
www.allitebooks.com

http://www.allitebooks.org

Bioinformatics with R
Cookbook

Over 90 practical recipes for computational biologists to
model and handle real-life data using R

Paurush Praveen Sinha

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

FM-2

Bioinformatics with R Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1160614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-313-2

www.packtpub.com

Cover image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

FM-3

Credits

Author
Paurush Praveen Sinha

Reviewers
Chris Beeley

Yu-Wei, Chiu (David Chiu)

Commissioning Editor
Kunal Parikh

Acquisition Editor
Kevin Colaco

Content Development Editor
Ruchita Bhansali

Technical Editors
Arwa Manasawala

Ankita Thakur

Copy Editors
Dipti Kapadia

Insiya Morbiwala

Project Coordinator
Binny K. Babu

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

FM-4

About the Author

Paurush Praveen Sinha has been working with R for the past seven years. An engineer
by training, he got into the world of bioinformatics and R when he started working as a
research assistant at the Fraunhofer Institute for Algorithms and Scientific Computing
(SCAI), Germany. Later, during his doctorate, he developed and applied various machine
learning approaches with the extensive use of R to analyze and infer from biological data.
Besides R, he has experience in various other programming languages, which include Java,
C, and MATLAB. During his experience with R, he contributed to several existing R packages
and is working on the release of some new packages that focus on machine learning and
bioinformatics. In late 2013, he joined the Microsoft Research-University of Trento COSBI
in Italy as a researcher. He uses R as the backend engine for developing various utilities
and machine learning methods to address problems in bioinformatics.

Successful work is a fruitful culmination of efforts by many people. I would
like to hereby express my sincere gratitude to everyone who has played a
role in making this effort a successful one. First and foremost, I wish to
thank David Chiu and Chris Beeley for reviewing the book. Their feedback, in
terms of criticism and comments, was significant in bringing improvements
to the book and its content. I sincerely thank Kevin Colaco and Ruchita
Bhansali at Packt Publishing for their effort as editors. Their cooperation
was instrumental in bringing out the book. I appreciate and acknowledge
Binny K. Babu and the rest of the team at Packt Publishing, who have been
very professional, understanding, and helpful throughout the project. Finally,
I would like to thank my parents, brother, and sister for their encouragement
and appreciation and the pride they take in my work, despite of not being
sure of what I’m doing. I thank them all. I dedicate the work to Yashi, Jayita,
and Ahaan.

www.allitebooks.com

http://www.allitebooks.org

FM-5

About the Reviewers

Chris Beeley is a data analyst working in the healthcare industry in the UK. He completed
his PhD in Psychology from the University of Nottingham in 2009 and now works within
Nottinghamshire Healthcare NHS Trust in the involvement team providing statistical
analysis and reports from patient and staff experience data.

Chris is a keen user of R and a passionate advocate of open source tools within research and
healthcare settings as well as the author of Web Application Development Using R with Shiny,
Packt Publishing.

Yu-Wei, Chiu (David Chiu) is one of the co-founders of the company, NumerInfo, and an
officer of Taiwan R User Group. Prior to this, he worked for Trend Micro as a software engineer,
where he was responsible for building up Big Data platforms for business intelligence and
customer relationship management systems. In addition to being an entrepreneur and data
scientist, he also specializes in using Hadoop to process Big Data and applying data mining
techniques for data analysis. Another of his specialties is that he is also a professional
lecturer who has been delivering talks on Python, R, Hadoop, and Tech Talks in Taiwan R
User Group meetings and varieties of conferences as well.

Currently, he is working on a book compilation for Packt Publishing called Machine Learning
with R Cookbook. For more information, visit his personal website at ywchiu.com.

I would like to express my sincere gratitude to my family and friends for
supporting and encouraging me to complete this book review. I would like to
thank my mother, Ming-Yang Huang (Miranda Huang); my mentor, Man-Kwan
Shan; Taiwan R User Groups; and other friends who gave me a big hand.

www.allitebooks.com

ywchiu.com
http://www.allitebooks.org

FM-6

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Starting Bioinformatics with R	 7

Introduction	 7
Getting started and installing libraries	 8
Reading and writing data	 13
Filtering and subsetting data	 16
Basic statistical operations on data	 19
Generating probability distributions	 22
Performing statistical tests on data	 23
Visualizing data	 26
Working with PubMed in R	 29
Retrieving data from BioMart	 33

Chapter 2: Introduction to Bioconductor	 37
Introduction	 37
Installing packages from Bioconductor	 38
Handling annotation databases in R	 40
Performing ID conversions	 42
The KEGG annotation of genes	 44
The GO annotation of genes	 46
The GO enrichment of genes	 48
The KEGG enrichment of genes	 52
Bioconductor in the cloud	 54

Chapter 3: Sequence Analysis with R	 57
Introduction	 57
Retrieving a sequence	 59
Reading and writing the FASTA file	 62
Getting the detail of a sequence composition	 64
Pairwise sequence alignment	 69

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Multiple sequence alignment	 75
Phylogenetic analysis and tree plotting	 77
Handling BLAST results	 80
Pattern finding in a sequence	 84

Chapter 4: Protein Structure Analysis with R	 87
Introduction	 87
Retrieving a sequence from UniProt	 88
Protein sequence analysis	 92
Computing the features of a protein sequence	 95
Handling the PDB file	 96
Working with the InterPro domain annotation	 98
Understanding the Ramachandran plot	 100
Searching for similar proteins	 102
Working with the secondary structure features of proteins	 103
Visualizing the protein structures	 105

Chapter 5: Analyzing Microarray Data with R	 107
Introduction	 108
Reading CEL files	 108
Building the ExpressionSet object	 110
Handling the AffyBatch object	 112
Checking the quality of data	 114
Generating artificial expression data	 117
Data normalization	 120
Overcoming batch effects in expression data	 123
An exploratory analysis of data with PCA	 127
Finding the differentially expressed genes	 129
Working with the data of multiple classes	 132
Handling time series data	 134
Fold changes in microarray data	 137
The functional enrichment of data	 140
Clustering microarray data	 143
Getting a co-expression network from microarray data	 146
More visualizations for gene expression data	 149

Chapter 6: Analyzing GWAS Data	 155
Introduction	 155
The SNP association analysis	 156
Running association scans for SNPs	 160
The whole genome SNP association analysis	 163
Importing PLINK GWAS data	 166
Data handling with the GWASTools package	 168

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Manipulating other GWAS data formats	 172
The SNP annotation and enrichment	 176
Testing data for the Hardy-Weinberg equilibrium	 178
Association tests with CNV data	 182
Visualizations in GWAS studies	 185

Chapter 7: Analyzing Mass Spectrometry Data	 195
Introduction	 195
Reading the MS data of the mzXML/mzML format	 197
Reading the MS data of the Bruker format	 201
Converting the MS data in the mzXML format to MALDIquant	 203
Extracting data elements from the MS data object	 205
Preprocessing MS data	 207
Peak detection in MS data	 211
Peak alignment with MS data	 214
Peptide identification in MS data	 216
Performing protein quantification analysis	 221
Performing multiple groups' analysis in MS data	 224
Useful visualizations for MS data analysis	 227

Chapter 8: Analyzing NGS Data	 233
Introduction	 233
Querying the SRA database	 235
Downloading data from the SRA database	 237
Reading FASTQ files in R	 239
Reading alignment data	 241
Preprocessing the raw NGS data	 244
Analyzing RNAseq data with the edgeR package	 248
The differential analysis of NGS data using limma	 251
Enriching RNAseq data with GO terms	 255
The KEGG enrichment of sequence data	 258
Analyzing methylation data	 260
Analyzing ChipSeq data	 263
Visualizations for NGS data	 267

Chapter 9: Machine Learning in Bioinformatics	 271
Introduction	 271
Data clustering in R using k-means and hierarchical clustering	 273
Visualizing clusters	 277
Supervised learning for classification	 282
Probabilistic learning in R with Naïve Bayes	 286
Bootstrapping in machine learning	 288
Cross-validation for classifiers	 290

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Measuring the performance of classifiers	 293
Visualizing an ROC curve in R	 294
Biomarker identification using array data	 297

Appendix A: Useful Operators and Functions in R	 299
Appendix B: Useful R Packages	 309
Index	 315

Preface
In recent years, there have been significant advances in genomics and molecular biology
techniques, giving rise to a data boom in the field. Interpreting this huge data in a systematic
manner is a challenging task and requires the development of new computational tools, thus
bringing an exciting, new perspective to areas such as statistical data analysis, data mining,
and machine learning. R, which has been a favorite tool of statisticians, has become a widely
used software tool in the bioinformatics community. This is mainly due to its flexibility, data
handling and modeling capabilities, and most importantly, due to it being free of cost.

R is a free and robust statistical programming environment. It is a powerful tool for statistics,
statistical programming, and visualizations; it is prominently used for statistical analysis.
It has evolved from S, developed by John Chambers at Bell Labs, which is a birthplace of
many programming languages including C. Ross Ihaka and Robert Gentleman developed R
in the early 1990s.

Roughly around the same time, bioinformatics was emerging as a scientific discipline because
of the advent of technological innovations such as sequencing, high throughput screening,
and microarrays that revolutionized biology. These techniques could generate the entire
genomic sequence of organisms; microarrays could measure thousands of mRNAs, and so
on. All this brought a paradigm shift in biology from a small data discipline to one big data
discipline, which is continuing till date. The challenges posed by this data shoot-up initially
compelled researchers to adopt whatever tools were available at their disposal. Till this time,
R was in its initial days and was popular among statisticians. However, following the need
and the competence of R during the late 90s (and the following decades), it started gaining
popularity in the field of computational biology and bioinformatics.

The structure of the R environment is a base program that provides basic programming
functionalities. These functionalities can be extended with smaller specialized program
modules called packages or libraries. This modular structure empowers R to unify
most of the data analysis tasks in one program. Furthermore, as it is a command-line
environment, the prerequisite programming skill is minimal; nevertheless, it requires
some programming experience.

Preface

2

This book presents various data analysis operations for bioinformatics and computational
biology using R. With this book in hand, we will solve many interesting problems related to
the analysis of biological data coming from different experiments. In almost every chapter,
we have interesting visualizations that can be used to present the results.

Now, let's look at a conceptual roadmap organization of the book.

What this book covers
Chapter 1, Starting Bioinformatics with R, marks the beginning of the book with some
groundwork in R. The major topics include package installation, data handling, and
manipulations. The chapter is further extended with some recipes for a literature
search, which is usually the first step in any (especially biomedical) research.

Chapter 2, Introduction to Bioconductor, presents some recipes to solve basic bioinformatics
problems, especially the ones related to metadata in biology, with the packages available
in Bioconductor. The chapter solves the issues related to ID conversions and functional
enrichment of genes and proteins.

Chapter 3, Sequence Analysis with R, mainly deals with the sequence data in terms of
characters. The recipes cover the retrieval of sequence data, sequence alignment, and
pattern search in the sequences.

Chapter 4, Protein Structure Analysis with R, illustrates how to work with proteins at
sequential and structural levels. Here, we cover important aspects and methods of protein
bioinformatics, such as sequence and structure analysis. The recipes include protein
sequence analysis, domain annotations, protein structural property analysis, and so on.

Chapter 5, Analyzing Microarray Data with R, starts with recipes to read and load the
microarray data, followed by its preprocessing, filtering, mining, and functional enrichment.
Finally, we introduce a co-expression network as a way to map relations among genes in
this chapter.

Chapter 6, Analyzing GWAS Data, talks about analyzing the GWAS data in order to make
biological inferences. The chapter also covers multiple association analyses as well as
CNV data.

Chapter 7, Analyzing Mass Spectrometry Data, deals with various aspects of analyzing
the mass spectrometry data. Issues related to reading different data formats, followed by
analysis and quantifications, have been included in this chapter.

Chapter 8, Analyzing NGS Data, illustrates various next generation sequencing data.
The recipes in this chapter deal with NGS data processing, RNAseq, ChipSeq, and
methylation data.

Preface

3

Chapter 9, Machine Learning in Bioinformatics, discusses recipes related to machine learning
in bioinformatics. We attempt to reach the issues of clustering classification and Bayesian
learning in this chapter to infer from the biological data.

Appendix A, Useful Operators and Functions in R, contains some useful general functions in R
to perform various generic and non-generic operations.

Appendix B, Useful R Packages, contains a list and description of some interesting libraries
that contain utilities for different types of analysis and visualizations.

What you need for this book
Most importantly, this book needs R itself, which is available for download at
http://cran.r-project.org for all major operating systems. The instructions to
get the additional R packages and datasets are provided in the relevant recipes of the
book. Besides R, the book will need some additional software namely, Java Development
Kit, MySQL GraphViz, MUSCLE, libxml2, and libxml(2)-devel as prerequisites for some of
the R packages. They are available at their respective pages.

Who this book is for
People often approach programming with great apprehension. The purpose of this book
is to provide a guide for scientists working on diverse common problems in bioinformatics
and computational biology. The book also appeals to programmers who are working in
bioinformatics and computational biology but are familiar with languages other than R.

A basic knowledge of computer programming as well as some familiarity with the basics
of bioinformatics is expected from the readers. Nevertheless, a short groundwork has
been presented at the beginning of every chapter in an attempt to bridge the gap, if any.

The book is not any text on basic programing using R or on basics of bioinformatics and
statistics. Appropriate theoretical references have been provided whenever required,
directing the reader to related reference articles, books, and blogs. The recipes are mostly
ready for use but it is strongly recommended that you look at the data manually to get a feel
for it before you start analyzing it in the recipes presented.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can use the install.packages function to install a package from CRAN
that has many mirror locations."

http://cran.r-project.org

Preface

4

Any command-line input or output is written as follows:

> install.packages("package_name")

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "From the Packages
menu in the toolbar, select Install package(s)...."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.PacktPub.com
http://www.packtpub.com/support

Preface

5

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/3132OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

https://www.packtpub.com/sites/default/files/downloads/3132OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/3132OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Starting Bioinformatics

with R

In this chapter, we will cover the following recipes:

ff Getting started and installing libraries

ff Reading and writing data

ff Filtering and subsetting data

ff Basic statistical operations on data

ff Generating probability distributions

ff Performing statistical tests on data

ff Visualizing data

ff Working with PubMed in R

ff Retrieving data from BioMart

Introduction
Recent developments in molecular biology, such as high throughput array technology or
sequencing technology, are leading to an exponential increase in the volume of data that
is being generated. Bioinformatics aims to get an insight into biological functioning and the
organization of a living system riding on this data. The enormous data generated needs
robust statistical handling, which in turn requires a sound computational statistics tool
and environment. R provides just that kind of environment. It is a free tool with a large
community and leverages the analysis of data via its huge package libraries that support
various analysis operations.

Starting Bioinformatics with R

8

Before we start dealing with bioinformatics, this chapter lays the groundwork for upcoming
chapters. We first make sure that you know how to install R, followed by a few sections
on the basics of R that will rejuvenate and churn up your memories and knowledge on R
programming that we assume you already have. This part of the book will mostly introduce
you to certain functions in R that will be useful in the upcoming chapters, without getting
into the technical details. The latter part of the chapter (the last two recipes) will introduce
Bioinformatics with respect to literature searching and data retrieval in the biomedical arena.
Here, we will also discuss the technical details of the R programs used.

Getting started and installing libraries
Libraries in R are packages that have functions written to serve specific purposes; these
include reading specific file formats in the case of a microarray datafile or fetching data from
certain databases, for example, GenBank (a sequence database). You must have these
libraries installed in the system as well as loaded in the R session in order to be able to use
them. They can be downloaded and installed from a specific repository or directly from a
local path. Two of the most popular repositories of R packages are Comprehensive R Archive
Network (CRAN) and Bioconductor. CRAN maintains and hosts identical, up-to-date versions
of code and documentation for R on its mirror sites. We can use the install.packages
function to install a package from CRAN that has many mirror locations. Bioconductor is
another repository of R and the associated tool with a focus on other tools for the analysis
of high throughput data. A detailed description on how to work with Bioconductor
(http://www.bioconductor.org) is covered in the next chapter.

This recipe aims to explain the steps involved in installing packages/libraries as well as local
files from these repositories.

Getting ready
To get started, the prerequisites are as follows:

ff You need an R application installed on your computer. For more details on the R
program and its installation, visit http://cran.r-project.org.

ff You need an Internet connection to install packages/libraries from web repositories
such as CRAN and Bioconductor.

http://www.bioconductor.org
http://cran.r-project.org

Chapter 1

9

How to do it…
The initialization of R depends on the operating system you are using. On Windows and Mac
OS platforms, just clicking on the program starts an R session, like any other application for
these systems. However, for Linux, R can be started by typing in R into the terminal (for all
Linux distributions, namely, Ubuntu, SUSE Debian, and Red Hat). Note that calling R via its
terminal or command line is also possible in Windows and Mac systems.

This book will mostly use Linux as the operating system; nevertheless, the differences will
be explained whenever required. The same commands can be used for all the platforms,
but the Linux-based R lacks the default graphical user interface (GUI) of R. At this point, it
is worth mentioning some of the code editors and integrated development environments
(IDEs) that can be used to work with R. Some popular IDEs for R include RStudio (http://
www.rstudio.com) and the Eclipse IDE (http://www.eclipse.org) with the StatET
package. To learn more about the StatET package, visit http://www.walware.de/goto/
statet. Some commonly used code editors are Emacs, Kate, Notepad++, and so on. The R
GUI in Windows and Mac has its own code editor that meets all the requirements.

Windows and Mac OS GUIs make installing packages pretty straightforward. Just follow the
ensuing steps:

1.	 From the Packages menu in the toolbar, select Install package(s)....

2.	 If this is the first time that you are installing a package during this session, R will ask
you to pick a mirror. A selection of the nearest mirror (geographically) is more feasible
for a faster download.

3.	 Click on the name of the package that you want to install and then on the OK button.

R downloads and installs the selected packages.

By default, R fetches packages from CRAN. However, you can
change this if necessary just by choosing Select repositories...
from the Packages menu. You are required to change the
default repository or switch the repository in case the desired
package is available in a different repository. Remember that a
change in the repository is different from a change in the mirror;
a mirror is the same repository at a different location.

http://www.rstudio.com
http://www.rstudio.com
http://www.eclipse.org
http://www.walware.de/goto/statet
http://www.walware.de/goto/statet

Starting Bioinformatics with R

10

The following screenshot shows how to set up a repository for a package installation
in the R GUI for Windows:

4.	 Install an R package in one of the following ways:

�� From a terminal, install it with the following simple command:
	 > install.packages("package_name")

�� From a local directory, install it by setting the repository to null as follows:
> install.packages("path/to/mypackage.tar.gz", repos = NULL,
type="source")

�� Another way to install packages in Unix (Linux) is without entering R (from the
source) itself. This can be achieved by entering the following command in the
shell terminal:

	 R CMD INSTALL path/to/mypackage.tar.gz

Chapter 1

11

5.	 To check the installed libraries/packages in R, type the following command:
> library()

6.	 To quit an R session, type in q() at the R prompt, and the session will ask whether
you want to save the session as a workspace image or not or whether you want to
cancel the quit command. Accordingly, you need to type in y, n, or c. In a Windows
or Mac OS, you can directly close the R program like any other application.

> q()

Save workspace image [y/n/c]: n

Downloading the example code
You can download the example code files for all Packt books
that you have purchased from your account at http://www.
packtpub.com. If you purchased this book from elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

How it works...
An R session can run as a GUI on a Windows or Mac OS platform (as shown in the following
screenshot). In the case of Linux, the R session starts in the same terminal. Nevertheless,
you can run R within the terminal in Windows as well as Mac OS:

The R GUI in Mac OS showing the command window (right), editor (top left), and plot window (bottom left)

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Starting Bioinformatics with R

12

The install.packages command asks the user to choose a mirror (usually the nearest) for
the repository. It also checks for the dependencies required for the package being installed,
provided we set the dependencies argument to TRUE. Then, it downloads the binaries
(Windows and Mac OS) for the package (and the dependencies, if required). This is followed
by its installation. The function also checks the compatibility of the package with R, as on
occasions, the library cannot be loaded or installed due to an incorrect version or missing
dependencies. In such cases, the installed packages are revoked. Installing from the source
is required in cases where you have to compile binaries for your own machine in terms of
the R version or so. The availability of binaries for the package makes installation easier for
naive users. The filenames of the package binaries have a .tgz/.zip extension. The value
of repos can be set to any remote source address for a specific remote source. On Windows,
however, the function is also encoded in terms of a GUI that graphically and interactively
shows the list of binary versions of the packages available for your R version. Nevertheless,
the command-line installation is also functional on the Windows version of R.

There's more...
A few libraries are loaded by default when an R session starts. To load a library in R, run the
following command:

> load(package_name)

Loading a package imports all the functions of this specific package into the R session. The
default packages in the session can be viewed using the following getOption command:

> getOption("defaultPackages")

The currently loaded libraries in a session can be seen with the following command:

> print(.packages())

An alternative for this is sessionInfo(), which provides version details as well.

All the installed packages can be displayed by running the library function as follows:

> library()

Besides all this, R has a comprehensive built-in help system. You can get help from R in a
number of ways. The Windows and Mac OS platforms offer help as a separate HTML page
(as shown in the following screenshot) and Linux offers similar help text in the running
terminal. The following is a list of options that can be used to seek help in R:

> help.start()
> help(sum) # Accesses help file for function sum
> ?sum # Searches the help files for function sum
> example(sum) # demonstrates the function with an example
> help.search("sum") # uses the argument character to search help files

Chapter 1

13

All of the previous functions provide help in a unique way. The help.start command is the
general command used to start the hypertext version of the R documentation. All the help files
related to the package can be checked with the following command:

> help(package="package_name")

The following screenshot shows an HTML help page for the sum function in R:

Reading and writing data
Before we start with analyzing any data, we must load it into our R workspace. This can
be done directly either by loading an external R object (typical file extensions are .rda or
.RData, but it is not limited to these extensions) or an internal R object for a package or a
TXT, CSV, or Excel file. This recipe explains the methods that can be used to read data from
a table or the .csv format and/or write similar files into an R session.

Starting Bioinformatics with R

14

Getting ready
We will use an iris dataset for this recipe, which is available with R Base packages.
The dataset bears quantified features of the morphologic variation of the three
related species of Iris flowers.

How to do it…
Perform the following steps to read and write functions in R:

1.	 Load internal R data (already available with a package or base R) using the following
data function:
> data(iris)

2.	 To learn more about iris data, check the help function in R using the following function:
> ?iris

3.	 Load external R data (conventionally saved as .rda or .RData, but not limited to
this) with the following load function:
> load(file="mydata.RData")

4.	 To save a data object, say, D, you can use the save function as follows:
> save(D, file="myData.RData")

5.	 To read the tabular data in the form of a .csv file with read.csv or read.table,
type the following command:
> mydata <- read.table("file.dat", header = TRUE, sep="\t", row.
names = 1)

> mydata <- read.csv("mydata.csv")

6.	 It is also possible to read an Excel file in R. You can achieve this with various
packages such as xlsx and gdata. The xlsx package requires Java settings, while
gdata is relatively simple. However, the xlsx package offers more functionalities,
such as read permissions for different sheets in a workbook and the newer versions
of Excel files. For this example, we will use the xlsx package. Use the read.xlsx
function to read an Excel file as follows:
> install.packages("xlsx", dependencies=TRUE)

> library(gdata)

> mydata <- read.xls("mydata.xls")

Chapter 1

15

7.	 To write these data frames or table objects into a CSV or table file, use the read.csv
or write.table function as follows:
> write.table(x, file = "myexcel.xls", append = FALSE, quote =
TRUE, sep = " ")

> write.csv(x, col.names = NA, sep = ",")

How it works…
The read.csv or write.csv commands take the filename in the current working
directory—if a complete path has not been specified—and based on the separators (usually
the sep argument), import the data frames (or export them in case of write commands).
To find out the current working directory, use the getwd() command. In order to change it
to your desired directory, use the setwd function as follows:

> setwd("path/to desired/directory")

The second argument header indicates whether or not the first row is a set of labels by taking
the Boolean values TRUE or FALSE. The read.csv function may not work in the case of
incomplete tables with the default argument fill. To overcome such issues, use the value,
TRUE for the fill argument. To learn more about optional arguments, take a look at the help
section of the read.table function. Both the functions (read.table and read.csv) can
use the headers (usually the first row) as column names and specify certain column numbers
as row names.

There's more…
To get further information about the loaded dataset, use the class function for the dataset
to get the type of dataset (object class). The data or object type in R can be of numerous
types. This is beyond the scope of the book. It is expected that the reader is acquainted with
these terms. Here, in the case of the iris data, the type is a data frame with 150 rows and
five columns (type the dim command with iris as the argument). A data frame class is
like a matrix but can accommodate objects of different types, such as character, numeric,
and factor, within it. You can take a look at the first or last few rows using the head or tail
functions (there are six rows by default) respectively, as follows:

> class(iris)

> dim(iris)

> head(iris)

> tail(iris)

Starting Bioinformatics with R

16

The following WriteXLS package allows us to write an object into an Excel file for the
x data object:

> install.packages(WriteXLS)

> library(WriteXLS)

> WriteXLS(x, ExcelFileName = "R.xls")

The package also allows us to write a list of data frames into the different sheets of an
Excel file. The WriteXLS function uses Perl in the background to carry out tasks. The sheet
argument can be set within the function and assigned the sheet number where you want
to write the data.

The save function in R is a standard way to save an object. However, the saveRDS
function offers an advantage as it doesn't save both the object and its name; it just saves a
representation of the object. As a result, the saved object can be loaded into a named object
within R that will be different from the name it had when it was originally serialized. Let's take
a look at the following example:

> saveRDS(myObj, "myObj.rds")

> myObj2 <- readRDS("myObj.rds")

> ls()

[1] "myObj" "myObj2"

Another package named data.table can be used to perform data reading at a faster speed,
which is especially suited for larger data. To know more about the package, visit the CRAN
page for the package at http://cran.r-project.org/web/packages/data.table/
index.html.

The foreign package (http://cran.r-project.org/web/packages/foreign/
index.html) is available to read/write data for other programs such as SPSS and SAS.

Filtering and subsetting data
The data that we read in our previous recipes exists in R as data frames. Data frames are
the primary structures of tabular data in R. By a tabular structure, we mean the row-column
format. The data we store in the columns of a data frame can be of various types, such as
numeric or factor. In this recipe, we will talk about some simple operations on data to extract
parts of these data frames, add a new chunk, or filter a part that satisfies certain conditions.

http://cran.r-project.org/web/packages/data.table/index.html
http://cran.r-project.org/web/packages/data.table/index.html
http://cran.r-project.org/web/packages/foreign/index.html
http://cran.r-project.org/web/packages/foreign/index.html

Chapter 1

17

Getting ready
The following items are needed for this recipe:

ff A data frame loaded to be modified or filtered in the R session (in our case,
the iris data)

ff Another set of data to be added to item 1 or a set of filters to be extracted from
item 1

How to do it…
Perform the following steps to filter and create a subset from a data frame:

1.	 Load the iris data as explained in the earlier recipe.

2.	 To extract the names of the species and corresponding sepal dimensions
(length and width), take a look at the structure of the data as follows:
> str(iris)
'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 …
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 …
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 …
 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 …
 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1
1 1 1 1 1 1 1 1 ...

3.	 To extract the relevant data to the myiris object, use the data.frame function that
creates a data frame with the defined columns as follows:
> myiris=data.frame(Sepal.Length=iris$Sepal.Length, Sepal.Width=
iris$Sepal.Width, Species= iris$Species)

4.	 Alternatively, extract the relevant columns or remove the irrelevant ones
(however, this style of subsetting should be avoided):
> myiris <- iris[,c(1,2,5)]

5.	 Instead of the two previous methods, you can also use the removal approach to
extract the data as follows:
> myiris <- iris[,-c(3,4)]

6.	 You can add to the data by adding a new column with cbind or a new row through
rbind (the rnorm function generates a random sample from a normal distribution
and will be discussed in detail in the next recipe):
> Stalk.Length <-c (rnorm(30,1,0.1),rnorm(30,1.3,0.1), rnorm(30,1.
5,0.1),rnorm(30,1.8,0.1), rnorm(30,2,0.1))
> myiris <- cbind(iris, Stalk.Length)

Starting Bioinformatics with R

18

7.	 Alternatively, you can do it in one step as follows:
> myiris$Stalk.Length = c(rnorm(30,1,0.1),rnorm(30,1.3,0.1), rnorm
(30,1.5,0.1),rnorm(30,1.8,0.1), rnorm(30,2,0.1))

8.	 Check the new data frame using the following commands:
> dim(myiris)
[1] 150 6
> colnames(myiris)# get column names for the data frame myiris

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
"Species" "Stalk.Length"

9.	 Use rbind as depicted:
newdat <- data.frame(Sepal.Length=10.1, Sepal.Width=0.5, Petal.
Length=2.5, Petal.Width=0.9, Species="myspecies")
> myiris <- rbind(iris, newdat)
> dim(myiris)
[1] 151 5
> myiris[151,]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
151 10.1 0.5 2.5 0.9 myspecies

10.	 Extract a part from the data frame, which meets certain conditions, in one of the
following ways:

�� One of the conditions is as follows:
	 > mynew.iris <- subset(myiris, Sepal.Length == 10.1)

�� An alternative condition is as follows:

	 > mynew.iris <- myiris[myiris$Sepal.Length == 10.1,]
	 > mynew.iris
	 Sepal.Length Sepal.Width Petal.Length Petal.Width
 Species
	 151 10.1 0.5 2.5 0.9
 myspecies
	 > mynew.iris <- subset(iris, Species == "setosa")

11.	 Check the following first row of the extracted data:

> mynew.iris[1,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

You can use any comparative operator as well as even combine more than one
condition with logical operators such as & (AND), | (OR), and ! (NOT), if required.

Chapter 1

19

How it works…
These functions use R indexing with named columns (the $ sign) or index numbers. The $
sign placed after the data followed by the column name specifies the data in that column. The
R indexing system for data frames is very simple, just like other scripting languages, and is
represented as [rows, columns]. You can represent several indices for rows and columns using
the c operator as implemented in the following example. A minus sign on the indices for rows/
columns removes these parts of the data. The rbind function used earlier combines the data
along the rows (row-wise), whereas cbind does the same along the columns (column-wise).

There's more…
Another way to select part of the data is using %in% operators with the data frame, as follows:

> mylength <- c(4,5,6,7,7.2)
> mynew.iris <- myiris[myiris[,1] %in% mylength,]

This selects all the rows from the data that meet the defined condition. The condition here
means that the value in column 1 of myiris is the same as (matching) any value in the
mylength vector. The extracted rows are then assigned to a new object, mynew.iris.

Basic statistical operations on data
R being a statistical programming environment has a number of built-in functionalities to
perform statistics on data. Nevertheless, some specific functionalities are either available in
packages or can easily be written. This section will introduce some basic built-in and useful
in-package options.

Getting ready
The only prerequisite for this recipe is the dataset that you want to work with. We use our iris
data in most of the recipes in this chapter.

How to do it…
The steps to perform a basic statistical operation on the data are listed here as follows:

1.	 R facilitates the computing of various kinds of statistical parameters, such as mean
standard deviation, with a simple function. This can be applied on individual vectors
or on an entire data frame as follows:
> summary(iris) # Shows a summary for each column for table data

 Sepal.Length Sepal.Width Petal.Length Petal.Width

www.allitebooks.com

http://www.allitebooks.org

Starting Bioinformatics with R

20

 Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100

 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300

 Median :5.800 Median :3.000 Median :4.350 Median :1.300

 Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

 Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

 Species

 setosa :50

 versicolor:50

 virginica :50

> mean(iris[,1])

[1] 5.843333

> sd(iris[,1])

[1] 0.8280661

2.	 The cor function allows for the computing of the correlation between two vectors
as follows:
> cor(iris[,1], iris[,2])

[1] -0.1175698

> cor(iris[,1], iris[,3])

[1] 0.8717538

3.	 To get the covariance for the data matrix, simply use the cov function as follows:
> Cov.mat <- cov(iris[,1:4])

> Cov.mat

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 0.6856935 -0.0424340 1.2743154 0.5162707

Sepal.Width -0.0424340 0.1899794 -0.3296564 -0.1216394

Petal.Length 1.2743154 -0.3296564 3.1162779 1.2956094

Petal.Width 0.5162707 -0.1216394 1.2956094 0.5810063

Chapter 1

21

How it works…
Most of the functions we saw in this recipe are part of basic R or generic functions. The
summary function in R provides the summaries of the input depending on the class of the
input. The function invokes various functions depending on the class of the input object.
The returned value also depends on the input object. For instance, if the input is a vector
that consists of numeric data, it will present the mean, median, minimum, maximum, and
quartiles for the data, whereas if the input is tabular (numeric) data, it will give similar
computations for each column. We will use the summary function in upcoming chapters
for different types of input objects.

The functions accept the data as input and simply compute all these statistical scores on
them, displaying them as vector, list, or data frame depending on the input and the function.
For most of these functions, we have the possibility of using the na.rm argument. This
empowers the user to work with missing data. If we have missing values (called NA in R) in our
data, we can set the na.rm argument to TRUE, and the computation will be done only based
on non-NA values. Take a look at the following chunk for an example:

> a <- c(1:4, NA, 6)

> mean(a) # returns NA

[1] NA

> mean(a, na.rm=TRUE)

[1] 3.2

We see here that in the case of missing values, the mean function returns NA by default as it
does not know how to handle the missing value. Setting na.rm to TRUE actually computes the
mean of five numbers (1, 2, 3, 4, and 6) in place of 6 (1, 2, 3, 4, NA, and 6),
returning 3.2.

To compute the correlation between the sepal length and sepal width in our iris data, we
simply use the cor function with the two columns (sepal length and sepal width) as the
arguments for the function. We can compute the different types of correlation coefficients,
namely Pearson, Spearman, Kendall, and so on, by specifying the apt value for the method
arguments in the function. For more details, refer to the help (?cor) function.

Starting Bioinformatics with R

22

Generating probability distributions
Before we talk about anything in this section, try the ?Distributions function in your R
terminal (console). You will see that a help page consisting of different probability distributions
opens up. These are part of the base package of R. You can generate all these distributions
without the aid of additional packages. Some interesting distributions are listed in the
following table. Other distributions, for example, multivariate normal distribution (MVN),
can be generated by the use of external packages (MASS packages for MVN). Most of
these functions follow the same syntax, so if you get used to one, others can be achieved
in a similar fashion.

In addition to this simple process, you can generate different aspects of the distribution just
by adding some prefixes.

How to do it…
The following are the steps to generate probability distributions:

1.	 To generate 100 instances of normally distributed data with a mean equal to 1 and
standard deviation equal to 0.1, use the following command:
> n.data <- rnorm(n=100, mean=1, sd=0.1)

2.	 Plot the histogram to observe the distribution as follows:
> hist(n.data)

3.	 Check the density of the distribution and observe the shape by typing the
following command:
> plot(density(n.data))

Do you see the bell shape in this plot?

4.	 To identify the corresponding parameters for other prefixes, use the following help
file example:
> ?pnorm

The following table depicts the functions that deal with various statistical distributions in R
(R Base packages only):

Distribution Probability Quantile Density Random
Beta pbeta qbeta dbeta rbeta

Binomial pbinom qbinom dbinom rbinom

Cauchy pcauchy qcauchy dcauchy rcauchy

Chi-Square pchisq qchisq dchisq rchisq

Chapter 1

23

Distribution Probability Quantile Density Random
Exponential pexp qexp dexp rexp

F pf qf df rf

Gamma pgamma qgamma dgamma rgamma

Geometric pgeom qgeom dgeom rgeom

Hypergeometric phyper qhyper dhyper rhyper

Logistic plogis qlogis dlogis rlogis

Log Normal plnorm qlnorm dlnorm rlnorm

Negative Binomial pnbinom qnbinom dnbinom rnbinom

Normal pnorm qnorm dnorm rnorm

Poisson ppois qpois dpois rpois

Student t pt qt dt rt

Studentized Range ptukey qtukey dtukey rtukey

Uniform punif qunif dunif runif

How it works…
The rnorm function has three arguments: n (the number of instances you want to generate),
the desired mean of the distribution, and the desired standard deviation (sd) in the
distribution. The command thus generates a vector of length n, whose mean and standard
deviations are as defined by you. If you look closely at the functions described in the table,
you can figure out a pattern. The prefixes p, q, d, and r are added to every distribution name
to generate probability, quintiles, density, and random samples, respectively.

There's more…
To learn more about statistical distribution, visit the Wolfram page at
http://www.wolframalpha.com/examples/StatisticalDistributions.html.

Performing statistical tests on data
Statistical tests are performed to assess the significance of results in research or application
and assist in making quantitative decisions. The idea is to determine whether there is
enough evidence to reject a conjecture about the results. In-built functions in R allow
several such tests on data. The choice of test depends on the data and the question being
asked. To illustrate, when we need to compare a group against a hypothetical value and our
measurements follow the Gaussian distribution, we can use a one-sample t-test. However, if
we have two paired groups (both measurements that follow the Gaussian distribution) being
compared, we can use a paired t-test. R has built-in functions to carry out such tests, and in
this recipe, we will try out some of these.

http://www.wolframalpha.com/examples/StatisticalDistributions.html

Starting Bioinformatics with R

24

How to do it…
Use the following steps to perform a statistical test on your data:

1.	 To do a t-test, load your data (in our case, it is the sleep data) as follows:
> data(sleep)

2.	 To perform the two-sided, unpaired t-test on the first and second columns (the values
for the two conditions), type the following commands:
> test <- t.test(sleep[,1]~sleep[,2])

> test

Welch Two Sample t-test

data: sleep[, 1] by sleep[, 2]

t = -1.8608, df = 17.776, p-value = 0.07939

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.3654832 0.2054832

sample estimates:

mean in group 1 mean in group 2

0.75 2.33

3.	 Create a contingency table as follows:
> cont <- matrix(c(14, 33, 7, 3), ncol = 2)

> cont

[,1] [,2]

[1,] 14 7

[2,] 33 3

4.	 Create a table that represents two types of cars, namely, sedan and convertible
(columns) and two genders, male and female, and a count of these that own the
types of cars along the rows. Thus, you have the following output:
> colnames(cont) <- c("Sedan", "Convertible")

> rownames(cont) <- c("Male", "Female")

> cont

Sedan Convertible

Male 14 7

Female 33 3

Chapter 1

25

5.	 In order to find the car type and gender, carry out a Chi-square test based on this
contingency table as follows:
> test <- chisq.test(as.table(cont))

> test

Pearson's Chi-squared test with Yates' continuity correction

data: as.table(cont)

X-squared = 4.1324, df = 1, p-value = 0.04207

6.	 For a Wilcoxon signed-rank test, first create a set of vectors containing observations
to be tested as x and y, as shown in the following commands:
> x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)

> y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

7.	 This is simply followed by a command that you need to execute to run the Wilcoxon
signed-rank test as follows:
> test <- wilcox.test(x, y, paired = TRUE, alternative =
"greater")

8.	 To look at the contents of the object test, check the structures as follows and look at
the specific values of the components:
> str(test)

> test$p.value

How it works…
The t-test (in our case, it is two sample t-tests) computes how the calculated mean may
deviate from the real mean by chance. Here, we use the sleep data that already exists in R.
This sleep data shows the effect of two drugs in terms of an increase in the hours of sleep
compared to the sleep data of 10 control patients. The result is a list that consists of nine
elements, such as p-value, confidence interval, method, and mean estimates.

Chi-square statistics investigate whether the distributions of the categorical variables differ
from one another. It is commonly used to compare observed data with the data that we
would expect to obtain according to a specific hypothesis. In this recipe, we considered the
scenario that one gender has a different preference for a car, which comes out to true at a
p-value cutoff at 0.05. We can also check the expected values for the Chi-square test with
the chisq.test(as.table(cont))$expected function.

The Wilcoxon test is used to compare two related samples or repeated measurements on
a single sample, to assess if their population mean ranks differ. It can be used to compare
the results of two methods. Let x and y be the performance results of two methods, and our
alternative hypothesis is that x is shifted to the right of y (greater). The p-value returned by the
test facilitates the acceptance or rejection of the null hypothesis.

Starting Bioinformatics with R

26

There's more…
There are certain other tests, such as the permutation test, Kolmogorov-Smirnov test, and
so on, that can be done with R using different functions for appropriate datasets. A few more
tests will be discussed in later chapters. To learn more about statistical tests, you can refer to
a brief tutorial at http://udel.edu/~mcdonald/statbigchart.html.

Visualizing data
Data is more intuitive to comprehend if visualized in a graphical format rather than in the form
of a table, matrix, text, or numbers. For example, if we want to visualize how the sepal length
in the Iris flower varies with the petal length, we can plot along the x and y axes, respectively,
and visualize the trend or even the correlation (scatter plot).In this recipe, we look at some
common way of visualizing data in R and plotting functions with R Base graphics functions.
We also discuss the basic plotting functions. These plotting functions can be manipulated in
many ways, but discussing them is beyond the scope of this book. To get to know more about
all the possible arguments, refer to the corresponding help files.

Getting ready
The only item we need ready here is the dataset (in this recipe, we use the iris dataset).

How to do it…
The following are the steps for some basic graph visualizations in R:

1.	 To create a scatter plot, start with your iris dataset. What you want to see is the
variation of the sepal length and petal length. You need a plot of the sepal length
(column 1) along the y axis and the petal length (column 4) along the x axis, as
shown in the following commands:
> sl <- iris[,1]

> pl <- iris[,4]

> plot(x=pl, y=sl, xlab="Petal length", ylab="Sepal length",
col="black", main="Varition of sepal length with petal length")

Or alternatively, we can use the following command:

> plot(with(iris, plot(x = Sepal.Length, y=Petal.Length))

2.	 To create a boxplot for the data, use the boxplot function in the following way:
> boxplot(Sepal.Length~Species, data=iris, ylab="sepal length",
xlab="Species", main="Sepal length for different species")

http://udel.edu/~mcdonald/statbigchart.html

Chapter 1

27

3.	 Plotting a line diagram, however, is the same as plotting a scatter plot; just introduce
another argument type into it and set it to 'l'. However, we use a different,
self-created dataset to depict this as follows:
> genex <- c(rnorm(100, 1, 0.1), rnorm(100, 2, 0.1), rnorm(50, 3,
0.1))

> plot(x=genex, xlim=c(1,5), type='l', main="line diagram")

Plotting in R: (A) Scatter plot, (B) Boxplot, (C) Line diagram, and (D) Histogram

Starting Bioinformatics with R

28

4.	 Histograms can used to visualize the density of the data and the frequency of every
bin/category. Plotting histograms in R is pretty simple; use the following commands:
> x <- rnorm(1000, 3, 0.02)

> hist(x)

How it works…
The plot function extracts the relevant data from the original dataset with the column
numbers (sl and pl, respectively, for the sepal length and petal length) and then plots a
scatter plot. The plot function then plots the sepal length along the y axis and the petal
length along the x axis. The axis labels can be assigned with the argument for xlab and
ylab, respectively, and the plot can be given a title with the main argument. The plot (in the
A section of the previous screenshot) thus shows that the two variables follow a more or less
positive correlation.

Scatter plots are not useful if one has to look for a trend, that is, for how a value is evolving
along the indices, which can prove that it is time for a dynamic process. For example, the
expression of a gene along time or along the concentration of a drug. A line diagram is a
better way to show this. Here, we first generate a set of 250 artificial values and their indices,
which are the values on the x scale. For these values, we assume a normal distribution,
as we saw in the previous section. This is then plotted (as shown in the B section of the
previous screenshot). It is possible to add more lines to the same plot using the line
function as follows:

> lines(density(x), col="red")

A boxplot can be an interesting visualization if we want to compare two categories or groups
in terms of their attributes that are measured in terms of numbers. They depict groups of
numerical data through their quartiles. To illustrate, let us consider the iris data again. We
have the name of the species in this data (column 5). Now, we want to compare the sepal
length of these species with each other, such as which one has the longest sepal and how the
sepal length varies within and between species. The data table has all this information, but it
is not readily observable.

The boxplot function has the first argument that sorts out what to plot and what to plot
against. This can be given in terms of the column names of the data frame that is the second
argument. Other arguments are the same as other plot functions. The resulting plot (as
shown in the C section of the previous screenshot,) shows three boxes along the x axis for the
three species in our data. Each of these boxes depicts the range quartiles and median of the
corresponding sepal lengths.

The histogram (the D section of the previous screenshot) describes the distribution of data.
As we see, the data is normally distributed with a mean of 3; therefore, the plot displays a bell
shape with a peak of around 3. To see the bell shape, try the plot(density(x)) function.

Chapter 1

29

There's more…
You can use the plot function for an entire data frame (try doing this for the iris dataset,
plot(iris)). You will observe a set of pair-wise plots like a matrix. Beside this, there are
many other packages available in R for different high-quality plots such as ggplot2, and plotrix.
They will be discussed in the next chapters when needed. This section was just an attempt to
introduce the simple plot functions in R.

Working with PubMed in R
Research begins with a survey of the related works in the field. This can be achieved by
looking into the literature available. PubMed is a service that provides the option to look
into the literature. The service has been provided by NCBI-Entrez databases (shown in the
following screenshot) and is available at https://www.ncbi.nlm.nih.gov. R provides an
interface to look into the various aspects of the literature via PubMed. This section provides a
protocol to handle this sort of interface. This recipe allows the searching, storing, and mining,
and quantification meta-analysis within the R program itself, without the need to visit the
PubMed page every time, thus aiding in analysis automation. The following screenshot
shows the PubMed web page for queries and retrieval:

https://www.ncbi.nlm.nih.gov

Starting Bioinformatics with R

30

Getting ready
It's time to get practical with what we learned so far. For all the sessions throughout this
book, we will use the Linux terminal. Let's start at the point where it begins, by getting into
the bibliographic data. The RISmed package facilitates the analyses of NCBI database
content, written and maintained by Kovalchik. The following are the requirements to work
with PubMed in R:

ff An Internet connection to access the PubMed system

ff An RISmed package installed and loaded in the R session; this can be done easily
with the following chunk of code:
> install.packages("RISmed")

> library(RISmed)

To look into the various functionalities, you can use the following help function of R:

> help(package="RISmed")

How to do it…
The following steps illustrate how to search and retrieve literature from PubMed using R:

1.	 Load the default data in RISmed. The default data available with the package is for
myeloma. Start by loading this data as follows:
> data(myeloma)

2.	 Now, find the myeloma object that was loaded in your R workspace with the ls()
command as follows (note that you might see some other objects as well besides
the myeloma):
> ls()

[1]myeloma

3.	 To see the contents of the myeloma object, use the following command:
> str(myeloma)

4.	 Take a look at each element of the data using RISmed, which has the following
specific functions:
> AbstractText(myeloma)

> Author(myeloma)

> ArticleTitle(myeloma)

> Title(myeloma)

> PMID(myeloma)

Chapter 1

31

5.	 Create your customized query. What we had till now for RISmed was based on a
precompiled data object for the package. It will be interesting to discuss how we can
create a similar object (for instance, cancer) with a query of our choice. The function
that facilitates the data retrieval and creation of a RISmed class is as follows:
> cancer <- EUtilsSummary("cancer[ti]", type="research",
db="pubmed")

> class(cancer)

How it works…
Before we go deep into the functioning of the package, it's important to know about
E-utilities. RISmed uses E-utilities to retrieve data from the Entrez system. In this chapter,
however, our focus is on bibliographic data. E-utilities provide an interface to the Entrez
query and database system. It covers a range of data, including bibliographic, sequences,
and structural data managed by the NCBI. Its functioning is very simple; it sends the query
through a URL to the Entrez system and retrieves the results for the query. This enables
the use of any programming language, such as Perl, Python, or C++, to fetch the XML
response and interpret it. There are several tools that act as a part of E-utilities (for details,
visit http://www.ncbi.nlm.nih.gov/books/NBK25497/). However, for us, Efetch is
interesting. It responds to an input of unique IDs (for example, PMIDs) for a database (in our
case, PubMed) with corresponding data records. The Efetch utility is a data retrieval utility that
fetches data from the Entrez databases in the requested format, with the input in the form of
corresponding IDs. The RISmed package uses it to retrieve literature data.

The first argument of the EUtilsSummary function is the query term, and in the square
brackets, we have the field of the query term (in our case, [ti] is for title, [au] is for author,
and so on). The second argument is the E-utility type and the third one refers to the database
(in our case, PubMed). The myeloma object of the RISmed class has information about the
query that was made to fetch the object from PubMed, the PMIDs of the search hits, and
the details of the articles, such as the year of publication, author, titles, abstract and journal
details, and associated mesh terms.

All these commands of the package used with/for myeloma return a list of lengths equal to
the number of hits in the data object (in our case, the myeloma object). Note that the Title
function returns the title of the journal or publisher and not the title of the article, which can
be seen with ArticleTitle.

Now, let's take a look at the structure of the cancer object that we created:

> str(cancer) # As in August 2013

Formal class 'EUtilsSummary' [package "RISmed"] with 5 slots

..@ count : num 575447

..@ retmax : num 1000

..@ retstart : num 0

http://www.ncbi.nlm.nih.gov/books/NBK25497/

Starting Bioinformatics with R

32

..@ id : chr [1:1000] "23901442" "23901427" "23901357" "23901352" ...

..@ querytranslation: chr "cancer[ti]"

> cancer@id[1:10]

[1] "23905205" "23905156" "23905117" "23905066" "23905042" "23905012"

[7] "23904955" "23904921" "23904880" "23904859"

The cancer object consists of five slots: count, retmax, retstart, id, and
querytranslation. These variables are assigned as the subclasses of the cancer
object. Therefore, in case we need to get the PMIDs of the retrieval, we can do so by
getting values for the id component of the cancer object with the following code:

> cancer@id

One important point that should be noted is that this query retrieved only the first 1000 hits
out of 575,447 (the default value for retmax). Furthermore, one should follow the policies
for its uses to avoid overloading the E-Utilities server. For further details, read the policy at
http://www.ncbi.nlm.nih.gov/books/NBK25497/.

Now, we are left with the creation of a RISmed object (the same as the myeloma object).
To get this, we use the following EUtilsGet function:

> cancer.ris <- EUtilsGet(cancer, type="efetch", db="pubmed")

> class(cancer.ris)

This new object, cancer.ris, can be used to acquire further details as explained earlier.

For more operations on PubMed, refer to the help file of the RISmed package.

A drawback of the RISmed package is that, in some cases, due to the incorrect parsing of
text, the values returned could be inaccurate. A more detailed explanation of this package
can be found by seeking help for the package as described earlier. To get to know more about
the RISmed package, refer to the CRAN package home page at http://cran.r-project.
org/web/packages/RISmed/RISmed.pdf.

Some interesting applications on the RISmed package are available on the R Psychologist
page at http://rpsychologist.com/an-r-script-to-automatically-look-at-
pubmed-citation-counts-by-year-of-publication/.

http://www.ncbi.nlm.nih.gov/books/NBK25497/
http://cran.r-project.org/web/packages/RISmed/RISmed.pdf
http://cran.r-project.org/web/packages/RISmed/RISmed.pdf
http://rpsychologist.com/an-r-script-to-automatically-look-at-pubmed-citation-counts-by-year-of-publication/
http://rpsychologist.com/an-r-script-to-automatically-look-at-pubmed-citation-counts-by-year-of-publication/

Chapter 1

33

Retrieving data from BioMart
So far, we discussed bibliographic data retrieval from PubMed. R also allows the handling of
other kinds of data. Here, we introduce another R package called biomaRt, developed by
Durinck and co-workers. It provides an interface to a collection of databases implementing
the BioMart suite (http://www.biomart.org). It enables the retrieval of data from a
range of BioMart databases, such as Ensembl (genes and genomes), Uniprot (information on
proteins), HGNC (gene nomenclature), Gramene (plant functional genomics), and Wormbase
(information on C. elegans and other nematodes).

Getting ready
The following are the prerequisites:

ff Install and load the biomaRt library

ff Create the data ID or names you want to retrieve (usually gene names—we use
BRCA1 for a demo in this recipe), such as the ID or the chromosomal location

How to do it…
Retrieving the gene ID from HGNC involves the following steps, where we first set the mart
(data source), followed by the retrieval of genes from this mart:

1.	 Before you start using biomaRt, install the package and load it into the R session.
The package can directly be installed from Bioconductor with the following script.
We discuss more about Bioconductor in the next chapter; for the time being, take
a look at the following installation:
> source("http://bioconductor.org/biocLite.R")

> biocLite("biomaRt")

> library(biomaRt)

2.	 Select the appropriate mart for retrieval by defining the right database for your query.
Here, you will look for human ensembl genes; hence, run the useMart function
as follows:
> mart <- useMart(biomart = "ensembl", dataset = "hsapiens_gene_
ensembl")

3.	 Now, you will get the list of genes from the ensembl data, which you opted for earlier,
as follows:
> my_results <- getBM(attributes = c("hgnc_symbol"), mart = mart)

http://www.biomart.org

Starting Bioinformatics with R

34

4.	 You can then sample a few genes, say 50, from your retrieved genes as follows:
> N <- 50

> mysample <- sample(my_results$hgnc_symbol,N)

> head(mysample)

[1] "AHSG" "PLXNA4" "SYT12" "COX6CP8" "RFK" "POLR2LP"

5.	 The biomaRt package can also be used to retrieve sequences from the databases
for a gene, namely "BRCA1", as shown in the following commands:
> seq <- getSequence(id="BRCA1", type="hgnc_symbol",
seqType="peptide", mart = mart)

> show(seq)

6.	 To retrieve a sequence that specifies the chromosome position, the range of the
position (upstream and downstream from a site) can be used as well, as follows:
> seq2 <- getSequence(id="ENST00000520540", type='ensembl_
transcript_id',seqType='gene_flank',upstream = 30,mart = mart)

7.	 To see the sequence, use the show function as follows:
> show(seq2)

gene_flank ensembl_transcript_id

1 AATGAAAAGAGGTCTGCCCGAGCGTGCGAC ENST00000520540

How it works…
The source function in R loads a new set of functions in the source file into the R-session;
do not confuse it with a package. Furthermore, during installation, R might ask you to update
the Bioconductor libraries that were already installed. You can choose these libraries as per
your requirements.

The biomaRt package works with the BioMart database as described earlier. It first
selects the mart of interest (that is why, we have to select our mart for a specific query).
Then, this mart is used to search for the query on the BioMart database. The results are
then returned and formatted for the return value. The package thus provides an interface
for the BioMart system.

Thus, the biomaRt package can search the database and fetch a variety of biological data.
Although the data can be downloaded in a conventional way from its respective database,
biomaRt can be used to bring the element of automation into your workflow for bulk and
batch processing.

Chapter 1

35

There's more…
The biomaRt package can also be used to convert one gene ID to other types of IDs. Here,
we illustrate the conversion of RefSeq IDs to gene symbols with the following chunk of code:

> mart <- useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")

> geneList <- read.csv("mylist.csv")

> results <- getBM(attributes = c("refseq_mrna", "hgnc_symbol"), filters
= "refseq_mrna", values = geneList[,2], mart = mart)

> results

 refseq_mrna hgnc_symbol

1 NM_000546 TP53

2 NM_001271003 TFPI2

3 NM_004402 DFFB

4 NM_005359 SMAD4

5 NM_018198 DNAJC11

6 NM_023018 NADK

7 NM_033467 MMEL1

8 NM_178545 TMEM52

Though biomaRt enables the conversion of the ID for biological entities for most of our work,
in this book, we also use some other packages that are handier and will be illustrated in the
next chapter.

See also
ff The BioMart home page at http://www.biomart.org to know more about BioMart

ff The BioMart: driving a paradigm change in biological data management article by
Arek Kasprzyk (http://database.oxfordjournals.org/content/2011/
bar049.full)

ff The BioMart and Bioconductor: a powerful link between biological databases and
microarray data analysis article by Durinck and others (http://bioinformatics.
oxfordjournals.org/content/21/16/3439.long), which discusses the
details of the biomaRt package

http://www.biomart.org
http://database.oxfordjournals.org/content/2011/bar049.full
http://database.oxfordjournals.org/content/2011/bar049.full
http://bioinformatics.oxfordjournals.org/content/21/16/3439.long
http://bioinformatics.oxfordjournals.org/content/21/16/3439.long

2
Introduction to

Bioconductor

In this chapter, we will cover the following recipes:

ff Installing packages from Bioconductor

ff Handling annotation databases in R

ff Performing ID conversions

ff The KEGG annotation of genes

ff The GO annotation of genes

ff The GO enrichment of genes

ff The KEGG enrichment of genes

ff Bioconductor in the cloud

Introduction
Bioconductor is an open source project with a collection of R packages for the analysis and
comprehension of high-throughput genomic data. It has tools and packages for microarray
preprocessing, experimental design, integrative and reproducible approaches to bioinformatics
tasks, and so on. The Bioconductor website (http://www.bioconductor.org) provides
details on installation, package repository, help, and other documentation.

http://www.bioconductor.org

Introduction to Bioconductor

38

The following screenshot shows the Bioconductor web page with a red box that indicates an
important information tab that tells you more about the workflows and other help pages:

This chapter presents some recipes to help you solve bioinformatics problems specifically
related to metadata in biology with the packages available in Bioconductor.

Installing packages from Bioconductor
Bioconductor, as mentioned before, has a collection of packages and software that serve
different purposes in analyzing biological data or other objectives in bioinformatics. In order
to be able to use them, you must install and load them into their R environment or R session.
In this recipe, we will talk about these installations.

Getting ready
The following are the prerequisites for the recipe:

ff An R session that is running

ff An Internet connection to reach a remote Bioconductor repository

Chapter 2

39

How to do it…
To install Bioconductor libraries in R, we perform the following steps:

1.	 Use the biocLite.R script to install Bioconductor libraries (Version 2.12).
To install core libraries, type the following commands in an R command window:
> source("http://bioconductor.org/biocLite.R")

> biocLite()

2.	 Install specific libraries, for example, GenomicFeatures and AnnotationDbi
with the following command:
> biocLite(c("GenomicFeatures", "AnnotationDbi"))

3.	 To install a package from its source, simply type the following command:
> biocLite("IRanges", type="source")

4.	 To look into the code for biocLite, type the following commands:
> biocLite
function (pkgs = c("Biobase", "IRanges", "AnnotationDbi"),
suppressUpdates = FALSE, suppressAutoUpdate = FALSE, siteRepos =
character(), ask = TRUE, ...)

How it works…
A web accessible installer script is called biocLite. It gets loaded into the R session
on specifying the source Bioconductor repository. The biocLite function checks for the
availability of the instructed libraries in the repository and installs or updates it. It ensures
that the libraries from the appropriate version of Bioconductor are installed and that all of
them remain up to date. The function accepts attributes such as pkgs for the names of
packages (as a vector of package names) and updates the existing package option.

Setting the source for biocLite loads the BiocInstaller package and therefore, there
is no need to load the library again. In order to change the default Bioconductor and CRAN
mirrors, you can simply use the following functions:

> chooseBioCmirror()
> chooseCRANmirror()

Installing the BiocInstaller package from a source is necessary in cases where you need
to get binaries that are suitable for your version of R.

In our case, we installed two libraries, GenomicFeatures and AnnotationDbi, from
Bioconductor. The GenomicFeatures library is for transcript-centric annotations, whereas
the AnnotationDbi library provides an interface and database connection functions to
annotate data packages.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Bioconductor

40

There's more...
You can use the setRepositories() function to choose package repositories interactively.
This function without any arguments will give you the options of the package repositories
that you can choose from; otherwise, we can set a repository of our choice by specifying an
appropriate value for the addURLs argument. For details, type ?setRepositories in your
R terminal or console.

The biocLite function can be instructed to use the CRAN repository too. For further
information regarding the functionalities of biocLite, use the help file as follows:

> ?biocLite

We can upgrade the installed Bioconductor libraries with the
biocLite("BiocUpgrade") function. Furthermore, whenever we
install a new Bioconductor library, the session will ask for the installation
of all the available updates (for the installed libraries); at this point, we
can choose to update or not according to our convenience. However,
we can also set the suppressUpdates argument accordingly while
running the biocLite function. For details, type ?biocLite.

Handling annotation databases in R
While working with high-throughput data, for example, array data, we deal with probes.
In order to really understand the data, we need a gene level. This section explains and
presents the methods that can be used to perform such a mapping from probe IDs to the
genes on a human Affymetrix data.

Getting ready
The prerequisites for this recipe are as follows:

ff Prerequisite packages such as Biobase and annotate can be installed from
Bioconductor as explained in the previous recipe

ff An R session with Bioconductor basic packages should be installed

ff A list of genes to be annotated

Chapter 2

41

How to do it…
To annotate our data, perform the following steps:

1.	 First install the annotation data for the chip (Affymetrix Human Genome U133) from
Bioconductor and load it in the R session as follows:
> source("http://Bioconductor.org/biocLite.R")

> biocLite("hgu133a.db")

> library("hgu133a.db")

2.	 Now, we must assign the Entrez IDs from the database to a list for mapping purposes.
This creates an Entrez ID map for the probe in the chip as follows:
> myMap <- hgu133aENTREZID

3.	 Then, we get the mapped probes using the keys in the assigned database as a list
with the following commands:
> mapped_probes <- mappedkeys(myMap)

4.	 Finally, we can retrieve the Entrez IDs of the probes that of interest (in our case,
we take the first five probes) as follows:
> MyEntrez <- as.list(myMap[mapped_probes[1:5]])

5.	 The IDs can then be fetched by accessing the respective indices of the list as follows:
> mylength=3 # for entire list mylength=length(MyEntrez)

for(i in 1:mylength){

MyEntrez[[i]]

}

Make sure that mylength is less than length(MyEntrez) to avoid the occurrence
of an error while running the code.

How it works…
The Biobase package contains standardized data structures to represent genomic data.
The annotate package provides interface functions for getting data out of specific metadata
libraries in Bioconductor as well as functions to query different web services. The chip
annotation package for Affymetrix Human Genome U133 Set is hgu133a.db. It contains
mappings between an Affymetrix's identifiers and accessions. To check the contents of this
package, use the ls command as follows:

> ls("package:hgu133a.db")

Introduction to Bioconductor

42

This gives a list of 36 different objects within the package. Most of these database packages
have such objects containing mappings of the identifiers to different IDs including gene
symbols, Entrez identifiers, RefSeq IDs, and so on.

The hgu133aENTREZID object provides mappings of manufacturer (Affymetrix) identifiers to
a vector of Entrez gene identifiers. The mappedkeys function gets the probe identifiers that
are mapped to an Entrez gene ID as an object and later the selected IDs can be extracted
from this object (in our case, the first one).

There's more…
R and Bioconductor provide various databases for the annotation of biological entities such
as a gene and proteins with certain attributes. These attributes range from gene ontology
(GO) to chip (microarray) annotations. There are several other kinds of mappings available
with this package, and every other mapping is available for these annotation packages.
The ls("package:<package_name>") command gives an overview of all such possible
mappings in any package.

To know more about these annotation packages, visit the Bioconductor web page at
http://www.Bioconductor.org/packages/release/data/annotation/.

Performing ID conversions
A common task when analyzing data in bioinformatics is the conversion of IDs and gene
symbols for proper representation and visualization. The previous recipe talked about such
a mapping. However, it may not always be related to a certain chip type or manufacturer's
ID. This recipe presents an example conversion of Entrez gene IDs to gene symbols and
vice versa.

Getting ready
The prerequisites for the recipe are as follows:

ff An R session with the AnnotationDbi package loaded in the session

ff A list of gene symbols to be converted to Entrez IDs

http://www.Bioconductor.org/packages/release/data/annotation/

Chapter 2

43

How to do it…
The task first requires you to load the relevant mapping database (names starting with org
and ending with .db with a two letter acronym for the organism name in between). In this
recipe, we use the database for human, which is org.Hs.eg.db (Hs for Homo sapiens).

1.	 First, we need to install and load the org.Hs.eg.db package using biocLite
as follows:
> biocLite("org.Hs.eg.db")

> library(org.Hs.eg.db)

2.	 Now, we assign the genes of interest as Entrez gene IDs to a vector as follows:
> myEIDs <- c("1", "10", "100", "1000", "37690")

3.	 To get the gene symbols of these Entrez gene IDs, we use the mget function and the
org.Hs.egSYMBOL mapping function as follows:
> mySymbols <- mget(myEIDs, org.Hs.egSYMBOL, ifnotfound=NA)

4.	 The mySymbols list can be observed as a named vector with the unlist command
as follows:
> mySymbols <- unlist(mySymbols)

> mySymbols

1 10 100 1000 37690

"A1BG" "NAT2" "ADA" "CDH2" NA

5.	 In order to change the names back to Entrez IDs, we first select the informative
symbols (removing NA from our list) and then assign them to a vector as follows:
> y <- mySymbols[!is.na(mySymbols)]

6.	 Finally, we simply use another mapping function called org.Hs.egSYMBOL2EG in
the same manner that we used earlier by typing the following commands:
> myEIDs <- unlist(mget(mySymbols, org.Hs.egSYMBOL2EG,
ifnotfound=NA))

> myEID

A1BG NAT2 ADA CDH2

"1" "10" "100" "1000"

Introduction to Bioconductor

44

How it works…
Installing and loading the org.Hs.eg.db package brings the human Entrez annotation
data into the R session. Then, an org Entrez ID vector is created and assigned to an object.
The mget function is inherited from the AnnotationDbi package and allows you to
manipulate the Bimap object (see ?AnnotationDbi::mget for further details). The mget
function accepts a vector and the mapping function (in our case, org.Hs.egSYMBOL) to map
Entrez IDs to symbols, and org.Hs.SYMBOL2EG for the other way round. The ifnotfound
attribute for the mget function simply returns NA for the IDs that are not mapped in the
database. At the same time, multiple mapping is also possible, for example, a symbol
can be mapped to more than one Entrez identifier.

The mget function returns a named list object. The names are the same as the input vectors
(Entrez IDs or symbols). The unlist function simply presents the output as a named vector.

There's more…
There are various other kinds of mappings possible. To get to know more about these, enter
ls("package:org.Hs.eg.db"). For example, it is also possible to convert Entrez IDs to
RefSeq, unigene, and Ensembl IDs and vice versa with the ls("package:org.Hs.eg.
db") function.

Similar packages exist for different organisms such as yeast (Saccharomyces cerevisiae),
drosophila (Drosophila melanogaster), and arabidopsis (Arabidopsis thaliana).

The KEGG annotation of genes
Kyoto Encyclopedia of Genes and Genomes (KEGG) provides data resources of known
biological pathways. Annotating a gene or a set of genes/proteins with their respective
KEGG pathways gives us a clue about the biological role of the genes/proteins. This recipe
will explain an approach to showing the enzyme involved in the pathway via annotations
using the KEGG package in R.

Getting ready
We need the following prerequisites to start with this recipe:

ff An R session with an installed KEGG package

ff A list of genes to be annotated

Chapter 2

45

How to do it…
We can annotate the biomolecules with the corresponding KEGG pathways using the
following steps:

1.	 First, we need to install and load the KEGG library into our R session, as we have
been doing before, using the following commands:
> biocLite("KEGG.db")

> library(KEGG.db)

2.	 In the case that the list of genes we have are in the form of gene symbols, it is always
a good practice to convert them into official Entrez IDs as follows:
> myEID <- unlist(mget(y, org.Hs.SYMBOL2EG, ifnotfound=NA))

> myEID <- as.character(myEID)

3.	 These Entrez IDs can then be mapped onto the KEGG pathway identifiers by using the
following commands:
> kegg <- mget(as.character(myEID), KEGGEXTID2PATHID,
ifnotfound=list(NA))

4.	 Further more, in the same way, the retrieved pathway identifiers can be used to fetch
the pathway names as follows:
> myPathName <- unlist(mget(x, KEGGPATHID2NAME,
ifnotfound=list(NA)))

5.	 Another way to do this is to simply use the semantic information of the KEGG
knowledge base as follows:
> KEGGPATHID2NAME$"00140"

[1] "C21-Steroid hormone biosynthesis"

6.	 You can also retrieve the involved gene for a pathway in a similar way
(as at April 2014) by using the following command:
> KEGGPATHID2EXTID$hsa00140

[1] "1109" "1583" "1584" "1585" "1586" "1589" "3283" "3284"

[9] "3290" "3291" "6718"

7.	 For pathway information related to other organisms, the organism code for humans
(hsa) can be simply replaced with the code for the organism of choice (in our case,
sce for yeast) as follows:
> KEGGPATHID2EXTID$sce00072

[1] "YML126C" "YPL028W"

Introduction to Bioconductor

46

How it works…
The preceding function works in the same manner as the other annotation packages
explained earlier. However, as stated previously, the annotation is based on the indexes
of the database in the package, which in the case of this database can be mapped
with names as well. The KEGG pathways use an identifier system where the name
of an organism is embedded within the identifier. The letters refer to Homo sapiens'
KEGGPATHID2EXTID$hsa00140 function that converts the KEGG path ID to the
Entrez gene that is mapped to the pathway ID, hsa00140.

There's more…
The KEGGREST library can query the KEGG pathway database via the KEGG REST server for
all the genes, enzymes, compounds, and reactions that are involved in the interactions in the
desired pathway by using the following commands:

source("http://Bioconductor.org/biocLite.R")

biocLite("KEGGREST")

library(KEGGREST)

genes <- keggGet("hsa:1045")

To get to know more about the KEGG REST server, visit the KEGG API page at
http://www.kegg.jp/kegg/docs/keggapi.html. The details on the KEGG pathways
can be found in the KEGG for integration and interpretation of large-scale molecular data
sets article by Kanehisa and others (http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3245020/?report=reader).

The GO annotation of genes
GO provides a controlled vocabulary of terms to describe a gene product's characteristics via
their annotation. GO terms for biomolecules reflect what is currently known about a gene in
terms of function, physiology, and cellular location. Thus, GO terms provide a good description
of a dataset under study at the biological level. In this recipe, we will illustrate how to annotate
a set of genes with the associated GO terms.

Getting ready
The prerequisites for GO annotation are as follows:

ff An R session with an installed GO.db package

ff A list of genes to be annotated

http://www.kegg.jp/kegg/docs/keggapi.html
http://www.kegg.jp/kegg/docs/keggapi.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245020/?report=reader
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245020/?report=reader
http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.geneontology.org/GO.downloads.ontology.shtml

Chapter 2

47

How to do it…
To annotate a set of genes with GO terms, perform the following steps:

1.	 First, we need to load the annotation database library named org.Hs.eg.db into
our R session, as we have been doing before, by using the following command:
> library(org.Hs.eg.db)

2.	 We assume that the genes are in the form of Entrez gene IDs; otherwise, as explained
before, it's good to convert them as follows:
> myEIDs <- c("1", "10", "100")

3.	 We now use these keys to find the GO annotation for each of our genes as follows:
> myGO <- org.Hs.egGO[[myEIDs[1]]]

4.	 We can do this in one go for all the genes using the mget function as follows:
> myGO_All <- mget(myEIDs, org.Hs.egGO)

5.	 It is also possible to perform the mapping in the reverse manner, that is, from GO
term ID to Entrez genes as follows:
> GOgenes <- org.Hs.egGO2ALLEGS[["GO:0008150"]]

6.	 To get genes for all the input GO terms, we again use the mget function as follows:
> GOterm <- c("GO:0008150", "GO:0001909")

> GOgenes_All <- mget(GOterm, org.Hs.egGO2ALLEGS)

How it works…
This is again a simple case of database mapping as we have seen in the previous cases.
However, here the result of annotation is a list of all available GO terms for each input gene.
Each element of this list is another list (we may call it a sublist) that contains the following
three elements:

ff The GO term ID, named GOID.

ff Evidence for the annotation, named Evidence.

ff The GO category (depending on the availability of annotations) for the annotation
term and can be either Biological Process (BP), Molecular Function (MF),
or Cellular Components (CC). This element in the result is named Ontology.

The fifth and sixth steps simply return the Entrez IDs of all the genes that are annotated with
the query GO term as a vector.

Introduction to Bioconductor

48

There's more…
Another database package named GO.db can provide the mappings between GO identifiers
and their respective terms. It can be installed from Bioconductor as any other package. To do
the mappings, one needs a list of GO term IDs and keywords for each slot as follows:

> biocLite(GO.db)

> library(GO.db)

if(length(xx) > 0){

myGO =list(GOID(xx[[1]]), Term(xx[[1]]) , Synonym(xx[[1]]) ,
Secondary(xx[[1]]), Definition(xx[[1]]) , Ontology(xx[[1]]))

}

myGO

See also
ff The Gene Ontology: tool for the unification of biology article by the Gene Ontology

Consortium(http://www.geneontology.org/GO_nature_genetics_2000.
pdf), which provides detailed information on the Gene Ontology project

ff The Gene Ontology project's home page (http://www.geneontology.org)

ff The Bioconductor page at http://www.bioconductor.org/packages/2.13/
data/annotation/html/GO.db.html, which provides more information on the
GO.db package

The GO enrichment of genes
Once we have a set of genes/proteins in the required format, it is extremely interesting to
annotate them with their roles in biology via functional enrichments such as GO terms. The
aim of enrichment is to find a significant set of functions (here, we use GO terms or pathways
in the case of pathway enrichment) for the given genes.

Enrichment is achieved by looking for the over-representation of GO terms within the group of
genes. The significance of over-representation is calculated with statistical tests such as the
Fisher test.

Talking about GO, pathways, and statistical tests, is beyond the scope of this book; refer to the
relevant citations for details.

http://www.geneontology.org/GO_nature_genetics_2000.pdf
http://www.geneontology.org/GO_nature_genetics_2000.pdf
http://www.geneontology.org
http://www.bioconductor.org/packages/2.13/data/annotation/html/GO.db.html
http://www.bioconductor.org/packages/2.13/data/annotation/html/GO.db.html

Chapter 2

49

Getting ready
The following are the prerequisites to go ahead with the steps for the functional enrichment
of genes:

ff An R session with Bioconductor packages installed and loaded

ff An Internet connected system to install a new relevant package from the repository

ff A dataset to perform the analysis

How to do it…
Let's carry out the following steps to perform the GO enrichment analysis:

1.	 Install and load the topGO library and the ALL dataset for GO enrichment analysis
with the help of the following commands:
> source("http://Bioconductor.org/biocLite.R")

> biocLite(c("topGO", "ALL"))

> library(topGO)

2.	 Load the dataset to be analyzed for enrichment into the R session (in our case,
the ALL dataset from the ALL library) as follows:
> library(ALL)

> data(ALL)

> data(geneList)

3.	 Set the annotation for the Affymetrix chip data in the ALL dataset using the
following commands:
> affyLib <- paste(annotation(ALL), "db", sep=".")

> library(package=affyLib, character.only=TRUE)

4.	 We can check how many genes we can consider as differentially expressed genes
(p-value < 0.01) from the geneList data for GO enrichment by using the
following command:
> sum(topDiffGenes(geneList))# should come as 50

5.	 When the input data and libraries are ready, we must first create a topGOdata
object. This is followed by an enrichment analysis as follows:
> myGOData <- new("topGOdata", ontology="BP", allGenes=geneList,
geneSel=topDiffGenes, nodeSize=10, annot= annFUN.db,
affyLib=affyLib)

Introduction to Bioconductor

50

6.	 The enrichment test (Fisher test) can be performed as follows:
> Myenrichment_Fisher <- runTest(myGOData, algorithm= "classic",
statistic="fisher")

7.	 To check the enrichment scores in our results, type the following command:
> score(Myenrichment_Fisher)

8.	 We can try other enrichment tests such as the Kolmogorov–Smirnov test (KS test)
by typing the following command:
> Myenrichment_KS <- runTest(myGOData, algorithm= "classic",
statistic="ks")

9.	 We can see the results for any of these tests in the form of a table with the following
GenTable function:
> enrich_table <- GenTable(myGOData, classicFisher=Myenrichment_
Fisher,topNodes = 20)
> head(enrich_table)

How it works…
The topGOdata object consists of genes, their scores, GO annotation, and GO hierarchy
information as a nested list. All the enrichment analysis is performed on this data. To create
the topGOdata object, you require some other inputs such as nodeSize to prune the GO
tree (GO has a hierarchical tree structure) and a library to map the genes to GO.

Once we have the object, we go ahead with a test for enrichment. In our case, we use a Fisher
test to find the enriched genes. The input to the runTest function is a topGOdata object
along with the test statistics (here, the Fisher test) and the algorithms for the test (in our
case, the classical algorithm). The function returns a topGOresult object as follows:

> result # (As on April 15th 2014)
Description: Simple session
Ontology: BP
'classic' algorithm with the 'fisher' test
860 GO terms scored: 46 terms with p < 0.01
Annotation data:
Annotated genes: 315
Significant genes: 50
Min. no. of genes annotated to a GO: 10
Nontrivial nodes: 776

The other testing methods can be used as well such as the KS test, as explained earlier, and
can then be combined as follows, resulting in a data frame with ID, scores, and GO terms:

> allRes <- GenTable(myGOData, classicFisher = Myenrichment_Fisher,
classicKS = Myenrichment_KS, ranksOf = "classicFisher", topNodes = 10)
> str(allRes)

Chapter 2

51

There's more...
You can observe the performance of the tests against each other by plotting the p-values
against each other. To do so, we need to extract the GO terms and the corresponding
number of genes along with other information with the termStat function using the
following commands:

> gostat <- termStat(myGOData, names(score(Myenrichment_Fisher)))

> plot(score(Myenrichment_Fisher), score(Myenrichment_KS)
[names(score(Myenrichment_Fisher))], xlab="P values Fisher test",
ylab="P values KS test", cex=(gostat$Annotated/max(gostat$Annotated))*4,
col=heat.colors(gostat$Significant))

Here, the gostat object was used to create mappings for size and color in the plot.
The heat.colors function generates a set of colors based on the values passed as
arguments. The following is a scatter plot that shows the comparison between the enrichment
of genes for two different methods namely the Fisher test and KS test. The scatter plot shows
that the results depend on the test used. The color and size of the circle in the following
screenshot represent the significance and the number of genes annotated, respectively:

Introduction to Bioconductor

52

Furthermore, a related GO graph can be observed with the showSigofNodes function as
follows (however, this requires the Rgraphviz package installed on your computer):

> showSigOfNodes(myGOData, score(Myenrichment_Fisher), firstSigNodes=5,
useInfo="all")

See also
ff The Wolfram MathWorld page at http://mathworld.wolfram.com/

FishersExactTest.html for the Fisher test and http://mathworld.wolfram.
com/Kolmogorov-SmirnovTest.html for the KS test, which provide detailed
information on the statistical test that is used to perform the enrichment test

The KEGG enrichment of genes
The last recipe introduced us to the enrichment term for gene ontology. However, it is
possible to do similar things with pathways or, more precisely, the KEGG pathways.
This recipe illustrates such an enrichment test for a set of genes.

Getting ready
The following are the prerequisites to enrich a gene set with the KEGG pathways:

ff An R session with the clusterProfiler package installed as follows:
> source("http://Bioconductor.org/biocLite.R")
> biocLite("clusterProfiler")

ff The list of genes (Entrez IDs) to be enriched

How to do it…
For KEGG enrichment, we need to perform the following steps:

1.	 To perform the KEGG pathway enrichment, first load the clusterProfiler library:
> library(clusterProfiler)

2.	 Then, create a list of genes from our dataset (in our case, gcSample data, which is a
list of five sets), as follows:
> data(gcSample)

> genes <- gcSample[[3]]

http://mathworld.wolfram.com/FishersExactTest.html
http://mathworld.wolfram.com/FishersExactTest.html
http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html
http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html

Chapter 2

53

3.	 Once we have our gene set ready, we can do the enrichment tests as follows:
> kegg_enrichment <- enrichKEGG(genes, pvalueCutoff=0.01)

How it works...
The enrichKEGG function takes the list of genes as input and returns the enrichment of
KEGG categories within the gene set. The pvalueCutoff parameter filters the output to
a certain p-value for significant enrichment. The enrichment can be visualized in the terms
of a graph (as seen in the previous screenshot) and requires an igraph package to plot
as follows:

> summary(kegg_enrichment)

> plot(kegg_enrichment)

The following plot shows the KEGG pathway enrichment of genes (the p-values for the different
pathways on a colored scale and the number of genes in each KEGG pathway along the x axis):

Enrichment analysis based on KEGG and GO has been a powerful tool for computational
biologists. There are many other methods and tools. GSEA is one of the most popular tools
and is considered as a pioneer in the field.

Introduction to Bioconductor

54

See also
ff The GSEA article, which provides a decent theoretical background on enrichment

ff The Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles article by Subramanian and others
(http://www.pnas.org/content/102/43/15545.long)

Bioconductor in the cloud
Cloud computing offers on-demand computing and storage resources along with scalability
and low maintenance costs. Cloud computing refers to the computing that involves a large
number of computers connected via a communication network such as the Internet. It
enables distributed computing over a network, providing you with the ability to run a program
or an application on many connected computers at the same time. Cloud computing has
become an appealing, high performance computing (HPC) platform for ad hoc analytics
because it offers a high-performance computing solution with scalability and low maintenance
when compared to setting up an HPC infrastructure. In the following cases, running a
cloud-based Bioconductor can be useful (or required):

ff You do not want to install Bioconductor on your personal machine.

ff You can have a long-running task and you don't want to use your CPU. Tasks such
as running a huge cluster or dynamic simulation for mathematical models in biology
require higher RAM or (and) CPU configurations depending on the dataset and
algorithm. You do not want to keep your machine busy for a long time and therefore,
you can think of using clouds.

ff You need to parallelize a task usually for reasons described previously. Although it is
possible to parallelize a task locally using the packages such as mccore or foreach,
you might want to use more nodes than locally available.

ff Run R in your web browser (using RStudio Server). The RStudio Server provides a
browser-based interface to R, which runs on a remote server and acts as an IDE.

These points make the integration of Bioconductor tools over cloud an interesting option.
This recipe will provide basic information on such applications.

Getting ready
The following are the prerequisites for the recipe:

ff You need an Amazon web services (AWS) account (http://aws.amazon.com).
This may require credit card information (and even payments for paid services).

ff A server with appropriate firewall settings.

http://www.pnas.org/content/102/43/15545.long
http://aws.amazon.com

Chapter 2

55

How to do it…
The cloud setup for Bioconductor can be achieved in the following steps (note that this recipe
will use AWS as a cloud service provider):

1.	 First, users should create an AWS account. For detailed information,
visit http://aws.amazon.com/getting-started/.

2.	 Now, launch Amazon Machine Image (AMI) by visiting https://console.aws.
amazon.com/cloudformation/. Here, you need to enter your login credentials
for AWS.

3.	 AWS needs a stack name and a template to start with. (Download and save the
.pem file.)

4.	 Later, we need to provide the version for Bioconductor when asked; it is advisable to
go with the default values.

5.	 Once all the parameters are provided, you can review your sets and create the stack.
The AMI will be ready soon.

6.	 Use ssh or PuTTy to connect to the server with an appropriate address. The ssh
function is as follows:
$ ssh -X -i bioconductor-my-bioc.pem root@ec2-50-16-120-30.
compute-1.amazonaws.com

7.	 Once you are able to access the terminal through ssh or any other means, start R by
simply typing R.

8.	 Another way to run R via the web server is using the RStudio Server that provides a
user friendly GUI.

9.	 To start RStudio, type in your web instance followed by 8787 in your browser. Your
web instance provided by the cloud service provider will look like a web address,
such as http://****.****. amazonaws.com. Thus, RStudio starts with
http://****.****. amazonaws.com:8787 in the browser.

How it works…
Cloud-based R uses the sources of computing resources of the remote machines in
the cloud. It makes it possible to use R as a browser kind of environment. The data
and file can be moved by using RStudio GUI (for Windows) or with the scp command in
SSH. Everything else functions in a similar way as in a local machine R. An important fact
to be noted is that the use of PuTTy requires a ppk file that can be generated using the
ppm file and PuTTYgen (a PuTTy utility). For more details, visit the AWS help page at
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html.

http://aws.amazon.com/getting-started/
http://aws.amazon.com/getting-started/
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

Introduction to Bioconductor

56

See also
ff The SAS and R blog (http://sas-and-r.blogspot.it/2012/02/rstudio-

in-cloud-for-dummies.html), which gives some information on running R in
the cloud

ff The Cloud Computing in Bioinformatics chapter in Distributed Computing and
Artificial Intelligence written by Bajo and others (http://link.springer.com/ch
apter/10.1007%2F978-3-642-14883-5_19) in order to learn more on
cloud computing

http://sas-and-r.blogspot.it/2012/02/rstudio-in-cloud-for-dummies.html
http://sas-and-r.blogspot.it/2012/02/rstudio-in-cloud-for-dummies.html
http://link.springer.com/book/10.1007/978-3-642-14883-5
http://link.springer.com/chapter/10.1007%2F978-3-642-14883-5_19
http://link.springer.com/chapter/10.1007%2F978-3-642-14883-5_19

3
Sequence Analysis

with R

In this chapter, we will cover the following recipes:

ff Retrieving a sequence

ff Reading and writing the FASTA file

ff Getting the detail of a sequence composition

ff Pairwise sequence alignment

ff Multiple sequence alignment

ff Phylogenetic analysis and tree plotting

ff Handling BLAST results

ff Pattern finding in a sequence

Introduction
Nucleic acids and protein sequences are extremely ubiquitous to the way we imagine biology
today. Nucleic acids represent genes, RNAs, and so on, whereas proteins are considered
the building blocks of life. These biomolecules actually depict the information content in
the living system. They are represented in terms of a sequence of characters. The famous
central dogma of molecular biology can be perceived as one type of a set of characters being
converted into another at the sequence level. For example, messenger RNAs (mRNAs) are
converted into proteins or, rather, polypeptides via translation. Thus, it is the sequence of DNA
that will eventually determine the protein sequence. This makes sequence analysis important
for various applications ranging from the comparison of biomolecules for studying evolution,
mutation to identification of interesting sites in biomolecules, and so on.

Sequence Analysis with R

58

It was the huge growth in sequence data that paved the way for the evolution of the
bioinformatics domain. Data is usually a stream of characters. The characters in the case
of DNA are ATGC (these represent the bases in the nucleotides—remember that RNA has U
instead of T), whereas in the case of proteins, they consist of the letters that represent amino
acids. Computer scientists sometimes call these sequences the bitcode of life. Analyzing the
properties of these molecules as well as understanding the underlying mechanism of the
transformation of one type of information into another or the next level is one of the keys
to deciphering the living system. The following figure illustrates how genetic information is
transferred to a protein. From the information science perspective, it can be seen as the
transfer of one type of sequence to another via the process of transcription and translation.
The reverse transcription has not been included in the following figure:

The central dogma of molecular biology at the sequence level

Sequence analysis is the most basic task in bioinformatics. In general, it refers to processing
sequence data of DNA or proteins to harness the underlying information about the function,
structure, or evolution of the biomolecule. Analyzing sequences allows us to find similarities
or dissimilarities between them for comparison purposes. One can use the sequence data
to identify the chemical properties of the sequence based on its content. Furthermore, we
can also use them to compute their structure. In addition, they are also applied to create a
homology-based model to predict unknown three-dimensional structures of proteins that can
be used in drug discovery. However, the purposes are not limited to these mentioned aspects.

Chapter 3

59

This chapter will introduce the different kinds of sequence analysis that can be done with R
and the corresponding R libraries and packages.

Retrieving a sequence
To start the task of sequence analysis, the first thing we need is a sequence of DNA or protein.
Such sequence data can be retrieved either by visiting the database hosting page via a
browser or by accessing the data mart form within R via corresponding commands/functions.
We had a look at some of the methods in the previous chapter. In this recipe, we introduce
some more methods to retrieve a sequence.

Getting ready
Retrieving sequences from databases requires the following:

ff Access to the database via the Internet

ff A sequence ID or keyword for searching

ff The biomaRt and seqinr libraries installed and loaded in the R session

How to do it…
To fetch a sequence of the data via R, perform the following steps:

1.	 Get a sequence of the data. The simplest way to get a sequence of interest is to
visit the database web page and manually download it, or to get it via the bioMart
package that was explained in Chapter 1, Starting Bioinformatics with R.

2.	 Sequences can also be retrieved via the seqinr package. To use the seqinr
package, first load the library with the following command:
> install.packages("seqinr")

> library(seqinr)

Sequence Analysis with R

60

3.	 Choose the data bank you need to fetch the sequence. First, you can check the
available data banks and then choose one of them. For instance, in our case,
we choose genbank as follows:
> choosebank()

 [1] "genbank" "embl" "emblwgs" "swissprot"

[5] "ensembl" "ensembl60" "hogenom" "hogenomdna"

[9] "hovergendna" "hovergen" "hogenom5" "hogenom5dna"

[13] "hogenom4" "hogenom4dna" "homolens" "homolensdna"

[17] "hobacnucl" "hobacprot" "phever2" "phever2dna"

[21] "refseq" "greviews" "bacterial" "protozoan"

[25] "ensbacteria" "ensprotists" "ensfungi" "ensmetazoa"

[29] "ensplants" "mito" "polymorphix" "emglib"

[33] "taxobacgen" "refseqViruses"

> choosebank("genbank")

4.	 Once you have the data bank open, query the bank with the search of your interest
using the following query command (note that this step takes time to complete):
> query("BRCA1", "SP=Homo sapiens AND K=BRCA1")

5.	 Have a look at the returned value of the query command by looking at the various
components of the object as follows:
> attributes(BRCA1)

$names

[1] "call" "name" "nelem" "typelist" "req"
"socket"

$class

[1] "qaw"

6.	 To check the set of all of the sequences that were retrieved, type the following
command and get the name, length, and other attributes for every available
sequence in the query:
> BRCA1$req

7.	 To fetch a specific sequence by its accession number, use the AC attribute in the
query command as follows:
> query("BRCA1", "SP=Homo sapiens AND AC=U61268")

8.	 To fetch a specific sequence from the query object, use the following getsequence
command (in our case, we use it for the first sequence in the BRCA object):
> myseq <- getSequence(BRCA1$req[[1]])

Chapter 3

61

9.	 Take a look at the object that was created with the following getsequence command:
> myseq

[1] "a" "t" "g" "g" "a" "t" "t" "t" "a" "t" "c" "t" "g" "c" "t"
"c" "t" "t" "c"

[20] "g" "c" "g" "t" "t" "g" "a" "a" "g" "a" "a" "g" "t" "a" "c"
"a" "a" "a" "a"

[39] "t" "g" "t" "c" "a" "t" "t" "a" "a" "t" "g" "c" "t" "a" "t"
"g" "c" "a" "g"

[58] "a" "a" "a" "a" "t" "c" "t" "t" "a" "g" "a" "g" "t" "g"

10.	 It is always advisable to close the data bank after the query in order to avoid multiple
open banks. Do this with the following closebank function:
> closebank()

How it works…
The working of biomaRt has been explained in Chapter 1, Starting Bioinformatics with R.
The seqinr package works in a similar way. The selected data bank is queried for the set
of input search terms (K for keyword and SP for species) and all the available sequences for
the search attributes are assigned to the defined object that was named and returned (in our
case, BRCA1). Out of these lists, we can filter out the irrelevant hits by looking at the attributes
of the list, such as the name of the sequence. In our presented code, we used the position of
the relevant sequence in the list. The getsequence command then fetches the sequence
from all the available information during retrieval.

There's more...
The sequence retrieval from the remote database, as seen in the seqinr package, requires
permission to access the database via the network ports. It might happen that some of the
ports in your network are blocked and you receive corresponding errors (usually displayed
as Error in socketConnection(……)). For this, you need to contact your network
administrator and get the blocks removed. Besides the keyword attribute for query, there
are other possible attributes that can be used. Note that you can seek help for this just by
typing ?query or ?sequin::query in your R console. The use of double colons (::) with the
package name on the left and the function name on the right is required to avoid confusion
when the function shares the namespace in two (or more) different packages. It simply
specifies that the function to be used comes from a particular package. You can fetch the
annotation (the other attributes of a sequence) with the following command:

> annots <- getAnnot(BRCA1$req[[1]])

Sequence Analysis with R

62

See also
ff The detailed description of GenBank at

https://www.ncbi.nlm.nih.gov/genbank/.

ff The GenBank article by Benson and others at http://nar.oxfordjournals.
org/content/41/D1/D36.long, which provides a description of the latest release
of GenBank. (Note that the sequin known for submitting sequences to GenBank has
nothing to do with seqinr. This is just an acronym for sequences in R.)

ff The seqinr package's web page at http://pbil.univ-lyon1.fr/software/
seqinr/home.php?lang=eng, which provides addition information about
the package.

Reading and writing the FASTA file
The FASTA format is a simple and widely used format for storing biological (DNA or protein)
sequences. It begins with a single-line description that starts with a > symbol. The description
consists of virtually anything regarding the sequence but usually carries the sequence name,
ID, name of the species, name of the author, and so on. The line that follows carries the
sequences (nucleotide or protein). The following is an example of a FASTA file for a protein
sequence taken from Protein Data Bank (PDB) or (ID- 2BQ0):

>2BQ0:A|PDBID|CHAIN|SEQUENCE
MTMDKSELVQKAKLAEQAERYDDMAAAMKAVTEQGHELSNEERNLLSVAYKNVVGARRSSWRVISSIEQK
TERNEKKQQMGKEYREKIEAELQDICNDVLELLDKYLIPNATQPESKVFYLKMKGDYFRYLSEVASGDNK
QTTVSNQQAYQEAFEISKKEMQPTHPIRLGLALNFSVFYYEILNSPEKACSLAKTAFDEAIAELDTLNEE
SYKDSTLIMQLLRDNLTWTSENQGDEGENLYFQ

FASTA is a standard format for storing sequence data in databases such as GenBank. It is
important to have an idea about importing this file format into an R session and exporting it
from one. This recipe aims to address this issue.

Getting ready
This recipe requires a FASTA file in the local or remote directories to be read into the R
session. For this, you can simply copy and paste a FASTA sequence into a text editor and save
it as a .fasta file (even .txt should serve the purpose). Besides this, the seqinr library
will be required, which we discussed in the previous recipe.

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
http://nar.oxfordjournals.org/content/41/D1/D36.long
http://nar.oxfordjournals.org/content/41/D1/D36.long
http://pbil.univ-lyon1.fr/software/seqinr/home.php?lang=eng
http://pbil.univ-lyon1.fr/software/seqinr/home.php?lang=eng

Chapter 3

63

How to do it…
In order to read a FASTA file into an R workspace and write a FASTA file with retrieved
sequences, perform the following steps:

1.	 Load the seqinr library with the help of the following command:
> library(seqinr)

2.	 Read the FASTA file from its location (provide the complete path if not in the current
working directory) as follows:
> mysequence <- read.fasta(file = "myfasta.fasta")

3.	 Choose GenBank as the data bank for your queries with the following command:
> choosebank("genbank")

4.	 Now, query GenBank for a keyword of interest (in our case, we look for BRCA1) by
typing the following command:
> query(listname = "BRCA1", query="SP=homo sapiens AND K=BRCA1")

5.	 To look for the sequence identifiers, extract the name attribute of the sequences
as follows:
> myseqs <- getSequence(BRCA1)

> mynames <- getName(BRCA1)

6.	 Check the number of hits by simply checking the length of the mynames object that
contains the names of the sequences found in the hits as a vector, with the help of
the following command:
> length(mynames)

[1] 103 # as on April 17th, 2014

7.	 Try writing the retrieved sequence data carrying information in different fields as
multiple sequences (this is only applicable if more than one sequence was retrieved,
otherwise you will receive a single sequence) in a FASTA file named MyBRCA.fasta
as follows:
> write.fasta(myseqs, mynames, file.out = "MyBRCA.fasta")

8.	 As suggested earlier, close the data bank after the query by typing the following
command in order to avoid working with multiple banks:
> closebank()

Sequence Analysis with R

64

How it works…
The beginning of the sequence is thus recognized with this pattern and so is the other
information about the sequence.

While querying for the desired sequence (BRCA1) in step 4, we define the search keyword K
and the species we are interested in as SP. These terms are embedded as one query string
text and used to search the data bank. The query function not only assigns the query but
also creates an R object of the qaw class, which is a list with six fields, each containing
different types of information on the retrieved results. The value argument, listname, should
be a quoted character that will be used as the name of the qaw object that is created. The
query argument actually carries the search request to be parsed by the data bank. It consists
of selection criteria for the hits and is specified with different fields; for example, we used K
and SP here, as explained earlier. Note that within the query argument, there should be no
spaces around the = sign. There are many other fields in the query argument that can be
used. To find out more about them, check the updated list at http://pbil.univ-lyon1.
fr/databases/acnuc/cfonctions.html#QUERYLANGUAGE or type ?query in the R
console (note that this provides the fields available only for the package version).

See also
ff The FASTA file format at https://www.ncbi.nlm.nih.gov/BLAST/

blastcgihelp.shtml, which provides detailed information about the FASTA file

ff The Online synonymous codon usage analyses with the ade4 and seqinR packages
article by Charif and others at http://bioinformatics.oxfordjournals.
org/content/21/4/545, which provides information about the applications that
use the seqinr package

Getting the detail of a sequence
composition

Once we have retrieved a sequence, we need to know more about it; for example, we need
to know the nucleotide or amino acid frequency, and Guanine and Cytosine nucleotide
bases (GC content). To illustrate, if we have repetitive bases, say, AAAAAA, the sequence is
not very interesting because of low information content. The contents of a sequence also
help in determining certain properties of the entire molecule, for example, the acid basicity
hydrophobicity in proteins based on the amino acids present in the sequence.

http://pbil.univ-lyon1.fr/databases/acnuc/cfonctions.html#QUERYLANGUAGE
http://pbil.univ-lyon1.fr/databases/acnuc/cfonctions.html#QUERYLANGUAGE
https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
https://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
http://bioinformatics.oxfordjournals.org/content/21/4/545
http://bioinformatics.oxfordjournals.org/content/21/4/545

Chapter 3

65

An interesting aspect is the GC content in a nucleotide. It refers to the fraction of Guanine (G)
and Cytosine (C) in the sequence, and certain genomes, especially among the bacteria, show
a significant difference on this scale and variations in terms of genomic regions. To illustrate,
some Actinobacteria can have more than 70 percent of GC, whereas some Proteobacteria
can have less that 20 percent of GC. Furthermore, the GC content is also used to predict the
annealing temperature of the sequence during PCR experiments. These aspects make the
analysis of the contents in a sequence important. In this recipe, we discuss how to get such
information out of sequence data.

Getting ready
The task in this recipe requires the following:

ff A seqinr package in the R session

ff The sequence to be analyzed that will be retrieved during the steps

How to do it…
To compute some details of the sequence composition, perform the following steps:

1.	 Load the seqinr library by typing the following command:
> library(seqinr)

2.	 Get the sequence of interest from the database (Entrez gene, PDB, and so on)
or file using read.fasta. In our case, we will fetch two RNA polymerase
(beta subunits) sequences from GenBank (note that the sequences belong
to two different species, Mycobacterium tuberculosis (Actinobacterium) and
Escherichia coli (Proteobacterium) as follows:
> choosebank("genbank")

> query(listname = "actino", query="SP=Mycobacterium tuberculosis
AND K=rpoB") # Gets the M.tuberculi sequences

> query(listname = "proteo", query="SP=Escherichia coli AND
K=rpoB") # Gets the E.coli sequences

3.	 Take a look at the summary of the sequences, such as the names and length,
with the help of the following commands:
> actino$req # 694 Sequences as on April 17th 2014

> proteo$req # 171 Sequences as on April 17th 2014

Sequence Analysis with R

66

4.	 From these sequences, choose one sequence from each species (M. tuberculosis
and E. coli) that will be compared. In our case, we go with JX303316 in the former
and AE005174.RPOB in the latter species (the sequence index numbers 644 and 1,
respectively, in the corresponding qwa objects) as follows:
> myActino <- getSequence(actino$req[[644]])

> myProteo <- getSequence(proteo$req[[1]])

5.	 To compute the number of each base in the sequence, use the generic table
function as follows:
> table(myActino)

myActino

 a c g t

 679 1084 1190 584

> table(myProteo)

myProteo

 a c g t

1013 1026 1090 899

6.	 To get the fraction for each base, do it in on a line by dividing the outcome of the
table function by the length of the sequence (multiply it with 100 to get the result
in a percentage) as shown in the following command:
> table(myProteo)/length(myProteo)

myProteo

a c g t

0.2514271531 0.2546537602 0.2705385952 0.2231322909

7.	 If you decide to manually copy the sequence from the web page of the database,
it will be considered a character object; it must be converted into a vector of
characters as follows:
> myseq <- "AAAATGCAGTAACCCATGCCAAAATGCAGTAA"

> myseq <- strsplit(myseq, "")

> myseq <- unlist(myseq)

8.	 To compute the individual frequencies of the nucleotides, use the following table
function in the same way as used earlier:
> table(myseq)
myseq
A C G T
15 7 5 5

Chapter 3

67

9.	 Use similar commands for the protein sequence as follows:
myseq <-
"MTMDKSELVQKAKLAEQAERYDDMAAAMKAVTEQGHELSNEERNLLSVAYKNVVGARRSSWR
VISSIEQKTERNEKKQQMGKEYREKIEAELQDICNDVLELLDKYLIPNATQPESKVFYLKMK
GDYFRYLSEVASGDNKQTTVSNQQAYQEAFEISKKEMQPTHPIRLGLALNFSVFYYEILNS
PEKACSLAKTAFDEAIAELDTLNEESYKDSTLIMQLLRDNLTWTSENQGDEGENLYFQ"

> myseq <- strsplit(myseq, "")

> myseq <- unlist(myseq)

Alternatively, use the following command in one line:

> myseq <- s2c(myseq)

> table(myseq)

myseq

A C D E F G H I K L M N P Q R S T V W Y

20 2 13 29 7 8 2 10 20 24 8 14 5 16 10 18 12 11 2 12

10.	 Moving on the interesting aspects of the GC content of the sequences, simply
use the GC command from the seqinr package for the two sequences that
were retrieved as follows:
> GC(myActino)

[1] 0.6429177

> GC(myProteo)

[1] 0.5253227

11.	 Create a simple bar plot while comparing for different sequences in the GC content
with a one-line command to visualize the results, as shown in the following command:
> barplot(c(Actinobacteria= GC(myActino), Proteobacteria=
GC(myProteo)), main="GC content in different bacteria")=
GC(myProteo), main="GC content in different bacteria")

12.	 To know the frequency of every possible pair of nucleotides in the sequence, use
the count function, as shown in the following example, for every character pair
(you can also do this for triples and so on by choosing the right value for the
wordsize argument):
> seqinr::count(myActino, wordsize=2)

 aa ac ag at ca cc cg ct ga gc gg gt ta tc

131 232 194 121 219 287 431 147 291 340 325 234 38 225

 tg tt

239 82

Sequence Analysis with R

68

How it works…
In this recipe, we used the RNA polymerase beta from two bacterial species. The reason
behind the selection of specific sequences from each species (JX303316 and AE005174.
RPOB) was that they are the reads that represent similar proteins and are of comparable
length. The functions in this recipe are mostly based on character matching and counting.
The function runs through the input vector of characters, which is our sequence here, and
increments the count of the word every time it encounters it. The final counts are then
returned for each word. The count can be made for different word sizes, say, 2, 3, and so
on. (However, a word size of only up to 3 is frequently used in the case of nucleotides as it
represents the triplets in codons.)

The GC function of seqinr uses a similar method, but as an extension, it computes
the fraction of G and C in the nucleotide. We can do this manually using the values of
C (index 2) and G (index 3) as follows:

> myGC <- sum(table(myseq)[2], table(myseq)[3])/sum(table(myseq))

> myGC

[1] 0.375

You can further express it as a percentage by multiplying the result with 100 as follows:

> myGC*100

37.5

In our examples, to compare GC content of RNA polymerase from two different species, we
need to see how it can vary even among closely related species, which proves the point that
we made during the introductory section of the chapter. However, there can be an exception
in our finding, and we need to perform such an analysis on more species in order to reach
a statistically significant result. We talked mostly about nucleotide sequences in this recipe;
protein sequences will be dealt with in detail in the next chapter.

If the connection to a data bank shows an error in the second or further
queries (though it worked well for the first), restart your R session (obviously
after saving the existing objects). If it does not work even after that, you will
need to contact your system administrator.

See also
ff The DNA helix: the importance of being GC-rich article by Vinogradov AE at

http://nar.oxfordjournals.org/content/31/7/1838.full, which
provides detailed information on the importance of GC content in nucleic acids

http://nar.oxfordjournals.org/content/31/7/1838.full
http://nar.oxfordjournals.org/content/31/7/1838.full

Chapter 3

69

Pairwise sequence alignment
As mentioned in the introductory section of this chapter, while analyzing genes or proteins
sequences, we often need to compare them to know their similarities and differences. This
serves the purposes from various perspectives, such as for evolutionary studies and to
understand the structure and function of a novel sequence by comparing it to the known one.
To know whether the two gene/protein sequences we are studying are similar or different at
the quantitative level, we measure their similarities.

Before making comparative statements about two sequences, we have to produce a pairwise
sequence alignment. Pairwise alignment refers to the optimal way of arranging two sequences
in order to identify regions of similarity therein. In other words, we need to find the optimal
alignment between the two sequences. Some of the questions that pop up are as follows:

ff How should we optimize such an arrangement of two sequences?

ff How should we score matches and mismatches?

ff Should we score protein sequences differently than we score DNA sequences?

There are several algorithms and metrics that try to answer these questions and are designed
to perform such alignments, and opting for one of them depends on the biological question
that needs to be answered. There are global alignment methods that aim to align every
residue in the sequences and are used when sequences are similar and of comparable length
(they need not be equal). An example of such a method is the Needleman-Wunsch algorithm.
We also have a local alignment technique that attempts to align regions of high similarity in
the sequences, and the Smith-Waterman algorithm is an example of such a technique.

There are many other methods and algorithms for sequence alignment, though discussing
them in detail is beyond the scope of this book. Nevertheless, we will put forward some of the
key concepts in this recipe. Here, we will introduce some R-based methods to perform the
pairwise alignment of two sequences.

Getting ready
Sequence alignment requires the following:

ff The Biostrings library installed and loaded in the R session

ff Sequences of our interest

The Biostrings library can be installed and loaded as we did the other Bioconductor
libraries. We will need the sequences to be aligned.

The alignment also computes an alignment score for which we need to define the scoring
system that depends on the type of sequence (nucleotide or protein). This will be discussed
in the upcoming parts of the recipe.

Sequence Analysis with R

70

How to do it…
To do a pairwise sequence alignment, perform the following steps:

1.	 Start with installing and loading the Biostrings library by typing the
following commands:
> source("http://bioconductor.org/biocLite.R")

> biocLite("Biostrings")

> library(Biostrings)

2.	 Read the two sequences. In the following example, we have shown manually
typed-in sequences for convenience, but the same method can be used for
other types of sequences as well:
> sequence1 <- "GAATTCGGCTA"

> sequence2 <- "GATTACCTA"

3.	 Assign penalties for the mismatch and gap to get a scoring matrix for the nucleotides
as follows:
> myScoringMat <- nucleotideSubstitutionMatrix(match = 1, mismatch
= -1, baseOnly = TRUE)

> myScoringMat

4.	 Assign gap penalties for the alignments as follows:
> gapOpen <- 2

> gapExtend <- 1

5.	 Run the following pairwiseAlignment function to perform a global alignment for
the sequences:
> myAlignment <- pairwiseAlignment(sequence1, sequence2,
substitutionMatrix = myScoringMat, gapOpening = gapOpen,

gapExtension = gapExtend, type="global", scoreOnly = FALSE)

> myAlignment

6.	 In the case of protein sequences, we have scoring matrices that are called
substitution matrices. To see them, use the following function:
> data(package="Biostrings")

Data sets in package 'Biostring':

BLOSUM100 Scoring matrices

BLOSUM45 Scoring matrices

BLOSUM50 Scoring matrices

BLOSUM62 Scoring matrices

BLOSUM80 Scoring matrices

Chapter 3

71

7.	 Assign/select one of these substitution matrices to align the protein sequences
as follows:
> data(BLOSUM62)

> subMat <- "BLOSUM62"

8.	 Now, perform the alignment of the protein sequences with the selected substitution
matrix as follows:
> sequence1 <- "PAWHEAE"

> sequence2 <- "HEAGAWGHE"

> myAlignProt <- pairwiseAlignment(sequence1, sequence2,
substitutionMatrix = subMat, gapOpening = gapOpen, gapExtension =
gapExtend, type="global", scoreOnly = FALSE)

How it works…
The alignment recipe can be divided into two phases: the scoring matrix formulation and the
alignment itself. In the nucleotide alignment, the function defining the scoring matrix creates
a 4 x 4 matrix for the nucleotides. The diagonal alignment in the matrix represents the match
and the other alignments represent the mismatch as shown in the following example:

 A C G T

A 1 -1 -1 -1

C -1 1 -1 -1

G -1 -1 1 -1

T -1 -1 -1 1

The alignment we used was a global alignment, by setting the type argument to global.
Every time the alignment finds a match or mismatch, the corresponding score is added
to the existing score (set to 0 at the beginning). Furthermore, we also use a gapOpening
penalty of 2 and a gapExtension penalty of 1 for our scoring task (see the gapOpening
and gapExtension arguments respectively). The gap opening and gap extension penalties
used every time introduce a gap or extend an existing gap to get a better alignment. These
parameters are used to run the Needleman-Wunsch algorithm for the global alignment. The
algorithm uses the dynamic programming approach to find the optimal global alignment
between two sequences with the scoring that we defined here. Let's look at the alignment
created for our sequences:

> show(myAlignment)

Global PairwiseAlignmentsSingleSubject (1 of 1)

pattern: [1] GAATTCGGCTA

subject: [1] GATTAC--CTA

score: 1

Sequence Analysis with R

72

We can see that in the alignment produced, we have two gaps inserted to get the
optimal alignment.

Protein scoring matrices are larger and more complicated looking since there is a different
probability for each amino acid pairing. Therefore, several matrices have been proposed for
amino acid substitutions in protein sequences. Therefore, in the case of protein sequences,
the substitution matrices define the scoring matrix from the Biostrings library. It contains
several matrices (as can be seen by typing data(package="Biostrings") in the R
console). Based on substitution, the Blocks Substitution Matrix (BLOSUM) is a family of
matrices, which is computed based on substitutions encountered in a conserved set of
proteins. The number that is used as a suffix for each member of the BLOSUM family indicates
the percentage similarity in the proteins used to compile the matrix. Thus, the higher the
BLOSUM number, the more similar are the proteins, and it can be better used to analyze
closely related proteins. Another popular family of the substitution matrix is PAM. In this
recipe, we used BLOSUM62, which is popularly used to compare highly similar proteins.
We get the following alignment:

> show(myAlignProt)

Global PairwiseAlignmentsSingleSubject (1 of 1)

pattern: [1] P---AW-HE

subject: [1] HEAGAWGHE

score: 14

Let's see what happens if we run a local alignment with our peptide (protein) sequence:

> myAlignProt <- pairwiseAlignment(sequence1, sequence2,
substitutionMatrix = subMat, gapOpening = gapOpen, gapExtension =
gapExtend, type="local",scoreOnly = FALSE)

> show(myAlignProt)

Local PairwiseAlignmentsSingleSubject (1 of 1)

pattern: [2] AW-HE

subject: [5] AWGHE

score: 25

We can see that the local alignment simply returns the highly similar regions in both the
sequences using the Smith-Waterman algorithm.

An interesting visualization for comparing two protein or nucleotide sequences in order to
identify regions of similarity between them is a dot plot. It is a two-dimensional grid/matrix
with two axes, representing the sequences under comparison. Every dot in the grid shows the
match in the sequence at that corresponding position. A prominent diagonal line represents
a perfect match of a fragment of the sequence. If the slant is along the diagonal and is
complete, it depicts the complete similarity of the sequences (as shown in the following
screenshot). You can construct a dot plot using the following command from the seqinr
package. We will try it in this recipe with a FASTA file (available at the book's page).

Chapter 3

73

The file contains protein sequences for hemoglobin beta subunits from humans
(homo sapiens) and chimpanzees (pan troglodytes). We can see how similar these
sequences are by typing the following commands:

> library(seqinr)

> myseq <- read.fasta(file = "myfasta.fasta")

> dotPlot(myseq[[1]], myseq[[2]], col=c("white", "red"), xlab="Human",
ylab="Chimpanzee")

We can also try to compute the alignment and similarities between these sequences to
confirm the findings as shown in the previous commands. We can play around with many
different sequences provided in the FASTA file.

After doing all this, let's do a cool test for our alignments to know if the alignment we got was
significantly better or not. We will do it via a permutation test. A permutation test is based on
the random sampling of observed data (in our case, the template sequence) to determine how
unusual an observed outcome is (in our case, the alignment score). The idea is to shuffle our
template sequence via sampling from the set of characters in the sequence and align it to our
pattern sequence. The alignment with every sampled sequence generates a score, and we
check how often this score was better than the observed alignment of our original sequences.
The sampling is done with a replacement, and the probabilities for the selection of each
character during sampling are equal to its fraction in the sequence.

To conduct the test, simply load the R code file, sequencePermutatioTest.R (available on
the book's home page), using the source function as follows:

> source("sequencePermutatioTest.R")

To run the function, use the following command—note that the time taken will depend on the
number of permutations (n) and sequence lengths:

> pvalue <- permutes.seq(seq1=sequence1, seq2=sequence2, n=100)

What we get for our alignment is ~0.2, which indicates that the alignment score we got is not
significant at a p-value threshold of 0.05. Let's take a closer look at the function by opening it
to understand it better. We can also create a plot in the function by setting the plot argument
to TRUE as follows:

> pvalue <- permutes.seq(seq1=sequence1, seq2=sequence2, n=1000, plot=TRUE)

Sequence Analysis with R

74

The following screenshot shows the dot plot for hemoglobin beta protein sequences
in humans and chimpanzees (note that the diagonal line shows a perfect match of
the sequences):

See also
ff The MIT open courseware page at http://ocw.mit.edu/courses/

electrical-engineering-and-computer-science/6-096-algorithms-
for-computational-biology-spring-2005/lecture-notes/lecture5_
newest.pdf, which provides information on the alignment algorithm

ff The article titled A general method applicable to the search for similarities in the
amino acid sequence of two proteins by Needleman and Wunsch at http://www.
sciencedirect.com/science/article/pii/0022283670900574,
which provides detailed information on specific theoretical aspects of the
Needleman-Wunsch algorithm for global alignment

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithms-for-computational-biology-spring-2005/lecture-notes/lecture5_newest.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithms-for-computational-biology-spring-2005/lecture-notes/lecture5_newest.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-096-algorithms-for-computational-biology-spring-2005/lecture-notes/lecture5_newest.pdf
http://www.sciencedirect.com/science/article/pii/0022283670900574
http://www.sciencedirect.com/science/article/pii/0022283670900574

Chapter 3

75

ff The Identification of common molecular subsequences article by Smith
and others at http://www.sciencedirect.com/science/article/
pii/0022283681900875, which provides information about the theoretical paper
on the Smith-Waterman algorithm (local alignment)

ff The Amino acid substitution matrices from protein blocks article by S Henikoff and
J G Henikoff at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC50453/,
which describes the BLOSUM matrices

ff The article titled A Model of Evolutionary Change in Proteins by Dayhoff and others at
http://www.bio-recipes.com/Dayhoff/dayhoff1978.pdf

Multiple sequence alignment
There are occasions in the sequence analysis where we need to compare many sequences
against each other. A general example of such a case is phylogenetic analysis, which will be
discussed in the next recipe. Such an analysis reveals how similar or dissimilar the sequences
are against each other. In this recipe, we explain how to do multiple sequence alignment
(MSA) using R.

Getting ready
The following are the prerequisites for this recipe:

ff A new package named muscle to be installed and loaded in the R session.

ff The sequences of our interest, that is, the sequences to be aligned. For sequences,
we will use the protein sequences of Cytochrome oxidase (COX-2) from five different
species (provided as the FASTA file on the book's home page).

ff MUSCLE algorithms that are very well established and frequently used
by bioinformaticians.

How to do it…
Follow the ensuing steps to perform the multiple sequence alignment:

1.	 Start with installing and loading the required packages by typing the
following commands:
> install.packages("muscle")

> library(muscle)

2.	 Then, get all the sequences to be aligned. They can be read directly from a FASTA file
(available as a file on the book's home page) as follows:
> mySeq <- muscle::read.fasta("fastaMSA.fasta")

http://www.sciencedirect.com/science/article/pii/0022283681900875
http://www.sciencedirect.com/science/article/pii/0022283681900875
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC50453/
http://www.bio-recipes.com/Dayhoff/dayhoff1978.pdf

Sequence Analysis with R

76

3.	 Take a look at the sequences within the file that was read, as follows:
> myseq

4.	 Now, you need to fetch the sequence from the repositories and write them to a FASTA
file before using them as explained in the previous recipes.

5.	 Now, use the muscle function to perform the alignment with the following command:
> MyMSA <- muscle(mySeq, out = NULL, quiet = FALSE)

6.	 Save the alignment as follows:
> muscle::write.fasta(MyMSA, file="aln.fasta")

7.	 To print the alignment on screen, use the following function:
> print(MyMSA, from = 1, to = aln$length)

How it works…
The muscle function depicted in this recipe uses the established multiple sequence
comparison by log-expectation (MUSCLE) algorithm for MSA. The read.fasta function
(from the muscle package) reads the sequences into a fasta object. The fasta object
contains the sequences in the FASTA file as a data frame. The muscle function actually calls
a C implementation of the MUSCLE algorithm. The algorithm works in three stages, namely,
progressive alignment, improvement, and refinement. There are other web-based programs,
for instance, ClustalW, but MUSCLE algorithm has become a popular choice because of its
speed and accuracy.

In our results, we see how closely related the proteins are, with minor differences,
representing the closeness of the involved species at this level.

You can also read an alignment file, myMSA.phy (a dummy file name), into an R session using
the read.alignment function from the seqinr package as follows. These files can be
obtained from web-based or other standalone alignment tools for MSA, such as ClustalW
(http://www.genome.jp/tools/clustalw/ or https://www.ebi.ac.uk/Tools/
msa/clustalw2/) and Phylip (http://evolution.genetics.washington.edu/
phylip.html). Let's take a look at the following command:

> virusaln <- read.alignment(file = "myMSA.phy", format = "phylip")

This can be done for other alignment files using the Biostrings package's
readDNAMultipleAlignment function for clustal files. The MultipleAlignment
class of Biostrings also provides utilities to handle MSAs in R. For details, refer to the
documentation of the Biostrings packages at http://www.bioconductor.org/
packages/2.13/bioc/manuals/Biostrings/man/Biostrings.pdf.

Another package called ape also has functions for MSA. We will use this package in our
phylogenetic analysis, which is explained in the next recipe.

https://www.ebi.ac.uk/Tools/msa/clustalw2/
http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
http://www.bioconductor.org/packages/2.13/bioc/manuals/Biostrings/man/Biostrings.pdf
http://www.bioconductor.org/packages/2.13/bioc/manuals/Biostrings/man/Biostrings.pdf

Chapter 3

77

See also
ff The Multiple sequence alignment: algorithms and applications article by Gotoh

at http://www.ncbi.nlm.nih.gov/pubmed/10463075, which provides
information about multiple sequence alignment algorithms and their application

ff The MUSCLE: multiple sequence alignment with high accuracy and high throughput
article by Edgar at http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC390337/?tool=pubmed, which provides theoretical details of the
MUSCLE algorithm

Phylogenetic analysis and tree plotting
Phylogenetic analysis is about finding the evolutionary relationship among species
(organisms), in our case, based on sequence data. Once we have a set of sequences from
different sources, it becomes very interesting to understand how close or distant they are
in terms of molecular evolution. As a result of the mutations during evolution, there emerge
differences at the sequence level. These differences can be represented in terms of distance
measures (check the See also section at the end of this recipe). These measures can then
be used to estimate the evolutionary relations among the species, often represented as
phylogenetic trees. This relation is very often depicted in terms of a phylogenetic tree. So far,
we looked into the various aspects of sequence retrieval, alignment, and analysis. This section
aims to entail the recipe to perform a phylogenetic analysis on sequence data.

Getting ready
The prerequisites for the recipe are as follows:

ff An R session with the ape package installed and loaded

ff Sequences to be analyzed (at least their IDs)

How to do it…
To perform the phylogenetic analysis on sequences of your choice, follow the ensuing steps:

1.	 Install and load the ape package by typing the following command:
> install.packages("ape")

> library(ape)

2.	 Define the sequences of your interest as a set in terms of IDs as follows:
> myset <- c("U15717", "U15718", "U15719", "U15720", "U15721",
"U15722", "U15723", "U15724")

http://www.ncbi.nlm.nih.gov/pubmed/10463075
http://www.ncbi.nlm.nih.gov/pubmed/10463075
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC390337/?tool=pubmed
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC390337/?tool=pubmed

Sequence Analysis with R

78

3.	 Fetch the sequences of your interest, as provided in the following example:
> myseqs <- read.GenBank(myset)

4.	 Compute the distance matrix for the sequences with the following dist.dna function:
> mydist <- dist.dna(myseqs)
> mydist

5.	 To get the phylo object for the phylogenetic trees, use the following triangMtd
function that uses the triangles method to reconstruct the tree:
> myphylo <- triangMtd(mydist)

6.	 At this stage, we can do a bootstrap on the phylo object, if needed, using the boot.
phylo function. For detailed information, type ?boot.phylo in the R session.

7.	 Create the different kinds of phylogenetic trees for your analysis as follows:
> plot(myphylo, type="phylogram", edge.color="red", cex=1, edge.
width=1,main="(A) Phylogram")
> plot(myphylo, type="cladogram", edge.color="red", cex=1, edge.
width=1, main="(B) Cladogram")
> plot(myphylo, type="fan", edge.color="red", cex=1, edge.width=1,
main="(C) Fan")
> plot(myphylo, type="unrooted", edge.color="red", cex=1, edge.
width=1, main="(D) Unrooted")

How it works…
Once the sequences are fetched from the database by the system, the process of
phylogenetic analysis starts. The first step is the computation of pairwise distances between
sequences. This is based on different models of DNA evolution, for example, the Kimura
model, Jukes Cantor model, and so on. The distances are based on the rates at which one
nucleotide replaces another during evolution. For details, try ?dist.dna. The returned
value is an object of the dist class (set as.matrix = TRUE to get the results in the form
of a matrix). The dist object is then converted into a phylo object that can be used to plot
phylogenetic trees. These distances actually depict how far the species are, or rather, the
sequences on the evolutionary scale. A neighbor joining method creates the phylogenetic tree
object. It joins the two closest neighbors so that the distances of these two clusters from the
remaining clusters are as far as possible. Various types of plots for phylogenetic trees can
be plotted. In this recipe, we used four different ways to visualize the phylogenetic tree. The
phylogram shows the evolutionary history where the length of each branch stem indicates the
amount of evolution (such as the number of nucleotide substitutions that occurred between
the connected branch points). The second type of tree that we plotted is a cladogram. It does
not represent the actual relation among the species but the branching during the evolution
and branches join at hypothetical ancestors. The third type of tree is a fan-shaped tree that
shows radical branches for species. The unrooted trees illustrate the relatedness of the leaf
nodes, completely ignoring the ancestry. The following screenshot shows the different types
of phylogenetic trees:

Chapter 3

79

While performing a phylogenetic analysis, it is important to keep in mind the biological
question that you are trying to answer. For instance, when studying closely related species
at the protein level, the signals will be very small as proteins evolve at a much slower rate.
It is therefore advisable to use nucleotide sequences for such an analysis. On the contrary,
for distant species, the DNA signal is too noisy, and hence protein sequences are preferred.
To illustrate this, the nucleotide sequences of a pair of homologous genes will have a higher
information content compared to the corresponding amino acid sequences as mutations,
since nonsynonymous changes affecting the DNA might not affect the amino acid sequence.

Sequence Analysis with R

80

Another important thing regarding the ape package is that it allows you to save the tree
as a Newick-format tree file using the write.tree function. For further details, refer to
?write.tree.

See also
ff The APE: Analyses of Phylogenetics and Evolution in R language article by

Paradis and others at http://bioinformatics.oxfordjournals.org/
content/20/2/289.abstract, which provides more theoretical information
on the ape package

ff The Models of Molecular Evolution and Phylogeny article by Liò and Goldman at
http://genome.cshlp.org/content/8/12/1233.full, which provides an
extensive overview of the models of the DNA sequence evolution

ff The NCBI book, Genomes, (Chapter 16, Molecular Phylogenetics) at
http://www.ncbi.nlm.nih.gov/books/NBK21122/, which
provides a great background in phylogenetic analysis

Handling BLAST results
Basic Local Alignment Search Tool (BLAST) is a basic tool for bioinformaticians.
The tool aims at looking for local similarities across sequences against a database
of relevant sequences. It takes an input sequence (nucleotide or protein) and a
reference database (genomic data or EST) and performs the local alignment of the
former against the latter. This is very useful in understanding the function and comparison
of new sequences as well as to understand the relation among them. You can BLAST any
of the sequences that we retrieved in the preceding sections on the NCBI BLAST web page
(http://blast.ncbi.nlm.nih.gov/Blast.cgi).

BLAST results are usually an HTML page but can be downloaded as a table (the red rectangle
in the previous screenshot). This recipe talks about the handling of these BLAST result tables.
The following screenshot shows the BLAST result web page:

http://bioinformatics.oxfordjournals.org/content/20/2/289.abstract
http://bioinformatics.oxfordjournals.org/content/20/2/289.abstract
http://genome.cshlp.org/content/8/12/1233.full
http://genome.cshlp.org/content/8/12/1233.full
http://www.ncbi.nlm.nih.gov/books/NBK21122/
http://www.ncbi.nlm.nih.gov/books/NBK21122/
http://blast.ncbi.nlm.nih.gov/Blast.cgi

Chapter 3

81

Getting ready
The basic requirement of this recipe is a BLAST result. For this, we need our computer to be
connected to the Internet to download the results and libraries.

Input the sequence we retrieved in the previous recipes. The input can either be made in the
textbox by pasting the sequence or path to a FASTA file or a sequence ID. Then, we can run the
BLAST program of our interest to get the results. The result table can then be downloaded as
a table.

If the results are downloaded from the NCBI standalone BLAST, the RFLPtools package
meant for the DNA fragment analysis and BLAST report analysis can easily be used.

Sequence Analysis with R

82

How to do it…
To work with the BLAST results, perform the following steps:

1.	 Install and load the following functions of RFLPtools into your R session that reads
the BLAST results:
> install.packages("RFLPtools",dependencies=TRUE)

> library(RFLPtools)

2.	 Use the built-in blast result from the package for a demo here. To specify the file,
type the following commands:
> DIR <- system.file("extdata", package = "RFLPtools")

> MyFile <- file.path(DIR, "BLASTexample.txt")

3.	 To read the file, simply use the following command:
> MyBLAST <- read.blast(file = MyFile)

4.	 If the BLAST results are from a standalone BLAST, use the RFLP library's read.
blast function, as follows, to read the MyblastRes.txt BLAST file into a
data frame:
> MyBLAST <- read.blast(file="MyblastRes.txt")

5.	 In case you did not use the BLAST program but used the web-based tools to get the
myAlign.txt file, you can still read the file as a data frame with the following set
of commands:
> MyBLAST2 <- read.csv(file="myAlign.txt", head=TRUE, sep=",")

6.	 Take a look at the read in data contents:
> head(MyBlast2)

7.	 The RFLPtool package also allows the computing/extracting of similar matrices out
of the data frame as follows:
> mySimMat <- simMatrix(MyBLAST)

Then, you can name the columns of the data per your convenience and use it for
further analysis.

Chapter 3

83

How it works…
The web-based BLAST algorithm primarily outputs an HTML file together with some other
formats. However, the alignment is available for download in a tabular format. The recipe just
explains a way to import these files as a data frame. The read.blast functions do the same
with the file generated by the standalone BLAST. For instance, such data is available as an
example in the RFLPtools package. It can be loaded as follows:

> data(BLASTdata)

> head(BLASTdata)

This gives us an idea about the contents of the BLAST result data. The data consists of various
elements, such as the name, identity, sequence length, alignment length, E-values, and some
other attributes of the BLAST search. Try to look at the column names of the package data
as follows:

> colnames(BLASTdata)

[1] "query.id" "subject.id"

[3] "identity" "alignment.length"

[5] "mismatches" "gap.opens"

[7] "q.start" "q.end"

[9] "s.start" "s.end"

[11] "evalue" "bit.score"

See also
ff The Nature Scitable page at http://www.nature.com/scitable/topicpage/

basic-local-alignment-search-tool-blast-29096, which provides
information on the BLAST program

ff The Basic local alignment search tool article by Altschul and others at
http://www.ncbi.nlm.nih.gov/pubmed/2231712, which provides
more theoretical detail on the BLAST program

ff The detailed documentation on the RFLPtools package, which is available on
the package's CRAN page at http://cran.r-project.org/web/packages/
RFLPtools/index.html

http://www.nature.com/scitable/topicpage/basic-local-alignment-search-tool-blast-29096
http://www.nature.com/scitable/topicpage/basic-local-alignment-search-tool-blast-29096
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://www.ncbi.nlm.nih.gov/pubmed/2231712
http://cran.r-project.org/web/packages/RFLPtools/index.html
http://cran.r-project.org/web/packages/RFLPtools/index.html

Sequence Analysis with R

84

Pattern finding in a sequence
So far, we have learned a lot about fetching a sequence, aligning, and matching it with
others. It is equally important to check for some patterns in the gene apart from the general
nucleotide content analysis we had in the previous recipe. It can be used to detect various
interesting subsets of characters in nucleotide or protein sequences, for example, the start
and stop codons in nucleic acids. Start and stop codons mark the site at which the translation
into protein sequences begins and the site at which the translation ends. The common
example of a start codon in mRNAs is AUG and for a stop codon, some examples are UAG,
UGA, and UAA. Even in the case of protein sequences, we can search conserved motifs. This
recipe will talk about finding patterns in the sequence that can be interesting from the point
of view of functional and molecular biology, such as gene finding in a sequence or ORF finding
in a sequence. ORFs are the frames in a genomic sequence that are not interrupted by
stop codons.

Getting ready
To start with, we just need a nucleotide sequence to work with, either in the R session or as a
file, in the Biostrings library.

How to do it…
To find a pattern in a sequence, perform the following steps:

1.	 Looking for the start and stop codons in R can be seen as a simple pattern-matching
problem and can be solved with the Biostrings library. Load this library with the
following function:
> library(Biostrings)

2.	 Then, create the sequence to be analyzed as follows (in our case, we use a random
sequence, but we can use the sequences fetched from GenBank as well):
> mynucleotide <- DNAString("aacataatgcagtagaacccatgagccc")

3.	 Look for a pattern of your interest, such as a start codon ATG, as shown in the
following example:
> matchPattern(DNAString("ATG"), mynucleotide)

4.	 Similarly, look for the pattern for the stop codons, such as TAA or other stop codons,
as shown in the following example:
> matchPattern("TAA", mynucleotide)

Chapter 3

85

5.	 Now, combine these two aspects into a single function to return the overall results for
all the codons as in the following function:
myCodonFinder <- function(sequence){

 startCodon = DNAString("ATG") # Assign start codons

 stopCodons = list("TAA", "TAG", "TGA") # Assign stop codons

 codonPosition = list() #initialize the output to be returned
as a list

 codonPosition$Start = matchPattern(startCodon, sequence) #
search start codons

 x=list()

for(i in 1:3){ # iterate over all stop codons

x[[i]]= matchPattern(DNAString (stopCodons[[i]]), sequence)

codonPosition$Stop=x

 }

return(codonPosition) # returns results

}

6.	 Now, paste the code for the previous function into the R session and run it with your
sequence object mynucleotide as follows:
> StartStops <- myCodonFinder(mynucleotide)

Alternatively, save the source code as a file, say, myCodonFinder.R, and source it
into the R session as follows:

> source("myCodonFinder.R")

7.	 To find the genes in the nucleotide sequence, tweak the function by looking for a start
codon and then a potential stop codon with a set of codons in between.

The modification can also be used to find open reading frames (ORFs).

How it works…
The matchPattern function of Biostrings is an implementation to identify the
occurrences of a particular pattern or motif in a sequence. It requires a string as an input
(not a vector of characters) that is created by the DNAString function. If you intend to use
a vector of characters from the Retrieving a sequence recipe, you must convert it into a
string via the use of the c2s and DNAString functions (AAString for a protein sequence
and RNAString for RNAs). The matchPattern function returns a table with columns that
represent the start, end, and width of the hit or match (the width is obviously the same as
the length of the pattern). All the hits found in the sequence are arranged in the rows of the
returned object.

Sequence Analysis with R

86

In our function, to find all the start and stop codons, we combine two pattern searches; first,
we combine the search for the start codon, and second, we look iteratively for all the three
stop codons. We can modify this function to find an ORF. This is left for the reader to try.

The Biostrings package has many other interesting functions to solve more complicated
issues regarding patterns in sequences. Another similar example is the matchLRPatterns
function that finds the paired matches in a sequence. It can be used as follows:

> mytarget <- DNAString("AAATTAACCCTT")

> matchLRPatterns("AA", "TT", 5, mytarget)

It is recommended that you take a deeper look at these two packages (Biostrings and
seqinr) to learn more about such methods.

See also
ff The BioWeb page at http://bioweb.uwlax.edu/genweb/molecular/seq_

anal/translation/translation.html, which provides more information
about ORFs

ff The NCBI page at http://www.ncbi.nlm.nih.gov/Class/MLACourse/
Modules/MolBioReview/codons_start_stop.html, which provides a
description of the codons in molecular biology

ff The Biostrings package article written by Pages and others at
http://www.bioconductor.org/packages/2.13/bioc/html/Biostrings.
html, which provides detailed documentation on the Biostrings package

http://bioweb.uwlax.edu/genweb/molecular/seq_anal/translation/translation.html
http://bioweb.uwlax.edu/genweb/molecular/seq_anal/translation/translation.html
http://bioweb.uwlax.edu/genweb/molecular/seq_anal/translation/translation.html
http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/codons_start_stop.html
http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/codons_start_stop.html
http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/codons_start_stop.html
http://www.bioconductor.org/packages/2.13/bioc/html/Biostrings.html
http://www.bioconductor.org/packages/2.13/bioc/html/Biostrings.html

4
Protein Structure

Analysis with R

In this chapter, we will cover the following recipes:

ff Retrieving a sequence from UniProt

ff Protein sequence analysis

ff Computing the features of a protein sequence

ff Handling the PDB file

ff Working with the InterPro domain annotation

ff Understanding the Ramchandran plot

ff Searching for similar proteins

ff Working with the secondary structure features of proteins

ff Visualizing the protein structures

Introduction
Proteins are very versatile biomolecules. The structural and functional roles of proteins
have been investigated through experimental studies as well as numerous computational
techniques. We learned about sequence analysis in Chapter 3, Sequence Analysis with R,
where we focused mainly on matching and alignments. However, proteins, in contrast to
nucleotides, show a great variety of three-dimensional conformations necessary for their
diverse structural and functional roles. The amino acids in a protein dictate important
terms in its three-dimensional structure. The frequency of particular amino acid residues
in the sequence plays an important role in determining the secondary structures of the
protein, namely, α helix, β sheet, and turns. For the details of this dependence, visit http://
www.ncbi.nlm.nih.gov/books/NBK22342/table/A354/?report=objectonly.

http://www.ncbi.nlm.nih.gov/books/NBK22342/table/A354/?report=objectonly
http://www.ncbi.nlm.nih.gov/books/NBK22342/table/A354/?report=objectonly

Protein Structure Analysis with R

88

The steric conformation in certain amino acids such as valine, threonine, and isoleucine
makes them more adaptable in β sheets. However, predicting the secondary structure of
peptides is slightly more complicated than these frequencies; nevertheless, amino acid
sequences can be extremely useful for the purpose of estimating the overall protein structure.

Besides structure, the physicochemical properties of a protein are also determined by the
analogous properties of the amino acids (ultimately the sequence) in it. For example, the
acidity, basicity, and so on, can be decided based on the fraction of acidic or basic amino
acids in the protein. All the properties of proteins, starting from structure to physicochemical
properties, are critical for their biological role.

Although there are many promising software tools for protein structure analysis and
visualization, R offers fewer options that serve the purpose. Nevertheless, it is good to have a
glance at these possibilities with R. This chapter will illustrate how to work with proteins at the
sequence and structure levels. Here, we cover the important and fundamental aspects and
methods of protein bioinformatics, including sequence, structure analysis, and so on.

Retrieving a sequence from UniProt
To begin with the protein analyses, we first need to retrieve a protein sequence. UniProt is a
high-quality and freely accessible database of protein sequences and functional information.
It should be noted that certain other databases such as RefSeq also provide protein
sequence information, but UniProt is a manually curated one and hence better for analytical
purposes in this recipe. We use this as the source for our sequence information. This recipe
will explain a few ways to retrieve sequences from UniProt using R.

Getting ready
Retrieving sequences from the UniProt database simply requires an identification of the
protein sequence that we want to retrieve. We will look for the NAD kinase (NADK) enzyme
in humans (UniProt ID: O95544).

How to do it…
To retrieve the protein sequences from UniProt, perform the following steps:

1.	 The first method we present uses the biomaRt package (as explained in Chapter 3,
Sequence Analysis with R). To use it, first load the biomaRt package as follows:
> library(biomaRt)

2.	 Followed by this, select the UniProt mart called unimart in biomaRt as follows:
> myMart <- useMart("unimart", dataset="uniprot")

> myMart

Chapter 4

89

3.	 Now, check the attributes in the selected mart by typing the following command so as
to decide what entities can be retrieved:
> listAttributes(myMart)

4.	 Retrieve the interesting attributes in the following way using the getBM function:
> myProt <- getBM(attributes=c("pdb_id","protein_name",
"ensembl_id","go_id", "name"), filter="accession",
values="O95544", mart=myMart)

> myProt

 pdb_id protein_name ensembl_id go_id name

1 3PFN NAD kinase ENSG00000008130 GO:0016310 NADK_HUMAN

2 3PFN NAD kinase ENSG00000008130 GO:0019674 NADK_HUMAN

3 3PFN NAD kinase ENSG00000008130 GO:0044281 NADK_HUMAN

4 3PFN NAD kinase ENSG00000008130 GO:0046034 NADK_HUMAN

5 3PFN NAD kinase ENSG00000008130 GO:0006767 NADK_HUMAN

6 3PFN NAD kinase ENSG00000008130 GO:0003951 NADK_HUMAN

7 3PFN NAD kinase ENSG00000008130 GO:0005829 NADK_HUMAN

8 3PFN NAD kinase ENSG00000008130 GO:0005524 NADK_HUMAN

9 3PFN NAD kinase ENSG00000008130 GO:0006766 NADK_HUMAN

10 3PFN NAD kinase ENSG00000008130 GO:0006741 NADK_HUMAN

11 3PFN NAD kinase ENSG00000008130 GO:0046872 NADK_HUMAN

5.	 To retrieve the sequence, set up an Ensemble mart with the following function:
> ensemblMart <- useMart(biomart = "ensembl", dataset =
"hsapiens_gene_ensembl")

6.	 Now, use the getSequence function of R to fetch the sequence of interest
as follows:
> myProtein <- getSequence(id=myProt$ensembl_id[1], type="ensembl_
gene_id", seqType = "peptide", mart=ensemblMart)

7.	 Check the first retrieved sequence, which is a component of the myProtein object,
as follows:
> myProtein$peptide[1]

8.	 Another method to get the sequence is the use of the UniProt.ws package.
To do this, first install and load the UniProt.ws package as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("UniProt.ws")

> library(UniProt.ws)

www.allitebooks.com

http://www.allitebooks.org

Protein Structure Analysis with R

90

9.	 Once you have the library loaded in the session, check the available species in
UniProt (in this case, with the pattern, sapiens) as follows:
> availableUniprotSpecies(pattern="sapiens")

 taxon ID Species name

1 63221 Homo sapiens neanderthalensis

2 9606 Homo sapiens

10.	 Select the taxonomic ID for the human sequence as shown in the following command:
> taxId(UniProt.ws) <- 9606

11.	 Check the information available in the database package with the following
R commands:
> head(keytypes(UniProt.ws))

> head(cols(UniProt.ws))

12.	 Now, select the information you want from the database using Entrez IDs as the keys
and columns of your choice as follows:
> keys <- "O95544"

> cols <- c("PDB", "UNIPROTKB", "SEQUENCE")

> kt <- "UNIPROTKB"

13.	 To fetch the sequence, use the select function of the UniProt.ws package
as follows:
> myProtein2 <- select(UniProt.ws, keys, cols, kt)

14.	 The following myProtein2 variable will have the desired sequences:
> myProtein2$SEQUENCE

How it works…
The working principle of biomaRt has already been explained in the previous chapter. The
UniProt mart, unimart, is a BioMart database used for querying UniProt Knowledgebase
(UniProtKB) data, with a cross-querying facility to join to/from other BioMart databases.
The getBM function uses the following three arguments:

ff Attribute: This is the field to be fetched for the query

ff Filters: These restrict the query to match certain criteria (in our case, the UniProt ID)

ff Mart: This is created by the usemart function to identify the target database

Chapter 4

91

The value returned is a data frame, where each row represents an entry for the corresponding
protein. To get the sequence, we execute the getSequence function that accepts the
Ensemble IDs as input. However, before this, we need to create another mart object
for the Ensemble databases, as we did for UniProt, to use it to fetch the sequence. The
getSequence function accepts the ID that we want to retrieve from the myProt object, the
ID type (in our case, Ensemble), the type of sequence we want to retrieve (in our case, we look
for peptide sequences), and finally, the Ensemble mart. The result is another data frame. Type
in head(myProtein) to know about the contents of the data frame.

The alternative presented here is the UniProt.ws package. This package is an R interface
for UniProt web services. UniProt (http://www.uniprot.org) is a resource for protein
sequences and annotation data that can be extracted from the host page of the database.
The various kinds of data that can be extracted from UniProt includes peptide sequences, the
GO annotation, interactions, protein families, and so on. Loading the package in an R session
creates a UniProt.ws object (check with the ls() function). The UniProt.ws package can
also access this data from within R and is preferred to fetch the data from remote sources
and the analysis of data that avoids dealing manually with browser-based data fetching as
well as the automation of the analysis pipeline.

The database contains protein data for a number of species. Therefore, we first get the list
of species matching a pattern with the function and then select a taxonomic ID. The most
important function in the package is the select function that extracts data from UniProt. The
function needs three inputs, columns (cols), keys (keys), and key-types (kt), together with
the UniProt.ws object. The columns input shows which kinds of data can be returned for
the UniProt.ws object, and the keys input consists of the keys for the database contained in
the object. The keytype argument can be used to return specific keys. For example, we used
UniProt's KB keys here; we could have used the ENTREZ_GENE key type if the input type was
Entrez IDs. The select function then returns the corresponding columns from the database.

See also
ff The documentation page for the database at http://www.uniprot.org/help/

about, which provides more information about the UniProt database.

ff The UniProt: the Universal Protein knowledgebase article by Apweiler and others
at http://nar.oxfordjournals.org/content/32/suppl_1/D115.long,
which provides a detailed description about the database and its schema.

ff The other ways to retrieve protein sequences, such as Protein Data Bank (PDB).
PDB (www.rcsb.org) that focuses mainly on information about experimentally
determined structures of proteins, nucleic acids, and complex assemblies, which
will be discussed in the upcoming recipe, Protein sequence analysis.

ff Another possible source of protein data, SWISSPROT. It is the manually annotated
and reviewed section of the UniProt knowledge base that can be accessed using the
biomaRt or seqinR packages. Use the help pages of the corresponding packages
for further information.

http://www.uniprot.org
http://www.uniprot.org/help/about
http://nar.oxfordjournals.org/content/32/suppl_1/D115.long
www.rcsb.org

Protein Structure Analysis with R

92

Protein sequence analysis
We have already seen the recipe for a general sequence analysis (both for nucleic acids and
proteins) in the previous chapter. However, while doing a protein sequence alignment, we can
directly fetch the sequence data from PDB (www.rcsb.org) and do the alignment within
the program in R. Furthermore, the position of a protein multiple sequence alignment plays
an important role, and color is often used to indicate amino acid properties to aid in judging
the conservation of a given amino acid substitution. This will ultimately affect the structural,
functional, and physicochemical properties of proteins. Here, we will present a recipe to
create such an alignment and coloring of alignment with a protein sequence alignment
and generate a readily reusable HTML format.

Getting ready
As we focus mainly on a multiple sequence alignment, this recipe, besides an Internet
connection, needs MUSCLE software. MUSCLE is an open source multiple alignment software.
We will also use the bio3d R package in this recipe, which has utilities for protein structure
and sequence-related analysis.

How to do it…
To analyze the protein sequences, perform the following steps:

1.	 To install MUSCLE on a Linux (Ubuntu) system, use the following command from your
shell terminal. For some Linux distributions, sudo is sometimes not available. Refer
to the installation documentation at http://www.drive5.com/muscle/manual/
install.html for details:
$ sudo apt-get install muscle

2.	 Then, install and load the bio3d package into the R session. The package is
available as the source at http://thegrantlab.org/bio3d/download.
Binary for Windows are also available at http://thegrantlab.org/bio3d/
phocadownload/Bio3D_version2.x/bio3d_2.0-1.tar.gz. To download
it from terminal in Linux, use the wget command as follows:
> wget

3.	 To install the package, use the following install.packages function (remember to
move to the directory where the source file is located or specify the entire path):
> install.packages("bio3d_2.0-1.tar.gz", repos=NULL,
type="source")

Furthermore, there are certain dependencies for the bio3d package, and these
must be installed before you install bio3d itself. The details of the dependencies
are available at http://thegrantlab.org/bio3d/download.

www.rcsb.org
http://www.drive5.com/muscle/manual/install.html
http://thegrantlab.org/bio3d/download
http://thegrantlab.org/bio3d/phocadownload/Bio3D_version2.x/bio3d_2.0-1.tar.gz
http://thegrantlab.org/bio3d/phocadownload/Bio3D_version2.x/bio3d_2.0-1.tar.gz
http://thegrantlab.org/bio3d/download
http://thegrantlab.org/bio3d/download

Chapter 4

93

4.	 Before you begin working with the package, load it into your R session as follows:
> library(bio3d)

5.	 Now, fetch the set of proteins from PDB (another source to get sequences) using the
read.pdb function that reads the PDB files from PDB (the others used depend on
UniProt or Ensemble) as follows:
> pdb1 <- read.pdb("1BG2")

> pdb2 <- read.pdb("2VVG")

> pdb3 <- read.pdb("1MKJ")

6.	 From these proteins, extract the sequences that will be aligned with the following
function using aa321; it reads the three-letter representation for amino acids in
the PDB files and converts them to one-letter codes (hence 3-2-1):
> s1 <- aa321(pdb1$seqres)

> s2 <- aa321(pdb2$seqres)

> s3 <- aa321(pdb3$seqres)

7.	 To align these sequences, first create a matrix of sequences as follows:
> raw <- seqbind(seqbind(s1, s2),s3)

8.	 Now, align the set of sequences with the seqaln function as follows:
> aln <- seqaln(raw, id=c("1BG2","2VVG ","1MKJ "))

9.	 Save the alignment and observe it as a colored HTML file with the following function:
> aln2html(aln, append=FALSE, file="Myalign.html")

10.	 Now, open the created HTML file in a browser to visualize the results.

The following screenshot shows a part of the alignment (not the entire
alignment—scroll through your HTML file to see the entire alignment) for three
protein sequences produced as HTML files with color codes (in this case, it is
shown in grayscale due to printing limitations):

Protein Structure Analysis with R

94

How it works…
We have already seen some of the alignment methods in Chapter 3, Sequence Analysis
with R. In this recipe, we introduced a new package called bio3d that specializes in dealing
with protein sequences and deals with the PDB file. A PDB file is a representation of the
macromolecular structure data derived from X-ray diffraction and NMR studies. It contains
the sequences and coordinates of amino acid residues. The read.pdb function goes to the
PDB database and reads the corresponding PDB file. In our case, we first fetch the protein
sequence for the PDB database. The amino acid residues are in three-letter representations,
and the aa321 function converts them into one-letter representations. Another similar
function, aa123 (1-2-3), can do the conversions the other way round. This is followed by the
combining of the sequences into a matrix of sequences with the seqbind function (in our
case, we did it in a nested way). The alignment function then uses the MUSCLE program
to align the sequences.

Here, our input sequences are kinesin proteins from three different organisms. They
are microtubule-associated, force-producing proteins that may play a role in organelle
transport. The alignment shows the differences as well as the conserved domains
(colors in the alignments) in our HTML file. For more details, refer to the InterPro
page at http://www.ebi.ac.uk/interpro/entry/IPR019821.

There's more...
The function can also be used for sequences retrieved from other sources of sequence data,
such as seqinR or UniProt. However, bio3d can deal with the PDB files directly. Note that
as these methods use an external program, MUSCLE, one must install this software before
performing an alignment. For more information, visit http://www.drive5.com/muscle/.

See also
ff The Bio3d: an R package for the comparative analysis of protein structures article

by Grant and others at http://bioinformatics.oxfordjournals.org/
content/22/21/2695, which provides information about the bio3d package

ff The documentation page for PDB at http://www.wwpdb.org/docs.html,
which provides a description about PDB files

http://www.drive5.com/muscle/
http://bioinformatics.oxfordjournals.org/content/22/21/2695
http://www.wwpdb.org/docs.html

Chapter 4

95

Computing the features of a protein
sequence

A sequence can provide certain information about the protein. Its properties include the
amino acid composition, hydrophobicity, and so on. Once we have a retrieved a sequence, we
need to know more about it, such as the nucleotide frequency and GC content (see Chapter 3,
Sequence Analysis with R) present in it. In this recipe, we discuss how to get such information
out of sequence data.

Getting ready
To get the features from the sequence data, use the protR package available with CRAN.
It can be installed like any other CRAN package, as explained earlier.

How to do it…
To compute features in protein sequences, perform the following steps:

1.	 First, install and load the protr package as follows:
> install.packages("protr")

> library(bio3d)

> library(protr)

2.	 Now, the sequence needs to be analyzed. To do this, retrieve the sequence from PDB
by typing the following commands:
> pdb1 <- read.pdb("1BG2")

> s1 <- aa321(pdb1$seqres)

3.	 The protR package needs the sequence as a sequence string. Therefore,
first collapse a vector of characters into a string as follows:
> s1 <- paste(s1, sep="",collapse="")

Alternatively, type the following commands:

> library(seqinr)

> s1 <- c2s(s1)

4.	 Now, extract and compute the features from this sequence. Start with the amino acid
composition using the following extractAAC function:
> extractAAC(s1)

Protein Structure Analysis with R

96

5.	 Check whether the amino acid types of the protein sequence are in the 20 default
types using the following function:
> protcheck(s1)

6.	 Compute the next feature, that is, the amphiphilic pseudo amino acid composition,
which gives an idea related to the sequence order of a protein and the distribution
of the hydrophobic and hydrophilic amino acids along its chain, with the help of
following command:
> extractAPAAC(s1, props = c("Hydrophobicity", "Hydrophilicity"),
lambda = 30, w = 0.05, customprops = NULL)

7.	 Compute some other features such as the composition descriptor, transition
descriptor, and dipeptide composition with the help of the following commands:

> extractCTDC(s1)

> extractCTDD(s1)

> extractDC(s1)

How it works…
The protr package aims at protein sequence feature extraction, which could be used for
various purposes. It implements most of the utilities to compute protein sequence descriptors.
Amino Acid Composition (AAC) is the fraction of each amino acid type within a protein. The
extractAAC function computes the amino acid composition as the fraction of each amino
acid within a protein. Similarly, most of the features we discussed in this recipe are computed
based on the sequence content. The descriptors look for individual amino acids, and the
overall descriptor is computed based on these.

See also
ff The Protr Vignette page at http://cran.r-project.org/web/packages/

protr/vignettes/protr.pdf, which provides detailed information about the
descriptors that can be computed using the protr package

Handling the PDB file
PDB is a worldwide archive of the structural data of biological macromolecules and has a
considerable amount of protein data that includes structure as well as sequence. The data
in PDB is available in the PDB file format. The PDB format is the standard for files containing
atomic coordinates together with sequences and other information. Handling a PDB file is the
first step to analyzing a protein structure. This recipe introduces the function to read a PDB file
in R.

http://cran.r-project.org/web/packages/protr/vignettes/protr.pdf
http://cran.r-project.org/web/packages/protr/vignettes/protr.pdf

Chapter 4

97

Getting ready
The prerequisites for this recipe are as follows:

ff A few R packages, such as bio3d

ff A machine that is connected to the Internet to access the PDB database together
with the PDB ID that we need to read

How to do it…
Perform the following steps to work with the PDB file:

1.	 First, load the protr and bio3d libraries as follows:
> library(protr)
> library(bio3d)

2.	 Now, read a PDB file for the human kinesin motor domain with the ID as 1BG2 from
PDB as follows:
> pdb <- read.pdb("1BG2")

3.	 Check the different parts and components of the created PDB object as follows:
> class(pdb)
> attributes(pdb)
> head(pdb)
> head(pdb$atom[, c("x","y","z")])

4.	 To get the C-alpha coordinates in the protein molecule, simply access the
corresponding record of the PDB object by typing the following command:
> head(pdb$atom[pdb$calpha, c("resid", "elety", "x","y","z")])
 resid elety x y z
[1,] "ASP" "CA" "45.053" "-2.661" "39.856"
[2,] "LEU" "CA" "44.791" "-1.079" "43.319"
[3,] "ALA" "CA" "42.451" "-3.691" "44.790"
[4,] "GLU" "CA" "40.334" "-4.572" "41.737"
[5,] "CYS" "CA" "36.711" "-3.532" "42.171"
[6,] "ASN" "CA" "36.940" "-0.636" "44.620"

5.	 To access the sequence from the PDB object, access the sequence record as follows:
> aa321(pdb$seqres)

6.	 Use the write.pdb function to write a PDB file to a local object. The read.pdb
function can used to read this file into the R session again as follows:
> write.pdb(pdb, file="myPDBfile.pdb")
> read.pdb("myPDBfile.pdb")

Protein Structure Analysis with R

98

How it works…
The read.pdb function gets the PDB data for the input ID into the R session as a PDB object.
The created object has all the records regarding the residue coordinates, sequences, and
torsion angles. To extract the sequences or other elements from the protein, we simply use
the names of the nested objects within the PDB object.

Working with the InterPro domain
annotation

InterPro is a resource that provides the functional analysis of protein sequences by classifying
them into families and predicting the presence of domains and important sites. To classify
proteins in this way, InterPro uses predictive models called signatures from several databases
that make up the InterPro consortium. It includes Gene3D, PANTHER, PRINTS, ProDom,
PROSITE, TIGRFAMs, and so on. InterPro is a database of protein families, domains, and
functional sites, in which identifiable features found in known proteins can be applied to
new protein sequences in order to functionally characterize them.

Getting ready
This recipe needs some new libraries to be installed, such as muscle, in our R session.
Besides this, we also need the sequences of our interest, that is, the sequences to be aligned.
We show two different MSA algorithms in this recipe, which are very well established and used
by bioinformaticians.

How to do it…
Perform the following steps for the InterPro annotation of proteins:

1.	 First, load the biomaRt library into the R session as follows:
> library(biomaRt)

2.	 Then, select the mart you intend to use, as earlier with the Ensemble mart for Homo
sapiens, by typing the following command:
> myMart <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")

3.	 Now, get the input ID for the annotation by typing the following command (for demo
purposes, use the Ensemble ID from the Retrieving a sequence from UniProt recipe
of this chapter):
> ensemblID <- "ENSG00000008130"

Chapter 4

99

4.	 To fetch the InterPro annotation, use the getBM function of biomaRt.
Now, we select the UniProt mart and database that will be used to fetch
the domain data as follows:
> unip <- useDataset("uniprot",mart=useMart("unimart"))

> interpro <- getBM(attributes=c("interpro_id","go_id"),
filters="ensembl_id", values="ENSG00000008130",mart=unip)

The retrieved object is a data frame, with each row that represents an annotation
for the ID that is being searched for. The output is as follows:

> head(interpro)

 interpro_id go_id

1 IPR016064 GO:0016310

2 IPR002504 GO:0016310

3 IPR017438 GO:0016310

4 IPR017437 GO:0016310

5 IPR016064 GO:0019674

6 IPR002504 GO:0019674

How it works...
The entire recipe works as any other biomaRt annotation retrieval we have seen before. The
function gets the set of attribute columns defined in the getBM function from the mart and is
returned as a data frame. Since each query ID can have more than one domain, there can be
more than one row for each domain in the returned results.

There's more...
Another possible way to learn about the protein family and domains is with the use of PFAM
domains. The PFAM database contains information about protein domains and families.
You can use the PFAM.db package, which is available at http://bioconductor.org/
packages/devel/data/annotation/html/PFAM.db.html. For more information,
refer to the help page for the package.

See also
ff The InterPro in 2011: new developments in the family and domain prediction

database article by Hunter and others at http://nar.oxfordjournals.org/
content/40/D1/D306.full, which provides more information about InterPro

http://bioconductor.org/packages/devel/data/annotation/html/PFAM.db.html
http://bioconductor.org/packages/devel/data/annotation/html/PFAM.db.html
http://nar.oxfordjournals.org/content/40/D1/D306.full
http://nar.oxfordjournals.org/content/40/D1/D306.full

Protein Structure Analysis with R

100

Understanding the Ramachandran plot
The Ramachandran plot is a way to visualize the dihedral angle against of amino acid
residues in the protein structure. In principle, it shows the possible conformations of the
and angles for amino acid residue in a protein due to steric constrains. It also serves the
purpose of structure validation. This recipe shows how to draw such a plot for a protein using
a PDB file.

Getting ready
The prerequisites for the recipe are as follows:

ff The bio3d library loaded in the R session.
ff The PDB file that we need to draw a Ramachandran plot for. The PDB file can either

be on a local storage or read directly from PDB.

How to do it…
To visualize the Ramachandran plot for the protein 1BG2, perform the following steps:

1.	 First, load the bio3d library into the R session as follows:
> library(bio3d)

2.	 Next, read the PDB file. In this case, read the file directly from the remote data bank
as follows (continue using the 1BG2 protein as in the examples before this):
> pdb <- read.pdb("1BG2")

3.	 Extract the torsion angles, and , with the following function:
> tor <- torsion.pdb(pdb)

4.	 Now, simply plot the components of the torsion angles with a generic plot function of
R as follows:
> plot(torphi, torpsi, main="(A) Ramachandran plot 1BG2")

5.	 You can enhance the visualization by slightly sophisticated code, but first extract the
torsion angles separately as follows:
> scatter.psi <- tor$psi

> scatter.phi <- tor$phi

6.	 Then, create/brew the color of the contours for the new Ramachandran plot with the
help of the following command:
> library(RColorBrewer) # load RColourBrewer package

> k <- 10 # define number of colours

> my.cols <- rev(brewer.pal(k, "RdYlBu")) # Brew color pallette

http://en.wikipedia.org/w/index.php?title=Structure_validation_(macromolecules)&action=edit&redlink=1

Chapter 4

101

7.	 With these colors and torsion angles in place, create a better looking Ramachandran
plot using the following command:
> smoothScatter(x=scatter_phi, y=scatter_psi,
colramp=colorRampPalette(my.cols), xlim=c(-180,180), ylim=c(-
180,180),xlab="Phi", ylab="Psi", main="(B) Ramachandran plot
1BG2", pch=19, cex=0.00)

The following plot shows a Ramachandran plot that has been drawn using the recipe
code as a simple scatter plot, and a Ramachandran plot with color contours (note
that both the plots show the Psi angles along the y axis and the Phi angles along the
x axis, and the corresponding areas can also be found by comparison easily):

Ramachandran plots for the PDB protein, 1BG2

How it works…
The recipe shown here takes the input PDB file and extracts the and angles. The PDB
file, as seen earlier, has various elements. The torsion angles and are extracted by
the torsion.pdb function. The plot function simply draws them along the y and x axes,
respectively. The points in a Ramachandran plot refer to the pair of torsion angles observed in
the structure. When we do a colored contour plot, the blue hues here represent the space not
occupied by the torsion angles, whereas the white and red hues represent where the structure
shows the corresponding torsion angles. The overall plot outlines the favored conformations
of the protein.

Protein Structure Analysis with R

102

See also
ff The fourth chapter of the Lehninger Principles of Biochemistry book by Nelson and

Cox, which provides more information about the Ramachandran plot

Searching for similar proteins
Once we have a candidate protein, it is an interesting idea for a bioinformatician to look for
similar proteins. This can be achieved simply by doing a blast for the sequence. While doing a
blast online, we search a target sequence database for similar sequences and use the hit to
look for similar relevant proteins based on their similarity scores. R allows us to do something
similar. This recipe explains the method to do a blast for a PDB file directly from an R session.

Getting ready
To look for similar proteins, we need to have a protein sequence for which we use our PDB file
and an active Internet connection to perform a BLAST using a web-based sequence repository.

How to do it…
Do a search for a similar protein from within R with the following set of steps:

1.	 First, load the bio3d library to read the PDB file as follows:
> library(bio3d)

2.	 Now, read the protein of your interest directly from PDB as follows:
> pdb <- read.pdb("1BG2")

3.	 Then, extract the sequence record from your PDB as a one-letter representation file
using the aa321 function as follows:
> mySeq <- aa321(pdb$seqres)

4.	 Run BLAST from R using the following blast.pdb function with the previous
extracted sequence (note that this can take a while):
> myBlast <- blast.pdb(seq.pdb(pdb))

5.	 We can see the head of the blast result as a table by typing the following command:
> head(myBlast$hit.tbl)

Chapter 4

103

6.	 To get the top hit that consists of the most similar sequences, take a look at the most
similar hits and plot them based on their similarity as follows:
> top.hits <- plot(myBlast)

> head(top.hits$hits)

 pdb.id gi.id group

1 "6Q21_A" "231226" "1"

2 "6Q21_B" "231227" "1"

3 "6Q21_C" "231228" "1"

4 "6Q21_D" "231229" "1"

5 "1IOZ_A" "15988032" "1"

6 "1AA9_A" "157829765" "1"

How it works…
What we did in the preceding code chunks is very similar to performing a BLAST over a
web-based tool. The recipe starts with extracting the sequence from the PDB file that was
fetched. This sequence is then sent across the remote repository for a BLASTP search, that
is, a search against protein sequences in the data repository. The search results consist of
a tabular element that contains the information about the PDB IDs of the hit proteins and
other IDs together with their grouping. For more information, check with ?blast.pdb and
summary(blast).

Working with the secondary structure
features of proteins

The structure of a protein is an important factor behind its biological role. Proteins have four
major levels of structure definition. They are named the primary, secondary, tertiary, and
quaternary structure. The primary structure refers to the linear sequence of amino acids in
the protein, while the secondary structure is the local substructure, usually in the form of
alpha helix and beta sheets together with coils. The tertiary and quaternary structures explain
the three-dimensional structures and arrangement of subunits of a protein, respectively. The
secondary structure of a protein is the specific geometric shape induced in the protein by the
intramolecular and intermolecular hydrogen bonding of the amide groups of its residues. The
α helix and β sheet are the most common secondary structure elements found in proteins.
These elements play a critical role in the functioning of proteins. This recipe explains how to
get the secondary structure elements of a protein.

Protein Structure Analysis with R

104

Getting ready
To get an idea about the secondary structure of a protein, we need the dssp and
bio3d packages from CRAN. Note that we can also use the stride program available
at http://webclu.bio.wzw.tum.de/stride/. However, in this recipe, we will use
dssp for demo purposes.

How to do it…
To deal with the secondary structure in proteins, perform the following steps:

1.	 First, install the dssp package in your machine by typing the following command
(the software can be installed from the shell terminal in Linux; for other operating
systems, visit http://swift.cmbi.ru.nl/gv/dssp/):
$ sudo wget ftp://ftp.cmbi.ru.nl/pub/software/dssp/dssp-2.0.4-
linux-i386 -O /usr/local/bin/dssp

2.	 In case there is a lack of sudo rights, install the software in your personal directory
or contact the system administrator. The detailed instruction on the installation of
bio3d allows the installation of dssp in parallel.

3.	 Following this, make the dssp package executable with the following chmod
command in shell (the dssp package is now installed and executable):
$ sudo chmod a+x /usr/local/bin/dssp

4.	 Now, start the R session and then install and load the bio3d library as follows:
> library(bio3d)

5.	 Load the protein within the Rknots package in the R session as follows
(remember that in our case, we use a different function to load a PDB file):
> protein <- read.pdb("1BG2")

6.	 To get the secondary structure, simply use the following dssp function:
> SS <- dssp(pdb)

7.	 The returned object is a table of residues and their secondary structure in the form of
alpha helix, beta sheets, and so on. Check it out by typing the following command:
> head(SS)

http://webclu.bio.wzw.tum.de/stride/
http://webclu.bio.wzw.tum.de/stride/
http://swift.cmbi.ru.nl/gv/dssp/
http://swift.cmbi.ru.nl/gv/dssp/

Chapter 4

105

How it works…
The function in this recipe uses dssp. It is a database of the secondary structure assignments
(and much more) for all the protein entries in the PDB. Once the R function has the PDB file, it
goes to the path given as an input in the dssp function to execute the original dssp program
and then returns the results obtained from the database. It should be noted that dssp is a
secondary structure database as well as a program. In this recipe, we used the dssp program.

Visualizing the protein structures
Visualizing the three-dimensional structure of a protein is crucial for several purposes in
protein research. The ability to visualize these structures is critical to areas such as drug
design and protein modeling. There exist many tools for structure visualization and, more
importantly, interactive 3D visualization. Common examples of these are RasMol, Jmol, and
Cn3D. The RasMol tool accepts the PDB and MMDB formats, whereas the Cn3D tool reads
the ASN.1 format, which is more refined. Besides this, Cn3D can also read the structure
(in the form of ASN.1 files) directly from the remote databases and provides faster rendering.
Honestly speaking, as of now, R does not provide a tool that is any close to the available
popular tool for the purpose. However, for the sake of completeness, we introduce a simple
method in this recipe to look at the structure of a protein in R.

Getting ready
In this recipe, we need the Rknots package for visualization purposes along with the protein
data (or PDB ID) of our interest. The Rknots package has actually been designed for the
topological analysis of polymers.

How to do it…
To visualize the protein structure from within R, perform the following steps:

1.	 First, install and load the Rknots package from the CRAN repository as follows:
> install.packages("Rknots")

2.	 Then, load the proteins from PDB as follows:
> myprotein <- loadProtein("1BG2")

3.	 You can then see the structure of the protein with the help of the following
commands, but in 2D:
> plotDiagram(myprotein$A, ends = c(), lwd = 2.5)

Protein Structure Analysis with R

106

4.	 Install RGL graphics for 3D visualization on your machine, and plot the visualization
with the following function:
> ramp <- colorRamp(c('blue', ' white', ' red'))

> pal <- rgb(ramp(seq(0,1,length=100)), max=255)

> plotKnot3D(myprotein$A, colors=list(pal), lwd=8, radius=0.4,
showNC=TRUE, text=FALSE)

How it works…
The loadProtein function retrieves the PDB information for the input ID in the
R session. The plot function then creates the structure in 2D. To visualize the structure,
we created a color ramp with varying hues from red to blue (100 equal divisions in the color
palette—argument length is equal to 100). Following this, we plotted the backbone structure
that uses RGL graphics. The method in this recipe has been presented for completeness.
It is advisable that you use other tools for better visualization of protein structures, such
as RasMol, Jmol, Cn3D, or VMD. However, it is possible to write the data to a local PDB file
using the write.pdb function and then visualize it using your favorite tool (in our case, we
used Jmol). We can do it for our 1BG2 PDB file and compare the results. However, you can
do it by directly downloading the file from PDB. This can be useful for locally created files.
The following screenshot shows the visualization of the protein 1BG2 that uses the Rknots
package (left) and the Jmol package (right)—note that the structures have been positioned
and oriented to make them comparable:

5
Analyzing Microarray

Data with R

This chapter will deal with the following recipes:

ff Reading CEL files

ff Building the ExpressionSet object

ff Handling the AffyBatch object

ff Checking the quality of data

ff Generating artificial expression data

ff Data normalization

ff Overcoming batch effects in expression data

ff An exploratory analysis of data with PCA

ff Finding the differentially expressed genes

ff Working with the data of multiple classes

ff Handling time series data

ff Fold changes in microarray data

ff The functional enrichment of data

ff Clustering microarray data

ff Getting a co-expression network from microarray data

ff More visualizations for gene expression data

Analyzing Microarray Data with R

108

Introduction
Microarrays are one of the most popular tools to understand biological phenomenon by
large-scale measurements of biological samples, typically DNA, RNA, or proteins. The technique
has been used for a range of purposes in life science research, ranging from gene expression
profiling to SNP or other biomarker identification, and further, to understand relations between
genes and their activities on a large scale. However, reaching such inferences from the huge
amount of data available on a single chip is challenging in terms of biology as well as statistics.
The domain of microarray data analysis has revolutionized the research in biology during the
last decade. In this chapter, we will explore the different methods that are used to analyze gene
expression data, which is received from microarrays that serve different biological goals. There
can be many types of microarrays depending on the biological sample used. Likewise, there
are different techniques in use to produce these arrays, namely, Affymetrix, Illumina, and so on.
In this chapter, we mainly focus on microarrays to measure gene expression with nucleic acid
samples and use Affymetrix CEL file data for explanations. Nevertheless, most of the techniques
can be used on other platforms with slight modifications.

The chapter will start with the reading and loading of microarray data, followed by its
preprocessing, analysis, mining, and finally, its visualization using R. Then, the solution
related to the biological use of the data will be presented.

Reading CEL files
The CEL file contains all the intensity-related information of the pixels on the array. The files
include the intensity itself, the standard deviation, the number of pixels, and other meta
information. To get a feel of the file, we can open the CEL file with any text editor and take a
look at it. Each experiment usually has more than one sample and replicates; therefore, there
will be one CEL file present for each sample or replicated file. The CEL files must be read to
get the data in a workable format in the R workspace. This recipe will explain how we can read
such a file in the R workspace.

Getting ready
To read the files, the first thing we need are the input CEL files. To do this, we will use the
NCBI GEO database for a simple dataset on breast cancer. Furthermore, we will need some
R packages. All this is explained in detail in the following section.

Chapter 5

109

How to do it…
To get acquainted with a CEL file, try to read it in your R session using the following steps:

1.	 Download GSE24460 from NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE24460). This gives you a file named GSE24460_RAW.
tar in your desired directory.

2.	 Unzip this file to get CEL files. The files have also been provided with the code files
(available on book's web page) the sub directory <GSE24460_RAW>.

3.	 Next, install and load the affy library into the R session as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("affy")

> library(affy)

4.	 To read all the files in the directory, use the ReadAffy function as follows:
> myData <- ReadAffy(celfile.path="path/to/dir")

5.	 If you wish to read only one or a couple of files, specify the filename as follows:
> myData1 <- ReadAffy(filenames = filenames.of.your.data)

How it works…
In this recipe, the data we used comes from a study on the breast cancer cell. The ReadAffy
function is a wrapper for another function called read.affybatch that allows the reading of
the CEL file along with other relevant data into an AffyBatch object. The ReadAffy function
gets the list of all of the CEL files (even the compressed TAR files) in the current working
directory and passes it to the read.affybatch function to create the AffyBatch object
from these files. It is possible to provide arguments for other information such as phenoData
and specific CEL filenames and paths to another directory with the same function. When no
arguments are passed into the ReadAffy function (as ReadAffy()), the function reads all
the CEL files in the working directory.

The R library called affyio also contains routines to parse Affymetrix datafiles based on file
format information. However, the affy library has an advantage because it has a lot of other
functionalities for data analysis.

There's more...
In this recipe, we mainly focused on Affymetrix CEL files. The use of tabular files is getting
popular for the gene expression data. This gives us the flexibility to read the data using the
read.csv or similar other functions. When reading these files, we can extract the data
columns from the expression data and use it accordingly.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24460
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24460

Analyzing Microarray Data with R

110

See also
ff The article titled affy—analysis of Affymetrix GeneChip data at the probe level by

Gautier and others at http://bioinformatics.oxfordjournals.org/
content/20/3/307.full.pdf, which provides the theoretical aspects of
the affy library in Bioconductor

ff The article titled Getting Started in Gene Expression Microarray Analysis
by Slonim and Yanai at http://www.ploscompbiol.org/article/
info%3Adoi%2F10.1371%2Fjournal.pcbi.1000543 to understand
how microarrays are really produced

ff The Prolonged Drug Selection of Breast Cancer Cells and Enrichment of Cancer
Stem Cell Characteristics article by Calcagno and others at http://jnci.
oxfordjournals.org/content/102/21/1637.long, which provides
information about the data we used in this recipe

Building the ExpressionSet object
The ExpressionSet class in Bioconductor represents a combination of several different
sources of information into one data structure. For an array, it contains the intensities,
phenotype data, and experiment information as well as annotation information. When we read
a set of CEL files using the ReadAffy or read.affyBatch function, an AffyBatch object
is created that extends the ExpressionSet structure. The AffyBatch object is probe-level
data, whereas ExpressionSet is probeset-level data, which is extended to a probe level by
AffyBatch. Sometimes, we have intensity values in the form of a table, matrix, or data
frame together with phenotype data, experiment details, and annotations as separate
objects (or files). We must create an ExpressionSet object from these individual files from
scratch to facilitate the analysis work. This recipe will present the solution to this problem.

Getting ready
For this recipe, we need files with different types of information, such as assay data,
phenotypic metadata, feature annotations and metadata, and a description of the
experiment. We create these files by simply writing the required components of the
myData object created in the previous recipe to different files. We need the chip
annotation information for this as well.

http://bioinformatics.oxfordjournals.org/content/20/3/307.full.pdf
http://bioinformatics.oxfordjournals.org/content/20/3/307.full.pdf
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000543
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000543
http://jnci.oxfordjournals.org/content/102/21/1637.long
http://jnci.oxfordjournals.org/content/102/21/1637.long

Chapter 5

111

How to do it…
To build ExpressionSet, perform the following steps:

1.	 Install and load the Biobase library, if not already loaded (it gets loaded by default
when you load the affy library), as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("Biobase")

> library(Biobase)

2.	 As a demo expression file and the phenotypic data (pData) file, we will use the
built-in data for the Biobase library, whose location can be fetched as follows:
> DIR <- system.file("extdata", package="Biobase")

> exprsLoc <- file.path(DIR, "exprsData.txt")

> pDataLoc <- file.path(DIR, "pData.txt")

3.	 Read the table from the text file that contains the expression values using the usual
read.table or read.csv function as follows:
> exprs <- as.matrix(read.csv(exprsLoc, header = TRUE, sep =
"\t", row.names = 1, as.is = TRUE))

4.	 Now, check the object created previously. It should be a matrix:
> class(exprs)

> dim(exprs)

5.	 Now, read the phenotype information file in a similar way using the read.csv
function as follows:
> pData <- read.table(pDataLoc, row.names = 1, header = TRUE,
sep = "\t")

> pData <- new("AnnotatedDataFrame", data = pData)

6.	 Compile the experiment information, an object of the MIAME class with slots for
investigator name, lab name, and so on as follows:
> exData <- new("MIAME", name="ABCabc", lab="XYZ Lab",
contact="abc@xyz", title="", abstract="", url="www.xyz")

7.	 It is also important to know the chip annotation as it is a part of the ExpressionSet
object for this data. Use the hgu95av2 chip annotation for this purpose.

8.	 Now, create a new ExpressionSet object using the information compiled in the
previous steps as follows:
> exampleSet <- new("ExpressionSet", exprs = exprs, phenoData =
pData, experimentData = exData, annotation = "hgu133a2")

Analyzing Microarray Data with R

112

9.	 To check your object, simply type in the object name or check the structure with the
str function as follows:
> str (exampleSet)

10.	 Test the validity of the object created before continuing with the analysis, as follows:
> validObject(exampleSet)

11.	 To convert an AffyBatch object to ExpressionSet, simply use the AffyBatch
components directly to create a new ExpressionSet object, as shown in step 6.

How it works…
In this recipe, we read different information files individually using the conventional
read.csv function in a matrix or data frame. The expression data is a matrix that contains
the intensities measured, whereas the phenotypic data carries information about the
conditions (for example, control or disease) of the data and samples. The experimental
data simply has certain formal information, and it is not obligatory to fill it in. As the
order is very important for the final eSet, we check the validity of the created object. The
annotation chip used is because the built-in data for the package actually comes from the
hgu133a2Affymetrix chip. For example, if the sample names in the expression data
and phenotypic data are different, the function will return the object as invalid. These
individual objects are then assembled into ExpressionSet by creating a new object. Each
component of ExpressionSet has its own role. The exprs object is the expression data,
the phenotypic data summarizes information about the samples (for example, the sex, age,
and treatment status—referred to as covariates), and the annotated package provides basic
data manipulation tools for the metadata packages. This can be done with any platform, be it
Affymetrix or Illumina.

Handling the AffyBatch object
The AffyBatch object will be used throughout the chapter for data analysis purposes. As we
have seen, it can be created by reading the CEL files for an experiment together with the other
allocated information. The AffyBatch object has various components. This recipe aims to
look at the various components of such an object.

Getting ready
For our use, we will use the AffyBatch object created in the previous recipes
(the myData object from the Reading CEL files recipe).

Chapter 5

113

How to do it…
Perform the following operations to get information about the AffyBatch object:

1.	 Check an AffyBatch object by simply typing in the object name as follows:
> myData

2.	 Check the structure of the object as follows:
> str(myData)

3.	 Check the phenotype data of the object using the pData and phenoData
functions as follows:
> pData(myData)

> phenoData(myData)

4.	 To get the expression data as a matrix, use the exprs function as follows:
> exprs(myData)

These values can be written to a separate file using the write.csv function.

5.	 Use the following annotation function to get the annotation name of the object:
> annotation(myData)

6.	 To get the probe names or sample names in the data, use the probeNames and
sampleNames functions as follows:
> probeNames(myData)

> sampleNames(myData)

How it works…
The AffyBatch object has a complex structure that consists of many components and
subcomponents, as observed while looking at the structure of the object. At every step of the
recipe, we check individual components of the complete AffyBatch object. The components
of the AffyBatch object, such as expression data, can be extracted and written into a
separate file using the write.csv or similar functions.

Analyzing Microarray Data with R

114

Checking the quality of data
The quality of data can be affected at each step of the microarray experiment pipeline.
Quality-related problems could stem from hybridization due to uneven fluorescence on the
chip that causes variable intensity distributions. A nonspecific binding or other biological/
technical reasons can create background noise in the data. Another possible situation can be an
inappropriate experimental design that may affect the dataset as a whole. Using such data will
result in wrongful or inconclusive inference during data analysis. Therefore, as analysts we must
ensure the data quality before we begin the data analysis. This is achieved by looking for outlying
arrays, distributions within arrays, batch effects, and so on. There are various analyses and
diagnostic plots that can be used to compute these measures that explain the quality of array
data under analysis. This recipe will explain various diagnostic steps for the quality check of data.

Getting ready
To begin with, we need the array data. We will be using the same data that we used in the
previous recipes. In this recipe, we will also introduce a new R package that can serve most
of our quality assessment processes.

How to do it…
In order to look at the data quality, create some diagnostic tests and plots as follows:

1.	 Install and load the arrayQualityMetrics library from the Bioconductor
repository as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("arrayQualityMetrics")

> library(arrayQualityMetrics)

2.	 Use the following arrayQualityMetrics function to create plots to assess the
data quality:
> arrayQualityMetrics(myData, outdir="quality_assesment")

3.	 Go to the created subdirectory (in your case, quality_assesment) in the
current working directory to check the created HTML page (index.html) and plots.

4.	 Open the HTML file in a browser of your choice. Use the following line of code for
this purpose:
> browseURL(file.path("quality_assesment", "index.html"))

5.	 You can create these plots and assessments individually as well. For example,
to create an MA plot, use the MAplot function as follows:
> MAplot(myData, pairs=TRUE, plot.method="smoothScatter")

Chapter 5

115

6.	 To plot the log densities, type in the following command:
> plotDensity.AffyBatch(myData)

7.	 To create the boxplots, simply use the boxplot function in the AffyBatch object
as follows:
> boxplot(myData)

8.	 To get the RNA degradation plot, use the AffyRNAdeg function and then
plotAffyRNAdeg as follows:
> rnaDeg <- AffyRNAdeg(myData)

> plotAffyRNAdeg(rnaDeg)

9.	 Check the details of the rnaDeg object as follows:
> summaryAffyRNAdeg(rnaDeg)

How it works…
The ArrayQualityMetrics function takes the data and performs different types of checks
on it. The checks include measuring between arrays distances, Principal Component Analysis
(PCA), density plots, MA plots, and RNA degradation plots. The outlier detection among the
arrays is reflected by measurements such as the distance between the arrays, boxplots, and MA
plots. A detailed description is available in the HTML file produced. For example, to measure the
distances dij between the arrays i and j, we can use the following formula:

| |ij ia jad mean I I= -

In the preceding formula, Iia and Ija are the intensity measurements for the ath probe in the
arrays i and j, respectively.

The MA plot, also referred as a derivation from the Bland Altman plot, is based on two
components, namely, M and A. The M component represents the ratio between two channels
(or two arrays), thus giving an indication which color is binding more at a given spot. The A
component is a measure of the log2 transformed intensity at the spot. Plotting these two
components in two dimensions (usually M along the y axis and A along the x axis) gives us an
idea about the intensity bias in the data. This means the differences in two channels or two
arrays can be helpful in detecting background or outliers such as phenomena in the data. For
instance, we can use them for the pairwise comparison of arrays or to compare the intensities
of two dyes in two-channel data. A deviation from the M=0 line (asymmetrical distribution
along M=0) indicates intensity bias, outliers, or even differentially expressed (DE) genes. The
deviation in the plot can be corrected to some extent by normalization. (In fact, it is often used
as an indicator for normalization together with the boxplot, which will be discussed later.) Any
trend in the left side (lower A) indicates the presence of background, while a trend on the right
(higher A) depicts saturation.

Analyzing Microarray Data with R

116

Most of the spots in the plot are usually around the M=0 line with small interquartile
ranges across the arrays and probably represent non-differentially expressed (non DE)
genes. However, one should reach such conclusions only after background correction
and normalization.

The next type of plot we discussed is the intensity plot that shows the density estimates
of the data. Decent data has a similar shape and range across the arrays. This plot gives
the different types of information in the data. A data with high background noise will shift
the entire distribution towards the right. If the distribution shows a diminished right tail,
it indicates signal loss. The upper bulge of the distribution indicates signal saturation.
A multimodal shape (that is, more than one mode has peaked) in the plot accounts for
a spatial artifact (such as regional bias in the array).

The boxplots of high-quality data show similar width and positions, and represent the
distribution of signal intensities in the data. The distribution is usually done on the log
scale to make the plot readable. A major deviation in the boxplot might represent an
experimental flaw or noise in that particular array. A Kolmogorov Smirnov (KS) statistic on
these distributions is used to detect outliers in the data. Another important feature of the
boxplot is that deviation can be overcome by the normalization of data most of the time,
which will be covered in upcoming recipes.

The RNA degradation plot gives an indication for the quality of samples used in array
hybridization. Generally, mRNAs have a certain lifespan, after which they are degraded and
hence not effective to measure the expression levels. The degradation starts at the 5' end
moving towards the 3' end. Therefore, as an effect of this degradation, the intensities should
be lower at the 5' end compared to the 3' end. The expression (intensity measurement) of all
the probes on an array gives the level of degradation in the sample. We represent this as an
RNA degradation plot, where probes are numbered sequentially from the 5' end to the 3' end
of the molecule. So, plotting the intensities should show an upward trend along the probe
numbers (more degradation at the 5' end, hence low intensity, and vice versa). In this recipe,
we checked whether the lines in the plot are following a consistent trend. A deviation indicates
issues with the sample used for hybridization.

All these plots, plus some others, with a short abstract description are reported in the form of
an HTML file in the desired output directory. In this recipe, we mentioned four of these plots.
The general meaning of each plot is explained in the HTML file itself; however, it is advisable
that you use your own reasoning when inferring from these plots as every experiment can
differ from each other and should be analyzed accordingly.

The affy package has the functions to do most of the analyses and can create plots that
are explained in this recipe individually. The following screenshot shows the MA plots for the
data (top left), with the blue line indicating M=0 and the red line indicating the loess fit. You
can also see the density plots (top right) with deviations among the arrays. In the following
screenshot, the boxplots (bottom left) with non-normalized data have been indicated by the
deviation in the position and size of the boxes and the RNA degradation plot (bottom right)
with one array that shows the deviation (for a description of each plot, refer to the How it
works... section of this recipe):

Chapter 5

117

Diagnostic (quality check) plots for raw data

Generating artificial expression data
Developing new methods of analyzing expression data requires proper testing and
performance checks on large, high-quality datasets obtained from many experimental
conditions. This requires benchmark data with known parameters. Such data from
experiments is usually not available, and performing such experiments in a wet lab is not
economical. Therefore, generating well-characterized, synthetic datasets that allow thorough
testing of learning algorithms in a fast and reproducible manner is needed. It is common
practice to use simulated data (artificial) sets for such purposes. This recipe will present the
approach to generate such datasets.

Analyzing Microarray Data with R

118

Getting ready
Before we start generating the artificial data, we must know how do we want our data to
look in terms of the bounds (upper and lower), fraction of DE genes, amount of data, and
associated statistical parameters, which will be explained in the How it works... section of
this recipe.

How to do it…
In this section, we will generate a dataset of 35,000 genes with 1 percent of DE genes.
In order to do so, perform the following steps:

1.	 Before starting the data generation process, first install and load the madsim library
from the CRAN repository as follows:
> install.packages("madsim")
> library(madsim)

2.	 Now, define your first set of parameters for the simulation process for the overall
statistical parameters and the distribution along arrays as follows:
> fparams <- data.frame(m1 = 7, m2 = 7, shape2 = 4, lb = 4, ub =
14, pde = 0.02, sym = 0.5)

3.	 Define the second set of parameters that consists of the statistical parameters that
define the level of expression in the genes as follows:
> dparams <- data.frame(lambda1 = 0.13, lambda2 = 2, muminde = 1,
sdde = 0.5)
> sdn <- 0.4
> rseed <- 50

4.	 Then, define the number of genes you require in the expression data as follows:
> n <- 35000

5.	 Now, generate the synthetic data as follows:
> myData <- madsim(mdata=NULL, n=35000, ratio=0, fparams, dparams,
sdn, rseed)

6.	 While looking at the structure of the object created by madsim, you can see that it
consists of three components:
> str(myData)

7.	 To visualize the data, create an MA plot for any sample, say, #sample 1, using the
following function:
> library(limma)
> plotMA(myData[[1]], 1)

Chapter 5

119

How it works…
The madsim package generates data for two biological conditions when the characteristics
are known in terms of statistical parameters. The parameters used in the madsim model allow
the user to generate data with varying characteristics. They use the following four components
to generate the expression values of a gene:

ff The expression levels of non-DE genes

ff The expression levels of DE genes

ff Noise

ff Technical noise

The overall expression level is a function (in our case, sum) of these four components. The
madsim function uses a beta distribution to generate n values between 0 and 1. The shape
parameters in the argument, fparams, define this beta distribution—a continuous, statistical
distribution defined by two shape parameters. It is then scaled to fit the upper and lower
bounds that are defined. A set of randomly selected DE genes as per the pde argument in
fparam is extracted. The properties to generate the expression values are specified using the
dparm argument (standard deviation and mean); this results in the differential expression
of these genes in simulation. The following plot shows the boxplot and MA plot for artificially
generated data:

Analyzing Microarray Data with R

120

There's more...
There are other ways to simulate microarray data. The package named optBiomarker has
the simData function that can simulate artificial data as well. The package can be installed
from the CRAN repository. To know more, refer to the help manual of the package. The details
of the optBiomarker package are available at http://cran.r-project.org/web/
packages/optBiomarker.

See also
ff The article titled A Flexible Microarray Data Simulation Model by D Dembélé

at http://www.mdpi.com/2076-3905/2/2/115), which provides more
information about the madsim package

Data normalization
Microarrays are high-throughput methods that measure the expression levels of thousands
of genes simultaneously. Each sample receives different conditions. A small difference in
RNA quantities or/and experimental errors may cause the intensity level to vary from one
replicate to the other. This can be irrespective of the biological expression of genes. Handling
this inherent problem requires the normalization of data. This minimizes the technical effects,
rendering the data comparable. This recipe will explore a few of the many normalization
methods developed for data normalization in R.

Getting ready
To start with the normalization recipe, we need to define our data as an ExpressionSet or
AffyBatch object. Here, we will use the breast cancer data object that we created in our
first recipe.

How to do it…
Start with the normalization process using the following steps:

1.	 Get the data into the R session as an AffyBatch object or a matrix, already shown
in previous recipes, as follows (in our case, we use the myData object that was
created in the Reading CEL files recipe; let's repeat the step again for convenience):
> myData <- ReadAffy(celfile.path="path/to/dir")

There are many possible types of normalizations. In this recipe, we focus on three
methods: the vsn, loess, and quantile normalizations.

http://cran.r-project.org/web/packages/optBiomarker
http://cran.r-project.org/web/packages/optBiomarker
http://www.mdpi.com/2076-3905/2/2/115

Chapter 5

121

2.	 To do a vsn normalization, you need a library named vsn. Install and load it into the
R session as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("vsn")

> library(vsn)

3.	 Perform the vsn normalization on an AffyBatch object with the following command:
> myData.VSN <- normalize.AffyBatch.vsn(myData)

4.	 Create a boxplot for the normalized data and compare it with the boxplot for
non-normalized data in the previous recipe as follows:
> boxplot(myData.VSN)

5.	 The loess normalization uses the affy library. To do the loess normalization,
use the normalize.AffyBatch.loess function as follows:
> myData.loess <- normalize.AffyBatch.loess(myData)

6.	 The quantile normalization uses the affy library. To do the quantile
normalization, use the normalize.AffyBatch.quantile function as follows:
> myData.quantile <- normalize.AffyBatch.quantiles(myData)

7.	 Again, plot the boxplot for these two methods in a way similar to the one shown
in step 5.

Normalization can also be performed using the normalize.loess and
normalize.quantile functions with the data matrix as the input argument
if the data is only a matrix of intensities.

8.	 Do a second round of quality check for the normalized data and observe the effect of
normalization in the same way as before using arrayQualityMetrics.

How it works…
Variance Stabilization and Normalization (VSN) is based on the assumption that the
variance of microarray data depends on the signal intensity and there exists a transformation
that keeps the variance approximately constant. This means that the vsn method finds a
transformation of the intensity measures in the data so as to keep the variance of intensity
approximately independent of its mean. The normalize.AffyBatch.vsn function is
actually a wrapper for the vsn function in the vsn library (not the affy library).

The second method, the loess normalization, uses a locally weighted regression to normalize
the data. The method fits a smoothing curve to a dataset. The degree of smoothing is
determined by the window width parameter. A larger window width results in a smoother
curve, and a smaller window results in a more local variation. The normalize.AffyBatch.
loess function actually uses the loess function of R to fit and smooth the data. The window
size used by default is 2/3, but can be modified with the span argument.

Analyzing Microarray Data with R

122

Finally, the quantile normalization uses a simpler concept of adjusting the quantiles of the
distribution in an array to make all the quantiles alike and a common median center. This
makes the histograms of the arrays look alike. The following boxplots show the boxplots for
non-normalized data (A) and the normalized data using the vsn normalization (B), the loess
normalization (C), and the quantile normalization (D):

Chapter 5

123

There's more...
There are some other preprocessing steps that can be performed on the raw data. They
include background correction, log transformation, and so on. They are mostly included
within the normalization methods. The background correction in the affy package can be
looked into with the ?bgcorrect.methods function. The log transformation can be set to
the Boolean values TRUE or FALSE by changing the log.it argument in the normalization
functions of affy.

There are other methods of normalization within the affy library, namely, qspline,
invariantset, contrasts, and so on. To check the various available methods,
type in the following command in your R session with the affy library preloaded:

> normalize.AffyBatch.methods()

The normalization method is a matter of choice and need. It depends a lot on the data
platform and biological experiments. So far, the methods explained in this recipe are the
most popular ones among bioinformaticians.

See also
ff The Microarray data normalization and transformation article by J Quackenbush at

http://www.nature.com/ng/journal/v32/n4s/full/ng1032.html, which
provides a basic insight into the different normalization methods

Overcoming batch effects in expression data
Batch effects are the systematic errors caused when samples are processed in different
batches. They represent the nonbiological differences between the samples in an experiment.
The reason can be the difference in sample preparation or hybridization protocol, and so on.
It can be reduced, to some extent, by careful, experimental design but cannot be eliminated
completely unless the study is performed under a single batch. Batch effects render the
task of combining data from different batches difficult. This ultimately reduces the power of
statistical analysis of the data. This needs appropriate preprocessing before the batches are
combined. This recipe will present these preprocessing techniques.

Getting ready
The recipe will require a dataset that shows the batch effect without any preprocessing. We
consider the bladderbatch data, which consists of five batches. The data is a part of the
bladderbatch package. All of the other R libraries will be introduced in the next section.

http://www.nature.com/ng/journal/v32/n4s/full/ng1032.html

Analyzing Microarray Data with R

124

How to do it…
In order to remove the batch effects, perform the following steps:

1.	 First, load all the required libraries. If they are not installed, you first need to
install them as you did before from their respective repositories using the
following commands:
> source("http://bioconductor.org/biocLite.R")

> biocLite(c("sva", "bladderbatch"))

> library(sva) # contains batch removing utilities

> library(bladderbatch) # The data to be used

2.	 Then, load bladderdata using the following data function:
> data(bladderdata)

3.	 Now, extract the expression matrix and pheno data from it as follows:
> pheno <- pData(bladderEset)

> edata <- exprs(bladderEset)

4.	 Before you start working with the data, take a look at the phenotypic information by
typing the following command:
> pheno

5.	 You can see that the first eight samples are normal cells but split into two batches
(batch number 2 and 3). Use these eight samples to demonstrate how to remove
the batch effects. To select these samples, use the following function:
> myData <- bladderEset[,sampleNames(bladderEset)[1:8]]

6.	 To have a look at the batch effect, perform a quality check on the data. Do this with
the help of the following arrayQualityMetrics function:
> arrayQualityMetrics(myData, outdir="qc_be")

7.	 Take a look at the heatmap and the clustering tree produced for the samples to
check for the batch effect.

Chapter 5

125

8.	 Now, create the model matrix for the dataset as follows (note that only the first
and third columns have been used from the model matrix as the data has only
one condition):
> mod1 <- model.matrix(~as.factor(cancer), data=pData(myData))
[,c(1,3)]

9.	 Then, define the batches by typing the following command:
> batch <- pData(myData)$batch

10.	 Extract the expression matrix from the expression set object myData, where the
batch effect has to be removed, as follows:
> edata <- exprs(myData)

11.	 Once you have all the objects ready, run the ComBat function as follows:
> combat_edata <- ComBat(dat=edata, batch=batch, mod=mod1,
numCovs=NULL, par.prior=TRUE)

12.	 Now, create an expression set object with everything as your original input data,
except the expression matrix—which is replaced by the matrix received as a result
of the ComBat function in the last step—as follows:
> myData2 <- myData

> exprs(myData2) <- combat_edata

13.	 Now, rerun the following arrayQualityMetrics function to check for the
elimination of batch effects with this new object as the input:
> arrayQualityMetrics(myData2, outdir="qc_nbe")

14.	 Again, take a look at the heatmap and clustering tree generated by the preceding
function and check whether the batch effects in the data have been eliminated.

How it works…
The data we used originates from a bladder cancer study, where expression profiling was used
to examine the gene expression patterns in superficial transitional cell carcinoma (STCC)
with and without surrounding carcinoma in situ (CIS). The data was produced on different
dates and, hence, typically shows substantial batch effects; these can lead to confusing or
incorrect biological conclusions, owing to the influence of technical artifacts.

Analyzing Microarray Data with R

126

The function accepts the data matrix that contains the expression values, the batch
number for each sample in the input data, and the model matrix that represents the sample
information. For other optional input arguments, type in ?ComBat in your R console. The
ComBat function uses an empirical Bayes method to combine the batches. It estimates
parameters for the location and scale adjustment (LS) of each batch for each gene
independently. Pooling information for multiple genes in each batch brings out the pattern
that genes with similar expressions follow. This information is then used to adjust the batches
in order to eliminate the batch effect. The patterns in the heatmap may show two factors: the
intended biological effect or unintended batch effects. The batches can be observed in the
heatmap and the clustering tree. We can see the branching as well as distinct color patterns
in the heatmap for every batch, while after running the ComBat function some of these
branches in clustering trees merge. The following heatmaps shows the clustering tree with
separate (A) and merged (B) batches, which has been boxed externally (not a part of R code)
for visual emphasis:

Heatmaps for the first eight samples (normal cells) in the bladder data that show the batch effect (A)
and the removal of the batch effect (B)

See also
ff The article titled Adjusting batch effects in microarray expression data

using empirical Bayes methods by Johnson and Li, which provides sufficient
theoretical details on batch effects

ff The article titled Adjustment of systematic microarray data biases by Benito
and others at http://bioinformatics.oxfordjournals.org/
content/20/1/105.long, which provides information on methods such
as mean clustering based methods, support vector machine (SVM)-based
methods, and distance weighted discrimination (DWD)-based methods to
eliminate the batch effect

http://bioinformatics.oxfordjournals.org/content/20/1/105.long
http://bioinformatics.oxfordjournals.org/content/20/1/105.long

Chapter 5

127

ff The Gene Expression in the Urinary Bladder: A Common Carcinoma in Situ
Gene Expression Signature Exists Disregarding Histopathological Classification
article by Dyrskjøt and others at http://cancerres.aacrjournals.org/
content/64/11/4040.long, which provides details on the data used in
this recipe

An exploratory analysis of data with PCA
Let's imagine that we measure approximately 20,000 human genes in 10 samples and get
a matrix of 20,000 x 10 measurements. Now, imagine that each of these 20,000 genes
(serving as features) as a cloud of values in a multidimensional space. Envisioning a pattern
in such a cloud is difficult; therefore, we need to transform the multidimensional cloud in
lower dimensions to explain and graphically represent the patterns in the data. Organizing
and combining the features in order to explain the maximum variability in the data can
help achieve this. Principal Components Analysis (PCA) is a method that achieves this by
performing a covariance analysis between factors. This finds the orthogonal components
that represent the data and each component (called principal components) that represents
the dimension where the features are more extended.

Thus, PCA projects data onto a lower dimensional space and can be used as an exploratory
method to serve purposes such as finding patterns in data and noise reduction. In this recipe,
we will deal with PCA for microarray data.

Getting ready
As usual, we will start with our breast cancer data, as we did in the previous cases.

How to do it…
To perform the PCA for your data and to show the first few principal components, perform the
following steps:

1.	 You first need data to work with. Use the data that you used before from the breast
cancer example as follows:
> library(affy)
> myData <- ReadAffy(celfile.path="path/to/dir")

2.	 Then, select your data for the analysis by typing the following command:
> myData.pca <- exprs(myData)

3.	 Transpose the matrix to get the genes (features) as columns by typing the
following command:
> myPca <- prcomp(myData.pca, scale=TRUE)

http://cancerres.aacrjournals.org/content/64/11/4040.long

Analyzing Microarray Data with R

128

4.	 To check the principal components, take a look at the summary of created objects
as follows:
> summary(myPca)

5.	 Create a vector of colors for every sample in the data as follows:
> colors <- c("green","cyan","violet","magenta")

6.	 To plot the principal components, use the pairs function as follows (note that it
might take some time depending on the size of the data):
> pairs(myPca$x, col=colors)

How it works…
The PCA computation via the prcomp function performs the principal component analysis on
the data matrix. It returns the principal components, their standard deviations (the square roots
of Eigen values), and the rotation (containing the Eigen vectors). The following screenshot shows
how the data appears when viewed along the selected pairs of principal components:

Scatter plots for all the pairwise combinations for the first four principal components

Chapter 5

129

See also
ff The book called Principal Component Analysis by Jolliffe at http://www.

springer.com/statistics/statistical+theory+and+methods/
book/978-0-387-95442-4, which provides detailed information on PCA

ff The article called What is principal component analysis? by Ringnér at
http://www.nature.com/nbt/journal/v26/n3/full/nbt0308-303.html,
where the application of PCA in a microarray data analysis has been highlighted

Finding the differentially expressed genes
At the genome level, the content of every cell is the same, which means that similar genes are
present (with a few exceptions) in similar cells. The question that arises then is, what makes
cells (for example, control and treated samples) different from one another? This is the question
we have most of the time while doing microarray-based experiments. The concept of differential
gene expression is the answer to the question. It is well established that only a fraction of a
genome is expressed in each cell, and this phenomenon of selective expression of genes based
on cell types is the baseline behind the concept of differential gene expression. Thus, it is
important to find which genes show differential expression in a particular cell. This is achieved
by comparing the cell under study with a reference, usually called control. This recipe will
explain how to find the DE genes for a cell based on the expression levels of the control
and treatment cells.

Getting ready
The recipe requires the normalized expression data for treatment and control samples.
More number of replicates is always statistically relevant for such analytical purposes. It
must be noted that we always use normalized data for any differential expression analysis.
As mentioned earlier, normalization makes the array comparable, and hence, using such
transformed data to find differences makes the process unbiased and scientifically rational. In
this recipe, we will use the quantile normalized data. Besides this, we need the experiment
and phenotype details, which are part of the affyBatch or ExpressionSet object. We
will also introduce the R library, limma, that houses one of the most popular methods in R
for differential gene expression analysis. For demonstration, we will use normal colon cancer
preprocessed affy data from the antiProfilesData package.

http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-95442-4
http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-95442-4
http://www.springer.com/statistics/statistical+theory+and+methods/book/978-0-387-95442-4
http://www.nature.com/nbt/journal/v26/n3/full/nbt0308-303.html

Analyzing Microarray Data with R

130

How to do it…
To extract differentially expressed genes from the treatment and control expression data,
perform the following steps:

1.	 Install and load the limma library into your R session together with the affy package
as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite(c("limma", "antiProfilesData"))

> library(affy) # Package for affy data handling

> library(antiProfilesData) # Package containing input data

> library(affyPLM) # Normalization package for eSet

> library(limma) # limma analysis package

2.	 Get the data (the colon cancer data) from the antiProfilesData package into
the R session and subset the first 16 samples that represent the normal and tumor
samples (eight each) as we did in previous recipes by typing the following commands:
> data(apColonData)

> myData <- apColonData[, sampleNames(apColonData)[1:16]]

> myData_quantile <- normalize.ExpressionSet.quantiles(myData)

3.	 Prepare a design matrix based on the experiment details and phenoData as follows:
> design <- model.matrix(~0 + pData(myData)$Status)

4.	 Fit a linear model using the expression data and design matrix as follows:
> fit <- lmFit(myData_quantile,design)

5.	 Check the fit object generated at this step by typing the following command to get
more details:
> fit

6.	 Once you have a linear model fit, compute the moderated statistics for it using the
following eBayes function:
> fitE <- eBayes(fit)

7.	 The output can be ranked and top-ranking genes extracted from it, as follows:
> tested <- topTable(fitE, adjust="fdr", sort.by="B", number=Inf)

Chapter 5

131

8.	 To add the conditions of the p-values or other conditions to get the DE genes, extend
the previous steps as follows:
> DE <- x[tested$adj.P.Val<0.01,]
> dim[DE]
[1] 884 6
> DE <- x[tested$adj.P.Val< 0.01 & abs(x$logFC) >2,]
[1] 403 6

How it works…
The limma library is used for analyzing gene expression microarray data, especially the use
of linear models for analyzing gene expression data. The term limma stands for linear models
for microarray data. It implements several methods of linear modeling for microarray data
that can be used to identify DE genes. The approach described in this recipe first fits a linear
model for each gene in the data given a set of arrays. Thereafter, it uses an empirical Bayes
method to assess differential expression. This computes the statistical test and corresponding
score in the form of p-values, log fold change, and so on.

The input to the lmFit function that we used was the expression data (a matrix) and the
design matrix. However, the input can also be ExpressionSet. Another important thing that
must be mentioned is that we assigned the designed matrix here manually to illustrate the
knowledge based on data. Nevertheless, the design matrix can also be directly created from
the phenotype data as follows:

> design <- model.matrix(~-1 + factor(pData(myData_quantile)$type))

The design matrix describes the experiment condition in each of its column. In our case,
we have only two conditions, and hence, the single column design matrix with appropriate
experiment indication works as well (the type in design in your R terminal). To learn more
about creating design matrices, type in ?model.matrix in the R terminal. To use multiple
comparisons among different conditions, the makeContrasts function can be used (type in
?makeContrasts). The contrast matrix can be used in the same way as the design matrix.

There's more...
There are several other packages for differential gene expression analysis. One of them
is EMA, which can be used for many purposes. We will use the package for clustering and
heatmap generation. To learn more about the use of the EMA package for differential gene
analysis, check the corresponding help file as follows:

> install.packages("EMA")#requires dependencies from
Bioconductor(siggenesand gcrma)
> library(EMA)
> help(package='EMA')# or visit http://cran.r-project.org/web/packages/
EMA/index.html

Analyzing Microarray Data with R

132

See also
ff The article titled EMA- A R package for Easy Microarray data analysis by Servant

and others at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987873/,
which provides more detail on the EMA package

ff The article titled Testing for differentially expressed genes with microarray data by
Tsai and others at http://nar.oxfordjournals.org/content/31/9/e52.
full, which provides a good deal of information on other kinds of tests

ff The Linear models and empirical bayes methods for assessing differential expression
in microarray experiments article by Smyth at http://www.ncbi.nlm.nih.gov/
pubmed/16646809, which provides theoretical details on the limma package

Working with the data of multiple classes
Until now, we have seen analyses with two experimental groups, namely, treatment and
control. However, there are experimental designs where we may need to compare more than
two groups as well. To illustrate, let's consider a situation where we have three conditions and
we need to compare them systematically against each other. This recipe will explain such
a situation.

Getting ready
For this recipe, we will use another dataset from the leukemiasEset package. The data
is from 60 bone marrow samples of patients with one of the four main types of leukemia
(ALL, AML, CLL, and CML) and non-leukemia controls. However, for demonstration purposes,
we will use only three samples from each of these categories.

How to do it…
In this recipe, you need to principally focus on creating the design matrix for the comparison,
which is the key difference. Show this on imaginary data with three conditions and pairwise
comparisons, as follows:

1.	 First, install and load the required libraries (in this case, leukemiasEset) as follows:
> biocLite("leukemiasEset")

2.	 Load the dataset that you want to start with from the leukemiasEset library
as follows:
> library(leukemiasEset)

> data(leukemiasEset)

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987873/
http://nar.oxfordjournals.org/content/31/9/e52.full
http://www.ncbi.nlm.nih.gov/pubmed/16646809
http://www.ncbi.nlm.nih.gov/pubmed/16646809

Chapter 5

133

3.	 Then, define the three conditions with two replicates for each, as follows:
> pheno <- pData(leukemiasEset)

4.	 Now, select three samples from each set (use the corresponding indexes here)
as follows:
> myData <- leukemiasEset[, sampleNames(leukemiasEset)[c(1:3,
13:15, 25:27, 49:51)]]

5.	 Create the design matrix based on the condition variables, as explained earlier,
using the phenotype data as follows:
> design <- model.matrix(~0 + factor(pData(myData)$LeukemiaType))

6.	 Rename the columns of the design matrix as follows:
> colnames(design) <- unique(as.character(pData(myData)$LeukemiaTy
pe))

7.	 To see the created design matrix, simply look at the design object by typing the
following command:
> design # First three columns being different types of
leukemiaand the fourth one being the control non leukemia samples

 ALL AML CLL NoL

1 1 0 0 0

2 1 0 0 0

3 1 0 0 0

4 0 1 0 0

5 0 1 0 0

6 0 1 0 0

7 0 0 1 0

8 0 0 1 0

9 0 0 1 0

10 0 0 0 1

11 0 0 0 1

12 0 0 0 1

8.	 Now, proceed by fitting a linear model to the data as follows:
> fit <- lmFit(myData, design)

9.	 For pairwise comparisons, create a contrast matrix as follows:
> contrast.matrix <- makeContrasts(NoL- ALL, NoL- AML, NoL- CLL,
levels = design)

Analyzing Microarray Data with R

134

10.	 Fit the linear model using this contrast matrix with the help of following command:
> fit2 <- contrasts.fit(fit, contrast.matrix)

11.	 Perform the empirical Bayes analysis of the model by typing the following command:
> fit2 <- eBayes(fit2)

12.	 Now, extract the differentially expressed gene for each of the pairwise
 comparisons using the coef argument in the topTable function. For the
first pairwise comparison, set coef=1 to compare non-lukemia control with
Acute Lymphoblastic Leukemia (ALL) leukemia as follows:

> tested2 <- topTable(fit2,adjust="fdr",sort.by="B",number=Inf,
coef=1))

> DE2 <- tested2[tested2$adj.P.Val < 0.01,]

dim(DE2)

[1] 252 6

How it works…
The major difference in this recipe compared to the two conditions recipe (Finding the
differentially expressed genes recipe) is the use of the contrast matrix and the coef
argument in the topTable function. The contrast matrix enables the pairwise comparison
for the computation of p-values. The model fitted returns a set of p-values for each
comparison. The desired set of DE genes for a specific comparison can then be
extracted using the proper coef value for comparisons.

Handling time series data
As we discussed different conditions or treatments during experiments, the use of time as a
treatment is among the popular methods. A cell sample is given a certain treatment, and its
expression can change along the course of time. For illustration, we can consider that during
stem cell or embryonic development, the expression of genes at different time points will vary.
Handling such time course expression data, though not much different from the standard
protocol described earlier, needs small modifications in our recipe.

Getting ready
To start with the recipe, we need time course data. In this recipe, we will use the yeast dataset
from the Mfuzz package. This, of course, requires the installation of the Mfuzz package from
Bioconductor. This can be followed if you do not want to install the package. In this recipe, we
will use the library installation method.

Chapter 5

135

How to do it…
Perform the following steps to deal with the time series data—note that the data being used in
the recipe is from yeast (Saccharomyces cerevisae):

1.	 Install and load the Mfuzz library as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("Mfuzz")

> library(Mfuzz)

2.	 As the dataset is ExpressionSet, which needs some other packages for direct
handling (the affy package needs the AffyBatch object), use the affyPLM
library as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("affyPLM")

> library(affyPLM)

3.	 Now, load the data using the following data function:
> data(yeast)

4.	 Check the quality of the data using the density plots, boxplots, and so on, as follows:
> plotDensity(yeast)

> boxplot(yeast)

5.	 To normalize the data, use normalize.ExpressionSet.quantiles from the
affyPLM package as follows (here, use quantile normalization):
> yeast_norm <- normalize.ExpressionSet.quantile(yeast)

6.	 Perform the quality assessment for the normalized data again, as shown in the
fourth step.

7.	 To check the attributes of the data, get the component details of the
ExpressionSet object as follows:
> pData(yeast_norm)

You can see that the data is 16 samples large, starting from a time point of 0 to 160
with an interval of 10 units.

8.	 The design matrix can accordingly be created for a time series where there will be
controls and time points. For example, if you have two replicates, C, for each control
and time points, T1 and T2, use the following commands:
> times <- pData(yeast_norm)$time
> times <- as.factor(times)
> design <- model.matrix(~0 +factor(pData(yeast_norm)$time))
> colnames(design)[1:17] <- c("C", paste("T", 0:16, sep=""))

Analyzing Microarray Data with R

136

9.	 Create a contrast matrix using the 0th point as a reference and all the other time
points as the treatment (usually done for samples from the same culture), as follows:
> cont <- makeContrasts(C-T1, C-T2, C-T3, C-T4, C-T5, C-T6, C-T7,
C-T8, C-T9, C-T10, C-T11, C-T12, C-T13, C-T14, C-T15, C-T16,
levels=design)

10.	 Now, use this matrix to fit the linear model, followed by the eBayes function to
compute statistics, as follows:
> fit <- lmFit(yeast_norm, cont)
> fitE <- eBayes(fit)

11.	 Then, filter the top-ranking genes using the topTable function as follows:
> x <- topTable(fitE, adjust="fdr", sort.by="F", number=100)
> x[x$adj.P.Val< 0.05,]

How it works…
The working of the method is very similar to the one in the static data shown in the previous
recipe. The only difference here is that we use the time factor while creating the design and
contrast matrices. Such data can also be analyzed using the design matrix only in simple
conditions and complete data. The following plot shows the log fold change for the yeast
data along the time points for first six genes showing oscillations:

Chapter 5

137

There's more...
The betr package is another method for filtering out the DE gene from time course data.
It also based on the empirical Bayes approach to make such estimation and has one direct
function named betr. For further information and help, install the betr package from
Bioconductor and type in ?betr after loading the betr library. It is left to the analyst to use
the best possible method for the purpose depending on the data, experiment, and biological
question. The detailed explanation of the betr package is available on the Bioconductor web
page http://www.bioconductor.org/packages/devel/bioc/vignettes/betr/
inst/doc/betr.pdf.

The affy library has a justRMA function that can perform the normalization as well. It uses
the quantile normalization only and can work on the CEL files directly, without the need of
AffyObject.

Fold changes in microarray data
Fold change refers to the ratio of final value to initial value. In terms of gene expression,
it can be defined as the ratio of the final quantification of mRNA to the initial content.
The initial and final stages can be the time points or treatment and control conditions. It
represents the change rather than an ambiguous absolute quantity. It has been suggested
that while extracting DE genes from a dataset, fold changes can serve as more reproducible
identifiers. This recipe will explain the use of fold changes for such purposes.

Getting ready
We will continue to use the leukemia dataset for our work, and here, we directly use the
results from the Finding the differentially expressed genes recipe. In this recipe, we will
use the results only from the ALL type of leukemia.

How to do it…
Fold changes are a part of tables that are derived from limma. Some other interesting
operations on (or about) fold change are explained in this recipe. Perform the following steps:

1.	 Use the result from the limma analysis to get the fold changes. The table generated
has a column for the fold change associated with the probes (an example table has
been shown here). Refer to the Working with the data of multiple classes recipe in
this chapter to create the tested2 object. Take a look at the following object:
> head(DE2)

http://www.bioconductor.org/packages/devel/bioc/vignettes/betr/inst/doc/betr.pdf
http://www.bioconductor.org/packages/devel/bioc/vignettes/betr/inst/doc/betr.pdf

Analyzing Microarray Data with R

138

The following screenshot represents a table of top-ranked genes after the
limma analysis:

2.	 Extract the relevant columns into a separate data frame for the top 10,000 probes
as follows:
> myTable <- topTable(fit, number=10000)

> logratio <- tested2$logFC

3.	 The fold change to log values and vice versa; the gtools library can be used
as follows:
> library(gtools)

> LR <- foldchange2logratio(foldchange, base=2)

> FC <- logratio2foldchange(logratio, base=2)

4.	 Now, visualize the log fold change and p-value relations in a volcano plot as follows:
> plot(tested2$logFC, -log10(tested2$P.Value),xlim=c(-10, 10),
ylim=c(0, 15), xlab="log2 fold change", ylab="-log10 p-value")

5.	 While selecting significant genes from the limma generated table, use the log
fold change column as another criterion to select DE genes in combination
with the p-values as follows:
> myTable[tested2$P.Val< 0.05&logFC>1.5,]

Chapter 5

139

How it works…
The working of the preceding code is straightforward and self-explanatory. The log-fold
changes are computed based on the final (treatment) and initial (control) values. The log
used is to the base of 2. The volcano plot simply creates the plot of log fold change to log
odds in the data. The plotting is a simple scatter plot with log fold changes along the x axis
and –log(p-values) along the y axis. Transforming the p-values into a log scale gives better
resolution for visualization. The following plot shows the log fold change versus the log
p-value plot:

Analyzing Microarray Data with R

140

The functional enrichment of data
Once we know the DE genes from our array data, we have all the genes that somehow play a
role in the cell. In order to know more about this set of genes at a biological level, we need to
know their biological role in terms of their function. Analyzing the GO categories in the set can
do this. This recipe is about the enrichment of gene sets with GO terms.

Getting ready
The recipe explained here will require the gene set data that comes from our analysis and the
annotation package indicated in the ExpressionSet object (hgu95av2.db).

How to do it…
Perform the following steps to describe the enrichment of genes with GO terms via a
hypergeometric test:

1.	 First, install and load the annotation database and GOstats library as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite(c("hgu95av2.db", "GOstats"))

> library(hgu95av2.db)

> library(GOstats)

> library(biomaRt)

2.	 Prepare the input data from the results of the leukemia data analysis (Working with
the data of multiple classes recipe). Create two sets, one that consists of all the
genes in the data and the other that consists of DE genes, as follows:
> all_genes <- rownames(tested2)

> sel_genes <- rownames(DE2)

3.	 Map these sets to their Entrez IDs as follows:
> mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))
set the mart

> all_genes <- c(getBM(filters= "ensembl_gene_id", attributes=
c("entrezgene"), values= all_genes, mart= mart)) # get entrez ids
for all genes

> sel_genes <- c(getBM(filters= "ensembl_gene_id", attributes=
c("entrezgene"), values= sel_genes, mart= mart)) # get entrez ids
for DE

4.	 Now, define a cutoff for the test statistics as follows:
> hgCutoff <- 0.05

Chapter 5

141

5.	 The next thing you need is a GOHyperGParams object that will be used as an
input parameter for the enrichment computations. It can be computed with the
following function:
> params <- new("GOHyperGParams", geneIds=sel_genes,
universeGeneIds= all_genes, annotation="hgu95av2.db",
ontology="BP", pvalueCutoff=hgCutoff, conditional=FALSE,
testDirection="over")

6.	 Once you have your GOHyperGParams object, perform a hypergeometric
test to get the p-value for the GO annotations as follows:
> hgOver <- hyperGTest(params)

7.	 Check the summary of the object that was created by typing the following command:
> summary(hgOver)

8.	 Get the number of genes associated with the different categories as follows:
> geneCounts(hgOver)

> universeCounts(hgOver)

9.	 Also, plot the GO directed acyclic graph (DAG) as follows:
> plot(goDag(hgOver))

10.	 Finally, generate the report as an HTML file that can be read using any browser,
as follows:
> htmlReport(hgCondOver, file="ALL_hgco.html")

How it works…
The GOHyperGParams object is a parameter object. This makes it easier to organize and
execute the hypergeometric test on GO annotations for the gene set. The object has slots
for the GO category (BP, MF, or CC), genes (Entrez IDs), and GO structure condition and
annotation. The hyperGTest function implements the hypergeometric test using the set of
parameters in the GOHyperGParams object. It computes the over or underrepresentation of
the GO terms in the gene set. However, the computation ignores the GO structure, treating
every annotation as independent. Here comes the use of the structure condition with the
specification of the argument conditional set to TRUE in the GOHyperGParams function. It
allows the use of the GO DAG structure to test the leaves of the graph, that is, those terms
with no child terms. GO has a hierarchical structure that follows a DAG topology, making
higher nodes more abstract than child nodes. The following table is for top-ranked GO terms
enrichments. The first column is for the GO IDs; the second is for the p-value that is received
from the hypergeometric test; the third is for the odds ratio; and the rest is for the expected
count, actual count, size, and actual term, respectively.

Analyzing Microarray Data with R

142

We can observe the terms related to blood circulation in the leukemia data:

GOBPID p-value OddsRatio ExpCount Count Size Term
GO:0006779 0.000 47.005 0 8 19 porphyrin-containing

compound biosynthetic
process

GO:0006778 0.000 30.847 0 9 28 porphyrin-containing
compound metabolic
process

GO:0033014 0.000 43.083 0 8 20 tetrapyrrole
biosynthetic process

GO:0046501 0.000 95.408 0 6 10 protoporphyrinogen IX
metabolic process

GO:0033013 0.000 18.876 1 9 40 tetrapyrrole metabolic
process

GO:0042168 0.000 32.030 0 7 21 heme metabolic process
GO:0006782 0.000 105.139 0 5 8 protoporphyrinogen IX

biosynthetic process
GO:0006783 0.000 42.375 0 6 15 heme biosynthetic

process
GO:0051188 0.000 10.366 1 10 73 cofactor biosynthetic

process
GO:0051186 0.000 6.226 2 12 139 cofactor metabolic

process
GO:0042440 0.000 12.082 1 7 44 pigment metabolic

process

There's more...
KEGG is another source of pathways and function information; however, it is not
available for open use in its updated form in R. It is a comprehensive database of
various pathways (for example, signaling pathways, metabolic pathways, and so on). To
view the database, visit the home page at http://www.genome.jp/kegg/. We can use
KEGGHyperGParams instead of GOHyperGParams for the KEGG enrichment of genes.
While running the function, all GOHyperGParams are replaced with KEGGHyperGParams,
and the condition is set to FALSE. The analysis also needs the KEGG.db package. For more
information about KEGG.db (it should be noted that the KEGG.db package has not been
updated till date), visit http://www.bioconductor.org/packages/2.13/data/
annotation/manuals/KEGG.db/man/KEGG.db.pdf.

http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006779
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006779
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006779
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006778
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006778
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006778
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0033014
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0033014
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0046501
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0046501
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0033013
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0033013
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0042168
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006782
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006782
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006783
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0006783
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0051188
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0051188
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0051186
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0051186
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0042440
http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=GO:0042440
http://www.genome.jp/kegg/
http://www.bioconductor.org/packages/2.13/data/annotation/manuals/KEGG.db/man/KEGG.db.pdf
http://www.bioconductor.org/packages/2.13/data/annotation/manuals/KEGG.db/man/KEGG.db.pdf

Chapter 5

143

The MLP package can also be used for the enrichment of genes with various pathway
databases. For details, refer to the Bioconductor home page at http://bioconductor.
org/packages/devel/bioc/manuals/MLP/man/MLP.pdf. The following plot shows
part of the directed acyclic graph of the GO categories in the given data:

Clustering microarray data
Clustering is about aggregating similar genes together in a group (called cluster) and away
from other such groups. When genes get clustered together (falling in the same group/
cluster), it means they follow a similar pattern based on the expression data under the given
conditions. This recipe presents the widely used concept of hierarchical clustering in gene
expression analysis.

http://bioconductor.org/packages/devel/bioc/manuals/MLP/man/MLP.pdf
http://bioconductor.org/packages/devel/bioc/manuals/MLP/man/MLP.pdf

Analyzing Microarray Data with R

144

Getting ready
The clustering recipe presented here will use the normalized breast cancer data from
the earlier recipes. However, we will use only part of it—say, the top 1500 genes—for a
faster computation.

How to do it…
To perform clustering on gene expression data, carry out the following steps:

1.	 First, create your dataset for clustering purposes from the leukemia data again.
Use only the first 100 data instances for demonstration purposes, as follows:
> c.data <- exprs(eset[1:100,])

2.	 Then, do an array clustering. Use the following EMA package to perform clustering:
> install.packages("EMA")

> library(EMA)

3.	 To perform the clustering of arrays, simply use the c.data object with
clustering from the EMA library as follows:
> c.array <- clustering(data=c.data, metric="pearson",
method="ward")

4.	 Create the dendrogram plot for the cluster by plotting the clusters as follows:
> plot(c.array)

5.	 To cluster the gene, simply transpose the data matrix and use it as input
for the data argument in the clustering function, and define the similarity
metric and clustering method as follows:
> c.gene <- clustering(data=t(c.data), metric="pearsonabs",
method="ward")

6.	 Plot the results as follows (note that for readability issues, the following screenshot
shows the results for only 100 genes):
> plot(c.gene)

A more detailed visualization in the form of a heatmap has been presented in the
More visualizations for gene expression data recipe of the chapter.

Chapter 5

145

How it works…
The clustering method presented in this recipe computes the similarity across the data
points (arrays or genes) from the expression data. The similarity measure that can be used
are Pearson, Spearman correlation coefficient, Euclidean, Manhattan, and jaccard distances.
Based on the similarity scores, a distance matrix is generated that is used as cluster data
points. Various methods have been implemented for clustering, which include the average,
single, complete, or ward method. We can also use other clustering methods such as kmeans
or PAM. The following plot shows the clustering dendrogram for arrays (top) and selected
genes (bottom):

Analyzing Microarray Data with R

146

There's more...
Clustering will be explained in further detail in Chapter 9, Machine Learning in Bioinformatics.
There are many other packages that can be used to perform clustering, and the choice
depends on the user. Visit the Wolfram's page (http://reference.wolfram.com/
mathematica/guide/DistanceAndSimilarityMeasures.html) to know more
about different similarities and distance measures.

Getting a co-expression network from
microarray data

The generation of networks from gene expression data has shown an upward trend in the
recent past. Networks at an abstract level represent the relations between the genes based
on the data. There are many possible ways to draw out these relationships from the data.
In this recipe, we will explore the relations based on the correlation among the genes.

Getting ready
We will select a small fraction of the dataset to explain this recipe. This is simply to make the
process faster and computationally less consuming. Moreover, it is good practice to reduce
such networks to the more important genes, thus making the network less noisy.

How to do it…
To generate the co-expression networks using the WGCNA package, perform the following steps:

1.	 Install and load the following libraries into the R session:
> install.packages(c("WGCNA", "RBGL"))

> library(WGCNA)

> library(RBGL)

2.	 Now, take the dataset. It's better to use only significant genes at this stage
as it will reduce the noise and simultaneously consume less time. Only
50 genes have been used for demonstration purposes in this recipe,
as follows:
> myData_Sel <- exprs(eset[rownames(DE2)[1:25],1:3])

http://reference.wolfram.com/mathematica/guide/DistanceAndSimilarityMeasures.html
http://reference.wolfram.com/mathematica/guide/DistanceAndSimilarityMeasures.html

Chapter 5

147

3.	 The data has sample names in the columns and genes in the rows. Transpose the
data as follows:
> myData_Sel <- t(myData_Sel)

4.	 To compute the adjacency matrix, either run the correlation computation (it takes a
lot of time) or use the adjacency function from WGCNA as follows:
> myMat <- adjacency(myData.Sel, type="signed")

The results give a square matrix of size equal to the number of genes. Each entry in
the matrix is the connectivity between the genes.

5.	 The values in the resulting adjacency matrix can be set to either 0 (edge absent) or 1
(edge present) via dichotomization in different ways to get the final adjacency matrix.
Simply use a threshold of 0.90 (a high value to get the most correlated vertices), as
one of the simplest methods, but not the optimal one. It can be done as follows:
> adjMat <- myMat

> adjMat[abs(adjMat)>0.90] <- 1

> adjMat[abs(adjMat)<=0.90] <- 0

> diag(adjMat) <- 0

6.	 The final adjacency matrix can be converted into a graphNEL object to be
rendered as a graph with nodes and edges, as follows (note that plotting the
graph might take some time depending on the network size):
> myGraph <- as(adjMat, "graphNEL")

> myGraph

> plot(myGraph, nodeAttrs=makeNodeAttrs(myGraph,fontsize=28,
 fillcolor="grey"))

How it works…
The method explained in this recipe is based on the computation of the relationship between
the genes in terms of correlation or similarity measures. The function computes the pairwise
similarity or correlation among the genes based on the expression data and returns this as a
matrix. The threshold set defines only highly correlated or similar genes connected by an edge
in the network otherwise no connection between the genes. This adjacency matrix is then
used to get the graph object.

Analyzing Microarray Data with R

148

The following plot shows the gene co-expression network among the 25 top genes obtained
after a DE analysis of the normal cells in leukemia:

Chapter 5

149

There's more...
Besides the WGCNA package, you can also compute the distances or correlation yourself to
compute such networks. The WGCNA package makes life rather easy. There are several other
methods of network inference depending on the experiment and type of data. Many of these
methods are supported in R via specific R packages. It will be beyond the scope of current text
to deal with these methods. You can refer to the relevant sources for detailed information

See also
ff The article titled Inferring cellular networks – a review by Markowetz and Spang

(http://www.biomedcentral.com/1471-2105/8/S6/S5/) presents an
overview on some of these methods

More visualizations for gene expression data
This recipe will present some interesting and useful visualizations for expression data.
The visualizations or plots explained in this recipe are heatmaps, Venn diagrams,
and volcano plots.

Getting ready
For all the plots, we will either use datasets already used in the chapter or create artificial
data while explaining the steps.

How to do it…
To generate the different types of plots, perform the following steps:

1.	 Start with heatmaps. From the Clustering microarray data recipe, use the generated
clusters, namely, c.array and c.gene.

2.	 To do a heatmap, use the following clustering.plot function of the EMA library
and pass the previously mentioned clusters as an argument:
> library(EMA)

> clustering.plot(tree=c.array, tree.sup=c.gene, data=c.data)

This generates the required heatmap.

One can also use the base function heatmap to do the same, as follows:
> heatmap(c.data)

http://www.biomedcentral.com/1471-2105/8/S6/S5/

Analyzing Microarray Data with R

150

The following figure shows a heatmap for selected genes from the
leukemiaexpression data, which features normal cells and the
different types of leukemia:

3.	 The next plot to create is a Venn diagram. It can be used to show the common and
unique contents of two variables. This will require the following VennDiagram library,
which can be installed and loaded as follows:
> install.packages("VennDiagram")

> library(VennDiagram)

Chapter 5

151

4.	 Now, create artificial data that consists of five variables (as sets) as a named list
object by typing the following commands:
> set <- list()
> for(i in 1:5){
 set[[i]]=sample(LETTERS[1:20], replace=TRUE, prob=rep(0.05,20))
}

names(set)=c(paste("S", 1:5, sep=""))

5.	 To plot the Venn diagram, use the five sets created in the list set and create
the gList object as follows:
> venn.plot <- venn.diagram(x = set, filename = NULL,cat.
cex = 1.5,alpha = 0.50,col = "black",fill = c("dodgerblue",
"goldenrod1", "darkorange1", "seagreen3", "orchid3"),cex= c(1.5,
1.5, 1.5, 1.5, 1.5, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8,
1, 0.55, 1, 0.55, 1, 0.55, 1, 0.55, 1, 0.55, 1, 1, 1, 1, 1,
1.5), cat.col = c("dodgerblue", "goldenrod1", "darkorange1",
"seagreen3", "orchid3"),cat.fontface = "bold",margin = 0.05)

6.	 Create the plot onto a PDF file using the grid.draw function as follows:
> pdf("venn.pdf")
> grid.draw(venn.plot)
> dev.off()

The following figure shows the Venn diagram for five sets:

Analyzing Microarray Data with R

152

7.	 The volcano plots are used to plot the fold changes and p-values against each other.
You have already seen this while working on the Working with the data of multiple
classes recipe. Here, you will deal with a more intuitive representation of the volcano
plot using the following ggplot2 library:
> library(ggplot2)

8.	 Now, select the top-ranked genes from your limma analysis as a data frame
by typing the following command:
> head(tested2)

9.	 Use the threshold the p-values and log fold change to define colors in the plot as follows:
> threshold <- as.factor(tested2$logFC>1.5 &tested2$P.Value< 0.1)

10.	 Now, use the data and the threshold object to create a g object as follows:
> g <- ggplot(data = tested2, aes (x= logFC, y = -log10(P.
Value), colour =threshold)) +geom_point() + opts(legend.position =
"right") +xlab("log2 fold change") + ylab("-log10 p-value")

11.	 Finally, plot the object by simply typing in the object name or save it as an object
as follows:
> g

In the following plot, the volcano plot uses ggplot for the expression data:

Chapter 5

153

How it works…
The recipe of the heatmap uses the clustering results from the corresponding recipe. It uses
two-way clustering for the arrays and genes. More arguments can be used to add information
to the plot, such as labels and titles, and even the color palette can be changed. For more
information, you can seek help in R using ?clustering.plot.

The Venn diagram recipe uses a named list object that contains the sets that the Venn
diagram has to be drawn for. The code explained in this recipe is for five sets. In order to
use the function for a different number of sets, parameters such as colors and cex must
be modified. An example with a different number of sets has been explained in the help file
for the function. Type in ?venn.diagram for a detailed explanation. These plots can be
used to show different attributes of results from data analysis. One possible scenario is that
while comparing multiple treatments with a control, we can visualize how many DE genes/
probes are shared across the experiments. Another possible situation can be the sharing of
overexpressed GO terms in two or more analyses.

The third plot (volcano plot) is rather simple and uses the ggplot function instead of the
usual plot function. It segregates the genes from other genes in terms of colors, showing
the genes with p-values less than 0.05 and the absolute log fold change greater than 1.5.

6
Analyzing GWAS Data

In this chapter, we will cover the following recipes:

ff The SNP association analysis
ff Running association scans for SNPs
ff The whole genome SNP association analysis
ff Importing PLINK GWAS data
ff Data handling with the GWASTools package
ff Manipulating other GWAS data formats
ff The SNP annotation and enrichment
ff Testing data for Hardy-Weinberg equilibrium
ff Association tests with CNV data
ff Visualizations in GWAS studies

Introduction
Genome-wide association studies (GWAS) is a method of identifying susceptibility loci for
complex diseases. It is based on the technique of scanning genomes of many subjects in order
to identify the genetic variation possibly responsible for a disease through statistical tests. The
technique needs a large number of subjects in order to reliably identify the variation. With the
advent of high-density microarray technologies for Single Nucleotide Polymorphisms (SNP)
detection and the HapMap project together with the Human Genome Project (HGP), this
technique has been made possible. More information on the HapMap project is available at
http://hapmap.ncbi.nlm.nih.gov. A number of SNP studies are available on SNPedia
(http://snpedia.com/index.php/SNPedia), which shares information about the effects
of variations in DNA based on peer-reviewed literature. A popular database for SNPs is dbSNP,
which is available on the Entrez page (http://www.ncbi.nlm.nih.gov/SNP/). Online
Mendelian Inheritence in Man (OMIM) is another source of information on human genes
and genetic phenotypes, which is available at http://omim.org.

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
http://snpedia.com/index.php/SNPedia
http://snpedia.com/index.php/SNPedia
http://www.ncbi.nlm.nih.gov/SNP/
http://omim.org

Analyzing GWAS Data

156

GWAS uses two groups of subjects: the control (for example, without disease or without
the desired trait), and diseased (with desired traits). SNPs are detected from the subjects.
They refer to a variation in the DNA sequence where a single nucleotide differs between
two phenotypes or chromosomes. To illustrate, in a sequence ATCGTACG, the variant can
be ATCGCACG, where T has been changed to C. To find the association of these SNPs with
certain phenotypes, the presence of such SNPs is statistically tested with samples from these
phenotypes. For example, the SNPs that are significantly more frequent in people who are
suffering from the disease, compared to those who aren't, are said to be associated with the
disease. We can illustrate this with an example of a disease-control GWA study. For control
cases and disease cases, the allele count of SNPs is computed and then a statistical test,
such as a Chi-squared test, is performed to identify variants associated with the disease
under consideration. This involves the analysis of a huge amount of genotypic data.
The GWAS data can be the size of hundreds of MBs up to GBs.

Before we start working with GWAS data, let's see what is there in it. GWAS data in any format
is obtained from genome-wide studies. It includes information about the variants as well
as their mappings onto chromosomes for every individual. This information is structured in
different ways depending on the data format, such as tables or flat files. Some of these data
formats will be discussed during the course of this chapter. To get a detailed idea of GWAS,
refer to the Genome wide association studies article by Bush and Moore at http://www.
ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002822.

This chapter will explain the recipes related to analyzing GWAS data in order to make
biological inferences.

The SNP association analysis
GWAS has gained popularity as an approach to identify genetic variants associated with a
disease phenotype. This is accomplished through statistical analysis of the GWAS data. These
methods of statistical analyses attempt to establish the association between each individual
SNP and the observed phenotype. In this recipe, we will perform such an association analysis.

Getting ready
To prepare for a GWAS analysis, we need data that contains all the information explained
earlier. In this recipe, we will use the data available in packages. While going through the
recipe, we will introduce the corresponding packages.

http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002822
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002822

Chapter 6

157

How to do it…
Perform the following steps to explain the SNP association analysis with diseases or
other phenotypes:

1.	 Start with the installation of the SNPassoc package from CRAN by typing the
following commands:
> install.packages("SNPassoc")# A package for association studies

> library(SNPassoc)

2.	 Use the built-in data for this package, which can be loaded with the data function,
as follows:
> data(SNPs)

3.	 The previous step loads two data objects in the workspace. Take a look at the data
objects that were just loaded:
> head(SNPs)

> head(SNPs.info.pos)

4.	 Now, create an SNP object using the following setupSNP function with the SNP
information in columns 6 to 40 (see the How it works... section):
> mySNP <- setupSNP(SNPs, 6:40, sep="")

5.	 With this data object, carry out an association test for the trait and variables of your
interest with the following association function:
> myres <- association(casco~sex+snp10001+blood.pre, data = mySNP,
model.interaction = c("dominant","codominant"))

6.	 Take a look at the results by issuing the following command:
> myres

Analyzing GWAS Data

158

How it works…
Before starting with an explanation of the recipe, let's take a look at the SNP data that
we are using. The data is a data.frame object that consists of 157 rows and 40 columns.
Each row of the data represents a sample that is either a case or control. The first five
columns represent the attributes for each sample and the columns from 6:40 are the SNP
information. That is why we used these columns while creating the SNP class object. The first
five columns are for sample identifiers, for case or control identification (1 is for case and 0
is for control, which means casco). This is followed by information about the blood pressure
and protein level of each gender. The following screenshot shows the first six entries of the
SNP data:

The other data that we loaded contains information about the SNP name, chromosome name,
and genomic position, as shown in the following screenshot:

The first six entries of the chromosomal location of the SNP data

The SNP object that we created has a data.frame structure as well, but looks slightly
different in terms of how the SNP information is coded. (To take a look at it, type
head(mySNP) in the R console.)

Now, let's have a look at our function to identify the relation. The association function
carries out an association analysis between a single SNP and a dependent variable via model
fitting and computing statistics. The arguments include the model to be fitted (formula object).
This needs the train of interest and the SNP under investigation separated by a ~ operator.
It is possible to add other variables to the formula using the + operator. Adding more SNPs
is possible, but the analysis is done only for the first SNP and adjusted by the others. The
association function can model the dependence based on the codominant, dominant,
recessive, overdominant, and log-additive genetic models of inheritance. This is supplied to
the function under the model.interaction argument.

Chapter 6

159

In this recipe, we tried to find the dependence of case and control on the first
SNP—snp10001—the sex, and the blood pressure. We used two genetic models:
dominant and codominant. The result looks like a matrix. The columns contain information
about the sample size and percentages for each genotype, the odds ratio and its 95 percent
confidence interval (which takes the most frequent homozygous genotype as the reference),
and the p-value corresponding to the likelihood ratio test obtained from a comparison with
the null model. Besides, the matrix also has the Akaike Information Criterion (AIC) of
each genetic model. Thus, the myres table reflects the dependence of phenotypes on SNP
(together with other factors). The following screenshot shows the result of the association
analysis test for snp10001:

There's more...
There are other packages for performing similar analyses. Some examples are snp.plotter
and GenABEL. We will get to learn more about these in the upcoming recipes of the chapter.

See also
ff The SNPassoc: an R package to perform whole genome association studies article

by Juan R and others at http://bioinformatics.oxfordjournals.org/
content/23/5/654.2.full.pdf, which provides the theoretical details of the
SNPassoc package

http://bioinformatics.oxfordjournals.org/content/23/5/654.2.full.pdf
http://bioinformatics.oxfordjournals.org/content/23/5/654.2.full.pdf

Analyzing GWAS Data

160

Running association scans for SNPs
The previous recipe presented the approach to discover the dependence of a phenotype
on a single SNP. However, in the case of phenotypes such as complex diseases, one has to
keep an eye on all of the SNPs and scan the entire set. This recipe will discuss computing
the significance of the dependence of phenotypes on all SNPs available in the data.

Getting ready
In this recipe, we will continue working on the same dataset of SNPs and the same SNPassoc
library as the previous recipe. We will directly use the SNP object, mySNP, created previously.

How to do it…
We start our recipe step from the point where we created the SNP object named mySNP.
This time, we try to understand another phenotype, say, the protein level. To run association
scan for SNPs, perform the following steps:

1.	 Run the WGassociation function on your mySNP object for all of the genetic models
as follows:
> myres <- WGassociation(protein~1, data = mySNP, model = "all")

The preceding step can also be run avoiding the formula by just providing the name
of the phenotype under study since the function runs across all of the SNPs anyway,
as follows:

> myres <- WGassociation(protein, data = mySNP, model = "all")

2.	 Take a look at the result matrix computed by issuing the following command:
> myres

3.	 To get the p-values for specific genetic models, use the name of the mode as the
function and the complete result matrix as the argument, as follows:
> dominant(myres)

> recessive(myres)

4.	 To get the detailed result for every SNP (similar to the previous recipe), use the
following WGstats function:
> WGstats(myres)

5.	 View the overall summary with the summary function as follows:
> summary(myres)

Chapter 6

161

6.	 Plot the p-values for all of the models and SNPs as follows:
> plot(myres)

7.	 The WGassociation function performs a whole genome association analysis by
computing just the p-values for each SNP corresponding to the likelihood ratio test
as follows:

> resHapMap <- WGassociation(protein, data=mySNP, model="log")

How it works…
We have already seen how the associate function works in the previous recipe. The
WGassociation function works in a similar fashion. The main difference is that it performs
many association tests in parallel using the mclapply function. The function takes each SNP
as a variable that the phenotype depends on and runs the association function on each
of them in parallel. These parallel runs return a matrix for each SNP that the corresponding
p-values are extracted from, and this ultimately returns as the overall result. The following
screenshot shows the result matrix for the association scan of an SNP:

The plot shows the p-values for every SNP as an absolute log scale along the y axis and SNPs
along the x axis. The facets represent the genetic model. The p-values presented here are
equipped with the Bonferroni correction. While plotting a warning, it tells you how many
SNPs are significant for every model of inheritance after the Bonferroni correction. Here,
in our results, we have no significant association for the overdominant model. The following
screenshot shows the plot for the association of all SNPs in the dataset. The plot shows the
log p-values to the base 10 for different models along the y axis, and the SNPs are aligned
along the x axis.

Analyzing GWAS Data

162

In the following screenshot, the horizontal dashed lines (red and pink) represent two different
thresholds, namely, the Bonferroni correction and nominal p-value (0.05), respectively:

There's more...
We spoke about parallelization in this recipe using the mclapply function from the
multicore package. This is a parallelized version of mclapply (see Appendix B, Useful R
Packages). To know more about parallelization using multicore and mclapply, refer to the
multicore package at http://cran.r-project.org/web/packages/multicore/
multicore.pdf.

http://cran.r-project.org/web/packages/multicore/multicore.pdf

Chapter 6

163

Furthermore, we also spoke about the Bonferroni correction. It is an adjustment made to the
nominal p-values for multiple testing on the same data (the alpha error per test). It is used to
reduce the chances of obtaining false-positive results or type I errors. For more information,
you can refer to the explanation in the write-up at http://www.stat.berkeley.
edu/~mgoldman/Section0402.pdf.

See also
ff The Whole genome association studies in complex diseases: where do we

stand? article by Need and Goldstein at http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC3181943/, which provides a more detailed explanation of
associations in complex diseases

The whole genome SNP association analysis
So far, we have worked with SNP data where we had a few SNPs and made attempts to
understand the phenotype dependence on these SNPs. However, we are yet to cover the most
interesting part of association analysis, which is the whole genome analysis. Here, we attempt
to study the association analysis of a trait across the whole genome. This recipe is an attempt
at doing such an analysis.

Getting ready
Until now, we have been using a small data set. Now, we switch to a much larger one called
the HapMap data set. The data is available within the SNPassoc package of R.

How to do it…
Follow the ensuing steps to perform a whole genome association analysis for SNPs:

1.	 Start with loading the HapMap data as follows:
> data(HapMap)

2.	 Check what the data looks like by looking at the first few entries with the str function
as follows:
> str(HapMap)

> str(HapMap.SNPs.pos)

3.	 The next step is to create the SNP class object with the help of the following command:
> myHapMap <- setupSNP(HapMap, colSNPs= 3:9307, sort=TRUE,
info=HapMap.SNPs.pos,sep="")

http://www.stat.berkeley.edu/~mgoldman/Section0402.pdf
http://www.stat.berkeley.edu/~mgoldman/Section0402.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181943/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181943/

Analyzing GWAS Data

164

4.	 Now, run the following WGassociation function on this data object for the genetic
model of your interest (in our case, we use "dominant"):
> myHapMapres <- WGassociation(group, data= myHapMap,
model="dominant")

5.	 The result is a data frame. Check the resulting data frame as follows:
> head(myHapMapres)

> print(myHapMapres)

6.	 Type the following command to plot the entire result in a better way, as shown in the
following screenshot:
> plot(myHapMapres, whole=TRUE)

How it works…
The HapMap data used in this recipe consists of two groups of population, namely,
CEU (Utah residents with ancestors from Northern and Western Europe) and YRI (Yoruba
in Ibadan, Nigeria). Each group is represented by 60 samples (totally 120 samples). The
following screenshot shows the head of the HapMap data with the sample ID group and
nucleotide pairs at the SNP sites:

The HapMap.SNPs.pos file has the genomic mapping information for the SNPs on the
human chromosomes, as shown in the following screenshot:

The chromosomal/genomic position of the HapMap data

The working principle of this recipe is mostly the same as the previous recipe. The
setupSNP function converts a data.frame object into the snp class to be used by the
WGassociation function. The input required is the data.frame object and the column
number where SNPs are located in the data.frame object. The difference is the plot
that was created in this recipe. The created plot shows the p-values of the association of
phenotypes mapped onto their corresponding genomic location on the human chromosome.

Chapter 6

165

Before converting the data into an SNP object, it is always wise to look at it manually in order
to understand what the available descriptors and variables are. It can also be useful in cases
where the phenotype data is not available and one has to create it manually (artificially or
from other sources). Analyzing huge data such as HapMap takes time and memory; therefore,
you have to be patient with such an analysis.

A system running low on memory may freeze your R session while
running this function.

The following screenshot shows a plot with the associated p-values for the HapMap data over
the specific chromosomal locations. The y axis depicts the -log p-values for the entire analysis
along all chromosomes. Each vertical line corresponds to a position or an SNP on that specific
chromosome, whereas the blue lines represent the centromere. The significant SNPs are
in red (the others are in grey) as shown in the following screenshot (note that the model
assumed is a dominant genetic model):

Analyzing GWAS Data

166

The plot function used in this recipe plots all of the SNPs and their significance along the
chromosomal positions. We can set the whole argument to FALSE to get it together along
one horizontal line.

There's more...
The HapMap data, as discussed earlier, is a huge collection of genetic variants from
different populations. CEU and YRI are two of these populations that we used here.
A complete detail of other descriptors is available at http://hapmap.ncbi.nlm.nih.
gov/citinghapmap.html.

Importing PLINK GWAS data
The previous recipes used one of the simplest forms that the GWAS data is handled in, that
is, data.frame. However, it is not the only format for the GWAS data. As discussed earlier,
the GWAS data normally has two types of information: the genotype data that has information
about the SNP variants and the mapping information containing the SNP names and related
information. One of the popular data formats is the PLINK format. The PLINK format of the
GWAS data consists of two separate files, one containing the SNP information and the other
containing the mapping information. For dependence analysis, it can be combined with the
phenotype data separately. Working with such data is not as simple as importing an ordinary
text, CSV file, or data frame. This recipe discusses working with the PLINK data by specially
importing it in R.

Getting ready
The first two things we need for this recipe are the .map and .ped files that have to be read
into R. In this recipe, we can use both types of data downloaded from the NCBI HapMap page
at http://hapmap.ncbi.nlm.nih.gov/downloads/ (take a look at the hyperlink for the
Genotypes PLINK file).

Note that we need to download the *.map and *.ped files from this source. Make sure
that they are corresponding files, that is, they have similar names with different extensions.
However, these files can be huge in size, and processing them might take a while to download
and work on (and might even be memory intensive). Therefore, for our demo, we already have
these files available at the book's web page, together with the code file, and they are named
myPed.ped, myMap.map, and myPheno.ph.

The packages that will be used in the recipe are explained in the next section.

http://hapmap.ncbi.nlm.nih.gov/citinghapmap.html
http://hapmap.ncbi.nlm.nih.gov/downloads/

Chapter 6

167

How to do it…
In order to work with a real PLINK format in the HapMap file, perform the following steps:

1.	 Unzip the file downloaded from the HapMap page to a desired directory.

2.	 Set the working directory of your R session to this directory.

3.	 Install and load the GenABEL library as follows:
> install.packages("GenABEL")

> library(GenABEL)

4.	 Now, convert the ped and map files into more usable genotype data using the
following function:
> convert.snp.ped(pedfile=" myPed.ped", mapfile="myMap.map",
out="myOut.out")

5.	 We need a phenotype file for our data, which is a tab separated file, consisting of at
least the sample names and the trait of interest as columns. The data will come from
the corresponding studies. Here, we have the prepared data on the book's web page.
The data required to be loaded into R is now ready in the form of the phenotype data
and the genotype data:
> myData <- load.gwaa.data(phenofile="myPheno.ph",
genofile="myOut.out")

6.	 Take a look at the structure of the myData object as follows:
> str(myData)

7.	 Access the genotype and phenotype data with the help of the following functions:
> phdata()

> gtdata()

How it works…
The HapMap data consists of individual genotype data and phenotypes. The data downloaded
from the HapMap project consists of two different types of information. The first one is the
.ped file, which contains the genotype information, and the second one is the .map file,
which consists of the SNP names and their mappings. We can see in the unzipped data that
it has different files. For example, the data we are working on is the population panel from
the HapMap project on Utah residents with Northern and Western European ancestry (CEU).
The data has 90 individuals and corresponding SNPs on the eighteenth chromosome. The
phenotype data contains sex and phenotype information of every individual in the data. While
reading these files, the function gets the genotype and marker information from the data. This
can be seen in the R console while running the function.

Analyzing GWAS Data

168

The final data object, myData, that was created has slots for the SNP data, mappings, and
phenotype data. Use the following str function to look at the details of the myData object:

> str(myData)

In case we have data on some other phenotype of the patients, we can create our own
phenol file. This is actually a table (in the form of a tab-separated file) that consists of
sample names and traits of interest and is usually accompanied by sex information in the
form of columns. It must be noted that all the IDs used in the .ped file should match those in
the pheno file; otherwise, it would result in a fatal error, and no data will be loaded. Let's take
a look at the following example:

> write.csv(data.frame(id=samples, sex=sex, traitOfInterest=trait),
file="myPheno.ph")

There's more...
PLINK is more or less considered a de facto standard for genotypic data. However, there are
several other formats, such as simple CSV files, text files, and affymetric flat files.

See also
ff http://www.gwaspi.org/?page_id=145 for a detailed description on the

PLINK format

Data handling with the GWASTools package
We have dealt with two different data formats. In this recipe, we will introduce an R package
that not only enables us to work with raw data but also helps in quality checks and many
analytical steps. In this recipe, we will mainly talk about handling raw data and quality
checks with GWASTools.

Getting ready
For this recipe, we will use the GWASTools package and the included data sets for
demonstration purposes. Besides this, we will also use the data package named GWASdata.

http://www.gwaspi.org/?page_id=145
http://www.gwaspi.org/?page_id=145

Chapter 6

169

How to do it...
Perform the following steps to walk through the use of the GWASTools package to work with
GWAS data:

1.	 Start with installing the package from the Bioconductor repository by typing the
following commands:
> source("http://bioconductor.org/biocLite.R")

> biocLite("GWASTools")

> biocLite(c("GWASdata", "gdsfmt"))

> library(GWASTools)

> library(GWASdata)

2.	 Now, load the affy raw data from the GWASdata package. It consists of two data
sets, affY_scan_anot and affy_snp_annot, as follows:
> data(affy_scan_annot)

> data(affy_snp_annot)

3.	 Use the built-in data from the package, and to get the complete path and name of the
data from the package, type the following commands:
> file <- system.file("extdata", "affy_geno.nc",
package="GWASdata")

> file

4.	 Now, use this file path and name as the argument of the NcdfGenotypeReader
function to import or load the file in your R workspace as follows:
> nc <- NcdfGenotypeReader(file)

5.	 Check the number of scans and SNPs in the data with the following nscan and
nsnp functions:
> nscan(nc)

[1] 47

> nsnp(nc)

[1] 3300

6.	 Now, to extract the genotype components from the data, run the getGenotype
function for the desired scans and SNPs (in our case, 5 and 20) as follows:
> geno <- getGenotype(nc, snp=c(1,20), scan=c(1,5))

Analyzing GWAS Data

170

7.	 Now, get the scan and SNP data in the workspace as follows:
> data(affyScanADF) # ScanAnnotationDataFrame

> data(affySnpADF) # SnpAnnotationDataFrame

8.	 To retrieve the phenotype data, type in the following command:
> varMetadata(affySnpADF)

9.	 To create a data object with scan and SNP attributes, use the following function
(note that at this level, you can choose not to have the annotation component for
the data as it is not obligatory to run the function):
> MyGenoData <- GenotypeData(nc, snpAnnot= affySnpADF, scanAnnot=
affyScanADF)

10.	 The data is ready. This has created an object of the GenotypeData class. Take a
look at the structure of the created object with the following function:
> str(MyGenoData)

11.	 Compute the missing call rate (MCR) for all of the chromosomes as follows:
> mcr_chr <- missingGenotypeByScanChrom(MyGenoData)

> head(mcr_chr$missing.counts)

 21 22 X XY Y M

3 2 4 2 0 100 0

5 0 4 2 0 0 0

14 2 6 2 1 100 0

15 4 3 6 1 100 0

17 2 4 1 0 0 1

28 1 1 0 0 0 0

12.	 To compute the MCR sex-wise in the genotyping as a measure of quality, use the
following function:
> mcr_sex <- missingGenotypeBySnpSex(MyGenoData)

How it works…
The NcdfGenotypeReader function reads the genotype data stored in NetCDF files.
A NetCDF file stores the genotype and intensity data and has dimensions of (SNP x Sample
size). It uses the netcdf package for this purpose. Once the data is read from the NetCDF
file, it can be used to create a complete data object that we can work with. The principle
involved here is the same as an E-set that we learned during the gene expression analysis
in the previous chapter.

Chapter 6

171

Missing genotype calls can bias the entire data towards one genotype or another. An MCR is
defined as the fraction of missing calls per SNP over multiple samples (or per sample). It is one
of the common quality measures for genotype batches. The missingGenotypeBySnpSex
function tabulates the missing SNP counts, allele counts, and heterozygous counts for each sex.
Note that the function excludes females when calculating the missing rate for Y chromosome
SNPs. With these results, we can fetch the total missing counts, number of scans, and the
missing fraction. Let's do a histogram for the fractions using the following functions:

> par(mfrow=c(1,2))

> hist(mcr_sex$missing.fraction, xlab="Fraction", main="Histogram for the
missing fraction for every sex")

> hist(mcr_chr$missing.fraction, xlab="Fraction", main="Histogram for the
missing fraction along chromosomes")

To compute the number of SNPs with MCR greater than 0.05, we can use the
following command:

> sum(mcr_sex$missing.fraction>0.05)

[1] 50

The following screenshot shows the histogram of missing call fractions for each sex (left) and
along chromosomes (right) (note that we have the missing call fraction along the x axis, and
the y axis depicts the frequency of the occurrence in the data):

Analyzing GWAS Data

172

See also
ff The CRAN page at http://www.bioconductor.org/packages/2.13/data/

experiment/manuals/GWASdata/man/GWASdata.pdf, which provides a more
detailed description about the functionalities in the GWASTools package

ff The GWASTools: an R/Bioconductor package for quality control and analysis
of genome-wide association studies article by Gogarten and others at http://
bioinformatics.oxfordjournals.org/content/28/24/3329.short, which
provides information regarding the practical backgrounds of the GWASTools package

ff http://www.unidata.ucar.edu/software/netcdf/examples/files.
html, which provides detailed information about the network common data form
(NetCDF) format—a widely accepted format in the scientific community

ff The Quality Control and Quality Assurance in Genotypic Data for Genome-Wide
Association Studies article by Laurie and others at https://www.genevastudy.
org/sites/www/content/files/GENEVA_QC_QA.pdf, which provides further
detail on MCRs in genotyping

Manipulating other GWAS data formats
Until now, we have worked with structured data frames and PLINK files (.ped and .map).
However, there are different formats for data, and using different libraries requires different
data formats for analysis. This recipe will talk focus on reading some more data formats and
their interconversion to other, usable formats.

Getting ready
As mentioned, we will discuss some more data formats during this recipe. Therefore, we need
to have data in different formats. The data comes from experiments on different platforms.
In the following demo steps, we provide only the reference names; you can change the
names with your own files. Note that without having these, it is not possible to execute the
code. However, the pedin.18 file is available at http://www.filewatcher.com/m/
pedin.18.98100-0.html and the extra.ped file at http://pngu.mgh.harvard.
edu/~purcell/plink/dist/example.zip. Both these files are available with code files.

http://www.bioconductor.org/packages/2.13/data/experiment/manuals/GWASdata/man/GWASdata.pdf
http://www.bioconductor.org/packages/2.13/data/experiment/manuals/GWASdata/man/GWASdata.pdf
http://bioinformatics.oxfordjournals.org/content/28/24/3329.short
http://bioinformatics.oxfordjournals.org/content/28/24/3329.short
http://www.unidata.ucar.edu/software/netcdf/examples/files.html
http://www.unidata.ucar.edu/software/netcdf/examples/files.html
https://www.genevastudy.org/sites/www/content/files/GENEVA_QC_QA.pdf
https://www.genevastudy.org/sites/www/content/files/GENEVA_QC_QA.pdf
http://www.filewatcher.com/m/pedin.18.98100-0.html
http://www.filewatcher.com/m/pedin.18.98100-0.html
http://pngu.mgh.harvard.edu/~purcell/plink/dist/example.zip
http://pngu.mgh.harvard.edu/~purcell/plink/dist/example.zip

Chapter 6

173

How to do it…
Perform the following steps to walk through all the data format handling:

1.	 Let's start with a few functions to convert files from different types of genotypic
data to raw data. The convert.snp.<desired format> function can be used to
convert formats into raw files, as you saw in the previous recipe. Type in the following
command to convert the affy file into the raw data format:
> dir <- "<path/to/desired/directory>"
> library(GenABEL)
> convert.snp.affymetrix(dir, map, outfile, skipaffym)

2.	 Similar to the preceding step, use the following functions to convert illumina,
mach, and integer genotypic data into the raw data format:
> convert.snp.illumina(infile="pedin.18",out="myraw.raw
",strand="+")
> convert.snp.ped(ped="myPed.ped",mapfile="map.18",out="myRaw.raw")
> convert.snp.text("genos.dat"," myraw.raw ")

3.	 To read a .ped file as a data frame, use the generic function of read.csv or the
read.pedfile function from the trio library. The extra.ped file
> biocLite("trio")# please check the compatibility with your
R version or install from source (see Chapter 1, Starting
Bioinformatics with R, for details)
> library(trio)
> mySNP <- read.pedfile(file="path/to/codefiles/myPed.ped")

4.	 Take a look at the data frame that was created with the following generic function:
> head(mySNP)

5.	 Take a look at column names for the object to check the difference between
this data frame and the one we used in the SNPassoc package by typing the
following command:
> colnames(mySNP)

6.	 The file that was read has to be converted into a data frame object usable by the
function in the SNPassoc package. To do this, extract some features from your
original matrix as follows:
> allsnps <- unlist(strsplit(colnames(mySNP)
[7:ncol(mySNP)],"[.]"))[seq(1,68,2)]
> onlysnp <- mySNP [,-c(1:6)]
> odds <- seq(1,ncol(onlysnp),2)
> allsnps <- allsnps[odds]
> evens <- odds+1

Analyzing GWAS Data

174

7.	 When you have all the dimensions and specifications of the original .ped data,
use the following commands to create an empty data frame that matches the
required dimensions:
> x <- matrix(0, nrow(onlysnp), length(allsnps))

> x <- data.frame(x)

> colnames(x) <- allsnps

8.	 Now, use the following commands to fill in the data frame with SNP alleles:
> for(i in 1:length(odds)){

p=as.factor(paste(onlysnp[,odds[i]], onlysnp[,evens[i]], sep=""))

x[,i]=p

 }

9.	 Finally, merge the computed data frame with the other ID and variable information
from the original .ped file as follows:
> mySNP=data.frame(mySNP[, c(1:6)],x)

10.	 Check your reformatted data with the head function as follows:
> head(mySNP)

This data frame can be used for further processing using the SNPassoc package
that we explored in the previous recipes.

How it works…
The input files demonstrated in this recipe are not available within the package or provided
with the code file as they are specific to the experiment platforms (affymetrics, illumina, and
so on). Nevertheless, some files may be fetched from the sources indicated in the Getting
ready section. The filenames provided in this recipe are just for reference and are not real
files. Change the values of the corresponding arguments to the names of your own input files.

The first few conversion functions shown in this recipe read the genotypic information from
the file that has been assigned and convert the information for the GenABEL package into
the internal raw format. The format consists of different components. The components are
structured as data.frames.

The second part of the recipe converts the .ped file from PLINK into data.frame, as stated
earlier. A.ped file can be read in many ways, even with the generic read.csv function. The
presented function is one of the many in-built functions in R that handle the .ped files. The
.ped file in this recipe is read as a data.frame object. The following screenshot shows the
head of the .ped file data frame before conversion:

Chapter 6

175

To render this data frame usable in the SNPassoc package, we perform a few manipulations.
The manipulations simply merge alleles in two consecutive columns as the genotypes for
every SNP. Finally, all other information must be merged into one data frame for completion.
The following screenshot shows the head of the converted .ped file:

Once this data frame is ready, we can run the setupSNP function and prepare data for the
association tests.

All of these conversion functions do not return any value, but write the output
to a file in the current directory. However, the chunk of code provided to
convert the .ped file into a data frame can do both.

See also
ff The corresponding GenABEL pages at http://www.genabel.org/GenABEL/

convert.snp.affymetrix.html and http://www.genabel.org/GenABEL/
convert.snp.illumina.html to learn more about different data formats such as
affymetrix and illumina

http://www.genabel.org/GenABEL/convert.snp.affymetrix.html
http://www.genabel.org/GenABEL/convert.snp.affymetrix.html
http://www.genabel.org/GenABEL/convert.snp.illumina.html
http://www.genabel.org/GenABEL/convert.snp.illumina.html

Analyzing GWAS Data

176

The SNP annotation and enrichment
Once we have some SNPs that are potentially interesting from the point of view of
association with the phenotype, it is extremely important and interesting to know about
the gene or genomic region that they belong to. Finding these regions and associated
functional enrichment can be a major bottleneck. This recipe will present methods that
annotate SNPs with genes, genomic regions, and so on.

Getting ready
To perform the annotations, we simply use some random SNPs; however, the functions can be
used for any vector or list of SNPs. The package we use to achieve this is NCBI2R.

How to do it…
Perform the following steps to show the annotation of SNPs with genes or genomic regions:

1.	 Start with installing the NCBI2R library and loading it in your R session as follows:
> install.packages("NCBI2R")
> library(NCBI2R)

2.	 Now, create a list of some random SNP IDs (it must be a valid dbSNP ID) with the help
of the following command:
> mysnplist <- c("rs94","rs334","rs309","rs333", "rs339")

3.	 Extract the SNPs from one of the blocks of data that you are working with as follows:
> mySNPs <- SNPs$id

4.	 To get the flank sequence for the set of SNPs, use the GetSNPFlankSeq function
from the NCBI2R package as follows:
> myInfo <- GetSNPFlankSeq(mysnplist)

5.	 To fetch information about the SNPs, use the GetSNPInfo function as follows:
> myInfo <- GetSNPInfo(mysnplist)

6.	 To know about the pathways where the SNP related genes are involved, type in the
following command:
> pathway <- GetPathways(myInfo$locusID)

7.	 To divide the SNP information for multiple genes into individual entries, use the
package that implements the SplitGenes function as follows:
> mySNPs <- SplitGenes(myInfo)

8.	 To get the chromosome and genomic position, use the following function:
> GetSNPPosHapMap(mysnplist[1])

Chapter 6

177

9.	 To perform the annotation for a set of genes in a file, run the AnnotateSNPFile
function. The results will be generated and saved as an HTML file, as follows:
> write(mysnplist,file="myfile.txt")
> resultsdf <- AnnotateSNPFile("myfile.txt","Annotation_output.html")

10.	 The following GetGenesInSNPs function returns a list of genes that contain the
given SNP:
> geneList <- GetGenesInSNPs(mysnplist)

11.	 If we want to know the gene in a given region (by chromosome name or number and
position), use the GetGenesInRegion function as follows:
> GetGenesInRegion("3",1,1000000)

How it works…
Most of the search and fetch functions explained previously query the HapMap page at
http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap for the SNP IDs.

The GetSNPFlankSeq function fetches the flanking position and the variation code of a set
of SNPs from the remote NCBI location. It must be noted that the SNP IDs provided as input
for the function must be valid. The following screenshot shows the sequence flank that is
retrieved for the list of SNPs:

http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap
http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap

Analyzing GWAS Data

178

The GetSNPInfo function fetches information such as the genome position and gene details
(symbol and Entrez ID) if the SNP is located inside of any genes (if it is within the boundaries
of a gene). The returned value also has information about the chromosome and species.
The following screenshot shows the information retrieved from the SNPs:

There's more...
The NCBI2R package annotates SNPs, genes, and so on, using the current information
available at NCBI.

See also
ff The NCBI2R package's blog page at http://ncbi2r.wordpress.com/,

which provides a more detailed overview and description of the NCBI2R package

Testing data for the Hardy-Weinberg
equilibrium

The Hardy-Weinberg Equilibrium (HWE) is a principle stating that the genetic variation in a
population will remain constant from one generation to the next in the absence of disturbing
factors. When mating is random in a large population with no disruptive circumstances, the
law predicts that both genotype and allele frequencies will remain constant because they are
in equilibrium. However, mutations, natural selection, nonrandom mating, genetic drift, and
gene flow disturb this equilibrium. Any deviation from this equilibrium will thus indicate these
phenomena, plus the quality of genotyping. Therefore, performing an HWE test on data can be
helpful while analyzing genotypic data. The tests performed in this recipe for all or a selection
of SNP genotypes as will indicate if the deviation from HWE is significant and hence indicative
of one of the phenomena mentioned here. This is usually accomplished with the Fisher exact
test or Chi-square tests.

Getting ready
We will perform the HWE test for two different types of data: first, for simulated data, and
secondly for the SNP data on Alzheimer's, which is available with the code files on the book's
web page. The data is that the late-onset Alzheimer's disease is prevalent in a Japanese
population, and a number of SNPs have been genotyped in the APOE region. These SNPs
are listed in physical order, with the distance between the first and last SNP around 55Kb.
Besides this, we will use the GWASExactHW library to meet the objective.

http://ncbi2r.wordpress.com/

Chapter 6

179

How to do it…
To check the HWE for an SNP data set, perform the following steps:

1.	 First, load the GWASExactHW library in the R session as follows:
> install.packages("GWASExactHW")

> library(GWASExactHW)

2.	 Now, simulate some SNP data. To do this, artificially generate SNP variants via a
multinomial distribution. Use the conditions of HWE to generate data as follows:
> pA <- runif(1)

> pAA <- pA^2

> pAa <- 2*pA*(1-pA)

> paa <- (1-pA)^2

> myCounts <- rmultinom(100, 500, c(pAA, pAa, paa))

3.	 Now, create a data.frame object for the counts (frequencies) of all of the variants
as follows:
> genotypes <- data.frame(t(myCounts))

> colnames(genotypes)= c("nAA", "nAa", "naa")

4.	 Then, use the HWExact function to compute the p-values as follows:
> hwPvalues <- HWExact(genotypes)

5.	 Use real SNP data for this part of the recipe as follows (note that the data is available
with the code files on the book's web page):
> load("path/to/code/file/dir/Alzheimers.rda")

6.	 Performing the previous step loads an object named Alzheimers; take a look at its
contents as follows. It is a data.frame object that contains the frequencies of each
allele along columns for each SNP along the rows as follows:
> head(Alzheimers)

7.	 Use the data for the exact test with the following HWExact function:
> myTest <- HWExact(Alzheimers)

> names(myTest) <- rownames(Alzheimers)

8.	 Plot the p-values after the test as follows:
> plot(-log10(myTest), type="b", ylab="-log10(p-value)", main="HWE
p-values for SNPS")

> abline(h=-log10(0.05), col="red")

Analyzing GWAS Data

180

9.	 To extract the significant SNPs, look for a p-value lower than 0.05 as follows:
> sum(myTest<0.05)

[1] 12

10.	 To get the name of the significant SNPs from the HWE test, simply extract the ones for
which the p-value is less than 0.05, as follows:
> names(myTest)[which(myTest<0.05)]

11.	 Now, imagine a situation where you do not have frequencies; rather, you have the
alleles of SNPs in different samples (individuals). Recall the SNP data from the
association study recipe.

12.	 Source the SNPfreqCal.R function from the code files provided in your workspace.
The function contains scripts to compute frequencies from such SNP data. Also, load
the SNP data from the SNPassoc library as follows:
> source("path/to code/file/SNPfreqCalc.R")

> library(SNPassoc)

> data(SNPs)

13.	 Now, run the following function to get the frequencies:
> freq2 <- freqCalc(SNPs, pat="snp")

14.	 This gives a frequency table like the one you used for other data. Run the following
HWExact function on it, as you did earlier, to get the statistics:
> myTestSNPs <- HWExact(freq2)

How it works…
The HWExact function performs a Fisher test on all the SNPs in the data and returns the
corresponding p-values. The simulated data first generates a random probability of the
variants and then varies itself using these probabilities from a multinomial distribution and
finally a frequency table for variants. This table acts as the input for the HWExact function.

In the second case, we use the Alzheimer's data that has allele frequencies for every SNP.
The HWExact function runs on all the data and computes the exact scores for the allelic
frequencies and returns a score for each SNP. We can simply plot the scores (p-values) on
a log scale to find significantly deviant SNPs as per the HWE. It is known that in the case
of Alzheimer's, the APOE region plays an important role. Our data has the SNPs rs446037
through rs429358 that lie in the APOE gene. The SNPs rs429358 and rs7412 (not
genotyped, but adjacent to rs429358) together make up the alleles ε2, ε3, and ε4 of
the APOE gene. The results obtained show the SNPs deviating from the HWE.

Chapter 6

181

For the third type of data, we have the freqCalc function that computes a frequency table
from the SNP files that contain the alleles. The function computes the frequency of each allele
for every SNP across all samples (individuals) and finally removes the phenotype information
available in the data by looking for a pattern of names provided for the SNP IDs. In this recipe,
we used snp as a value argument pat for this. However, we can use the other patterns such
as rs to identify the SNP. This function can accept most of the patterns for the SNP names.
The following screenshot shows a plot of negative logarithms for SNPs after the HWE test.
As shown in the following screenshot, along the x axis, we have the SNPs, and the y axis
represents the negative logarithm of the p-values (base 10):

See also
ff The A Note on Exact Tests of Hardy-Weinberg Equilibrium article by Wigginton and

others at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199378/,
which provides a detailed explanation of the test

ff The Genome-wide association study of Alzheimer's disease article by Kamboh and
others at http://www.nature.com/tp/journal/v2/n5/full/tp201245a.
html to know more about the role of SNPs in Alzheimer's

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199378/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199378/
http://www.nature.com/tp/journal/v2/n5/full/tp201245a.html
http://www.nature.com/tp/journal/v2/n5/full/tp201245a.html

Analyzing GWAS Data

182

Association tests with CNV data
So far, we have discussed SNPs a lot. Copy Number Variation (CNV) refers to a phenomenon
where for certain genes, there exists a normal variation in the number of copies of one or more
sections of the DNA. CNVs are an important component of structural variation in the human
genome and are potentially critical in terms of their genetic contribution to the risk of common
complex diseases. Just like the SNP-based association analysis that we saw so far, the CNV
association analysis can play a crucial role in understanding many complex phenotypes and
diseases. This recipe will introduce some methods to perform such an analysis.

Getting ready
We will use the CNVassoc package for our recipe here, which is available from the CRAN
repository. The input data for our demo will be the built-in data in the package received
from the MLPA assay for association between CNVs and disease.

How to do it…
Perform the following steps for the association analysis of the CNV association:

1.	 As usual, start with installing and loading the CNVassoc library as follows:
> install.packages("CNVassoc")

> library(CNVassoc)

2.	 After this, load the MLPA data in the workspace by typing the following command:
> data(dataMLPA)

3.	 Take a look at the MLPA data, which is a data frame in the head function, by typing
the following function:
> str(dataMLPA)

> head(dataMLPA)

4.	 To check the intensities that correspond to the phenotype, plot the densities
as follows:
> plotSignal(dataMLPA$Gene1,case.control=dataMLPA$casco)

5.	 Now, as you have seen the data peak intensities for the two genes, you need to
create a cnv object for the gene you want to study. Here, you will attempt to study
Gene 2. Create the cnv object as follows:
> myCNV <- cnv(x = dataMLPA$Gene2, threshold.0 = 0.01, mix.method
= "mixdist")

Chapter 6

183

6.	 Now, use the cnv object to compute the association using the CNVassoc function,
as follows:
> myModel <- CNVassoc(formula=casco ~ myCNV, data = dataMLPA,
model = "mul")

7.	 To look at the estimated parameters, type the following command:
> summary(myModel)

8.	 To do an Anova (with an additive model for example) or likelihood computation,
use the corresponding function, as follows:
> myModel2 <- CNVassoc(formula=casco ~ myCNV, data = dataMLPA,
model= "add")
> anova(myModel, myModel2)
> logLik(myModel)

9.	 Finally, to determine whether a CNV is associated with the phenotype, perform a Wald
or likelihood test on your model with the help of the following commands:
> CNVtest(myModel , type = "LRT")
----CNV Likelihood Ratio: Test----
Chi= 18.75453 (df= 2) , pvalue= 8.462633e-05

> CNVtest(myModel, type = c("Wald","LRT"))

> CNVtest(myModel, type = "Wald")
----CNV Wald test----
Chi= 17.32966 (df= 2) , pvalue= 0.0001725492

This returns the p-value for the association based on the test that was performed.

How it works…
The MLPA data set contains the case control status between the CNV and disease. The data
contains the peak intensities for two genes that arise from the MLPA assay for 360 cases
and 291 controls. The data has two genes: under study and corresponding covariates.
The following screenshot shows the head of the MLPA CNV data:

Analyzing GWAS Data

184

The cnv function uses the quantitative signal of individual probes to infer the copy number
status for samples. The function is based on the normal mixture model assumptions. The plot
of the cnv object shows the peak intensities for a gene, representing the intensities of Gene
2 for each individual, distinguishing between cases and controls. The following plotSignal
function plots the peak intensities for a gene individually (note that we can do similar plots for
the other gene as well and compare them):

> plotSignal(dataMLPA$Gene2,case.control=dataMLPA$casco)

The following screenshot shows the plot signal for the intensity peaks in the CNV data for
Gene 2. Along the x axis, we have the individuals, and along the y axis, the peak intensity. The
plot shows the peaks for three copy number estimations: 0, 1, and 2 (in black, red, and blue).
The densities are plotted along the vertical axis. The intensities of the peak in the following
screenshot show the different densities for the different estimated copy numbers:

The CNVassoc function uses a latent class model to perform an association analysis
between a CNV and the phenotype. It treats the phenotype as a binary variable. While using
the function, the value for the family argument should be based on the distribution of the
response variable. Finally, the CNVtest function computes the global significance p-value for
the association.

Chapter 6

185

There's more...
Note that illumina or affymetrix data, where log2 ratios are available instead of peak
intensities, can be analyzed in the same way that we illustrated in this section. As stated
earlier, the cnvassoc function uses a latent class for test association. This latent class
incorporates uncertainties that model the degree of misclassification of the copy number
status. More information about the latent class is available in the Accounting for uncertainty
when assessing association between copy number and disease: a latent class model article
by Gonalez and others at http://www.biomedcentral.com/1471-2105/10/172.

The multiCNVassoc function can be used to test multiple CNVs. To learn more about the
function, type in ?multiCNVassoc in the R console. The vignette package offers some
more information on the function (http://cran.fhcrc.org/web/packages/CNVassoc/
vignettes/CNVassoc_vignette.pdf).

To perform a genome-wide CNV analysis, the patchwork package can be useful. It can be
used to determine the copy number of homologous sequences throughout the genome and
is handy for aneuploidy samples with moderate coverage. For further details, refer to the
Patchwork: allele-specific copy number analysis of whole-genome sequenced tumor tissue
article by Mayrhofer and others (http://genomebiology.com/content/14/3/R24).

Visualizations in GWAS studies
In order to present the results obtained from the GWAS analysis, we can perform several
intuitive, rational, and appealing visualizations. The most commonly used ones include Q-Q
plots, the Manhattan plot, regional association plots, and so on. This recipe presents the
methods to generate some of these plots. It is extremely helpful if you're looking to publish
your findings as an article or a talk.

Getting ready
We need results to create plots, and for this recipe, we will use our existing results, simulated
results, and some ready-made results available within R packages.

How to do it…
To create some interesting visualization for your GWAS results, perform the following steps:

1.	 Start with a Q-Q plot. To do this, first load the GWASTools library as follows:
> library(GWASTools)

http://www.biomedcentral.com/1471-2105/10/172
http://cran.fhcrc.org/web/packages/CNVassoc/vignettes/CNVassoc_vignette.pdf
http://cran.fhcrc.org/web/packages/CNVassoc/vignettes/CNVassoc_vignette.pdf
http://genomebiology.com/content/14/3/R24

Analyzing GWAS Data

186

2.	 As input, take the whole genome association results from the previous recipe on SNP
data. To refresh the memory, recompute the association as follows:
> myres <- WGassociation(protein, data=mySNP, model="all")

3.	 Then, extract the p-values for the dominant model of inheritance from the results
as follows:
> pvals <- dominant(myres)

4.	 Then, use the following qqPlot function with these p-values as input to generate
a Q-Q plot:
> qqPlot(pvals)

5.	 The next plot will be a Manhattan plot. Start with the simulated p-value data of 1000
SNPs by typing the following command:
> n <- 1000

> pvals <- sample(-log10((1:n)/n), n, replace=TRUE)

6.	 Then, assign these p-values to random chromosomes as follows:
> chromosome <- c(rep(1,100), rep(2,150), rep(3, 80),rep(4,
90), rep(5,100), rep(6,60), rep(7, 70), rep(8, 70), rep(9,70),
rep(10,50),rep("X",110), rep("Y",50))

7.	 To create the plot, call the manhattanPlot function from the GWASTools library
as follows:
> manhattanPlot(pvals, chromosome)

8.	 You can create a similar plot with the real results. Here, use the results from your
HapMap data. Start with the extraction of the p-value for the dominant inheritance
model from the whole genome SNP association analysis results, and take the
negatives of the log values to the base 10, as follows:
> pvals=dominant(myHapMapres)

> pvals=-log10(pvals)

9.	 Now, use the HapMap position data to get information about the chromosomal
location of the SNPs as follows:
> chromosome <- HapMap.SNPs.pos$chromosome

10.	 As earlier, run the manhattanPlot function with these p-values and chromosome
information as follows:
> manhattanPlot(pvals, chromosome, signif=1e-5)

Chapter 6

187

11.	 The next plot is the regional association plot. To do this, get the gap package as well
as the CDKN data as follows:
> install.packages("gap")

> library(gap)

> data(CDKN)

12.	 The gap library loads the CDKN data that has three subsets. To look at the data,
use the head function on them as follows:
> head(CDKNlocus)

The following screenshot shows the contents of the CDKN data:

13.	 The CDKNlocus object provides all of the information to create the plot. The asplot
function uses the locus, map, and gene information from these data sets to create a
regional association plot as follows:
> asplot(CDKNlocus, CDKNmap, CDKNgenes, best.pval=5.4e-8,
sf=c(3,6))

Extract similar information for the data of your interest from the analysis we did so
far. For the genetic maps, use the data at the HapMap page (http://www.hapmap.
org/downloads/recombination/2006-10_rel21_phaseI+II/rates/).

http://www.hapmap.org/downloads/recombination/2006-10_rel21_phaseI+II/rates/
http://www.hapmap.org/downloads/recombination/2006-10_rel21_phaseI+II/rates/

Analyzing GWAS Data

188

14.	 You can create a regional plot using the postgwas library. Start with loading the
library as follows:
> install.packages(c("postgwas", "taRifx")) # please install from
source as explained in Chapter 1, Starting Bioinformatics with R,
if incompatible with your R version

> library(postgwas) # please check the availability of the package
with your R version

15.	 Create a data.frame object for the SNP of your interest, as follows:
> snps <- data.frame(SNP=c("rs4648633","rs6659552"))

16.	 Now, create the gwas data.frame object that consists of the chromosome, SNP,
position, and p-values from the HapMap data as follows:
> gwasdata <- data.frame(CHR= HapMap.SNPs.pos$chromosome,SNP=colna
mes(HapMap)[3:ncol(HapMap)], BP=HapMap.SNPs.pos$position,P=dominan
t(myHapMapres))

17.	 Convert the chromosome name data.frame to an appropriate form for the Biomart
annotation (numbers). It uses the following taRifx library:
> library(taRifx)

> gwasdata$CHR <- as.factor(destring(as.character(gwas

data$CHR), keep="0-9.-"))

18.	 Save the data as a text file with the help of the following command:
> write.table(gwasdata, file="mygwas.txt", sep="\t", quote=FALSE)

19.	 Run the following regionalplot function using this file and the SNP of your interest
as the input argument:
> regionalplot(snps=snps, gwas.datasets="mygwas.txt")

How it works…
The first plot we created in this recipe is a Q-Q plot. The data used here comes from our
association studies in the previous recipe. The study finds association between a certain
protein and its genotype. The Q-Q plots in GWAS show the expected distribution of association
test statistics (x axis) across the million SNPs compared to the observed values (y axis).
A deviation from the diagonal X = Y refers to a consistent difference between cases and
controls across the whole genome. Thus, a Q-Q plot can be used to characterize the extent
to which the observed distribution of the test statistic follows the expected (null) distribution
in the given data.

Chapter 6

189

The following screenshot shows the Q-Q plot for the SNP data with the observed values
along the y axis and the expected values along the x axis (test statistics)—note that the
red line is X = Y:

The second plot we worked out here is a Manhattan plot. We used the results obtained on
analyzing the HapMap data in the recipe for the whole genome SNP association analysis.
As mentioned, it represents the significance of the association of SNPs with the trait or
phenotype under study. The y axis is the -log10 transformation of p-values, where the p-values
represent a measure for the strength of association. The plot is color coded by chromosome.
In our case, we created plots for simulated data, which is straightforward. Then, we extracted
results from our whole genome HapMap study and created a plot for this.

Analyzing GWAS Data

190

The following screenshot shows Manhattan plots for the HapMap data. A shown in the
following screenshot, we have the chromosome numbers on the x axis, and the y axis
represents the –log10 P-values:

The regional association plot we created in this recipe uses three different data.frames
as follows:

ff The SNP and its association details

ff The position and map details of the SNP

ff The details of the genes on the genome

Chapter 6

191

Our input data comes from a study of the CDKN regions of the ninth chromosome for
association studies originating from Diabetes Genetics Studies. The resulting plot is for a
particular locus that is based on the information about the recombination rates, linkage
disequilibria (LD) between the SNP of interest and neighboring ones, and the p-values of
single-point association tests. These plots are not very common, but they are useful at times.
The plot shows an annotation for the p-values of the SNP names and their location on the
chromosome together with the LD measurements. The asplot function accepts the locus,
genes, map, and analysis results (for statistical scores) to create the plot. Take a look at the
structure of the individual objects used as input to get details of the plotting function. In the
following screenshot, the x axis represents the location site in the ninth chromosome in terms of
kilo bases, and the y axis shows the negative logarithm of observed p-values. The recombination
rate is also along the y axis and shows the local linkage disequilibrium structure around the
associated SNP. In the following screenshot, the circles represent the SNPs and their color
depicts the r2:

The regional association plot that uses the gap package for the CDKN data

Analyzing GWAS Data

192

Now, we will discuss another type of regional association plot. This plot appears often is
GWAS-related articles. The data used as input for the plot is again acquired from our HapMap
analysis (myHapMapres) and converts into a data.frame object. This object contains
the chromosome number, the location details, the SNPs, and the corresponding p-values
(in our case, from the dominant model). The function can map more than one SNP with
the neighboring genes and association measurements. It plots the regional plot for an SNP
with a given window size (default 106). It helps in phenotypic comparison based on the
data. Besides this, it also carries the gene information and some other information. With
this function, we can include the p-value graphs of two datasets to do a comparison. We
did it here for two SNPs (the snps object). We can add more SNPs or data in our file and plot
them together as we did for these two SNPs. In the following screenshot, the x axis shows
the position or location along the chromosomes and the y axis shows the –log10 p-values:

The regional plot for the selected SNPs from the HapMap data

There's more...
A Manhattan plot is basically a scatter plot accustomed to high-dimensional data. It is
another common type of plot that one can find often in the articles published in the field of
GWAS. In this recipe, we used the GWASTools package to do this plot; however, there are
several other implementations for Manhattan plots. One can also do this simply with the
ggplot2 package. The blog page that can be of help to create such a plot using ggplot2 is
available at http://www.r-bloggers.com/annotated-manhattan-plots-and-qq-
plots-for-gwas-using-r-revisited-2/.

http://www.r-bloggers.com/annotated-manhattan-plots-and-qq-plots-for-gwas-using-r-revisited-2/
http://www.r-bloggers.com/annotated-manhattan-plots-and-qq-plots-for-gwas-using-r-revisited-2/

Chapter 6

193

The gap package was not only used to plot the regional association, but it was also used for
the data set. The package's page can be found at http://cran.r-project.org/web/
packages/gap.

The postgwas package is an R package that has several functionalities for GWA studies. It
can act as a substitute for many packages that we used in this chapter. To know more, refer to
the Postgwas: Advanced GWAS Interpretation in R article by Hiersche and others at http://
www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0071775;j
sessionid=036863964F881DFB1D94CD429095E4AF.

See also
ff The detailed and interesting description of Q-Q plots at https://www.stat.

auckland.ac.nz/~ihaka/787/lectures-quantiles.pdf, which provides
detailed information about Q-Q and derived plots in order to understand the
theoretical background in detail

ff The HapMap site at http://www.hapmap.org/downloads/
recombination/2006-10_rel21_phaseI+II/rates/

ff The report titled Genome-Wide Association Analysis Identifies Loci for
Type 2 Diabetes and Triglyceride Levels by Consortium at https://www.
sciencemag.org/content/316/5829/1331.abstract?cited-
by=yes&legid=sci;316/5829/1331 that appeared in the Science
journal, which provides details of the data set

http://cran.r-project.org/web/packages/gap
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0071775;jsessionid=036863964F881DFB1D94CD429095E4AF
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0071775;jsessionid=036863964F881DFB1D94CD429095E4AF
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0071775;jsessionid=036863964F881DFB1D94CD429095E4AF
https://www.stat.auckland.ac.nz/~ihaka/787/lectures-quantiles.pdf
https://www.stat.auckland.ac.nz/~ihaka/787/lectures-quantiles.pdf
http://www.hapmap.org/downloads/recombination/2006-10_rel21_phaseI+II/rates/
http://www.hapmap.org/downloads/recombination/2006-10_rel21_phaseI+II/rates/
https://www.sciencemag.org/content/316/5829/1331.abstract?cited-by=yes&legid=sci;316/5829/1331
https://www.sciencemag.org/content/316/5829/1331.abstract?cited-by=yes&legid=sci;316/5829/1331
https://www.sciencemag.org/content/316/5829/1331.abstract?cited-by=yes&legid=sci;316/5829/1331

7
Analyzing Mass

Spectrometry Data

This chapter will cover the following recipes:

ff Reading the MS data of the mzXML/mzML format

ff Reading the MS data of the Bruker format

ff Converting the MS data in the mzXML format to MALDIquant

ff Extracting data elements from the MS data object

ff Preprocessing MS data

ff Peak detection in MS data

ff Peak alignment with MS data

ff Peptide identification in MS data

ff Performing protein quantification analysis

ff Performing multiple groups' analysis in MS data

ff Useful visualizations for MS data analysis

Introduction
Mass spectrometry (MS) is a key analytical technology used in current proteomics to
generate large amounts of high-quality data, addressing the issues of protein identification,
annotation of secondary modifications, and determining protein abundance. The data consists
of the intensity versus the mass-to-charge ratio (popularly called m/z ratio) in the biochemical
or chemical sample, exhibiting the distribution pattern of the components in the sample.
Nevertheless, in this chapter, we will mostly deal with biochemical samples. Among the
many applications of MS, biomarker pattern discovery has aroused considerable interest.

Analyzing Mass Spectrometry Data

196

However, the challenges in the analysis of MS data range from statistical (noise handling,
normalization, and so on) to biological (peptide identification, quantification, and so on).
Therefore, the role of bioinformatics becomes fundamental for the elaboration of MS data
and for the screening of biological knowledge in the data. This chapter aims to present
solutions to some key problems in MS data analysis for proteomics studies.

The book titled Analysis of Mass Spectrometry Data in Proteomics by Mattiesen and
Jensen outlines some basic analysis concepts in MS data analysis from the point of
view of bioinformatics.

In order to work with MS data, it is extremely important to know about the data formats that
we will handle in the chapter. Over the years, different manufacturers of mass spectrometers
have developed various data formats for handling and presenting MS data. This makes it
difficult to have a uniform protocol to directly manipulate the data. To address this limitation,
several open XML-based data formats have recently been developed by the Trans-Proteomic
Pipeline at the Institute for Systems Biology and as an innovation in the public sector. These
data formats are described here.

The data format used in MS actually depends on the hardware being used to produce the
data. However, there has been a recent development in making these formats more or less
consistent to facilitate data manipulation by the diverse scientific community. The two most
widely used formats for MS data are mzXML and mzML.

The mzXML format is an XML-based file format for proteomics mass spectrometric data.
This data format has information that ranges from the hardware to processing as well as
peaks. In recent times, mzXML has emerged as a popular format because of its flexibility
and efficient handling of different data attributes. More details on the format can be found
in the article titled A common open representation of mass spectrometry data and its
application to proteomics research by Pedrioli and others. The article is available at
http://www.nature.com/nbt/journal/v22/n11/full/nbt1031.html.

The mzML format is a hybrid format of mzXML and an obsolete format named mzData. You can
find more details on the data format specifications in the mzML: A single, unifying data format
for mass spectrometer output article by Eric Deutsch at http://onlinelibrary.wiley.
com/doi/10.1002/pmic.200890049/abstract.

In our recipe, we will focus on these two data formats, which are popular in the proteomics
community, and binary files available within R packages. Nevertheless, we will have a look
at the required information to work with some other formats too.

http://www.nature.com/nbt/journal/v22/n11/full/nbt1031.html
http://onlinelibrary.wiley.com/doi/10.1002/pmic.200890049/abstract
http://onlinelibrary.wiley.com/doi/10.1002/pmic.200890049/abstract

Chapter 7

197

Reading the MS data of the mzXML/mzML
format

The data available in the MS community is usually in the form of an XML file. It contains
different fields with the allocated information. In order to start working with the MS data,
you need to import this data into the R session. This recipe presents the steps to import
XML-format-based MS data in the R workspace.

Getting ready
The recipe needs some sample data to work with. The data can be obtained from web
resources or from within R packages. Besides the data, we will also need some R packages,
which will be explained in the How to do it... section of this recipe. The example files used in
this recipe are also provided with the code files on the book's web page.

How to do it…
The following steps will explain the approach to be taken in order to import XML-based MS
data in our work session:

1.	 First, you need to get the data from https://regis-web.systemsbiology.
net/rawfiles/lcq/7MIX_STD_110802_1.mzXML via a browser.

2.	 Fetch the file directly from the Web using the wget function of Unix as follows
(no need to start R at this point; a Unix session will do):
$ wget regis-web.systemsbiology.net/rawfiles/lcq/7MIX_
STD_110802_1.mzXML

Make sure that you put this file in the directory to be used as the working directory for
your R session, or use the path to the file.

3.	 Now, you will need the readMzXmlData library in the R session for the next set
of steps; you can install the package from the CRAN repository and load it in the
R session as follows:
> install.packages("readMzXmlData", dependencies = TRUE)
> library(MALDIquant)
> library(readMzXmlData)

4.	 Now, use the mqReadMzXml function to read the downloaded mzXML file as follows
(remember that it might take a while to download the data):
> myData <- mqReadMzXml(path="7MIX_STD_110802_1.mzXML")

https://regis-web.systemsbiology.net/rawfiles/lcq/7MIX_STD_110802_1.mzXML
https://regis-web.systemsbiology.net/rawfiles/lcq/7MIX_STD_110802_1.mzXML

Analyzing Mass Spectrometry Data

198

5.	 Use the following class function to check the object type for myData, which returns
the list class:
> class(myData)

6.	 The number of elements in the list can be seen with the following function:
> length(myData)

7.	 Check whether the data has the 7161 MassSpectrum class object in the list by
looking at the summary for the myData object as follows:
> head(summary(myData))
> dim(summary(myData))
[1] 7161 3

8.	 Look at the structure of one data entry in your list by specifying the index in the list
as follows:
> str(myData[[1]])

9.	 In order to be able to read all the mzXML files in a directory, use the readMzXmlDir
function as follows:
> myData <- readMzXmlDir(mzXmlDir="path/to/Directory")

10.	 To read the mzML files, use the following mzR library that can be installed again from
the CRAN repository:
> install.packages("mzR") # in case of installation warning please
install the 0.11.0 version from source

> library(mzR)

11.	 To read the mzML file, use the openMSfile function as follows (an example file is
provided with the code files):
> myData <- openMSfile("path/to/code/files/tiny.pwiz.1.1.mzML")

How it works…
All the MS file formats discussed in this recipe share their structures with a set of metadata,
followed by a list of spectra with the masses and intensities. In addition, each spectrum has
its own set of metadata, such as the retention time and acquisition parameters. The mass
and intensities can be plotted on the x and y axes, respectively, with the plot function. The
plot shows the intensity (y axis) obtained for different masses (x axis). This gives us a clue for
the peaks in the MS data as follows, which we will talk about in the upcoming recipes:

> plot(myData[[1]], col="black")

Chapter 7

199

The following plot shows different fragments with their corresponding m/z ratios along the x
axis and the observed intensities along the y axis:

Mass versus intensity plot for a spectrum

Analyzing Mass Spectrometry Data

200

The functions explained earlier are based on the parsing of XML files. The read functions
provided read in the fields in the XML file and put with the appropriate subclasses in the
list (the object class). This can be seen in the following screenshot:

A part of the structure information for an MS object class, showing some of the fields in the data

Thus, the data not only consists of the mass-to-charge charge ratio or intensity, but also the
fields for metadata such as experiment information and instrument details.

The parsers to read the data are implemented in C/C++ to make it faster and efficient and are
accessed by R through wrapper functions.

See also
ff The CRAN page at http://cran.r-project.org/web/packages/

readMzXmlData/, which provides details on the readMzXmlData packages

ff The article titled A cross-platform toolkit for mass spectrometry and proteomics by
Chambers and others at http://www.nature.com/nbt/journal/v30/n10/
full/nbt.2377.html, which provides the theoretical background on mzR and
associated tools

ff The Bioconductor page at http://www.bioconductor.org/packages/
release/bioc/vignettes/mzR/inst/doc/mzR.pdf, which provides
details of the other functions in the mzR package

http://cran.r-project.org/web/packages/readMzXmlData/
http://cran.r-project.org/web/packages/readMzXmlData/
http://www.nature.com/nbt/journal/v30/n10/full/nbt.2377.html
http://www.nature.com/nbt/journal/v30/n10/full/nbt.2377.html
http://www.bioconductor.org/packages/release/bioc/vignettes/mzR/inst/doc/mzR.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/mzR/inst/doc/mzR.pdf

Chapter 7

201

Reading the MS data of the Bruker format
MS data is usually available as XML-based files. Nevertheless, it is possible to use data
obtained directly from the instrument. Bruker XMASS and flexAnalysis save peak lists
in a simple XML format. You can use convertors, such as CompaxxXport, to get these files
converted to the mzXML format. However, we can also read these files from within R directly.
This recipe will explain the steps to be performed.

Getting ready
This recipe will require the data in the Bruker format and the R package
readBrukerFlexData.

How to do it…
Perform the following steps for this recipe:

1.	 First, install and load the readBrukerFlexData library from the CRAN repository
as follows:
> install.packages("readBrukerFlexData")

> library(readBrukerFlexData)

2.	 Now, you need to define the directory where your datafiles are located.

3.	 Use the example file from the readBrukerFlexData package. The path to the file
can be extracted using the system.file function in R as follows:
> exampleDirectory <- system.file("Examples",
package="readBrukerFlexData")

4.	 To read all the files in the directory assigned earlier, use the following command:
> myData_Bruker <- readBrukerFlexDir(file.path(exampleDirectory))

5.	 Take a look at the data by using the generic summary function as follows:
> summary(myData_Bruker)

6.	 Take a look at the structure of the object obtained using the following str function:
> str(myData_Bruker)

Analyzing Mass Spectrometry Data

202

7.	 To plot the intensity value versus mass in MS data use the corresponding fields of
data as follows:
> plot(myData_Bruker[[1]]$spectrum$mass, myData_
Bruker[[1]]$spectrum$intensity, xlab="Mass", ylab="Intensity",
col="skyblue")

In the following screenshot, the peaks indicate higher intensities for the fragments
with the corresponding m/z ratio:

Mass versus intensity plot for the Bruker format data

Chapter 7

203

How it works…
The readBrukerFlexData function works in a similar way as the previous recipe. However,
the structure of the imported data is slightly different. We can check with the str function.
The mzXML and Bruker data has similar information but is organized differently. The Bruker
data returns an object where every element of the list has sublists, namely spectrum and
metaData, with mass and intensity being the subcomponents of the spectrum slot, whereas
the mzXML data has three slots called mass, intensity, and metaData. The following
screenshot shows the structure of the mzXML imported data:

See also
ff The CRAN page and manual at http://cran.r-project.org/web/packages/

readBrukerFlexData/readBrukerFlexData.pdf, which provides more
information on the readBrukerFlexData package

Converting the MS data in the mzXML format
to MALDIquant

Before we start this recipe, it is important to introduce the MALDIquant R package.
MALDIquant is an R package that carries many functions for a basic analysis of MS data.
We will use this package for some of our upcoming recipes. Therefore, it is essential that
you go through the approaches that can be used to get data in an appropriate format to be
processed by the package.

http://cran.r-project.org/web/packages/readBrukerFlexData/readBrukerFlexData.pdf
http://cran.r-project.org/web/packages/readBrukerFlexData/readBrukerFlexData.pdf

Analyzing Mass Spectrometry Data

204

Getting ready
We will need two packages for this recipe, namely MALDIquant and its auxiliary package,
MALDIquantForeign. Both packages are available in the CRAN repository.

How to do it…
To get data from a different format to be usable in the MALDIquant format, perform the
following steps:

1.	 First, install the two packages mentioned earlier, as follows:
> install.packages("MALDIquantForeign")

2.	 After installing the packages, load them in the R session as follows:
> library(MALDIquantForeign)

3.	 Start with the following import function to import a file in the desired directory in the
R workspace to be used by MALDIquant:
> myData_MALDI <- import("path/to/dir", type="auto")# We can
use"." in case the file is already in our working directory

4.	 Now, take a look at the class of the imported object:
> class(myData.MALDI [[1]])

[1] "MassSpectrum"

> attr(,"package")

[1] "MALDIquant"

Looking at the structure of one of the components (spectra) of the imported data
reveals that it is very similar to the mzXML object we created in the Reading MS
data of the mzXML/mzML format recipe:

> str(myData.MALDI [[1]])

How it works…
The MALDIquantForeign package is an auxiliary package for the MALDIquant package.
This package reads and writes different file formats of MS data into/from the MALDIquant
objects. It supports both the import and export functions. In this recipe, we focused on the
import function. The import function parses the input files and writes the contents to the
required data format.

Chapter 7

205

See also
ff The CRAN page for the MALDIquantForeign package at http://cran.r-

project.org/web/packages/MALDIquantForeign/MALDIquantForeign.pdf

ff The developer's page at http://strimmerlab.org/software/maldiquant/

Extracting data elements from the MS data
object

In the recipes discussed so far, we focused on different data formats in MS. As we have seen,
MS data has different components or slots. Each slot contains a specific type of information.
This recipe will present the methods that can be used to fetch specific content from the data.

Getting ready
In this recipe, we will need a dataset and the MALDIquant package, which have already
been introduced.

How to do it…
The following steps deal with the extraction of interesting components from MS data in the
MALDIquant format:

1.	 Start by loading the MALDIquant package in the R session as follows:
> library(MALDIquant)

2.	 Now, load the data with the following function. Use the data from the MALDIquant
package that can be loaded with the following command:
> data("fiedler2009subset", package="MALDIquant")

3.	 Take a look at the data by typing the following command:
> summary(fiedler2009subset)

4.	 For further analysis, we will use only the first element from the list of 16 elements for
demonstration, as follows:
> myData <- fiedler2009subset[[1]]

http://cran.r-project.org/web/packages/MALDIquantForeign/MALDIquantForeign.pdf
http://cran.r-project.org/web/packages/MALDIquantForeign/MALDIquantForeign.pdf

Analyzing Mass Spectrometry Data

206

The data is an instance of the MassSpectrum class, as shown in the
following example:

> class(myData)

[1] "MassSpectrum"

> attr(,"package")

[1] "MALDIquant"

5.	 You need to know the structure of the data to extract useful elements from it.
Take a look at the detailed structure by typing the following command:
> str(myData)

6.	 To extract the m/z ratio, extract the mass component as follows:
> m_z <- mass(myData)

Alternatively, you can also extract elements via a component named index
as follows:

> m_z <- myData@mass

7.	 In a similar way, extract the intensity component as follows:
> myIntensity <- intensity(myData)

8.	 Again, use the name indexing to get the same result by typing the following command:
> myIntensity <- myData@intensity

9.	 Take a look at the experiment and the sample details for the data as follows:
> metaData(myData)

The plots we made in the previous recipes for mass and intensity can be made simply
by using the individual components with the following command:

> plot(m_z, myIntensity, type="l", col="black")

How it works…
The recipe explained here is based on the structure of the data as mentioned earlier.
The input data is from an experiment on eight subjects (four healthy control subjects and
four diseased subjects) with two replicates of each. The aim of collecting the data is to
study the peptide associated with pancreatic cancer. The recipe exploits the structure of the
MassSpectrum data. Looking at the structure of the data (as seen in the following example),
allows us to intuitively extract the elements of interest from the data:

> str(myData)

Formal class 'MassSpectrum' [package "MALDIquant"] with 3 slots

Chapter 7

207

 ..@ mass : num [1:42388] 1000 1000 1000 1000 1000 ...

 ..@ intensity: int [1:42388] 3149 3134 3127 3131 3170 3162 3162 3152
3174 3137 ...

 ..@ metaData :List of 42

 $ byteOrder : chr "little"

 $ number : num 42388

 $ timeDelay : num 19886

The recipes shown here can be used to tabulate the intensities in each sample as a CSV file.
The table thus created consists of the mass data as rows and intensities as columns.

There's more…
The MALDI in the MALDIquant package stands for Matrix-Assisted Laser Desorption/
Ionization technology producing MS data. It allows you to analyze large organic molecules
such as proteins.

See also
ff The Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in

clinical chemistry article by Marvin and others at http://www.sciencedirect.
com/science/article/pii/S0009898103003863, which provides more
information about the MALDI technology

ff The software paper on MALDIquant titled MALDIquant: a versatile R package
for the analysis of mass spectrometry data by Gibb and Strimmer at http://
bioinformatics.oxfordjournals.org/content/28/17/2270.long

ff The CRAN page at http://cran.r-project.org/package=MALDIquant,
which provides details of the functionalities in the MALDIquant package

Preprocessing MS data
Every time an ionized protein or peptide hits the detector, the instrument registers it. This
ionized fragment has m/z, and the detectors measure the intensity of this fragment, which is
called a mass spectrum. Mass spectra have several imperfections, which can complicate their
interpretation. Detecting the peaks in these spectra is challenging because some peptides
with low abundance may be buried by the noise, causing a high false positive rate of peak
detection. The chemical, ionization, and electronic noise often results in a decreasing curve
in the background of MS data, which is referred to as a baseline. The existence of a baseline
produces a strong bias in peak detection. Therefore, it is desirable to normalize, smoothen,
and remove the baseline before peak detection. These are some common issues that a
data analyst has to deal with while working with MS data. We will deal with some of these
preprocessing steps in this recipe with our focus on the MALDI technique.

http://www.sciencedirect.com/science/article/pii/S0009898103003863
http://www.sciencedirect.com/science/article/pii/S0009898103003863
http://bioinformatics.oxfordjournals.org/content/28/17/2270.long
http://bioinformatics.oxfordjournals.org/content/28/17/2270.long

Analyzing Mass Spectrometry Data

208

Getting ready
For this recipe, we will use the MALDIquant library and the data within this package.

How to do it…
The following preprocessing steps entail the preprocessing of MS data:

1.	 First, load the MALDIquant package in the R session as follows:
> library(MALDIquant)

2.	 Now, load the data from the MALDIquant package, as we did earlier, by typing the
following command:
> data("fiedler2009subset", package="MALDIquant")

3.	 Select one of these 17 spectra data for your demonstration as follows:
> myData <- fiedler2009subset[[1]]

4.	 Start with the transformation of the intensity in the data. The transformIntensity
function can be used for this in the following manner:
> spec <- transformIntensity(myData, method="sqrt")

Other possible options for the method argument in the function are log, log2,
and log10. Use this transformed intensity as the input for the next steps.

5.	 Next, smoothen the intensity using the smoothIntensity function as follows:
> spec <- smoothIntensity(spec, method="MovingAverage")

The function can use different smoothing functions including SavitzkyGolay and
MovingAverage.

6.	 Now, perform the baseline correction. The removeBaseline function can be used
for this purpose as follows:
> spec <- removeBaseline(spec)

7.	 Finally, normalize the data with the following calibrateIntensity function:
> spec <- calibrateIntensity(spec, method="TIC")

8.	 Estimate the noise of MS data as follows:
> n <- estimateNoise(spec)

Chapter 7

209

How it works…
Transforming the intensity improves the resolution of the data. This means that the data
gets more distinguishable for classifiers and other methods. Several kinds of transformation
are possible, as we have seen, including square root transformation and log transformation
(to the base 2, 10, and natural logarithm). A square root transformation avoids skewness in
the distribution, whereas a log transformation may result in a slightly skewed distribution;
however, a significant error is rare. Therefore, the choice of transformation depends on
the user. If the log transformation gives unexpectedly high skewed results, the square root
transformation should be tried.

The MS data can have noises due to the experiment's design or other factors. Smoothing
reduces the noise level in the whole spectrum. It can use various methods as mentioned in
the How to do it... section of this recipe. The MovingAverage method runs a simple two-side
moving average. The SavitzkyGolay smoothing uses a Savitzky-Golay filter based on partial
least squares.

Baseline correction is another noise reduction method for MS data. It uses one of the SNIP,
TopHat, ConvexHull, and median methods to do so. Take a look at the list of references
provided in the See also section of this recipe to learn about the individual methods.

Normalization of the data is performed by calibration via the calibrateIntensity
function. The implemented methods for normalization include TIC, PQN, and median.
The TIC method sets the Total Ion Current (TIC) of the spectrum to one for normalization,
whereas the median method sets the median of the intensities to one. The PQN method
is a bit complicated. It computes the TIC calibration for the data and also computes the
median spectrum. Then, the quotients of all the intensities are computed with the median
reference, and the median for this spectrum is computed. Finally, the intensities are divided
by the median obtained in the last step to get the normalized data. We can plot the objects
using the plot(object) function, where object is the spectrum computed at every
step. A more detailed reference for the PQN approach is available in the Probabilistic
Quotient Normalization as Robust Method to Account for Dilution of Complex Biological
Mixtures. Application in 1H NMR Metabonomics article by Dieterle and others at
http://pubs.acs.org/doi/abs/10.1021/ac051632c.

http://pubs.acs.org/doi/abs/10.1021/ac051632c

Analyzing Mass Spectrometry Data

210

The following screenshot shows the raw values, square root transformation, baseline
correction, and the calibrated intensity with noise in red (starting from top to bottom):

m/z versus intensity plots at different stages of preprocessing

See also
ff The Mass Spectrometry for Microbial Proteomics book by Shah and Gharbia to learn

more on the analysis and preprocessing of MS data

Chapter 7

211

ff The PRE-PROCESSING MASS SPECTROMETRY DATA article by Coombes
(http://www.unical.it/portale/strutture/dipartimenti/deis/home/
tagarelli/research/CBM07.pdf), which is another interesting article on the
preprocessing of MS data

ff The following two articles to learn about the Savitzky-Golay filter:

�� Smoothing and Differentiation of Data by Simplified Least Squares
Procedures by Savitzky and Golay (http://pubs.acs.org/doi/
abs/10.1021/ac60214a047)

�� Application hints for Savitzky-Golay digital smoothing filters by Ziegler and
others (http://pubs.acs.org/doi/abs/10.1021/ac00234a011)

Peak detection in MS data
Usually, peptide signals appear as local maxima called peaks in MS spectra. These high,
sharp peaks contain information about molecules with high concentrations. A peak detection
procedure calculates the so-called line spectrum for a raw spectrum, which is a list of
the positions and intensities of the peaks. The high sharp peaks of this spectrum have
information about molecules with high concentrations. A peak detection procedure calculates
a list of the positions and intensities of the peaks. Peak detection is usually a starting and
crucial step of MS data analysis.

As we have already seen the preprocessing steps in the previous recipe's functions, it gets
easier for us to go through the peak detection recipe.

Getting ready
We will continue using the MALDIquant package for peak detection. In this recipe, we will use
the data from the same package for demonstration purposes.

How to do it…
To identify peaks in MS data, perform the following steps:

1.	 Start by loading the MALDIquant library as follows:
> library(MALDIquant)

2.	 Now, load the data as follows:
> data("fiedler2009subset", package="MALDIquant")

> myData <- fiedler2009subset[[1]]

http://www.unical.it/portale/strutture/dipartimenti/deis/home/tagarelli/research/CBM07.pdf
http://www.unical.it/portale/strutture/dipartimenti/deis/home/tagarelli/research/CBM07.pdf
http://pubs.acs.org/doi/abs/10.1021/ac60214a047
http://pubs.acs.org/doi/abs/10.1021/ac60214a047
http://pubs.acs.org/doi/abs/10.1021/ac00234a011

Analyzing Mass Spectrometry Data

212

3.	 You need to preprocess the data before peak detection. Start by transforming the
values of the intensities to their square roots by typing the following command:
> spec <- transformIntensity(myData, method="sqrt")

4.	 Next, smoothen these transformed intensities as follows:
> spec <- smoothIntensity(spec, method="SavitzkyGolay")

5.	 To avoid bias during peak detection, perform the baseline correction as follows:
> spec <- removeBaseline(spec)

6.	 Finally, normalize the data with the following command:
> spec <- calibrateIntensity(spec, method= "TIC")

7.	 Now, call the detectPeaks function to compute the peaks in the normalized data
as follows:
> peak <- detectPeaks(spec, method="MAD", SNR=2)

8.	 Take a look at the structure of the object by typing the following command, and you
will see a structure similar to the structure of the original data:
> str(peak)

9.	 To plot the peak points, first plot the intensity line graph as follows:
> plot(spec)

10.	 To this plot, add the peak points with the following points function:
> points(peak, col="red")

How it works…
The first few steps of the recipe show the preprocessing of data as explained in the previous
recipe. The detectPeaks method looks for peaks in the MS data (represented by a
MassSpectrum object). A peak is a local maximum above a user-defined noise threshold.
The function estimates the noise in the data using the method argument of the function. It
accepts two values (methods), namely MAD and SuperSmoother. Another argument is SNR
which refers to the signal-to-noise ratio in the data. This argument needs a numeric value
(the default is 2). The program computes the signal noise first. In order to identify a local
maximum as a peak, the value should be higher. The following condition is required by
the function:

peak > noise SNR

All the values where the preceding condition is met are detected as peaks.

Chapter 7

213

Calculating the median absolute deviation (MAD) estimates the noise in the data. For the
SuperSmoother method, it uses Friedman's super smoother approach to compute noise.
We can see the peak on the mass versus intensity plot in the following figure:

Identified peaks (red circles) in m/z versus intensity plots

Analyzing Mass Spectrometry Data

214

See also
ff The Comparison of public peak detection algorithms for MALDI mass spectrometry

data analysis article by Yang and others at http://www.biomedcentral.
com/1471-2105/10/4, which provides the theoretical background on
various peak detection algorithms

ff The article titled A VARIABLE SPAN SMOOTHER by Friedman at http://www.slac.
stanford.edu/cgi-wrap/getdoc/slac-pub-3477.pdf, which provides
the conceptual details of the super smoother approach

Peak alignment with MS data
For the comparison of peaks across different spectra, it is essential to conduct alignment.
Furthermore, instrument resolution or instrument calibration may affect the quality of the
datasets because of the variance of the mass/charge ratio at any point. Therefore, the
alignment of spectra within datasets is also required. This recipe will deal with the
alignment of peaks in MS data.

Getting ready
We will continue using the MALDIquant package for peak detection. In this recipe, we will use
the data from the same package for demonstration purposes.

How to do it…
The following steps will take us through the recipe for peak alignment in MS data:

1.	 Start by loading the MALDIquant library as follows:
> library(MALDIquant)

2.	 Now, load the data as follows:
> data("fiedler2009subset", package="MALDIquant")

> myData <- fiedler2009subset

3.	 You need to preprocess the data before peak detection. Start by transforming the
values of the intensities to their square roots as follows:
> spec <- transformIntensity(myData, method="sqrt")

4.	 These transformed intensities are then smoothed as follows:
> spec <- smoothIntensity(spec, method="SavitzkyGolay")

http://www.biomedcentral.com/1471-2105/10/4
http://www.biomedcentral.com/1471-2105/10/4
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-3477.pdf
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-3477.pdf

Chapter 7

215

5.	 To avoid bias during peak detection, perform the baseline correction as follows:
> spec <- removeBaseline(spec)

6.	 Normalize the data with the following command:
> spec <- calibrateIntensity(spec, method="TIC")

7.	 Finally, use the alignSpectra function to align the processed and normalized
peaks as follows:
> spectra <- alignSpectra(spec)

8.	 Now, check the original and returned objects, which are a list of spectra, and plot the
elements as follows:
> summary(myData)

> summary(spectra)

> plot(myData[[1]])

> plot(spectra[[1]])

How it works…
In order to match peaks that have the same mass values, MALDIquant uses a statistical
regression-based approach. First, landmark peaks are identified, which occur in most spectra.
Subsequently, a non-linear warping function is computed for each spectrum by fitting a local
regression to the matched reference peaks. This also allows you to merge the aligned spectra
from technical replicates.

There's more...
The alignment method implemented in the MALDIquant package is a hybrid of two
popular methods, DISCO and the self-calibrated warping. To know the conceptual details
of the DISCO approach, refer to the DISCO: Distance and Spectrum Correlation Optimization
Alignment for Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry-Based
Metabolomics article by Wang and others (http://pubs.acs.org/doi/abs/10.1021/
ac100064b).

The second method is explained in detail in the Self-Calibrated Warping for Mass Spectra
Alignment article by Peter He and others (http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3085421/).

http://pubs.acs.org/doi/abs/10.1021/ac100064b
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085421/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085421/

Analyzing Mass Spectrometry Data

216

Peptide identification in MS data
Now, we move onto the biological inference from the MS data. Identifying peptides from
MS data is one of the popular tasks in MS data analysis. Nowadays, protein identification is
regularly performed by tandem mass spectrometry (MS-MS). Because of the difficulty faced
in measuring intact proteins using MS-MS, a protein is typically digested into peptides with
enzymes and the MS-MS spectrum of each peptide is measured. Here, we present a recipe
to identify peptides in MS data.

Getting ready
In this recipe, we will introduce a new R package named protViz. The MS data we use in
this recipe is artificially created from the previous data. The peptide we attempt to detect is
the human serum albumin (ALB).

How to do it…
The following steps depict how to retrieve peptide data from SwissProt:

1.	 Start by getting the suitable peptide data from SwissProt-ExPasy for the human
albumin protein.

2.	 Visit web.expasy.org/peptide_mass.

3.	 Enter the UniProt KB identifier for albumin (ALBU_HUMAN) in the query box and click
on the Perform button (leave the other parameter settings at default).

What we get is the result of the digestion of the protein ALBU_HUMAN by the trypsin
enzyme. The following screenshot shows the ExPASy web page:

web.expasy.org/peptide_mass

Chapter 7

217

4.	 You will need the protViz package from CRAN for this recipe. Install and load the
package in the R session as follows:
> install.packages("protViz" dependencies=TRUE)

> library(protViz)

5.	 Now, take only the first few peptides from this result for further analysis.

6.	 Put this in your workspace as a vector of characters as follows:
> myPeptide <- "SHCIAEVENDEMPADLPSLAADFVESK"

7.	 Now, create the spectrum data artificially. For your convenience, use one of the
spectrum data used so far that can be loaded with the following function:
> myData <- fiedler2009subset[[1]]

Analyzing Mass Spectrometry Data

218

8.	 You need to preprocess the data before peak detection. Start by transforming the
values of the intensities to their square roots as follows:
> spec = transformIntensity(myData, method="sqrt")

9.	 These transformed intensities are then smoothed as follows:
> spec = smoothIntensity(spec, method="SavitzkyGolay")

10.	 To avoid bias during peak detection, perform the baseline correction as follows:
> spec = removeBaseline(spec)

11.	 Finally, normalize the data with the following commands:
> spec = calibrateIntensity(spec, method="TIC")

12.	 Create the artificial spectra data object in the form of a list as follows:
> mySpec <- list(title="artificial", charge=2, mZ=spec@mass,
intensity=spec@intensity)

13.	 Once you have the data to be compared ready, get the number of characters in your
peptide using the nchar function as follows:
> n <- nchar(myPeptide)

14.	 Now, compute the fragment ions of the peptide sequence by typing the
following command:
> fi <- fragmentIons(myPeptide)

15.	 Extract the ions of your choice (here, the b and y ions) as follows:
> by_mZ <- c(fi[[1]]$b, fi[[1]]$y)

16.	 Now create a label vector for the ions by typing the following command:
> by_label <- c(paste("b", 1:n, sep=""),paste("y", 1:n, sep=""))

17.	 Then, find the index of the nearest neighbors of the ion data in the spectra as follows:
> idx <- findNN(by_mZ, mySpec$mZ)

18.	 Finally, compute the error in the m/z matches, which was calculated in the previous
steps, as follows:
> mz_error <- abs(mySpec$mZ[idx]-by_mZ)

19.	 To plot this error, use the generic plot functions as follows:
> plot(mz_error[mz_error.idx<-order(mz_error)], main="Error Plot",
pch='o', cex=0.5, log='y')

> abline(h=0.6, col="grey")

Chapter 7

219

How it works…
A peptide sequence is detected in the spectra via fragment ion matching. A hit is considered
if this error is lower than a threshold called fragmentIonError. In order to compute the
error, we use the ions in the peptide sequence using the fragmentIons function. We use
m/z computed for these ions to be mapped onto the spectra with the nearest match using
the findNN function. We can choose the ions that should be mapped onto the spectra data
(we used the b and y ions here). If the difference between the computed mass and measured
mass (in MS data) is lower than the threshold, it is termed as a hit. A higher hit rate and
low error rate increases the confidence in the presence of the peptide under investigation.
We can see the high error rate in our plot here.

The plot shows the error of assignment between the MS data and the singly-charged fragment
ions of the myPeptide object. The more the theoretical ions match the actually measured
ion series, the more likely it is that the measured spectrum is indeed from the inferred
peptide, and thus, the protein is identified. The following screenshot shows an error plot
for peptide detection:

Analyzing Mass Spectrometry Data

220

There's more…
The psm function is a generalized function to compute the error. Nevertheless, it is advisable
to use the recipe described here in order to compute the match between the spectrum and
the peptide. This is because it provides higher resolution flexibility and resolution. The psm
function can be used in the following way:

> match <- psm(myPeptide, mySpec)

We can compare the two plots, and the resolution in the analysis is evident. The following
screenshot shows an error plot obtained using the psm function for the fiedler2009subset
data (first element):

Chapter 7

221

The ion types in the peptide fragment follow a nomenclature system that is referred to as
b, y, c, and z. To find out more about this nomenclature, refer to the Proposal for a common
nomenclature for sequence ions in mass spectra of peptides article by Roepstorff
and Fohlman.

See also
ff The Protein Sequencing and Identification Using Tandem Mass Spectrometry article

by Kinter and Nicholas, which gives more information on the identification of peptides
in MS data

ff The CRAN page http://cran.r-project.org/web/packages/protViz/
index.html, which provides more information on the protViz package and
also has links to the user manual and the vignette files

Performing protein quantification analysis
So far, we spoke in terms of the qualitative use of MS data. However, proteomic analysis has
moved from the qualitative to the quantitative approach, and the MS technique has played a
key role in this move. This recipe will focus on the quantification aspects of MS data analysis.

Getting ready
We will continue to use the protViz library for this recipe. The inbuilt data within this
package will serve as the demo input for us.

How to do it…
To perform the MS-data-based quantification, complete the following steps:

1.	 Start by loading the protViz library in the R session as follows:
> library(protViz)

2.	 Then, load the data by typing the following command:
> data(pgLFQfeature)

3.	 Take a look at the structure of the pgLFQfeature object to understand its features
and contents by typing the following command:
> str(pgLFQfeature)

You can see that the data contains abundant m/z values and protein information.

http://cran.r-project.org/web/packages/protViz/index.html
http://cran.r-project.org/web/packages/protViz/index.html
http://cran.r-project.org/web/packages/protViz/index.html

Analyzing Mass Spectrometry Data

222

4.	 To compute the volume of each protein associated with the features in the data,
run the pgLFQtNpq function as follows:
myAbundance <- pgLFQtNpq(QuantitativeValue=pgLFQfeature$"Normaliz
ed abundance", peptide=pgLFQfeature$peptideInfo$Sequence, protein=
pgLFQfeature$peptideInfo$Protein,N=2, plot=FALSE)

The returned object, myAbundance, is a matrix that gives the details of the abundant
proteins in every sample, as follows:
> class(myAbundance)

> head(myAbundance)

The following screenshot shows the first six rows and eight columns from the head for
the myAbundance object:

5.	 Create a boxplot for the abundances as follows (for the first 10 proteins only):
> boxplot(t(myAbundance)[1:10,1:10], xlab="", ylab="value", las=2)

How it works…
The data contains the digested proteins from human HeLa cells infected with Shigella
bacteria grown during a certain period of time. It is structured in such a way that six biological
replicates from four conditions (Not_infected, Infected_1hr, Infected_2hr, and Infected_3hr)
are measured; thus, we have 24 samples in total. In this recipe, we used only the second
sample for demonstration. The following screenshot shows the boxplot with the abundance
protein (y axis) for only the first 10 peptides along the x axis for better visualization:

Chapter 7

223

The abundance analysis plots

The function uses a TopN strategy, which uses only the top n intense features to calculate the
protein volume. This approach should reveal a quantitative protein value, which should make
the protein itself comparable within one condition. This allows you to estimate the protein
stoichiometry and simplifies the modeling and calculations with copy numbers per cell. The
Boolean argument plot creates a matrix plot for the proteins when set to TRUE together with
the matrix computation.

Analyzing Mass Spectrometry Data

224

See also
ff The Implementation and evaluation of relative and absolute quantification in shotgun

proteomics with label-free methods article by Grossman and others (http://www.
sciencedirect.com/science/article/pii/S1874391910001703), which
provides information about the datasets used in this recipe and also explains the
TopN strategy to detect protein abundance

Performing multiple groups' analysis in
MS data

Another important analysis for MS (or proteomics) data from a biological point of view is the
comparison between two groups. The groups can be samples under two different conditions
such as treatment and control. The comparison will aim to find whether certain proteins or
molecules have significantly different abundance in one of the groups. This recipe will entail
the approach to deal with such cases.

Getting ready
We do not need any specific packages for the analysis, but for the data, we will use the
Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) data from protViz.

How to do it…
To perform the analysis, carry out the following steps:

1.	 We start by loading the protViz library to get the data as follows:
> library(protViz)

2.	 Now, load the iTRAQ data that you will use for the analysis as follows:
> data(iTRAQ)

3.	 Take a look at the data as follows:
> head(iTRAQ)

4.	 To look at the contents of the data (11 columns), check the columns by typing the
following command (note that columns 3 to 10 have the data values and columns 1,
2, and 11 have protein information):
> colnames(iTRAQ)

http://www.sciencedirect.com/science/article/pii/S1874391910001703
http://www.sciencedirect.com/science/article/pii/S1874391910001703

Chapter 7

225

5.	 The data has two groups under different conditions. Create empty frames for these
two conditions as follows:
> condition_1 <- numeric()

> condition_2 <- numeric()

6.	 Columns 3 to 6 in the data belong to one group, and 7 to 10 belong to the other
group. Fill the two frames created in the preceding step with values from the
corresponding columns as follows:
for (i in c(3:6)){

condition_1 = cbind(condition_1,

asinh(tapply(iTRAQ[,i], paste(iTRAQ$prot), sum, na.rm=TRUE)))

}

for (i in 7:10){

condition_2 = cbind(condition_2,

asinh(tapply(iTRAQ[,i], paste(iTRAQ$prot), sum, na.rm=TRUE)))

}

Now, we have the data for five proteins for two groups with four samples in
each group.

7.	 Now, in order to check the significance of the difference in the two groups, perform a
t-test. For this, first create an empty vector where you will store the test score for each
test as follows:
> pv <- c()

8.	 Now, compute the t-test for each protein and append the p-value to the vector created
in the last step as follows:
for(i in 1:nrow(condition_2)){

pv = c(pv, t.test(as.numeric(condition_1[i,]),
as.numeric(condition_2[i,]))$p.value)

}

The p-values are the test scores that define whether the difference in abundance
of the peptides between the two groups is significant or not. Conventionally, use a
p-value cut-off of 0.05. You can see two proteins, O95445 and P02652, showing a
significant difference with the p-values ~0.032 and 0.041. You can go for a multiple
testing correction if required.

Analyzing Mass Spectrometry Data

226

How it works…
The iTRAQ data used in this recipe comes from two groups, which are disease and control, for
Rheumatoid arthritis. The data has the peptides for five identified proteins. First, we compute
the measurement for every protein by summing the corresponding peptides in each sample.
This yields our two data frames, namely condition_1 and condition_2. This is followed
by the computation of the t-test scores. The test returns the p-value for the difference in
measurement of every protein under two different conditions. If the returned p-value for
a protein is less than 0.05, we accept the difference in measurement to be significant.

We can create a plot to show this. Here, we use the negative of the logarithm of the p-value
for better visualization. The two proteins are the Apolipoproteins (check the UniProt IDs at the
UniProt site, http://www.uniprot.org).

> names(pv) <- levels(iTRAQ$prot)
> plot(x = factor(names(pv)), y = -log10(pv), xlab = "Proteins",ylab ="-
log P value",)
> abline(h = -log10(0.05), col = "red")

In the following screenshot, the red line indicates the p-value threshold of 0.05, and the x axis
indicates the proteins (UniProt IDs):

Negative of the log p-values for the two groups of proteomic data analysis

http://www.uniprot.org

Chapter 7

227

See also
ff The Discovery of serum proteomic biomarkers for prediction of response to infliximab

(a monoclonal anti-TNF antibody) treatment in rheumatoid arthritis: An exploratory
analysis article by Ortea and others at http://www.sciencedirect.com/
science/article/pii/S1874391912006550, which provides more
information about the dataset

Useful visualizations for MS data analysis
In this recipe, we will try out some interesting visualizations for MS data. The visualizations
we will look at include peak labeling visualization, multiple spectra plotting, and fragment
ion visualization.

Getting ready
We will use the same data and libraries that we have already used in our previous recipes.

How to do it…
To create some useful visualizations for MS or proteomic data analysis, perform the
following steps:

1.	 First, start by labeling the peaks in your MS datasets. Here, you will label the top
10 spectra in your plot with their masses.

2.	 Load the MALDIquant library and the fiedler2009subset data as follows:
> library("MALDIquant")

> data("fiedler2009subset", package = "MALDIquant")

3.	 Use only the first dataset from the entire set for demonstration purposes, as shown
in the following example:
> spec <- fiedler2009subset[[1]]

4.	 Then, do the preprocessing of the data as described in the corresponding recipe by
typing the following commands:
> spec <- transformIntensity(spec, method = "sqrt")

> spec <- smoothIntensity(spec, method = "MovingAverage")

> spec <- removeBaseline(spec)

5.	 Now, plot the spectra as follows:
> plot(spec)

http://www.sciencedirect.com/science/article/pii/S1874391912006550
http://www.sciencedirect.com/science/article/pii/S1874391912006550

Analyzing Mass Spectrometry Data

228

6.	 Then, run the peak detection in the spectra as follows:
> p <- detectPeaks(spec)

7.	 Add these peaks as points in the plot by typing the following command:
> points(p)

8.	 As you need to label the top 10 spectra in this plot, you first need to identify them by
sorting them as follows:
> top10 <- intensity(p) %in% sort(intensity(p), decreasing = TRUE)
[1:10]

9.	 Finally, run the labelPeaks function in the following way to add labels in the plot:
> labelPeaks(p, index = top10)

The following screenshot shows the visualization with the labeled peaks:

Chapter 7

229

10.	 Our next visualization is about plotting different spectra on the same plot, which can
be used specially to show alignment.

11.	 Again, use the fiedler2009subset data and assign it to the spectra
variable as follows:
> spectra <- fiedler2009subset

12.	 Fetch the length of the data which is in the form of a list as follows:
> l <-length(spectra)

13.	 Initiate a plot for the first element of the list as follows (set type = "n"):
> plot(spectra[[1]]@mass, spectra[[1]]@intensity, type = "n", ,
xlab = "Mass", ylab = "Intensity")

14.	 Add the lines for all the other spectra data in the list via a loop in different
colors as follows (try ?rainbow in R):
> for(i in 1:l){

lines(spectra[[i]]@mass, spectra[[i]]@intensity, type = "l", col =
rainbow(l)[i])

}

In the following screenshot, you can see multiple spectra intensities plotted together
with different colors:

Analyzing Mass Spectrometry Data

230

15.	 The next plot is to visualize the m/z for the different ions in a peptide.

16.	 Let your peptide be in the format as shown in the following command (taken from the
query to ExPasy for ALBU_HUMAN):
> myPeptide <- c("SHCIAEVENDEMPADLPSLAADFVESK",
"LVRPEVDVMCTAFHDNEETFLK", "ALVLIAFAQYLQQCPFEDHVK")

17.	 Compute the parent ion mass for these peptides as follows:
> pim <- parentIonMass(myPeptide)

18.	 Also, compute the fragment ions for our peptides. This can be done with the
following command:
> fi <- fragmentIons(myPeptide)

For each peptide in your input, you get the b, y, c, and z ions.

19.	 We can visualize m/z for each of these ion types in a different color
iteratively for each peptide as follows:
for (i in 1:length(myPeptide)){

plot(0,0, xlab = 'm/Z', ylab = '', xlim = c(min(c(fi[i]
[[1]]$b,fi[i][[1]]$y)), max(c(fi[i][[1]]$b,fi[i][[1]]$y))+350),
ylim = c(0,1), type = 'n', axes = FALSE, sub = paste(pim[i],
"Da")) # creates the plot area

 box() # adds a box to the plot area

 axis(1,fi[i][[1]]$b,round(fi[i][[1]]$b,2)) # add axis label

pepSeq<-strsplit(myPeptide[i],"") # splits the peptide residues

axis(3,fi[i][[1]]$b,pepSeq[[1]]) # adds residue labels at top

abline(v = fi[i][[1]]$b, col='red',lwd=2) # adds plot for the b
type ions

abline(v = fi[i][[1]]$c, col='orange') # adds plot for the c type
ions

abline(v = fi[i][[1]]$y, col='blue',lwd=2) # adds plot for the y
type ions

abline(v = fi[i][[1]]$z, col='cyan') # adds plot for the z type
ions

 }

20.	 Now, add a legend to your plot as follows:
> legend("topright", legend = c("y","c","y", "z"), col = c("red","
orange","blue","cyan"), lty = 1, merge = TRUE)

Chapter 7

231

The following screenshot shows the m/z for different types of ions (in different colors)
for the first peptide, SHCIAEVENDEMPADLPSLAADFVESK:

How it works…
The first plot we did was the labeling of the peak. The peaks with the top 10 m/z values are
labeled accordingly. Our plot used the labelPeaks function of the MALDIquant package.
The protViz package also has a peakplot function to do the labeling. To find out more,
look at the help file for protViz mentioned in the previous recipes.

The second plot simply exploits the generic plotting function lines of R iterated via a for loop.
At every iteration, one dataset is added to the plot. It can be used to show a spectrum after
and before the alignment for instances or peaks of two different conditions.

The third and final visualization presented in the recipe shows the location of the fragmented
ions of a peptide in the m/z space. It shows the different types of ions in different colors.

8
Analyzing NGS Data

In this chapter, we will cover the following topics:

ff Querying the SRA database
ff Downloading data from the SRA database
ff Reading FASTQ files in R
ff Reading alignment data
ff Preprocessing the raw NGS data
ff Analyzing RNAseq data with the edgeR package
ff The differential analysis of NGS data using limma
ff Enriching RNAseq data with GO terms
ff The KEGG enrichment of sequence data
ff Analyzing methylation data
ff Analyzing ChipSeq data
ff Visualizations for NGS data

Introduction
HGP aimed to determine the sequences that make up human DNA. It was completed in 2003,
ahead of schedule and within the budget. However, it did not end there. The project not only
seeded the many sequencing projects, but also encouraged the development of technologies
that could enable faster and economical sequencing of genomes. A single human genome
is not enough to understand genetic information on health; rather, many genomes are
required for such studies. The technologies used during the HGP were slow and expensive.
The demand for cheaper and faster sequencing methods has driven the development of Next
Generation Sequencing (NGS). The NGS platforms perform massively parallel sequencing,
where millions of fragments of DNA from a single sample are sequenced in parallel,
facilitating high-throughput sequencing. This allows an entire genome to be sequenced
faster and at a lower cost.

Analyzing NGS Data

234

NGS is a term used to describe a number of different modern sequencing technologies.
It includes some popular technologies, explored as follows:

ff Illumina (Solexa) sequencing

ff Roche 454 sequencing

ff Ion torrent (proton and PGM sequencing)

ff SOLiD sequencing

These technologies allow faster and cheaper sequencing of DNA and RNA than the previously
used Sanger sequencing, and as such have revolutionized the study of genomics and
molecular biology. This chapter will deal with the results obtained from these technologies
and some related technologies. To know more on NGS technologies and their application, you
can refer to Metzker's Sequencing technologies-the next generation (http://www.nature.
com/nrg/journal/v11/n1/full/nrg2626.html).

One of the most popular formats of sequence data in NGS is the FASTQ format. Before we
go through the NGS data analysis in detail, it would be interesting to look at the FASTQ data
format. The FASTQ data format consists of four lines. The first line is for the sequence name,
the second is for the sequence itself, the third is for optional information about the sequence,
and the fourth is for a confidence or accuracy measurement of bases. The following
screenshot shows an instance of the FASTQ data format:

As all the other information in the FASTQ format is rather simple and should be easily
understandable, let's discuss the quality scores. The data quality in NGS is measured in
terms of a metrics called the Phred score. A Phred score is assigned to each base during the
sequencing process; therefore, we have a corresponding character for each base in FASTQ
data. Mathematically, the Phred score (Q) is defined as follows:

Q log= 10
10 P

In the preceding formula, P is the estimated error probability in base call (process of assigning
bases to peaks). This establishes a logarithmic relationship between the quality and base
calling error, which allows you to work with very small errors (close to zero) and deal in high
accuracies numerically. Thus, 99.999 percent (1 in 100,000) accuracy in base calling yields
a score equal to 50. To know more about the Phred score, refer to Base-Calling of Automated
Sequencer Traces Using Phred. II. Error Probabilities by Ewing and Green (http://genome.
cshlp.org/content/8/3/186.long).

http://www.nature.com/nrg/journal/v11/n1/full/nrg2626.html
http://www.nature.com/nrg/journal/v11/n1/full/nrg2626.html
http://genome.cshlp.org/content/8/3/186.long
http://genome.cshlp.org/content/8/3/186.long

Chapter 8

235

The FASTQ format displays this quality measure in terms of ASCII characters (usually,
the (33+Q)th ASCII character is used to represent a Q value). That's why, we see such
characters throughout every fourth line of every FASTQ file.

The FASTQ data allows the storage of the sequence and quality information for each read in a
compact text-based format. To know more about the FASTQ format, refer to The Sanger FASTQ
file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants article
by Cock and others (http://nar.oxfordjournals.org/content/38/6/1767.full).

Querying the SRA database
Sequence Read Archive (SRA) is a database that contains DNA sequencing data in terms
of short reads generated by high-throughput sequencing obtained via different platforms.
The sequences are usually less than 1,000 base pairs in length. The database is available
at http://www.ncbi.nlm.nih.gov/sra. This recipe will introduce steps to query and
access the data residing in the SRA database from within R.

Getting ready
As it is a querying recipe, we will need our machine to be connected to the Web, and we
will need the queries we want to perform. The packages to be used will be introduced as
we need them.

How to do it…
The following steps will help us run the desired queries on the SRA database:

1.	 First, install and load the SRAdb library in your R session as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("SRAdb")

> library(SRAdb)

2.	 Now, fetch the metadata file from the SRA server as follows (note that this might take
a while; therefore, it may be a good idea to grab a coffee now):
> sqlFile <- getSRAdbFile()

3.	 Create a connection to the SQLite file for querying, as follows:
> sraCon <- dbConnect(SQLite(),sqlFile)

http://nar.oxfordjournals.org/content/38/6/1767.full
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra

Analyzing NGS Data

236

4.	 There are a few things you can do to investigate the content of the database.
This will help you to define the queries that should be run later on. Use the
following function to determine the fields in the data:
> sraTables <- dbListTables(sraCon)
> dbListFields(sraCon,"study")

5.	 Now, frame your first query to get the accessions and titles from the SRA study where,
the study type contains the keyword embryo. The query can be seen as a typical
SQL query:
> myHit <- dbGetQuery(sraCon, paste("select study_accession,study_
title from study where","study_description like'%embryo'",sep="
"))

You will see that the query returns one hit, as follows:

> myHit

 study_accession study_title

 1 SRP001353 GSE17621: RNA-Seq of Drosophila developmental
 stage 16-18 hr

6.	 To do a free text search for the terms of interest, use the following functions:
> myHit <- getSRA(search_terms = "brain", out_types =
c('run','study'), sraCon)
> head(myHit)
 run_alias run	 run_date	 updated_date	 spots
1 R00GC DRR000341 <NA> 2013-07-27 66057520
2 R00GA_R01GA DRR000339 <NA> 2013-07-27 11595633
3 R00GB_R01GB DRR000340 <NA> 2013-07-27	 7684664
4 R01GC DRR000342 <NA> 2013-07-27 36153241
5 riken_grau-0002_Run_0002 DRR000834 2010-01-12	 2013-07-28
157457
6 bsi_hirase-0001_Run_0001 DRR000996 2010-05-24 2013-07-28
18838171

7.	 Combine key words for appropriate logic as follows:
> myHit <- getSRA(search_terms ='Alzheimers OR "EPILEPSY"', out_
types = c('sample'), sraCon)

8.	 Take a look at some of the retrieved results by typing the following command:
> head(myHit)

sample_alias	 sample taxon_id common_name anonymized_name
individual_name

1	 cec411 ERS354366 9606 human <NA> <NA>

Chapter 8

237

2	 GSM803420 SRS266589 9606 <NA> <NA> <NA>

3	 455-325 SRS348506 9606 <NA> <NA> <NA>

4	 455-4923 SRS348502 9606 <NA> <NA> <NA>

5	 <NA> SRS299958 NA <NA> <NA> <NA>

6	 455-326 SRS348505 9606 <NA> <NA> <NA>

How it works…
The SRAdb package makes accessibility to the metadata associated with submission, study,
sample, experiment, and run, much easier and faster (the downloaded SQLite database in
the second step of the recipe). The SRAdb package works via this metadata from the NCBI
SRA database. The dbConnect function first connects the R system to these local database
systems, and all our queries are locally processed based on the data contained there. In
this recipe, the queries we tried with the dbGetQuery function are passed in the form of
SQL queries, which is a Select From Where framework. This part actually requires the
RSQLite package, which is installed when installing the SRAdb package, as a dependency.
The getSRA function can actually do a full text search in the SRA data again via RSQLite
and fetch the data in the selected fields for the query.

See also
ff The SRA handbook from NCBI (http://www.ncbi.nlm.nih.gov/books/

NBK47528/), which provides detailed information on the SRA database at
the Entrez framework

ff The SRAdb: query and use public next-generation sequencing data from within
R article by Zhu and others at http://www.biomedcentral.com/1471-
2105/14/19, which provides information on the SRAdb package

Downloading data from the SRA database
We have just explored how to query the SRA database. However, we can use the SRAdb
package to download the FASTQ data based on our queries. This recipe aims to address
this issue.

Getting ready
For this recipe, we will need the queries we want to search for or the ID of the data we want
to retrieve.

http://www.ncbi.nlm.nih.gov/books/NBK47528/
http://www.biomedcentral.com/1471-2105/14/19

Analyzing NGS Data

238

How to do it…
The following steps should be performed to download data from the SRA database:

1.	 First, load the SRAdb library as follows:
> library(SRAdb)

2.	 Now, frame a query. For instance, use the same query as in the previous recipe
to search for ALZHEIMERS or EPILEPSY, as shown in the following command
(note that the step requires the sraCon object created in the previous recipe):
> myHit <- getSRA(search_terms ='ALZHEIMERS OR "EPILEPSY"', out_
types = c('sample'), sraCon)

3.	 Now, choose two of the hits and find their accessions (IDs) using the following
sraConvert function:
> conversion <- sraConvert(c('ERS354366','SRS266589'), sra_con =
sraCon)

4.	 Take a look at the object created, as follows:
> conversion
 sample submission study experiment run
1 ERS354366 ERA252779 ERP003987 ERX324104 ERR351268
2 SRS266589 SRA046961 SRP008797 SRX100465 SRR351673
3 SRS266589 SRA046961 SRP008797 SRX100465 SRR351672

5.	 To get information on one of the experiments, use the getSRAinfo function:
> rs <- getSRAinfo(c("SRX100465"), sraCon, sraType = "sra")

6.	 This gives us the FTP addresses and other experiment details for the search
as follows:
> rs
$ ftp

�� ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/
ByExp/sra/SRX/SRX100/SRX100465/SRR351672/SRR351672.sra

�� ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/
ByExp/sra/SRX/SRX100/SRX100465/SRR351673/SRR351673.sra

 experiment study sample run size(KB) date

1 SRX100465 SRP008797 SRS266589 SRR351672 831796 Jan 21 2012
2 SRX100465 SRP008797 SRS266589 SRR351673 1147321 Jan 21 2012

7.	 To download the data of your interest (the run), use the getSRAfile function as
follows (note that this requires some time to download):
> getSRAfile(c("SRR351672", "SRR351673"), sraCon, fileType
='fastq')

ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX100/SRX100465/SRR351672/SRR351672.sra
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX100/SRX100465/SRR351672/SRR351672.sra
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX100/SRX100465/SRR351672/SRR351672.sra
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX100/SRX100465/SRR351672/SRR351672.sra
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX100/SRX100465/SRR351672/SRR351672.sra
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX100/SRX100465/SRR351673/SRR351673.sra
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX100/SRX100465/SRR351673/SRR351673.sra
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByExp/sra/SRX/SRX100/SRX100465/SRR351673/SRR351673.sra

Chapter 8

239

How it works…
This recipe is an extension of the previous recipe. The step where the recipe deviates is the
conversion of the IDs from the results of the query for free text search. This gives us the
accession IDs for the hits retrieved from SRA. Then, we collect the downloaded information
on the data. Finally, the getSRAfile function fetches the file from the SRA database. This
part of the recipe actually downloads the data from the remote host. We can also use the FTP
address directly to download the file. To look at other methods to fetch the file, look at the
manual for the SRAdb package available at http://www.bioconductor.org/packages/
release/bioc/manuals/SRAdb/man/SRAdb.pdf.

Reading FASTQ files in R
A FASTQ file, as explained earlier, can have several short sequence reads in it. It is the
universally accepted format in the NGS community and for most alignment programs such as
Bowtie, which uses these files as input. In order to analyze the data, we need to read in this
data in the workspace. This recipe addresses this issue of reading FASTQ files in R.

Getting ready
For our recipe, we will need a FASTQ file to be read and the ShortRead package. We can
download a file from the SRA database, or use the example file in the ShortRead package.
The following screenshot shows a FASTQ file:

http://www.bioconductor.org/packages/release/bioc/manuals/SRAdb/man/SRAdb.pdf
http://www.bioconductor.org/packages/release/bioc/manuals/SRAdb/man/SRAdb.pdf

Analyzing NGS Data

240

How to do it…
The following steps explain the functions that can be used to read a FASTQ file in the
R workspace:

1.	 To download files from within R, use the following functions:
> install.packages("R.utils")
> library(R.utils)
> download.file(url="ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/
fastq/SRA000/SRA000241/SRX000122/SRR000648.fastq.bz2", destfile =
"SRR000648.fastq.bz2")

Alternatively, you can move to the working directory using the Linux terminal and
download an example FASTQ file from the following link. Note that the following
commands are Linux commands and not R commands:
$ cd <path/to working/directory>

$ wget ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA000/
SRA000241/SRX000122/SRR000648.fastq.bz2

You can also download the files via browsers on any platform (Windows, Mac OS,
or Linux).

2.	 Now, unzip the downloaded file in your working directory as follows (another
Linux command):
$ bunzip2 SRR000648.fastq.bz2

As an alternative, you can get the FASTQ file by unzipping it via a GUI-based program
(such as Bzip2 or 7zip). This also works well for any other OS platform.

To unzip from within R, use the following command:

> bunzip2(list.files(pattern = ".fastq.bz2$"))

3.	 Now, install and load the ShortRead package from Bioconductor as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("ShortRead")

> library(ShortRead)

4.	 To read the downloaded FASTQ file as an R object, use the readFastq function
as follows. Note that FASTQ files are usually heavy and might require huge memory
space while reading (it might need approximately 8 GB); therefore, check your
machines before working on such files:
> MyFastq <- readFastq(getwd(), pattern=".fastq")

Chapter 8

241

5.	 Look at the first four lines of the file by the generic readLines function as follows:

> readLines("SRR000648.fastq", 4)

[1] "@SRR000648.1 EUEMSW405C5XBJ length=218"

[2] "TTGCGTGGGAGCATTTTATTTCATTTACAAGGCCGTGGGAAGTCATAAAATTAATTTCG
GCATAACCATGTGTTCAGTGTGTATACAGTGAGAGTAGCTCCCGCTGCCCATTGTTTCAAGACTT
CTGCTTCTTGTGGGTTGTGGCTGGAATGAAGACACCGGTCTTCACTGCAATAAGGTTGTTGTTTCT
GATTTCCAACCCCAAATCCGTCCAGCTTCTGAGACACGCAACAGGGGATAGGCAAGGCACA
CAGGGGATAGG"

[3]

[4] "C==<==FB1==<<HD8+<FB1==FB1<=B;C<C<<<EA/A9=;<<=FC6'C=C=FB1<C<<
<=C=C<<=<==C=<<<=<<=<====<===<=<==<<;<FB0==<<GB1<C=<FB0=C<=:=C=<==
=C=;B;;=B=)C<8<?6<=B;B;<<B;=8:;C<C=;;C=<<<===C;;A9C<C=8B;;FB0<<=<G
C3C=C<FB4$A=(=C=:<A9=;<B<=8<8:99<;<=A<<8HD8,<<<A<:A;B<97==<<HD8,<9
;A;"

How it works…
The function that reads the FASTQ files works by reading the lines. It reads all the
FASTQ-formatted files that match a given pattern in the directory being scanned. The
function returns the sequence and the quality scores from the FASTQ file compiled into
an R object. We simply used fastq$ as the pattern and the current working directory
(getwd()) as the directory being scanned.

See also
ff Darren Wilkinson's research blog at http://darrenjw.wordpress.

com/2010/11/29/a-quick-introduction-to-the-bioconductor-
shortread-package-for-the-analysis-of-ngs-data/, which provides
an introduction to the ShortRead package

ff The user manual that details each functionality of the package and is available from
the ShortRead package's homepage at http://www.bioconductor.org/
packages/release/bioc/html/ShortRead.html

Reading alignment data
The outputs of NGS experiments are sequence reads that have to be aligned and mapped
to a reference genome. The first step in NGS data analysis is to align reads to the reference
genome. This task of alignment is computationally demanding due to the huge volumes
of NGS data and reference genomes. However, there are tools beyond R to do this. Most
commonly used alignment tools include BWA and Bowtie. It is beyond the scope of the
book to go into the details of these two methods. Nevertheless, a short explanation has
been offered on Bowtie in the See also section of this recipe.

http://darrenjw.wordpress.com/2010/11/29/a-quick-introduction-to-the-bioconductor-shortread-package-for-the-analysis-of-ngs-data/
http://darrenjw.wordpress.com/2010/11/29/a-quick-introduction-to-the-bioconductor-shortread-package-for-the-analysis-of-ngs-data/
http://darrenjw.wordpress.com/2010/11/29/a-quick-introduction-to-the-bioconductor-shortread-package-for-the-analysis-of-ngs-data/
http://www.bioconductor.org/packages/release/bioc/html/ShortRead.html
http://www.bioconductor.org/packages/release/bioc/html/ShortRead.html

Analyzing NGS Data

242

After mapping the reads in the FASTQ file to the reference genome, what we get is a sequence
alignment map (SAM) or BAM (binary version of SAM) file.

This recipe will discuss how to read/load these files in the R workspace.

Getting ready
We will need the Rsamtools package to read the BAM files. The example data used in this
recipe is available from UCSC for demo purposes. The data is actually a sequence set sample
(NA12878) from the 1000 Genome Project.

How to do it…
The following steps will explain the method to be used to deal with a BAM file:

1.	 First, download an example file from within R, as follows:
> download.file(url="http://genome.ucsc.edu/goldenPath/help/
examples/bamExample.bam", destfile = "bamExample.bam")

Alternatively, you can also use Linux terminal commands without starting R,
as follows:

$ cd path/to/working/directory

$ wget http://genome.ucsc.edu/goldenPath/help/examples/bamExample.
bam

$ R

2.	 To read the BAM file, use the scanBam function from the Rsamtools package
as follows (the file has been provided with the code files on the book's web page
for the ease of access):
> library(Rsamtools)

> bam <- scanBam("bamExample.bam")

3.	 Take a look at the attributes for the first list element of the read data as follows:
> names(bam[[1]])

4.	 Check the count of the records in the data as follows:
> countBam("bamExample.bam")

 space start end width file records nucleotides

1 NA NA NA NA bamExample.bam 36142 1474950

Chapter 8

243

5.	 If you want to read only selected attributes, set them as parameters by typing the
following commands:
> what <- c("rname", "strand", "pos", "qwidth", "seq")

> param <- ScanBamParam(what=what)

> bam2 <- scanBam("bamExample.bam", param=param)

> names(bam2[[1]])

6.	 Read the data as a DataFrame object using the following function:
> bam_df <- do.call("DataFrame", bam[[1]])

> head(bam_df)

7.	 From this DataFrame object, extract the sequences that fulfill certain conditions
as follows:
> table(bam_df$rname == '21' & bam_df$flag == 16)

FALSE TRUE

31894 4248

How it works…
The scanBam function together with another input function called countBam imports the
binary alignment maps in an NGS analysis. The what argument defines the attributes that
have to be imported from the data. More information on the function is available within the
help file (?scanBam). The imported files are stored as a list, with each element being an
alignment. The list can be easily transformed into a data.frame object as shown in step 6.
As a data.frame object, each entry in the list is a row and the attributes of the alignment
are shown in terms of columns. Finally, we use the table function to determine how many
of the sequences in the file meet the desired conditions.

In this recipe, the conditions for a demo were rname, which refers to the reference
sequence's name, and flag, indicating the bitwise flag in the data. The bitwise flag can
define the different properties of the segments in the data, namely, multiple segments,
unmapped segments, the first segment, and so on. In this recipe, we used a value of 16
that indicates reads for reverse strands. For detailed information on flags, refer to the tool
available at http://picard.sourceforge.net/explain-flags.html.

http://picard.sourceforge.net/explain-flags.html

Analyzing NGS Data

244

See also
ff The article titled The Sequence Alignment/Map format and SAMtools by Li and others

at http://bioinformatics.oxfordjournals.org/content/25/16/2078.
full, which provides more details on the BAM and SAM files

ff The Broad Institute's page at http://www.broadinstitute.org/igv/bam,
which provides substantial information on the BAM and SAM files

ff The SAMtools page at http://samtools.sourceforge.net, which provides
various utilities for manipulating alignments in the SAM format

Preprocessing the raw NGS data
FASTQ data has the sequences (the bases) as the corresponding quality scores (Phred) in
terms of ASCII characters, as explained in the introductory part of the chapter. Once read into
the R workspace, the data is ready to be analyzed. However, it needs some preprocessing
to meet the desired conditions on quality and data instance according to our interest. For
example, we need higher Phred scores and a particular strand. This preprocessing involves
quality assessment and filtering. This recipe will deal with these aspects, specifically filtering
and quality checks.

Getting ready
For this recipe, we will use the data downloaded from the SRA database. We will also continue
to use the ShortRead library.

How to do it…
The following steps will take us through the preprocessing of data, starting from data retrieval
to filtering:

1.	 First, download the required files as follows (note that the download might take
a while):
> download.file(url="ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/
fastq/SRA000/SRA000241/SRX000122/SRR000648.fastq.bz2", destfile=
"SRR000648.fastq.bz2")

> download.file(url="ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/
fastq/SRA000/SRA000241/SRX000122/SRR000657.fastq.bz2", destfile=
"SRR000657.fastq.bz2")

http://bioinformatics.oxfordjournals.org/content/25/16/2078.full
http://bioinformatics.oxfordjournals.org/content/25/16/2078.full
http://www.broadinstitute.org/igv/bam
http://samtools.sourceforge.net

Chapter 8

245

Alternatively, you can also download the files in the working directory using a Linux
terminal, and download an example FASTQ file from the following link:

$ cd <path/to working/directory>

$ wget ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA000/
SRA000241/SRX000122/SRR000648.fastq.bz2

$ wget ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA000/
SRA000241/SRX000122/SRR000657.fastq.bz2

2.	 Unzip the downloaded files from within R as follows:
> install.packages("R.utils") # install the R.utils from CRAN

> library(R.utils)

> bunzip2(filename=list.files(pattern = ".fastq.bz2$")[1]) #
Unzips and removes the original bunzip file

Alternatively, you can also download the files in a Linux terminal as follows:

$ bunzip2 *.fastq.bz2

3.	 To assess the quality, use the FastQuality function from the ShortRead library
as follows:
> library(ShortRead)

> myFiles <- list.files(getwd(), "fastq", full=TRUE)

> myFQ <- lapply(myFiles, readFastq)

> myQual <- FastqQuality(quality(quality(myFQ[[1]])))

4.	 Convert the quality measure in terms of a matrix as follows:
> readM <- as(myQual, "matrix")

5.	 Visualize the results as a boxplot with the help of the following command:
> boxplot(as (data.frame(readM)), outline = FALSE, main="Per Cycle
Read Quality", xlab="Cycle", ylab="Phred Quality")

Analyzing NGS Data

246

In the following boxplot, the x axis shows the cycles and the y axis represents the
Phred quality score available within the FASTQ file:

6.	 Another interesting preprocessing step involves filtering the sequences while reading
alignment data. For this, you first need alignment data as follows (note that Bowtie
data is available on the book's web page under the name myBowtie.txt) and you
must either copy it to your working directory or use this directory as working directory
to use the myBowtie.txt file:
> myData <- readAligned("myBowtie.txt", type = "Bowtie")

Chapter 8

247

7.	 To check the read alignments, look at the myData object as follows:
> myData

class: AlignedRead

length: 1000 reads; width: 35 cycles

chromosome: chr5 chr10 ... chr15 chr16

position: 151311502 35505989 ... 25552487 33204792

strand: - - ... + +

alignQuality: NumericQuality

alignData varLabels: similar mismatch

8.	 There are different filters that can be used, such as chromosomes, sequence length,
strands, and so on. To use these, first define the required filter (in this case, define a
filter for the + strand) as follows:
> strand <- strandFilter("+")

9.	 Then, use the created filter as follows:
> myRead_strand <- readAligned("myBowtie.txt", filter=strand, type
= "Bowtie")

10.	 Combine more than one filters and then use with the compose function as follows:
> chromosome <- chromosomeFilter("3")

> myFilt <- compose(strand, chromosome)

> myRead_filt <- readAligned("myBowtie.txt", filter=Myfilt, type =
"Bowtie")

11.	 Again, take a look at the filtered data (myRead_filt) as follows:
> myRead_filt

class: AlignedRead

length: 55 reads; width: 35 cycles

chromosome: chr3 chr13 ... chr3 chr13

position: 149312235 27275680 ... 136314155 52437523

strand: + + ... + +

alignQuality: NumericQuality

alignData varLabels: similar mismatch

Analyzing NGS Data

248

How it works…
The quality check function described in this recipe uses the Phred scores assigned in terms of
ASCII characters in the FASTQ files, and computes the actual quality score for each cycle. This
is reflected in the plot we saw in the previous boxplot. The filtering function simply checks the
data and extracts the alignment reads that meet the filtering conditions. The other filters that
can be used include idFilter, positionFilter, and so on. We can see the difference
between the myData object that has 1,000 reads with both the + and – strands, whereas
the filtered object, myRead_filt, has only 55 reads with the + strand.

There's more...
Another interesting quality assessment is available on the University of California Riverside
page (www.ucr.edu). To load these assessment R functions from the remote host, we can
simply use the following function (note that we will use this in one of our visualization recipes):

> source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Sc)

We can then use various functions loaded for the quality assessment of the FASTQ files.
Some of the interesting functions include seeFastqPlot and seeFastq. To know more,
visit http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Sc.

Analyzing RNAseq data with the edgeR
package

In order to determine whether the count for a transcript is significantly different or
differentially expressed under the treatment condition, we need to do a differential count
analysis for the data. This is analogous to the differential gene analysis explained in Chapter
5, Analyzing Microarray Data with R. We will do such an analysis using the edgeR package in
this recipe.

Getting ready
We will need two R packages, namely, edgeR and goseq, for the recipe. In terms of dataset,
we will demonstrate in terms of the default data for these packages. The data comes from an
experiment that examined the effect of androgen stimulation on a human prostate cancer cell
line, LNCaP. The data has four control and three treated samples.

http://www.ucr.edu
http://www.ucr.edu
http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Sc

Chapter 8

249

How to do it…
To perform differential analysis for the RNAseq data, carry out the following steps:

1.	 First, start with the installation and loading of the required libraries as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite("edgeR")

> biocLite("goseq")

> library(edgeR)

> library(goseq)

2.	 Now, read in the input data from the goseq library data directory as follows:
> myData <- read.table(system.file("extdata", "Li_sum.txt",
package='goseq'), sep = '\t', header = TRUE, stringsAsFactors =
FALSE,row.names=1)

3.	 Take a look at the content of a part of the data as follows:
> head(myData)

 lane1 lane2 lane3 lane4 lane5 lane6 lane8

ENSG00000215688 0 0 0 0 0 0 0

ENSG00000215689 0 0 0 0 0 0 0

ENSG00000220823 0 0 0 0 0 0 0

ENSG00000242499 0 0 0 0 0 0 0

ENSG00000224938 0 0 0 0 0 0 0

ENSG00000239242 0 0 0 0 0 0 0

4.	 The first four columns in your data are controls and the last three are the treatment
samples (see the Getting ready section of this recipe). Assign these attributes to the
data as follows:
> myTreat <- factor(rep(c("Control","Treatment"),times = c(4,3)))

5.	 Now, create a DGElist object using all the count data and treatment information
as follows:
> myDG <- DGEList(myData,lib.size = colSums(myData),group =
myTreat)

Analyzing NGS Data

250

The DGElist object is a list with two components: counts and sample (treatment
information), as shown in the following example:

> myDG
An object of class "DGEList"
$counts
 lane1 lane2 lane3 lane4 lane5 lane6 lane8
ENSG00000215688 0 0 0 0 0 0 0
ENSG00000215689 0 0 0 0 0 0 0
ENSG00000220823 0 0 0 0 0 0 0
ENSG00000242499 0 0 0 0 0 0 0
ENSG00000224938 0 0 0 0 0 0 0
49501 more rows
$samples
 group lib.size norm.factors
lane1 Control 1178832 1
lane2 Control 1384945 1
lane3 Control 1716355 1
lane4 Control 1767927 1
lane5 Treatment 2127868 1
lane6 Treatment 2142158 1
lane8 Treatment 816171 1

6.	 Now, estimate the dispersion in the data by typing the following command:
> myDisp <- estimateCommonDisp(myDG)

7.	 This is followed by an exact test as follows:
> mytest <- exactTest(myDisp)

8.	 Extract the top DE tags ranked by the p-value (or the absolute log fold change) using
the following topTags function:
> myRes <- topTags(mytest, sort.by = "PValue")

9.	 To see the results, simply check the head of the data.frame object as follows:
> head(myRes)

Comparison of groups: Treatment-Control
 	 logFC logCPM PValue FDR
ENSG00000127954 11.557868 6.680782 2.574972e-80 1.274766e-75
ENSG00000151503 5.398963 8.499425 1.781732e-65 4.410322e-61
ENSG00000096060 4.897600 9.446635 7.983756e-60 1.317479e-55
ENSG00000091879 5.737627 6.281841 1.207655e-54 1.494654e-50
ENSG00000132437 -5.880436 7.951978 2.950042e-52 2.920896e-48
ENSG00000166451 4.564246 8.458263 7.126763e-52 5.880292e-48

Chapter 8

251

How it works…
The edgeR package uses the count data by modeling it via an overdispersed Poisson
model, assuming it to be a negative binomial distribution. Then, it follows an Empirical
Bayes procedure to moderate the degree of overdispersion across genes by conditional
maximum likelihood, conditioned on the total count for that gene (step 5). To compute the
differential expression of a tag/gene, a Fisher's exact test (step 7) is performed, yielding the
corresponding statistical scores. Finally, the top ranking tags (according to the p-values) are
returned in steps 8 and 9. The topTags function, by default, returns the top 10 results;
we can return desired number of top ranked tags by setting the argument n to this number
in the function.

See also
ff The article titled edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data by Robinson and others at http://
bioinformatics.oxfordjournals.org/content/26/1/139.long,
which provides more details on the edgeR package

ff The articles titled Moderated statistical tests for assessing differences in
tag abundance (http://bioinformatics.oxfordjournals.org/
content/23/21/2881.abstract?ijkey=02b1e386cfb11240f48d2bafc520b
091f53bfd95&keytype2=tf_ipsecsha) and Small-sample estimation of negative
binomial dispersion, with applications to SAGE data (http://biostatistics.
oxfordjournals.org/content/9/2/321.abstract?ijkey=7c4f41ecdfbc
114236c79cea46db9d733c624d69&keytype2=tf_ipsecsha) by Robinson and
others, which provide more details about the statistical methods

ff The Determination of tag density required for digital transcriptome analysis:
Application to an androgen-sensitive prostate cancer model article by Li and others
at http://www.pnas.org/content/early/2008/12/16/0807121105, which
provides information on the data used in this recipe

The differential analysis of NGS data
using limma

We have discussed differential gene expression analysis in one of our previous recipes.
Another popular pipeline for the purpose is provided by the limma software package, which
we saw in Chapter 5, Analyzing Microarray Data with R. It can handle multiple experiments
via Empirical Bayes statistical methods and uses normalized read counts for each gene.
This recipe will explain the use of the limma package from Bioconductor for differential
gene analysis with NGS data.

http://bioinformatics.oxfordjournals.org/content/26/1/139.long
http://bioinformatics.oxfordjournals.org/content/26/1/139.long
http://bioinformatics.oxfordjournals.org/content/23/21/2881.abstract?ijkey=02b1e386cfb11240f48d2bafc520b091f53bfd95&keytype2=tf_ipsecsha
http://bioinformatics.oxfordjournals.org/content/23/21/2881.abstract?ijkey=02b1e386cfb11240f48d2bafc520b091f53bfd95&keytype2=tf_ipsecsha
http://bioinformatics.oxfordjournals.org/content/23/21/2881.abstract?ijkey=02b1e386cfb11240f48d2bafc520b091f53bfd95&keytype2=tf_ipsecsha
http://bioinformatics.oxfordjournals.org/content/23/21/2881.abstract?ijkey=02b1e386cfb11240f48d2bafc520b091f53bfd95&keytype2=tf_ipsecsha
http://biostatistics.oxfordjournals.org/content/9/2/321.abstract?ijkey=7c4f41ecdfbc114236c79cea46db9d733c624d69&keytype2=tf_ipsecsha
http://biostatistics.oxfordjournals.org/content/9/2/321.abstract?ijkey=7c4f41ecdfbc114236c79cea46db9d733c624d69&keytype2=tf_ipsecsha
http://biostatistics.oxfordjournals.org/content/9/2/321.abstract?ijkey=7c4f41ecdfbc114236c79cea46db9d733c624d69&keytype2=tf_ipsecsha
http://www.pnas.org/content/early/2008/12/16/0807121105

Analyzing NGS Data

252

Getting ready
Besides using the limma library, we will use the Pasilla dataset here. The dataset can be
obtained from Bioconductor and consists of sequence counts from a perturbation experiment
in Drosophila. To know more about the data, refer to the Conservation of an RNA regulatory
map between Drosophila and mammals article by Brooks and others (http://genome.
cshlp.org/content/early/2010/10/04/gr.108662.110).

How to do it…
The following steps will explain the use of the limma package in NGS data analysis:

1.	 Start with the input data, which can be loaded as a package from Bioconductor,
as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite(c("DESeq","pasilla"))

> library(limma)

> library(DESeq)

> library(pasilla)

> data(pasillaGenes)

2.	 Check the data content as follows:
> pasillaGenes

3.	 Now, create an expression set using the counts from the pasillaGenes dataset
as follows:
> eset <- counts(pasillaGenes)

4.	 You have seven samples in the dataset; the first three are the treatment samples and
the last four are controls. Assign this to your eset data as follows:
> colnames(eset) <- c(paste("T", 1:3, sep="_"), paste("C", 1:4,
sep="_"))

5.	 Take a look at the data by typing the following command:
> head(eset)

 T_1 T_2 T_3 C_1 C_2 C_3 C_4

FBgn0000003 0 0 1 0 0 0 0

FBgn0000008 78 46 43 47 89 53 27

FBgn0000014 2 0 0 0 0 1 0

FBgn0000015 1 0 1 0 1 1 2

FBgn0000017 3187 1672 1859 2445 4615 2063 1711

FBgn0000018 369 150 176 288 383 135 174

http://genome.cshlp.org/content/early/2010/10/04/gr.108662.110
http://genome.cshlp.org/content/early/2010/10/04/gr.108662.110

Chapter 8

253

6.	 Now, create a design matrix as follows:
> design <- cbind(Intercept=1,trt=c(1,1,1,0,0,0,0))

7.	 Now, perform a voom transformation using the experiment design matrix as follows:
> eset_voom <- voom(eset, design, plot=FALSE)

8.	 Fit a linear model on your eset data and design matrix as follows:
> fit <- lmFit(eset_voom,design)

9.	 To perform the computation of statistics, use the following eBayes function:
> fitE <- eBayes(fit)

10.	 Now, to find the top genes and filter them based on the corresponding p-values,
type the following commands:
> topAll <- topTable(fitE, n=nrow(eset),

coef = 2, adjust = "BH")

> DEgenes <- rownames(topAll[which(topAll$adj.P.Val<0.05),])

How it works…
The limma analysis for a data has already been described in Chapter 5, Analyzing Microarray
Data with R. In this recipe, we used the count data in place of normalized expression values.
Another difference is the use of the voom transformation that estimates the mean-variance
relationship for the log counts, which robustly generates a precision weight for each individual
normalized observation. To learn about the details of limma, refer to Chapter 5, Analyzing
Microarray Data with R.

The plot shown in the following screenshot shows a histogram of the tags with different
ranges of p-values and a volcano plot for the limma analysis. The code to generate these
plots is as follows:

> hist(topAll$adj.P.Val, xlab="adjusted P values",main="(A) Histogram for
P values")

> clr <- rep("black",nrow(topAll)) # creates a vector for color

> clr[which(topAll$adj.P.Val<0.05)] <- "red"# sets color for DE to red

> plot(x = topAll$logFC, y = -log10(topAll$adj.P.Val), col = clr, xlab
= "log fold change", ylab = "-log P",main = "(B) Volcano Plot") # Do a
volcano plot

> abline(h=-log10(0.05), col="blue")# Draw a horizontal line marking a P
value threshold for 0.05

Analyzing NGS Data

254

The following screenshot shows the distribution of p-values in the analysis results and the
number of tags with low p-values:

Histogram and the volcano plot for limma analysis

The results show that we have 445 tags that show DE tags, that is, tags that were significantly
more expressive between the two conditions. We can check how many of these show a higher
fold change, say two, as follows:
> rownames(topAll[which(topAll$adj.P.Val<0.05&abs(topAll$logFC) > 2),])

We can see that 59 tags show a change of more than two folds (positive or negative).
This renders these genes important for such studies.

Chapter 8

255

See also
ff The voom: precision weights unlock linear model analysis tools for RNA-seq read

count article by Law and others at http://genomebiology.com/2014/15/2/
R29, which provides more details on the voom transformation

Enriching RNAseq data with GO terms
The RNAseq data coming out of NGS provides great detail on the cellular transcriptional
landscape. Besides measuring expression levels of the transcripts, they provide information
on alternative splicing, allele-specific expressions, and so on. Thus, the RNAseq data gives a
more comprehensive picture of differential expression in cells. However, adding the functional
aspects can refine this analysis further with statistical robustness. This recipe aims to
demonstrate the highlighting of the RNAseq data in terms of GO terms.

Getting ready
For our demonstration, we will continue using the data from the goseq package. We will also
need the goseq library for our analysis.

How to do it…
To perform the enrichment analysis, carry out the following steps:

1.	 Start with loading the required packages, goseq and edgeR, as follows:
> library(goseq)

> library(edgeR)

> library()

2.	 Take a look at the genomes that are supported by the package as follows:
> supportedGenomes()

3.	 Now, load the data you will use for analysis from the goseq package as follows:
> myData <- read.table(system.file("extdata", "Li_sum.txt",
package="goseq"), sep = '\t', header = TRUE, stringsAsFactors =
FALSE,row.names=1)

Alternatively, you can read the data directly from the file provided with the code files
on the book's web page as follows:

> myData <- read.table("path/to/code/files/Li_sum.txt", sep =
'\t', header = TRUE, stringsAsFactors = FALSE,row.names=1)

http://genomebiology.com/2014/15/2/R29
http://genomebiology.com/2014/15/2/R29

Analyzing NGS Data

256

4.	 The first four columns in your data are controls and the last three are the treatment
samples. Assign these attributes to the data by typing the following command:
> myTreat <- factor(rep(c("Control","Treatment"),times = c(4,3)))

5.	 Now, create a DGElist object via the edgeR library using all the count data and
treatment information, as follows:
> myDG <- DGEList(myData,lib.size = colSums(myData),group =
myTreat)

6.	 With the DGElist object, estimate the dispersion in the data followed by an exact
test, as follows:
> myDisp <- estimateCommonDisp(myDG)

> mytest <- exactTest(myDisp)

7.	 Use the genes from this analysis for enrichment. So, extract the genes with the
desired p-values and log fold change condition with their corresponding gene
names, creating a named vector, as follows:
> myTags <- as.integer(p.adjust(mytest$table$PValue[mytest$table$l
ogFC!=0], method="BH") < 0.05)

> names(myTags) <- row.names(mytest$table[mytest$table$logFC!=0,])

8.	 The vector you created in the previous step bears the status of every gene in terms of
DE or non-DE tags. Check the corresponding numbers as follows:
> table(myTags)

9.	 Next, compute the probability weighting function for a set of genes based on their
status as follows:
> wtFunc <- nullp(myTags,"hg19","ensGene")

> head(wtFunc)

 DEgenes bias.data pwf

ENSG00000230758 0 247 0.03757470

ENSG00000182463 0 3133 0.20436865

ENSG00000124208 0 1978 0.16881769

ENSG00000230753 0 466 0.06927243

ENSG00000224628 0 1510 0.15903532

ENSG00000125835 0 954 0.12711992

10.	 Use the results obtained to compute the enrichment as follows:
> myEnrich_wall <- goseq(wtFunc,"hg19","ensGene", test.
cats=c("GO:BP"))

Chapter 8

257

11.	 Now, take a look at the enrichment as follows:
> head(myEnrich_wall)

The following screenshot shows the GO enrichment of the data:

12.	 To look at the meaning of a GO category, use the GO.db package as follows:
> library(GO.db)

> GOTERM[[GO.wall$category[1]]]

How it works…
A large part of the recipe (up to step 9) is similar to the previous recipe, dealing with the
edgeR package. Till step 9, we computed our genes or tags of interest and we have the
Ensembl IDs for the tags. The goseq function used in step 10 fetched the GO category for
the Ensembl genes obtained in step 9. In this recipe, we used only the biological process
category, but for other categories, we can use the values GO:CC or GO:MF. Besides fetching
the GO annotation, the goseq function also computes the enrichment in terms of over and
under representation of p-values. Finally, the use of the GO.db package gives us the actual
GO term details for the categories retrieved.

There's more...
In this recipe, we observed one of the enrichment methods, but there are other possible
methods as well in goseq such as sampling or hypergeometric. To know more about these,
type ?goseq in your R console.

See also
ff The Gene ontology analysis for RNA-seq: accounting for selection bias article by

Young and others at http://genomebiology.com/2010/11/2/r14, which
provides details about the goseq methods

http://genomebiology.com/2010/11/2/r14

Analyzing NGS Data

258

The KEGG enrichment of sequence data
The previous recipe dealt with the GO category enrichment of tags. However, we can do a
similar analysis in terms of KEGG annotations. This recipe deals with the KEGG enrichment
of data.

Getting ready
We will continue using the same data and packages here as in the previous recipe.

How to do it…
To perform the KEGG enrichment of sequence data, carry out the following steps (note that
the first few steps in this recipe are the same as in the previous one):

1.	 Start with loading the required packages, goseq and edgeR, as follows:
> library(goseq)

> library(edgeR)

> library(org.Hs.eg.db)

2.	 Load the data you will use for analysis from the goseq package as follows:
> myData <- read.table(system.file("extdata", "Li_sum.txt",
package = 'goseq'), sep = '\t', header = TRUE, stringsAsFactors =
FALSE,row.names = 1)

Alternatively, you can read the data directly from the file provided with the code files
on the book's web page as follows:

> myData <- read.table("path/to/code/files/Li_sum.txt", sep =
'\t', header = TRUE, stringsAsFactors = FALSE,row.names=1)

3.	 The first four columns in your data are controls and the last three are the treatment
samples. Assign these attributes to the data and perform the differential tag
computation as follows:
> myTreat <- factor(rep(c("Control","Treatment"),times = c(4,3)))

> myDG <- DGEList(MyData,lib.size = colSums(MyData),group =
MyTreat)

> myDisp <- estimateCommonDisp(myDG)

> mytest <- exactTest(myDisp)

Chapter 8

259

4.	 Use the genes from this analysis for enrichment, so extract the genes with the
desired p-value and log fold change condition with their corresponding gene names,
creating a named vector as follows:
> myTags <- as.integer(p.adjust(mytest$table$PValue[mytest$table$l
ogFC!=0], method = "BH") < 0.05)
> names(myTags) <- row.names(mytest$table[mytest$table$logFC!=0,])

5.	 Now, compile your KEGG data for enrichment, starting with the conversion of
ENSEMBL IDs to Entrez as follows:
> en2eg <- as.list(org.Hs.egENSEMBL2EG)

6.	 Get all the KEGG IDs for the compiled Entrez IDs by typing the following command:
> eg2kegg <- as.list(org.Hs.egPATH)

7.	 Now to get the KEGG and Entrez IDs mapped together, type the following commands:
> grepKEGG <- function(id,mapkeys){unique(unlist(mapkeys[id], use.
names = FALSE))}
> kegg <- lapply(en2eg,grepKEGG,eg2kegg)

8.	 To compute the probability weighting function, type the following command:
> pwf <- nullp(MyTags,"hg19","ensGene")

9.	 Use the goseq function with KEGG mappings for the enrichment of tags as follows:
> KEGG <- goseq(pwf,gene2cat = kegg)
> head(KEGG)

The following screenshot shows the KEGG enrichment of the data:

How it works…
This recipe is very similar to the previous recipe. However, in this recipe, we aim to find the
KEGG annotation in place of GO categories. Until step 4, we fetch the differentially expressed
tags from data as we did in our previous recipe followed by the extraction of genes of interest
(meeting the p-value and log fold change values). Step 5 gets the Entrez mapping of the
ENSEMBL genes, which is followed by the corresponding KEGG mapping (of Entrez genes) in
step 6. Finally, we extract the KEGG annotation of the interesting genes from the entire list
and compute the enrichment scores.

Analyzing NGS Data

260

Analyzing methylation data
DNA methylation data can serve as a tool to detect an epigenetic marker for which a
detailed mechanism of mitotic inheritance has been described. It is usually done via
methylation-specific DNA sequencing or via microarray data epigenetic regulation. Recent
advances in NGS and microarray technology make it possible to map genome-wide DNA
methylation at a high resolution and in a large number of samples. One of the common goals
in analyzing methylation data is to identify differentially methylated regions (DMRs) when
comparing control and treatment conditions. This recipe aims to address this issue.

Getting ready
For the purpose of our demonstrative analysis, we will use the methyAnalysis package and
the built-in dataset.

How to do it…
The steps for analysis of methylation data are as follows:

1.	 Start with loading the library and dataset in your R workspace as follows:
> source("http://bioconductor.org/biocLite.R")

> biocLite(c("methyAnalysis", "TxDb.Hsapiens.UCSC.hg19.
knownGene"))

> library(methyAnalysis)

> data(exampleMethyGenoSet)

2.	 To get some information, such as samples and location for the data, look at different
components, as follows (note that you can see eight samples):
> slotNames(exampleMethyGenoSet)

> head(locData(exampleMethyGenoSet))

> dim(exprs(exampleMethyGenoSet))

> pData(exampleMethyGenoSet)

> str(exampleMethyGenoSet)

3.	 The data has two sample conditions, which are Type1 and Type2. Smoothen the
input data with a desired window size (here, it is 200), as follows:
> methylSmooth <- smoothMethyData(exampleMethyGenoSet, winSize =
200) #Might get some warning messages

> attr(methylSmooth,'windowSize')

Chapter 8

261

4.	 Extract the sample conditions from the pData component as follows:
> conditons <- pData(exampleMethyGenoSet)$SampleType

5.	 Take the input data and sample type from the preceding step and detect the DMRs in
the data as follows:
> myDMR <- detectDMR.slideWin(exampleMethyGenoSet, sampleType=
conditons) #Might get some warning messages

6.	 Take a look at the object created by typing the following command:
> head(myDMR)

The following screenshot shows the first six entries in the MyDMR object:

7.	 Finally, to identify the significant DMRs, run identifySigDMR in the output from the
previous step as follows:
> mySigDMR <- identifySigDMR(myDMR)

8.	 Get the annotation information for the regions from UCSC as follows:
> dmr_anno <- annotateDMRInfo(mySigDMR,'TxDb.Hsapiens.UCSC.hg19.
knownGene')

9.	 Finally, export the results of your analysis by typing the following command:
> export.DMRInfo(dmr_anno, savePrefix='testExample')

Analyzing NGS Data

262

How it works…
The example data we used in this recipe is an extension of the eSet class, bearing slots for
the different types of information such as samples, chromosomes, and genomic ranges. Our
analysis begins with data smoothing. The function considers the correlation in the nearby
CpG sites in terms of the defined window (here, it is 200), thus reducing the noise. With the
less noisy data in place, detectDMR.slideWin checks whether the region (smoothed) is
differentially methylated based on the t test or wilcox test, which is then merged to get the
continuous regions by calling the getContinuousRegion function. The results annotated
with the genome data are finally exported as CSV files in step 10. The following screenshot
shows the the exported CSV file:

A differentially methylated region, which we aimed to find in this recipe, is a region where most
of the CpG sites are methylated. What we did here was the detection of probe methylation
status from the exampleMethyGenoSet object. Finally, we mapped these regions onto the
chromosomal maps. In this recipe, we saw the SIM2, ERG, DIP2, and so on, regions being
substantially methylated on chromosome 21, where the p-value was less than 0.05. The input
data for the recipe was an eSet object. However, it can be in other formats such as a CSV or
text file. The approach to create eSet from these files has been already explained in Chapter
5, Analyzing Microarray Data with R.

See also
ff The article titled Analysing and interpreting DNA methylation data by Bock

(http://www.nature.com/nrg/journal/v13/n10/full/nrg3273.html),
which provides more details on using methylation data

ff The Comparison of Beta-value and M-value methods for quantifying
methylation levels by microarray analysis article by Du and others
(http://www.biomedcentral.com/1471-2105/11/587),
which provides theoretical details of the methyAnalysis package

http://www.nature.com/nrg/journal/v13/n10/full/nrg3273.html
http://www.biomedcentral.com/1471-2105/11/587
http://www.biomedcentral.com/1471-2105/11/587

Chapter 8

263

Analyzing ChipSeq data
Chromatin immuneprecipitation sequencing (ChipSeq) is a powerful method to identify
genome-wide DNA binding sites for a protein of interest. It is often used to determine the
binding sites for transcription factors, DNA-binding enzymes, histones, chaperones, or
nucleosomes. The workflow to produce the ChipSeq data starts from the cross-links bound
proteins and chromatin. The chromatin is fragmented, and the DNA fragments bound to one
protein are captured using an antibody specific to it. The ends of the captured fragments
are sequenced using NGS. The computational mapping of the sequenced DNA leads to the
identification of the genomic locations of these fragments, illuminating their role in DNA
protein interactions and epigenetics research.

The ChipSeq data consists of short reads in a FASTQ file format. There is a short read after
every fifth line of the file. This recipe will deal with the analysis of the ChipSeq data in R.

Getting ready
The recipe will require the ChipSeq package and the built-in data in the package for
demonstration purposes. We will also need the mouse genome data for the biological
mapping of results.

How to do it…
To analyze the ChipSeq data in R, perform the following steps:

1.	 Start with the loading of the required R libraries. You need two libraries, namely
chipseq and TxDb.Mmusculus.UCSC.mm9.knownGene, as follows:
> source("http://bioconductor.org/biocLite.R>
> biocLite(c("chipseq", "TxDb.Mmusculus.UCSC.mm9.knownGene"))
> library(TxDb.Mmusculus.UCSC.mm9.knownGene)
> library(chipseq)

2.	 Now, you need the data to be analyzed. For demonstration purposes, use the built-in
package dataset named cstest as follows:
> data(cstest)

3.	 Take a look at the data by typing the following command before you start analyzing it:
> cstest

4.	 Now, estimate the length of the fragments in the data by typing the
following command:
> estimate.mean.fraglen(cstest$ctcf)
chr10 chr11 chr12
179.6794 172.4884 181.6732

Analyzing NGS Data

264

5.	 Extend your fragments in order to cover the binding sites in the sequences. Use an
extension length inspired by the fragment lengths in the last step (length =200 >
estimate.mean.fraglen(cstest$ctcf)) as follows:
> ctcf_ext <- resize(cstest$ctcf, width = 200)
> gfp_ext <- resize(cstest$gfp, width = 200)

A useful summary of this information is the coverage, that is, how many times each
base in the genome was covered by one of these intervals and can be computed
as follows:

> cov_ctcf <- coverage(ctcf_ext)
> cov_gfp <- coverage(gfp_ext)

6.	 Now, create a plot called islands for the regions of interest with the following functions.
They are contiguous segments:
> par(mfrow = c(2, 1))
> islandDepthPlot(cov_ctcf)
> islandDepthPlot(cov_gfp)

In the following screenshot, the x axis shows the depth, whereas the y axis shows the
corresponding log counts (overall, the plot shows the coverage for the sample data):

7.	 Now, compute the peak's cut off for a desired fdr (here, 0.01) as follows:
> peakCutoff(cov_ctcf, fdr = 0.01)
[1] 5.091909
> peakCutoff(cov_gfp, fdr = 0.01)
[1] 6.979273

Chapter 8

265

8.	 With this value, decide a cut-off value (7) to be used in order to get the peaks with
high coverage in the segments of the data for both lanes, ctcf and gfp, as follows
(note that the chosen cut off is based on your computation above 5.09 and 6.97):
> peaks_ctcf <- slice(cov_ctcf, lower = 7)
> peaks_gfp <- slice(cov_gfp, lower = 7)

9.	 Now, compute the differential peaks with the following function to determine which
peaks are different in the two samples:
> peakSummary <- diffPeakSummary(peaks_gfp, peaks_ctcf)
> head(data.frame(peakSummary))

10.	 Visualize the results in terms of an XY plot as follows:
> xyplot(asinh(sums2) ~ asinh(sums1) | space, data = as data
frame(peakSummary))

In the following screenshot, you can see the summary of the peaks for
three chromosomes:

Analyzing NGS Data

266

11.	 Now, you have the peaks of your interest. Find if they are in the region of interest
(promoter region) using the following commands:
> gregions <- transcripts(TxDb.Mmusculus.UCSC.mm9.knownGene)

> promoters <- flank(gregions, 1000, both = TRUE)

> peakSummary$inPromoter <- peakSummary %over% promoters

12.	 Take a look at the peaks in the promoter region by looking at the object created in the
previous step as follows:

> which(peakSummary$inPromoter)

How it works…
In this recipe, the input data was from three chromosomes (10, 11, and 12) and in two lanes
representing ctcf and gfp pull-down in mouse. The aim of our analysis is to find which
peaks are different in two lanes (samples). The method explained in this recipe finds the
coverage vectors for the data and computes statistical scores for the peaks therein. We start
with finding the coverage for both the lanes by extending the reads to cover the binding sites.
Thereafter, we define our peaks based on a cut-off value according to the desired fdr
(0.01, as seen in step 7). The diffPeakSummary function then combines a set of peaks
for the two lanes and summarizes them. Finally, we map the peaks onto the reference
genome in step 11, and select the peaks that lie in the promoter region, which are of
interest to find the binding sites (step 12).

See also
ff The ChIP-seq: welcome to the new frontier article by Elaine R Mardis (http://www.

nature.com/nmeth/journal/v4/n8/abs/nmeth0807-613.html), which
provides a detailed description about the ChipSeq workflow

ff The Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data
article by Bailey and others (http://www.ploscompbiol.org/article/
info%3Adoi%2F10.1371%2Fjournal.pcbi.1003326), which provides a
detailed description of the ChipSeq data analysis protocol

ff The ChIP-seq Analysis in R (CSAR): An R package for the statistical detection of
protein-bound genomic regions article by Muino and others (http://www.newton.
ac.uk/programmes/CGR/Muino,%20J.pdf), which provides detailed information
on the ChipSeq package

ff The BayesPeak-an R package for analysing ChIP-seq data article by Cairns and others
(http://bioinformatics.oxfordjournals.org/content/27/5/713.
long), which provides information about the BayesPeak method

http://www.nature.com/nmeth/journal/v4/n8/full/nmeth0807-613.html
http://www.nature.com/nmeth/journal/v4/n8/abs/nmeth0807-613.html
http://www.nature.com/nmeth/journal/v4/n8/abs/nmeth0807-613.html
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003326
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1003326
http://www.newton.ac.uk/programmes/CGR/Muino, J.pdf
http://www.newton.ac.uk/programmes/CGR/Muino, J.pdf
http://bioinformatics.oxfordjournals.org/content/27/5/713.long
http://bioinformatics.oxfordjournals.org/content/27/5/713.long

Chapter 8

267

Visualizations for NGS data
This recipe will introduce some new visualizations that can be used to represent some results
in NGS analysis. We will present two plots as follows:

ff A quality assessment plot for NGS

ff A map for the methylation data

Getting ready
The demonstration code presented in this recipe will use a function not available in the R
package, but will obtain it from a remote host.

How to do it…
The steps for the above mentioned plots are as follows:

1.	 First, start with a comprehensive plot used for visualizing the quality in a FASTQ data.
You can do this within R, as you did before, by typing the following commands:
> download.file(url = "http://biocluster.ucr.edu/~tgirke/HTML_
Presentations/Manuals/Rngsapps/chipseqBioc2012/data.zip", destfile
= "data.zip")

> unzip("data.zip")

Alternatively, you can do this in the Linux terminal as well by typing the following
commands (note that this might take some time depending on your network speed
and bandwidth):

$ cd <path/to/working/directory>

$ wget http://biocluster.ucr.edu/~tgirke/HTML_Presentations/
Manuals/Rngsapps/chipseqBioc2012/data.zip

$ unzip data.zip

$ cd Data/

2.	 Now, start your R session and load the following ggplot2 library:
$ R

> library(ggplot2)

3.	 Load the function for your plot from a remote host as follows (note that it is advised to
check the web pages to be used for source codes manually in order to avoid reaching
malicious pages and availability):
> source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_
Scripts/fastqQuality.R")

Analyzing NGS Data

268

4.	 Now, create a list of unzipped FASTQ files and assign names to each file for the
purpose of annotation of plots as follows:
> fastq <- list.files(getwd(),"*.fastq$")

> names(fastq) <- paste("flowcell_6_lane", 1:4, sep="_")

5.	 With the FASTQ files ready, compute the quality related scores for each file as follows:
> fqlist <- seeFastq(fastq=fastq, batchsize=1000, klength=5)

6.	 To visualize the results, plot the quality measurements for the first sample only
as follows:
> seeFastqPlot(fqlist[1], arrange=seq(along=fqlist))

7.	 The second visualization is a detailed visualization for methylation data. For this,
use the analysis results from the Analyzing methylation data recipe as follows:
> library(methyAnalysis)

> data(exampleMethyGenoSet)

8.	 Now, take a look at the CSV file that you exported in the Analyzing methylation
data recipe and choose the gene you want to visualize on the chromosomal map
(here, 54149, the first gene in the list).

9.	 To plot the map, use the plotMethylationHeatmapByGene function from the
methyAnalysis package as follows:
> plotMethylationHeatmapByGene('54149', methyGenoSet =
exampleMethyGenoSet, phenoData = pData(exampleMethyGenoSet),
includeGeneBody = TRUE, genomicFeature = 'TxDb.Hsapiens.UCSC.hg19.
knownGene')

How it works…
The quality plot (the first plot of the recipe) created here shows the following characters:

ff A boxplot of quality (Phred score)

ff Base (A, G, C, and T) proportion

ff Mean base quality

ff k-mer diversity

Chapter 8

269

The following plot shows the quality and base compositions in every cycle:

We can look into the content of the metrics computed for sample (lane) i and metrics j
as follows:

> head(fqlist[[i]][[j]])

Analyzing NGS Data

270

The second plot takes the gene 5149 and maps it onto chromosome 21 based on its location
in the data from the genome map in TxDb.Hsapiens.UCSC.hg19.knownGene. Besides
this, it also plots the methylation beta or M values in the adjoining heatmap. The following
screenshot shows the heatmap for methylation data with chromosomal location:

9
Machine Learning
in Bioinformatics

In this chapter, we will cover the following recipes:

ff Data clustering in R using k-means and hierarchical clustering
ff Visualizing clusters
ff Supervised learning for classification
ff Probabilistic learning in R with Naïve Bayes
ff Bootstrapping in machine learning
ff Cross-validation for classifiers
ff Measuring the performance of classifiers
ff Visualizing an ROC curve in R
ff Biomarker identification using array data

Introduction
The exponential growth of the amount of available biological data raises two problems, that of
efficient storage and management of data and of the extraction of useful information from such
data. The second problem is one of the main challenges in computational biology; it requires
the development of tools and methods that are capable of transforming all this heterogeneous
data into biological knowledge about the underlying mechanism. To illustrate, think of gene
expression data that consists of expression values from a series of DNA microarray experiments.
The data comes from patients suffering from a disease, say, cancer. With this kind of data at our
disposal, it is interesting to look for answers to the following questions:

ff Which samples exhibit a higher similarity in their expression profiles?
ff Is there some intra-sample similarity between the genes?
ff Are there some genes that serve as the defining feature in certain types of cancer?

Machine Learning in Bioinformatics

272

Machine learning is a domain in artificial intelligence that allows computers to learn these
aspects, and more, from this kind of example data or past experience. Machine learning can
create and optimize models that can predict outcomes based on the features in the known
data (usually termed as training data).

The two major settings in which we perform machine learning are supervised learning and
unsupervised learning. In supervised learning, we have the values of the samples in the
training set and use this knowledge to predict values for the unknown sample: a test set.
Classification is an instance of supervised learning where we have the categories (class
labels) of samples known in the training set and create our models based on this set to
predict the class labels for the unknown instances. Unsupervised learning uses a set of data
instances without any known results. It finds patterns in the data and thus partitions the data
into meaningful subsets (these categories are not predefined as in the case of supervised
learning). Clustering is an example of unsupervised learning where exploratory data analysis
is performed to find patterns to identify the similarities and dissimilarities among the
data instances.

In this chapter, we will elaborate on how to deal with machine learning methods in
bioinformatics using R. However, before we move on to specific problems in bioinformatics
and their solutions via machine learning, we must first define a clear objective, and the data
should be able to answer this question. The key issues that must be taken care of before we
start with the formulation of learning models are as follows:

ff Assessing data quality: Correctness and completeness of data is necessary to
get the model to work in the way that it is supposed to. This includes checking the
consistency, the attribute values and types, the missing values, and finding
the outliers.

ff Data normalization: Depending on the input data and the chosen algorithm,
sometimes we need to standardize the data in order to make it comparable.
However, it might not be required in cases where the unique scaling of data is
significant. Similarly, the normalization method can be different depending on
the types of features. Another important aspect is that one should first normalize
the training data and then apply these normalization parameters to rescale the
validation data.

ff Feature selection: We need to get the features that show a dependency between
the data instance and the objective (for example, class labels in the case of
classification). Depending on the data, objective, and learning algorithm, all features
might not be required to create a mode; they either add noise, redundancy, or cause
computational inefficiency for the model. Therefore, we need to identify useful
features that can define the objective function. For example, avoiding a redundant
feature or correlated feature is a good call.

Chapter 9

273

There are many other aspects that should be taken care of, and they will be explained
when required. It is beyond the scope of this book to go through all the details here. It is
recommended that you go through a basic book on machine learning for more information
(for example, The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman, which
is available at http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/
ESLII_print10.pdf). The Machine learning in bioinformatics article by Larrañaga and others
(http://bib.oxfordjournals.org/content/7/1/86.long) also gives a good overview
of the field in the context of bioinformatics.

In all of the recipes presented here, the data we use has already gone through preprocessing.
We will simply attempt to build our model based on the presented data (and later, validate it).

Data clustering in R using k-means and
hierarchical clustering

Clustering is an unsupervised learning task in data mining. It aims to group a set of data
points in such a way that those in the same group are more similar to each other than
to those in other groups. These groups are unlabeled and are called clusters. The goal
of clustering is to minimize the distances between the data points within the cluster and
maximize the distances between the clusters. There are several functions available in R to
perform different kinds of clustering. This recipe will explain some of these functions.

Getting ready
To perform clustering, we need our dataset to be clustered. We also need to decide the
number of groups that we intend to organize our clusters into while using some of the
clustering methods. The required R-packages will be introduced when needed. As a dataset,
we use the yeast data on protein localization sites in gram-negative bacteria available from
the book's web page (yeast.rda). The data has been selected for four localizations and
1299 instances. It has been filtered from the original data at http://archive.ics.uci.
edu/ml/machine-learning-databases/yeast/. We have four localizations in the data,
namely mitochondria, cytosol, nucleus, and membrane. To find out more about the features
used, visit the UCI machine learning repository at http://archive.ics.uci.edu/ml/
machine-learning-databases/yeast/yeast.names.

http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
Machine learning in bioinformatics
http://bib.oxfordjournals.org/content/7/1/86.long
http://archive.ics.uci.edu/ml/machine-learning-databases/yeast/
http://archive.ics.uci.edu/ml/machine-learning-databases/yeast/
http://archive.ics.uci.edu/ml/machine-learning-databases/yeast/yeast.names
http://archive.ics.uci.edu/ml/machine-learning-databases/yeast/yeast.names

Machine Learning in Bioinformatics

274

How to do it...
To perform clustering on part of the iris dataset, perform the following steps:

1.	 First, you need a dataset as the input for clustering. Use the yeast data, which was
described earlier, and select the feature columns 2 to 10 (10th column is the class
label) as follows:
> load("path/to/code/directory/yeast.rda") # located in the code
file directory for the chapter, assign the path accordingly
> myData <- yeast[,2:9]

2.	 Next, define the number of clusters you want for your dataset as follows (here, choose
4 because there are four localizations in the data):
> k <- 4

3.	 Start with k-means clustering. To perform k-means clustering, use the following
function, taking the data and the number of clusters as input:
> kmeans_result <- kmeans(myData, k)

4.	 Now, check the number of proteins under each cluster by looking for and clustering
the results as a table, as follows:
> table(kmeans_result$cluster)

5.	 Visualize the clusters along two selected variables of the dataset (here, the sepal
length and width) as follows:
> par(mfrow=c(1,2))

> plot(myData[c("mit", "gvh")], col = kmeans_result$cluster, main
= "(A) Plot with clusters")

6.	 Plot the actual species and compare the clustering results with actual data by typing
the following command:
> plot(myData[c("mit", "gvh")], col = yeast$class, main = "(B)
Plot with actual classes")

7.	 To observe the cluster centers in the plot, add them using the following command:
> points(kmeans_result$centers[,c("mit", "gvh")], col = 1:4, pch =
8, cex=2)

In the following scatterplot, the colors represent the cluster computed in the dataset
(A) and the actual classes in the input data (B). The centroids of the clusters are
shown as stars—the colors correspond to the clusters in (A)—together with the data
points in (B). In both plots, you can see the features mit and gvh along the x and y
axes, respectively:

Chapter 9

275

Clustering data points

8.	 The next step is to work with hierarchical clustering. For this, first create a distance
matrix between the data points. However, for visualization purposes, reduce
the dataset to 100 instances (the data is provided separately under the name
yeast100.rda). This can be done as follows:
> load("path/to/code/directory/yeast100.rda")") # located in the
code file directory for the chapter, assign the path accordingly

> myData_100 <- yeast100[,2:9]

> myDist <- dist(myData_100) # might throw a warning depending on
the data but can be ignored

9.	 The following command is used for hierarchical clustering:
> hc <- hclust(myDist, method="ave")

10.	 Now, check the clusters formed by typing the following command and cut the tree for
three clusters:
> groups <- cutree(hc, k=k)

11.	 The tree thus formed can be plotted as a dendrogram, as follows:
> plot(hc, hang <- -1, labels=groups)

Machine Learning in Bioinformatics

276

12.	 For better visualization, plot a rectangle around the cluster with the following function:
> rect.hclust(hc, k = 4, which = NULL, x = NULL, h = NULL, border
= 2, cluster = NULL)

In the following plot, you can see that the clusters have been boxed inside red boxes:

A dendrogram of the hierarchical cluster

How it works…
The clustering approaches shown previously use two different methods, namely k-means
and hierarchical clustering. The first step is to prepare the data. The iris data is imported
into the R session. We select the features in the data (columns 1 to 9, with the 10th being
the class). We set the number of clusters to be 4 (k=4). The reason we use 4 is because we
have four classes in the data as well. The class attribute from the data is removed; otherwise,
it can cause bias in the clustering process. Once the data is ready, we apply the clustering
algorithms implemented in the built-in R functions, such as kmeans and hclust.

The k-means algorithm randomly assigns clusters with the initial k to the input data points
and then computes the means of the clusters, which are called centroids. This is updated
and reassigned till the clustering converges.

The hierarchical clustering first computes the distances between the data points based
on the feature measurements available. By default, the distance metrics used in the dist
function are Euclidean (the other options are Manhattan, Maximum, and so on); note that
these argument are passed in small letters such as euclidean and manhattan within the
functions. This distance matrix is then used to build a dendrogram. Once the dendrogram
is ready, an optimal cut is determined to get the desired number of clusters in the data
(try different cluster numbers and see the results).

A tip while clustering, which can be rewarding, is to use hierarchical clustering first to visualize
the clustering outcome and decide how many groups are to be categorized (by finding k),
and then to use this k to compute clusters via other methods.

Chapter 9

277

There's more…
There are other clustering methods in R, for example, the som and kohonen packages for
self-organizing maps. Density-based clustering methods are implemented in fpc packages.
Fuzzy clustering can be performed with e1071 packages via the cmeans function. The e1071
package is available from the CRAN repository at http://cran.r-project.org/web/
packages/e1071/index.html.

See also
ff The A Survey of Clustering Data Mining Techniques article by Berkhin at

http://link.springer.com/chapter/10.1007/3-540-28349-8_2,
which provides an overview of clustering techniques

Visualizing clusters
Visualizing clusters in a two- or three-dimensional space gives more intuitive information
to the observer in terms of the location of the data points in the feature space and the
segregation and aggregation of these data points. The visualization usually consists of the
location of a data point along the feature axis. Another interesting plot for clustering is the
silhouette plot, which depicts the quality of clustering. In this recipe, we work on a few types of
visualizations of the clusters in k-means as we have already seen the visualization specific to
hierarchical clustering.

Getting ready
What we need for the visualization is the data and the cluster information. Here, we use our
previous recipe as the input.

How to do it…
Perform the following steps for cluster visualizations:

1.	 Create a simple plot of obtained clusters, plot the data against the clusters, and color
the points based on the clusters that they are put into as follows:
> plot(myData, col = kmeans_result$cluster)

2.	 To perform shading on the clustering area, use the fpc package and shade the areas
with corresponding colors, as follows:
> install.packages("fpc")
> library(fpc)
> clusplot(myData, kmeans_result$cluster, color=T, shade=T,
labels=2, lines=0)

http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/e1071/index.html
http://link.springer.com/chapter/10.1007/3-540-28349-8_2`

Machine Learning in Bioinformatics

278

In the following screenshot, the x and y axes represent the two components that
explain the maximum amount of variability:

Clustering visualizations displaying clusters within shaded regions

3.	 To look at the centroid positions together with the data is a bit complicated. However,
this can be achieved in the following way and requires the given vegan library:
> install.packages("vegan")

> library(vegan)

4.	 Now, assign the groups as the levels in the cluster results as follows:
> groups <- levels(factor(kmeans_result$cluster))

Chapter 9

279

5.	 After this, initialize a plot with the following command:
> ordiplot(cmdscale(dist(myData)), type = "n") # might issue a
warning

6.	 Assign the colors to each cluster in the results, as follows:
> cols <- rainbow(nlevels(factor(kmeans_result$cluster)))

7.	 Now, plot each data point within the initialized plot as follows:
> for(i in seq_along(groups)) {
 points(cmdscale(dist(myData))[factor(kmeans_result$cluster) ==
groups[i],], col = cols[i], pch = 16)
}

8.	 Then, add the spider web for each data point on the plot as follows:
> ordispider(cmdscale(dist(myData)), factor(kmeans_
result$cluster), label = TRUE)
> ordihull(cmdscale(dist(myData)), factor(kmeans_result$cluster),
lty = "dotted")

In the following plot, the data points and their corresponding cluster centroids are
connected by a spider web:

Clustering visualizations

Machine Learning in Bioinformatics

280

9.	 Silhouette plots show the quality of clustering in terms of the segregation and
aggregation of data points. It can be plotted as follows:
> myDaisy <- (daisy(myData))^2 # might issue a warning
> mySil <- silhouette(kmeans_result$cluster, myDaisy)
> plot(mySil)

How it works…
The simple plot explained in step 1 prepares a plot of the entire data matrix and simply colors
the points depending on the clusters assigned to them. Using the fpc package, as seen in
step 2, we encircle the region for each cluster around its centroid. The third plot that shows
the centroid and spider webs from the data point to the centroid of the cluster uses the
vegan library to plot functions. The vegan library has several utilities to compute distance
matrices. Here, the dist function computes the pairwise distances within the data. The
cmdplot function computes the classical, multidimensional scaling (principal coordinates
analysis) of a data matrix and returns a set of points such that the distances between the
points are approximately equal to the dissimilarities. The initial blank plot is filled with data
points (type=n), as shown in step 7, followed by which the spider webs between the data
points and the cluster centroid are added. This plot can be used to visualize the spread of
data in the feature space. The silhouette plot represents the following aspects:

ff The number of clusters, each depicted by a horizontal grey area.

ff The height of these grey regions is proportional to the number of data point within
the corresponding cluster.

ff The grey area is formed by a collection of data within each cluster represented by
lines that extend horizontally to its silhouette width (SW), representing how well
does a point fits in one cluster compared to other. The higher the SW, better is the fit.

ff The silhouette index is the mean similarity of each point to its own cluster minus the
mean similarity to the next most similar cluster.

Chapter 9

281

The silhouette plot for k-means clustering is as follows:

Finally, the silhouette plot uses the cluster library of R to compute distances in the dataset as
well as create the silhouette object for the cluster results. We can then plot the results using
the plot function of R. The silhouette index provides a measure of how well each object lies
within its cluster. Here, the plot shows the highest silhouette index for cluster 3.

See also
ff The Silhouettes: A graphical aid to the interpretation and valida tion of cluster

analysis article by Peter J. Rousseeuw at http://www.sciencedirect.com/
science/article/pii/0377042787901257, which provides information about
the silhouette index and plot

http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257

Machine Learning in Bioinformatics

282

Supervised learning for classification
Like clustering, classification is also about categorizing data instances, but in this case, the
categories are known and are termed as class labels. Thus, it aims at identifying the category
that a new data point belongs to. It uses a dataset where the class labels are known to find
the pattern. Classification is an instance of supervised learning where the learning algorithm
takes a known set of input data and corresponding responses called class labels and builds
a predictor model that generates reasonable predictions for the class labels in the unknown
data. To illustrate, let's imagine that we have gene expression data from cancer patients as
well as healthy patients. The gene expression pattern in these samples can define whether
the patient has cancer or not. In this case, if we have a set of samples for which we know the
type of tumor, the data can be used to learn a model that can identify the type of tumor. In
simple terms, it is a predictive function used to determine the tumor type. Later, this model
can be applied to predict the type of tumor in unknown cases.

There are some do's and don'ts to keep in mind while learning a classifier. You need to make
sure that you have enough data to learn the model. Learning with smaller datasets will not
allow the model to learn the pattern in an unbiased manner and again, you will end up with
an inaccurate classification. Furthermore, the preprocessing steps (such as normalization)
for the training and test data should be the same. Another important thing that one should
take care of is to keep the training and test data distinct. Learning on the entire data and then
using a part of this data for testing will lead to a phenomenon called overfitting. It is always
recommended that you take a look at it manually and understand the question that you need
to answer via your classifier.

There are several methods of classification. In this recipe, we will talk about some of these
methods. We will discuss linear discriminant analysis (LDA), decision tree (DT), and support
vector machine (SVM).

Getting ready
To perform the classification task, we need two preparations. First, a dataset with known class
labels (training set), and second, the test data that the classifier has to be tested on (test set).
Besides this, we will use some R packages, which will be discussed when required. As a dataset,
we will use approximately 2300 gene from tumor cells. The data has ~83 data points with four
different types of tumors. These will be used as our class labels. We will use 60 of the data
points for the training and the remaining 23 for the test. To find out more about the dataset,
refer to the Classification and diagnostic prediction of cancers using gene expression profiling
and artificial neural networks article by Khan and others (http://research.nhgri.nih.
gov/microarray/Supplement/). The set has been precompiled in a format that is readily
usable in R and is available on the book's web page (code files) under the name cancer.rda.

http://research.nhgri.nih.gov/microarray/Supplement/
http://research.nhgri.nih.gov/microarray/Supplement/

Chapter 9

283

How to do it…
To classify data points based on their features, perform the following steps:

1.	 First, load the following MASS library as it has some of the classification functions:
> library(MASS)

2.	 Now, you need your data to learn and test the classifiers. Load the data from the code
files available on the book's web page (cancer.rda) as follows:
> load("path/to/code/directory/cancer.rda") # located in the code
file directory for the chapter, assign the path accordingly

3.	 Randomly sample 60 data points for the training and the remaining 23 for the test
set as follows—ensure that these two datasets do not overlap and are not biased
towards any specific tumor type (random sampling):
> train_row <- sample(1:83, 60)
> train <- mldata[train_row,] # use sampled indexes to extract
training data
> test <- mldata[-train_row,] # test set is select by selecting
all the other data points

4.	 For the training data, retain the class labels, which are the tumor columns here,
and remove this information from the test data. However, store this information
for comparison purposes:
> testClass <- test$tumor
> test$tumor <- NULL

5.	 Now, try the linear discriminate analysis classifier, as follows, to get the
classifier model:
> myLD <- lda(tumor ~ ., train) # might issue a warning

6.	 Test this classifier to predict the labels on your test set, as follows:
> testRes_lda <- predict(myLD, test)

7.	 To check the number of correct and incorrect predictions, simply compare the predicted
classes with the testClass object, which was created in step 4, as follows:
> sum(testRes_lda$class == testClass) # correct prediction
[1] 19
> sum(testRes_lda$class != testClass) # incorrect prediction
[1] 4

8.	 Now, try another simple classifier called DT. For this, you need the rpart package:
> library(rpart)

Machine Learning in Bioinformatics

284

9.	 Create the decision tree based on your training data, as follows:
> myDT <- rpart(tumor~ ., data = train, control = rpart.
control(minsplit = 10))

10.	 Plot your tree by typing the following commands, as shown in the next diagram:
> plot(myDT)
> text(myDT, use.n=T)

The following screenshot shows the cut off for each feature (represented by the
branches) to differentiate between the classes:

1435862>=1.907

EW
0/20/0/1

782193<0.1774

21652<0.4524
RM

1/1/0/15
BL

7/0/0/0
NB

0/0/15/0

The tree for DT-based learning

11.	 Now, test the decision tree classifier on your test data using the following
prediction function:
> testRes_dt <- predict(myDT, newdata= test)

12.	 Take a look at the species that each data instance is put in by the predicted classifier,
as follows (1 if predicted in the class, else 0):
> classes <- round(testRes_dt)

> head(classes)

 BL EW NB RM

4 0 0 0 1

10 0 0 0 1

15 1 0 0 0

16 0 0 1 0

18 0 1 0 0

21 0 1 0 0

Chapter 9

285

13.	 Finally, you'll work with SVMs. To be able to use them, you need another R package
named e1071 as follows:
> library(e1071)

14.	 Create the svm classifier from the training data as follows:
> mySVM <- svm(tumor ~ ., data = train)

15.	 Then, use your classifier, the model (mySVM object) learned to predict for the test
data. You will see the predicted labels for each instance as follows:
> testRes_svm <- predict(mySVM, test)

> testRes_svm

How it works…
We started our recipe by loading the input data on tumors. The supervised learning methods
we saw in the recipe used two datasets: the training set and test set. The training set carries
the class label information. The first part in most of the learning methods shown here, the
training set is used to identify a pattern and model the pattern to find a distinction between
the classes. This model is then applied on the test set that does not have the class label data
to predict the class labels. To identify the training and test sets, we first randomly sample 60
indexes out of the entire data and use the remaining 23 for testing purposes.

The supervised learning methods explained in this recipe follow a different principle. LDA
attempts to model the difference between classes based on the linear combination of its
features. This combination function forms the model based on the training set and is used
to predict the classes in the test set. The LDA model trained on 60 samples is then used to
predict for the remaining 23 cases.

DT is, however, a different method. It forms regression trees that form a set of rules to
distinguish one class from the other. The tree learned on a training set is applied to
predict classes in test sets or other similar datasets.

SVM is a relatively complex technique of classification. It aims to create a hyperplane(s) in
the feature space, making the data points separable along these planes. This is done on a
training set and is then used to assign classes to new data points. In general, LDA uses linear
combination and SVM uses multiple dimensions as the hyperplane for data distinction. In this
recipe, we used the svm functionality from the e1071 package, which has many other utilities
for learning.

We can compare the results obtained by the models we used in this recipe (they can be
computed using the provided code on the book's web page).

Machine Learning in Bioinformatics

286

There's more...
One of the most popular classifier tools in the machine learning community is WEKA.
It is a Java-based tool and implements many libraries to perform classification tasks
using DT, LDA, Random Forest, and so on. R supports an interface to the WEKA with a
library named RWeka. It is available on the CRAN repository at http://cran.r-project.
org/web/packages/RWeka/.

It uses RWekajars, a separate package, to use the Java libraries in it that implement
different classifiers.

See also
ff The Elements of Statistical Learning book by Hastie, Tibshirani, and Friedman at

http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/
ESLII_print10.pdf, which provides more information on LDA, DT, and SVM

Probabilistic learning in R with Naïve Bayes
Until now, we have gone through some nonprobabilistic classification methods. However,
it is important to have a look at the probabilistic methods of classification and data mining.
To maintain simplicity, we describe the Naïve Bayes method for classification in this recipe.

The Naïve Bayes method is an extremely simple, probabilistic classification method. It is
based on the assumption of independent features in datasets. This means that the presence
or absence of a particular feature is independent (unrelated) from the presence (or absence)
of any other feature. For illustration purposes, let's imagine that a disease D can be caused by
the mutation of three genes, namely a, b, and c. Assuming that these genes are independent,
the information from these genes may be combined in a Naïve Bayes classifier with a node for
disease D as a parent to the independent variables a, b, and c.

Naïve Bayes classifiers require small training data to estimate the parameters (the means and
variances of the variables) necessary for classification. Since it is based on the assumption
that the variables are independent, only the variances of the variables for each class need to
be computed and not the entire covariance matrix.

Getting ready
The prerequisites for the recipe are the same as those of the earlier recipes (for other
classification recipes)—the training set and test set. However, we need the R library, e1071, in
addition to this. We continue to use the training and test sets created for previous classifiers.

http://cran.r-project.org/web/packages/RWeka/
http://cran.r-project.org/web/packages/RWeka/
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf

Chapter 9

287

How to do it...
To perform a Naïve Bayes classification, perform the following steps:

1.	 First, load the e1071 library into the R session as follows:
> library(e1071)

2.	 Now, learn the classifier model based on the training set using the naiveBayes
function of the e1071 package as follows:
> model <- naiveBayes(tumor ~ , data = train)

3.	 Once you have your trained model, use it to predict the classes in the test set
as follows:
> testRes_nb <- predict(model, test)

4.	 Compare the predicted classes with the actual classes by forming a contingency
table as follows:
> table(testRes_nb, testClass)

testClass

testRes_nb BL EW NB RM

 BL 3 0 0 0

 EW 0 8 0 0

 NB 0 0 3 0

 RM 0 0 0 9

How it works...
The e1071 library of R has the Naïve Bayes method implemented within it. The method
computes the conditional posterior probabilities of the class based on the Bayes rule, given
the feature values that are considered as independent of each other. These probability
values create the classifier model, which is then used to predict the classes in the test set or
new data points. The formula argument in the function represents the class labels and the
variables that it depends on. These values must be present in the training data; however, the
class labels are missing in the test data. (Remove the label on purpose to verify the prediction
power of the classifier.)

See also
ff The Understanding Probabilistic Classifiers article by Garg and Roth at

http://link.springer.com/chapter/10.1007%2F3-540-44795-4_16,
which provides more details on probabilistic classifiers

http://link.springer.com/chapter/10.1007%2F3-540-44795-4_16
http://link.springer.com/chapter/10.1007%2F3-540-44795-4_16

Machine Learning in Bioinformatics

288

Bootstrapping in machine learning
Learning from subsamples is one way to test the robustness of a machine learning algorithm
and improve the accuracy of a learning algorithm. It is a simple approach for accuracy
estimation and provides the bias or variance of the estimator. One such approach is
bootstrapping. This is the practice of learning and estimating properties from subsamples of
the learning data, as well as iteratively improving the performance. This section will explain
bootstrapping with respect to R programming.

Getting ready
To bootstrap with any function, we need the function (for example, the type of classifier we
want to use) and the dataset that we want to perform the bootstrapping on. In this recipe,
we will use the iris dataset for this purpose.

How to do it…
Perform the following steps for bootstrapping using the iris data:

1.	 First, we need our dataset, and as mentioned earlier, we use the iris data for our
purpose, as follows:
> data(iris)

> myData = iris[c(1:150),]

2.	 For bootstrapping, create a function that will be bootstrapped across the dataset.
The function is an SVM classifier, and it returns the number of true positive (TP),
which serves as your performance value, as follows (this has been selected for
simplicity; a more complete measurement of performance discussed in the
upcoming recipes can be used as well):
> corPred <- function(data, label, indices){

 train = myData[indices,] # indexes for training data

 test = myData[-indices,] # indexes for test data

 testClass = test [,label] # assigns class labels (species)

 colnames(train)[ncol(train)]="Class" mySVM = svm(Class ~ .,
 data = train, cost = 100, gamma =
 1) # learn model using SVM

 myPred = predict(mySVM, test) # prediction on test set

 TP = sum(myPred == testClass) # calculate True positives

 return(TP)

}

Chapter 9

289

3.	 Now, write another function to bootstrap with the data and write the number of
bootstraps to the function as input, as follows:
> myboot <- function(d, label, iter){

 bootres = c()

 for(i in 1:iter){

 indices = sample(1:nrow(d), floor((2*nrow(d))/3)) # samples
indexes

 res = corPred (d, label, indices) # runs corPred function

 bootres = c(bootres, res) # append results

}

return(list(BOOT.RES = bootres, BOOT.MEAN = mean(bootres), BOOT.SD
= sd(bootres)))

}

4.	 Then, run your bootstrap function as follows:
> res.bs <- myboot(d = myData, label="Species",iter = 10000)

The results consist of the value for each iteration, that is, the mean of all of the
bootstraps and the corresponding standard deviation.

How it works…
The major part of the recipe has two functions in steps 2 and 3. The function in step 2
extracts the data for the training and test sets from the original data and uses the data
for learning and prediction, respectively. A command has been added to compute the
total number of true positives as a performance measure. It is very simple to modify it to
return other measurements such as sensitivity and specificity (this will be discussed in the
forthcoming recipes). The second function in step 3 actually does the bootstraps by sampling
data point indices for the training and test sets used in step 2. It also creates a vector of the
performance measure by appending results from the iterations (the BOOT.RES element in
the returned list). Thus, the overall value returned is a list that consists of the actual results
(vector of measurements) and their mean and standard deviation. A higher mean and lower
standard deviation indicates a consistent classifier with more accurate classifiers (in this case,
it is TP). The fourth step simply calls the function in step 3 with appropriate arguments.

Machine Learning in Bioinformatics

290

Cross-validation for classifiers
Getting a learning-based model is not enough to get optimal results. The question that
remains is how well the model performs when applied to make new predictions for unseen
data instances, which we refer to as predictive performance in technical terms. One way is
to hold out a part of the available data as a test set. After training, this test set can be used
to test the performance of the learned model. This basic idea for a whole class of model
evaluation methods is termed cross-validation. Cross-validation (CV) is useful to overcome
the problem of overfitting, which refers to a condition where the model requires more
information than the data can provide.

There are several approaches to do CV, the simplest being what we just described, that is,
holding a part of training data; the other popular methods are k-fold cross-validation and
leave-one-out cross-validation. The former approach can be seen as an iteration of holding
out a part of the dataset. Here, we divide the data into k subsets and iterate the learning and
testing k number of times using k-1 sets for training and the kth set for testing (hence, k-fold
cross-validation). The latter approach—leave-one-out—can be seen as k-fold cross-validation,
where the value of k is set to the data instance n (k = n). This yields n-1 instances for training
and the nth instance for testing. The smaller test set can lead to higher variability in predictive
performance in the case of leave-one-out methods (fewer sample combinations), besides being
more likely to be computationally expensive. In such cases, we go with k-fold cross-validation.

The question left to answer is: how do we define the number k? This depends a lot on how
many data instances we have; with a higher number of data instances available, we have more
freedom to choose k. The most accepted values for k are 5 and k. However, it is advisable that
you run iterations of a k-fold cross-validation for a robust model. Furthermore, we can include
the feature selection within CV, forming a nested k-fold cross-validation called the nested loop
cross-validation. For the purpose of this book, we will not elaborate on this here.

This recipe is about performing a k-fold cross-validation in R for a learning method of our choice.

Getting ready
This CV recipe will need data and a learning algorithm. For this purpose, we use the iris data,
but only the first 100 data instances. This is done to ensure that we have only two classes in
our set to keep things simple. The learning algorithm is a matter of choice; we use the SVM
learning from the e1071 package here.

Chapter 9

291

How to do it…
To do an n-fold cross-validation, perform the following set of steps:

1.	 First, load the e1071 package in your R session as follows:
> library(e1071)

2.	 Create the dataset for learning and testing purposes, and use the iris data again and
extract the first 100 instances from it as follows:
> data(iris)

> myData <- iris[1:100,]

3.	 Make a small modification in the extracted data to restrict the number of levels in the
class labels to 2 with the following command:
> myData$Species <- factor(as.character(myData$Species))

4.	 Now, set the number of folds for the CV, that is, choose the number of folds,
as follows:
> k=10

5.	 Then, create indices based on the number of folds for the CV by sampling from the
folds (k) with the replacement, and create the sequence vectors for the folds ranging
from 1 to k, as follows:
> index <- sample(1:k,nrow(myData),replace=TRUE)

> folds <- 1:k

6.	 Then, initialize a data frame to store your CV results as follows:
> myRes <- data.frame()

The following chunk of code is the main loop within which the data sampling and
learning and CV actually occurs:

> for (i in 1:k){

 training = subset(myData, index %in% folds[-i]) # create
training set

test = subset(myData, index %in% c(i)) # create test set

Machine Learning in Bioinformatics

292

 mymodel = svm(training$Species ~., data=training) # train model

 actual = test[,ncol(test)] # get actual lables

temp = data.frame(predict(mymodel, test [,-ncol(test)])) # run
model on test set

colnames(temp) = "Predicted"

 results = data.frame(Predicted=temp, Actual=actual) # create
data.frame for results

myRes = rbind(myRes, results) # append results for each iteration

}

7.	 Finally, prepare a contingency table for the overall CV results by typing the
following command:
> table(myRes)

How it works...
Steps 1 to 3 prepare the data for the entire process. The next steps set the parameters, such
as the number of folds for the CV. In this recipe, CV is actually done in step 7. Here, within the
loop, the training and test sets are created based of the number of folds, the sets to train and
test are sampled, and then the training and test sets are extracted. The SVM model is then
learned from the training set and used to predict on the test set. The predicted and actual
results are combined during the iterations and stored in the object myRes.

There's more...
You can use several packages to perform CV during your learning processes. R libraries,
such as randomForest and nlcv, allow this simultaneously while the learning process
by specifying particular arguments while running the learning function. Note that the
randomForest package is also the name of a classification method. The package is not only
meant for classification and regression based on a forest of trees but also carries utilities for
CV. However, in this recipe, we used our own set of functions; they can be used with any
choice of learning or statistical testing process.

See also
ff The book titled The Elements of Statistical Learning by Hastie, Tibshirani, and

Friedman at http://statweb.stanford.edu/~tibs/ElemStatLearn/
printings/ESLII_print10.pdf, which provides more details on CV

ff The Nested Loop Cross Validation for Classification using nlcv article by Talloen at
https://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/
nlcv/inst/doc/nlcv.pdf?root=nlcv, which provides a description of nested
loop cross-validation

http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
https://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/nlcv/inst/doc/nlcv.pdf?root=nlcv
https://r-forge.r-project.org/scm/viewvc.php/*checkout*/pkg/nlcv/inst/doc/nlcv.pdf?root=nlcv

Chapter 9

293

Measuring the performance of classifiers
Measuring the accuracy of the learning algorithms is as important as the algorithms
themselves. These measurements of performance define how accurately the data points have
been classified or clustered. In this recipe, we will describe the computation of some of these
measurements in R.

Getting ready
To start with, we need some of the results from recipes. We learned about the performance
measure for clustering in the Visualizing clusters recipe when we talked about silhouette plots.
In this recipe, we compute some of the measurements of performance to assess how good is
our classifier. We use a binary classification here (with two class labels) for simplicity. Working
with multiple classes will be explained in the See also section. The required R packages will
be introduced in the next section.

How to do it…
To measure the performance of classifiers, perform the following steps:

1.	 First, install and load the caret library as follows:
> install.packages("caret")
> library(caret)

2.	 Prepare your data and classifiers using the following function:
> data (iris)
> myData <- iris
> indices <- sample (1:nrow(myData), floor ((2*nrow(myData))/3))
> train <- myData [indices,]
> test <- myData [-indices,] testClass <- test [,"Species"]
> mySVM <- svm (Species ~ ., data = train, cost = 100, gamma =1)

3.	 To compute the performance of a classifier, first get the results from the predictions
of the SVM classifier and the actual class labels for the data points, as follows:
> myPred <- predict(mySVM, test)
> myLabels <- testClass

4.	 Then, compute the sensitivity and specificity of your learning method using the
following function from the caret package:
> myCM <- confusionMatrix(myPred, myLabels)

5.	 Extract the various confusion matrices from the object created earlier using the
performance function and by specifying the performance measure as follows:
> CMtable <- myCM$table

Machine Learning in Bioinformatics

294

6.	 Compute the sensitivity, specificity, and so on, of the classifier for every class
as follows:

> myPerf2 <- myCM$byClass

How it works...
The working of this recipe is very simple. The sensitivity and specificity functions from the
caret package compare the predicted and original class labels. The prediction function
from the ROCR package accepts two major arguments in terms of predicted classes and
original classes but in numerical terms, which has been shown in the following step. This
creates a prediction object that has all the performance measures. The measurement of
interest is extracted with the performance function. This function accepts the prediction
object and the name of the measurement as the input argument, as depicted in
steps 3, 4, and 5.

We can also use the ROCR package if we have only binary classes. For this, we convert the
factor class label into a numeric type and then use the prediction function from the ROCR
package as follows:

> preds <- prediction(as.numeric(myPred), as.numeric(myLabels))

Visualizing an ROC curve in R
ROC curves provide the complete measure of performance. They are of Specificity versus
1-Sensitivity plots represented on the x and y axes, respectively. The visualization of these
curves can provide the entire idea of the accuracy (sensitivity and specificity) of the classifier
in one plot. By looking at these plots, you will get a clear picture of the area under the curve;
the larger the area, the better the performance. The higher the area under this curve, the
higher the sensitivity and specificity. In fact, the top-right region in the ROC curve is also
termed as classifier heaven. Here, we intend on creating such visualizations.

Getting ready
We need our classifier results as input for the computation. We simply take the results of the
SVM classifier to avoid repetition of such results.

Chapter 9

295

How to do it…
To plot visualizations of the ROC curve for the methods explained earlier, perform the
following steps:

1.	 First, load the ROCR library as follows:
> library(pROC)

2.	 Then, compute the roc object as follows (here, we do it for the LDA classifier of the
tumor data):
> roc_lda <- plot.roc(as.numeric(testRes_lda$class),
as.numeric(testClass))

3.	 Plot these values to get the ROC curve as follows:
> plot(roc_lda, col="grey")

4.	 For comparison purposes, compute the roc object for another classifier (here,
we use svm) as follows:
> roc_svm <- plot.roc(as.numeric(testRes_svm),
as.numeric(testClass))

5.	 Plot the roc object for svm to the existing plot as follows:
> plot(roc_lda, col="grey")

> lines(roc_svm, col="black")

> legend("bottomright", c("svm", "lda"), fill = c("black","grey"))

The pROC package also has a function that can specifically deal with multiple classes;
use it, in this case, as follows:

> multiclass.roc(as.numeric(testRes_svm), as.numeric(testClass),
percent=TRUE)

How it works…
In the following diagram, the plot shows a perfect classification by the SVM classifier. This is an
ideal case, with the area under the curve equal to 1. The ROC curve for the method explained
in the recipe uses the pROC package and the learning approach used is svm. The graph shows
an area under the curve that is equal to 1. This is the ideal area under curve (AUC) for machine
learning and shows an accurate prediction for each data point (which rarely happens in real life).

Machine Learning in Bioinformatics

296

The diagonal line is just a representation of 50 percent of AUC and does not belong to
any classifier. The following diagram shows the ROC plot described previously:

As stated in the previous recipe, we extract the two performance measures, namely the
true positive rate (tpr) and the false positive rate (fpr) from the prediction object. These
measures are used to plot the ROC curve. The plot.roc function of the pROC package does
this in a single step.

There's more...
Another interesting library to create ROC plots is the pROC package. This recipe works well
for binary classification as well. However, it could get complicated if we have multiple classes.
For this purpose, we can use the pROC package. The pROC package provides the option of a
multiclass ROC curve. It presents the mean AUC value for all of the classes. The function to be
used is multiclass.roc. For further details, type the following commands:

> library(pROC)

?multiclass.roc

Chapter 9

297

Biomarker identification using array data
Until now, we have seen some machine learning methods in R. It will be interesting to look
at their application in bioinformatics. In life sciences, comparing groups of individuals to find
significant differences is becoming more and more important. It might be a measurement or
a substance that indicates the biological condition and can serve as biomarkers.

Let's imagine that we have gene expression data from patients and healthy controls. Genes
identified based on this expression data can differentiate between people with diseased and
healthy samples. These genes can serve as indicators or biomarkers for a biological state,
such as a disease. This recipe talks about such an application to look for biomarkers using
some learning techniques and statistical methods.

Getting ready
We need a few preparations before we go ahead. The first is the dataset where we will look for
the biomarker. We also need an R package called BioMark. In this recipe, we will generate
the dataset artificially.

How to do it…
The approach to find biomarkers from a dataset is illustrated as follows:

1.	 Start by installing and loading the BioMark library as follows:
> install.packages("BioMark")

> library(BioMark)

2.	 Once you have loaded the library, use the gen.data function to simulate a dataset
for use. By default, it simulated the data for five biomarkers, but this can be altered
with the nbiom argument as follows:
> simdata <- gen.data(ncontrol = 10, nvar = 500, nsimul=1, group.
diff = 1.5)

3.	 Check the contents of the dataset as follows:
> class(simdata)

> str(simdata$X)

4.	 The real biomarkers in the generated dataset are the first five variables; therefore,
you can assign it to an R object for evaluation purposes, as follows:
> myrealMarkers <- c(1,2,3,4,5)

Machine Learning in Bioinformatics

298

5.	 Now, use the get.biom function to look for the biomarkers in the dataset. Use the
pls method for this purpose as follows:
> myBiom <- get.biom(X = simdata$X[1:20,,1], Y = simdata$Y,
fmethod = "pls", type = "HC")

6.	 Once you have selected the biomarkers, take a look at the ranked variable's indices
with the following command:
> selection(myBiom)

7.	 Once you have the results, observe the performance measure in terms of the ROC
curve, as follows, for the top five biomarkers selected from the results:
> myROC <- ROC(1/coef(myBiom)$pls[[1]][1:5], myrealMarkers)

> plot(myROC)

How it works…
The BioMark library selects a biomarker from a dataset based on statistical tests or from
regression-based methods and their corresponding coefficients. The gen.data function
generates a dataset with a defined amount of control (ncontrol), and by default, the same
number of treated instances (to change this, use the ntreated argument). This generates a
certain number of datasets. We set this number to 1 by setting the nsimul argument to be
equal to 1. The result is a list of data class labels and a number of biomarkers (the default is
5). In order to use the dataset, we extract the data to be used by selecting only one dataset,
by specifying the proper array indices (see the X argument in step 5). The get.biom function
does the required test or learning to filter out the set of biomarkers in the dataset. It is
possible to use three different methods for inferring the biomarkers. Besides the partial least
square (PLS) regression that we use here, the other possible methods are PCR and t-tests.
The value returned is an ordered list of indices of the variables (in our case, genes or proteins)
that are found to act as biomarkers in the dataset.

There's more...
This recipe uses an existing package (BioMark). However, the process can be customized
for a more tailored method, such as SVM or other techniques. This will involve a new
implementation, which we will not present as a recipe here. Nevertheless, it is worthwhile
to look at some of the approaches to do this in the literature.

Useful Operators and
Functions in R

The commonly used operators in R are tabularized as follows:

Operator Purpose Example
= Assignment > sum(a = 5, b = 6)

[1] 11

<- Assignment > a <- 5

+ Addition > 10 + 1
[1] 11

- Subtraction > 10 - 1
[1] 9

* Multiplication > 10 * 2
[1] 20

/ Division > 10 / 2
[1] 5

^ or ** Exponentiation > 10 ^ 2
[1] 100

x %% y Modulus (x mod y) > 11 %% 2
[1] 1

x %/% y Integer division > 10 %/% 3
[1] 3

< Less than > 3 > 5
[1] FALSE

<= Less than or equal to > 3 <= 5
[1] TRUE

A

Useful Operators and Functions in R

300

Operator Purpose Example
> Greater than > 3 < 5

[1] TRUE

>= Greater than or equal to > 3 >= 5
[1] FALSE

== Check equality > 3 == 5
[1] FALSE

!= Not equal to > 3 != 5
[1] TRUE

! NOT > !a

| OR > x | y

& AND > x & y

%*% Matrix product > x=matrix(c(1,2,3,4),2,2)
> y=matrix(c(2,1,1,1),2,2)
> x %*% y
 [,1] [,2]
[1,] 5 4
[2,] 8 6

%in% Matching operator > 5 %in% c(1:10)
[1] TRUE

The following table shows the useful generic R functions:

Function Main arguments Details
as.*() Object to be created or

tested
Forces an object to belong to a class;
examples include the conversion of
data.frame to matrix, but it can
be used for many other classes:
> f <- data.frame(a=c(1,2,3),
b=c(4,5,6))
> class(f)
[1] "data.frame"
> d <- as.matrix(f)
> class(d)
[1] "matrix"

barplot() Vector or matrix for
which a plot should be
produced

Creates a bar plot (horizontal or vertical by
default), for example, barplot(c(a=32,
b=17, c=11))

boxplot() The values to be plotted
in the box plot

Produces boxplots for the given values, for
example, boxplot(x=c(1,3,4,5,6,))

Appendix A

301

Function Main arguments Details
c() Vector or list entries Concatenates the object vector or list

as follows:
> x <- c(1,2,3,4)

cat() Concatenate and print Prints the argument.
cbind Vectors, matrices, or data

frames to be combined
Bind the data along the columns as
data.frame.

ceiling() A numerical argument Takes a numerical argument and returns
the numeric vectors containing the
smallest integers, not less than the
elements of the original argument,
with the following command:
> ceiling(57.76)
[1] 58

colnames() Data frame or matrix Returns the names of the columns of a
data frame or a matrix-like object. If column
names are not available, colnames()
returns a NULL value.

data.frame() Values to be accepted as
data frame

To create a data frame class of R objects,
use the following command:
> f <- data.frame(a=c(1,2,3),
b=c(4,5,6))

data.matrix() The data frame To convert data frame to a matrix, use the
following commands:
> f <- data.frame(a=c(1,2,3),
b=c(4,5,6))
> d <- data.matrix(f)

data() Loads a dataset in
the library

Loads a library dataset in the R session
as follows:
> data(car90, package = "rpart")

dev.off() The device (default
current device)

Closes the graphics output device.

Useful Operators and Functions in R

302

Function Main arguments Details
dim() The matrix or data frame Returns the dimensions of the data frame or

the matrix (array) as follows:
> f <- data.frame(a=c(1,2,3),
b=c(4,5,6))
> dim(f)
[1] 3 2

dimnames() The matrix or data frame Returns the names of the various dimensions
in the data frame or the matrix (array):
> f <- data.frame(a=c(1,2,3),
b=c(4,5,6))
> dimnames(f)
[[1]]
[1] "1" "2" "3"
[[2]]
[1] "a" "b"

floor() A numerical argument Returns the smallest integers, not more
than the elements of the original argument,
as follows:
> floor(57.76)
[1] 57

getwd() No argument Retrieves the current working directory
(absolute path).

grep() The pattern (can be a
regex) and the character
vector

Searches for a pattern within a character
vector as follows:
> grep("rs", c("rs5427", "5427",
"snp5437"))
[1] 1

head() The data frame or matrix
and the number of
elements, n (default 6), to
be returned

Shows the first n elements of a data frame
as follows:
> data(iris)
> head(iris, n=5)

hist() A vector for the histogram Plots a histogram for the input vector.
intersect() The two sets (vectors) Finds the intersection of the two

sets (vectors).
length() The list or vector Gives the length of the list, factors,

or the vector.

Appendix A

303

Function Main arguments Details
library() Package name Loads an R package/library in the workspace

as follows:
> library(MAXX)

list() Values to be put inside
the list

Constructs a list together with the names of
the elements as follows:
> b <- list(1,3,5)

load() Path to the object Loads an object or data into the R session.
match() Values to be matched

and the values to be
matched against

Gives the vector of position, where the
match of the first argument was found
in the second, as follows:
> match("A", c("A", "D", "A",
"S"))
[1] 1

matrix() Values in the matrix can
be a number or a vector
of the size same as the
dimensions of the vector

Creates a new matrix as follows:
> matrix(c(1:9), 3,3)
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

max() A vector or list Finds the maximum value in a numeric list or
vector as follows:
> x <- sample(20,10)
> x
 [1] 12 5 19 6 15 16 1 11 2
4
> max(x)
[1] 19

mean() A vector or list Finds the mean value in a numeric list or
vector as follows:
> x <- sample(20,10)
> x
 [1] 12 5 19 6 15 16 1 11 2
4
> mean(x)
[1] 9.1

Useful Operators and Functions in R

304

Function Main arguments Details
min() A vector or list Finds the minimum value in a numeric list or

vector as follows:
> x <- sample(20,10)
> x
 [1] 12 5 19 6 15 16 1 11 2
4
> min(x)
[1] 1

names() Object name Gives the names in a named object, for
example, a list or vector

ncol() The matrix or data frame Gives the number of columns in the
data frame

nrow() The matrix or data frame Gives the number of rows in the data frame
pdf(), png() The name and path of a

PDF/PNG file
Opens the corresponding graphics device
(PDF/PNG), and saves the plot as a file in
the assigned path or working directory

range() A vector Gives the range within the numerical vector
as follows:
> x <- sample(20,10)
> range(x)
[1] 2 20

rbind Two or more data frames
or matrices with the same
number of columns and
where appropriate, same
column names

Appends the input along the rows as follows:
> x <- sample(20,3)
> y <- sample(20,3)
> rbind(x,y)
 [,1] [,2] [,3]
x 10 4 9
y 18 8 7

read.csv() File's name and path to
the file to be read

Reads the CSV file as a data frame object
and writes it into the R session

read.table File's name and the path,
if necessary

Reads the tabular text file as a data frame

rep() A number, character,
vector, and so on, in
addition to a positive
number n

Creates a vector that repeats the first
argument n times

require() The name of a library in R Loads an add-on R package (require() is
used inside functions)

Appendix A

305

Function Main arguments Details
rm R objects to be removed

from the session
Removes/deletes an R object from the
current R session

round() A numeric vector and
the number of decimal
places desired

Rounds off the numerical argument to
the specified number of decimal places
as follows:
> round(57.76, 1)
[1] 57.8

rownames() Data frame or matrix Gives the row names of the input matrix
or data frame. Can be used to assign row
names as well:
> data(iris)
> rownames(iris)

sample() The original set (vector)
to sample from and the
number of instances to
be sampled

Randomly sample a definite number of
elements from the given set of elements
as follows:
> sample(1:10,5)
[1] 10 9 1 7 2

save() Saves an object
or session

Saves the assigned object as a file of the
entire session. Here, the obj object is saved
as the file myObj.RData:
> save(obj, file="myObj.RData")

sd() Numeric vector Returns the standard deviation of the vector
as follows:
> sd(sample(1:10,5))
[1] 2.880972

seq() Lower and upper limits Generates a regular sequence between the
lower and upper limits. The interval can be
manipulated with the by argument (check
?seq for details).

setdiff() Two sets (vectors) Returns the differences in the elements
between the input sets.

setwd() Path to the desired
directory (as a character)

Sets the new directory path as the working
directory or relative directory for the current
R session as follows:
> setwd("path/to/dir")

Useful Operators and Functions in R

306

Function Main arguments Details
sink() Desired name for a

text file
Redirects all the information to be printed
on the screen to the file in the argument
as follows:
> sink("filename.txt")
> sum(1,2,3)
> sink()

sort A vector Arranges the vectors in the ascending
or descending order as desired by the
logical argument.

source() The path to a source file
(*.R file)

Loads the source code and all the objects
and functions in it into the R session from a
local or remote file. It also reads, parses,
and evaluates the expressions in the file.

str() An object Gives the structure of the object with the
following commands:
> data(iris)
> str(iris)

strsplit() Character vector and
regular expression (regex)
for splitting

Splits the character vector into substrings
based on the regex provided:
> strsplit("hsa:01234", ":")
[[1]]
[1] "hsa" "01234"

Apply Command style to
> strsplit("hsa:01234", ":")
[[1]]

subset() Original data frame,
vector, matrix conditions,
and desired columns

Subsets the desired part of a data frame that
meets specific conditions with the following
commands:
> myTest <- data.frame(x=c(1:10),
y=c(3:12))
> subset(myTest, x>4, c(x,y))

sum A numeric vector Computes the sum of all the elements of the
vector as follows:
> sum(c(1:10))
[1] 55

Appendix A

307

Function Main arguments Details
summary An R object Depending on the object structure, this

operator gives a summary of the contents
in the object with the following commands:
> data(iris)
> summary(iris)

tail() The data frame or matrix
and the number of n
elements to be returned
(default 6)

Shows the last n rows of data.frame with
the following commands:
> data(iris)
> tail(iris, n=5)

union() Sets as vectors Finds the union of the input sets as follows:
> union(c("a", "b", "c"),c("a",
"e"))
[1] "a" "b" "c" "e"

unique() A vector Returns unique elements in the input vector,
data.frame, or array.

which The condition operation Returns the parts of the original object that
satisfy a desired condition. An example is
given as follows:
> which((1:20)%%2==0)
[1] 2 4 6 8 10 12 14 16 18 20

write.csv() Data frame or matrix and
the filename

Writes a CSV file in the desired directory (the
working directory is the default) with the
values from data.frame or matrix.

B
Useful R Packages

The following are some of the useful R libraries and their applications. There are some
packages that are interesting for bioinformatics but in the presented recipes, they were not
needed and hence the corresponding chapter numbers are not a part of the following table:

Library name Application Repository Chapter
ade4 A package for multivariate data analysis. CRAN

affy This bears the functions for the exploratory
analysis of Affymetrix Oligonucleotide Array.

Bioconductor 5

ALL This is a data package with data for T and B
cell acute lymphocytic leukemia from the Ritz
Laboratory at the DFCI.

Bioconductor 5

annotate This package provides interface functions to
support user actions that rely on the different
metadata packages provided through the
Bioconductor project.

Bioconductor 2, 5

AnnotationDbi This package provides interface and
database connection functions for annotation
data packages.

Bioconductor 1, 2, 5, 8

ape Analyses of Phylogenetics and Evolution
(ape) contains functions to play around with
phylogenetic trees and related data in R.

CRAN 3

ArrayQualityMetrics This package generates a quality report for
the microarray data.

Bioconductor 5

bio3d This package contains utilities for the
analysis of protein structure, sequence,
and so on.

Grant Lab 4

BioMark This is a package for biomarker selection
via classification.

CRAN 9

Useful R Packages

310

Library name Application Repository Chapter
biomaRt This package provides an interface to a

collection of databases that implement the
BioMart software suite (http://www.
biomart.org). It enables the retrieval
of data within the R workspace, without
the need to know the underlying database
schemas and to write complex SQL queries.

Bioconductor 1, 2, 5

BioNet This package can be used for
network analysis.

Bioconductor

Biostrings This package has string-matching algorithms
and related utilities mainly used in
sequence analysis.

Bioconductor 2, 3

CHNOSZ This package has functions for analysis
in chemical thermodynamic modeling
in biochemistry.

CRAN 3, 4

chipseq An R package that analyzes the
chipseq data.

Bioconductor 8

clusterProfiler A package to analyze the GO- and
KEGG-based functional profiles of
genes and gene clusters.

Bioconductor

codelink An R package for the analysis of GE
healthcare gene expression data.

Bioconductor

RColorBrewer A package to draw color palettes to draw
maps that are shaded according to
a variable.

CRAN

dplyr Package for data manipulation. CRAN
e1071 A package with many functions related to

machine learning such as SVM Naïve Bayes
and so on.

CRAN 9

edgeR An R package for the differential expression
analysis of RNA-seq data.

Bioconductor 8

gdata A data manipulation package. CRAN
GenomicFeatures A package to retrieve and manage transcript-

related features from UCSC genome
Bioinformatics.

Bioconductor 8

http://www.biomart.org
http://www.biomart.org

Appendix B

311

Library name Application Repository Chapter
GenABEL A package for genome-wide association

analysis with SNPs.
CRAN 6

ggplot2 This is a data visualization and plotting
package that provides grammar for graphs.

CRAN 5, 6

GO.db Annotation maps for Gene Ontology (GO). Bioconductor 5, 8
gosim A package that contains functions for

the computation of functional similarities
between GO terms and a gene product.

CRAN

GOstats This package contains functions to interact
with GO and microarray data.

Bioconductor 5

graph A package with graph-handling functions. Bioconductor 5
GSEABase This package provides classes and methods

that support Gene Set Enrichment
Analysis (GSEA).

Bioconductor

GWASTools An R package for genome-wide association
studies (GWAS) and data handling.

Bioconductor 6

Hmisc This package contains many functions
that are useful in data analysis, high-level
graphics, utility operations, character string
manipulation, conversion of R objects to
LaTeX code, and so on.

CRAN 5

igraph A package for simple graphs and networks as
well as for graph analysis and plotting.

CRAN 5

KEGG.db Annotation maps for KEGG. Bioconductor
KEGGgraph An R package that provides an interface

between the KEGG pathway and R and the
required analysis functions.

Bioconductor

KEGGREST This provides an interface to the KEGG
REST server.

Bioconductor

limma A package for linear models and differential
expressions for microarray data.

Bioconductor 5, 8

lumi This package has functions that are required
for Illumina microarray data analysis.

Bioconductor

Useful R Packages

312

Library name Application Repository Chapter
MALDIquant A package for MS studies providing utilities

to analyze MALDI-TOF and other mass
spectrometry data.

CRAN 7

MALDIquantForeign An auxiliary package for MALDIquant to
read data types other than MALDI.

CRAN 7

MASS Some key statistical functions and data
based on Modern Applied Statistics with S,
Venable and Ripley.

CRAN 9

methyAnalysis An R package to analyze and visualize the
DNA methylation data.

Bioconductor 8

mlbench This package contains a number of
interesting datasets for machine
learning problems.

CRAN

mlogit A package for multinomial logit models. CRAN
multicore A package for the parallel processing of R

code on machines with multiple processor
cores (for Linux-based platforms).

CRAN

muscle A package for multiple sequence alignment. CRAN 3, 4
mvtnorm This package has functions for multivariate

normal distributions and related operations.
CRAN 9

NCBI2R An R package to navigate and annotate
genes and SNPs.

CRAN 6

plotrix This package contains many
plotting functions.

CRAN

plyr A package for data manipulation operations
such as splitting, combining, and so on.

CRAN

RPostgreSQL This provides an interface to the
PostgreSQL database system.

CRAN

reactome.db This provides annotation maps from
reactome.

Bioconductor

pROC The pROC package has functions to compute
receiver operating characteristics (ROC)
and functions to analyze it.

CRAN

protr This package contains subroutines for
protein sequence descriptor calculation and
similarity computation.

CRAN 4

Appendix B

313

Library name Application Repository Chapter
protViz An R package for the analysis and

visualization of MS data.
CRAN 7

randomForest A package for random forest-based
classification.

CRAN

RBGL This package implements several graph
algorithms from the Boost library.

CRAN 5

Rcurl These are functions to make HTTP requests
and are used to fetch results from a
web server.

CRAN

reshape This package contains functions to
restructure and aggregate data.

CRAN

reshape2 This package restructures and reshapes
the data.

CRAN

RFLPtools This R package has functions to analyze the
DNA fragment samples (the RFLP data).

CRAN 3

Rgraphviz A package to plot graphs (vertices and edges)
in R.

Bioconductor

RISmed An R package to interact with NCBI data and
download data.

CRAN

rjava This provides R to a Java interface. CRAN
Rknots A package for the topological analysis of

polymers, including proteins.
CRAN 4

RMySQL This provides a database interface and
MySQL driver for R.

CRAN

ROCR Another package to analyze ROCs. CRAN 9
ROSE Random over-sampling examples (ROSE)

provides functions and utilities to deal with
binary classification.

CRAN

Rsamtools The package provides an interface to the
samtools, bcftools, and tabix utilities
to handle SAM and BAM files.

Bioconductor 8

seqinr A package for the analysis, visualization, and
management of biological sequence (DNA
and protein) data.

CRAN 3, 8

Useful R Packages

314

Library name Application Repository Chapter
ShortRead This package contains functions and

methods for handling high-throughput and
short-read sequencing data.

Bioconductor 8

SNPassoc A package for association studies of SNPs. CRAN 6
spliceR The package can be used for the

classification of alternative splicing and
prediction of coding potential from
RNA-seq data.

Bioconductor

SRAdb SRAdb provides access to the metadata at
the SRA database.

Bioconductor 8

stringr This package contains functions to work
with strings.

CRAN

topGO This package has functions to test the
GO terms.

Bioconductor 5, 8

vegan This package contains interesting functions
mainly from the domain of ecology but can
be used for purposes such as similarity score
computation, diversity analysis, and so on,
useful for metagenomic studies.

CRAN 3, 9

xlsx The R functions to read/write/format Excel
2007 and Excel 97/2000/XP/2003
file formats.

CRAN

XML A package for parsing and generating
XML files.

CRAN

The following are the links for the R library repositories:

ff CRAN: This R library repository is available at http://cran.r-project.org/

Use the following command for installation:

> install.packages(“<package name>”)

ff Bioconductor: This R library repository is available at
http://www.bioconductor.org

Use the following command for installation:

> source(“http://bioconductor.org/biocLite.R”)

> biocLite(“<package name>”)

ff Grant Lab: This R library repository is available at
http://thegrantlab.org/bio3d/index.php

Use the following command for installation:

> install.package(“<path/to/file.tar.gz>”, repos=NULL,
type=”source”)

http://cran.r-project.org/
http://www.bioconductor.org
http://thegrantlab.org/bio3d/index.php

Index
Symbols
.map file

about 166
URL, for downloading 166

.ped file
about 166
URL, for downloading 166

A
Acute Lymphoblastic Leukemia (ALL) 134
ade4 library 309
AffyBatch object

about 110
handling 112, 113

affy library 309
Akaike Information Criterion (AIC) 159
alignment data

reading 241-243
ALL library 309
Amazon Machine Image (AMI) 55
Amazon web services. See AWS
Amino Acid Composition (AAC) 96
Analyses of Phylogenetics and

Evolution (ape) 309
annotate library 309
annotation database

prerequisites 40
reference link 42
working with 40-42

AnnotationDbi library 309
annotation, SNP 176-178
ape library 309
ArrayQualityMetrics library 309
artificial expression data

generating 117-120

as.*() function 300
association function 158
association scans

executing, for SNP 160-163
AWS

about 54
URL 55

B
BAM file 242
barplot() function 300
Basic Local Alignment Search Tool. See

BLAST
batch effects

about 123
overcoming, in expression data 123-125

betr package 137
bio3d library 309
Bioconductor

about 8, 37, 38
URL 8, 37, 314

Bioconductor libraries
installing 38-40
prerequisites 38

Biological Process (BP) 47
biomarker

identifying, machine learning used 297, 298
BioMark library 298, 309
BioMart

data, retrieving from 33-35
URL 33

biomaRt package 310
BioNet library 310
Biostrings library 310

316

BLAST
about 80
URL 80

BLAST results
about 80
handling 80-83

Blocks Substitution Matrix (BLOSUM) 72
Bonferroni correction 161
bootstrapping 288, 289
Bowtie 241
boxplot, high-quality microarray data 116
boxplot() function 300
Bruker format

MS data, reading 201-203
BWA 241

C
carcinoma in situ (CIS) 125
caret package

about 294
installing 293

cat() function 301
cbind() function 301
ceiling() function 301
CEL file

about 108
reading 108, 109

Cellular Components (CC) 47
centroids 276
c() function 301
ChipSeq

about 263
data, analyzing 263-266

chipseq library 310
CHNOSZ library 310
Chromatin immuneprecipitation sequencing.

See ChipSeq
classification

about 272, 282
decision tree (DT) 282
linear discriminant analysis (LDA) 282
performing 282-285
probabilistic classification 286
support vector machine (SVM) 282

class labels 282

cloud-based Bioconductor
prerequisites 54
setting up 55
usage 54

cloud computing 54
clustering

about 272
density-based clustering 277
Fuzzy clustering 277
hierarchical clustering, performing 273-277
k-means clustering, performing 273-277
performing, on microarray data 143-146

clusterProfiler library 310
clusters

about 273
visualizing 277-281

cmdplot function 280
CNV 182
CNV association analysis

about 182
performing 182-185

codelink library 310
co-expression networks

generating, from microarray data 146-149
colnames() function 301
ComBat function 126
Comprehensive R Archive Network. See CRAN
Copy Number Variation. See CNV
CRAN

about 8
URL 314

cross-validation (CV)
about 290
k-fold cross-validation 290
n-fold cross-validation 290
performing, for classifiers 290-292

D
data

downloading, from SRA database 237-239
filtering 16-19
reading 13-16
retrieving, from BioMart 33-35
statistical operations, performing 19, 21
statistical tests, performing 23-25

317

subsetting 16-19
visualizing 26-29
writing 13-16

data elements
extracting, from MS data 205-207

data.frame() function 301
data() function 301
dbConnect function 237
decision tree (DT) 282
dev.off() function 301
differential gene expression

searching, in microarray data 129-131
differentially expressed (DE) genes 115
differentially methylated regions (DMRs) 260
dim() function 302
dimnames() function 302
directed acyclic graph (DAG) 141
distance weighted discrimination (DWD) 126
dist function 280
DNA methylation data

analyzing 260-262
dplyr library 310

E
e1071 package

about 277, 287, 310
URL 277

Eclipse IDE
URL 9

edgeR library
about 310
used, for analyzing RNAseq data 248-251

Efetch 31
ExPasy

URL 216
ExpressionSet

building 110-112

F
false positive rate (fpr) 296
FASTA file

about 62
reading 62-64
writing 62-64

FASTQ file
reading 239-241

features, protein sequence
computing 95, 96

Fisher test 48
floor() function 302
fold change

about 137
in microarray data 137-139

functional enrichment, microarray data
describing 140-143

G
gap package

about 193
URL 193

GC content 64
gdata library 310
GenABEL library 311
GenBank

reference links 62
gen.data function 298
gene expression data

visualization 149-153
gene ontology. See GO
generic functions

as.*() function 300
barplot() function 300
boxplot() function 300
cat() function 301
cbind() function 301
ceiling() function 301
c() function 301
colnames() function 301
data.frame() function 301
data() function 301
data.matrix() function 301
dev.off() function 301
dim() function 302
dimnames() function 302
floor() function 302
getwd() function 302
grep() function 302
head() function 302

318

hist() function 302
intersect() function 302
length() function 302
library() function 303
list() function 303
load() function 303
match() function 303
matrix() function 303
max() function 303
mean() function 303
min() function 304
names() function 304
ncol() function 304
nrow() function 304
pdf() function 304
png() function 304
range() function 304
rbind() function 304
read.csv() function 304
read.table() function 304
rep() function 304
require() function 304
rm() function 305
round() function 305
rownames() function 305
sample() function 305
save() function 305
sd() function 305
seq() function 305
setdiff() function 305
setwd() function 305
sink() function 306
sort() function 306
source() function 306
str() function 306
strsplit() function 306
subset() function 306
sum() function 306
summary() function 307
tail() function 307
union() function 307
unique() function 307
which() function 307
write.csv() function 307

Gene Set Enrichment Analysis (GSEA) 311

genome-wide association studies. See GWAS
GenomicFeatures library 310
get.biom function 298
getBM function

attribute argument 90
filter argument 90
mart argument 90

getSRA function 237
getwd() function 302
ggplot2 package

about 192, 311
URL 192

GO
about 42, 46, 311
URL 48

GO annotation
about 46
performing 47, 48
prerequisites 46

GO.db library 311
GO enrichment

about 48
performing 49-52
prerequisites 49

GOHyperGParams object 141
GO project

URL 48
goseq function 257
goseq library

using 255
gosim library 311
GOstats library 311
Grant Lab

URL 314
graphical user interface (GUI) 9
graph library 311
grep() function 302
GSE24460

URL, for downloading 109
GSEA 53
GSEABase library 311
Guanine and Cytosine nucleotide

bases. See GC content
GWAS 155, 156, 311

319

GWAS data
about 156
handling, GWASTools package used 168-171
PLINK GWAS data 166

GWAS data formats
manipulating 172-175

GWAS results
visualizing 185-192

GWASTools package
about 311
reference links 172
used, for handling GWAS data 168-171

H
HapMap data

about 166
URL 166

Hardy-Weinberg Equilibrium. See HWE
head() function 302
hierarchical clustering

performing 273-277
high performance computing (HPC) 54
hist() function 302
Hmisc library 311
HWE

about 178
SNP data, testing for 178-181

HWExact function 180
hyperGTest function 141

I
ID conversion

performing 42-44
prerequisites 42

igraph library 311
installation, Bioconductor libraries 38-40
installation, R libraries 8-13
integrated development

environments (IDEs) 9
intensity plot 116
InterPro 98
InterPro domain annotation

working with 98, 99

intersect() function 302
Isobaric Tags for Relative and Absolute

Quantitation (iTRAQ) 224

K
KEGG

about 44, 142
URL 142

KEGG annotation
about 44
performing 45, 46
prerequisites 44

KEGG API
URL 46

KEGG.db library 311
KEGG enrichment

about 52
performing 52, 53
performing, of sequence data 258, 259
prerequisites 52

KEGGgraph library 311
KEGGREST library 311
k-fold cross-validation 290
k-means clustering

performing 273-276
Kolmogorov Smirnov (KS) 116
Kolmogorov-Smirnov test (KS test) 50
Kyoto Encyclopedia of Genes and

Genomes. See KEGG

L
length() function 302
libraries, R

installing 8-13
library() function 303
limma library

about 131, 311
used, for analyzing NGS data 251-254

linear discriminant analysis (LDA) 282
linkage disequilibria (LD) 191
list() function 303
load() function 303

320

loess normalization 121
lumi library 311

M
machine learning

about 272
bootstrapping 288, 289
performance, measuring 293, 294
supervised learning 272
unsupervised learning 272
used, for biomarker identification 297, 298

machine learning, key issues
data normalization 272
data quality 272
feature selection 272

madsim function 119
MALDIquant

about 203
MS data, converting to 203, 204

MALDIquantForeign library 312
MALDIquant library 312
Manhattan plot, GWAS results 189
MA plot, high-quality microarray data 115
MASS library 312
Mass spectrometry. See MS
mass spectrum 207
match() function 303
matrix() function 303
max() function 303
mean() function 303
median absolute deviation (MAD) 212
Messenger RNAs (mRNAs) 57
methyAnalysis library 312
microarray data

analyzing 108
analyzing, with PCA 127, 128
clustering 143-146
co-expression networks,

generating from 146-149
differential gene expression,

searching in 129-131
fold change 137-139
functional enrichment, describing 140-143
normalization 120-123
quality, checking 114-116

microarrays 108
min() function 304
missing call rate (MCR) 170
mlbench library 312
mlogit library 312
Molecular Function (MF) 47
MS 195, 196
MSA 75, 76
MS data

about 196
Bruker format, reading 201-203
converting, to MALDIquant 203, 204
data elements, extracting from 205-207
multiple group analysis,

performing in 224-226
mzML/mzXML format, reading 196-200
peak alignment, performing in 214, 215
peak detection, performing in 211, 212
peptides, identifying in 216-221
preprocessing 207-209
protein quantification analysis,

performing in 221-223
visualization, creating 227-231

MS data formats
mzML 196
mzXML 196

multicore package
about 312
URL 162

multiple group analysis
performing, in MS data 224-226

multiple microarray data
working with 132-134

multiple sequence alignment. See MSA
multivariate normal distribution (MVN) 22
MUSCLE algorithm 76
muscle library 312
mvtnorm library 312
mzML format

about 196
reading, of MS data 196-200

mzXML format
about 196
reading, of MS data 196-200

321

N
NAD kinase (NADK) 88
Naïve Bayes classification

about 286
performing 287

names() function 304
Nature Scitable

URL 83
NCBI

URL 29
NCBI2R library 312
ncol() function 304
NetCDF file 170
network common data form (NetCDF) 172
Next Generation Sequencing. See NGS
n-fold cross-validation

performing 291, 292
NGS

about 233, 234
Illumina (Solexa) sequencing 234
Ion torrent (proton and PGM sequencing) 234
Roche 454 sequencing 234
SOLiD sequencing 234

NGS data
analyzing, limma library used 251-254
raw NGS data, preprocessing 244-248
visualization 267-270

nlcv package 292
non-differentially expressed (non DE)

genes 116
normalization, microarray data

about 120-123
loess normalization 121
quantile normalization 122
Variance Stabilization and Normalization

(VSN) 121
nrow() function 304

O
Online Mendelian Inheritence in Man (OMIM)

URL 155
open reading frames (ORFs) 85
operators 299, 300
overfitting 282

P
pairwise sequence alignment

about 69
performing 70-75

partial least square (PLS) 298
PCA

about 115, 127
used, for analyzing microarray data 127, 128

PDB file
handling 96, 97

pdf() function 304
peak alignment

performing, in MS data 214, 215
peak detection

performing, in MS data 211, 212
peaks 211
peptides

identifying, in MS data 216-221
Phred score 234
phylogenetic analysis

about 77
performing, on sequence 77-80

phylogenetic tree
plotting 77-80

PLINK GWAS data
about 166, 168
importing 166-168
URL 168

plotrix library 312
plot.roc function 296
plyr library 312
png() function 304
Principal Components Analysis. See PCA
probabilistic classification

about 286
Naïve Bayes classification 286

probability distributions
generating 22, 23

pROC library 312
Protein Data Bank (PDB) 62

about 91
URL, for documentation 94

protein quantification analysis
performing, in MS data 221-223

322

protein secondary structure
visualizing 103, 104

protein sequence
analyzing 92-94
features, computing 95, 96
retrieving, from UniProt 88-91

protein structure
visualizing 105, 106

protr library 312
Protr Vignette

URL 96
protViz library 313
PubMed

requirements 30
working with 29-32

Q
Q-Q plots, GWAS results 188
quality, microarray data

checking 114-116
quantile normalization 122

R
R

about 7, 8
annotation database, working with 40-42
data, filtering 16-19
data, reading 13-16
data, retrieving from BioMart 33-35
data, subsetting 16-19
data, visualizing 26-29
data, writing 13-16
libraries, installing 8-13
probability distributions, generating 22, 23
PubMed 29-32
statistical operations,

performing on data 19-21
statistical tests, performing on data 23-25

Ramachandran plot
about 100
visualizing, for protein structure 100, 101

randomForest package 292, 313
Random over-sampling examples (ROSE) 313
range() function 304
raw NGS data

preprocessing 244-248

RBGL library 313
rbind() function 304
RColorBrewer library 310
Rcurl library 313
reactome.db library 312
ReadAffy function 109
read.csv() function 304
read.table() function 304
receiver operating characteristics (ROC) 312
regional association plot

about 190
data.frames 190

rep() function 304
require() function 304
reshape2 library 313
reshape library 313
RFLPtools library 313
Rgraphviz library 313
RISmed library 313
rjava library 313
Rknots library 313
R libraries

ade4 309
affy 309
ALL 309
annotate 309
AnnotationDbi 309
ape 309
ArrayQualityMetrics 309
bio3d 309
BioMark 309
biomaRt 310
BioNet 310
Biostrings 310
chipseq 310
CHNOSZ 310
clusterProfiler 310
codelink 310
dplyr 310
e1071 310
edgeR 310
gdata 310
GenABEL 311
GenomicFeatures 310
ggplot2 311
GO.db 311
gosim 311

323

GOstats 311
graph 311
GSEABase 311
GWASTools 311
Hmisc 311
igraph 311
KEGG.db 311
KEGGgraph 311
KEGGREST 311
limma 311
lumi 311
MALDIquant 312
MALDIquantForeign 312
MASS 312
methyAnalysis 312
mlbench 312
mlogit 312
multicore 312
muscle 312
mvtnorm 312
NCBI2R 312
plotrix 312
plyr 312
pROC 312
protr 312
protViz 313
randomForest 313
RBGL 313
RColorBrewer 310
Rcurl 313
reactome.db 312
reshape 313
reshape2 313
RFLPtools 313
Rgraphviz 313
RISmed 313
rjava 313
Rknots 313
RMySQL 313
ROCR 313
ROSE 313
RPostgreSQL 312
Rsamtools 313
seqinr 313
ShortRead 314
SNPassoc 314
spliceR 314

SRAdb 314
stringr 314
topGO 314
vegan 314
xlsx 314
XML 314

R library repository
Bioconductor 314
CRAN 314
Grant Lab 314

rm() function 305
RMySQL library 313
RNA degradation plot 116
RNAseq data

analyzing, edgeR library used 248-251
enriching, with GO terms 255-257

ROC curve
about 294
visualizing 294-296

ROCR package 294, 313
ROSE library 313
round() function 305
rownames() function 305
R packages. See R libraries
RPostgreSQL library 312
Rsamtools library

about 313
using 242

RStudio
URL 9

RWeka library
URL 286

S
sample() function 305
save() function 305
scanBam function 243
sd() function 305
secondary structure, protein

visualizing 103, 104
seq() function 305
seqinr library 313
sequence

phylogenetic analysis, performing on 77-80
retrieving 59-61

324

sequence alignment
about 69
MSA 75, 76
pairwise sequence alignment 69-75

sequence alignment map (SAM) file 242
sequence analysis 57-59
sequence composition

determining 64-68
sequence pattern

searching 84-86
Sequence Read Archive. See SRA
setdiff() function 305
setwd() function 305
ShortRead library

about 239, 314
installing 240

similar proteins
searching 102, 103

Single Nucleotide Polymorphisms. See SNP
sink() function 306
SNP

about 155
annotating 176-178
association scans, executing 160-163

SNP association analysis
about 156
performing 157-159

SNPassoc library 314
SNP data

testing, for HWE 178-181
SNPedia

URL 155
sort() function 306
source() function 306
spliceR library 314
SRA

about 235
URL 235

SRA database
data, downloading from 237-239
querying 235, 236

SRAdb library
about 237, 314
URL 239

StatET package
URL 9

statistical operations
performing, on data 19-21

statistical tests
performing, on data 23-25

str() function 306
stringr library 314
strsplit() function 306
subset() function 306
sum() function 306
summary() function 307
superficial transitional cell

carcinoma (STCC) 125
supervised learning

about 272
classification 272, 282-285

support vector machine (SVM) 126, 282

T
tail() function 307
tandem mass spectrometry (MS-MS) 216
time series expression data

handling 134-137
topGO library 314
Total Ion Current (TIC) 209
true positive rate (tpr) 296
true positive (TP) 288

U
union() function 307
UniProt

about 88
protein sequence, retrieving from 88-91
URL 91, 226

UniProt Knowledgebase (UniProtKB) 90
unique() function 307
unsupervised learning

about 272
clustering 272

V
Variance Stabilization and Normalization

(VSN) 121
vegan library 280, 314

325

visualization, clusters
performing 277-281

visualization, gene expression data 149-153
visualization, GWAS results

creating 185-192
visualization, MS data

creating 227-231
visualization, NGS data 267-270
visualization, ROC curve 295, 296

W
WEKA 286
which() function 307
whole genome SNP association analysis

about 163
performing 163-166

Wolframalpha
URL 23

Wolfram MathWorld
URL 52

write.csv() function 307

X
xlsx library 314
XML library 314

Thank you for buying

Bioinformatics with R Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Big Data Analytics with R
and Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop to
turn your data analytics into Big Data analytics

1.	 Write Hadoop MapReduce within R.

2.	 Learn data analytics with R and the
Hadoop platform.

3.	 Handle HDFS data within R.

4.	 Understand Hadoop streaming with R.

Introduction to R for
Quantitative Finance
ISBN: 978-1-78328-093-3 Paperback: 164 pages

Solve a diverse range of problems with R, one of the
most powerful tools for quantitative finance

1.	 Use time series analysis to model and forecast
house prices.

2.	 Estimate the term structure of interest rates using
prices of government bonds.

3.	 Detect systemically important financial institutions
by employing financial network analysis.

Please check www.PacktPub.com for information on our titles

328

Machine Learning with R
ISBN: 978-1-78216-214-8 Paperback: 396 pages

Learn how to use R to apply powerful machine learning
methods and gain an insight into real-world applications

1.	 Harness the power of R for statistical computing
and data science.

2.	 Use R to apply common machine learning
algorithms with real-world applications.

3.	 Prepare, examine, and visualize data for analysis.

4.	 Understand how to choose between machine
learning models.

R Statistical Application
Development by Example
Beginner's Guide
ISBN: 978-1-84951-944-1 Paperback: 344 pages

Learn R Statistical Application Development from
scratch in a clear and pedagogical manner

1.	 A self-learning guide for the user who needs
statistical tools for understanding uncertainty
in computer science data.

2.	 Essential descriptive statistics, effective data
visualization, and efficient model building.

3.	 Every method explained through real
datasets enables clarity and confidence
for unforeseen scenarios.

Please check www.PacktPub.com for information on our titles

329

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting Bioinformatics with
R
	Introduction
	Getting started and installing libraries
	Reading and writing data
	Filtering and subsetting data
	Basic statistical operations on data
	Generating probability distributions
	Performing statistical tests on data
	Visualizing data
	Working with PubMed in R
	Retrieving data from BioMart

	Chapter 2
: Introduction to Bioconductor
	Introduction
	Installing packages from Bioconductor
	Handling annotation databases in R
	Performing ID conversions
	The KEGG annotation of genes
	The GO annotation of genes
	The GO enrichment of genes
	The KEGG enrichment of genes
	Bioconductor in the cloud

	Chapter 3
: Sequence Analysis
with R
	Introduction
	Retrieving a sequence
	Reading and writing the FASTA file
	Getting the detail of a sequence composition
	Pairwise sequence alignment
	Multiple sequence alignment
	Phylogenetic analysis and tree plotting
	Handling BLAST results
	Pattern finding in a sequence

	Chapter 4
: Protein Structure
Analysis with R
	Introduction
	Retrieving a sequence from UniProt
	Protein sequence analysis
	Computing the features of a protein sequence
	Handling the PDB file
	Working with the InterPro domain annotation
	Understanding the Ramachandran plot
	Searching for similar proteins
	Working with the secondary structure features of proteins
	Visualizing the protein structures

	Chapter 5
: Analyzing Microarray Data with R
	Introduction
	Reading CEL files
	Building the ExpressionSet object
	Handling the AffyBatch object
	Checking the quality of data
	Generating artificial expression data
	Data normalization
	Overcoming batch effects in expression data
	An exploratory analysis of data with PCA
	Finding the differentially expressed genes
	Working with the data of multiple classes
	Handling time series data
	Fold changes in microarray data
	The functional enrichment of data
	Clustering microarray data
	Getting a co-expression network from microarray data
	More visualizations for gene expression data

	Chapter 6
: Analyzing GWAS Data
	Introduction
	The SNP association analysis
	Running association scans for SNPs
	The whole genome SNP association analysis
	Importing PLINK GWAS data
	Data handling with the GWASTools package
	Manipulating other GWAS data formats
	The SNP annotation and enrichment
	Testing data for the Hardy-Weinberg equilibrium
	Association tests with CNV data
	Visualizations in GWAS studies

	Chapter 7
: Analyzing Mass
Spectrometry Data
	Introduction
	Reading the MS data of the mzXML/mzML format
	Reading the MS data of the Bruker format
	Converting the MS data in the mzXML format to MALDIquant
	Extracting data elements from the MS data object
	Preprocessing MS data
	Peak detection in MS data
	Peak alignment with MS data
	Peptide identification in MS data
	Performing protein quantification analysis
	Performing multiple groups' analysis in
MS data
	Useful visualizations for MS data analysis

	Chapter 8
: Analyzing NGS Data
	Introduction
	Querying the SRA database
	Downloading data from the SRA database
	Reading FASTQ files in R
	Reading alignment data
	Preprocessing the raw NGS data
	Analyzing RNAseq data with the edgeR package
	The differential analysis of NGS data
using limma
	Enriching RNAseq data with GO terms
	The KEGG enrichment of sequence data
	Analyzing methylation data
	Analyzing ChipSeq data
	Visualizations for NGS data

	Chapter 9
: Machine Learning
in Bioinformatics
	Introduction
	Data clustering in R using k-means and hierarchical clustering
	Visualizing clusters
	Supervised learning for classification
	Probabilistic learning in R with Naïve Bayes
	Bootstrapping in machine learning
	Cross-validation for classifiers
	Measuring the performance of classifiers
	Visualizing an ROC curve in R
	Biomarker identification using array data

	Appendix A: Useful Operators and Functions in R

	Appendix B
: Useful R Packages
	Index

