inbound endpoint with JMS
protocol. (Because this is about integrating to an external message
broker, it’s mandatory to have all the required client libraries
copied into $ESB_HOME/repository/component/lib.)

•	 As shown in Listing 3-3, you can specify the protocol as jms
and add all the required parameters such as JMS destination,
connection factory, connection URL, and so on.

•	 Once the message is fetched from the queue, you can inject the
message into a sequence (orderProSeq sequence) and do all the
generic message mediation (transform, enrich, and send to a
backend service) in that sequence.

Listing 3-3 illustrates the definition of an inbound endpoint and the respective
parameters that you need to configure for this JMS use case.

Listing 3-3.  Using a JMS Inbound Endpoint to Process Messages in a JMS Queue

<inboundEndpoint
 xmlns="http://ws.apache.org/ns/synapse"
 name="OrderProcesseingInboundEP" <!-- [1] -->
 sequence="orderProcSeq" onError="fault" <!-- [2] -->
 protocol="jms" <!-- [3] -->
 suspend="false">
 <parameters> <!-- [4] -->

Figure 3-7.  The orders are placed in a JMS queue by the external systems, and ESB has to
process them by de-queuing the message and sending it to the backend web service. The
JMS inbound endpoint can poll for the messages in the queue and inject them into the
message-processing unit (sequences and mediators).

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Fundamentals of WSO2 ESB

40

 <parameter name="interval">1000</parameter>
 <parameter name="transport.jms.Destination">ordersQueue</parameter>
 <parameter name="transport.jms.CacheLevel">1</parameter>
 <parameter name="transport.jms.ConnectionFactoryJNDIName">
 QueueConnectionFactory</parameter>
 <parameter name="sequential">true</parameter>
 <parameter name="java.naming.factory.initial">
 org.apache.activemq.jndi.ActiveMQInitialContextFactory
 </parameter>
 �<parameter name="java.naming.provider.url">tcp://localhost:61616

</parameter>
 �<parameter name="transport.jms.SessionAcknowledgement">AUTO_

ACKNOWLEDGE</parameter>
 <parameter name="transport.jms.SessionTransacted">false</parameter>
 �<parameter name="transport.jms.ConnectionFactoryType">queue

</parameter>
 </parameters>
</inboundEndpoint>
[1] Name of the inbound endpoint.
[2] Message processing sequence that the inbound endpoint injects the
message to.
[3] Protocol of the inbound endpoint.
[4] Parameters that are required to poll the message from the message source
through the specified protocol.

Now that you’ve seen inbound endpoints in action, let’s move on to the discussion of
the inbound endpoints fundamentals.

An inbound endpoint allows you to dynamically integrate external message sources
with different protocols with ESB. By configuring inbound endpoint parameters, you
can configure inbound channels dynamically. The inbound endpoints are deployed in
the $ESB_HOME/repository/deployment/server/synapse-configs/default/inbound-
endpoints directory. The inbound endpoints can be categorized into two types based on
their behavior: polling and listening inbound endpoints.

Polling Inbound Endpoints
A polling inbound endpoint is capable of polling a given message source that’s specified
with the protocol (such as JMS or File) and with the polling interval. It can also inject the
message into a specified sequence. The JMS inbound endpoint shown in Listing 3-3 is an
example of a polling inbound endpoint. The polling job is executed by the WSO2 ESB’s
internal tasks implementation, and it supports various coordination mechanisms such
as one executor at a given time and multiple executors. Figure 3-8 shows the message
execution flow inside a polling inbound endpoint.

Chapter 3 ■ Fundamentals of WSO2 ESB

41

The messages that come through polling inbound endpoints are asynchronous; no
response message is sent back to the original message source. The message-processing unit
can process the request, invoke the backend service if required, and process the response
too, but it cannot send it back. You’ll learn more about polling inbound endpoints when we
discuss JMS and file-based integration scenarios in the upcoming chapters.

Listening Inbound Endpoints
Listening inbound endpoints are capable of opening up a message listener interface
so that the external clients can send requests to those interfaces. An HTTP inbound
endpoint is an example of a listening inbound endpoint. An example use case is similar
to the scenarios you’ve seen in proxy service and API. But with inbound endpoints,
configuration can be dynamically configured with listening inbound endpoints.

Figure 3-8.  The polling inbound endpoint periodically checks for new messages in the
message source, and if there are messages available, they’re injected into the message
processing unit (sequence). The messaging pattern of the polling inbound endpoints is
always asynchronous (no request/reply pattern).

Chapter 3 ■ Fundamentals of WSO2 ESB

42

As shown in Listing 3-4, an HTTP inbound can be configured so that it opens up
a new port in the specified port and injects all the incoming messages to the specified
sequence. The protocols such as HTTP, TCP, and HL7 are implemented as listening
inbound endpoints.

Listing 3-4.  Exposing a HTTP Interface Using a HTTP Inbound Endpoint

<inboundEndpoint name="HttpOrderProcessorInboundEP" <!-- [1] -->

 protocol="http" <!-- [2] -->
 suspend="false"
 sequence="orderProcSeq" onError="fault" > <!-- [3] -->
 <p:parameters xmlns:p="http://ws.apache.org/ns/synapse"> <!-- [4] -->
 <p:parameter name="inbound.http.port">6060</p:parameter>
 </p:parameters>
</inboundEndpoint>
[1] Name of the inbound endpoint.
[2] Protocol that it’s listening on.
[3] Message processing and error handling sequences.
[4] Parameters required to start listening on the given protocol such as
HTTP port.

You can create an inbound polling endpoint and attach a sequence to it and delegate
message-processing tasks to that sequence. In addition, with an HTTP inbound endpoint,
you can configure it to dispatch messages to a named sequence, a proxy service, or an
API. Figure 3-9 illustrates the message flow of an HTTP inbound endpoint.

Chapter 3 ■ Fundamentals of WSO2 ESB

43

The HTTP inbound endpoint illustrated in Figure 3-9 can listen to the messages on
a given HTTP port and inject them into proxy service, API, or sequences. Unlike polling
inbound endpoints, listening inbound endpoints allow you to send the message back to
the client.

Message Processing Unit: Sequence and Mediators
Once the message enters the WSO2 ESB through the message entry points, the message
processing or message mediation occurs in sequences and mediators. A mediator is the
most fundamental message-processing unit, but message entry points cannot directly
inject a message into a mediator. Instead, the message processing needs to be done with a
sequential arrangement of mediators, which is known as a sequence, shown in Figure 3-10.

Figure 3-9.  An HTTP inbound endpoint listens for an incoming HTTP request on the
specified port and injects the message to the specified sequence, proxy service, or API

Chapter 3 ■ Fundamentals of WSO2 ESB

44

You’ll look specifically at message processing in Chapter 4, but for now let’s talk
about basics of sequences and mediators.

Sequences
A sequence can be directly invoked from any message entry point, and you can call a
sequence from another sequence. You can also configure the entire message flow and
message processing logic in a single sequence, but it’s good practice to design integration
scenarios such that sequences address different parts of a large integration scenario. That
will decompose a complex message processing use case to simple message processing
units and foster reuse and troubleshooting capabilities.

 The sequences can be deployed in $ESB_HOME/repository/deployment/server/
synapse-configs/default/sequences directory.

As you learned in proxy services and APIs, they come with built-in special sequences
known as in-sequence and out-sequence, but you can configure any existing sequence as
the in- or out-sequences. Figure 3-11 illustrates how you can use the dual sequence (in-
and out-sequence) model to achieve the same scenario in Figure 3-10. We used the send
mediator instead of the call mediator.

Figure 3-10.  Message processing with sequences and mediators

http://dx.doi.org/10.1007/978-1-4842-2343-7_4

Chapter 3 ■ Fundamentals of WSO2 ESB

45

In Listing 3-5, you can find a sequence with several mediators that process the
incoming message and then call another sequence to validate the message (as shown in
Figure 3-10). Therefore, the message validation logic is completely independent from the
message processing sequence.

Listing 3-5.  Message Processing with Sequences and Mediators

<sequence name="OrderProcSeq" onError="errorHandlingSeq"> <!-- [1] -->
 <log level="full"/> <!-- [2] -->
 <property name="test" value="test value"/> <!-- [3] -->
 <sequence key="messageValidationSeq"/> <!-- [4] -->
 <call> <!-- [5] -->
 <endpoint>
 �<address uri="http://localhost:9000/services/

SimpleStockQuoteService" format="soap11">
 </address>
 </endpoint>
 </call>
 <respond/> <!-- [6] -->
</sequence>
[1] Declaring sequence along with the respective error handling sequeunce.
[2] Log mediator to logs the entire message console and log files.

Figure 3-11.  Message processing with sequences and mediators

Chapter 3 ■ Fundamentals of WSO2 ESB

46

[3] Property mediator sets the specified properties to the in-flight message
used in down-stream mediators.
[4] Sequence mediator can be used to call another sequence.
[5] Call mediator to send the request to an external service and receive the
response back to the same place.
[6] Respond mediator sends back the response it received to the original
client.

The message flow inside a sequence always follows the exact same sequential order
of mediators that appear in the sequence. For example, it’s guaranteed that the message
validation sequence is executed prior to executing the call mediator in Listing 3-5. A
given sequence can have an on-error sequence, and if some error occurred in processing
messages in a given sequence, then the message is propagated to the specified error
sequence so that you can do all the error handling logic in the on-error sequence.

Mediators
A mediator is the simplest message-processing unit in WSO2 ESB. A given mediator can
be placed inside a sequence and is capable of processing/mediating the message flowing
through it. You can configure a given mediator to process/mediate the message as per
your requirements. The message processing or mediation is a broad area, where different
types of message processing and mediation take place.

WSO2 ESB comes with numerous mediators that are designed for specific message
processing and mediation requirements. And mediators are the key components
supporting Enterprise Integration Pattern (EIP). For example, for filtering you can use
filters or switch mediators; for transformation you can use xslt, payload factory, or header
mediators; for sending messages you can use send, call, or respond mediators; and so on.

You’ll learn about most of the mediators of WSO2 ESB in the rest of the book. When
you design and develop the message processing logic, consider the following three main
scenarios and developing the processing logic accordingly.

Content Unaware Mediation

Message processing logic doesn’t require accessing the content of the message. The
message processing logic has nothing to do with the content of the message. Therefore,
you don’t need to worry about the incoming message format. In most scenarios, such as
message header based routing, this is all about getting the message from a client through
an entry point and sending it to another backend service/system.

Content Aware Mediation with SOAP or JSON

Message processing logic requires accessing the content of the message and the incoming
message format is either SOAP or JSON. When you need to process message based on its
content, for SOAP and JSON you can use the message format specific processing logic.
For example, you can use XPath for SOAP message filtering and JSONPath for JSON
message filtering.

Chapter 3 ■ Fundamentals of WSO2 ESB

47

Content Aware Mediation with Canonical Format

Message processing logic requires accessing the content of the message when the
incoming format is neither SOAP nor JSON. When the incoming message format is
neither SOAP nor JSON, the processing logic needs to use a canonical message format
(a common message format for all messages). For example, assume that you send a text
message to WSO2 ESB and the processing must be done using the canonical message
format, which is the SOAP equivalent of the original text message.

You’ll discover how to develop message-processing logics for each of these scenarios
in Chapter 4.

Message Exit Points: Outbound Endpoints
Now that you’re familiar with message entry points as well as with message processing
units, the outbound message flow from an ESB is designed on top of a functional
component known as outbound endpoints or endpoints. When you want to implement
an integration scenario, as shown in Figure 3-12, where ESB has to call a backend service,
there should be a way to represent/configure the destination address of the backend
service.

Figure 3-12.  Using outbound endpoints to represent external backend services and systems
and configure outbound messaging behavior

http://dx.doi.org/10.1007/978-1-4842-2343-7_4

Chapter 3 ■ Fundamentals of WSO2 ESB

48

Listing 3-6 shows how an endpoint can be used along with sequences and mediators.
In this example, the message coming into the ShoppingInfo API is sent (using call
mediator) to the backend service, which is specified in the URI of the endpoint over the
HTTP transport.

Listing 3-6.  Using Outbound Endpoints

<api xmlns="http://ws.apache.org/ns/synapse" name="ShoppingInfo" context="/
ShoppingInfo">
 <resource methods="POST">
 <inSequence>
 <log/>
 <call>
 <endpoint> <!-- [1] -->
 <address
uri="http://localhost:9000/services/SimpleStockQuoteService"<!-- [2] -->
 format="soap11"> <!-- [3] -->
</address>
 </endpoint>
 </call>
 <respond></respond>
 </inSequence>
 </resource>
</api>
[1] Declaring Endpoint.
[2] Address of the backend service.
[3] Change the outbound messaging format to SOAP 1.1 from the existing
message format.

An outbound endpoint/endpoint is a logical representation of an external
destination for an outgoing message. An endpoint can logically represent one or more
backend service destinations in ESB. An endpoint must be used inside a send or call
mediator because they’re the mediators that can be used for outbound messaging. In
Listing 3-6, the endpoint definition is done inline with the sequence configuration, but it’s
also possible to define the endpoint as a separate entity and refer that using call or send
mediators. In WSO2 ESB, you can create and deploy your endpoints under $ESB_HOME/
repository/deployment/server/synapse-configs/default/endpoints.

You have already tried most of the use cases that uses endpoints. Hence I’m not
going to discuss simple use cases related to how to use outbound endpoints. Let’s
proceed to the discussion on endpoint types. Several endpoints types are available in
WSO2 ESB. Let’s look at the commonly used endpoint types and their usages.

Endpoint Types
The commonly used endpoints types are address endpoint, http endpoint, load balancing,
and failover endpoints. Choose the most appropriate endpoint type for your use case.

Chapter 3 ■ Fundamentals of WSO2 ESB

49

Address Endpoint
The address endpoint can represent any type of an endpoint reference (EPR) inside the
WSO2 ESB. Therefore, the address endpoint can be used to represent any remote service
provider such as a web service exposed over HTTP, a JMS queue, or even a file location.
Listing 3-7 shows the available configuration options of address endpoints.

Listing 3-7.  Address Endpoints

<address uri="http://localhost:7070/OrderService"
 format="soap11|soap12|pox" optimize="mtom|swa"
 encoding="charset encoding">

<enableSec policy="path_to_key">
<enableAddressing/>
</address>

In addition to the remote endpoint URL, several other endpoint attributes are
available for changing the format and the behavior of outbound messaging.

format specifies the message for the outbound message for that endpoint. If you
don’t specify the message format, there won’t be any modifications to the outbound
message format. If you need to alter the message format of the inbound message to a
different message format, you can specify the required outbound message format with
these values for format attribute: soap11 - transforming message to SOAP 1.1, soap12 -
transforming message to SOAP 1.2, or pox - Plain Old XML (POX) - transforming to plain
old XML format.

QoS (Quality of service) aspects such as WS-Security and WS-Addressing may be
enabled on messages sent to an endpoint using the enableSec and enableAddressing
elements. Optionally, the WS-Security policies can be specified using the policy attribute
enableSec policy="key". This enables WS-Security as per the provided policy, for the
outbound message. Optimize is used for optimization of the message, which transfers
binary data (SwA - Optimized as a SwA (SOAP with Attachment) message and MTOM—
Optimized as a MTOM).

You’ll learn more about using endpoint outbound messaging techniques in Chapter 4.

HTTP Endpoint
HTTP endpoint is designed for invoke RESTful services and APIs from WSO2 ESB. HTTP
endpoint is a logical representation of an actual resource that allows users to specify the
resource URL and HTTP method, when invoking a RESTful service/API. In the example
shown in Listing 3-8, the resource URL is provided as an URI template with variables that
would get resolved during the runtime. For example, {uri.var.servicename} needs to
be defined in the message flow prior to use the endpoint. Also, you can specify the HTTP
method for the outbound request.

http://dx.doi.org/10.1007/978-1-4842-2343-7_4

Chapter 3 ■ Fundamentals of WSO2 ESB

50

Listing 3-8.  HTTP Endpoints

<endpoint xmlns="http://ws.apache.org/ns/synapse" name="HTTPEndpoint">
 <http uri-template= "http://localhost:8080/restapi/{uri.var.
servicename}/menu?category={uri.var.category}&type={uri.var.pizzaType}"
 method="GET">
 </http>
</endpoint>

The URI template is fully compliant with the RFC 6570 [http://tools.ietf.org/
html/rfc6570] specification, and the variable names must start with uri.var.* or query.
param.*. You’ll find the real-world use cases related to RESTful integration by using HTTP
endpoint in Chapter 5.

Load Balancing and Fail-Over Endpoint
In real-world integration use cases, it’s essential to have multiple backend services to
enable load distribution and high availability (or failover). Therefore, ESB needs to invoke
the services, which are available as independent server instances but offer the same
functionality.

The load balancing endpoint allows you to logically group a set of backend services
that you need to distribute among the load. The load-balanced endpoint distributes the
messages, arriving among a set of listed endpoints evaluating the load balancing policy
and any other relevant parameters.

Listing 3-9.  Load Balancing Endpoint

<send>
 <endpoint>
 <loadbalance>
 <endpoint>
 <address uri="http://localhost:9001/services/LBService1">
 <enableAddressing/>
 <suspendDurationOnFailure>60</suspendDurationOnFailure>
 </address>
 </endpoint>
 <endpoint>
 <address uri="http://localhost:9002/services/LBService1">
 <enableAddressing/>
 <suspendDurationOnFailure>60</suspendDurationOnFailure>
 </address>
 </endpoint>
 <endpoint>
 <address uri="http://localhost:9003/services/LBService1">
 <enableAddressing/>
 <suspendDurationOnFailure>60</suspendDurationOnFailure>
 </address>
 </endpoint>

http://tools.ietf.org/html/rfc6570
http://tools.ietf.org/html/rfc6570
http://dx.doi.org/10.1007/978-1-4842-2343-7_5

Chapter 3 ■ Fundamentals of WSO2 ESB

51

 </loadbalance>
 </endpoint>
</send>

Listing 3-9 demonstrates a load balancing endpoint, which balances the load among
three backend service instances (they are on the same host but different ports). The
load-balancing algorithm can be configured, and by default it uses the round robbing
algorithm (using the policy and algorithm attributes). Also, you can configure the next
endpoint once the currently selected endpoint has failed by configuring the failover
attribute (by default it’s set to true).

Similarly, failover endpoints send messages to the listed endpoints with the following
failover behavior. At the start, the first listed endpoint is selected as the primary and all
other endpoints are treated as backups. Incoming messages are always sent only to the
primary endpoint. If the primary endpoint fails, the next active endpoint is selected as the
primary and the failed endpoint is marked as inactive.

Understanding Endpoint States and Endpoint Attributes
As the endpoints are the representation of the actual backend services, the endpoint
has different states. At any given time, a given endpoint can be in the ACTIVE, TIMEOUT,
SUSPENDED, or OFF state. The behavior of endpoints in each state can be summarized as
follows.

•	 ACTIVE: Endpoint is running and handling requests.

•	 TIMEOUT: Endpoint encountered an error but still can send and
receive messages. If it continues to encounter errors, it will be
suspended.

•	 SUSPENDED: Endpoint encountered errors and cannot send or
receive messages. Incoming messages to a suspended endpoint
result in a fault.

•	 OFF: Endpoint is not active. To put an endpoint into the OFF state,
or to move it from OFF to ACTIVE, you should use JMX.

The main reason to have a set of endpoint states is to avoid the overhead on sending
requests to the services, which are not up and running or not properly functioning.
The endpoint configuration allows you to configure the state transitions based on your
requirements (types of the error that have occurred, duration, and so on). To understand
the endpoint states and the relevant configuration parameters in detail, consider the
endpoint configuration in Listing 3-10.

Listing 3-10.  Understanding Endpoint States

<endpoint name="Sample_First" statistics="enable" >
 �<address uri="http://localhost/myendpoint" <!-- [1] -->

statistics="enable" trace="disable">

Chapter 3 ■ Fundamentals of WSO2 ESB

52

 <timeout> <!-- [2] -->
 <duration>60000</duration>
 </timeout>
 <markForSuspension> <!-- [3] -->
 <errorCodes>101504, 101505</errorCodes>
 <retriesBeforeSuspension>3</retriesBeforeSuspension>
 <retryDelay>1</retryDelay>
 </markForSuspension>

 <suspendOnFailure> <!-- [4] -->
 �<errorCodes>101500, 101501, 101506, 101507, 101508

</errorCodes>
 <initialDuration>1000</initialDuration>
 <progressionFactor>2</progressionFactor>
 <maximumDuration>60000</maximumDuration>
 </suspendOnFailure>
 </address>
</endpoint>
[1] Configuring the endpoint URI.
[2] Endpoint should wait for 60s for a response and if no response received,
it goes to the timeout state.
[3] Endpoint is moved into timeout state for the specified error codes, and
there will be three retries from the same endpoint before it moves into the
suspended state.
[4] Endpoint is suspended for the specified error codes, and you can
configure the suspension time.

In that particular endpoint configuration, you can find the backend service URL and
several other configuration parameters. The endpoint behavior for this configuration can
be explained as follows.

•	 TIMEOUT: If the remote endpoint does not respond within the
specified time duration (in ms), it will be marked as TIMEOUT.
If the remote endpoint does not respond within 60000 ms, this
endpoint will move into the TIMEOUT state.

•	 markForSuspension: Here you can configure the endpoint
behavior related to the TIMEOUT state. You can specify the error
codes that would move the endpoint into the TIMEOUT state.
When the ESB sends a request to the remote endpoint and gets
one of these errors—101504 (Connection Timeout) or 101505
(Connection closed)—then the endpoint will be moved into the
TIMEOUT state. (A complete list of endpoint error codes can be
found at http://docs.wso2.com/enterprise-service-bus/
Error+Handling#ErrorHandling-codes.)

http://docs.wso2.com/enterprise-service-bus/Error+Handling#ErrorHandling-codes
http://docs.wso2.com/enterprise-service-bus/Error+Handling#ErrorHandling-codes

Chapter 3 ■ Fundamentals of WSO2 ESB

53

•	 With retriesBeforeSuspension, you can configure the number
of times the endpoint should be used to send requests when these
errors occur. Therefore, after three requests to the same endpoint,
fail due to these errors, the endpoint is moved into the SUSPENDED
state. This duration between each retry is 1s and it’s configured
with retryDelay.

•	 suspendOnFailure: If an error occurred that’s specified with
error codes 101500, 101501, 101506, 101507, or 101508, then the
endpoint is moved into the SUSPENDED state. For any other error
code that’s not specified in suspendOnFailure error codes, the
endpoint remains in the ACTIVE state.

•	 When the endpoint is first suspended, the retry happens after 1
second. Because the progression factor is 2, the next suspension
duration before retry is 2 seconds, then 4, then 8, and so on until
it gets to 60 seconds, which is the maximum duration we have
configured. At this point, all subsequent suspension periods will
be 60 seconds until the endpoint succeeds and is back in the
ACTIVE state, at which point the initial duration will be used on
subsequent suspensions.

As you learned about a sample scenario in which you can configure the endpoint
behavior, let’s look closer at the endpoint states and transitions.

Based on our discussion with the scenario in Listing 3-10, we can come up with
the endpoint transition diagram illustrated in Figure 3-13. The following is a generic
explanation of each endpoint state and its transitions.

Figure 3-13.  Outbound endpoint state transitions

Chapter 3 ■ Fundamentals of WSO2 ESB

54

ACTIVE State
When you create a new endpoint, it goes into the ACTIVE state. The endpoint is live and
will route all the requests to the backend service. The endpoint will be in the ACTIVE state
as long as no errors invoke the backend service.

The endpoint can be configured to stay in the ACTIVE state or to go to the TIMEOUT
or SUSPENDED states based on the error codes you configure for those states. When an
error occurs, the endpoint checks to see whether it’s a TIMEOUT error first, and if not, it
checks to see whether it’s a SUSPENDED error. If the error isn’t defined for either TIMEOUT or
SUSPENDED, the error will be ignored and the endpoint will stay ACTIVE.

If no error codes are specified, the "HTTP Connection Closed" and "HTTP
Connection Timeout" errors are considered TIMEOUT errors, and all other errors put the
endpoint into the SUSPENDED state.

TIMEOUT State
When an endpoint is in the TIMEOUT state, it will attempt to receive messages until one
message succeeds or the maximum retry setting is reached. If the maximum is reached,
the endpoint is marked as SUSPENDED. If one message succeeds, the endpoint is marked as
ACTIVE.

For example, let’s assume the number of retries is set to three. When an error occurs
and the endpoint is set to the TIMEOUT state, the ESB can try to send up to three more
messages to the endpoint. If the next three messages sent to this endpoint result in an
error, the endpoint is put in the SUSPENDED state. If one of the messages succeeds before
the retry maximum is met, the endpoint will be marked as ACTIVE.

SUSPENDED State
A SUSPENDED endpoint cannot send or receive messages. When an endpoint is put into
this state, the ESB waits until after an initial duration has elapsed (the default is 30
seconds) before attempting to send messages to this endpoint again. If the message
succeeds, the endpoint is marked as ACTIVE. If the next message fails, the endpoint
is marked as SUSPENDED or TIMEOUT depending on the error, and the ESB waits before
retrying messages using the following formula:

Min(current suspension duration * progressionFactor, maximumDuration)

Default Configuration and Disabling Endpoint Suspension
You can configure the initial suspension duration, progression factor, and maximum
duration as part of the suspendOnFailure settings. On each retry, the suspension
duration increases up to the maximum duration.

When in the TIMEOUT state, markForSuspension or suspendOnFailure are not
configured; endpoints will use the default timeout of 120s. When there is no response
received for that duration, the endpoint is moved to the suspended state immediately.

Chapter 3 ■ Fundamentals of WSO2 ESB

55

And also, if there is any error occurred with the same endpoint configuration, the
endpoint again goes to the SUSPENDED state.

If you want to disable endpoint suspension behavior to not suspend endpoints at all,
then you can configure suspendOnFailure errorCodes with -1 and markForSuspension
errorCodes with -1.

 <timeout>
 <duration>60000</duration>
 <responseAction>fault</responseAction>
 </timeout>
 <suspendOnFailure>
 <errorCodes>-1</errorCodes>
 <initialDuration>0</initialDuration>
 <progressionFactor>1.0</progressionFactor>
 <maximumDuration>0</maximumDuration>
 </suspendOnFailure>
 <markForSuspension>
 <errorCodes>-1</errorCodes>
 </markForSuspension>

You can use this endpoint configuration for the integration scenarios that you never
want to suspend in a given endpoint.

Scheduled Tasks
In real-world integration use cases, you may need to have scheduled jobs and tasks
running on your ESB runtime. For example, assume that you need to invoke a backend
service with the time interval 1000ms 10 times. As you learned in previous sections,
you can implement the service invocation logic inside a sequence (with all the required
payloads). Now you need to invoke that sequence periodically. For that you can use a
scheduled task in WSO2 ESB.

In WSO2 ESB, a task runs a piece of code triggered by a timer, allowing you to run
scheduled jobs at specified intervals. In the task configuration, using the count and
interval attributes, you can run the task a specified number of times and at a given
interval. In addition, you can give a scheduled time as a cron-style entry. The tasks are
deployed in WSO2 ESB under the $ESB_HOME/repository/deployment/server/synapse-
configs/default/tasks directory.

As illustrated in Figure 3-14, a scheduled task can inject messages into a named
sequence, proxy service, or an API.

Chapter 3 ■ Fundamentals of WSO2 ESB

56

Let’s take the same example and assume that you need to invoke a sequence named
SampleSequence periodically with the interval 1000ms 10 times. Listing 3-11 shows
scheduled tasks that can inject the message into a specified sequence (with the properties
injectTo and sequenceName). If you need to set a message payload prior to injecting the
message, then the message property can be set too.

Listing 3-11.  Scheduled Tasks Inject Messages into a Named Sequence

<task name="SampleInjectToSequenceTask"
 class="org.apache.synapse.startup.tasks.MessageInjector" <!-- [1] -->
 group="synapse.simple.quartz">
 <trigger count="10" interval="1000"/> <!-- [2] -->
 <property <!-- [3] -->
 �xmlns:task="http://www.wso2.org/products/wso2commons/tasks"

name="message">
 <m0:getQuote xmlns:m0="http://services.samples">
 <m0:request>
 <m0:symbol>WSO2</m0:symbol>
 </m0:request>
 </m0:getQuote>
 </property>

Figure 3-14.  Scheduled tasks can periodically inject messages into a sequence, proxy
service, or API

Chapter 3 ■ Fundamentals of WSO2 ESB

57

 �<property xmlns:task="http://www.wso2.org/products/wso2commons/
tasks"

 name="injectTo"
 value="sequence"/> <!-- [4] -->

 <property xmlns:task="http://www.wso2.org/products/wso2commons/tasks"
 name="sequenceName"
 value="SampleSequence"/>
</task>
[1] Using the default message injector task can inject a given message to a
sequence, proxy service. or API.
[2] Triggering count and the interval.
[3] Payload of the message to be injected into the ESB.
[4] Specifying the way that you want to inject the message into the ESB.

This example shows a common usage of the message injector scheduled tasks that
come with WSO2 ESB. But if you need to have any other task implementation, that can
be plugged into the ESB in a similar manner. From WSO2 ESB 4.9 onward, the distributed
tasks coordination is also supported. You can execute tasks in a cluster of ESB nodes and
at a given time only one node will execute the tasks. If one node fails, another cluster
node will pick up the task execution.

Summary
In this chapter you learned that:

•	 The key components of WSO2 ESB are message entry points,
message processing units, and message exit points.

•	 The three main types of message entry point are proxy service,
API, and inbound endpoint.

•	 Proxy services are used for exposing web service interfaces over
HTTP and offer all the web service-related functionalities such as
WS-Addressing, WSDL, and WS-Security.

•	 API/HTTP services can be used to expose RESTful HTTP
interfaces from ESB.

•	 Both proxy services and APIs leverage the underlying transports
for a given protocol (such as HTTP). The transport configuration
is static and shared among all the APIs and proxy services, which
use a given protocol.

•	 Unlike API and proxy services, inbound endpoints have their
own configuration to receive messages from different protocols.
Therefore, inbound endpoints are used for dynamically
configuring inbound message channels, such as JMS, file, and
HTTP.

Chapter 3 ■ Fundamentals of WSO2 ESB

58

•	 Inbound endpoints are executed in polling modes (for example,
JMS) or listening mode (for example, HTTP).

•	 Message processing units are configured as sequences of
mediators. Each mediator has a specific function and is a reusable
block of message processing code. For example, it can send a
message to the server and send a response to the client.

•	 Endpoints are used to represent remote services or systems that
ESB sends messages to. You can configure the outbound message
format (such as SOAP 1.1), the duration that endpoint waits until
the backend responds, and so on.

•	 Scheduled tasks are often used to inject messages into queues
and start processing.

59© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_4

CHAPTER 4

Processing Messages
with WSO2 ESB

Most ESB developers will spend a lot of time configuring message-processing logic to
cater to their integration needs. In WSO2 ESB, there are several message processing
techniques you can use and they are key to implementing any integration scenario. In the
previous chapter, you learned the basics of message processing. This chapter carries on
with the message processing and dives deep into the eight techniques you can use inside
WSO2 ESB.

•	 Message pass-through: Request-response and one-way message
passing through ESB without processing the message content

•	 Message filtering and switching: Implement filter/switch
conditions in message flow based on message content or message
attributes.

•	 Message transformations: Translate the message from one
message format to the other.

•	 Message enriching: Enrich the message with a segment of external
message content.

•	 Message validation: Validate a message format against a schema.

•	 Service orchestration: Invoke multiple backend services to server
a single request.

•	 Protocol and message format transformations: Transform between
different wire protocols and message formats.

•	 Manipulating a message flow with properties: Use properties to
change the message flow and message attributes.

As you saw in Chapter 3, ESB message processing is done inside message processing
units (sequences and mediators) and a given message can come from any message entry
point as shown in Figure 4-1.

http://dx.doi.org/10.1007/978-1-4842-2343-7_3

Chapter 4 ■ Processing Messages with WSO2 ESB

60

The message processing logic is independent of the message entry point and so any
message processing technique can be applied to a message regardless of the entry point
that the message comes through.

It’s also worth remembering from Chapter 3 that one of three scenarios will apply to
any message processing logic you develop.

•	 The message processing logic doesn’t need access to the content
of the message.

•	 The message processing logic has nothing to do with the content
of the message. Therefore, you don’t need to worry about the
incoming message format. In most scenarios, this is all about
getting the message from a client through an entry point and
sending it to another backend service/system.

•	 The message processing logic does need access to the content of
the message and the incoming message format is either SOAP or
JSON.

Figure 4-1.  WSO2 ESB has three main pieces: entry points, message processing units, and
exit points. Each one is independent of the other two.

http://dx.doi.org/10.1007/978-1-4842-2343-7_3

Chapter 4 ■ Processing Messages with WSO2 ESB

61

•	 When you need to process message based on its content, for
SOAP and JSON you can use processing logic specific to that
format. For example, you can use XPath for SOAP message
filtering or JSONPath for JSON message filtering.

•	 The message processing logic does need access to the content of
the message and the incoming format is neither SOAP nor JSON.

•	 When the incoming message format is not SOAP or JSON, your
processing logic needs to assume there is a common message
format for all messages (a canonical message format).

The main objective of this chapter is to provide you with a comprehensive overview
of the eight message processing techniques as applied to these scenarios.

Pass-Through Messaging
Message pass-through is about sending messages through ESB without processing the
message content or message attributes. Message pass-through can be implemented
for request-response or one-way messaging scenarios. To understand the concept of
message pass-through concepts, suppose a financial services company that wants to
expose a set of business functionalities as a web service. This particular web service
allows you to:

•	 Get a stock quote using getQuote: If you have a certain stock that
you are interested in, you can get the price (stock quote) of that
stock by providing its name.

•	 Place a stock order using placeOrder: You can place orders to buy
options contracts and mutual funds.

The existing software solution of the financial service company has a web service
that offers the getQuote functionality but for order placing what they have is a queuing
mechanism where the orders need to be place in a JMS queue. You can use WSO2 ESB to
build a web service layer around the existing software systems, so that ESB exposes a web
service with two operations for getQuote and placeOrder.

By the nature of the business requirement of these operations, the getQuote
operation is a two-way operation where you have to send some data and you expect a
response data to be returned from the service (such as HTTP 200 OK with the response
message in HTTP). Therefore, this is a synchronous request-response operation. The use
case can be summarized as shown in Figure 4-2.

Chapter 4 ■ Processing Messages with WSO2 ESB

62

You can implement the synchronous messaging scenario in WSO2 ESB using
any preferred message entry point and a message processing logic with the outbound
endpoint. For financial service getQuote operation, you can use a mediation logic shown
in Listing 4-1, in which we have used a proxy service as the message entry point. For
simplicity, we assumed that the client is sending the same payload that is accepted by the
backend service. Therefore no message transformation logic is required in the request
message flow and you can simply send the request to the backend service via the call
mediator. The response is sent back to the client without transforming it.

Listing 4-1.  Implementing the getQuote Synchronous Messaging Scenario

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteProvider"
 transports="https http"
 startOnLoad="true"
 trace="disable">
 <description/>
 <target>
 <inSequence> <!-- [1] -->
 <call> <!-- [2] -->
 <endpoint>
 <address �uri="http://127.0.0.1:9000/services/

SimpleStockQuoteService"/>
 </endpoint>
 </call>
 <respond/> <!-- [3] -->
 </inSequence>
 </target>
</proxy>

[1] Request is processed in the in-sequence of the proxy service.
[2] Request is directly sent to backend service without transforming it.
[3] Response is sent back to the client (without doing any changes).

Figure 4-2.  In synchronous messaging when the web service client sends a request, it waits
and expects a response message. WSO2 ESB supports synchronous messaging between the
client and ESB, and also between ESB and the backend service.

Chapter 4 ■ Processing Messages with WSO2 ESB

63

On the other hand, placeOrder is a one-way operation, where you send the order
details but do not expect a response from the service other than a status response
from backend service (such as 202—Accepted in HTTP). Therefore placeOrder uses
asynchronous messaging exchange pattern, which is illustrated in Figure 4-3.

Figure 4-3.  The web service client sends the placeOrder request and doesn’t wait for a
response message. When the request is received by ESB, it sends a status message (HTTP
202 Accepted) to acknowledge the receipt of the message but not a response message. Then
ESB queues the message and completes the asynchronous message flow.

The implementation of the placeOrder asynchronous messaging scenario with
WSO2 ESB is shown in the Listing 4-2. Here we have again used a proxy service and the
placeOrder request is sent to the JMS queue via the call mediator by specifying the JMS
endpoint address. But unlike with the synchronous messaging scenario, you don’t need
to send a response back to the client, but a status message acknowledging the receipt of
the placeOrder request. For that, you can use a property (or a flag) FORCE_SC_ACCEPTED to
indicate that the mediation flow should send the client a status message with HTTP 202
Accepted so that the client stops waiting for a response.

Now you have notified the client, and you can proceed with the placeOrder request.
But prior to sending the placeOrder request, you need to specify another property/flag to
indicate the message flow that you are doing a message exchange that initiates from ESB
and goes out (but no response is accepted). This is done using the OUT_ONLY property,
which indicates to ESB message flow that once the message is sent to the JMS queue, it
should not wait for a response.

Listing 4-2.  One-way messaging

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="OrderManagerProxy"
 transports="https http"
 startOnLoad="true"
 trace="disable">
 <description/>
 <target>
 <inSequence> <!-- [1] -->
 �<property name="FORCE_SC_ACCEPTED" value="tru�e" scope="axis2"/>

<!-- [2] -->

Chapter 4 ■ Processing Messages with WSO2 ESB

64

 <property name="OUT_ONLY" value="true"/> <!-- [3] -->
 <call>
 <endpoint> <!-- [4] -->
 �<address uri="jms:/StockQuotesQueue?transport.jms.Con

nectionFactoryJNDIName=QueueConnectionFactory&ja
va.naming.factory.initial=org.wso2.andes.jndi.Properti
esFileInitialContextFactory&java.naming.provider.
url=repository/conf/jndi.properties&transport.jms.
DestinationType=queue"/>

 </endpoint>
 </call>
 </inSequence>
 </target>
</proxy>
[1] Request is processed in the in-sequence of the proxy service.
[2] this indicates the ESB that it should immediately send back a HTTP 202
Accepted status to the client, once it receives the message.
[3] Indicates the ESB that the outbound messaging is one way and no need to
wait for a response.
[4] Sending to the JMS endpoint with the use of the call mediator.

When you are building enterprise integration scenarios with WSO2 ESB, the initial
task is to identify that whether you need a synchronous or asynchronous message
exchange pattern. Therefore identifying the message exchange pattern and building
the basic message flow will be the first step of any integration scenario. Once you have
implemented the required message exchange pattern, you can proceed with other
business requirements such filtering, transformations, and so on and so forth.

Message Filtering and Switching
In most of the enterprise integration solutions, based on the message attributes (headers,
content) you need to apply certain message processing logics. For example, consider
the same financial service scenario. As shown in Figure 4-4, suppose that the financial
organization wants to serve getQuote requests with a specific quote name/symbol and
reject all other requests.

Chapter 4 ■ Processing Messages with WSO2 ESB

65

You can implement this by using a filter inside the request message flow of WSO2
ESB. As you can observe in Figure 4-4, the incoming request is in SOAP format. Therefore
we need to write our logic so that we can filter a given SOAP message with the specified
quote name. The request message format is shown in Listing 4-3.

Listing 4-3.  Request Message Format

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ser="http://services.samples" xmlns:xsd="http://services.samples/xsd">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:getQuote>
 <ser:request>
 <xsd:symbol>WSO2</xsd:symbol>
 </ser:request>
 </ser:getQuote>
 </soapenv:Body>
</soapenv:Envelope>

In WSO2 ESB, a message filter can be configured using the filter mediator and
you can check for the specified message content using XPath (http://www.w3.org/TR/
xpath20/) and a regular expression.

Listing 4-4.  Implementing a Filtering Scenario with a Filter Mediator

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="MessageFilterProxy_4.3"
 transports="https http"
 startOnLoad="true"
 trace="disable">
 <description/>
 <target>
 <inSequence>
 <filter <!-- [1] -->

Figure 4-4.  Filter mediator can be used to filtering getQuote request with XPath and
process the request only if the message contains WSO2 as the symbol. If it doesn’t it logs a
log message and sends a fault response back to the client.

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

Chapter 4 ■ Processing Messages with WSO2 ESB

66

source="//ser:getQuote/ser:request/xsd:symbol" <!-- [2] -->
regex="WSO2*" <!-- [3] -->
xmlns:ser="http://services.samples" <!-- [4] -->
xmlns:xsd="http://services.samples/xsd">
 <then> <!-- [5] -->
 <log level="custom"> <!-- [6] -->
 <property
name="MessageFlowInfo"
value="Filter condition satisfied"/>
 </log>
 <call> <!-- [7] -->
 <endpoint>
 <address
 uri="http://127.0.0.1:9000/services/SimpleStockQuoteService"/>
 </endpoint>
 </call>
 <respond/> <!-- [8] -->
 </then>
 <else> <!-- [9] -->
 <log level="custom"> <!-- [10] -->
 <property name="MessageFlowInfo"
value="Filter condition NOT satisfied."/>
 </log>
 �<makefault xmlns="http://ws.apache.org/ns/synapse"

<!-- [11] -->
 version="soap11">
 <code
xmlns:soap11Env="http://schemas.xmlsoap.org/soap/envelope/"
value="soap11Env:Client" />
 <reason value="Unsupported company name." />
 </makefault>
 <respond/> <!-- [12] -->
 </else>
 </filter>
 </inSequence>
 </target>
</proxy>
[1] Filter incoming message based on the content of the message.
[2] Select required element from the request message that should be used for
filtering the message.
[3] matches the selected value with a given regular expression
[4] Namespaces used in request message that are required for evaluating the
message.
[5] If the filtering condition is satisfied, then it goes to this message
processing logic.
[6] Print a custom log message.
[7] Sending message to the backend service.
[8] Response is received at this point and respond back to the client.

Chapter 4 ■ Processing Messages with WSO2 ESB

67

[9] If the condition specified in the filter mediator is not satisfied, then
this message logic will be executed.
[10] log a custom log message.
[11] creating a SOAP fault with fault mediator. (Either you can use Fault
mediator or Payload factory to create your own custom error response)
[12] Respond back the fault message back to the client.

The full configuration of the implementation of the financial service-filtering
scenario is shown in Listing 4-4. In the filter mediator configuration, you can specify the
source attribute, which is the expression to locate the value that matches the regular
expression that you can define with the regex attribute. Therefore any request that has
the symbol name WSO2 will be sent to the backend service and any other request will be
rejected. The fault response will then be sent back to the client.

Message Filtering
As you have seen in the message filtering scenario, the filter mediator is used to filter
messages based on various conditions such as content of the message and message
headers or based on any other variable (or property) that is defined in the message flow.
Filter mediator is based on the generic programming language concept of an if-then-else
statement.

The generic syntax of a filter mediator is shown in Listing 4-5.

Listing 4-5.  Filter Mediator Syntax

<filter
 (source="[XPath|json-eval(JSONPath)]"
 regex="string") | xpath="[XPath|json-eval(JSONPath)]">
 mediator+
</filter>

Filter mediators can be configured either to use the source and regex combination
(as you have seen in the financial service example) or use the xpath attribute to look for
the presence of a given element. With both source and xpath expressions, you can use
XPath or JSONPath expressions.

Message Switching
Unlike filter mediator, the switch mediator can have a number of possible execution
paths. For example, supposed that the financial service wants to selectively serve the
getQuote requests for companies WSO2 and XYZ and drop all the other requests. But
unlike with the filter use case, assume that the request is coming from a mobile client and
hence it is in JSON message format. Therefore, you need to use a switch mediator and you
can select the value for the switch expression using JSONPath (https://code.google.
com/p/json-path/) as the incoming message format is JSON. Suppose that incoming
JSON message has the same format.

https://code.google.com/p/json-path/
https://code.google.com/p/json-path/

Chapter 4 ■ Processing Messages with WSO2 ESB

68

{
 "getFinancialQuote": { "company": "WSO2" }
}

The Listing 4-6, shows the complete configuration of this use case.

Listing 4-6.  Using Switch Mediator for Message Switching

<api xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteAPI"
 context="/StockQuoteAPI">
 <resource methods="POST">
 <inSequence>
 �<switch source="json-eval($.getFinancialQuote.company)">

<!-- [1] -->
 <case regex="WSO2"> <!-- [2] -->
 <sequence key="StockQuoteReqSeq"/>
 <log level="custom">
 <property name="MessageFlowInfo"
value="== WSO2 Company =="/>
 </log>
 <respond/>
 </case>
 <case regex="XYZ"> <!-- [3] -->
 <sequence key="StockQuoteReqSeq"/>
 <log level="custom">
 <property name="MessageFlowInfo"
value="== XYZ Company =="/>
 </log>
 <respond/>
 </case>
 <default> <!-- [4] -->
 <log level="custom">
 <property name="MessageFlowInfo"
value="Filter condition NOT satisfied."/>
 </log>
 <drop/>
 </default>
 </switch>

 </inSequence>
 </resource>
</api>

<sequence xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteReqSeq"> <!-- [5] -->
 <payloadFactory media-type="xml"> <!-- [6] -->
 <format>
 <soapenv:Envelope

Chapter 4 ■ Processing Messages with WSO2 ESB

69

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ser="http://services.samples">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:getSimpleQuote>
 <ser:symbol>$1</ser:symbol>
 </ser:getSimpleQuote>
 </soapenv:Body>
 </soapenv:Envelope>
 </format>
 <args>
 <arg evaluator="json"
expression="$.getFinancialQuote.company"/>
 </args>
 </payloadFactory>
 <header name="Action" value="urn:getSimpleQuote"/>
 <call>
 <endpoint>
 <address
uri="http://localhost:9000/services/SimpleStockQuoteService"
 format="soap11"/>
 </endpoint>
 </call>
 <property name="messageType"
 value="application/json"
 scope="axis2"
 type="STRING"/>
</sequence>
 [1] Message switch source JSONPath expression, which will be evaluated
against the incoming message and the resulting string will be used to match
with cases.
[2] matching case for WSO2 company name with the message mediation logic.
[3] matching case for XYZ company name with the message mediation logic.
[4] default message path for messages that doesn’t match with above cases.
[5] the invocation of the web service backend service is delegated to a
sequence and sequence is called from case conditions of WSO2 and XYZ.
[6] PayloadFactory mediator is used to create the payload required to invoke
the backend service. (We will further discuss about the PayloadFactory
mediator in the rest of this chapter)

As you have seen in Listing 4-6, the switch mediator can be used to implement a
message switching logic for either SOAP or JSON messages. The generic syntax of the
switch mediator is shown in Listing 4-7.

Chapter 4 ■ Processing Messages with WSO2 ESB

70

Listing 4-7.  Switch Mediator Syntax

<switch source="[XPath|json-eval(JSON Path)]">
 <case regex="string">
 mediator+
 </case>+
 <default>
 mediator+
 </default>?
</switch>

You can evaluate the message using XPath or JSONPath and then do the case
matching using regular expressions. Each case condition can have its own message
processing logic (sequences) and you can configure a default message processing path if
the message doesn’t meet any of the specified switch case conditions.

■■ Note  Message filtering/switching can be implemented based on message attributes
(such as message headers/transport headers) or message content. As explained at the
beginning of the chapter, based on the message logic that you write, ESB will decide
whether it needs to look at the message content or filter/switch the message.

Message Transformations
When you have two systems that are communicating about the same entity but with
different message representations/formats, you need a message transformation layer in
between the two systems. For example, assume that there is a financial organization that
has a web service that provides the stock quote information for a given company name.
The request getQuote message format that you need to invoke for the financial service is
shown in Listing 4-8.

Listing 4-8.  The getQuote Request Message Format

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ser="http://services.samples" xmlns:xsd="http://services.samples/xsd">
 <soapenv:Body>
 <ser:getQuote>
 <ser:request>
 <xsd:symbol>WSO2</xsd:symbol>
 </ser:request>
 </ser:getQuote>
 </soapenv:Body>
</soapenv:Envelope>

But the client who wants to consume that service is using a different message format
and you won’t be able to change, so that they use the same message format as the service.
The client’s checkStockQuote message format is shown in Listing 4-9.

Chapter 4 ■ Processing Messages with WSO2 ESB

71

Listing 4-9.  The checkStockQuote Request Message Format

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <checkStockQuote>
 <company>WSO2</company>
 </checkStockQuote>
 </soapenv:Body>
</soapenv:Envelope>

Therefore, in order for this particular web service client to consume the web
service of the financial service, there needs to be a message format transformation from
checkStockQuote to getStockQuote message formats. As depicted in Figure 4-5, WSO2
ESB can be used to serve this requirement and you can implement a message transformer
inside the message processing logic.

Figure 4-5.  Message transformer/translators in WSO2 ESB can be used to convert the
incoming checkStockQuote request to getQuote request

There are several ways to use message transformation/translation in WSO2 ESB.
These are the most commonly used message transformation techniques and when you
should select the specific message translation technique.

•	 Using payload factory mediator: One-to-one mapping between
two disparate messages.

•	 Using a combination of For-Each and the payload factory
mediator: Transformation requires to have an iteration of a simple
message transformation logic.

•	 Using XSLT mediator: No one-to-one mapping and message
transformation requires complex data mapping and
computations.

•	 Using an enrich mediator to enrich a given message with some
external message content.

•	 Using a header mediator: Adds and removes transport headers
and SOAP message headers.

Let’s try to dive deep into each of the message transforming techniques and find out
how to pick the most appropriate one for your needs.

Chapter 4 ■ Processing Messages with WSO2 ESB

72

Using PayloadFactory Mediator
The message transformation scenario that we discussed in Figure 4-4 requires us to
transform the message checkStockQuote to the getQuote request. If you observe the
message formats in Listing 4-8 and 4-9, you can simply transform the checkStockQuote to
getQuote by changing the XML element’s name of the checkQuote request. Therefore it is
a one-to-one message translation scenario and, as shown in Figure 4-6, for such scenarios
you can use PayloadFactory mediator of WSO2 ESB.

Figure 4-6.  One-to-one message transformations with payload to convert the incoming
checkStockQuote request to a getQuote request

In the PayloadFactory mediator, you can specify a message template of the
getQuote message format inside a sequence and fill that template with the message
attributes, such as company name for the checkStockQuote request. The related WSO2
ESB configuration is found in Listing 4-10.

Listing 4-10.  One-to-One Message Transformation with the PayloadFactory Mediator

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="MessageTransformer_PF_Proxy_4.5"
 transports="https http"
 startOnLoad="true"
 trace="disable">
 <description/>
 <target>
 <inSequence>
 <payloadFactory media-type="xml"> <!-- [1] -->
 <format> <!-- [2] -->
 <soapenv:Envelope
 �xmlns:soapenv="http://schemas.xmlsoap.org/soap/

envelope/"
 xmlns:xsd="http://services.samples/xsd"
 xmlns:ser="http://services.samples">
 <soapenv:Body>
 <ser:getQuote>
 <ser:request>
 <xsd:symbol>$1</xsd:symbol> <!-- [3] -->
 </ser:request>

Chapter 4 ■ Processing Messages with WSO2 ESB

73

 </ser:getQuote>
 </soapenv:Body>
 </soapenv:Envelope>
 </format>
 <args> <!-- [4] -->
 <arg
 �expression="//checkStockQuote/company"

evaluator="xml"/> #E
 </args>
 </payloadFactory>
 <call> <!-- [5] -->
 <endpoint>
 <address
 �uri="http://127.0.0.1:9000/services/

SimpleStockQuoteService"/>
 </endpoint>
 </call>
 <respond/> <!-- [6] -->
 </inSequence>
 </target>
</proxy>
[1] Specifying the media type of the result message template of the payload
factory as XML.
[2] You can provide the template/skeleton of the result message format.
[3] Specifying the arguments of the result message format.
[4] List of arguments of the values that should change dynamically.
[5] Populate the argument value dynamically from the incoming message of the
PayloadFactory mediator.
[6] Once the message is transformed, it is send to the backend service
[7] sending the response back to the client without doing any
transformation.

Therefore, the PayloadFactory mediator can be used to transform or replace the
contents of a message. The general syntax of the PayloadFactory mediator is shown in
Listing 4-11. The media-type of the message format can be either XML or JSON. Each
argument in the mediator configuration can be a static value, or you can specify an XPath
or JSONPath expression to get the value at runtime by evaluating the provided expression
against the existing SOAP message. You can configure the format of the request or
response and map it to the arguments provided.

Listing 4-11.  PayloadFactory Mediator Syntax

<payloadFactory media-type="xml | json">
 <format ../>
 <args>
 <arg (value="string"|expression="{xpath}|{json_path}"
 evaluator="xml |json")/>*
 </args>
</payloadFactory>

Chapter 4 ■ Processing Messages with WSO2 ESB

74

The PayloadFactory mediator is commonly used in many transformation scenarios
where you just have one-to-one mapping between disparate messages.

Using PayloadFactory and For-Each Mediator
In some message transformation scenarios, a given message can have repetitive message
elements and you need to transform each occurrence of that element. For example,
assume that there is a web service that provides the weather forecast of a given location
(specified by a ZIP/postal code). The response contains a detailed list of the weather
forecast for seven days. Now you need to refine or transform this response so that you
only send the summary of the weather forecast for each day. As shown in Figure 4-7, you
can use the WSO2 ESB layer to implement this transformation use case.

Figure 4-7.  The response from the WeatherDataProvider web service contains a repetitive
list of detailed weather forecast. ESB needs to transform that response to a summarized list
of weather forecasts. A combination of For-Each and the PayloadFactory mediator is used
for that purpose.

Listing 4-12 shows the sample response message format of the WeatherData provider
web service for a GetCityForecastByZIP request.

Listing 4-12.  Response from the WeatherData Web Service

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetCityForecastByZIPResponse xmlns="http://ws.cdyne.com/WeatherWS/">
 <GetCityForecastByZIPResult>
 <Success>true</Success>
 <ResponseText>City Found</ResponseText>
 <State>FL</State>
 <City>Lake Mary</City>
 <WeatherStationCity>Sanford</WeatherStationCity>
 <ForecastResult>
 <Forecast>
 <Date>2014-08-18T00:00:00</Date>

Chapter 4 ■ Processing Messages with WSO2 ESB

75

 <WeatherID>2</WeatherID>
 <Description>Partly Cloudy</Desciption>
 <Temperatures>
 <MorningLow/>
 <DaytimeHigh>96</DaytimeHigh>
 </Temperatures>
 <ProbabilityOfPrecipiation>
 <Nighttime/>
 <Daytime>30</Daytime>
 </ProbabilityOfPrecipiation>
 </Forecast>
 <Forecast>
 <Date>2015-06-18T00:00:00</Date>
 <WeatherID>3</WeatherID>
 <Description> Cloudy</Description>
 <Temperatures>
 <MorningLow/>
 <DaytimeHigh>86</DaytimeHigh>
 </Temperatures>
 <ProbabilityOfPrecipiation>
 <Nighttime/>
 <Daytime>20</Daytime>
 </ProbabilityOfPrecipiation>
 </Forecast> <!-- [1] -->

 ...
 </ForecastResult>
 </GetCityForecastByZIPResult>
 </GetCityForecastByZIPResponse>
 </soap:Body>
</soap:Envelope>
[1] Forecast element repeats for multiple times to denote weekly forecast.

You need to transform this weather data response to the message format shown in
Listing 4-13. There you can observe that the list of forecasts has to be transformed into
DailyForecast and only a selected set of elements should be in the final response.

Listing 4-13.  Response Message Format of the Summarized Weather Data

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <GetCityForecastByZIPResponse xmlns="http://ws.cdyne.com/WeatherWS/">
 <GetCityForecastByZIPResult>
 <Success>true</Success>
 <ResponseText>City Found</ResponseText>

Chapter 4 ■ Processing Messages with WSO2 ESB

76

 <State>FL</State>
 <City>Lake Mary</City>
 <WeatherStationCity>Sanford</WeatherStationCity>
 <ForecastResult>
 <DailyForecast> <!-- [1] -->
 <Date>2014-08-18T00:00:00</Date> <!-- [2] -->
 <WeatherID>2</WeatherID>
 <Desciption>Partly Cloudy</Desciption>
 </DailyForecast>
 ...
 </ForecastResult>
 </GetCityForecastByZIPResult>
 </GetCityForecastByZIPResponse>
 </soap:Body>
</soap:Envelope>
[A] DailyForecast element repeats for multiple times.
[B] From each forecast element for a given day, only few elements are
selected and others ignored.

If you observe a repeating element of the backend service response (Listing 4-12)
that has transformed into the summarized weather data response (Listing 4-13), the
transformation between a given elements can be achieved with PayloadFactory. That
logic needs to be repeated for the number of elements that you have in the original
response from the backend service. For this purpose, you can use the For-Each mediator
of WSO2 ESB.

The For-Each mediator is capable of executing a message flow repeatedly a
specific number of times. You can define an XPath expression in the For-Each mediator
configuration where it refers to the element that is repeating in the given message.
Listing 4-14 shows the entire WSO2 ESB configuration for the implementation of the
WeatherData integration scenario.

Listing 4-14.  Transforming a Message with Repeated Elements with the For-Each and
PayloadFactory Mediators

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="WeatherProxy"
 transports="https http"
 startOnLoad="true"
 trace="disable">
 <description/>
 <target>
 <inSequence>
 <call> <!-- [1] -->
 <endpoint>
 �<address uri="http://wsf.cdyne.com/WeatherWS/

Weather.asmx"/>
 </endpoint>
 </call>

Chapter 4 ■ Processing Messages with WSO2 ESB

77

 <log level="full"/> <!-- [2] -->
 <foreach <!-- [3] -->
 �xmlns:wh="http://ws.cdyne.com/

WeatherWS/"
 expression="//wh:Forecast"> <!-- [4] -->
 <sequence> <!-- [5] -->
 <payloadFactory media-type="xml"> <!-- [6] -->
 <format>
 <DailyForecast
 �xmlns="http://ws.cdyne.

com/WeatherWS/">
 <Date>$1</Date>
 <WeatherID>$2</WeatherID>
 <Desciption>$3</Desciption>
 </DailyForecast>
 </format>
 <args>
 <arg evaluator="xml"
 �expression="//

wh:Date"/>
 <arg evaluator="xml"
 �expression="//

wh:WeatherID"/>
 <arg evaluator="xml"
 �expression="//

wh:Description"/>
 </args>
 </payloadFactory>
 </sequence>
 </foreach>
 <log level="full"/> <!-- [7] -->
 <respond/> <!-- [8] -->
 </inSequence>
 </target>
</proxy>
[1] Sending request to the backend service.
[2] Log the complete response received from the backend service
[3] ForEach mediator to iterate through the message for each element
specified by the for-each expression.
[4] XPath expression that refers to the repeating element of the message.
[5] During each foreach iteration the specified sequence implementation is
invoked.
[6] PayloadFactory is doing the message transformation for each occurrence
of the repeating element.
[7] Logging the transformed response.
[8] Responding the backend service.

Chapter 4 ■ Processing Messages with WSO2 ESB

78

As you can observe in Listing 4-14, the primary purpose of the For-Each mediator is
to iterate through a list of elements and the actual transformation is one for each portion
of the message using a PayloadFactory mediator. The general syntax of the For-Each
mediator is shown in Listing 4-15.

Listing 4-15.  For-Each Mediator Syntax

<foreach expression="{xpath}">
 <sequence>
 ...
 </sequence>
</foreach>

Therefore, the For-Each mediator can be used for any integration use case where
you need to use a for-each loop in the message flow.

Data Mapper Mediator
One of the most common requirements of ESB integration scenarios is to transform
messages from one format to the other. This can be done using various technologies but
rapid development of enterprise integration scenarios require a visual modeling tool
that allows you to graphically map the different data formats. WSO2 ESB provides a data
mapper (as a mediator) that you can use inside the ESB graphical editor. With the data
mapper, you can provide the input message format and expected output message format
and do the visual data mapping between the two message formats. The details of how to
use the data mapper is covered in Chapter 10.

Using XSLT Mediator
In some of the integration scenarios, the message transformation logic is not one-to-one
or cannot be implemented with simple For-Each and payload factory combinations. For
example, consider a financial service provider that provides the stock quote information
of a company for the last year or so. As illustrated in Figure 4-8, the fullQuote response
contains all the data. But the client only needs the stock quote information from the
last 10 days with a different response message format (latestQuote). You can use the
XSLT mediator to implement this in WSO2 ESB. To transform the getLatestQuote
request to getFullQuoteRequest, you have to use the PayloadFacotry mediator, as the
transformation is a simple one-to-one transformation.

http://dx.doi.org/10.1007/978-1-4842-2343-7_10

Chapter 4 ■ Processing Messages with WSO2 ESB

79

The main task of this integration scenario is to implement the message
transformation logic using XSLT. XSLT is a message transformation language created
for XML and there are numerous functionalities available for doing complex message
transformations. Discussing the details of XSLT is not in the scope of this book. Listing
4-16 shows an XSLT that transforms the fullQuote response as per the aforementioned
requirements.

Listing 4-16.  XSLT for Transforming the getFullQuote Message to the latestQuote
Message

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ns="http://services.samples"
 xmlns:ax21="http://services.samples/xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 exclude-result-prefixes="ns ax21 xsi">
 <xsl:output method="xml" omit-xml-declaration="yes" indent="yes"/>

 <xsl:template match="/"> <!-- [1] -->
 <xsl:apply-templates select="//ns:getFullQuoteResponse/ns:return"/>
 </xsl:template>

 <xsl:template match="ns:return"> <!-- [2] -->
 <latestQuote>
 <xsl:for-each select="ax21:tradeHistory"> <!-- [3] -->
 <xsl:choose>
 <xsl:when test="ax21:day > 354"> <!-- [4] -->
 <tradeInfo>
 <day><xsl:value-of select="ax21:day"/></day>#E
 <quote>
 �<companyName><xsl:value-of

select="ax21:quote/ax21:name"/>
</companyName> <!-- [5] -->

 �<earnings><xsl:value-of
select="ax21:quote/ax21:earnings"/></
earnings>

Figure 4-8.  WSO2 ESB uses an XSLT transformation to identify the most recent (last 10
days) stock quotes and transform the message so that it only contains the recent
stock quote information

Chapter 4 ■ Processing Messages with WSO2 ESB

80

 </quote>
 </tradeInfo>
 </xsl:when>
 <xsl:otherwise>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 </latestQuote >
 </xsl:template>
</xsl:stylesheet>
[1] Template that matches the whole document/payload.
[2] Template that matches the ns:return element of the payload.
[3] Apply the transformation for each tradeHistory element
[4]Condition to select the latest stock quote values. (last 10 days)
[5] Select values from the original payload when we create the new payload.

You store this XSLT in ESB as a resource by adding it to the configuration as a local
entry. Then, as shown in Listing 4-17, you can simply refer the XSLT in the response path
of the message.

Listing 4-17.  Complex Message Transformations with the XSLT Mediator

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="MessageTransformer_PF_Proxy_4.5"
 transports="https http"
 startOnLoad="true"
 trace="disable">
 <description/>
 <target>
 <inSequence>
 <call>
 <endpoint>
 <address uri="http://127.0.0.1:9000/services/
SimpleStockQuoteService"/>
 </endpoint>
 </call>
 <xslt key="latestQuoteSelector"/> <!-- [1] -->
 <respond/>
 </inSequence>
 </target>
</proxy>
[1] XSLT mediator is used in the response path and it uses the above
latestQuoteSelector XSLT configuration which is stored as a local entry.

The general syntax of the XSLT mediator configuration is shown in Listing 4-18. In
addition to the functionalities that you have seen, you can pass properties to the XSLT
transformation so that those property values will be used in message transformation.

Chapter 4 ■ Processing Messages with WSO2 ESB

81

Listing 4-18.  XSLT Mediator Syntax

<xslt key="string" [source="xpath"]>
 <property name="string" (value="literal" | expression="xpath")/>*
 <feature name="string" value="true| false" />*
 <resource location="string" key="string"/>*
</xslt>

With XSLT, you can implement almost any complex message transformation logic.

Using the Header Mediator
When transforming messages, sometimes you need to manipulate message headers (add,
remove, or modify) without touching the message content. For example, in the financial
service scenario, assume that the backend service requires consumers to send a custom
HTTP header (X-STOCK-EX-API-APP-ID) to be present in every request to serve them
successfully. But the web service client is not aware of that and, as illustrated in Figure 4-9,
the ESB needs to take care of adding the missing HTTP header to the message.

Figure 4-9.  Header mediator is used to add the missing custom HTTP headers into the
message

Listing 4-19 shows a simple example where we add a custom HTTP header using
the header mediator. You can use the header mediator to specify the name of the header
and its value. As we want to set this as a transport header, you need to specify the scope
as transport. Then place it prior to sending the message out using the call mediator. The
message that goes out to the specified backend service in the call mediator endpoint will
contain the specified transport header.

Listing 4-19.  Header Mediator Can Be Used to Add a HTTP Header into the Outgoing
Message

<header name="X-STOCK-EX-API-APP-ID"
value="WSO2" scope="transport"/> <!-- [1] -->
<call>
 <endpoint>

Chapter 4 ■ Processing Messages with WSO2 ESB

82

 �<address uri="http://127.0.0.1:9000/services/
SimpleStockQuoteService"/>

 </endpoint>
</call>
[1] By using header mediator you can specify the name of the header as
“X-STOCK-EX-API-APP-ID” and its value as “WSO2”.

The header mediator in WSO2 ESB can be used to add or remove message headers.
You can add SOAP headers and transport header (HTTP) using the header mediator. Also
if you want to remove any existing message headers, you can do so by setting the action to
remove. The syntax of the header mediator is shown in Listing 4-19.

Listing 4-20.  Header Mediator Syntax

<header name="string"
 (value="string|{property}" |
 expression="xpath") [scope=default|transport]
[action=set|remove]/>

The default scope allows you to set the headers as SOAP message headers while
transport scope allows you to set transport headers using the header mediator.

Message Enriching
When implementing integration scenarios, there are instances where you need to enrich
a message with some additional data. For example, assume that there is a financial
service that allows you to place stock orders (placeOrder requests). The client is sending
a placeDefaultOrder request with only the price and the symbol, but the quantity of the
stock quote is missing, as it’s the default order. The value required for the default value of
the placeOrder request is stored in ESB configuration and, as shown in Figure 4-10, the
ESB layer can add that missing quantity element with the default quantity for the order.
Then the ESB can send the placeOrder request to the backend service. This scenario
is similar to a message transformation scenario, but we only modify a selected portion
of the message. Therefore, this is considered a special case of message transformation,
which is known as message enriching.

Figure 4-10.  Enrich mediator can be used to enrich the defaultOrder request with the
missing order quantity and to create the placeOrder request. The value required to create the
default order is stored in ESB and it is added to the message during the message enrichment.

Chapter 4 ■ Processing Messages with WSO2 ESB

83

Listing 4-20 shows the complete configuration of the integration scenario that we
discussed in Figure 4-9. You can use the enrich mediator to specify the element that you
are going to use for enriching. This is specified under the source element in the enrich
mediator configuration. As the source, you can specify any inline content or you can
select it from a local or registry entry. The target element is used to specify the place that
the enriching source element should be added.

Listing 4-20.  Enriching defaultOrder with Missing Quantity Element Using the Enrich
Mediator

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="MessageEnrichProxy_4.9"
 transports="https http"
 startOnLoad="true"
 trace="disable">
 <description/>
 <target>
 <inSequence>
 <log level="full"/>
 <enrich>
 <source type="inline"> <!-- [1] -->
 <xsd:quantity
 �xmlns:xsd="http://services.

samples/xsd">19
 </xsd:quantity>
 </source>
 <target action="child" <!-- [2] -->
 xmlns:ser="http://services.samples"
 xmlns:xsd="http://services.samples/xsd"
 xpath="//ser:placeOrder/ser:order"/> <!-- [3] -->
 </enrich>

<property name="FORCE_SC_ACCEPTED" value="true" scope="axis2"/>
 <property name="OUT_ONLY" value="true"/>
 <call>
 <endpoint>
 �<address uri="jms:/StockQuotesQueue?transport.jms.Con

nectionFactoryJNDIName=QueueConnectionFactory&ja
va.naming.factory.initial=org.wso2.andes.jndi.Properti
esFileInitialContextFactory&java.naming.provider.
url=repository/conf/jndi.properties&transport.jms.
DestinationType=queue"/>

 </endpoint>
 </call>

 <log level="full"/>
 <call>
 <endpoint>

Chapter 4 ■ Processing Messages with WSO2 ESB

84

 <address
 �uri="http://127.0.0.1:9000/services/

SimpleStockQuoteService"/>
 </endpoint>
 </call>
 <respond/>
 </inSequence>
 </target>
</proxy>
[1] Specify the element that you want to enrich into the message as the
source of enrich mediator.
[2] Configure target as the child of the target XPath
[3] Specify the XPath expression to the location that you want to enrich the
new element.

The general syntax of the enrich mediator is shown in Listing 4-21. The primary
purpose of the enrich mediator is to enrich (add content or modify/replace the existing
content) the inflight message with the content specified in the source. In addition to
enriching content into the message, you can use the enrich mediator to extract content
from the message and store it as in-memory message properties for use in the down-
stream message flow. Therefore, the enrich mediator can be used to preserve a given
message as a property at some point in the message flow and later refer that message
again (using envelope or body attributes).

Listing 4-21.  Enrich Mediator Syntax

<enrich>
 <source [clone=true|false]
 [type=custom|envelope|body|property|inline]
 xpath="" property="" />
 <target
[action=replace|child|sibiling] [type=custom|envelope|body|property|inline]
xpath="" property="" />
</enrich>

For integration scenarios where you only need to modify a given part or add a
new content to the message, you can choose enrich mediator over any transformation
mediators.

Message Validation
The validation of the messages against a given message format/schema is a common
integration requirement. For example, assume that we have a financial service that
provides stock quote information and the information that we got for a particular stock
quote request needs to be verified against a predefined schema. As shown in Figure 4-11,
in the response message path of the ESB, you can use a validate mediator to validate the
message against a given schema. Since the backend service sends a SOAP message as the

Chapter 4 ■ Processing Messages with WSO2 ESB

85

stockQuote response message, you can specify an XML schema (http://www.w3.org/
XML/Schema) to validate the incoming response message format.

Figure 4-11.  Validating the getQuoteResponse message against the XML schema

Listing 4-22 shows the complete configuration of the proxy service for the message
validation integration scenario. When the message validation fails, there is an on-fail
condition where you can specify invalid message handling logic.

Listing 4-22.  Using the Validate Mediator to Schema Validation of the getQuoteResponse

<proxy name="StockQuoteProxy" startOnLoad="true">
 <target>
 <inSequence>
 <log level="full"/>
 <call>
 <endpoint key="GetQuote"/>
 </call>
 <log level="full"/>
 <validate> <!-- [1] -->
 <schema key="response-validate"/>
 <on-fail>
 <makefault version="soap11">
 <code
 �xmlns:tns="http://www.w3.org/2003/05/

soap-envelope"
 value="tns:Receiver"/>
 <reason
 �value="Invalid Response!!!. Validation

failed..."/>
 </makefault>
 </on-fail>
 </validate>
 <respond/>
 </inSequence>
 </target>
 </proxy>

http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

Chapter 4 ■ Processing Messages with WSO2 ESB

86

 <localEntry key="response-validate"> <!-- [2] -->
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="getQuoteResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="return">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 �<xs:element name="currentPrice"

type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 </localEntry>
 <endpoint name="GetQuote">
 <address uri="http://localhost:9500/simple/stock/quote/service"/>
 </endpoint>
[1] Call validate mediator to do schema validation of the response message.
[2] The local entry that contains the XML schema.

The general syntax of the validate mediator is shown in Listing 4-23. The primary
use of validate mediator is to do schema validation of messages. The validate mediator
validates the result of the evaluation of the source XPath expression against the schema
specified. If the source attribute is not specified, the validation is performed against the
first child of the SOAP body of the current message. If the validation fails, the on-fail
sequence of mediators is executed. Properties could be used to turn some of the features
of the validator on/off.

Listing 4-23.  Validate Mediator Syntax

<validate [source="xpath"]>
 <property name="validation-feature-id"
value="true|false"/>*
 <schema key="string"/>+
 <on-fail>
 mediator+
 </on-fail>
 </validate>

The usage of the validate mediator is limited to the validation of SOAP/XML
messages.

Chapter 4 ■ Processing Messages with WSO2 ESB

87

Service Orchestration
When you are building an IT solution out of the existing systems/services, you need to
use the business functionalities offered by each service/system. Therefore, at the ESB
layer, you need to implement a message processing logic that can call and combine the
results of multiple services/systems and expose that as an aggregated service. That is
known as service orchestration. It’s defined as the coordination and arrangement of
multiple services/systems exposed as a single aggregate service.

There are multiple service orchestration patterns used in the enterprise integration
space.

•	 Service chaining pattern: Expose a service that is calling multiple
services one after the other and sending back the final response.

•	 Split and aggregate pattern: Expose a service that splits the
incoming messages into multiple subrequests and sends them to
a backend service in parallel. Then aggregate the responses for
each request and send them back to the client as an aggregated
response.

•	 Clone and aggregate pattern: Expose a service that clones the
incoming messages into multiple messages and sends them
to multiple backend services in parallel. Then aggregate the
responses for each request and send them back to the client as an
aggregated response.

Service Chaining
Service chaining is about exposing a service that can, behind the scenes, call multiple
backend services sequentially and facilitate the business requirements of the client. For
example, assume that there is an ATM locator service that allows you to find the nearby
ATMs of the specified bank for your current geolocation (longitude and latitude). As
illustrated in Figure 4-12, the input that you are providing to the service is longitude,
latitude, and the name of the bank that you are searching ATMs for. But, there is no such
banking service that you could provide these details out of box. Instead, there are three
different services that you can use to implement this business use case.

Chapter 4 ■ Processing Messages with WSO2 ESB

88

As illustrated in Figure 4-12, you need to:

•	 Invoke GetLocationToPostalcode service, with longitude and
latitude to get the postal code of your geolocation.

•	 Once you have the postal code, you can invoke the
PostalcodeToATMLocator service with postal code and bank
name. As the response, you get the geolocation of the ATM that
matches the given postal code and bank name (for simplicity,
assume it’s only returning one ATM).

•	 Then you can invoke the GeoLocationToAddress service with the
longitude and latitude of the ATM to get its exact address.

Therefore you can discover that this is a service chaining scenario where you
need to call services sequentially to implement the ATM locator service. When you are
implementing this scenario with WSO2 ESB, you need to use some of the mediators
that you learned in the previous sections of this chapter. For creating the request that
needs to be sent to the backend services, we used the PayloadFactory mediator.
ATMLocatorService is implemented as a proxy service and all the service chaining logic
is carried out in the in-sequence of the proxy service. Call mediators and endpoints are
used to send the requests to backend services. The complete configuration of the ATM
locator service-chaining scenario is shown in the Listing 4-24.

Figure 4-12.  WSO2 ESB exposes the ATM locator proxy service to the clients and that
proxy service calls multiple backend services to find the address of a nearby ATM

Chapter 4 ■ Processing Messages with WSO2 ESB

89

Listing 4-24.  Configuration of the ATMLocator Service-Chaining Scenario

<proxy name="ATMLocatorService"
 transports="https http"
 startOnLoad="true"
 trace="disable">
 <target>
 <inSequence>
 <property xmlns:ser="http://www.wso2.esb.sample"
 name="Bank"
 expression="//ser:getNearestATM/ser:bank"
 scope="default"
 type="STRING"/> <!-- [1] -->
 <property xmlns:ser="http://www.wso2.esb.sample"
 name="Latitude"
 �expression="//ser:getNearestATM/ser:myLocation/

ser:lat"
 scope="default"
 type="STRING"/>
 <property xmlns:ser="http://www.wso2.esb.sample"
 name="Longitude"
 �expression="//ser:getNearestATM/ser:myLocation/

ser:lon"
 scope="default"
 type="STRING"/>

 �<payloadFactory media-type="xml" description="GeoLocation to
PostalCode Service"> <!-- [2] -->

 <format>
 �<ser:getPostalCode xmlns:ser=

"http://service.esb.wso2.com">
 <ser:lat>$1</ser:lat>
 <ser:lon>$2</ser:lon>
 </ser:getPostalCode>
 </format>
 <args>
 <arg evaluator="xml" expression="$ctx:Latitude"/>
 <arg evaluator="xml" expression="$ctx:Longitude"/>
 </args>
 </payloadFactory>
 <header name="Action" value="urn:getPostalCode"/> <!-- [3] -->
 <call> <!-- [4] -->
 <endpoint key="GetPostalCode-EP"/>
 </call>
 �<payloadFactory media-type="xml" description="PostalCode to

BankATM Service"> <!-- [5] -->
 <format>
 �<ser:getATMLocations xmlns:ser=

"http://service.esb.wso2.com">

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ Processing Messages with WSO2 ESB

90

 <ser:areaCode>$1</ser:areaCode>
 <ser:customerLocation>$2</ser:customerLocation>
 <ser:Bank>$3</ser:Bank>
 </ser:getATMLocations>
 </format>
 <args>
 <arg xmlns:ser="http://service.esb.wso2.com"
 evaluator="xml"
 expression="//ser:code"/>
 <arg evaluator="xml"
 �expression="fn:concat($ctx:Latitude,',',

$ctx:Longitude)"/>
 <arg evaluator="xml" expression="$ctx:Bank"/>
 </args>
 </payloadFactory>
 <header name="Action" value="urn:getATMLocations"/>
 <call> <!-- [6] -->
 <endpoint key="GetBankATM-EP"/>
 </call>
 �<payloadFactory media-type="xml" description="PostalCode to

BankATM Service"> <!-- [7] -->
 <format>
 �<ser:getAddressFromGeoLocation xmlns:ser="http://

service.esb.wso2.com">
 <ser:location>$1</ser:location>
 </ser:getAddressFromGeoLocation>
 </format>
 <args>
 <arg xmlns:ser="http://service.esb.wso2.com"
 evaluator="xml"
 expression="//ser:coordinates"/>
 </args>
 </payloadFactory>
 <header name="Action" value="urn:getAddressFromGeoLocation"/>
 <call> <!-- [8] -->
 <endpoint key="GetAddress-EP"/>
 </call>
 <respond/> <!-- [9] -->
 </inSequence>
 </target>
</proxy>
[1] Extract the required values from the incoming message and save them into
properties.
[2] Create payload that need to be sent to GeoLocationToPostalCode service
[3] Set the required SOAPAction header using Header mediator.
[4] Sending request to first service.

Chapter 4 ■ Processing Messages with WSO2 ESB

91

[5] Extract the required parameters from the GeoLocationToPostalCode’s
response and create the payload to be sent to PostalCodeToATMLocator
service.
[6] Sending request to second service.
[7] Create payload to be sent to third service.
[8] Sending request to third service.
[9] Sending back the final response to the client.

As you can see in Listing 4-24, the primary constructs of building a service-chaining
scenario are the message transformation mediators, call/response mediators, and other
utility mediators such as property mediators (which will be discussed in detail in the next
section). Using this single sequence model (unlike using send mediator with in-sequence
and out-sequence), you can implement relatively complex service chaining scenarios
with ease.

Split and Aggregate Pattern
There are service orchestration scenarios where you need to split the incoming message
into multiple parts (for example, based on repeating elements) and send them to one
or more backend services in parallel. Then you have to aggregate the response from all
those service and process the aggregated response. Let’s consider another variation of
the financial service that we discussed before. Assume that there is a financial service
that allows you to send a stock quote request for more than one company. That means
you can send a list of getQuote elements inside a single request (say getMultipleQuote
request) and the ESB layer has to split them into getQuote requests and send them
in parallel to the specified backend service/s. As shown in Figure 4-13, for splitting
the messages you can use the iterate mediator. Once the ESB sends the request to the
backend service, it keeps on receiving responses. You can use the aggregate mediator to
aggregate all those responses and send the aggregated response back to the client.

Figure 4-13.  WSO2 ESB receives a multipleQuoteRequest with repeating getQuote
requests. ESB splits the multipleQuoteRequest into getQuote requests using the iterate
mediator and sends them in parallel to the backend service. Once the responses for every
request has arrived, the aggregated response (using aggregate mediator) is sent back to the
client.

Chapter 4 ■ Processing Messages with WSO2 ESB

92

As shown in Listing 4-25, MultiStockquoteProvider proxy accepts the
getMultipleQuote request and the iterate mediator splits the messages into multiple
messages and sends them in parallel to the Stockquote backend service. The aggregated
mediator used after the iterate mediator waits until it get responses for all the requests
that it sent out (with the default configuration, if the iterate mediator splits five messages,
then aggregate will wait for five responses).

Listing 4-25.  Message Splitting and Aggregation with Iterate and Aggregate Mediators

<proxy name="StockQuoteProxy" startOnLoad="true">
 <target>
 <inSequence>
 <iterate xmlns:m0="http://services.samples"
 preservePayload="true"
 �expression="//m0:getQuote/m0:request"

<!-- [1] -->
 attachPath="//m0:getQuote"> <!-- [2] -->
 <target>
 <sequence> <!-- [3] -->
<call>
 <endpoint>
 <address
uri="http://localhost:9000/services/SimpleStockQuoteService"/>
 </endpoint>
 </call>

 </sequence>
 </target>
 </iterate>

<aggregate> <!-- [4] -->
 <completeCondition>
 <messageCount min="3" max="-1"/>
 </completeCondition>
 <onComplete
xmlns:ns="http://services.samples"
 expression="//ns:getQuoteResponse"> <!-- [5] -->
 <respond/> <!-- [6] -->
 </onComplete>
</aggregate>
 </inSequence>
</proxy>
[1] XPath expression to split the message in to multiple chunks.
[2] specify to which part of the original message that the spilt message
should be attached.
[3] This sequence is called for each iteration/split message
[4] Aggregate mediator waits till all the responses get aggregated.

Chapter 4 ■ Processing Messages with WSO2 ESB

93

[5] The messages that match the specified expression are only considered for
aggregation.
[6] Once the aggregation is completed, the aggregated response is sent back
to the client.

The general syntax of the iterate mediator is shown in Listing 4-26. The iterate
mediator splits the message into a number of different messages derived from the
parent message by finding matching elements for the XPath expression specified. New
messages are created for every matching element and processed in parallel (default
behavior) using either the specified sequence or endpoint. Created messages can also be
processed sequentially by setting the optional sequential attribute to true. The original
message can be continued or dropped depending on the Boolean value of the optional
continueParent attribute.

Listing 4-26.  Iterate Mediator Syntax

<iterate expression="xpath" (attachPath="xpath")?
 [sequential=(true | false)]
 [continueParent=(true | false)]
 [id="string"]
 [preservePayload=(true | false)] >
 <target>
 <sequence>
 (mediator)+
 </sequence>?
 </target>+
</iterate>

The preservePayload attribute specifies if the original message should be used as
a template when creating the split messages and defaults to false, in which case the split
messages would contain the split elements as the SOAP body. The optional ID attribute
can be used to identify the iterator that created a particular split message when nested
iterate mediators are used. This is particularly useful when aggregating responses of
messages that are created using nested iterate mediators.

The general syntax of the aggregate mediator is shown in Listing 4-27. The aggregate
mediator aggregates the response messages for messages that were split by the iterate
mediator (or clone) and sent using the call (or send) mediator.

Listing 4-27.  Aggregate Mediator Syntax

<aggregate [id="string"]>
 <onComplete expression="xpath" [sequence="sequence-ref"]>
 (mediator +)?
 </onComplete>
 <completeCondition [timeout="time-in-seconds"]>
 <messageCount min="int-min" max="int-max"/>?
 </completeCondition>?
 <correlateOn expression="xpath"/>?
</aggregate>

Chapter 4 ■ Processing Messages with WSO2 ESB

94

The aggregation expression specifies which elements should be aggregated. You can
also define a completeCondition for determining the completion of aggregation. If no
such condition is provided, the aggregation will be completed once the responses for all
the split request (or cloned) are received.

The ID optional attribute can be used to aggregate only responses for split messages
that are created by a specific clone/iterate mediator. Aggregate ID should be the same
as the ID of the corresponding clone/iterate mediator that creates split messages. This
is particularly useful when aggregating responses for messages that are created using
nested clone/iterate mediators.

Clone and Aggregate Pattern
Unlike in the iterate-aggregate pattern, in the clone-aggregate pattern, the same request is
cloned into multiple messages and sent to one or more endpoints. You can use an aggregate
mediator to aggregate the responses for all the cloned requests that you sent. By default,
the cloning of messages is executed in parallel but you can control the behavior using the
sequential=true|false attribute. For example, consider a travel information provider
(find.airfare.com) that provides its clients information about the airfare between two
locations on a specified date. As shown in Figure 4-14, find.airfare.com needs to get the
travel information from multiple services hosted by three different airlines. Therefore, when
you get an getAirfare request, that request should be cloned and sent to multiple endpoints.
Later you can aggregate the response received from these endpoints into one message.

Figure 4-14.  WSO2 ESB clones the get airfare requests and sends them to different airlines.
Once all the responses from airline web services are received, it aggregates all the responses
and sends back the data to the web service client.

In Listing 4-28, you can find the entire message flow configuration for this integration
scenario. There are three clone mediators used for sending the cloned requests to the
backend services. The clone targets are completely independent of each other and
executed in parallel with the default configuration. Therefore, once you clone the
message you can do any modification to the message inside the clone target.

Chapter 4 ■ Processing Messages with WSO2 ESB

95

Listing 4-28.  Cloning Messages and Aggregating Responses

<proxy name="AirTicktingQuoteProxy" startOnLoad="true">
 <target>
 <inSequence>
 <log level="full"/>
 <clone> <!-- [1] -->
 <target> <!-- [2] -->
 <sequence>
 <call>
 <endpoint key="SriLankanAirLines"/>
 </call>
 </sequence>
 </target>
 <target>
 <sequence>
 <call>
 <endpoint key="QatarAirways"/>
 </call>
 </sequence>
 </target>
 <target>
 <sequence>
 <call>
 <endpoint key="EtihadAirways"/>
 </call>
 </sequence>
 </target>
 </clone>
 <aggregate> <!-- [3] -->
 <completeCondition>
 <messageCount min="3" max="-1"/>
 </completeCondition>
 �<onComplete xmlns:esb=http://esb.wso2.com expression=

"//esb:getPriceResponse">
 <log level="full"/>
 <respond/>
 </onComplete>
 </aggregate>
 </inSequence>
 </target>
 </proxy>
 <endpoint name="QatarAirways">
 <address uri="http://localhost:9600/QatarAirways/ticketing/service"/>
 </endpoint>
 <endpoint name="EtihadAirways">
 <address uri="http://localhost:9700/EtihadAirways/ticketing/service"/>
 </endpoint>

Chapter 4 ■ Processing Messages with WSO2 ESB

96

 <endpoint name="SriLankanAirLines">
 <address uri="http://localhost:9500/SriLankanAirLines/ticketing/
service"/>
 </endpoint>
[1] Using clone mediator to clone the message flow into identical messages.
[2] Each clone target is executed in parallel and independent threads and
clone messages can be processing using all the generic mediation techniques.
[3] one the responses for all the cloned requests are received, the final
response is aggregated and sent back to the client.

The general syntax of the clone mediator is shown in Listing 4-29. The clone
mediator can be used to clone a message into several messages. The original cloned
message can be continued or dropped depending on the Boolean value of the optional
continueParent attribute.

Listing 4-29.  Clone Mediator Syntax

<clone [continueParent=(true | false)]
[id="string"]
[sequential="true | false"]>
 <target [sequence="sequence_ref"]>
 <sequence>
 (mediator)+
 </sequence>?
 </target>+
</clone>

As with the iterate mediator, you can specify an ID for the clone mediator and
correlate that with an aggregate mediator.

Changing the Message Protocol and Format
When building real-world IT solutions the integration between disparate technologies
and protocols is vital. The messaging protocols such as HTTP, JMS, File, and so on are
widely used in enterprise IT and if you have to integrate such protocols, you can use
WSO2 ESB. Similarly, conversion between disparate message formats such as JSON and
SOAP is also quite common in modern enterprises.

Protocol Conversions
Protocol conversion is extensively used in modern enterprise integration use cases. For
example, consider a shipping order processing system in which the shipping orders are
created in the form of files and they are added to a FTP server. Now you want to fetch
these shipping orders, process them, and persist them in a JMS queue to be processed
from another system. Figure 4-15 illustrates the implementation of the protocol
conversion from File/FTP to JMS with the use of WSO2 ESB.

Chapter 4 ■ Processing Messages with WSO2 ESB

97

Listing 4-30 shows the WSO2 ESB configuration for the realization of the protocol
conversion scenario between FTP and JMS.

Listing 4-30.  Processing Orders Stored in Files and Persist Them in a JMS Broker

<inboundEndpoint xmlns=http://ws.apache.org/ns/synapse
name="ShippingOrderProcessor" <!-- [1] -->
sequence="orderProcessingSeq" <!-- [2] -->
onError="fault"
protocol="file" suspend="false">
 <parameters>
 <parameter name="interval">1000</parameter>
 <parameter name="sequential">true</parameter>
 <parameter name="coordination">true</parameter>
 <parameter name="transport.vfs.ActionAfterProcess">MOVE</parameter>
 <parameter name="transport.PollInterval">10</parameter>
 <parameter
name="transport.vfs.MoveAfterProcess">file:///home/user/test/out
 </parameter>
 �<parameter name="transport.vfs.FileURI">file:///home/user/test/in

</parameter>
 �<parameter name="transport.vfs.MoveAfterFailure">file:///home/user/

test/failed</parameter>
 <parameter name="transport.vfs.FileNamePattern">.*.txt</parameter>
 <parameter name="transport.vfs.ContentType">text/plain</parameter>
 <parameter name="transport.vfs.ActionAfterFailure">MOVE</parameter>
 </parameters>
</inboundEndpoint>

<sequence name="ShippingOrderProcessor"> <!-- [3] -->
<property name="OUT_ONLY" value="true"/>
 <call> <!-- [4] -->
 <endpoint>

Figure 4-15.  Fetching the shipping orders stored in the FTP by using a file inbound
endpoint, processing them, and then adding them to message queue via JMS protocol

Chapter 4 ■ Processing Messages with WSO2 ESB

98

 �<address uri="jms:/StockQuotesQueue?transport.jms.Connecti
onFactoryJNDIName=QueueConnectionFactory&java.naming.
factory.initial=org.wso2.andes.jndi.PropertiesFileInitialCont
extFactory&java.naming.provider.url=repository/conf/jndi.
properties&transport.jms.DestinationType=queue"/>

 </endpoint>
 </call>
</sequence>
[1] The file inbound endpoint polls the file system to get the available
files.
[2] The file content is processed and injected into the specified sequence.
[3] This sequence is invoked from the file inbound endpoint as there are new
files available in the file system
[4] Process the content of the file and add them to a JMS broker by sending
the messages to a JMS endpoint.

WSO2 ESB offers support for a wide range of protocols, including HTTP, JMS, FILE,
TCP, SAP, and so on. The details of handling commonly used protocols will be discussed
in the latter part of the book.

Message Format Conversions
Similar to handling disparate protocols, you need to integrate two or systems, which
are using disparate, message formats. For example, assume that you need to integrate
a banking system, which is using the POX (Plain Old XML) message format over HTTP
protocol and a mobile client, which is using JSON over HTTP protocol. As shown in
Figure 4-16, you can do one-to-one conversion from JSON to POX by specifying the
endpoint format as POX.

Figure 4-16.  The mobile client sends a JSON request and ESB takes care of transforming
that request to the XML (PoX) message format and sending it to the legacy banking system

Listing 4-31 shows the complete ESB configuration of the message format conversion
from JSON to POX. Therefore, by specifying the endpoint format, you can do message
format conversions of SOAP 1.1/1.2 and POX.

Chapter 4 ■ Processing Messages with WSO2 ESB

99

Listing 4-31.  JSON to POX Message Conversion

<<api xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteInfoProvider"
 context="/StockQuoteInfo">
 <resource methods="POST">
 <inSequence>
 <payloadFactory media-type="xml"> <!-- [1] -->
 <format>
<getSimpleQuote>
 <symbol>$1</symbol>
 </ getSimpleQuote>

 </format>
 <args>
 �<arg evaluator="json" expression="$.getFinancialQuote.

company"/>
 </args>
 </payloadFactory>
 <call>
 <endpoint> <!-- [2] -->
 <address
uri="http://localhost:9000/services/SimpleStockQuoteService"
 format="pox"/>
 </endpoint>
 </call>
 <property name="messageType"
 value="application/json"
 scope="axis2"
 type="STRING"/>
 <respond/>
 </inSequence>
 </resource>
</api>
[1] Using PayloadFactory to transform the message into the POX format
[2] specify at endpoint level that you need to send a POX message out from
the ESB.

But for some message format conversions, you need to set the flag messageType
by specifying a property just before sending the message out. As shown in Listing 4-32,
you can change the outgoing message format (i.e., the HTTP Content-Type) using the
messageType property.

Chapter 4 ■ Processing Messages with WSO2 ESB

100

Listing 4-32.  Using the messageType Flag to Convert the Message to a Different Message
Format

<payloadFactory media-type="json">
 <format>{ "pizza": { "name": "$1", "price": $2, "topping":
$3}}</format>
 <args>
 <arg evaluator="xml" expression="//pizza/name"/>
 <arg evaluator="xml" expression="//pizza/price"/>
 <arg evaluator="json" expression="pizza.toppings.topping"/>
 </args>
</payloadFactory>
<property name="messageType" value="application/json" scope="axis2"/>
<!-- [1] -->
<call> ...
[1] Since messageType flag is set. The outbound message will get converted
to a JSON.

So, far we discussed one-to-one message format conversions. But in many use
cases, the message format conversion is not a simple one-to-one conversion (which
we can achieve using messageType flag or the endpoint format attribute). For complex
message format conversion use cases that involve SOAP/XML/JSON, you can use the
message transformation techniques such as PayloadFactory, XSLT, and Enrich, along
with messageType flag. For other message format conversions, you need to first convert
all the message formats into the canonical form (by default, WSO2 ESB converts all
message types other than JSON into canonical SOAP message format) and then do the
transformation followed by the messageType flag for the required message format. You
will further learn about the complex message format transformations in the ESB use case
chapter.

Using Properties in the Message Flow
When implementing ESB message flow configurations, you may have to preserve some
attribute of the message in a variable to be reused in down-stream message processing
components. For example, in the financial service scenario, you might want to extract the
company names and save those values to be used in the latter part of the message flow.
For this purpose, you can use properties in WSO2 ESB message flow. There are two main
usages of properties in WSO2 ESB—set/retrieve variables in the message flow and use of
predefined properties to control the message flow.

Set/Retrieve Variables in the Message Flow
You can set properties in the message that is currently flowing through the sequence
using the property mediator. You can also specify the scope when you define a property
and scope is used to process messages at different layers when sending messages out
from ESB.

Chapter 4 ■ Processing Messages with WSO2 ESB

101

•	 default: All the user-defined properties reside in this scope. The
properties defined in this scope are available throughout the
entire message flow.

•	 transport: This is primarily used to retrieve/alter transport
headers.

•	 axis2: There are predefined properties to control the message
flow (discussed in the next section).

•	 operation: The properties defined in this scope are shared
between the threads of clone or iterate mediators.

•	 registry: The properties are defined and persisted in the ESB’s
registry.

•	 system: Set Java system properties.

Listing 4-33 shows setting properties in the message flow.

Listing 4-33.  Using the Property Mediator in the Mediation Flow

<property xmlns:ser="http://www.wso2.esb.sample"
 name="Bank"
 expression="//ser:getNearestATM/ser:bank"
 scope="default"
 type="STRING"
 action="set"/>
<log level="custom">
 <property name="symbol" expression="$ctx:Bank"
</log>

<property name="symbol" value="FOO"/>
..
<log level="custom">
 <property name="symbol" expression="$ctx:Bank"
</log>

Any property that you define in the default scope can be retrieved using
$ctx:<property_name> prefix, in any place that you want to use an expression (in
any mediator such as Filter, Switch, Enrich, PayloadFactory, or log). You can retrieve
properties from different scopes with the following shortcuts:

•	 $ctx: Default scope

•	 $axis2: axis2 scope

•	 $trp: Transport scope

•	 $operation: Operation scope

•	 $registry: Registry scope

•	 $system: System scope

Chapter 4 ■ Processing Messages with WSO2 ESB

102

The property mediator can be used with the XPath or JSONPath expressions. When
retrieving properties, you can also use the XPath extension get-property('<scope>'
'propertyName'), but it is recommended to use the aforementioned shortcuts for
optimum performance.

Use Predefined Properties to Control Message Flow
You can use the predefined properties in WSO2 ESB to control the message flow. For
example, as you have seen in the implementation of the one-way messaging use case, you
can use <property name="OUT_ONLY" value="true"/> to indicate to the message flow
that you are doing one-way messaging. Likewise, predefined message properties from
various message scopes are used for message flow controlling. You can refer them in the
property catalog of WSO2 ESB at http://docs.wso2.com/enterprise-service-bus/
Generic+Properties.

Summary
In this chapter you learned:

•	 The implementation techniques of request-response and one-
way message scenarios with WSO2 ESB.

•	 Message filtering (based on message attributes) can be done
using using the filter and switch mediators.

•	 For transforming one message to another, you can primarily use
PayloadFactory, For-Each/Payload Factory, or XSLT mediators.

•	 The PayloadFacotry mediator is suited for one-to-one message
transformation scenario where there is no complex message
structure such as repeating elements.

•	 If you want to repeatedly transform the message with one-to-one
mapping between elements, you can use the For-Each mediator
along with PayloadFactory.

•	 The XSLT mediator is more suited for complex message
transformations where you need to do complex mapping and
computations in the transformation logic.

•	 To enrich content into a message, which is currently processed by
the ESB, you can use the enrich mediator.

•	 The validated mediator can be used to validate a given message or
a part of it against an XML schema.

•	 Service orchestration support in WSO2 ESB can be categorized
into three main areas—service chaining, split and aggregate, and
clone and aggregate.

http://docs.wso2.com/enterprise-service-bus/Generic+Properties
http://docs.wso2.com/enterprise-service-bus/Generic+Properties

Chapter 4 ■ Processing Messages with WSO2 ESB

103

•	 In service chaining, a given set of services is called one after the
other. The response attribute from one service may be used in the
next service invocation.

•	 The call mediator based single sequence model can be easily
used to implement complex service chaining use cases.

•	 Split-aggregate messaging pattern can be implemented with
iterate and aggregate mediators where messages are split into
multiple parts. Each split message is executed in an independent
thread, which are processed in parallel.

•	 The aggregate mediator can be used to aggregate the responses
that you get once you iterate and send messages out.

•	 The clone-aggregate pattern is similar to the split-aggregate, but
in this case the same message is cloned into multiple messages.
You process them independently and in parallel.

•	 In the protocol conversion, messages from a given wire protocol
are converted into messages of a different protocol. The inbound
and outbound endpoint (with transport senders).

•	 Message format conversion is supported by the use of the
messageType property with other message-transforming
mediators.

•	 The properties in WSO2 ESB can be used to store/preserve
variables and to use the predefined message properties to control
the message flow.

105© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_5

CHAPTER 5

Integrating SOAP and
RESTful Web Services

The success of the modern software solutions rely on how easily a given functionality can
be exposed to the rest of the software applications and to which extent they can reuse
the already implemented functionalities from other systems when building new software
solutions. Web Services is the most widely used technology, and it allows the software
application to interact over the world wide web (WWW). Web Services are widely
implemented using two commonly used approaches, namely SOAP (Simple Object
Access Protocol) and REST (Representational State Transfer).

Understanding SOAP and RESTful Web Services
SOAP is a standard-based web service access protocol that defines a standard
communication protocol specification for XML-based message exchange. The other
related specifications such as WSDL (Web Services Description Language) allow you to
define a SOAP-based web service with the functionalities (operations) offered from the
services and the required message formats. For example, consider a banking software
solution that offers a SOAP-based web service to manage bank accounts, namely
AccountManagementSOAPService (see Figure 5-1).

Chapter 5 ■ Integrating SOAP and RESTful Web Services

106

As depicted in Figure 5-1, this SOAP service offers four main functionalities—add
account, update account, retrieve account, and delete account. These functionalities
are implemented as operations of the AccountManagementSOAPService and they can
be invoked with the respective SOAP message payload, which is sent to the web service
endpoint URL. The sample message formats for those operations are listed in Listing
5-1. SOAP specification itself doesn’t restrict the SOAP service to a single protocol such
as HTTP, but in most cases, SOAP web services are exposed over HTTP. As per the SOAP
1.1 specification, with HTTP protocol, the SOAPAction HTTP request header field can be
used to indicate the intent of the SOAP HTTP request.

Listing 5-1.  Message Formats for Invoking Operations of
AccountManagementSOAPService

<!-- Create Account -->
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xyzbank="http://xyz.com">
 <soapenv:Body>
 <xyzbank:addAccount>
 <xyzbank:fullName>FF FDF</xyzbank:fullName>d
 <xyzbank:dob>22-10-1987</xyzbank:dob>
 <xyzbank:ssn>3223434</xyzbank:ssn>
 <xyzbank:initialAmount>USD 10</xyzbank:initialAmount>
 </xyzbank:addAccount>
 </soapenv:Body>
</soapenv:Envelope>

Figure 5-1.  The AccountManagementSOAPService exposes a SOAP web service over
HTTP which allows the external parties to create, retrieve, modify, and delete accounts.
Available operations, message formats, and service endpoint addresses are described in
AccountmanagementService.wsdl.

Chapter 5 ■ Integrating SOAP and RESTful Web Services

107

<!-- Read Account -->
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xyzbank="http://xyz.com">
 <soapenv:Body>
 <xyzbank:getAccount>
 <xyzbank:accountNo>123456789</xyzbank:accountNo>
 </xyzbank:getAccount>
 </soapenv:Body>
</soapenv:Envelope>

<!-- Update Account -->
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xyzbank="http://xyz.com">
 <soapenv:Body>
 <xyzbank:updateAccount>
 <xyzbank:accountNo></xyzbank:accountNo>
 <xyzbank:fullName>FF FDF</xyzbank:fullName>
 <xyzbank:dob>22-10-1987</xyzbank:dob>
 <xyzbank:ssn>3223434</xyzbank:ssn>
 <xyzbank:initialAmount>USD 10</xyzbank:initialAmount>
 </xyzbank:updateAccount>
 </soapenv:Body>
</soapenv:Envelope>

<!-- Delete Account -->
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xyzbank="http://xyz.com">
 <soapenv:Body>
 <xyzbank:deleteAccount>
 <xyzbank:accountNo></xyzbank:accountNo>
 </xyzbank:deleteAccount>
 </soapenv:Body>
</soapenv:Envelope>

SOAP was initially widely adopted as the de facto standard for realizing web services,
but has inherent drawbacks such as complexity of the protocol and related specifications.
There are two main SOAP versions that are used in SOAP-based web services, namely
SOAP 1.1 and 1.2. WSO2 ESB supports both versions and you can switch between each
version seamlessly.

REST has emerged as a solution that is seeking to overcome the limitations of SOAP.
REST describes a set of architectural principles by which data can be transmitted over the
Internet (for instance, using HTTP). Unlike SOAP, REST does not define any constraints
on the message format but focuses on design rules for the service. A client can access the
resource using the unique URI and a representation of the resource is returned. While
accessing RESTful resources with the HTTP protocol, the URL of the resource serves
as the resource identifier and GET, PUT, DELETE, POST, and HEAD are the standard HTTP
operations to be performed on that resource.

Chapter 5 ■ Integrating SOAP and RESTful Web Services

108

To understand the concept of the application of REST architecture, let’s try to
implement the same banking software solution’s web service using the REST architecture.
As depicted in Figure 5-2, you need to identify the resource and the respective operations
that can take place on that resource. The account is the resource that can be identified
by the URI http://www.xyz.com/rest/accountmanagement/account. The HTTP verbs
POST, GET, PUT, and DELETE can be used to implement the account creation, retrieval,
modification, and deletion, respectively.

Figure 5-2.  AccountManagementRESTService exposes a web service that’s based on REST
architecture

You can define all the four operations that are related to account management, as
shown in Listing 5-2. For account creation, you can use an HTTP POST request along with
the message payload that is required to create an account. The message format that can
be used is not restricted in REST but often JSON or XML is used in REST web services. As
the response, the service can return a reference such as an account ID, which can later be
used to retrieve data using a GET request. A PUT request can be used to modify an existing
account and the new content should be sent along with the request. An account can be
deleted with a DELETE request, which is sent to the respective URI.

Listing 5-2.  AccountManagementRESTService Operations

Create Account:
POST : http://www.xyz.com/rest/accountmanagement/account
Content-Type: application/json
{
 "Account": {
 "fullName": "FF FDF",
 "dob": "22-10-1987",
 "ssn": "3223434",
 "initialAmount": "USD 10"
}

http://www.xyz.com/rest/accountmanagement/account

Chapter 5 ■ Integrating SOAP and RESTful Web Services

109

Retrieve Account
GET : http://www.xyz.com/rest/accountmanagement/account/12345678

Modify Account
PUT : http://www.xyz.com/rest/accountmanagement/account/12345678
Content-Type: application/json
{
 "Account": {
 "id": "12345678"
 "fullName": "FF FDF",
 "dob": "22-10-1987",
 "ssn": "3223434",
 "initialAmount": "USD 10"
}

Delete Account
DELETE : http://www.xyz.com/rest/accountmanagement/account/12345678

In the context of an ESB, you must use ESB for integrating SOAP and/or REST web
services. ESB has to talk to SOAP and REST services and expose SOAP or REST interfaces
on top of the existing non-SOAP/non-REST based services/systems. Therefore, we can
identify several use cases related to how you can use ESB in solving SOAP and REST web
service integration problems. This chapter mainly focuses on addressing those use cases
and how they can be implemented using WSO2 ESB.

Integrating SOAP Web Services
Integrating SOAP web services with WSO2 ESB is primarily about exposing SOAP web
services at the ESB layer or invoking backend SOAP web services. In this section, you
learn about several integration use cases related to SOAP based web services.

Exposing a SOAP Web Service Interface from WSO2 ESB
Exposing a SOAP web service interface at the ESB layer on behalf of existing backend
services and systems is one of the most widely used use cases with an ESB.

Exposing a SOAP Web Service in Front of a Legacy Non-SOAP
(PoX) Based Service
For example, assume that there is a baking software system that exposes a legacy account
management web application, and it allows the external system to add, update, retrieve,
and delete bank accounts by sending XML messages (POX) to it. But the bank wants to
expose this legacy web application as a standard SOAP web service with a proper service
description (WSDL).

Chapter 5 ■ Integrating SOAP and RESTful Web Services

110

As you learned in Chapter 4, the standard approach to expose a SOAP web
service interface from WSO2 ESB is to use a proxy service. In addition, you need to
create a service description for WSDL to be exposed to external parties. Based on the
required operations and the required message format, we can come up with a WSDL
(AccountManagementService.wsdl) (creating WSDLs is not covered in the scope of this
book, as this is a generic SOAP web service related topic). Then, as depicted in Figure 5-3,
we could create proxy service AccountManagementService and publish the created WSDL
via the proxy service.

Figure 5-3.  Exposing a SOAP web service interface at the ESB layer using a proxy service
on top of a legacy POX-based web application

The web service client can determine the available operations, message format, and
service endpoint by processing the WSDL of AccountManagementService. The request
can be in SOAP 1.1 or 1.2 formats. Since the backend service accepts the PoX message
format with application/xml Content-Type, you can set the outgoing message format
of the endpoint to format=”pox”. Here, we have assumed that there is a one-to-one
mapping between the incoming SOAP message format and the outgoing XML (PoX)
message format. Hence, we can simply set the outgoing message format of the endpoint
as pox. However, in scenarios where there is no such mapping, we would need to use the
message transformation techniques discussed in Chapter 4. Listing 5-3 shows the sample
configuration of the AccountManagementService.

Listing 5-3.  Proxy Service to Expose a SOAP Web Service Legacy XML (POX)-Based
AccountManagementWebApp

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="AccountManagementService" <!-- [1] -->
 transports="http" <!-- [2] -->

http://dx.doi.org/10.1007/978-1-4842-2343-7_4
http://dx.doi.org/10.1007/978-1-4842-2343-7_4

Chapter 5 ■ Integrating SOAP and RESTful Web Services

111

 startOnLoad="true"
 trace="disable">
 <description/>
 <publishWSDL key="gov:/AccountManagementService.wsdl" /> <!-- [3] -->
 <target>
 <inSequence> <!-- [4] -->
 <log level="full"/> <!-- [5] -->
 <call>
 <endpoint
 <address
uri="http://localhost:6060/services/AccountManagementWebApp"
 format="pox"/>
 </endpoint>
 </call>
 < log level="full"/> <!-- [6] -->
 <respond/>
 </inSequence>
 </target>
</proxy>
[1] Proxy service name exposed as a part of the URL of the proxy service.
[2] Proxy service is exposed on HTTP transport so request can be sent only
via HTTP transport.
[3] You can specify the service contract (WSDL) that should be exposed to
the external client.
[4] Using in-sequence as the message-processing unit.
[5] Request message-processing logic.
[6] Response message-processing logic.

Exposing a SOAP Web Service with WS-Addressing
In addition to exposing a SOAP web service, there can be a requirement to enable Web
Service Addressing (WS-Addressing) for a given SOAP web service interface. The main
reason for using WS-Addressing is that SOAP does not provide a standard way to specify
the destination of a message, where to return a response, or where to report an error. In
the absence of WS-Addressing, that is pretty much handled at the transport level (for
example using HTTP headers), but it’s not sufficient in certain use cases.

For example, as shown in Listing 5-4, with WS-Addressing you can specify addressing
information such as MessageID, To, Action, ReplyTo, FaultTo, and so on in the SOAP
envelope. The request is delivered to the To URI. The Action URI indicates the action
to be taken. (The Action URI should represent a service corresponding to a WSDL port
type.) As the name implies, ReplyTo and FaultTo simply specify the reply and fault-
handling locations.

Chapter 5 ■ Integrating SOAP and RESTful Web Services

112

Listing 5-4.  Using WS-Addressing in AccountManagementService

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xyzbank="http://xyz.com"
 xmlns:wsa="http://www.w3.org/2004/12/addressing">
 <soapenv:Header>
 <wsa:MessageID>http://xyz.com/1234567</wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address>http://xyz.com/WSClient</wsa:Address>
 </wsa:ReplyTo>
 <wsa:FaultTo>
 <wsa:Address>http://xyz.com/FaultHandler</wsa:Address>
 </wsa:FaultTo>
 �<wsa:To>http://esb.prod.com:8280/services/AccoutManagementService

</wsa:To>

 <wsa:Action>http://xyz.com/AddAccount</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <xyzbank:addAccount>
 <xyzbank:fullName>Foo Bar</xyzbank:fullName>
 <xyzbank:dob>22-10-1987</xyzbank:dob>
 <xyzbank:ssn>3223434</xyzbank:ssn>
 <xyzbank:initialAmount>USD 10</xyzbank:initialAmount>
 </xyzbank:addAccount>
 </soapenv:Body>
</soapenv:Envelope>

As depicted in Figure 5-4, if the AccountManagementService requires having the
WS-Addressing support, then we can enable WS-Addressing at the ESB proxy service
level.

Chapter 5 ■ Integrating SOAP and RESTful Web Services

113

You can simply enable WS-Addressing at the proxy service level by adding a service
parameter to the proxy service, as shown in Listing 5-5.

Listing 5-5.  Using WS-Addressing in AccountManagementService Proxy Service

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="AccountManagementService"
 transports="http"
 startOnLoad="true"
 trace="disable">
 <description/>
 <publishWSDL key="gov:/AccountManagementService.wsdl" />
 <target>
 <inSequence>
 <log level="full"/>
 <call>
 <endpoint
 <address
uri="http://localhost:6060/services/AccountManagementWebApp"
 format="pox"/>
 </endpoint>
 </call>
 < log level="full"/>
 <respond/>
 </inSequence>
 </target>

Figure 5-4.  Enabling WS-Addressing for a proxy service exposed from ESB

Chapter 5 ■ Integrating SOAP and RESTful Web Services

114

 <parameter name="enforceWSAddressing">true</parameter> <!-- [1] -->
</proxy>
[1] Enabling WS-Addressing for the proxy service by specifying the
enforceWSAddressing service parameter

Therefore, all the requests coming into AccountManagementService will be served
with the compliancy with WS-Addressing.

Exposing a SOAP 1.2 Web Service on Top of a SOAP 1.1 Web
Service
In the context of SOAP web services, there are two flavors of SOAP message formats,
namely SOAP 1.1 and SOAP 1.2. The integration between disparate types of SOAP
services is often a common integration problem. For example, suppose that we have
a financial service that provides StockQuotes for a given company name, and it’s
implemented as a SOAP 1.1 web service. But there is a client application that only
supports SOAP 1.2 and it wants to consume the StockQuote service. For that scenario,
you can use WSO2 ESB as depicted in Figure 5-5.

Figure 5-5.  Integrating a SOAP 1.2-compliant client and a SOAP 1.1 backend service

In this scenario, the request message format sent in the SOAP 1.2 format and the
request that is expected by StockQuoteService are also different (not just the SOAP
version, but the message format of the SOAP body). Therefore, as shown in Listing 5-6,
you need to do the message format transformation (from the checkQuote request to
the getQuote request) as well as SOAP 1.2 to SOAP 1.1 conversion. You can convert the
existing message format to either SOAP 1.1 or SOAP 1.2 by specifying the endpoint format
as format=”soap11” | “soap12”.

Chapter 5 ■ Integrating SOAP and RESTful Web Services

115

Listing 5-6.  Proxy Service Configuration to Transform the Request Message and Convert
the Message from SOAP 1.2 to SOAP 1.1 Format

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteProvider"
 transports="https,http"
 statistics="disable"
 trace="disable"
 startOnLoad="true">
 <target>
 <inSequence>
 <log level="custom">
 <property name="FLW" value="=== Service Invoked =="/>
 </log>
 <payloadFactory media-type="xml"> <!-- [1] -->
 <format>
 <soap:Envelope
 �xmlns:soap="http://www.w3.org/2003/05/soap-

envelope"
 xmlns:xsd="http://services.samples/xsd"
 xmlns:ser="http://services.samples">
 <soap:Header/>
 <soap:Body>
 <ser:getQuote>
 <ser:request>
 <xsd:symbol>$1</xsd:symbol>
 </ser:request>
 </ser:getQuote>
 </soap:Body>
 </soap:Envelope>
 </format>
 <args>
 <arg xmlns:abc="http://abc.org"
 evaluator="xml"
 expression="//abc:checkQuote/abc:symbol"/>
 </args>
 </payloadFactory>
 <call>
 <endpoint>
 �<address uri="http://127.0.0.1:9000/services/

SimpleStockQuoteService"
 format="soap11"/> <!-- [2] -->
 </endpoint>
 </call>
 <property name="messageType" <!-- [3] -->
 value="application/soap+xml"
 scope="axis2"
 type="STRING"/>

Chapter 5 ■ Integrating SOAP and RESTful Web Services

116

 <log level="full"/>
 <respond/>
 </inSequence>
 </target>
 <description/>
</proxy>
[1] Transform the message from checkQuote request format to getQuote format.
[2] Convert the SOAP 1.2 to SOAP 1.1 message format.
[3] Ensure the response which is sent back to the client is in SOAP 1.2
format.

Once the outgoing message format is specified, the message format conversion
(between SOAP versions) happens automatically.

Invoking SOAP Backend Web Services from ESB
Invoking a SOAP backend web service and exposing that service as a different
interface is a common integration use case. For example, assume that the financial
StockQuoteService is a SOAP web service and an external client who can only
communicate with XML (POX) wants to consume that service. As shown in Figure 5-6,
you can enable the message format attribute of the endpoint to soap11 and expose the
service through an HTTP API that takes care of the message transformation from SOAP
to POX. Again, we have considered a scenario where there is no one-to-one mapping
between the POX and SOAP request. Hence, you need to use message transformation
mediators to convert the message into SOAP 1.1.

Figure 5-6.  Invoking a SOAP backend service from ESB and exposing that as a RESTful
service

As you are invoking a SOAP backend service, you need to send the required
SOAPAction along with the request to the backend service (SOAPAction goes as an
HTTP header). As you learned in Chapter 4, you can use the header mediator to set the
SOAPAction header. Listing 5-7 illustrates the configuration of the API that implements
this integration scenario.

http://dx.doi.org/10.1007/978-1-4842-2343-7_4

Chapter 5 ■ Integrating SOAP and RESTful Web Services

117

Listing 5-7.  API Configuration that Invokes a Backend SOAP Service and Exposes it as a
POX interface/API

<api xmlns="http://ws.apache.org/ns/synapse"
 name="StockQuoteAPI" context="/stockquote">
 <resource methods="POST">
 <inSequence>
 <log level="custom">
 <property name="FLW" value="=== Service Invoked =="/>
 </log>
 <payloadFactory media-type="xml"> <!-- [1] -->
 <format>
 �<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/

soap-envelope" xmlns:xsd="http://services.samples/xsd"
xmlns:ser="http://services.samples">

 <soap:Header/>
 <soap:Body>
 <ser:getQuote>
 <ser:request>
 <xsd:symbol>$1</xsd:symbol>
 </ser:request>
 </ser:getQuote>
 </soap:Body>
 </soap:Envelope>
 </format>
 <args>
 <arg evaluator="xml" expression="//checkQuote/symbol"/>
 </args>
 </payloadFactory>
 <log level="full"/>
 <!-- [2] -->
 <header name="Action" scope="default" value="urn:getSimpleQuote"/>
 <call>
 <endpoint>
 �<address uri="http://127.0.0.1:9000/services/

SimpleStockQuoteService" format="soap11"/>
 </endpoint>
 </call>
 �<property name="messageType" value="application/xml" scope="axis2"

type="STRING"/> <!-- [3] -->
 <log level="full"/>
 <respond/>
 </inSequence>
 </resource>
</api>
[1] Transform the message from checkQuote request format to getQuote format.
[2] Setting the SOAP action prior to invoking the SOAP backend service.
[3] Convert the response message format back to the message format expected
by the client.

Chapter 5 ■ Integrating SOAP and RESTful Web Services

118

Additionally, you may want to invoke a SOAP backend service that requires a WS-
Addressing message header. To enable WS-Addressing for outgoing messages, you can
use enableAddressing at the endpoint level, as shown in Listing 5-8.

Listing 5-8.  Enabling WS-Addressing for Outgoing Messages

<endpoint>
 <address uri="http://127.0.0.1:9000/services/SimpleStockQuoteService">
 <enableAddressing/>
 </address>
</endpoint>

If you want to control any WS-Addressing headers prior to sending to the backend
service, you can do so by using the header mediator in the mediation flow.

Integrating RESTful Web Services
RESTful web services (web services implemented based on the REST architecture) are
increasingly getting popular and most of the modern web services implementations
use the REST design paradigm. Therefore, for any ESB implementation, it is quite
important to have the capability of exposing a RESTful web service interface as well as the
capability to invoke the backend RESTful service. In the section, you get a comprehensive
understanding about how you achieve those objectives using WSO2.

Exposing RESTful Services/APIs with WSO2 ESB
As you use proxy services to expose SOAP web service interfaces in WSO2 ESB, you can
use APIs/HTTP services to expose a RESTful web service interface from WSO2 ESB.
Let's take a sample scenario from what we discussed at the beginning of this chapter. In
the banking scenario that we discussed, assume that the bank implemented its account
management capabilities as a SOAP web service, named AccountManagementService, as
shown in Figure 5-7.

Chapter 5 ■ Integrating SOAP and RESTful Web Services

119

AccountMangementService exposes all the supported functionalities—addAccount,
updateAccount, getAccount, and deleteAccount, as SOAP web service operations
defined in its WSDL. As we discussed in the beginning of the chapter, in the REST
architecture, you can map those web service operations into resources and HTTP
requests with different verbs. What follows are the main design aspects of the
implementation of the use case in Figure 5-7.

•	 You can define a context for your API/HTTP service. Here we
used /accountmgmt. That means that the client will be sending the
request to http://<esb_host>:<port>/accountmgmt*. (Assume
that it’s http://localhost:8280 for this example.)

•	 Then you can identify the account as a resource in the business
use case. Hence, you can define that as a resource in your REST
API with the resource URI /account.

•	 Then you can allow the client applications to send HTTP
request (in this case, with the JSON message format), against the
respective resource. The details of those requests are summarized
in the next couple of points.

•	 Add a new account: HTTP POST request to http://
locahost:8280/accountmgmt/account with the JSON payload
required to create an account.

•	 Retrieve or delete an existing account: HTTP GET or DELETE
request sent to http://localhost:8280/accountmgmt/
account/<accountNo> with no message content.

•	 Update an existing account : HTTP PUT request sent to http://
localhost:8280/accountmgmt/account/<accountNo with the
JSON payload with updated account details.

Figure 5-7.  Exposing a RESTful service using an API/HTTP service on top of an existing
SOAP backend web service. API is anchored at <host>:<esb_port>/accountmgmt and the
account is defined as a resource. All the SOAP web service operations are mapped to the
HTTP request with respective verbs (POST, GET, PUT, DELETE) which are sent to the /
account resource.

http://localhost:8280/
http://locahost:8280/accountmgmt/account
http://locahost:8280/accountmgmt/account
http://localhost:8280/accountmgmt/account/<accountNo
http://localhost:8280/accountmgmt/account/<accountNo
http://localhost:8280/accountmgmt/account/<accountNo
http://localhost:8280/accountmgmt/account/<accountNo

Chapter 5 ■ Integrating SOAP and RESTful Web Services

120

To start, you can define the API configuration at the ESB level, as shown in Listing
5-9. Here we have defined a context and two resources that are mapped to /account* and
account/<accountNo>. As discussed, the new account creation request doesn’t have an
account no. in its request. Hence they are handled in the resource with URI template /
account*.

Listing 5-9.  Creating the API/HTTP Service and its Resources

<api xmlns="http://ws.apache.org/ns/synapse"
name="AccountManagementAPI" <!-- [1] -->
context="/accountmanagement/account"> <!-- [2] -->
 <resource methods="POST" uri-template="/"> <!-- [3] -->
 <inSequence> <!-- [4] -->
 ...

 </inSequence>
 </resource>
 <resource methods="DELETE PUT GET" <!-- [5] -->
uri-template="/{accountNo}"> <!-- [6] -->
 <inSequence>
 ...
 </inSequence>
 </resource>
</api>
[1] Name of the API/HTTP service. But this is not part of the API context.
[2] URI context of the API. Any API at ESB is identified based on the
context.
[3] Resource definition of account to accept all account creation requests
(POST requests) comes with specified uri-template. Requests are filtered
based on the URI-Template.
[4] sequence for process/mediate messages that comes into the resource.
[5] resource to accept all GET, PUT and DELETE requests that comes with URI
format /account/<id>
[6] URI Template is used for filter and populate the matching variables
which later be used in mediation flow.

The URI template allows you to specify the incoming request URL format and, for any
matched URL, the URI-Template variables are populated. Those values can be used in the
mediation flow. You will further discover URI templates in the latter part of this section.

Now you can proceed with the mediation flow implementation of the account
creation resource /account*. The configuration of the account creation mediation logic is
shown in Listing 5-10.

Listing 5-10.  Implementation of Account Creation Mediation Logic

<api xmlns="http://ws.apache.org/ns/synapse"
name="AccountManagementAPI"
context="/accountmanagement/account">
 <resource methods="POST" uri-template="/">

Chapter 5 ■ Integrating SOAP and RESTful Web Services

121

 <inSequence>
 <log level="custom">
 <property name="FLW" value="Adding account"/>
 </log>
 <payloadFactory media-type="xml"> <!-- [1] -->
 <format>
 <acc:addAccountRequest
xmlns:acc="http://www.xyzbank.com/accounts">
 <fullName>$1</fullName>
 <dob>$2</dob>
 <ssn>$3</ssn>
 <accountBalance>$4</accountBalance>
 </acc:addAccountRequest>
 </format>
 <args>
 <arg evaluator="json"
 expression="$.Account.fullName"/>
 <arg evaluator="json"
 expression="$.Account.dob"/>
 <arg evaluator="json"
 expression="$.Account.ssn"/>
 <arg evaluator="json"
 expression="$.Account.initialAmount"/>
 </args>
 </payloadFactory>

<header name="Action" <!-- [2] -->
value="http://www.xyzbank.com/accounts/addAccount"/>
 <call>
 <endpoint>
 <address
uri="http://localhost:7070/AccountManagementService"
 format="soap11"/> <!-- [3] -->
 </endpoint>
 </call>

 <property name="messageType" <!-- [4] -->
 value="application/json"
 scope="axis2"
 type="STRING"/>
 <respond/>

 </inSequence>
 </resource>
 <resource methods="DELETE PUT GET" uri-template="/{accountNo}">
 <inSequence>
 ...
 </inSequence>

Chapter 5 ■ Integrating SOAP and RESTful Web Services

122

 </resource>
</api>
[1] Create the SOAP request payload to be sent to AccountManagementService
by extracting values from incoming JSON message.
[2] Specify SOAP Action.
[3] Endpoints need to have format attribute set to soap11 (or soap12).
[4] Flag to convert the response message back to JSON.

In Listing 5-10, the mediation logic is quite straightforward and contains the
mediators that we have already discussed in similar integration scenarios.

Let’s proceed to the implementation of the other resource, which processes all the
GET, PUT, and DELETE account requests. Listing 5-11 shows the complete configuration of
the resources that handles the GET, PUT, and DELETE requests. In this configuration, the
only additional thing is the use of HTTP_METHOD for filtering GET, PUT, and DELETE requests
using a switch mediator and processing those requests in different case conditions. Also,
unlike account creation, we need to change the HTTP method of the outgoing request. (In
account creation, the incoming HTTP method is POST and the outgoing SOAP request is
also an HTTP POST.) As SOAP HTTP requests are always HTTP POST, for all GET, PUT, and
DELETE requests, we need to change the HTTP_METHOD (HTTP verb) to POST.

Listing 5-11.  Implementation of Account Update, Retrieve, and Delete Mediation Logic

<api xmlns="http://ws.apache.org/ns/synapse"
name="AccountManagementAPI"
context="/accountmanagement/account">
 <resource methods="POST" uri-template="/">
 <inSequence>
 ...
 </inSequence>
 </resource>

 <resource methods="DELETE PUT GET" uri-template="/{accountNo}">
 <inSequence>
 <switch source="$axis2:HTTP_METHOD">
 <case regex="GET">
 <log level="custom">
 <property name="Message Flow"
value="--- Account Retrieve ---"/>
 </log>

<payloadFactory media-type="xml">
 <format>
 <acc:getAccountRequest
 xmlns:acc="http://www.xyzbank.com/accounts">$1
</acc:getAccountRequest>
 </format>
 <args>
 <arg expression="$ctx:uri.var.accountNo"/>

Chapter 5 ■ Integrating SOAP and RESTful Web Services

123

 </args>
 </payloadFactory>
 <header name="Action" <!-- [1] -->
value="http://www.xyzbank.com/accounts/getAccount"/>
 </case>
 <case regex="PUT">
 <log level="custom">
 <property name="Message Flow"
value="--- Account Update ---"/>
 </log>

 <payloadFactory media-type="xml">
 <format>
 <acc:updateAccountRequest
xmlns:acc="http://www.xyzbank.com/accounts">
 <fullName>$1</fullName>
 <dob>$2</dob>
 <ssn>$3</ssn>
 <accountBalance>$4</accountBalance>
 <accountNo>$5</accountNo>
 </acc:updateAccountRequest>
 </format>
 <args>
 <arg evaluator="json"
 expression="$.Account.fullName"/>
 <arg evaluator="json"
 expression="$.Account.dob"/>
 <arg evaluator="json"
 expression="$.Account.ssn"/>
 <arg evaluator="json"
 expression="$.Account.initialAmount"/>
 <arg expression="$ctx:uri.var.accountNo"/>
 </args>
 </payloadFactory>
 <header name="Action"
value="http://www.xyzbank.com/accounts/updateAccount"/>
 </case>
 <case regex="DELETE">
 <log level="custom">
 <property name="Message Flow"
value="--- Account Delete ---"/>
 </log>
<payloadFactory media-type="xml">
 <format>
 <acc:deleteAccountRequest
xmlns:acc="http://www.xyzbank.com/accounts">$1</acc:deleteAccountRequest>
 </format>
 <args>

Chapter 5 ■ Integrating SOAP and RESTful Web Services

124

 <arg expression="$ctx:uri.var.accountNo"/>
 </args>
 </payloadFactory>
 <header name="Action"
 value="http://www.xyzbank.com/accounts/getAccount"/>
 </case>
 </switch>
 <property name="HTTP_METHOD" value="POST" <!-- [2] -->
scope="axis2" type="STRING"/>

 <call>
 <endpoint>
 <address
uri="http://localhost:7070/AccountManagementService"
 format="soap11"/>
 </endpoint>
 </call>
 <property name="messageType"
 value="application/json"
 scope="axis2"
 type="STRING"/>
 <respond/>
 </inSequence>
 </resource>
</api>
[1] Set required Action for each AccountManagementService operation.
[2] Change the all the HTTP_METHODs to POST as SOAP web services accepts
HTTP POST only

As you learned about a complete RESTful integration use case, let’s summarize the
concepts that are covered in this example.

Fundamentals of REST APIs
A REST API or HTTP service can be used to expose an HTTP interface, which adheres to
REST architecture, at the ESB level. As shown in the sample REST API design in Figure 5-8,
we can identify the key attributes of REST APIs in WSO2 ESB.

Chapter 5 ■ Integrating SOAP and RESTful Web Services

125

The REST API/HTTP service in WSO2 has the following attributes.

•	 A REST API is made of one or more resources (in this example, /
menu, /order, and /payments).

•	 A resource is a logical component of an API, and can be accessed
by making a particular type of HTTP calls.

•	 A resource can be associated with a user-defined URL pattern or a
URI template. This way we can restrict the type of HTTP requests
processed by a particular resource. In addition, the URI template
can be used to filter and extract the values that match the template.

•	 A resource can be bound to a specific subset of HTTP verbs and
header values. This option provides additional control over
which requests are handled by a given resource. Once a request
is dispatched into a resource, it will be mediated through the in-
sequence of the resource.

•	 A resource can be associated with a URL mapping or a URI
template.

•	 A URL mapping could be used to filter a given HTTP request that
comes to a resource. Only the matching request will be processed
by the resource. URL mapping can be any valid servlet mapping.
Hence, as stated in the servlet specification, there are three types
of URL mappings:

•	 Path mappings (/menu/* and /menu/pizza/*)

•	 Extension mappings (*.jsp and *.do)

•	 Exact mappings (/menu and /menu/pizza)

Figure 5-8.  REST API consists of a context, a set of resources defined for arbitrary numbers
of HTTP verbs (GET, POST, etc.), and a URI template/mapping defined for each resource.
Once a message comes into a resource, it is processed by a sequence.

Chapter 5 ■ Integrating SOAP and RESTful Web Services

126

•	 URI template represents a class of URIs using patterns and
variables. As you discovered in the AccountManagement use case,
the following URI template can be used to match the respective
HTTP request.

•	 /account/{accountNo} : Matching HTTP request /
account/123456

•	 Here, the variable accountNo is matched with 123456 and, in the
mediation flow those values will be stored as properties. Hence,
you can refer any matching variable using the following syntax.

•	 $ctx:uri.var.<VariableName>,for example, $ctx:uri.var.
accountNo

•	 Similarly you can access any query parameter that comes in
the request with $ctx:query.param.<ParameterName>. For
example, if the incoming request contains /pizzashop/api/menu/
pizza?val=thin&type=crust, you can retrieve the value of the type
query parameter by using the property $ctx:query.param.type.

Now you have learned how to expose RESTful services from WSO2 ESB. In the next
section, you will learn about how you can invoke RESTful services from ESB.

Invoking RESTful Services from WSO2 ESB
Invoking backend services, which are based on REST architecture, is another key area of the
RESTful integration paradigm. WSO2 ESB provides a dedicated endpoint type for all such
invocation of RESTful backend web services, namely HTTP endpoint (outbound endpoint).
For example, let’s consider a PizzaShop software solution that allows you to view available
pizza menu, order pizza, and process payments. As depicted in Figure 5-9, the backend
RESTful service has defined multiple resources for pizza, order, and purchasing.

Figure 5-9.  Invoking a backend RESTful service using an HTTP endpoint

Chapter 5 ■ Integrating SOAP and RESTful Web Services

127

Then as you learned in previous section, you can define a new context and a set of
new resources at the ESB REST API level. Once you define the required API and resource,
you need to invoke the RESTful service from ESB. For that, you can use HTTP endpoint.
As an example, consider the pizza ordering use case. To create, retrieve, and delete an
order, you need to send the following HTTP request to the backend service with the
respective payloads.

Add order
POST http://localhost:9764/pizzashop-rs_1.0/services/menu/order
{"order": {
 "items": [
 {"id": 1, "qty": 2},
 {"id": 2, "qty": 1}
]
}}

Get/Delete order
GET/DELETE
http://localhost:9764/pizzashop-rs_1.0/services/menu/order/1379562336828

Update order
PUT http://localhost:9764/pizzashop-rs_1.0/services/menu/order/1379562336828
{order: {
 items: [
 {id: 1, qty: 5},
 {id: 3, qty: 1}
]
}}

Therefore, what is meant by invoking a PizzaShop RESTful service is that ESB
needs to send the aforementioned HTTP requests to the backend. If you consider the /
pizzashop/order resource implementation of the PizzaShop REST API, you can see
HTTP endpoint is used to send this request to the backend service using a call mediator.

As shown in Listing 5-12, with HTTP endpoint, you can define the HTTP method
name (GET, POST, PUT, etc.) and the outgoing resource URL as an URI template with
variables. The variables need to be defined in the {uri.var.varaibleName} format. You
can define any property value in your mediation flow with the prefix uri.var. and later
use that in your HTTP endpoint URI template.

Listing 5-12.  Implementation of Account Update, Retrieve, and Delete Mediation Logic

<endpoint>
 <http method="GET"
uri-template="http://localhost:9764/ps/order/{uri.var.orderId}">
 </http>
</endpoint>

Chapter 5 ■ Integrating SOAP and RESTful Web Services

128

Listing 5-13 shows a complete integration scenario of the /pizzashop/orders use
case. Here we defined two resources: /api/order* and /api/order/{orderId}.

Listing 5-13.  Implementing Pizzashop Orders API by Invoking a RESTful Backend
Service Using HTTP Endpoint

<api xmlns="http://ws.apache.org/ns/synapse"
 name="PizzaShopRESTAPI"
 context="/pizzashop">

 <resource methods="POST" uri-template="/api/order*">
 <inSequence>
 <log>
 <property name="Message Flow"
value="Pizza Order API - IN"></property>
 </log>
 <call>
 <endpoint>
 <http method="post" <!-- [1] -->
 �uri-template="http://localhost:9764/pizzashop-rs_1.0/

services/menu/order"></http>
 </endpoint>
 </call>
 <respond/>
 </inSequence>
 </resource>

 <resource methods="GET DELETE PUT"
uri-template="/api/order/{orderId}">
 <inSequence>
 <log>
 <property name="Message Flow"
value="Pizza Order API - IN"></property>
 </log>
 <switch source="$axis2:HTTP_METHOD">
 <case regex="GET">
 <log level="custom">
 <property name="Message Flow"
value="--- Order GET ---"></property>
 </log>
 <call>
 <endpoint>
 <http method="GET" <!-- [2] -->

uri-template="http://localhost:9764/pizzashop-rs_1.0/services/menu/order/
{uri.var.orderId}"></http>
 </endpoint>
 </call>
 </case>

Chapter 5 ■ Integrating SOAP and RESTful Web Services

129

 <case regex="PUT">
 <log level="custom">
 <property name="Message Flow"
value="--- Order PUT ---"></property>
 </log>
 <call>
 <endpoint>
 <http method="PUT"

uri-template="http://localhost:9764/pizzashop-rs_1.0/services/menu/order/
{uri.var.orderId}"></http>
 </endpoint>
 </call>
 </case>
 <case regex="DELETE">
 <log level="custom">
 <property name="Message Flow"
value="--- Order DELETE ---"></property>
 </log>
 <call>
 <endpoint>
 <http method="DELETE"

uri-template="http://localhost:9764/pizzashop-rs_1.0/services/menu/order/
{uri.var.orderId}"></http>
 </endpoint>
 </call>
 </case>
 </switch>
 <respond/>
 </inSequence>
 </resource>
</api>
[1] HTTP Endpoint is used to invoke the backend RESTful service. Here we
haven’t used any variables in the URI template of HTTP endpoint.
[2] HTTP Endpoint is configured with a URI Template variable which is
populated during URI Template matching in resource.

Using HTTP Endpoint for RESTful Service Invocations
As you have seen in the examples in this chapter, HTTP endpoint is a logical
representation of an actual resource that allows users to specify the noun and verb in
RESTful style. Therefore, we can simply represent a resource with a URI template and the
required HTTP verb can be selected too. The URI template is fully compliant with RFC
6570 (https://tools.ietf.org/html/rfc6570) and the variable names should start with

https://tools.ietf.org/html/rfc6570

Chapter 5 ■ Integrating SOAP and RESTful Web Services

130

uri.var.* or query.param.*. A given REST API defined in WSO2 ESB can map the URI
parameters in to uri.var.* or query.param.* and later can be reused when invoking the
actual backend RESTful service.

Native JSON Support
JSON is becoming increasingly popular as a message interchange format with many
RESTful integration scenarios. WSO2 ESB offers native support for JSON, which means
there will be no message conversions (back and forth) between internal canonical forms,
but you can write the mediation logic based on the incoming JSON payload with no
conversion. Listing 5-14 shows several uses of JSONPath with the WSO2 ESB mediators.

Listing 5-14.  Native JSON Support with JSONPath

<filter source="json-eval(pizza.name)" regex="Meat Sizzler"> <!-- [1] -->
 <then>
 <log level="custom">
 <property name="THEN_FLOW" value="Pizza Found"/>
 </log>
 </then>
 <else>
 <log level="custom">
 <property name="ELSE_FLOW" value="Not Found"/>
 </log>
 </else>
 </filter>
<payloadFactory media-type="json">
 �<format>{"purchaseInformation": {"amount": "$1","cc": "$2"}}</

format>
 <args>
 �<arg evaluator="json" expression="$.payment.amount_lkr">

</arg> <!-- [2] -->
 <arg evaluator="json" expression="$.payment.card_no"></arg>
 </args>
</payloadFactory>
[1] Using json-eval to evaluate the JSON message and do filtering based on
its result.
[2] PayloadFactory can use JSONPath when you transform JSON to JSON.

Native JSON support is allowed in all the basic mediators, which includes
property, filter, switch, and log mediator. The native JSON path (http://goessner.net/
articles/JsonPath/) evaluation is done using json-eval(json_path_expression).
We demonstrated how to carry out content-based routing using a filter mediator against
the incoming JSON without converting the incoming message to a canonical form.

http://goessner.net/articles/JsonPath/
http://goessner.net/articles/JsonPath/

Chapter 5 ■ Integrating SOAP and RESTful Web Services

131

Summary
In this chapter, you learned:

•	 The basic concepts of the SOAP and REST web services.

•	 How to design a SOAP web service for a real-world scenario
(banking account management) and how to design the REST web
service for the same use case.

•	 Exposing web service interfaces from WSO2 ESB using proxy
services.

•	 Using WSDLs and WS-Addressing with proxy services.

•	 Invoking a backend SOAP web service from WSO2 ESB.

•	 Exposing RESTful HTTP interfaces from WSO2 ESB using WSO2
ESB REST APIs.

•	 Using REST API resources, URI templates/mapping, and HTTP
verbs.

•	 Invoking a backend RESTful services by using HTTP endpoint.

133© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_6

CHAPTER 6

Enterprise Messaging with
JMS, AMQP, MQTT, and
Kafka

Modern software solutions are comprised of disparate software applications and they
need to communicate with each other to realize a business use case. These software
applications communicate with each other by exchanging messages over the network
using enterprise-messaging systems. These application-to-application messaging
systems are known as Message Oriented Middleware (MoM).

As shown in Figure 6-1, enterprise messaging systems, or MoMs, allow two or more
software applications to exchange information in the form of messages. A message is
self-contained and is comprised of business data along with the information required to
route the message (message headers). In enterprise messaging or with MoM, messages
are transferred between the applications over the network, asynchronously. Therefore,
the sender doesn’t have to wait until the messages are received by the receiver and the
receiver can receive the messages when the sender is offline.

Figure 6-1.  Messages are transferred between software applications with the use of
enterprise messaging systems or Message Oriented Middleware (MoM)

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

134

MoM vendors use different protocols and technologies, but the semantics for
sending and receiving messages are the same. They provide an API to the developers
for sending and receiving messages and the similarities between such API semantics
motivates the enterprise to go for a vendor-agnostic Java API for sending and receiving
messages in MoM, namely Java Message Service (JMS).

JMS provides an abstraction layer to send and receive messages from MoM. As
shown in Figure 6-2, MoM exposes the message receiving and sending operations
through a JMS API and it provides the required client libraries that contain the
implementation of those APIs. The client that wants to send/receive message to MoM
simply uses the JMS API so that his code is completely independent from the underlying
MoM. The MoM products such as ActiveMQ, IBM WebSphere MQ, WSO2 MB, etc.
implement JMS API to provide capabilities to the client to send and receive message
from those MoM systems. JNDI is an implementation-independent API for directory
and naming systems. A directory service provides JMS clients with access to the
ConnectionFactory and Destinations (topics and queues) objects.

Figure 6-2.  JMS provides an API that provides abstraction for sending and receiving
messages. That allows the application to use any JMS-compliant MoM to pass messages
between Java applications. JMS uses the central Java naming service JNDI.

In this chapter, you will learn about how WSO2 ESB can be used to integrate with
enterprise messaging systems using JMS API. We will discuss the common integration
patterns and use cases with JMS-based MoM and, during the latter part of the chapter,
you will learn about other standards and technologies such as AMQP, MQTT, Kafka, etc.
in the enterprise messaging space.

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

135

Integration with JMS-Based MoM
Integrating JMS-based enterprise messaging systems such as ActiveMQ, WSO2 MB etc.,
is a common integration required in the enterprise integration space. Often there are
business use cases that need to consume messages from a JMS-based MoM or send
messages to a JMS-based MoM. WSO2 ESB is capable of catering to both JMS consumer
and JMS producer roles.

ESB as a JMS Consumer
You can use WSO2 ESB to consume messages from an enterprise messaging system or
MoM using JMS API. Given that the MoM supports JMS API, WSO2 ESB can connect to
JMS-based MoM (JMS provider) and consume messages from it. In the JMS specification,
there are two types of messaging models presented—point-to-point queuing and publish-
subscribe messaging models. The point-to-point is intended for one-to-one delivery
of messages while publish-and-subscribe is intended for a one-to-many broadcast of
messages. To understand how WSO2 ESB can be used to consume messages from a JMS-
based MoM using these messaging models, let’s consider a real-world use case.

As shown in Figure 6-3, suppose that a supermarket chain uses an enterprise
messaging system based on JMS (Apache ActiveMQ) to store the price updates of each
item in the supermarket. These price update details messages need to be sent to a SOAP-
based web service periodically. The order of price updates must be preserved, as there can
be multiple ordered messages for the same item. Therefore, price updates are stored in
a JMS queue in ActiveMQ and the consumer has to consume them in the same order. To
implement this use case, you can use JMS message consuming component in WSO2 ESB.

Figure 6-3.  JMS point-to-point messaging model in which ESB consumes messages in a
JMS queue using a JMS inbound endpoint and sends the messages to a backend service

As illustrated in Figure 6-3, you can use a JMS inbound endpoint in WSO2 ESB to
consume message from a JMS provider and inject the message into a sequence where
all the required mediation work is carried out. In this example, the messages that are de-
queued from the ActiveMQ’s priceUpdatesQueue and are delivered to the SOAP-based
web service over HTTP protocol.

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

136

In the JMS inbound endpoint configuration, you can specify the details of the JMS
provider and the other parameters that are required to consume the messages from the
queue. Also, the JMS client libraries of the respective JMS provider need to be copied to
$ESB_HOME/repository/components/lib prior to starting the server. Listing 6-1 shows
the configuration of the JMS inbound endpoint and the message processing sequence.
When the inbound endpoint is deployed on WSO2 ESB, it subscribes to the specified JMS
queue on the JMS provider that’s specified in the inbound endpoint parameters.

Listing 6-1.  Using JMS Inbound Endpoint to Consume Messages from a Queue

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
name="JMSPriceUpdateConsumer"
sequence="priceUpdateProcessorSequence" <!-- [1] -->
onError="priceUpdateErrorSeq" <!-- [2] -->
protocol="jms" <!-- [3] -->
suspend="false"> <!-- [4] -->
 <parameters>
 <parameter name="interval">1000</parameter> <!-- [5] -->
 <parameter
name="transport.jms.Destination">priceUpdatesQueue
</parameter> <!-- [6] -->
 <parameter name="transport.jms.CacheLevel">1</parameter>
 <parameter
name="transport.jms.ConnectionFactoryJNDIName">
QueueConnectionFactory
 </parameter>
 <parameter name="sequential">true</parameter>
 <parameter
name="java.naming.factory.initial">org.apache.activemq.jndi.
ActiveMQInitialContextFactory
</parameter>
 <parameter <!-- [7] -->
name="java.naming.provider.url">tcp://localhost:6161
 </parameter>
 <parameter
name="transport.jms.SessionAcknowledgement">
AUTO_ACKNOWLEDGE</parameter> <!-- [8] -->
 <parameter
name="transport.jms.SessionTransacted">
false</parameter> <!-- [9] -->
 <parameter
name="transport.jms.ConnectionFactoryType">queue</parameter>
 </parameters> <!-- [10] -->
</inboundEndpoint>

<sequence name="priceUpdateProcessorSequence">
 <log level="custom">
 <property name="Message-Flow" value="PriceUpdate message received!"
 </log>

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

137

 <header name="Action" value="urn:getSimpleQuote"/>
 <call>
 <endpoint>
 <address <!-- [11] -->
 uri="http://localhost:7070/services/PriceManagementService"
 format="soap11"/>
 </endpoint>
 </call>

</sequence>
[1] Dequeued messages are injected this sequence.
[2] Error handling sequence.
[3] Specify protocol as 'jms' to configure a JMS Inbound Endpoint.
[4] suspend is set to false. Hence this is an active inbound endpoint.
[5] Polling interval.
[6] Name of the queue.
[7] JMS provider's url.
[8] Using auto acknowledge mode to ack the provider to dequeue the message
immediately after receiving.
[9] We are not using a transaction enabled JMS session.
[10] Since we are using point-to-point JMS messaging model, we have to
specify this as a 'queue'.
[11] Sending the message to a SOAP web service.

Since we used the point-to-point JMS messaging model, the messages are received
in the same order that they are stored in the queue. The detail of the parameters that can
be used with JMS inbound endpoint can be found at https://docs.wso2.com/display/
ESB490/JMS+Inbound+Protocol.

In some JMS consumer scenarios, you may have to use the publish-subscribe JMS
message model. For example, suppose that there is a weather data alert system that
publishes weather alerts and the subscribers can receive those alerts. The weather
alert publishing system can use a JMS provider to publish alerts and since there can
be multiple subscribers, it needs to use the publish-subscribe JMS message model. As
depicted in Figure 6-4, suppose that there are two web services that want to subscribe to
weather alerts namely—WeatherAlertReceiver-1 and WeatherAlertReceiver-2. But
they both can receive messages on SOAP format over the HTTP protocol. Therefore, you
can use WSO2 ESB to subscribe to the weatherAlerts JMS topic, receive weather alerts,
and later send them to the weather alert receiver SOAP web services.

https://docs.wso2.com/display/ESB490/JMS+Inbound+Protocol
https://docs.wso2.com/display/ESB490/JMS+Inbound+Protocol

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

138

As shown in Figure 6-4, you can use two JMS inbound endpoints as two subscribers
to the WeatherAlert JMS topic and when the weather alert system publishes message
to the topic, both inbound endpoints will receive weather alert messages. In each JMS
inbound endpoint, it can inject the message to a sequence, which sends the weather alert
message to WeatherAlertReceiver-1 and WeatherAlertReceiver-2.

Listing 6-2 shows the configuration of the two JMS inbound endpoints that are
subscribed to the same topic to receive weather alerts. Any other external subscribers that
are subscribed to the same topic will receive the same weather alert messages.

Listing 6-2.  Using JMS Inbound Endpoints to Subscribe to a JMS Topic

<inboundEndpoint
 name="WeatherAlertsReceiver-1"
 sequence="weatherAlertProcessorSeq-1"
 onError="weatherAlertProcessorSeq-2"
 protocol="jms"
 suspend="false">
 <parameters>
 <parameter name="interval">1000</parameter>
 <parameter
 �name="transport.jms.Destination">weatherAlerts

</parameter> <!-- [1] -->
 <parameter name="transport.jms.CacheLevel">5</parameter>
 <parameter
 �name="transport.jms.ConnectionFactoryJNDIName">TopicConnect

ionFactory
 </parameter>
 <parameter name="sequential">true</parameter>
 <parameter name="java.naming.factory.initial">
 �org.apache.activemq.jndi.ActiveMQInitialContextFactory</

parameter>

Figure 6-4.  JMS publisher-subscriber messaging model in which there are two JMS
inbound endpoints subscribed to the same topic and the received weather alert messages
are sent to two different services

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

139

 <parameter
 name="java.naming.provider.url">
 tcp://localhost:61616</parameter>
 <parameter
 �name="transport.jms.SessionAcknowledgement">AUTO_ACKNOWLEDGE</

parameter>
 <parameter name="transport.jms.SessionTransacted">false</parameter>
 <parameter
 �name="transport.jms.ConnectionFactoryType">topic</

parameter> <!-- [2] -->
 </parameters>
 </inboundEndpoint>

 <inboundEndpoint
 name="WeatherAlertsReceiver-2"
 sequence="weatherAlertProcessorSeq-2"
 onError="fault" protocol="jms" suspend="false">
 <parameters>
 <parameter name="interval">1000</parameter>
 <parameter
 �name="transport.jms.Destination">weatherAlerts</

parameter> <!-- [3] -->
 <parameter name="transport.jms.CacheLevel">5</parameter>
 <parameter
 �name="transport.jms.ConnectionFactoryJNDIName">

TopicConnectionFactory</parameter>
 <parameter name="sequential">true</parameter>
 <parameter
 �name="java.naming.factory.initial">org.apache.activemq.jndi.

ActiveMQInitialContextFactory</parameter>
 �<parameter name="java.naming.provider.url">tcp://localhost:61616

</parameter>
 �<parameter name="transport.jms.SessionAcknowledgement">

AUTO_ACKNOWLEDGE</parameter>
 <parameter name="transport.jms.SessionTransacted">false</parameter>
 �<parameter name="transport.jms.ConnectionFactoryType">topic

</parameter>
 </parameters>
 </inboundEndpoint>
<sequence name="weatherAlertProcessorSeq-1"> <!-- [4] -->
 <log level="custom">
 �<property name="Message-Flow" value="Weather alert received -

weatherAlertProcessorSeq-1"
 </log>
 <header name="Action" value="urn:postWeatherAlert"/>
 <call>
 <endpoint>

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

140

 <address
 uri="http://localhost:7070/services/WeatherAlertReceiver-1"
 format="soap11"/>
 </endpoint>
 </call>
</sequence>

<sequence name="weatherAlertProcessorSeq-2"> <!-- [5] -->
 <log level="custom">
 �<property name="Message-Flow" value="Weather alert received -

weatherAlertProcessorSeq-2"
 </log>
 <header name="Action" value="urn:postWeatherAlert"/>
 <call>
 <endpoint>
 <address
 uri="http://localhost:7070/services/WeatherAlertReceiver-2"
 format="soap11"/>
 </endpoint>
 </call>
</sequence>
[1] Inbound Endpoint – WeatherAlertsReceiver-1 is subscribed to
weatherAlerts topic.
[2] You can specify the connection factory type as a topic.
[3] Inbound Endpoint – WeatherAlertsReceiver-2 is also subscribed to the
same topic.
[4] sequence to process messages from inbound endpoint
WeatherAlertsReceiver-1
[5] sequence to process messages from inbound endpoint
WeatherAlertsReceiver-2

From each inbound endpoint, the weather alert message is sent to the respective
sequences and each sequence is responsible for sending the message to the
WeatherAlertReceiver services.

ESB as a JMS Producer
So far, you have learned about how WSO2 ESB can be used to consume messages in a
JMS queue or topic (as JMS message consumer). Similarly, you may also have to produce
messages to a JMS queue or topic from WSO2 ESB. In such scenarios, WSO2 ESB has to
act as the JMS producer.

In this section, you will learn about how you can use WSO2 ESB to produce messages
based on JMS API to an external JMS MoM. For example, suppose that a supermarket
chain uses a JMS-based MoM system (WSO2 Message Broker) to store the price updates
of each item that it sells. The price updates should be added to the JMS-based MoM with
the SOAP message format, but the price update information comes through a HTTP/
REST API with JSON message format. As depicted in Figure 6-5, you can use a REST API

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

141

in WSO2 ESB to expose a JSON-based HTTP interface to accept price updates and, in the
mediation logic, you can convert the messages to the SOAP 1.1 format and store them in
a JMS queue.

Figure 6-5.  Producing messages to a JMS queue using JMS sender

As you learned in Chapter 5, the configuration of REST API converts the incoming
REST-based messages to the required SOAP message format. The JMS producer related
configuration comes into action when we send the messages through the address
endpoint with the jms:/.. protocol. When you use that, under the hood, it invokes the
JMS Transport sender of WSO2 ESB (you need to uncomment and enable JMS Sender in
axis2.xml prior to starting the server). You can find the relevant configuration in Listing
6-3, where you can give all the JMS related parameters as part of the JMS sender URL.

Listing 6-3.  Using JMS Sender to Produce Messages to a JMS Queue

...
 <inSequence>
 <log level="full"/>
 <!-- [1] -->
 <property name="FORCE_SC_ACCEPTED" value="true" scope="axis2"/>
 <property name="OUT_ONLY" value="true"/> <!-- [2] -->
 <call>
 <endpoint format="soap11" > <!-- [3] -->
 �<address uri="jms:/PriceUpdatesQueue?transport.jms.Co

nnectionFactoryJNDIName=QueueConnectionFactory&ja
va.naming.factory.initial=org.wso2.andes.jndi.Properti
esFileInitialContextFactory&java.naming.provider.
url=repository/conf/jndi.properties&transport.jms.
DestinationType=queue"

 format="soap11"/>
 </endpoint>
 </call>
 </inSequence>
[1] You can specify this property to return HTTP 202 accept message
immediately after receiving the request.
[2] Since this is an asynchronous one way message, message flow doesn’t need
to wait for a response. This flag is used to indicate it.

http://dx.doi.org/10.1007/978-1-4842-2343-7_5

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

142

[3] When producing JMS messages, an address point can be used along with all
the required JMS connection parameters. Request is produced to JMS Broker
via JMS transport sender.

In this example, we have produced messages to a queue. Similarly you can publish
messages to a topic by changing the destination type to a topic. As with the producer, you
can produce messages to any JMS-compliant message broker/MoM product using JMS
sender.

Two-Way JMS
In most of the messaging scenarios, JMS is used as the messaging API for asynchronous
one-way messaging. But there can be messaging requirements to support request-
response messaging semantics on top of JMS API. The two-way messaging with JMS can
be implemented with JMS using another queue/topic to receive responses. JMS provides
the JMSReplyTo message header field for specifying the destination (queue/topic) where
a reply to a message should be sent. The JMSCorrelationID header field of the reply can
be used to correlate the response with its original request. Therefore, when a JMS client
sends a message to a JMS broker, it can also send the ReplyTo header along with the
message, so that the broker can send back the response to the specified ReplyTo queue/
topic. The JMS client can poll the response queue for the response messages.

In JMS two-way messaging scenarios, ESB can be used to expose a JMS interface
to serve JMS request-response messaging scenarios or to send a message to an external
JMS-based MoM and receive a response from it. To understand these scenarios further,
let’s consider the following example illustrated in Figure 6-6.

Figure 6-6.  JMS inbound endpoint polls the StockquoteQueue and injects the request
to the mediation flow, which sends the response to the SOAP web service over HTTP. The
response is sent back to the StockquoteResponseQueue.

Suppose that a JMS client application places a stock quote request in a JMS queue
(StockquoteQueue) and, along with the request, it sends the JMSReplyTo header, which
specifies the queue (StockquoteResponseQueue), which will wait for the response
message. But the backend service only supports SOAP web services over HTTP and it
cannot directly accept requests from JMS MoM. That’s where you can use ESB to fetch
messages from the JMS queue (StockquoteQueue), send them to the SOAP web service,
and place the response in the response queue (StockquoteResponseQueue).

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

143

You can use a JMS inbound endpoint in WSO2 ESB to pick up the message from the
queue and send it to the SOAP backend service via the HTTP protocol. Since ESB receives
the JMSReplyTo header with the response queue name, ESB knows where to send the
response message. The configuration of the JMS inbound endpoint will be very similar to
the previous JMS consumer scenario, but the response queue is read from the JMSReaplyTo
header. If the client doesn’t specify a response queue, you can configure transport.jms.
ReplyDestination as part of the inbound configuration shown in Listing 6-4.

Listing 6-4.  Using WSO2 ESB as a Two-Way JMS Consumer

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="JMSStockquoteTwowayConsumer"
 sequence="stockquoteReqProcessorSeq"
 onError="stockquoteReqErrorSeq"
 protocol="jms"
 suspend="false">
 <parameters>
 <parameter name="interval">1000</parameter>
 <parameter
 name="transport.jms.Destination">StockquoteQueue</parameter>
 ...
 <parameter
 �name="transport.jms.ReplyDestination">StockquoteResponseQ

ueue <!-- [1] -->
 </parameter>
 ...
 </parameters>
</inboundEndpoint>

<sequence name="stockquoteReqProcessorSeq"> <!-- [2] -->
 <log level="custom">
 <property name="Message-Flow" value="Stockquote Req-processor seq."
 </log>
 <header name="Action" value="urn:getQuote"/>
 <call>
 <endpoint>
 <address
 uri="http://localhost:7070/services/SimpleStockquoteService"
 format="soap11"/>
 </endpoint>
 </call>
 <respond/>
</sequence>
[1] Configuring the response queue for sending the response message back
from inbound.
[2] Sequence that sends the request received from the JMS inbound endpoint
and sending the response back.

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

144

Now you have discovered how you can use JMS inbound endpoint to consume
messages in a queue and send the response messages back to a response queue. In some
JMS integration scenarios, you may need to do two-way messaging in the JMS producer
side as well.

For example, let’s consider the integration scenario depicted in Figure 6-7. In this
scenario, the stockquote backend web service can only consume stockquote messages
from a JMS queue (StockquoteQueue) and that service will place the stockquote
responses in another JMS queue (StockquoteResponseQueue). But the client application is
based on SOAP/HTTP and cannot directly talk to the backend service. Therefore, you can
use the ESB to accept the request from the web service client over HTTP protocol and add
the request to the JMS queue (StockquoteQueue). Since we need to receive the response
via JMS into a separate queue, you can specify the transport.jms.ReplyDestination
parameter when you are sending the request out via the JMS transport sender.

Figure 6-7.  ESB accepts the SOAP web service request over HTTP and sends that request
to a JMS queue and specifies the JMS response queue. Once the response is available in the
response queue, it is sent back to the web service client.

The configuration of the two-way JMS producer scenario is similar to the previous
JMS producer configuration; the only difference is that along with the jms endpoint URI,
you need to specify the transport.jms.ReplyDestination=StockquoteResponseQueue
parameter, as shown in Listing 6-5.

Listing 6-5.  Using WSO2 ESB as a Two-Way JMS Producer

<proxy name="StockQuoteProxy" transports="http">
 <target>
 <inSequence>
 <property action="set" name="transport.jms.
ContentTypeProperty" value="Content-Type" scope="axis2"/>
 <call>
 <endpoint format="soap11" >
 �<address uri="jms:/SimpleStockQuoteService?transp

ort.jms.ConnectionFactoryJNDIName=QueueConnection
Factory& java.naming.factory.
initial=org.apache.activemq.jndi.ActiveMQInitialC
ontextFactory&java.naming.provider.url=tcp://

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

145

localhost:61616&transport.jms.DestinationType=que
ue&transport.jms.ReplyDestination=StockquoteResponse
Queue" <!-- [1] -->

/>
 format="soap11"/>
 </endpoint>
 </call>
 <property
 �action="remove" name="TRANSPORT_HEADERS"

scope="axis2"/> <!-- [2] -->
 <respond/>
 </inSequence>
 <target>
</proxy>
[1] Use transport.jms.ReplyDestination=StockquoteResponseQueue parameter to
specify the response queue.
[2] Removing all JMS transport header before sending the response back to
the web service client.

As you specified the response queue in the JMS connection URL, as soon as a new
response is available, the sender returns the response to the mediation flow. In the
mediation flow, you can remove all the JMS transport headers, as they are not required
for the HTTP SOAP web service client.

So far we have discussed several use cases of integrating WSO2 ESB with
JMS API-based enterprise messaging products. They are mainly based on the JMS
inbound endpoint and JMS sender terminology and, with few simple variations in the
configuration, you can implement these JMS integration scenarios. In such scenarios,
you may also need to make sure JMS consuming or producing is done in a transactional
manner. That’s addressed in the JMS transaction specification and in the next section you
learn how to use JMS transactions with WSO2 ESB.

Using JMS Transactions
JMS transactions are designed to ensure that the messages are received or sent in an
all-or-nothing fashion. For example, when consuming messages in a JMS queue, when
you are using a transactional consumption of messages, the JMS provider/server won’t
remove the messages from the queue if you sent a commit() message after processing
the messages. If a failure occurs or a rollback() is issued, then the JMS provider will
attempt to redeliver the messages, in which case the messages will have the redelivered
flag set. Similarly, you can use transactions at the JMS sender side too.

You can use JMS transaction with WSO2 ESB with both JMS consumer and JMS
producer. In the following example, it shows a modified version of the supermarket
scenario where the price update request must be consumed in transactional fashion.
As illustrated in Figure 6-8, the JMS inbound endpoint is used as the transactional JMS
consumer. The price update requests are fetched from the JMS queue and are processed
and sent to the PriceManagementService. If the entire message processing and delivering
is successful, then the consumer sends a commit request, which removes the message

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

146

from the JMS queue. But in case of an error, the fault sequence is invoked and inside the
fault sequence, you can set the rollback flag, which will keep the messages in the queue
and attempt to redeliver it.

Figure 6-8.  Using JMS consumer-side transactions to get messages from a JMS queue,
process them, and send to a backend service

In order to configure a transactional JMS consumer scenario, you just need to
enable the SessionTransacted property and add the rollback flag to the fault sequence,
as shown in Listing 6-6. It is important to keep in mind that when you are using JMS
transactions, you need to make sure you use Call mediator with the blocking mode
to make sure that sending happens in the same thread, so that you have control over
committing or rolling back the transaction.

Listing 6-6.  Using JMS Consumer-Side Transactions with JMS Inbound Endpoints

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="JMSPriceUpdateConsumer"
 sequence="stockquoteReqProcessorSeq"
 onError="stockquoteReqErrorSeq"
 protocol="jms"
 suspend="false">
 <parameters>
 ...
 <parameter
 name="transport.jms.SessionTransacted">
 true</parameter> <!-- [1] -->
 <parameter name="transport.jms.SessionAcknowledgement">CLIENT_
ACKNOWLEDGE</parameter>
...
</inboundEndpoint>

...

...
<inSequence>
 <property name="OUT_ONLY" value="true"/>

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

147

 <call blocking="true"> <!-- [2] -->
 <endpoint>
 <address uri="http://localhost:8080/SimpleStockQuoteService"/>
 </endpoint>
 </call>

 <log level="custom">
 <property name="Transaction Action" value="Committed"/>
 </log>
</inSequence>
...

<sequence name=" stockquoteReqErrorSeq">
 <!-- [3] -->
 <property name="SET_ROLLBACK_ONLY" value="true" scope="axis2/>
 <log level="custom">
 <property name="Transaction Action" value="Rollbacked"/>
 </log>
</sequence>
[1] Configure the JMS Inbound consumer to use a transacted session and
session acknowledgement is set to client ack.
[2] Use call mediator with blocking mode true to make sure message sending
happens in the same thread.
[3] In the fault sequence, specify the rollback flag to revert the
transaction.

We used the SessionAcknowledgement to CLIENT_ACKNOWLEDGE. By default, JMS
consumers use default acknowledgement mode, which is specified using the AUTO_
ACKNOWLEDGE parameter. CLIENT_ACKNOWLEDGE parameters give consumers more control
over when messages are acknowledged. A consumer can group a number of messages,
and then invoke the acknowledge method of the message to instruct the JMS provider
that the message and all other messages received until this point have been consumed.

Therefore, if something goes wrong in the message processing, the messages won’t
be removed from the queue and will be ready to be redelivered.

Store and Forward with Message Stores and Message
Processors
When passing messages between two systems, there can be several constraints that
prevent a smooth process. For example, when the message sender is ready to send
messages, the recipient may be offline or the message consumption rate of the recipient
may be very different from the sender. In such scenarios, we need to store messages in
between the sender and the recipient and allow the message sender and recipient to
work in full asynchronous manner. This messaging pattern is known as store and forward
messaging.

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

148

The store and forward pattern is used to store incoming messages and later forward
them to the intended recipient. The main advantage of this approach is that it allows you
to send messages asynchronously and reliably to backend services. These messages can
be stored in any reliable storage, such as databases and file systems, and a combination of
both.

In WSO2 ESB, the store and forward messaging pattern is implemented by using
two main message constructs known as message store and message processors. To
understand the implementation of store and forward pattern with WSO2 ESB, let’s
consider the same supermarket software solution scenario. Here we have a web service
client that sends the price updates to a price management service. The price updates are
sent in ordered-fashion and hence the in-order delivery must be maintained across the
messaging system. But the availability of the price management service is not guaranteed.
And we have a strict requirement of not losing any price update and at the same time
the order of the price update messages must be preserved. Now our challenge is to
implement this scenario with WSO2 ESB. As depicted in Figure 6-9, you can use WSO2
ESB’s message store and processor to realize this integration scenario.

Figure 6-9.  Guaranteed message delivery between price update client and
PriceManagement service by using message stores and processors

In WSO2 ESB, you can define a message store that can be used to store the messages.
But message store represents a virtual message store, which points to an actual message
storage such as a JMS queue or a database table. There are multiple implementations
of message stores and in this example we used a JMS message store. JMS message store
can use any JMS provider as the underlying message storage and, when configuring the
message store, you can provide all the connection details to the external JMS provider. In
Listing 6-7, it shows the configuration of a JMS message store.

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

149

Listing 6-7.  Defining a JMS Message Store

<messagestore
 �class="org.apache.synapse.message.store.impl.jms.JmsStore"

name="JMSMS"> <!-- [1] -->
 <parameter <!-- [2] -->
 name="java.naming.factory.initial">
 �org.apache.activemq.jndi.ActiveMQInitialContextFactory

</parameter>
 <parameter
 �name="java.naming.provider.url">tcp://localhost:61616

</parameter>
 <parameter
 �name="store.jms.JMSSpecVersion">1.1</parameter>
</messagestore>

[1] Name of the message store and the implementation of the message store
[2] Parameters required for JMS message store which connects to an external
JMS provider.

Once this JMS message store is deployed into ESB, it creates a queue in the JMS
broker (in this case, ActiveMQ) with the name of the message store (JMSMS). Now
you can add messages to the message flow from the mediation flow by using the Store
mediator. In Listing 6-8, you can find a proxy service that accepts messages from a SOAP
web service client and adds the received requests to the message store that we created
previously.

Listing 6-8.  Adding Messages to a Message Store from Mediation Flow

<proxy
 name="PriceUpdateManagerProxy"
 �transports="http https" startonload="true" trace="disable">
 <target>
 <insequence>
 <property
 name="FORCE_SC_ACCEPTED" value="true"
 �scope="axis2" type="STRING"></property>

<!-- [1] -->
 <property
 name="OUT_ONLY" value="true" <!-- [2] -->
 scope="default" type="STRING"></property>
 <store messagestore="JMSMS"></store> <!-- [3] -->
 </insequence>
 </target>
</proxy>

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

150

[1] This is to configure the proxy service to accepts the request and
immediately send back the HTTP 202 Accepted message.
[2] Since this is an one-way messaging scenario, you need to specify this
flag.
[3] Using store mediator, you can store the message in the JMS message store
which will add the current request to the JMS queue.

Now at this point, you have added the received request to the JMS message store
and replied to the HTTP web service client with a HTTP 202 Accepted response. And all
messages now reside in the JMS queue. When it comes to consuming messages stored
in a message store, you can use the message processor. The message processor is used
to consume messages from the message store and then deliver them to a configured
backend. When a message processor sends messages to the backend, we have more
control over the message sending part. For example, we can throttle the speed of the
delivery of messages or we can reliably deliver messages to a configured backend.

Based on the nature of messaging sending from a message processor, there are two
types of message processors available in WSO2 ESB.

•	 Forwarding processor: This is mainly used in guaranteed message
delivery scenarios. Forwarding processor gets the messages from
a message store and sends them to the configured endpoint. If
the message is successfully delivered to the endpoint, then it’s
removed from the message store. If it’s not delivered, it keeps
on retrying the message sending based on the configured retry
interval.

•	 Sampling processor: This is useful in rate matching scenarios
where the producing rate of the client and the consuming rate of
the consumer are different. This has better performance than the
forwarding processor, but does not ensure guaranteed delivery.

In our price update scenario, we need to use the forwarding message processor, as
we require the guaranteed delivery of the messages. Since we are using a queue for JMS
store, it also ensures the in-order delivery. Therefore, you can configure a forwarding
message processor as shown in Listing 6-9. In the forwarding message processor
configuration, you can select the message store that it should fetch messages with and the
target endpoint name.

Listing 6-9.  Processing Messages in a Message Store Using the Forwarding Message
Processor

<messageprocessor
 class="org.apache.synapse.message.processor.impl.forwarder.
ScheduledMessageForwardingProcessor" <!-- [1] -->
 name="PriceUpdateMP"
 targetendpoint=" PriceMgmtServiceEP" <!-- [2] -->
 messagestore="JMSMS"> <!-- [3] -->
 <parameter name="client.retry.interval">1000</parameter> <!-- [4] -->
 <parameter name="interval">1000</parameter> <!-- [5] -->

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

151

 <parameter name="is.active">true</parameter>
</messageprocessor>

<endpoint name="PriceMgmtServiceEP"> <!-- [6] -->
 <address uri="http://localhost:7000/services/PriceManagementService">
 </address>
</endpoint>
[1] Configure a forwaring message processor
[2] Name of the target endpoint which contains the backend service address.
[3] Associated message store instance.
[4] Duration between each message retry in case of a failure.
[5] Interval in milliseconds in which processor consumes messages
[6] Endpoint definition of the backend service.

You have seen how you can realize the store and forward messaging pattern with the
use of message stores and processors using JMS-based persistent message store. But the
usage of message stores and processors is not limited to the JMS protocol. You can also
use other message store implementations such as JDBC message store, where you can
configure a database to store messages from the mediation flow.

When implementing guaranteed delivery scenarios with message stores and
processors, you may have to use failover capability at the message store level as well. The
original message store may fail due to network failure, message store crash, or system
shutdown for maintenance, and the failover message store is used as the solution for
the original message store failure. So with the failover message store concept, the store
mediator sends messages to the failover message store. Then, when the original message
store is available again, the messages that were sent to the failover message store need to
be forwarded to the original message store. The scheduled failover message forwarding
processor is used for this purpose. The details of how you can use failover message store can
be found at http://docs.wso2.com/enterprise-service-bus/Guaranteed+Delivery+with
+Failover+Message+Store+and+Scheduled+Failover+Message+Forwarding+Processor.

Integrating with AMQP, MQTT and Kafka
So far we discussed enterprise messaging using JMS API. But there are quite a lot of other
enterprise messaging standards and protocols that are increasingly popular. Therefore,
in this section, you will discover some of the common enterprise messaging technologies
that are popular in the enterprise integration space.

Using AMQP with RabbitMQ
With JMS, you can replace any JMS compliant message broker with any other JMS
compliant broker. That’s one of the key benefits of using JMS API. But as the name
implies, JMS is inherently for Java applications. Therefore, in other words, JMS only allows
us to have messaging interoperability within the Java platform, but not allow for cross-
platform interoperability.

http://docs.wso2.com/enterprise-service-bus/Guaranteed+Delivery+with+Failover+Message+Store+and+Scheduled+Failover+Message+Forwarding+Processor
http://docs.wso2.com/enterprise-service-bus/Guaranteed+Delivery+with+Failover+Message+Store+and+Scheduled+Failover+Message+Forwarding+Processor

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

152

The main objective of AMQP (Advanced Message Queuing Protocol) is to enable
cross-platform interoperability for enterprise messaging. For example, Figure 6-10
illustrates how JMS- and AMQP-based systems interoperate.

Figure 6-10.  JMS versus AMQP. With JMS, applications X and Y are implemented
with Java and with AMQP, applications X and Y are implemented with Java and C++,
respectively

As you saw in the previous section, with JMS you can connect to any JMS compliant
message broker/MoM using its client libraries via JMS API. But both applications need to
be implemented using the Java platform. But with AMQP, you can connect an application
based to any platform, as long as it is AMQP compliant. In Figure 6-10, you can observe
a Java-based application connects to an AMQP provider (RabbitMQ) using its client
libraries (RabbitMQ). Similarly, another application, which is based on C++ can connect
to AMQP provider using its AMQP clients (Qpid).

AMQP provides a specification for an industry standard wire-level binary protocol to
describe how the message should be structured and sent across the network. With AMQP,
you can use whatever AMQP-compliant client library you want and any AMQP-compliant
broker you want.

Now let’s see how you use integrate enterprise-messaging systems, which are based
on AMQP using WSO2 ESB. As an example, consider a lightly modified version of the
supermarket price update scenario. Supposed that the price update requests are stored
in a global message broker—RabbitMQ, which is based on AMQP. And price updates

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

153

requests should be fetched into each local RabbitMQ broker, which resides in each outlet.
To realize this integration scenario, you can use WSO2 ESB as the AMQP consumer and
producer, as shown in Figure 6-11.

Figure 6-11.  RabbitMQ inbound endpoint can consume messages from the global price
updates system and then add the messages into the local price updates system using
RabbitMQ AMQP sender

For the consumer side, you can use the RabbitMQ inbound endpoint which can
consume messages from the GlobalPriceUpdates queue. The RabbitMQ sender can be
used to send messages to the LocalPriceUpdatesQueue using the AMQP protocol. Since
we are using AMQP, the global or local brokers or MoMs can be replaced with any AMQP-
compliant broker. The configuration of this scenario (shown in Listing 6-10) is very
similar to the JMS producer consumer scenarios that you learned about in the previous
section.

Listing 6-10.  AMQP Consumer and Producer Scenario with RabbitMQ

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="RabbitMQConsumer"
 sequence="amqpPriceUpdateProcessorSeq" <!-- [1] -->
 onError="amqpPriceUpdateErrorSeq"
 protocol="rabbitmq" <!-- [2] -->
 suspend="false">
 <parameters>
 <parameter name="interval">1000</parameter> <!-- [3] -->
 �<parameter name="rabbitmq.server.host.name">localhost</parameter>

<!-- [4] -->
 �<parameter name="rabbitmq.server.port">5672</parameter>

<!-- [5] -->
 <parameter
 �name="rabbitmq.factory.recovery.interval">10000

</parameter>
 <parameter
 �name="rabbitmq.queue.name">GlobalPriceUpdatesQueu

</parameter> <!—[6] -->

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

154

 <parameter name="rabbitmq.exchange.name">exchange</parameter>
 <parameter
 name="rabbitmq.connection.factory">
 AMQPConnectionFactory</parameter>
 </parameters>
</inboundEndpoint>

<sequence name="amqpPriceUpdateProcessorSeq"> <!-- [7] -->
 <property name="FORCE_SC_ACCEPTED" value="true" scope="axis2"/>
 <property name="OUT_ONLY" value="true"/>
 <call>
 <endpoint>
 <address <!-- [8] -->
 �uri="rabbitmq:/AMQPProxy?rabbitmq.server.host.

name=localhost&rabbitmq.server.port=5672&rabbitmq.queue.
name=LocalPriceUpdates&rabbitmq.queue.route.
key=route&rabbitmq.exchange.name=exchange"/>

 </endpoint>
 </call>
</sequence>
[1] Message processing sequence.
[2] Specifies the protocol as rabbitmq
[3] Polling interval
[4] Host name of the RabbitMQ server (AMQP server)
[5] Port of the RabbitMQ server
[6] Consumer destination points to GlobalPriceUpdates queue.
[7] Sequence that process the messages fetched from GlobalPriceUpdates
queue.
[8] RabbitMQ sender to produce messages to LocalPriceUpdates queue.

The configuration parameters are very similar to JMS apart from few AMQP/
RabbitMQ specific configurations. There are several other parameters that you can use
with either the RabbitMQ Inbound endpoint or RabbitMQ sender. You can find the
details of each configuration parameters at

https://docs.wso2.com/display/ESB490/WSO2+Enterprise+Service+Bus+Docume
ntation.

As discussed earlier, the AMQP-based messages provide several benefits over JMS,
such as the freedom of using any AMQP-compliant MoM with a single client library and
the performance improvement of being a wire level protocol. Hence it’s getting very
popular in modern enterprise messaging standards. In the next section, you will discover
another messaging standard—MQTT, which is very popular in the mobile and IoT
(https://en.wikipedia.org/wiki/Internet_of_Things) space.

https://docs.wso2.com/display/ESB490/WSO2+Enterprise+Service+Bus+Documentation
https://docs.wso2.com/display/ESB490/WSO2+Enterprise+Service+Bus+Documentation
https://en.wikipedia.org/wiki/Internet_of_Things

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

155

Integrating with MQTT
MQTT (Message Queuing Telemetry Transport) is a machine-to-machine
(M2M)/"Internet of Things(IoT)" connectivity protocol. It was designed as an extremely
lightweight publish/subscribe messaging transport. It is useful for connections with
remote locations, where a small code footprint is required and/or network bandwidth is
at a premium.

So, MQTT is all about IoT and devices, but why do we care about using an ESB with
MQTT? In many IoT scenarios, it is often required to integrate conventional enterprise
applications with MQTT-based systems and devices.

Let’s take an example where we use WSO2 ESB as the MQTT consumer. Suppose
that there is a temperature sensor the collects hourly temperature information and
publishes them to a MQTT broker such as Mosquitto (http://mosquitto.org/). And
there is a RESTful web service, called WeatherService, that needs to be updated on the
latest temperature information sensed from the sensors. As shown in Figure 6-12, you can
use WSO2 ESB to subscribe to the MQTT topic: TemperatureData from a MQTT Inbound
endpoint. When there is new data published on that topic, it is fed into ESB. ESB takes
care of sending that information to the WeatherService via HTTP/JSON.

The structure of the configuration of this MQTT inbound endpoint is again similar
to any JMS/AMQP configuration, but contains a few MQTT protocol specific parameters.
Listing 6-11 shows the configuration of the MQTT inbound endpoint.

Listing 6-11.  Using MQTT Inbound Endpoint to Subscribe and Receive Messages from a
MQTT Topic

<inboundEndpoint name="MQTTTemperatureDataConsumer"
 onError="TemperatureErrorSeq" protocol="mqtt" <!-- [1] -->
 sequence="TemperatureDataProcessor" suspend="false">
 <parameters>
 <parameter name="mqtt.connection.factory">mqttFactory</parameter>

Figure 6-12.  Temperature data is published into a MQTT topic by the temperature sensor.
An inbound MQTT endpoint is subscribed to that topic and it receives temperature updates
to the mediation flow of WSO2 ESB. Then ESB sends that temperature data to the weather
service over HTTP.

http://mosquitto.org/

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

156

 �<parameter name="mqtt.server.host.name">localhost</parameter>
<!-- [2] -->

 <parameter name="mqtt.server.port">1886</parameter> <!-- [3] -->
 �<parameter name="mqtt.topic.name">TemperatureData</parameter>

<!-- [4] -->
 <parameter name="mqtt.subscription.qos">2</parameter>
 �<parameter name="mqtt.client.id">client-id.143094112027

</parameter>
 �<parameter name="content.type">application/json</parameter>

<!-- [5] -->
 <parameter name="mqtt.session.clean">false</parameter>
 <parameter name="mqtt.ssl.enable">false</parameter>
 <parameter name="mqtt.temporary.store.directory">store</parameter>
 <parameter name="mqtt.blocking.sender">false</parameter>
 </parameters>
</inboundEndpoint>
[1] Using MQTT as the protocol of the inbound endpoint.
[2] The host name of the MQTT broker.
[3] Port of the MQTT broker.
[4] The topic that the ESB inbound endpoint has subscribed to.
[5] Message format of the messages from the topic.

Similarly, ESB may be useful in scenarios where you need to publish MQTT
messages to a topic. For examples, the scenario illustrated in Figure 6-13, the news alerts
must be sent to all the mobile devices that are subscribed to it. In order to minimize the
power consumption of the devices, they receive news alerts by subscribing to an MQTT
topic. The REST web service client only knows JSON and sends the news alerts updates
via HTTP. So, the task of ESB is to publish the received new alerts to the MQTT topic to
which the mobile devices are subscribed.

Figure 6-13.  ESB receives weather alerts via HTTP as JSON messages and ESB sends the
message to a MQTT topic. All the other subscribers will receive it immediately

To publish the content to the NewsAlerts topic, you can simply use the MQTT
sender, as shown in Listing 6-11.

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

157

Listing 6-12.  Publishing Messages to a MQTT Topic

...
<call>
 <endpoint>
 <address
uri="mqtt:/sender?mqtt.server.host.name=localhost&mqtt.server.
port=1884&mqtt.client.id=esb.test.sender&mqtt.topic.
name=NewsAlerts&mqtt.subscription.qos=2&mqtt.blocking.sender=true"/>
 </endpoint>
</call>
...

Along with this MQTT sender, you can use the same mediation logic, which you
used to do one-way messaging in previous scenarios. You can find more details about
the MQTT related configuration parameters at http://docs.wso2.com/enterprise-
service-bus.

So far you learned about a couple of popular messaging standards—AMQP and
MQTT. It’s noteworthy to mention that these two standards address two drastically different
application domains, hence you should choose which approach suits you the most.
With respective ESB, both these standards are equally supported. Apart from those two
standards, there are a few other popular enterprise messaging standards such as Kafka.

Integrating with Kafka
Kafka is a distributed messaging system providing fast, highly scalable, and redundant
messaging through a publisher-subscriber pattern. Message producers can write data to
topics and consumers can read from topics. These topics are partitioned and replicated
across multiple nodes and that makes Kafka a fully distributed message broker.

Kafka allows a large number of permanent or ad hoc consumers and supports high
availability and automatic node recovery from failures. In real-world data systems, these
characteristics make Kafka an ideal fit for communication and integration between
components of large-scale data systems. The key difference between Kafka and other
message brokers that use JMS, AMQP etc., is that Kafka is optimized for ordered publish
subscribe, while the traditional brokers have a big feature set, which is rarely used but
degrades performance. WSO2 ESB supports both message consuming capability and
message producing capability with the Apache Kafka messaging system.

https://docs.wso2.com/display/ESB490/WSO2+Enterprise+Service+Bus+Documentation
https://docs.wso2.com/display/ESB490/WSO2+Enterprise+Service+Bus+Documentation

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

158

WSO2 ESB provides a Kafka inbound endpoint that allows you to subscribe to
a Kafka topic and inject the received messages to a sequence. This is similar to all
other inbound endpoint that we have discussed so far. Listing 6-13 shows a sample
configuration of the inbound endpoint to receive messages from a Kafka topic. Also,
WSO2 ESB can be used to publish messages to a Kafka topic. The publishing can be done
inside a ESB sequence using a Kafka connector. You can use WSO2 ESB’s Kafka connector
and initiate that inside an ESB message sequence. Once the initiation is done, you can
publish messages to a given topic. The details related to ESB connector concept are
discussed in Chapter 8.

Listing 6-13.  Subscribing to a Kafka Topic from WSO2 ESB Using Kafka Inbound
Endpoint, Filtering Messages Received for that Topic, and then Publishing Filtered
Messages to Another Kafka Topic Through Kafka Connector

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="KakfaListenerEP"
 sequence="requestHandlerSeq"
 onError="inFaulte"
 protocol="kafka"
 suspend="false">
 <parameters>
 <parameter name="interval">100</parameter>
 <parameter name="coordination">true</parameter>
 <parameter name="sequential">true</parameter>
 <parameter name="zookeeper.connect">localhost:2181</parameter>
 <parameter name="consumer.type">highlevel</parameter>
 <parameter name="content.type">application/xml</parameter>
 <parameter name="topics">test,sampletest</parameter>
 <parameter name="group.id">test-group</parameter>
 </parameters>

...
 <inSequence>
 <kafkaTransport.init>
 <brokerList>localhost:9092</brokerList>

Figure 6-14.  Using WO2 ESB as Kafka consumer and producer

http://dx.doi.org/10.1007/978-1-4842-2343-7_8

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

159

 </kafkaTransport.init>
 <kafkaTransport.publishMessages>
 <topic>nasdaq</topic>
 </kafkaTransport.publishMessages>
 </inSequence>

The enterprise messaging capabilities of WSO2 ESB can be used for various use
cases and you can choose the message broker system that fits your use cases. Each
messaging system offers a wide range of parameters that you can configure at the ESB
inbound endpoint level or the transport sender/connector level. The details of all these
parameters can be found at http://docs.wso2.com/enterprise-service-bus.

Summary
In this chapter you learned:

•	 The basics of Enterprise Messaging/Message Oriented
Middleware (MoM).

•	 Using JMS, you can build interoperable Java application that
can use any JMS-compliant MoM to interoperate with other
applications.

•	 JMS is an API that allows you to write message broker agnostic
code and your application can interact with any JMS-compliant
MoM.

•	 You can use JMS inbound endpoint to consume messages from
a queue or topic. Similarly, JMS sender can be used to produce
messages to a JMS queue/topic.

•	 JMS is primarily designed for one-way asynchronous messaging
but by using a separate queue to handle response (JMSReplyTo
header), you can implement JMS request-response scenarios.

•	 JMS inbound endpoint can support two-way JMS and if the client
doesn’t send the JMSReplyTo header then you can specify the
response queue name as part of the JMS inbound configuration.

•	 Similarly, with the JMS sender you can specify the reply
destination and do two-way JMS on the producer sides.

•	 The store-and-forward message pattern is heavily used in
enterprise integration space.

•	 WSO2 ESB provides two main constructs—message stores and
processors. Message store is a logical representation of actual
message storage and often uses JMS for JMS message store
configuration. The forwarding processor is used for implementing
guaranteed delivery scenarios and a sampling processor is used
in controlling the message-processing rate.

http://docs.wso2.com/enterprise-service-bus

Chapter 6 ■ Enterprise Messaging with JMS, AMQP, MQTT, and Kafka

160

•	 Apart from JMS, other messaging technologies such as AMQP and
MQTT are also popular.

•	 AMQP tries to define a messaging standards, which is platform
agnostic. MQTT is designed for device, machine-to-machine
communication and often used in scenarios that have low power
consumption and low bandwidth.

•	 Integration of both AMQP and MQTT is done using inbound
endpoint for the consumer side and AMQP/MQTT senders for the
producer side.

161© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_7

CHAPTER 7

File-Based Integration

Managed File Transfer has been around ever since the early stages of enterprise integration
where one application writes a file that the other application reads and vice versa. The file
formats, standards, location, privileges, and read/write coordination must be negotiated
between the two applications beforehand. There are various message formats, such as
comma-separated values (CSV), electronic data interchange (EDI), electronic protected
health information (ePHI), etc., that are frequently used in this domain.

Software applications that are built on top of file transfer techniques have to be
integrated with other systems that run on different protocols such as HTTP or other
systems that use different file formats. Hence, ESB has to cater to a wide range of
integration scenarios related to files, which is known as file-based integration.

In this chapter, you will learn about various use cases related to file-based integration
with WSO2 ESB.

Reading Files
Reading files residing on a file system is one of the basic requirements of file-based
integration. The files may reside in various file systems such as local, FTP, SFTP, and
so forth. The file reading action may also trigger based on different requirement of the
application. For instance, file reading can be a polling job (which polls for available files
in a particular location in a file system) or an on-demand (access the file system and read
the file content whenever the ESB needs content) job. Therefore, ESB has to support these
different requirements in the file-based integration.

Reading a File from the Local File System
Assume that you want to build an integration scenario that polls to the file system and
when there are new files in the specific file location, you read the contents of the file and
write the content to the log. As depicted in Figure 7-1, you can implement this use case
with the use of a File Inbound endpoint, which can poll the file system periodically and,
when there’s a new file in the file system location, it can inject the contents of the file as a
message into a sequence. The sequence can apply arbitrary message mediation logic on
top of that message.

Chapter 7 ■ File-Based Integration

162

With File Inbound endpoints, after processing the files, it moves them to a specified
location or deletes them. Note that files cannot remain in the source directory after
processing or they will be processed again. So if you need to maintain these files or keep
track of the files that are processed, specify the option to move them instead of deleting
them after processing.

Listing 7-1 shows the configuration of a File Inbound endpoint for this integration
use case. As the main configuration elements of the File Inbound Endpoint, you can
specify the message injecting sequence and error handling sequence. As the parameters
of the inbound endpoint, you can specify the polling interval, location for processed files,
content type of the created message payload and so forth.

Listing 7-1.  Polling Files on the File Systems

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="OrderProcessing_File_Inbound_SFTP"
 sequence="orderProcessingSeq"
 onError="fault"
 protocol="file"
 suspend="false">
 <parameters>
 <parameter name="interval">1000</parameter>
 <parameter name="coordination">true</parameter>
 <parameter name="transport.vfs.ContentType">text/xml</parameter>
 <parameter name="transport.vfs.LockReleaseSameNode">false</parameter>
 <parameter name="transport.vfs.AutoLockRelease">false</parameter>
 <parameter name="transport.vfs.ActionAfterFailure">DELETE</parameter>
 <parameter name="transport.vfs.CreateFolder">true</parameter>
 <parameter name="sequential">true</parameter>

Figure 7-1.  File Inbound endpoint can pool the files in a given file system location. When
there is a new file found in that location, the contents of the file is read and injected into a
sequence. The sequence logs the contents of the file.

Chapter 7 ■ File-Based Integration

163

 <parameter name="transport.vfs.ActionAfterProcess">MOVE</parameter>
 �<parameter name="transport.vfs.FileURI">/Users/kasun/development/

deployment/maestro/wso2esb-4.9.0/sample_resources/file_reading/
source</parameter>

 <parameter name="transport.vfs.DistributedLock">false</parameter>
 <parameter name="transport.vfs.Streaming">false</parameter>
 �<parameter name="transport.vfs.MoveAfterProcess">/Users/kasun/

development/deployment/maestro/wso2esb-4.9.0/sample_resources/file_
reading/destination</parameter>

 <parameter name="transport.vfs.Locking">enable</parameter>
 <parameter name="transport.vfs.FileSortAscending">true</parameter>
 <parameter name="transport.vfs.FileSortAttribute">NONE</parameter>
 <parameter name="transport.vfs.Build">false</parameter>
 </parameters>
</inboundEndpoint>

■■ Note  It is important to note that, before introducing VFS inbound endpoints, WSO2 ESB
supported file-based integration with proxy services with VFS transport. Therefore, if you are
still using VFS transport, the same parameters can be used with file integration. However,
if you need to support clustering/coordinating, it is recommended that you use VFS file
inbound endpoint.

Failure Tracking
To track failures in file processing that can occur when a resource becomes unavailable,
the VFS transport creates and maintains a failed records file. This text file contains a list
of files that failed to process. When a failure occurs, an entry with the failed filename
and timestamp is logged in the text file. When the next polling iteration occurs, the VFS
transport checks each file against the failed records file, and if a file is listed as a failed
record, it will skip processing and schedule a move task to move that file.

Similar to reading the files from the local machine, you can also read files from other
file system types.

Reading Files from an FTP or FTP/s
Suppose the scenario in Figure 7-1 uses a file that’s residing in an FTP location. In that
case you can configure a File Inbound Endpoint in WSO2 ESB to poll and read files from a
remote FTP server. The main difference is that the FileURI parameter that now contains
the location of the FTP server and the vfs.passive=true parameter, which allows the
FTP connection to stay open (once connected) and transfer a fairly large file.

Chapter 7 ■ File-Based Integration

164

Listing 7-2.  Polling Files on the File Systems

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="OrderProcessing_File_Inbound_FTP"
 sequence="orderProcessingSeq"
 onError="fault"
 protocol="file"
 suspend="true">
 <parameters>
 <parameter name="interval">15</parameter>
 <parameter name="coordination">true</parameter>
 <parameter name="transport.vfs.ContentType">text/xml</parameter>
 <parameter name="transport.vfs.LockReleaseSameNode">false</parameter>
 <parameter name="transport.vfs.AutoLockRelease">false</parameter>
 <parameter name="transport.vfs.ActionAfterFailure">DELETE</parameter>
 <parameter name="transport.vfs.CreateFolder">true</parameter>
 <parameter name="sequential">true</parameter>
 <parameter name="transport.vfs.ActionAfterProcess">MOVE</parameter>
 �<parameter name="transport.vfs.FileURI">vfs:ftp://kasun:password@ftp.

server.org/test?vfs.passive=true</parameter>
 �<parameter name="transport.vfs.MoveAfterProcess"> vfs:ftp://

kasun:password@ftp.server.org/processed?vfs.passive=true </parameter>
 <parameter name="transport.vfs.DistributedLock">false</parameter>
 <parameter name="transport.vfs.Streaming">false</parameter>
 <parameter name="transport.vfs.Locking">enable</parameter>
 <parameter name="transport.vfs.FileSortAscending">true</parameter>
 <parameter name="transport.vfs.FileSortAttribute">NONE</parameter>
 <parameter name="transport.vfs.Build">false</parameter>
 </parameters>
</inboundEndpoint>

The rest of the parameters are more or less common to all file system types.
If the access to the FTP server is only through an SSL connection, then you need

to configure File Inbound Endpoint with FTPs. Again you can simply change the URL
to ftps:// along with the username and password. In addition, you can configure SSL
parameters if you are using FTP/s with certificates.

Listing 7-3.  File URI of an FTPS with SSL

<parameter name="transport.vfs.FileURI">vfs:ftps://test:test123@10.200.2.63/
vfs/in?vfs.ssl.keystore=/home/user/openssl/keystore.jks&vfs.
ssl.truststore=/home/user/openssl/vfs-truststore.jks&vfs.ssl.
kspassword=importkey&vfs.ssl.tspassword=wso2vfs&vfs.ssl.
keypassword=importkey</parameter>

Chapter 7 ■ File-Based Integration

165

Reading Files from an SFTP
With WSO2 ESB File Inbound Endpoint, you can also read files from a remote SFTP.
This is very similar to accessing a remote resource using SSH or SCP. Similar to the other
configuration, the credentials can be provided (in encrypted form if required) in the
connection URL, together with the absolute path of the resource.

Listing 7-4.  File URI to poll an SFTP

<parameter name="transport.vfs.FileURI">vfs:sftp://kasun:password@host/
Users/kasun/development/orders
</parameter>

Similar to FTP/s you can use required certificates and key stores via vfs.ssl.*
parameters.

FTP or SFTP Through a Proxy Server
It is often necessary to connect to FTP or SFTP through a proxy server. In such cases, you
can configure your FileURI so that it has the required parameters to connect to FTP/
SFTP via the proxy server. For example, you can configure a remote FTP file location via a
proxy server as shown in Listing 7-5.

Listing 7-5.  File URI of an FTP File Location Connected via a Proxy Server

ftp://username:password@127.0.0.1/home/wso2/res?proxyServer=201.10.0.11&pro
xyPort=3128&proxyUsername=proxyuser&proxyPassword=proxyPass&timeout=2500&re
tryCount=3

Here we used a proxy server address, port, and other parameters to specify the
details of the proxy server. The same configuration constructs apply to SFTP as well.

Writing Files
From an ESB message mediation logic, you may have to trigger various file system
operations including writing the content to a file, deleting a file, renaming, moving, and
so on. WSO2 ESB provides two main ways that you can interact with the file system from a
given mediation flow.

•	 VFS Transport Sender: Primarily supports writing contents to a
file.

•	 File Connector: Supports various file operations such write, reads,
renames, moves, etc.

VFS transport sender is the conventional way that most of the WSO ESB integration
use cases are leveraged and File Connector is the latest addition to the WSO2 ESB’s file
integration capabilities. You can use either of these approaches based on your use case.
Let’s start with how you can use VFS transport sender.

Chapter 7 ■ File-Based Integration

166

Writing Files with VFS Transport
Let’s learn how to use VFS transport sender to write content to the file system with a
simple use case. Suppose that you want to design an HTTP service/REST API that can
receive messages and write the message contents to the file system. To make the scenario
less complex, assume that you can write the contents in the same format (here we use
application/xml content) as you received it from the HTTP client.

As depicted in Figure 7-2, you can use WSO2 ESB’s HTTP service/REST API construct
to expose an HTTP interface to your client. So, the client can send the request to ESB’s
REST API with the message. And inside the mediation logic of the REST API, you don’t
really need to worry about transforming the message, as you only have to write the
message to the file system in the same format. Therefore, you can simply use a call or
send mediator with an address endpoint that has the VFS File URI specified.

Figure 7-2.  Receiving messages via HTTP and writing the content to the file system

When it comes to interacting with disparate file systems, File Transport Sender
behaves in a similar way as the File Reader works for reading files. So you just have to
enable the VFS Sender and specify the URI as the endpoint level with the the file system
with which you want to interact.

■■ Note  You need to enable the VFS transport sender in the axis2.xml file as follows.

<transportSender name="vfs" class="org.apache.synapse.transport.vfs.
VFSTransportSender"/>

In Listing 7-6, it shows a configuration of the REST API. It uses the context and
resource orderproc/orders and it’s the resource URI that the client sends the request
to. Therefore any request that comes to that particular URI goes through the message
mediation logic, which logs a custom log message and then specifies the OUT_ONLY
property to tell the engine that this is a one-way call. You can construct the name of the
file that you want to write to the file system with the use of the ReplyFileName property
that you set at the transport level. Here, we use a unique attribute of the message (which
is message ID) to construct the filename.

Chapter 7 ■ File-Based Integration

167

Then you can use call mediator to send the message through the VFS transport
sender with the use of an address endpoint that uses the vfs:* URI.

Listing 7-6.  HTTP Service/REST API that Receives Messages via HTTP and Writes the
Contents to the File System

<api xmlns="http://ws.apache.org/ns/synapse"
 name="OrderProcessor"
 context="/orderproc">
 <resource methods="POST" url-mapping="/orders">
 <inSequence>
 <log level="custom">
 <property name="Message Flow" value="== Order Received =="/>
 </log>
 �<property name="OUT_ONLY" value="true" scope="default"

type="STRING"/>
 <property name="transport.vfs.ReplyFileName"
 �expression="fn:concat(fn:substring-after(get-

property('MessageID'), 'urn:uuid:'), '.xml')"
 scope="transport"/>
 <call>
 <endpoint>
 �<address uri="vfs:file:///Users/kasun/development/deployment/

maestro/wso2esb-4.9.0/sample_resources/file_writing"/>
 </endpoint>
 </call>
 </inSequence>
 </resource>
</api>

Similarly you can write message content to different file systems by specifying the
required VFS URI as the address endpoint URI. For example, you can write the files to
SFTP with a similar configuration shown in Listing 7-7.

Listing 7-7.  Writing the Message Contents to the File System via SFTP

<call>
 <endpoint>
 <address uri="vfs:sftp://user_1:user_password@ftp.wso2.com/
foo/bar"/>
 </endpoint>
</call>

In some scenarios, you may have to access remote file systems via proxy servers. For
example, assume that your FTP server has to be accessed via a proxy server, then you can
configure the proxy server parameters as shown in Listing 7-8.

Chapter 7 ■ File-Based Integration

168

Listing 7-8.  Writing the Message Content to an FTP through a Proxy Server

<call>
 <endpoint>
 �<address uri="ftp://username:password@127.0.0.1/home/wso2/res?proxyS

erver=127.0.0.1&proxyPort=3128&proxyUsername=proxyuser&proxyPassword
=proxyPass&timeout=2500&retryCount=3

 "/>
 </endpoint>
</call>

Here, you can configure the parameter of the proxy server along with the URI of the
address endpoint.

So far we have discussed how you can access the file system from an ESB message
flow and write the content to the file system. However, you may have to access the file
system and do other file operations other than write. For such use cases, you can use File
Connector, which we will discuss in the latter parts of this chapter.

Transferring Files
Transferring or streaming files is another common requirement of file-based integration.
For example, as depicted in Figure 7-2, assume that you want to poll a given file system
location in your local file system and transfer it to an FTP, without processing the contents
of the file.

Figure 7-3.  Streaming Files from the local file system to an FTP

This may seem to be quite obvious, in that you can just use a file inbound endpoint
to read the file, then inject it into a sequence and an outbound endpoint and the VFS File
URI writes the content to the destination. When you transfer large files, if you load the
entire message in to the memory, it starts to consume more memory. If you don’t really
want to process the contents of the file, you can simply stream the content to achieve
better performance when transferring large files. In such scenarios, you can enable binary
builders in the axis2.xml as follows.

Chapter 7 ■ File-Based Integration

169

In <ESB_HOME>/repository/conf/axis2/axis2.xml, in the messageBuilders and
formatters section as follows:

<messageBuilder contentType="application/binary" class="org.apache.axis2.
format.BinaryBuilder"/>

<messageFormatter contentType="application/binary" class="org.apache.axis2.
format.BinaryFormatter"/>

In the inbound endpoint, you have to specify the following parameter to keep the
content as a stream in the message rather than building it.

 <parameter name="transport.vfs.Streaming">true</parameter>

In the same proxy service, before the send mediator, add the following property:
You also need to add the following property so that your sequence holds the original

thread until the send happens.

<property name="ClientApiNonBlocking" value="true" scope="axis2"
action="remove"/>

In Listing 7-9, you can find the full configuration of the inbound endpoint and the
sequence that you can use to stream a file through the ESB.

Listing 7-9.  Transferring Files from the Local File System to FTP

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="FileStreamingInboundEP"
 sequence="fileStreamingSeq"
 onError="fault"
 protocol="file"
 suspend="false">
 <parameters>
 <parameter name="interval">1000</parameter>
 <parameter name="coordination">true</parameter>
 �<parameter name="transport.vfs.ContentType">application/binary

</parameter>
 <parameter name="transport.vfs.LockReleaseSameNode">false</parameter>
 <parameter name="transport.vfs.AutoLockRelease">false</parameter>
 <parameter name="transport.vfs.ActionAfterFailure">DELETE</parameter>
 <parameter name="transport.vfs.CreateFolder">true</parameter>
 <parameter name="sequential">true</parameter>
 <parameter name="transport.vfs.ActionAfterProcess">MOVE</parameter>
 �<parameter name="transport.vfs.FileURI">file:///Users/kasun/

development/deployment/maestro/wso2esb-5.0.0-BETA/sample_resources/
file_reading/streaming</parameter>

Chapter 7 ■ File-Based Integration

170

 �<parameter name="transport.vfs.MoveAfterProcess"> file:///Users/kasun/
development/deployment/maestro/wso2esb-5.0.0-BETA/sample_resources/
file_reading/processed </parameter>

 <parameter name="transport.vfs.DistributedLock">false</parameter>
 <parameter name="transport.vfs.Streaming">false</parameter>
 <parameter name="transport.vfs.Locking">enable</parameter>
 <parameter name="transport.vfs.FileSortAscending">true</parameter>
 <parameter name="transport.vfs.FileSortAttribute">NONE</parameter>
 <parameter name="transport.vfs.Build">false</parameter>
 <parameter name="transport.vfs. Streaming">true</parameter>
 </parameters>
</inboundEndpoint>
<sequence xmlns="http://ws.apache.org/ns/synapse" name="fileStreamingSeq">
 <property name="OUT_ONLY" value="true" scope="default" type="STRING"/>
 <property name="transport.vfs.ReplyFileName"
 expression="fn:concat(fn:substring-after(get-
property('MessageID'), 'urn:uuid:'), '.png')"
 scope="transport"/>
 <log level="custom">
 <property name="Message Flow" value="== Order Received =="/>
 </log>

 <call>
 <endpoint>
 �<address uri="vfs:file:///Users/kasun/development/deployment/

maestro/wso2esb-5.0.0-BETA/sample_resources/file_writing/
streaming"/>

 </endpoint>
 </call>
</sequence>

Now you have a good understanding about how you can integrate WSO2 ESB for
reading and writing files. In the next few sections, let’s dive deep into more file-based
integration scenarios that you may encounter in real-world scenarios.

Message Transformation with File Integration
In most file-based integration scenarios, you will have to transform the file contents from
one format to another. Let’s take the example in Figure 7-2, where you have to implement
HTTP interface on top of an existing file system. You expose an HTTP interface to your
client, so that the client can send an HTTP request in JSON format to the ESB. Then ESB
accepts the request, transforms it to CSV, and stores it in the file system.

As shown in Figure 7-4, the implementation of this scenario can be done with the
concepts that you’ve already learned. You need to use a REST API/HTTP service and, for
the message mediation logic, you need to use data mapper to convert the message from
JSON to CSV and use VFS endpoint to store the CSV content to the file system.

Chapter 7 ■ File-Based Integration

171

Listing 7-10 shows the configuration of the REST API. We configure the REST API
so that it accepts the request and sends an HTTP 202 Accepted response by setting the
FORCE_SC_ACCEPTED property. Then we use data mapper’s configuration along with the
outbound file-sending configuration that you already learned about in previous sections.

Listing 7-10.  Transferring Files from the Local File System to FTP

<api context="/orderproc" name="JSON2CSV_OrderProcessor" xmlns="http://
ws.apache.org/ns/synapse">
 <resource methods="POST GET">
 <inSequence>
 �<property name="FORCE_SC_ACCEPTED" scope="axis2" type="STRING"

value="true"/>
 �<datamapper config="gov:datamapper/orderProcMappingConfig.

dmc" inputSchema="gov:datamapper/orderProcMappingConfig_
inputSchema.json" inputType="JSON" outputSchema="gov:datamapper/
orderProcMappingConfig_outputSchema.json" outputType="CSV"/>

 �<property name="OUT_ONLY" scope="default" type="STRING"
value="true"/>

 �<property expression="fn:concat(fn:substring-after(get-
property('MessageID'), 'urn:uuid:'), '.csv')" name="transport.
vfs.ReplyFileName" scope="transport" type="STRING"/>

 <call>
 <endpoint>
 �<address uri="vfs:file:///Users/kasun/development/

deployment/maestro/wso2esb-4.9.0/sample_resources/file_
writing"/>

 </endpoint>
 </call>
 </inSequence>
 <outSequence/>
 <faultSequence/>
 </resource>
</api>

As you can see in the previous example, you can mix and match different mediation
technologies along with file-based integration in real-world integration scenarios.

Figure 7-4.  Converting an HTTP/JSON request to CSV and storing it in a file system

Chapter 7 ■ File-Based Integration

172

File Connector
So far what we have done related to file integration is read or write files. But in many
scenarios you have to carry out file operations other than read or write and you may also
have to carry out such operations inside a message flow. Before we dive into the details of
a file connector, let’s look at the connector concept in WSO ESB.

■■ Note  A connector allows you to interact with a third-party product's functionality and
data from your ESB message flow, enabling you to connect to and interact with the APIs
of services such as Twitter, Salesforce, and JIRA. A connector is independent from a given
WSO2 ESB product and you have to download/install the connector as a separate entity. You
can download and install WSO2 ESB connectors from WSO2 store at https://store.wso2.
com/store/assets/esbconnector. All connectors are 100% free and open source. We will
discuss ESB connectors in detail in the next chapter.

You can download and install file connectors in your WSO2 ESB runtime. Then you
can call various file operations from your mediation flow. Installing can be done through
the developer studio or by copying the connector ZIP file to the ESB_HOME/repository/
deployment/server/synapse-lib directory (along with the import file that goes to the /
imports directory).

To understand how you can use the file connector, let’s consider the use case shown
in the Figure 7-5. Assume that you need to build a REST API for an order processing
system. Each order can be retrieved, added, modified, or deleted via the REST API.
However, the backend system is a legacy system that only accepts orders in the form of
files. So for each operation that’s carried out, the REST API has a relevant file operation
that you need to execute.

Figure 7-5.  Using File Connector to execute various file system operations from a
mediation flow

To build this integration scenario you can use a REST API/HTTP interface in WSO2
ESB and inside the message mediation logic you can call the required file operations.
The usage of a connector inside mediation logic is similar to using the mediator that you
have already learnt. Each connector operation can be called from the mediation logic. For

https://store.wso2.com/store/assets/esbconnector
https://store.wso2.com/store/assets/esbconnector

Chapter 7 ■ File-Based Integration

173

instance, if you want to read the contents of a file from the file system and add that as the
current message inside a mediation flow, you can use the following logic.

<fileconnector.read>
 <source>/file_path/orders/A234R.json</source>
 <contentType>application/json</contentType>
</fileconnector.read>

<log level="full"/>

Once you invoke this particular sequence, you can see the contents of the file as the
log message. In Listing 7-11, it shows the full configuration of the use case. Here we can
use a REST API with a resource, and inside the in-sequence of that resource, we have a
switch condition for various HTTP operations. In this example, we only use GET and POST
for simplicity.

Listing 7-11.  Implementing File System Operations with File Connector and Exposing
Them as a REST API

<api xmlns="http://ws.apache.org/ns/synapse"
 name="OrderManagerHTTPService"
 context="/ordermanager">
 <resource methods="POST GET" url-mapping="/orders">
 <inSequence>
 <log level="custom">
 <property name="Message Flow" value="== Order Received =="/>
 </log>
 <switch source="$axis2:HTTP_METHOD">
 <case regex="POST">
 <property name="order_id"
 expression="json-eval($.orders.order[0].id)"/>
 <property name="order_file_name"
 �expression="fn:concat('/Users/kasun/

development/deployment/maestro/wso2esb-5.0.0-
BETA/sample_resources/orders/',$ctx:order_id,
'.json')"/>

 <log level="custom">
 �<property name="Message Flow" value="--- Order :

Create ---"></property>
 �<property name="Message Flow" expression="json-

eval($.orders.order[0])"></property>
 �<property name="Param" expression="$ctx:order_file_

name"></property>
 </log>
 <fileconnector.create>
 <source>{$ctx:order_file_name}</source>
 �<inputContent>{json-eval($.orders.order[0])}

</inputContent>

Chapter 7 ■ File-Based Integration

174

 </fileconnector.create>
 </case>
 <case regex="GET">
 <log level="custom">
 �<property name="Message Flow" value="--- Order :

Get ---"></property>
 </log>

 <property name="order_file_name"
 expression="fn:concat('/Users/kasun/
development/deployment/maestro/wso2esb-5.0.0-BETA/sample_resources/
orders/',$ctx:query.param.orderid, '.json')"/>

 <fileconnector.read>
 <source>{$ctx:order_file_name}</source>
 <contentType>application/json</contentType>
 </fileconnector.read>
 <property name="messageType" value="application/json"
scope="axis2" type="STRING"/>
 <log level="full"/>
 <property name="NO_ENTITY_BODY" action="remove"
scope="axis2"/>
 <respond/>
 </case>
 </switch>
 </inSequence>
 </resource>
</api>

As you can observe in Listing 7-11, for the POST condition we have extracted the
contents from the HTTP POST message. Here is a sample JSON message that the client
sends to the ESB’s REST API.

{
 "orders": {
 "order": [
 {
 "id": "A234R",
 "name": "iPhone 6S",
 "description": "Apple Inc. 2016, unlocked",
 "unitPrice": "USD 700",
 "quantity": "1"
 }]
 }
}

Chapter 7 ■ File-Based Integration

175

As shown in Listing 7-11, the filename is constructed from the extracted content
from the POST message and then we used the File Connector’s create operation to create
a file with the filename and the content that is passed as its argument. It creates a file that
matches the HTTP POST request in the file system.

For the GET message, we extracted the name of the file from the query parameter,
used that as the arguments for File Connector’s read operation, and passed the contents
of the file as the response payload. To make the use case less verbose, we’ve assumed that
the file content format and HTTP messages use the same content type (JSON). Similarly,
you can extend the use case to other HTTP verbs such as PUT and DELETE, and use the
relevant File Connector operations to implement the mapping file system operations.

File Connector supports a number of other file operations such as:

•	 Append: Appends content to an existing file.

•	 Archive: Archives a file or folder.

•	 Copy: Copies a file or folder.

•	 Create: Creates a file or folder.

•	 Delete: Deletes a file or folder.

•	 isFileExist: Checks the existence of a file.

•	 listFileZip: Lists all files inside the ZIP file.

•	 Move: Moves a file or folder.

•	 Read: Reads the contents from a file.

•	 Search: Finds a file based on a file and directory pattern.

•	 Unzip: Decompresses a ZIP file.

•	 ftpOverProxy: Connects to a FTP server through a proxy.

•	 Send: Sends a file.

With these operations, you can invoke almost all the file operations from a mediation
flow. In case you want to use these file operations in a periodic way rather than doing it
on demand (when you get a request) inside a message flow, you can configure the file
operation logic using the File Connector inside a sequence and invoke that sequence
periodically through scheduled tasks.

Protocol Transformation from File to JMS
In some file integration use cases, you may have to integrate the file system with
messaging queuing techniques. For instance, Figure 7-6 shows an integration scenario
where the orders are received as files and you need to add all such orders to a JMS queue,
so that some other system can process orders by consuming the queue. This scenario
can be easily implemented by combing the file integration techniques you learned in this
chapter and JMS integration techniques that we covered in Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-2343-7_6

Chapter 7 ■ File-Based Integration

176

Let’s assume that for messaging queuing, we use the WSO2 message broker. So, you
can create a File Inbound endpoint so that you can poll the file system location to which
you receive the orders. Then from the ESB mediation logic you can simply configure JMS
sender and send the messages through a call mediator with an addressing endpoint with
JMS URI.

The configuration of this integration scenario is shown in Listing 7-12. As you have
already learned, a File Inbound endpoint is used to poll the file system for new orders
that are created as files. Then the inbound endpoint injects the contents of the file
as a message to a sequence. The sequence takes care of handling the message and it
sends the message over to a JMS endpoint, which finally enqueues the message to the
PersistentOrderQueue of the WSO2 Message Broker.

Listing 7-12.  Transferring Files from a Local File System to FTP

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="OrderProcessing_File_Inbound_SFTP"
 sequence="orderProcessingSeq"
 onError="fault"
 protocol="file"
 suspend="false">
 <parameters>
 <parameter name="interval">1000</parameter>
 <parameter name="coordination">true</parameter>
 <parameter name="transport.vfs.ContentType">text/xml</parameter>
 <parameter name="transport.vfs.LockReleaseSameNode">false</parameter>
 <parameter name="transport.vfs.AutoLockRelease">false</parameter>
 <parameter name="transport.vfs.ActionAfterFailure">DELETE</parameter>
 <parameter name="transport.vfs.CreateFolder">true</parameter>
 <parameter name="sequential">true</parameter>
 <parameter name="transport.vfs.ActionAfterProcess">MOVE</parameter>
 �<parameter name="transport.vfs.FileURI">file:///Users/kasun/

development/deployment/maestro/wso2esb-5.0.0-SNAPSHOT_RC/sample_
resources/file_reading/source</parameter>

Figure 7-6.  The poll file system for order files and enqueuing those order requests inside a
JMS queue resides in the WSO2 Message Broker (WSO2 MB)

Chapter 7 ■ File-Based Integration

177

<parameter name="transport.vfs.MoveAfterProcess"> file:///Users/kasun/
development/deployment/maestro/wso2esb-5.0.0-SNAPSHOT_RC/sample_resources/
file_reading/processed</parameter>

 <parameter name="transport.vfs.DistributedLock">false</parameter>
 <parameter name="transport.vfs.Streaming">false</parameter>
 <parameter name="transport.vfs.Locking">enable</parameter>
 <parameter name="transport.vfs.FileSortAscending">true</parameter>
 <parameter name="transport.vfs.FileSortAttribute">NONE</parameter>
 <parameter name="transport.vfs.Build">false</parameter>
 </parameters>
</inboundEndpoint>
<sequence xmlns="http://ws.apache.org/ns/synapse" name="orderProcessingSeq">
 <log level="full">
 <property name="MSG" value="== Received =="/>
 </log>
 <property name="OUT_ONLY" value="true"/>
 <call>
 <endpoint>
 <address uri="jms:/PersistentOrderQueue?transport.jms.Conne
ctionFactoryJNDIName=QueueConnectionFactory&java.naming.factory.
initial=org.wso2.andes.jndi.PropertiesFileInitialContextFactory&java.
naming.provider.url=repository/conf/jndi.properties&transport.jms.
DestinationType=queue"/>
 </endpoint>
 </call>
</sequence>

Similarly, you can mix and match various protocol integration scenarios with File
Integration techniques to solve real-world integration problems.

Summary
In this chapter, you learned:

•	 Why file-based integration is still used in the modern enterprises.

•	 How to poll, read files, and inject the content as messages into the
ESB message flow using the File Inbound endpoint.

•	 How to wrote the message content to a file from an ESB message
flow with VFS sender.

•	 How to stream a large file as binary content through the ESB to
build file transfer integration scenarios.

•	 How to invoke various file operations from a mediation flow with
File Connectors.

•	 How to use data mapping and protocol switching with file-based
integration techniques.

179© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_8

CHAPTER 8

Integrating Applications,
Cloud Services, and Data

As you learned in the first chapter, one of the main objectives of the ESB design is
to facilitate various types of integration scenarios. Integration middleware such as
ESBs facilitate the key features such as communication, mediation, orchestration,
transformation, QoS, security, monitoring, administration and management to cater
to these disparate integration needs. At the time when the ESB is emerging as an
integration technology, the primary integration requirement was to support integrations
of on-premise systems and services. However, with the proliferation of APIs, mobile
devices and Software as a Service (SaaS), the ESBs have to support a much broader
range of integration scenarios, ranging from conventional integrations to integration of
cloud services and APIs. In addition to the types of integrations that ESB supports, the
integration runtime could also be a cloud service. That means you can develop, deploy,
and run your integration scenarios in the cloud. This is known as Integration Platform as
a Server (iPaaS).

In this chapter, we focus on integration of proprietary systems that reside as on-
premise applications and integrating clouds services with the use of WSO2 ESB. Also,
we’ll discuss how WSO2 ESB can be used as an Integration Platform as a Service (iPaaS),
during the later part of the chapter.

Let’s start our discussion with how you can integrate on-premise proprietary
applications with WSO2 ESB.

Integrating Proprietary Systems
In any organization, there can be proprietary systems that help the organization
run its key business functionalities. For example, most large organizations heavily
use proprietary software systems such as ERP (Enterprise Resource Planning), CRM
(Customer Relationship Management), HRM (Human Resource Management), etc.,
to run its key business activities. However, most of these systems are monolithic and
inherently built with proprietary technologies. Often organizations have to integrate these
proprietary systems with other types of software applications in the organization.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

180

For example, assume that a given organization uses a SAP system to manage its retail
business and there are some other business functionalities that they want to integrate
the SAP system with. However, those functionalities are built as web services. So, now
the organization has to come up with a solution to integrate SAP system with these web
services, which is a major effort when it comes to its software development. Therefore,
integration middleware vendors incorporate such proprietary integration capabilities
as part of the ESB, so that ESB takes care of all the heavy lifting of integrating proprietary
systems.

WSO2 ESB comes with several adapters to connect with these proprietary systems.
Let’s start with SAP Adapter of WSO2 ESB.

SAP Integration
SAP ERP solutions provide reliable and efficient platforms to build and integrate
enterprise or business-wide data and information systems with ease. SAP applications,
based on their R/3 system, provide the capability to manage financial, asset, and cost
accounting, production operations and materials, personnel, plants, and archived
documents. When it comes to implementing various business functionalities, often
organizations want to integrate SAP applications with non-SAP applications. For
example, a given business functionality may be implemented by leveraging existing SAP
applications and another software application that’s built as a web service. In order to
cater to this kind of integration requirements, WSO2 ESB provides a SAP adapter that
allows you to connect your WSO2 ESB with your SAP applications, so that you can use
WSO2 ESB as the communication bridge between SAP and non-SAP applications.

SAP integration requires the foundation knowledge on SAP, which is not covered
within the scope of this book.

To integrate non-SAP systems with SAP applications, SAP provides a Java Connector,
called “SAP Java Connector (SAP JCo).” WSO2 ESB uses SAP JCo as the Java library inside
its SAP adapter. SAP applications and non-SAP applications can be integrated using IDoc
or BAPI calls. WSO2 ESB uses the SAP JCo adapter to implement the WSO2 SAP adapter.
You need to install the SAP JCo adapter into your WSO2 ESB distribution. Refer to the
installation guide at https://docs.wso2.com/display/ESB500/SAP+Integration.

Let’s start with how you can integrate SAP applications with WSO2 ESB using IDocs.

■■ Note  SAP inbound endpoints are not included in the GA release at that time this book is
written. However, SAP integration support is available as a SAP transport for a proxy service.
Therefore, you can use the same parameters with SAP transport with proxy services.

https://docs.wso2.com/display/ESB500/SAP+Integration

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

181

IDOC-Based Integration
Intermediate Documents (IDocs) are used to transfer data from SAP systems to external
systems and external systems to SAP systems. An IDoc carries data about a business
transaction from one system to another in the form of an electronic message. The transfer
from SAP to non-SAP system is done via EDI (Electronic Data Interchange). EDI converts
the data from IDoc into XML or an equivalent format. IDocs are used for asynchronous
transactions. (For more information, refer to http://scn.sap.com/docs/DOC-34785.)

Receiving IDocs

Let’s consider an IDoc-based integration use case with WSO2 ESB. Suppose that a SAP R/3
system wants to send some purchasing information to a third-party SOAP web service, a
purchasing management service. The purchasing information can be transferred via IDoc
asynchronous data exchange. In this case, the WSO2 ESB SAP adapter acts as the bridge
between the SAP system and the purchasing management service.

As illustrated in Figure 8-1, you can use a SAP IDoc inbound endpoint as the
communication interface between WSO2 ESB and the SAP R/3 system.

Figure 8-1.  WSO2 ESB SAP adapter receives an IDoc via its SAP IDoc inbound
endpoint and then is converted and represented as a XML format inside the ESB. The
communication between SAP and ESB is asynchronous one-way communication.

In order to connect to the SAP system to receive IDocs, you need to configure the
.server file inside <ESB_HOME>/repository/conf/sap.

This file should be named <SAP-GWHOST>.server and should define the relevant
properties (Refer to https://docs.wso2.com/display/ESB500/SAP+Integration.) Here
is a sample configuration of the SAP_01.server file.

jco.server.gwhost=/H/<IP>/S/3299/H/<IP>/S/3200
jco.server.gwserv=3300
jco.server.progid=IGS.CPT
jco.server.repository_destination=IGS.CPT
jco.server.name=IGS.CPT
jco.server.unicode=1

http://scn.sap.com/docs/DOC-34785
https://docs.wso2.com/display/ESB500/SAP+Integration

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

182

When you configure the SAP IDoc inbound endpoint, you need to refer to the
respective server configuration with the parameter transport.sap.serverName (here we
use SAP_01). Once you successfully start the SAP IDoc inbound, you should be able to see
a log message with the SAP IDoc server name and the program ID. By looking at the SAP
system, you could also see that there is a successful RFC connection established from the
SAP system to ESB.

Listing 8-1 shows the SAP IDoc inbound endpoint configuration for this scenario.
Once you send an IDoc over the RFC connection with this program ID, the ESB inbound
endpoint will receive it. Then the message is injected into the specified sequence.

Listing 8-1.  SAP IDoc Inbound Endpoint

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="SAP_IDoc_PurchasingDataInboundEP"
 sequence="purchasingMaterialsIDocSeq"
 onError="fault"
 protocol="idoc"
 suspend="true">
 <parameters>
 <parameter name="transport.sap.enableTIDHandler">enabled</parameter>
 <parameter name="transport.sap.serverName">SAP_01</parameter>
 </parameters>
</inboundEndpoint>

You can do the required data mapping inside that sequence to match the IDoc XML
format to the required payload of the backend service. As discussed earlier, the entire
IDoc receiving message flow is asynchronous so no response is sent back to the SAP
system.

Sending IDocs

When you integrate SAP systems with non-SAP systems, you may have to send IDocs
to the SAP system from non-SAP systems. WSO2 ESB facilitates IDoc sending with the
transport sender that allows you to send an IDoc to any external SAP system.

Let’s consider the integration scenario depicted in Figure 8-2. Suppose that you want
to expose a REST API for receiving price updates of goods from external systems and then
you want to update the SAP R/3 system based on those price updates. You can use a REST
API to receive prices updates as JSON messages over HTTP. Now you want to convert
these messages into the IDoc message format and send them across to the SAP system.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

183

The first thing that you have to do here is that you need to configure the SAP
R/3 system as a destination in the ESB configuration. This can be done by creating a
configuration file <SAP-GWHOST>.dest inside the <ESB_HOME>/repository/conf/sap.

The *.dest properties file should be named <SAP-GWHOST>.dest. For example, if the
name of your SAP gateway is SAPSYS, the name of the file should be SAP_02.dest.

(Refer to https://docs.wso2.com/display/ESB500/SAP+Integration.) Here is a
sample configuration of the SAP_02.dest file.

jco.client.client=800
jco.client.user=wso2_user_sap02
jco.client.passwd=wso2pass14
jco.client.lang=en
jco.client.ashost=/H/<IP>/S/3299/H/<IP>/S/3200
jco.client.gwserv=3300
jco.client.sysnr=00
jco.client.idle_timeout=300
jco.client.logon=0
jco.client.msserv=3600
jco.client.trace=0
jco.client.getsso2=0
jco.client.r3name=CPT

You also have to enable the IDoc transport sender in the axis2.xml file as follows:

 <transportSender name="idoc" class="org.wso2.carbon.transports.sap.
SAPTransportSender"/>

Once you have the transport sender side configuration completed, you need to
decide on the type of IDoc that you want to create at the SAP system. For example, as
per the use case in Figure 8-2, the price update request should have a specific IDoc type
that you want to create at the destination SAP system. Once you have the format of the

Figure 8-2.  WSO2 ESB SAP transport sender can be configured to send IDocs to a SAP
R/3 system. You can configure all the parameters related to the destination SAP system by
specifying them with a .dest file in repository/conf/sap. You can refer to this .dest file from
your endpoint configuration.

https://docs.wso2.com/display/ESB500/SAP+Integration

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

184

IDoc that you want to create at the target SAP system, you can do the data mapping
between the incoming JSON format and the IDoc XML format. Once the data mapping is
completed, you can simply call the IDoc endpoint with a call mediator.

Listing 8-2.  Sending IDoc to SAP System

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="PriceUpdateService"
 transports="http"
 startOnLoad="true"
 trace="enable"
 statistics="enable">
 <target>
 <inSequence>
 <log level="full"/>
 <!-- ... data mapper ... -->
 <call>
 <endpoint name="sapidocendpoint">
 <address uri="idoc:/SAP_02"/>
 </endpoint>
 </call>
 </inSequence>
 <outSequence/>
 </target>
 <description/>
</proxy>

As with any Idoc-related messaging scenario, this is also a one-way asynchronous
messaging scenario.

Since now you have a good understanding of how you can integrate WSO2 ESB with
SAP R/3 systems through IDoc transport, let’s move on to SAP integration with BAPI.

BAPI-Based Integration
BAPIs are standardized programming interfaces or methods that enable external
applications to access the business functionalities and data in the SAP R/3 system. BAPIs
are defined in the BOR (Business Object Repository) as methods of SAP business object
types that carry out specific business functions. BAPIs can be considered a subset of the
RFC-enabled function modules, especially designed as an API to the SAP business object.
Unlike IDoc based communication, BAPIs are invoked synchronously and they send
response data back to the client (in most cases).

Some BAPIs and methods provide basic functions and can be used for most SAP
business objects.

BAPIs for Reading Data - GetList() , GetDetail() , GetStatus() ,
ExistenceCheck()

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

185

BAPIs for Creating or Changing Data- Create() ,Change(),Delete() and
Undelete() ,
BAPIs for Mass Processing -ChangeMultiple(), CreateMultiple(),
DeleteMultiple().

Let’s consider a BAPI integration scenario where ESB has to invoke a BAPI residing
in a SAP R/3 system.

Invoking BAPIs

Suppose that you want to expose a functionality, which is exposed as a BAPI from your
SAP R/3 system as a REST API from WSO2 ESB. The REST client can invoke the REST
API hosted in WSO2 ESB and ESB can take care of handling the complexity related to the
BAPI integration (see Figure 8-3).

Figure 8-3.  WSO2 ESB SAP transport sender enables the remote BAPI invocation from
ESB. Similar to the IDoc sending use case, you can configure a .dest file to specify the details
of the SAP system and use that as the endpoint name of the BAPI endpoint.

The first thing that you have to do is configure the SAP R/3 system in which these
remote BAPIs exist, as a destination in the ESB configuration. This can be done by creating
a configuration file <SAP-GWHOST>.dest inside <ESB_HOME>/repository/conf/sap.

The *.dest properties file should be named <SAP-GWHOST>.dest. For example, if the
name of your SAP gateway is SAPSYS, the name of the file should be SAP_02.dest.

(Refer to https://docs.wso2.com/display/ESB500/SAP+Integration.) Here is a
sample configuration of the SAP_02.dest file.

jco.client.client=800
jco.client.user=wso2_user_sap02
jco.client.passwd=wso2pass14
jco.client.lang=en
jco.client.ashost=/H/<IP>/S/3299/H/<IP>/S/3200
jco.client.gwserv=3300
jco.client.sysnr=00

https://docs.wso2.com/display/ESB500/SAP+Integration

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

186

jco.client.idle_timeout=300
jco.client.logon=0
jco.client.msserv=3600
jco.client.trace=0
jco.client.getsso2=0
jco.client.r3name=CPT

You also have to enable the BAPI transport sender in the axis2.xml file as follows:

�<transportSender name="bapi" class="org.wso2.carbon.transports.sap.
SAPTransportSender"/>

Once you have the destination of SAP R/3 system configured, the next step is to
decide the BAPI that you want to invoke at the remote SAP R/3 system. As the BAPI call is
a remote function call (RFC), WSO2 ESB defines a mapping between the message and the
RFC. That means if you have to invoke a BAPI in a SAP R/3 system, you need to configure
the corresponding message format within the ESB to invoke that BAPI. As shown in
Figure 8-4, you receive the JSON message over the REST API and the data mapping
mediator is responsible for translating the incoming JSON message to the WSO2 ESB
BAPI invocation message.

Figure 8-4.  Exposing a BAPI interface from WSO2 ESB so that the external BAPI client can
consume one of the non-SAP business functionalities through a native SAP BAPI remote
function call

WSO2 ESB defines a generic message structure, which corresponds to a remote BAPI
call. Listing 8-3 shows that structure. You can define the name of the BAPI that you want
to invoke along with imports, structures, and tables. Therefore, this is the message format
that you have to create inside the ESB message flow and then you can send it to a BAPI
endpoint. Then ESB translates this message format to its corresponding BAPI remote
function call.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

187

Listing 8-3.  Generic BAPI Structure that You Have to Create at the ESB Mediation Flow to
Invoke a BAPI in a SAP R/3 System

<bapirfc name="{rfcFunctionName}">
 <import name="{jcoStructureName}">
 <structure>
 �<field name="{fieldName}">{fieldValue_to_set_to_structure_

field}</field>
 </structure>
 <field name="{fieldName}">{fieldValue}</field>
 </import>
 <tables>
 <table name="{tablename}">
 <row id="{rowId}"> <!-- collection of rows -->
 <field name="{fieldName}">{fieldValue}</field>
 </row>
 </table>
 </tables>
</bapirfc>

So, in you data mapping mediator, you should create a message similar to the one
that’s showed in Listing 8-3 as the output message. For example, a BAPI RFC call for
BAPI_COMPANYCODE_GETDETAIL can be invoked from WSO2 ESB by constructing the
message format shown in Listing 8-4 and then sending the message to the BAPI endpoint.

Listing 8-4.  WSO2 ESB’s Message Format that Corresponds to the RFC Call of BAPI_
COMPANYCODE_GETDETAIL

<bapirfc xmlns="" name="BAPI_COMPANYCODE_GETDETAIL">
 <import>
 <field name="COMPANYCODEID">XYZ</field>
 </import>
 </bapirfc>

You can configure the REST API as shown in Listing 8-5 to invoke the BAPI RFC.

Listing 8-5.  Exposing a BAPI RFC Call as a REST API Through WSO2 ESB

<api xmlns="http://ws.apache.org/ns/synapse"
 name="BAPIInfoProviderAPI"
 context="/bapiinfo">
 <resource methods="POST">
 <inSequence>

 <!-- ... data mapping ... -->

 <call>
 <endpoint>
 <address uri="bapi:/SAP_02"/>

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

188

 </endpoint>
 </call>
 <property name="messageType"
 value="application/json"
 scope="axis2"
 type="STRING"/>
 <respond/>
 </inSequence>
 </resource>
</api>

The response that you receive from the SAP BAPI invocation is also converted to the
corresponding XML structure. For example, the response returned for a BAPI invocation
of BAPI_USER_GETLIST has the following message format:

<BAPI_USER_GETLIST>
 <INPUT>
 <MAX_ROWS>0</MAX_ROWS>
 <WITH_USERNAME/>
 </INPUT>
 <OUTPUT>
 <ROWS>8</ROWS>
 </OUTPUT>
 <TABLES>
 <RETURN/>
 <SELECTION_EXP/>
 <SELECTION_RANGE/>
 <USERLIST>
 <item>
 <USERNAME>WSO2_User</USERNAME>
 <FIRSTNAME/>
 <LASTNAME/>
 <FULLNAME/>
 </item>
 </USERLIST>
 </TABLES>
</BAPI_USER_GETLIST>

You can complete the scenario by doing the reverse data mapping from BAPI
response’s XML structure to the expected JSON response of the client.

Exposing BAPI Interfaces

You can use WSO2 ESB to expose a BAPI on top of an existing web service or any other
backend service. This may sound like a rare use case, but in the SAP world you may
have to support a specific requirement of a BAPI client to consume one of the non-SAP
business functionalities, as through a BAPI remote function call.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

189

As you did with the IDoc receiving use case, you can configure a .server file, name it
<SAP-GWHOST>.server, and define the relevant properties (Refer to https://docs.wso2.
com/display/ESB500/SAP+Integration.) Here is a sample configuration of the SAP_01.
server file.

jco.server.gwhost=/H/<IP>/S/3299/H/<IP>/S/3200
jco.server.gwserv=3300
jco.server.progid=IGS.CPT
jco.server.repository_destination=IGS.CPT
jco.server.name=IGS.CPT
jco.server.unicode=1

Then you can configure the SAP BAPI inbound endpoint. You need to refer to the
respective server configuration with the parameter transport.sap.serverName (here
we use SAP_01). Once you successfully start the BAPI endpoint, the external BAPI client
can invoke a BAPI RFC residing in your WSO2 ESB. The request message is translated to
the same generic XML format that you used in the previous use case when you invoked a
BAPI from ESB.

Listing 8-6 shows the SAP BAPI inbound endpoint configuration of the scenario.

Listing 8-6.  SAP BAPI Interface Exposed from WSO2 ESB Through a BAPI Inbound
Endpoint

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="SAP_BAPI_UseInfo"
 sequence="getUserDetails"
 onError="fault"
 protocol="bapi"
 suspend="true">
 <parameters>
 <parameter name="transport.sap.enableTIDHandler">enabled</parameter>
 <parameter name="transport.sap.serverName">SAP_01</parameter>
 </parameters>
</inboundEndpoint>

When you want to send back the response, you have to create the same response
XML message structure as in the previous use case. The BAPI inbound endpoint will
convert the XML response message format back to a BAPI response.

HL7 Integration
Health Level 7 International (HL7) is a set of standards for transferring clinical and
administrative data between hospital information systems. HL7 facilitate exchange,
integration, sharing, and retrieval of electronic health information. The key idea of HL7
is to define a messaging standard for communication between disparate healthcare
software applications to exchange clinical and administrative data.

https://docs.wso2.com/display/ESB500/SAP+Integration
https://docs.wso2.com/display/ESB500/SAP+Integration

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

190

There are several HL7 messaging standards defined under different versions.

•	 HL7 Version 2.x: HL7 versions 2.x have the aim to support hospital
workflows. This standard uses a textual, non-XML message format
based on delimiters.

•	 Hl7 Version 3.x: HL7 versions 3.x have the aim to support any and
all healthcare workflows. This version uses XML-based message
formats.

In the scope of this book, we focus on the HL7 v2.x-based integration scenarios with
WSO2 ESB. The HL7 v2.x integration requirements are quite common, as most of the
existing healthcare information systems still use HL7 v2.x. Support for HL7 v3.x in WSO2
ESB was not available at the time this book was written. However, there’s on-going work
related to supporting HL7 v3 on WSO2 ESB. So, for the rest of this chapter, we will focus
on HL7 v.2 integration.

Let’s look at how the HL7 messaging takes place between two healthcare information
systems. Listing 8-7 shows a sample HL7 message.

Listing 8-7.  Sample HL7 Message

MSH|^~\&|HL7SFOHealth|HIS|SFOHealth|HIS|201407271408||ADT^A04|1817457|D|2.5
.1|EVN|A04|AL
PID||0493575^^^2^ID 1|454721||Foo^BAR^^^^|FOO^BAR^^^^|19480203|M||B|254 E238
ST^^Howick^CA^3252^USA||(216)631-4359|||M|AGN|400003403~1129086|999-|
NK1||CONROY^MARI^^^^|SPO||(216)731-4359||EC|||||||||||||||||||||||||||
PV1||O|O/R||||277^ALLEN^BONNIE^J^^^|||||||||| ||2688684|||||||||||||||||||||
||||201407271408||||||002376853

So, this message format can be serialized or deserialized at the HL7 v.2.x consumers
and producers. However, the standard doesn’t specify a wire level protocol.

As the wire protocol between HL7 v2.x systems, the Minimal Lower Layer Protocol
(MLLP) is used. MLLP protocol has a long history of use within the HL7 community,
although it has never been formally part of the HL7 standard. The MLLP protocol is a
minimalistic OSI-session layer framing protocol. It is assumed that the MLLP protocol will
be used only in a network environment. So, in most cases, HL7 v2.x is used with MLLP,
which is a text-based TCP socket-based protocol. With MLLP, special characters to form a
block enclose the HL7 content. Listing 8-8 shows a sample HL7 message with MLLP. Note
that < SB>, < EB>, and < CR> are used to denote the non-printable MLLP-framing single-
byte values 0x0B, 0x1C, and 0x0D. (They are not XML tags.)

Listing 8-8.  Sample HL7 Message with MLLP

<SB>
MSH|^~\&|ZIS|1^AHospital|||199605141144||ADT^A01|20031104082400|P|2.3|||
AL|NE|||8859/15|<CR>EVN|A01|20031104082400.0000+0100|20031104082400
PID||""|10||Vries^Danny^D.^^de||19951202|M|||Rembrandlaan^7^Leiden^^7301
TH^""
^^P||""|""||""|||||||""|""<CR>PV1||I|3w^301^""^01|S|||100^van den Berg^^A.S.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

191

^^""^dr|""||9||||H||||20031104082400.0000+0100<CR>
<EB>
<CR>

So, when an HL7 source system sends a message to a target system, the source
system will get an acknowledgement (ACK) from the target system with the receipt of the
message. There are three types of ACKs defined in HL7 v2.x—Accept, Error, and Reject.
WSO2 ESB HL7 integration support is implemented on top of the HAPI (see http://
hl7api.sourceforge.net/) open source library.

So far, you learned about the fundamental concepts related to the HL7 protocol,
so now it’s time to dive deep into how different HL7 integration scenarios can be
implemented with WSO2 ESB.

Receiving HL7 Messages
Integration between HL7 and non-HL7—based systems is a key part of HL7 integration.
In this particular scenario, let’s suppose that there is a healthcare information system,
ABC Healthcare System, and it wants to send healthcare-related information to a
SOAP-based healthcare service. Since these two systems are using disparate messaging
protocols, we have to use the WSO2 ESB as the integration middleware.

Before proceeding into the actual integration scenarios, there are prerequisites that
you need to configure. WSO2 ESB has to serialize and deserialize messages back and
forth from HL7 to XML. For this purpose, the following message builders and formatter
have to be enabled in axis2.xml.

<messageFormatters>
 <messageFormatter contentType="application/edi-hl7" class="org.wso2.
carbon.business.messaging.hl7.message.HL7MessageFormatter"/>
...
</messageFormatters>
...
<messageBuilders>
 <messageBuilder contentType="application/edi-hl7" class="org.wso2.carbon.
business.messaging.hl7.message.HL7MessageBuilder"/>
</messageBuilders>

In addition, you have to enable the transport sender for HL7 in axis2.xml as follows:

<transportSender name="hl7" class="org.wso2.carbon.business.messaging.hl7.
transport.HL7TransportSender">
 <!--parameter name="non-blocking">true</parameter-->
</transportSender>

The HL7 components required for WSO2 ESB are not shipped with the default ESB
distribution (as it affects the distribution size), and you have to manually install those
features from the WSO2 ESB feature repository. More details can be found at https://
docs.wso2.com/display/ESB500/HL7+Transport.

http://hl7api.sourceforge.net/
http://hl7api.sourceforge.net/
https://docs.wso2.com/display/ESB500/HL7+Transport
https://docs.wso2.com/display/ESB500/HL7+Transport

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

192

Receiving HL7 Messages with Auto ACK

We can use WSO2 ESB’s HL7 v.2 inbound endpoint as the HL7 message receiver at the
ESB layer. The HL7 inbound endpoint essentially exposes an HL7 interface on top of the
MLLP transport, so that the HL7 message sender can send messages through the MLLP
protocol. The acknowledgement handling can be done in different ways, but for the
use case shown in Figure 8-5, let’s assume that ACK is sent once ESB receives the HL7
message at the inbound endpoint level.

Figure 8-5.  Exposing an HL7 v.2 interface over MLLP protocol and transforming messages
and sending them to a SOAP web service. The ACK message is sent when we receive the HL7
message at the HL7 inbound endpoint level.

The HL7 inbound endpoint injects the HL7 message to the specified sequence
and the message is converted to the XML canonical format at the ESB layer. So the data
mapping is between the XML to the required SOAP message format of the backend web
service. Since we have configured auto ACK, the response from the backend web service
is not sent to the source HL7 system, but you can log it, drop it, or do any arbitrary process
for it.

Listing 8-9 illustrates the configuration of HL7 inbound endpoint and the sequence
that handles the incoming HL7 messages.

Listing 8-9.  Receiving HL7 with Auto ACK and Sending Them to Backend Web Service

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="ABCHealthcare_HL7Receiver_AutoAck"
 sequence="ABCHelathcareHL7_to_SOAP_with_AutoAck"
 onError="fault"
 protocol="hl7"
 suspend="false">
 <parameters>
 <parameter name="inbound.hl7.Port">20000</parameter>
 <parameter name="inbound.hl7.AutoAck">true</parameter>
 <parameter name="inbound.hl7.ValidateMessage">true</parameter>
 <parameter name="inbound.hl7.TimeOut">10000</parameter>
 <parameter name="inbound.hl7.CharSet">UTF-8</parameter>
 <parameter name="inbound.hl7.BuildInvalidMessages">false</parameter>

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

193

 �<parameter name="inbound.hl7.PassThroughInvalidMessages">false
</parameter>

 </parameters>
</inboundEndpoint>

<sequence xmlns="http://ws.apache.org/ns/synapse" name="ABCHelathcareHL_to_
SOAP">
 <log level="full">
 <property name="MSG" value="== Received =="/>
 </log>
 <!-- ... Data Mapper ...-->
 <!-- Send to soap service -->

</sequence>

As the parameters of HL7 inbound endpoint you can provide a flag to set auto ACK,
the TCP port in which it starts listening for incoming HL7 messages over MLLP protocol,
timeout (when timeout expires an automatic NACK is sent to the source), flag to validate HL7
messages when you convert them to the XML infoset, etc. A list of supported parameters can
be found at https://docs.wso2.com/display/ESB500/HL7+Inbound+Protocol.

Receiving HL7 Messages with Application ACK

The same scenario in the previous section can be configured with application
acknowledgement. In this case, the ACK is sent back to the client only after we complete
the entire sequence logic. For example, as shown in Figure 8-6, you can configure the
WSO2 ESB so that it will send the ACK once we complete the injecting sequence.

Figure 8-6.  Receiving HL7 messages and ACK is sent once we receive the response from the
backend service. This is known as application ACK.

https://docs.wso2.com/display/ESB500/HL7+Inbound+Protocol

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

194

The main idea is to specify that you want to do application ACK at the beginning
(before sending message to the backend) of the injecting sequence with the property
HL7_APPLICATION_ACK=true, and once you receive the response, you set HL7_RESULT_
MODE=ACK. Application ACK can be a positive or negative ACK, which means if something
fails when you invoke the backend service, your fault sequence will be triggered and you
can configure the corresponding fault sequence to send back a NACK in that case. Listing
8-10 shows the configuration of the HL7 inbound endpoint and the injecting sequence
that you can use to build an application ACK HL7 message receiving scenario.

Listing 8-10.  Receiving HL7 with Application ACK

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="ABCHealthcare_HL7Receiver_AppAck"
 sequence="ABCHelathcareHL7_to_SOAP_with_AppAck"
 onError="fault"
 protocol="hl7"
 suspend="false">
 <parameters>
 <parameter name="inbound.hl7.Port">20001</parameter>
 <parameter name="inbound.hl7.AutoAck">false</parameter>
 <parameter name="inbound.hl7.ValidateMessage">true</parameter>
 <parameter name="inbound.hl7.TimeOut">10000</parameter>
 <parameter name="inbound.hl7.CharSet">UTF-8</parameter>
 <parameter name="inbound.hl7.BuildInvalidMessages">false</parameter>
 �<parameter name="inbound.hl7.PassThroughInvalidMessages">false

</parameter>
 </parameters>
</inboundEndpoint>

<sequence xmlns="http://ws.apache.org/ns/synapse" name="ABCHelathcareHL7_to_
SOAP_with_AppAck" onError="ABCHelathcareHL7_Fault">

 <log level="full">
 <property name="Status" value="== HL7 Message Received =="/>
 </log>
 <property name="HL7_APPLICATION_ACK" value="true" scope="axis2"/>
 <!-- data mapping -->
 <call>
 <endpoint name="MedicalRecordsWS">
 <address uri="http://localhost:6060/MedicalRecords"
format="soap11"/>
 </endpoint>
 </call>

 <log level="full">
 <property name="Status" value="== Successful : Sending Application ACK
=="/>
 </log>

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

195

 <property name="HL7_RESULT_MODE" value="ACK" scope="axis2"/>
 <property name="HL7_GENERATE_ACK" value="true" scope="axis2"/>
 <respond/>
</sequence>

<sequence xmlns="http://ws.apache.org/ns/synapse" name="ABCHelathcareHL7_
Fault">

 <log level="full">
 <property name="Fault Message : " value="Application NACK"/>
 </log>

 <property name="HL7_RESULT_MODE" value="NACK" scope="axis2"/>
 <property name="HL7_NACK_MESSAGE" value="error msg" scope="axis2"/>
 <respond/>

</sequence>

The configuration of the HL7 inbound endpoint is very similar to the previous use
case, other than disabling the auto ACK flag. In the injecting sequence, we set <property
name="HL7_APPLICATION_ACK" value="true" scope="axis2"/> to make sure that this
is an application ACK scenario. Then you send the message to the backend service after
doing the required data mapping. Once you receive the response, you are all set to send
back the ACK to the original HL7 source. This can be done by setting the HL7 result
mode, setting the property to generate an ACK, and responding with the ACK. Similarly,
in a fault scenario, the on-error sequence will be triggered and a NACK can be triggered
from the corresponding fault sequence.

Sending HL7 Messages
From ESB you can send HL7 messages to a backend HL7 system. WSO2 ESB can either
work as the HL7 gateway or non-HL7 to HL7 message gateway. Suppose that we need to
connect two different healthcare information systems that use HL7 as the communication
protocol. And assume that you can’t directly connect these two systems, as some message
level transformations are required between these two systems or you merely want to use
an HL7 gateway for monitoring and analytics purposes. So, as illustrated in Figure 8-7,
you can use WSO2 ESB as the HL7 gateway between the two healthcare information
systems—ABC Healthcare and XYZ Healthcare.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

196

In this scenario, the HL7 transport sender is used to send the message out to the
destination HL7 information system. The configuration of this scenario is shown in
Listing 8-11. The HL7 messages are received through the HL7 inbound endpoint and
the injecting sequence has the logic related to message sending to the destination HL7
system. Here we use the application ACK mode and data mapping is also used between
two systems. The message type is configured to application/edi-hl7.

Listing 8-11.  Receiving and Sending HL7 Messages Between Two HL7 Based Healthcare
Information Systems

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="HL7_GW_Receiver"
 sequence="HL7_GW_Seq"
 onError="fault"
 protocol="hl7"
 suspend="false">
 <parameters>
 <parameter name="inbound.hl7.Port">20002</parameter>
 <parameter name="inbound.hl7.AutoAck">false</parameter>
 <parameter name="inbound.hl7.ValidateMessage">true</parameter>
 <parameter name="inbound.hl7.TimeOut">10000</parameter>
 <parameter name="inbound.hl7.CharSet">UTF-8</parameter>
 <parameter name="inbound.hl7.BuildInvalidMessages">false</parameter>
 �<parameter name="inbound.hl7.PassThroughInvalidMessages">false</

parameter>
 </parameters>
</inboundEndpoint>

<sequence xmlns="http://ws.apache.org/ns/synapse" name="HL7_GW_Seq"
onError="ABCHelathcareHL7_Fault">

Figure 8-7.  Connecting two HL7-based healthcare systems with WSO2 ESB

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

197

 <log level="full">
 <property name="Status" value="== HL7 Message Received =="/>
 </log>
 <property name="HL7_APPLICATION_ACK" value="true" scope="axis2"/>

 <!-- ... Data Mapper ...-->
 <property name="messageType" value="application/edi-hl7" scope="axis2"/>

 <call>
 <endpoint name="XYZ_Healthcare_EP">
 <address uri="hl7://localhost:9988"/>
 </endpoint>
 </call>

 <log level="full">
 <property name="Status" value="== Successful : Sending Application ACK
=="/>
 </log>

 <property name="HL7_RESULT_MODE" value="ACK" scope="axis2"/>

 <respond/>

</sequence>

In addition to HL7 v2.x, WSO2 ESB offers support for other protocols widely used in
the healthcare sector.

FHIR-Based Integration
Fast Healthcare Interoperability Resources (FHIR; see hl7.org/fhir) is a next generation
standards framework created by HL7. FHIR combines the best features of HL7 v2, HL7 v3,
and the CDA product lines while leveraging the latest web standards and applying a tight
focus on implementability.

FHIR solutions are built from a set of modular components called “Resources.” These
resources can easily be assembled into working systems that solve real-world clinical and
administrative problems at a fraction of the price of existing alternatives. FHIR is suitable
for use in a wide variety of contexts—mobile phone apps, cloud communications, EHR-
based data sharing, server communication in large institutional healthcare providers, and
much more.

WSO2 ESB offers an FHIR connector (https://docs.wso2.com/display/
ESBCONNECTORS/FHIR+REST+Connector) that can talk to FHIR-based systems. The details
of how to use connectors with WSO2 ESB are covered in the latter part of this chapter.

https://docs.wso2.com/display/ESBCONNECTORS/FHIR+REST+Connector
https://docs.wso2.com/display/ESBCONNECTORS/FHIR+REST+Connector

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

198

WebSockets Support
WebSockets is by no means a proprietary protocol, but owing to its unique characteristics
over other protocols, we have listed it in this section. Historically, creating web
applications that need bidirectional communication (clients send requests to the server
as well as the server can send requests to the client) has been a major challenge. The
workarounds that were used to achieve this over existing protocols, such as HTTP, turned
out to be inefficient.

•	 Polling: With this, the client polls the server periodically and the
server immediately responds (with new data or no data). This
method is extremely inefficient as it wastes CPU and bandwidth
when there’s no data available.

•	 Long polling: This is an improved version of polling in which
the server doesn’t respond immediately; rather it waits until it
has some new data available. Once the new data is available, it
sends it back to the client. The client immediately sends a request
again and long polling continues. Again this method wastes the
bandwidth and CPU for opening numerous connections over
time.

•	 Streaming: With streaming, the client initiates the connection and
sends the initial request. The server waits until it has new data
to be sent. Once the new data is available, it keeps sending it to
the client. The connection is open forever. This method allows
servers to send events infinitely, but can’t support client to server
messages (hence, this is half-duplex).

Apart from the limitations associated with these methods, using HTTP headers in
each message is also another major overhead. So, most cases a lot of bandwidth is wasted
because of the unnecessary header data. On the other hand, connection establishment
and closure is also extremely expensive. Therefore, it’s necessary to have a standard
protocol that can cater to these needs and it should be compatible with the existing
protocols.

The WebSockets protocol addresses these requirements by using a single TCP
connection for traffic in both directions and uses HTTP as the initial handshaking
protocol, so that it can work with the existing infrastructure.

Before we jump into the WebSockets integration scenarios with WSO2 ESB, let’s take
a quick look at how the WebSockets protocol works in typical messaging scenarios.

As depicted in Figure 8-8, the protocol has two main parts, the handshake and the
data transfer.

•	 The client initiates a connection to the server and sends an HTTP
request. This is an HTTP GET request with a request of upgrading
the connection to WebSockets. This is informed to the server by
sending Upgrade: websocket and Connection: Upgrade by the
client. The client also sends other HTTP headers related to the
WebSockets handshake.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

199

•	 The server responds with HTTP 101 with the switching protocols
response. This completes the handshake process.

•	 Now the connection has been established and the client or server
can send messages in the full-duplex manner using the same
connection. There’s no notion of request-response messaging
during WebSockets data transfer.

•	 Either side can terminate the established connection.

Figure 8-8.  WebSocket protocol overview

The messages used in WebSockets can be in text or binary format.
Since you have a basic understanding of how the WebSockets protocol works, we can

proceed to the WebSockets integration capabilities of WSO2 ESB.

WebSockets to WebSocket Integration
Suppose that you need to integrate two WebSockets-based systems—an e-commerce
web portal and an order-management system. The internal WebSockets-based
OrderManagement service cannot be directly exposed to the external clients and it has to
be exposed via an intermediate WebSocket gateway. Therefore, the core requirement here
is to implement a WebSocket gateway with WSO2 ESB, which facilitates the messaging
between these two systems.

WSO2 ESB provides a WebSocket inbound endpoint, in which you can use to expose
a WebSockets interface from WSO2 ESB. For outbound WebSocket invocations, you can
use the WebSocket transport sender. In order to use the WebSocket sender, you need to
enable it in the axis2.xml file.

As illustrated in Figure 8-9, a WebSocket interface is exposed to the e-commerce web
portal through a WebSockets inbound endpoint. An outbound endpoint is used with the
WebSockets transport sender to connect to the OrderManager WebSockets service.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

200

As you learned in the previous section, the WebSockets messaging pattern requires a
handshake prior to data exchange. So, in the scenario shown in Figure 8-9, we configure
the message flow so that all the handshake messages as well as data exchanging message
flows through the sequences independently. However, there is an important aspect to
consider. WebSockets is not a request-response protocol; therefore, there should be a
specific way to handle server-initiated messages or server pushes. Let’s take a closer look
at the configuration of this integration scenario, which is shown in Listing 8-12.

Listing 8-12.  WebSockets to WebSockets Integration with WebSockets Inbound Endpoint
and WebSockets Transport Sender

<inboundEndpoint name="ECommerce_WebSockReceiver" onError="fault"
protocol="ws"
 sequence="orderManagementDispatchSeq" suspend="false">
 <parameters>
 <parameter name="inbound.ws.port">9091</parameter>
 �<parameter name="ws.outflow.dispatch.sequence">orderManagementServerP

ushSeq</parameter>
 <parameter name="ws.client.side.broadcast.level">0</parameter>
 <parameter name="ws.outflow.dispatch.fault.sequence">fault</parameter>
 </parameters>
</inboundEndpoint>

<sequence xmlns="http://ws.apache.org/ns/synapse" name="orderManagementDisp
atchSeq">

 <log level="custom">
 <property name="Message Flow" value="WS-Request message"/>
 </log>

 <property name="OUT_ONLY" value="true"/>
 <call>
 <endpoint>
 <address uri="ws://localhost:8082/wsoc/OrderMgtService"/>
 </endpoint>
 </call>
</sequence>

Figure 8-9.  Using WSO2 ESB as the WebSockets Message Gateway

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

201

<sequence xmlns="http://ws.apache.org/ns/synapse" name="orderManagementDisp
atchSeq">

 <log level="custom">
 <property name="Message Flow" value="ServerPush message received"/>
 </log>
 <respond/>
</sequence>

As shown in Listing 8-12, the WebSockets inbound endpoint has port as a parameter,
the injecting sequence, which is the sequence that the WebSocket message is injected
into, and a dispatching sequence to handle the server push messages. So, as we discussed
earlier, since WebSockets is not a pure request-response protocol, all the messages that go
from the server to the client go through the dispatching sequence.

•	 inbound.ws.port: The HTTP port where the WebSocket inbound
endpoint starts listening for incoming messages.

•	 sequence (attribute of inbound Ep.): The generic inbound
endpoint parameter that specifies the injecting sequence.
WebSockets messages from the client to the server go through this
sequence.

•	 ws.outflow.dispatch.sequence: All the messages that flow from
the server to the client (server push messages) go through this
sequence.

•	 ws.client.side.broadcast.level: We used this parameter
to broadcast messages between different subscribers. (Value 0
means no broadcasting.) This will be explained further in the next
use case.

•	 The outbound endpoint can specify the backend WebSockets
service with the prefix ws://.

Also note that the injecting sequence has the OUT_ONLY parameter enabled, as the
messaging is not request-response style. The server-push dispatching sequence handles
the server send messages using a respond mediator (however, those messages are not
really responses).

So, in this use case, we haven’t really dealt with any of the WebSocket message
content (data exchange). All the handshake messages and data exchanging messages are
sent through the ESB layer.

When we are doing WebSockets to WebSockets integration, it is important to keep
in mind that all the message exchanges between the participating WebSocket-based
systems are sent through the WSO2 ESB. This includes handshaking messages as well as
full-duplex WebSockets data frames. If you want to specifically filter out the handshake-
related messages, you need to use a filter mediator that checks for the property
$ctx:websocket.source.handshake.present. You can find a detailed use case for a
similar scenario in the following subprotocol related use cases.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

202

WebSockets to WebSocket Integration with Frame Broadcasting
The WebSockets protocol can be used to implement a publisher-subscriber message
pattern so that we can broadcast WebSocket frames to WebSocket clients who are
connected based on their connected subscriber path. This is quite useful when we want
to distribute data frames over a set of connected clients over an inbound endpoint. To
understand the use of subscriber path and frame broadcasting, consider the scenario
depicted in Figure 8-10.

Figure 8-10.  WebSockets frames are broadcasted among the clients that have connected
with subscriber path weatherdata

In this scenario, there is a weather data backend service, which is based on
WebSockets. Rather than exposing the weather data service as it is, there is a requirement
to expose it through a separate WebSockets interface, which can also support publisher-
subscriber messaging. This means that any WebSocket client that is connecting to the
WebSocket interface of WSO2 ESB with a given subscriber path will receive messages sent
to that particular subscriber path.

The implementation of this scenario is quite similar to the previous use case, but
we need to set ws.client.side.broadcast.level = 2. By setting this parameter, all
the clients that connected with same subscriber path will receive the WebSocket frame,
except the one that publishes the frame to inbound. The use of broadcast levels can be
summarized as follows:

•	 Level 0: Only the unique client may receive the frame from
WebSockets inbound endpoint

•	 Level 1: All the clients that connected with the same subscriber
path will receive the WebSocket frame

•	 Level 2: All the clients that connected with same subscriber
path will receive the WebSocket frame, except for the one that
publishes the frame to inbound

The corresponding configuration of the WebSockets inbound endpoint is shown
in Listing 8-13. So, each client that connected to the WebSockets inbound endpoint
with the subscriber path http://host:port/weatherdata will receive the WebSockets
frames broadcasted for that particular subscriber path. The configuration of the injecting
sequence and the dispatching (server-side message handling) sequence is quite similar
to the previous use case.

http://host:port/weatherdata

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

203

Listing 8-13.  WebSockets to WebSockets Integration with Subscriptions

<inboundEndpoint name="WeatherInfo_WebSockBroadcaster" onError="fault"
protocol="ws"
 sequence="weatherDataReq_Seq" suspend="false">
 <parameters>
 <parameter name="inbound.ws.port">9092</parameter>
 �<parameter name="ws.outflow.dispatch.sequence">weatherDataServerPush_

Seq</parameter>
 <parameter name="ws.client.side.broadcast.level">2</parameter>
 <parameter name="ws.outflow.dispatch.fault.sequence">fault</parameter>
 </parameters>
</inboundEndpoint>

<sequence xmlns="http://ws.apache.org/ns/synapse" name="weatherDataReq_Seq">

 <log level="custom">
 <property name="Message Flow" value="WS-Request message"/>
 </log>

 <property name="OUT_ONLY" value="true"/>
 <call>
 <endpoint>
 <address uri="ws://localhost:8082/wsoc/OrderMgtService"/>
 </endpoint>
 </call>
</sequence>

<sequence xmlns="http://ws.apache.org/ns/synapse"
name="weatherDataServerPush_Seq">

 <log level="custom">
 <property name="Message Flow" value="ServerPush message received"/>
 </log>
 <respond/>
</sequence>

So far, the use cases that we have discussed are not processing the data that’s
transferred as WebSocket frames. Rather we simply pass through it from the ESB layer. In
the next section, let’s take a look at the scenarios where you need to read and process (i.e.,
transform) the content of WebSocket frames.

WebSockets to WebSocket Integration with Data Mapping
The WebSockets specification doesn’t specify any details about content types of the
frames that flow through WebSockets channels. Unlike HTTP, which is an application-
level protocol, in the WebSocket protocol there is not enough information in an incoming

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

204

message to process these messages. These messages are either text or binary low-level
frames.

Because of this, WSO2 ESB has defined a custom subprotocol over WebSockets. At
the initial handshake of the WebSocket channel creation, we exchange the content type
subprotocol type as an HTTP header. This will allow both client server parties to know the
content type of frames they communicate.

Subprotocols

The client can request that the server use a specific subprotocol
by including the |Sec-WebSocket-Protocol| field in its
handshake. If it is specified, the server needs to include the
same field and one of the selected subprotocol values in its
response for the connection to be established.

Source: https://tools.ietf.org/html/rfc6455#page-4

To understand the concept of content handling with WSO2 ESB’s custom
subprotocol, let’s suppose that the e-commerce and OrderManagement service scenario
that we discussed earlier has a requirement to do some data transformation of the
WebSocket frames. In other words, the WebSocket frames sent from the e-commerce web
portal cannot be directly sent to the OrderManagement service. Therefore, inside the ESB
message flow, you need to transform it using the data mapper.

As shown in Figure 8-11, the message format of the content of WebSockets frames
is JSON. The transformation required at the ESB layer is JSON-to-JSON transformation
and the transformed messages are also sent in the form of WebSockets frames. When the
e-commerce web portal sends a WebSocket frame to the WSO2 ESB, there should be a
way to determine the content type of the WebSocket frame content. In order to support
that WSO2 ESB requires having the subprotocol header (WSO2 ESB-defined) that is
related to the content type during the handshake. That is Sec-WebSocket-Protocol: sy
napse(contentType='application/json'). When the handshake happens between the
e-commerce web portal and the WSO2 ESB WebSockets listener, the e-commerce web
portal should send this header.

Figure 8-11.  WebSocket frames from a e-commerce web portal are transformed using the
data mapper before we send them to the OrderManagement service. Both systems use the
custom subprotocol header to transfer the content-type related data.

https://tools.ietf.org/html/rfc6455#page-4

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

205

Once the handshake is completed, the WebSocket inbound endpoint can build
all the subsequent WebSocket frames based on the specified content type during the
initial handshake. Therefore, inside the ESB message flow (injecting sequence), you
can use the data mapper to map the message format to the message format of the
OrderManagementService.

As mentioned earlier, all the messages related to WebSocket communication
between the two systems flows through WSO2 ESB. This includes handshake-related
messages as well as data frames. Therefore, the data mapping logic has to be explicitly
done for WebSockets frames only. So, as shown in Listing 8-14, we have filtered the
WebSockets frames using the $ctx:websocket.source.handshake.present property and
done the data mapping accordingly.

In addition, when we send WebSockets frames from ESB to the OrderManagement
system, we also have to send the WebSockets frames with a content type that we have
transformed in our mediation flow (i.e., JSON in this use case). This is done by using
the websocket.accept.contenType property defined at the axis2 scope. We used this
property to inform the WebSocket sender to build the frames with the JSON content type
and to include the same subprotocol header that we used to determine the content of the
WebSockets frames.

Listing 8-14.  WebSockets to WebSocket Integration Using Subprotocols to Support Data
Mapping

<inboundEndpoint name="ECommerce_WebSockReceiver" onError="fault"
protocol="ws"
 sequence="orderManagementReqDataMapper_Seq"
suspend="false">
 <parameters>
 <parameter name="inbound.ws.port">9093</parameter>
 �<parameter name="ws.outflow.dispatch.sequence">orderManagementServerPu

shDataMapper_Seq</parameter>
 <parameter name="ws.client.side.broadcast.level">0</parameter>
 <parameter name="ws.outflow.dispatch.fault.sequence">fault</parameter>
 </parameters>
</inboundEndpoint>

<sequence xmlns="http://ws.apache.org/ns/synapse" name="orderManagementReqD
ataMapper_Seq">

 <property name="OUT_ONLY" value="true"/>
 <property name="websocket.accept.contenType" scope="axis2"
value="application/json"/>

 <switch source="$ctx:websocket.source.handshake.present">
 <case regex="true">
 <!-- no data mapping for handshake messages -->
 </case>
 <default>
 <!-- ... Data Mapping applied for all WebSockets data frames ...-->

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

206

 </default>
 </switch>

 <call>
 <endpoint>
 <address uri="ws://localhost:8082/websocket"/>
 </endpoint>
 </call>

</sequence>

<sequence xmlns="http://ws.apache.org/ns/synapse" name="orderManagementServe
rPushDataMapper_Seq">

 <log level="custom">
 <property name="Message Flow" value="ServerPush message received"/>
 </log>

 <switch source="$ctx:websocket.source.handshake.present">
 <case regex="true">
 <!-- no data mapping for handshake messages -->
 </case>
 <default>
 <!-- ... Data Mapping applied for all WebSockets data frames ...-->
 </default>
 </switch>

 <respond/>
</sequence>

As you have seen, one of the main requirements for building this kind of integration
scenario is to support the custom subprotocol header that the WSO2 ESB defines, to cater
to content-aware scenarios with WebSockets frames.

WebSockets to HTTP Integration
One of the main requirements in the WebSockets integration domain is to expose a
non-WebSockets HTTP services as a WebSockets-enabled service through WSO2 ESB.
Let’s assume that the previous OrderManagement is not based on WebSockets, but rather
based on conventional HTTP 1.x. Now you want to expose the same functionality via the
WebSockets interface.

You can implement this use case with WSO2 ESB by simply introducing a
WebSockets inbound endpoint. As illustrated in Figure 8-12, since you have to map the
WebSockets data frames into an HTTP request, it is necessary to have the information
related to the content type as part of a subprotocol header during the handshake.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

207

The injecting sequence can simply ignore the handshake related messages, as a
handshake is not required to be propagated by the HTTP OrderManagement service,
which doesn’t use HTTP. As shown in Listing 8-15, the only significant logic that you
require at the injecting sequence of WebSockets inbound endpoint is to filter out and
drop the handshake messages. WebSockets frames are transformed and sent as HTTP
requests to the backend service. The responses are translated back to server-sent
messages at the WebSockets inbound endpoint.

Listing 8-15.  Exposing HTTP Backend Service as a WebSocket Interface

<inboundEndpoint name="OrderManager_WebSockListener" onError="fault"
protocol="ws"
 sequence="orderManagementReq_Seq" suspend="false">
 <parameters>
 <parameter name="inbound.ws.port">9091</parameter>
 �<parameter name="ws.outflow.dispatch.sequence">orderManagementServer

PushSeq</parameter>
 <parameter name="ws.client.side.broadcast.level">0</parameter>
 <parameter name="ws.outflow.dispatch.fault.sequence">fault</parameter>
 </parameters>
</inboundEndpoint>

<sequence xmlns="http://ws.apache.org/ns/synapse" name="OrderManager_
WSockToHTTP">
 <switch source="$ctx:websocket.source.handshake.present">
 <case regex="true">
 <!-- Ignoring handshake messages -->
 <drop/>
 </case>
 <default>
 <!-- ... Data Mapper ...-->
 <call>
 <endpoint>
 �<http uri-template="http://localhost:9090/

OrderManagementRESTAPI" method="POST"/>
 </endpoint>
 </call>

Figure 8-12.  Exposing a WebSockets interface for an existing non-WebSockets based HTTP
service

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

208

 <!-- ... Data Mapper ...-->
 <respond/>
 </default>
 </switch>
</sequence>

However, with this approach, your WebSocket interface is fully constrained by the
underlying HTTP service. For instance, your WebSockets interface won’t be sending
any WebSockets frames that are initiated by the backend service. Rather, all messaging
exchanges take place in a request-response style messaging.

HTTP to WebSockets Integration
Exposing an HTTP interface on top of an existing WebSocket service may sound like
a rare requirement. Still there can be such use cases and hence we have included that
as the last use case related to WebSockets. Unlike the previous scenario, where we
implemented WebSockets to HTTP, this scenario is even more constrained due to the
mismatch of these two protocols.

Suppose that a legacy client application wants to consume your WebSockets-based
OrderManagement service. Since the client doesn’t support the WebSockets protocol, you
need to expose an HTTP 1.x interface as a REST API to the client.

Figure 8-13.  Exposing an HTTP interface on top of an existing WebSockets service

However, we can’t implement a request-response messaging pattern in this
particular scenario. That means that the request from the HTTP client should be a
one-way message with 202 Accepted responses. So the HTTP client can only send one-way
HTTP messages, which are translated back to ESB to OrderManagement service
WebSockets frames. The related configuration is shown in Listing 8-16.

Listing 8-16.  Exposing WebSockets Services as an HTTP 1.x Interface

<api xmlns="http://ws.apache.org/ns/synapse"
 name="OrderManagementAPI"
 context="/ordermgt">
 <resource methods="POST">
 <inSequence>

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

209

 <!-- ... data mapping ... -->
 <property name="OUT_ONLY" value="true"/>
 <property name="FORCE_SC_ACCEPTED" scope="axis2"
 type="STRING" value="true"/>
 �<property name="websocket.accept.contenType" scope="axis2"

value="application/json"/>
 <call>
 <endpoint>
 <address uri="ws://localhost:8082/websocket"/>
 </endpoint>
 </call>
 </inSequence>
 </resource>
</api>

You can simply call the WebSockets service through the WebSockets transport
sender, and the inbound HTTP request is treated as a one-way inbound message with the
use of the FORCE_SC_ACCEPTED and OUT_ONLY properties.

In-JVM Calls with Local Transport
There can be situation that ESB has to call its own proxy services or REST APIs from
another sequence, proxy service, or REST API. In such a situation, if you call the proxy
service or REST API with its URL (e.g., http://locahost:8280/services/MyProxy), it
goes through the HTTP transport layer. Hence, even to call an internally hosted REST API
or proxy service, there is a redundant network level call that you have to do.

WSO2 ESB supports in-jvm/local service calls with its local transport. You simply
have to enable local transport in ESB by adding following transport sender and remove all
“local” senders and receivers from axis2.xml.

<transportSender name="local" class="org.apache.axis2.transport.local.
NonBlockingLocalTransportSender"/>

You also have to configure the $SESB_HOME/repository/conf/carbon.xml file with
the following ServerURL.

<ServerURL>https://${carbon.local.ip}:${carbon.management.port}${carbon.
context}/services/</ServerURL>

Once you have done this configuration you can simply call any proxy or REST API
with its local/in-jvm URL. For example, suppose that you have a proxy service hosted
in WSO2 ESB at http://locahost:8280/services/MyProxy. If you wanted to call that
service through the local transport, you would use the following configuration.

http://locahost:8280/services/MyProxy
http://locahost:8280/services/MyProxy

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

210

<call>
 <endpoint name="ep2">
 <address uri="local://services/MyProxy"/>
 </endpoint>
</call>

It is recommended to use a local transport for all internal invocations of proxy
services and REST APIs as it has less overhead since you don’t have the redundant
network-level innovation.

Integrating Cloud Services
As you learned in the previous section, integrating on-premise systems is a key
requirement of an ESB, as any organization has such disparate IT applications.
However, with the increasing adaptation of cloud-based software applications, most
organizations run significant a portion of their IT businesses on cloud-based Software as
a Service (SaaS) applications. For example, if we consider CRM (Customer Relationship
Management) software, Salesforce is one of the most popular software solutions. It
completely runs as a SaaS application with zero maintenance cost for the consumer
organization. In addition to the increasing growth of SaaS solutions, most organizations
leverage the business functionalities that are exposed as APIs. For example, popular day-
to-day software tools such as Facebook, Twitter, etc. are heavily used along with other
software applications. Most of the functionalities of these software solutions are exposed
as APIs. So any enterprise might want to integrate their software with SaaS solutions or
any public APIs out there.

In summary, the enterprise integration landscape has been moving into a much
more dynamic and diverse space. Therefore, it is important for any ESB to support the
wide range of applications, APIs, and SaaS solutions.

What is an ESB Connector?
Most of the SaaS solutions and APIs expose standard interfaces to the external parties
to consume their business functionalities. For example, Salesforce provides rich SOAP
(and REST) APIs for all its business functionalities, while Twitter provides a REST API to
carry out all the Twitter-related activities outside its web site (twitter.com). So you can
configure the ESB to directly consume those APIs based on standard technologies, such
as REST or SOAP web services. However, if the ESB users have to build the integration
solutions from the ground up using those cloud service APIs, they have to put more
effort into dealing with the complexities of each API/SaaS, rather than focusing on their
business use case.

Therefore, the ESBs has to provide a convenient and intuitive way to consume those
cloud services/APIs from the ESB layer. On the other hand, there can be hundreds or
thousands of APIs and SaaS solutions out there, and it is virtually impossible to include
support for all those APIs/SaaS solutions in a single ESB product. We need a much more
decoupled and scalable way of supporting cloud service integration in an ESB.

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

211

Considering all such requirements, WSO2 ESB introduced the concept of a connector
with following characteristics.

•	 The WSO2 ESB connector provides a simple abstraction to
access the underlying cloud service, SaaS, API, or an application
from the ESB message flow. All the complexities of invoking the
underlying cloud service are transparent to the ESB users.

•	 WSO2 ESB connectors are completely decoupled from the ESB
runtime. Rather they are built using the extension points of WSO2
ESB and therefore are not coupled to a specific ESB version. They
are developed and released independently of WSO2 ESB releases.

•	 There can be multiple connectors to the same API, which are
based on different technologies that a given API is exposed to.

Before moving into the use cases of ESB connectors, it’s important to understand
how connectors are implemented with the use of the primitive ESB constructs. All
the connectors for WSO2 ESB are 100% open source and you can download and use
them from the WSO2 Connectors store at https://store.wso2.com/store/assets/
esbconnector.

Structure of an ESB Connector
ESB connectors are built using sequence and endpoint templates, which you learned
about in previous chapters. A connector is a logical entity that contains a collection
of templates. Each template represents an operation associated with the underlying
cloud service or application. For example, let’s suppose we are using the ESB Twitter
connector. The Twitter connector has multiple operations and for each operation there is
a matching sequence template inside a connector. The sequence template contains the
ESB mediation logic that is required to invoke the Twitter API. What you actually do when
you use a connector is call these templates from your sequences. However, the way that
you call a connector operation is different from the way you call a generic template. The
templates available in a connector can be invoked in a different way.

Using an ESB Connector
Suppose that you want to invoke a Twitter update operation from one of your ESB
message flows (sequences). You can simply do this by calling the updateStatus operation
of the Twitter connector. Prior to that, you have to configure the init operation, which
you pass all the Twitter-specific information of your account. It is also possible to store
this information as a local entry and refer to the respective configuration from the Twitter
operation.

In Listing 8-17, you can find how you initiate the Twitter connector and then do
a status update with that particular account. Also the following example shows how
you can use cofigKey attribute with a connector operation, which you can use with
the connector configurations (things such as keys, secrets, etc.) with a connector
operation. With that approach, you don’t need to use the init operation prior to

https://store.wso2.com/store/assets/esbconnector
https://store.wso2.com/store/assets/esbconnector

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

212

invoking a connector operation. In the following use case, we first update the status
using kasun’s credentials and then the second updateStatus operation is done with the
otherTwitterAcc’s Twitter account.

For each connector operation, you can pass message context variables (starting with
$ctx) or any other hardcoded parameter. In Listing 8-17, we passed the several variables
to the first updateStatus operation and the status is passed as a static parameter.

Listing 8-17.  Using the Twitter Connector

<api xmlns="http://ws.apache.org/ns/synapse"
 name="TwitterInvokerAPI"
 context="/twitterinvoker">
 <resource methods="POST">
 <inSequence>
 <!-- Variable extraction -->
 <log level="full"/>
 <twitter.init>
 <consumerKey>{$ctx:consumerKey}</consumerKey>
 <consumerSecret>{$ctx:consumerSecret}</consumerSecret>
 <accessToken>{$ctx:accessToken}</accessToken>
 �<accessTokenSecret>{$ctx:accessTokenSecret}

</accessTokenSecret>
 </twitter.init>

 <twitter.updateStatus>
 <status>This is kasun’s status update</status>
 �<inReplyToStatusId>{$ctx:inReplyToStatusId}

</inReplyToStatusId>
 �<possiblySensitive>{$ctx:possiblySensitive}

</possiblySensitive>
 <latitude>{$ctx:latitude}</latitude>
 <longitude>{$ctx:longitude}</longitude>
 <placeId>{$ctx:placeId}</placeId>
 �<displayCoordinates>{$ctx:displayCoordinates}

</displayCoordinates>
 <trimUser>{$ctx:trimUser}</trimUser>
 <mediaIds>{$ctx:mediaIds}</mediaIds>
 </twitter.updateStatus>

 <twitter.updateStatus configKey="otherTwitterAcc">
 <status>{$ctx:status}</status>
 �<inReplyToStatusId>{$ctx:inReplyToStatusId}

</inReplyToStatusId>
 �<possiblySensitive>{$ctx:possiblySensitive}

</possiblySensitive>
 <latitude>{$ctx:latitude}</latitude>
 <longitude>{$ctx:longitude}</longitude>
 <placeId>{$ctx:placeId}</placeId>

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

213

 �<displayCoordinates>{$ctx:displayCoordinates}
</displayCoordinates>

 <trimUser>{$ctx:trimUser}</trimUser>
 <mediaIds>{$ctx:mediaIds}</mediaIds>
 </twitter.updateStatus>
 </inSequence>
 </resource>
</api>

When you have to pass things such as passwords, secrets, keys, etc., it’s not a
good practice to have them be part of the plain configuration. You have to keep such
information in a secured storage in WSO2 ESB. For this purpose, WSO2 ESB provides
a Secure Vault tool to store your sensitive information in a secured storage in ESB and
refers to those things using aliases.

For example, suppose that you want to securely store the consumerSecret parameter
value of the Twitter operation. You can use Secure Vault tool to store the actual value
of that parameter in WSO2 ESB (Refer to https://docs.wso2.com/display/ESB500/
Working+with+Passwords to see how you can configure a secure vault.) Let’s say you
stored that value with the alias kasun.consumer.secret in the ESB secure vault. Now you
can use that alias in your connector configuration, as shown in Listing 8-18.

Listing 8-18.  Using Secure Vault with Connector Parameters

<twitter.init>
 <consumerKey>{$ctx:consumerKey}</consumerKey>
 �<consumerSecret>{wso2:vault-lookup('kasun.consumer.secret')}

</consumerSecret>
 <accessToken>{$ctx:accessToken}</accessToken>
 <accessTokenSecret>{$ctx:accessTokenSecret}</accessTokenSecret>
</twitter.init>

There can be some connector operations that have complex payloads that are more
complicated than simple string-based parameters. Also, some connector operations
may return payloads with complex message structures. For example, let’s consider a
Salesforce integration use case. Here we call a Salesforce query operation to retrieve a
set of Accounts from Salesforce. The return message payload comprises a list of account
information in a XML/SOAP message format. Therefor, after invoking the connector
operation, you can apply any generic mediation logic inside your sequence.

Listing 8-19.  Handling Message Payloads Returned from Connector Operations

<sequence xmlns="http://ws.apache.org/ns/synapse" name="salesforceInfoExtra
ctor">

 <log level="custom">
 <property name="Message Flow" value="Calling Salesforce..."/>
 </log>

https://docs.wso2.com/display/ESB500/Working+with+Passwords
https://docs.wso2.com/display/ESB500/Working+with+Passwords

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

214

 <salesforce.query configKey="fooSFCredentials">
 <batchSize>200</batchSize>
 <queryString>select id,name from Account</queryString>
 </salesforce.query>

 <!-- mediation logic : data mapping, filtering, splitting etc. -->
</sequence>

Similarly, you can pass complex message formats as a part of the connector
parameters. In the Salesforce Upsert operation shown in Listing 8-20, we used a payload
factory to create the message payload that is required for the Salesforce Upsert operation.

Listing 8-20.  Using Complex Message Format as a Connector Parameters

<sequence xmlns="http://ws.apache.org/ns/synapse" name="salesforceAddSeq">
 <log level="custom">
 <property name="Message Flow" value="Calling Salesforce upsert"/>
 </log>
 <payloadFactory>
 <format>
 <sfdc:sObjects xmlns:sfdc="sfdc" type="Account">
 <sfdc:sObject>
 <sfdc:Id>0019000000aaMkZ</sfdc:Id>
 <sfdc:Name>newname001</sfdc:Name>
 </sfdc:sObject>
 <sfdc:sObject>
 <sfdc:Name>newname002</sfdc:Name>
 </sfdc:sObject>
 </sfdc:sObjects>
 </format>
 <args/>
 </payloadFactory>
 <salesforce.upsert>
 <allOrNone>0</allOrNone>
 <allowFieldTruncate>0</allowFieldTruncate>
 <externalId>Id</externalId>
 <sobjects xmlns:sfdc="sfdc">{//sfdc:sObjects}</sobjects>
 </salesforce.upsert>

 <!-- mediation logic : data mapping, filtering, splitting etc. -->
</sequence>

In order to use a connector and invoke connector operations, you don’t really need
to go through all the methods and parameters at the XML configuration level. Rather, if
you use WSO2 ESB development tool, you can simply select the connector that you want
to use, then select the operation that you want to use, and its respective parameters are
shown in the visual editor. We will cover how to use connectors with ESB development
tool as part of Chapter 10, in which we talk about the WSO2 ESB development process.

http://dx.doi.org/10.1007/978-1-4842-2343-7_10

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

215

When you use connectors with data mapper, you can use the static scheme or
dynamic schema available as part of the connector. The concept of a connector schema
is applied for each connector operation, and it defines the message structure of the
message that a connector operation accepts (incoming message format) and the message
structure of the response (outcoming/returning message format). There are connectors
that support static message formats as well as connectors such as Salesforce, which has
a dynamic/variable schema. For those connectors, the developer tool connects to those
APIs to retrieve the metadata and determine the message formats accordingly.

Inbound Connectors
You learned the concepts behind an inbound endpoint during the past chapters. The
concept of an inbound connector is built on top of the inbound endpoint concept. Let's
take an example from Salesforce to understand the concept of an inbound connector. The
Salesforce standard API allows you to invoke various operations related to its business
use cases. So, that is a pull API, where clients pull information from Salesforce. Salesforce
also provides a “streaming” API that the consumers can use to receive notifications for
changes to Salesforce data that match a SQL query you define, in a secure and scalable
way.

To support such streaming APIs, WSO2 ESB introduced the concept of the inbound
connector. An inbound connector is essentially an inbound endpoint, which is totally
decoupled from ESB runtime and can be dynamically deployed into an ESB runtime. The
runtime behavior of an inbound connector is almost the same as an inbound endpoint.
You can configure the inbound connector and specify an injecting sequence to process
the messages received through the streaming API.

In the following example, you can find a use case that we connect the WSO2 ESB
to the Salesforce streaming API. The injecting sequence handles the streamed/pushed
messages from Salesforce. Prior to using the streaming API, it was required to configure
the “push topics” at the Salesforce API level. Listing 8-21 shows a sample configuration of
a Salesforce streaming connector.

Listing 8-21.  Salesforce Streaming Connector: Sample Configuration

<inboundEndpoint xmlns="http://ws.apache.org/ns/synapse"
 name="SaleforceInboundEP"
 sequence="saleforceInvoiceStreamSeq"
 onError="fault"
 �class="org.wso2.carbon.inbound.salesforce.poll.

SalesforceStreamData"
 suspend="false">
 <parameters>
 <parameter name="sequential">true</parameter>
 <parameter name="interval">10</parameter>
 <parameter name="coordination">true</parameter>
 �<parameter name="connection.salesforce.userName">xxx@gmail.com

</parameter>

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

216

 �<parameter name="connection.salesforce.loginEndpoint">https://login.
salesforce.com</parameter>

 <parameter name="connection.salesforce.password">xxxxYYYY</parameter>
 �<parameter name="connection.salesforce.salesforceObject">InvoiceStatemen

tUpdates</parameter>
 �<parameter name="connection.salesforce.connectionTimeout">20000

</parameter>
 <parameter name="connection.salesforce.readTimeout">110000</parameter>
 <parameter name="connection.salesforce.waitTime">10000</parameter>
 <parameter name="connection.salesforce.packageName">cometd</parameter>
 <parameter name="connection.salesforce.packageVersion">35.0</parameter>
 <parameter name="connection.salesforce.soapApiVersion">22.0</parameter>
 </parameters>
</inboundEndpoint>

Refer to https://docs.wso2.com/display/ESBCONNECTORS/Configuring+Salesforc
e+Streaming+Connector+Operations for more details on how to do this at the Salesforce
level. Once you have done that, you can simply deploy the inbound connector on the ESB
side and then the injecting sequence can process all the pushed/streamed messages from
Salesforce.

Integrating Salesforce and SAP
Now you have a good understanding of the fundamentals of ESB connectors and how
you can use connectors in ESB mediation flow. Let's next consider how a real-world
integration use case can be implemented with ESB connectors. Suppose that you have to
implement a scenario where you want to send information from the SAP system to your
Salesforce CRM. Suppose that the customer information resides in SAP and has to be
added and synced with the customer information of your Salesforce CRM. For that, you
can use SAP Idoc-based integration from the SAP end and WSO2 ESB can be configured
to receive the “Customer Master Idoc” at the ESB layer. Once we receive the customer
master IDoc at the ESB level, we can configure the data mapping and then invoke the
Salesforce update operation.

Figure 8-14.  Replicating customers available in SAP in Salesforce customers through SAP
IDocs

https://docs.wso2.com/display/ESBCONNECTORS/Configuring+Salesforce+Streaming+Connector+Operations
https://docs.wso2.com/display/ESBCONNECTORS/Configuring+Salesforce+Streaming+Connector+Operations

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

217

The configuration at the SAP IDoc integration is discussed during the SAP
integration section in this chapter. Listing 8-22 shows a sample configuration of the
injecting sequence to which the SAP inbound endpoint injects. The main highlights are
the data mapping from the SAP IDoc XML format to Salesforce SOAP message format and
the invocation of the relevant Salesforce connector operations.

Listing 8-22.  Transferring Customers Available in SAP to Salesforce

<sequence xmlns="http://ws.apache.org/ns/synapse" name="SAP_to_Salesforce">
 �<property description="tourID" expression="//TOUR_ID" name="tourID"

scope="default" type="STRING"/>
 <property name="APOS" scope="default" type="STRING" value="'"/>
 <property description="queryString"
 �expression="fn:concat('SELECT Name,ID,organization__c,us

ername__c,queryType__c,mission__c,tourID__c,approved__c,
orderID__c,orderItem__c FROM Request__c WHERE tourID__c
=',syn:get-property('APOS'),get-property('tourID'),syn:get-
property('APOS'))"

 name="QUERY" scope="default" type="STRING"/>
 <salesforce.query configKey="SFConfig">
 <batchSize>1</batchSize>
 <queryString>{$ctx:QUERY}</queryString>
 </salesforce.query>
 �<property description="Id" expression="//sf:Id" name="Id"

scope="default" type="STRING"
 xmlns:sf="urn:sobject.partner.soap.sforce.com"/>
 �<property description="IdModified" expression="fn:substring

(get-property('Id'),0,16)" name="IdModi" scope="default"
 type="STRING"/>
 <payloadFactory media-type="xml">
 <format>
 <sfdc:sobjects type="Request__c" xmlns:sfdc="sfdc">
 <sfdc:sobject>
 <sfdc:tourID__c>$1</sfdc:tourID__c>
 <sfdc:Name>$2</sfdc:Name>
 <sfdc:Id>$3</sfdc:Id>
 <sfdc:organization__c>$4</sfdc:organization__c>
 <sfdc:username__c>$5</sfdc:username__c>
 <sfdc:queryType__c>$6</sfdc:queryType__c>
 <sfdc:mission__c>$7</sfdc:mission__c>
 <sfdc:orderID__c>$8</sfdc:orderID__c>
 <sfdc:orderItem__c>$9</sfdc:orderItem__c>
 <sfdc:approved__c>1</sfdc:approved__c>
 </sfdc:sobject>
 </sfdc:sobjects>
 </format>
 <args>
 <arg evaluator="xml" expression="get-property('tourID')"/>

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

218

 �<arg evaluator="xml" expression="//sf:Name"
xmlns:sf="urn:sobject.partner.soap.sforce.com"/>

 <arg evaluator="xml" expression="get-property('IdModi')"/>
 �<arg evaluator="xml" expression="//sf:organization__c"

xmlns:sf="urn:sobject.partner.soap.sforce.com"/>
 �<arg evaluator="xml" expression="//sf:username__c"

xmlns:sf="urn:sobject.partner.soap.sforce.com"/>
 �<arg evaluator="xml" expression="//sf:queryType__c"

xmlns:sf="urn:sobject.partner.soap.sforce.com"/>
 �<arg evaluator="xml" expression="//sf:mission__c"

xmlns:sf="urn:sobject.partner.soap.sforce.com"/>
 �<arg evaluator="xml" expression="//sf:orderID__c"

xmlns:sf="urn:sobject.partner.soap.sforce.com"/>
 �<arg evaluator="xml" expression="//sf:orderItem__c"

xmlns:sf="urn:sobject.partner.soap.sforce.com"/>
 </args>
 </payloadFactory>
 <salesforce.update configKey="SFConfig">
 <allOrNone>0</allOrNone>
 <allowFieldTruncate>0</allowFieldTruncate>
 <sobjects xmlns:sfdc="sfdc">{//sfdc:sobjects}</sobjects>
 </salesforce.update>
 <drop/>
</sequence>

Since inbound connectors are essentially custom inbound endpoints, the clustering
mechanism is exactly the same. (Inbound endpoint clustered deployed is discussed in
detail in the deployment patterns section in Chapter 10.)

Data Integration
In any organization, the information is stored in some form of persistent storage. In
most cases, the main information storage mechanism is databases. Therefore, it is
often required to integrate the data that resides in databases with other systems in
your enterprise IT landscape. In order to connect databases with other systems, WSO2
provides the capability to expose a database operation as a SOAP web service or as a
RESTful service.

This is included with the WSO2 DSS feature and you can install the DSS feature
inside ESB and start connecting to a database. Basically, the service exposed from the
data services feature can be called from an ESB mediation sequence.

The data services feature offers a broad range of data integration capabilities than
just exposing a SOAP or RESTful service, but in this section, we focus on that feature only.
To understand the basic concepts of how to build a data service, consider the following
configuration. Listing 8-23 shows a data service configuration of a data service called
OrderService. Once you deploy the following configuration as a data service, it will
deploy a SOAP web service in your WSO2 ESB + DSS instance (DSS features are installed
into your ESB).

http://dx.doi.org/10.1007/978-1-4842-2343-7_10

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

219

If you look at the data service configuration, you can find the name of service at
the starting element, and a config section in which you configure all the details of
the data source/database that you want to connect to. After the config section, you
can see a query section, which contains the query that you want to run against your
database tables. In this case, we are executing an insert operation and the required
parameters are specified as part of the query. Then comes the operation section, where
you configure the actual service operation, which is exposed by the service. From the
AddOrder operation, the respective query is referred and parameters are specified, which
will become the elements of the incoming SOAP message. Basically, once the service is
deployed, you can invoke it by invoking the AddOrder operation with the SOAP message
format relevant to the operation parameters that you specified.

Listing 8-23.  Data Service Configuration of OrderService

<data name="OrderService" enableBatchRequests="true"
serviceNamespace="http://wso2.org/sample/shop/order">
 <config id="shopdatasource">
 �<property name="org.wso2.ws.dataservice.driver">com.mysql.jdbc.

Driver</property>
 �<property name="org.wso2.ws.dataservice.protocol">jdbc:mysql://

localhost:3306/SHOP_DB</property>
 <property name="org.wso2.ws.dataservice.user">root</property>
 <property name="org.wso2.ws.dataservice.password">root</property>
 </config>
 <query id="addOrderQuery" useConfig="shopdatasource">
 �<sql>insert into ORDER_T values (:orderID, :customerID,

:date,:price);</sql>
 <param name="orderID" sqlType="STRING" />
 <param name="customerID" sqlType="STRING" />
 <param name="date" sqlType="TIMESTAMP" />
 <param name="price" sqlType="DOUBLE" />
 </query>
 <operation name="AddOrder">
 <call-query href="addOrderQuery">
 <with-param name="orderID" query-param="orderID" />
 <with-param name="customerID" query-param="customerID" />
 <with-param name="date" query-param="date" />
 <with-param name="price" query-param="price" />
 </call-query>
 </operation>
</data>

You can learn more about WSO2’s data service feature/server at https://docs.
wso2.com/display/DSS350/WSO2+Data+Services+Server+Documentation.

You can use the data service feature for most of the real-world integration use cases.
For example, consider the use case specified in Listing 8-23, where you need to integrate
Salesforce’s streaming API. All the pushed “invoice statement updates” have to be stored
in an Oracle database.

https://docs.wso2.com/display/DSS350/WSO2+Data+Services+Server+Documentation
https://docs.wso2.com/display/DSS350/WSO2+Data+Services+Server+Documentation

Chapter 8 ■ Integrating Applications, Cloud Services, and Data

220

So, you can use Salesforce streaming connector, which is an inbound endpoint. From
that inbound connector, you can inject the messages to a sequence. Since you need to call
the database through the data service feature, you need to install the data service features
inside the ESB. Then you should create a data service with the operation required to
insert the data into the database. Once you create the data service and deploy it, you can
call the data service from the injecting sequence of the Salesforce stream connector. You
will have to do the data mapping between the Salesforce message format and the message
format required for the data service. The service call from the injecting sequence to the
data service should go through the local transport.

Summary
In this chapter, you learned about the broad range of integration capabilities of WSO2
ESB. They are:

•	 SAP integration with IDoc and BAPI

•	 HL7 integration with HL7 v.2.x

•	 WebSockets integration

•	 What ESB connectors are and how to use connector operations
inside a mediation flow

•	 Real-world use cases related to connectors and on-premise
systems, such as SAP to Salesforce integration

•	 Using local transport for in-jvm service calls when you call ESB’s
locally hosted services from other services

•	 Exposing data residing in database as a SOAP or RESTful service
using WSO2’s data services feature

•	 Calling data services from a local transport

Figure 8-15.  Using the Salesforce streaming connector to receive Salesforce invoice
statement updates and store them in a database using the data services feature

221© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_9

CHAPTER 9

Security in WSO2 ESB

In real-world integration scenarios, you may have to expose existing non-secured services
as secured services to the consumers or you may have to invoke services that are secured
in some form. When ESB is used as the messaging bus between consumers and services,
it has to support a wide range of security patterns and standards.

In this chapter, we will mainly talk about the security patterns supported by WSO2
ESB with regard to the message and wire level security. This is a subset of enterprise
security use cases that you may encounter in the real world. ESB’s primary responsibility
to address message- and transport-level security requirements while other security
requirements such as identity federation, identity transformation, user provisioning,
single-sign-on, etc., are part of identity and access management products. WSO2 offers
the WSO2 Identity Server to cater to those requirements and it can seamlessly connect
with WSO2 ESB as well.

Transport Level Security
When there’s communication between client and server applications, most organizations
want to do that in a secured manner. Rather than implementing a message-level security
protocol, the entire communication channel can be secured.

Secure Sockets Layer (SSL) is used to secure communications over a network so that
only the sender and receiver have access to the data that is transferred between them
(to eliminate man-in-the-middle attacks and eavesdropping). Transport Layer Security
(TLS) and its predecessor, Secure Sockets Layer (SSL), are both cryptographic protocols
designed to provide communications security over a computer network.

Certificates and keys are used to enable SSL communication between the sender and
the receiver. A certificate carries the information and a digital signature that identifies
the client or server associated with that certificate. There are different types of keys such
as private, public, and session, that you should use to enable secure communication
between two entities.

Encryption uses a private key/public key pair, which ensures that the data can
be encrypted by one key but can only be decrypted by the other key pair (Public-
Key Infrastructure—PKI—Scheme). Trust is achieved through the use of certificates.
Certificate trust can be thought of as a chain that starts with the Certificate Authority
(or CA). A CA is a company or entity that issues SSL certificates. When SSL/TLS is being
used for secure data exchange between client and server applications, there are two

Chapter 9 ■ Security in WSO2 ESB

222

main mechanisms that are used—one-way and two-way SSL. Let’s have quick look at
each mechanism and then dive into WSO2 ESB capabilities for supporting SSL/TLS
communication.

One-Way SSL (Server Authentication)
The high-level interaction of one-way SSL protocol is depicted in Figure 9-1. It starts with
a client requesting access to a protected resource. Then the server presents its certificate
to the client along with the server’s public key. The client verifies the server’s certificate
and if the verification is successful, the client generates a session key and encrypts that
key with the server’s public key and sends it across. Since only the server can decrypt it,
the session key can be used to encrypt all the message exchanges.

Figure 9-1.  One-way SSL

Two-way SSL protocol is a slight extension of one-way SSL.

Two-Way SSL (Mutual/Client Authentication)
In two-way SSL, the client requests access to a protected resource. Then the server
presents its certificate to the client. Once the client verifies the server’s certificate, it sends
its certificate to the server. The server verifies the client’s credentials. Once this is done,
the session key is exchanged between the client and server, and then data exchange starts
with the use of the session key as the data encryption key. The high-level interactions of
the two-way SSL protocol are illustrated in Figure 9-2.

Chapter 9 ■ Security in WSO2 ESB

223

Since now you have a basic understanding of how these SSL/TLS protocols work,
let’s move on to the SSL/TLS support offered by WSO2 ESB.

Using TLS/SSL with WSO2 ESB
In the context of WSO2 ESB, the majority of the TLS/SSL related use cases are there in the
HTTP transport space. Hence, we will focus on the HTTP specific transport level security
features only.

WSO2 ESB can be used to expose non-secured services as secured services using
TLS/SSL enabled proxy service, the REST API, or inbound endpoints. The transport level
security is configured at the transport receiver/listener side. In addition, HTTP inbound
endpoints allow you to configure it at inbound endpoint configuration level so that you
can use different transport configurations for each inbound endpoint.

Similarly, WSO2 ESB can invoke backend services, which are secured with TLS/SSL.
In this case, the configuration has to be done at the transport sender side of the ESB.

Let’s dive deep into the use cases related to TLS/SSL for both inbound and outbound
messaging scenarios. Figure 9-3 illustrates the four main scenarios related to WSO2 ESB
HTTP transport level security.

Figure 9-2.  Two-way SSL/mutual authentication

Chapter 9 ■ Security in WSO2 ESB

224

Use Case 1: Client to ESB: One-Way SSL
In this use case, the HTTPs channel between the client and ESB is secured with one-
way SSL. As shown in Figure 9-3, use case 1, suppose that ESB uses esb-keystore.jks
as its keystore and inbound-truststore.jks is the trust store of ESB that will be used
for incoming messaging channels. You can configure these keystores in your default
transport configuration as follows.

You simply have to place keystores in the file system and refer them at the ESB
transport receiver side configuration. Here, we have placed a keystore (esb-keystore.
jks) and a trust store for inbound messages (inbound-truststore.jks) in the

Figure 9-3.  Two-way SSL/mutual authentication

Chapter 9 ■ Security in WSO2 ESB

225

repository/resources/security directory and referred it at the HTTPS transport
receiver’s configuration in axis2.xml.

Listing 9-1.  One-Way SSL with HTTPs Transport

<transportReceiver name="https" class="org.apache.synapse.transport.
passthru.PassThroughHttpSSLListener">
 <parameter name="port" locked="false">8243</parameter>
 <parameter name="non-blocking" locked="false">true</parameter>
 <parameter name="HttpsProtocols">TLSv1,TLSv1.1,TLSv1.2</parameter>
 �<parameter name="httpGetProcessor" locked="false">org.wso2.carbon.

mediation.transport.handlers.PassThroughNHttpGetProcessor</
parameter>

 <parameter name="keystore" locked="false">
 <KeyStore>
 �<Location>repository/resources/security/esb-keystore.jks</

Location>
 <Type>JKS</Type>
 <Password>wso2carbon</Password>
 <KeyPassword>wso2carbon</KeyPassword>
 </KeyStore>
 </parameter>
 <parameter name="truststore" locked="false">
 <TrustStore>
 �<Location>repository/resources/security/inbound-truststore.

jks</Location>
 <Type>JKS</Type>
 <Password>wso2carbon</Password>
 </TrustStore>
 </parameter>
 <!--<parameter name="SSLVerifyClient">require</parameter>
 supports optional|require or defaults to none -->
 </transportReceiver>

This is all you need to do at the ESB side to support one-way SSL. At the client side,
you need to import the ESB’s certificate to the client’s trust store.

You can export ESB HTTPs receiver’s certificate from the keystore using keytool as
follows:

 >> keytool -export -keystore esb-keystore.jks -alias localhost -file wso2_
esb.crt

And import it to the client side trust store with:

 >> keytool -import -keystore truststore.jks -alias wso2carbon -file wso2_
esb.crt

Chapter 9 ■ Security in WSO2 ESB

226

Now you are all set for the secured one-way SSL communication between the client
and the ESB. Make a note of the SSLVerifyClient parameter, which is disabled in a one-
way SSL scenario. All these changes will be applied for all HTTPs inbound calls that use
the default HTTP transport. However, if you want to configure a HTTP inbound endpoint,
you have the freedom of using specific keystores for each inbound endpoints. The
configuration of a sample HTTPs inbound endpoint is shown in Listing 9-2 and Figure 9-3.

Listing 9-2.  One-Way SSL with HTTP Inbound Endpoints

<inboundEndpoint name="HttpListenerEP" protocol="https" suspend="false"
sequence="TestIn" onError="fault" >
 <p:parameters xmlns:p="http://ws.apache.org/ns/synapse">
 <p:parameter name="inbound.http.port">8081</p:parameter>
 <p:parameter name="keystore">
 <KeyStore>
 �<Location>repository/resources/security/wso2carbon.jks

</Location>
 <Type>JKS</Type>
 <Password>wso2carbon</Password>
 <KeyPassword>wso2carbon</KeyPassword>
 </KeyStore>
 </p:parameter>
 <p:parameter name="truststore">
 <TrustStore>
 �<Location>repository/resources/security/client-truststore.

jks</Location>
 <Type>JKS</Type>
 <Password>wso2carbon</Password>
 </TrustStore>
 </p:parameter>
 �<p:parameter name="HttpsProtocols">TLSv1,TLSv1.1,TLSv1.2

</p:parameter>
 <p:parameter name="SSLProtocol">SSLV3</p:parameter>
 <p:parameter name="CertificateRevocationVerifier">
 <CertificateRevocationVerifier enable="true">
 <CacheSize>10</CacheSize>
 <CacheDelay>2</CacheDelay>
 </CertificateRevocationVerifier>
 </p:parameter>
 </p:parameters>
</inboundEndpoint>

Use Case 2: Client to ESB: Two-Way SSL
As shown in Figure 9-3, Use case 2, the communication between the client and ESB
has to be secured with two-way SSL. As you learned in two-way SSL interactions that
we explained earlier, the only difference in this scenario is that the client certificate has

Chapter 9 ■ Security in WSO2 ESB

227

to be verified by the server (ESB). Therefore, you need to enable the SSLVerifyClient
parameter at the HTTP’s transport receiver. Listing 9-3 shows the configuration with that
parameter enabled at the HTTP’s transport receiver.

Listing 9-3.  Two-Way SSL with HTTP Transport Receiver

<transportReceiver name="http" class="org.apache.synapse.transport.passthru.
PassThroughHttpListener">
 <parameter name="port" locked="false">8280</parameter>
 <parameter name="non-blocking" locked="false">true</parameter>
 �<!--parameter name="bind-address" locked="false">hostname or IP

address</parameter-->
 �<!--parameter name="WSDLEPRPrefix" locked="false">https://

apachehost:port/somepath</parameter-->
 �<parameter name="httpGetProcessor" locked="false">org.wso2.carbon.

mediation.transport.handlers.PassThroughNHttpGetProcessor
</parameter>

 �<!--<parameter name="priorityConfigFile" locked="false">location of
priority configuration file</parameter>-->

 </transportReceiver>

 �<transportReceiver name="https" class="org.apache.synapse.transport.
passthru.PassThroughHttpSSLListener">

 <parameter name="port" locked="false">8243</parameter>
 <parameter name="non-blocking" locked="false">true</parameter>
 <parameter name="HttpsProtocols">TLSv1,TLSv1.1,TLSv1.2</parameter>
 �<!--parameter name="bind-address" locked="false">hostname or IP

address</parameter-->
 �<!--parameter name="WSDLEPRPrefix" locked="false">https://

apachehost:port/somepath</parameter-->
 �<parameter name="httpGetProcessor" locked="false">org.wso2.carbon.

mediation.transport.handlers.PassThroughNHttpGetProcessor
</parameter>

 <parameter name="keystore" locked="false">
 <KeyStore>
 �<Location>repository/resources/security/esb-keystore.jks

</Location>
 <Type>JKS</Type>
 <Password>wso2carbon</Password>
 <KeyPassword>wso2carbon</KeyPassword>
 </KeyStore>
 </parameter>
 <parameter name="truststore" locked="false">
 <TrustStore>
 �<Location>repository/resources/security/inbound-truststore.

jks</Location>
 <Type>JKS</Type>
 <Password>wso2carbon</Password>

Chapter 9 ■ Security in WSO2 ESB

228

 </TrustStore>
 </parameter>
 <parameter name="SSLVerifyClient">require</parameter>
 <!--<parameter name="SSLVerifyClient">require</parameter>
 supports optional|require or defaults to none -->
 </transportReceiver>

For HTTP inbound endpoints, you can enable the same parameter.
In addition to the keys that you have import/export in one-way SSL scenario, you

need to export the client certificate from client-keystore.jks and import it to inbound-
truststore.jks of ESB. This is the certificate that’s required for ESB to authenticate the
client.

Use Case 3: ESB to Service: One-Way SSL
This is the scenario that ESB has to use to invoke a backend service, which is secured with
one-way SSL. We can use the same keystore—esb-keystore.jks for the ESB—and as
the trust store, we can use outbound-truststore.jks. The outbound HTTP messaging
channel can be configured at the HTTP transport sender side of ESB as follows.

Listing 9-4.  One-Way SSL with HTTP Transport Sender

<transportSender name="https" class="org.apache.synapse.transport.passthru.
PassThroughHttpSSLSender">
 <parameter name="non-blocking" locked="false">true</parameter>
 <parameter name="keystore" locked="false">
 <KeyStore>
 �<Location>repository/resources/security/esb-keystore.jks

</Location>
 <Type>JKS</Type>
 <Password>wso2carbon</Password>
 <KeyPassword>wso2carbon</KeyPassword>
 </KeyStore>
 </parameter>
 <parameter name="truststore" locked="false">
 <TrustStore>
 �<Location>repository/resources/security/outbound-truststore.

jks</Location>
 <Type>JKS</Type>
 <Password>wso2carbon</Password>
 </TrustStore>
 </parameter>
 �<!--<parameter name="HostnameVerifier">DefaultAndLocalhost

</parameter>-->
 �<!--supports Strict|AllowAll|DefaultAndLocalhost or the default

if none specified -->
 </transportSender>

Chapter 9 ■ Security in WSO2 ESB

229

The certificate of the service has to be imported to the trust store of ESB (outbound-
truststore.jks). Once you have done these configurations, you can invoke a backend
through HTTP transport with one-way SSL.

Use Case 4: ESB to Service: Two-Way SSL
This is quite similar to use case 3, with the only difference of using ESB certificate at the
service side. You need to export the ESB certificate from esb-keystore.jks and import
the certificate at the service’s trust store.

SSL Profiles
When you invoke backend services with one-way or mutual SSL, you may have to use
different keystores/trust stores for different backend services. As an example, suppose
that you have partner services and a customer service that uses TLS/SSL, and you want
to maintain different keystores/trust stores for partners and customers. This can be done
by specifying SSL profiles at the HTTPs transport sender in axis2.xml by specifying a
customSSLProfiles parameter with the configuration shown in Listing 9-5.

Listing 9-5.  SSL Profiles at the Transport Sender

<transportSender name="https" class="org.apache.synapse.transport.passthru.
PassThroughHttpSSLSender">
 <parameter name="non-blocking" locked="false">true</parameter>
 <parameter name="keystore" locked="false">
 <KeyStore> ...</KeyStore>
 </parameter>
 <parameter name="truststore" locked="false">
 <TrustStore>...</TrustStore>
 </parameter>

 <parameter name="customSSLProfiles">

 <profile>
 �<servers>partner1.service.com:80, partner2.service.com:80,

localhost:9444</servers>
 <KeyStore>
 �<Location>repository/resources/security/esb-keystore.

jks</Location>
 <Type>JKS</Type>
 <Password>password</Password>
 <KeyPassword>password</KeyPassword>
 </KeyStore>
 <TrustStore>
 �<Location>repository/resources/security/partner-

truststore.jks</Location>
 <Type>JKS</Type>

Chapter 9 ■ Security in WSO2 ESB

230

 <Password>password</Password>
 </TrustStore>
 </profile>

 <profile>
 �<servers>customer1.service.com:80, customer2.service.

com:80</servers>
 <KeyStore>
 �<Location>repository/resources/security/esb-keystore.

jks</Location>
 <Type>JKS</Type>
 <Password>password</Password>
 <KeyPassword>password</KeyPassword>
 </KeyStore>
 <TrustStore>
 �<Location>repository/resources/security/customer-

truststore.jks</Location>
 <Type>JKS</Type>
 <Password>password</Password>
 </TrustStore>
 </profile>
 </parameter>

 </transportSender>

In this scenario, we used two different trust stores for the partner endpoint and the
customer endpoint.

Application Level Security
Transport level security secures the entire communication channel between clients, ESB,
and services. However, there can be situations where you want to have much more fine-
grained security protocols implemented at each interface that ESB exposes or invokes.
For example, a given REST API hosted in ESB can be secured with Basic-Authentication
while proxy services are secured with WS-Security. Similarly, ESB may have to invoke
services secured with OAuth as well as SOAP web services that leverage WS-Security/WS-
Security Policy. These different requirements are addressed as part of the application
level security use cases of WSO2 ESB.

Securing REST APIs
Let’s start our discussion on how you can secure a REST API/HTTP service that you create
in WSO2 ESB. You can use different types of API security techniques to do so.

The "basic" authentication scheme is based on the model that the client
must authenticate itself with a username and a password for each REST API.
Basic authentication transmits usernames and passwords across the network in

Chapter 9 ■ Security in WSO2 ESB

231

an unencrypted form, but you can use it on top of TLS/SSL to make a secured
communication. The server will service the request only if it can validate the user ID and
password for the protection space of the Request URI.

We can use Basic-Auth with WSO2 ESB REST APIs by incorporating a handler into
the REST API configuration.

Listing 9-6.  Securing REST API with a Basic-Auth Handler

<api name="StockQuoteAPI" context="/stockquote">
 <resource methods="GET" uri-template="/view/{symbol}" protocol="https" >
 ...
 </resource>
 <handlers>
 <handler class="org.wso2.rest.BasicAuthHandler"/>
 </handlers>
 </api>

With the API handler, you can either use the existing handler or extend it with your
own requirement to handle different user stores, etc. Similarly, if you want to implement
an OAuth 2.0 access token validation, it can be implemented as an API handler.

■■ Note  Although you can use API security techniques at the ESB layer, It is important
to note that, in most cases, these APIs are exposed as managed APIs by API-Management
solutions. So, security, throttling, caching, etc. are applied at that layer. Most WSO2 users
implement non-secured services at the ESB layer and expose them as managed APIs
through the WSO2 API Manager. Refer to https://docs.wso2.com/display/AM200/
Getting+Started for more details.

Securing Proxy Services
The proxy services that you implement at the ESB layer can be secured using SOAP
security techniques. Let’s suppose that you want to implement a proxy service that uses
WS-Security signing and encryption with WS-Policy. So, the first thing you have to do is
figure out the required security policy that you want to apply at the proxy services level.
There are various security policies that you can use and writing a security policy from
scratch is a tedious task. Therefore, the WSO2 ESB development tool (details of the WSO2
development tool are discussed in Chapter 10) provides a wizard to configure the security
scenario of your proxy service.

The WSO2 ESB developer tool provides 20 predefined, commonly used security
scenarios to choose from. To create a security policy, create a Registry resource artifact
(MySecurityPolicy-Resource type should be WS-Policy). Select design view for the
MySecurityPolicy.xml file. You can see all the predefined security scenarios listed in the
security wizard shown in Figure 9-4. In this example, I used the UserNameToken scenario.
Under this scenario, we need to select user roles that are allowed to access this particular
proxy service, so that users who have those roles can only access the service.

https://docs.wso2.com/display/AM200/Getting+Started
https://docs.wso2.com/display/AM200/Getting+Started
http://dx.doi.org/10.1007/978-1-4842-2343-7_10

Chapter 9 ■ Security in WSO2 ESB

232

Once you create the policy file, you can create a proxy service and enable security of
that proxy service. Listing 9-7 shows a proxy configuration with security enabled from the
security policy that you created. Refer to https://docs.wso2.com/display/ESB500/Appl
ying+Security+to+a+Proxy+Service for more details on how to use the security wizard.
Because this example uses Apache Rampart for the backend security implementation,
you might also need to download and install the unlimited strength policy files for
your JDK before using Apache Rampart. Refer to http://docs.wso2.com/enterprise-
service-bus/Securing+APIs for details.

Listing 9-7.  Secured Proxy Service

<proxy name="SecuredStockQuoteService">
 <target>
 <inSequence>
 <header name="wsse:Security" action="remove"
 �xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd"/>
 <call>
 <endpoint>
 <address uri="http://localhost:9000/services/
SimpleStockQuoteService"/>
 </endpoint>
 </call>

Figure 9-4.  Web service security wizard of the WSO2 ESB tool

https://docs.wso2.com/display/ESB500/Applying+Security+to+a+Proxy+Service
https://docs.wso2.com/display/ESB500/Applying+Security+to+a+Proxy+Service
http://docs.wso2.com/enterprise-service-bus/Securing+APIs
http://docs.wso2.com/enterprise-service-bus/Securing+APIs

Chapter 9 ■ Security in WSO2 ESB

233

 <respond/>
 </inSequence>
 <outSequence>
 </outSequence>
 </target>
 <publishWSDL uri="gov:/SecuredStockQuoteService.wsdl"/>
 <policy key="gov:/MySecurityPolicy"/>
 <enableSec/>
</proxy>

In this configuration, you can see that a reference to the policy resource is given
in the proxy service configuration and, before sending the request to the non-secured
service, we have removed unwanted security headers using the header mediator.

Invoking Secured Service
From the ESB mediation layer you may have to invoke the services, which are secured
with application level security. Backend service/REST APIs may be secured from basic
authentication, access tokens with OAuth, or using WS-Security standards.

Invoking Basic-Auth and OAuth 2.0-Based Services
Suppose that you want to invoke a service, which is secured with basic authentication.
You can simply invoke the service through HTTP and generate the required
“Authorization” header as a transport scope header. You need to use the base64Encode
function to encode the username and password.

Listing 9-8.  Invoking a Backend Service that’s Secured with Basic-Auth, from ESB

<proxy name="OrderProcessingService">
 <target>
 <inSequence>
 ...
 �<header name="Authorization" expression="fn:concat('Basic ',

base64Encode('my_username:my_password'))" scope="transport"/>
 <call>
 <endpoint>
 �<address uri="https://localhost:9888/services/

LocationService"/>
 </endpoint>
 </call>
 ...
 <respond/>
 </inSequence>

Chapter 9 ■ Security in WSO2 ESB

234

 <outSequence>
 </outSequence>
 </target>
 <publishWSDL uri="gov:/OrderProcessingService.wsdl"/>
</proxy>

Similarly, you access a resource that’s secured with OAuth 2.0, and you using the
required access token (with the prefix Authorization: Bearer).

Invoking WS-Security-Based Services
One of the common ways to secure SOAP-based web services is to use WS-Security/WS-
Security Policy. Any service that leverages the SOAP security standard can be invoked
from WSO2 ESB by specifying the security policy at the endpoint level. Listing 9-9 shows
the configuration of this scenario. At the endpoint configuration, we have set up security
policy resources with the enableSec parameter. Addressing is also enabled for outbound
messaging.

Listing 9-9.  Enabling Security for Outgoing Messages to Invoke a Secured Backend
Service

<api name="StockQuoteAPI" context="/stockquote">
 <resource methods="POST" uri-template="/view/{symbol}" protocol="http" >
 <inSequence>
 ...
 <call>
 <endpoint>
 �<address uri="http://localhost:6060/services/

PizzaShopService" format="soap11">
 <enableSec policy="gov:/PizzaShopServiceSecPolicy"/>
 <enableAddressing/>
 </address>
 </endpoint>
 </call>

 <header name="wsse:Security" action="remove"
 �xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd"/>
 <respond/>
 </inSequence>
 </resource>
</api>

In the response path, before sending back the response, we removed the security
headers, as they are not required on the client side.

Chapter 9 ■ Security in WSO2 ESB

235

OAuth Mediator: Access Token Validation Inside a
Mediation Flow
WSO2 ESB provides an OAuth mediator that can be used to validate the access tokens
inside a mediation flow. Basically you can use OAuth mediation inside a sequence
and the incoming access tokens are validated against an external OAuth service. In
Listing 9-10, we used the OAuth mediator that calls the OAuth service available on the
remoteServiceUrl and the required credentials to access the service are given as a
parameter of the mediator. If the access token is validated successfully, the message flow
will continue and, if that’s not successful, then a fault message will be sent back to the
client of that particular API.

Listing 9-10.  OAuth Mediator for Access Token Validation

<api name="StockQuoteAPI" context="/stockquote">
 <resource methods="POST" uri-template="/view/{symbol}" protocol="https" >
 <inSequence>
 ...
 �<oauthService xmlns="http://ws.apache.org/ns/synapse"

remoteServiceUrl="https://localhost:9443/services" username="admin"
password="admin" />

 <call>
 <endpoint>
 �<address uri="https://localhost:9888/services/

LocationService"/>
 </endpoint>
 </call>
 <respond/>
 </inSequence>
 </resource>
</api>

Entitlement Mediator: Policy Enforcement Inside a Mediation
Flow
The entitlement mediator intercepts requests and evaluates the actions performed by the
user against an eXtensible Access Control Markup Language (XACML) policy. You need
to use an XACML Policy Decision Point (PDP), such as WSO2 Identity Server. The ESB
message flow can act as the XACML Policy Enforcement Point (PEP) where the policy is
enforced. Based on the policy enforcement, there can be three types of actions that you
can take. Those are configured as part of the mediator configuration. In the configuration
shown in Listing 9-11, we have configured the entitlement mediator inside a proxy
service.

Chapter 9 ■ Security in WSO2 ESB

236

Listing 9-11.  Policy Enforcement with the Entitlement Mediator

<proxy xmlns="http://ws.apache.org/ns/synapse"
 name="BusinessPolicyValidator"
 transports="https"
 startOnLoad="true"
 trace="disable">
 <description/>
 <target>
 <inSequence>
 �<entitlementService remoteServiceUrl="https://localhost:9443/

services"
 remoteServiceUserName="admin"
 remoteServicePassword=
"enc:kuv2MubUUveMyv6GeHrXr9il59ajJIqUI4eoYHcgGKf/BBFOWn96NTjJQI+wYbWjKW6r79S
7L7ZzgYeWx7DlGbff5X3pBN2Gh9yV0BHP1E93QtFqR7uTWi141Tr7V7ZwScwNqJbiNoV+vyLbsqK
JE7T3nP8Ih9Y6omygbcLcHzg="
 �callbackClass="org.wso2.carbon.

identity.entitlement.mediator.callback.
UTEntitlementCallbackHandler"

 client="basicAuth">
 <onReject>
 <makefault version="soap12">
 �<code xmlns:soap12Env="http://www.w3.org/2003/05/soap-

envelope"
 value="soap12Env:Receiver"/>
 <reason value="UNAUTHORIZED"/>
 <node/>
 <role/>
 <detail>XACML Authorization Failed</detail>
 </makefault>
 <respond/>
 </onReject>
 <onAccept>
 <call>
 <endpoint>
 �<address uri="http://localhost:8281/services/

BusinessService"/>
 </endpoint>
 </call>
 <respond/>
 </onAccept>
 <obligations/>
 <advice/>
 </entitlementService>
 </inSequence>

Chapter 9 ■ Security in WSO2 ESB

237

 </target>
 <publishWSDL uri="http://localhost:8281/services/BusinessPolicyValidator
?wsdl"/>
</proxy>

The details of the PDP (WSO2 IS) are provided as the mediator configuration and we
configured mediation logic under each entitlement result.

•	 OnAccept: The sequence to execute when the entitlement
mediator returns a result of Permit. In the previous example, we
invoke the backend service upon a policy permit.

•	 OnReject: The sequence to execute when the entitlement
mediator returns a result of Deny, Not Applicable, or
Indeterminate. We created a SOAP fault for the policy reject
condition in the previous scenario.

•	 Obligation and Advice: When the XACML response contains an
Obligation or Advice statement, the entitlement mediator clones
the current message context, creates a new message context,
sets the Obligation or Advice statement to the SOAP body,
and then executes the sequence. It executes the Obligation’s
sequence synchronously and therefore waits for its response. If
the sequence returns true, the OnAccept sequence is executed; if
false, the OnReject sequence is executed. The Advice sequence
is executed asynchronously, so the mediator does not wait for a
response.

The entitlement callback handler is used as a handler to get the subject (username)
of the XACML request. The method of communication between the PEP and the PDP is
specified by the entitlement service client parameter.

Summary
This chapter covered how to integrate WSO2 ESB with various security protocols.

•	 Transport level security is one of the most commonly used
security techniques in WSO2 ESB.

•	 Various capabilities of handling SSL scenarios, such as one-way
SSL, mutual SSL, and outbound SSL profiles, were discussed.

•	 Application level security features mainly fall under API security
and web services security of hosted proxy service.

•	 REST APIs of ESB provide an extensible way to plug your API into
handlers that process the security, such as Basic-Auth.

Chapter 9 ■ Security in WSO2 ESB

238

•	 Often API security is achieved at the API management layer and
products such as WSO2 API Manager can support a wide range of
API security techniques out of the box.

•	 SOAP web service security can be implemented by incorporating
the WS-Security policy at the proxy service layer for inbound calls
and at the endpoint layer for outbound calls.

•	 From mediation flows, you can use the OAuth mediator to validate
access tokens and the entitlement mediator to enforce a policy.

239© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_10

CHAPTER 10

Development and
Deployment Methodology

Throughout the entire set of chapters that you have read so far, we have covered most of the
fundamentals of the ESB construct along with use cases. However, we have only focused
on micro-level ESB mediation logic for those specific scenarios. Now it’s time to learn
the development and deployment process associated with WSO2 ESB and how you can
leverage it and scale it to a large-scale integration project. So, during the first part of the
chapter, we will focus on the development process and later we’ll go into the details of how
WSO2 ESB is deployed in real-world use cases to support high-availability and failover.

Development Methodology
The development methodology of WSO2 ESB is pretty much about how you develop
integration scenarios with WSO2 ESB, maintain them, moving the configuration across
different environments, and scale them to a large-scale development process, along with
the associated tools that help you optimize the development.

WSO2 ESB comes with three main components—the runtime, the development tool,
and analytics component. You have learned most of the things related to the ESB runtime.
This chapter and the next are about the ESB tool and analytics runtime.

Using the WSO2 ESB Development Tool
WSO2 ESB comes with its Eclipse-based development tool, which plays a vital role when
it comes to the development process of WSO2 ESB integration scenarios. Similar to the
ESB product download, you can download the respective tooling distribution and install
it in your development environment at http://docs.wso2.com/enterprise-service-
bus/Installing+WSO2+ESB+Tooling.

You can use WSO2 ESB development tool to graphically design your integration
flows, do data mapping between message formats, and debug your integration flows. Let’s
begin the discussion with how you can create an ESB artifact (proxy service, REST API,
sequence, etc.) with the ESB developer tool.

https://docs.wso2.com/display/ESB500/Installing+WSO2+ESB+Tooling
https://docs.wso2.com/display/ESB500/Installing+WSO2+ESB+Tooling

Chapter 10 ■ Development and Deployment Methodology

240

In the ESB developer tool dashboard (see Figure 10-1), you can find various
integration project types. In this chapter, we cover the most commonly used development
method. The most common project type is the “ESB Solution Project.”

Figure 10-1.  ESB developer tool dashboard

Figure 10-2.  ESB solution project structure

Suppose that you are building an integration scenario named MyESBSolutionPrj and
once you create the project, it will have the structure shown in Figure 10-2.

Chapter 10 ■ Development and Deployment Methodology

241

As you can observe in Figure 10-2, there are several types of projects created when
you create the ESB solution project.

The first one at the top is the ESB configuration project (MyESBSolutionPrj). This
is where you can create and configure all ESB artifact-related configuration. As you can
see, the main content of this project is a synapse-config directory where all the ESB
constructs that you create will be placed.

Then you have the composite application project, which is capable of creating a
deployable archive known as a composite application or .car file. For instance, when you
want to deploy the ESB configuration that you create here, you need to export it as a .car
archive using the composite application project.

The connector exporter is mainly used when you use connectors in your configuration.
Often you fetch connectors from the WSO2 Connectors store and create ESB integration
use cases using those connectors. So, when you deploy those integration scenarios, the
associated connectors should also be part of the deployable archive. That’s the purpose
of using the “Connector Exporter” project. Finally, you have the registry resource project,
which you can use to upload WSDL, XSLTs, policy files, etc. into the ESB registry and use
those resources inside the ESB configuration project. The development process can be
summarized as follows with the key steps involved in ESB development process.

•	 Create an ESB solution project. This will create four main projects
in your developer tool.

•	 Build your integration scenario using ESB constructs (proxy
services, APIs, sequences, etc.) inside the ESB config project.

•	 If you want to use any registry resources, create them inside the
Registry resource project.

•	 If any connectors are to be used in the integration flow, they have
to be imported into the tool and, inside the connector exporter,
the respective connector should be included as part of the
archive.

•	 When you are done with the development of the integration
scenario, you simply have to export it as a composite application
and the deployable archive will be a .car file.

•	 When you copy the created *.car to repository/deployment/
server/carbonapps then ESB will dynamically deploy all the
artifacts in that composite application.

Now let’s go into the details of each project and find out how you can create each
project configuration.

ESB Config Project
This is where you can create your ESB configuration logic. For that, you can use the
graphical drag-and-drop tool or the source configuration. Figure 10-3 shows a screenshot
of the graphical editor. You can select the required ESB constructs (mediators and
endpoints) from the palette on the left.

Chapter 10 ■ Development and Deployment Methodology

242

You can click on each graphical elements and do the respective configuration in the
properties window at the bottom.

ESB Registry Resource Project
You can save resources such as endpoints, data mapping configs, WSDLs, and XSLTs in a
central repository as registry resources. All these registry resources need to be saved in a
separate project called a “Registry Resources” project (see Figure 10-4).

Figure 10-3.  Graphical message flow editor

Chapter 10 ■ Development and Deployment Methodology

243

The artifacts you create in the registry resource can be referred inside your ESB
configuration that you create in your ESB configuration project. For example, the WSDL
you create in the registry resource project can be referred from your proxy service
configuration.

Importing Connectors to ESB Tool
In Chapter 8, you learned that ESB connectors are completely independent from the ESB
release. Therefore, by default connectors are not shipped as part of the developer tool.
What you have to do is import the connectors from the WSO2 Connector store into your
developer tool. As shown in Figure 10-5, you can add or remove connectors inside your
ESB Configuration project.

Figure 10-4.  Creating a registry resource inside inside the Registry Resource project

http://dx.doi.org/10.1007/978-1-4842-2343-7_8

Chapter 10 ■ Development and Deployment Methodology

244

The connectors that you want to import can be selected, as shown in Figure 10-6.

Figure 10-5.  You can add or remove connectors

Chapter 10 ■ Development and Deployment Methodology

245

Once you import the connectors, you can drag and drop connector operations
into your ESB message flow. For example, as illustrated in Figure 10-7, you can see the
operations related to the Twilio connector in the left pane. You just need to drag and
drop the required operation into your sequence flow.

Figure 10-6.  Selecting connectors to be imported into the developer tool

Chapter 10 ■ Development and Deployment Methodology

246

However, this only pulls the connectors into your developer tool but not into the ESB
runtime, which you will finally deploy into. So, if you want to deploy the connector along
with the ESB configuration, you need to add the imported connector into the “Connector
Exporter” project. The “Connector Exporter” project is created when you create an ESB
solution project (see Figure 10-8).

Figure 10-7.  You can drag and drop connector operations

Chapter 10 ■ Development and Deployment Methodology

247

So far we have discussed the development of various artifacts related to ESB, but
not about how to deploy those into the runtime. That’s where the Composite Application
project comes into the picture.

Figure 10-8.  Adding connectors to the Connector Exporter project

Chapter 10 ■ Development and Deployment Methodology

248

Composite Application Project
Once you are done with the ESB integration project, you can go to the Composite
Application project that is created as part of the ESB solution project and and then select
the artifacts that you want to include in this particular deployable archive (see Figure 10-9).

Figure 10-9.  Selecting the artifacts to be included in the .car file

Chapter 10 ■ Development and Deployment Methodology

249

With this you can export the .car file into your file system. You can also deploy it into
your ESB runtime by just copying it over to repository/deployment/server/carbonapps.

Data Mapper
We briefly discussed data mapper in the initial chapters of this book. But let’s dive deep
into how you can use visual data mapping with WSO2 ESB. WSO2 ESB provides a data
mapper (as a mediator) that you can use inside the ESB graphical editor, which you
learned about in previous sections.

Figure 10-9.  (continuted)

Chapter 10 ■ Development and Deployment Methodology

250

To understand the concept of the data mapper, suppose that you want to transform
a message that’s based on the JSON to SOAP message format. Suppose you have the
sample message format of each message. So, you need to do this with the use of data
mapper mediator in WSO2 ESB. Figure 10-10 illustrates the structure of the data mapper
mediator.

Figure 10-10.  Structure of the data mapper

In order to transform JSON to XML, you need to provide an input schema (using
JSON schema) of the incoming JSON message and the input type as JSON. As the output
type, you need to provide the schema of the outgoing SOAP message (using JSON
schema) and output type as XML. So once this data is available to the data mapper
mediator, it can do the mapping between these two different message formats. The logic
that you use to do the mapping is configured inside the mapping configuration. For
example, if you want to do some string concatenation, that logic will be placed inside the
mapping config.

So, those are the key concepts related to the data mapper, but that doesn’t really help
with learning how to use the data mapper. The following figures guide you on how you
can graphically configure the data mapping for this scenario.

So the first thing you have to do here is drag and drop the data mapper into your
sequence, as shown in Figure 10-11.

Chapter 10 ■ Development and Deployment Methodology

251

Then when you double-click on the data mapper mediator, it prompts you to create
the empty mapping configuration, which has to be created inside the registry resource
project.

Figure 10-11.  Need caption

Figure 10-12.  Need caption

Chapter 10 ■ Development and Deployment Methodology

252

Once you create the initial mapping config, you can observe an input box and
an output box, which represents the incoming and outgoing messages from the data-
mapping mediator.

Figure 10-15.  Need caption

Figure 10-13.  Need caption

Figure 10-14.  Need caption

Now you can load the input/output schema automatically by loading the input/
output sample messages.

The incoming/outgoing message structure will be graphically loaded into the data
mapper, as shown in Figure 10-15.

Then you can simply drag and create the connectivity between the input and output
messages.

Chapter 10 ■ Development and Deployment Methodology

253

There are quite a few data mapping operations that you could apply when you do
the mapping between these formats and they are available in the left pane. Once you are
done with the data mapping, the entire configuration can be deployed along with the
other ESB artifacts.

Mediation Debugger
Debugging the mediation flows that you developed with WSO2 ESB is a key part of the
development process. WSO2 ESB runtime facilitates the remote debugging and the
debugging agent runs on the ESB development tool.

First you need to configure the ESB developer tool to work as the ESB debugger.
In the Java EE perspective of WSO2 ESB developer tool, click Run in the top menu of

the WSO2 ESB Tooling Plugin, and then click Debug Configurations. Double-click ESB
Mediation Debugger, as shown in Figure 10-17.

Figure 10-16.  Need caption

Chapter 10 ■ Development and Deployment Methodology

254

Then you can configure the hostname of the ESB server and the debugging ports that
are exposed by the ESB (when it is stared in the debugger mode).

Figure 10-17.  Need caption

Chapter 10 ■ Development and Deployment Methodology

255

Now the ESB tool is ready to be used as the debugger. So, ESB runtime has to be
started with the debugging mode enabled. This can be done with an additional parameter
to the starting script, sh wso2server.sh -Desb.debug. (You have approximately one
minute to connect the WSO2 ESB developer tool with the remote debugging enabled
ESB runtime. ESB will start if the developer tool connects to the server and ESB will start
anyway when the waiting time expires.)

Figure 10-18.  Need caption

Figure 10-19.  Need caption

Once you click Debug in the WSO2 ESB developer tool, it starts connecting to the
ESB runtime. Now you can set all the required breakpoints in the ESB mediation flow
by just right-clicking and choosing Toggle Breakpoint. It is require sync the ESB runtime
and the developer tool by resending breakpoints when you do a change to the existing
breakpoints. Now you can send a message through the configuration that you have set the

Chapter 10 ■ Development and Deployment Methodology

256

debug points and you will observe that those breakpoints are triggered when the message
goes through the mediation logic.

Figure 10-20.  Need caption

When the breakpoint is triggered, you can see the message payload associated with
that and the other attributes of the message.

Figure 10-21.  Need caption

Chapter 10 ■ Development and Deployment Methodology

257

Figure 10-21.  (continued)

You can also use the debugger to view the wire logs associated with the incoming/
outgoing HTTP messages.

Chapter 10 ■ Development and Deployment Methodology

258

The wire logs are shown in a separate tab at the bottom of the developer tool.

Figure 10-23.  Need caption

Figure 10-22.  Need caption

Chapter 10 ■ Development and Deployment Methodology

259

It is also possible to modify and clear message attributes using the debugger tool.
You can use this feature to modify different message properties and try out different use
cases.

Deploying Artifacts Across Multiple Environments
When you are running WSO2 ESB in your organization, it is recommended to have
a software development process that has dedicated resources for development, QA/
Stress/Pre-Prod, and production environments. That means that the development of the
integration scenarios starts from the development environment and then promotes to QA,
then to any other intermediate environment, and finally to the production environment.
So, it is really important for you to design and implement your integration scenarios so that
the artifacts can be moved across these environments without much effort.

One of the fundamental design requirements of building such an integration
scenario with WSO2 ESB is to identify the configuration parameters of your integration
logic. That is the environmentally dependent and environmentally independent portion
of it.

•	 Environmentally dependent artifacts: The most common
environmental specific artifacts are the endpoints. The value of
the endpoint drastically changes when you move the WSO2 ESB
configuration across different environments.

•	 Environmentally independent artifacts: Most of the logics related
to ESB mediation flow, data mapping configurations, etc. are
independent from the environment.

Once you identify which part of your ESB logic contains the environment specific
information, you should externalize them.

There are several ways that you can externalize such a configuration. One option that
is provided along with the ESB is to externalize the endpoint as a registry resource. In this
case, we create all the endpoints as registry resources and inside sequences we only refer
them with the endpoint key. And we split the configuration into two different composite
applications. One composite application contains the environmental independent
artifacts, and hence it can be deployed across all environments without any issues. Then
we have the environmental dependent composite application (which primarily contains
registry resources) and we can keep several resources per each environment (with the
same registry resource key).

Then we deploy respective composite application in the each environment.
However, this approach is constrained to the things that you can keep as registry
resources in WSO2 ESB (such as endpoint, XSLT files, etc.).

We can use the maven build tool to externalize the environmental dependent
configuration using maven resource variables. As shown in Figure 10-24, you can use
the maven resource variable concept to represent any environment specific information
in your ESB configuration. And for each environment, you have to create a composite
application by providing the required values for each variable.

Chapter 10 ■ Development and Deployment Methodology

260

Figure 10-24.  Deploying artifacts across different environments using maven.
Environmentally dependent configuration is represented as maven resource variables and
they are getting substituted when we create a .car file through maven

For instance, you can represent an endpoint address as follows in your sequences.

<call>
 <endpoint name="PizzaShoptRESTEndpoint">
 <address uri="${service.pizzashop.ep}"/>
 </endpoint>

</call>

Then, when you build the composite application using maven, you can pass
actual environment specific values when you create the composite application for that
particular environment.

 -Dservice.pizzashop.ep ="http://dev.pizzashop.com:6060/services/
PizzaShotRESTWS"

These values can come from system properties, your project properties, from your
filter resources, and from the command line. So, with this approach, you can completely
parameterize your ESB configuration.

In order to create a project that can build with maven, you need to create a “maven
multi-module project” and include all the ESB configuration-related projects as a module
of that. This is quite straightforward in the developer tool. During the creation of multi-
module project, it asks for projects that you want to include.

Chapter 10 ■ Development and Deployment Methodology

261

Deployment Methodology
Once you have the development process in place, you need to think about the
deployment patterns of WSO2 ESB. There are several patterns that you can use across
different use cases. However, we will focus only on the simplest and most stable
deployment patterns of WSO2 ESB.

The pattern illustrated in Figure 10-25, is primarily for all stateless use cases (where
you don’t use coordination features among ESB cluster nodes such as polling inbound
endpoint coordination, message store/processor coordination, or task coordination).
You can front a cluster of ESB nodes by any software or hardware load balancer. The ESB
cluster is completely stateless and has no communication between each part. Health
checking, monitoring, and adding, or removing nodes is totally up to the load balancer.
Scaling the cluster is quite straightforward and it is just a matter of adding mode nodes to
the cluster when you want to scale up (nothing needs to be done at the ESB layer, but at
the load balancer level, you can add another ESB node).

Figure 10-25.  Deploying artifacts across different environments using maven

The ESB mediation configuration can be deployed into each cluster node by pushing
the composite application archives (.car files) to each node. Often this can be automated
and integrated to a continuous integration tool such as Jenkins so that .car files are
auto-tested prior to pushing to ESB cluster nodes. The .car files has to be pushed into
$ESB_HOME/repository/deployment/server/carbonapps of each cluster node.

Figure 10-26 shows a slight variation of the previous pattern. In this case, the only
difference is that we are using a shared file system to synchronize configuration across
the ESB cluster nodes. The ESB developer tool can be used to create the configuration
and push the .car files to the shared file system through the maven/continuous
integration tools.

Chapter 10 ■ Development and Deployment Methodology

262

However, if you want to support a use case that requires coordination capability
(polling inbound endpoints such as JMS, files, message stores and processors, and tasks),
you need to create a stateful cluster. That means that cluster communication happens
between each of the cluster nodes.

For these types of use cases, you need to deploy the cluster using the membership
discovery style clustering mechanism supported in WSO2 ESB.

Here, we use Well Known Addressing (WKA)-based clustering of ESB nodes. With
WKA, there is a set of well-known members and every node in the cluster knows about
these members. When a new node wants to become a member of the cluster, it connects
to one of the well-known members and declares its details. Then the well-known member
provides all the information about the cluster and lets every member in the cluster
know about the new node. This allows the node to become a member of the cluster.
It is recommend to have more than two well-known members in a cluster for high-
availability.

As shown in Figure 10-27, every ESB node in the cluster knows about the two well-
known members. So, when a new node wants to connect to the cluster, it has to know the
details of either of those well-known members. Let’s look at how you configure an ESB
node as a well-known member. In the axis2.xml file, you need to configure the clustering
section as shown in Listing 10-1.

Figure 10-26.  Deploying artifacts across different environments using maven

Figure 10-27.  Deploying artifacts across different environments using maven

Chapter 10 ■ Development and Deployment Methodology

263

Listing 10-1.  Configuring axis2.xml of the Well-Known member1

<!-- 1) Enable clustering -->
<clustering class="org.wso2.carbon.core.clustering.hazelcast.
HazelcastClusteringAgent" enable="true">
 <parameter name="AvoidInitiation">true</parameter>

 <!-- 2) Configure wka -->
 <parameter name="membershipScheme">wka</parameter>
 �<!-- 3) Specify clustering domain. Clustering messages will only be sent

to the members of that particular domain -->
 <parameter name="domain">wso2.esb.domain</parameter>

 <parameter name="mcastPort">45564</parameter>
 <parameter name="mcastTTL">100</parameter>
 <parameter name="mcastTimeout">60</parameter>

 <!-- 4) Host name or IP of this well-known member -->
 <parameter name="localMemberHost">wkm1.wso2.com</parameter>

 <!-- 5) Set the port of this server to listen to cluster messages -->
 <parameter name="localMemberPort">4100</parameter>

 <parameter name="properties">
 �<property name="backendServerURL" value="https://${hostName}:

${httpsPort}/services/"></property>
 �<property name="mgtConsoleURL" value="https://${hostName}:

${httpsPort}/"></property>
 </parameter>

 <!-- 6) Specify the details of the other well-known member -->
 <members>
 <member>
 <hostname>wkm2.wso2.com</hostname>
 <port>4200</port>
 </member>
 </members>

 <groupmanagement enable="false">
 �<applicationdomain agent="org.wso2.carbon.core.clustering.hazelcast.

HazelcastGroupManagementAgent" description="ESB group" name="wso2.esb.
domain" port="2222" subdomain="worker">

 </applicationdomain></groupmanagement>
</clustering>

Since we have two well-known members, they are pointing to each other for their
well-known member. Hence the axis2.xml-clustering configuration of the other well-
known member is shown in Listing 10-2.

Chapter 10 ■ Development and Deployment Methodology

264

Listing 10-2.  Configuring axis2.xml of the Well-Known member2

<clustering class="org.wso2.carbon.core.clustering.hazelcast.
HazelcastClusteringAgent" enable="true">
 <parameter name="AvoidInitiation">true</parameter>

 <!-- 2) Configure wka -->
 <parameter name="membershipScheme">wka</parameter>
 �<!-- 3) Specify clustering domain. Clustering messages will only be sent

to the members of that particular domain -->
 <parameter name="domain">wso2.esb.domain</parameter>

 <parameter name="mcastPort">45564</parameter>
 <parameter name="mcastTTL">100</parameter>
 <parameter name="mcastTimeout">60</parameter>

 <!-- 4) Host name or IP of this well-known member -->
 <parameter name="localMemberHost">wkm2.wso2.com</parameter>

 <!-- 5) Set the port of this server to listen to cluster messages -->
 <parameter name="localMemberPort">4200</parameter>

 <parameter name="properties">
 �<property name="backendServerURL" value="https://${hostName}:

${httpsPort}/services/"></property>
 �<property name="mgtConsoleURL" value="https://${hostName}:

${httpsPort}/"></property>
 </parameter>
 <!-- 6) Specify the details of the other well-known member -->
 <members>
 <member>
 <hostname>wkm1.wso2.com</hostname>
 <port>4100</port>
 </member>
 </members>

 <groupmanagement enable="false">
 �<applicationdomain agent="org.wso2.carbon.core.clustering.hazelcast.

HazelcastGroupManagementAgent" description="ESB group" name="wso2.esb.
domain" port="2222" subdomain="worker">

 </applicationdomain></groupmanagement>
</clustering>

Now each non-well known member or dynamic member can connect to either of
those well-known members. The axis2.xml clustering configuration of such a dynamic
member is shown in Listing 10-3.

Chapter 10 ■ Development and Deployment Methodology

265

Listing 10-3.  Configuring axis2.xml for a Dynamic Member

<clustering class="org.wso2.carbon.core.clustering.hazelcast.
HazelcastClusteringAgent" enable="true">
 <parameter name="AvoidInitiation">true</parameter>

 <!-- 2) Configure wka -->
 <parameter name="membershipScheme">wka</parameter>
 �<!-- 3) Specify clustering domain. Clustering messages will only be sent

to the members of that particular domain -->
 <parameter name="domain">wso2.esb.domain</parameter>

 <parameter name="mcastPort">45564</parameter>
 <parameter name="mcastTTL">100</parameter>
 <parameter name="mcastTimeout">60</parameter>

 <!-- 4) Host name or IP of this well-known member -->
 <parameter name="localMemberHost">member1.wso2.com</parameter>

 <!-- 5) Set the port of this server to listen to cluster messages -->
 <parameter name="localMemberPort">4200</parameter>

 <parameter name="properties">
 �<property name="backendServerURL" value="https://${hostName}:

${httpsPort}/services/"></property>
 �<property name="mgtConsoleURL" value="https://${hostName}:

${httpsPort}/"></property>
 </parameter>

 <!-- 6) Specify the details of the other well-known member -->
 <members>
 <member>
 <hostname>wkm1.wso2.com</hostname>
 <port>4100</port>
 </member>
 <member>
 <hostname>wkm2.wso2.com</hostname>
 <port>4200</port>
 </member>
 </members>

 <groupmanagement enable="false">
 �<applicationdomain agent="org.wso2.carbon.core.clustering.hazelcast.

HazelcastGroupManagementAgent" description="ESB group" name="wso2.esb.
domain" port="2222" subdomain="worker">

 </applicationdomain></groupmanagement>
</clustering>

Chapter 10 ■ Development and Deployment Methodology

266

The configuration of the dynamic members is quite similar, apart from specifying
the members list. We put both wkm1 and wkm2 as part of the member list. Doing
this automatically makes the other two members WKAs. There is no other special
configuration to make a member a WKA member.

So, with this you can build an ESB cluster, which is stateful and can support
coordination among the cluster members. Now suppose you deploy a JMS inbound
endpoint with coordination enabled or task with coordination enabled. That task will
be executed on one of the cluster nodes (this has nothing to do with the well-known
members). We can call this node the leader, and as per Figure 10-27, and it’s the ESB
node at the bottom. For some reason, if that node is failed/shut down, then there will be
a new leader election between these cluster nodes and a new leader will be elected. In
this approach, the configuration can be pushed into cluster nodes or can use shared file
storage.

Another popular deployment pattern is to deploy ESB nodes as containers.
Container-based deployment is fully supported by WSO2 ESB. If you want to make the
nodes even more lightweight, that can be done by removing unwanted features from ESB.
Check out https://docs.wso2.com/display/ESB500/Managing+Features for details.

Summary
In this chapter you learned:

•	 The development process of implementing integration scenarios
with WSO2 ESB.

•	 How to use WSO2 developer studio to build and deploy your
integration scenario.

•	 How to use visual data mapping and mediation debugging.

•	 How to move your artifacts across multiple environments.

•	 Commonly used deployment patterns of WSO2 ESB.

https://docs.wso2.com/display/ESB500/Managing+Features

267© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7_11

CHAPTER 11

Administrating and
Extending WSO2 ESB

This chapter is all about how you administrate your ESB deployment and how you can
extend it for any custom requirement that is not support out of the box.

WSO2 ESB Analytics
You learned about three main components of the ESB product in the previous chapters—
runtime, tool, and analytics. In this chapter, we focus on the ESB analytics component. In
the same way you download the ESB product or tool, you can download the ESB analytics
server. The ESB analytics provides two main functionalities related to your ESB runtime.

•	 Statistics: Coarse-grain and fine-grain statistics of your
integration/mediation flow.

•	 Message tracing: Enable tracing for a selected message flow and
trace through the message path.

The way that ESB runtime and analytics runtime works is that ESB publishes
events/data to the analytics server via the Thrift protocol. The configuration
of the connectivity between ESB runtime and the ESB analytics server is
configured in <ESB_HOME>/repository/deployment/server/eventpublishers/
MessageFlowConfigurationPublisher.xml. In order to collect ESB mediation statistics
and message tracing data, you need to enable statistics and tracing as follows.

ESB analytics data collection can be configured by setting the following properties in
the <ESB_HOME>/repository/conf/synapse.properties file. You can choose the option
of collecting payload and properties if needed.

mediation.flow.statistics.enable=true
mediation.flow.statistics.tracer.collect.payloads=true
mediation.flow.statistics.tracer.collect.properties=true

Chapter 11 ■ Administrating and Extending WSO2 ESB

268

However, this configuration parameter doesn’t enable statistics for all artifacts by
default. If you need to collect statistics or/and tracing information for a particular artifact
such as a proxy service, REST API, sequence, endpoint, etc., that has to be enabled at
each artifact level (If you want to, you can use mediation.flow.statistics.collect.
all=true to enable statistics for all artifacts, so that you don’t need to enable it at each
artifact level.) By default, when you download the ESB runtime and ESB analytics server,
you just need to enable these parameters on the ESB side and they will automatically
connect to your local machine. However, if the analytics servers are configured in
a remote machine, they need to be configured in the event publisher configuration
discussed earlier.

Suppose that you installed and enabled statistics and tracing at the synapse.
properties file for the use case shown in Figure 11-1.

Figure 11-1.  A sample service orchestration scenario with numerous message
transformations

We have selected this use case as it has multiple endpoints and several message
transformation logics. Now suppose that you enable statistics at the synapse.properties
level and at the artifact level and enabled statistics and tracing. This is done by using
statistics="enable" trace="enable".

You can configure it to collect statistics or/and trace messages in a given artifact.
Statistics collection is lightweight but message tracing consumes resources, as it keeps the
message payload at each point where we change the payload.

Chapter 11 ■ Administrating and Extending WSO2 ESB

269

Listing 11-1.  ESB Configuration of the Service Orchestration Scenario

<api context="/atm/locator" name="ATMLocatorRESTAPI" statistics="enable"
trace="enable" xmlns="http://ws.apache.org/ns/synapse">
 <resource faultSequence="ATMLocatorFaultSeq" methods="POST">
 <inSequence>
 <log level="full">
 �<property name="API_Log" value="=== Req Received at API

Resource ==="/>
 </log>
 �<datamapper config="gov:datamapper/Req2S1.dmc"

inputSchema="gov:datamapper/Req2S1_inputSchema.json"
inputType="JSON" outputSchema="gov:datamapper/Req2S1_
outputSchema.json" outputType="JSON"/>

 <call>
 <endpoint key="Geo2PostalEP"/>
 </call>
 �<datamapper config="gov:datamapper/Postalcode2ATMs.dmc"

inputSchema="gov:datamapper/Postalcode2ATMs_inputSchema.json"
inputType="JSON" outputSchema="gov:datamapper/Postalcode2ATMs_
outputSchema.json" outputType="XML"/>

 �<header name="Action" scope="default" value="urn:PostalcodeToAT
MLocatorService"/>

 <call>
 <endpoint key="Postalcode2ATMEP"/>
 </call>
 �<datamapper config="gov:datamapper/ATMLocation2Coordinates.

dmc" inputSchema="gov:datamapper/ATMLocation2Coordinates_
inputSchema.json" inputType="XML" outputSchema="gov:datamapper/
ATMLocation2Coordinates_outputSchema.json" outputType="XML"/>

 <call>
 <endpoint key="ATMGeo2Address"/>
 </call>
 �<datamapper config="gov:datamapper/ATMAddress2Res.dmc"

inputSchema="gov:datamapper/ATMAddress2Res_inputSchema.json"
inputType="XML" outputSchema="gov:datamapper/ATMAddress2Res_
outputSchema.json" outputType="JSON"/>

 <respond/>
 </inSequence>
 <outSequence/>
 </resource>
</api>

Once you send requests through this REST API, you can log in to the ESB analytics
server dashboard (https://localhost:9444/portal/dashboards/esb-analytics/) and
observe the statistics and message-tracing portal.

https://localhost:9444/portal/dashboards/esb-analytics/

Chapter 11 ■ Administrating and Extending WSO2 ESB

270

The overview sections show the overall statistics of your ESB instance. Overall TPS,
message count, successful and failed counts, usage of each ESB artifact, and so on, are
shown in the overview section, as illustrated in Figure 11-2.

Figure 11-2.  ESB Statistics - Overview

Figure 11-3.  Artifact level statistics

Chapter 11 ■ Administrating and Extending WSO2 ESB

271

Then you can further drill down to the analytics of each artifact type. Since we are
using a REST API, we can select the REST API and observe the statistics collect against
that API.

Figure 11-4.  Statistics of a given REST API/HTTP Service

Also you can observe all the messages that go through the API along with its message
ID with status (success or failed).

Chapter 11 ■ Administrating and Extending WSO2 ESB

272

Then at the bottom, the overall message flow diagram is shown with the average
processing time at each mediator/endpoint level.

Figure 11-5.  List of messages that are processed by ESB and their message path through
WSO2 ESB

Figure 11-6.  Drill-down mediation statistics of a given message across different message
processing component

Chapter 11 ■ Administrating and Extending WSO2 ESB

273

For any specific message ID, you can trace through the path by clicking on the
message that you want to trace.

Figure 11-7.  Tracing the message flow of a selected message

For example, if you observe one of the failure messages, you can find out that it failed
during the invocation of the first service, at which point the fault sequence was triggered.

Figure 11-8.  Message tracing UI for a given message

Chapter 11 ■ Administrating and Extending WSO2 ESB

274

You can also view the payload associated with each mediator in that particular
message path of the failed message.

Figure 11-9.  Using message tracing of a given message ID and observer the message
payloads and message attributes throughout the ESB message mediation flow

You can enable statistics for all the artifacts while tracing can be applied for a selected
artifact for a limited period of time (due to resource consumption). Often message tracing is
useful for identifying the reason for various request failures in a production environment.

For high load, you may have to scale up the ESB analytics server. Since the ESB
analytics server is based on the WSO2 Data Analytics Server (DAS), you can refer
https://docs.wso2.com/display/DAS310/Deployment+and+Clustering for details on
how to set up a high-available ESB analytics cluster.

Monitoring
When you run the ESB instance in your production environment, you have to monitor it
for any abnormal behaviors that could affect the live traffic. For that, WSO2 ESB exposes
the runtime status through JMX (Java Management Extension). JMX is a common method
to manage and monitor the runtime parameters of a remote server. You can observe
almost all the details related to ESB mediation flow statistics through JMX as well. You can
use JConsole and connect to the ESB runtime to obtain this information.

https://docs.wso2.com/display/DAS310/Deployment+and+Clustering

Chapter 11 ■ Administrating and Extending WSO2 ESB

275

In addition to the high-level statistics of ESB artifacts, WSO2 ESB also exposes the
low-level latency information of its transports.

Figure 11-11.  Low-level HTTP transport details are exposed through JMX

Figure 11-10.  Mediation statistics are also exposed through JMX

Chapter 11 ■ Administrating and Extending WSO2 ESB

276

You can find more details of these MBeans at http://docs.wso2.com/enterprise-
service-bus/JMX+Monitoring.

Extending WSO2 ESB
WSO2 ESB provides most of the standard features that you will need in most of the
integration scenarios. However, it is not uncommon that you may come across certain
requirements that are not supported out of the box by WSO2 ESB. This is where you will
have to use extension points in WSO2 ESB.

Class Mediator
One of the most common extensions that you have to implement is the class mediator.
It is quite useful when you want to inject custom message processing/mediation logic
inside an ESB sequence.

The class mediator creates an instance of a custom-specified class and sets it as a
mediator. The class must implement the org.apache.synapse.api.Mediator interface or
extend the AbstractMediator. If any properties are specified as part of the class mediator
configuration, the corresponding setter methods are invoked once on the class during
initialization.

In order to create a class mediator, you can select Mediator Project and it will create a
class mediator skeleton, as shown in Listing 11-2.

Listing 11-2.  Class Mediator Structure

package kasun.panorama;

import org.apache.synapse.MessageContext;
import org.apache.synapse.mediators.AbstractMediator;

public class MyClassMediator extends AbstractMediator {

 public boolean mediate(MessageContext context) {
 // TODO Implement your mediation logic here
 return true;
 }
}

You can access all the information related to the incoming message through the
message context object and you can implement any message processing logic inside the
mediate method.

http://docs.wso2.com/enterprise-service-bus/JMX+Monitoring
http://docs.wso2.com/enterprise-service-bus/JMX+Monitoring

Chapter 11 ■ Administrating and Extending WSO2 ESB

277

Script Mediator
The script mediator is used to invoke the functions of a variety of scripting languages such
as JavaScript, Groovy, or Ruby. You can simply write the message processing logic using
any of these languages and refer to the script from the script mediator inside a sequence.

Listing 11-3.  Script Mediator Example

<log/>
<script language="js"
 key="repository/conf/sample/resources/script/test.js"
 function="testFunction"/>

// test.js (included as a registry resource)
function testFunction(mc) {
 var symbol = mc.getPayloadXML()..*::Code.toString();
 mc.setPayloadXML(
 <m:getQuote xmlns:m="http://services.samples/xsd">
 <m:request>
 <m:symbol>{symbol}</m:symbol>
 </m:request>
 </m:getQuote>);
}

Similarly, any other script can be included in this manner. There are specific
methods such as getPayloadXML(), getPayloadJSON(), and so on, that are supported
as part of message context API associated with script mediator. For all the available API
methods and examples, refer to http://docs.wso2.com/enterprise-service-bus/
Script+Mediator.

Custom Connector
Although there are hundreds of ESB connectors available with WSO2 ESB, you may have
to address any specific custom requirement. For such requirements you can create your
own connector to integrate with any cloud APIs or any internal legacy system. To build
your own ESB connector, you can use the following Maven archetype:

mvn archetype:generate -DarchetypeGroupId=org.wso2.carbon.extension.
archetype -DarchetypeArtifactId=org.wso2.carbon.extension.esb.connector-
archetype -DarchetypeVersion=2.0.0 -DgroupId=org.wso2.carbon.connector
-DartifactId=org.wso2.carbon.connector.helloworld -Dversion=1.0.0
-DarchetypeRepository=http://maven.wso2.org/nexus/content/repositories/wso2-
public/

This creates the org.wso2.carbon.esb.connector.helloworld directory in the
current location of your machine, with a directory structure similar to Figure 11-12.

https://docs.wso2.com/display/ESB500/Script+Mediator
https://docs.wso2.com/display/ESB500/Script+Mediator

Chapter 11 ■ Administrating and Extending WSO2 ESB

278

Figure 11-12.  Skeleton of the connector development project

You simply have to create the required ESB templates and the required class
mediators to handle the specific scenario. This will output a connector archive, which can
be deployed into an ESB. Refer to https://docs.wso2.com/display/ESBCONNECTORS/
Writing+a+Connector for more details.

Other Extensions
There are various other types of extensions you can use with WSO2 ESB. Tasks, custom
message builders and formatters, custom inbound endpoints, etc. are some of the other
commonly used extensions.

Error Handling
Any mediation logic that you develop should have proper error-handling semantics and
logics. In many ESB artifacts, you can associate a fault-handling mechanism known as a
fault sequence.

A fault sequence is a collection of mediators just like any other sequence, and it
can be associated with another sequence or a proxy service. When the sequence, proxy

https://docs.wso2.com/display/ESBCONNECTORS/Writing+a+Connector
https://docs.wso2.com/display/ESBCONNECTORS/Writing+a+Connector

Chapter 11 ■ Administrating and Extending WSO2 ESB

279

service, etc. encounters an error during mediation or while forwarding a message, the
message that triggered the error is delegated to the specified fault sequence. Using the
available mediators, it is possible to log the erroneous message, forward it to a special
error-tracking service, and send a custom error message to the client. Proper error
handling in the fault sequence prevents ESB from going to abnormal states and it also
helps to maintain proper resource utilization.

Whenever an error occurs in WSO2 ESB, it attempts to provide as much information
as possible about the error to the user through the ERROR_CODE, ERROR_MESSAGE, ERROR_
DETAIL, and ERROR_EXCEPTION properties. These values can be added to logs via the log
mediator. ESB has defined a set of error codes. For an example, if you have observed an
error in your fault sequence with error code 101504, that means “connection timed out.”

All the available error codes and the reasons for each error can be found at http://
docs.wso2.com/enterprise-service-bus/Error+Handling.

Summary
In this chapter you learned:

•	 How to use the ESB analytics server with ESB runtime to obtain
statistics of ESB mediation flow and to trace messages.

•	 JMX monitoring.

•	 Commonly used mediation extensions and how to implement
them (class mediators, script mediators, and the custom
connector).

•	 Error-handling techniques in WSO2 ESB.

https://docs.wso2.com/display/ESB500/Error+Handling
https://docs.wso2.com/display/ESB500/Error+Handling

281© Kasun Indrasiri 2016
K. Indrasiri, Beginning WSO2 ESB, DOI 10.1007/978-1-4842-2343-7

�       � A, B
Advanced Message Queuing

Protocol (AMQP), 151–154
Application level security

basic-Auth and OAuth 2.0, 233–234
OAuth mediator, access token

validation, 235
policy enforcement,

entitlement mediator, 235–237
proxy services, 231–233
REST APIs, 230–231
WS-Security-based services, 234

�       � C
Composite application

project, 241, 248–249

�       � D
Data integration

OrderService, 218–219
Salesforce streaming connector, 220
SOAP/RESTful service, 218

Data mapper, 249–253
Deployment methodology

cluster communication, 262
coordination capability, 262
dynamic members, 264–266
ESB cluster nodes, 261, 266
shared file system, 261
well-known members, 262–264

�       � E
Enterprise integration, 1
Enterprise Integration Patterns (EIP), 5

Enterprise messaging
AMQP with RabbitMQ, 151–154
Kafka, 157–159
MQTT, 155–157

Enterprise Service Bus (ESB)
backend service, 1
configuration-based approach, 2
configuration project, 241
connectors, 243–247
core functionalities, 4
description, 4
JSON-based mobile

application, 2
mobile devices, 1
modern enterprises, 2
organization, 1
point-to-point integration, 2–3
spaghetti integration, 2

Environmentally
dependent artifacts, 259–260

Environmentally independent
artifacts, 259

Error handling, 278–279
ESB. See Enterprise Service Bus (ESB)
Extending WSO2 ESB

class mediator, 276
custom connector, 277–278
script mediator, 277

�       � F, G
Fast Healthcare Interoperability

Resources (FHIR)
description, 197
resources, 197
WebSockets Support, 198–199

FHIR. See Fast Healthcare Interoperability
Resources (FHIR)

Index

■ INDEX

282

File-based integration
file connector, 172–175
file transfer, 161
message transformation, 170–171
protocol transformation, JMS, 175–177
reading files

failure tracking, 163
file systems, 161
FTP, 163–165
local file system, 161–163
SFTP, 165

transferring files, 168–170
writing files

file connector, 165
VFS transport sender, 165–168

�       � H
Health Level 7 International (HL7)

HL7 Version 2.x, 190
Hl7 Version 3.x, 190
MLLP protocol, 190–191
receving messages

with application ACK, 193–195
with auto ACK, 192–193

sample message, 190
sending, 195–197

HL7. See Health Level 7
International (HL7)

HTTP to WebSockets integration
HTTP 1.x interface, 208
in-JVM calls, local transport, 209–210

�       � I
Inbound connectors, 215
In-JVM service calls, 209
Integrating cloud services

data integration, 218–220
ESB connector

complex message format, 214
handling message payloads, 213
Secure Vault, 213
structure, 211
Twitter Connector, 212

inbound connectors, 215–216
Salesforce and SAP, 216–218

Integration scenarios
FHIR-based

resources, 197
WebSockets Support, 198–199

HL7 (see Health Level 7
International (HL7))

HTTP/API service, 19–20
HTTP to WebSockets

integration, 208–210
identification and implementation, 18
implement, deploy and run, 26
JSON and XML, 17
JSON message format, 26–27
mobile client, 17
request sent to backend service, 20–22
response back to client, 23–25
SAP

BAPI-based integration, 184–189
IDOC-based integration, 181–184

sending request to backend
service, 22–23

SOAP-based StockQuote
financial service, 19

SOAP-based web services, 17–18
WebSockets to HTTP

Integration, 206–208
WebSockets to WebSocket

Integration, 199–206

�       � J
Java Message Service (JMS)

abstraction layer, 134
ESB consumes messages

inbound endpoints, 136–140
messaging models, 135
point-to-point messaging model,

135
publish-subscribe message

model, 137–138
SOAP-based web service, 135

producer, 140–142
transactions, 145–147
two-way, 142–145

�       � K, L
Kafka, 157–159

�       � M, N
Mediation debugger

breakpoints, 255–256
Debug Configurations, 253–254
ESB runtime, 255

■ INDEX

283

host name, ESB server, 254–255
message properties, 259
wire logs, 257–258

Message enriching, 82–84
Message entry points

APIs/HTTP services, Pizzashop, 35–38
description, 30
HTTP inbound endpoint, 41–43
integration criteria, 31
JMS inbound endpoints, 38–40
polling inbound endpoints, 40–41
proxy services

configuration, banking
integration scenario, 33–34

HTTP transport receiver, 34
integration scenario, 31
message protocol translation, 31
protocols, 33
structure and message flow, 32–33
WS-Security and

WS-Addressing, 34
Message exitpoints. See Outbound

endpoints
Message filtering, 64–67
Message flow

pre-defined properties, 102
set/retrieve variables, 100–101

Message format conversions, 98–100
Message Oriented Middleware (MoM).

See also Enterprise messaging
JMS (see Java Message Service (JMS))
software applications, 133
vendors, 134

Message pass-through
description, 61
getQuote functionality, 61
implement, synchronous

messaging scenario, 62
one-way messaging, 63–64
placeOrder request, 63
synchronous request-response

operation, 61
web service, 61

Message processing
entry, units and exit points, 59–60
sequences and mediators, 60–61

canonical format,
content aware mediation, 47

content unaware mediation, 46
EIP, 46
in-and out-sequence, 44–45

message flow, 46
message validation logic, 45–46
proxy services and APIs, 44
SOAP/JSON, content

aware mediation, 46
structure, 43–44

techniques, 59
Message Queuing Telemetry

Transport (MQTT), 155–157
Message switching, 64–69
Message transformations

checkStockQuote request
message format, 71

data mapper mediator, 78
getQuote request message format, 70
header mediator, 81–82
message processing logic, 71
PayloadFactory mediator

and For-Each mediator, 74–78
one-to-one message

translation scenario, 72–73
syntax of, 73

techniques, 71
XSLT mediator, 78–81

Message validation, 84–86
MoM. See Message Oriented

Middleware (MoM)
Monitoring, 274–276
MQTT. See Message Queuing

Telemetry Transport (MQTT)
Multi-module project, 260

�       � O
Outbound endpoints

address endpoint, 49
backend services, 47
default configuration, 54
definition, 48
disabling endpoint suspension, 54–55
endpoint states

ACTIVE state, 54
behavior, 51
configuration, 51–53
SUSPENDED state, 54
TIMEOUT state, 54
transitions, 53

HTTP endpoints, 49–50
HTTP transport, 48
load balancing and fail-over, 50–51
sequences and mediators, 48

■ INDEX

284

�       � P, Q
Pass-throughmessaging.

See Message pass-through
Protocol conversions, 96–98

�       � R
Registry Resource project, 242–243
Representational State Transfer (REST)

account management, 108–109
architecture, 108
description, 107

REST. See Representational State
Transfer (REST)

RESTful web services
APIs/HTTP services

account creation
mediation logic, 120–122

AccountManagement
Service, 118–119

account update, retrieve and
delete mediation logic, 122–124

attributes, 124–126
banking scenario, 118
implementation, 119
resources, 120

backend services, 126–129
HTTP endpoint, 129
native JSON support, 130

�       � S
Salesforce integration

complex message formats, 214
handling message payloads, 213
maintenance, 210
REST/SOAP web services, 210
and SAP, 216–218
streaming API, 215–216

Salesforce streaming connector, 215
SAP integration

BAPI-based
exposing, 186, 188–189
invoking, 185–188

IDOC-based
receiving, 181–182
sending, 182–184

SAP Java Connector (SAP JCo), 180
Scheduled tasks, 55–57
Secure Sockets Layer (SSL)

certificates and keys, 221
description, 221
encryption, 221
HTTP transport level security, 223
one-way SSL

HTTPs inbound
endpoints, 224, 226

HTTPs transport receiver, 225
HTTPs transport sender, 228–229
server authentication, 222

profiles, 229–230
two-way SSL

HTTPs inbound endpoints, 228
HTTPs transport receiver, 227–228
mutual/client

authentication, 222–223
Service orchestration

clone and aggregate pattern, 87, 94–96
service chaining, 87–91
split and aggregate pattern, 87, 91–94

Service Oriented Architecture (SOA), 15
Simple Object Access Protocol (SOAP)

AccountManagement
SOAPService, 105–107

backend web services, 116–118
definition, 105
functionalities, 106
versions, 107
web services

legacy POX-based web
application, 109–111

SOAP 1.1 and SOAP 1.2., 114–116
WS-Addressing, 111–114

SOAP. See Simple Object Access
Protocol (SOAP)

Software applications, 161
Software development process, 259
SSL. See Secure Sockets Layer (SSL)
Store and forward messaging

advantage, 148
description, 147
JMS message stores and processors

configuration, 148–149
forwarding processor, 150–151
implementation, 148
integration scenario, 148
mediation flow, 149–150
price update client and

PriceManagement service, 148
sampling processor, 150

Switch mediator, 70

■ INDEX

285

�       � T, U, V
Transport layer security (TLS). See Secure

Sockets Layer (SSL)

�       � W, X, Y, Z
Web Service Addressing

(WS-Addressing), 111–114, 118
WebSockets Support

longpolling, 198
parts, protocol, 198–199
polling, 198
streaming, 198

WebSockets to HTTP Integration, 206–208
WebSockets to WebSocket Integration

data mapping, 203–206
e-commerce web portal, 199–200
frame broadcasting, 202–203
inbound endpoint and

transport sender, 200–201
outbound endpoint, 201

WSO2 ESB
backend service, 8
building blocks, 29
configuration language, 13–15
description, 4, 15
functional components, 8–9
integration scenario, 8
interoperability and EIP support, 5
JSON-based mobile client, 7–8

message entry points, 10
message processing unit, 10
middleware platform,

advantage, 6–7
outbound endpoints

API/HTTP service, 12
backend web service, 10
message flow, 10–13

performance and stability, 5–6
SOAP-based web service, 7–8

WSO2 ESB analytics
API, message ID, 271
data collection, 267
failure messages, 273–274
message flow diagram, 272
overview sections, 270
REST API, 271
runtime, 267
service orchestration, 269
specific message ID, 273
statistics and message

tracing, 267–268
synapse.properties file, 268

WSO2 ESB development tool
components, 239
connectors, 241
dashboard, 240
data mapping, 239
development process, 241
product download, 239
solution project structure, 240

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to WSO2 ESB
	What is an ESB?
	Core Functionalities of an ESB

	Why WSO2 ESB?
	Interoperability and EIP Support: Connecting Anything to Anything
	Performance and Stability: The Fastest Open Source ESB
	The Platform Advantage: Part of the WSO2 Middleware Platform

	How does WSO2 ESB Work?
	Functional Components
	Message Entry Points: Proxy Service, APIs, and Inbound Endpoints
	Message Processing Unit: Sequences and Mediators
	Message Exit Points: Outbound Endpoints
	WSO2 ESB Configuration Language
	How to Try the Use Cases in this Book

	Summary

	Chapter 2: Getting Started with WSO2 ESB
	Designing a Simple Integration Scenario with WSO2 ESB
	Building the Integration Scenario
	Creating a HTTP Service/API in WSO2 ESB
	Creating the Request Sent to the Backend Service
	Sending the Request to the Backend Service
	Transforming and Sending the Response Back to the Client
	Try it Out

	Summary

	Chapter 3: Fundamentals of WSO2 ESB
	Message Entry Points
	Using Proxy Services
	Using APIs/HTTP Services
	Using Inbound Endpoints
	Polling Inbound Endpoints
	Listening Inbound Endpoints

	Message Processing Unit: Sequence and Mediators
	Sequences
	Mediators
	Content Unaware Mediation
	Content Aware Mediation with SOAP or JSON
	Content Aware Mediation with Canonical Format

	Message Exit Points: Outbound Endpoints
	Endpoint Types
	Address Endpoint
	HTTP Endpoint
	Load Balancing and Fail-Over Endpoint

	Understanding Endpoint States and Endpoint Attributes
	ACTIVE State
	TIMEOUT State
	SUSPENDED State
	Default Configuration and Disabling Endpoint Suspension

	Scheduled Tasks
	Summary

	Chapter 4: Processing Messages with WSO2 ESB
	Pass-Through Messaging
	Message Filtering and Switching
	Message Filtering
	Message Switching

	Message Transformations
	Using PayloadFactory Mediator
	Using PayloadFactory and For-Each Mediator

	Data Mapper Mediator
	Using XSLT Mediator
	Using the Header Mediator

	Message Enriching
	Message Validation
	Service Orchestration
	Service Chaining
	Split and Aggregate Pattern
	Clone and Aggregate Pattern

	Changing the Message Protocol and Format
	Protocol Conversions
	Message Format Conversions

	Using Properties in the Message Flow
	Set/Retrieve Variables in the Message Flow
	Use Predefined Properties to Control Message Flow

	Summary

	Chapter 5: Integrating SOAP and RESTful Web Services
	Understanding SOAP and RESTful Web Services
	Integrating SOAP Web Services
	Exposing a SOAP Web Service Interface from WSO2 ESB
	Exposing a SOAP Web Service in Front of a Legacy Non-SOAP (PoX) Based Service
	Exposing a SOAP Web Service with WS-Addressing
	Exposing a SOAP 1.2 Web Service on Top of a SOAP 1.1 Web Service
	Invoking SOAP Backend Web Services from ESB

	Integrating RESTful Web Services
	Exposing RESTful Services/APIs with WSO2 ESB
	Fundamentals of REST APIs

	Invoking RESTful Services from WSO2 ESB
	Using HTTP Endpoint for RESTful Service Invocations
	Native JSON Support

	Summary

	Chapter 6: Enterprise Messaging with JMS, AMQP, MQTT, and Kafka
	Integration with JMS-Based MoM
	ESB as a JMS Consumer
	ESB as a JMS Producer
	Two-Way JMS
	Using JMS Transactions
	Store and Forward with Message Stores and Message Processors

	Integrating with AMQP, MQTT and Kafka
	Using AMQP with RabbitMQ
	Integrating with MQTT
	Integrating with Kafka

	Summary

	Chapter 7: File-Based Integration
	Reading Files
	Reading a File from the Local File System
	Failure Tracking

	Reading Files from an FTP or FTP/s
	Reading Files from an SFTP
	FTP or SFTP Through a Proxy Server

	Writing Files
	Writing Files with VFS Transport

	Transferring Files
	Message Transformation with File Integration
	File Connector
	Protocol Transformation from File to JMS
	Summary

	Chapter 8: Integrating Applications, Cloud Services, and Data
	Integrating Proprietary Systems
	SAP Integration
	IDOC-Based Integration
	Receiving IDocs
	Sending IDocs

	BAPI-Based Integration
	Invoking BAPIs
	Exposing BAPI Interfaces

	HL7 Integration
	Receiving HL7 Messages
	Receiving HL7 Messages with Auto ACK
	Receiving HL7 Messages with Application ACK

	Sending HL7 Messages
	FHIR-Based Integration

	WebSockets Support
	WebSockets to WebSocket Integration
	WebSockets to WebSocket Integration with Frame Broadcasting
	WebSockets to WebSocket Integration with Data Mapping
	WebSockets to HTTP Integration
	HTTP to WebSockets Integration

	In-JVM Calls with Local Transport

	Integrating Cloud Services
	What is an ESB Connector?
	Structure of an ESB Connector
	Using an ESB Connector
	Inbound Connectors

	Integrating Salesforce and SAP
	Data Integration

	Summary

	Chapter 9: Security in WSO2 ESB
	Transport Level Security
	One-Way SSL (Server Authentication)
	Two-Way SSL (Mutual/Client Authentication)
	Using TLS/SSL with WSO2 ESB
	Use Case 1: Client to ESB: One-Way SSL
	Use Case 2: Client to ESB: Two-Way SSL
	Use Case 3: ESB to Service: One-Way SSL
	Use Case 4: ESB to Service: Two-Way SSL
	SSL Profiles

	Application Level Security
	Securing REST APIs
	Securing Proxy Services
	Invoking Secured Service
	Invoking Basic-Auth and OAuth 2.0-Based Services
	Invoking WS-Security-Based Services
	OAuth Mediator: Access Token Validation Inside a Mediation Flow
	Entitlement Mediator: Policy Enforcement Inside a Mediation Flow

	Summary

	Chapter 10: Development and Deployment Methodology
	Development Methodology
	Using the WSO2 ESB Development Tool
	ESB Config Project
	ESB Registry Resource Project
	Importing Connectors to ESB Tool
	Composite Application Project

	Data Mapper
	Mediation Debugger
	Deploying Artifacts Across Multiple Environments

	Deployment Methodology
	Summary

	Chapter 11: Administrating and Extending WSO2 ESB
	WSO2 ESB Analytics
	Monitoring
	Extending WSO2 ESB
	Class Mediator
	Script Mediator
	Custom Connector
	Other Extensions

	Error Handling
	Summary

	Index

